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Thesis Summary

With the ability to collect and store increasingly large datasets on modern computers comes
the need to be able to process the data in a way that can be useful to a Geostatistician or
application scientist. Although the storage requirements only scale linearly with the number of
observations in the dataset, the computational complexity in terms of memory and speed, scale
quadratically and cubically respectively for likelihood-based Geostatistics. Various methods
have been proposed and are extensively used in an attempt to overcome these complexity issues.
This thesis introduces a number of principled techniques for treating large datasets with an
emphasis on three main areas: reduced complexity covariance matrices, sparsity in the covariance
matrix and parallel algorithms for distributed computation. These techniques are presented
individually, but it is also shown how they can be combined to produce techniques for further

improving computational efficiency.
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Thesis Outline

1.1 Introduction

The influence of computers in the world is growing rapidly. Computation speed and storage
capacities are growing every year and at an ever increasing pace. Equally, user expectations
are also rising. Vast quantities of information can be captured, processed and stored automat-
ically. Many practitioners today work with large datasets which were not possible to analyse
in an acceptable time, even relatively recently. Nevertheless, as computation speed increases
practitioners try to analyse still larger datasets and encounter similar problems with unaccept-
able computation times. Such extensive datasets are frequently encountered by environmental
scientists (Cressie et al. 1997).

In this thesis, the issues associated with the application of geostatistics to large datasets are
addressed. A range of possibilities are explored to give a practitioner the flexibility to choose
the techniques appropriate for addressing a specific problem. The aim of this thesis is to provide



1.2. LARGE DATASETS

accessible geostatistical techniques for use with large datasets.

In what follows, the main themes of the contributions that this thesis makes are introduced.
Before any technical details are considered, the motivations for this work are discussed. Following
the discussion of the background of the techniques that are used throughout this thesis, the
contributions that this thesis makes are listed along with publications and presentations delivered

during the completion of this work.

1.2 Large datasets

The problem of large datasets was once considered a solved issue (Schabenberger and Gotway
2005). By using method—-of-moments variograms and moving window kriging, all but the very
massive dataset are computationally tractable. In recent years the popularity of and interest in
maximum likelihood-based algorithms has grown and such algorithms give rise to computational
problems when more than a few thousand observations are encountered.

Traditional geostatistics can be divided into two main activities. The first step, usually re-
ferred to as variogram estimation, involves determining the covariance structure of the dataset
being analysed. Secondly, once the covariance model and parameters have been selected, pre-
diction is performed. Depending on the methods used, both stages can potentially be compu-
tationally intensive, hence both parameter estimation and prediction are addressed throughout
this thesis. A number of techniques to treat large datasets have already been proposed and have
been extensively used to avoid the large matrix inversion problems. However, as is discussed in
Chapter 2, these techniques have a number of limitations. When likelihood-based parameter
estimation techniques are used, the need to invert an (n X n) covariance matrix, I, of all the
observations (where n is the number of observations) cannot be avoided. Furthermore, Bayesian
or model-based approaches (Diggle and Ribeiro Jr. 2007) that explicitly assume a probabilistic
model also require an inversion of the covariance matrix, Z.

Many datasets that geostatisticians analyse are typically of the order of just a few hundred
observations since it can be expensive to collect more observations, or an exhaustive dataset may
not be available. Geostatistics can be performed efficiently with such small datasets. With the
recent increase in the size of datasets, mainly due to the large number of satellite—based sensors,

sampling potentially vast areas across the globe (eg. ERS (Offiler 1987; Andrews and Bell 1998)),

16



1.3. MACHINE LEARNING

aerial photography, large monitoring networks (eg. EURDEP!) or large repositories of data
accessible from online sources (eg. Atmospheric Radiation Measurement Program?), it is not
uncommon that the number of observations can run into the millions. Performing geostatistics
directly on large datasets of more than a few thousand observations becomes prohibitive.

Treating large datasets is not the only reason to research techniques that offer increased
computational efficiency. For example, there is a need for efficient algorithms for use in a real-
time mapping context (Williams et al. 2007; Ingram et al. 2008). In particular a network
monitoring scenario could be considered whereby observations are collected and reported by
a network of sensors and are then transformed into maps which decision makers can use for
assessing a situation. As noted by Galmarini (2005), there still exist significant problems if the
results are required in (near) real-time, as would be the case with many automatic monitoring
networks when an emergency situation arises. Also, onboard systems found in some sensor
devices (eg. those mounted on a satellite) tend to have limited processing power due to power
consumption constraints. Hence the need to develop faster, more efficient algorithms.

There are a large number of solutions for overcoming the matrix inversion problem and as
such it is rarely considered to be of serious consequence. As noted by Galmarini (2005), there
still exist significant problems if the results are required in (near) real-time, as would be the
case with many automatic monitoring networks. Also, the application of many of these solutions
to the large matrix inversion problem often requires significant human intervention and would
not be appropriate for use in an automatic mapping context. Hence there is a need to return
to the question of how to treat large datasets in a likelihood-based framework in the automatic
mapping context.

In this work a number of algorithms will be added to the existing techniques to give the
geostatistician more options for their analysis of large datasets.

1.3 Machine Learning

Machine learning techniques have been researched for many years (Bishop 1995; Ripley 1996).
The main focus is to generate models using computational and statistical techniques using a

Yhttp://eurdep. jrt.it
‘http://wwv.arm. gov
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1.4. COVARIANCE MODELS

training dataset. Once a model for a specific dataset has been generated it can be used to make
predictions, classifications or decisions depending on the purpose of the algorithm.

In the machine learning community, the Gaussian process framework has received increasing
attention, particularly for the treatment of large datasets (Quifionero-Candela and Rasmussen
2005). The basis of these types of techniques is to represent the full model by an approximation.
By minimising any significant loss of accuracy, an approximation can be made. These types of
approximations are generally referred to as sparse approximations, but this can be misleading
since the assumption, often mistakenly made, is that the matrices involved are sparse. The
reality is that the sparsity involved in these approximations induces low-rank matrices rather
than sparse matrices. To avoid confusion and following the naming conventions of Rasmussen
and Williams (2006), the term projected process will be used to refer to sparsity in models that
use low-rank matrix approximations. To complicate matters somewhat, the concept of sparsity
in matrices is discussed in Chapter 4 of this thesis and then combined with the projected process
techniques to provide a very compact representation of the model.

These projected process techniques have gained modest popularity and are beginning to
be used for many types of applications. As of yet, the wide spread application of projected
process techniques by geostatisticians is extremely limited. This is largely a consequence of
the presentation of the techniques. Chapter 2 presents these projected process methods in a
context familiar to geostatisticians in the hope that the methods will be more accessible to
geostatisticians. Many of these techniques are related to parallel developments in geostatistics
which are highlighted.

1.4 Covariance models

Many of the datasets analysed by machine learning algorithms contain observations with high

dimensionality in the inputs. It would not be uncommon for a dataset to have over one hundred
input dimensions. The majority of the datasets analysed in geostatistics are commonly two or
three dimensional in terms of their inputs. The covariance function is used to encode beliefs
about the covariance structure of the dataset. It is fairly common practise to find the Gaussian or
squared exponential covariance function used in machine learning algorithms since it is valid for

use with high dimensional datasets, that is to say that it generates a positive definite covariance



1.5. PARALLEL COMPUTATION

matrix for all dimensions. A Gaussian covariance function is not always appropriate for use in
geostatistics since it can be considered unrealistically smooth for many physical processes (Stein
1999). Some of the covariance functions used in geostatistics are not valid when applied to high
dimensional problems. Hence there has been little research in the numerical and computational
performance of alternative covariance functions in projected process techniques. Further to
this, the advantages of space-limited covariance functions are considered and coupled with the
projected process techniques to provide an universal method for representing a process in a
compact form by identifying the redundancy in both large—scale and small-scale variation of the

model.

1.5 Parallel computation

The early standardisation of a single machine computer model over sixty years ago (Neumann
1945), the von Neumann architecture, was one of the reasons for the rapid rise in the use of
computers in business, science and education (Foster 1995). The von Neumann architecture
comprises of a single processor that is connected to a data storage unit which is used to store
a computer program and data. Computer program instructions that are stored in memory are
fetched, decoded and executed sequentially. The standardisation of this computer model allowed
programmers to focus on abstract algorithm design rather than having to design algorithms for
specific computer architectures (Cobb 2000).

Multiple processors (or processor cores) in desktop computers are becoming commonplace.
Software designed for von Neumann architectures is effectively limited to the speed of the fastest
processor element in a parallel architecture. Changing the program language paradigms preva-
lent throughout the world is not a trivial task (Backus 1978). Programming parallel architectures
is also notoriously difficult due to the complexities of concurrency, resource allocation perfor-
mance and the diversity of differing parallel machine architectures (Darlington et al. 1993).
Productivity in developing parallel software is a challenge being faced by many developers in
the sense that the programming paradigms are more complex.

To utilise parallel architectures, the parallelisms in the underlying models have to be iden-
tified. To fully utilise modern commodity hardware, the development of parallel algorithms

is essential otherwise a large proportion of the processing power of the computer will remain
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1.6. SAMPLE DESIGN CONFIGURATION

under-used when performing computationally intensive calculations. The world of geostatistics
would certainly benefit from the wide spread use of software that could exploit parallel archi-
tectures. The available literature for parallel geostatistics is scanty. Coupled with the other
ideas presented in this thesis, algorithm parallelism is another technique that should be used to
improve computational speed.

1.6 Sample design configuration

Having introduced some of the techniques presented in this thesis for analysis of data that has
already been collected, attention is now turned to the topic of collecting data. The problem of
where to locate sample points for data collection is often based on intuition or expert knowledge
about the process being observed. Selecting a sampling scheme that is too coarse will result
in loes of information. As the sampling scheme granuality increases, the cost of data collection
increases. The techniques that will be presented later in this thesis for treating large datasets
are related to techniques that can be used for sampling design optimisation. Here we look at
the specific case of soil data where ancillary data is available. |

In soil science in general, determining an optimal sampling configuration for a soil variable
of interest can be informed by using ancillary data such as an aerial photograph. Selecting the
most informative sampling locations can save both time and money for precision agriculture.
Ancillary data has been shown to be effective for informing analysis because it tends to vary
in similar ways to soil data (Kerry and Oliver 2003), although the relationships are complex
and difficult to interpret. The ancillary data is analysed so that the covariance structure can
be determined. The sampling configuration can then be determined by the process covariance
parameters obtained from the ancillary data.

A drawback of using ancillary data is that it tends to be densely sampled which prohibits
likelihood-based covariance parameter estimation. Another problem occurs even when the co-
variance structure of the soil data is estimated well from the aerial photograph. Selecting
potential sampling locations based solely on the covariance structure can still miss important
features in the data that would be captured had changes measured in the locally varying mean
also been analysed.

The projected process framework can be utilised to enable the application of maximum
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likelihood parameter estimation and also for sampling design configuration which takes into
account the locally varying mean.

1.7 Contributions

The contributions that this thesis makes to scientific understanding are:

e Integration of methods for treating large datasets from machine learning for use in geo-

statistics.

e Application of space-limited covariance functions together with projected process approx-

imations to provide an universal technique for treating large datasets.
o Parallel algorithms for treating large datasets.

e Sequential optimal sampling design configuration informed by ancillary data.

1.8 Thesis structure

This thesis is organised into the following chapters:

Chapter 1 is this introductory chapter.

Chapter 2 introduces the theory of the spatial interpolation methods known as kriging and
Gaussian processes. Bayesian methodologies for spatial interpolation are also reviewed.
Links to the techniques being developed in the machine learning community for treat-
ing large datasets are made and these techniques are presented in a geostatistical frame-
work. The issues associated with commonly used geostatistical techniques for treating
large datasets are reviewed. Alternative algorithms are presented which provide ways of
treating large datasets.

Chapter 3 explains the datasets that will be used throughout the later chapters of this thesis.
To provide consistency in the benchmarking of algorithms and gauging performance, three
datasets will be used with each of the techniques introduced. Two of the datasets are

synthetic and one is a real world example.
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Chapter 4 extends the projected process methods already discussed by showing how space-
limited covariance functions can be used to achieve computational advantages. Construct-
ing valid covariance functions for spatial interpolation is reviewed and the computational
advantages are demonstrated. The application of space-limited covariance functions is
shown to provide further possibilities for increasing computational efficiency. Through
the application of space-limited covariance functions coupled with the projected process

methods discussed in Chapter 2, an universal approximation method created.

Chapter 5 familiarises the reader with parallel computing and current trends in parallel soft-
ware. The basic principles of parallel computing are reviewed and current technologies
are explained with particular relevance to mathematical problems. The main barriers to
utilising such methods are discussed.

Chapter 6 develops on the contributions of the earlier chapters by showing how these models
can exploit parallel architectures to achieve further speed up. A review of techniques
currently utilised in a range of applications is presented. Parallel algorithms for treating
large spatial datasets are introduced and benchmarked to show what range of speed ups
can be obtained by their adoption.

Chapter 7 shows how sequential projected process techniques can be applied to optimal sam-
pling design where ancillary data is available. Specific examples using data collected from
two fields in the south of England are used to illustrate this method. By using a sequential
algorithm, the efficiency of determining sampling locations is increased.

Chapter 8 concludes this thesis with a summary of the achievements of the techniques pre-
sented. Important considerations are discussed with a view to practical use in real world

applications. Questions about future work are raised.

Some calculation details have been put in appendices to maintain the flow of the main ideas
in this thesis.
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1.9 Symbols and abbreviations

Bold lowercase letters are used to denote vectors and bold uppercase denote matrices. Scalar

quantities will be typeset in normal print, for example as the particular elements of a vector or
matrix, hence a vector x = [x;,%2,..., xn]'T is a n—dimensional vector with the corresponding
components.

Summary of the notation used in the thesis:
x — a spatial location or inputs from a d-dimensional space.

Y — an observation or the output corresponding to a given input x, it can be continuous or

discrete.
Dn ={(x1,¥1),.-+,(%n,Yn)} — the dataset of observations.
n — the size of the dataset of locations and observations or fraining dataset.
m — the size of the active set.
t — the size of the prediction locations or test dataset.
xN — the locations of the dataset.
xm — the locations of the active points selected for the active set.
xT — the prediction locations.
Z(:) — the observations given an location.
Z(xn) — the observations at the locations in the dataset.
Z(ym) — the observations of the dataset included in the active set.

kag = k(xa,xB) = cov(xa,xp) — the covariance between the locations spatial locations xz and

XB-
® — model parameters.

P(D0) — is the likelihood of the dataset D given the model parameters 0.
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€ {w} — the expected value of w.

Y(llxa —xg||]) — the semivariogram between the locations xA and xg.

f(x) — the value of the random function at x.

I — the covariance matrix.

I~ ! — the inverse covariance matrix.

diag(W) — only preserve the diagonal elements of the matrix W.
blockdiag(W) — only preserve the block diagonal elements of the matrix W.
nnz(A) — the number of nonzero elements in A.

(A,B)r — the Frobenius norm between the matrices A and B.



Algorithms for large scale datasets

2.1 Infroduction

The machine learning community has seen an explosive interest in Gaussian process methods

during the last decade (Rasmussen and Williams 2006). These methods have been known as
kriging by geostatisticians for many years (Williams and Rasmussen 1996), and are used for
addressing problems within the spatial prediction domain (Matheron 1963). In the 1960’s,
geostatistical techniques were largely developed independently of mainstream spatial statistics,
having their own unique presentation. This led to connections between parallel developments
within spatial statistics being unclear since the relationship between geostatistics and spatial
statistics was unclear. An example of these parallel developments is that of kriging, which is
equivalent to the minimum mean square error prediction under a linear Gaussian model (Diggle
et al. 1998). It was not until the early 1980’s that Ripley (1981) made this connection explicit.
Over a decade later, Cressie (1993) presented geostatistics as one of the three main branches of
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spatial statistics.

The purpose of this chapter is to present a unifying view of geostatistics and machine learning
methods for treating large datasets. There have been many independent developments in both
areas of study, and typically many of these developments are identical in principle. However,
had a clear unifying framework been adopted, repeated research may not need to have been
done.

In this chapter, the links between the methods from machine learning and geostatistics will
be made. Subsequent developments in either field will be presented with terminology familiar to
a geostatistician. Additionally, the problem of treating large datasets in a statistically principled
manner will be discussed offering a number of new approaches.

2.1.1 Spatial interpoiation

Spatial interpolation encompasses a large number of techniques that are used for prediction
of attributes at spatial locations where a variable has not been observed. For example, these
techniques include: nearest neighbour, inverse distance weighting and kriging. The modelling
process requires that a model is constructed of how a given process behaves at locations where
a variable has not been observed. Selecting the underlying model is something that requires
skill, judgement and experience and should be informed by prior knowledge about the nature
of the process that is being predicted. Analysing the observations solely is often insufficient
to determine how a process should be modelled. Additional knowledge about the variable is
important and if it is available it should be used so that assumptions can be made to inform
the model. In determining a suitable model, the physical processes that generated the observa-
tions are analysed. Ideally, understanding the process generating the variable being measured
sufficiently well to create a deterministic model would be desirable. However, few processes
that are observed in geosciences are understood sufficiently well to create accurate deterministic
models of the complex interactions that take place with other processes across different scales.
Therefore, probablistic or random field models are used and it is acknowledged from the outset
that there will be uncertainty in understanding the properties of a process.

Probabilistic models often view the available observations as the result of a random process.

Although this apparent randomness is evident, it is important to note that this does not mean
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that the process is random, it means however, that the understanding of the process is limited.
The question of which model is best is one that cannot be answered theoretically since this
depends on the true spatial structure and this is unknown, although often prior evidence can be
available to help inform more feasible models. The approach that is selected should correspond

with what is known about the process that generated the spatial structure.

2.2 Kriging methodology

In the domain of spatial interpolation one family of techniques that is commonly used for pre-
diction is called kriging (Cressie 1993). Kriging is a term generally used to describe a family of
methods based on the theory of random processes for computing the minimum variance estima-
tor. The estimation variance is optimal if the chosen covariance model is correct for the process
that generated the observations. It is not the purpose of this thesis to give a thorough review
of kriging, but rather to introduce the concepts that underpin kriging and then it will be shown
how these can be generalised.

It is assumed that Z (x) is a random spatial process with the covariance function k (-) where
the process Z (x) is known only at n spatial locations {x;,...,%Xn}. The vector of available data
is defined as:

Z=(Z(x1),...,Z(xn))- (2.1)

There are a number of kriging variants depending on what assumptions are made about what
is known about the process being investigated. First, the kriging model will be defined as:

Z(x)=m(x)"B+e(x), (2.2)

where m is a deterministic trend component with parameter vector § for the trend and e (x) is
the random process given by:

e(x)=N(0,Z), (2.3)

where I is the covariance matrix of the observations.
The most simple form of kriging is called Simple kriging. Simple kriging assumes that the

mean or trend function takes the form

m(x) =0, (2.49)
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or that there is a known constant mean or trend.
If the mean of the trend is assumed to be constant, but the mean is unknown, then Ordinary

kriging can be used to estimate the mean of the constant trend. Ordinary kriging assumes
m(x)=1, (2.5)

and an unknown constant, f, is estimated to obtain mean parameter value.

If the constant trend model is too restrictive an assumption to describe the trend, a general
linear trend can be assumed where the trend is modelled by a polynomial of a specified order.
In this context, a more general trend function is used. The mean function parameters, B, are
estimated by a generalized least squares estimator (Stein 1999).

Simple kriging is an optimal spatial predictor in that it minimises the mean-squared pre-
diction error. As discussed previously, to guarantee that the kriging predictor is optimal, the
assumption has to be made that Z is a stationary process and that Z (x) is zero mean, or that
the mean function has already been removed from the dataset. Note that in this thesis, without
loss of generality, the emphasis will be on simple kriging algorithms; for in depth discussion of
other forms of kriging the reader is directed to Cressie (1993).

The best linear unbiased predictor at an unobserved location x, is given by:

Z(x) =Y MZ(x). (2.6)

i=1
The predictor is simply a weighted sum of all the observations Z (x) in the dataset Dy (Webster

and Oliver 2000). Each weight A; is the corresponding weight for the observation Z (x{). The
weights are calculated by some function of the distance between each observation location and
the prediction location (Isaaks and Srivastava 1989). This scaled distance is based on choosing
a covariance model which describes the variation in the process. The covariance function will
be referred to as k (xq,%1) where x, and xp are spatial locations and the covariance function
returns the covariance between the two locations (or vectors of locations). A short hand notation
will be used to refer to the covariance; the vector kqp will denote the covariance k (xq,Xp).

To calculate the kriging weights at the prediction location x,, the covariance matrix of all
the observations, L, is inverted and multiplied by a vector of covariances between the prediction

location and the data locations to give the weight vector A as shown by:

A=I"kn, (2.7)
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where I is the square n x n matrix of the covariance between each of the observations given by:
k(x1,%1) ... k(x1,%n)
L= : : (2.8)
k(%n,%1) ... Kk(%n,Xn)
and kn. is the covariances between the observation locations xn and the prediction location x.:
k(x1,%.)
kN. — E . (2-9)
Kk (Xn,%.)

Substituting Equation (2.7) into Equation (2.6), the equation for predictive mean of the process

at location x, is:

Z (xa) =k I Z(xN), (2.10)
and the predictive variance is:
02 (%) = kew — k. Z kN, (2.11)
where
Kew =k (%4,%4) (2.12)

is the total sill variance of the process or process variance.

The complexity of solving the linear system b = £~'Z directly in Equations (2.10) and (2.11)
is O (n®) in computation and O (n?) in storage. This basically prohibits straightforward kriging
for large datasets of more than a few thousand, and also raises issues for smaller datasets that
need to be treated in (near) real-time. Furthermore, in an automatic mapping system the
parameters of the process need to be estimated without human intervention. In a setting where
maximum likelihood approaches are used to estimate the covariance parameters the need to
invert the covariance matrix several times (often hundreds of times) cannot be avoided.

It can be seen that the main bottleneck in the kriging algorithm is the need to invert the
covariance matrix, I, of all the observations. For large datasets, problems will arise and hence
there has been a large amount of research into potential solutions to solve these computational
problems. Many of the solutions are very simple to implement but at a cost; they are ad-hoc in
nature or lack a sound statistical basis (Cornford et al. 2005). Many of the more statistically

29



2.2. KRIGING METHODOLOGY

principled approaches tend to be mathematically intense and this can cause practitioners to
look elsewhere for solutions to these problems since the understanding of the principles of such
methods is often non-trivial.

The basics of kriging have been explained in a manner requiring very little mathematics and
in doing so it is hoped that the algorithms developed and described later in this chapter can

more easily be understood and hence be more appealing to many practitioners.

2.2.1 Gaussian processes

A Gaussian process is a stochastic process where every joint density function is Gaussian and
is therefore defined completely by its mean and covariance (Rasmussen and Williams 2006).
Gaussian processes are equivalent to kriging under the assumption of a multigaussian distribution
for the variable of interest. There are a number of ways to interpret Gaussian process regression
models. Geostatistians will feel particularly comfortable with the weight-space view of Gaussian
processes since this is the perspective in which kriging is usually presented. For some of the
methods that will be explained later in this chapter, an understanding of the function-space view
will give the reader an intuitive understanding since some of the methods explained are better
posed in this view. These two perspectives are equivalent and yield identical results (Williams
and Rasmussen 1996).

Bayesian methods

Although important, here a philosophical debate will be avoided of the merits of a Bayesian
approach over a frequentist view of the world. For most applications, it is unrealistic to believe
that one can understand the observed data and all the processes that generated it in sufficient
detail to permit a deterministic approach to prediction. The observed data are generally the
result of complex interactions of many processes of which it is unlikely that one has a clear
understanding. Therefore, prior knowledge about the observed data can be used. This can be
represented using a probability distribution where a model parameter is encoded, for example,
by a mean and variance for a Gaussian distribution.

The second centred moment (or variance for a Gaussian) of the distribution encodes the

precision or confidence about the accuracy of the observation as it relates to the process that is



2.2. KRIGING METHODOLOGY

to be modelled. Normal or Gaussian distributions are used more commonly, since if very little
is known about the actual distribution shape a Gaussian distribution often seems like a best
guess, and the maths is more tractable. The Central Limit Theorem states that if the sum of the
variables has a finite variance, then it will have an approximately Gaussian distribution (Tijms
2004). Bayesian methods propagate the uncertainty through the model from which a posterior
distribution can be obtained which describes uncertainty in the model parameters. Omre (1987)
gives a thorough review of kriging in a Bayesian framework.

It is common practice within the field of geostatistics that explicit stochastic models are rarely
declared and as a result little use is made of the likelihood-based methods of inference which
are central to modern statistics (Diggle et al. 1998). Diggle et al. (1998) have used the phrase
model-based geostatistics to describe an approach to geostatistical problems based on using
formal statistical methods under an explicitly assumed stochastic model. For all the methods
discussed in this thesis a model-based Bayesian approach is encouraged although each method
is introduced without the additional mathematical complexity that a model-based framework
can sometimes bring. Many statistically principled extensions to kriging models have been
proposed but have yet to find common place in the geostatistical community due in part to
the additional complexity that they require. For example, Heuvelink et al. (2006) state that
the techniques presented by Diggle and Ribeiro Jr. (2007) would provide an elegant solution,
but their application is not easy. Diggle and Ribeiro Jr. (2007) applies Monte Carlo based
methods for numerically calculating non—tractable integrals. Appendix B reviews an alternative
approach of Csaté and Opper (2001b) for approximating non-Gaussian posterior distributions.

The Bayesian approach to modelling is an attempt to utilise all available information in order
to create a realistic model. In doing so, prior knowledge such as experience, expert knowledge
or previous datasets can all be taken into account. Bayes’ theorem gives a mathematical rule to
update existing prior beliefs given new observed evidence. The process of using this additional
information to draw conclusions about situations not previously met is called inference. Inference
is a common part of everyday life and many things are inferred perhaps without even realizing

it. Bayes' theorem is given by:
p(DIf) p(f)
p(D)

which can be seen as a principled way of combining data-based information via the likelihood

p(fiD) = (2.13)
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Figure 2.1: Samples from the Gaussian process prior with a Gaussian covariance function.

function with a prior distribution chosen by the practitioner.

The starting point for Gaussian processes is to define a finite set of functions:
fx = {f(x1),...,f(xn)} (2.14)
which are indexed by corresponding inputs:

X ={%1,...,%n}. (2.15)

The prior Gaussian process is defined as the joint distribution of the random variables, fy
and is given by:

p(fy) =N(0,L). (2.16)

The prior distribution encodes prior beliefs about the function being modelled. Samples can be
drawn from the Gaussian process prior distribution to show possible paths the functions can
take. Figure 2.1 shows some randomly selected sample paths. The properties of the sample
paths are similar in nature. It can be seen that the covariance function used results in smooth
sample paths.

The likelihood is assumed to be factorised because it is assumed that the data is condition-
ally identically independently distributed on knowing the actual function value. Assuming the

observation noise is given by o2, then the likelihood can be written as:
P (Z(x)lfy) = N (fy, 0%1) (2.17)

which for a Gaussian likelihood gives:

N N
p(ZW)ify) = [P (2X)ify) =[] —mexp (_M) (2.18)
i=1

MO n 20?2

i=1
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Figure 2.2: Samples from the posterior Gaussian process after (a) 1, (b) 2, (¢) 3 and (d) 4
observations have been selected. The thick line in each plot represents the most plausible model
for the data. The thin blue lines in each plot show possible models for the data given the
parameters and observations. Each observation is indicated by a star.

