
 

 

 
  

If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either 

yours or that of a third party) or any other law, including but not limited to those relating to 

patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please 

read our Takedown Policy and contact the service immediately 

  



A 

MICROSTRUCTURAL ANALYSIS OF SURFACE 

AND INTERFACE ZONES IN CONCRETE 

GAMAL ELSAYED AI3DI? LAZIZ 

Doctor of Philosophy 

ASTON UNIVERSITY 

December 1997 

This copy of the thesis has been supplied on condition that anyone who consults it is 

understood to recognise that its copyright rests with its author and that no quotation from the 

thesis and no information derived from it may be published without proper 

acknowledgement. 



ASTON UNIVERSITY 
MICROSTRUCTURAL ANALYSIS OF SURFACE ANI) INTERFACE ZONES IN 

CONCRETE 
Carnal Elsaycd AI3DELAZIZ Doctor of Philosophy 1997 

ABSTRACT 

The characterisation of microstructure variations across the cover zone ol'concrete and the 
effect of these variations on the rate of chloride ingress and carbonation were investigated. 
The effectiveness of using controlled permeability formwork (CPF) and electro-chemical 
realkalisation (ECR) as techniques for remedying the problems associated with such 
variations on the microstructure of the surface and interface zones was then studied. 

The hydration, pore structure and microhardness gradients of OPC and blended cement 
pastes cured under various regimes were analysed by thermo-gravimctry, desorption and 
indentation microhardness techniques. An alternative method, scratch hardness 
determination, was developed to provide information regarding hardness and microstructure 
of hardened cement paste (IICP), mortar and concrete. IIC1' specimens of different 
microstructure gradient thicknesses were then exposed to both 100% CO2 in 65% R11 
environment and IM NaC1 solution to establish a relationship between microstructure 
gradient and mass transport properties. 

Several of OPC paste and concrete specimens, with different mix proportions, were cast 
against CPF and impermeable formwork (IF) and the profiles of pore structure, 
microhardness and scratch hardness of the cover zone were established. The chloride ingress 

and the depth of carbonation of the surface zone of concrete cast against CI'F and IF were 
investigated. 

The main mechanisms controlling the ECR processes and the factors affecting such 
treatment were critically reviewed. Subsequently, as a means of restoring passivation of steel 
embedded in carbonated concrete, such IICP specimens were subjected to ECR. The 
influence of ECR on the chemistry of the pore solution and the microstructure of the surface 
and the steel/cement paste interface zones was also studied. 

The main findings of this investigation were as follows: 
(a) The thickness of the microstructure gradient of cover concrete is significantly 
decreased with increasing period of water curing but is relatively unaffected by curing 
temperature, w/c ratio and the use of cement replacement materials. 
(b) The scratch hardness technique was shown to be potential useful for characterising 
the microstructructure and microhardness gradients of the surface zone. 
(c) A relationship between the microstructure gradient and mass transport properties of 
the surface zone was established. 
(d) The use of CI'r resulted in a significant reduction in porosity of both the cement 
paste matrix and the aggregate/cement paste transition zone, and a marked improvement in 
the resistance of the surface zone to carbonation and the ingress of chloride ions. 
(e) The ECR treatment resulted in a marked densification of the pore structure and in 

changes to the pore solution chemistry and the cement phases of near-surface and 
steel/cement paste transition zones. This effect was more pronounced with current density, 
period of treatment and particularly with the use of sodium phosphate as an electrolyte. 

KEY WORDS: Microstructure, Cover concrete, Porosity, Durability, Curing, 
Chloride, Carbonation, Electro-chemical rcalkalisation, 
Fornrnork 
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GLOSSARY OF ABBREVIATIONS 

C3A - Tricalcium Aluminate (3CaO. Al203) 

Ca(OI1)2 - Calcium hydroxide 

C4AF - Tetracalcium Aluminoferrite (4CaO. A1203. Fe203) 

Ca2CO3 - Calcium Carbonate 

Cap. - Capillary 

CAZ - Curing Affected Zone or Microstructure Structure Gradient 

C-I1 - Calcium hydroxide 

Cl- - Chloride Ion 

CO2 - Carbon Dioxide 

C02- - Carbonate Ion 

CPF - Controlled Permeability Formwork 

CPFAZ - Controlled Permeability Formwork Affecting Zone 

C2S - Diacalcium Silicate (2CaO. Si02) 

C3S - Tricalcium Silicate (3CaO. Si02) 

C-S-Ii - Calcium Silicate Hydrate 

Dci - Coefficient of Chloride Diffusion 

DTA - Differential Thermal Analysis 

El to E8 - Curing Regime (Outlined in Table 2.3) 

ECR - Electro-Chemical Realkalisation 

IICP - Hardened Cement Paste 

hV - Hardness Vicker 

GGBS - Ground Granulated Blast Furnace Slag or Slag 

I- current Density 

IF - Impermeable Formwork 

LiOH - Lithium Hydroxide 

MIP - Mercury Intrusion Porosimetry 

Na* - Sodium Ion 

NaCl - Sodium Chloride 

Na2CO3 - Sodium Carbonate 

NaNO2 - Sodium Nitrite 

NaOH - Sodium Hydroxide 
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Na3PO4 - Sodium Phosphate 

NEW - Non Evaporable Water 

Oil- -I lydroxyl Ion 
OPC - Ordinary Portland Cement 

PFA - Pulverised Fuel Ash or Fly Ash 

PSD - Pore Size Distribution 

- Diameter of glass bead 

RI! - Relative Humidity 

Scr. - Scratch 

SSD - Saturated Surface Dry 

SRPC - Sulphate Resistant Portland Cement 

t - time 

T - Period of Electro-chemical Realkalisation Treatment 

TCP - Total Chloride Penetrated into Concrete Cover 

TG - Thermo-Gravimetry 

TZ - Transition Zone or Interface Zone 

W/C - Water Cement Ratio 

XRD - X-Ray Diffraction 
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CHAPTER 1 

INTRODUCTION 

1.1 FIELD OF STUDY 

Reinforced concrete is a widely accepted and used construction material. A durable 

concrete will retain its original form, in terms of quality and serviceability when 

exposed to the environment. It must therefore provide adequate strength and withstand 

the effects of natural weathering and aggressive environments, affording sufficient 

protection to embedded reinforcement (ACI Committee 201,1977 and Schiesst, 1989). 

Over the last two decades, there has been a growing awareness that not all concretes are 
durable as previously believed. It has been found that reinforcement corrosion is one of 

the major problems affecting durability of reinforced concrete structures (Schiesst, 

1989). Also, durability-related problems contribute over 95% of failures of concrete 

structures (Wood, 1994) and a large sum of money is spent to prevent structures 

undergoing this type of failure. In the UK alone about £150 million a year is spent on 

maintaining motorway and trunk road bridges, much of it on the repair of damage 

caused by steel corrosion. In Europe, the cost of bridge repair is estimated at £1000 

million a year (Arya, 1994). 

Carbonation and chloride contamination of concrete are known to be the major factors 

responsible for premature corrosion of steel reinforcement in concrete (Swamy and 

Tanikawa, 1993). These substances can penetrate concrete to the level of reinforcement 

and disrupt the passivity of the steel, initiating corrosion. The cover concrete is, 

therefore, considered to be the first line of defence against these harmful mechanisms 

and, consequently, the quality of the surface zone of any concrete structure is a critical 

factor in determining the long term durability. The microstructure of the cover concrete 

plays a major role in controlling the rate of ingress of deleterious elements. Therefore, it 

is important to have a good understanding of the microstructure of the concrete cover to 

enable an accurate assessment of the service life and durability of existing structures. 
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When exposed to a drying environment, the microstructure of the bulk concrete is 

different from concrete near the surface. This is due to the moisture gradient within the 

concrete , and consequently, the formation of a microstructure gradient in the cover zone 

(Patel et al, 1988). Cather (1994) defined the depth between the surlhcc and the point 

within the concrete where the external environment has virtually no effect on the local 

humidity regime as the "curing-affected zone (CAZ)". The quantification of the CA7. 

will therefore lead to a better understanding of the covercrete microstructure system. 

Furthermore, the influence of the CAZ on mass transport properties of the concrete such 

as chloride ingress and carbonation can also be studied. 

It is important to characterise the pore structure of hardened cement paste involved in 

the cover concrete and to quantity the CAZ in order to develop a durable concrete. 

There are many techniques available for characterising the microstructure of IICP, 

mortar and concrete (outlined in Section, 3.2.1). Most of these techniques are, however, 

time-consuming and cause irreversible changes to the microstructure of the material 

being tested. So, there is the need for the development of an alternative, simple and 

reliable method of measurement. 

Many procedures arc now available lür improving the pore structure and for enhancing 

the mechanical and mass transport properties of the cement paste matrix and 

aggregate/cement paste transition zone. The most practical of these procedures involve 

treatment of the concrete surface with water curing, use of cement replacement materials 

and casting of fresh concrete on controlled permeability formwork fabrics (CPF). Water 

curing is the traditional method of curing concrete and prolonged water curing generally 

improves the properties of cover concrete through the modification of its microstructure. 

It is also believed that the use of PFA or GGBS as a cement replacement material tends 

to modify the microstructure of the concrete as a result of the pozzolanic reaction which 

occurs between these blending agents and the cement hydration products (Sergi, 1986; 

Ahmed, 1990 and Ngala, 1995). 

In addition to curing and the use of cement replacement materials, CPF has been used in 

recent years to minimise drawbacks caused by conventional impermeable formwork (IF) 

and to improve the durability of concrete (Price and Widdows, 1991 and Basheer et at, 

1993). The use of CPF appears to alter the microstructure of the near surface concrete 
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by allowing trapped air and water to escape from the near surface concrete (Price and 

Widdows, 1991). Thus, a good understanding of the effects these variables (curing, 

cement replacement materials and CPF) on the pore structure of the surface zone will be 

helpful in producing durable concrete. 

Reinforcement corrosion remains the main cause of the premature deterioration of 

concrete structures world-wide. Many methods have been proposed to combat this 

problem including patch repairing, delaying the onset of corrosion by treating the 

surface of concrete with either waterproofing membranes or anti-carbonation coatings 

and applying electro-chemical techniques. Other measures will involve the use of less 

permeable concrete through the lowering of the w/c of the surface zone (using CPF) and 

the incorporation of cement replacement materials (RILEM Draft Recommendation, 

1994 and Arya and Vassie, 1996). Recent evidence suggests, however, that such 

measures (patch repair and delaying the onset of corrosion) alone may not be sufficient 
in all circumstances (Wallbank, 1989; RILEM Draft Recommendation, 1994; Arya and 

Vassie, 1996 and Al-Kadhimi et al, 1996). 

Various electro-chemical techniques for corrosion protection of reinforcing steel have 

been developed in the last few years. The advent of these techniques presents the 

possibility of lasting rehabilitation for concrete through tackling the causes instead of 

symptoms (RILEM Draft Recommendation, 1994). One of these methods is electro- 

chemical realkalisation (ECR) which provides a non destructive means for remedying 

the effects of carbonation. 

The ECR technique is commercially available and aims to re-establish the corrosion 

protective qualities of concrete by increasing the alkalinity of carbonated concrete to a 

suitably high p1-I level (Odden and Miller, 1994 and Sergi et al, 1996). The mechanism 

of this technique is controlled by covercrete properties such as absorption, diffusion, 

migration and, according to some authors, clectro-osmosis (Mietz and Isecke, 1994a and 

1994b; Polder and Hondel, 1992 and Banfill, 1994). This technique, consequently, is 

affected by the pore structure of the concrete cover. Therefore, quantification of the 

covercrete microstructure, prior to and following the application of electro-chemical 

realkalisation may provide a better understanding of the mechanism of this technique 

and enable the detection of possible side effects on the concrete properties. 
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1.2 PURPOSE OF STUDY 

It has been recognised that the durability of reinforced concrete is sensitive to the 

microstructure of cover concrete, especially that of the surlJcc reine. Many direct and 
indirect techniques have therefore been introduced in the literature (see Section 3.2.1) 

for characterising the cover concrete microstructure. However, due to the limitations of 

these techniques (outlined in Section 3.2.1 and 4.1), there is the need for the 

development of an alternative method of measurement. 

At the surface zone, the microstructure is not uniform as a result of the variation in the 

degree of hydration, thus leading to the formation of a microstructure gradient (curing 

affected zone, CAZ). However, there is lack of quantitative information regarding the 

CAZ and its effects on the mass transport properties of the cover concrete. 

Controlled permeability formwork sheets (CPF) were adopted in the last few years to 

improve the mechanical and mass transport properties of reinforced concrete within the 

CAZ. Ilowever, the role of these sheets on the pore structure, microhardness and mass 

transport properties such as the rate of chloride ingress and carbonation within the 

surface zone arc not fully understood. 

Furthermore, electro-chemical realkalisation (ECR) is considered an infant technique 

with only a limited track record in treating problems associated with carbonation within 

the CAZ. The mechanism of this treatment and its effects on the composition of the 

cover concrete are in need of further investigation. In an effort to gain improved 

understanding of the above-mentioned phenomena, the present study was undertaken 

with the following main objectives: 

To characterise the microstructure of the cover concrete and to determine the 

thickness of the microstructure gradient (curing affected zone, CAZ) of the 

surface zone by a number of established methods. 

(2) To establish a simple, reliable technique based on a scratch hardness 

measurement to quantify the covercrete microstructure and the thickness of 

CAZ. 
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(3) To determine the effect of CAZ on mass transport properties, e. g. chloride 
ingress and carbonation. 

(4) To investigate the effectiveness of controlled permeability formwork (CPI) in 

modifying the microstructure and microhardncss of ccmcnt paste and 

aggregate/cement paste transition zone (TZ) of covercrete. 

(5) To examine the effect of CI'F on the rate of carbonation and chloride ingress 
into the surface zone. 

(6) To study the mechanism of electro-chemical realkalisation (ECR) and to 
determine the factors affecting the ECR treatment. 

(7) To investigate the effect of ECR treatment on microstructure and the cement 

phases of the near-surface and steel/cement paste transition zones. 

1.3 OUTLINE OF THESIS 

This thesis is divided into eight chapters, Following this introduction (Chapter 1), 

chapter two details materials used, mix proportions, specimen preparation and testing 

techniques adopted throughout the present investigation. The experimental work is 

described in the next five chapters (3 to 7). Each experimental chapter contains a general 
introduction to tlie topic and, where applicable, a review of tlie relevant literature 

precedes the experimental procedure which in turn is followed by the results and 
discussion. At the end of each chapter, there is a summary of the conclusions. Finally 

chapter 8 contains the overall conclusions arrived at from the whole investigation 

followed by recommendations for further work. 

More specifically, chapter 3 discusses the data obtained from the widely-used 

techniques such as thermo-gravimetry, water desorption and chloride ion diffusion 

measurement. These techniques have been adopted to characterise the microstructure 

and the mass transport properties of the surface zone of 011C, OPC/30%PFA and 

OPC/60%GGBS pastes cured with different regimes, and to determine the thickness of 

the curing affected zone or microstructure gradient (CAZ) of these pastes. This chapter 

relates the pore structure of the surface zone to its mass transport properties (in terms of 

the effective chloride diffusion). 

Chapter 4 describes the development of scratch hardness equipment and the methods of 

analysing the scratch, followed by attempts to investigate the reliability of this 
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equipment by measuring the scratch hardness of OPC paste and concrete of different 

properties. This chapter also discusses the possibility of using the indentation 

microhardness and scratch hardness techniques in evaluating the CAZ of OPC paste. 

Finally, it also relates both indentation microhardness and scratch hardness results with 

each other and with the pore structure measurements. 

Chapter 5 outlines the effect of the process of carbonation on the pore structure and 

chemical composition of OPC, OPC/30%PFA and OPC/60%GGBS pastes. It 

determines the influence of the CAZ on the rates of carbonation and chloride ingress 

into the surface zone of I ICP. 

Chapter 6 describes the pore structure of OPC paste cast against different formworks 

(CPF and IF) and the microhardness of aggregate/cement paste transition zones of OPC 

concrete cast on these formworks. It points out the influence of using CPF on 

microhardness and scratch hardness of OPC concrete with different w/c ratios, and on 

the rate of carbonation and chloride ingress into the surface zone of OPC, PFA and slag 

concretes. 

Chapter 7 outlines the significance mechanisms controlling the process of ECR such as 

capillary absorption, diffusion and current-induced (possibly electro-osmosis). It 

determines the influence of varying internal relative humidity of the surface zone, 
intensity of polarisation, period of ECR treatment and type of electrolyte on the rate of 

realkalisation and the chemistry of the pore solution of the surface zone. Finally, it 

describes the effect of these variables on the pore structure and cement phases of the 

near-surface and steel/cement paste transition zones. 
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CHAPTER 2 

MATERIALS, PREPARATION OF SPECIMENS 

ANI) EXPERIMENTAL TECIINIQUES 

2.1 INTRODUCTION 

This chapter outlines the materials, specimen preparation and sonic of the experimental 

procedures used in this research programme. Further experimental procedures are 

described in detail in the relevant chapters. 

2.2 MATERIALS 

2.2.1 Ordinary Portland Cement 

Ordinary Portland Cement (OPC) complying with BS 12 (1978) was used throughout 

the study. The cement was received in a single batch and stored in air-tight plastic bins 

during the investigation. Details of the chemical and physical properties are summarised 

in Table 2.1. 

2.2.2 Cement Replacement Materials 

Two cement replacement materials, namely, Pulverised-Fuel Ash (PFA) and Ground 

Granulated Blast Furnace Slag (GGBS) were used in this investigation. The chemical 

compositions of the cement replacement materials are given in Table 2.1. 

2.2.3 Aggregate 

2.2.3.1 Natural aggregates 

Natural siliceous sand and gravel of maximum nominal size of 15 mm complying with 

BS 882 (1983) were used to produce concrete specimens, and all aggregates were kept 

in saturated surface dry (SSD) condition. 

2.2.3.2 Glass beads 

Non-porous glass beads supplied by English Glass Ltd. were used to simulate aggregate 

to study the effect of underlying aggregate on microhardness and scratch hardness of 

concrete. The diameter (0) of the glass beads was 12 mm with a specific gravity of 

2.95. 
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2.2.4 Water 

De-ionised water was used throughout the study for mixing cement pastes, curing and 

preparation of aqueous solutions for chloride diffusion cell and chloride exposure tests. 

Distilled water was used for mixing concrete specimens. 

2.2.5 Sodium Chloride 

Analytical reagent grade sodium chloride (99.9% NaCI) was used for the preparation of 

aqueous test solutions required to investigate the chloride ion diffusion in cement paste. 

2.2.6 Sodium Hydroxide 

Analytical reagent grade sodium hydroxide was used For curing solution, chloride 

solutions for immersion tanks and diffusion cells to prevent leaching of hydroxides from 

the specimens. 

2.3 MIX PROPORTIONS 

Details of the mix proportions used for producing concrete and cement paste are given 
in Table 2.2-a and 2.2-b, respectively. 

2.4 PREPARATION OF TEST SPECIMENS 

2.4.1 Cement Paste 

The cements were sieved through a 150 pun mesh to ensure homogeneity by avoiding 

the presence of the coarse unhydrated cement particles in the mix. In blended mixes, the 

OPC was added to PFA and GGBS in accordance with Table 2.2 and mixed manually to 

achieve a properly blended cementitious material. The cement blends and mix water 

were weighed according to the water/solid ratio and mixed together manually for a 

period of 5 minutes. The mix was then transferred to I'VC cylindrical moulds of 49 mm 
diameter and 75 mm height and vibrated until air bubbles stopped appearing on the 

surface of the paste. Care was taken during the vibration to avoid excessive bleeding. 

The foamy layer that accumulated on the surface was removed and replaced with fresh 

paste and this process was repeated twice. A polythene sheet was then placed on the 

surface of the paste to prevent air being entrapped, and sealed with an air tight lid. The 

cylinders were then rotated end over end at 8 rpm for 24 hours to prevent bleeding and 

to minimise segregation. After 24 hours, the lids of the PVC containers and the 
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polythene sheets were removed. The region between the I'VC mould and cast surface 

was scaled using paraffin wax leaving only the cast surface exposed to the curing 

environment (sec Figure 2.1). The PVC containers were then transferred to various 

curing environments listed in Table 2.3. 

2.4.2 Concrete 

The concrete mixing procedure was essentially that specified in BS 1881: Part 125 

(1970). The aggregates were mixed dry for one minute, then half of the mix water was 

added and mixing was continued for a further minute. The mix was then allowed to 

stand for 8 minutes. The cement was then added and mixed for another minute and the 

remaining water was added to the mix and mixing continued for a further two and a 

half minutes. The concrete was then hand mixed to ensure its complete homogeneity. 

Then, the concrete was poured into concrete moulds in three layers, compacting each 

layer on a vibrating table. The concrete was then levelled and wrapped in a polythene 

sheet. The concrete specimens were demolded after 24 hours and transferred to the 

specified curing environments. 

2.4.3 Glass Bead/ Cement Paste Model 

A PVC mould (60x6Ox30 mm) was designed to produce cement paste specimens to 

study the effect of underlying aggregates on microhardness and scratch hardness. The 

base of the mould had hemi-spherical pits of 12 mm diameter (0). These groves were 

spaced at V20,0 and 20 to contain non porous glass beads of 12 nun in diameter. The 

glass beads were fitted to the PVC mould before casting. OPC paste with water/cement 

ratio of 0.5 was used to produce specimens containing embedded glass beads. The 

cement paste was mixed as described in section 2.4.1 and the fresh cement paste was 

poured into the mould and vibrated on a small vibrating table to remove any trapped air. 

The specimen was then wrapped in a polythene sheet to prevent moisture loss. The 

specimens were demolded after 24 hours and cured for 2 months under water at 22°C 

prior to testing. The geometrical detail of a glass bead/ cement paste model is shown in 

Figure 2.2. 

2.5 CURING 

A wide range of curing regimes used in this investigation are summarised in Table 2.3. 

Specimens were subjected to curing 24 hours after casting in order to have the same 
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pre-curing condition. The three curing regimes used in this investigation were as 
follows: 

Regime 1: Water curing at nmdcratc temperature 

Water curing was carried out in plastic curing tanks. Dc-ionised water used For curing 

contained 35 mM NaOlI to prevent leaching of alkalis from the specimens. The tanks 

were stored in a curing room maintained at 21°±2°C and 65% RIi. The specimens were 

immersed in the curing tanks for 3,7 and 28 days. In addition, some specimens were 

subjected to air curing in the curing room for 28 days. Other specimens were cured for 3 

and 7 days in dc-ionised water followed by air curing in the curing room. 

Regime 2 Water curing at elevated temperature 

The specimens cured in this regime were immersed in tanks filled with de-ionised water 

containing 35 mM NaOII. These tanks were stored in a curing room at 38°±2°C and 

65% RII for 3 and 28 days. Some specimens were air cured in the curing room for 28 

days. 

Regime 3 Interrupted curing 

This curing regime was expected to simulate Middle Eastern site conditions by 

intermittent wetting of concrete. The specimens were wetted for 5 minutes twice a day; 

in the morning and evening, by immersing in a curing tank that contained water 

maintained at 38°±2°C. Wetted specimens were then exposed in air at 38°±2°C and 

65% RII. The cyclic wetting and drying was continued for three days and then the 

specimens were left in air at 38°±2°C and 65% RII for 25 days. 

2.6 TEST TECHNIQUES AND PROCEDURES 

The method of sampling to obtain the specimens required for various investigations are 

described in detail in the relevant chapters. This section summarises the test techniques 

and procedures used throughout this investigation. 

2.6.1 Determination of Non Evaporable Water (NEW 

The method adopted in this study to determine % NEW, assumes that all bound water 
in the cement paste can be removed by oven drying at 950°C. 
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After curing, the cylindrical cement paste specimen was sliced to obtain circular disc 

specimens at different distances from the casting surface as described in Chapter 3 

(Section 3.3). Each specimen was then broken into small fragments and transferred into 

a platinum crucible. The crucible was then heated in an oven at 105"C until constant 

weight achieved and the weight was recorded (Wio5). The cement paste sample was then 

heated at 950°C for 25±5 minutes and the weight was recorded (W-m). 

At 950°C the cement itself looses some mass termed the ignition loss, which has to he 

determined for all types of cements used. Approximately I gram of unhydrated cement 

was used to determine the loss on ignition following the same procedures as for the 

cement paste specimens. The percentage "loss-on-ignition" was also determined for the 

pozzolanic cements (PFA and GGBS) blended with OPC. 

The amount of ton evaporable water was then calculated as a percentage of the weight 

of unhydrated cement using the following equation (Lambert, 1983 and Sergi, 1986) : 

%NEW = 
TVios(100-i+a)-1V95o(100+a) 

(2.1) 
TV9so 

Where, 

NEW = non evaporable water (% gros/ gm of cement) 

W1o5 = weight of cement paste at 105°C (gms) 

W95o = weight of cement paste at 950°C (gms) 

i= loss-on-ignition (% weight of cement) 

a= total admixtures (% weight of cement) 

The derivation of formula (2.1) and a worked example are given in Appendix 1. The 

average % NEW was calculated using triplicate specimens. 

2.6.2 Determination of Capillary and Total Porosity 

The sampling procedures are described in detail in Chapter 3 (Section 3.3) and Chapter 

6 (Section 6.3). The specimens were vacuum saturated for 48 hours to ensure that all 

pores were filled with de-ionised water. Then, each specimen was weighed in water 
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(WI ). The specimen was then removed from water and weighed in air in a surface dry 

condition (W2). The total volume of the specimen (W2-WI) was then calculated using 

Archimedes' law. 

The specimen was then exposed to an environment of 90.7% relative humidity (1111) at 

22°C until it attained constant weight (W3). The 90.7% 1111 environment was controlled 

using a saturated solution of barium chloride in an air tight desiccator. The capillary 

porosity was calculated using the following equation: 

Capillary porosity (%) _ 
JV2 - fß'3 

x100 JV2-WV1 .... (2.2) 

The capillary porosity calculated in this study, represents the pores of size greater than 

approximately 30 nm (Parrott, 1992). 

The specimen was finally oven dried at 105°f5°C for 24 hours and the weight (W4) was 

recorded to determine the total porosity using the following equation: 

Total porosity 
IV2 - IV4 

X100 IV2 - WVl ...... (2.3) 

The average capillary and total porosity were calculated using triplicate specimens. A 

worked example is given in Appendix 2. 

2.6.3 Mercury Intrusion I'orosimctry (MIP) 

The main principle of this technique is, to measure the volume of mercury penetrating a 

sample of paste, as a function of the increasing applied pressure, P. The total volume of 

mercury indicates the total porosity while the pressure at which the pores are penetrated 

is related to the pore diameter (d) by the Washburn equation; 

P= 
4y cos O 

...... (2.4) 
d 

where y is the surface tension and O is the contact angle. 
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The specimen was broken into small pieces and then approximately 3 gills of fragments 

were stored in a bottle containing iso-propan-2-ol for a week to remove the water from 

the material. The sample was then dried in cool air using a hair drier and placed in a 

desiccator. The desiccator was evacuated for a week to remove the alcohol from the 

sample. Approximately 2.5 gins of the sample was then weighed and transferred to the 

cell of the Pore Sizer Micrometer (Model 9310). 1'SD was calculated using the 

Washburn formula, assuming a constant contact angle of 117° and constant mercury 

surface tension of 485 dynes/cm. The assumed contact angle was based on earlier work 

by Winslow and Diamond (1970) who reported that the contact angle for cylindrical 

pores in hydrated cement paste (oven-dried at 105°C) was approximately 117°. This 

value of contact angle is considered to be accurate enough for this study since the PSD 

determinations are used only for comparison and not for providing exact values. 

2.6.4 Identification of cement phases 

2.6.4.1 Differential thermal analysis/ thermo-gravimctry 

When a substance is gradually heated at a predetermined rate, at a particular temperature 

it may undergo a phase transformation that manifests itself as an endo-thermal or exo- 

thermal change. The intensity of these changes can therefore be identified as a function 

of temperature (Ramachandran, 1969). The temperature difference between the sample 

and a reference material is recorded by a differential thermal analyser (DTA), while the 

change in the mass of the sample due to increasing temperature is measured by a 

thermal gravimetry (TG) using a thermobalance. 

The details of the sampling and specimen preparation are described in Chapter 5 

(Section 5.3) and Chapter 7 (Section 7.3.4.6). Approximately 20 mg of the powder 

sample (S 150 Eun) was packed into a platinum crucible and placed next to a similar 

crucible packed with alumina, a thermally inert substance, in the furnace of the Stanton 

Redcroft 1500 Thermoanalyser. The temperature of the furnace was then increased at a 

rate of 20°C/minute from ambient temperature to 950°C. Thermo-couples measured the 

difference in temperature between the two crucibles (reference and the sample) which 

was then plotted against furnace temperature. At the same time, the weight loss was also 

recorded as a function of temperature. 
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2.6.4.2 X-ray diffraction analysis 

The details of sampling and specimen preparation are described in Chapter 7 (Section 

7.3.4.6). Powdered specimens were passed through a 150 lim sieve and packed into 

sample holders before analysis in a Philips X-ray Diffractometer, which uses an 

electronic counter tube to measure the intensity of x-ray reflections. The specimen and 

counter are both rotated in the x-ray beam. The counter tube is rotated at twice the speed 

of the specimen so as to maintain the correct angle for each Bragg reflection. The output 

from the spectrometer is a trace of intensity (1) against Bragg angle (n) and the spacing 

of the reflecting planes (d) can therefore be obtained using Bragg's equation, 

na. =2dsin 0 ..... (2.5) 

where, n= order of the reflection 
1! 

= wave length of radiation (X= 1.542 A with CuKu radiation) 

With spacing (d) and Intensity (1), the identification of the crystalline compounds can be 

obtained by comparing with standard data. 

2.6.5 Expression of Pore Solution 

The high pressure pore solution expression device was first used by Longuet et al (1973) 

and modified by Diamond (1981) and Cage and Vennesland (1983) to extract the 

capillary pore solution of the cement paste, mortar and concrete. The main parts of this 

device consist of a support cylinder, platten, die body and a piston, as shown in Figure 

2.3. This device was used in this study to extract the pore solution from the specimens 

treated with electro-chemical realkalisation (ECR) to analyse for p! I, Ala' and C(); ' 

profiles. The full details of the sampling procedure and specimen preparation are 

described in Chapter 7 (Section 7.3.4.3). 

The specimen was fragmented, placed in the support cylinder and covered with a PTFE 

disc to prevent the pore solution from escaping upwards. The piston was then placed on 

the PTFE disc and loaded from 0 to 600 kN at a rate of 0.3 kN. /sec. The pore solution 

was consequently drawn through the outlet tube during the application of the force and 
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then collected in a sealed plastic vial to prevent exposure to air. At the beginning of the 

test, all the main parts of the pore expression device were thoroughly cleaned with de- 

ionised water and acetone and then sprayed with PTFE non-stick spray to minimise the 

friction between the contact surfaces. 

2.6.6 Pore Solution Analysis 

2.6.6.1 hydroxyl ion and p11 

The analysis of hydroxyl ion concentration was carried out immediately after expression 

of the pore solution to avoid any change in ON- ion concentration. Two methods were 

used to determine pI I, by titration and using a pi I meter. 

a- Titration 

The titration method is mainly used for analysing pore solution where the p1! is greater 

than 11. A 100 pl aliquot of the pore solution was made up to I nil by adding de-ionised 

water and then titrated using a standard 0.01 molar nitric acid solution with 

phenolphthalein indicator solution. The pll was then calculated from the hydroxyl ion 

concentration as follows: 

PH = -log 10 (11)' ...... (2.6a) 

Poll = -logio(OIl) ' ...... (2.6b) 

pH + pOH = 14 ...... (2.6c) 

pH = 14 + log10(OI1) - ...... (2.6d) 

b- pH meter 

A pH electrodenvas used in this investigation for measuring the alkalinity of the 

expressed pore solutions where the pH is less than 11. A Pye Unicam pH electrode in 

conjunction with a Philips digital pH meter was used throughout this study. Prior to 

testing, the pli meter was calibrated using 3 standard buffer solutions of p1I 4,7 and 

10. The pH measured using this method was accurate to ±0.01 pH. 

2.6.6.2 Sodium ion 

The concentration of sodium ions in the expressed pore solution was determined using a 

flame photometer. Prior to testing, 100 µl of the pore solution was diluted with de- 
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ionised water in a standard 250 ml flask. The diluted solution was then drawn through a 

thin tube into the flame photometer. The solution was then atomised and sprayed over 

the flame within the photometer. When a solution containing a metallic salt is sprayed 

onto the flame, it glows transmitting a light with a characteristic wave length. Therefore, 

the concentration of sodium ions could be determined by passing only the light through 

an appropriate filter. 

2.6.6.3 Carbonate ion 

The analysis was carried out by titration. A 100 tl aliquot of pore solution was diluted 

by adding 1 ml of de-ionised water. The diluted solution was then titrated with 0.01 

nitric acid using two acid-base indicators. The acid-base indicators used were 

phcnolphthalcin and bromcresolgrccn. 

This method was used by Sergi (1986) and Walker (1994) and based on the following 

assumptions. When titrating carbonated solution with acid, two inflections are 

established at around p119 and 4, where the first coincides with the point of conversion 

from carbonate (CO3 -) to bicarbonate ion (1100; ) and the second with complete 

neutralisation (i. e. from bicarbonate ion (1ICO; ) to carbonic acid (112CO3). In this 

study, phenolphthalein was used to determine the first conversion point while 
bromocresolgreen was used to determine the second conversion point. A full 

explanation of the method and a worked example is given in Appendix 3. 

2.6.7 Indentation Microhardness Technique 

The indentation hardness is defined as the ratio of the applied load, in kg, to the surface 

area of the indentation, in nini2 (Sadegzadeh, 1985). In this method, when the diamond 

indentor (Vickers' Hardness Knoop) of diameter D is depressed onto the concrete 

surface using a static load (P), a permanent deformation (indentation) is produced. As a 

result, the tnicrohardness (11) of the material being tested can be calculated as a 

function of the indentation diameter (d) which, in turn, depends on the indentor diameter 

(D) and test load (P), by using the following relationship (Kholmyansky et al, 1994): 

d/D = A(P/HD' ), 8 
....... 

(2.7) 
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where A and ß are dimensionless constants. 

