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Thesis Summary

This thesis applies a hierarchical latent trait model system to a large quantity of data. The
motivation for it was lack of viable approaches to analyse High Throughput Screening datasets which
maybe include thousands of data points with high dimensions.

High Throughput Screening (HTS) is an important tool in the pharmaceutical industry for discov-
ering leads which can be optimised and further developed into candidate drugs. Since the development
of new robotic technologies, the ability to test the activities of compounds has considerably increased
in recent years. Traditional methods, looking at tables and graphical plots for analysing relationships
between measured activities and the structure of compounds, have not been feasible when facing a
large HTS dataset. Instead, data visualisation provides a method for analysing such large datasets,
especially with high dimensions. So far, a few visualisation techniques for drug design have been
developed, but most of them just cope with several properties of compounds at one time.

We believe that a latent variable model (LTM) with a non-linear mapping from the latent space
to the data space is a preferred choice for visualising a complex high-dimensional data set. As a type
of latent variable model, the latent trait model can deal with either continuous data or discrete data,
which makes it particularly useful in this domain. In addition, with the aid of differential geometry,
we can imagine the distribution of data from magnification factor and curvature plots.

Rather than obtaining the useful information just from a single plot, a hierarchical LTM arranges
a set of LTMs and their corresponding plots in a tree structure. We model the whole data set with
a LTM at the top level, which is broken down into clusters at deeper levels of the hierarchy. In
this manner, the refined visualisation plots can be displayed in deeper levels and sub-clusters may be
found. Hierarchy of LTMs is trained using expectation-maximisation (EM) algorithm to maximise
its likelihood with respect to the data sample. Training proceeds interactively in a recursive fashion
(top-down). The user subjectively identifies interesting regions on the visualisation plot that they
would like to model in a greater detail. At each stage of hierarchical LTM construction, the EM
algorithm alternates between the E— and M —step.

Another problem that can occur when visualising a large data set is that there may be significant
overlaps of data clusters. It is very difficult for the user to judge where centres of regions of interest
should be put. We address this problem by employing the minimum message length technique, which
can help the user to decide the optimal structure of the model.

In this thesis we also demonstrate the applicability of the hierarchy of latent trait models in the
field of document data mining.
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Chapter 1

Introduction

This thesis is concerned with the visualisation of a large quantity of data in a high dimensional space.
The approach used is a type of latent variable model, which maodels the prohahility distribution of the
observed data in terms of a set of latent (hidden) variables.

The motivation behind the project was the need to analyse High Throughput Screening datasets.
High Throughput Screening (HTS) is an important tool in the pharmaceutical industry for discovering
novel leads: compounds which can be further developed into diug candidates. It cansists of a set of
automated procedures and robotic devices to perform a test for hiological activity on many thousand
compounds. Because of the high degree of automation, there is a corresponding demand that the
analysis of the results on the large datasets be performed quickly. With such a large amount of
data, visualisation is an important tool, as it provides useful information for detecting clusters, local
deviations, and outliers. For HTS, the approach we developed will help to gain a better understanding
of the results of multiple screens. The application of this sort, of visualisation in HTS is new.

In this chapter, we introduce the motivation for the project, explain the general framework aof

latent variable models, and give an overview of the whole thesis.

1.1 The motivation for the project

HTS is used for detecting lead compounds, whose pharmacaological propertics suggest their value as a
starting point for drug development. Tt uses automated procedures to test the activity of thousands
of compounds against a molecular disease target, usually a protein. This activity is a measure of the
ability of a compound to inhibit the activity of the protein. This is the first step in judging whether
the compound is a potentially successful drug candidate.

The HTS process involves five steps: compound supply, assay, data capture, data analysia and
sample follow-up (Zilliox, 1998). Compounds are supplied from dry samples and then these dry
samples are dissolved. Microplates are used to convey the liquid samples through the whole PrOCORE,

On each plate there are a number of wells, such as 96 wells, 384 wells ar even higher formats, Amaong
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them, a few wells are control wells which are used to assess the reliability of the measurement processes
due to the fact that a typical screen features a large number of plates measured at different times
which are not subject to the same experimental conditions. Thus, a screen usually consists of several
groups of a certain number of plates, with each group assoclated with an assay. Typically, each well
on a plate contains 20 compounds, an enzyme and a substrate. An assay determines, for example,
whether the enzyme is being inhibited by the test compounds. There are four types of measurements:
luminometric, fluorimetric, radiometric and colorimetric measure. Thus, HTS uses signal detection
instruments to measure the luminometric, fluorimetric, radiometric or colorimetric activity of the
wells so that the biological activity of the mixtures of compounds can be estimated. Data analysis is
the key step of the HTS process. It includes checking the control wells to ensure the quality of the
data, and decision making to determine the mixture compounds whose biological activity is considered
relevant (Zilliox, 1998). In the final stage, the active samples for a given target are submitted to lead
optimisation, which is the complex process of refining the chemical structure of these active mixtures
of compounds to improve their drug properties for use in the clinic. To optimise leads, researchers
usually employ a combination of empirical, combinatorial and rational methods in a continuously
multi-step process.

In the last decade, the technology of screening compounds against a wide range of therapeutic
targets has improved rapidly. Now a screen can feature a large number of plates. For example,
processing speeds of some HTS system can exceed 1000 plates per hour, depending on configuration®.
With this increased efficiency, the activities of thousands of samples may be recorded. However,
hitherto most of the analysis of this data has considered a single screen at a time because there are
no effective analysis tools available to cope with the extremely large amounts of information. It is
hard to find regularities when looking at raw data, e.g. tables of these samples. We therefore need
visualisation techniques to help us.

There are a few visualisation techniques for drug design in the current stage. For example, Spotfire?
is a de facto standard for data-mining visualisation in chemical applications. In addition, Roberts et
al. (2000) have described the LeadScope application, where 2D bar-charts are provided for several
variants. The user is allowed to focus on interesting molecular property ranges and common structural
features. So far, in general, most of available tools depend on scatter plots, bar-charts, and so on.

This project, funded by Pfizer Central Research Institute, aims at helping scientists to understand
HTS results better through the use of advanced visualisation approaches. Instead of just selecting a
few properties as the research object each time, we are interested in working in the whole property
space. The application of the approach we have developed is not limited to HTS data; as will be seen
in the later chapters, it can also be applied in other fields, e.g. text mining. Generally, visualisation

plots provide a means of understanding multivariate data.

1http://www.obpw.com/high.htm
thtp://wwwAspotfire.com/products/
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manifest, variables
metrical categorical
. metrical factor analysis latent trait analysis
latent variables - — - : :
categorical latent profiles analysis latent class analysis

Table 1.1: Classification of latent variable models

1.2 Latent variable models

Usually, compounds are described by many different properties which may be descriptors of chemical
structure, molecular properties, or physical properties. Since the human visual ability is limited to
two or three dimensions, we have to search for visualisation approaches which not only reduce the
dimensionality of the data but also capture the intrinsic structure in the data with as little loss of
information as possible.