By integrating over the unobserved function variances f, the marginal likelihood can be
obtained:
p(Z(x)) =J afp (Z(x)f) P (F) = N (0, + o21) (2.19)

Since both the prior distribution and the likelihood are Gaussian, Bayes’ rule can be applied
to obtain the posterior distribution by using the identity for the product of two Gaussians in
Appendix A.6. The posterior distribution is given by:

p(Z(x)lfy) p (fy)
p(Z(x))

N (zT (=7 + aﬂl)"' Z(x),E— L' (zT ih 021)"1 x) (2.21)

(2.20)

P (fxlZ(x))

The posterior mean realisation does not necessarily need to pass through all the datapoints

unless the noise variance 0? = (. The posterior mean realisations can be seen in detail in
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Figure 2.3: Samples from the posterior Gaussian process after (a) 1, (b) 2, (c) 3 and (d) 4 noisy
observations have been selected. The thick line in each plot represents the most plausible (mean
path) model for the data. The thin blue lines in each plot show possible models for the data
given the parameters and observations. Each observation is indicated by a star.

Figure 2.2. Notice how as more observations are added to the Gaussian process, the function
realisations are restricted to a smaller subset of realisations that are more plausible given the
data. The number of possible realisations could be infinitely many, but for the purposes of this
example only a few realisation are shown. Notice how the realisation passes exactly through
the observations. Now compare these realisations to the process when noise has been added as
shown in Figure 2.3. The realisations no longer pass through the observations exactly.

An intuitive way to view the function-space view of Gaussian processes is to consider an
infinite number of functions that could be a plausible model for the data. Then upon the
addition of each observation, the number of functions is restricted since some of the functions
are less likely for the given observation. As further observations are added, the set of functions

are restricted to those most likely given the data. Figure 2.2 gives a step by step example of this
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process of restricting the possible functions. The thick line represents a mean for the functions.
The thinner blue lines are samples from the posterior distribution which are likely interpolating
functions. The plots show how these functions are successively restricted to pass through the
given observations to give functions that are more likely.

Now assume that a new observation at location x., is included. The model is updated with

e-eles) -
fc Xy kL. k‘u

giving the distribution of f, conditioned on the function values fy corresponding to the locations

Xyt

the new location:

P(fulfy) ~N (kL,I"fx, Koy lc{,_}:'lku,) (2.23)

To obtain the value of a function, f, at a location, x, the representation:
fx=D) oikax, (2.24)
i

can be used where & = {a;...an)} = L7f,.

2.2.2 Covariance functions and kernels

Performing prediction is only a part of the procedure that geostatistians apply when modelling
spatial data. An important aspect of the whole procedure to obtain reliable results is in deter-
mining the form of the covariance matrix. The covariance matrix has already been mentioned
with very few details about its purpose. The covariance matrix is typically computed from a
covariance function. Covariance is a measure of similarity between observations.

There are two main methods that are used for covariance parameter estimation in geo-
statistics. Method—of-moments estimators are commonly used to estimate the semi-variogram.
Method—of-moments or plug-in estimators are popular because the computational complexity
scales O(n?) and the empirical variogram is useful in determining the form of the covariance
function model that would be appropriate given the data. The empirical variogram is defined

TN T _ 2
ﬂx]_2IN(h}l,?(—_,:){Zm] Z(x)}", (2.25)
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where:

N(h) = {(xi,%) 1% —%; =h;1,j=1,...,n}. (2.26)

and [N (h)| is the number of pairs of data points separated by the particular lag vector h. Once
the semi-variances at each lag separation, 'y(x), have been determined, a variogram model
is then selected and fitted to the calculated semi-variances. The variogram model is usually
selected based on intuition about the process being observed. Selection can also often be aided
by inspection of the empirical variogram (Ingram et al. 2005). Fitting a model to the semi-
variances at each lag to determine the model parameters is usually performed using a least
squares method (Webster and Oliver 2000). Once the model parameters have been determined,
the covariance matrix can be constructed in the usual way.

Alternatively, maximum likelihood approaches have been used to estimate covariance pa-
rameters (Mardia and Marshall 1984; Kitanidis 1985). Maximum likelihood methods are more
computationally intensive and scale O(n®) making their direct application inappropriate for
large datasets. Maximum likelihood was first used in the context of spatial statistics by Mardia
(1980) although the idea has been around for many years. Despite the computational complexity
issues and problems with multi-modality (Warnes and Ripley 1987; Mardia and Watkins 1989),
these techniques have gained wide acceptance. For maximum likelihood estimation, the aim is
to find the parameters, 6, that maximise the likelihood function (Pardo-Igtizquiza 1998). The
parameters 0 are the parameters of the model. The maximum likelihood approach shown is
given by

£0) =3 — 5 IE1— 5 Z(xn)TE1Z(xn) (2.27)

and requires that the matrix I, of size (n x n), has to be inverted.

Stationarity assumptions

It is important to make assumptions about the stationarity of the process. There are a number
of assumptions that can be made, but here, second order stationarity is assumed. Second
order stationarity can be assumed if the finite-dimensional distributions are invariant under
shifts of the index, that is to say that the distribution of (xi,...,%n) is identical to that of

(%3 +h,...,xn +h) where h is a vector.
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Terminology for parameters

In the machine learning community the covariance function is often referred to as a kernel
function. The terminology used to describe the parameters of the covariance functions also
varies. In geostatistics the terms nugget, range and sill are commonly used to describe what in
machine learning community are called noise, lengthscale (or sometimes relevance or roughness)

and amplitude respectively.

Covariance function properties

Certain assumptions about the process that is being modelled help with the decision making
process as to which covariance model is most appropriate. One property of a covariance func-
tion is the degree of smoothness. The degree of smoothness of a realisation of a process can
be described mathematically by the degree of differentiability at the origin ( h — 0 ) of the
covariance function.

In geostatistics, the choice of variogram model is often made based on empirical estimates
given from the data. In method—of-moments estimation, the variogram model is often selected
by eye and the chosen parametric variogram is fitted by ordinary least squares, weighted least
squares or generalised least squares. As an alternative approach, it was proposed by Mardia
(1980) that maximum likelihood methods could be used to fit the covariance function. This
process involves the computationally intense maximisation of the log likelihood function with
respect to the parameters of the covariance function. As Equation (2.27) shows, this is an O(n?)
operation and intractable for datasets of more than a few thousand observations.

The method-of-moments variogram estimator has been criticised since it can sometimes
lead to misleading results (Stein 1999; Minasny and McBratney 2005). However, method—of-
moments estimation remains a useful tool, particularly in helping to justify assumptions about
variation in the data and in previous work it has been shown how this can aid the modeller
in determining an appropriate covariance model (Ingram et al. 2005). A thorough comparison
between method—of-moments and maximum likelihood techniques can be found in Lark (2000).
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2.3 Treating large datasets

Notwithstanding the popularity of kriging, when applied to large datasets, non-trivial problems
can arise due to numerical instabilities associated with solving large systems of equations (Davis
and Grivet 1984; Dietrich and Newsam 1989).

In what follows, some of the common techniques that have been used to solve the above
mentioned issues of computational speed and stability will be reviewed. Chapter 4 will also ex-
plore covariance selection and the relevance of the covariance function to increasing the stability
of solving the kriging equations.

Methods that avoid directly inverting the covariance matrix, X, of the data are needed. In-
stead of inverting the covariance matrix directly, a number of researchers have proposed iterative
conjugate gradient methods for solving the kriging equations (Gibbs 1997). These methods don’t
have the poor scaling associated with direct methods (O (n?) per iteration), but solving the krig-
ing equations exactly can only be guaranteed, machine precision allowing, if the algorithm is run
for n iterations where n is the number of observations. Hence the number of iterations should
be significantly less than n to achieve any speed-up using this method. Recently, approaches
have been suggested to increase the speed of the conjugate gradient method, and these new
approaches rely on approximate matrix—vector multiplications (Gray 2004; Yang et al. 2005).

2.3.1 Sequential kriging

Most kriging implementations are batch algorithms, in that all the observations (or sometimes
a smaller subset) are processed in a single iteration. A sequential algorithm, whereby the model
is updated as each observation is considered individually, will be presented in this section.
Sequential algorithms have been used previously for a variety of applications (Vargas-Guzmén
and Yeh 1999; Lawrence and Herbrich 2001; Csaté 2002; Vargas-Guzmén and Yeh 2002; Sakata
et al. 2004; Liu and Yeh 2004; Huang 2005).

What are the advantages of a sequential kriging algorithm? Suppose that a large covariance
matrix inverse has been computed requiring a Herculean effort. Now a small change to the
covariance matrix is required perhaps due to newly collected data. Ideally one would not want

to have to compute the entire matrix inverse again. The matrix inverse can be updst.éd with
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significantly reduced computational complexity, (O (nz)) per update (Press et al. 1996).

It has also been noted that online or sequential algorithms can often be executed much faster,
particularly when a dataset has a large amount of redundancy (Lawrence et al. 2003). These
sequential algorithms can be particularly useful to solve the O (n®) matrix inversion bottleneck
that arises when dealing with large matrices. The idea of sequential kriging is not new; Sakata
et al. (2004) proposed a sequential algorithm that has been used to improve numerical stability
in large systems. Vargas-Guzmén and Yeh (1999) also present a similar sequential kriging
algorithm which improves stability.

The first step in the sequential kriging algorithm is to define the partitioned covariance

matrix:

IN kN[l+1)] (2.28)

:s+1 = [ T
KN(s+1)  Kes

and its inverse, which can be derived from the partitioned matrix inverse identity (see Ap-
pendix A.2):

-1 T
E [Z, + 02, mm m ] (229)

s+1 mT (02,,)2

Equation (2.28) shows how the covariance matrix I is partitioned and gives an intuition on
the constituent parts of a covariance matrix. As this is an iterative algorithm, the subscript s
will be used to denote the current state of the model and (s+1) will be used to denote the model
at the next iteration. The vector of covariances ky(s+1) = k (X1...s,%s+1) gives the covariance
evaluated between the new observation to be added (x5+1) and the observations already included
in the model at that iteration. Equation (2.29) shows the partitioned inverse £~1. It can be
seen that the matrix £;4; does not need to be inverted directly, the matrix inverse can be
expanded successively by extending with an extra row and column for each new observation.
This uses calculations of m = —032,A where A = I, 'kn(,41) Which the reader will recognise
from Equation (2.7) and 02, =K., — kI,(HnZ:lkN(,H) which is also the predictive variance
at the new location (MacKay 1998). Looking at the constituent parts individually, an intuition
can be gained about the process that is taking place in this matrix update. The vector m is
the vector of weights given by I;"l:N(Hl], of the existing system given the new observation
that is to be added in the current iteration. This vector of weights is scaled by the inverse
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predictive variance (o2 _H)_l (or predictive precision (Menzefricke 1995)). The existing matrix
inverse, Z:l, is updated by the outer product mmY scaled by the predictive variance of the new
observation.

Cholesky decomposition

It has been shown that the Sherman—-Morrison-Woodbury formula (Golub and Van Loan 1989),
described above, can be numerically unstable (Fine and Scheinberf 2002) particularly in cases
where sufficient numerical accuracy is not retained or in the presence of round—off errors. Seeger
(2003) argues that the Sherman—Morrison-Woodbury formula should only be used as a symbolic
rewriting tool, and that for actual computations, the Cholesky decomposition should be used
since this is well known to be numerical stable and efficient. Therefore, for stable implementa-
tions it is recommended that the Cholesky factor of the inverse is retained rather than calculating
the inverse directly. By using the Cholesky factor, performance can be further increased. Further
details of the Cholesky factor derivations can be found in Seeger (2003).

The Cholesky decomposition is a method for decomposing a positive—definite matrix into
a lower triangular matrix and can be thought of as a matrix square root. Assuming that the

inverse of the covariance matrix is to be sequentially updated then it is assumed that
=1L (2.30)

Given the Cholesky factor L, by substituting into (2.11), the predictive variance is given by:

o2 =k.-k'L"Lk (2.31)
which leads to the simplification:
Vs =Kea = V'V (2.32)
where:
=-Lk (2.33)

Updating the Cholesky factor representation of the inverse covariance matrix is given by:

Ley1= L 0 (2.34)
Livy/y T V1
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2.4 Subsetting the data

Geostatisticians have used many approaches to overcome the problems caused by the inversion

of a large covariance matrix of all the observations in a kriging calculation. In this section the
basics of some of these methods will be introduced and some alternative solutions that have

been widely adopted in the machine learning community will be presented.

24.1 Subsampling

One simple approach is to subsample the data. For example, if a dataset is sampled at 10 m
intervals, one could then subsample the dataset and use only observations at 20 m intervals.
In doing 80, up to 75% of the data are potentially discarded, depending on the sampling grid
dimensions. Since collecting a dataset can often be very expensive in monetary terms, why
discard this data? The designed sampling scheme could already be appropriate for the given
process. Subsampling the data could lead to suboptimal results. It is not uncommon that there
are many datasets that are densely sampled (where the sampling density is large with respect to
the range parameter of the process) and hence such an approach would not result in a significant
loss of information from the dataset. For sparsely sampled datasets (where the sampling density
is small with respect to the range parameter of the process) a practitioner would need to use
extreme caution in subsampling in this way.

A standard approach is to sample the dataset densely to see the effects of subsampling in
terms of cross—validation error and generated maps. Comparing the subsamples with the original
dense data and analysing the cross-validation error can give indications as to the appropriateness
of the sampling scheme (Frogbrook 1999; Frogbrook and Oliver 2000; Frogbrook et al. 2002).

Computational speed is not the only reason one might want to subsample a dataset. In many
geostatistical applications the collection of data can be extremely expensive and time consuming.
Within soil science much work has been done using aerial photography to determine a suitable
sampling scheme for a given area (Kerry and Oliver 2007). In Chapter 7 a technique for sample
design configuration is presented which uses the sequential projected process kriging algorithm
introduced in Section 2.5.2 of this Chapter.

Changing the granuality of the sampling grid is not the only way of subsampling. The
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observations collected in some datasets do not lie on a defined grid. Some sampling schemes
are designed with areas of differing sampling densities so that all the ranges of variation in the
process can be observed. To learn a reliable variogram model, it is particularly important to
sample at short range and long range lag separations, but by sampling on a grid it is possible to
miss important properties of the variation at some lag separations (Webster and Oliver 2000).

Having discussed some specific approaches used to subsample dataset, a simple naive ap-
proach could be considered. Randomly selecting a subset of the data is an option that could
be considered. Where the data does not lie on a defined grid, it is common to take a random
selection of the observations. In this thesis a discussion of the many different types of random
sampling will be avoided and for experiments, simple random sampling will be used. De Gruijter
et al. (2005) provide a thorough review of various random sampling methods. Random sampling
could be suboptimal with regards to the accuracy of the prediction, but it is very fast. This will
be used as a baseline measure in comparisons with other methods that will be discussed later in
this chapter.

Ultimately, for the simple random subsampling method to be applied without a large loss of
information, the sampling density of the dataset is the key factor. If the data is over subsampled,
that is to say that too few observations are selected, this will lead to spurious results. Techniques
using the variogram to determine the grid spacing of the sampling grid are commonly used in
geostatistics (Webster and Oliver 1992).

Reduction in uncertainty

Lawrence and Herbrich (2001) present an approach inspired by information theory for automat-
ically subsampling the dataset which attempts to minimise any loss of information. The essence
of the algorithm is to select the observations which are the most informative or which cause the
largest reduction of uncertainty in the model, that is to say that the observation which causes
the predictive variance to shrink the most with their inclusion. Calculating the reduction in
uncertainty has been used in geostatistics to select locations which are informative. Heuvelink
et al. (2006) presents the Mean Universal Kriging Variance (MUKV) measure to determine
optimal sample configuration locations, but not in a sequential framework.

The method of Lawrence and Herbrich (2001) requires that the number of observations to
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be retained is selected a—priori since they state that there is no principled way of selecting
an appropriate size for the number of observations to be retained under their method. One
could think of using some carefully defined threshold selected for a particular dataset as an
alternative but this would require significant insight into the problem. The algorithm used
is a greedy forward selection algorithm. It is used within the sequential kriging framework
discussed in Section 2.3.1. The reduction in uncertainty for the kriging process is calculated
for each observation individually as if it were added to the kriging system. The observation
which is most informative is then sequentially added to the kriging system. This process is
repeated until the number of observations added to the kriging system is above some threshold
selected a-priori. Later, Seeger and Williams (2003) proposed the information gain score,
which not only measures the predictive variance but also the change in the predictive mean. It
ensures that the data space is sufficiently well sampled (given the range of the process), and
that observations are selected based on how much of a surprise or novelty they present to the
current process covariance parameters. The higher the novelty of an observation, the higher
the score for including the observation into the kriging system. After the observations have
been selected, parameters are learned with this subset of the dataset. The algorithm is run for
a predefined number of iterations, interleaving observation selection and covariance parameter

estimation since the covariance parameters are related to the optimal subset.

24.2 Moving windows

One approach introduced by David (1976) uses a specified search radius from a selected centre
to select a local neighbourhood of observations to use in the kriging system. This neighbour-
hood moves according to the location which is being predicted. An alternative approach for
selecting the neighbourhood is to select a predetermined number of nearby observations for each
prediction location. As noted by Davis and Culbane (1984), these methods produce spurious
behaviour in some of the estimates and hence should be used with caution, this is particularly
apparent as observations are added or removed from the moving window. Ad-hoc methods of
subsetting the data were formalised by the moving-window approach of Haas (1990) and Haas
(1995), although the local covariance functions fitted within the window may yield incompatible
covariances at larger spatial lags. Cressie (1993) states that for datasets that are large, the
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general feeling is that kriging is impossible and ad-hoc local kriging neighbourhoods are typi-
cally used. Isaaks and Srivastava (1989) devote a whole chapter to choosing an effective search
strategy. Implementations of kriging such as the commonly used GStat! or Isatis? tend to use
this approach for performing kriging efficiently.

2.4.3 Partitioning

Another commonly used approach is to partition the data into subsets based on natural spatial
groupings (Meyer 2004). Kriging is then performed on these individual groups. Following this
method, none of the data is discarded as with subsampling, however, there is a loss of infor-
mation of the correlations between observations in different partitions. Clustering techniques
are discussed briefly in Chapter 6. Stein (1999) argued in favour of partitioning the data into
smaller subregions for reasons other than solely to reduce computational complexity. Partition-
ing the data can be an effective way for locating nonstationarities in the data. Often the loss of
accuracy by partitioning the data is not a significant problem, however, for many problems this
yields poor results. In particular so called edge effects can be apparent in the prediction stage
at the boundaries of partitions.(Aufién and Gémez-Hernédndez 2000)

Later in this thesis (Chapter 6), the Bayesian committee machine (Tresp 2000a) framework
will be presented which uses a similar partitioning scheme, but does not suffer from these edge
effects. Choosing an effective partitioning scheme for the data is non-trivial since balancing the
number of data in each partition is also an important consideration (Tresp 2000a).

2.4.4 Subset of data methods

Subset of data methods refer to methods for automating the selection of the subset and then
performing prediction. For the methods that follow, some terminology will be introduced. First,
the concept of an active set and that of an inactive set are defined. The term active set refers
to the representative subset of the data used for prediction (Lawrence and Herbrich 2001). De-
pending on the algorithm used, the information in the inactive set can be retained by projecting
the effect of the observations on to the active set. The active set contains active points which

refer to the locations included in the active set.

Inttp: //www.gstat.org/
*http://www.geovariances.con/
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The point to make about these methods is that only a subset of the data is used in the
prediction process, even though it is possible that all the data is used in the training stage. The
subset of data used in prediction will be termed the active set, xp and the data that does not
belong to this subset, ie. the data that is not used in prediction, will be called the inactive set.
In the machine learning literature, the active set is known by a number of terms such as basis
vectors or BY set (Csaté and Opper 2001b), pseudo-inputs (Snelson and Ghahramani 2006),
support points or inducing points (Quifionero-Candela and Rasmussen 2005). Although in each
context these can often have a slightly different meaning, the terms active set or active points
will be used universally throughout this thesis.

The essence of subset of data methods is to retain a small subset of the dataThis subset
(active set) is then used for prediction. Good prediction accuracy can be achieved with subset
of data methods when applied to datasets that are densely sampled. Selecting which points
are included in the active set is an important part of this algorithm. Searching all the possible
combinations of observations by doing an exhaustive search to obtain an optimal active set
would result in prohibitively slow computation time. Alternatively, greedy algorithms can be
used which use heuristics to score each observations according to some informativeness measure,
observations that are most informative are selected and then added to the active set.

In Lawrence et al. (2003), it was initially suggested that each observation in the inactive set
should be scored based on the reduction in entropy (or reduction in uncertainty of the kriging
predictive variance distribution) that adding the observation to the Gaussian process would
cause. The observation which causes the maximum reduction in entropy is considered to be the
most informative and is added to the active set using the sequential kriging algorithm.

Often large amounts of data are discarded using the subset of data method. Discarding large
amounts of data may not cause significant issues if there are sufficiently many densely sampled
observations in the dataset. The reduction in the computational complexity is attractive for
large datasets, but the ability to treat the whole dataset without discarding observations would
be desirable.

The version of the subset of data algorithm introduced by Lawrence et al. (2003) uses a
sequential kriging framework with a greedy selection procedure. An alternative would be to
used a batch version of the subset of data method. Assuming that the active set has already
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been determined, then the batch predictive mean equation for the subset of data method is given
by:
Z (%) =kIMESIHZ(xXMm) (2.35)

and the predictive variance is given by
02 (%) =kus —kimEsapkem (2.36)

where £s,p0 = Kmm and is the covariance matrix between the active points.
To calculate the likelihood, which is particularly useful for parametet estimation in the

maximum likelihood framework, the following equation is used:

n 1

P(DNIB) = ~3 = 7 Esop| - 52xm) E52p Z0xm): (231)

Note how only the observations included in the active set, Z(xp1), are used in the likelihood
calculation. In this context P(Dn|[8) = P(Dm|0)

2.5 Projected process algorithms

Subset of data methods have their use, but prediction accuracy will only be retained for densely
sampled datasets. While the algorithms will be fast for some data, features in the data will be
lost due to discarding observations. Projected process methods help overcome this problem by
using all of the data, but at the same time the computational complexity only scales cubically
for active set size and linearly in terms of the number of observations (Snelson 2007). That is
to say O (nm?) where n is the total number of observations and m is the size of the active set.

In this section a family of algorithms will be discussed for treating large datasets that use the
entire dataset. The algorithms that are discussed are divided into two categories. Section 2.5.1
discusses batch versions of the algorithms; algorithms where the calculations are performed
on the entire dataset in one iteration. In contrast, Section 2.5.2 discusses iterative, online or
sequential versions of these algorithms. To illustrate the difference, the subset of data method
discussed in Section 2.4.4 can be viewed in both ways. The batch version of the subset of data
method is equivalent to performing kriging with the observations that have been included in
the active set, the observations in the inactive set are discarded as shown by Equations (2.35)
& (2.36). Sequential algorithms process observations one at a time. In this context, the results
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will be equivalent; however, in some of the methods discussed later, the ordering of the data in
the sequential algorithms leads to different results (Csaté and Opper 2002).

There are advantages to choosing sequential algorithms over batch algorithms in the context
of these large scale geostatistical problems and these advantages will be discussed in more depth
later. Sequential algorithms can be quite complicated and intuitions about the algorithms can
be lost due to their sequential nature. Hence, the batch equivalents are presented first and links
between the batch algorithms and the sequential algorithms will be made.

The key problem for batch algorithms is in the selection of the active set. Sequential algo-
rithms provide a convenient framework for measuring the importance of each observation; no
such method has yet been developed for batch versions. One alternative solution for determin-
ing the active set for batch versions is discussed in Section 2.6, but to summarise, selecting the
active set in a batch framework is problematic and few solutions have been presented.

A naive method that would offer reasonable performance in terms of computation speed
and prediction accuracy would be selecting the active set randomly. Instead of the effort spent
calculating best active points, the active set size should be set to be larger than would be
expected for the particular dataset, in this way it increases the probability that the data space
area is sufficiently well sampled.

25.1 Batch algorithms

Algorithms for treating large datasets have been a very popular area of research in the machine
learning community recently. On one level, the approximations that will be discussed can be
viewed as an approximation to the covariance function. In approximating the covariance func-
tion, the likelihood can also be approximated. Instead of assuming that the covariance matrix £
is equal to the covariance matrix of all the observations cov(xn,xn), different assumptions will
be made regarding the structure of Z. A recent unifying view of these methods was presented
in Quifionero-Candela and Rasmussen (2005) which shows the connections that each method
has to the others. In this thesis, the term projected process will be used to describe this family of
algorithms although they are often known independently by the abbreviations DTC (Determin-
istic Training Conditional), FITC (Fully Independent Training Conditional) and PITC (Partial
Independent Training Conditional). There are three different methods which approximate the
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Figure 2.4: Observations from a simple 1D dataset. Points are observations, circled points are
the selected active points. The x—axis is the observation location and the y-axis is the observed
value.

covariance matrix to differing degrees of accuracy.

Low-rank approximation

The covariance matrix encodes the assumptions made about the covariance structure of the data.
Throughout this section, the covariance matrix of a simple dataset will be approximated using
8 active points (m = 8). The simple dataset that will be used has 400 observations (n = 400).
The data arrangement is shown in Figure 2.4 and the active points are circled. The covariance
parameters have been fixed to predetermined values for all of the examples that will follow in
this section. The values chosen are not optimal but were used to make the the illlustration clear.

Using traditional kriging algorithms, the covariance matrix of the observations is obtained
by calculating the covariance between all the observations, £ = cov(xn,xyn). Throughout this

section the notation for the covariance matrix is given by:
cov(a,b) =Kap, (2.38)

since it helps with the presentation of the equations later in this section.
A pictorial representation of what the covariance matrix would look like for the dataset

shown in Figure 2.4 can be seen in Figure 2.5. The covariance matrix is of size n x n. In the
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Figure 2.5: Pictorial representation of a covariance matrix. Dark regions represent areas of high
covariance and light regions represent areas of low covariance.

covariance matrix, the observations are ordered in the same way that the data is ordered along
the x—axis.

The techniques discussed in this section rely on approximating the covariance matrix struc-
ture by a low-rank matrix approximation. Instead of having to invert the n x n covariance
matrix directly, a lower rank m x m matrix can be inverted.

The low-rank or Deterministic Training Conditional (Quifionero-Candela and Rasmussen
2005) or Projected Latent Variables (Seeger 2003) approximation assumes that the covariance

function takes the form:

cov(a,b) = kamKnimKkmo, (2.39)

where M represents the active points that have been selected for the approximation. An impor-
tant aspect of this method is the selection of the active points. Active point locations should
be selected throughout the space of the data. For areas of high variability of the process, more
active points should be chosen.