At ß=0.5 the above equation acquires a distinct physical meaning, reducing to: 

11 = constant x bearing stress (P/ area of the indentation) ...... (2.8) 

The equation (2.8) shows that the microhardness is linearly proportional to the stress 
induced by the indentor. 

Prior to testing, the specimen was ground and polished as described in Chapter 4 

(Section 4.3.1). The polished specimen was then positioned with the test face on a 

horizontal plane under the microhardness tester (Micrometer 4). Then, the optical 

system provided within the microhardness instrument was focused until a clear image of 

the specimen was obtained. The load was then adjusted using the load dial and the 

indentor was forced onto the specimen. The length of the indentation was then marked 

and the microhardness reading was recorded in hardness Vickers (hV). 

where, hV = 1875 (P/ d 2) kg/mm 2 
...... (2.9) 

2.6.8 Determination of Effective Chloride Diffusion Coefficient 

2.6.8.1 Preparation of diffusion cell 

Prior to setting up, the specimen was sliced into discs (m; 3.5 mm thick) as described in 

Chapter 3 (Section 3.3). The discs were then vacuum saturated for 48 hours to ensure 

that all the pores were filled with water. The discs were then ground on both faces using 

emery paper and rinsed with de-ionised water. The cement paste disc was then mounted 
in a diffusion cell similar to that used by Page et al (1981), as shown in Fig 2.4. The 

diffusion cell is composed of two compartments. The first compartment was filled with 

IM NaCl and 35 mM NaOII solution, while the second compartment was filled with a 

known volume of 35 mM NaOII solution. A water-tight seal between the cement paste 

disc and the cell was achieved using two rubber gaskets smeared with Apiezon grease to 

sandwich the sample in place. PTFE tape was used to hold the two halves of the cell 

together and form a water-tight seal. PVC tape was also used to strengthen the joints 

before the diffusion cells were installed in a water bath maintained at 25°C. 
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2.6.8.2 Analysis of chloride ion 

From compartment 2 of the diffusion cell, 100 Eti aliquots of the solution were 

withdrawn using a micropipette and diluted with 9.9 nil dc-ionised water. Then, 2 ml of 

0.25M ferric ammonium sulphate (Fe (Ni I+)(S04)2.121120) in 9M nitric acid, and 2 ml 

of saturated mercuric thiocyanate in ethanol were added. The coloured solution formed 

was then lightly shaken and left undisturbed for at least 10 minutes before transferring 

into a test cell and analysing for chloride concentration using a spectrophotometer 

(JF. NWAY 6105 U. V. / VIS). The spectrophotometer measures the absorption of light 

(AUS) as a function of the chloride ion concentration at a specific wavelength of' 460 

rin]. 

Chloride ion concentrations were then estimated from a calibration curve constructed by 

plotting the concentration of standard chloride solutions against corrected absorption 

values (ABS) obtained from the spectrophotometer (Appendix 4). 

2.6.8.3 Effective chloride diffusion coefficient 

Variations of the chloride ion concentration in compartment 2 of the cell were 
monitored at regular intervals. The observed relationship took the form of a straight line 

and the slope of the straight line was determined (S). The effective chloride diffusion 

coefficient (Dd) was calculated using the following equation (2.10), derived from Fick's 

first law of diffusion. 

vi 
s (2.10) d AC i 

Where, 

Dd = effective chloride diffusion coefficient, (cmz/s) 

V= volume of the solution in compartment 2, (cm3) 

1= thickness of the specimen, (cm) 

A= cross-sectional area of diffusion, (cm2) 

C, = concentration of chloride in compartment 1, (m mole/1) 

S= gradient of the straight line relationship (Cl- concentration 
Vs time), (m mole/I/s) 
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Average chloride diffusion coefficients were calculated using four test specimens. The 

derivation of formula 2.10 and a worked example arc given in Appendix 4. 

2.6.9 Determination of Total Chloride Content 

The specimen preparation and exposure procedures for chloride ingress tests arc 

presented in detail in Chapter 5 (Section 5.3). Immediately after removing the 

specimens from the chloride solution for testing, the specimens were sampled by 

profile grinding using a lathe. The grinding was carried out at progressive depths up to 

50 mm into the specimen from the surface which was exposed to chloride ions. The dust 

produced from grinding was sieved though a 150 µm mesh to obtain a homogeneous 

sample. The samples were then kept in air tight plastic bags until required for chloride 

analysis. 

The prepared dust from different depths was analysed for total chloride content 

according to 13S 1881: part 124,1989. The essential procedures for pre-analytical 

preparation (acid dissolution) according to EIS 1881 were as follows: 

(i) Oven dry the specimen for 24 hours at 105" C. 

(ii) Disperse 5 gm concrete dust sample, or 0.5 to 0.8 gin cement paste dust sample 

in 25 ml de-ionised water. 
(iii) Add 10 ml of concentrated nitric acid (UNO, ). 

(v) Heat the solution to near boiling and keep warm for 10-15 min, using a hot 

plate, and leave to cool to room temperature. 

(vi) Filter the solution and then dilute with de-ionised water in a standard flask to a 

volume of 500 ml. 

(vii) Take 10 ml of solution and analyse for chloride ion concentration using a 

spectrophotometer, as described in section 2.6.8.2. 

Total chloride content as percentage of concrete or cement paste weight was then 

calculated from the following equation: 

Cl', =C1 x 100 
...... (2.11) 

jYIOs 
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Where: 

Cl,, = Total chloride content, % weight of concrete or cement paste, 

(in molc/I/gm) 

Cl- = Chloride concentration in tested solution, (in mole/I) 

WV,, s = Weight of dust at 105" C (gm) 

2.6.10 Determination of the Carbonation and Realkalisation Depth 

Phenolphthalein indicator was used to determine the carbonation depth of specimens as 

described in Chapter 5 (Section 5.3) and 6 (Section 6.3.2.5). Two pi I indicator solutions 

(phenolphthalein and thymolphthalein) were used in the investigation for monitoring the 

realkalisation depth (see Section 7.3.4.2). These two indicators were used because they 

change colour at specific p11 levels, allowing the estimation of the p11 level at the test 

location, and also for their convenience and reproducibility (Verbeck, 1958, Forrester, 

1976, RILE M CPC-18,1984 and Sergi et al, 1996). 

When a freshly broken face of a concrete/cement paste specimen is sprayed with 

phenolphthalein solution, the colour of the test face would stay colourless for fully 

carbonated concrete/cement paste or change from colourless to pink for uncarbonated 

concrete/cement paste, where the pll is more than 9.5. Similarly, when a 

concrete/cement paste specimen is sprayed with thymolphthalein, the test face would 

stay colourless for carbonated regions and change to blue for the specimens where the 

pH is greater than 11 (Sergi et al, 1996). 
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Table 2.1 Properties of OPC and cement replacement materials. 

PROPERTY OPC PPA GGI3S 

a-Chemical Composition. % 

Si02 20.3 48.2 35.51 
A1203 5.44 32.2 12.59 
Fe203 2.80 8.02 0.580 
CaO 63.7 1.45 40.09 
MgO 1.44 0.66 9.110 
SO3 2.90 0.52 0.150 

Na20 0.77 2.58 0.540 
K20 0.09 0.98 0.240 
Loss on ignition (L. O.. I) 0.94 3.84 1.170 

F/L 1.60 0.950 

b- Boeue Comnound Composition. % 

C3S 61.14 
C2S 13.02 

i_ 
CA 9.740 

_ 
C, AF 7.840 

c- Physical Pronerties 

Fineness, % 
Setting time (min) Initial 

Final 
Moisture content, % 
Water requirement, cm' 
Compressive strength, 3 days 

(kg/cm2 )7 days 

28 days 

12.5 
100 
165 

0.1 
106 

216 
_ 

125 
281 

_ 
250 

370 
_ 

315 
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Table 2.2. a Mix materials, proportion and curing regime of concrete. 
OPC, Cement replacement 

Material. 
Aggregate, kg/m' w/c Curing conditions 

Mix No kg/m' Type Content, Gravel Sand ratio (sec Table 2.3) 
kg/m 

1 300 1120 745 0.4 1? 4 
2 300 1120 745 0.5 E4 
3 300 1120 745 0.55 E4 
4 300 1120 745 0.6 E1, E3& E4 
5 300 1120 745 0.7 E4 
6 210 PFA 90 1120 745 0.6 E4 
7 120 GGBS 180 1120 745 0.6 E4 

Table 2.2. b Mix materials, proportion and curing regime of paste. 
Mix No OPC, Cement Replacement Material, % wie Curing conditions 

% PFA GGI3S ratio 
1 100 0.4 E4 
2 100 0.5 E4 
3 100 0.6 E4 
4 100 0.55 EI to E8 
5 100 0.7 E4 
7 70 30 

_ 
0.55 E4 

8 40 60 0.55 E4 

Table 2.3 Curing conditions for cement paste and concrete. 

CODE CURING CONDITION* 

El Air at 22° C/65% RuI for 28 days. 
E2 Water at 22° C for 3 days and then in air at 22° C/65% Rai to 28 days. 
E3 Water at 22° C for 7 days and then in air at 22° C/65% RI! to 28 days. 
E4 Water at 22° C for 28 days. 
E5 Air at 38° C/65% RI I for 28 days. 
E6 Water at 38° C for 3 days and then in air at 22° C/65% RHI to 28 days. 
E7 Water at 38° C for 28 days. 
E8 65 % R! I at 38° C water for 3 days (for only 5 minutes in morning and 5 

minutes in evening), other times in air curing to 28 days. 
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Figure 2.1 Scaling of the IICP specimens. 
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Figure 2.2 General view of glass bead/cement paste model. 
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Figure 2.3 Main components of pore expression device. 
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Figure 2.4 General view of the chloride diffusion cell. 
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CHAPTER 3 

MICROSTRUCTURAL ANALYSIS OF TILE SURFACE ZONE 

3.1 INTRODUCTION 

The process of damage due to reinforcement corrosion is often divided into two periods, 

as shown in Figure 3.1. T, is the time to initiate corrosion and depends mainly on the 

durability of concrete and exposure conditions while T2 is the period between initiation 

and the point in time when the corrosion has reached unacceptable levels resulting in 

spalling or significant loss of bar cross-sectional area (Browne, 1980 and Tuutti, 1983). 

The period T2 is less predictable than T, and its value in practice appears to range from 6 

months to 5 years (Browne, 1980). The period T2 is sometimes very small in terms of 

the service life of a structure and, in such cases, it seems reasonable to assume the 

service life of the structure to be T,. The initiation period (T, ) can only be extended by 

improving the durability of cover concrete protecting the embedded reinforcement. The 

protection provided by the cover concrete is in the form of resistance to the ingress of 

deleterious chemicals from the environment. The degree of protection depends on many 

factors such as absorptivity, permeability, water diffusivity, and cement characteristics 

of the concrete cover (Wallbank, 1989). 

The permeation properties and other concrete properties such as strength, creep and 

shrinkage are determined and controlled by the concrete microstructure (Feldman and 

Beaudoin, 1991; Raivio and Sarvaranta, 1994, and Lange et al, 1994). Therefore, it is 

vital to understand the factors influencing the pore structure of the concrete in order to 

develop a highly -durable concrete. 

Curing is one of the main methods used for improving the properties of the cover 

concrete through modification of its microstructure by enhanced hydration of cement. 
However, the degree of improvement is not uniform throughout the concrete cover. It 

varies from the surface to a certain point within the concrete where the external 

environment has virtually no effect on the local humidity regime. The distance between 

the surface to this point is known as the depth of the "curing affected zone (CAZ)" , 
which represents the thickness of the microstructure gradient. 
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The aim of this chapter and chapter 4 is to characterize the microstructure of the cover 

concrete and to determine the CAZ depth in terms of the variations in the pore structure 

and microhardness of the cement paste, respectively. This chapter also provides an 

insight into some of the factors influencing the microstructure and CAZ depth such as 

type of curing, w/c ratio and cement replacement materials. 

3.2 LITERATURE REVIEW 

3.2.1 Quantification of Concrete Microstructure 

Various techniques have been used to investigate concrete microstructure and Pratt 

(1988) has divided these techniques into two categories, direct and indirect methods. 

The direct methods give the image of the microstructure in terms of the size and shape 

of the phases relative to each other in space. The common techniques in this category 

arc optical microscopy, electron microscopy, image analysis and back scattered electron 

microscopy (IBSE). On the other hand, indirect methods provide information about the 

average size and distribution of sizes of some or all the phases. Some common 

techniques in this category are the mercury intrusion porosimetry (MIP), ethanol 

adsorption and water absorption. 

3.2.1.1 Direct methods 

Optical microscopy is used for examining a thin section (0.03 mm) of concrete to study 

the cement and aggregate type, the presence of mineral admixtures, the water/cement 

ratio, the quality of the compaction and the presence of alkali silica reaction (Pratt, 

1988). Winslow and Liu (1990) used an optical microscope to determine the amount of 

entrapped air in polished sections of mortar and concrete. Ile found that the majority of 

entrapped air voids were between 10 pm and 100 pm in diameter. IIowever, the use of 

standard microscopy for characterization of entrained air in concrete is a time 

consuming processes (Chatterji and Gudumundsson, 1977). 

Verbeck and Helmuth (1968) studied the microstructure of hardened cement paste by 

direct optical microscopy and electron microscopy to observe both the fragmental 

dispersed hydrated particles and sawn or fracture surfaces. The technique could not 

resolve the finely divided hydration products other than calcium hydroxide (C-Il) and he 

concluded that the optical examination revealed very little about the microstructure of 
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cement paste. On the other hand, electron microscopy is capable of high magnification 

and resolution power but the main drawback of using electron microscopy is the 

difficulty in obtaining representative quantitative information. 

Polished specimens impregnated with epoxy and deeply etched to remove cementitious 

material can be examined with a scanning electron microscope to provide information 

about the pore structure of hydrated cement paste (Jennings and Parrot, 1986 and Bentz, 

1994). Micro graphs were used to analyze quantitatively the volume of porosity that was 

impregnated with epoxy and these results were compared with independent 

measurements of porosity using volumetric methods. The results suggested that pores 

less than 50 nm in diameter were not impregnated by epoxy and that they may be 

incorporated as part of the pore structure of the calcium silicate hydrate (C-S-I I). The 

calcium silicate hydrate formed in the late stages of hydration may not incorporate as 

many fine pores as that found during the early stages of hydration. The structure of the 

large capillary pores (i. e., pores greater than 50 nm in diameter) changes with time from 

an open network to an array of disconnected pores. 

Chatterji and Gudmundsson (1977) used the automatic image analysis technique to 

determine the amount of air bubbles in both fresh and hardened concretes. The results 

suggested that the amount of air bubbles measured in fresh concrete was similar to that 

in hardened concrete. This technique has also been used for measuring the percentage 

area of anhydrous cement, calcium hydroxide (C-Il), other hydration products (mainly 

C-S-H) and volume of pores larger than 0.5 tm (Scrivener and Pratt, 1987 and Lange et 

al, 1994). 

Using back scattered electron (BSE) images of polished cement paste sections, 

anhydrous material, C-Ii, other hydration products and porosity can be distinguished on 

the basis of the grey level in the image. A good correlation has been found between BSE 

iniagc data and volume fractions derived from bound water measurements and methanol 

measurements (Scrivener and Pratt, 1987). 

3.2.1.2 Indirect methods 

Indirect techniques allow the calculation of pore size distribution (PSD) from 

principally two different types of experimental techniques; (a) porosimetry in which the 
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volume of mercury that is forced into the porous system is measured as a function of the 

applied pressure, and (b) capillary condensation of vapour from either an adsorption or 

desorption isotherm of the porous system (Pratt, 1988). Most commonly the pore sizes 

arc calculated assuming that they are either a system of cylindrical capillaries or a 

system of parallel plates (Verbeck and I Ielmuth, 1968). 

Mercury intrusion porosimetry (Mill) is a widely used technique for determining the 

total porosity and characteristic pore size distribution of IICP. Changes of the pore 

structure and pore volume of OPC mortar caused by extremely high or low temperature 

can also be identified using Mill. Ilowever, MIP can not provide adequate information 

regarding the manner in which the pores were altered or whether a micro fissuration has 

occurred (Rostasy et al, 1980). Marsh et al (1985) used Mill to develop an explanation 

for the dramatic reduction in permeability due to the use of fly ash in the OPC cement 

paste and to show the effect of curing temperature on the pore structure characteristics. 

Similarly, Li and Roy (1986) used Mill to investigate the relationship between porosity, 

pore structure and rapid chloride ion diffusion of fly ash and other blended cements. 

Winslow et al (1994) used MIP to differentiate between the pore size distribution (PSD) 

of cement paste, mortar and concrete, and also to study the phenomena of interfacial 

zone percolation in mortars. 

Pre-drying of test samples prior to MIP measurement is considered to be one of the 

main drawbacks of MIP, due to the resulting alteration in the PSD of the specimen 

(Moukwa and Aitcin, 1988). 'T'here are other factors which require careful consideration 

when using this technique. Firstly, any pores or group of pores that are accessible only 

through narrow entrances or bottle necks (ink-bottle pores) are intruded at a pressure 

corresponding to the entrance diameter. These ink-bottle pores lead to an overestimation 

of the volume of small pores. Secondly, distortion of fine pores, particularity in blended 

pastes, is caused due to high applied pressure (Feldman, 1984). Thirdly, assumptions 

made for the contact angle between the mercury and cement paste hydrates can 

sometimes lead to inaccurate pore size distribution data (Shi and Winslow, 1985). 

Finally, the simplified geometrical assumptions that the pores are cylindrical, non- 

interacting and connected to the surface, required for the analysis of results are not 

necessarily representative of the I ICP pore structure. 
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X-ray diffraction and thermo-gravimetric techniques were used to determine the degree 

of hydration of cement by measuring hydration of the individual compounds (Parrott, 

1986, Beaudoin, 1987 and I. arhi, 1991). I lowever, neither technique gave information 

about the PSD or porosity. Patel et at (1985) used a methanol adsorption technique to 

determine the gel, capillary and total porosity of OPC and OPC/I'FA paste and found a 

correlation between methanol adsorption results and the degree of hydration and 

diffusion resistance of OPC and OPC/PFA pastes. Beaudoin (1987) has shown that a 

new product, Ca(OCI11)1. is formed due to the reaction between C-I I and the methanol 

and its effect on the IICP microstructure is considered to be the main drawback of the 

methanol adsorption technique. 

Water absorption and desorption of cement paste and concrete were used as techniques 

to understand the covercrete permeation properties and to determine the gel, capillary, 

and total porosity (Parrott, 1992, McCarter, 1993; Ngala, 1995 and Ngala et al, 1995). 

Ngala (1995) and Ngala et al (1995) correlated desorption results with chloride and 

oxygen diffusion rates of well-cured OPC and OPC/PFA pastes and found that the 

measured capillary porosity was directly proportional to the coefficient of chloride and 

oxygen diffusion. 

Sadegzadeh et al (1987 and 1989) used the abrasion resistance technique to characterize 

the concrete microstructure and correlated abrasion resistance results with MIP data. 

The results indicated that the abrasion resistance of concrete was controlled by the pore 

structure of the surface matrix. initial surface absorption, intrinsic permeability and 

vapour diffusivity were also found to be related to the abrasion resistance (Dhir et al, 

1991). Sadegzadeh and Kettle (1986) used ultrasonic pulse velocity and initial surface 

absorption to monitor the concrete surface structure. They found that the initial surface 

absorption method was more sensitive than ultrasonic pulse velocity to the variations of 

concrete ingredients and the resulting hydration products and porosity. 

3.2.2 Cement Paste Structure 

The main compounds of Ordinary Portland cement (OPC) are tricalcium silicate (C, S), 

dicalcium silicate (C2S), tricalcium aluminate (C3A) and tetra calcium aluminoferrite 

(C4AF). The addition of water to these compounds leads to several complicated 
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chemical reactions which finally lead to the formation of the hardened cement paste. 

The calcium silicates are the most important constituents, forming the strength bearing 

calcium silicate hydrate gel (C-S-II) and calcium hydroxide (C-II) in fully hydrated 

cement. C-S-I l gel and C-I I represent approximately 70% and 20%, by weight of the 

fully hydrated cement paste respectively. Other phases produced by the remaining 

compounds are calcium aluminate trisulphate hydrate (ettringite) and calcium 

monosulphate aluminate hydrate (about 7% in total); tricalcium aluminate hydrates, 

anhydrite clinker residue and other minor constituents making up the remainder 

(Diamond, 1976). 

The hydration products are considered to contain a fixed amount of non-evaporable 

water and intrinsic gel porosity of 28% independent of the water/cement ratio and 

degree of hydration (Powers and I3rownyard, 1948). These authors also deduced that a 

minimum water/cement ratio of 0.38 was required for complete hydration. However, 

this amount of water is considered to be small compared to the amount used in practice 

to ensure adequate workability of the concrete. Excess water gives rise to a continuous, 

open pore structure. The pores vary in size from ultra-fine gel pores (<10 nm) through 

coarser capillary pores to discrete microscopic air voids (>10 µm) (Powers and 

Brownyard, 1948). The capillary pores are the most important in terms of durability as 

they provide the majority of the interconnecting pathways which allow aggressive 

chloride ions and carbon dioxide gas to enter the concrete and cause reinforcement 

corrosion. 

Many models have been suggested by different authors to represent the cement paste 

structure, as follows: 

Powers' model 
This model, based on extensive water vapour sorption studies, describes the cement 

paste as a body composed of gel particles (approximately 1000 nm in diameter) 

separated by a water film up to 60 nm thick. The solid to solid distance between 

particles is about 180 nm. Gel pores have entrances less than 4 nm in diameter. The 

cement paste system is considered as an ideal absorbent. It comprises interacted cement, 

hydration product and capillary pores (Powers and Brownyard, 1948 and Powers, 1958). 

However, Powers' model is now thought to be oversimplified since pastes contain a 
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continuous distribution of pores classified by their behaviour in water (Young, 1988), as 

shown in Figure 3.2. Micro pores and smaller meso pores are considered to form the 

intrinsic porosity of the gel. Water in these pores is adsorbed and becomes involved in 

structural bonding, whereas in the larger meso pores and macro pores, the water present 

acts as bulk water. 

Feldman-Sereda (F-S) model 

The F-S model describes C-S-11 as a layered, poorly crystalline, malformed tobermorite 

like material [Ca4(Si O9ll)2(OH)R]Ca. 61120, as shown in Figure 3.3. These layers come 

together randomly to create interlayer spaces and to be bonded together by solid-solid 

contacts, whose strength lie between the weak Van der Waal's bonds and the strong 

covalent bonds. Water that enters the interlayer spaces becomes part of the structure and 

contributes to the rigidity of the system. Most of this water can not be removed from the 

system on drying until a relative humidity of less than 10% is achieved (Feldman and 

Sereda, 1970). This can be used to explain the humidity dependence of the mechanical 

properties of hardened cement paste, e. g. strength and modulus of elasticity (Beaudoin 

and Brown, 1992). 

Diamond model 
Diamond et al (1977) modified the F-S model based on adsorption studies on hydrated 

C, S paste after the removal of calcium hydroxide. Adsorption measurements indicated 

the existence of two kinds of pores; a wider inter-gel particle pore which can be seen 

even in the inner C-S-H by scanning electron microscopy (SEM), and a smaller intra-gel 

pore existing within the gel particles which can not be observed by SEM. The intra-gel 

pores are further classified into intra-crystalline pores corresponding to the interlayer 

spaces in the F-S model, and inter-crystalline pores. They also suggested that some 

relatively large pores in dense paste are accessible to water only through interlayer 

spaces. 

3.2.3 Cement Paste/Aggregate Interface Structure 

During mixing, compaction and placement of concrete, the aggregate particles interact 

with the surrounding cement paste. As a result, the microstructure of the cement paste 

in the immediate vicinity of aggregate particles will differ in several respects from the 

microstructure of the remaining cement paste. 
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Barnes et al (1979) suggested a model for the microstructure of cement paste/aggregate 

interfaces, as follows: 

(i) At the immediate vicinity of the aggregate surface is a duplex fill" of Ca(O11)2 

topped by or occasionally intermixed with C-S-11. Sometimes this duplex film occurs 

with close intimacy to the aggregate. At early ages of hydration, this duplex film is 

relatively porous. With increase in age, the film modifies into a dense layer , sometimes 

bonding with the surrounding cement paste. The side of the film in contact with the 

aggregate is a layer of crystalline Ca(O11), of 0.5 pin thick. Following this layer is a 

thin deposit of C-S-11 gel in the form of short fibers extending into the cement paste. 

The total thickness of the duplex film is about 101tm. 

(ii) Next to the duplex film is the "transition zone". This region is relatively large, 

50 µm wide approximately, including the duplex film. Generally, this zone contains a 

large number of hollow-shell hydration grains, enriched in larger Ca(Ol '), crystals and 

ettringite. 

The occurrence of a large number of hollow-shell hydration grains suggests that cement 

hydration is accelerated at the interfacial zone. This acceleration is presumably due to 

the availability of excessive water in the vicinity of the aggregate particles. Since the 

growth of large crystals of calcium hydroxide and cttringite is enhanced in a more open 

system, the occurrence of such large crystals at the interfacial zone is an indication of 

the existence of a higher porosity (Larhi, 1991 and Scrivener and Pratt, 1996). 

On the basis of a combination of tensile bond strength tests and SEM studies on 

debonded paste rock composites, at various ages, Zimbelmann (1978) presented a model 

to explain the microstructure of the interfacial zone, as follows: 

(i) Directly at the surface of the aggregate is a dense layer of 3-5 Fun thick, 

composed essentially of Ca(O11)2 covering a network of ettringite crystals. This layer 

may be equivalent to the duplex film found by Barnes et al (1979). According to 

Zimbelmann, this layer is formed during the early stages of hydration, up to about 10 

hours after mixing. After 12 hours, Ca(011)2 forms a continuous closed layer which he 

referred to as the contact layer. 

(ii) Directly next to the contact layer is a zone of 5-10 µm thick, intermediate layer. 

This layer consists of needle shaped ettringite crystals, leaf or flake like Ca(Oll)2, 
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sporadic needle shaped calcium silicate hydrates (C-S-TI) and big hexagonal C-ii 

crystals aligned steeply with respect to the aggregate surface. 

(iii) The transition zone (: z 10 Fun thick) is characterized by a dense paste merged 

into the hulk cement paste. 

Zimbelmann (1978) attributed the origin of the interfacial zone to the formation of thin 

films of water (sts 10 µm thick) on the cement grains and around large aggregate particles 

in fresh concrete. Ilowever, the formation of such films on the cement grains appears to 

be doubtful since they are likely to be destroyed during mixing, placement and 

subsequent compaction of the concrete (Larbi, 1991). 

Two opinions have been put forward to explain the open and dense microstructure of the 

interfacial zone. Mehta (1986) and Scrivener and Pratt (1996) suggested that the 

porosity of the interface was higher than that of the bulk cement paste. It has been 

attributed to the wall-effect and micro-bleeding under coarse aggregate particles. The 

other opinion, which suggested that the microstructure of the interfacial zone was denser 

than that of the bulk cement paste, has been attributed to the little or total absence of 

anhydrous cement grains within a 15-25 Eim thick zone around coarse aggregate 

particles (Zimbelmann, 1985). 

The thickness of the interfacial zone reported in most studies varied between 50-100 µm 

(Bentur, 1991; Bentur and Odler, 1996 and Larbi, 1991) and depends upon the type of 

aggregate, cement, water-binder ratio, age of the composite, nature of bonding between 

the paste and aggregate particles, and the technique used to estimate the thickness. 

3.2.4 Effect of Concrete Microstructure on Transport Properties 

Many attempts have been made to correlate concrete permeability, which is an 

important property with respect to the durability of concrete, to its pore structure. 

Mehta and Manmohn (1980) have suggested an empirical formula to express the 

relationship between permeability and pore structure, as follows: 

K= exp. (3.84V, + 0.20V2 + 0.56(1 OE-6)TD + 8.09MTP - 2.53) ......... (3.1) 
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Where; K is the coefficient of permeability, V, and V2 denote the pore volume in the 

1320 A and 290-1320 A range, respectively: TD is the threshold diameter and MTP is 

the modified total pore volume which is equal to the total pore volume divided by the 

degree of hydration. 

Li and Roy (1986) established a linear relationship between total porosity and chloride 

diffusion. However, it was reported that only the large capillary pores (macro-pores), of 

diameter larger than 50 nnm have an effect on concrete transport properties (Patel et at, 

1985 and Young, 1988). This was supported by Ngala (1995) and Ngala et at (1995), 

whose work showed that oxygen and chloride diffusion rates have a significant 

relationship to the coarse capillary porosity, i. e. the volume of pores with diameters 

greater than 30 nm. 

The structure of the interfacial layer between aggregate and cement paste has an 

influence on the transport properties, which, in turn, affect the durability of concrete. 

The findings of previous studies on the effect of the transition zone on transport 

properties have been contradictory. Wakely and Roy (1982) and Malek and Roy (1988) 

reported that the paste-aggregate interfacial zone does not play any major role in 

determining the permeability of the concrete. however, Young (1988) reported that the 

coefficient of permeability of concrete was about 100 times higher than that of 

comparable pastes, and for mortars it was 3-10 times higher. This agrees with Bourdette 

et al's computer model (1995) which signified the role of the transition zone in the ionic 

diffusion processes. Larbi (1991) has also noted that the fluid transport through 'cement 

mortar' was comparatively faster than through plain cement pastes of the same 

properties. Ile also pointed out that the fluid transport in the interfacial zone was 

relatively small compared to that in the cement paste. 

Ngala (1995) has modelled the cement paste-aggregate interface using glass beads as 

model aggregate in order to determine the effective chloride diffusion coefficient of the 

mortar of paste/glass bead composite. Ile has found that both the capillary porosity and 

the effective chloride diffusion coefficient of the paste formed in model mortars with 

glass bead aggregates is higher than that of the corresponding plain cement pastes. He 

also found that the effective chloride diffusion coefficient tends to increase with 
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increasing volume fraction of glass beads in mortars. On the other hand, the overall 

chloride transport was found to be relatively slower in mortars than in plain cement 

pastes and seemed to remain fairly constant with increasing volume fraction of beads, as 

shown in Figure 3.4. Therefore, it was suggested that the cement paste matrix is the 

continuous phase in mortar and concrete which is mainly responsible for the fluid 

transport properties (Larbi, 1991 and Ngala, 1995). 

3.2.5 Conspectus of Influence of Curing on Microstructure and Properties of 

Concrete 

3.2.5.1 General 

Curing can be defined as a procedure for promoting the hydration of the Portland 

cement in newly placed concrete. It generally implies the control of the moisture loss 

and sometimes temperature. The cement gel produced from the cement hydration can be 

laid only in water-filled spaces (Spears, 1983). A loss of this water medium will 

therefore cause the hydration reactions to cease quickly. Cather (1994) has defined 

`curing' according to the subject of study as: 

(a) Material Science, "curing is the creation of an environment in which the hydration 

reaction can proceed to help fulfill the aim of producing concrete of adequately low 

porosity". 

(b) Engineering, "curing is adequate when the resulting concrete achieves the expected 

service performance". 

Continuous water curing prevents damage to the capillary chains, which carry the water 

to the location of unhydrated cement particles (Carrier, 1983). however, it is practically 

difficult to keep the surface of the concrete continuously wet throughout the designed 

curing period under site conditions. Interrupted water curing is widely used, especially 
in Middle Eastern countries. This type of curing involves spraying water twice a day, 

once in the morning and once in the evening, for a few minutes at a time and leaving 

the concrete surface dry at all other times. Bentur and Jaegermann (1988) studied the 

effect of this type of curing on the development of the properties of the outer skin of 

OPC and OPC/PFA concrete using compressive strength and surface water absorption 

techniques. There has been, however, very little research carried out on the effect of 

interrupted curing on covercrete microstructure and transport properties. 
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Concrete curing practices have changed over the years and in many cases the shill has 

been from 'water adding' by ponding or covering with wet burlap, earth or straw to 

'water retaining' techniques such as the use olmembrane forming compounds. The main 

reason for this change is the increase in the rate of concrete production. Spray-on curing 

compounds are seen as the pragmatic solution to the difficulties of site curing although 

these are theoretically not as efficient as traditional water curing (Fattuhi, 1986; Cabrera 

et al, 1989; Dhir et al, 1989 and Wang et al, 1994). 

The relative humidity of the curing environment has a major influence on the rate of 

hydration which, in turn, is related to the resulting cement paste microstructure. Parrott 

(1986) and Patel et al (1988) have noted that the relative humidity (RI I) within the pores 

of the cement paste controls the rate of hydration. It is reported that at 90% RII the 

hydration proceeds at only 50% of the rate for saturated curing, and at 80% RII, 

hydration rate drops to 32%. The hydration virtually ceases when the internal RII is 

below 70% and 80% for OPC and OPC cement with pozzolanic additives, respectively. 

Parrott (1991a) studied the factors influencing the relative humidity within concrete and 

concluded that the water/cement ratio of the concrete and the period of initial moist 

curing had little effect on the measured RI 1. The measured RI I dropped more rapidly in 

concrete made with pulverized fuel ash or ground granulated blast furnace slag than in 

concrete made with Ordinary Portland cement. 

3.2.5.2 Effect of curing on concrete microstructure 

Curing is one of the main factors that govern the development of the concrete 

microstructure (Neville, 1981). The distribution of the pore sizes varies considerably 

and becomes finer with an increase in the curing period (Diamond, 1971 and Carbrera, 

1985). Prolonged curing increases the volume of pores smaller than 35 nm and 

decreases the volume of pores larger than 35 nm (Patel et al, 1985). Killoh et al (1989) 

studied the effect of water curing on hydration and porosity of a Portland/fly ash cement 

paste using thermo-gravimetry and methanol adsorption. Their findings, which were in 

agreement with those of Patel et al (1985), can be summarized as follows: 

(1) Total porosity is not significantly affected by the relative humidity of the curing 

environment following the initial 7 days moist curing period. . 
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(2) Both the gel porosity (< 4 nm) and the volume of small diameter capillary pores 

(< 37 nni) increase with increasing hydration. 

(3) The large diameter capillary porosity (> 37 nm) decreases with increasing 

hydration. 

(4) For both OPC and OI'C+30%11FA pastes, the large diameter porosity obtained 

by conditioning at less than 70% RI! is about 3 times greater than that obtained 

under saturated conditions. 