Latent variable models are a common choice for solving this sort of problem. A statistical model
specifies the joint distribution of a set of random variables and it becomes a latent variable model
when some of these variables — the latent variables — are unobservable (Bartholomew and Knott,
1999). The observed variables are also called manifest variables in statistics.

We distinguish variables of metrical (continuous) or categorical (discrete) type. A latent variable
model can be specified as one of 4 ways, as shown in Table 1.1.

Let t denote the observed variables in a D-dimensional data space D : R and x latent variables
in the L dimensional space H : R*. We shall assume that I, < D; usually for visualisation, L = 2 or 3.
As only t can be observed, we integrate out the latent variables x to obtain the marginal distribution

of the observed data, which is given by

p(t) = /.p(x)p(tlx) dx, (1.1)

where p(x) is the prior distribution of x and p(t|x) is the conditional distribution of t given x.

From equation (1.1), we see that a latent variable model is defined by two parts: the prior distri-
bution of the latent variable and the conditional distribution of data given the latent variable, which
sets up a probabilistic relationship between the two spaces. By defining a specific prior distribution
p(x) and conditional distribution p(t|x), which is also known as a noise model, we obtain different
kinds of latent variable models.

Let us consider a given dataset ( = {tn}n:],._.,N~ For the purpose of visualisation, we want to
map each data point t,, to a corresponding point in the latent space. By using Bayes’ theorem, we

have
p(X)P(tnIX)
——W(t”) , (1.2)

which is the posterior latent density. To visualise a whole dataset in a single plot, we need to find a

pixlt,) =

statistic to summarise this distribution. Two possibilities are the posterior mode, given by

mode = armax p(xkltn); (1.3)



CHAPTER 1. INTRODUCTION

or the posterior mean, given by

(xlta) = [ pixftn) dx. (1.4)
Posterior Posterior
p(xlt) pxlt)
mode
Bimodal
Posterior

‘_/ mean

(a) (b)

Figure 1.1: (a) A posterior density with a plateau and a peak at the end; (b) A posterior density with
two peaks.

Note that both the mode and the mean can give misleading results. For example, Figure 1.1 (a)
shows a posterior mode at the edge of a plateau. However, it appears that there is more probability
associated with the area around the center of the plateau. On the other hand, if p(x]t) is multimodal
for some point t, as illustrated in Figure 1.1 (b), then the mean of this multimodal distribution can
be a low probability point, in which case the posterior mean is inappropriate.

Several types of latent variable models have been proposed.

e Probabilistic principal component analysers (Tipping and Bishop, 1999), which put the tradi-
tional PCA into a probabilistic framework involving a linear transformation between the latent

space and the data space.

e The generative topographic mapping (GTM) (Bishop et al., 1998), which introduced a Gaussian

noise model with a form of non-linear mapping.

e The latent trait model (LTM) (Kabén and Girolami, 2001), whose noise distribution is one from

the exponential family.

We will further describe these models in the next chapter.

It is known, however, that a single two-dimensional projection is unlikely to reveal all of the
interesting structures in the high-dimensional data space. This has motivated the development of
algorithms which are based on a hierarchical mixture of latent variable models. For example, Bishop
and Tipping (1998) developed hierarchical mixtures of probabilistic principal component analysers.
As a further improvement, a hierarchical mixture of generative topographic mappings was proposed

by Tino and Nabney (2002). The introduction of the latent trait model will offer the possibility of
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developing a much more generalised hierarchical mixture system to-'deal 'with either discrete data or

continuous data.

1.3 The structure of this thesis

Chapter 2 We review mixture models and several techniques of visualisation based on latent variable
models and data topography (i.e. distance preserving) respectively. Experimental results suggest
that both the generative topographic mapping and the generalised latent trait model are suitable

tools for our task.

Chapter 3 Since we are more interested in non-linear latent variable models, we concentrate our
attention on the generative topographic mapping. We have developed the GTM along two
directions. One is to visualise the curvature of a manifold when the data is mapped into the
data space from the latent space, by means of ideas from differential geometry. The other is
to cope with missing data variables in the training process. In many applications the input
data is incomplete. For example, in some industrial experiments some records are missing due
to mechanical breakdowns. Therefore it is important to use all the available values and to
reconstruct the missing values. Furthermore, we show how to utilise class information as a

constraint to help recover the missing values.

Chapter 4 We address the architecture of a hierarchical visualisation system, in which the basic
building block is the generalised latent trait model developed by Kabdn and Girolami (2001).
Since latent variable models (LVMs) are probabilistic models, it is straightforward to develop
LTM in a hierarchical structure by using an extension of the expectation-mazimisation, or EM,
algorithm (Dempster et al., 1977). The system provides an interactive mode so that the user
can guide the training of the hierarchy by choosing centres of separated-well clusters, which are
used to initialise the next level of the hierarchy. We also present, experimental results on several
different real datasets to show that our system can be employed for both discrete and continuous

data.

Chapter 5 We further develop the hierarchical visualisation system by adding an automatic mode for
initialisation. The original work is proposed by Figueiredo and Jain (2002). When it is difficult
to determine centres of interest, an approach based on the minimum message length criterion is
used to set the number of components and their corresponding position. Experimental results
show that this method can work well for not only simple mixture models but deeper levels of a

hierarchy.

Chapter 6 We end the whole thesis by summarising several important issues in each chapter. We

address two main possible applications and suggest directions for further work as well.
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1.4 Publications based on work in this thesis

This thesis involves and complements the contents of earlier publications:

e P. Tino, I. T. Nabney, Y. Sun: Using Directional Curvatures to Visualise Folding Patterns of
the GTM Projection Manifolds, presented at the International Conference on Artificial Neural
Networks (ICANN), (eds) G. Dorflner, H. Bischof and K. Hornik. pp. 421-428, Springer-Verlag,
2001. (Chapter 3)

e Y. Sun, P. Tino, I. T. Nabney: Visualisation of Incomplete Data Using Class Information

Constraints, to appear in Uncertainty in Geometric Computations, 2002. (Chapter 3)

e P. Tirio, I. T. Nabney, Y. Sun, B. S. Williams: A4 Principled Approach to Interactive Hierarchical
Non-Linear Visualisation of High-Dimensional Data, to appear in proceedings of Interface’01-

Frontiers in Data Mining and Bioinformatics, 2002. (Chapter 4)

e P. Tino, Y. Sun, I. T. Nabney: Semi-Supervised Construction of General Visualisation Hierar-
chies, to appear in Proceedings of the 2002 International Conference on Artificial Intelligence,

2002. (Chapter 5)

A technical report has been finished, based on the results of Chapter 4 and Chapter 5. Y. Sun, P.
Tino, A. Kabén and I. T. Nabney: Semi-Supervised Learning of Hierarchical Latent trait Models for
Data Visualisation. Technical Report NCRG/2002/012, NCRG, Aston University.