This low-rank covariance equation is assumed to be the default covariance function in the
following equations for computing K,n and Z. The approximation is derived by inserting this

low-rank covariance function into the predictive mean and variance equations:
Z (%) =kINEpTcZ(xN), (2.40)

UE (x!t) — k“ — kINzB}erﬁl\h (2-41)

where the covariance is determined using the new, low-rank approximated covariance function

described in Equation (2.39). The covariance matrix now has the form:

Lore =knmKtmkmn + B, (2.42)
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Figure 2.6: Pictorial representation of the construction of the noise free DTC covariance matrix
approximation using a low-rank matrix.

where it is assumed that an active set has been selected a-priori. B = o2l is a diagonal
noise term. A pictorial representation of how the covariance matrix is constructed can be
seen in Figure 2.6. Comparing the full covariance matrix shown in Figure 2.5, shows that the
approximation is particularly good in regions where active points have been selected, but in
other regions, where there are no active points, the covariance is severely underestimated.

It might seem that nothing has been gained, in fact, it seems that something has been
lost since this approximate matrix, ZpTc, of size n x n still needs to be inverted and much
of the data from the true covariance has been discarded. By writing the covariance in such a
way, the Sherman-Morrison-Woodbury identity (see Appendix A.1) can be applied to derive an

alternative representation:
-1 =1 __ -1 -1 ~1 =1
knmKpmkmn +B] =B — B 'knmA ' kmnB T, (2.43)

where A = Kpmm +kmnB 'knm. Now, it is no longer necessary to invert a n x n but rather to
invert a m x m matrix. The inverse of B is computationally trivial since it is a diagonal matrix.

The predictive mean can now be written as:
Z (%) = kamA TkmnB T Z(xn), (2.44)
and the predictive variance can be written as:
62 (x,) =Kus —kiNEDTcKeN) (2.45)

thus reducing the computational complexity from O(n®) to O(nm?). When n is much larger
than m, significant speed ups will be achieved.
To compute the likelihood of the model, again the matrix inversion formula needs to be

applied. Also the determinant identity, Appendix (A.2), should be used to calculate the L,
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term in the likelihood equation.

£(0) = -3 -3 Eorcl— 5Z0en) "EpkcZixn) (2.40)
= -2 liogty - 1ta. (247)
where:
L1 = IBIKmm| [Kygm +kmn (Kmm +kmnB knm) " knm| (2.48)
and:
L2 =2Z(xn)T(B7! — B~ kNMA TkMNB ) Z(xN). (2.49)

Low-rank approximation with exact diagonal

A further refinement was proposed in the work of Snelson and Ghahramani (2006) where they
noted that the low-rank approximation in the previous section, the DTC approximation, tends
to underestimate the predictive variance away from the active points. The Fully Independent
Training Condition (FITC) was proposed to overcome this problem, where they propose to
add a diagonal term to the covariance matrix which ensures the low-rank covariance matrix
approximation is exact on the diagonal.

The equations for the predictive distribution for the FITC approximation are:
Z(x.) =kINEffrcZixn), (2.50)
02 (%) =kue —kINEfircken, (2.51)
where the covariance matrix is given by:
Zrire = knmKpimkmn +A+B, (2.52)
with the diagonal matrix:
A = diag(KnN —knmKmEkMN), (2.53)

ensures that the diagonal of the covariance matrix is exact. Ky is the full covariance matrix
shown in Figure 2.5. Figure 2.7 shows a pictorial representation of how the covariance matrix

is constructed.
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Figure 2.7: Pictorial representation of the construction of the noiseless FITC covariance matrix
approximation which is identical to the noiseless DTC approximation except that the exact
diagonal term has been retained in the matrix by adding the difference between the low-rank
matrix approximation and the exact diagonal.

Using the matrix inversion identity from Appendix A.1, the FITC covariance approximation

can be rewritten as:

[knMKMMEMN + (A +B)] 7 = (A+B) " = (A +B) knmA ' kmn (A +B) 7Y, (2.54)

where:

A =Kmm +kmn(A+B) Tknm. (2.55)
As with the DTC covariance approximation, the added accuracy does not result in a significant
increase in computation since the matrix inversion A+ is feasible, because it is again diagonal.

Following on from Equation (2.46) for the DTC likelihood approximation, the two parts of
the FITC likelihood can be computed as:

L1 = A+ B)lKmml [Kifm +kmn(Kmm +kmn (A +B) Tknm) ™'k | (2.56)

and:

Lo=ZxN)TA+B) ™ = (A+B) ' knmA T kmn (A +B)1Z(xn). (2.57)

Low-rank approximation with exact block diagonal structure

The final approximation is similar to the FITC approximation, but instead of the covariance
matrix being exact on the diagonal, an exact block diagonal structure is retained. This ap-
proach was initially proposed by Tresp (2000a) in a different framework and will be discussed
in more detail in Section 6.4.3. The connection to the methods discussed here were made clear
by Quifionero-Candela and Rasmussen (2005). This approach is called the Partially Independent

Training Condition.
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The equations for the predictive distribution for the PITC approximation are:
Z (%4e) =kINEpircZ(xn), (2.58)

02 (%s) = Kue —kINEpTrcKeN, (2.59)

where the covariance matrix is given by:

Lrite = knmKimkmn + A+ B, (2.60)

with the block diagonal matrix:
A= blockdiag(KNN = kN MK;%MRMN ). (2.61)

Rewriting the covariance using the matrix inversion identity (Appendix A.l1l), the PITC

covariance approximation becomes:

[knmKmmkmn + (A + B]]-1 =(A+8)—(A+B) knmATkMN(A+B)7Y,  (262)

where:
A =Kmm +kmn(A +B8) " Tknm. (2.63)

The structure of the block diagonal matrix lambda depends on user requirements. When
there is only one block this approximation is equivalent to the full predictive distribution equa-
tions or likelihood. When the block sizes are one, then this method is equivalent to the FITC
approximation. It might seem that by introducing a block diagonal structure into A that the
inverse can no longer be found easily. Using the block matrix inversion identity found in Ap-
pendix A.5, it shows that the inversion only requires matrix inversions of each diagonal block.
The blocks are not constrained to be the same size, but it makes sense if they are since the
algorithm complexity is related to the largest matrix block diagonal inverse.

Figure 2.8 shows how the covariance matrix is constructed from the low-rank matrix ap-
proximation with the exact block diagonal structure retained. Each block is of equal size. For
the given covariance matrix it might be worth changing the block size for the areas where the
covariance is poorly approximated. Figure 2.9 shows a variable block diagonal scheme which
approximates the covariance better, although at the extra cost of having to invert the larger
diagonal matrix block. It makes sense to keep the matrix blocks of the same size since the
computational complexity will be dominated by the largest matrix block.
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Figure 2.8: Pictorial representation of the construction of the PITC covariance matrix ap-
proximation which is identical to the DTC approximation except that an exact block diagonal
structure is retained in the matrix. The block diagonal structure has fixed block sizes.
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Figure 2.9: Pictorial representation of the construction of the PITC covariance matrix ap-
proximation which is identical to the DTC approximation except that an exact block diagonal
structure is retained in the matrix. The block diagonal structure has variable block sizes.

The two terms of the likelihood are computed in the same way as the FITC approximation:
L1 =|(A+B)Kmml [Kpim +kmn(Kmm +kmn (A +B) ' knm ) "knm| (2.64)

and:

Lo=Z(xn)"(A+B) = (A+B) 'knmA T kmn(A+B) 1 Z(xn), (2.65)

where the main difference is that A has a block diagonal structure and requires a larger compu-

tational effort to invert.

Computational complexity

By exploiting the Sherman—-Morrison-Woodbury identity, the computational complexity of in-
verting the covariance matrix is reduced when low-rank approximations are applied. The com-
putational complexity of the DTC and FITC approximations is O (nmz) where n is the number

of observations and m is the active set size. The computational complexity in this case is
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dominated by matrix multiplications. The block diagonal structure chosen determines the com-
putational complexity for the PITC approximation. Tresp (2000b) recommends choosing equal
block sizes for observation locations and prediction locations as this ensures the complexity

remains O (nm?) as with the DTC and FITC approximations.

Examples

() (d)

Figure 2.10: Comparison of different projected process algorithms. Mean (thick line) and
variance (grey area) predictions of using (a) Simple kriging, (b) Low-rank covariance approx-
imation, DTC or PLV, (c) Low-rank covariance approximation with exact diagonal or FITC
and (d) Low-rank covariance approximation with exact block diagonal structure or PITC. Black
dots are 80 observations generated from a noisy sinusoidal function. Circled data are the 20
observations that were added to the active set.

Figure 2.10 shows predictions using 20 randomly selected active points for a dataset with 80
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(e) 100 active points (f) 200 active points

Figure 2.11: Comparison of projected process algorithm (DTC) using varying active set sizes.
600 Observations are projected onto randomly selected subsets. Points are observations, circles
are active points. The solid line is the mean prediction.
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Method

MAE

MSDR

Time (s)

Full GP

0.04785

1.63212

0.00194

DTC

0.20571

1.60217

0.00039

FITC

0.20581

1.53972

0.00057

PITC

0.19215

1.52253

0.00091

Table 2.1: Table showing the prediction accuracy projected process algorithms.

Active Points | MAE MSDR | Time (s)
10 0.199777 | 0.116101 | 0.013067
25 0.103454 | 0.045204 | 0.018920
50 0.075286 | 0.028637 | 0.029113
75 0.070107 | 0.026226 | 0.041495
100 0.067268 | 0.024959 | 0.050441
200 0.062648 | 0.022570 | 0.109058

Table 2.2: Table showing the prediction accuracy of the projected process algorithm with 600
observations represented by different sized active sets.

observations. The range, sill and noise were fixed with each method. The plots show reasonably
consistent mean and variance predication results. Table 2.1 shows that there is little difference
in the mean prediction accuracy of the DTC, FITC and PITC methods; it would seem that the
low-rank matrix has a greater influence on the mean predictions than retaining exact segments
of the covariance matrix. The low-rank approximations tend to smooth more than the full
Gaussian process prediction. When considering the variance predictions, the MSDR (Mean
Squared Deviation Ratio) shows that the low-rank methods that retain exact segments of the
full covariance matrix tend to have a improved variance predictions. For such a simple example,
some of the advantages of using the extra block diagonal of the PITC approach may not be
evident for mean prediction. To obtain speed estimates for the different methods, computations
were repeated thousands of times and the time taken for prediction was averaged. Some argue
that the extra computation of the PITC approximation is not worth the extra computational
effort and hence the FITC should be preferred (Snelson 2007). Likewise the DTC has been
preferred over the FITC approximation due to the reduced computational complexity and little
difference in accuracy of predictions (Seeger et al. 2007). To further illustrate the projected
process algorithm, Figure 2.11 shows predictions given 600 observations with varying active
set sizes using the DTC approximation. The observations have been selected from a simple
noisy sinusoidal function. The active set has been selected randomly. By inspecting the plots,

a barely noticeable difference can be seen between 10 active points and 25 points in terms of
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prediction accuracy of the mean. But beyond that, 25 active points or more, the mean predictions
are visually indistinguishable from each other. This shows the strength of the project process
method. Table 2.2 shows the MAE steadily decreasing as the number of active points is increased.
Likewise, the MSDR decreases with more active points. Once the effective complexity of the
data has been sufficiently well represented by the active set, increasing the active set size adds
little in terms of prediction accuracy. Whether the dataset shown in Figure 2.11 had 100 or
1000 observations, the projected process method requires the same number of active points to
represent the process (within a tolerance level). Active points are only needed to represent the
complexity of the model, or in other words, the number of active points needed is closely related
to the range or the lengthscale of the process being modelled.
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2.5.2 Sequential algorithms

Having discussed batch algorithms for projected process algorithms, in this section attention
is turned to sequential algorithms. There are a number of reasons that a sequential algorithm
is appealing in this context. For large datasets, it could become prohibitively expensive to
store all the data on a computer system at one time. The sequential algorithm only needs to
see one observation at a time. Secondly, by using a sequential algorithm, arbitrary likelihood
functions can be used. Typically the assumption that the data is distributed in a manner that
follows a Gaussian distribution does not always hold. Box—Cox transformations are often used
in geostatistics (Cressie and Hawkins 1980) to ensure the observations have a log-normal distri-
bution (Box and Cox 1964). Appendix B.1.1 examines non-Gaussian likelihoods in more detail
and shows how sequential projected process algorithms can be used with arbitrary likelihoods.

Sequential projected process kriging

The sequential projected process kriging algorithm makes a refinement to the sequential kriging
algorithm. Instead of increasing the size of the covariance matrix with each new observation, the
SPPK algorithm calculates how informative each new observation is. This measure is then used
to decide whether an observation is sufficiently important to warrant being added to the active
set (or covariance matrix) as described by the sequential kriging algorithm. If the observation
adds little or no new information then the observation effect can instead be projected onto the
covariance matrix without having to increase the size of the covariance matrix. This process
is repeated until all observations have been considered. The term projected is used in this
context because the model representation uses a smaller number of observations (the active set)
to represent all the observations in the dataset.

It will now be shown how to reduce the complexity of the algorithm, while retaining important
features in the data. This is done in the framework of a sequential algorithm. At each iteration
of the algorithm, s, an observation is added to the model, or active set, until a maximum number
of observations (ie. the model complexity, or active set size m, that is desired) is reached. It is
possible to update the model exactly with a new input, without increasing the size of the active
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set if

]
kN(s+1) = ZMH(‘Uth (2.66)
i=1

holds for all x (Csaté and Opper 2001a). In such a case the model can be updated exactly
without increasing the complexity. If Equation (2.66) does not hold then an approximation
is made by minimising the Kullback-Leibler (KL) divergence measure (Kullback and Leibler
1951). This works by effectively finding a lower rank kriging predictive distribution that is most
similar to the kriging predictive distribution at s + 1. The details of this will be avoided in this
thesis, a full derivation can be found in Csaté and Opper (2001b).

Rewriting the predictive mean and variance equations for step s + 1 in the algorithm as:

Z(%441) = QKN (s41)s (2.67)

and:
-1
0%4.1 (xs4+1) = Kua —RLMS knm, (2-68)

gives an alternative parametrisation of the kriging equations. Notice that the projection operator
notation, —, has been used to refer to the parameters of the projected model to distinguish
them from the parameters of the traditional kriging model. The difference between the two
inverse covariance matrices in equations (2.11) and (2.68) is that £~ is the inverse covariance
matrix between the observations in the active set only. E_l is also the inverse covariance
matrix between the observations in the active set, however, additionally the effect of the inactive
observations has been projected on to this matrix. The notation & = E_IZ(xM) is introduced
where Z(xp ) corresponds to the observations in the active set prior to any projection. However,
after observation projections, & # E_lz(xM]. Thus E,E_l parameterise the projected process
kriging equations.

In the case where a residual error occurs in trying to satisfy Equation (2.66), the informi-
tiveness of the new observation has to be calculated. The goal is to select the active set so that
prediction error is minimised. A simple scoring heuristic is used to score the active points to
determine which active point location is least informative with respect to the kriging predictive
distribution. A number of scoring methods have been proposed which measure scores such as
relative entropy gain (Lawrence and Herbrich 2001) and the information gain criterion (Seeger

and Williams 2003). Upon deciding whether the new observation is sufficiently informative,
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either it is added to the active set and the least informative point from the active set is removed,
or alternatively if it is not sufficiently informative, the effect of this new observation is projected
onto the active points in the active set.

The projection step that updates « requires calculating a vector of weight innovations I’ for

each new observation that is to be projected onto the existing active set:
——1
Fr=A- (z k) , (2.69)

where A = £~k which is the weight of the active set locations with respect to the new observation
location. I essentially computes the difference in weights between the traditional kriging weights
and the projected process kriging weights as each observation is incorporated. The update

equations for the model are now:

334.1 = Es + q3+1r, (2.70)
——1 ——1 T
L,a=L, +rsllT, (2.71)

where for a Gaussian noise model on the observations, the projection parameters are:

Qst1= VA (x8+1372_ Z (xi+1] \ (2'72)
s+1

which measures the scaled difference, at the currently processed location (Xs41), between the
model prediction after s iterations and Z (x,4;) (ie. the previous iteration and given an active

set Dpy) and the observed value at the location Z (x441), and:

Ts+1 = ;;_ (2.73)

s+1

which correctly scales the weights for the covariance updates. There are a number of things
to note. First, the update parameters are mentioned. In this thesis it has been assumed that
the likelihood function is Gaussian although the update equations can be derived for arbitrary
noise/likelihood models (Csaté and Opper 2002). These update equations were calculated by
minimising the KL divergence between the true model, L,, and the approximating model, E.
at each iteration s. Secondly, the reader should note that the updates for Equation (2.71) are
similar to the updates shown by the partitioned matrix in Equation (2.28) but do not increase

the size of the matrix.
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The process of adding new observations to the model representation has been discussed. A
new observation can be added to the model by increasing the model complexity or by projecting
its effect onto the representative subset of the data. A further feature of this method is the
removal of active points from the active set. This is basically the reverse process of adding
active points. The reader is directed to Csaté (2002) where full derivations can be found.
To optimally apply this algorithm in practice, it has proven useful to discourage the use of
active point deletion. A better approach is to select the active set a priori (selecting the most
informative locations rather than randomly) and then projecting the inactive observations onto
this set. Experiments have shown that a dynamic active set can lead to active point flip—flop

behaviour whereby newly inserted active points are removed on the next iteration.

SPPK example

To understand the iterative projected process methods it will be helpful to refer back to the
simple description of kriging given earlier in Section 2.2. Predictions with kriging are simply a
weighted sum of all the observed data. Typically, weights are assigned to each observation based
on the covariance function weighted distance from the prediction location (cross) as shown in
Figure 2.12(a).

The next step is to see if the computational complexity of the kriging algorithm can be
controlled but at the same time allowing important features in the dataset to be retained. This
is done by calculating a score for each of the observations based on its informativeness to the
kriging predictive process.

Next, the size of the dataset is reduced by removing the observation from the active set that
is calculated to have the least impact on the predictive distribution, based on some heuristic,
and then it is added to the inactive set. Figure 2.12(b) shows the scorings of each active point.
The remaining weights are updated by projecting the influence of the removed observation
(Figure 2.12(c)) so as to minimise the effect of removing an observation. It may be surprising,
but this projection can be performed efficiently with minimal loss of information.

Figures 2.12(a-1) shows how a dataset of 8 observations is sequentially reduced in size and a
contour map given the current state of the model. The first column shows the weights of each

observation with respect to the prediction location (cross) in the centre. The second column
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shows the scores of each of the observations with respect to some measure of informativeness
that the observation provides the kriging predictive distribution. The circled observation has
the lowest score and will be deleted from the active set shown in the third column. The third
column shows how the weights are distributed (or projected) to the other observations or active

points in the dataset.

2.6 Pseudo inputs

Learning the optimal active set is a major issue for improving prediction performance. Covari-

ance parameter estimation and active set selection are usually interleaved a number of times. An
alternative idea which requires that the size of the active set is chosen a priort is to optimise the
active point locations jointly with the hyper—parameters. Unlike active set selection, which has
already been discussed, these observation locations do not necessarily correspond to any subset
of the data. Instead of adding and removing observations from the active set or updating just
the weights on each active point, the algorithm searches for optimal positionings for the active
points and optimal weights using a non-linear optimiser (Snelson and Ghahramani 2006). In
this case, active points no longer need to be selected from a subset of the dataset.

A major drawback of this algorithm is the computational time; for a small number of sample
locations, optimisation can take a significant period of time. Seeger et al. (2006) state that there
are some additional problems such as the algorithm tending to find local minima and resulting in
sub-optimal covariance parameters. Additionally, it is unclear what each active point represents
or how it should be interpreted by a practitioner since the active points are not likely to be a
subset of the observations and could effectively be located in a location disjoint from the dataset.

2.7 Other Reduced rank matrix methods

Some other methods for handling large datasets have been introduced. Each of these methods
results in a reduction in the size of the covariance matrix £ which is the cause of the major
bottleneck in kriging type algorithms. The explanations of what £ represents enables the prac-
titioner to see the connection between the observations, the approximation and the predictions.

Some alternative methods do not always retain this connection explicitly and hence it is unclear
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how the model can be defined in a geostatistical context. Generally, these methods require
that the covariance matrix £ is approximated by a lower rank matrix £ as with the techniques
discussed in Section 2.5 and hence leads to a cheaper matrix inversion. Their inclusion here is

for completeness.

2.7.1 Nystrdm method

The Nystrém method replaces the covariance matrix I used in the predictive mean and variance
Equations (2.10) and (2.11) by a lower rank matrix £. This idea was first suggested in Williams
and Seeger (2001) and they called this the Nystrom method for approximate Gaussian process
regression. This does not solve any of the complexity issues since an eigen—decomposition is
required to make the approximation to the matrix £ and this is an O(n3) operation, although it
should be noted that calculating an eigen-decomposition is only needed once with this method.

2.7.2 Fixed rank kriging

Recent work by Cressie (2006) has looked at using reduced rank matrix approximations with
satellite dataset which tends to be massive. He calls this technique fixed rank kriging since
it requires that only a matrix of fixed rank need to be inverted. First, a covariance matrix

approximation is presented in the form:
£ = knMKMMEMN + 02V (2.74)

where K is a m x m matrix and V is a diagonal matrix with the measurement—error variances
for each observation. The Frobenius norm (Appendix C.3) between the fixed rank covariance
matrix £ and the covariance matrix of the data is minimised to give an approximate covariance.
This is then used in prediction on a massive dataset.

Examining the FITC covariance matrix approximation discussed in Section 2.5.1, shows some
connections to this method. Details of V are not clear, only that it represents the measurement—
error variances for each observation. There is no indication whether the diagonal of £ has
the exact measurement—error variances which would seem like a better approximation for this
model, which would mean that V = diag(knmXmmkmn — Knn) rather than V = diag(knn)
which is what is hinted at in the paper. The full covariance matrix for all the data with the

measurement-error variances is denoted by Knn. Hence it is possible to choose V in such a
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way so that this method is equivalent to the FITC approximation. Here, the diagonal V relates
to the error characteristics of the sensor used to collect the data. It would be interesting to
investigate clustering the dataset and using a block diagonal assumption (PITC approximation)
for the covariance matrix.

There is also no indication of how the active set for constructing the low-rank matrix approx-
imation was selected. The whole subject of active set selection is completely avoided by Cressie

(2006).

2.8 Summary

This chapter has presented methods recently developed by the machine learning community in
the context of geostatistics. Projected process kriging techniques were introduced in the context
of approximating the covariance matrix by a low-rank matrix. By selecting a representative
subset of the data as an active set, it was shown how a low-rank covariance matrix approximation
is constructed using all of the data. The problematic selecting of the representative subset or
active set was approached by using sequential algorithms rather than commonly used batch
algorithms. Instead of distributing active points over a grid of locations, the sequential algorithm
can determine regions of high spatial variability where more active points are required to more
accurately represent the variability in the data being modelled. Projected process kriging has
been shown to be effective when the dataset is densely sampled, or when the range of variation
is large with respect to the area of study.

Geostatistics has traditionally relied on method-of-moment estimators for determining model
parameters. Likelihood—based techniques are beginning to become more popular. It has been
shown how low-rank matrix approximations for the likelihood can be exploited for efficiently
determining the model parameters given a dataset. Again, active set selection is crucial to
this obtaining accurate estimates with this procedure. As with prediction, the strengths of this
method are for datasets which are densely sampled or where the range of variation is large with

respect to the area of study.



2.8. SUMMARY

Projection

Figure 2.12: An example of iteratively projecting the projected process kriging weights for
predicting at the cross, using 2D data. Each iteration (rows) shows firstly the kriging weights
(1st column) given the data (filled dots). Each observation is scored (2nd column) based on its
importance for representing the kriging model, the lowest scoring observation is circled. The
3rd column shows the effective projection of the weight removal (circled observation in the 2nd
column) onto the remaining observations. (a-c) iteration 1, (d-f) iteration 2, (g-i) iteration 3,
(j-k) iteration 4. The background contour maps show the prediction for a particular iteration
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Thesis Datasets

3.1 Introduction

This thesis focuses on a number of methods for spatial interpolation. To demonstrate, compare
and contrast the methods that will be described in Chapters 4 and 6, consistent datasets will
be used across the different models. Three datasets have been chosen: a 1D synthetic data, a
2D synthetic data and a 2D subset of the exhaustive Walker lake dataset.

3.2 Datasets

The problems associated with model comparison studies based on a single dataset have been

taken into account. It is common that the result of comparative studies is to give the practi-
tioner a greater understanding of the data rather than the models being used. Additionally,
the generalisation of these models when applied to other datasets, whether they be similar or
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Figure 3.1: Graph showing the 1D Synthetic dataset and the observations sampled from the
simulation. The light continuous line is the simulated function. The dots indicate where obser-
vations were sampled from.

significantly different, is often poor. The results across different datasets can often be difficult
to interpret and can appear contradictory (Cornford 2005). The two synthetic datasets that
have been created in this thesis have been chosen with the aim of demonstrating the properties
of the many methods discussed. A 1D synthetic dataset was chosen to help the reader gain a
greater intuition of the various algorithms developed in this thesis, through pictorial representa-
tion. The maximum dimensionality of the datasets that will be used in this thesis is 2D. Since
a primary aim of this thesis is the application of interpolation algorithms to large datasets, a
subset of a real-world large dataset is included.

One issue arising from attempting to describe the reasons for choosing a particular dataset
is that often an explanation of the methods that are to be applied to the dataset is needed to
justify the selection. A detailed explanation of the methods that will are applied is avoided
in this chapter, instead the essential requirements of the data will be described. The basic
properties of the datasets is to have regions of densely sampled data and regions of sparsely
sampled data.

The synthetic datasets were generated using the Turning Bands method of simulation (Jour-
nel 1974). A Gaussian covariance function was chosen for the simulations and 1000 bands were

used.
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Figure 3.2: Graph showing the 1D Synthetic dataset and the prediction locations selected
for cross-validation. The light continuous line is the simulated function. The dots indicate
prediction locations.

3.2.1 1D Synthetic data

Figure 3.1 shows the data simulated using the Turning Bands method. The covariance param-
eters are fixed at a range of 1lm, a sill of lm and a nugget of 0.1m. This dataset has 3000
observations for learning the covariance structure and a further 2000 observations that will be
used for cross-validation. The units used for the simulation are arbitrary, but here the measure
of a metre was chosen. The observations that were sub—sampled from the simulated data were
sub-sampled randomly with regions of differing densities. The regions with different densities
were generated randomly. In a similar way, Figure 3.2 shows the underlying function and the
prediction locations. The prediction locations were sampled across the whole dataset with the

same density.

3.2.2 2D Synthetic data

For the 2D synthetic dataset, a thorough explanation of the reasons for its particular structure
is not presented here. The main design feature is to have regions with observations sampled
with different densities. Again the Turning Bands simulation method was used to generate the
dataset. And again, the covariance parameters are fixed at a range of 1m, a sill of 1m and a
nugget of 0.1m. 4000 observations were used for learning the covariance structure and then 2000
observations were used for cross-validation purposes. Figure 3.3 shows an image generated from

this model that shows the variation in the dataset.
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Figure 3.3: Map showing structure of 2D synthetic dataset.

Figure 3.4 shows the locations where observations are located. Differing densities of the
observations are evident in the figure. Figure 3.4 shows the locations that will be used for

cross—validation.