Curing at elevated temperatures reduces the surface area of the hydrates formed and 

produces a less uniform distribution of the reaction products and coarser pore structure 

than those cured at moderate temperatures (Cao and Detwiler, 1995). The effect of heat 

curing and post-heat curing regimes of high performance and ordinary concrete on the 

microstructure and C-S-II composition were recently investigated by Kjellsen (1996) 

using scanning electron microscopy (SEM) and energy dispersive X-ray analysis (SEM- 

EDX). The study showed that heat cured-high performance concrete had a higher 

hollow shell porosity at later ages than a normally cured companion. The distribution of 

C-S-II for high performance concrete was not influenced by heat curing while the 

composition of C-S-Ii phases was influenced by curing regimes. The author, however, 

concluded that the effect of heat curing on the microstructure appeared to differ 

between high performance and ordinary concrete. 

It is therefore clear from these findings that curing plays an important role in 

determining the concrete microstructure and yet , there is lack of information in the 

literature regarding the effect of different curing regimes (i. e. water curing at different 

temperatures, interrupted water curing, etc. ) on the concrete microstructure. 

3.2.5.3 Curing affected zone (CAZ) 

In recent years, it has become increasingly clear that there can be significant differences 

between the cover concrete and the underlying material (bulk concrete) and that these 

differences are relevant when considering the durability of concrete. Kreijger (1984) 

suggested that the cover concrete is composed of three skins: the cement skin (about 0.1 

mm thick) mortar skin (about 5 mni) and the concrete skin (about 30 mm). These are 
formed due to the wall effect, sedimentation, segregation, compacting methods, 

permeation and evaporation of water from the concrete. 
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Moisture gradients created by exposing concrete to a drying atmosphere can cause 

variations in the degree of hydration and porosity (Carrier, 1983; Patel et at , 1988 and 

Cather, 1994). The moisture gradient in the concrete cover occurs due to differences in 

the RII of the environment close to the concrete surface and the bulk RII within the 

concrete, where the external environment has no effect on the local humidity. The 

thickness of concrete measured from the concrete surface to a distance inside the cover 

concrete where it has the same property of the bulk concrete has been named tile 'cul-ing 

affected zone' (CAZ). 

Carrier (1983) has noted that there is a RI! gradient between the concrete surface and 

the bulk concrete at the depth at which the RI! remains constant, as shown in Figure 3.5. 

It can be estimated from Figure 3.5 that the maximum depth between the concrete 

surface and the point in the concrete where the RII is approximately 80%, is about 40 

mm for air cured concrete. Therefore, maximum CAZ, for non-cured concrete, is 

approximately 40 nom. The thickness of CAZ, estimated by Cather (1994), ranged 

between 20 mm to 50 nim. However, this estimation was not based on experimental 

work. 

The extent and severity of the gradient depends on a number of factors such as ambient 

temperature, relative humidity, wind speed, period of exposure to a drying atmosphere, 

etc. (Patel et al, 1988). Parrott (1992) has reported that the average absorption rate and 

capillary porosity in the 20 mm surface zone were generally greater than those of the 

underlying material. lie has also related the amount of evaporable water to capillary 

porosity and found that fast drying of concrete increases the amount of evaporable water 

in covercrete, thus confirming that there is a capillary porosity gradient created between 

the surface and bulk concrete. The thickness of the capillary porosity and total porosity 

gradients are also affected by ambient conditions such as temperature, wind and Rli 

(Patel et at, 1985 and Parrott, 1992). 

To the author's knowledge there is no published literature regarding the determination 

and characterization of the CAZ. 
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3.2.5.4 Methods of testing the effect of curing 

The common tests used for determining concrete performance are compressive strength, 

ultrasonic pulse velocity, rebound hammer, air and water permeability, abrasion, initial 

surface absorption test (ISAT), etc. Bentur and Foy (1989) and Day and Shi (1994) have 

reported that the compressive strength is not a good indicator of the effect of initial 

water curing. Rebound hammer testing was also found to lack the sensitivity to detect 

the variations in concrete surface properties (Sadegzadch and Kettle, 1986). It has been 

mentioned that care is needed with water permeability testing to ensure that the test 

itself does not influence the result by increasing the hydration of cement while 

measurements arc being taken. It has also been mentioned that the air permeability is 

very sensitive to the moisture content of the concrete (Cather, 1994). 

However, the tests considered above for the determination of curing performance arc 

unlikely to be suitable for the determination of the CAZ, due to the fact that the 

thickness of the CAZ can be anything up to 50 mm, as reported in the literature. 

3.2.5.5 Effect of curing on concrete properties 

Aitcin et at (1994) reported that both water and sealed curing improved the mechanical 

properties of both OPC and blended cement concrete. Improvements in compressive 

strength for specimens cured using water varied between 16% to 20% for different 

periods and maturity at testing. The amount of increase in compressive strength was 

also affected by the type of curing compound (Fattuhi, 1986). The efficiency of curing 

compounds measured in terms of compressive strength varied from 80% to 100%. 

ACI 308-81 (1986) specifies prolonged curing periods for blended cement concrete in 

order to yield the equivalent strength of the corresponding OPC concrete. The minimum 

length of curing required for OPC and OPC+15%PFA to achieve identical strengths are 

3.75 and 6.5 days respectively (Khan and Ayers, 1995). However, these findings depend 

on the temperature and mix proportions that were used in the production of the 

concretes. 

Nisher (1986) and Tan and Gjorv (1996) studied the effect of water curing and sealed 

curing (using curing compounds) on properties of cover and the bulk concrete. It was 

shown that inadequate water curing has minor detrimental effects on the strength but it 
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can lead to a marked increase in the permeability and chloride penetration. Bentur and 

Jaegermann (1988 and 1991) studied the strength and permeability of concrete subjected 

to different curing regimes (i. e. hot, interrupted spraying of water and dry environment) 

and the findings were in agreement with those of Nisher (1986). The measured air 

permeability in OPC and blended concretes with 30%PFA and 50%GGBS decreased 
with prolonged moist curing (llonb and Pratt, 1989). Similar findings have been 

observed by Parrott (1992) by means of water absorption measurements. 

The effect of curing on permeation properties, absorption, permeability and diffusivities 

has been widely investigated. I lansson et al (1985) and Kumar et al (1987) reported that 

chloride ingress in OPC and OPC/PFA pastes is affected by the period of water curing. 

They noted a significant reduction in the coefficient of chloride diffusion with 

increasing water curing period from 0 to 7 days. Ahmed (1990) studied the effect of 

OPC and OPC/PFA concretes exposed to a range of curing environments on chloride 

ingress. Ilis findings confirmed the beneficial effects of prolonged water curing. 

3.2.6 Concluding Remarks 

The purpose of this literature review was to highlight the microstructure of concrete and 

its relationship with the properties of concrete. It has been shown that the microstructure 

of the surface zone is not yet fully understood, especially when concrete is subjected to 

different curing environments. It has also been revealed that, although a great deal of 

effort has been made to study how concrete performance is affected by different curing 

regimes, relatively few attempts have been made to characterize and determine the 

microstructure gradient of the cover concrete, CAZ. In this chapter, the above 

considerations are discussed in the light of the experimental results obtained. 

3.3 EXPERIMENTAL PROCEDURES 

Cylindrical cement paste specimens (75x49 mm) with different mix proportions (see 

Table 2.2b in Chapter 2) were cast and cured as described in Sections 2.4.1 and 2.5, 

respectively. After a specified curing period, the cement paste specimens were removed 

from their PVC moulds and the first 2 mm from the cast surface of the specimens was 
discarded by cutting with a diamond circular saw. Then up to eight 3.25-3.5 mm thick 

specimen discs were obtained from each specimen by cutting at progressive depths of 2- 

6,6-10,10-14,14-18,18-22,22-26,26-30 and 30-34 mm from the casting surface, as 
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shown in Figure 3.6. Disc specimens obtained at the same depth but from different 

cylinders were grouped together and used for the determination of %NEW, total and 

capillary porosity and effective chloride diffusion coefficient. The details of test 

techniques and experimental procedures are described in Section 2.6. The average 

%NEW and porosity were then calculated from triplicate specimens. The mean effective 

coefficient of chloride diffusion was determined using four disc specimens. 

The work done in this chapter was carried out with cement pastes rather than mortars or 

concretes, so as to obtain accurate information regarding the CAZ, while avoiding 

possible interference from aggregates. 

3.4 RESULTS AND DISCUSSION 

3.4.1 Hydration 

The degree of hydration of the cement paste plays a major role in controlling the 

microstructure of the system and it can be expressed by the amount of bound water (non 

evaporable water) present in the cement hydration products. Parrott (1986) found that 

there is a difference between the relative humidity (RI l) within the concrete and the 

external environment. This means that when the concrete is subjected to a drying 

atmosphere the resulting moisture gradient can cause variations in the degree of 

hydration, i. e. variations in the non evaporable water present throughout the covercrete 

zone. This consequently leads to the formation of a hydration gradient (or CAZ) 

between the surface and a certain point within the concrete. The degree of hydration in 

the surface zone was determined in this study by thcrmo-gravimetric techniques to 

obtain the bound water, in terms of % non evaporable water which exists in the cement 

hydration products. 

Figures 3.7 shows the percentage of bound water measured at different depths below 

the surface of OPC paste cured in water at temperatures of 22° C and 38° C. The curing 

conditions are listed in Table 2.3. It is shown that the degree of hydration, in terms of 

the percentage of bound water, increased with increasing water curing periods at both 

moderate and elevated temperatures. The degree of hydration also increased with depth 

below the surface of OPC specimens, except for specimens cured under E6 and E7. 

These variations diminish at a certain distance below the surface of OPC paste and can 

be regarded as the CAZ thickness. 

62 



It was estimated from Figure 3.7 that, at moderate temperature (22°C), the CAZ depths 

for 0,3,7,28 day water cured OPC paste specimens are approximately 24,20,12 and 8 

mm, respectively. The CAZ thickness appears to decrease with increasing water curing 

period. The thicknesses of the CAZ f'or specimens cured at elevated temperatures under 

curing regimes E5, E6, F7 and ER were estimated to be 24,24,12 and 16 mm, 

respectively. These results suggest that the CAZ depth decreases with increasing water 

curing period at both moderate and elevated temperatures. It also appears that water 

curing at 38° C enhances the degree of hydration in the first 24 mm from the surface if 

specimens are compared with those specimens cured with water at 22° C. 

It is apparent from Figure 3.7-b that the degree of hydration of the specimens cured with 

an interrupted regime (E8) was slightly higher than those cured in air for the same 

period of exposure (E5). On the other hand, the degree of hydration of specimens cured 

with an interrupted regime is less than that of specimens cured with continuous 

immersion in water (E6 and E7). This may be attributed to the insufficient period of 

exposure of the interrupted regime specimens to water and to the penetration depth of 

water into the surface zone. 

The increase in the percentage of hydration with increasing water curing period at both 

moderate and elevated temperatures can be attributed to the prolonged period available 
for the hydration processes to occur before drying the specimens in air at 65% R11, 

when hydration is believed to cease (Parrott, 1986, and Patel et al, 1988). As a result of 
drying after different water curing periods, different RI! gradients may be created 
between the surface and bulk cement paste. This leads to the formation of hydration 

gradients which in turn determine the thickness of the CAZ. 

The *increase in %NEW in the first 24 mm of OPC paste specimen when cured at 38° 

may be due to the increase in the rate of hydration at elevated temperatures. This 

increase diminishes at a certain depth from the specimen surface. Although, there is no 

supporting evidence in the literature, a possible explanation may be related to the 

temperature gradient created between the surface and bulk zones of the cement paste. 
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Figure 3.8 shows the effect of water/cement ratio on the degree of hydration (in terms 

of % NEW) for OIIC cement pastes, cured in water at 22° C for 28 days. The results 

illustrate that a little change in %NEW with increasing We ratio from 0.40 to 0.7. It can 

also be seen that the CAZ depths appear to be the same for all three We ratios (about 4 

to 8 mm). 

The effect of cement type on the %NEW gradients of IICP cured in water (E4) for 28 

days at 22° C is illustrated in Figure 3.9. It is shown that the degree of hydration of OPC 

and OPC/GGBS specimens are greater than those of OPC/PFA specimens. This is likely 

to be caused by differing hydration rates of the cement pastes. Furthermore, the 

difference between %NEW of OPC/PFA and OPC/GGBS may be caused by variations 

in the pozzolanic reactivity (Fraay et al, 1989). The CAZ for OPC, OPC/PFA and 

OPC/GGBS specimens cured in condition E4 are estimated from Figure 3.9 to be 8,4 

and 4 nim, respectively. It is clear from these estimates that the cement type has an 

insignificant effect on the CAZ thickness. 

3.4.2 Pore Structure 

The pore structure of the surface zone of IICP was investigated using a desorption 

technique. The desorption technique was considered to be a simple and successful 

technique as described in the literature for characterizing the total and capillary porosity 

of different mix proportions (Parrott, 1992; Ngala (1995); Ngala et al (1995) and Page 

and Ngala (1995). It was adopted in this study to obtain comparative results for the pore 

structure within the surface zone in order to estimate the CAZ thickness. 

3.4.2.1 Total porosity 
Total porosity gradients of OPC pastes, derived from desorption results, for different 

curing regimes are shown in Figure 3.10. It can be seen that the total porosity profiles of 

OPC specimens generally decrease with increasing water curing period. It appears that 

the effects of both 7 days water curing and 28 days water curing on total porosity are 

comparable. Total porosity tends to become constant at a certain distance below the 

surface of OPC paste specimens (beyond the CAZ). Thus, CAZ thicknesses were 

estimated as 20,16,16 and 8 mm for specimens cured in water for 0,3,7 and 28 days at 

22°C, respectively. These CAZ values show similar trends to those found using thermo- 
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gravimetric techniques which showed that the thickness of the CAZ decreased with 
increasing water curing period. 

Similar trends were observed for specimens cured at 38° C as shown in Figure 3.10-b, 

although the first few millimeters into the specimen showed a decrease in total porosity. 

No significant difference in terms of total porosity was noted between the specimens 

cured in air (E5) and those subjected to an interrupted curing regime (E8) and also 
between specimens cured in water at both moderate and elevated temperature. These 

results are, however, contrary to those reported by Cao and Detwiler (1995), where it 

was shown that water curing at an elevated temperature causes an adverse effect on the 

pore structure of OPC concrete specimens. From Figure 3.10-b, CAZ thickness can be 

estimated as; z 32,24,20 and z 32 mm, for specimens cured under regimes E5, E6, E7 

and E8, respectively. 

The overall reduction along the total porosity profiles (Figure 3.10) can be attributed to 

the occurrence of hydration gradients between the surface and bulk zones of the cement 

pastes as discussed in Section 3.4.1. Similarly, the reduction of total porosity in the first 

few min of the specimens cured at 38° C may be caused by enhanced hydration near the 

surface. 

The effect of water/cement ratio on the total porosity gradient of OPC cement pastes 

cured in E4 environment is demonstrated in Figure 3.11. It can be seen that the CAZ 

thickness is similar for all w/c ratios (about 4-8 mm), thus confirming the results 

obtained by thermo-gravemtric techniques (Figure 3.8). The results also showed that 

total porosity increased substantially (25%) when the w/c ratio increased from 0.4 to 

0.7, whilist there was insignificant increase in total porosity when w/c ratio increased 

from 0.4 to 0.55. 

The total porosity results of IICP shown in Figure 3.11 are in agreement with the work 

carried out by Ngala (1995) who investigated the total porosity of different well-cured 

pastes (OPC/PFA and OPC/GGBS) of different w/c ratios. He found that the amount 

of total porosity increase due to the increase in w/c ratio from 0.4 to 0.7, to be 33%. 

The increase in total porosity for the high w/c ratios specimens may be due to the 

evaporation of excess water producing a continuous open pore structure. 

65 



Figure 3.12 illustrates the effect of cement replacement materials on total porosity 

gradients of cement pastes cured in water for 28 days (E4). It can be seen that the CAZ 

depths for OI'C, 01'C/PTA and OPCIGGUS specimens are fairly similar (4-8 mm). 

These results are in agreement with the results obtained by thermo-gravimetric 

techniques which showed that the blended cements had no significant effect on the 

depth of the CAZ. 

The paste specimens made with cement replacement materials (PFA and GGBS) 

produced coarser pore structures than the corresponding OPC pastes. 'These 

observations confirm the results reported by Ngala (1995) and Ngala et al (1995) which 

showed a slight increase in the total porosity of well-cured OPC/PFA and OPC/GGBS 

pastes compared to that of OPC paste. The differences in Portland and blended paste 

specimens in terms of total porosity may be attributed to the degree of OPC hydration 

and pozzolanic reactions. 

3.4.2.2 Capillary porosity 

Figure 3.13 shows the effect of different curing regimes at 22°C (E1 to E4) on the 

capillary porosity gradient of OPC pastes. It is shown that the capillary porosity of OPC 

paste specimens decreases with increasing water curing period and with increasing 

depth below the surface. The thickness of the CAZ can be estimated from Figure 3.13 

as; 20,20,16, <_ 4 mm for El to E4 curing regimes, respectively, which are in 

reasonable agreement with the corresponding trends estimated from NEW and total 

porosity results (Figures 3.7 and 3.10). These results signify that the development of the 

pore structure due to hydration, increases with increasing water curing period and the 

distance below the surface of the specimen. 

The effect of cement type on the capillary porosity gradients of paste specimens 

exposed to 28 days water curing (E4) is demonstrated in Figure 3.14. There is a 

significant reduction in the capillary porosity gradients for OPC/GGBS paste specimens 

compared to those for Portland paste specimens, a finding which is in agreement with 

the results obtained by Ngala (1995) and Ngala et al (1995). The CAZ thicknesses, 

estimated from Figure 3.14, are approximately 4 mm for all OPC and blended paste 

specimens. These values indicate that the thickness of CAZ is unaffected by the use of 
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different cement replacement materials, which is in agreement with NEW and total 

porosity results shown in Figures 3.9 and 3.12, respectively. 

The substantial decrease in capillary porosity for GGBS specimens compared to those of 

Portland specimens can be due to the pozzolanic reactions (Mehta and Gjorv, 1982 and 

Fraay et al, 1989). It is believed that the pozzolanic reaction products modify the 

microstructure by filling the unoccupied spaces within the paste matrix decreasing the 

amount of continuous pores (capillary porosity). The further reduction of capillary 

porosity in GGBS pastes compared to PFA paste may have resulted due to the fact that 

GGBS undergoes both hydration and pozzolanic reactions thereby producing a denser 

microstructure than other blended paste specimens. 

3.4.3 Transport Properties of the Surface Zone 

The effective chloride diffusion coefficient of IICP was determined in this investigation 

using a steady state technique. It was mainly adopted as a possible tool for 

characterizing the CAZ and also to study the relationship between the transport 

properties and pore structure of the surface zone. 

The profiles of effective chloride diffusion coefficients (D, 1) of OPC paste specimens 

cured in different curing regimes (E4, E7 and E8 ) are illustrated in Figure 3.15. A 

worked example and summary of effective chloride diffusion coefficients data are given 

in Appendix 4. It can be seen that specimens cured in water at 22°C for 28 days (E4) 

exhibited a lower Dc1 than the corresponding specimens cured in water at elevated 

temperature (E7), especially at the hulk. These results are however three times greater 

than the corresponding data reported by Ngala et at (1995). The difference between the 

results may be attributed to the different water curing periods used in the two studies. 

The D., of the specimens cured in continuous water curing (E4 and E7) was shown to 

be significantly lower than the corresponding specimens cured under the interrupted 

regime (E8). The difference in D,, obtained for different curing regimes can he 

attributed to the effect of the curing on hydration and porosity of OPC paste. 

It is also shown that the D,,, decreases with increasing depth below the surface of the 

specimen until a certain depth, upon which no further decrease in D,, was observed. 

This depth can be considered to be the thickness CAZ and from Figure 3.15 it was 
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estimated as 16,4 and 16 mm for specimens cured in E4, E7 and E8, respectively. 

However, these results are different to those estimated from %NEW and total and 

capillary porosity profiles. This may be due to further hydration during the diffusion 

pfoCCSS. 

Figure 3.16 shows the relationships between effective chloride diffusion coefficients 

(D,, ) and the total and capillary porosity. It can be seen that the D', increase with 

increasing total and capillary porosity. Also, the correlation of D., with coarse 

capillary porosity suggests that all pores of diameters larger than 30 nm contribute to the 

mass transport properties. ']'his relationship is close to that obtained previously (Ngala, 

1995 and Ngala et al 1995), where it was suggested that as the capillary porosity 

approaches zero, the cement paste systems provide almost complete resistance to the 

diffusion of chloride ions. 

3.5 CONCLUSIONS 

1- The thickness of the microstructure gradient of cover concrete is significantly 
decreased with increasing period of water curing but is relatively unaffected by curing 

temperature, w/c ratio and the use of cement replacement materials. 

2- The use of interrupted water curing at elevated temperatures did not cause any 

significant enhancement of the degree of hydration of OPC paste nor reduce the total 

porosity in the surface zone when compared with the effects of air curing. The use of 

interrupted water curing has also shown an adverse effect on the resistance of the 

surface zone against chloride ingress when compared with the effect of continuous 

water curing. 

3- The results confirm that there is a significant correlation between the covercrete 

microstructure (total and capillary porosity) and mass transport (effective chloride 
diffusion coefficient) properties. The effective chloride diffusion coefficient was 
decreased owing to densification of the covercrete microstructure. 
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CHAPTER 4 

MICROIIARDNESS ANALYSIS OF TIIE SURFACE ZONE 

4.1 INTRODUCTION AND LITERATURE REVIEW 

Concrete technologists are interested in understanding the microstructure of cover 

concrete for two main reasons. First, to produce durable reinforced concrete by 

understanding the role of the microstructure in the development and modification of the 

mechanical and mass transport properties of concrete. Secondly, to assess residual 

durability of existing structures and to determine the service life of new structures. This 

requires a simple and effective technique which can define and quantify the concrete 

microstructure within the cover concrete. 

There are many techniques available for characterising the microstructure of IICP, 

mortar and concrete. Some of the most widely-used techniques are MIP and sorption 

isotherm measurements (Section 3.2.1). However the main drawback of MIP and 

capillary condensation methods is the alteration of the original pore structure of the test 

specimen as a consequence of the process of removing pore water from the pores, i. e. 

the drying effect, (Feldman, 1972; Parrott, 1983 and Marsh and Day, 1985). In other 

techniques such as water permeability and absorption, the test specimen is exposed to 

water during the test and this can cause changes in the original pore structure of the 

cementitious material. These changes are mainly attributed to further hydration. 

Furthermore, most of the tests considered for the determination of concrete 

microstructure are time consuming. 

To avoid the above-mentioned drawbacks, indentation microhardness and scratch 

hardness techniques were suggested to be used in this study as alternative methods for 

characterising the microstructure of the surface zone. 

The microhardness of a material is obtained by calculating the ratio between the load 

applied to an indentor of prescribed shape and the impression area, in units of stress 

(Igarashi et al, 1996). This technique can be used successfully to estimate the denseness 
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of a cement paste system. Low microhardness values imply that the cement paste 

contains a high volume of pores. 

Measurement of local variations in the pore structure of hardened concrete is possible 

by indentation microhardness and the approach has been used to characterise surface 

modified zones with distinct properties from those of the bulk material (Sadegzadeh, 

1985; Sadegzadeh et al, 1987; Larbi, 1991 and Igarashi et al, 1996). Sadegzadeh (1985) 

and Sadegzadeh et al (1987) has used this technique to study the effect of surface 

finishing procedures on concrete microstructure. The results showed a direct 

relationship between the microhardness measurements and the porosity of the surface 

matrix. The microhardness technique has also been used to study the effect of w/c ratio 

on the microstructure of cement pastes made from OI'C and OI1C/10% silica fume (SF) 

(Igarashi et al, 1996). It was found that the microhardness increased with decreasing w/c 

ratio and when silica fume was used in the mix. The enhancement of the 

microhardness of specimens containing silica fume was attributed to the 

homogenisation of the microstructure, as the C-H is converted to C-S-II by the 

pozzolanic reaction. 

Indentation microhardness testing is a widely used technique for characterising the 

aggregate/ cement paste transition zone of concrete (Bentur, 1991 and Larbi, 1991). It 

was shown that the technique can measure the variations at the transition zone (TZ) 

between the aggregate and cement paste matrix. Larbi (1991) has used microhardness 

measurements to study the effect of cement replacement materials such as PFA, GGI3S 

and SF on the microstructure of the aggregate/cement paste transition zone (TZ). The 

results showed a significant improvement in the microhardncss of the TZ due to the use 

of cement replacement materials. This improvement was attributed to the reduction of 

the bleeding and to pozzolanic reactivity at the interfacial region. Indentation 

microhardness was also used to investigate certain effects of electro-chemical chloride 

removal close to an embedded steel cathode, due to the pore solution changes in the 

surrounding concrete (Page et al, 1994). However, the technique is very time 

consuming because of the need to take large numbers of individual readings in order to 

obtain representative average values at various depths. 
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To provide a more convenient method of analysis, a scratch hardness test was devised at 

Aston University permitting rapid assessment of the variations in pore structure of 

cement paste and concrete. The main idea behind the use of this technique is to produce 

a permanent deformation (scratch) on the surface of the test material by means of a 

scratch bit with a constant applied load. The geometry of the scratch is then analysed 

using surface roughness and image analysis techniques. The geometry of the scratch is 

expected to be a function of the pore structure of the material (e. g. wider and deeper in 

porous material than in dense material). The development and the details of scratch 

hardness test procedure are described in Sections 4.2 and 4.3.2.2. The scratch hardness 

instrument was used in this study for characterising the microstructure of cement paste 

and concrete. 

Scratch hardness is a technique widely used by mineralogists to classify the hardness of 

various rocks and minerals (West, 1989; Bhansali and Kattamis, 1990 and Berns et al, 

1991). West (1989) used this technique for assessing the abrasiveness of the rocks for 

machine tunnelling applications. Ile found a good correlation between the scratch 

hardness measurements and grades of Moh's hardness scale. 

The possibility of using this approach for friction measurements of adhesion sliding 

contacts was investigated by Nieminen et at (1989). Ile found that a scratch test was a 

useful technique for friction measurements of minerals of different compositions. This 

test was also used to study the effect of temperature on the hardness of alloys and the 

results showed that the technique was sensitive to such variations (Berns et al, 1991). 

Scratch hardness testing was also used for evaluating the soundness and integrity of 

material coatings (Kattmis et al, 1990; lledengvist et al, 1990; ßhansali et al, 1990 and 

Chalker et al, 1991). It was shown that the scratch data of the coatings were correlated 

well with the microstructural data obtained by optical and scanning electron microscopy 

(SEM). However, to the author's knowledge, there is no published literature regarding 

the application of this technique to concrete. 

The main aim of this chapter is to assess the reliability of the scratch hardness technique 

as an indirect method for qualitative and quantitative assessment of the microhardness 

and microstructural properties of cement paste and concrete. It also investigates the 

potential of using microhardness and scratch hardness techniques in evaluating the 
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microstructure gradient (CAZ) of the surface zone, and the effect of embedded 

aggregates on microhardness and scratch hardness measurements using a glass 

bead/cement paste model. 

4.2 SCRATCH IIARI)NESS TOOL 

The main components of the scratch hardness instrument are as follows; 1) a sharp 

triangular tungsteon carbide scratch bit fixed at the bottom end of a steel rod weighing 

125 g, 2) a vice to hold the sample on a platform which can be moved longitudinally 

and laterally on a horizontal plane, 3) a gear system to control the rate of longitudinal 

movement of the platform and 4) a micrometer to enable precise distance measurements 

between successive scratches. The steel rod holding the scratch bit is held in a frame 

fixed to the base of the apparatus such that it is free to move vertically. The weight 

imposed on the scratch bit can be increased by adding extra weights at the top end of the 

steel rod. The shape of the scratch bit was as shown in Figure 4.1. General views of the 

steel rod with the scratch bit and scratch hardness apparatus are shown in Figure 4.2 and 

4.3, respectively. 

The test involves positioning and clamping the specimen on to the platform which can 

be moved longitudinally at a given speed by means of a motorised system of gears. 
Then the scratch bit is lowered on to the test surface of the specimen and a scratch is 

induced by activating the movement of the specimen platform. The direction of the 

movement of the scratch needle is from B to b (Figure 4.1). Methods of analysis of the 

scratch are described in detail in Section 4.3.2.2. 

4.3 EXPERIMENTAL PROCEDURES 

4.3.1 Specimen Preparation 

The HCP, glass bead model and concrete specimens were cast as described in Section 

2.4 and subjected to different curing regimes as listed in Section 2.5. At the end of 

curing, cement paste specimens specified for the microhardness study were sliced 

longitudinally to obtain a sample of 75x49x12 mm using a circular saw lubricated with 

water. The test face of each specimen was then ground using 15 pm alumina powder 

and ethanediol lubricant for 10 minutes followed by 9 µm powder for another 5 

minutes. The test face was then polished to 6µm for 15 minutes and I pm for another 

15 minutes using a Metaserv Universal Polisher and diamond paste. 
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In the same manner, a 100x60x12 min slab specimen was taken for microhardness and 

scratch hardness tests from the centre of each 100 mm concrete cube. The test surface of 

the concrete was ground using 15 ltm alumina powder For 3 hours followed by 9 Jim 

powder for another 1'/2 hours. The concrete specimens were then polished, to 6 µni for 

half an hour and 1 µm for another half hour. 

For glass bead model specimens, the test surface was prepared following the same 

procedures of grinding and polishing described above. The distance from test surface to 

the glass bead surface (Y) (see Figure 2.2) was varied for successive testing at different 

depths by subjecting the test surface to successive grinding and polishing procedures 

until reaching the required level above the glass bead. 

4.3.2 Techniques 

4.3.2.1 Indentation microhardncss 

The polished specimen was positioned under the microhardness tester (Micrometer 4) 

and the optical system provided within the microhardness instrument was focused to 

obtain a clear image of the specimen surface. The indentor was then positioned at the 

test point by moving the specimen platform using control knobs. A constant load of 100 

gm was applied for 30 seconds to make an indentation on the polished surface of the 

specimen and the microhardness reading was recorded. All readings were taken at the 

central region and around the longitudinal centre line of the specimen, to avoid any 

variations near the edges. The space between any two adjacent indentations was always 

more than the last indentation diameter (> approximately 300 µm) to avoid 

overlapping. The test technique was described in detail in Section 2.6.7. 

Twelve microhardness measurements were made at 0,4,8,12,16,20,24,28 and 32 

mm from the cast face of IICP paste. For glass bead model specimens, measurements 

were made at different distances above the glass bead (Y), 2,1,0.5,0.25,0.1,0.05, 

0.025 and ; t0 mm. Microhardncss measurements were also made on the cement paste 

matrixes between the glass beads positioned 6,12 and 24 mm apart. On concrete 

specimens, twelve microhardness measurements were made at 32 mm from the cast 

surface. The highest and the lowest microhardness readings were discarded and the 
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average of the ten remaining readings was calculated. The overall average 

microhardness was calculated from data obtained on duplicate specimens. 

4.3.2.2 Scratch hardness 

Scratch hardness tests were carried out on the specimens used for microhardness tests. 

The polished specimen surface was coated with black ink prior to the scratch test to 

enhance the contrast between the scratch and the background. The test specimen was 

positioned and clamped on to the platform, the scratch bit was lowered on to the test 

surface of the specimen and a scratch was induced by activating the platform to move at 

a constant speed of 1 mm/s. Extra dead loads of 100 gin and 550 gni were imposed on 

the scratch hit for cement paste and glass head model specimens and for concrete 

specimens, respectively. 

The scratches were drawn at stzO, 4,8,12,16,20,24,28 and 32 mm from the cast 

surface of IICI' and at 2.5,1,0.5,0.25,0.1,0.05,0.025 and &0 mni above the glass 
bead (Y) of the glass bead model specimens. For concrete specimens, scratches were 
drawn at 32 mm from the cast surface. The scratch bit was regularly replaced with a new 

one to avoid the possible effects of wear of the scratch bit. Duplicate specimens were 
tested for each case of study and the scratch geometry was then analysed by the 
following two methods. 

a- Talysurf technique 

The scratch depth was measured by analysing the scratched surface profile 

perpendicular to the scratch using a Talysurf 4. A detecting soft needle under a constant 
load was traced across the scratches, and the profile of the surface was analysed using 

a computer connected to the Talysurf equipment. A computer print out of the magnified 

surface profile allowed the determination of the scratch depth. Ten discrete readings of 
the scratch depth were obtained at 2 mm intervals along the scratch around the 

longitudinal centre line of the specimen. The average scratch depth for duplicate 

specimens was then calculated. 

b- Image analysis 

An optical microscope (Olympus) connected via a computer to an image analyser (Sight 

Systems Freelance), was used to measure the scratch width. The image analysis system 
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magnified the image of the scratch by 50 times, see Figure 4.4. Five discrete images 

along each scratch (1.875x1.875 mm) were obtained around the longitudinal centre line 

of the specimen. The scratch width was then measured on the duplicate specimens using 

the i. )Ilowing methods. 

Optical processing of the image 

In this method, the edges of the scratch were defined visually on the computer screen 

and a perpendicular line was drawn manually between the two edges of the scratch 

image. On each image, five discrete measurements of scratch width, the perpendicular 
distance between the two edges, were taken and the average width for each image was 
determined. The overall average of the scratch width for the 10 images taken on the 

duplicate specimens was then calculated. 

Computer processing of the image 

This method is commonly used for analyses of maps and technical drawings in order to 

quantify patterns like lines, circles, ellipses, etc. The analyses of these patterns are 

carried out by automating the extraction of data by means of digital image processing to 

cover all the segments within the image (Taxt et al, 1985). This technique was used in 

this study as an alternative method for the determination of the scratch width. 