1.5 Datasets used in this thesis

1.5.1 HTS data

In co-operation with Pfizer Central Research we performed a series of experiments with a dataset
of molecular compounds which are labelled by their biological activity against 4 different targets. If
a compound shows no activity across all 4 screens, it is labeled as 0-active class. Otherwise, if it
has activity in one screen, it is labelled as I-active class; two screens, 2-active class; three screens,
J-active class. In this set there is no compound which is active in all 4 screens. The dataset contains
1399 compounds with 15 variables. It does not contain any descriptor of the chemical structure, but
contains features for representing whole molecule properties for the chemical entities. They are dose
value, ring index, SLogP, MlogP, number of hydrogen bonds, parent molecular weight, number of
atoms, measurement of active. Both SLogP and MlogP reflect hydrophobicity of molecule, and they

are measurement of the logarithm of the octanol/water partition coefficient.
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1.5.2 Oil flow data

The oil flow dataset? is 12-dimensional and is generated by a physics-based simulation of a non-invasive
monitoring system used to determine the quantity of oil in a multi-phase pipeline containing a mixture
of oil, water and gas. Six pairs of y-beams are sent through the pipe. The two beams in each pair are
with different wave length. The path length through water and oil can be computed by measurements
of the attenuation of these beams. It includes 1000 data points, which are classified into three classes,
namely homogeneous, annular and lamanar. These classes represent different configurations of flow in

the pipe, illustrated in Figure 1.2.

homogeneous annular laminar

. = [
oil == waler gas

Figure 1.2: The configurations of flow in the pipe, from left to right, homogeneous, annular and
laminar.

1.5.3 Image segmentation data

An image dataset! was obtained by randomly sampling patches of 3x3 pixels from a database of
7 outdoor images. The patches are characterised by 19 continuous attributes and classified into 7
classes: brickface, sky, foliage, cement, window, path and grass. It includes 2310 data points with
330 instances per class. We merged the original 7 classes into 4 classes: cement + path, brickface +

window, grass + foliuge and sky. Attributes are listed as follows:

1. region-centroid-col: the column of the centre pixel of the region.

2. region-centroid-row: the row of the centre pixel of the region.

3. region-pixel-count: the number of pixels in a region = 9.

4. short-line-density-5: the results of a line extraction algorithm that counts how many lines of length 5
(any orientation)with low contrast, less than or equal to 5, go through the region.

5. short-line-density-2: same as short-line-density-5 but counts lines of high contrast, greater than 5.

6. vedge-mean: measure the contrast of horizontally adjacent pixels in the region. There are 6, the mean
and standard deviation are given. This attribute is used as a vertical edge detector.

7. vedge-sd: (see 6).

8. hedge-mean: measures the contrast of vertically adjacnt pixels. Used for horizontal line detection.

9. hedge-sd: (see 8).

10_intensity=mean: the average aver the region of (R+ G+ B)/3.
3The oil flow dataset can be accessed from http://uwu.ncrg.aston.ac.uk/GTM/SPhaseData.h'cml.
4The image segmentation dataset can be accessed from http://wwu.ics.uci.edu/'mlearn/MLSummary.html.
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11. rawred-mean: the average over the region of the R value.
12. rawblue-miean: the average over the region of the B value.
13. rawgreen-mean: the average over the region of the G value.
14. exred-mean: measure the excess red: 2R — (G + B).

15. exblue-mean: measure the excess blue: 2B — (G + R).

16. exgreen-mean: measure the excess green: 2G — (R + B).
17. value-mean: 3-d non-linear transformation of RGB.

18. saturation-mean: (see 17).

19. hue-mean: (see 17).

When this dataset is employed in this thesis, we simply delete the third property since it is constant
over the whole set. Note that for all work in this thesis properties 1 and 2 are included in analysis.
With hindsight these location features should not have been involved since they are not intrinsic scene
properties (and thus would not be used in image segmentation), but their inclusion does not affect

the conclusions of this thesis.

1.5.4 Document data

A text-collection of 8000 documents is grouped into 10 topic classes from a newsgroup® text corpus.
800 instances were taken from each topic. The initial pre-processing, word-stemming and removal of
‘stop-words’ were done by using the Bow toolkit®. The instances are binary encoded over a dictionary
of D = 100 words (Sahami, 1998), which was generated by mutual information with the class labels.
The software also throws out stop words according to a pre-defined list. Stop words are those frequently
used words which do not contribute to the meaning of the text, such as “and”, “so”, and so on. In
addition, by using stemming option, all the words are reduced to their roots. For example, “learning”
and “learnable” are considered to represent the same word “learn”.

Note that this is a synthetic dataset and much larger vocabularies and non binary representations
are employed in real document analysis and mining. A couple of references can be viewed in (van

Rijsbergen, 1979; Deerwester et al., 1990).

1.5.5 Yeast dataset

1484 data points for the Yeast dataset” with 6 attributes® are classified into 10 classes. The classes are
cellular localisation sites of proteins, namely CYT (cytosolic or cytoskeletal), NUC (nuclear), MIT
(mitochondrial), ME3 (membrane protein, no N-terminal signal), ME2 (membrane protein, uncleaved
signal), ME1 (membrane protein, cleaved signal), EXC (extracellular), VAC (vacuolar), POX (per-
ozisornal) and ERL (endoplasmic reticulum lumnen), where each class includes 463, 429, 244, 163, o1,
44, 37, 30, 20, 5 data points, respectively. The attributes are from different rules for signal sequence
recognition. For instance, the first two attributes are named “mcg” and “gvh” respectively. They
are McGeoch’s method (Mcgeoch, 1985) and von Heijne’s method (Heijne, 1986) for signal sequence

recognition.

5http://ww'-"cs,cmu.edu/'textlearning

Shttp://wwu-2.cs.cmu.edu/ mccalum/bow

"The yeast dataset can be accessed from http://www.ics.uci.edu/ mlearn/MLSummary.html.

8The original data is 8-dimensional. Two of the dimensions are effectively constant and were deleted.
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The data points were generated as follows: input sequences were obtained by receiving the informa-
tion of an amino acid sequence and its source origin, formed by standard one-letter code for 20 amino
acids. Then, they were analysed by applying the stored rules for various sequence features of known
protein sorting signals. For example, McGeocl’s method considers the N-terminal positively-charged
region (N-region) and the central hydrophobic region (H-region) of signal sequences. A discriminant
score 1s calculated from values of length of H-region, peak value of H-region, and net charge of N-
region. These results are summarised in “meg”. Finally, the possibility for the input protein to be

localised at each candidate site with additional information were reported 9.

1.6 Notation

We denote scalar values in lower case, while vectors and matrices are denoted by lower case bold
letters and upper case bold letters, respectively. The determinant of a matrix I is denoted by |I|. The

symbols used for the most commonly occurring quantities in the thesis are listed in Table 1.2.

number of data dimensions;

data dimension label;

number of latent dimensions;
latent dimension label;

number of data points;

data label;

number of latent data points;
dataset stored as a D x N matrix;

data points in the latent space stored as an L x K matrix;

N B X3 >~ aty

observed Fisher information matrix;

et
—

>
=

expected Fisher information matrix;
an identity matrix;

transpose of matrix W

a collection of data points;
probability;

probability density function;

-} link function;

‘KEE wmg»—(

a sub-model in a hierarchical tree or an arbitrary model;
index of a mixture model;

parameter vector of a mixture model;

a mixture object;

likelihood of 8 for the given (;

expected message length;

¥S N ®e

Kullback-Leibler divergence;
() expectation

Table 1.2: Notation in the thesis.