3.3 2D Walker lake subset

Demonstrating the methods developed in this thesis using synthetic datasets is suited to il-

lustrating and understanding performance of the models on a synthetic dataset, however it is
important that the developed models perform well with real-world data. Often with real-world
datasets the underlying process to be modelled in the data is not fully understood and is al-
most certainly not a Gaussian process. It can also be unclear what assumptions should be
made. There are many datasets that have been thoroughly analysed in a number of publica-
tions. Knowing the spatial properties of the dataset will be advantageous when comparing the
models in this thesis with work that has already been undertaken. One thoroughly examined
dataset with many years of investigation is the Walker lake dataset (Isaaks and Srivastava 1989).
A further advantage is that it is a large exhaustive dataset with 78,000 observations.

These data were sampled from the Walker Lake area in the western United States, Nevada.
This exhaustive dataset consists of three variables measured at each of 78,000 locations on a

70



3.3. 2D WALKER LAKE SUBSET

ad s '-'.:"::-.': .:- 4 NI
%&%}M

K o

A iy

Rl s TR Hy . -
g, 0 -""‘Eq‘ T a T
:‘;;igjgﬁﬁymﬁg AL YA

(a) (b)

Figure 3.4: Locations of 2D synthetic dataset (a) observations, (b) prediction locations.

260x300 rectangular grid. A subset of this dataset was used in the book Applied Geostatis-
tics (Isaaks and Srivastava 1989), however for the purposes of this thesis, the subset is too small.
A major focus of this thesis is the use of large datasets, so rather than the 470 points as selected
in Applied Geostatistics, a subset of 4571 observations will be used instead. The 4571 obser-
vations are randomly selected from the exhaustive Walker lake dataset as shown in Figure 3.6.
The sampling density changes from region to region, clusters of different sampling densities are
evident. Figure 3.6 shows the prediction locations that will be used for cross—validation.

As noted, the Walker lake dataset is densely sampled and hence this is a major advantage
for the demonstration of the methods in this thesis. Three variables are recorded in the Walker
lake dataset, for this thesis, only one of the variables will be considered.

The appendices in Isaaks and Srivastava (1989) give a complete description of the data and
how it was collected. Here, in this thesis it is an aim to show that large datasets can be treated
in a principled way in a reasonable amount of time ie. seconds and minutes rather than days
and weeks. Hence an in-depth discussion of the dataset will not be given here, although in later
chapters comparisons with the methods used in the available literature will made.

The data is assigned the units metres, although the real sampling units are much larger. For
continuity, it will be assumed that the grid is also measured in metres for the experiments in
this thesis.

n
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Figure 3.5: Map showing structure of 2D Walker lake dataset.

3.4 Computer hardware

In a thesis that compares algorithms across different computer architectures, maintaining equal-
ity for comparisons is challenging. All but the parallel experiments were carried out on a single
core Pentium 4 2.4 Ghz. The parallel processing programs were carried out on an 8 node cluster,
each node being an AMD Opteron running at 2 Ghz.

Octave was used for parallel processing algorithms and Matlab was used for all other al-
gorithms. Octave! was used due to its unrestricted public license. One of the limitations of
distributed Matlab? usage is the need for a separate license for each Matlab process spawned.
The same version of ATLAS (Whaley et al. 2001) providing optimised BLAS (Lawson et al.
1979) and LAPACK (Anderson et al. 1990) routines was installed on each computer. The

ATLAS extensions for dual—core processors available in recent versions were disabled.

lhttp: //www.gnu.org/software/octave
“http://www.mathvorks.com
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Space-limited Covariance Functions

4.1 Introduction

Covariance functions have already been extensively mentioned. In geostatistics it is accepted that
selecting an appropriate covariance model and associated parameters is a crucial step in achieving
optimal results with kriging because assumptions about the spatial variation of the process are
encoded in the covariance function (Wackernagel 2003). Variogram analysis is an important
activity prior to prediction with kriging which has already been mentioned in Chapter 2. Once
choices about the characteristics of the variation in a spatial process have been made, kriging
can be performed. This being said, Isaaks and Srivastava (1989) list a small subset of variogram
models that enable a satisfactory fit to all the sample variograms that a practitioner is likely to
encounter, while also satisfying the positive definiteness condition.

In the machine learning community however, there is a tendency to approach covariance!

1Typically the machine learning community refer to covariance functions as kernels.
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selection in a slightly different manner, such that selecting a covariance function is the process
of using experience and intuition rather than using an analytical method to select the covariance
function (Seeger 2004). Surveying the machine learning literature shows that only a very small
family of covariance functions are used. The Gaussian, squared exponential or RBF? kernel
is by far the most commonly used kernel which is unfortunate since it is too smooth for any
realistic geostatistical process (Stein 1999; El-Shaarawi and Piegorsch 2002). Space-limited
covariance functions were investigated by Hamers et al. (2002) in the context of solving machine
learning problems but they arrived at the conclusion that they have little use for datasets of
high dimensionality which are commonly found in datasets used in machine learning.

In this Chapter space-limited covariance functions will be exploited to provide sparse ma-
trices. These sparse matrices will be exploited by the application of fast space matrix methods.
These methods will then be combined with the projected process method discussed in Chapter 2.

4.2 Covariance functions

In this Section, general properties of covariance functions are discussed. Methods for the con-
struction of space-limited covariance functions are introduced as these have important properties
which will be exploited later in this chapter.

4.2.1 The Semi-variogram

Using an empirical (method-of-moments) method such as the empirical sample semi—variogram
to determine the form of the covariance function is common in geostatistics. Sample semi-
variograms provide a convenient way to visualise the covariance function. However, the widespread
use has been limited to the geostatistics community. In an entry to SIC2004% a machine learning
Gaussian process approach used the semi-variogram to estimate an appropriate covariance func-
tion (Ingram et al. 2005). It was shown that selecting an appropriate covariance for the data
was linked to obtaining better prediction performance. In geostatistics, selecting an appropriate
covariance function is accepted as a method for obtaining optimal prediction performance (Wack-
ernagel 2003). The empirical semi-variogram can be helpful in identifying structures in spatial

3Radial basis function.
3gpatial Interpolation Comparison 2004 Exercise.
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data. Care should be taken however, because it does not directly provide a technique for se-
lecting a covariance function since it can be misleading for data that do not follow a Gaussian
distribution (Stein 1999).

Throughout this Chapter, the notation s will be used to refer to the absolute separation
distance, s = |jx; — x2l|, between two observations since only stationary covariance functions will

be discussed. The range parameter will be denoted by L.

4.2.2 Trend or covariance?

As stated in Equation (2.2), the assumption will be made that the data is represented by
decomposing the model into two components:

Z(x)=m(x)" B+e(x), (4.1)

where m (x)T B is the deterministic mean function that will be referred to as the large-scale
variation or trend and where € (x) is a correlated error process.

Without making specific assumptions a clear distinction between the mean function m (x)"B
and the stochastic process € (x) is not possible. In modelling the mean function or trend,
additional empirical information can be utilised to determine an appropriate model. It is a
difficult problem to model the deterministic mean component without also modelling part of
the underlying stochastic process. If more of the variability is described by the deterministic
component the importance of correct covariance selection is reduced. As more and more spatial
variability is modelled by the deterministic component the covariance tends to a pure nugget
effect (Cornford 1996). The problems of modelling trend are well known and it has been stated
that it is not often worth modelling anything more complex than a linear trend model (Diggle
et al. 1998). The problem of fitting the trend is noted here as a continuing problem and it will
not be discussed in detail. For the purposes of this thesis, the trend of the data is assumed to
be known.

423 Differentiabliity

The degree of differentiability is a property of a spatial process. The more smooth the process,
the higher the degree of differentiability of the covariance function at the origin (Abrahamsen
1997; Diggle et al. 1998). Understanding the differentiability of a process is crucial for selecting
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an appropriate covariance function. It is common that covariance functions are selected based
on the goodness of fit to the variogram, but it is often difficult to observe the properties of the
variogram clearly near the origin. This is unfortunate since the behaviour of the covariance
function at the origin dominates the resultant interpolation more than any other aspect of the
covariance function (Abrahamsen 1997; Stein 1999) (assuming that prediction location is not

further away than the smallest lag separation).

4.2.4 Nested covariance functions

Nested covariance functions consist of summing two or more covariance functions (Goovaerts
et al. 1997; Wackernagel 2003; Journel and Huijbregts 1978). One example of this is advocated
in Ingram et al. (2005) whereby a linear combination of a Gaussian covariance function and a
exponential covariance function (with different lengthscale parameters) were used to model short
range and long range variation respectively which were evident in background ambient gamma
radiation data. The use of the nested model showed small, but not insignificant reductions in
cross—validation error when compared with many commonly used covariance models, but at the
expense of having to estimate an additional parameter and hence requiring more computation.
Appendix C.1 lists other valid nested covariance models.

In the literature there are concerns about using nested covariance models; what matters most
is fitting a covariance function which supports the empirical variogram near the origin (Adler
1981). Stein (1999) suggests that nested models should be avoided since there is little hope
of estimating the parameters of such models with certainty for the size of datasets usually
analysed. Additionally, with likelihood-based approaches there can be convergence problems
due to identifiability of parameters. He does not discuss their application to large datasets

where sufficient data could reduce parameter estimation uncertainty.

425 Space-limited covariance functions

Isaaks and Srivastava (1989) suggest that the process of creating new covariance functions is not
worth the effort associated with verifying positive definitiveness since there are enough functions
that provide a satisfactory fit to most sample variograms that are likely to be encountered. In
what follows, a motivation for constructing additional covariance functions is discussed.
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An often desirable property of covariance functions is that the covariance function decays
to zero beyond a certain cut-off distance. Realistically in many spatial models the spatial
correlations vanish beyond a given separation distance. This property of covariance functions
is referred to by a number of terms: ‘compactly supported’, ‘space-limited’, ‘transitive’ or
‘bounded’. That being the case why are functions, defined over an infinite range, such as the
Gaussian, exponential and rational quadratic covariance functions commonly used? One answer
might be that it seems to be that there are few flexible space-limited models other than the
often used spherical function given by:

k(s)={ 1-3¢+3(8)° o<s<t

positive definite in R, 4.2)
0 s>1

and the circular function given by:

2 5 2s 8)2
£arccos - = \/1— 0<s<1
k(s) = { n (f) - =t () o< positive definite inR2,  (4.3)

0 s>1

Throughout this chapter the advantages of using a space-limited covariance function will be
presented and the associated effort required to define one are shown to be minimal.

4.2.6 Constructing space-limited covariance functions

Constructing a covariance function that is valid is not a trivial matter. One simply cannot
replace entries in the covariance matrix that fall below a certain threshold value with a zero.
Neither can a valid covariance function be constructed by simply “chopping off” the function
beyond a certain threshold distance (Gaspari and Cohn 1999).

Due to the precision of the machine representation of small numbers, many covariance func-
tions defined for infinite separation will yield covariance matrices with apparent sparsity; however
this can lead to some numerical stability problems and is another disadvantage of covariance
functions defined over infinite separation distances.

One simple way to construct a space-limited covariance function and at the same time
maintain positive definitiveness is to simply multiply the covariance function k (-) by a space-
limited covariance function k. () (Wendland 1995; Genton 2001). The idea of calculating the
product of a covariance function with a space-limited covariance function is also called covariance

tapering where the space-limited covariance is called the tapering function (Furrer et al. 2006).
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This product of two covariance matrices is called the Schur product and is explained briefly
in Appendix C.2. The Schur product has be used frequently in atmospheric sciences to create
space-limited covariance functions (Houtekamer and Mitchell 2001; Palmer and Hagedorn 2006).
The taper function used by Furrer et al. (2006) is the popular spherical covariance function which
is used to taper the flexible Matérn covariance.

Even if the assumptions made about a given covariance function do not indicate that a space—
limited covariance is an appropriate model (eg. a large range parameter with respect to the
overall region size), the space-limited model can still be exploited for computational purposes.
Covariance tapering where long range correlations exist can still be justified by considering the
screening effect in kriging (Stein 2002). Wackernagel (2003) also shows that even for processes
where long range correlations exist, as the lag distance increases, the kriging weights rapidly
decay to zero.

It has been mentioned earlier that in the majority of practical kriging implementations a
slight modification has been made to the algorithm. Instead of solving a large matrix of all
the observations in a dataset which scales cubicly, many smaller matrices are solved. These
smaller matrices are typically constructed by selecting a search neighbourhood of the nearest n
observations or by selecting all observations within a search radius r. There is a relationship
between using a moving window for kriging and covariance tapering. By selecting a taper
function,k, (-), with a short range parameter, an equivalence with moving window kriging was
noted by Furrer et al. (2006). Much depends on the taper used. If a step function style taper

of the form:

kc(s)={1 %t (4.4)
0 s>1

were used, that is to say that a hard cut off was induced in the covariance matrix, then the
equivalence to moving window kriging, at a prediction location, would be exact. However, since
the tapers discussed by Furrer et al. (2006) are more sophisticated, the relationship to moving

window kriging is more complicated.
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(a) (b)

Figure 4.1: Wendland construction covariance function using a polynomial of order 1 (a) and a
polynomial of order 2 (b) with different smoothnesses, 1 (solid line), 3 (dotted line), 5 (dashed
line), 7 (dotted—dashed line).

Wendland construction

The particular method proposed by Wendland (1995), Wendland (1998) uses the truncated

power function:

kl [s,L,v)={ (=f) o<aci (4.5)

0 s>1

for constructing a valid space-limited covariance function where L is a truncation parameter and
controls the support size of the covariance function or sparsity in the covariance matrix and v
is a smoothness parameter of the function which defines the differentiability of the covariance
function. The truncated power function is not an interesting candidate covariance function
because as the differentiability or smoothness increases, the covariance function decays more
rapidly. Wendland (1995) suggests constructing a polynomial of a given order and creating a
product covariance with the truncated power function to give a flexible space-limited covariance
function for use in many dimensions. The differentiability or smoothness of the covariance
function is controlled by the degree of the polynomial. An example of a function that is twice
differentiable at the origin is given by:

v+1
ki(t,L,v):{ +e+UHa-£ 0Ks<l (4.6)
0 s>1
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and yields a positive definite covariance function if v > (<

'2"3] holds, where d is the dimensionality
of the dataset. To increase the differentiability of the function, a 2nd order polynomial can be

used instead. Wendland (1995) suggests:

(1+w+2) g+ =) (1- )" o<s<t

0 s>1

ke (t1 L'Iv) . (4.?)

which is four times differentiable at the origin and yields a positive definite covariance function
ifv> 19-%'5‘-}-. Figure 4.1 shows the Wendland covariance functions constructed from order 1 and
order 2 polynomials. The ability to control the differentiability at the origin is important and
the Wendland construction covariance functions can be used as tapers for the Matérn covariance

function because of this.

Gneiting’s Gaussian approximation

Figure 4.2: The Gneiting or space-limited Gaussian covariance function approximation (red
dashed line) compared with the Gaussian covariance function (blue solid line). They are virtually
identical in shape.

The Gneiting or space-limited Gaussian approximation covariance function was proposed
by Gneiting (1999) as an alternative covariance function for atmospheric data analysis applica-

tions. The Gneiting Gaussian approximation is effectively a polynomial approximation (of the

type discussed in Section 4.2.6) to a Gaussian covariance function. The construction of this
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Gaussian covariance function approximation is given by:

K(t) =

80 2500 t? 3 10 ¢3 8 10 t3
(1+ 35+ B85+ BB ) (1-8%) o<Pa<t 4s)
0

1947 51
and as Figure 4.2 shows, the curve of the Gaussian and Gneiting’s Gaussian approximation are
almost visually indistinguishable (Gneiting 2002). Gneiting’s Gaussian covariance function is 6
times differentiable at the origin and remains positive definitive in 3 or fewer dimensions. This
approximation also does not have the associated numerical disadvantages that are encountered

with the Gaussian covariance function (Schlather 2006).

4.2.7 Determining the truncation parameter

One of the most neglected aspects of the application of space-limited covariance functions,
particularly the functions that require a truncation parameter, is the process to be undertaken
to determine the degree of sparsity that the covariance function yields. Since a prime motivation
of using space-limited covariance functions is the additional performance increases that can be
obtained it is not necessarily appropriate to perform some kind of cross-validation or maximum
likelihood approach to determine values for the parameters that control the sparsity of the
covariance matrix. Determining a suitable trade—off between prediction accuracy and sparsity
in the covariance matrix is something that is open to interpretation depending on the problem
domain and it will be difficult to give a definitive answer for a suitable “catch all” method.
Furrer et al. (2006) adopts an approach similar to those of finding a suitable neighbourhood
radius for moving window kriging.

Problems with likelihood-based parameter estimation

Likelihood-based parameter estimation methods raise a number of problematic issues for the
application of space-limited covariance functions. To exploit the sparsity that spacelimited
covariance functions induce in the covariance matrix, sparse matrix storage methods should be
used. The implementation details of sparse matrices can vary from one software package to the
next, but one drawback likely to be encountered with all such software is that the sparsity in
the covariance will vary during each iteration of the maximum likelihood algorithm. As the
range and sill parameters are updated during each iteration, the storage requirements of the
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sparse matrix will fluctuate. If the sparse matrix becomes too densely populated during an
iteration then the system will run out of memory. One way to overcome this problem, to a
certain degree, is to fix the truncation parameter. Unless the range or lengthscale parameter
is less than the truncation parameter, then the memory requirement for the covariance matrix
will remain constant. This is not necessarily true for the matrix inverse used to calculate the
likelihood. Although not the aim of their research, Kaufman (2006) suggests using a tapering
matrix twice which helps solve these issues. First the covariance matrix is tapered, then after
the matrix inverse has been computed, the matrix inverse is tapered to ensure that the memory
requirements do not exceed a defined limit.

The above assumed that a local parameter optimisation algorithm was used, such as quasi-
Newton (Zeleznik 1968) or conjugate gradient methods (Hestenes 1980). Global parameter
optimisation algorithms, such as simulated annealing (Kirkpatrick 1984), further increase the
problem due to their exploration of the parameter space. Unless a fixed truncation parameter
is specified, it is recommended that global optimisation algorithms are avoided when sparse
matrices are being used.

The space-limited covariance functions such as the Spherical (Equation (4.2)), Circular
(Equation (4.3)) or Gneiting’s Gaussian approximation (Equation (4.8)) also suffer from the
same truncation parameter probleﬁ because the range parameter determines the effective trun-
cation of the covariance function directly. If a method-of-moments variogram estimation is the
chosen method of determining covariance model parameters then the above listed issues are no
longer problematic.

Prediction does not raise any specific issues when sparse matrix methods are used. A
method-of-moments variogram estimator could be used without problem. Maximum likeli-
hood methods can be used with care, but certain parameters may need to be constrained to

within a certain range to avoid problems with computer memory.

Simiiarity and sparsity measures

One method that has been proposed for determining suitable truncation parameters for covari-
ance functions is based on measuring heuristics about the sparsity and similarity between the

space-limited covariance matrix, Zc, and the covariance matrix determined without a space-
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limiting adjustment, L, (Zhang et al. 2004). Conveniently these heuristic measures can be
determined before any processing of the data (ie. matrix inversion) has taken place. The simi-

larity heuristic:
(Z,Zc)F
VEDZc, Lo)r

measures the alignment between the two covariance matrices Zc and Z. The notation (A, B)F

S(C)= (4.9)

denotes Frobenius norm between the matrices A and B and is defined in Appendix C.3. This
idea was proposed by Cristianini et al. (2002) in a machine learning context to avoid the so
called trial and error heuristics that are often used in determining covariance model parameters.
Here they state a relationship to the Pearson correlation coefficient and show how this similarity
heuristic can be used as a correlation measure between two covariance matrices. The measure has
been shown to yield a value in the range of 0 to 1 where a result of 1 means that the covariance
matrices are identical and hence there has been no information loss due to the sparsification
process and 0 means entirely dissimilar.

Another heuristic, which measures the sparsity (or more precisely the density) of the covari-
ance matrix, is a simple measure of the ratio of nonzero (nnz(-)) elements in the covariance

matrix divided by the overall number of elements, n?, in the covariance matrix is given by:

(Z¢)
T(C) = '—‘-'-‘-"n,—c (4.10)

Zhang et al. (2004) suggest combining these two heuristic measures of similarity and sparsity
to enable the truncation parameter to be tuned by maximising:

U(Ec)=S(Ec)+T(Xc), (4.12)

where U (Z¢) is a combination of the two heuristics S (£c) and T (£¢) that suit the requirements
of the problem and for this thesis a linear combination will be used.

This heuristic procedure is especially useful for applications with large datasets since the
storage requirements can be controlled depending on the storage capacity of a system

4.3 Experiments

Having discussed some space-limited covariance functions and ways in which they can be con-
structed, some experiments will be performed to show the performance with the datasets defined
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in Chapter 3. Summary statistics are calculated for all of the experiments and the covariance
function parameters for each dataset were fixed at optimal values.

For each dataset the same experiments were performed. As an exemplar of infinitely sup-
ported covariance functions, the Gaussian covariance function were chosen since this is a com-
monly used covariance function and there is a space-limited approximation which can be com-
pared with truncated versions.

First the similarity and sparsity measures of Zhang et al. (2004) are explored. The trunca-
tion and smoothness parameters are determined for Wendland construction by analysing these
measures of similarity and sparsity. Choosing the specific values depends on how much toler-
ance can be given to the prediction error and how much time can be afforded for the prediction
algorithm. Inevitably, an increase in prediction accuracy leads to an increase in computation

time.

The effects on prediction accuracy of varying the truncation parameter are investigated first.
The smoothness parameter is then investigated.

4.3.1 Varying the truncation parameter

Figures 4.3, 4.4 and 4.5 each show how as the truncation parameter increases, the prediction
accuracy increases.

The behaviour of the plots in Figure 4.3 shows that prediction is erratic when the truncation
parameter is below a certain length (roughly 0.6). Since the truncation parameter determines
how many observations are used to provide a prediction at a point, the reasons for these volatile
results can be intuitively understood. As more observations are used (the truncation parameter
is increased), the prediction results become more stable. Figure 4.4 shows that the optimal
truncation parameter is around 1.4. The general trend of all the plots is that as the MAE is
reduced the correlation between the observations and the true values increases which is what
one would expect as accuracy and precision are improved.

By inspecting Figures 4.6, 4.7 and 4.8 clear optimums can be selected where the sum of the
two lines (or Equation (4.11)) is maximised. The smooth behaviour seen in the first experiment
is also seen here. As the similarity increases the sparsity decreases, but still as with the previous

experiment, the similarity measure gives no additional information about prediction error. By
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Figure 4.3: Mean absolute error (left) and correlation between predictions (right) with varying
truncations for 1D dataset. The truncation parameter is measured on the horizontal axis.
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Figure 4.4: Mean absolute error (left) and correlation between predictions (right) with varying
truncations for 2D dataset. The truncation parameter is measured on the horizontal axis.

comparing the Walker lake plots, the trough evident in Figure 4.3 cannot be seen at all in
Figure 4.6.

4.3.2 Varying the smoothness parameter

Having looked at the truncation parameter it is now time to look at the smoothness parameter.
In these experiments the truncation parameter has been fixed.

In these experiments where the smoothness of the truncating function is being changed, the
net effect is to select or change the covariance function. So it should come as no surprise that
by looking at the vertical axes of Figure 4.9 that the effects induced by varying the smooth-



4.3. EXPERIMENTS

0.46 0.76
0.4 0.74 1
0.42 :
w 0.72
3 04l Eé
(v
038} 0.7
0.36 0.68
0 0.5 1 1.5 0 0.5 1 15
Truncation Truncation

Figure 4.5: Mean absolute error (left) and Correlation between predictions (right) with varying
truncations for Walker lake dataset. The truncation parameter is measured on the horizontal
axis. The truncation parameter is measured on the horizontal axis.
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Figure 4.6: Similarity (dashed line) and Sparsity (solid line) with varying truncations for 1D
dataset
ness parameter are small, but not neglible. The plots for the 1D dataset show how a plateau
is reached gradually where one could say that extending the smoothness parameter beyond a
certain threshold has little effect. Unlike the truncation parameter, the smoothness parameter
does not dictate the sparsity in the covariance matrix. Hence the smoothness parameter should
be chosen based on the properties of the process being interpolated since the Gaussian smooth-
ness assumption is quite unrealistic for most applications. The smoothness parameter should be
greater than 431 where d is the dimensionality of the dataset.

Interestingly, the prediction performance plots for the 2D dataset (Figure 4.10) show how a
smoothness process tends towards a good result. This makes sense since the data were sampled
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Figure 4.7: Similarity (dashed line) and Sparsity (solid line) with varying truncations for 2D
dataset
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Figure 4.8: Similarity (dashed line) and Sparsity (solid line) with varying truncations for Walker
lake dataset

from a simulation using a Gaussian covariance. The Walker Lake dataset (Figure 4.11) shows
similar behaviour to the first dataset whereby a plateau is reached for an optimal value.

It should be expected that changing the smoothness parameter does not change the sparsity
in the matrix at all. Confirming this Figures 4.12, 4.13 and 4.14 show a constant line for the
sparsity heuristic measure. The similarity measure shows that as the smoothness is increased,
the similarity decreases. This is to be expected since although the smoothness is increasing, the
shape of the covariance function is becoming more and more peaked, although at the same time
increasing the differentiability at the origin.

The results from these experiments have shown how space-limited covariance functions can
be constructed easily and used to realise sparse covariance matrices. Various techniques have



4.3. EXPERIMENTS

0.61 0.8
0.6 0.75
0.59} % 0.7
S &
0-58 L LV 0.65
0.57 0.6
0.55
- 0 5 10 15
0 Sl?aoomnes;l 0 15 Smoothness

Figure 4.9: Mean absolute error (left) and Correlation between predictions (right) with varying
smoothness for 1D dataset
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Figure 4.10: Mean absolute error (left) and Correlation between predictions (right) with varying
smoothness for 2D dataset

already been proposed as ways to determine the parameters of the space-limited covariance
function but there are still some short comings that make their application far from perfect.
That being said, these techniques allow a number of advantages to be had with respect to
computational speed.

Tables 4.1, 4.2 & 4.3 show summary statistics for the Gaussian covariance function with
the Gneiting approximation and the space-limited Gaussian. The first thing to note is the per-
formance of the Gaussian and the Gneiting covariance functions. The MAE and correlations are
gimilar. The Wendland Gaussian performs poorly comparatively, but does have the flexibility
of controlling matrix sparsity directly by the inclusion of a truncation parameter. Gneiting's

covariance function still yields sparse matrices which would give significant performance im-
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Figure 4.11: Mean absolute error (left) and Correlation between predictions (right) with varying
smoothness for Walker lake dataset
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Figure 4.12: Similarity (dashed line) and Sparsity (solid line) with varying smoothness

provements.