The image produced by the microscope attached to the image analyser was formatted as 

a suitable greyscale image of 512x512 pixels and the redundant information was then 

removed before determining the width and area of the scratch. The edges of the scratch 

were first identified by analysing the brightness values inside and on the edge of the 

scratch using GRASS 4.1 program (Shapiro et al, 1993). Then the unwanted region 

outside the scratch was removed by taking further density slices leaving only the 

scratched area. The computer program then counted the number of pixels on both sides 

of the scratch and hence the number of the pixels contained within the scratch, to 

determine the scratch geometry in terms of scratch width and area. This produced 512 

scratch width measurements for each image. This technique was applied to all images 

taken on duplicate specimens and a statistical analysis of the scratch width 

measurements of all images taken was then carried out. This allowed the relationship 
between the scratch width and the cumulative area of the scratch and then the 

distribution of the scratch width along the scratch length to be determined. 
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4.4 RESULTS AND DISCUSSION 

4.4.1 Microhardness of the Surface Zone 

The microhardness gradients of the surface zone of OPC pastes (w/c=0.55) cured with 

different regimes (see Table 2.3) are shown in Figure 4.5. The results emphasise the role 

of curing on the microhardness gradient of the surface zone. The microhardness of OPC 

specimens increased with increasing water curing period and increasing depth below the 

surface of the specimen up to a certain distance (CAZ). The estimated thicknesses of the 

CAZ were 20,16,12 and 4 nmm, for specimens cured in El, E2, E3 and E4, respectively. 

These values are in reasonable agreement with the results represented in Chapter 3 using 

thermo-gravimetry and desorption methods, which showed that the CAZ depths 

decreased with increasing water curing period. 

The effect of water/cement ratio on the microhardness of OPC cement paste cured in 

water (E4) is presented in Figure 4.6. The results show that the microhardness of 

specimens decreased with increasing water/cement ratio. The amount of microhardness 

reduction reaches 40 % and 50% when the w/c ratio increased from 0.4 to 0.55 and from 

0.55 to 0.7, respectively. On the other hand, the w/c ratio did not show a significant 

effect on the estimated thicknesses of the CAZ which were 8,4 and 4 mm for specimens 

with 0.4,0.55 and 0.7 water/cement ratio, respectively. 

The relationships between microhardness and degree of hydration and porosity of OPC 

paste are presented in Figures 4.7 and 4.8, respectively. The results show that the 

microhardness of OPC paste specimens increased with increasing %NEW (a measure 

of the hydration products) and decreasing total and capillary porosity. This relationship 

elucidates the enhancement observed in the microhardness of OPC specimen at low w/c 

ratio and prolonged water curing. These results confirm that the pore structure has a 

major influence on the microhardncss of the surface zone, as seen by other investigators 

(Sadegzadeh et al. 1987; Bentur, 1991, Larbi, 1991, Kholmyansk et al, 1994; Igarashi 

et al, 1996). 

It can be seen from the results reported in Figures 4.5 to 4.8 that indentation 

microhardness is a useful tool for identifying the microstructural variations within the 

surface zone. However, it was noted that the technique is time consuming due to the 
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lengthy specimen preparation procedures, in terms of grinding and polishing. The 

reliability of this technique is also dependent on the number of individual 

measurements taken at each depth to give a representative average of the microhardness. 

4.4.2 Scratch Hardness of the Surface Zone 

4.4.2.1 Reliability of the scratch hardness tool 

The scratch hardness test was used to evaluate the scratch dimensions (width and depth) 

for cement paste specimens with different water/cement ratios subjected to different 

curing regimes. The validity of this technique for hardened cement paste (1! C(') was 

first studied and then the test was applied to concrete. All scratch width results shown in 

Figures 4.9 to 4.13 were determined by optical processing of the image as described in 

Section 4.3.2.2. 

The effect of applied load on the scratch geometry for OPC paste is illustrated in Figure 

4.9. It can be seen that both scratch width and depth increase with increasing applied 

load and the relationships appear to be linear. The relationship between the water curing 

period (22°) and scratch geometry of UPC cement paste show that both the scratch 

width and depth decrease with increasing water curing period (Figure 4.10). The 

relationships shown in Figure 4.11 illustrate that the scratch width and depth decrease 

with decreasing w/c ratio. The decrease in scratch width and depth due to prolonged 

water curing and decreasing water/cement ratio can be attributed to the improvement of 

the cement paste pore structure. 

From Figures 4.9 to 4.11, it can be seen that the scratch technique is sensitive to tlie 

applied load, variations in the mix proportions of OPC paste (water/cement ratio) and 

curing conditions. It therefore indicates that this technique has the potential to be 

considered as an indirect method for the qualitative determination of the variations in 

the cement paste microstructure. 

The validity of the scratch hardness technique for concrete was studied using OPC 

concrete specimens with different w/c ratio. The scratch width and depth increased with 

increasing w/c ratio, as shown in Figure 4.12. The significance of the scratch hardness 

results for OPC concrete was studied statistically using the t-test (Table 4.1). The 

statistical analysis confirms that the scratch hardness results for OPC concrete with w/c 
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ratio 0.40 and 0.55, and 0.55 and 0.70 are significantly different (P <= 0.05). Therefore, 

it is apparent that the scratch hardness tool has the potential for measuring 

microstructural variations in concrete. 

Although both scratch width and depth provided useful indices of microstructural 

variations in the I ICP and concrete, the analysis of scratch geometry in terns of scratch 

width was considered to be preferable. This may be attributed to the fact that the 

analysis of the scratch width using image analysis provided more information about the 

test surface, namely the presence of voids, cracks, unhydrated particles, small aggregate 

particles and the background of the scratch. This allowed the selection of positions 

unaffected by the above factors when taking measurements of the scratch width when 

the image was processed optically. In addition, the scratch width results were less 

dependent upon the roughness of the specimen surface than were scratch depth 

measurements. 

The relationship between scratch dimension (width and depth) and the microhardness 

is shown in Figure 4.13. It can be seen that both scratch depth and width increase with 

decreasing microhardness of the cement paste. There is a linear relationship between 

microhardness and scratch dimension. This indicates the possibility of using the scratch 

hardness testing as an alternative method for measuring the microhardness of IICP. The 

use of the scratch hardness technique has the following advantages: 1) it is simple to use 

and inexpensive; 2) time required for specimen preparation is reduced; 3) scratch 

geometry can provide a continuous trace of microstructural variations along distance. 

The scratch width and depth are plotted against the capillary porosity for OPC paste as 

illustrated in Figure 4.14. It can be seen that there is a significant increase in scratch 

width with increasing capillary porosity. The significance of this relationship can be 

used to understand the effect of curing and water/cement ratio on scratch hardness of 

the cement paste. It also highlights the potential of the scratch hardness measurements 

for characterising the I ICP microstructure. 

Automated extraction of data from technical drawings and images using digital image 

processing has become a practical tool during the last decade and is popular in 

extracting global curve segments of the studied image (Taxt et al, 1985). It was used in 
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this study for the following reasons: 1) to take advantage of the fact that computer 

processing covers all the segments of the scratch while the manual processing can miss 

out some data between the consecutive measurements; 2) to overcome the human errors 

which may result when defining the scratch boundary visually on the computer screen 

and determining the scratch width; 3) to study the reliability of manual analysis 

(optical) of scratch dimensions. 

The results shown in Figure 4.15 were deduced by computer processing the scratch 
images and they present the relationship between the scratch width and the cumulative 

area of the scratch of OPC paste and concrete mixed with different w/c ratios. It can be 

seen that the scratch widths for OPC paste were more uniform than those for the 

corresponding OPC concrete. For both paste and concrete specimens, the average 

scratch widths calculated at 50% of the cumulative area of the scratch were close to the 

point of inflection of the curve. The range of scratch width results was within ± 10% 

and ± 15% of the average scratch width for OPC paste and concrete, respectively. 

The differences found in scratch width distributions for IICP and concrete shown in 

Figure 4.15 may be attributed to the presence of aggregate. The exposed aggregate 

resulted in a reduction in scratch width measurements, especially at the lower end of the 

scale of scratch width. 

Table 4.2 compares the scratch width results obtained via the optical (manual) and the 

computer processing methods of the scratch image for OPC paste and concrete with 
different w/c ratios. The average scratch width obtained manually did not coincide 

precisely with the corresponding results obtained by the computer processing method 
but, the average values of the optical (manual) results lay well within the range of 

scratch widths obtained by the computer processing method. The difference in the 

results may be attributed to the inability of the manual method to cover the entire 

scratch. However, this particular study has shown that the use of the optical method for 

analysing the scratch width gave results that were still reasonably comparable with the 

results obtained by the computer processing method. 
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4.4.2.2 Characterisation of CAZ using scratch hardness equipment 

The potential of the scratch hardness test liar characterisation of the microstructure 

gradient of the surface zone (CAZ) was investigated. Figure 4.16 shows the scratch 

width gradients of the surface zone of OPC pastes after exposure to different water 

curing regimes at 22°C. The results indicate that the scratch width decreased with 

increasing water curing period and increasing depth below the surface up to the limit of 

the CAZ. The thicknesses of the CAZ estimated from Figures 4.16 are 20,20,8 and 4 

mini for specimens cured in El, E2, E3 and E4, respectively. These results indicate that 

the thickness of the CAZ decreases with increasing water curing period. 

The CAZ thicknesses estimated from the porosity (thermo-gravimetry and desorption), 

indentation microhardness and scratch hardness techniques are summarised in 't'able 4.3. 

It is apparent that the values estimated by the scratch hardness technique are in 

agreement with those estimated by the porosity and indentation techniques, except for 

the slight difference in the results noted for specimens cured with E3. An investigation 

undertaken using this approach for evaluation of the microstructural variations in cover 

concrete cast against different formwork types is described in Chapter 6. 

4.4.3 Effect of Aggregate on Microhardness and Scratch Hardness 

Measurements 

A cement paste specimen containing embedded glass beads was used in this 

investigation for modelling the effect of underlying aggregate on microhardness and 

scratch hardness measurements. Hardness measurements were made on the cement 

matrix at different distances above the glass bead (Y) and the results are presented in 

Figure 4.17. It can be seen that the microhardness is decreasing with increasing distance 

above the glass bead up to a certain distance (%ý- 0.1 mm) and then it stabilises despite 

increasing distance above the glass bead. Similarly, both scratch depth and width 

increased with increasing distance above the glass bead (Y) up to about the same 

distance (,: Al mm) before becoming stable. This means, both microhardness and 

scratch hardness results are only influenced by the presence of the underlying aggregate 

if the aggregate particles are located close (0 to 100 µm ) to the test surface. 
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The microhardness and scratch hardness measurements of the cement paste located 

between the glass beads embedded at different spacings were also studied as illustrated 

in Figure 4.18. It can be seen that the glass bead spacing had no significant effect on 

either microhardness or scratch hardness results. The other variables such as curing 

regime, w/c, aggregate texture and shape, should be considered in a further study to give 

a comprehensive clarification of the role of underlying aggregate particles on 

microhardness and scratch hardness measurements. 

The use of the scratch hardness technique for characterisation of the TZ between 

aggregate particles and the cement paste matrix was investigated. It was noted that the 

measured scratch widths in the first 200 [tin from the aggregate surface were scattered 

and not significantly different from those noted in the bulk. The inconsistency of the 

scratch hardness results in the first 200 Etm may be attributed to the resistance imposed 

upon the movement of the scratch bit at the edge of aggregate particles. 

The difficulty of using the scratch technique for characterisation of the TZ may also be 

attributed to the geometrical shape of the scratch bit used, which was not appropriate 
for measuring the TZ according to the work done previously by ßentur (1991) and Larbi 

(1991). They found that the thickness of the TZ varies from 20 to 100 Etm. These values 

are small compared with the size of scratch bit. The geometrical shape of the scratch bit 

could however be subjected to a further modification for measuring such variations. 

4.5 CONCLUSIONS 

The main findings of this part of the investigation can be summarised as follows: 

1- There is a good correlation between the surface zone microstructure (total and 

capillary porosity) and the degree of hydration and microhardness. The indentation 

microhardness appears to be a reliable technique for qualitative determination of the 

microstructure and microhardness gradients of the cover concrete. 

2- The scratch hardness technique could be considered as a simple and an effective 
indirect method for the evaluation of cement paste and concrete hardness and a possible 

alternative technique to the indentation microhardness. 
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3- It has been shown that the scratch hardness technique is capable of producing 

valuable information with regard to the microstructure of cement paste and concrete. 

The determination of scratch geometry in terms of scratch width is more convenient and 

appears to be more reliable than the scratch depth approach. 

4- Although there was some discrepancy between manual and computer processing 

methods of analysing of the scratch width, both analytical techniques were effective in 

identifying variations in the pore structure as indicated by the scratch width. 

5- The use of the scratch hardness technique was also effective in the 

characterisation of the hardness and the porosity of the surface zone (CAZ). The 

equipment has the potential to be improved to increase its sensitivity to detect certain 

variations, such as properties of the aggrcgatc/ccmcnt paste transition zone. 

6- There is a significant effect of the underlying aggregate on the microhardness 

and scratch hardness measurements when the aggregate surface is less than 100 pun 
below the test surface. On the other hand, the aggregate spacing does not show any 

significant effect on these measurements. 
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Table 4.1 Summary of the statistical analysis of scratch hardness results of UPC 

concrete mixed with different w/c ratios, using t -test. 

W/C Mean, Variance standard Variation, t 13(T<=t) two tail Significance of the 

ratio in deviation % difference 

0.40 412.0 2803.1 52.94 12.8 -2.3 0.0234 significant 

0.55 576.6 2761.6 52.55 9.12 

0.55 576.6 2761.6 52.55 9.11 -1.9 0.0459 significant 

0.70 642.0 7560.5 86.90 13.5 

Table 4.2 Scratch width results obtained by the manual and computer processing 

of the scratch image of OPC paste and concrete. 

W/C ratio Specimen Scratch width, pm 

type Range Computer processing average Manual average 

0.4 paste 

concrete 

312-508 

310-612 

400 

450 

498 

412 

0.7 paste 

concrete 

945-1335 

562-861 

1150 

730 

1135 

642 

Table 4.3 Summary of CAZ of OPC pastes cured with different regimes, using 

different techniques. 

Technique CAZ, mm 

E1 E2 E3 E4 

1- Thermo-gravimetry 24 20 12 8 

2- Desorption (capillary porosity) 20 20 16 4 

3- Indentation microlhardness 20 16 12 4 

4- Scratch hardness 20 20 8 4 
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Figure 4.1 Geometrical details of the scratch bit. 
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Figure 4.2 General view of the steel rod and the scratch bit used in the scratch 

hardness technique. 
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Figure 4.4 General view of the drawn 
, scratch with magnification of 50 fillies after- 

image processing. 
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Figure 4.5 Microhardness profiles of OPC paste cured with different curing 
regimes, w/c = 0.55. 
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Figure 4.6 Microhardness profiles of OPC pastes mixed with different w/c ratios, 
E4 regime. 

95 



60 

50 
  

40 
V1 

30 

o  
20 

   

10 

0 
13 14 15 16 17 18 

NEW, % 

Figure 4.7 Relationship between the degree of hydration (NEW) and the 

microhardncss properties of IICP, w/c = 0.55. 
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Figure 4.8 Relationship between porosity and the Microhardness properties of HCP. 
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Figure 4 .9 Scratch dimension (width and depth) of OPC paste versus the applied 
load, using w/c = 0.40 and E4 curing. 
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Figure 4.10 Scratch dimension (width and depth) of OPC paste versus water 
curing period, w/c = 0.55. 
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Figure 4.11 Scratch dimension (width and depth) of OI'C paste versus w/c ratio, 
E4 curing. 
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Figure 4.15 Relationship between the % cumulative area of the scratch and the 

scratch width for OPC paste and concrete with different We ratios. 
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Figure 4.16 Scratch width profiles of OPC paste cured with water for different 

periods at 22°C, w/c = 0.55. 
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Figure 4.17 Effect of distance above the glass bead on a) microhardness and 
b) scratch hardness measurements. 
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Figure 4.18 Effect of glass bead spacing on the a) microhardness and b) scratch 
hardness measurements. 
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CHAPTER 5 

EFFECT OF THE MICROSTRUCTURE GRADIENT ON THE 

MASS TRANSPORT PROPERTIES 

OF TILE SURFACE ZONE 

5.1 INTRODUCTION 

The aim of this chapter was to study the effect of the CAZ on the rate of carbonation 

and chloride ingress by using different cement pastes with previously determined CAZs 

as described in Chapter 3 and 4. This Chapter also provides an insight into the effect of 

carbonation on the pore structure and phase composition of different IICPs. 

5.2 LITERATURE REVIEW 

The first part of this review highlights the mechanism of carbonation and the factors 

affecting it. It also deals with the effect of carbonation on the pore structure and 

properties of concrete. The second part concentrates on the mechanism and factors 

affecting chloride ingress into concrete. 

5.2.1 Part I: Carbonation of Concrete 

5.2.1.1 Mechanism of carbonation 

The pore solution in concrete is normally highly alkaline, with p11 values above 12.5. 

The high p11 is generally due to the presence of hydroxyl ion associated with Ca2+ , 
Na' and K+, derived from the cement. In this highly alkaline environment, the 

embedded steel i3 surrounded by a layer of protective oxide film and therefore remains 

in a passive condition. However, steel may become susceptible to corrosion in the 

presence of deleterious ions such as chloride or if the p11 of concrete is reduced to a 
level at which passivity of embedded steel is no longer maintained (Page, 1992). The 

reduction in alkalinity of the concrete can occur due to leaching of OH- ions to the 

surrounding environment, such as sea water, or by carbonation of concrete due to 

penetration of carbon dioxide from air. The most common process responsible for the 

reduction in alkalinity of concrete is carbonation. 
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Lawrence (1981) and Jungermann (1982) have subdivided the process of carbonation in 

concrete into three stages, as follows: 

i) ingress of CO2 by diffusion. 

ii) reaction of CO2 with pore fluids to form carbonic acid (112CO, ). 

+1120+ <* CO; + 211` .... (5.1) 

iii) ionic diffusion of carbonate ions (CO; -) in the pore fluids. 

The carbonate ions can then combine with other compounds present in the pore fluids, 

such as Ca'' , Na' and K', with a consequent loss of OFl- ions and an accompanying 

reduction in alkalinity (Jungermann, 1982). 

Verbeck (1958), Parrott (1987,1990a and 1990b), Rahman and Glasser (1989) and Loo 

et al (1994) have reported that the diffused CO2 may react with cement hydration 

products, such as calcium hydroxide (C-I I), as follows: 

C((011)2 + CO2 -4 CaCO, + 1120 ..... (5.2) 

In addition, CO2 causes the sulphate originally present in the cement to revert to gypsum 

after complete carbonation as follows: 

CCA. 31CaSO4.3H2O+3CO2 +31120- > 3CaC0, +2A1(OH), + 

3CaSO4.1120+30H20 ..... (5.3) 

However, the reaction in equation (5.3) is unlikely under normal atmospheric conditions 
due to the low reactivity of the cement hydration products. 

5.2.1.2 Assessment of carbonation 

The most common method for determining the carbonation depth is using a p11 

indicator. This method involves spraying the freshly broken concrete with 

phenolphthalein solution which differentiates between the natural colour of the concrete 

with a p11 >_ 10-10.3 which gives a magenta colour and the carbonated area of p11 < 9- 

10 which remain colourless (Parrott, 1987 and Sims, 1994). Although this method is 
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convenient to use and can give reproducible results, it can only differentiate between 

fully carbonated concrete, where the p1I is already at the critical value of about 9-10 or 

less, and other areas of concrete, which might vary between being completely unaltered 

and partially carbonated. 

A number of alternative methods are available for monitoring carbonation. Parrott 

(1987,1990a and 1990b), Bier et at, (1987 and 1989), Ralhman and Glasser (1989), and 

Kobayashi et at (1994) have reported that X-ray diffraction, thermal analysis (DTA) and 

thermo-gravimetry (TG) can be used to assess the extent of carbonation in concrete by 

measuring the reduction of calcium hydroxide (Ca(Ol1)) and the increase of calcium 

carbonate (CaCO1) contents. Also, optical microscopy under polarized light can be used 

to observe directly the presence of (CaCO, ) in concrete (Meyer, 1968). According to 

Parrott (1991a), the progress of carbonation in laboratory specimens can also be 

determined non-destructively From the difference in weight and dry bulk density of 

carbonated and uncarbonated concrete. 

5.2.1.3 Factors influencing carbonation 

The rate of CO2 diffusion into concrete depends mainly on the amount and continuity of 

pores in the concrete, which provide the paths for CO2 to diffuse into the material 

(Diamond et al, 1981 and Parrott, 1991b). In dry pores, CO2 diffuses without causing 

significant carbonation to the concrete due to the absence of water which is necessary 

for carbonation reactions. On the other hand, when the pores are completely saturated 

with water, the rate of CO2 diffusion is negligible. This implies that the rate of 

carbonation is negligible in dry and saturated pore conditions. There is in fact an 

intermediate moisture content at which maximum carbonation rate can be achieved. It 

has been reported by Tuutti (1982) that this intermediate moisture content is between 

60% to 70% RII, as shown in Figure 5.1. Tuutti (1982) noticed that there, however, was 

some slow carbonation even at 99.9% RI I. 

Rahman and Glasser (1989) observed that carbonation of OPC concrete after 80 days of 

exposure in air at 60% RH was significantly enhanced at 40°C where the depth of 

carbonation was 6 mm compared to 2-3 mm at 20°C. This observation was contradicted 

by Thomas and Matthews (1992), who showed an insignificant increase in the rate of 
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carbonation when the temperature increased from 20 to 40"C. Diamond et al (1981) and 

Parrott (1987) have also mentioned that elevated ambient temperature could increase or 

decrease the rate of carbonation depending on the degree of drying. 

Verbeck (1958) has found that the % weight gain due to carbonation reactions increased 

with increasing concentration of CO2, as shown in Figure 5.2. however, it can clearly 

be seen from Figure 5.2 that the increase in CO2 concentration from 0.03 % 

(atmosphere) to 1% has the most significant effect on % weight gain compared to 

subsequent increases in the concentration of CO2 (1% to 100%). Loo et al (1994) found 

that the effect of CO2 concentration on the carbonation depth is dependent on the 

concrete grade. He observed that the effect of CO2 concentration (ranging from 7 to 

18%) was greater on specimens with lower 28-day strengths than on specimens with 

higher 28-day strengths (Z 400 Kg / cm'). 

Many researchers, who studied the factors influencing carbonation depth, have agreed 

that carbonation progress is governed by Fick's law and can be defined reasonably well 

by the following equation (Sergi, 1986; Parrott, 1987 and Vaysburd et al, 1993): 

d=k, 4 ..... (5.4) 

where, d (mm) is the depth of the carbonation reaction front after time t (years) and k, is 

the carbonation coefficient. It was reported by Parrott (1987) that the depth of 

carbonation varies for different mix compositions and water/cement ratios, i. e., it is 

related to the compressive strength of concrete. They have also noted that the use of 

higher cement contents at constant water/cement ratio decreased the depth of 

carbonation. However, it was found by Loo et at (1994) that the effect of cement content 

on the rate of carbonation was marginal when compared with the effect of the w/c ratio. 

This was attributed to the role of the w/c ratio in determining the gel/space ratio. He has 

also represented the relationship between k, and w/c ratio as follows: 

kr=a[w/c-P] ..... (5.5) 
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where, a and ß are constants. Recently, floust and Wittmann (1994) studied the 

influence of w/c ratio on the effective diffusivity of CO= and 02 at 55% RI!, as shown 

in Figure 5.3. He observed that the effective diffusivity of CO2 increased by a factor of 

20 to 25 when the w/c increascd from 0.4 to 0.8. 

The replacement of Portland cement with PFA and GGI3S generally leads to an increase 

in the rate of carbonation for concretes of constant w/c ratio (Parrott, 1987 and 1993). 

The author showed that the replacement of 70% and 50% of OPC by PFA and GG13S, 

respectively, increases the average carbonation depth by 46% and 69%, respectively. 

Thomas and Matthews (1992) also mentioned that the rate of carbonation was increased 

with increasing content of cement replacement materials. lie has also reported that the 

concrete containing 15-30% PFA carbonated to a slightly greater extent than OPC 

concrete of the same strength grade but the rate of carbonation for concrete containing 

50% PFA had a higher carbonation rate than OPC concrete of equal strength grade. This 

increase in the rate of carbonation is attributed to the reduction in the amount of 

Ca(O11)2 which is consumed during the pozzolanic reaction. Smolczyk (1976) related 

the rate of carbonation to calcium oxide content (CaO) as follows: 

carbonation - ..... 
(5.6) 

n 

It is clear from this equation (5.6) that an increase in CaO content reduces carbonation 

significantly. Therefore, depleting CaO from OPC concrete by additives such as 

pozzolans and slag, would offer less resistance to carbonation. This was confirmed by 

Bier et al (1987 and 1989) who studied the effect of slag content on the rate of 

carbonation in terms of calcium carbonate content at different CO2 concentrations, as 

shown in Figure 5.4. His results showed that carbonation rate increases with increasing 

slag and CO, concentration. However, contrary to the abovementioned studies, Hobbs 

(1994) reported that, at an age of 8.3 years, the depth of carbonation in OPC and 

65%OPC/35%PFA concretes of the same 28-day compressive strengths were similar. 

Thomas and Matthews (1992) emphasized the importance of adequate curing for the 

resistance of concrete to carbonation. He reported that, in some cases, increasing the 
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initial water curing period from I to 7 days resulted in a 50 % reduction in the 

carbonation depth. A similar observation was made by Loo (1994), who reported that 

longer water-curing periods help to reduce the rate of carbonation, but beyond 14 days 

of water curing, the reduction becomes marginal. Dhir (1989) arrived at the same 

conclusion, and noted that extending the water curing period beyond 14 days had much 

less effect on the carbonation rate than the initial 14 days curing. Parrott (1993) has 

shown that the differences in carbonation depth due to variable cement types are 

somewhat greater than those due to variable curing. Ile reported that the carbonation 
depths at a given strength for 28 days water curing were somewhat higher than those 

with I and 3 days water curing, an observation which was in disagreement with 

previous findings (Dhir, 1989; Thomas and Matthews, 1992 and Loo et al , 1994). 

To sum up, the main factors influencing carbonation are as follows: 

(1) Weather conditions such as ambient temperature, relative humidity, 

and C02 concentration. 

(2) Pore structure system and moisture conditions (RH). 

(3) Cement content and water/cement ratio. 
(4) Type and content of cement replacement material in the mix. 
(5) Degree of hydration (initial curing). 
Therefore, a good understanding and proper control of these factors can lead to a greater 

reduction in the rate of carbonation. 

5.2.1.4 Effect of carbonation on microstructure and properties of concrete 
The chemical reactions shown in equation 5.2 would be expected to modify the 

concrete composition, pore structure, physical and mechanical properties. Pihlajavaara 

(1968) and Bier et al (1987 and 1989) observed that carbonation generally causes a 

reduction in porosity of the affected zone because the volume of calcium carbonate 
(CaCO3) formed during carbonation reactions exceeds that of the parent hydrates. 

Pihlajavaara (1968) studied the effect of carbonation on the porosity and pore size 
distribution of OPC cement paste. Ile concluded that there was a reduction in the 

O 

amount of pores of diameter between 1,000 and 125 A compared to pores of diameter 

less than 125 A owing to carbonation. Ile also showed that the total porosity under 125 
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0 
A was similar for both carbonated and uncarbonated cement paste. Similar results have 

been reported by Vaysburd ct al (1993), who reviewed the consequence of carbonation 

to the void space of concrete. IIe reported that the void space of pores 0.01-0.1 and 0.1- 

I µm across is almost doubled due to carbonation, while voids and capillaries, 12 nm 

across and greater remains unchanged and free from carbonation reaction products. 

Roust and Wattmann (1994) reported that all the pores of IICP of w/c=0.4 were affected 

by carbonation, in particular those below 0.1 µm, thus confirming the findings of 

Pihlajavaara (1968). 1Ie observed a reduction in the amount of pores with radii below 2 

µm for very porous I1CP, with w/c=0.80. It was also found that after carbonation, the 

amount of gel pores of 2 nm diameter decreased. This means that the xcrogcl was also 

modified, i. e. coarsened by carbonation. 

Bier et al (1987 and 1989) studied the effect of carbonation on the pore structure of OPC 

and OPC/GGBS cement pastes when exposed to 0.03% (atmosphere) and 2% CO2 by 

volume and concluded that: 
(1) The pore volume of OPC paste was decreased compared to OPC/GGBS paste, 

which showed a slight or no reduction in the cumulative pore volume but a shift 
in PSD towards coarser pore radii. 

(2) Accelerated carbonation (2% C02) caused a greater reduction in the pore 

volume of OPC paste and a distinct shift towards coarse pore radii of 
OPC/GGBS paste when compared to atmospheric carbonation. This was 

attributed to higher CaCO, content and to the distinct decomposition of C-S-I i 

gel caused by accelerated carbonation. 
(3) Carbonation increased the capillary porosity of OPC/GGBS paste 

Malami and Kaloidas (1994), Page and Ngala (1995) and Ngala and Page (1997) 

confirmed Bier et al's results when studying the effect of carbonation on specific pore 

volume of OPC, OPC/PFA and OPC/GGBS cement pastes. Malami and Kaloidas 

(1994) reported that, after 13 months of exposure to atmospheric C02, the total specific 

pore volume (SPV) of carbonated specimens was less than that of uncarbonated 

specimens. He derived this variation from the difference observed between meso pores 
(125 mit < Rb 5 12.5 nm) and micro pores (7500 nni < Rb S 125 nm). Page and Ngala 

(1995), Ngala (1995) and Ngala and Page (1997) also reported that carbonation caused 
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an increase in the capillary porosity (pore diameter z 30 nm) by about 5% in OPC 

cement paste. However this was negligible compared with the marked increase of 

approximately 145% and 230% for blended fly ash and slag pastes respectively. 

Mechanical properties of carbonated concrete such as compressive and flexural 

strengths are enhanced due to the reduction in its total porosity (Meyer, 1968; Vaysburd 

et al, 1993 and Kobayashi, 1994). However, a reduction in compressive strength in 

carbonated GGI3S concrete was observed by Meyer (1968). This was attributed to the 

formation of more porous silica gel in GGBS concrete due to the decomposition of the 

C-S-I I gel (Bier et al, 1989). 

The Carbonation reaction shown in equations (5.1 and 5.2) sometimes produces a 

weight change (gain or loss) for concrete due to the replacement of water by C02. 

When Ca(O102 is carbonated there is a resultant increase in the weight of concrete due 

to the replacement of one mole of water by the heavier one mole of CO2. Similar 

behaviour is also expected for the carbonation of C-S-11 gel. At the other extreme, when 

ettringite is carbonated, 27 moles of water are replaced by 3 moles of C02, resulting in a 

considerable weight loss (Sergi, 1986 and Parrott, 1987 and 1991b). Weight gain 

densifies the concrete microstructure, which may tend to enhance the mechanical 

properties of carbonated concrete. On the other hand, weight loss produces less dense 

concrete which may lead to poor mechanical properties. 

Carbonation has also been reported to increase the modulus of elasticity and surface 

hardness (Sereda, 1968), whilst reducing permeability (Hilsdorf et al, 1984). Moreover, 

it was mentioned-by Pihlajavaara (1968), Parrott (1986) and Vaysburd et al (1993) that 

the chemical reaction of carbonation is accompanied by carbonation shrinkage which is 

greater when carbonation occurs after drying, rather than during drying, except at low 

humidities. 

Chloride diffusion was found to be accelerated by carbonation (Sergi, 1986 and Ahmed, 

1990). This was attributed partly to the releasing of Cl- from complex calcium chloro- 

aluminate (Friedel's salt), established by the binding of Cl' with cement constituents, 



which provides more free chloride ions available for diffusion, as shown in equation 5.7 

(Suryavanshi and Swamy, 1996); 

3CaO. A12O3CaC12.10H20 + 3CO2 + 3E120 -4 3CaCO3 + 2A1(OH)3 + CaC12 + 101120 

..... 
(5.7) 

The release of CaCl2 shown in equation 5.7 leads to an increase in the [Cl- /011- ] 

ratio, increasing the risk of chloride induced pitting corrosion. Dhir (1993) observed that 

the sequential carbonation and chloride attack was a worse degradation problem than 

either process acting separately. Ile also reported that carbonation processes accelerate 

the rate of sulphate attack. 

As a result of the reduction in the p11 of the pore solution due to carbonation, the 

passive film could be damaged and reinforcement corrosion initiated. This can occur at 

a pH of about II and does not coincide exactly with the pit value detected by 

phenolphthalcin (Parrott, 1987). Therefore, the corrosion of reinforcement is mainly 

controlled by the unneutrralized remainder, i. e. the depth of reinforcement cover minus 

the depth of carbonation detected by phenolphthalein (Parrott, 1990b and 1994). 

It is clear from the above literature that a good understanding of the role of carbonation 

on concrete microstructure and concrete properties may help to deal with the problem of 

reinforcement corrosion. 

5.2.2 Part II: Chloride Ingress 

5.2.2.1 General 

Chloride is the main ion which may provoke corrosion problems and the effect of 

chloride on durability has been widely studied for many years. It may be introduced to 

concrete from several sources. Soluble chlorides may be included in fresh concrete by 

the use of contaminated constituents such as aggregate, water, cement and admixtures. 

Chloride ions may also enter hardened concrete from external sources such as sea-water 

and de-icing salts used in cold winter periods (Verbeck, 1975; Jones et al, 1993 and 

Bamforth and Price, 1994). 
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Chloride ions can be present in hardened concrete in three forms, i. e. free, physically 

adsorbed and chemically bound (ßamforth and Price, 1994). The three phases are 

summarized as follows: 

1- Free chlorides 

As the name implies free chlorides are those ions present in the pore fluid and moving 

within the concrete by ionic diffusion through the pore solution. Free chlorides increase 

the electrical conductivity of the pore water. As a result of their electro-chemical 

properties, they influence the rate of dissolution of metallic ions, hence affecting the 

initiation of reinforcement corrosion. As the amount of free chlorides increase, the risk 

of corrosion increases (Bamforth and Price, 1994). 

2- Physically adsorbed chlorides 

The physically adsorbed chloride ions are those ions adsorbed on to the pore walls of 

the cement hydrates (Ramachandran, 1971) and do not directly affect the risk of 

corrosion of reinforcement under normal conditions. The amount of physically adsorbed 

chloride ions is mainly dependent on the surface area of the cement hydrates (Byfors, 

1986) and on the nature of the hydration products (I lansson and Sorensen, 1987). 