“nttp://psort.ims.u-tokyo.ac .jp/
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Chapter 2

Latent Variable Models and

Visualisation

In this chapter we review two types of visualisation technique. One arises from latent variable models,
while the other is based on topography (i.e. distance preserving). We describe probabilistic principal
component analysis (PPCA), the generative topographic mapping (GTM) and the latent trait model
(LTM) based on the principle of latent variable models in a mixture model framework. It is therefore
straightforward to develop an EM training algorithm, which provides a simple and practical method
for estimating the mixture parameters. As an example of a topographic visnalisation technique we
introduce Neuroscale. Finally, we briefly discuess principal curves and surfaces, which are another

important non-linear model used for visualisation.

2.1 Introduction

As addressed in Chapter 1 the goal of LVMs is to model the distribution p(t) of the data t in a
D-dimensional space in terms L latent variables x. It is a density model, modelling an unconditional

probability density given a finite set of data points {t,},=1,. . n drawn from that density function.

The approach to density estimation we shall focus on is the mixture model, which belongs to the class
of semi-parametric models as it defines a very general class of functional forms where the number of
adaptive parameters can be increased by considering more components in the mixture to construct
more flexible models.

The mixture model can be viewed, in turn, as a type of latent variable models since components
are directly related to latent variables. The Gaussian mixture model (GMM) is a simple mixture
model. In fact, both PPCA and the GTM are Gaussian mixture models.

In the next section, we review mixture models and a general procedure for fitting mixtures, known
as the EM algorithm (Dempster et al., 1977). A simple Gaussian mixture model is introduced. An

important and easy-to-use visualisation method, PCA, is discussed in section 2.3. Section 2.4 is about
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probabilistic PCA, which involves a linear mapping between the latent space and the data space. As a
more complex latent variable model, we consider the generative topographic mapping (GTM), which
includes a non-linear transformation, in Section 2.5. However, the GTM is only able to cope with
continuous observed data. In order to deal with discrete data in data space, a latent trait model which
uses a member of the exponential family as a noise model appears in section 2.6. In the last section,

Neuroscale, which is based on data topography, is discussed.

2.2 Mixture models

Before we further discuss some specific LVMs, we shall restrict our attention to mixture models, which
are the main density modelling technique. As will be seen, LVMs introduced in later sections have a

close relationship with mixture models.

2.2.1 Mixture models

Consider the problem of modelling a probability density function p(t) given a finite number of data
points {tn}n:h_ﬂ]\r. The density of the data can be approximated using a model which is a linear
combination of simple component densities p(t|f,) (Bishop, 1995):

A
p(t) = 5" Pla)p(tlh.), (2.1)

a=1
where P(a) are the mizing coefficients, and satisfy the properties
A
> Pla)=1, 0<Pa)<1, (2.2)

a=
which guarantee that p(t) is a valid density function. The parameters of the mixture model are
6 = (01,...,04) and P. In this thesis, we assume that all components have the same functional form,
and each is specified by the parameter vector 8,. For detailed and comprehensive accounts of mixture
models, see (McLachlan and Basford, 1988; McLachlan and Peel, 2000; Titterington et al., 1985).

A mixture model is able to represent arbitrarily complex probability density functions (pdf’s),
provided that the model has enough components and the parameters of the model are selected ap-
propriately. It is also a choice for representing complex class-conditional pdf’s which are likelihood
functions in Bayesian supervised learning frameworks (Hastie and Tibshirani, 1996; Hinton et al.,
1997; Streit and Luginbuhl, 1994), and priors for Bayesian parameter estimation (Dalal and Hall,
1983) as well. Mixture models can also be used to cluster data in an unsupervised way (Jain and
Dubes, 1988; Jain et al., 2000; McLachlan and Basford, 1988; McLachlan and Peel, 2000; Titterington
et al., 1985).

2.2.2 EM algorithm for mixture models

The next step is to estimate the parameters of a mixture model from a set of data. Consider a dataset

of N vectors ¢ = {t,},=1,.n. If we assume that these vectors are drawn independently from the
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distribution p(t), then the joint probability density of ¢ is given by

N N A
p(Cl8) = T pttn) = ][ {Z P(a)p(t,,,wa)} = L), (2.3)

n=1 n=1 \a=1
where £(8) is referred to as the likelihood of 6 for given (.
For determining the parameters of a mixture model from a set of data, we minimise the negative

log-likelihood for the dataset, which is given by (Bishop, 1995)
E = - 100[(0)

- - Z log p(tn

n=1

N A
- Z log {Z P(a)p(tnwa)} . (2.4)

n=1 a=1

l

This can be regarded as an error function. A simple and practical method used to fit mixture models
to observed data is the expectation-mazimisation, or EM, algorithm (Dempster et al., 1977).

In the EM algorithm, the observed data matrix {tn}n=1,_ .~ isregarded as incomplete data, since a
set of NV discrete assignment variable vectors, Z = {2, }n=1,..,~, are missing. An assignment variable
Zan = (Zn)q is introduced for each data point t,, to specify whether t, was generated by the ath
component. z,, = 1 if and only if the data point t,, was generated by the ath component of the
mixture, otherwise z,,, = 0.

Denote by (eomp a complete dataset including t,, and z,,. The likelihood function Leomp(8) for the

complete dataset can be written as

N
Leomp( H p(tn,z,) = H {P(Z7L)I)(t’ll!27l)}' (2.5)

n=1 n=1
The negative log-likelihood for this complete dataset, having multinomial form (Mclachlan and K-

ishnan, 1997), is given by

Ecomp - - 10% £comp (0)
N A A
= — Z log {H(P(a Fon H p(t,8.))" }
n=1 a=1 a=1
N A
= - Z Z Zan 10g {P(a‘)p(tnlaa)} : (2.6)
n=1a=]

The EM algorithm proceeds iteratively in two steps, £~ and M —steps, by treating z,, as missing
data. The iteration starts from some initial parameters 8. The Jth iteration is as follows:
e [ —step
Compute the expectation of E,p,, with respect to the probability distribution of assignment

variables z,,. It is given by

(Ecomp) = ZZP“ )(alts) [log P(a) + log p(t.16.)], (2.7)

n=1a=1
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where

pl-1 (a)p(jml) (t,]60.)

P(j_l)(a'“n) = 1 - - .
Z;:l P(j—])(a)P(]~l)<t7zwa)

(2.8)

o A —step
Update parameters by minimising the expected error (E.op,,) with respect to the parameters
¢’ = argmin(Eeopp)- (2.9)
[]

A variational view of the EM algorithm

Jordan et al. (1998) introduced a variational approach to the EM algorithm. The basic idea of
variational methodology is to convert a complex problem into a simpler problem, which is generally
characterised by decoupling of the degrees of freedom in the original problem. The decoupling is
achieved by including additional parameters, known as variational parameters, that must be fit to the
problem at hand (Jordan et al., 1998).