To compare the speed of using Gneiting’s approximation or the Wendland construction,
timings of a simple matrix inversion were calculated for the 3 different datasets using the 3
different covariance functions. Except for the Gaussian covariance function where full matrix
data structures were used, sparse matrix data structures were used to store the matrices. The
Reverse Cuthill-McKee algorithm (discussed in more detail in Section 4.4) was used to reorder

the matrix before the inversion operation was performed.
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Figure 4.13: Similarity (dashed line) and Sparsity (solid line) with varying smoothness
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Figure 4.14: Similarity (dashed line) and Sparsity (solid line) with varying smoothness

4.4 Sparse Matrices

Having looked at some ways to represent the covariance matrix using various space-limited
covariance functions, it is important that the algorithms used to take advantage of such theory
are discussed. There are few advantages to be had by only using space-limited covariance
functions without the use of optimised sparse matrix methods (Pissanetzky 1984; Saad 2003).

4.4.1 Sparse Matrix Representation

Typically (so called full) matrices are stored as two—dimensional arrays or arrays of arrays in

memory depending on the programming language. Each row (or column depending on the

4]
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Covariance function MAE | R Matrix sparsity | Time (s)

Gaussian 0.300 | 0.922 | 0.0 82.9

Wendland Construction Gaussian | 0.302 | 0.923 | 87.3 7.3 (0.4)
" Gneiting 0.301 | 0.922 | 83.7 9.1 (0.5)

Table 4.1: Table showing summary statistics for the 1D synthetic dataset with each covariance
functions used. Matrix sparsity and computation time (matrix ordering time).

Covariance function MAE [ R Matrix sparsity | Time (s)
Gaussian 0.546 | 0.715 | 0.0 89.2

Wendland Construction Gaussian | 0.552 | 0.709 | 96.5 6.8 (0.4)
Gneiting 0.546 | 0.714 | 94.6 7.2 (0.4)

Table 4.2: Table showing summary statistics for the 2D synthetic dataset with each covariance
functions used. Matrix sparsity and computation time (matrix ordering time).

implementation) is stored contiguously in memory whereby the last element of a row is stored
next to the first element of the next row. One definition of a sparse matrix is any matriz with
enough zeros that it pays to take advantage of them (Gilbert et al. 1992). The rationale for the
use of sparse matrices is about avoiding performing arithmetic operation on zero elements which
will yield zeros. This not only reduces computation time but also the storage requirements of a
matrix. Many of the matrices due to space-limited covariances have a large proportion of zero
elements and hence a more efficient storage scheme could be used to represent the matrix.

One of the most common forms and simplest ways of representing a sparse matrix is called
coordinate format. The data structure needed to represent & matrix in this manner consists of
three fields: matrix element, row index and column index. The assumption here is that only non—
zero elements are stored and hence any element not listed is assumed to be zero. Specific details
about the memory allocated to represent a row or column index are out of the scope of this thesis
and hence their details will be avoided here. Variations on the coordinate format representation
have been used which rely on the matrix elements being ordered in a specific way in the sparse

matrix data structure which enables further savings in the memory requirement. For example,

Covariance function MAE [ R Matrix sparsity | Time (s)
| Gaussian 0.603 [ 0.744 | 0.0 92.4

| Wendland Construction Gaussian | 0.610 | 0.743 | 86.3 14.9 (0.7)
Gneiting 0.600 | 0.747 | 79.2 17.0 (0.8)

Table 4.3: Table showing summary statistics for the Walker lake dataset with each covariance
functions used. Matrix sparsity and computation time (matrix ordering time).
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(a) Original matrix. (b) Column count reordering algorithm.
Loy ‘ Ll
(c) Approximate minimum degree algorithm. (d) Reverse Cuthill-McKee algorithm.

Figure 4.15: Matrix structure of 1D dataset after using matrix reordering algorithms.

there is a sparse matrix data structure that assumes a diagonally structured matrix and takes
advantage of this property by storing the diagonal elements of the matrix sequentially without
using coordinates. The remaining off-diagonal elements are then stored using coordinate format.

The most appropriate data structure is dependent on the structure of the matrices involved.

Matrix Reordering

Not all matrices are structured in a way whereby there is a diagonal structure to the non-zero
elements. One reason for this is due to the order of the data from which the covariance matrix
was constructed. It is possible that the matrix columns, rows or both can be reordered to
achieve a more convenient structure to the covariance matrix. Furthermore it is possible (but
not guaranteed) that any factorisations performed on the reordered covariance matrix can be

sparser as a result.

Probably the simplest reordering scheme is to sort the columns by an increasing non-zero
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Method Computational Complexity
Column count O (|A])

Minimum degree O (lV]2 IEl)
R. Cuthill-McKee O (|E| + max_degree(V))

Table 4.4: Complexity for matrix reordering algorithms.

count as shown by Figure 4.15b. The column count reordering algorithm moves columns (and
rows) with larger nonzero counts towards the end of the matrix. This reordering method is
particularly useful for some very irregular structures (Gilbert et al. 1992) and runtime can be
relatively shorter than other algorithms in certain circumstances, but this cannot be guaranteed.

Another method which is popular in graph theory is the approximate minimum degree
algofithm (Amestoy et al. 1996). This algorithm attempts to group together zero elements into
blocks. Figure 4.15¢ shows how the matrix has a clear block structure.

Probably the most commonly used algorithm is the Cuthill-McKee algorithm. This algo-
rithm aims to reorder the matrix so that the non-zero elements are as close to the diagonal
as possible (Cuthill and McKee 1969). A variation on the Cuthill-McKee algorithm called the
Reverse Cuthill-McKee algorithm which reverses the ordering of the index numbers generally
gives a better solution. Figure 4.15 shows how the elements of this array are reordered on the
diagonal.

The complexity of matrix reordering algorithms requires some further definitions. This is
due to complexity being related to the structure of the sparse matrix. The computational time
to reorder one matrix may be many orders of complexity greater than that of another matrix
of the same dimensions. Describing the matrix in terms of number of vertices (V), number of
edges (E) and number of columns (A) enables us to describe the complexities for each of the
reordering algorithms. Table 4.4 shows the computational complexity for each of the matrix
reordering algorithms. One interesting observation from reordering the matrices is the block
diagonal structure of the covariance matrix. To illustrate the advantage of this structure a
hypothetical covariance matrix is shown in Figure 4.16 which consists of two distinct blocks
(70-by-70 and 30-by-30) which will be referred to as sub-matrices. These sub—matrices can
be inverted individually and independently of the other blocks in the covariance matrix (Press
et al. 1992) and hence instead of inverting a 100-by—100 matrix, a 70-by-70 and a 30-by-30
matrix can be inverted instead. This leads to a number of advantages, the details of which will



4.4. SPARSE MATRICES

Figure 4.16: Hypothetical block diagonal covariance matrix structure

o

Figure 4.17: Comparison between sparse matrix operations and full matrix operations. Time
is given in seconds and the size of the dataset used to construct the covariance matrix is the
horizontal axis.

be discussed in Chapter 6. To summarise, firstly the inversion of the covariance matrix can
be performed in parts on different processors or processor cores. Currently computing trends
are moving towards multi—core processors where splitting a problem down into two independent
parts will be executed more rapidly than one big program. Looking at the trends of computer
processors in the last three years have shown that rather than increasing the clock speed of a
processor, the preferred route of providing more power is via multi-core processors.

To gauge the order of speed up possible from using a sparse matrix method is a complex
issue. Issues such as matrix structure play a large part in determining how fast an operation will
be performed. As an illustrative example a direct matrix inversion algorithm will be compared.
Figure 4.17 shows the speed and shows how consistently the sparse matrix method is faster. The
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Method MAE R
Original 0.340 0.967
Block Inversion 0.339 0.967

Table 4.5: Results obtained by inverting block diagonal elements of the covariance matrix
independently.

dataset used was constructed so that a roughly 10% occupancy was evident with each matrix
size.

Again returning to Figure 4.15Ideally, it can be seen that there is an almost clear block
structure to the matrix when the Reverse Cuthill-McKee algorithm is used. To verify the
previous proposed hypothesis that each block section of a matrix can be inverted independently
of the rest of the matrix, the matrix will be split into two parts. Block 1 will comprise of the
first 820 matrix elements and Block 2 will comprise of the last 530 elements. A clear reason
for this can be seen when looking closely at the matrix occupancy in Figure 4.15d since this is
where the locations of low bandwidth occur in the matrix. Ideally, selecting two sub~matrices
completely independent of each other is what is required, and by selecting two matrices where
there is overlap correlations between observations in the dataset are being discarded. This is
also being done in an unprincipled fashion, so that it isn't exactly clear what information is
being lost. Accepting these limitations, the results of such an experiment are illustrative of
some advantages that can be achieved using such methods.

Table 4.5 shows the results from such an experiment and shows very little deviation in the
accuracy when using the block inversion method. By clustering the data or grouping similar data
into smaller blocks there are many numerical advantages with respect to computation speed that
are to be had. The computation of the above problem on a typical multi-core processor would
only be limited by the largest of the two sub-matrices. Chapter 6 will cover more techniques
of this type where speed advantages can be had due to dividing the problem into smaller parts
and then solving the smaller parts individually.

4.5 Universal approximation

Applying sparse matrix methods leads to increases in computational efficiency when the range of
the spatial process is long with respect to the spatial size of the dataset. In Chapter 2, projected
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Figure 4.18: Pictorial representation of the construction of the noise free DTC covariance matrix
approximation with a low-rank matrix with a space-limited covariance.

process methods were introduced as being a means of improving computational efficiency when
the range of the spatial process is short with respect to the spatial size of the dataset.

An universal approximation is now proposed whereby sparse matrix methods are used in
conjunction with projected process methods to exploit the advantages of both techniques. This
is particularly useful in the case where a large spatial dataset is processed and has regions of
densely sampled observations and other regions of sparsely sampled data. Also, in an automatic
mapping context, the ability to treat large datasets irrespective of sampling density is very
advantageous.

For the universal approximator, the predictive equations are given by:
Z (%) = kINEuniZ(Xn), (4.12)

02 (%4) =Kas — K NETNKeN, (4.13)

where the covariance matrix is now given by:

Zunt =knmKpumkmn +A + B, (4.14)

where A is now stored using a sparse matrix data structure. When computing the inverse of Zyni
using the Sherman-Morrison-Woodbury identity (see Appendix A.1), the inversion A~ can be
computed efficiently using sparse matrix methods. Figure 4.18 shows this effect pictorially.
Visually the covariance matrix approximation can now be seen to be a closer approximation to
the full covariance matrix shown in Figure 2.5.

Tables 4.6, 4.7 and 4.8 show the performance of the universal approximation method that
has been proposed. A clear pattern has emerged which shows the projected process method and

the sparse matrix method perform with a similar accuracy. By combining the two using the

97



4.5. UNIVERSAL APPROXIMATION

Prediction method | MAE | Time (s)
No approximation | 0.901 | 11.22

[ Projected process | 0.962 | 3.05
Sparse matrices 0.986 | 1.45
Universal method | 0.919 | 5.58

Table 4.6: Prediction accuracy and time for 1D synthetic dataset.

[ Prediction method | MAE [ Time (8)
No approximation | 1.311 | 12.97
Projected process | 1.398 | 3.44
Sparse matrices 1.427 | 2.45
Universal method | 1.323 | 5.07

Table 4.7: Prediction accuracy and time for 2D synthetic dataset.

universal approximation framework, the prediction accuracy comes very close to that of the full
covariance matrix method. This comes at a fraction of the computational cost as can be shown

by the computation time required.

4.5.1 An approximation for very large datasets

Staying with the concept of exploiting sparsity, an alternative approximation is now considered
which is particularly useful for very large datasets. Instead of introducing sparsity into the
matrix A as proposed for the universal approximator, we instead propose introducing sparsity
into the low-rank matrix component of the covariance function approximation.

Referring back to the projected process methods of Chapter 2 shows that the matrix inversion

of the covariance function approximation:
cov(a,b) = kamKmimkmo (4.15)

offers potential problems for large datasets. When the active set increases above a certain
limit, the matrix inversion will become problematic. By introducing sparsity into Kmm, the

computation efficiency can be improved with the use of sparse matrix inverse and multiplication

Prediction method | MAE | Time (s)
No approximation | 0.701 | 19.45
Projected process | 0.761 | 5.72
Sparse matrices 0.769 | 4.62

[ Universal method | 0.708 | 8.20

Table 4.8: Prediction accuracy and time for Walker Lake dataset.
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Prediction method | MAE | Time (s)
Projected process | 0.761 | 121
Sparse matrices 0.780 | 98
Combined 0.765 | 58

Table 4.9: Prediction accuracy and time for 10,000 observations from the Walker lake dataset.

methods. Furthermore, the size of the active set can be increased should it be needed for the
sake of improved accuracy.

To test this alternative approximation for larger datasets, a random subset of 10,000 observa-
tions of the entire Walker lake dataset are used. Three main methods were compared: projected
process, sparse matrix methods and then both combined. Ideally, a standard simple kriging
algorithm would provide a good comparison, but the computation time would be l;rohibit.ive
for a dataset of this size. An active set of 3,000 observations is used for the projected process
methods. For the sparse matrix methods, a truncation parameter of half the range is specified
and the matrix is reordered using the Reverse Cuthill-McKee algorithm.

Table 4.9 shows results for prediction and for computation speed. The projected process
method gives the best predication accuracy, although it is the slowest. The sparse matrix
methods give the worst accuracy, but prediction time is improved over that of the projected
process methods. The combined method shows a significant improvement in the computation
speed, the prediction accuracy is only slightly worse than using the full projected process method.
One could argue that an inappropriate number of active points or truncation parameter were
selected. Also, the Walker lake dataset is densely sampled hence it is particularly suited to
projected process methods. Admittedly the active points were chosen arbitrarily. However, the
main result is the combining of projected process methods with sparse matrix methods, yields

a faster algorithm without significantly compromising prediction accuracy.

4.6 Conclusion

In this chapter the concept of space-limited or compactly supported covariance functions has
been introduced. Space-limited covariance functions have been grouped into two classes: spar-
sity controlled by the lengthscale or range parameter and sparsity controlled by an additional

truncation parameter. The advantage of the former is that it yields sparse covariance matrices
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without any tuning of sparsity parameters whereas the latter gives the practitioner full control
over the sparsity determined by the truncation parameter of the covariance function. It has been
shown that applying these covariance functions yields sparse covariance matrices which have a
number of advantages.

Sparse matrix representation can in many cases reduce the storage overhead for a matrix
depending on the number of non-zero elements, matrix structure and the data structure used to
represent the matrix. Computation can be more efficient using sparse matrices since operations
on zeros need not be performed resulting in speed increases. The exact nature of the increase in
computational efficiency is dependant on a large number of factors and cannot be fully described.
Reordering the matrices using matrix reordering algorithms is a simple way that can be used
to increase performance. A further advantage of matrix reordering algorithms is that a block
structure is often evident in the covariance matrix. For block diagonal matrices, operations can
be performed on these sub-matrices independently of the other parts of the matrix.

An universal approximator has been proposed that improves prediction accuracy without
detrimentally decreasing the computational complexity. It better approximates the full covari-
ance matrix. A further method was considered where a large number of active points are used.

This showed how computational complexity can be reduced when very large datasets are used.



Parallel Computers

5.1 Introduction

The techniques for treating large datasets discussed in earlier chapters of this thesis have focused

on models that exploit different kinds of redundancy in the representation of the model. By
manipulating a less complex model or a model with a more sparse structure, computational
speed—ups have been achieved coupled with a reduction in the storage requirement of the model.
By applying these methods the treatment of many large datasets becomes tractable. However
the speed-ups achieved are still not suitable for all applications such as automatic mapping
systems where the calculations may need to be performed in (near) real-time (Dubois and
Galmarini 2005). Small datasets do not pose significant issues for real-time mapping, but as the
cost of deploying sensors over vast geographical regions decreases, the size of datasets obtained
from sensor networks has increased (Deligiannakis et al. 2004; Loo et al. 2005). In addition,

improvements in computer network organisation have facilitated the formation of computer
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clusters and grids.

In this Chapter, some of the principles of parallel computation are introduced. However,
specific applications to geostatistics will not be addressed until Chapter 6. Trends in micropro-
cessors will be discussed and how this raises a number of issues for software developers. The
different parallel architectures are introduced along with the different software that is appropri-
ate for each architecture.

5.2 Microprocessor Trends

Over quarter of a century ago, one of Intel’s co-founders Gordon Moore observed that the
number of transistors possible on a given piece of silicon would double every couple of years.
This became known as Moore's law throughout the world of computing !. Even though over the
past years, chip manufacturers have encountered barriers and overcome them, it is estimated
that Moore’s law will eventually reach a final barrier due to the fact that a wire cannot be
made thinner than the width of an atom using the understanding of today. Therefore with
the prospect of this barrier in place, it may not always be possible to increase the speed of
calculations simple by increasing microprocessor speed.

There has been much talk in recent years of quantum computers which overcome many of the
problems posed by traditional silicon processors, but these are still largely theoretical (Hosten
et al. 2005).

Parallel processing has long been a solution to increasing the speed of calculations. So called
super-computers have been massively parallel for many years now and have been able to do
billions of calculations a second. However, until relatively recently parallel computing has been
out of reach of almost all except important government related institutions. In 1997, Intel’s
Deep Blue, a 256-processor massively parallel system, hit the news when it beat world chess
champion Garry Kasparov. This showed the world the potential of parallel processor computers.
There are a number of parallel processor architectures that are even within reach of the home
user and are becoming increasingly popular such as the Beowulf cluster (Gropp et al. 2002).

!Intel Executive Biography — http://www.intel.com/pressroon/kits/bios/moore.hta
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5.2.1 Parallel architectures

In this Section a few of the basic common architectures that can be commonly found will be
listed. Intricate details about each architecture will be avoided but rather an outline of each
architecture will be preferred.

Multi-core architectures

In this year, 2008, it is becoming commonplace that many new microprocessors have what are
termed as multi—core architectures. A multi—core microprocessor is a single chip containing
essentially a number of microprocessors or cores. Currently dual—core processors are very com-
mon although in the high end server market, quad—core systems are also being used. The term
uniprocessor has now been defined to describe those processors that just have a single core to
distinguish them from multi-core architectures. Multi—core architectures provide a symmet-
ric multi-processing architecture where multiple processor cores access a single shared memory
resource. Multi—core architectures are being found in many systems, not just modern desktop
computers; the latest games consoles are also utilising this technology. For example, the Playsta-
tion 3 console has a Cell processor, designed by a collaboration of IBM, Toshiba and Sony and
has 9 processing elements. Since the processors are linked by the memory bus, dual-core parallel
architectures can be described as tightly coupled.

Parallelism has been evident in computer processors for many years. Pipelining of instruc-
tions is the parallel process of fetching, decoding and executing an instruction. While one
instruction is being fetched from the stored program, the previously fetched instruction is being
decoded and the instruction previously decoded is being executed. Often the pipeline can be
longer than three stages and some modern computers have used as many as twenty stages (Quinn
2003).

Parallelism in modern computers is something that has been needed for some time since it
is natural with the presence of parallelism in today’s operating systems. Most computers have
a multi-tasking operating system which explicitly tries to process many programs in parallel. A
regular home computer can have more than fifty tasks running concurrently which the operating
system manages.
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Multi-processor architectures

Another symmetric multi-processing architecture with a single shared memory resource are
multi-processor systems. These systems are simply multiple processors sharing the same mem-
ory, but the processors are separate and have to share the same memory bus and hence one
processor can be left waiting while a large memory transfer takes place from another proces-
sor in the system. Multi—core architectures are often described as multi-processor architectures.
The main different being that multi—core processors are connected to the computer motherboard
by a single processor socket and any inter—processor communication takes place on a communi-
cation bus wired on the chip instead of using the system bus. Likewise this system architecture

can be described as tightly coupled.

Clusters

Cluster computing has become very popular in recent years thanks to the popularization of the
Beowulf cluster. A Beowulf cluster is a cluster of inexpensive off the shelf computer hardware
that is usually connected by an ethernet link for communication between each node of the cluster.

Systems such as this are described as loosely coupled.

Hybrids

Some parallel systems are a hybrid of a number architectures. For example, it would not be
uncommon to see a dual processor system where each processor would be dual core giving
effectively a quad-processor system. Likewise a Beowulf cluster could utilise many dual-core

processor systems.

5.2.2 Popularity of Parallel Processing

Despite the promise of parallel computing it is still not utilised to its full potential.

Predictions from the past

Writing in 1995, the authors of the well respected series of books titled Numerical Recipes, (Press
et al. 1996), stated that they were convinced that a parallel processing revolution was imminently
about to take place whereby parallel processing was to become the mainstream methodology
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for all computing, home and industrial. Additionally, the authors make a prediction that the
first years of the new century will bring 4 to 8 user-accessible microprocessors to the standard
desktop computer. Furthermore they add that a decade later the number will be between 16
and 512 microprocessors in each desktop computer.

Having the advantage of hindsight, it can be seen that their predictions were ambitious,
although their hypothesis that parallel processing would become common place in the home
may about to be validated when one looks at the marketshare of dual-core processors. However
this does not mean that software is being written to utilise this extra power. Thread-level
parallelism, whereby an application runs several threads at once, has been common in many
server based applications but is still rare in much software, even with the advent of dual—core
processors. Concurrent computing, as thread-level parallelism is often called, focuses on how
threads communicate with each other and have become used more commonly since popular
programming languages such as Java or C# include constructs for handling concurrency.

Reasons for Slow Uptake

There are a number of potential reasons for the slow uptake of parallel software design. Tra-
ditional computer programs may need a redesign to exploit a parallel architecture which may
require a significant redesign effort. A program designed for a parallel architecture will also
(more than likely) run more slowly when executed on a uniprocessor system. With the legacy
of millions of uniprocessor systems still in use, it can be seen why a complete shift to parallel
processing has not yet been made in the home computing market.

The problem of many legacy uniprocessor systems is not the only potential reason for a slow
uptake in applications being designed to exploit parallelism. There are a number of reasons why
the development stage of parallel programming can be considered more time consuming,.

Firstly the issue of load balancing needs to be addressed. It is an undesirable situation
that processors in a multi-processor system are available, but at the same time idle due to an
application being designed in a way that only one process is being used for the majority of
the work. During the computation on this one processor, the other processors in the system
are dormant. As a result these other processors are not being used and are unavailable to

be scheduled to other tasks. It should be a goal of parallel programs that task idle time be
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minimised. Another issue linked with load balancing is synchronisation. If the tasks reach a
synchronisation barrier point the performance of the system will only be as fast as the slowest
task. Normally the issue of load balancing should be addressed in the design of the parallel
algorithm, although it may be required that dynamic load balancing is implemented in the
algorithm itself which can be in the form of when a task is finished, the processor queues to
be allocated another task. Dynamic load balancing can add greatly to the complexity of the
implementation of an algorithm but can improve performance.

There are many thousands of different parallel set ups currently in use. Programming
architecture-independent parallel algorithms is also an important issue since it depends largely
on the architecture in use what design the algorithm should take. For loosely coupled systems,
interprocess communication can be very expensive and cause long delays in the execution of an
algorithm, but at the same time the memory available for processing in a cluster is often many
times that of a tightly coupled system. This leads to a further advantage of parallel algorithms
in that it may not only be speed that is the issue but rather the memory storage requirement.
By splitting the data into smaller chunks and distributing across a cluster of computers massive

datasets can be handled without a system running out of memory.

Amdahl’s law

Utilising parallel processing computers does not guarantee increases in slgorithm execution time.
Many algorithms or fractions of algorithms are sequential in nature and limit significantly in-
creased parallel performance. There is a law associated with this called Amdahl’s law, named
after computer architect Gene Amdahl. It is an example of the law of diminishing returns
whereby a large amount of extra processing power could be made available to a particular sys-
tem and the overall speed-up could be a tiny fraction of the extra processing power. Amdahl’s
law (Amdahl 1967) applied to parallelisation is given by (5.1). Where F is the fraction of a
calculation that is sequential and hence 1 - F being the fraction that can be parallelised, then
the maximum speed-up achievable by using N processors is given by:
MaxSpeedup = #ﬁ-r] (5.1)
Amdahl’s law is a best case. It does not take into account factors such as coordinating

processors or the overhead of inter—process communication.

106



5.2. MICROPROCESSOR TRENDS

It is often the case that the structure of the sequential algorithm drives the structure of the
parallel algorithm and the architecture that an algorithm is better suited to. It could be the case
that an algorithm cannot avoid interprocess communication. This is an unfortunate problem
with parallel processing.

The design process is crucial so that an algorithm can best utilise a given system. On the
other hand it can often be the case that no extra design or programming effort is needed to
split a problem into a group of large parallel tasks where no communication between the parallel
tasks is needed. Parallel processing problems can be regarded as being on a spectrum going
from embarrassingly parallel problems, problems that require no communication between large
paralle] tasks, and then on the opposite end of the scale there are problems that require lots
of interprocess communication. The effective speed—up from parallelising an algorithm can be
a complicated issue dependent on the platform used. For example, an algorithm that requires
interprocess communication is limited by the bandwidth of the interprocess connection speeds.
As mentioned earlier these can range from an on-board memory bus to an ethernet network

connection.

5.2.3 Software for Parailel Processing

Communication between processes is vital for parallel processing. Unfortunately, the exact
hardware details for the communication medium between processes in a parallel environment can
vary. To reduce the programming effort for the program various APIs (Application Programming
Interface) and language extensions have been developed which are useful in a number of ways.

Message Passing Software

A specification called MPI? (Message Passing Interface) has become the de facto standard for
communication between processes in distributed memory systems and allows software creators to
avoid dealing with the low level details of communication between processors. Implementations
of the MPI standard provide an API callable from many popular programming languages.
There are currently two main versions of the MPI specification in use; versions 1.2 and 2.0.
There are a number of reasons for the slow adoption of version 2.0 of the MPI specification.

Version 1.2 supports a static runtime environment which means the number of processors has
‘http://wwv.npi-forum.org/
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to be specified before the algorithm is executed. There are some very good and obvious reasons
for this. Take for example a typical super computer set up in a research environment where
batch jobs are submitted, scheduling software will schedule submitted jobs based on availability
of resources and the resource requirements of a particular job submission.

A major change to the MPI specification came in version 2.0 when the availability of a
dynamic process model was included. This means that an application can spawn a new thread
when it is needed during runtime. This makes sense for many applications since it is often
unknown a-priori details about the algorithm being run or the data used. Realistically, in all
but a limited number of applications such as the automatic mapping and real-time mapping
examples listed earlier, it should be possible to know what resources should be allocated to an
algorithm. Scheduling dynamic process model systems effectively is basically impossible if an
application is free to spawn processes whenever it desires.

MPI has become a standard way for writing portable code for parallel computing. MPI is
available for tightly coupled multi-processor machines as well as loosely coupled clusters.

OpenMP

Open Multi-Processing or OpenMP is an API that supports multi-processing programming
in C/C++ or Fortran and uses a shared memory architecture. The essence of the API is to
use a number of compiler directives that during the compilation stage are used to generate an
executable that can run on a multi-processor system. Essentially, OpenMP provides an interface
to multi-threading whereby a main or master thread of the compiled program forks a number of
child or slave threads and the necessary task is divided amongst them. The compiler directives
provide enough flexibility so that both task parallelism and data parallelism can be achieved.

Data parallelism describes the splitting of the data into smaller segments. Each small segment
is distributed to a different processor in the system. The program being exectuted on each
processor then processes the assigned data. For example, simple for loops, where the calculation
in each iteration of the loop does not depend on results from previous iterations can be easily
parallelised by including a simple compiled directive such as #pragma omp for.