3- Chemically bound chloride ions 

Chemically bound chloride ions are those ions that have reacted with the cement 

compounds, forming solid compounds which are effectively immobile and have no 
direct influence on the corrosion activity. The chloride binding capacity depends mainly 

on cement composition, cement fineness, type of cement, replacement materials, water 

cement ratio and, percentage of chloride present and associated cation (Tritthart, 1989 

and Arya et al, 1990). 

The tricalcium aluminate (C3A) is the main controlling factor in the chloride binding 

process. C3A reacts with chloride ions to form insoluble complexes. The reaction 

product is as shown in equation 5.8 (Verbeck, 1975). 

CaC12 + 3CaO. AI2O3 H 3CaO. A1203. CaCI2.101120 ..... (5.8) 
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The product in equation (5.8) is calcium chloro-aluminate which is commonly known as 

Friedel's salt. C4AF also reacts with chlorides to form two insoluble complexes which 

are calcium chloro-aluminate and calcium choloro-ferrite (3CaO. Fe203. CaCI. 10I120) 

(Suryavanshi and Swamy, 1996). C3S and C2S can also bind with chloride ions to form 

interlayer of chemisorbed complexes within C-S-I I gel (Ramachandran, 1971). On the 

other hand, Diamond et at (1981) and Lambert et at (1985) concluded that silicate 

phases have no major effect on the chloride binding capacity. 

5.2.2.2 Mechanism of chloride ingress 

The mechanism of chloride ingress is mainly controlled by diffusion occurring on fully 

saturated concrete, and absorption occurring by wetting and drying processes which 

occur on most structures exposed to chloride environments. The mechanism of chloride 

attack could be summarized as follows: 

a- Diffusion 

It is a process by which chlorides from external sources penetrate the cover concrete 

under the action of a concentration gradient (Page et al, 1981 and Kumar et al, 1987). 

Only free chlorides are available for transport into deeper layers. As more chloride ions 

penetrate with time, some of them will bind with the cement hydrates, whilst the 

remainder will further saturate the pore solution. Some of these free ions diffuse further 

creating a concentration gradient from the surface of the concrete to the inner layers, as 
illustrated in Figure 5.5 (Schiesst, 1983). 

b- Absorption 

Owing to the wetting and drying of concrete surfaces with chloride containing water, an 

enrichment of chlorides in the surface layer is possible. At the beginning of the wetting 

period a relatively large amount of chloride containing water will penetrate into the 

concrete by capillary suction. During the drying period, the water dries out and the 

chloride remains in the concrete. On subsequent wetting, more chloride ions are 

conveyed into the concrete and deposited ions from the previous cycles are sucked in 

deeper. On repeated drying, the water or much of it departs leaving behind an increased 

amount of chloride. This process may cause a high enrichment of chlorides in the drying 

and wetting zone of the concrete, as shown in Figure 5.6 (Schiessl, 1983). 
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5.2.2.3 Factors affecting the rate of chloride ingress 

The type of cement plays an important role in the rate of chloride ingress. Investigations 

with various types of cement have confirmed that chloride diffusion is strongly 

influenced by cement composition (Page et al, 1981 and I3amforth and Price, 1994). 

Tricalcium aluminate (C3A) is considered to be the most important phase affecting the 

rate of chloride ingress due to its ability to bind chloride ions (Rasheeduzzafar et al, 

1992). It is therefore a cement of high C3A content such as OPC which would induce 

better resistance to chloride attack rather than those of low C, A contents such as SRPC. 

The use of blended cements could also reduce the rate of chloride ingress. Page et at 
(1981), Ahmed (1990), Dhir (1993) and Thomas (1995) found that the inclusion of 
PFA in concrete has a beneficial effect on reducing both the proportions of water 

soluble chlorides in concrete and the coefficient of chloride diffusion. It was reported by 

Dhir et al (1991) that it is PFA quantity and not the quality that affects chloride 
diffusion and in some extreme cases the value of the diffusion coefficient was reduced 
by up to 70%. 

In the same manner, slag cements showed the same beneficial effect on the rate of 
chloride ingress (Page et al, 1981 and Tumidajski and Chan, 1996). Ngala et al (1995) 

and Ngala and Page (1997) studied the chloride diffusion of different carbonated and 

non-carbonated IICP (OPC, OPC/30%PFA and OPC/70%GGBS) with different w/c 

ratios and concluded that: 

(1) Non-carbonated slag pastes were slightly less permeable to the diffusion of the 

chloride ions than fly ash and the reverse being true for carbonated pastes. 
(2) The diffusion rate of chloride ions through carbonated OPC, OPC/30%PFA and 

OPC/70%GGBS pastes diminished markedly with decreasing w/c ratio, the 

effect being more marked in the blended fly ash and slag pastes. 
(3) For a given w/c ratio, the chloride diffusion rates for carbonated blended pastes 

are two orders of magnitude greater than those of the corresponding non- 

carbonated pastes. On the other hand, chloride diffusion rates for carbonated 
OPC are about 2 to 5 times higher than those of the corresponding non- 

carbonated pastes. 
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The beneficial effect of PFA and slag in reducing the rate of chloride ingress has been 

attributed to the influence on the pore structure of the cement paste matrix of concrete 

(Kumar et al 1987 and Ahmed, 1990), to the pore surface interaction (Sergi, 1986) and 

to the chloride binding capacity of these blending materials (Mangat and Mallovy, 

1995). 

Many researchers have studied the effect of water/cement ratio on the rate of chloride 

ingress (Page et at, 1981; Ilansson and Sorensen, 1985 and Ahmed, 1990). Page et at 

(1981) used the ionic diffusion cell to study such effect and found that increasing the 

water cement ratio from 0.4 to 0.5 of IICP caused an increase in the chloride diffusion 

coefficient (Dti) by a factor of approximately two and this factor increased to five when 

the w/c was increased to 0.6. This finding was recently supported by Sugiyama et al 

(1996) who used an accelerated electrical method for estimating D, i of OPC concrete. 

This rapid increase of the coefficient of chloride diffusion is believed to be due to the 

increase in the amount of void space and its continuity at higher water cement ratios 

(Ngala et al, 1995 and 1997). 

Ahmed (1990) found that the period of moist curing greatly influences the resistance of 

OPC and OPC/PFA concretes to chloride ingress. Kumar et at (1987) reported that the 

critical period of water curing, beyond which an insignificant effect on chloride ingress 

was noted, was 7 days. On the other hand, Babu and Rao (1993) and Higgins (1995) 

concluded that the initial curing has little effect on the chloride diffusion in concrete of 

the same grade. However, there is insufficient data in the literature to assess the effect of 

curing on the rate of chloride diffusion. 

Some other factors such as carbonation, exposure condition, temperature and salt type 

can also influence the rate of chloride ingress. The role of carbonation was described in 

Section 5.2.1.4. Schiessl (1983) stated that concrete exposed to wetting and drying 

cycles is likely to convey greater amounts of chloride ions than the concrete which is 

exposed to a well-saturated environment. It was also found that the chloride diffusion 

coefficient was increased with increasing temperature (Page et al, 1981 and Higgins, 

1995). A higher temperature leads to a decrease in the chloride binding capacity and this 

may affect the equilibrium between free and bound chlorides, with more chlorides 
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penetrating the concrete. However, an appreciable effect was only noticed for exposure 

temperatures of 55° C and above (Maslehuddin et al, 1996). 

To suns up the main factors influencing chloride ingress are as follows: 

(1) Internal factors including, cement type, curing and w/c ratio. 

(2) External factors such as temperature, type of exposure and carbonation. 

lt is therefore clear that a good understanding and control of these factors may lead to 

reduced risks of reinforcement corrosion. 

5.3 EXPERIMENTAL PROCEDURES 

Cylindrical paste specimens (75x49 mm) were cast as described in Section 2.4.1 and 

cured under conditions 1: 1, E3 and f: 4 (Table 2.3) to produce specimens of CAZ 

thicknesses 4-8,12-16 and 20-24 mni, respectively. These CAZ values were previously 

determined from the work carried out in Chapter 3 and 4. After curing, the specimens of 

known CAZ were then exposed to C02 gas and Cl - ions, as shown in Figure 5.7, and 

according to the following procedures. 

1- Carbonation test 

The specimens chosen for carbonation tests were pre-conditioned in a constant 65% RI! 

environment over saturated sodium nitrite (NaNO) for at least three months until a 

steady weight was achieved signifying a constant internal Rll of the specimen. After 

pre-conditioning, the specimens were scaled with four layers of wax around all faces 

apart from the cast surface and then transferred to a carbonation chamber maintained at 

21 ±2° C and 65% RH. 100% CO 2 gas was passed through the chamber for half an 

hour a day to accelerate carbonation. The experimental set-up used for the carbonation 

of cement pastes is shown in Figure 5.8. The specimens were then split open at different 

exposure periods and sprayed with a phenolphthalein indicator along the whole length 

of the specimen. The depth of carbonation from the cast surface was measured using a 

traveling microscope (Nikon Measurescope), as described in Section 2.6.10. 

Fragments of carbonated and uncarbonated samples were taken from their respective 

zones to study the effect of carbonation on the pore structure of IICP using MIP. 

Details of the experimental procedure are described in Section 2.6.3. Similarly, 
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differential thermal analysis/ thermo-6ravimetry (DTA/TG) were also carried out on 

fragmented samples specified for this study. Prior to testing, the fragmented samples 

were ground to powder, sieved through a 150 hm mesh to obtain a homogeneous 

sample, and kept in desiccators containing silica gel until analysis. DTA/TG tests were 

then carried out as described in Sections 2.6.4.1. A worked example of calculations of 

the identified peaks in DTA thermo-graphs using TG results is given in Appendix 5 

2- Chloride penetration test 

Aller curing, another set of specimens chosen for chloride penetration testing was scaled 

with four layers of wax around all faces apart from the cast surface. The specimens were 

then vacuum saturated with de-ionized water for 48 hours followed by immersion in a 

solution of IM NaCI containing 35 mM of NaOli. The specimens were exposed to the 

chloride solution for different immersion periods (2,4 and 8 months). Care was taken to 

maintain a constant chloride concentration in the solution throughout the period of study 

by changing the solution every 15 days. 

After the specified exposure period, the specimens were removed from the solution and 
immediately profile-ground from the cast surface, using a precision lathe to collect dust 

specimens at progressive depths from the exposed face. The dust from grinding was 

then collected and tested for total chloride content as described in Section 2.6.9. 

5.4 RESULTS AND DISCUSSION 

5.4.1 Carbonation of the Surface Zone 

Prior to studying the effect of CAZ on the rate of carbonation of the surface zone, the 

pore and phase structure of the cement paste matrix were initially studied to identify the 

role of carbonation on the parameters which control the rate of CO2 ingress. The pore 

size distribution (PSD) for uncarbonated and carbonated OPC, OPC/PFA and 

OPC/GGBS pastes were obtained using MIP, as shown in Figure 5.9. It can be seen that 

the PSD of OPC paste is not greatly influenced by the processes of carbonation, which 

is in disagreement with results reported by Ngala (1995). The reverse is true for the 

blended pastes, where the carbonation coarsened the pore structure. Similarly, 

carbonation also affected the threshold diameter Dth of the blended pastes to a greater 

extent than that of OPC paste. The Dth reduced from 500 to 30 nm after carbonation of 
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the blended pastes. These results are in agreement with the findings reported by Ngala 

(1995). 

The total and capillary porosity of the pastes were deduced from MIP results, as 

presented in Table 5.1. The results show that the total porosity of OPC was reduced by 

about 15% as a result of carbonation. This is in agreement with the results reported 

previously by Bier et at (1987 and 1989), Vaysburd et al (1993) and Ngala and ['age 

(1997). On the other hand, for blended matrices, the total porosity of carbonated pastes 

was 45% higher than that of uncarbonated pastes, a finding in disagreement with the 

results of Ngala and Page (1997). This disagreement may be arised as a result of the 

using OPC with different chemical compositions and exposing the specimens to 

different curing regimes in the both investigations, where, in Ngala's study, the 

specimens being tested were cured in water for 90 days, whilst in this study the 

specimens were cured in water for 28 days. 

The results reported in Table 5.1 also show that the capillary porosity (of pore diameter 

more than 30 nnm) increased after exposing the cement paste matrix to carbon dioxide. 

The amount of increase was 30,45, and 90% for OPC, UPC/PIA and OPC/GGI3S 

pastes, respectively. This indicates that carbonation increases the amount of inter- 

connected pores of blended pastes, especially for OPC/GGBS, an opinion which is 

supported by Bier et at (1987 and 1989), Parrott (1987 and 1993), Thomas and 
Matthews (1992) and Ngala and Page (1997). 

The reduction in the total porosity of OPC paste due to carbonation may be attributed to 

the deposition of calcium carbonate (CaCO3) in the pores. The increase in the total 

porosity of the blended pastes and capillary porosity of all carbonated pastes may be 

due to the decomposition of C-S-H gel in the matrix forming silica gel which has a high 

porosity (Bier et at, 1989). The formation of silica gel may also result in the 

rearrangement of the PSD. The difference in the pore structure (PSD and porosity) of 

OPC/PFA and OPC/GGBS following carbonation is likely to be associated with the 

natural variabilities in the original composition of the blended cements which would 

have resulted in the production of different hydration products. 
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The DTA thermographs for uncarbonated and carbonated OPC, OPC/PFA and 

OPC/GGBS pastes cured under condition E4 (w/c=0.55) arc presented in Figure 5.10. It 

can be seen that the endo-thermal peaks associated with calcium hydroxide (C-11) at 

450-600°C for all the uncarbonatcd pastes arc no longer evident after carbonation. They 

were replaced by a large endo-thermal peak of calcium carbonate (CaCO3) at about 700- 

900°C. Another peak of calcium silicate hydrate (C-S-1 1) for uncarbonated pastes is also 

observed at just after 110-250°C but it is reduced substantially after carbonation. 

In order to quantify the amounts of the various phases that existed in the cement paste 

matrix shown in Figure 5.10, the weight loss due to increasing temperature was 

determined by thermo-gravimetry (TG) and the results are presented in Table 5.2 (see 

Appendix 5). It can be seen that the amount of C-S-Ii and C-Il was reduced as a result 

of carbonation for all pastes, whilst, there was a significant increase in the calcium 

carbonate phase due to carbonation. It is also clear from the results reported in Table 5.2 

that the bound water, which represents the amount of hydration products, increased 

when the MCP pastes were exposed to CO2. The level of increase in bound water due to 

carbonation was calculated to be about 60% for all pastes. These findings are in 

agreement with the results reported by Sergi (1986), Rahman and Glasser (1989) and 

Thomas and Matthews (1992). 

The role of carbonation on OPC pastes with different microstructure gradients (CAZ) is 

illustrated in Figure 5.11. The results show that the carbonation rate of the surface zone 
increases with increasing CAZ thickness. It can be seen that the relationship between 

the CAZ depth and carbonation rate is non-linear and that the effect of CAZ on 

carbonation rate is more pronounced when the CAZ increases from 12-16 mm to 20-24 

mm than when it increases from 4-8 mm to 12-16 min. The amount of increase in the 

rate of carbonation reached 150% and 350% when the CAZ was increased from 4-8 

mm to 12-16 mm and 12-16 mm to 20-24 mnm, respectively. These results signify the 

important role of the CAZ in controlling the rate of CO2 ingress into the cover concrete. 

The increase in carbonation rate with CAZ thickness could be attributed to the amount 

of hydration products (C-H and C-S-H) present in the surface zone available for reaction 

with CO2. The hydration products act as a defensive line against the ingress of CO2 gas 

by consuming it in the carbonation reactions (see equations 5.1 and 5.2). Therefore, the 
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specimens of low CAZ thickness show more resistance to CO2 ingress than those of 

high CAZ thickness. 

Figure 5.12 illustrates the role of the cement replacement materials on the rate of 

carbonation for pastes with similar CAZ depth (4-8 mm). It can be seen that the use of 

blending material has a marked effect on the carbonation rate. The OPC/PI'A and 

OPC/GGBS pastes of 4-8 mm CAZ carbonated at a rate of about 100-150% higher than 

that of the corresponding OPC paste. However, there was no significant difference in 

the carbonation rates between the two blended cement pastes with CAZ of 4-8 nom. 

The difference in the behavior of OPC and blended cement pastes with CAZ depths of 

4-8 mm can be associated with the reduction in the amount of C-I I and C-S-I I hydrates 

due to pozzolanic reactivity of the blended pastes. These results are consistent with the 

levels of C-11 and C-S-1I shown in Table 5.2 and are in agreement with results reported 

by Smolczyk (1976) and Bier et al (1989). Consequently, the similarity in behaviour 

between the PFA and GGBS blended cements in terms of carbonation rate for pastes 

with 4-8 mm CAZ may be attributed to the similarity in values of C-11 and C-S-11 

hydrates observed for both the OPC/PFA and OPC/GGBS pastes (see Table 5.2). 

5.4.2 Effect of CAZ on Chloride Ingress 

The effect of the microstructure gradient of the surface zone (CAZ) on the total chloride 

content profiles of OPC paste (0.55 w/c) immersed in IM of NaCl for 8 months is 

illustrated in Figure 5.13. Specimens with higher CAZ appear to show a lower chloride 
binding capacity so that the total chloride near the surface of the specimens is at lowest 

when the CAZ is at its highest. Conversely, the highest total chloride concentration is 

highest for the specimens with lowest CAZ. Overall penetration of the chloride appears, 

on the face of it, to be higher for specimens with the lowest CAZ. The depth of chloride 

penetration is, however, lowest for the specimen with 4-8 nim CAZ and its 

concentration is close to zero at around 38 nim depth. 

The explanation may lie in the degree of chloride binding and equilibrium ratio of the 

free to total chloride for the different specimens. A specimen with a high CAZ may 

possibly have its chloride capacity reduced either because of an originally low hydration 

level or because of leaching constituents into the NaCI solution. 
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It is evident from the deviation of the concentration profile from that expected from 

normal Fickian diffusion that the total chloride concentration is influenced by the CAZ. 

The free chloride concentration is more likely to resemble one controlled by Fickian 

diffusion and is probably similar in shape for all three specimens, even though they may 

have different depths of penetration, particularly as the surface concentration has to be 

equal to the external chloride concentration (Sergi, 1986). 

The total chloride content profiles for OPC, OPC/PFA and OPC/GGBS pastes with 4-8 

mm CAZ are shown in Figure 5.14. It can be seen that, at the first 8 mm (CAZ), the 

total chloride concentration seems to be similar for all pastes, whilst in the bulk, the 

total chloride concentration for the blended pastes is less than that of the corresponding 

OPC paste. It also appears that the total chloride penetration for the blended pastes is 

less than that of the corresponding OPC paste. The use of GGBS seems to offer the 

greatest resistance to chloride ingress. 

The effect of the cement replacement materials on the chloride penetration may be 

attributed to the pozzolanic reactions which occur between these materials and the 

cement hydration products, which could lead to densifying the pore structure of blended 

pastes (Page et al; 1981, Ngala; 1995a and 1995b and Tumidajski and Chan, 1996). The 

use of GGBS showed more resistance to chloride ingress than PFA owing to the marked 

influence of GGBS on the capillary porosity and the pozzolanic reactivity. 

To study the effect of exposure period on the rate of chloride ingress in IICP of known 

CAZ (4-8 mm),. the total chloride profiles were established for OPC, OPC/PFA and 

OPC/GGBS pastes after exposure to 1M of NaCI for 2,4 and 8 months, as shown in 

Figure 5.15. It can be seen that the effect of the exposure time on the total chloride 

content of the first few millimeters (ý--CAZ) appears to be insignificant, as the total 

binding capacity of each material appears to remain constant, whilst, in the bulk, the 

total chloride content increases with increasing time of exposure. 

The insignificant effect of the exposure period on the total chloride content of the CAZ 

may be due to the microstructural variations in the first few millimeters of the surface. 
The marked effect of the exposure period on the total chloride content in the bulk could 
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be attributed to the continuous process of chloride binding as more and more chlorides 

diffuse into the pores (Schiessl, 1983 and Ahmed, 1990). This effect may be also 

associated with the further hydration occurring during the exposure period, which could 

affect the amount of bound chloride and consequently the total chloride content. 

5.5 CONCLUSIONS 

1- Carbonation of cement pastes composed of OPC, OPC/PFA and OPC/GGBS 

was showed to modify the pore structure and the phase compositions in several ways as 
follows: 

a) There was a marked increase in the capillary porosity for OPC, OPC/PFA and 
OPC/GGBS pastes as a result of carbonation. 

b) Carbonation processes resulted in an increase in the total porosity of 
OPC/PFA and OPC/GGBS pastes and in a slight reduction in the total porosity 

for OPC. 

c) As a result of carbonation of the OPC paste, there was a marked increase in 

calcium carbonate (CaC03) and bound water contents and a reduction in calcium 
hydroxide (C-Il) and calcium silicate hydrate (C-S-Ii) contents. However, this 

effect was significantly affected by the use of PFA and GGBS. 

2- A good correlation between CAZ thickness and the rate of carbonation of the 

surface zone was established, where the carbonation rate increased with increasing CAZ 
depth. For HCP of similar CAZ thickness, the use of the cement replacement material 
blended with OPC showed a marked increase in the rate of carbonation compared with 
those of OPC paste. However, this increase was not significantly influenced by the type 

of blending material used in this investigation (PFA and GGBS). 

3- Similarly, a relationship between CAZ depth and total chloride profile of cover 

concrete was established . For a given water/binder ratio, as the depth of CAZ increased, 

the depth of chloride penetration of OPC paste increased. Surface chloride concentration 

was, however, decreased significantly with increasing depth of CAZ. 
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Table 5.1 Porosity of carbonated and uncarbonated specimens cured with 1: 4 

regime, We = 0.55. 

Specimen type Carbonation Porosity, cc/g 

condition Total Capillary 

OPC uncarbonated 0.1613 0.0538 

carbonated 0.1365 0.0690 

OPC/PFA uncarbonated 0.1521 0.1080 

carbonated 0.2189 0.1567 

OPC/GGI3S uncarbonatcd 0.1413 0.0670 

carbonated 0.2077 0.1262 

Table 5.2 Effect of Carbonation on the chemical phases of different cement 

pastes, w/c = 0.55. 

Specimen Carbonation Bound Weight loss, % 

type condition water, % C-S-11 

(110-250°C) 

C-11 

(450-600°C) 

CaCO3 

(700-900°)C 

OPC Uncarbonated 18.98 8.01 4.74 1.32 

Carbonated 30.18 5.23 3.24 14.51 

OPC/PFA Uncarbonated 15.42 6.91 2.14 3.50 

Carbonated 23.61 3.49 1.30 14.34 

OPC/GGBS Uncarbonated 15.5 6.34 2.33 2.77 

Carbonated 24.35. 4.41 1.66 11.90 
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Figure 5.1 Rate of carbonation of hardened cement paste or concrete as a function 

of relative humidity (Tuutti, 1982). 
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Figure 5.2 Weight gain due to carbonation at different carbon dioxide 

concentrations (Verbeck, 1958). 
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Figure 5.3 Influence of the porosity of IICP on effective diffusion of C02 at 55% 

R11(Iloust and Whittmann, 1994). 
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Figure 5.4 Effect of slag content on the rate of carbonation as a function of calcium 

carbonate content (Bier et a1,1987). 
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Figure 5.5 Diffusion of chloride into hardened concrete (Schiessl, 1983). 
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Figure 5.6 Comparison between chloride content profile due to diffusion and 

absorption (Schiessl, 1983). 
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Figure 5.7 Exposure of specimen of different CAZ to carbon dioxide and chloride. 
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Figure 5.8 Experimental set-up used for the carbonation of cement paste. 
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w/c = 0.55 and E4 curing. 
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CHAPTER 6 

INFLUENCE OF CONTROLLED PERMEABILITY FORMWORK 

ON MICROSTRUCTURE ANI) TRANSPORT PROPERTIES 

OF TIIC SURFACE ZONE 

6.1 INTRODUCTION 

It is generally understood that good concreting practice including low w/c ratio, 

sufficient concrete cover to the reinforcement and adequate curing should, in most 

circumstances, produce concrete capable of resisting carbonation and moderate 

exposure to chloride (Swamy and Tanikawa, 1993). There are still cases, however, 

either because of inadequate control during construction or owing to adverse climatic 

conditions, where poor quality concrete is produced. This appears to be a major problem 

in hot Middle Eastern countries where w/c ratio can be much higher than levels 

recommended in the specifications and curing is inadequate as the excess mix water 

evaporates very quickly allowing the formation of large capillary pores. 

Proper curing is the most common method for improving the durability of concrete 

(Section 3.2.5). However, curing can be expensive (if a curing membrane is used) or 

time consuming and laborious (if the surface is sprayed with water at regular intervals). 

In some cases, even prolonged curing may not be adequate to achieve high durability 

requirements. Therefore, alternative methods have been used in the recent past in order 

to improve the durability of near surface concrete. This includes the use of surface 

treatments such as silanes on hardened concrete and the removal of excess water from 

fresh concrete during the initial setting and hardening stage with a controlled 

permeability formwork system (Long et at, 1992 and Basheer et at, 1993). 

The use of controlled permeability formwork (CPF) minimises the drawbacks of the 

conventional impermeable formwork (IF) which is either steel or hard faced plywood 
(impermeable to both air and water). Air and water migrate during the compaction 

towards impermeable formwork and get trapped near the concrete/formwork interface 

leading to higher water/cement ratio near the surface than in the bulk concrete (Price 

and Widdows, 1991). Therefore, the cover concrete is more porous than the bulk 
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concrete. This process leads to the formation of excessive amounts of blowholes on the 

cast concrete surface. Therefore, the use of permeable formwork would be expected to 

alleviate the problems caused by trapped air and water at the cover concrete zone. This 

means that the use of controlled permeability lürmwork ((: l'1') can he considered to be 

one of the possible practical ways of minimising the penetration of' aggressive agents 

into concrete by improving the properties and performance of the near surface zone. 

This chapter explores the microstructural and microhardness properties of concrete cast 

against both permeable and impermeable formwork and determines the depth of the 

CPF aliected zone (CPFAZ) for concrete with various mix proportions. CI'FAL is the 

distance from the surface to a certain point within concrete where the use of CPF has no 

significant effect on the properties of concrete. The use of CPF on OPC concrete and 

OPC/30%PFA and OPC/60%GGIS concrete with a range of w/c ratios was 

investigated to study the influence of CIF on chloride ingress and the rate of 

carbonation. 

6.2 LITERATURE REVIEW 

6.2.1 Basic Concept of CPF 

CPF systems consist of a specially engineered permeable membrane tensioned on to a 

structural support made from one of many traditional types of formwork material. The 

CPF liner is made up of a multitude of micro pores, so that it acts like a filter retaining 

the concrete fines but allowing the water and air normally trapped at the 

formwork/concrete interface to be evacuated (Wilson, 1994a), as shown in Figure 6.1. 

During placing and compaction, air and a proportion of the free water in the mix move 

towards the face and pass through the CPF liner to drain away at the interface between 

the liner and the backing material. This drainage period is believed to vary between 2 

and 4 hours and the quantity of water drained is dependent upon the water/cement ratio 

and generally varies between 1 and 2.5 1/ m2. The use of CPF, therefore ensures that 

the water/cement ratio of the cover concrete is kept low producing a denser, less 

permeable surface (Barfoot, 1991 and Price and Widdows, 1993), as shown in Figure 

6.2. It can also be seen in Figure 6.2 that the thickness of the cover concrete affected by 

the use of CPF is in some cases about 10-20 mm. 
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Kasai et al (1988) compared the cement content of near surface concrete cast against 

permeable and conventional formwork (plywood) and found that the cement content 

increased with depth, up to 5 nom from the concrete surface for concrete cast in 

permeable formwork. The cement content 1)f concrete cast against permeable lormwoik 

was 23 kg/m3 to 76 kg/m' higher than that of the corresponding conventional 

formwork. This was attributed to the cement displacement towards the formwork 

surface due to bleeding. Since there is only a limited knowledge about the use of CIT 

and its effectiveness in providing a sound durable surface concrete layer, further work is 

necessary to characterise its performance. 

6.2.2 Effect of CPF on Cover Concrete Microstructure 

The reduction of water/cement ratio and the percentage of air content due to the use of 

CPF influences the development of the pore size distribution (PSD) leading to 

modification of the pore structure of the cover concrete. Kasai et al (1988) studied the 

total pore volume (TPV) of concrete specimens cast against CPF and impermeable 

formwork. at different depths from the cast surface. lie found that the TPV at 0 to 7.5 

mm and 0 to 30 nim from the CPF surface was reduced by 50% and 70% respectively, 

compared to that of conventional specimens. There was no considerable difference 

between the use of CPF and impermeable formwork in terms of TPV for locations at 
depths further than 30 mm from the surface. I lowever, the effect of CPF on the pore 

size distribution and total and capillary porosity of concrete has not been fully 

investigated. 

6.2.3 Properties of Concrete Cast Against CPF 

Long et al (1992) compared the mechanical properties of concrete surfaces cast against 

both CPF and impermeable formwork using pull-off tests and concrete surface abrasion 

resistance measurement, and found that there was a significant increase in surface 

strength and surface resistance due to the use of CPF. Tsukinaga and Shoya (1993) 

assessed different types of CPF using pull-off strength test and found that all CPF types 

increased the strength of the cover concrete zone, confirming Long et al's (1992) 

findings. however, the amount of increase in strength was found to be dependent upon 

the CPF type. Basheer et al (1993) treated concrete surface cast against both CPF and 

IF with silane and found that the surface tensile strength for both treated and untreated 
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CPF concrete was greater than the corresponding concrete cast against IF. They also 

reported that the surface treatment had no effect on the tensile strength of the cover 

concrete cast against either CPF or IF. 

It was also found that the surface hardness of concrete increased when cast against CPF 

(Price and Widdows, 1991 and Long et al, 1992). Price and Widdows (1991) reported 

that the increase in surface hardness (using schmidt hammer) for grades C20 and C30 

concrete produced material surface hardness equivalent to that conventionally produced 

of grade C50 concrete. This has been confirmed again by Price et at (1993) who 

assessed the concrete surface hardness in different environments and noted marked 

improvements due to the use of CPF in both hot/dry and hot/wct environments. 

The main findings reported by Price and Widdows (1991) on the use of CPF are 

summarised as follows: 

(i) A marked reduction in sorptivity for OPC concrete cast against CPF. 

(ii) A considerable reduction in the initial surface absorption (ISA) for OPC 

concrete cast against CIT. 

(iii) A reduction in the water permeability and an increase in the tensile strength for 

OPC concrete cast against CPT. 

(iv) A reduction in the carbonation depth for all grades of OPC concrete examined. 

In addition to the above-mentioned improvements in the concrete permeation properties, 

Long et at (1992) has found that the use of CI'F results in a marked reduction in air 

permeability (ten fold) of OPC covercrcte. Price et al (1992 and 1993) studied the effect 

of CPF on water absorption and chloride diffusion of OPC covercrete in different 

environments (hot/dry and hot/wet) and their findings are summarised below: 

(i) There was a reduction in surface absorption for concrete cast against CPF in 

both hot/wet and hot/dry conditions. 
(ii) The effective chloride diffusion coefficient of concrete cast against CPF was 

decreased by about 50% in hot/dry conditions and by as much as an order of 

magnitude in hot/wet conditions in comparison with the corresponding data for 

conventional formwork. 
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They also found that the effect of curing on cover concrete properties was less 

significant than the effect of CIT. however, curing after removal of CP was 

recommended to produce highly durable concrete. 

Many investigations reported that the use of CPF has improved the resistance of the 

cover concrete to freeze-thaw effects (Basheer et al, 1993 and Sugawara et al, 1993). 

The resistance increased when concrete cast against CPF was treated with hydrophopic 

surface penetrants (silane) after removing CPF. Similar results have been reported by 

Price et al (1993) who attributed those effects to the reduction of surface water/cement 

ratio and not to modifications in the air void system. 

However, there is need for further information concerning the role of CPF on the 

microstructure, hardness and transport properties of the cover concrete. It is clear from 

the available literature, for example, that the effect of different curing regimes and 

cement replacement materials on the properties of the concrete cast against CIF has not 

yet been fully investigated. 

6.2.4 Economic Aspects of Using CPF 

Although, it is evident fron the previous studies that a CPF system can significantly 

increase the durability of cover concrete, the feasibility of the extra cost incurred for 

CPF compared to other conventional formwork requires consideration. In an economic 

study carried out in Japan, it was reported that the use of CPF increased the cost of 

producing concrete by £3.51 m' (Dept. of Trade and Industry, 1989). Wilson (1994b) 

has reported the main potential savings during construction and service life of the 

structure and compared these savings with the extra cost incurred due to the use of CPF. 

As a result of the improvement in the properties of the cover concrete due to the use of 

CPF, the thicknesses of cover concretes cast against CPF might reasonably be reduced 

compared to those cast against impermeable formwork. I lowever, the question arises as 

to how much extra covercrete can be saved due to the use of CPF. 
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6.3 EXPERIMENTAL PROCEDURES 

6.3.1 Preparation of Specimens 

Test specimens of 100x200x600 mm were constructed in a mould made of hard 

plywood (impermeable) to simulate an unreinforced wall. 5 min diameter holes were 

drilled at 50 mni spacing on one of the vertical surfaces (200x600 mm) of the mould, to 

allow drainage of excess water from the vertical surfaces. CPF sheets (Zemdrain) were 

fixed to the drilled vertical face by fastening with adhesive tape around the perimeter 

allowing the fabric to be extended below the base to allow drainage of excess water. 

The concrete and cement paste mix proportions used in this investigation are presented 

in Table 2.2. The specimens were cast in three equal layers and compacted on a 

vibrating table according to the procedures described in 13S 1881: Part 125 (Section 

2.4.1 and 2.4.2). Immediately aller compaction, the upper surface of the specimen was 

covered with a hard plywood cover of 100x200 nim. It was noted that the drainage of 

the excess water observed in the cover concrete cast against CPF continued after casting 

for approximately three hours. The formwork was removed 24 hours after casting and 

the specimens were then cured with El, E3 and E4 curing as described in Section 2.5. 

After curing, 100 mm diameter cores were cut through the central region of the CPF 

surface of the cement paste and concrete specimens and this provided a core with two 

surfaces, one cast against CPF and the other against IF. These cores were used for PSD, 

total and capillary porosity, chloride and carbonation studies. 12x50x100 mm slices for 

microhardness and scratch hardness studies were also cut from the central region of the 

concrete specimens perpendicularly to the CPF surface with a circular saw, using water 

as the lubricant. -The specimens were taken from the central region to avoid variations 

caused by bleeding and segregation in the top and the bottom layers of the specimens. 