Considering a situation in which we are unable to compute the conditional distribution p(Z|¢). In
such cases, variational methodology suggests that we consider a family of approximating conditional
distributions $(Z|¢, ), where A are variational parameters.

Now we need a measure of approximation accuracy. Jordan et al. (1998) showed that using
the Kullback-Leibler divergence (Kullback and Leibler, 1951) Dy as a measure of approximation
accuracy yields the best lower bound on the log-likelihood in the family of approximations p(Z|(, A).

The Dy is defined as follows (Cover and Thomas, 1991):

A . P(Z|C, A
Dier (BZICNIPZI0) = 3321, 2 log 2L (210)
> P(Z[()
They bounded the log-likelihood using Jensen’s inequality as follows:
logp(¢) = log> p(Z,0)
zZ
A PE, Q)
= log » p(Z|()=
£ L2055
) P(Z,6) :
> p(Z|¢) log = . 2.11
2 MEI0 e 57 21y

The difference between the left and right hand sides of equation (2.11) can be viewed to be the Dy,
between p(Z,() and p(Z|¢). Thus, a particular distribution by minimising Dy with respect to
the variational parameters is selected from the family of approximating distribution p. The selected

particular distribution is treated as the best approximation of p(Z|() in the family p(Z|(, A).
A" = argmin [Dic {P(Z]¢, MIIp(Z[0)}] . (2.12)
A

By selecting A according to equation (2.12), we obtain the tightest lower bound.
Now let us include parameters 8 in the marginal probability p()8), known as the likelihood. The
function

F($,8) = B(ZI() log p(Z|0) = Y H(Z]) log p(Z, (|0) (2.13)
zZ
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is a upper bound on the negative log-likelihood (—logp({|6)) for any probability distribution p(Z|().
This suggests the following algorithm. Again the iteration starts from some initial parameters 6.
First the bound F(p,0) is minimised with respect to probability distribution p. Second, p is fixed and

minimised F($,8) with respect to the parameters . That is in the jth iteration:

e F—step
P = argmin {7:(33,3”-1))}; (2.14)
P
e M —step
6’ = argmin {F(#",6)}. (2.15)
0

This can be related to the EM algorithm by noting that the right hand side in equation (2.13) is
a function of § only through the term logp(Z,(|f) when fixing p. Thus minimising F(p,8) with
respect to @ in the M —step is equivalent to minimising the complete negative log-likelihood in the

EM algorithm.

An proximal point view of the EM algorithm
A generalized proximal point algorithm (Chrétien and Hero, 2000) is defined by the following iteration
8’ — argmin {5(9) + »y,‘.,d(a,e(f‘”)} : (2.16)
0
where £(#) is some function whose minimum with respect to 8 is sought, v is a sequence of positive
numbers, and (I(H,Gj ) is a distance-like penalty function. In this framework, the EM algorithm for
fitting a mixture model can be viewed as a proximal point algorithm with £(8) = —log £(8), v = 1

and with the Kullback-Leibler divergence Dy between p(z t,ﬂj ) given the estimated model and

p(z|t,0) given the true model

d,6') = D1 {nlz

6,6)llp(#It,0) }

p(z]t,67)
p(z|t,0)

= /p(z|t,9j)log dz. (2.17)

Based on this framework, Celeux et al. (2001) proposed a component-wise EM algorithm for mixtures
and proved its convergence by using the proximal point algorithm. The idea of component-wise
EM algorithm is to update only one component at a time, leaving the other parameters unchanged.
Assuming it is in the jth iteration, then we have
e E-step:
Compute the posterior distribution of the ath component given the observed data by using
equation (2.8).
e MAf-step:
Update parameters 8, of the ath component;

, -
for a' # a, we have 67, = H(QJ, ).
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Main drawbacks of EM algorithm

e Since EM is a local approach, it is highly depend on initialisation.

The error function has a large number of local minima, many of which correspond to poor models
of the true density distribution. Several methods have been proposed to solve this problem. For
example, initialisation by using clustering algorithms, such as the K-means algorithm (Nabney,
2001), or using many different initial parameter sets and then selecting the model with the lowest

error value.

e EM may converge to the boundary of the parameter space.
For example, when training a Gaussian mixture model, if one mixing coefficient approaches zero,
then the corresponding covariance matrix may approach singularity. This can also happen if
a component centre gets very close to a data point. In practice, to avoid this problem, the
covariance matrix is checked at each iteration, and dangerously small values are replaced by

larger ones (Nabney, 2001).

In addition, in some situations EM algorithm shows slow convergence problem. A more detailed

analyses and results can be seen in (Redner and Walker, 1984).

2.2.3 Gaussian mixture models

A Gaussian mixture model (GMM) is a frequently used tool for density estimation. It is defined as a
mixture model (see equation (2.1)) with A Gaussian components. The distribution of each component,

ais p(tip,, Xq):

1 1 o
p(tloﬂ) - p(t{um Z(l) l)/'.Z (:'X]) {_i(t - ["'(:,)] Ea : (t - I‘I’{L)} ’ (218)

" [Ba72(2n)
where 3, is a D x D symmetric and positive-definite covariance matrix and p, is a mean vector of
component a.

The parameters of a GMM can be determined by using maximum likelihood estimation with the

EM algorithm.
e E—step

We compute the posterior component probabilities P(a|t,) given by equation (2.8).

e M —step

By minimising the expected error (E.qm,) with respect to the parameters, we obtain equations
for updating parameters of each Gaussian component:

N

Pi(a) = % S°PUD(alt,), (2.19)
n=]

N i—
. PO (a|t,)t,
/J-‘; = Zn:l (al 7) . (220)

SN PG (alt,)
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Our aim is to choose suitable coefficients hy and basis vectors ugy, so that 't can approximate t as

accurately as possible. The error in the vector t,, is given by

D
t, —t, = Z (370’,11 - ]7'(1)]-111;
d=L+1

where x4, denotes the dth dimension of the nth data point.

(2.28)

So we minimise the sum of the squares of the errors over the whole dataset, which has the form

>

E, = Iltn - tan

1

1 N D D

5 Z Z Z (-'13ri,n - 17'cl)(37d’,71 - hd’)u({l Uy
n=1ld=L+1d'=L+1
N D

(NN

n

il

Il

n=1 d=L+41

Setting the derivative of E;, with respect to hy to zero, we obtain

N
1 -
ha = N § Tgn = Uy t,

n=1
where

.1 X
t:NZtn.

n=1

Using equations (2.26) and (2.30), the error function (2.29) can be rewritten as

1 D N 1 D
£, = 3 Z Z{u(z (t—t)}? = 3 Z ulLuy,,
d=L+1 n=1 d=L+1

where 3 is the covariance matrix of {tn}n=1, .~ and is given by

N
D= (b= E)(t, ~ )7

n=]

1 2 .
- Tygn — hg)® since the uy are orthonormal.
2 n

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

Minimising equation (2.32) with respect to uy, it can be shown that when the basis vectors uy are the

eigenvectors of 3, which is Zuy = Aguy, we have the minimum error in the form Ey=1% S

This suggests that the minimum error is obtained by selecting the D — L smallest eigenvalues.

d=/L+41 /\d'

In practice, in order to project t,, onto a lower L dimensional space, the mean of the input vectors

t,, first is calculated and then subtracted. Then the covariance matrix is computed and its eigenvectors

and eigenvalues are obtained. L eigenvectors which correspond to the L largest eigenvalues are kept.