Task parallelism on the other hand describes splitting the algorithm into smaller tasks. Each
subtask is executed on a different processor in the system. For example, suppose that the aim of
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a simple program was to calculate a variety of summary statistics for a given dataset. The task
of calculating each summary statistic can be performed on a different processor. By using the
compiler directive #pragma omp section, independent sections of the algorithm can be indicated
to the compiler. When the generated code is executed, the different summary statistics (as
indicated by the OpenMP compiler section directive) would be executed on different processors.

One of the main advantages of OpenMP system is the simple interface for enabling program-
mers to generate parallel applications without a significant reprogramming effort which also
reduces the chances of bugs being introduced in the process.

As well as dealing with parallelisation, OpenMP handles the issues to do with the scalability
of the compiled application. Returning to the discussion on parallel architectures, OpenMP is
often used in hybrid parallel development whereby a combination of message passing such a MPI
and shared memory programming are used simultaneously.

This all sounds very good, but ultimately it is still the responsibility of the programmer
to identify parallelism by the use of compiler directives. The compiler directives instruct the
compiler with regards to the sharing of work in different parts of the program (Quinn 2003).

BLAS and PBLAS

In 1979 a library of subroutines for performing linear algebra operations called Basic Linear Alge-
bra Subprograms® was released. These subroutines have become the standard for linear algebra
and are used frequently in parallel processing. The popularity of these subroutines and their
importance for producing efficient programs has led to chip hardware vendors releasing specially
optimised versions of this library to suit a particular hardware platform. Also an open source
version of BLAS has been developed, which is called ATLAS?, that provides a self-optimizing
BLAS implementation given the platform it is compiled on. ATLAS has been developed so
that it is portable and is used extensively across many platforms. Recent versions of ATLAS
come with the option of exploiting multiple processor cores, although this multi-threaded op-
tion should be used with care because for some mathematical operations performance decreases
due to the overhead of spawning new processes. BLAS is split into three levels depending on

the complexity of the subroutine being called. Level 1 deals with scalar operations and vector

Shttp://www.netlib.org/blas/
‘http://math-atlas.sourceforge.net/
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operations. Level 2 has all the functionality for the operations between matrices and vectors.
Level 3 contains all the matrix solvers and operations between matrices. The function names
that BLAS uses can often be considered quite cryptic although they have a sensible structure
and if the abbreviations are known it can make coding productive without having to refer to
the reference manual frequently.

A parallel version of BLAS is available and it called PBLAS® and is part of the ScaLAPACK
project which will be discussed later. PBLAS is comprised of BLAS and BLACS (Basic Linear
Algebra Communication Subprograms). BLACS® provides a linear algebra oriented message
passing interface that can be implemented across a large range of distributed memory platforms.
Since it would be extremely impractical to rewrite efficient distributed memory algorithms for
every different parallel machine, BLACS provides an interface for linear algebra applications to
be more easily developed and ported to other parallel machines.

LAPACK and ScalAPACK

Linear Algebra PACKage or LAPACK is a software library for numerical computing. It provides
routines for solving linear equations, eigenvalue problems, decompositions and other matrix
operations. It relies on BLAS. A parallel version of LAPACK has been released and is called
ScaLAPACK. It is designed for use with MPL.

5.3 Conclusion

There are many options for software for exploiting paralle]l architectures. Each software package

is aimed at a particular architecture and currently there is no one parallel programming paradigm
that suites all parallel architectures.

MPI will be used in this thesis since it is a common, well recognised interface. It is available
on all architectures and offers sufficient flexibility to the programmer.

Shttp://www.netlib.org/scalapack/pblas_gref.html
*http: //www.netlib.org/blacs/



Parallel algorithms for geostatistics

6.1 Introduction

In the previous chapter a review of parallel computing showed the potential that parallel algo-
rithms show for increasing computational power. Also, the review showed a shift, or emerging
trend in the commodity hardware market, that it is now becoming common that a computer
will have more than one processor core. Unfortunately this does not necessarily translate to
immediate speed-ups to existing computational algorithms. Algorithms have to have been de-
signed in a manner that can take advantage of a parallel architecture. It isn’t always possible to
redesign an algorithm to exploit a parallel architecture so sometimes approximations to a par-
ticular algorithm need to be used. Continuing the theme of this thesis, a number of algorithms
for treating large-scale geostatistical datasets will be presented that can provide speed-ups,
particularly where parallel system architectures are available.

The ever increasing computational power of the personal computer has enabled their applica-
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tion to datasets of modest size. Also it has been shown that maximum likelihood-based methods
can give more reliable results when compared with method—of-moment estimators (Stein 1999;
Lark 2000). Throughout this chapter the treatment of parameter estimation and prediction are
treated separately even though for many of the techniques, the core challenge and solution to
the challenge is based on the same techniques for inverting a large matrix of the same size as

the number of observations in the dataset.

6.2 Review of Existing Parallel Algorithms

Little progress has been made in parallel kriging algorithms. The same basic techniques have
been used since they were first proposed. This is could be due to the difficulty of considering
such algorithms in a parallel context. It should not be considered uncommon that difficulties
arise from trying to create a parallel implementation of an algorithm.

Another observation is that some of the researchers developing parallel algorithms tend to be
doing so in a vacuum, in that contributions are developed independently of other contributions
without recognising or building on the work of other authors. The same parallel approaches are
discussed in Gajraj et al. (1997) and Pedelty et al. (2003) without any citation to the work of the
other author. Likewise Gebhardt (2003) and Kerry and Hawick (1998), who present alternative
parallel kriging techniques, seem unaware of other developments in the parallel kriging research
area.

Where large amounts of data are available, some geostatistians would ask the question “Why
would we want to interpolate? Surely we already have the data sampled at a sufficiently fine
resolution?” Firstly, one should think about the issue of scale. Although a large dataset obtained
by sampling across the globe might seem exhaustive, each grid cell might account for large
areas of interest where more precise interpolation is required. Furthermore, the properties of a
dataset may not be apparent until analysis has taken place. By using geostatistics many of the
properties of the dataset such as smoothness, noisiness and ranges of variation can be estimated
and interpreted to give a better understanding of the dataset.

An alternative direction for parallel algorithms have been developed by Wilkinson (2005)
and Crouchley et al. (2005). They demonstrate how Monte Carlo sampling techniques can be
used in a parallel framework. Sampling techniques are not considered in this thesis.
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In what follows, existing parallel approaches to geostatistics are summarily reviewed. The
review is split based on the two major activities undertaken in geostatistics: prediction and

model parameter estimation.

6.2.1 Prediction

Parallel implementations of prediction algorithms can be split into two main approaches de-
pending on the architecture of the parallel system being used (Lu and Goddard 2004). Lu and
Goddard (2004) go on to describe how loosely coupled architectures suit domain decomposition
algorithms better whereas tightly coupled architectures suit techniques that rely on a library call
to some parallel matrix library such as ScaLAPACK (Blackford et al. 1996) to solve the kriging
equations. There are a number of ways of implementing kriging algorithms using the entire
dataset or using moving-windows to select a subset of the data on which to perform kriging.
Each algorithm design decision dictates what parallelism can be achieved in the algorithm.

Domain Decomposition

One example of using domain decomposition techniques is given by Pedelty et al. (2003). By
assuming the moving-window kriging algorithm, near linear speed-up is achieved by assigning
segments of the prediction grid and all the included observations to each processor. Given a
segment of the prediction grid, each processor computes the predictions using a moving-window
kriging approach. One can see how this results in a near linear speed-up since the moving-
window kriging approach allows predictions to made independently of each other by using small
covariance matrices of a local neighbourhood. The domain decomposition technique provides
a standard implementation of the kriging algorithm, but that said, the issues associated with
moving-window kriging previously discussed in Chapter 2 such as discontinuities that arise in
the prediction as observations are included and removed in the moving window remain. Also
worth noting is that Pedelty et al. (2003) do not discuss variogram parameter selection and it
is assumed that these parameters are already known. Either the variogram is estimated from a
subeet of the data or a method-of-moments algorithm needs to be developed.

Loosely coupled architectures could be used as a platform for the domain decomposition
algorithm since there is no inter-process communication during the computation. Additionally,
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if the area for prediction is large, it may be advantageous to have the prediction area spread
over a number of systems since the memory requirement could be prohibitively large for a single
kriging system on a single node.

A further optimisation not discussed in the work on this technique could be considered.
Broadcasting the entire dataset to each node, which for architectures with a slow interconnec-
tion could become prohibitive, is not recommended. The observations relevant to a particular
partition, that is to say the observations that are within a certain distance, d, of the partition
where d is related to the range parameter, should be sent to each node rather than the entire
dataset.

In Chapter 4 the relationship between moving—window kriging and the use of space-limited
covariance functions was explored. Continuing on from this, by assuming the range parameter to
be short with respect to the size of the overall prediction area, the full kriging method could be
used in a parallel fashion. As with the moving-window approach just discussed, only a subset of
the observations need to be sent to each node. This subset of observations would include all the
observations within the spatial support of the prediction area given the variogram parameters.
The number of observations that would be needed for prediction using space-limited covariance
functions is likely to be larger than the number of observations needed for the moving-window
approach, except now that space-limited covariance functions are being used the drawbacks of
moving-window kriging are no longer apparent.

A discussion of and proposal for estimating appropriate variogram parameters can be found
later in this chapter. In all the literature surveyed, there is no clear indication of any parallel
algorithms created for estimating the variogram directly in the context of geostatistics.

Another variation of the domain decomposition method was implemented by Gebhardt
(2003) whereby instead of the whole dataset being sent to each processor, the data is divided into
tiles and each tile is sent to a processor. To overcome the border effect apparent with algorithms
that rely on tiles, surrounding observations are included so that each tile area now overlaps. This
overlap will reduce the border effect, but this will not remove the effect completely should the
nugget be non—zero. A complete implementation using PVM?! and the R statistical package was

made available.
Inttp://wwv.csm. ornl.gov/pvm/
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Parallel Lnear Algebra Routines for Prediction

Another way to implement a parallel kriging algorithm would be to utilise a parallel linear
algebra library such as ScaLAPACK? or PLAPACK? to perform large matrix operations such
as calculating the matrix inverse which is crucial in kriging algorithms. This is exactly the route
taken by Kerry and Hawick (1998) for the prediction of rainfall across Australia. The authors
argue that moving-window kriging is commonly used for two reasons.

First, observations at long lag separations from the prediction location are unlikely to be of
benefit to the accuracy of the prediction at a desired location and secondly, it is less expensive
computationally. Kerry and Hawick (1998) then state that that improved prediction accuracy
are generally obtained when the largest possible number of known points are used (Border 1993)
and since this is an expensive option it would be desirable to develop a parallel implementation.
The algorithm essentially uses a ScaLAPACK function for LU factorisation to obtain the full
matrix solution (Kerry and Hawick 1997). Kerry and Hawick (1997) consider an alternative
method, which is a system called NetSolve.* The application acts as a server that accepts re-
quests from client applications with large complex matrix operations. Instead of the application
needing to be run on a system with a parallel architecture, only a server running NetSolve is
needed which will accept function calls from & uniprocessor client application.

The use of parallel linear algebra libraries is limited to tightly coupled architectures since
there are currently no such libraries designed specifically for loosely coupled architectures. The
linear algebra algorithms require a large amount of inter-process communication and hence are
not generally suited to loosely coupled architectures.

To facilitate the use of parallel algebra libraries, a compiler was developed that selects linear
algebra function calls in an algorithm and automatically creates parallel code for that function
call (Ramaswamy et al. 1996). In doing so, this reduces the amount of effort that the pro-
grammer has to make to develop parallel friendly applications. Hiding much of the parallel
programming from the user will be advantageous to development time because their will be no
need to learn new complicated language features or interfaces.

One of the key functionalities of many geostatistical algorithms is the ability to solve sys-

dhttp://wwv.netlib.org/scalapack/
*http://www.cs.utexas, edu/~plapack/
‘http://icl.cs.utk.edu/netsolve/
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tems of equations (Cressie 1993). As shown in Chapter 4, when using space-limited covariance
functions which yield sparse covariance matrices, solving these equations by using a Cholesky
decomposition is both stable and fast. There are many algorithms for exploiting sparsity when
calculating the Cholesky factorisation. Likewise, much research has been undertaken into paral-
lel versions of these algorithms (Gilbert et al. 1992; Manne and Hafsteinsson 1995; Irony et al.
2002). Just as with the serial case, parallel algorithms tend to be developed to solve a specific
structure in the Cholesky factorisation although there are a number of general purpose, scal-
able algorithms available also. For a comprehensive review of parallel Cholesky decomposition
algorithms the reader is referred to Gupta et al. (1997) and for more general information on
parallel algorithms to solving linear systems a good review paper is that of Duff and van der
Vorst (1999).

6.2.2 Parameter estimation

A topic not addressed in paralle]l kriging algorithms is how the parameters of the model are
estimated. Traditionally two approaches are used: method—of-moments or maximum likelihood
estimators with computational complexities of O (n?) and O (n%) respectively. Computing a
method-of-moments variogram at O (n?) complexity may seem relatively insignificant in com-
parison to prediction with O (n.s) complexity and perhaps this is why there is no prior research
detailing this process. With respect to parameter estimation, the research effort has been entirely
limited to maximum likelihood methods.

Typically the likelihood, or negative log likelihood is minimised using numerical optimisa-
tion algorithms. For some optimisation algorithms gradient information is needed and can be
provided cheaply in terms of computation. Since the log likelihood and the gradient of the
log likelihood with respect to the variogram parameters can be calculated independently it can
be seen how the log likelihood can be calculated on one processor and the gradients could be
calculated on other processors in a parallel fashion (Neumaier and Groeneveld 1998). This is
a particularly attractive solution for dual-core processors found in common desktop computers
and if the current developers of software wrote their applications in such a way to exploit this,
speed-ups could be achieved without much extra programming effort.

One observation, already noted in a previous chapter of this thesis, is that one of the main
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barriers to increasing computational performance is not necessarily the machine architectures,
but rather increasing the performance of software developers (Press et al. 1996).

An alternative idea discussed by Malard (2002) is to assume that the covariance matrix is
block diagonal. In doing so, the block diagonal elements of the covariance matrix can be inverted
independently of the other block diagonal elements. The assumptions about where to impose the
block diagonal structure are crucial decisions in obtaining a reliable result with this method. It is
important to realise that this technique is an approximation to the actual likelihood. Information
about correlations between matrix blocks is being discarded and hence the approximation does
not yield optimal results, unless of course the matrix has a sparse structure and the block
diagonal elements in the matrix reflect the actual structure of the covariance matrix. Chapter 4
discusses the application of space-limited covariance functions which realise sparse covariance
matrices and this idea of manipulating block diagonal covariance matrices has already been
discussed.

A further idea based on this approach is to assume that only the log likelihood gradient
calculations depend on block diagonal matrices, but the full log likelihood still assumes a full
matrix structure. Hence the algorithm complexity can be reduced to increase performance when
using optimisers that require gradient information (Malard 2002) although potential convergence

problems may arise if the gradient is not consistent with the objective function.

Parallel Linear Algebra Routines for Parameter Estimation

An alternative approach based on the ideas already discussed is to use a parallel linear algebra
library to perform the operations for computing the likelihood (Misztal 1990). Again these
approaches use parallel matrix techniques that are largely limited to architectures with expensive
tightly coupled hardware.

Further speed—ups can be achieved by further manipulating the likelihood equations and have
particular application to dense matrices. Suppose an equation has the fomz=a+b+c+d
then a, b, ¢ and d can be computed separately on different processors (Malard 2002).

There are a number of barriers preventing the realistic application of linear algebra matrix
library approach. Firstly a tightly coupled system is needed. Apart from current trend with
towards dual-core processors in low-cost personal computers, tightly coupled architectures are
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expensive and generally are only available to the few. Tightly coupled dual-cored personal com-
puters benefit from such algorithms, in fact, current implementations of the ATLASS software
include options for specifying the number of cores that a target platform has. Assuming that the
system has the correct libraries available, parallel linear algebra operations can be performed
seamlessly without any intervention from the computer operator.

A second barrier to using these techniques to solve large systems of equations is that there
may not be enough computer memory to store the entire covariance matrix. A Cholesky fac-
torisation is often used as a preconditioner so that the size of the representation of the matrix
can be reduced to almost half of its original size. If the latency of remote memory access is not
too large, then it may be possible to store the covariance matrix in parts across the parallel
system. This may not seem like a realistic solution, but when it is considered that a covariance
matrix, represented using double precision arithmetic, of a dataset with 50,000 observations
would require nearly 150 Gigabytes of storage, it is clear that the memory of a single processor
is inadequate. In 2007, 150 Gigabytes of RAM would be rare in a uniprocessor system, however,
only a decade ago, 1 Gigabyte RAM in a computer would have been considered rare. It is
acknowledged that computer hardware is constantly progressing and that barriers of yesterday

are constantly being surpassed.

6.3 Algorithm implemention using MPI

For quick prototyping of algorithms, Matlab® is the preferred environment in this thesis due to
the speed of development and the natural way that mathematical algorithms can be created.
Matlab is a commercial software package which requires that a user has a license per process
that is active in memory. In the context of parallel programming this constrains users to the
number of licenses that can be afforded rather than hardware constraints. A cheaper solution is
to use a freely available open source Matlab clone called GNU Octave’. Although GNU Octave
does not provide 100% Matlab compatibility, it is possible to write programs using the langauge
elements common to both environments.

MPI has been chosen for handling the communication between processes since it can be used

*http://math-atlas.sourceforge.net/
*http://www.nathworks.con
"http://wwv.gnu.org/software/octave
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on all types of parallel architectures. The communication between processes in a parallel system
can be a complicated issue since there are a number of communication scenarios which the MPI
manages automatically giving further speed-up advantages. For example, the MPI_Bcast func-
tion involves sending data from a master process to all the other processes in the communicator
group. If the inter—process communication medium were an ethernet network and the number
of processes was set at 256, then sending 256 identical messages to each process would be time
consuming and it may take some time to finally broadcast the data to the 256th process. Since
synchronisation in a parallel algorithm is very important because the computational speed is
only as fast as the slowest process, it can be seen why this is an issue. Instead, various strategies
are implemented behind the MPI interface which depend on the particular MPI implementation.
One strategy is to have a tree-like structure of the processes where one process sends the data to
two other processes, which in turn send the data onto two other processes. This is one example
of ensuring a balanced mechanism is used to distribute the data.

Some incomplete MPI implementations do not always provide many of the features that
the full MPI specification details. Users are constrained by the software that is available and
at the moment for programming languages like Matlab there is still a lot of development that
needs to be done. As the MPI specification is continuously evolving, MPI implementations are
constantly trying to keep up. To maximise compatibility and simplicity some implementations
just have a core number of MPI functions. For example, an MPI implementation available for
Matlab called MatlabMPI was created with a small subset of commands (Kepner 2001). As
far as inter—process communication is concerned, there is only simple blocking Send, Recv and
Beast functionality. The underlying communication medium in reality, is the NFS file system
shared by the nodes on the network so there is a large latency for inter—process communication.
One side effect of this implementation is efficient program design. Instead of usmg the rich
function set available in MPI implementations to distribute and gather data such as MPL Reduce,
MPI_Gather, MPI Scatter and MPI_Alltoall, programs have to be designed around the basic
Send, Recv and Bcast subroutines.

A more complete implementation of the MPI standard and the implementation that will
be used throughout this chapter can be found in the MPITB toolbox®. MPITB can be used
with Matlab and GNU Octave. The implementation is very fast, the software is written in C

*http://atc.ugr.es/javier-bin/mpitb
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Figure 6.1: Illustration of the MPI Beast function. Process R1 has data A initially. This data
is broadcast to the other processes.
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Figure 6.2: Illustration of the MPI Scatter function. Process R1 has data A, B, C and D
initially. This data is then scattered amongst the other processes until each processor has a part
of the data.

and can use shared memory or ethernet for communication between different nodes (Ferndndez
et al. 2004). Currently the implementation is lagging somewhat since it relies on the somewhat
dated LAM/MPI? MPI v1.2 implementation although work on compatibility with Open-MPI°

is ongoing.

6.3.1 Visual explanation of common MPI subroutines

Figures 6.1, 6.2 and 6.3 visually explain how the data is distributed across the parallel system and
show the typical message passing functions useful for the algorithms discussed in this Chapter.

MPI_Bcast causes a single item of data to be sent to each of the processes in the parallel
system. MPI_Scatter causes data to be split into smaller chunks and then distributed across
the processes in the system. This is particularly useful for dividing datasets across processes.
MPI_Reduce collects data from each of the processes and then performs an arithmetic operation

on the data such as add or multiply. There is a large range of MPI functionality, but the above

http://www.lam-mpi.org/
1%http: //www.open-npi.org/
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R3[C[ | el B
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Figure 6.3: Illustration of the MPI Reduce function. Each process has a different item of
data A, B, C and D initially. Each process then sends its data to a single process whereby a
simple arithmetic operation is performed such as add, subtract, multiply, etc.. and the result
is available in E. Effectively the data scattered across the processes is collected together in one
process.

listed three functions are of most use for the methods that will be discussed here.

6.4 Parallel Ensemble Methods

Section 6.2 surveyed some of the options that are available for treating large datasets. In
this section, instead of representing the whole dataset by one model, which can be seen to be
problematic for large datasets, attention is turned to representing the dataset by ensembles of
smaller models. In this context, the word ensemble is used to mean that a group of sub-models
are combined in some way to obtain predictions for a model of the whole.

One of the issues with throwing more computational power at existing algorithms has to do
with the algorithm complexity. Trying to increase performance of linear algebra subroutines by
doubling the processing power can only at the very best half the speed of the calculation. Since
most of the linear algebra algorithms that will be used have a complexity that scales cubically
with the size of the dataset, it can be seen that doubling the computational power will have
little impact as the size of the dataset is doubled. As worldwide storage capacity doubles every 9
months (Fayyad and Uthurusamy 2002) it can be seen that the necessity to handle increasingly
large datasets is crucial and hence alternative approaches must be considered for large datasets.

Many ensemble approaches have been developed in the machine learning community and the
reader is directed to Bishop (2006) for a more thorough treatment of the commonly used meth-
ods. A number of popular ensemble methods such as boosting and bagging are more appropriate

for classification problems although they have been used in a regression context (Avnimelech
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and Intrator 1999). These methods are easily parallised since they involve creating indepen-
dent models (Lazarevic and Obradovic 2002); however, for regression, in comparison to other
methods that will be discussed, their generalisation performance is poor.

An essential ingredient of ensemble models is that of splitting the problem into a number
of smaller submodels. This generally reduces the complexity of the problem from O (n?) to
O (gm®) where m << n and g is the number of sub models. The task is then to decide how
to perform predictions given these submodels. A simple approach is to average the predictions
of each submodel at a given location (Ormoneit and Tresp 1998). Submodels can be assigned
partitions of data and when a prediction is made, each model can provide a prediction which
will then be averaged (Poulet 2003).

Issues with selecting appropriate parameters for the covariance model have yield little re-
search. A method—of-moments variogram could be computed and parameters could be fixed be-
fore any further processing of the data although in the machine learning community, likelihood-
based approaches are more extensively used. Using likelihood-based approaches, some authors
have allowed submodels to learn individual parameters but research is still lacking on how to
combine these models in a statistically principled fashion other than a simple weighted combi-
nation. Some models require that common parameters are estimated for each submodel. There
are reasons for this since it enables a consistent model to be created. Learning independent sub-
model parameters is advantageous for parallel algorithms since no inter-process communication
need take place. For algorithms where common parameters are required across the submodels,
the process for estimating these parameters in the implementation is no more advanced than
summing the log likelihood of the individual submodels, although no mathematical description of
learning the model parameters is given in the associated literature. The author is aware of some
research work completed using Laplace propagation techniques to determine model parameters
in a consistent framework (Latouche 2006)

Generally there are three basic types of ensemble models:

e Mixtures : A different submodel is trained in each spatial location, and the submodel
assigned to a particular spatial location will be used in prediction.

e Committees : The submodels are combined in some form of weighted average whereby
a weight is assigned to each submodel based on the confidence of its predictions.
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e Mixtures of Experts : A gating network is trained with the submodels to determine
mixing coefficients. A linear combination of submodels and mixing coefficients are used

for prediction.

In this chapter, Committees and Mixtures of Experts will be considered in more detail.

6.4.1 Clustering the Data

Clustering the dataset into subsets that are spatially separate blocks is recommended to improve
predictions for ensemble learning methods (Schwaighofer and Tresp 2003). One useful clustering
algorithm that is commonly used is that of k-means (Lloyd 1982). One method termed GeoClust
has been proposed which attempts to create spatially balanced clusters (Choudhury et al. 2002)
and is based on the k-means algorithm. Another approach is to use some kind of hierarchical
model to divide the data into subsets. One example is that of Shen et al. (2006) whereby a
kd-tree is used to divide the data into subsets at different levels. Along the same lines, a full
Bayesian approach is considered by Gramacy and Lee (2006) which they call treed models. The
input space is iteratively partitioned into subregions creating a tree structure and then each
partition or branch of the tree is considered individually. A further advantage to the Bayesian
treed model is that it is effective for dealing with nonstationarities. Although this method relies
on MCMC sampling methods, the computational time is reasonable since the sampling is over

each branch of the tree rather than the whole model and therefore convergence is quicker.

6.4.2 Mixture of Experts

The Mixture of Experts approach was proposed by (Jacobs et al. 1991) as a way to overcome
some of the issues associated with large datasets such as the need to invert a large matrix based
on all of the obeervations. Submodels are trained on subsets of the data which are weighted by
coefficients learnt from a gating network.

The Mixture of Experts can be expressed as:
C
p(Z00k) = Y me (0)pe(Z(x) o), (6.1)
c=1

where 7t (x) are mixing coefficients calculated by the gating network and ¢ denotes the submodel
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1. Master to scatter training data to each process (MPI_Scatter)

2. Each process to perform kriging on given training data

3. MLP used to learn weights for each model across prediction
space

4. Predictions made by summing each expert’s weighted

contribution (MPI_Reduce)

Figure 6.4: Pseudocode for parallel Mixture of Experts.

and

C
2 mex) =1, (6.2)

c=1

where the total number of submodels is given by C.

Mixtures of Experts have already been extensively used for parallel applications using Sup-
port Vector Machines (Collobert et al. 2002; Gibbs 2003). They have also been used in a
Gaussian Process framework but were not applied in a parallel context (Tresp 2000c). The idea
is that different submodels (or experts) can model the different spatial regions more accurately.
The gating network or function determines which components are dominant in which spatial
region.

There are some links between the Mixture of Experts approach and moving-window kriging.
In moving-window kriging a subset of the dataset is used for prediction at a particular location.
Here, many subsets are created and instead of using just one subset for prediction at a particular
location, all the subsets are used. However, each subset is assigned a weight for a particular
location in the prediction space.

In this parallel kriging implementation, the methodology for hard Mixtures of Experts will
be followed (Collobert et al. 2002). In this methodology, each expert is trained individually on
a subset of the dataset. Then a multi-layer perceptron (MLP) Bishop (2006) is used to learn
the weights of each expert over the prediction space given some prediction locations. The basic
algorithm is given in Figure 6.4.
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6.4.3 Bayesian Committee Machine

The Bayesian Committee Machine (BCM) was proposed by Tresp (2000a) as an alternative
method for reducing the computational complexity of an algorithm. Here the submodels are
weighted by the inverse variance or precision at the prediction location. The BCM can also been
used for non—-Gaussian likelihood models (Tresp 2000b).