6.3.2 Tests 

Immediately after coring and slicing, the following tests were carried out. 

6.3.2.1 Pore size distribution (PSD) 

The cement paste cores chosen for PSD study were dry cut into discs at 5,10,15,20, 

25 and 35 mm from the two end surfaces, as shown in Figure 6.3. The discs were broken 

into small fragments and approximately 3.0 g of the sample was weighed and then 
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subjected to mercury intrusion porosimetry (MIP) with a Micrometric Model 9310 Pore 

Sizer. The specimen preparation and test procedures for PSD arc described in detail in 

Section 2.6.3. 

6.3.2.2 Total and capillary porosity 

The cement paste cores chosen for this study were sliced into discs similar to those for 

PSD study and the discs were immediately vacuum saturated for 48 hours to ensure that 

all pores were filled with de-ionised water. The disc specimens were then conditioned in 

a desiccator maintained at 90.7% Rh I for the determination of capillary porosity, and 

finally oven dried at 105° C to determine the total porosity. The detail of this test is 

described in Section 2.6.2. The capillary porosity measured in this investigation 

represents the pores of diameter greater than 30 nm (Parrott, 1992; N6ala, 1995; Ngala 

et al 1995 and Page and Ngala, 1995). 

6.3.2.3 Indentation microhardncss and scratch hardness 

12x50x100 nom concrete slice specimens were prepared and tested for indentation 

microhardness and scratch hardness following the procedures described in Sections 

4.3.2.1 and 4.3.2.2, respectively. The indentation microhardness and scratch hardness 

tests were carried out at 2,6,10,14,18,22,26 and 34 mm from both CPF and IF 

surfaces. The geometry of scratch drawn on the specimens was evaluated by means of 

optical processing of the image which is described in detail in Section 4.3.2.2. The 

means of thirty microhardness and seventy five scratch width results were obtained for 

each depth from triplicate specimens. 

To study the effect of formwork type on the aggregate/cement paste transition zone (TZ) 

in concrete, indentation microlhardness measurements were taken at = 0,10,20,40 and 

80 µm from the aggregate surface and within the first 3 mm from CPF and IF surfaces 

(see Figure 6.4). The measurements were taken around at least 3 aggregate particles in 

each specimen such that all the indentations were on a plane parallel to the CPF and IF 

surfaces. An average of thirty results was obtained for each distance from the aggregate 

surface from triplicate specimens. 
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6.3.2.4 Chloride penetration test 

The circumferential face of the cores chosen for this study were masked with four layers 

of wax leaving the CPF and IF surfaces exposed, as shown in Figure 6.5. 'Then, the 

cores were vacuum saturated in dc-ionised water for 48 hours to ensure that all pores 

were filled with water. The cores were then immersed in a solution of IM NaCl and 35 

mM of NaOII, and maintained at 21 ±2° C for 110 days. The specimens were then 

removed from the solution and immediately profile ground from the CPF or IF surface 

inwards, using a precision lathe. Dust from grinding was then collected at successive 

depths and analysed for total chloride content as described in Section 2.6.9. 

6.3.2.5 Carbonation test 

The specimens for carbonation test were pre-conditioned in a chamber maintained at 

65% RH using saturated sodium nitrite for at least three months until a steady weight 

was achieved signifying a constant internal RII of the specimens. After pre- 

conditioning, the specimens were scaled similarly to those used for chloride penetration 

study, as shown in Figure 6.5. The specimens were then transferred to a carbonation 

chamber maintained at 21 ±2° C and 65% RII filled with 100% CO2 for 24 days. The 

experimental set-up used for carbonation is similar to that used for cement paste 

specimens as described in Section 5.3 (see Figure 5.8). At the end of exposure period 

the cores were split open and the broken surface was sprayed with a phenolphthalein 

indicator along the whole length of the specimen. The depth of carbonation from both 

the CPF and IF surfaces was measured using a travelling microscope, as described in 

Section 2.6.10. 

6.4 RESULTS AND DISCUSSION 

6.4.1 Effect of CPF on Pore Structure 

Figure 6.6 shows the PSD at different depths for OPC paste of w/c 0.6 cast against CPF. 

It can seen that CPF produced a finer PSD near the surface than in the bulk of the 

specimen, and the effect diminished with depth below the surface. There was also a 

reduction in the pore threshold diameter in the surface layer and this reduction 

diminished with increasing depth below the CPF surface (from 30 nni at the CPF 

surface to 100 nm). 
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The total and capillary porosity determined from water desorption tests applied to 

triplicate specimens at different depths from the surface of OPC paste cast against both 

CPF and IF are presented in Figure 6.7. There is a significant reduction in the capillary 

and total porosity due to the use of CPl' at all depths. however, the effect of C111" was 

more pronounced for the capillary porosity than for the total porosity and the maximum 

reduction of the capillary and total porosity was about 220% and 15%, respectively. 

These reductions diminished with increasing distance below the surface and are in 

agreement with the PSD results shown in Figure 6.6. 

The modification of the PSD and reductions of the total and capillary porosity of cement 

paste cast against CPF can be attributed to the removal of excess water from the 

covercrete, resulting in a lower w/c ratio in the cover zone (13ashecr et al, 1993 and 

Wilson, 1994a and 1994b). On the other hand, the diminishing effect of CPF with 

increasing depth below the Cl'I? surface can be as a result of a w/c ratio gradient 

established due to drainage of excess water from the paste. 

6.4.2 Effect of CI'F on Microhardness of Cement Paste Matrix 

The microhardness profiles of OPC concrete cast against CPF and IF with different 

water cement ratios are presented in Figure 6.8. At a low w/c ratio (0.5), there was no 

significant difference between the microhardness profiles of concrete cast against both 

CPF and IF. The statistical analysis (Table 6.1) of microhardness data taken at 2 nine 
depths from the formwork surface showed that there was no significance difference 

between the mean microhardness values near the surface of OPC concrete with 0.5 w/c 

cast against CPF and IF. On the other hand, at higher w/c ratios (0.6 and 0.7) the near 

surface microhardness of the cement paste matrix cast against CPF increased by about 

210 and 200% compared with those of the corresponding specimens cast against IF for 

w/c 0.6 and 0.7, respectively. These results were confirmed statistically using a t-test as 

shown in Table 6.1, which shows that there is a significant difference between the 

microhardness of 0.6 and 0.7 w/c ratio concrete cast on CPF and IF. Ilowever, this 

enhancement diminished with increasing depth from the CPF surface and the CPFAZ 

increased with increasing w/c ratio. It can be estimated from Figure 6.8 that the CPFAZ 

was 0,14 and 18 mm for concrete of w/c 0.5,0.6 and 0.7, respectively. The increase in 

CPFAZ thickness with increasing We ratio was attributed to the profile of water content 
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in the concrete cover (Wilson, 1994b), which consequently affected the microstructure 

and hardness of the cover concrete. 

Figure 6.9 shows the scratch width profiles of OPC concrete with different w/c ratios 

cast against CPF and IF. The results of the statistical analysis (t-test) for scratch width 

data are given in Table 6.2. It can be seen from Figure 6.9 that the use of CPF reduced 

the scratch width in the cover zone and the percentage reduction increased with 

increasing w/c ratio. The amount of this reduction at the near-surface zone reached 20, 

90 and 125% for 0.5,0.6 and 0.7 w/c concrete, respectively. I lowever, these reductions 

diminished at a certain distance from the concrete surface (i. e. CPFAZ) and the 

thickness of the CPFAZ varied between 8 and 18 mm for concrete with w/c 0.5,0.6 and 

0.7. CPFAZ results shown in Figure 6.9 were, however, not entirely similar to those 

reported in Figure 6.8. The results of t-tests for scratch width data, taken at 2 mm from 

the formwork surface (Table 6.2) confirmed that there was no significant difference 

between the use of CPF and IF for concrete with w/c 0.5, whilst for concrete with w/c 

0.6 and 0.7, there was a significant difference. 

The effects of CPF on the microhardncss of concrete cured in air (E1) and water (E4) 

for 28 days were also studied and compared with those of IF as shown in Figure 6.10, to 

signify the role of CPF on the properties of both poor and well cured concretes. It can be 

seen that the CPF enhances the microhardness of all concretes, and the amount of 

enhancement reached 100% and 210% for the concretes cured with El and E4, 

respectively. The CPFAZ determined from figure 6.10 is 12 and 18 mm for concrete 

cured with E1 and E4, respectively. These results confirm that CPF is not only a means 

of decreasing the thickness of the microstructure gradient (CAZ) but also a good method 

for enhancing the microstructure of the near surface zone. 

The enhancement of the microhardness and the reduction of the scratch width of the 

concrete cast against CPF can be attributed to the improvement of the PSD and the 

significant reduction in porosity. 

The results presented in Figures 6.8 and 6.9 have shown that both indentation 

microhardness and scratch hardness data provide fairly similar information about the 

extent of the curing affected zone for CPF and IF concrete. This is in agreement with the 
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findings reported in Chapter 4, which showed a good correlation between the 

microhardness and scratch hardness results. It was also concluded that the scratch 

hardness technique is a quick and convenient method of analysis of the microstructural 

variations of concrete and consequently could be applied to cores taken from existing 

structures. 

6.4.3 Effect of CPF on Aggregate/Cement Paste Transition Zone (TZ) 

The microhardness at successive distances from the aggregate surface (interface) in the 

near surface region of OI'C concrete cast against both CI'F and IF are shown in [Figure 

6.11. The statistical analyses of the mierohardness data were carried out using a t-test 

and the results are summarised in Table 6.3. 

It can be seen from Figure 6.11 that the microhardness of the cement paste matrix for 

specimens cast against IF is lower at all points away from the aggregate surface when 

compared to those results for specimens cast against CPF. The microhardness of IF 

specimens increased with increasing distance from the aggregate surface up to about 40 

µm. This finding was supported by the t-test results given in Table 6.3 which shows a 

significant difference between the mean of the results reported at 0 µm and 40 µm from 

the aggregate/cement paste interface. On the other hand, the use of CPF appeared to 

have improved the microhardness of the aggregate/cement paste transition zone (Figure 

6.11 and Table 6.3). Moreover, it can be seen from the consistent microhardness results 

at successive points away from the aggregate that the use of CI'F resulted in decreasing 

the TZ width and this was confirmed by t-test results given in Table 6.3. 

The enhancement in the microhardness of aggregate/cement paste TZ in the first 3 mm 

from the surface of concrete cast against CPF compared with those cast against IF was a 

result of the improvement to the near surface microstructure provided by the use of 

CPF. The presence of the TZ in concrete cast against IF was attributed to the formation 

of a thin film of water (10 µm thick) and also due to accumulation of bleeding water 

around the aggregate surface (Zimbelmann, 1978, Mehta, 1986 and Larbi, 1991). This 

led to an increase in the porosity of the cement paste matrix around the aggregate 

interface, hence affecting the microhardness properties of the TZ. On the other hand, the 

enhancement of the microhardness in the aggregate/cement paste TZ of OPC concrete 
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cast against CPF can be attributed to the decrease in bleeding water around the 

aggregate surface by the drainage Provided by CPC. 

6.4.4 Effect of CPF on Mass Transport Properties 

6.4.4.1 Chloride ingress 

The total chloride profiles for OPC concrete with different w/c ratios cast against CPI' 

and IF are illustrated in Figure 6.12. It can be seen that at a low We ratio (0.50) the total 

chloride profiles for concretes cast against CPF and IF seem to be similar, while at high 

w/c ratios (0.60 and 0.70), the use of CIF shows a marked reducing effect on the 

chloride contents of the surface zone. As expected, for OPC concrete cast against IF, the 

degree of chloride ingress diminished when the w/c ratio was reduced from 0.70 to 0.50. 

When CPF was used, the effect of the w/c ratio practically disappeared and 0.70 and 

0.60 w/c ratio concretes behaved in a similar way as the 0.50 w/c ratio concrete. For all 

three w/c ratios, the penetration of chloride in CPF concrete was lower than that found 

in the 0.5 w/c ratio concrete cast against IF. 

The insignificant reduction in chloride concentrations within the near surface zone of 

0.5 w/c OPC concrete cast against CPF compared to those of concrete cast against IF 

agrees with the work described in Sections 6.4.1 and 6.4.2, which showed that the 

surface zone had similar microstructural and hardness properties. The significant 

reduction in surface chloride concentration for high w/c ratio concretes (0.6 and 0.7) 

cast against CPF is likely to be as a result of the substantial effect of the CPF on 

capillary porosity (see Figure 6.7). 

The total chloride content profiles for different concretes (OPC, OPC/PFA and 
OPC/GGBS) cast in CPF and IF are illustrated in Figure 6.13. The effect of CPF was 

not pronounced in both types of blended concretes mainly because blended concretes 
have a better resistance to chloride penetration (Bamforth et al, 1994 and Ngala et al, 
1995). 

The amount of total chloride penetrated (TCP) into the concrete cover was calculated by 

determining the area under the graphs shown in Figures 6.12 and 6.13. The TCP values 
for OPC concrete at different w/c ratios are illustrated in Figure 6.14. It shows that the 
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TCP for OPC concrete cast against IF increases with increasing w/c ratio and the TCP 

remains stable for the corresponding specimens cast against CPI 

Figure 6.15 shows the TCP values for the three types of concrete cast against either CPF 

or IF. It can be seen that, even though the reduction in the level of TCI' achieved by the 

use of CPF for the blended concretes was lower than for OPC concrete cast against IF, 

all three types of concrete cast against CPF had similar levels of TCI'. As movement of 

the chloride ions in CPF concrete is not expected to be restricted in the bulk of the 

concrete any more than for concrete cast IF, the reduction in the level of chloride 

penetrated into specimens cast against CPI must be related to the denser surface layer 

produced by the CPF. 

6.4.4.2 Carbonation 

The carbonation fronts and the depths of carbonation for OPC concrete with differing 

w/c ratios are illustrated in Figures 6.16 and 6.17, respectively. The level of carbonation 

in OPC concrete cast in IF was shown to increase with increasing wie ratios from about 

5 mm at 0.5 w/c ratio up to about 25 mm at 0.7 w/c ratio. These results are in agreement 

with other published literature which have shown that the rate of carbonation increased 

with increasing capillary porosity which, in turn, increases with increasing w/c ratio 

(Page and Ngala, 1995). When CPF was used, the depth of carbonation was less than I 

mm in all cases irrespective of the w/c ratio. This suggests that CPF reduces the 

capillary porosity of the surface layer of concrete and creates a dense surface to restrict 

the penetration of CO2 . 

The effect of water curing period (at 22°C) on the carbonation depth of OPC specimens 

cast against CPF and IF (w/c = 0.6) are illustrated in Figure 6.18. The carbonation 

profiles of these specimens are shown in Figure 6.16. It can be seen that, for concrete 

cast in IF, the carbonation depth decreased with increasing water curing period. These 

results can also be attributed to the reduction of capillary porosity due to increasing 

water curing period, as described in Section 3.4.2.2. On the other hand, the carbonation 

rate remains very low for concrete cast against CPF for all curing periods. This may be 

attributed to the densification of the surface layer as a result of the remarkable reduction 

in the capillary porosity. 
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Figure 6.19 shows the depth of carbonation for blended concretes (OPC/PFA and 

OPC/GGBS) of 0.6 w/c, cast against CI'F and IF. The depth of carbonation recorded for 

blended concretes cast against IF was found to he higher than that of Ol'C concrete 

possibly because there was a lower level of carbonatable material to react with CO2 

(Parrott, 1993; lioust and Wittmann, 1994 and Page and Ngala, 1995). The use of CPF 

was once again effective in reducing the level of carbonation to almost zero, irrespective 

of the type of cement and the curing regime used (see Figure 6.16). The carbonation 

period used in this investigation was short (24 days) and carbonation was carried out 

under accelerated conditions so that the results need to be confirmed by long term 

studies under natural conditions. 

6.5 CONCLUSIONS 

1- The use of CPF refined the pore size distribution (PSD), and reduced the total 

and capillary porosity of OPC covcrcrctc. The use of CPf also improved the properties 

of the aggregate/cement paste transition zone (TZ) in the near-surface zone affected by 

the CPF. 

2- The hardness of the OPC cover concrete cast in CPF, measured in terms of 

microhardness and scratch width, was enhanced due to the use of CPF. The degree of 

enhancement was more pronounced in concrete with higher w/c ratios 

3- The use of CPF causes a reduction in the surface chloride concentration and the 

total chloride penetration into OPC concrete when compared with the use of IF. The 

reduction for OPC concretes is a function of the w/c ratio, where the greatest benefit is 

at the highest w/c ratio. For blended concretes (OPC/PFA and OPC/GGBS), the use of 
CPF did not show a significant effect on the rate of chloride ingress when compared 

with the use of IF. 

4- A substantial reduction in the carbonation rate for OPC, OPC/PFA and 

OPC/GGBS concrete was found when CPF was used instead of IF. The effect of the 

w/c ratio on the reduction in the carbonation rate was investigated for OPC concrete and 

the reduction was found to be more significant at higher w/c ratios. 
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5- The use of CPF can offer a substantial improvement to the durability of 

reinforced concrete in terms of carbonation and chloride penetration in cases where 

inadequate control or hot climatic conditions hinder the production of good quality 

concrete. 
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Table 6.1 Summary of statistical analysis carried out on microhardncss results of 

concrete cast with different w/c ratios and formwork types , using t-test. 

W/C Form- Mean, Variance standard Variation, t I'(T<=t) Significance of 

ratio work IN deviation % two tail the difference 

0.5 CPF 55.00 182.30 7.420 13.10 -0.20 0.811806 insignificant 

IF 56.06 130.60 11.43 20.38 

0.6 CI'F 96.62 798.90 28.27 29.20 8.21 1.13E-07 significant 

IF 34.12 127.85 11.30 33.10 

0.7 C1'F 73.81 284.03 16.85 22.80 10.3 3.08l-08 significant 

IF 28.40 44.990 6.700 23.60 

Table 6.2 Summary of statistical analysis carried out on scratch width results of 

concrete cast with different w/c ratios and formwork tvncs. usini t-test. 

W/C Form- Mean, Variance standard Variation, t P(T<=t) Significance of 

ratio work µm deviation % two tail the difference 

0.5 CPF 516.0 27595.0 166.1 32.18 -1.87 0.07 insignificant 

IF 599.9 4245.00 65.15 10.80 

0.6 CPF 373.5 7049.00 83.950 22.50 -8.11 9.0E-08 significant 

IF. 684.0 16497.2 128.40 18.77 

0.7 CPF 333.2 24711.0 157.19 47.10 -9.03 3.7E-09 significant 

IF 732.0 6475.00 80.460 10.99 
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Table 6.3 Summary of statistical analysis carried out on microhardncss results of 

concrete cast in CPT and IF at the TZ, using t-test. 

Variables* Mean, Variance standard Variation, t I'('l'<=t) Significance of 

IN deviation % two tail the difference 

IF/0 pm 27.81 97.760 9.880 35.00 -3.5 1.50E-03 significant 

IF/40 µm 40.68 117.69 10.85 26.67 

1F/0 tm 27.81 97.760 9.880 35.00 -8.3 4.941: -09 significant 

CPF/0 µm 142.8 142.80 11.94 19.9 

CPFF/Oltm 60.00 142.80 11.94 19.90 -0.1 9.191; -01 insignificant 

CPF/ 40 im 60.38 70.780 8.410 14.00 

IF/40 [tin 40.68 117.69 10.85 26.67 -5.7 3.73E-06 significant 

CPF/40 pm 60.38 70.780 8.410 14.00 

*where, 

IF/O µm = measurements taken at =0 µm from IF surface 

IF/40 pm = measurements taken at : -= 
40 Ftm from IF surface 

CPF/O µm = measurements taken at: --- 
0 [tin from CPF surface 

CPF/0 µm = measurements taken at = 40 µm from CPF surface 

150 



plywood 

CPF 

vibrator 

concrete 

Figure 6.1 Basic concept of controlled permeability formwork (Wilson, 1994a). 

0.50 

0.40' 
o' 
el 

c 
0.30 

3 
0.20 

Depth from surface, mm 

Figure 6.2 Effect of CPF on the water/cement ratio near the surface of the concrete 
(Price, 1993). 
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Figure 6.3 Sampling arrangement for IICP cores used for PSI) and porosity 

measurements. 
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Figure 6.4 Diagram showing the datum of microhardness measurements taken at 

aggregate/cement paste transition zone (TZ). 
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Figure 6.5 Diagram showing the details of concrete specimens used for chloride 

penetration and carbonation test . 
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Figure 6.9 Scratch width profiles of OPC concrete with different w/c ratios 
cast in CPF and IF. 
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Figure 6.10 Effect of curing on microhardness of OPC concrete cast against CI'F 
and IF, w/c=0.60. 
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CHAPTER 7 

INFLUENCE OF ELECTRO-CIIEMICAL REALKALISATION 

TREATMENT ON 1'O11E STRUCTURE AND CHEMICAL 

COMPOSITION OF SURFACE AND TRANSITION ZONES 

7.1 INTRODUCTION 

One of the main problems associated with the ingress of carbon dioxide into concrete is 

steel reinforcement corrosion which causes a reduction in the serviceability of the 

structure concerned. Many techniques have, therefore, been developed for the repair and 

subsequent protection of the reinforcement (Miller, 1994). Two such techniques are 

patch repairs and electro-chemical rehabilitation. The patch repair technique is the 

traditional method advised by consulting engineers for remedying carbonation-induced 

reinforcement corrosion. In such a case unrepaircd concrete remains at risk and it is not 

uncommon for further patch repairs to be needed close to the original repair area (Al- 

Kadhimi et al, 1996). 

In order to avoid disadvantages of conventional rehabilitation of the patch repair type, 

various electro-chemical techniques for corrosion protection of reinforcing steel have 

been developed in the last few years (AI-Kadhimi et al, 1996). One of these methods is 

electro-chemical realkalisation (ECR) which offers a non destructive means of treating 

reinforced concrete suffering from carbonation (Mietz and Isecke, 1994a and 1994b). 

The ECR technique is also preferred for the following structures: 

" Concrete facades which cannot or should not be changed. 

" Silos, cooling towers. 

" Concrete structures where additional weight is not desired or not possible. 

Two methods, controlled permeability formwork (CPF) and electro-chemical 

realkalisation (ECR), were studied in work described in this thesis to provide a solution 

for preventing or remedying the reinforcement corrosion due to carbonation, which is 

mainly a function of the surface zone properties (CAZ). CPF sheet was adopted in the 

work described in Chapter 6 and can be used for new concrete members for providing a 
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dense microstructural layer at the surface zone. The ECR approach, described in this 

chapter, can be used for remedying existing structures suffering from such a problem. 

However, ECR is a relatively new repair method without a clear track record, so the 

main aims of this chapter are; first to clarify the mechanism of I: CR, secondly, to study 

the factors which affect the ECR treatment and finally to investigate the changes that 

occur due to such a treatment in microstructure and composition of the surface zone 

(CAZ) and steel/cement paste transition zone (TZ). 

7.2 LITERATURE REVIEW 

7.2.1 General 

According to the Pourbaix diagram for Fe/1120, the passive oxide film on Fe 

deteriorates at a p! 1 below 9 (Pourbaix, 1966). As the pit of concrete pore water is 

decreased by carbonation, the passive film on reinforcing steel is undermined and the 

whole surface of the metal becomes exposed to corrosion. Thus, the corrosion 

mechanism induced by carbonation can be described as a 'uniform attack', i. e. there is 

general corrosion over the whole affected surface, anode and cathode reactions are 

taking place throughout. The corrosion mechanism can be described by the following 

reactions (Odden and Miller, 1994): 

Anodic reaction 

Fe(S) 2 Fe 2+ + 4e- 
..... 

(7.1) 

Cathodic reaction 
02(g) + 2H201 + 4e -* 40H- 

...... 
(7.2) 

Net reaction 

2 Fees) +0 2(g) + 2H20(1) -* 2Fe(OH)2 ...... 
(7.3) 

The iron hydroxide (Fe(OI1)2) will oxidise further to form "rust" which is a mixture of 

several oxides and hydroxides. One way, to stop carbonation-induced corrosion and 

avoid costly repair to buildings and structures, is to re-establish the lost passivity. 
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Passive realkalisation (applying a surface layer of cement mortar or cement-based 

coatings on a concrete surface) is a widely used method for stopping deterioration of 

reinforcement in carbonated concrete. These coatings can retard the corrosion of 

reinforcement as a result of transferring alkalis into carbonated concrete. Such a coating 

may also affect the corrosion rate by controlling the moisture content of the carbonated 

concrete surrounding the reinforcement (Bier et al, 1989 and Mattila and Pentti, 1996). 

In the ECR technique, the surface of the structure is usually covered with a layer of 

gelatinous composition containing some alkaline compounds, normally a mixture of 

sodium carbonate and sodium hydroxide. On the top of this layer a conducting net is 

placed and the net is connected to the positive terminal of an electric power source. The 

negative terminal of the power source is connected to the reinforcing bars. The voltage 

difference is adjusted so that electrolysis starts (Rommond, 1993; Chatterji, 1994 and 

Mietz, 1994a and 1994b), as shown in Figure 7.1. Most studies (Polder and Ilondel, 

1992, Mietz and Isecke, 1994a and 1994b, NCT Report, 1994 and Miller, 1994) 

recommend that the design current should be typically varied between 0.8-2 A/ m', 

with an upper limit of 5A/ m2 to avoid any excessive deterioration of the concrete. 

They also suggested 3 to 14 days for the ECR treatment. In theory, ECR is based on two 

processes, cathodic generation of hydroxide ions at the steel which increases the pI I of 

the interior of the concrete, and transport of alkaline material from the electrolyte into 

the concrete by capillary absorption, diffusion and possibly electro-osmosis. This leads 

to an increase in pit from the exterior and provides an alkaline buffer which improves 

the durability of the corrosion protection. 

7.2.2 Mechanism of Electro-Chemical Realkalisation of Concrete 

Polder and Hondel (1992); Odden (1993 and 1994); Banfill, (1994); and Mietz and 

Isecke (1994a and 1994b) have suggested that the electro-chemical realkalisation 

process may involve a combination of mechanisms whose relative importance are not 

yet Fully resolved. The principal cflccts are outlined below: 

7.2.2.1 Electrolysis 

Electrolysis proceeds via reactions at the electrodes as follows: 

164 



Cathodic reaction 

Hydroxide ions (OH' ) are generated around the cathode (reinforcement) due to splitting 

of water by the passage of electric current, according to the following equation: 

2H20 + 2e- -4 H2 + 20H- (7.4) 

In addition, reaction with oxygen diffused into concrete takes place as follows: 

2 
O2 + H2O + 2e- -+ 20Er ...... 

(7.5) 

Anodic reaction 
Oxidation occurs according to the following equations: 

or 

20H- 
2 

OZ + H2O + 2e" (at high p11) ...... (7.6) 

H2O --* 
2 

OZ + 2H' + 2e- (at lower pH) ...... (7.7) 

As a result of the cathodic reactions, the concrete zone around the reinforcement 
becomes enriched with 011- ions so the passive film can be reinstated to halt corrosion. 

7.2.2.2 Electro-migration 

Concrete is an ionic conductor and current flows as a result of the movement of ions as 
follows: 

" All negatively charged ions such as 011 and SO"- migrate towards the anode. 

" All positively charged ions (Na+ , K+, Cat+) migrate towards the cathode 

(reinforcement). 

As a result of the electro-migration process, a higher concentration of sodium and 

potassium ions would be expected to occur around the reinforcement. 
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7.2.2.3 Electro-osmosis 

Concrete pore surface particles in contact with an electrolyte acquire a surface charge 

because the relative affinity of cations and anions to the surfaces and the solution is 

different. A charged particle is surrounded by counter-ions to form a diffuse electric 

double layer whose extent depends on the electrolyte concentration. The net-work of 

fine capillaries in concrete is linked with particles of colloidal size carrying an electric 

charge which is balanced by the envelope of counter-ions in the pore solution (Banfill, 

1994). Generally, electro-osmosis is a process of moving electrolyte towards the 

cathode (reinforcement) due to the electric field (Mictz and Isecke, 1994b). 

7.2.2.4 Diffusion 

This mechanism occurs when concentration gradients exist in the pore solution. In this 

process, Na' , CO, - diffuse towards the reinforcement (cathode). I lowever, the process 

of diffusion is slow and is, therefore, not an effective contributor to the realkalisation 

treatment. 

7.2.2.5 Absorption 

Absorption is another transport mechanism and occurs when the treated concrete is not 

fully saturated, so it will absorb the external sodium carbonate solution. The alkaline 

electrolyte penetrating from the surface into the concrete pores delays the subsequent 

decrease of the pH-value of the pore solution down to corrosion initiating levels. This is 

based primarily on the reaction between sodium carbonate and carbon dioxide according 

to the following equation: 

N. a2C03 + CO2 + H2O -* 2NaHCO3, ..... 
(7.8) 

In the state of equilibrium with a constant carbon dioxide concentration of the 

atmosphere only a small amount of sodium carbonate will react to form sodium 

hydrogen carbonate (NaIICO., ) and hence further carbonation would lead only to a slight 

decrease of p11. In this way, the ingress of sodium carbonate should act as a carbon 

dioxide trap. However, this only works if the concrete remains wet. 
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Nevertheless, the physical, chemical and electro-chemical mechanisms of this treatment 

are not yet clarified quantitatively in the current literature. 

7.2.3 Factors Affecting Realkalisation Treatment 

Bier et al (1987,1988 and 1989) has shown that the rate of passive realkalisation was 

dependent on the phase composition and pore structure, when he applied a mortar layer 

of OPC and OPC/GGBS to the surface of carbonated mortars in order to observe the 

rate of alkaline penetration into the carbonated zone using pII indicator 

(phenolphthalein). They found that the rate of realkalisation was higher for samples 

previously stored in 0.03 % CO2 (by volume) than for those stored in 2 %C02 (by 

volume). It was also higher for specimens made of OPC cement compared to those 

made of OPC/GGBS. They attributed this behaviour to the reactions of silica gel in 

carbonated mortars with Ca 2+ ions which diffused from the overlaying layer and he 

also pointed out that rcalkalisation is not caused by significant changes of the 

microstructure and composition of the carbonated IICI' but rather by diffusion of Ca'' 

ions in the pore solution from the alkaline mortar overlay to the carbonated concrete. 

However, the rate of realkalisation depends on the moisture available for the diffusion 

of ions. 

Odden and Miller (1993) studied the effect of electrolyte concentration (0.01-IM 

sodium carbonate) on the p11 of concrete subjected to ECR. The results showed that at 

all concentrations an alkaline environment in the covercrete of plI >_ 11 was produced, 

except for the case of 0.01 Na2CO, molar solution. Sergi et al (1996) studied the 

effectiveness of ECR using different electrolytes, NaCO,, LiOll, Li(NO)2, Li(BO), and 

Li(NO),, with different concentrations and found that LiOII and Na2CO, were the most 

effective electrolytes used. 

Mietz and Isecke (1994a and 1994b), studying effects of ECR, reported that both the 

outer realkalisation layer (measured from concrete surface) and the inner realkisation 
layer (measured from reinforcement surface), measured by phenolphthalein indicator, 

were increased by increasing water/cement ratio and treatment time. They also found 

that the electro-chemical polarisation had a minor effect on the realkalisation progress 
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developing from the concrete surface, suggesting that the electro-osmosis mechanism 

has an insignificant role on the process of ECR. 

Mattila et al (1996) reported that the rate of passive rcalkalisation due to surface coating 

depends on the porosity of the concrete and the realkalisation front proceeds at least as 

rapidly as the carbonation front proceeded into the concrete when it was new (square 

root model). They also found that the rate of realkalisation is dependent on RIM and 

the threshold moisture for reasonably rapid realkalisation was about 90% RI!. It means 

that, as far as moisture requirements arc considered, realkalisation is able to occur when 

reinforcement corrosion is also likely to proceed. 

However, there is a contradiction in the literature regarding the effect of current density 

(electro-osmosis) on the processes of ECR. Some authors, such as Polder and Ilodel 

(1992), believes that the role of clectro-osmosis in CCR treatments is significant while 

others (Mietz and Isecke, 1994a and 1994b) reported the reverse. In addition, there is a 

lack of evidence in the literature regarding other parameters such as period of ECR, 

electrolyte type and moisture content which can affect the mechanism and rate of 

electro-chemical realkalisation. So, there is a need for more study to clarify the role of 

these parameters. 

7.2.4 Effect of Realkalisation on Concrete Properties 

Bier et al (1989) found that, in a passive realkalised matrix, the broad infra-red 

absorption bands of silica gel formed during the carbonation processes disappeared and 

those of C-S-II gel were established in the presence of calcium carbonate. The 

reformation of the C-S-II phases in the realkalised zone leads to changes in the pore 

structure as shown in Figure 7.2. They also observed a marked reduction of coarse 

pores with 10 <r< 100 nm, and formation of fine pore space with r< 10 nm. This 

suggests that realkalisation produces a much denser concrete. I lowever, this work was 

done using an overlay of an OPC or an OPC/GGBS mortar layer above the treated 

concrete. The result may have been different if impressed current was used. 

Unless paths are provided for easy escape, the liberated hydrogen (equation 7.4) at the 

reinforcement during ECR treatments will cause pressure development at this site. This 

pressure increase by electrolysis may lead to cracking and changes in the pore structure 
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at the area concerned. It is also possible that this area may be softened due to the high 

concentration of alkali (Chatterji, 1994). 

Al-Kadhimi et al (1996) recently found that f? CR modifies the pore size distribution of 

the cement paste matrix in the vicinity of the cathode by changing it in the direction of 

smaller pores. They also concluded that the total water absorption, capillary absorption 

and initial surface absorption all decrease as a result of the ECR treatment, while the 

compressive, pullout and flexural strength, dynamic modulus of elasticity and 

ultrasonic pulse velocity all increase. 

However, there are insufficient studies dealing with the effect of ECR on the pore 

solution, microstructure and chemical composition of the cement matrix of the concrete. 