Then the vectors t, are mapped onto these eigenvectors to generate components of x,, in the L

dimensional space.

Although PCA is easy and fast to calculate, it suffers from two drawbacks:

e It can only find a linear subspace so it cannot deal properly with data lying on non-linear

manifolds.

30










CHAPTER 2. LATENT VARIABLE MODELS AND VISUALISATION

The log-likelihood of the observed data under this model is
log £ = ——-{Dlog(2P) +log|C| +tr(C7'S)}, (2.38)

where S is the sample covariance matrix of the observed data,

.
S = = 3 (b~ )t — )", (2:39)

n=1

provided that u is the sample mean from the maximum likelihood estimate, given by

1 &
b= >t (2.40)

n=1

With maximum likelihood estimates, we also obtain parameters

W =Ur(Ap —a?1)/2, (2.41)
and
‘ 1 &
o? = 5T >, (2.42)
I=L+1

where the L column vectors in the D x L matrix Uy, are the principal L eigenvectors of S, Ay is an
L x L diagonal matrix with corresponding eigenvalues, J is an arbitrary L x L orthogonal rotation
matrix, and Aj41,..., Ap are the smallest eigenvalues of S. ¢ can be regarded as the average variance
“lost” per discarded dimension. Because the rotation matrix J is arbitrary, if W is computed by an
eigendecomposition of S (which is much more computationally efficient than using the EM algorithm),
then J may be assumed to be the identity matrix (Nabney, 2001).

Usually, the representation x,, can be obtained by using the standard projection, which is given
by %, = W7 (t,, — w), without loss of information. As an alternative to the standard PCA projection,
the posterior mean can be used (see section 1.2). By using Bayes’ theorem, the posterior distribution

of the latent variables x has the form
p(x|t) ~ N (M“W"’(t — ), a'“)M_l) , (2.43)

where

M~ = (o’ T+ W'wW)~ 1 (2.44)

Minka’s automatic choice of dimensionality for PCA

A central issue in PCA is selecting the number of principal components. Minka (2000) showed how
to use Bayesian model selection to determine the dimensionality of the latent space.

To choose the subspace dimensionality L, the probability of the data from a set ¢ = {t1,...,ty}
for each possible dimensionality is computed. The probability of the data given the model M is

calculated by integrating over the unknown parameter values € in that model:

p(CIM) = /9 P(C16)p(O|M) db. (2.45)
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This quantity is called the evidence for model M. More details on discussing Bayesian model selection
can be seen in (MacKay, 1995).

By using conjugate priors for the eigenvectors, eigenvalues of the sample covariance matrix S and
noise level, choosing an appropriate parameterization and applying Laplace’s method, Minka (2000)

shows that the evidence for a PCA model with L principal components is given by

~N/2

L
p(¢|L) = p(UL) <H /\1> (0?)~NP=D)/2(p) B2, |7 AN TE2, (2.46)
=1
where m = DL — L(L +1)/2 and
L
p(UL) =27 [[T(D -1+ 1)/2)p~(P=HD/2 (2.47)
=1
where T'() is the Gamma function and
L D R
iz =T [T Qd" =A% = 2N, (2.48)
=1 d=Il+1

and )\, are the eigenvalues from PCA, and \q are identical except for d > L where X = (1/(D -

D
K)) Zd:L+1 Ad-

Minka’s experiments show this is an accurate and consistent model order criterion.

2.4.2 Mixture of PPCA

Because PCA defines a global linear transformation of data, it is a rather limited method to model
a complex non-linear structure, as is shown in Figure 2.4. However, since PCA was extended to
probabilistic PCA which is a Gaussian distribution of a particular form, it is reasonable to combine
multiple PCAs in a mixture of such models (Tipping and Bishop, 1999). In this way, the mixture of
PPCAs may model a non-linear structure by using a set of local linear models. The parameters can
be determined using the EM algorithm.

Again the corresponding density model takes the form of equation (2.1). Each component is an
independent latent variable model, PPCA, with parameters p,, W, and o2. P(tlf,) is given by

equation (2.37).

e F—step

We compute the responsibility oy of component a for generating data point t,

_ P@p(talfs)

Run = Plaltn) = == 15 (2.49)

e A —step
The computation of P?(a) and p is again the same as in the Gaussian mixture model. The
covariance matrix is re-computed for data weighted by the responsibility of the corresponding

COIT]pOIlGHt-.
N

1 ) .
- (b — ) (b — pd)T 2.50
Sa PJ((L)]\’ IR(L ( I"'u)( ﬂ'a) ( 0 )

n—
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Then it is intuitive that W, and Ui can be determined from S, in the same way as for a single

PPCA model.
A mixture of PPCAs has two advantages over usual mixtures of Gaussian distributions:

e Bach component latent variable model locally models both the linear mapping and noise, rather

than just the covariance.

e The mixture of PPCA models allows the number of parameters to be controlled by the choice
of L. There are fewer parameters per component, compared with (D + 1)D/2 for a Gaussian

with a full covarlance matrix.

Although a mixture of PPCA models is appropriate when the data is approximately piece-wise
linear, 1t is still limited by being a locally linear transform. Thus it may not be capable of capturing

more complex non-linear structures.

2.5 GTM: the generative topographic mapping

The generative topographic mapping (GTM), developed by Bishop et al. (1998), incorporates a
non-linear mapping from the latent space to the data space so that it can capture effectively complex
correlations in the dataset. The aim then is to represent the high-dimensional data vectors {t, } =1 N
in the latent space so as to reveal important structural characteristics.

The GTM itself is a constrained mixture of Gaussians, since the centres are limited within an
L-dimensional non-Euclidean manifold €. It can form a topological mapping because the centres of
Gaussians in the data space preserve the structure of the latent space. The parameters of the Gaussian
mixture model can be optimized using the EM algorithm.

The GTM provides a principled alternative to the self-organising map (SOM) of Kohonen (1995).
The SOM assigns a data point to a single reference vector, whereas the GTM computes the responsi-
bility of all the Gaussians for a data point. Comparing the GTM with the SOM, it is clear that the
GTM overcome most of drawbacks suffered by the SOM, such as the lack of probability density model
and objective function, the lack of criteria to compare different runs of the SOM procedure, and no

general proof of convergence (Bishop ef al., 1997).