One important feature to note about the BCM is that it is a transductive method rather
than an inductive method. The term transductive means that the method computes a model
dependent on a user-specified set of prediction locations (Schwaighofer and Tresp 2003). In this
way knowledge about the prediction locations is exploited in the approximation.

Quifionero-Candela and Rasmussen (2005) and Schwaighofer and Tresp (2003) show how
the BCM method is a projected process method and is equivalent to the PITC approximation
discussed in Chapter 2. As stated it follows that a covariance matrix of the prediction locations
needs to be constructed:

k(x},x}) ... k(x},xp)
Lpred = : : (6.3)
k(x7,x3) ... k(xq,xp)
where x* refers to the prediction locations. The covariance function used should be noise free.

The apparent limitation of having to compute the covariance matrix (and the inverse) of
the prediction locations is not too restrictive since smaller prediction covariance matrices can
be created and the BCM equations can be repeatedly calculated without a growth of the algo-
rithm complexity overhead. Another further drawback is the need to have sufficient prediction
locations. Rasmussen and Williams (2006) state that the prediction accuracy will be increased
with larger prediction sets and suggest that it may be necessary to hallucinate (create additional
prediction locations) some prediction locations to ensure reliable results with this method.
The predictive distribution equations are calculated as:

C
Doem=Evem ) £51% (6.4)

c=1

and the inverse BCM predictive covariance is:

C
Loem=—(C-1)I;%, ) I (6.5)

c=1
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1.5
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Figure 6.5: Active point locations for 1 active point (square), 4 active points (diamonds) and
12 active points (circles)

Figure 6.6: (left) BCM low rank covariance with 1 active point, (middle) BCM low rank covari-
ance with 4 active points, (right) BCM low rank covariance with 12 active points.

where (' is the number of model submodels used and Z,;eq is the noiseless covariance matrix
between the prediction locations (Tresp 2001). An interesting observation is that the BCM

predictive mean is constructed from a weighted sum of the individual submodel predictive means:
b M0 5 e N (6.6)

where the matrix . is the covariance matrix of the observations assigned to a submodel. The

prediction locations are conditioned on the observed data assigned to a submodel ¢ by:
i - zPred - k.gzc_lkc. (6.7)

Another observation is that the weights are obtained by the inverse predictive covariance (or pre-

dictive precision) at the prediction location. Effectively the BCM scales the contribution of each
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|
&

Figure 6.7: Pictorial representation of the BCM covariance matrix approximation with 1 active
point.

Figure 6.8: Pictorial representation of the BCM covariance matrix approximation with 4 active
points.
submodel based on how confident it is about the prediction from each submodel. Substituting
the individual committee members’ predictive means and variances gives complete expressions
for the full predictive mean:
& -1
: Ty-1 Ty—
ewm =Even ) (Lo~ Kl EIETZ: (6.8)

c=1
and predictive variance:

%
Lpem = (_ =1} zhred Z ( pred _kgzglkc)_l) . (6.9)

Equations (6.8) and (6.9) indicate that there are a number of matrix inversions needed for
this calculation. Some of these matrix inversions can be performed independently of other calcu-
lations and hence in parallel. The iterations in the sum calculation are completely independent
of each other. By assigning these iterations to other processors in a parallel system it is proposed
that speed—ups can be achieved since the main bottleneck in this algorithm (and many other
algorithms) is the matrix inversion.

An interesting observation about the BCM is that if the committee size is fixed at 1 obser-

vation, then this becomes a transductive version of projected process approximation with exact
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Figure 6.9: Pictorial representation of the BCM covariance matrix approximation with 12 active
points.
diagonal (Quifionero-Candela and Rasmussen 2005).

A pictorial example of BCM may be helpful to provide a clearer intuition of how it works and
how it is related to the PITC approximation previously discussed. Suppose a dataset such as the
one shown in Figure 6.5 is used and differing numbers of active points are used in representing
the process: 1, 4 and 12 as indicated. These active points are selected from the prediction
locations in this instance. Figures 6.7, 6.8 and 6.9 show how the effective BCM covariance
matrix is constructed. As mentioned previously, there is a need to predict at more than one
prediction location. The reasons for this can be seen particularly in Figure 6.7 as the BCM
covariance matrix essentially tends towards a block diagonal covariance matrix. If prediction
locations are selected in a particular way, the covariance matrix approximation accuracy can be
increased. For a particular prediction location (left hand side of dataset in Figure 6.5), Figure 6.8
shows a good covariance approximation (top left-hand region). However for prediction at other
locations in the dataset the prediction accuracy is reduced. This is not too problematic because
a covariance matrix of the prediction locations in the right hand side of Figure 6.5 can then be
inverted and used without having to invert the block diagonal blocks again.

To improve clarity, Figure 6.6 shows the resulting low rank covariance matrix approximations
(without the exact matrix diagonal blocks) for each of the active point configurations. Choosing

an appropriate size for this again depends on the complexity of the dataset.
Z (%) =kINIpemZ(xXN), (6.10)
03 (%4) =Kes —KinZpem: KaN, (6.11)

where the covariance matrix is given by:

Zscm =knTKyrkrn +A + B, (6.12)
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1. Master to broadcast committee parameters to each process
(MPI_Bcast)

2. Master to broadcast test data locations to each process
(MPI_Bcast)

3. Master to scatter training data to each process (MPI_Scatter)

4. Each node to calculate the contribution of assigned committee

5. Master to collect the mean and variance at the test locations

from each process and sum results (MPI_Reduce)

Figure 6.10: Pseudocode for parallel Bayesian Committee Machine.
with the block diagonal matrix:
A = blockdiag(Knn — knTKT1kTN ) (6.13)

where the subscript T has been used to denote the prediction locations. In this case Kyt = Zpreq.
The two terms of the likelihood are computed in the same way as the PITC approximation

in Chapter 2:
L1 = (A + B Krr| [KTT + krn (1T +krn(A + B) " knvt) "'kt (6.14)

and:

L2 =Z(en)T(A+8) = (A+B) kntA kn (A + B) 1 Z(xn), (6.15)

where the only change is that the active points are also the prediction locations.

For the BCM parallel implementation, the individual committee predictive mean and pre-
dictive variance will be performed on separate processors. The calculations of the predictive
mean and predictive variance require the inverse of a matrix of the same size as the number
of observed data assigned to each committee. A further inversion is needed to calculate the
inverse of the predictive variance which is a matrix of the same size as the number of prediction
locations.

The basic algorithm for a parallel BCM is given in Figure 6.10.
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Method MAE | Time (s)
BCM (100) | 0.672 | 1.98
BCM (200) | 0.665 | 2.21
BCM (400) | 0.661 | 2.44
BCM (1000) | 0.655 | 3.64
MoE (100) | 0.680 | 1.70
MoE (200) | 0.675 | 2.10
MoE (400) | 0.670 | 2.40
MOoE (1000) | 0.665 | 3.58
PP (500) 0.659 | 7.41

Table 6.1: Prediction accuracy and time for 1D synthetic dataset with varying subset/active set
sizes.

Method MAE [ Time ()
BCM (100) | 0.838 | 2.91
[ BCM (200) | 0.827 | 3.49
[ BCM (400) | 0.813 | 4.12
BCM (1000) | 0.806 | 5.74
MoE (100) | 0.841 | 2.70
MoE (200) | 0.833 | 3.12
MOE (400) | 0.820 | 3.86
MokE (1000) | 0.812 | 5.44
PP (500) 0.822 | 7.88

Table 6.2: Prediction accuracy and time for 2D synthetic dataset with varying subset/active set
sizes.

6.4.4 Ensemble method results

Now that parallel algorithms are being used, the computation time is significantly reduced. Each
algorithm was executed 100 times, and the average time was recorded. The MAE remained

constant across each run since the same data and parameters were used.

Prediction emror and subset size

The results for the three different datasets are tabulated in Tables 6.1, 6.2 and 6.3. In the first
column the name of the method is followed by the size of each data subset. A projected process
algorithm running on a single processor with 500 active points was used to act as a benchmark for
comparison. A setup to mimic a dual-core processor was used. A familiar pattern is emerging,
the faster algorithm has a reduced prediction accuracy. The algorithm increased prediction
accuracy is slower. The differences in speed are not significant for such small datasets.
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Method MAE [ Time ()
| BCM (100) | 0.812 | 2.95
BCM (200) | 0.805 | 3.61
BCM (400) | 0.802 | 4.24
BCM (1000) | 0.798 | 5.69
MoE (100) | 0.837 | 2.72
MoE (200) | 0.830 [ 3.21
MoE (400) | 0.822 | 3.76
MOoE (1000) | 0.815 | 5.51
PP (500) 0.827 | 8.02

Table 6.3: Prediction accuracy and time for Walker lake dataset with varying subset/active set
sizes.

Processors | 100 | 200 | 400 1000 | 2000
1 1.06 | 3.74 [ 12.45 | 57.75 | 212.92
2 2.01 [ 3.84 [ 11.23 | 29.23 | 108.71
4 2.12 [ 4.01 | 8.48 | 15.64 | 55.23
8 2.34 [ 4.22 [ 5.56 | 8.01 | 27.59

Table 6.4: Table showing how the computation speed changes as the number of processors
changes for BCM.

Number of processors and computation speed

Since the effects of changing the subset size can be understood from Tables 6.1, 6.2 and 6.3,
attention is turned to the timings associated with differing numbers of processors and subset
size. The key information here is time taken, since the prediction accuracy will be the same
whether computed with 1 processor or with 1000 processors. A large dataset has been used.
Again, a random subset of 30,000 observations from the Walker dataset is selected. The BCM
algorithm is used here, since the scaling to more processors will be similar for the MoE algorithm.
Table 6.4 shows significant results for computational performance increases. By looking in
the 2000 observations per subset column, processing on 8 processors reduces computation by
nearly a factor of 8. Curiously for smaller subset sizes, no improvements are found, indeed the
opposite seems to be the case. This is due to the overhead of using a parallel architecture. The
communication time to send the data to each of the nodes is significant when large datasets are

being used.
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Summary

Near linear (in terms of number of processors) speed-ups can be achieved by applying the
algorithms discussed in this section. Treating large datasets becomes possible in a principled
way. One further improvement could be made. The sparse matrix methods from Chapter 4 could
be introduced. Load balancing issues could ensue because each subset could have a different
sparsity structure. Since the BCM is effectively a projected process method, the same prediction
accuracy can be expected that is obtained with sparse matrix methods and projected process
methods.

6.5 Variogram Parameter Estimation

Estimating parameters for a particular model is important. Parameters not only affect prediction
but also uncertainty measures calculated by the model. In some cases the parameters may be

assumed to be known, but in a large range of situations, this is not the case.

6.5.1 Method-of-Moments

Being able to split the computation of the variogram into smaller parts that could be performed
on other processors would be convenient. The computation of a method-of-moments variogram
is not considered a complex procedure when compared to the matrix inversion needed to calculate
the kriging weights. Computing the empirical variogram is an O (n?) operation and hence for
most reasonable datasets not an issue. If the dataset were of large proportions then it may be
necessary to look at a parallel solution, not only in terms of computation speed but also in terms

of the memory requirement. The empirical variogram equation,

V00 = gy {200 -2 ()}, (6.16)
N(h)
where:
N(h) = {(xi,%) 1x1 =%y =h;1,j =1,...,n} (6.17)

shows it is trivial to produce a parallel version. The simple sum can be split into independent
parts since the calculation of the current iteration does not depend on the result of the previous

iteration in the summing process. The main issue here is to split the data into sensible blocks
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1. Master to broadcast number of lags and lag separation to each
process (MPI_Bcast)

2. Master to scatter training data to each process (MPI_Scatter)

3. Each node to bin assigned two blocks of data into lags

4. Master to collect data at each lag (MPI_Reduce)

Figure 6.11: Pseudocode for Method-of-Moments variogram.

that each processor can compute. For large datasets, it would be time consuming to send each
processor all the data; it would be better if only the necessary data were sent.

The distance matrix for the observations is symmetric, so further speed-ups could be ob-
tained by recognising this fact when assigning data to different processors. Calculating the
empirical variogram is an example of a method which can be parallelised without significant
programming effort. Each process should be assigned two blocks of observations between which
to compute the semi—variance.

Assuming the number of lags is not of large proportions, fitting the variogram to the data
can then be performed on a single processor. A basic algorithm for this can be computed as

shown in Figure 6.11.

6.5.2 Maximum Likellhood
To use maximum likelihood methods, it is convenient to calculate the log likelihood:
N 1 1 T -1
L (8) = — log(2n) — S log £ (8)| — 5Z (x)" Z(6)™" Z(x) (6.18)

where I ()~} is the covariance of the data Z (x) as a function of the parameters 8. Using an
optimisation algorithm, the parameters @ are iteratively updated to give better estimates for
the parameters of the variogram. This process is computationally intensive particularly due to

the need to invert the covariance matrix £ (8)~! of all the observations at each iteration.

Block Diagonal Covariance Matrix

Earlier in this chapter, some techniques for approximating the likelihood were reviewed. One
such technique relied on making the covariance matrix block diagonal. Figure 6.12 shows how
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Figure 6.12: Shows how a block diagonal structure can be imposed on the covariance matrix.
Three block diagonal elements are imposed. (left) typical covariance matrix, (right) covariance
matrix calculated using space-limited covariance function.

the block diagonal technique can be improved by applying space-limited covariance functions
to increase the sparsity in the covariance matrix. The amount of information discarded is a
lot smaller when a space-limited covariance function is used. Imposing the block diagonal
condition on the covariance matrix is equivalent to summing the log likelihood of each block
diagonal element individually (see Appendix A.5). This can be considered as equivalent to
dividing the dataset into subregions and calculating the likelihood for each subregion separately.
Stein (1986) recommended using subregions that contained at least 100 observations. In doing
so, little information about the parameters governing the local behaviour of the process will be
lost. In addition to the reduction in computational complexity, it is noted that this technique
has other added advantages. It could be considered desirable that subregions are explored in
this way so as to identify possible nonstationarities in the data (Stein 1999). For example, in
moving-window kriging, only observations near the prediction location are used, which allows
for nonstationarities in the data (Haas 1995).

This particular method would work particularly well with the parallel Bayesian Committee
Machine implementation mentioned earlier in this Chapter. Since each computer process has
a subregion assigned to it, calculating the log likelihood of the whole model is just the sum of
the individual log likelihoods of each committee. This can be implemented with MPI Reduce
subroutine to automatically collect and sum the log likelihoods. An outline algorithm is given

in Figure 6.13.
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1. Master to broadcast covariance parameters to each process
(MPI_Bcast)
2. Master to scatter training data to each process (MPI.Scatter)

3. Each node to calculate likelihood of assigned subregion

4. Master to collect log likelihoods and sum(MPI_Reduce)

Figure 6.13: Pseudocode for parallel independent likelihoods.

Approximate Likelihood

One approach proposed by Vecchia (1988) suggests approximating the likelihood by an alter-
native method. The approximation is based on the multiplicative theorem which states for any

number of N events: z;,2,,...,2zN the following relationship holds:

PlzanNzzN...Nzn)=p(2z1) - P(22lz1) - ... - P (2n]21, 22, . . ., ZN-1) (6.19)

where p (z4|zy) is the conditional probability of z, given z, (Pardo-Igiizquiza and Dowd 1997).
In the case of a multivariate probability density function, the following relationship is ob-
tained:

N
P(Zx) =]]P(Z®)IZ(x1),...,Z(x1-1)). (6.20)
i=1

One then assumes that some of the information in the dataset is redundant and hence instead
of conditioning on the whole dataset the observations are conditioned on smaller subsets of size
m < i—1 where { is the current observation of the dataset. This gives the following relationship:

P(Z(x4)IZ(x1),...,Z(x4-1)) =P(Z(x1)|Z(x1) ..., Z (%Xm)). (6:21)

where the approximation becomes almost exact as m approaches the number of observations in
the dataset.

Assuming that the data is a zero mean multivariate Gaussian, the conditional probability
p (Z(%4)|Z (x4)), where j =1,..., m is also Gaussian for any observation x{ and any conditioning

subset size m and is given by :
N (~ZyZi'ty, Zu - Ly Iy - (6.22)

The following give the mean:
wy = ~ZyIj5'Z (xy) (6.23)

138



6.5. VARIOGRAM PARAMETER ESTIMATION

and covariance
Lyy=Zyu— Zt,Zj‘leﬂ (6.24)
conditioned on a subset of j observations where L;; is a j x j covariance matrix between the
points of vector yj, Ly is a vector of covariances between the ith observation and m points of
the vector Z (x;) and Z (x;) are m observations at locations chosen for each subset.
This leads to the following log likelihood approximation:

L(6)= —% log (2n) — %Z log |£ (0)y; ] - % Y Z(x)TE@) Z(x), (6.25)
i=1 i=1

which instead of depending the inverse of a covariance matrix £ (0)! of size N, depends on i
covariance matrices of maximum size m. Hence the smaller size m the more computationally
the algorithm is but at the expensive of yielding a poorer approximation to the true probability
density function.

Although Vecchia (1988) notes that the order of the data makes a difference to the ap-
proximation, this is not considered a significant issue and it is not dealt with. A number of
years after this approximation method was proposed, Stein et al. (2004) suggested a number
of improvements to the algorithm. Firstly it is suggested that the approximation gives better
results when the observations are ordered so as to give clustered data. Secondly, by not only
conditioning on observations near, but also on some observations far away, the approximation
is further improved.

Since the approximate maximum likelihood approach has reduced the calculation to a sum
of a number of independent calculations, a parallel implementation follows trivially. A further
desirable feature is that all the data need not be sent to each process in the parallel system. How
much data sent to each process depends on m, the size of the conditioning subset. Particularly
accurate approximations to the likelihood can be achieved with large m. The basic algorithm for
a parallel architecture is shown in Figure 6.14. To test the two parallel methods of prediction:
BCM and Mixture of Experts, timings were run with 2, 4 and 8 processor versions. The dataset
used for the experiments was the Walker lake data as described in Chapter 3. As in previous
chapters, a section of the data was set aside so that cross-validation could be performed and
the MAE could be calculated.

The prediction accuracy results for the parallel methods were obtained by varying the number
of observations in each submodel in the committee or the number of observations that were in
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1. Master to broadcast covariance parameters to each process
(MPI_Bcast)

2. Master to scatter training data to each process (MPI_Scatter)

3. Each node to calculate likelihood of each supplied
observations conditioned on a subset of the data

4. Master to collect log likelihoods and sum (MPI_Reduce)

Figure 6.14: Pseudocode for Vecchia approximation

assigned each expert. The plot shows that by doubling the number of processes, the computation
time seems halve to obtain the same prediction accuracy. It is intuitive to believe that it will
not exactly halve because of the overhead of interprocess communication. Comparatively, it
seems that the communication overhead is negligible which is to be expected from the system
that was used for the experiments since the message passing software used shared memory for
interprocess communication. It would be interesting to see the scaling of the algorithm on a
loosely coupled system or web—based grid architecture.

Figure 6.15 shows how the different methods compared. To provide a baseline, a projected
process kriging approximation (DTC) was used to compare the results of the two parallel meth-
ods. The projected process kriging approximation was executed on a simple processor computer.
The number of active points used was varied to obtain results for different prediction accura-
cies and time. Figure 6.15 shows prediction time plotted against predication accuracy (MAE).
The plot gives an idea of which algorithm effectively offers the greater accuracy given available
time. The projected process algorithm is at a severe disadvantage for this comparison because
the number of active points used was too low for modelling the data, since obtaining increased
prediction accuracy would be at the expense of increased computation time.

The ability to increase the number of processors and at the same time maintain a prediction
accuracy of the same magnitude is evident looking at the plot. For large-scale problems, using
parallel BCM can facilitate their practical application. The MoE showed less accurate cross—
validation performance for the predictions. However, the one advantage here is that each cluster
learned separate parameters, 80 in a sense non-stationary phenomenon can be modelled.
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6.6 Conclusion

In this Chapter a number of parallel algorithms suitable for application to Geostatistics have

been presented. The results show that the BCM approach seems to generally give the better
prediction accuracy and computation speed when compared to the MoE method. The poten-
tial drawbacks of having to know the prediction locations beforehand is not problematic for
many situations. However, being able to perform maximum likelihood parameter estimation
given specific prediction locations may raise issues for predicting at large numbers of locations.

Alternative parallel methods for determining the model parameters were discussed also.
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Figure 6.15: Plot showing comparing the performance of the BCM and MoE algorithms with a
baseline projected process kriging using various numbers of active points. The horizontal axis
is time measured in seconds and the vertical axis is MAE. The red lines are the MoE results,
the blue lines are the BCM results and the solid black line is the projected process algorithm.
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Sample Design Configuration

7.1 Introduction

The sequential projected process kriging algorithm presented in Chapter 2 includes a framework

for automatically selecting observations that are informative or representative of the dataset. In
this Chapter a further application of sequential projected process kriging is presented. P;ojected
process kriging has been shown to be efficient for maximum likelihood estimation and prediction
for large spatial datasets. Soil scientists rarely have large densely sampled datasets unless
ancillary data are being used to make inferences about the soil properties. It will be shown how
dense ancillary data, such as an aerial photograph, can be used to identify optimal sampling

locations that best capture important features for computing soil maps.
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Figure 7.1: Aerial photo data from standard surveys scanned at 75 dpi to give a ground pixel
size of 3.4 m and geo—corrected to UK ordnance survey coordinates. a) Wallingford, Oxfordshire.
b) Yattendon, Berkshire.

7.2 Datasets

Soil data available at two sites in southern England: Wallingford, Oxfordshire and Yattendon,

Berkshire were used. Aerial photos (Figure 7.1 of the fields were obtained and geocorrected
to UK ordnance survey coordinates. Greyscale values were extracted from the photos (Kerry
2004).

7.2.1 Wallingford

At the Wallingford site, data were collected at 296 locations on a 30 m grid. Properties such
as soil depth, clay content, stoniness, soil pH, loss of ignition (LOI), etc... were measured. For
the examples in this Chapter, the soil depth data will be used. Figure 7.2 shows the traditional
grid-based subsampling schemes that have been used.

7.2.2 Yattendon

At the Yattendon site, data were collected at 118 locations on a 30 m grid. As with the
Wallingford site, many soil properties were measured. For the examples with the Yattendon
dataset in this Chapter, the clay content data will be used. Figure 7.3 shows the traditional
grid-based subsampling schemes that were used at this site.
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(a) (b)

(d) (e) (f)

Figure 7.2: Sampling schemes for Wallingford field: (a) 30 m grid (296 observations), (b) 60
m grid (70 observations), (¢) 90 m grid (36 observations), (d) 120 m grid (23 observations), (e)
120 m + 60 m grid (50 observations), (f) Subset selected by PPK method.

7.3 Methodology

Ancillary data often vary in similar ways to soil data but can have complex relationships between

them and can be difficult to interpret in terms of actual values of soil properties. Soil samples
should ﬂways be collected and analysed, but ancillary data can give insight into how this should
be done. Selecting how such soil samples are collected for geostatistical analysis has been the
topic of much research.

Samples are usually collected on a grid or a nested grid system and several studies have
investigated what constitutes a suitable sampling interval (McBratney and Webster 1981). When
sampling intervals are large, some patterns of variation in the soil can be missed due to the
configuration of sampling locations and, therefore there may not be sufficient samples to estimate

a reliable variogram (Frogbrook and Oliver 2000). Webster and Oliver (1992) showed that a
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Figure 7.3: Sampling schemes for Yattendon field: (a) 30 m grid (118 observations), (b) 60
m grid (29 observations), (¢) 60 m + 30 m grid (50 observations), (d) Subset selected by PPK
method.
reliable method—of-moments variogram needs about 100 samples. Later it was shown by Lark
(2000) that if & maximum likelihood variogram was required then fewer samples were needed.
Kerry and Oliver (2007) suggests that this be about 50 samples. Figures 7.4-7.8 show maps
computed using method—-of-moments variograms. Comparing the method—of-moments maps to
those generated using maximum likelihood (Figures 7.9-7.12) shows vast improvements in the
quality of the maps in the sense that features of the dataset are retained and visible in the
generated map. When maximum likelihood was applied to the 120 m gridded data which has
only 23 samples, the algorithm failed to converge to parameters. The inability to determine
parameters is not problematic as Kerry and Oliver (2007) have shown that at leave 50 samples
are needed to obtain reliable parameter estimates.

Two questions need to be answered: What is the optimal sampling configuration for pre-
diction at unobserved locations? What is the optimal sampling configuration for estimating
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Figure 7.4: Maps for Wallingford using 30 m gridded data and MoM parameter estimation

covariance function parameters? The two questions cannot often be mutually satisfied. The
method presented here avoids relying only on minimising uncertainty in the model such as
suggested by (Zidek et al. 2000).

The best sampling configuration for computing a maximum likelihood variogram requires
further investigation. In the situation where ancillary data is not available, Brus and Heuvelink
(2007) suggest a method that attempts to minimise the global kriging variance. The methodology
presented here is related to this idea. Aerial photography may not be of much use, due to each
of the images having over 10,000 pixels representing the reflectance of the soil which would
normally restrict parameter estimation to method-of-moment based estimators.

The projected process kriging algorithm was initially developed for the interpolation of spa-
tial data. Within the framework of the algorithm are a number of interesting features. As has
already been mentioned, selecting the best subset of the data to include in the active set is not
a trivial activity. Ideally, the active set should contain those observations that are maximally
informative about the underlying process.

The active set can be selected based on which observations reduce the predictive variation
most in the model. Likewise, sample locations in sample configuration problems can be selected
using the same measure. Alternative measures have been suggested which include the predictive
mean also. Instead of following the global optimisation techniques used by Heuvelink et al.

(2006) which can be extremely time consuming (running into days), a sequential kriging algo-
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Figure 7.5: Maps for Wallingford using 60 m gridded data and MoM parameter estimation

rithm could be used which, although cannot guarantee a globally optimal solution, can provide
a good estimate quickly (minutes or hours). It should be noted that simulated annealing tech-
niques cannot guarantee a globally optimal solution either. Heuvelink et al. (2006) does not
consider the situation where ancillary data are available.

Often large datasets of ancillary data are used to inform a geostatistian about decisions in
the sampling process. Where ancillary data exists, such as in the form of aerial photography,
optimal sampling locations can be inferred. This inference assumes some relationship between
the processes evident in the ancillary data and the processes in the property being observed.
These relationships are likely to be complex and poorly understood. Because of the earlier
assumption that there exists some relationship between the ancillary data and the true process,
these active points can be used as the sample configuration.

Furthermore, the ancillary data facilitates the alignment of the sample configuration to
locations where interesting features occur in the data. This alignment would not be possible if
ancillary data were not used.

For the available data that are used within this Chapter, there are only soil data available at
a small subset of the locations in the aerial photograph, hence the subsample locations need to be
constrained to the locations where soil data are available. This can be done with the projected
process algorithm by fixing the active set to be at the locations where soil data are available.