7.2.5 Side Effects of Elect ro-Chcmical Realkalisation 

The RILEM Draft Recommendation (1994), Miller (1994) and Chattcrji (1994) 

identified the possible draw-backs due to the application of ECR on carbonated 

reinforced concrete structures, as follows: 

(1) Reduction of bond strength between reinforcement and concrete, caused by 

softening of the concrete immediately around the steel due to the high concentration of 

alkali. 

(2) Hydrogen embrittlement of reinforcement (HIE), as a result of the evolved 
hydrogen shown in equation (7.4) which may be absorbed by high strength steel 

reinforcements, thereby making them brittle. The longer the electrolysis proceeds the 

higher will be the chance of this embrittlement of the steel. The NCT Report (1994) 

does not however show any adverse effect of IIE either on prestressing or conventional 

reinforcing steel. 

(3) Cracking of the concrete cover, caused by high pressure built up owing to the 

evolution of hydrogen. 

(4) Alkali-aggregate reaction, the possibility of this being increased due to the high 

alkalinity around the reinforcement caused by the ECR treatment. This reaction occurs 

between certain types of aggregate and alkali ions contained in the concrete. It results in 

the production of an alkali silicate gel and, under certain conditions, can cause 

expansion and cracking of concrete. 
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The above-mentioned effects are hypothetical however, and not based on experimental 

studies. 

7.3 EXPERIMENTAL PROCEDURES 

7.3.1 Preparation of Steel Cathode 

A 35x35x1 mm mild steel plate with a4 mm diameter steel rod spot welded on the 

centre of one edge was used as a cathode. The chemical composition of the mild steel 

plate cathode is shown in 't'able 7.1. Regular holes of 2 mm diameter and of spacing 2 

mm were drilled in the steel plate to allow electrolyte to pass through the cathode 

during the ECR treatment, owing to possible electro-osmosis effects. An electrical wire 

was then soldered at the top of the steel rod as shown in Figure 7.3. 

Prior to casting of the IICP specimens for ECR, the steel cathode was cleaned by sand 

blasting followed by wiping with an acetone soaked tissue. The steel rod was coated 

with a slurry of cement and Styrene-Butadiene Rubber (SBR), where crevice attack 

might be expected to occur. Shrink tubing was then used to cover the upper part of the 

steel rod. 

7.3.2 Preparation of Specimens 

Prismatic specimens (100x50x50 mm) of OPC cement paste cast with 0.70 w/c ratio 

were used for this study. The mixing technique employed for making these specimens 

was based on the method devised by Gukild and Carlsen for ºninimising "bleeding" 

(Markestad, 1976). This method was previously used by Page and Vennesland (1983) 

and I Iornain et at (1995) and they reported that the method causes substantial reduction 

in bleeding of high w/c ratio IICP's. 10% of the whole mix was prepared as a slurry of 

cement (w/c = 3.0) before casting the specimens by hall-milling for 48 hours at I 

rev. /sec. The slurry was then manually mixed with additional cement and water to the 

correct final mix proportions by means of a spatula for 5 minutes. 

After mixing, the fresh cement paste was then cast in a specially made ply-wooden 

mould. The steel cathodes were embedded in the cement paste and kept in the right 

position by means of plastic handles which were held tight to the mould. The steel 

cathodes were arranged so that they were perpendicular to and in the centre of the 
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longest dimension of the specimen. The mould was then vibrated for 1 minute on a 

vibrating table for compaction. The cement paste was then levelled and the mould was 

wrapped in a polythene sheet. The IICP prisms were demolded after 48 hours and 

transferred to the curing room. The specimens were cured in water at 38°C for 7 days as 

described in Section 2.5. 

After curing, the specimens were transferred to a 100% CO2 /65% Rll chamber and 

were then left for 3 months. Some of the carbonated specimens were split into two 

halves and were sprayed with phcnolphthalcin indicator to establish that the specimens 

were fully carbonated. The details of the experimental set-up and the carbonation test 

were described in Section 5.3. The specimens were then pre-conditioned in 65% and 

100% RIH environments by storing in different desiccators containing sodium nitrite 

solution and de-ionised water, respectively. The pre-conditioning of the specimens was 

carried out for a period of more than three months until a steady weight was achieved. 

This was followed by sealing of the specimens with three layers of water proof epoxy 

resin on all sides apart from the surface chosen for electrolyte exposure and its 

opposite surface (see Figure 7.4). After sealing, the specimens were stored again in the 

desiccators at 65% and 100% RI I until the beginning of the ECR treatment. 

7.3.3 ECR Set-up 

The five electrolytes used were, de-ionised water, 1 mol/litre solutions of sodium 

carbonate (Na2CO3), sodium hydroxide (NaOH) and lithium hydroxide (LiOll) and 0.50 

mol/litre sodium phosphate (Na3PO4) solution, as shown in Table 7.2. All the reagents 

were AR grade and were made up with de-ionised water. The p11 of these electrolyte 

solutions were measured as described in Section 2.6.10 and the results are given in 

Table 7.2. 

Each specimen was positioned with its exposed surface on two plastic dividers which 

were in turn placed on an activated titanium mesh (50x50 mm). The mesh and the first 

3 mm of the specimen were immersed in 80 ml of the appropriate electrolyte inside a 

shallow dish. The titanium mesh as the anode and the steel cathode were then connected 

to a galvanonstat which maintained the current at appropriate levels for the required 

time of treatment (see Figure 7.4). Care was taken to ensure that the concentration of the 

electrolyte was constant throughout the treatment by changing the electrolyte solutions 
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daily. The completed specimens were then stored in PVC chambers at 25 ±2C° 

throughout the whole test period. The treatment was carried out at variable polarisation 

currents (0,1 and 5 A/m2) and for different periods (0,7,14 and 28 days). Four 

treatment regimes were used throughout this study, as listed in Table 7.3. 

7.3.4 Analysis 

7.3.4.1 Moisture movement 
The moisture movement of the electrolytes owing to the ECR treatment was monitored 

by measuring the weight change which occurred in the realkalised specimens. The 

weight change (OW) was calculated using the following equation: 

AW (TV, - IV,, ) 
x 100 ....... (7.9) 

W. 

where, 

OW : weight change, %. 

Wo : weight of specimen at the beginning of the treatment (t=0), gm. 

W, weight of specimen at any time during the treatment, gm. 

In this study, the average weight change of five specimens for each treatment regime 

was calculated. 

7.3.4.2 Depth of realkalisation 

Immediately after the ECR treatment, the treated specimens chosen for the 
determination of the realkalisation depth were sliced in half with a single cut at the steel 

cathode surface in such a way that two equal sections (50x50 nom) were produced. Each 

section was split in two halves so that two freshly exposed surfaces were produced. 
These surfaces were quickly sprayed with phenolphthalein and thymolphthalein 

indicators, respectively. The zones of apparent realkalisation were measured for each 
indicator from the cathode surface (X) and specimen surface (Y) (see Figure 7.4), using 

a travelling microscope. Five readings of the realkalisation depths from both surfaces 
(X and Y) were recorded for each sprayed surface and the average depths were then 

calculated. The details of techniques and the test procedures are described in Section 

2.6.10. and 5.3. In this study, the overall average realkalisation depths, measured from 
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the steel cathode surface (X) and specimen surface (Y), for five specimens were 

considercd. 

7.3.4.3 Pore solution 

For each polarisation regime, four treated specimens specified for pore solution 

analysis were disconnected from their wiring system and were dry-sliced into sections at 

10,20,35,45,55 and 65 nom from the specimen surface with the use of a mechanical 

hacksaw. The cutting-up arrangement for the treated IICP specimen is shown in Figure 

7.5. Corresponding sections from the lour specimens were grouped and stored in 100% 

RI1 environments for at least 2 months until steady weight was obtained. The specimens 

were pre-conditioned to produce enough pore solution in the specimen to be expressed 

by the pore solution device and to obtain valid comparison between the specimens 

treated with different polarisation currents. The pre-conditioning of the specimens prior 

to pore solution extraction was previously used by Walker (1994) with reasonable 

success. 

The pore solution was extracted using the pore expression device described in Section 

2.6.5. The load was applied at a rate of 0.3 kN/s to a value of 600 kN. The solution was 

collected in a sterile polythene vial and immediately scaled until ready for analysis. The 

sodium and carbonate ion concentrations and pH were then thus determined at 0-10,10- 

20,20-35,35-45,45-55 and 55-65 nim from the specimen surface as described in 

Section 2.6.6. 

7.3.4.4 Pore structure 

After dry-slicing the specimens for pore solution analysis, fragmented samples were 

taken from the cathode (45-55 mm) and from the specimen surface (0-10 mm) slices. 

The specimen sampling was done in such a way to ensure that the cathode sample was 

obtained from the first 3 mm around the cathode, while the surface sample was from the 

first 6 mm near the surface which was exposed to the electrolyte. The specimens were 

stored in desiccators containing silica gel until analysis by MIP. The specimen 

preparation and test procedures were carried out as described in Section 2.6.3. 
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7.3.4.5 Indentation microhardness 

The treated specimens specified for indentation microhardness analysis were sliced into 

two sections (50x50 mm) at the cathode surface. From the section which was exposed to 

the electrolyte, a specimen of' 1Ox5Ox50 nom was sliced from its central region 

perpendicularly to the cathode surface. The specimen was then prepared for the 

indentation microhardness test as described in Section 4.3.1. The microhardness 

measurements were taken at different distances from the cathode surface, stýO, 0.25,0.5, 

1.0,5.0 and 10.0 nom and at 3 nim from the specimen surface. The test procedures and 

technique are described in Section 2.6.7. The average of thirty microhardness 

measurements for triplicate specimens of the same treatment regime was determined in 

this study. 

7.3.4.6 Cement phases 

The cement hydrate phases of the treated I ICP were identified in this study with the aid 

of differential thermal analysis/ thermo-gravimetry (DTA/TG) and X-ray diffraction 

(XRD) techniques. Fragmented specimens were obtained from the cathode and surface 

zones in a similar way to those obtained for MIP pore structure analysis. The specimens 

were then ground to a powder and sieved to size 150 µm. The sieved powder was stored 

in a desiccator containing silica gel until required. Details of the techniques and the test 

procedures are described in Section 2.6.4. 

7.4 RESULTS AND DISCUSSION 

7.4.1 Mechanism of ECR and the Factors Affecting the Treatment 

As described in Section 7.2.2, the ECR process is thought to be dependent on a 

combination of mechanisms which include capillary absorption, diffusion and electro- 

osmosis. These mechanisms occur mainly near the surface and result in the inward 

movement of the electrolyte. It was thought necessary, therefore, in this part of the 

investigation to monitor the % weight change (sw) during the treatment to provide 

information about the rate of the electrolyte ingress in the surface zone. 

7.4.1.1 Moisture movement 

The rates of weight change (%iw) for IICP specimens pre-conditioned at 65 and 100% 

RH and treated with 1 mole/litre sodium carbonate (Na1CO1) at different current 
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densities (I = 0,1 and 5 A/m 2) for 14 days were determined and the results are shown 

in Figure 7.6. It can be seen from figure 7.6 that the %Ow for all I: CR regimes 

increases with increasing time of the treatment (t) and with the reduction of the pre- 

conditioning RII of the treated specimens. A significant increase in %Aw was noted 

when the pre-conditioned RII was reduced from 100% to 65%. The level of increase 

was of the order of 400% for the specimens treated with the same current density. The 

significant effect of the pre-conditioning RI! on the ECR treatment rate reflects the role 

of the capillary absorption mechanism on the ECR process. 

The effect of the polarisation current on the rate of the moisture movement (%Ow) can 

also be seen in Figure 7.6. The polarisation intensity had no systematic effect on the rate 

of the moisture movement of the carbonated cementitious material. For the 65% Rif 

pre-conditioning (Figure 7.6. a), the specimens treated with aI A/m Z current density had 

a higher %Aw than that recorded in the corresponding specimens treated at 0 A/111, , 

whilst the reverse effect was noted for the specimens treated at 5 A/m2 
. 

On the other 

hand, at the 100% 1111 pre-conditioning, the %Ow of the specimens treated with 0 and I 

A/m Z current densities appear to be similar (see Figure 7.6b). 

7.4.1.2 Pore solution chemistry 

The chemical analyses of the pore solution of the specimens pre-conditioned at 65 and 

100% RI1 and treated with different current densities (I = 0,1 and 5 A/m 2) are shown 

in Figures 7.7 to 7.9. It can be seen in Figure 7.7 that the Na' concentration is high 

near the surface for all treated specimens and decreases with increasing distance away 

from the specimen surface. The high concentration of Na* near the surface (first 25 

mm) seems to be affected by altering the level of polarisation but in an arbitrary manner 

and is significantly reduced when the pre-conditioning RI! increases from 65% to 

100%. The amount of Na' reduction due to the increase of the pre-conditioning RII 

from 65 to 100% reaches approximately 100%. The results also show that there is a 

limited increase in Na* concentration at the cathodic zone (50 mm) for 65% RI1 

specimens, which appears to be affected by the current density, but a less significant 

increase for the 100% RI! specimens. 
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The effect of current density and the pre-conditioning Rif on the concentration of 

carbonate ion profiles (present in the electrolyte solution, as Na1CO, ) of the I ICP treated 

with ECR for 14 days is shown in Figure 7.8. A similar effect to that obtained for the 

Na* concentration profiles is observed, when the results in Figures 7.7 and 7.8 arc 

compared. The concentration of carbonate ions (CO 3-) is at its highest in the first 5 mm 

from the specimen surface and starts to diminish with depth with only a limited increase 

at the cathodic zone (50 mm) owing to the passage of current. The carbonate ion 

concentrations near the surface of the specimens pre-conditioned at 65% RII arc greater 

by about 160% than the corresponding specimens pre-conditioned at 100% R11. The 

results also indicate that the polarisation current has a minor effect on the concentration 

of these ions near the surface when compared to the cl1ect of the pre-conditioning Rl 1. 

The high concentration of the sodium (Na+) and carbonate (CO; -) ions near the 

surface zone can be attributed mainly to the role of the capillary absorption and 

diffusion processes as described earlier and shown in Figure 7.6. The increase in the 

amount of these ions at the surface zone for the specimens pre-conditioned at 65% RI I 

compared to those specimens pre-conditioned at 100% RIl is attributed to the 

significant role of capillary absorption on the ECR treatment. In contrast, the role of the 

current polarisation on the concentration of these ions was limited, as a result of the 

insignificant effect of electro-osmosis on the ECR process. Furthermore, the 

insignificant levels and low increase of the sodium ions at the cathodic zone may be due 

to the absence of these ions in the pore solution after carbonation, and to slow electro- 

migration during the treatment. This observation is in agreement with previous work 

carried out by Sergi (1986), who found that the sodium ions disappeared almost totally 

from the pore solution when the hydrated cement pastes were carbonated. 

Figure 7.9 illustrates the p1! profiles of the treated HCP specimens pre-conditioned at 

65% and 100% RH and treated with 0,1 and 5 M112 current densities for 14 days, using 

I mol/litre sodium carbonate (Na2CO, ) as an electrolyte. It can be seen from Figure 7.9 

that, near the surface, the alkalinity is greater than in the bulk of the specimens and that 

the pit in the first 10 min zone ranged from 8.5 to 10.5. These pit values seem to be 

dependent upon the pre-conditioning Rut, where the pH at the first few mm increases 

with the lowering of the amount of moisture in the pores of the cementitious material. 
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Once again, the role of the polarisation current on the alkalinity near the surface is not 

systematic compared to the role of the pre-conditioning RI1. 

Figure 7.9 also shows a significant increase in the p11 at the cathode zone (50 mm) when 

an impressed current (1 or 5 A/m 2) was used compared to the corresponding specimens 

treated at 0 Mn 2. The amount of increase in p11 rises with increasing amount of 

electric charge passed and reduces with increasing distance from the cathode surface. It 

is also apparent from the results shown in Figure 7.9 that the PlI around the cathode 

reaches about 12 when the ECR treatment is carried out with I and 5 A/m Z for 14 days. 

This value of p1I is generally enough to reinstate the passive film of the reinforcement 

and provides some protection for the reinforcement against further attack by CO,. For 

the I ICP treated with I A/m2 the pre-conditioning RII seems to have an insignificant 

effect on the alkalinity at the cathodic zone, as p11 results at the cathodic zone of both 

pre-conditioned specimens were similar. It should be noted that the accuracy of these 

results may be affected by the size of the slices used for pore solution analysis, as the 

pH and concentration of the ions are not likely to be uniformly distributed in the slice 

width. 

The effect of current density (I) and the pre-conditioning RH on depths of realkalisation 
(from specimen and cathode surfaces) was again studied with the use of p11 indicators 

which were successfully used in most of the previous investigations (Mietz and Isecke, 

1994a and 1994b; Sergi et al, 1996 and Mattila et al, 1996). The pH indicators were 

used in this study to provide extra information about the exact realkalisation depths 

which were difficult to obtain from the pore solution results as a result of using 

relatively thick slices for the analysis. 

The results of realkalisation depths measured from the cathode surface (X) and 

specimen surface (Y) using phenolphthalein and thymolphthalein indicators for HCP 

specimens pre-conditioned at 65 and 100% RI I and treated with 0,1 and 5 A/m 2 for 14 

days are presented in Table 7.4. It can be seen from these results that the realkalisation 

depth measured from the specimen surface (Y) is similar for all polarisation levels, 

whilst, a substantial increase in X with increasing current density was noted. The 

insignificant effect of the current density on the rate of realkalisation of the surface zone 
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is in agreement with the findings reported earlier by Mietz and Isecke (1994a and 
1994b), confirming that electro-osmosis is plays no significant role in the ECR process. 

The results in Table 7.4 also demonstrate the significant role of the pre-conditioning RI I 

on the realkalisation depth which was measured from the specimen surface (Y), where 

approximately a 100% increase in Y was found when the moisture of the capillary pores 

was reduced from 100 to 65% RII. This effect was However negligible at the cathodic 

zone. These findings are in agreement with those of the pore solution results shown in 

Figure 7.9. 

The increase in the alkalinity (p1l) of the surface zone is likely to be caused by diffusion 

and absorption of sodium carbonate (Na2CO, ) from the electrolyte solution so that 

higher p11 is observed for the specimens which were pre-conditioned at low RI I (65%) 

compared with those pre-conditioned at the higher RI! (100%). On the other hand, the 

substantial increase in the pl I at the cathodic zone is mainly attributed to the generation 

of hydroxide ions (ON' ) around the cathode by the electrolysis processes (as described 

earlier in Section 7.2.2.1). These ions, consequently, electro-migrate from the negative 

pole (steel cathode) to the positive pole (titanium mesh) producing a highly alkaline 

zone around the cathode. The increase in p1I around the cathode with increasing current 
density was an expected phenomenon and is as a result of the reactions shown in 

Equations 7.4 and 7.5. 

The role of the treatment period (T) on the chemical properties of the pore solution (p11, 

Na" and CO; -ions) and depths of realkalisation (X and Y) of IICP specimens pre- 

conditioned at 65% RI! and treated with 1 A/m 2 current density is shown in Figure 7.10 

and Table 7.4, respectively. The results in Figure 7.10 show that the concentration of 

Na+ and CO; - ions near the surface increase with increasing T. The concentration of 

these ions decreases with increasing distance from the surface (Y). It can also be seen 

from Figure 7.10. c that the p11 at both the anode and cathode zones is significantly 

increased with increasing T, especially for the specimens treated for 14 and 28 days. In 

addition, the width of the highly alkaline zone around the cathode (X) is also increased 

with T, whilst the corresponding surface zone (Y) seems to be similar for all treatment 

periods. 
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Table 7.5 demonstrates the rcalkalisation depths (X and Y) for IICP specimens treated 

with 1 A/m2 for different periods (T = 7,14 and 28 days). It shows that both the 

realkalisation depths (X and Y) increase with increasing T. Ilowever, the cllcct of the 

treatment period is more pronounced on X than that on Y. The level of increase in the 

X parameter increased by 140 and 520 % when T was increased from 7 to 14 and 28 

days, respectively, whilst the corresponding increase in Y was about 60 and 120%, 

respectively. 

The pH increase around the steel cathode with increasing period of treatment (T) could 

be attributed to the amount of OH - ions generated around the cathode as a result of the 

cathodic reactions (see Section 7.2.2.1). On the other hand, as explained earlier (Figure 

7.6), the increase in the realkalisation depth measured from the specimen surface (Y) 

with increasing T is mainly attributed to the increase in the absorbed and diffused 

Na2CO� which increases with increasing period of ECR treatment. 

The role of the electrolyte type on the realkalisation depth measured from the specimen 

surface (Y) was also investigated using the p1I indicators and the results of this 

investigation arc presented in Table 7.6. The results show that the use of sodium 

phosphate solution (Na, PO4as an electrolyte resulted in a deeper realkalisation zone 

(Y) than that produced by the other electrolytes investigated viz. sodium carbonate 

(Na2CO, ), sodium hydroxide (NaOII) and lithium hydroxide (LiOll). The depth of 

realkalisation (Y) for the specimens treated with Na, PO, solution was 300% greater 

than the corresponding depth produced by the more widely used electrolyte Na2CO,. 

The results reported in Table 7.6 also show that the depth of realkalisation measured 

from the specimen surface treated with lithium hydroxide solution (LiOH) is greater by 

50% than the corresponding specimens produced when sodium carbonate was used, 

which is in agreement with the findings reported earlier by Sergi et al (1996). 

The significant effect of using sodium phosphate as an electrolyte on the processes of 

ECR treatment has not been understood yet and the role of this substance on any 

possible enhancement of properties of the cementitious material should be subject to 

further investigation. 
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7.4.2 Effect of ECR Treatment on the Microstructure and Cement Ilydrate 

Phases of (lie Near Surface and Steel/Cement Paste Transition Zones 

7.4.2.1 Microstructure 

The effect of ECR treatment on the PSD and porosities (total, capillary and gel) of the 

cement paste matrix at the cathode (transition zone) and near surface zones was studied 

using the M11 technique. The results are represented in Figures 7.11 to 7.13 and Tables 

7.7 to 7.9. 

The PSD of the cement paste/cathode transition zones of IICP specimens treated with 

different current densities (I = 0,1 and 5 A/m 2) for 14 days are illustrated in Figure 

7.11. It can be seen that the PSD of the cement paste/ cathode transition zone (TZ) 

becomes finer when an electric charge is impressed compared to the corresponding 

untreated I ICP (I =0 Ahn 2 ). The PSD of the specimens treated with I and 5 A/m 2 

current density seems to be similar. The threshold pore diameter D,,, is reduced from 800 

to 100 nm as a result of increasing the intensity of polarisation from 0 to 1 or 5 A/m 2. 

A similar effect was also obtained when the period of treatment was altered (see Figure 

7.12). The results in Figure 7.12 demonstrate the PSD of the TZ of the carbonated OPC 

specimens treated with 1 A/m Z current density for 0,7,14 and 28 days. The PSD of the 

TZ becomes more dense as a result of the ECR treatment for 7,14 and 28 days 

compared to those corresponding to the untreated specimens (T =0 days). 

The total, capillary ( pore diameters z 30 nm) and gel (pore diameters <_ 10 nm) 

porosities of the-TZ of IHCP treated with regimes I and III (see Table 7.3) are 

represented in Tables 7.7 and 7.8, respectively. These results were deduced from the 

PSD's shown in Figures 7.11 and 7.12. It can be seen from these results that the total 

and capillary porosities of the treated cementitious material at the cathode decrease with 

increasing I and T. Ilowever, the effect of the ECR treatment is more significant on the 

capillary porosity than the total porosity. The amount of total porosity reduction reaches 

15 and 20% when I and T were increased from 0 to 5 Mill' and from 0 to 28 days, 

respectively, whilst the corresponding reductions in capillary porosity are approximately 

50 and 35%, respectively. On the other hand, the gel porosity increases with applied 
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current and with increasing period of ECR treatment. The amount of this increase 

reaches 50% for the specimens treated with 5 Min' current density for 14 days, 

compared to that of the untreated specimens. 

The effect of the electrolyte type on the PSD and porosities of the near-surface zone is 

illustrated in Figure 7.13 and Table 7.9, respectively. The electrolytes investigated, 

sodium carbonate (Na1CO, ), sodium hydroxide (NaOl I), sodium phosphate (Na, PO, ) and 

lithium hydroxide (LiOll) solutions were introduced into the carbonated specimens for 

14 days, using zero current density. The following observations can be made from these 

results: 

(1) The PSD and Din of HCP treated with sodium carbonate solution (Na2CO, ) were 

relatively similar to those of the carbonated specimens treated with water 

(control specimens). 

(2) The use of sodium phosphate solution as an electrolyte resulted in finer PSD and 

a greater reduction in the Dpi, than that produced by the other electrolytes in the 

investigation, whilst the reverse was true when sodium hydroxide solution was 

used. 

(3) The total porosities of the specimens treated with sodium carbonate, sodium 
hydroxide and lithium hydroxide were greater than those of the corresponding 

specimens treated with water by 10,25 and 10%, respectively, while the use of 

sodium phosphate resulted in a significant reduction in the total porosity. The 

level of this reduction was approximately 25%. 

(4) The capillary porosity was significantly reduced when sodium phosphate was 

used compared to that of the other electrolytes. The amount of this reduction 

was about 350%, whilst the reverse was true for the specimens treated with 

sodium hydroxide. 

(5) A slight enhancement in the amount of the capillary pores was produced when 

sodium carbonate or lithium hydroxide solution was used. The levels of 

enhancement were about 20 and 40%, respectively, compared to the results for 

the corresponding specimens treated with water. 

(6) The gel porosity of IICP at the near surface zone seemed to be similar for the 

specimens treated with sodium hydroxide, sodium phosphate or lithium 
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hydroxide solution. I Iowever, the gel porosity of this zone was increased when 

sodium carbonate solution was uscd. 

The effect of the ECR treatment on the microhardness of the cement matrix in the steel 

cathode/cement paste transition (TZ) and surface zones was studied and the results are 

shown in Figures 7.14 and 7.15, respectively. The statistical analysis of these results 

was also carried out using a t-test to study the significance of the differences between 

the microhardness averages (see Tables 7.10 to 7.12). The microhardness results seem 

to be highly scattered and unaffected by either the polarisation currents or the period of 

the treatment. The statistical analyses carried out in Tables 7.10 and 7.11 support this 

observation, since the difference between the averages of the microhardness results are 

insignificant. 

Figure 7.15 shows the microhardness of the near-surface zone of I ICP specimens treated 

with sodium carbonate, sodium hydroxide, sodium phosphate and lithium hydroxide 

solution for 14 days, using I=0 A/m 2. The microhardness results appear to be similar 

for all the electrolytes used, except for those treated with sodium hydroxide where a 

slight reduction in the microhardness is shown. The statistical analysis presented in 

Table 7.12 supports this finding, where it shows insignificant differences between the 

averages of all but one of the results and a significantly adverse effect when sodium 

hydroxide was used. 

The microhardness results shown in Figures 7.14 and 7.15, generally indicate that the 

ECR treatment processes have an insignificant effect on the microhardness properties of 

the treated cementitious matrix, which appears to contradict the earlier findings obtained 

from the MIP technique. This may be attributed to the insensitivity of the microhardness 

technique in evaluating such variations in the cement matrix. 

7.4.2.2 Ccmcnt matrix composition 

In order to understand the variations that occur in the pore structure owing to the use of 

ECR and clarify the role of the ECR treatment, DTA/TG and XRD techniques were 

adopted in this investigation. This was carried out by analysing the samples taken at the 
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cathode and near surface zones which were treated under regime I, III and V. The results 

of these analyses are represented in Figures 7.16 to 7.21 and Tables 7.13 to 7.18. 

The DTA thermographs of the steel cathode/cement paste transition zone of IICP 

specimens treated with 0,1 and 5 A/m 2 current density for 14 days and I A/m 2 for 0, 

7,14 and 28 days are shown in Figures 7.16 and 7.17, respectively. It can be seen that 

the size of the endo-thermic peak associated with calcite (750-900°C) decreases with 

the level of ECR, whilst the shallow hump associated with calcium silicate hydrate 

(110-250°C) starts to grow as a result of the treatment. The size of this hump appears to 

increase with increasing current density and the period of the CCR treatment. Non- 

identified exo-thermic (NIP) peaks at 450-600°C were also observed when the 

specimens were treated. These exo-thermic peaks appear not to be due to calcium 

hydroxide (C-11), which decomposes at this range of temperatures causing an endo- 

thermic peak. It was, however, difficult to identify such a phase in the course of this 

investigation. 

These thermographs obtained from the DTA technique are only qualitative. So, a TG 

technique was adopted in this investigation for two reasons: first, to support the findings 

obtained from the DTA thermographs and secondly to quantify the components of the 

untreated and treated IICP which were shown as peaks in the DTA thermographs. The 

amount of any particular cementitious phase was estimated in terms of the % weight 

loss at a certain temperature range. The range of temperatures was defined for each 

cement phase from the DTA thermo-graphs and from the literature (sec Appendix 5). 

Table 7.13 and 7,14 show the % decomposition of calcium silicate hydrate (C-S-II), 

non-identified phase (associated at 425-550°C), calcite (CaCO, ), evaporable water (EW) 

and the non evaporable water (NEW) of the cathode/cement paste transition zone of the 

IICP specimens treated under regime I and 111, respectively. It can be seen that the 

amount of C-S-II and non-identified phase increases with increasing current density 

and the period of the ECR treatment. The amount of C-S-N increase, due to increasing I 

from 0 to 5 A/in 2 and t from 0 to 28 days, reaches 40 and 10%, respectively, whilst the 

corresponding increase in the non-identified phase is 35 and 15%, respectively. On the 

other hand, the amount of calcite (CaCO, ) was reduced when an electric charge was 
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induced into the carbonated specimens and the amount of these reductions reach 30 and 

15% when I and '1' were increased from 0 to 5 and from 0 to 28 days, respectively. In 

addition, the results presented in 't'able 7.13 show a significant increase in %EW and a 

slight reduction in %NRW as a result of increasing the level of polarisation and the 

period of the ECR treatment. 

The modifications occurring in the chemical composition of the carbonated IICP due to 

the ECR processes suggest that the induction of an electric charge into the cementitious 

matrix could lead to decomposition of some substances such as calcium carbonate, the 

re-formation of others such as C-S-1I and the creation of new phases (NIP). This means 

that the use of the ECR could not only lead to the reinstatement of the passive oxide 

film around steel reinforcement but also to some degree of reformation of the main 

hydration products (C-S-II) of the cement paste matrix, which have been consumed 

during the carbonation processes. 

The decomposition of calcite and reformation of C-S-II could be the reasons behind the 

significant increase in the %EW and the modifications occurring in the pore structure 

(PSD and porosities) of the treated matrix, which were noted in the MIP and TG results. 

Similarly, the slight changes observed in the %NEW could be attributed to the 

difference between the amount of CaCO, decomposed and the corresponding C-S-II 

reformation during the ECR treatment. 

The effect of the electrolyte type on the chemical composition of carbonated IICP was 

also studied using DTA and TG techniques and the results are represented in Figure 

7.18 and Table 7.15. Figure 7.18 demonstrates the DTA thermographs of I ICP exposed 

to sodium carbonate, sodium phosphate, sodium hydroxides and lithium hydroxide 

solutions for 14 days. The results show that the size of the peaks associated with calcite 

(750-900°C) seems to decrease simply by exposing the surface of the IICP to the above 

electrolytes, compared to those treated with water, especially for those treated with the 

sodium phosphate solution. This observation is in agreement with the results obtained 

by the TG technique, where the % decomposition of calcite decreases by 25,45,15 and 

10% when the IICP specimens were treated with sodium carbonate, sodium phosphate, 

sodium hydroxide and lithium hydroxide solution, respectively (see Table 7.15). The 

reverse of this effect was noted for the non-identified phase (NIP). The amount of 
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increase in the non-identified phase as a result of these electrolytes ranged from 40 to 

80%. 

The results illustrated in Figure 7.18 also show that the size of the shallow hump 

associated with C-S-11(110-250°C) seems to be unaffected for all the electrolytes used. 

However, a slight reduction in the amount of C-S-II was noted for the specimens treated 

with sodium carbonate and sodium hydroxide solutions. The %EW increases with the 

use of sodium carbonate, sodium phosphate and sodium hydroxide solution as 

electrolytes when compared to the corresponding specimens treated with water. 

Furthermore, it seems that the effect of the electrolyte on %NEW is insignificant, except 

for the specimens treated with the sodium phosphate solution. 

These variations in the amount of calcite, C-S-II and non-identified phase which 

occurred due to the use of different electrolyte solutions may be caused by the chemical 

reactions between these electrolytes and the carbonated cement phases (mainly calcium 

carbonate). These chemical reactions could be accompanied with modifications in the 

microstructure of the cement paste matrix, discussed earlier (see Figures 7.11 to 7.13 

and Tables 7.7 to 7.9). 

The possibility of the decomposition of calcium carbonate (calcite) as a result of 

inducing an electric field and the electrolyte into the cementitious matrix during the 

ECR treatment was also examined by XRD. An example of identification of an XRD 

trace is given in Appendix 6. The XRD graphs of the cement pastes (presented around 

the cathode and near surface zones) treated with regimes 1,111 and V (see Table 7.3) are 

shown in Figures 7.19 to 7.21, respectively. These graphs show that the calcite peaks 

are present for all untreated specimens and the specimens treated with ECR, whilst the 

corresponding peaks of vaterite disappeared when the specimens were treated with ECR 

(I =I or 5 A/m2) and with using sodium phosphate or lithium hydroxide solution as 

electrolytes. In addition, non-identified peaks (NIP) at 38.5° appeared when the electro- 

chemical polarisation was applied to the carbonated specimens. The nature of these 

peaks (38.5°) was difficult to identify from the standard XRD data. however, this non- 

identified crystal (present at 38.5°) could possibly be associated with the non-identified 

phase shown by the DTA and TG results. 
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To clarify the role of ECR processes on the amount of calcite disintegrated during the 

treatment, the calcite content was estimated from XRD graphs as a function of the total 

intensity of the first four major peaks. The results based on this estimation for the IICI' 

specimens treated with different regimes (I, 111 and V) are represented in Table 7.16. It 

shows that the calcite content was reduced by 20% by either increasing the current 

density from 0 to 1 or 5 A/m Z or the period of the treatment from 0 to 14 days. The 

calcite content was also decreased when sodium phosphate solution was used rather than 

water. The level of decrease reached approximately 15%. To the contrary, the use of 

lithium hydroxide or sodium carbonate solution appeared to increase the calcite content 

by approximately 15%. 