2.5.1 The GTM model

Imagine that there exists a two-dimensional rubber sheet that is embedded in the high-dimensional
data space. The GTM covers the cloud of data points by locally stretching, compressing and curving
the sheet. The visualisation plot is obtained by first projecting the data points onto the rubber sheet
and then letting the rubber sheet “relax” to its original form on the computer screen. We refer to the

two-dimensional rubber sheet in the data space as the projection manifold, given as follows

Q= {We(x)x € 1}, (2.51)
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where ¢(x) are M fixed basis functions ¢,, (including one bias term) and W is a D x M matrix.
In this way, a non-linear mapping, by using a radial basis functions (RBF) network from points x
in an L-dimensional latent space H to the data space D with D-dimension (L < D), is defined. For
visualisation purposes, the latent space is typically a bounded 2-dimensional Euclidean domain, e.g.

[—1,1] x [=1,1]. Figure 2.5 illustrates this basic idea of the GTM, where the mapping is given by
y(x; W) = We(x). (2.52)

Since in reality it is impossible that the data can exactly live on the L-dimensional manifold, we need

Latent space

° ® °
*2 ® ® ®
® ® ®
X,
/ Data space

Figure 2.5: GTM mapping and manifold: each node x;, located at a regular grid in the latent space is
mapped to a corresponding point y(x,; W) in the data space, and forms the centre of a corresponding
Gaussian distribution.
to define a noise model which is the conditional distribution of data given latent variables. For the
GTM, p(t|x, W, f) is a spherical Gaussian N (y(x; W), 7'I) centred on y(x; W) with variance 8~}
1s used:
_Bpp B ) 5 )

Pltl, W, B) = (22)2 2 exp { =1t = y (s W) (2.53)
As for the prior distribution p(x) of the latent variable, the second part of specifying a latent variable
model, it is a sum of delta functions centred on K nodes {Xk}r=1. 1 of aregular grid in the latent

space (which are analogous to the nodes of the SOM (Kohonen, 1995)),

1 K
px) = > 6(x = xy). (2.54)

k=1
In this way, a non-Gaussian, maximum entropy (uniform) latent prior is imposed over the latent
space. The distribution of data in the data space D, for given values of W and £, is then obtained

by integrating out the latent variables x:

P(E|W, 8) = /p(tlx,w,,a)p(x) ix. (2.55)
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From equations (2.54) and (2.55), we have

K
PW,B) = 2> pltlxe, W, 6). (2.56)

k=1
Now we can determine the weight matrix W and variance f~! using maximum likelihood. The error

function is given by the negative log-likelihood of the data:

!\I
E=—logL(W,8) = -log ] p(ta|W,5)
=1
N 1 K
= - log | — to|xe, W, 5) 1. 2.57
3 (Kgm i >> 2.57)

Since the GTM model involves a Gaussian mixture model, it is possible to train the model by
using the EM algorithm.
e F—step
To compute the responsibilities Ry, given by:

Rl\tn = P(Xk|th, ﬁ)

b W) (2.58)
w—1 Ptn|xe, W, B)p(xsr)

Ry, corresponds to the posterior probability that the nth data point was generated by the kth

component.
e M —step
Responsibilities calculated in E—step will act as weights in the update equations for W and 8.
— A matrix equation for W is given by:
WaGd" = TR 37, (2.59)

where T is the D x N matrix containing the data points, R is the K x N responsibility
matrix with elements defined in equation (2.58), ® is the M x X RBF matrix with elements

Dok = Ppa(xx) and G is an K x K diagonal matrix with entries

N
Grr =Y R (2.60)

n=|
~ A re-estimation formula for f is given by

N K
1 1 \ ew 2 >
5= WD 2 2 Rallyac W) ] (261)

n=1 k=1

Where W™ corresponds to the updated weights from equation (2.59), which means that we
I I g q

must first minimise with respect to the weights, then with respect to £.
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2.5.2 Parameter selection

1. Typically, a Gaussian RBF network is used for the mapping. The ratio of their width parameter
o to the spacing of basis functions controls the smoothness of the manifold (see equation (2.51))
in the data space.

When the RBF has a large number of degrees of freedom, the map y(x; W) may be very
complex and the manifold may has regions of large curvature. In order to solve this problem,
a weight decay regularisation term A can be introduced to control the smoothness properties of

the mapping function (2.51). This leads to a modification to the M —step (2.59) to give
W(@G®T + A1) = TR &7 (2.62)
where I is the identity matrix.

2. Here we must indicate that the number K of latent grid points x; can sometimes be more than
the number N of data points. This is because the number of degrees of freedom in the GTM is
controlled by the basis functions, which is independent of the number of latent grid nodes. In

practice, however, using a dense grid is computationally prohibitive.

3. We need an initialisation method which is fast to compute and reasonably close to the optimal
solution. A linear method can satisfy the speed requirement. We use PCA to initialise the
parameters W. An L-dimensional linear subspace is used as initial manifold. We compute
the data covariance matrix and obtain the first and second principal eigenvectors, and then we

determine W by minimising the sum-of-squares error function
1 2
E=g Z]: | W (xi) — Uxy ||, (2.63)

where the columns of U are given by the eigenvectors. The value of A~} is initialised to be a
larger value, the minimum of the (L + 1)st eigenvalues from PCA and half the average squared
distance between centres of Gaussian mixture, to prevent premature convergence of the main
EM algorithm (Nabney, 2001).

2.5.3 Data visualisation

The GTM provides a full posterior distribution Ry, as a result of the Bayesian approach. This
distribution can be very difficult to visualise. To see all the projections of the data points at once in

a single plot, one can summarise the posterior by its mean, given for cach data point t,, by
(Xl W 5) = [ plxlta, W, dx (2.64)

With the choice of prior distribution (2.54), we have

K
(X|tn, W, ) = ZRknxk~ (2.65)

=1
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Consider a trait model M. The system’s noise is modeled in a parametric form as a member of
the exponential family of distributions. It may be either the widely utilized Gaussian model (as‘in the
GTM), which is appropriate in cases of real valued continuous observations, or discrete distributions,
such as the binomial, the multinomial and Poisson distributional models. The parameterised functional
form ((Amari, 1985), (Barndorfl-Nielsen, 1978)) of a distribution from the exponential family is the
following,

DG (tn|xk b 0/\/1) = exp {y(xk; gM)tn - g(y(xkyaM))} pO(tn): (267)

where G(-) denotes the cumulant function given by

G(y(x;601)) = log ( [ e (xs200p00) dt) , (2.68)

and po(t,) is a factor independent of the parameter. Further, the non-linearity y(), which is also
called the natural parameter of the exponential distribution in equation (2.67), is conveniently chosen
of the form
y(xk;001) = Or(x1), (2.69)
where 8 o4 is a D x M parameter matrix of the trait model M and ¢(xy) are M fixed basis functions.
These could be any smooth functions; typically Gaussian radial basis functions may be employed and
also a bias function is included. The notation ¢, = ¢(xx) will be used as shorthand.
Similar to the GTM, the latent space is a regular grid of points {xy}r=1 . x. The prior p(x) is

given by equation (2.54). The data log-likelihood is the following,

log L(Brs) = Z 105 — {Z exp {y(xi;0r4)t, — g(y(xk;eM))}Po(tn)} : (2.70)