Then the data from the aerial photograph are iteratively projected onto these active points.
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Figure 7.6: Maps for Wallingford using 90 m gridded data and MoM parameter estimation

After the entire aerial photography data has been projected, active points can be removed from
the active set projecting the process on to the remaining active points. This can be repeated
until the desired active set size is obtained. The remaining locations in the active set determine
the optimal sampling configuration.

To test this methodology, soil data from the determined sampling locations was used to krige

at a subset of the locations remaining where soil data were available.

7.3.1 Measuring informativeness

The process of iteratively removing locations from the active set is quick. As was discussed in
Chapter 1, the criterion for selecting a specific location can be based on a number of measures.
One simple measure would be to calculate which location reduced the predictive variance by
the smallest amount. This is equivalent to the measure suggested by Heuvelink et al. (2006).
Calculating solely the variance relies only on the spatial locations of the observations, not on
the value of the observation. One key motivation of this work is that the chosen sample con-
figuration aligns with important features in the dataset hence the value of the observation will
also be used. By modelling local variations in the mean function, important features can be
retained. Appendix B gives a thorough review of the Bayesian projected process framework.
Equation (B.11) is the measure used to determine which observations are the most informative.

Seeger and Williams (2003) suggests that “all things equal, select the observation which
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Figure 7.7: Maps for Wallingford using 120 m gridded data and MoM parameter estimation

deviates furthest from the predictive mean.” In doing so, observations which provide a surprise
or novelty to the model are given priority over those that do not. This is the heuristic measure
that is used for these experiments. Csat6 and Opper (2002), Seeger (2003) derive this measure of
information with more mathematical rigour. They show how it is equivalent to approximating a
distribution by minimising the KL-divergence to the distribution of interest. The mathematical

details of this scoring measure are given by Equation (B.11).

7.3.2 Sampling density analysis

Lark (2000), Kerry and Oliver (2007) suggest that 50-60 samples is sufficient for calculating
a maximum likelihood variogram. An interesting feature of the sequential projected process
kriging framework is the ability to iteratively reduce the size of the active set. The active
set has the effect of the entire dataset projected onto it. Figures 7.18 and 7.19 show how
the prediction error increases as the size of the active set is decreased. An intuition can be
gained, by looking at the curves, about what a good subsample size would be. Such a curve
can be computed quickly and is invaluable when deciding how many sample locations should be

obtained.
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Figure 7.8: Maps for Wallingford using 120 m + 60 m gridded data and MoM parameter
estimation

Sampling scheme MAE MSDR

60 m grid 19.05 1.21

90 m grid 24.79 4.83

120 m + 60 m grid 23.68 4.12

PPK Best 50 18.97 1.19
Random Best 50 18.27 1.20
Random 50 mean (stdev) | 22.84 (1.91) | 1.8443 (0.67)

Table 7.1: Table showing the prediction results using different sampling schemes at Wallingford
site.

7.3.3 Benchmark comparison

Due to the datasets available, there is no currently available benchmark technique for selecting
a subset of the data informed using ancillary data. Hence, to provide a comparative study of
this technique, random subsets of the available data will be used. As previously discussed, 50
samples are considered to be sufficient for computing a maximum likelihood variogram. A subset
of 50 samples from the available soil data will be selected to compute a variogram. Using this
model, prediction will then be performed at the remaining locations in the dataset. The process
of selecting a random subset of 50 samples will be repeated 100 times to give an indication of

the benchmark performance.
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Figure 7.9: Maps for Wallingford using 30 m gridded data and ML parameter estimation

Sampling scheme MAE MSDR

60 m grid 27.57 4.70

60 m + 30 m grid 21.09 2.08

PPK Best 50 16.05 1.68
Random Best 50 16.17 1.82
Random 50 mean (stdev) | 25.79 (3.02) | 2.55 (0.96)

Table 7.2: Table showing the prediction results using different sampling schemes at Yattendon
site.

7.4 Results

Figure 7.2f and Figure 7.3d show the sampling schemes obtained by using the projected process
method. Both sampling schemes show areas where the data have been more densely sampled so
that the important features in the data are captured.

Looking at Table 7.1, which records the MAE (Mean Absolute Error) and the MSDR (Mean
Squared Deviation Ratio) from cross-validation, shows how the 50 locations selected by the
projected process method outperform all sampling configurations, even the Wallingford 60 m
grid size which uses 70 observations on a regular grid. The best random subset selected from
the 100 random subsets does give a lower MAE than the PPK selected subset. Looking at the
mean MAE and MSDR for the 100 random subsets shows that the PPK method performs better

than random.

Visually inspecting the Wallingford maps seems to confirm the tabular results. Assuming
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Figure 7.10: Maps for Wallingford using 60 m gridded data and ML parameter estimation

that the 297 observations on the 30 m grid are used to created a map (Figure 7.9), then comparing
the map with the projected process method sampling configuration (Figure 7.13) shows many
similar features. The 120 m + 60 m grid configuration with 50 observations (Figure 7.12), has the
same number of datapoints as the projected process method, but does not have all the features
that are present in the 30 m grid map. The projected process method in Figure 7.13 seems
to have smoothed the map compared to the 30 m grid sampled map (Figure 7.9). Figure 7.20
shows a plot of observations against predicted values. This plot does not show any clear bias in
the predictions obtained.

The same seems to hold for the Yattendon maps too. Figure 7.17, the projected process
configuration, shares the most features with Figure 7.14, which was generated from the 30 m
grid with more than 3 times the data.

The Yattendon tabulated results recorded in Table 7.2 show similar results to those from
the Wallingford site. Except this time the PPK selected best 50 give lower MAE and better
MSDR when compared to the best random subset selected. Figure 7.21 shows the observations
against the predications for the selected subset locations. The plot indicates that there is not

any serious bias in the predictions.
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Figure 7.11: Maps for Wallingford using 90 m gridded data and ML parameter estimation

7.5 Conclusion

In this Chapter it has been shown that the sequential projected process framework introduced
in Chapter 2 can be applied to the problem of sample configuration design with ancillary data.
Instead of using a slow global optimisation algorithm, which is not even guaranteed to converge to
global minima, a flexible but fast iterative algorithm is used. Although the sequential projected
process method cannot guarantee globally optimal sample configurations, it has been shown that
by its application, improvements over randomly selecting subsets or imposing regular grids can
be made in determining sampling locations when ancillary data are available in a significantly
reduced time. Examining the contours of the maps show that the projected process method
captures many of the features visible in the most dense grids

In this example, the sampling locations were limited to where soil data was already available
so that an analysis of the method could take place. Normally, the sampling locations would not
be constrained since the object of the study is to determine where to collect soil samples. This

added flexibility would further improve generalisation performance.
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Figure 7.12: Maps for Wallingford using 120 m + 60 m gridded data and ML parameter
estimation
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Figure 7.13: Maps for Wallingford using PPK selected data and ML parameter estimation
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Figure 7.14: Maps for Yattendon using 30 m gridded data and ML parameter estimation
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Figure 7.15: Maps for Yattendon using 60 m gridded data and ML parameter estimation
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Figure 7.16: Maps for Yattendon using 60 m + 30 m gridded data and ML parameter estimation
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Figure 7.17: Maps for Yattendon using PPK selected data and ML parameter estimation
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Figure 7.18: Wallingford prediction error as a function of the active set size. The vertical axis is
the prediction mean absolute error and the horizontal axis is the number of sampling locations
used for prediction.
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Figure 7.19: Yattendon prediction error as a function of the active set size. The vertical axis is
the prediction mean absolute error and the horizontal axis is the number of sampling locations
used for prediction.
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Figure 7.20: Plot showing Wallingford observations against predictions.
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Figure 7.21: Plot showing Yattendon observations against predictions.



Conclusions

In this thesis, a variety of techniques for addressing the efficient application of geostatistics have
been examined and developed. A wide spectrum of ideas has been presented which addressed
the computation complexity issues in different ways.

This thesis focuses on three main areas for increasing the efficiency in which geostatistics are
applied and reducing the redﬁnda.ncy in the representation of the model. Chapter 2 reviewed
techniques which are appropriate for datasets where the sampling interval is short with respect
to the process lengthscale. Effectively, densely sampled datasets can be projected onto a reduced
complexity model. In contrast to this, Chapter 4 explores the use of space-limited covariance
functions which are more appropriate for datasets where the sampling interval is long with
respect to the process lengthscale. Fast and efficient matrix methods can be used by making
the assumption that beyond a certain distance threshold, correlations effectively vanish and can

be considered redundant information. By applying space-limited covariance functions in the
projected process framework, a compact representation can be obtained in both the large-scale
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and small-scale regimes. Both types of redundancy are exploited giving an universal model with
the best of both worlds for treating large datasets. Performance comparisons showed an increase
in prediction accuracy and showed their applicability to large datasets. A further application
of space-limited covariance methods and sparse matrix methods showed how computational
performance can also be improved.

The third type of redundancy which was discussed in Chapter 6 is the prevailing trend that
modern computers effectively have at least two processors. The full potential of this increased
processing power is generally under—used in many applications. Chapter 6 specifically addressed
parallel algorithms which could be executed on a range of hardware from personal computers
up to the very fastest super-computers. In the modern desktop computer paradigm where a
computer has a number of processors, existing geostatistical techniques are generally limited by
the speed of the fastest processor. Recent years have seen a significant increase in awareness
about energy usage (MacKay 2007). This is driving manufacturers to be more conscious about
the energy usage of their products. This trend is emerging in the computing world also. For
many years, chip manufacturers would tout the performance of their processors by the clock
frequency, however, recently there has been a shift away from measuring processor speed solely
in gigahertz. One of the main performance measures is now MIPS!'-per-watt. Two lower
frequency processors can consume less power than a higher frequency processor (Low 2005) and
at the same time deliver greater performance.

The definition of performance is difficult to define since performance will be related to the
application being tested. Modern operating systems are multi-tasking in the sense that multiple
applications are in memory at any one time and these can be executed simultaneously on a
parallel system so performance will be increased.

Splitting the datasets into subsets was a key activity for the techniques discussed in Chap-
ter 6. The subset selection is important as this impacts prediction performance so clustering
algorithms are needed in automatic geostatistical frameworks.

Chapter 7 presented a technique for the optimisation of sampling design given ancillary
data. One of the advantages of this method is the speed at which the sample configuration can
be determined and the ability to select sampling locations which retain features in the data.

Some previous work relies on minimising the global predictive variance to optimise the sampling
IMillions of Instructions Per Second.




8.1. FUTURE WORK

locations (Brus and Heuvelink 2007), whereas the method discussed in this thesis also includes
the predictive mean of the ancillary data in the sample design optimisation process to identify

and retain interesting features in the data.

8.1 Future work

Selecting the observations which best represent the process by their inclusion in the active
set still raises a number of issues. Whether using the heuristic based scoring methods such
as those of Csaté and Opper (2001b) or whether optimising the locations as in Snelson and
Ghahramani (2006) it is still difficult to obtain a globally optimal set of active points. The
methods of Snelson and Ghahramani (2006) can be prone to finding bad local minima in the
optimisation process (Seeger et al. 2007). The iterative procedures of Csaté and Opper (2001b)
require interleaving parameter estimation with active set selection over a number of cycles.
Extensions to the existing algorithms for selecting the active set could be designed that would
exploit parallel architectures.

The covariance function used to construct the covariance matrix will impact the size of
the active set determined if the active set has not been specified in advance. It would be
interesting to see how covariance function properties such as lengthscale, noise and smoothness
would relate to the active set size when using projected—process algorithms. To date there
is no discussion of the covariance function properties and the relationship to active set size,
although some issues relating to the covariance function properties are alluded to in a number
of publications (Rasmussen and Williams 2006; Snelson 2007).

The parallel algorithms discussed in Chapter 6 required the data to be spatially clustered.
Techniques for clustering the data should be investigated. One proposal would be to create a
model dependent on a number of sub-models. Sequentially, the observations could be presented
to each sub-model and the likelihood of the overall model could be calculated based on the
inclusion to the particular sub-model. The inclusion into the sub-model that increases the
likelihood by the greater margin is the cluster it should be assigned to. Having included it into
a particular cluster, the next observation is considered.

The sample design configuration technique discussed in Chapter 7 could be used as a gen-
eral (without ancillary data) purpose algorithm for sample location optimisation particularly in
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situations where a fast result is needed. Iterative algorithms for sample location optimisation
could provide a fast alternative to the simulated annealing techniques frequently used (Lark
2002; Heuvelink et al. 2006; Brus and Heuvelink 2007).



Matrix identities and useful algebra

A.1 Sherman-Morrison-Woodbury formula

The Sherman—Morrison—-Woodbury formula or Woodbury matrix identity, as it is frequently
referred to, states that the inverse of a rank-k matrix can be updated by doing a rank—k
correction to the inverse of the original matrix (Golub and Van Loan 1989).

Explicitly, the Sherman-Morrison-Woodbury matrix inversion formula is:
-1
(A + xnxT) =A"1—ATIX(B '+ XTATIX)IXTA? (A.1)

where A and B are square and invertible matrices and are n x n and k X k, respectively. X is

n xk.
=1
If one wishes to compute (A 4 XBXT) and if B is of much lower rank than that of A and
-1
if A~1 is already known then it is only necessary to find (B-l 4 xTA-lx)

This allows hard inverses to be converted into easy inverses when A is large and diagonal
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A.2. PARTITIONED MATRIX INVERSE IDENTITY

and when X has many rows but few columns.
Additionally, the calculation of the determinant can be computed efficiently using this iden-
tity:
|A+XxBXT| = IAIBI[B1 + XTA7X| (A2)

A.2 Partitioned matrix inverse identity

The partitioned matrix inverse identity for symmetric matrices expresses the relationship be-

tween block sub-matrices of a matrix and the inverse. Given a partitioned matrix:

A B
Z = (A.3)
B" C
the inverse is given by:
B [ p'  _ABE!
z7! = (A.4)
-E-1p’A? E™?
[A-1 4+ A~'BE1BTA! —E-'BC!
- (A.5)
| —CT'BTE™ C'+C'B'D'BC™!

withD=A—BC~ BT and E=C—-BTA"!B.

A.3 Cholesky factorisation

Many of the algorithms used throughout this thesis require the inversion of symmetric positive
definite matrices. For numerical stability reasons, the Cholesky factorisation should be used since
the matrix inverse is rarely required directly (Seeger 2004). The partitioned matrix inversion
identity given by equation (A.4) can be used with the Cholesky factorisation. A symmetric
positive definite matrix can be factorised:

Z1=R"R (A.6)

where R is the lower left triangle matrix. The partitioned matrix can then be updated sequen-
tially:
R¢ 0
—3 At
Res1 [—E‘IBTA‘I - 2} (A7)
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A.4. BLOCK MATRIX INVERSE IDENTITY

where E=C —BTA !B and t relates to the current time step or iteration in the algorithm.

The Cholesky decomposition can also be used for calculating the determinant:

Dl=[]r”% (A.8)
i=1

A.4 Block matrix inverse identity

A matrix, Z, can be partitioned as:

A B
CD

Z = (A.9)

where A and D are square matrices of sizes a X a and d x d respectively. The matrices B and
C may not be square and have the sizes a x d and d x a.

Assuming the inverse is partitioned as:
A B
7' = | (A.10)
CD
then A, B, € and D, which are of the same size as A, B, C and D respectively, can be calculated
by:

A = (A-BD"C)”! (A.11)
B = —(A-BD!C)”' (BD™) (A.12)
¢ = —-(p'c)(A-BD"C)™" (A.13)
D = D'+ (D"'C)(A-BD"C)"' (BD™Y) (A.14)

A.5 Block diagonal matrix inverse identity

The block matrix identity in Appendix A.4 can be exploited when it has a block diagonal

structure. Given a matrix:

7 = [" 0] (A.15)
0 D
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A.6. PRODUCT OF TWO GAUSSIANS

then the complexity of inverting this partitioned block diagonal matrix can be reduced to:

-1
z! = [A 0] (A.16)
o D!

. where only the diagonal block elements need to be inverted.

A.6 Product of two Gaussians

The Bayesian Gaussian processes discussed in this thesis consist of likelihoods and priors that are

both Gaussian distributions. The posterior distribution is a product of two Gaussians normalised

by a constant. The following identity can be used:

N (xla,A)N (x/b,B) = Z~ N (xlc, C) (A.17)
where:
C=@A1+8)" (A.18)
and:
c=C(A'a+Bb). (A.19)

The normalising constant is given by:

Z'=(2n) ¥ A +B texp (-% (@a-b)(A+B) (a —-b)) . (A.20)

164



Sequential Sparse Gaussian Processes

B.1 A Bayesian derivation

A projected process model based algorithm was first proposed by Csaté (2002) and is formulated
in a Bayesian framework with the name Sequential, Sparse Gaussian processes (SSGP). There
are a number of aspects of this approach that are appealing to the geostatistician. Principled
algorithms for large datasets where all the observations are used are scarce. Additionally, the
SSGP method facilitates the use of non—Gaussian noise models.

The elegance of this method is that it is a model-based, principled application of the exten-
sion to kriging algorithm that has been discussed earlier (Sections 2.5.1 and 2.5.2), employed
wifhin a Bayesian Gaussian process framework.

Instead of the conventional kriging algorithm whereby a single large matrix inversion takes
place, a sequential estimation scheme will be employed. In this sequential scheme the algorithm
considers a single observation of the dataset during each iteration of the algorithm and builds



B.1. ABAYESIAN DERIVATION

a sequence of intermediate posterior distributions until a global posterior distribution is arrived
at on the last iteration. The speed improvement is achieved by a subsequent modification to the
above mentioned sequential inclusions. At the end of each iteration the possibility of removing
certain input locations from the representation of the posterior process is considered. The input
location selection and removal is done in such a way that it guarantees that the posterior still
includes the maximum amount of information about the data item. Using this iterative scheme
leads to a modified sparse posterior distribution which relies solely on a subset of the training
inputs. Hence, the computational complexity scales cubically only with the size of this subset.
The Gaussian process is represented by a parameterisation of the first two moments of the

posterior process. The parameterisation is given by:
N
(fe)post = (fx)o )_ ko(%,x1)q(i)

i=1

N
Kpost(x,xT) = ko(x,xT) + > ko(x,%{)R(1j)ko(x;,xT)

ti=1

(B.1)

where q¢ and R; are update coefficients of the posterior process. The GP prior mean function,
(fx)o, is updated by adding a new covariance function scaled by the update coefficient gt to the
representation. The GP prior in the 2nd iteration is the posterior from the previous iteration.
Effectively there is a recursive relationship. Likewise for the GP prior covariance function. This
is updated with the covariance update coefficient R¢.

The update parameters q(i) and R(ij) are given by:

ap(Dif)
of(xy)
9%p(DIf)

of(x)9f(x;)

qli) = jdfpo(f)
(B.2)

R(5) = 7 [atpalf) - q()a0)

where Z = [dfpo(f) p(DIf) is a normalising constant. The parameters q(i) and R(ij) only have
to be computed once during the training of the model. One of the problems with this algorithm
is in this step since the posterior distribution is not usually a Gaussian distribution and hence
the integrals are not analytically tractable (Csaté et al. 2000). One common method is to
approximate this intractable posterior distribution using a variational framework to giving the
nearest Gaussian distribution. Nearest in this sense could mean, for this algorithm, the moments

of the mean and variance are matched when approximating the Gaussian distribution.
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B.1. A BAYESIAN DERIVATION

As previously stated the observations are considered sequentially in an iterative fashion.

Bayes’ rule is used
P(Z(x¢)f)Pe41(f)
(p(tt+1|fx])t

where each prior distribution is the posterior distribution from the previous iteration in

Prost(f) = (B.3)

a recursive fashion. Since the posterior distribution is likely to be no longer Gaussian, it is
projected to be the nearest Gaussian distribution in the Kullback—Leibler (Kullback and Leibler
1951) sense which matches the first two moments of the distribution (Saad 1998). This is
possible, since the likelihood term is for only one observation and hence is one dimensional and
can be solved efficiently. Figure B.1 shows this iterative process of treating each observation
individually.

To compute the sequential approximations of the mean and covariance k¢.1, Equation (B.1)

is applied sequentially with only one likelihood term p(Z(%¢+1)[X¢+1) at an iteration step. Pro-

ceeding recursively,
(fx)es1 = (Fx)e + qHY ke(x,%¢41) (B.4)
kea1(%,%7) = ke (x,x7) + 10+ Ky (%, x041)ke (xe41,%T)
is arrived at, where the scalars q(**?) and {*+!) follow from Equation (B.2):
]
qit+l) = 3Feri)e In(p(Z(xe+1)Ife4+1))t
2 (B.5)

F(t+1) _

)
In f .
3 featle (P(xe41lfe+1))e

and where the averages in (B.5) are with respect to the Gauasign process at time t and the
derivatives taken with respect to (fi+1)e = (f(x¢+1))¢- It should be noted that these averages
only require a one dimensional integral to be solved.
To arrive at a parameterisation for the Gaussian process it is necessary to unfold the recursive
steps in the update given by Equation (B.4) which leads to:
(fx)e41= i ko(x, %) (1) = “I{-lk:

=t (B.6)

t
ke410%,%T) =ko(x,xT) + 3 ko(%,xT)Ze41(H)ko(xs,x7) = ko(x,x7) + Ky Le41ker
i,j=1

It should be noted that the coefficients o 43(1) and Iy41(ij) are not dependent on x. To
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Figure B.1: Step 1 is the standard Bayesian way of combining a prior distribution with a
likelihood. Four potential likelihoods are shown: (a) Laplace, (b) Gaussian, (c) One-sided
exponential, (d) Student-t. Except in the case of a Gaussian likelihood, the posterior distribution
will be non—Gaussian as shown by the solid line in Step 2. The posterior distribution is projected
to the closest Gaussian distribution (based on some distance metric) shown in Step 3. The prior
distribution for the next iteration of Step 1 of the algorithm is given by the Gaussian posterior
in Step 3 from the previous step.
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increase the size of the representation, the following equation is used:

ey = Ten (o) + qH sy,
Lep1 =Uepyr (Ee) + 70+ gy 087, (B.7)
St+1 = Te41 (Zekes1) + €41
The operators Ty4+1 and U4 have been introduced for increasing by one the dimensionality
of vectors or matrices respectively.
The next step is to ask how can sparsity be achieved in this model? The goal is to reduce
the number of parameters but with a minimal loss of information. This can be achieved if the

following equation holds for all x:

t

Ko(%,%e41) = ) Ecsa(D)ko(x,%4). (B.8)

i=1
Although it is improbable that this equation will hold exactly, it is still possible that there
will only be a small error induced. The only required change to the model would be the change
of 8441 by:

$t41 =L¢kesr + €040 (B.9)

€:+1 is used in the approximate update of the model parameters where:
41 = Lo Kesr (B.10)

Now that sparsity is defined, it is important to know the influence that each active point in
the active set has on the posterior process. The model uses a simple heuristic to determine how

important each active point is:

<53
= A B.11
it diag (Z._‘i) (BL1)

Given the index of the least informative active point in the set, the point can be deleted. It
is also necessary to maintain the inverse covariance between the active point locations, this is
represented by Q. There are three equations which are used to update the parameters given a
particular deletion; the updated parameters are given by &, £ and Q. The columns to be deleted
from the covariance matrix and the inverse covariance matrix of the active set are represented

by Q* and £~** and the diagonal element of the column to be deleted from the two matrices is
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given by q*, and o*:

*
a=alt-1_ a"‘Q—,
q!

§_gt-1 O,Qq%i = % [Q‘Z“‘T 4 };*Q"'T] , (B.12)
T
Q=qun-TT

The real strength of this method is that arbitrary likelihoods which may be zero in cer-
tain regions, can be treated by this method. Such likelihoods may cause problems for other
Gaussian approximations based on the averaging of the log-likelihood (variational Gaussian ap-
proximation). This method merely requires the explicit computation of a Gaussian smoothed
likelihood and is thus well suited for cases where (local) likelihood functions can be modelled
empirically as mixtures of Gaussian distributions. If such expressions are available, the necessary
one-dimensional integrals can be done analytically and the online updates require just matrix
multiplications and function evaluations.

The sequential, sparse Gaussian process framework is equivalent to the sequential projected
process kriging algorithm discussed in Section 2.5. The ordering of the observations can make a
slight difference to predictions. This version of the algorithm is equivalent to the DTC approxi-
mation. By viewing this SSGP method in a kriging framework, it is hoped that the advantages
of this method become more accessible. Batch equivalents to these methods have also been
discussed, but the issue of selecting the active set is still the major obstacle to their widespread
usage.

~ An extension to the SSGP algorithm was discussed in Csat6 (2002) which uses the Expecta-
tion Propagation (EP) framework to ensure that the ordering of the data is not a problematic
issue. The EP extension has been shown to be equivalent to the FITC approximation (Snelson
2007). The data is processed numerous times with differing orderings during each iteration. The
method relies on the theory underpinning cavity-fields from statistical physics. The EP method
is a generalisation of cavity-fields to arbitrary probability distributions (Minka 2001).

B.1.1 Non-Gaussian likellhoods

The sequential methods have been discussed in the previous sections and made mention of
non-Gaussian likelihoods. The assumption that the likelihood (or noise model) is Gaussian
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0 0.2 0.4 0.6 0.8 1

Figure B.2: Data generated from a sinusoidal function with additive non-Gaussian noise (pos-
itive exponential noise). The noise distribution has a one-sided exponential distribution. The
dot-dashed line represents the prediction using a Gaussian noise model assumption. The dashed

line shows the prediction using the correct noise distribution used to generate the data, positive
exponential noise.
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is common, although it is unlikely that any dataset will be exactly Gaussianly distributed.
Although not a significant issue for many datasets, should the geostatistician wish to deal with
this, the Box-Cox transformation is often used (Box and Cox 1964). The Box—Cox transform is
a family of transformations and a computational technique to select a transformation that will
best resolve the problems of non-normality.

The sequential methods previously discussed in this chapter can be updated to provide a
solution to the problem of non-Gaussianity. The basis of this approach is to approximate non-

Gaussian integrals. This variational approach facilitates the use of other likelihood models.

172



Covariance identities and notation

C.1 Combining covariance functions

Shawe-Taylor and Cristianini (2004) extensively discuss methods for creating new covariance
models. In what follows, it is shown how a valid covariance function can be created in a number
of forms from one or more valid covariance functions. Spatial locations are denoted by a and b.

¢ is a constant that satisfies ¢ > 0 and f (-) is any function.

k(a,b) =ck;(a,b) (C.1)

k(a,b) =f(a)k; (a,b) f(b) (C.2)
k(a,b) =f (k; (a,b)) (C.3)
k(a,b) =k; (a,b) +kz(a,b) (C4)
k(a,b) =k; (a,b) kz(a,b) (C.5)
(C.6)
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C.2. SCHUR PRODUCT

C.2 Schur Product

The Schur or Hadamard product refers to the element-wise multiplication of a matrix. The

notation A oB is used where A and B are matrices of equal size and o denotes the Schur product.
The Schur product of two positive definite matrices yields a positive definite matrix (Horn and

Johnson 1994).

C.3 Frobenius norm

The Frobenius norm between two square matrices A and B is given by:

(A, B)F = trace (A.BT) = i AtiBU (0.7)

i,j=1

and is also know as the Euclidean norm.
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