These findings are in agreement with those obtained by DTA and TG techniques, which 

confirmed the phenomenon of disintegration of calcium carbonate (calcite) as a result of 

inducing an electric field into the cementitious matrix and using sodium phosphate as an 

electrolyte. The decomposition of calcite and the disappearing of vaterite from the XRD 

graphs could lead to the formation of a new cement phase which is represented by the 

peaks shown at 38.5°. However, further investigations of these plienomenen are 

required. 

7.5 CONCLUSIONS 

The present work has shown the following findings: 

(1) The rate of the electrolyte movement at the carbonated surface zone is 

significantly influenced by the moisture content of the pores (%Rll) but is not directly 

related to the increasing level of polarisation during the ECR treatment. 

(2) Capillary absorption is considered the major controlling mechanism of the ECR 

process at the near surface zone compared to the other mechanisms such as diffusion 

and current-induced (electro-osmosis). IIence the rate of penetration of the external 

electrolyte is considerably less for specimens conditioned at 100% Rfi than for those 

conditioned at 65% R11. 
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(3) Electro-osmosis seems to play no significant role on the realkalisation rate of the 

surface zone. 

(4) Hydrolysis and clectro-migration arc the main mechanisms controlling the 

processes of ECR at the cathode zone and are significantly dependent on the level of 

polarisation and the period of the treatment. In addition, insignificant effects of these 

mechanisms were found in relation to the internal RII of the cementitious matrix at the 

cathode. 

(5) Significant increases in the concentrations of sodium and carbonate ions and the 

alkalinity at the surface zone were observed with increasing time periods of the ECR 

treatment and lowering moisture content within the pores. In contrast, the role of the 

polarisation current density on the chemistry of the pore solution of this zone was found 

to be insignificant. On the other hand, at the cathode zone, the increase of the current 

density and the period of the treatment lead to an enhanced pH and enlarged the high 

alkalinity zone around the cathode. The effect of these parameters on sodium and 

carbonate ions was insignificant. 

(6) The use of sodium phosphate as an electrolyte resulted in a substantial increase 

(300%) in the realkalisation rate compared to that observed when sodium carbonate 

was used. Lithium hydroxide also increased the realkalisation rate by about 50% 

(7) The passage of an electric current during the ECR treatment appeared to result in 

a denser pore structure. Both the total and capillary porosity of the cathode/cement paste 

transition zone were reduced. The effect was more pronounced for capillary porosity 

than for total porosity. 

(8) The use of sodium phosphate as an electrolyte resulted in a significant 
densification of the pore structure of the treated materials (in terms of 1'SD and 

porosities), whilst the reverse effect was observed when sodium hydroxide was used. 

(9) The ECR process lead to notable variations in the chemical compounds of the 

treated cementitious matrix. Decomposition of some calcite and reformation of the 
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C-S-H phase were both observed. This variation was more pronounced with increasing 

grade of polarisation and with the use of sodium phosphate as an electrolyte. 
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Table 7.1 Chemical composition of mild steel plate (%). 

Fe c Si Mn S Cr Mo Ni Al Cu Sn 

99.5 0.04 0.01 0.28 0.03 0.04 0.01 0.03 0.01 0.02 0.01 

Table 7.2 Concentration and p11 of the electrolytes used. 

Electrolyte Concentration P11 

I- Dc-ionized water (E1, O) 1 mol/litre 7.0 

2- Sodium carbonate (Na2CO, ) I mol/litre 10.8-11.0 

3- Sodium hydroxide (NaOI1) 1 mol/litre 13.9-14.0 

4- Lithium hydroxide (LiOli) 1 mol/litre 13.9-14.0 

5- Sodium phosphate (Na1PO4) 0.5 mol/ litre 10.4-11.0 

Table 7.3 ECR treatment regimes. 

Regime Pre-conditioning Electrolyte Current Period of 

RH, % type density, A/ in2 treatment, day 

0 

I 65 Na2CO3 1 14 

5 

II 100 Na2CO3 0 

1 

14 

0 

III 65 Na2CO3 1 7 

14 

28 

1120 

Na2CO3 

V 65 Na3PO4 0 14 

NaOH 

LiOll 
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Table 7.4 Effect of current density on the realkalised depths (from specimen 

and cathode surface) pre-conditioned at different 1111 and treated 

with ECR for 14 days, using different indicators. 

Current Realkalised depth from specimen Realkalised depth fron cathode 

Rll, % density, surface (Y), mm surface (X), mm 

A/ »t2 Phenolphthalein Thymolphthalien Phenolphthalein 'I'hymolphthalien 

0 8.10 8.0 0 0.00 

65 1 8.31 8.3 6 5.20 

5 7.85 7.8 27 16.50 

100 0 4.25 4.25 0 0.00 

1 4.15 4.10 6 4.90 

Table 7.5 Effect of ECR treatment period on the realkalised depths (from 

specimen and cathode surface), using current density of IA/ m2 . 

IM, % Treatment Realkalised depth From Realkalised depth from cathode 

period, specimen surface (Y), mm surface (X), mm 

day Phenolphthalein Thymolphthalien Phenol phthalein Thymolphathlien 

7 5.15 5.15 3.0 2.00 

65 14 8.31 8.30 6.0 5.20 

28 11.25 11.1 16.0 10.30 

Table 7.6 Effect of electrolyte type on the realkalised depth measured from specimen 

surface (Y) treated with ECR for 14 days (pre-conditioning RI1= 65%). 

Electrolyte type Realkalised depth (Y), mm 

Phenolphthalein Thymolphthalien 

Sodium carbonate 8.10 8.00 

Sodium phosphate 33.5 33.5 

Sodium hydroxide 11.0 10.95 

Lithium hydroxide 12.5 12.50 
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Table 7.7 Effect of current density on porosity of OPC paste specimen 

(around cathode) treated with ECR for 14 days. 

Current density, Porosity, cc/g 

A/ Iß: 2 Total Capillary Gel 

0 0.1470 0.0672 0.0063 

1 0.1192 0.0322 0.0068 

5 0.1252 0.0334 0.0097 

Table 7.8 Effect of ECR treatment period on porosity of OPC paste 

specimen (around cathode), using I=1A/ m2 . 

Treatment period, Porosity, cc/g 

day Total Capillary Gel 

0 0.1407 0.0672 0.0063 

7 0.1265 0.0672 0.0077 

14 0.1192 0.0322 0.0068 

28 0.1153 0.0440 0.0076 

Table 7.9 Effect of electrolyte type on porosity of OPC paste specimen 

(near surface) treated for 14 days, I=0A/ m2 . 
Electrolyte type Porosity, cc/g 

Total Capillary Gel 

De-ionized water 0.1407 0.0672 0.0063 

Sodium carbonate 0.1520 0.0552 0.0095 

Sodium hydroxide 0.1725 0.0733 0.0069 

Sodium phosphate 0.1090 0.0146 0.0056 

Lithium hydroxide 0.1515 0.0477 0.0058 
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Table 7.10 Summary of statistical results carried out at OI'C paste 

specimen (at zero distance from cathode surface) treated with 

ECR using different current densities for 14 days, using t-test. 

Current Mean, Variance Standard Variation, 1'('T<=t) Significance of 

density, A/ in 2 J IV deviation % two tail the difference 

0 37.90 138.00 11.74 30.90 0.40 insignificant 

1 34.60 150.30 12.25 35.40 

0 37.90 138.00 11.74 30.90 0.71 insignificant 

5 39.25 134.83 11.62 29.56 

1 34.60 150.30 12.25 35.40 0.23 insignificant 

5 39.30 134.83 11.62 29.56 

Table 7.11 Summary of statistical results carried out at OPC paste specimen 

(at zero distance from cathode surface) treated with ECR for 

different treatment periods (I =1A/ nie ), using t-test. 

Treatment Mean, Variance Standard Variation, P(T<=t) Significance of 

period 11V deviation % two tail the difference 

0 day 37.90 138.00 11.74 30.90 0.73 insignificant 

7 day 39.06 105.77 10.28 26.34 

0 day 37.90 138.00 11.74 30.90 0.39 insignificant 

14 day 34.60 150.25 12.25 35.40 

0 day 37.90 150.30 11.74 30.90 0.33 insignificant 

28 day 34.95 35.94 5.94 17.02 
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Table 7.12 Summary of statistical results carried out at OPC paste specimen 

(near surface) treated with different electrolytes for 14 days 

(1=0 A/ m2 ), using t-test. 

Electrolyte Mean, Variance Standard Variation, t'(T<=t) Significance of 
type l1V deviation % two tail the difference 

H2O 37.70 67.80 8.23 21.84 0.33 insignificant 

Na2CO3 34.75 111.60 10.56 30.75 

H2O 37.70 67.80 8.23 21.84 0.49 insignificant 

Na3PO4 35.70 97.91 9.89 27.71 

1120 37.70 67.80 8.23 21.84 0.03 significant 
NaOII 31.60 70.90 8.42 26.60 

H2O 37.70 67.80 8.23 21.84 0.30 insignificant 

LiOll 35.00 61.68 7.85 22.44 

Table 7.13 Effect of current density used at ECR treatment on the chemical 

compounds of OPC paste (around cathode) treated for 14 days, 

deduced from DTA/TG technique. 

Current Decomposition, % 

density, C-S-11 NIP* Calcite E. W NEW 

A /, n2 (110-250°C) (450-600° C) (750-9000 C) (20-1100 C) (110-950° C) 

0 4.70 2.15 17.79 2.16 36.73 

1 5.90 2.72 12.18 6.02 32.55 

5 6.53 2.87 12.45 6.94 34.20 

* Non-Identified Phase 
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Table 7.14 Effect of ECR treatment period on the chemical compounds of OPC 

paste (around cathode) using current density of IA/ m2, dcduccd 

from UTAITG technique. 

'Treatment 

period, 

Decomposition, % 

day C-S-11 N11'* Calcite E. W NEW 

(110-250 °C) (450-600° C) (750-900° C) (20-110 C) (110-950° C) 

0 4.70 2.15 17.79 2.16 36.73 

7 4.59 2.17 18.14 2.35 36.74 

14 5.90 2.72 12.18 6.02 32.55 

28 4.99 2.44 15.53 5.11 35.31 

* Non-Identified Phase 

Table 7.15 Effect of electrolyte type on the chemical compounds of OPC paste 

(near surface) treated for 14 days (I =0A/ m2 ), using DTAITG 

technique. 

Decomposition, % 

Electrolyte C-S-11 NIP* Calcite E. W NEW 

type (116-250° C) (450-600° C) (750-900°C) (20-110°C) (110-950°C) 

H2O 4.70 2.15 17.79 2.16 36.73 

Na2CO3 3.66 3.55 13.50 2.23 34.94 

Na3P04 4.88 3.00 10.03 2.69 30.93 

NaOIl 3.86 3.41 15.52 2.65 35.30 

LiOll 4.34 3.87 16.15 2.53 35.79 

* Non-Identified Phase 

194 



Table 7.16 Effect of current density, ECR period of treatment and the electrolyte 

type on the calcite content (in terms of the highest four intensities), 

deduced from XRD diagrams. 

Current density, A/ m2 Calcite content 

0 67 

1 54 

5 54 

Period of treatment Calcite content 

0 days 67 

14 days 54 

28 days 63 

Electrolyte type Calcite content 

1120 67 

NaiCO3 79 

Na3PO4 57 

NaOH 76 

LiOll 68 
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Figure 7.6 Effect of current density on the weight change of OPC specimens 

pre-conditioned at a) 65% and b) 100% RII environment prior to 

ECR treatment. 
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Figure 7.7 Effect of current density on sodium ion concentration profile of OPC 

specimens pre-conditioned at a) 65% and b) 100% RII environment 
prior to ECR treatment, T= 14 days. 
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Figure 7.8 Effect of current density on carbonate ion concentration profile 
of OPC specimens pre-conditioned at a) 65% and h) 100% Rh 

environment prior to ECR treatment, T= 14 days . 
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Figure 7.9 Effect of current density on pH profile of OPC specimens pre- 
conditioned at a) 65% and b) 100% Rif environment prior to 
ECR treatment, T= 14 days. 
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Figure 7.10 Effect of ECR treatment period on a) sodium ion concentration, 
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pre-conditioned at 65% RII and treated with lA/m 2. 
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Figure 7.13 PSD of OPC paste (near surface) treated with different electrolytes 
for 14 days, I=0A/m2. 
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Figure 7.16 UTA thermo-graphs of OPC paste specimen (around cathode) 
treated with ECR with different current densities for 14 days. 
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Figure 7.17 UTA thermo-graphs of OPC paste specimen (around cathode) 
treated with ECR for different treatment periods, I=1 A/m 2. 
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Figure 7.18 DTA thermo-graphs of OPC specimen (near surface) treated with 
different electrolytes, a) sodium carbonate, b) sodium phosphate, 

c) sodium hydroxide and d) lithium hydroxide, for 14 days, I=0 A/m 2. 
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Figure 7.19 XRD traces of OPC paste specimen (around cathode) treated with 

ECR with different current densities for 14 days. 
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Figure 7.20 XRD traces of OPC paste specimen (around cathode) treated with 

ECR for different treatment periods, I =1 A/m 2. 
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Figure 7.21a XRD trace of OPC specimen (near surface) treated with 1M sodium 

carbonate solution for 14 days, I=0 A/m Z. 
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Figure 7.21b XRD trace of OPC specimen (near surface) treated with 0.5 M sodium 

phosphate solution for 14 days, I=0 A/m Z. 
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Figure 7.21c XRD trace of OPC specimen (near surface) treated with 1M sodium 

hydroxide solution for 14 days, I=0 A/m 2. 
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Figure 7.21d XRD trace of OPC specimen (near surface) treated with 1M lithium 

hydroxide solution for 14 days, I=0 A/m Z. 
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CHAPTER 8 

GENERAL CONCLUSIONS AND RECOMMENDATIONS 

FOR FURTHER WORK 

Detailed conclusions drawn from the results of the different experiments undertaken for 

this investigation have been presented at the end of each chapter. However, it is 

appropriate at this stage to summarise the major findings in relation to the original ainis 

of the investigation and moreover to identify the areas where Further studies are needed. 

8.1 GENERAL CONCLUSIONS 

1- The thickness of the microstructure gradient of cover concrete is significantly 

decreased with increasing period of water curing but is relatively unaffected by curing 

temperature, w/e ratio and the use of cement replacement materials. 

2- Important correlations were established between the microstructure and both the 

mass transport properties (in terms of the effective chloride diffusion coefficient) and 

the microhardness of the surface zone of cover concrete. The effective chloride diffusion 

coefficient decreased with decreasing porosity, whilst the microhardness increased with 

decreasing total and capillary porosity. 

3- The scratch hardness technique was developed and shown to be potentially 

useful for characterising the microstructure and microhardness of cement paste and 

concrete. It is relatively rapid and produces results compatible with those obtained from 

conventional techniques (such as thermo-gravimetry, water desorption and indentation 

microhardness) for determining the thickness of the microstructure gradient of cover 

concrete. 

4- A relationship between the thickness of the microstructure gradient and mass 

transport properties of cover concrete was established . For a given water/binder ratio, as 

the thickness of the microstructure gradient increased, the depth of carbonation of OPC 

paste increased as did the depth of chloride penetration. Surface chloride concentration 
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was, however, decreased significantly with increasing thickness of the microstructure 

gradient. 

5- It has been demonstrated that the use of CIT refined the I'SD, reduced total and 

capillary porosity and enhanced the microhardness of the OI'C covercrete. The use of 

CPF also improved the microhardness properties of the aggregate/cement paste 

transition zone in the near surface zone affected by the CIT. 

6- The use of CPr resulted in a significant improvement in the transport properties 

of high We ratio concretes. Carbonation was reduced substantially for all types of 

concrete (OPC, OPC/PFA and OPC/GGBS) and chloride penetration was reduced 

significantly for OPC concrete. 

7- This investigation has demonstrated that capillary absorption is a major 

controlling mechanism for the electro-chemical realkalisation (ECR) processes at the 

near surface zone of HCP when compared to other mechanisms such as diffusion and 

current-induced electro-osmosis. It also confirmed that electro-osmosis plays no 

significant role in the realkalisation of the carbonated cementitious material. 

8- The use of sodium phosphate as an electrolyte in the ECR treatment resulted in a 

substantial increase (300%) in the realkalisation rate compared to that observed when 

sodium carbonate was used. Lithium hydroxide also increased the realkalisation rate by 

about 50%. 

9- The passage of an electric current during the ECR treatment resulted in the 

densification of the pore structure, reducing both total and capillary porosity of 

cathode/cement paste transition zone. This effect was more pronounced for capillary 

porosity than for total porosity. The ECR process also led to some decomposition of 

calcite and the reformation of C-S-i l gel. These effects were more pronounced with 

increasing intensity of polarisation and with the use of sodium phosphate as an 

electrolyte. 
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8.2 RECOMMENDATIONS FOR FURTHER WORK 

It might be possible to carry out further development of the scratch hardness tool to 

achieve more accurate and precise measurements of microstructural gradients that exist 

over 10-50 µm distances, such as aggregate/cement paste and reinforcing steel/cement 

paste transition zones. This could be done by 1) altering the geometrical details of the 

scratch bit, which should be made more durable in terms of wear resistance, 2) 

connecting the scratch hardness tool with an image analysis system to ease tracing of 

the variations of the pore structure along the scratch, and 3) modifying the mechanism 

of the scratch bit movement such that it would not be displaced by hard particles (i. e. 

coarse aggregate and reinforcing steel). 

The work reported in Chapter 6 showed that the use of CPF led to a remarkable 

enhancement in the microstructure and mass transport properties of the surface zone. 

However, these enhancements were insignificant for low w/c ratio concretes (50.5). It 

is therefore suggested to use water reducing or superplastizer admixtures in manufacture 

of such concretes to overcome this drawback. The use of these admixtures could 
increase the amount of free water within the concrete mix, leading to an increase in the 

amount of water to be drained from the CPF sheets and hence reducing the w/c ratio at 

the surface further. This, consequently, could improve the properties of the cover zone. 

As a result of the improvement in the properties of the cover concrete due to the use of 
CPF, the thickness of cover concrete cast against CPF could be reduced compared to 

that cast against IF. However, the question arises as to how much extra covercrete can 
be saved due to the use of CPF. It is suggested that an economic study might be carried 

out in order to compare the savings during construction, having used IF, with the 

savings in the long-term due to the use of CPF. The main aim of this suggested study 

would be to show whether the use of CI'F could offer the most cost effective solution 

for producing durable and high strength concretes. 

The preliminary results reported in Chapter 7 show that the use of sodium phosphate as 

an electrolyte has a significant effect on the processes of ECR. However, this apparently 
beneficial effect has not been fully understood. Further studies are therefore necessary to 

investigate the following aspects in order to clarify the underlying phenomena. The 

following points need to be examined: 
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(1) the diffusion and absorption of sodium phosphate solutions in carbonated 

concrete, 

(2) the stability of the alkaline environment formed due to the penetration of this 

electrolyte, 
(3) the nature of the reaction products of cement phases formed during ECR process 

using sodium phosphatc. 

Further work is needed on the nature and stability of the passive film which is formed 

around the reinforcement after the I: CR treatment. If such information were available, it 

might ultimately lead to a more comprehensive recommendation concerning the future 

ECR treatments required for maintaining the reinforcement in a passive state. 

There is a need for a long term study on the durability of reinforced concrete against 

further CO2 exposure treated with [: CR. The durability of the concrete treated with 

surface coatings after ECR could also be investigated. This could be achieved by 

monitoring the changes in the microstructure and composition of the treated concrete 

and the corrosion activity of reinforcement for an extended period. 

Adopting ECR to remove the chloride ions present in carbonated concrete could be the 

subject of further investigation. This could be done by altering the intensity of 

polarisation and the period of ECR treatment until both a highly alkaline zone is 

achieved around the reinforcement and the chloride content is reduced to below the 

threshold value. This might ultimately help to restore reinforced concrete which suffers 

from the dual action of chlorides and carbonation. 

The work that has been done in this thesis and in the literature regarding the ECR 

treatment has been mainly carried out on OPC paste and concrete, whilst there is a lack 

of information about the effectiveness of using ECR in treating the carbonated blended 

concretes, such as OPC/PFA and OPC/GGBS. Thus, more work needs to be carried out 

in order to clarify the role of ECR treatment on such concretes. 
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APPENDIX 1 

DETERMINATION OF NON-EVAPORABLE WATER 

1.1 Derivation 

Equation 2.1 used for the determination of non evaporable water (NEW) in cement 

pastes was derived as follows (Lambert, 1983 and Sergi, 1986): 

The mass of the cement paste before and after heating to 105 and 950°C may be defined 

using the following equations. 

Wo = JVc + We + Wn + Wa ....... (1) 

1V105 = IVc+ IVn+ IVa 

IV950 = IVc 
(100 - l) 

+ Wa 
100 

where, 
IVo = original mass of cement (g) 

1V105 = mass of cement at 105°C (g) 

1V950 = mass of cement at 950°C (g) 

IVc = mass of unhydrated cement (g) 

We = mass of evaporable water (g) 

Nn = mass of non-evaporable water (g) 

Wa = mass of admixtures (g) 

and i = loss-on-ignition (% g/g of unhydrated cement) 

....... (2) 

... (3) 

From these Equations (1 to 3) expression for non-evaporable water may be developed as 

follows: 

if Wa = 
(Wc)x(a) 

...... (4) 
100 

where, 

a= admixture content(% g/g of unhydrated cement) 

From (3), 

JV950 = 
iVc(100 - i) 

+ 
(WVc)x(a) 

- 
JVc(100 -i+ a) (5) 

100 100 100 
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We _ 
(100)x(ry950) 
(too-1+a) 

Non-evaporable water (NEIN) = 
11,1 

x1 OO% 
11c 

From (2), 

IVn = JV105 - lVc - Wa 

Sub. IVa from (4) 

iVn = 1V105 - TVc - 
(JVc)x(a) 

100 

IVn = 1V 105 - WVc(1 + 100) 

Sub. JVc from (6) 

Wn = iV105 - 
(100)x(1V950) (1 +- ) 
(100-i+a) 100 

Wn - 
IV105(100 -i+ a) - (100 + a)WV950 

(100-i+u) 

(6) 

Divide by ii'c from (6) and multiply by 100 to give the non-evaporable water (%) 

NEI V(%) = 
[IV105(100 -i+ a) - (100 + a) IV950] [100 -i+ a] 

(100 -i+ a)x(100)x(WV950) 

NEI V(%) - 
WV105(100 -i+ a) - JV950(100 + a) 

IV950 

1.2 WORKED EXAMPLE 

For specimen at 26-30 mm into OPC paste 

Mass of specimen at 105°C =3.64980 g 

Mass of specimen at 950°C =3.09214 g 

% Loss-on-ignition =0.89731 % 

% Admixture content =0.0 % 

cured with E4, w/c = 0.55, (Figure 3.8) 

= W105 

= IV950 

=i 

=a 

NEl V(%) - 
WI 05(100 -i+ a) - IV950(l 00 + a) 

W950 

3.6498(100 - 0.89731 + 0.0) - 3.09214(100 + 0.0) 
iyairr tivj - 

3.09214 

NEWV(%) =16.9756% 
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APPENDIX 2 

WORKED EXAMPLE OF DETERMINATION OF TOTAL 

AND CAPILLARY POROSITY 

For specimen at 26-30 mm into OPC paste cured with E4, w/c 

3.13) 

Weight of specimen in water =1.8565 g 
Weight of specimen in SSD condition =3.9358 g 
Weight of specimen pre-conditioned at 90.7% R11 =3.8334 g 
Weight of specimen at 105°C =2.9335 g 

Capillary porosity (%) 

Capillary porosity (%) 

Capillary porosity (%) 

Total porosity (%) 

Total porosity (%) 

Total porosity (%) 

6V2-[V3x100 
IV2 - . V1 

= 0.55, (Figures 3.11 and 

= W1 

= W2 

= W3 

= W4 

_ 
3.9358 - 3.8334 

x100 3.9358 -1.8565 
=4.9218 % 

I V2 -11'4 x 100 
JV2 - iß'1 

3.9358 - 8.8006 
x100 3.9358 -1.8565 

=48.2005 % 
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APPENDIX 3 

DETERMINATION OF CARBONATE CONCENTRATION 

IN EXPRESSEID PORE SOLUTION 

3.1 Derivation 

To calculate the content of carbonate ions (CO3-)present in the pore solution of IICI' 

treated with ECR using sodium carbonate as an electrolyte, the following derivation 

may be developed (Walker, 1994). 

Using a pH electrode it was seen that, in an acid-base titration, the colour change of 

1) Phenolphthalein indicator occurred at pl1 8.31 

2) Bromocresolgreen indicator occurred at pI 13.95 

Using equilibrium equations (Pourbaix, 1966) 

(CO3) '= 
-10.34 + pI I (HCO3 ) 

(NCO; ) 
=-6.38+pI1 (H2CO3) 

Let: 

Total carbonate =CO + 11CO + 112CQ =a moles 

Addition of acid (11`) to take pII from 8.31 to 3.95 =b moles 

At pH 8.31 

H2CO3 0.0 

From (1), 

COZ '= 10'2. oa 
HCOO 

Sub. (5) and (6) in (3), 

0.009 (11CO3)+(11C03-)+0.0 

1.009 (HCOc ) 

0.009 

a 

=a 
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..... (2) 

... (3) 

...... (4) 

...... (5) 

(6) 



flco 

Sub. (7) in (6) this givcs, 

co; - 

= 0.991 a ...... (7) 

= 0.009a ...... (8) 

At pi 13.95 

C02- 0.0 

From (2), 

I"Co 
= 10"2. " 0.004 

112CO3 

Sub. (9) and (10) in (3), this gives, 

ilco = 0.004a 

112C03 = 0.996a 

(9) 

.... (i 0) 

...... (11) 

...... (12) 

I Ience: 

Titration from p118.31 to pl13.95 causes: 

0.991 a moles 11C0, - + 0.009a moles CO; - +b moles If* 

to be converted to 

0.996a moles N2CO3 + 0.004a IIC0 

Therefore, 

b= (0.991 - 0.004)a + 2(0.009a) 

a=1.005b 

3.2 WORKED EXAMPLE 

For the case of U-10 mm slice of IICP treated with ECR for 28 day using I A/m2 

current density, it takes 

202 mM I! ' to reach the phenolphthalein colour change 

and 425 mM II* to reach the I3romocresolgreen colour change 

b= 425 - 202 = 223 mM 

Carbonate content (a) = 1.005b 

Carbonate content (a) = 224.115 mM 
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APPENDIX 4 

DETERMINATION OF TILE EFFECTIVE CHLORIDE DIFFUSION 

COEFFICIENT 

4.1 CIILORIDE CALIBRATION CURVE 

I 

0.8 
" 

a 
0.6 

Oc 0.4- 
,a0 

0.2 

0 
0 0.2 0.4 0.6 0.8 1 1.2 

Corrected ABS 

4.2 PROOF OF TIIE EQUATION USED IN TIIE DETERMINATION OF 

EFFECTIVE CIILORII)E DIFFUSION COEFFICIENT 

The derivation of equation (2.10) is based on Fick's first law of diffusion and may be 

developed as follows. 

The flux, J, of chloride ion entering compartment 2 is given by; 

V. dr2 
= 

D`' 
(C, -Cz) ..... (1) 

where, 

D1:, = effective chloride diffusion coefficient 

V= volume of the solution in compartment 2 

A= cross-sectional area of diffusion 
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1= thickness of disc 

C, = concentration of solution in compartment I 

C2 = concentration of solution in compartment 2 

Rearranging Equation (I) gives, 

dC2 
_ 

DºA 
C C) '2 dt IV 

d(C1- C2) D, A 
cit ... (2) 

(C, -C2) IV 

Integrating Equation (2) for t>to and C, » C2 yields; 

1, cl DjA [loge(Cl 
- C2)1'c,. 

o IV 
Id. 

log, 
Cl -C2) D,. jA 

l Cl 

log, C' 
= log, I+ 

C2 
C, - C2 C, - C2 

DIA \ 

1 r, 
(t-tn/ 

Expand the logarithm; 

C2 
,,, 

Dc$A 
lt - iý ) l Cl - C2 "o, 

C2 
D, AC' 

(t - t") 
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Thus the effective chloride ion diffusion coefficient, DD.,, can be calculated from the 

slope, S, of the plot of C2 against t as follows: 

A C, 

4.3 WORKED EXAMPLE 

For disc at 26-30 nim into OPC paste cured with E4, w/c = 0.55, (Figure 3.15) 

Volume of solution in compartment 2= 84.8 nil =V 

Thickness of disc = 0.331 an =l 

Cross sectional area of diffusion = 9.1616 cm 2 =A 

Concentration of solution in Compartment 2=I. Ox 10--' moles/cm' = C2 

Slope of plot of C2 against t=8.428x10'" moles/cm'. s =S 

From Dl zS AC, 

84.8x0.331 
D,., =3 x8.428x10-13 9.1616x1.0x10- 
D, l = 25.8x10-9cm2 /s 
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4.4 SUMMARY OF TILE EFFECTIVE CIILORII)E DIFFUSION 

COEFFICIENT RESULTS 

The cllectivc chloride diffusion coe iciest (1), XI U^-9 cm 2 Is) results liar OPC paste 

specimens subjected to different curing regimes (Figure 3.15) 

Curing Depth below surface, mm 

regime 2-6 6-10 10-14 14-18 18-22 22-26 26-30 30-34 

33.7 26.6 63.6 30.7 30.3 29.6 26.0 40.3 

E4 58.5 78.0 19.5 17.2 41.3 26.2 29.6 15.5 

63.5 26.4 32.1 20.6 25.0 22.2 20.5 24.1 

48.5 33.3 38.9 27.9 10.9 20.5 26.6 26.5 

Average 51.0 41.0 38.5 24.1 26.9 24.6 25.7 26.6 

34.8 50.5 60.1 40.2 24.0 42.9 35.5 29.9 

E7 44.2 25.2 32.4 44.5 31.1 38.2 30.2 28.5 

22.1 36.5 31.5 20.2 37.2 36.5 38.4 42.3 

38.9 39.0 40.4 37.1 51.7 34.0 35.7 60.1 
Average 35.0 37.8 41.1 35.3 36.0 37.9 35.0 40.2 

75.0 70.7 36.8 52.2 38.7 45.9 19.9 45.0 

E8 100.5 70.0 64.4 54.1 60.5 47.2 80.2 46.2 

88.2 68.8 56.7 50.2 59.5 40.5 47.5 50.2 
28.7 70.1 62.9 25.5 61.7 42.2 30.8 42.6 

Average 73.1 69.9 55.2 45.4 55.1 44.0 44.6 46.0 
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APPENDIX 5 

A WORKED EXAMPLE OF DETERMINATION OF CHEMICAL 

COMPOSITION OF CEMENT PASTE 

For carbonated OPC paste cured with E4 (Table 5.2) 

Summary of TG data 

Temperature, C 20 110 250 450 600 700 750 900 950 

weight of spec. 1100 95.30 90.07 87.40 84.16 79.92 74.50 65.41 65.12 

Knowing that (Ramachandran, 1969 and Itahman, 1989); 

" C-S-H decomposes at range of 110-250° C. 

" C-H decomposes at range of 450-600° C. 

" Ca=CO1 (all phases) decompose at range of 700-900° C. 

" Calcite (Ca2CO, ) decompose at range of 750-900° C. 

" All evaporable water (EW) releases when the temperature reaches 110° C. 

" All non-evaporable water (NEW), bound water, releases when the temperature 

reaches 950° C. 

Therefore, the following calculations based on the above criterias may be carried out as 

follows; 

Let; 

The effect of loss-on-ignition and the other phases which might decompose at 

these ranges of temperature are negligible. 

% Weight loss due to decomposition of C-S-Ii 

=% weight of spec. at 110°C -% weight of spec. at 250°C 

= 95.30 - 90.07 = 5.23 % 
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% Weight loss due to decomposition of C-11 

_% weight of spec. at 450°C -% weight of spec. at 600°C 

=87.40-84.16 =3.24% 

% Weight loss duc to dccomposition of all phases of calcium carbonatc (Ca7CU, ) 

=% weight of spec. at 700°C -% weight of spec. at 900°C 

=79.92-65.41 = 14.51% 

% Weight loss due to decomposition of calcite (Ca, CO, ) 

=% weight of spec. at 750°C -% weight of spec. at 900°C 

=74.50-65.41 =9.09% 

% Weight loss due to evaporable water (EW) 

=% weight of spec. at 20°C -% weight of spec. at 1 l0°C 

= 100-95.30 =4.7 % 

% Weight loss due to evaporable water (NEW). bound water 

=% weight of spec. at 110°C -% weight of spec. at 950°C 

=95.30-65.12 =30.18% 
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APPENDIX 6 

EXAMPLE OF IDENTIFICATION OF XRD TRACE 

For OPC specimen, at steel cathode/cement paste interface zone, treated with 1? CR at 

I A/m 2 for 14 days (Figure 7.20), the following values for 20, d-spacing (based on 

CuKct = 1.542 A and relative intensity i were determined: 

20 d-spacing Intensity Standard data 

d (A °) (I) Calcite Vaterite 

25.0 3.559 2 3.58 (vvs) 
27.0 3.3 2 3.3 (vvs) 
29.5 3.025 26 3.04 (vvs) 
35.0 2.562 2 2.50 (m) 
38.5* 2.336 15 NIP* 
39.5 2.279 6 2.29 (s) 
43.0 2.102 5 2.10 (s) 
44.0 2.056 2 2.06 (vvs) 
47.5 1.913 7 1.91 (ms) 
48.5 1.875 6 1.875 (ms) 
50.0 1.823 2 1.83 (vvs) 

* Non-identified Peak 

The calculation of d-spacing shown in the above table was carried out using Bragg's 

equation (n ?. =2 d sinO), assuming the order of reflection (n) =1 and the wave length of 

the X-ray beans (?, ) =1.542. 

The values of d and I were compared to standard data as shown in the table, to identify 

calcite and vaterite phases. In this case, calcite was easily to be identified, whilst vaterite 

was difficult to identify as a result of absence some major peaks. Non-identified peak 

was also appeared in this trace at 38.5°. 

Key to table: scale of decreasing relative intensities: 

vvs, vs, s, ms, m, mw, w, vw, vvw 
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