=1
To train the model using the EM algorithm, the expectation of the complete data log-likelihood Eqgpn,p

of the model is computed, which in this case is written as follows.

al 1
wmp Z Z Ry, { X BM)tn - g(y(xk.;oM)) + logm(tn) + log ?} ) (271)
n=1 k=]

where Ry, is computed via Bayes’ theorem in the E-—step:

pg(tnlxlm 0/\/1)

Ry, = (2.72)
e K )
Zk’::l ])Q’(tntxk’ )0./\/’)
referred to as responsibilities of the latent point x; in having generated t,,.
Taking the derivative of (Ecomp) with respect to the parameter 8 o4, we obtain
O Eeon . . T
IHEcomp) _ {TRf - g(ﬂqu)G} a7 (2.73)
00 pq

R is the K x N responsibiliny matrix with elements [y, and G is a K x K diagonal matrix with

elements G = Z Rip, @ is an M x X RBF matrix with ¢, in its k-th column and T is the data

n=1}
matrix. The function g(-) denotes the gradient of the cumulant function G(:) and is termed as the
inverse link function (McCullagh and Nelder, 1985) of the distribution, as it makes the link between

the natural parameter y(-) and the expectation parameter of the distribution. That is

(thxk) = gOrby) = Vs, 5 GOMbL)), (2.74)
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where V denotes the gradient operator.

An example is a normal distribution with mean g and unit variance, which has a density that is

1 1 )
exp { —=(t —p)? b
2,70\1){ 5( #)}

It may be rewritten as the form of the equation (2.67)

p(tlp) =

plels) = exp {t - %} polt)

with y(-) = p, G(-) = & and logpo(t) = —log(v2m) — %i Then we have g(-) = p. It is clear that

19

g(+) is an identity. In this case, by setting the derivative of (Ecomp) equal to zero, one obtains the

closed form M —step of the GTM, given by
TR ®" =9, dG3".

As for the case in which the Gaussians are isotropic, the variance 7! must be calculated by equation
(2.61).
In general, however, a non-linear optimization technique may be required. In practice, we used

the following gradient-based update (Kaban and Girolami, 2001) in the M —step:

N K
X/C;wqbk = gf\l)i(lqskz + 1 Z Z (tn - (tlxk'))]{k'n(ﬁl{t’ ¢l\:‘ (275)
n=1k'=1

After training, the latent space representation of the point t,, is taken to be the posterior mean (x|tn),

which, according to the discretisation, is computed simply as Z,::] Ry Xy,

The experimental result

As an example, we did an experiment on a small text dataset containing 387 instances coded as 100~
dimensional binary vectors. The dataset is grouped into 4 topics. The tool used for pre-processing
the document data is the same as the one mentioned in section 1.5.4. The latent space is bounded in
a 2-dimensional Euclidean domain, i.e. [-1,1] x [-1,1].

First we trained the LTM with Bernoulli distribution. The result is present in Figure 2.7. It shows
that the 4 classes are separated very well and the model effectively captured the structure in the
dataset. We also applied the GTM model for the same dataset. The result is displayed in Figure 2.8,
where some projections of data points from the different classes are mixed and many points in the
same class are overlapped. In comparison with the LTM, it suggests that the GTM is a less effective

choice when fitting the discrete dataset.

2.6.2 Local magnification factors of the latent trait manifolds

The term “magnification factor” refers to the degree of stretching or compression of the latent space
when embedded into the data space. Consider the Cartesian coordinate system in the latent space

and the mapping of this space to a curvilinear coordinate system defined in the manifold embedded
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in the data space. It has been shown in (Bishop et al., 1997) that the local magnification factor
corresponding to a point xg in the latent space, defined as the ratio between the area in the projection
manifold € and the corresponding area of an infinitesimal rectangle in the latent Cartesian space, is
given by \/|S(xo)|, where |S(xo)| denotes the determinant of the metric tensor § = Y7Y, in which
case T denotes the Jacobian of the mapping from the latent space to the data space. For the GTM,
Y is the Jacobian of the mapping (2.51).

A general latent trait model defines a density in the data space, using a smooth mapping from the

latent space to the data space,
Q: H-=D, Qx)=gluP(x)). (2.76)

We refer to the manifold €2(H) as the projection manifold of the LTM. So the Jacobian of the mapping
is given by
_ 086umd(x))
ox

O (X , o
f%x( ) ) , and the D x D matrix
k| X=Xo m=1,... ,Mk=1,. K

= T0,,V, (2.77)

where the M x I{ matrix V is equal to <

T = (5!151'(3/) >
Iya | Yy=0.rpP(Xo) d'=1,...,D,d=1,...D
If Gaussian radial basis functions are utilized for ¢(-), then the (m, k)-th element of the matrix V will

is the Fisher information matrix of the noise distribution.

be v,, 1 = =@ (X0) (X — ¢mk)o ™2 where ¢, denotes the k-th coordinate of the radial basis centre

m,k

which corresponds to the m-th basis function.

Thus the magnification factor associated with a point xg in the latent space is \/]VTGLITIGM V.

In the case of Gaussian noise models, the matrix Z7Z is the identity matrix. Note also that in
all independent noise models this matrix will be diagonal; therefore the increase in computational
complexity will not be significant. However, this is not the case for the multinomial trait model (as
can be seen in Appendix B.3).

The absolute values of magnification factors can be viewed as defining how many times the area is
magnified when it is mapped into the data space from the latent space. They are a useful tool in data
visualisation by highlighting the boundaries between the clusters, which has been illustrated in (Bishop
et al., 1997) for several experimental results. Practically, we may superimpose the magnification factors
on the latent space visualisation to understand the data distribution in the data space. An example
can be viewed in Figure 2.9, where the data was the same as used in previous experiment. We see
that the highly stretched regions correspond to 4 classes of the data. It can be imagined that data,
points in each class were mostly projected onto the corners of the “rubber sheet”. Since in each class
there are fewer data points comparing with their dimensions, it is somehow hard for the manifold to
try fitting these data. Thus corners of the “rubber sheet” were stretched to cover those corresponding

data points.
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metric in topographic mapping contexts. Rather than using general purpose optimisation algorithms,
Tipping and Lowe (1997) proposed shadow-targets algorithm, which is faster in converging.

The equations for calculating the weight derivatives are:

o8 _y OB O, (2.81)
671}7711 n Ya 871)1)11
where
oE dr . — dpy
=22 () - v 252
Yn n'#n T
In a supervised problem, the error E is given by
1
E=sd Iy =P, (2:83)
n=1
where the vectors x,, are the explicit targets, such that
OE
5; = (ya'z - X”)‘ (284)
n

Combining equation (2.82) with equation (2.84) gives a set of vectors that can be considered to

represent (or shadow) estimated targets x,,:

. o .
X, Vo — —— (2.85)
9y,
d:n’ B dn.n’
= ¥y, + 2 Z ( 1 )(yn - y'ﬂ’)' (286)
nin Gppr
For a fixed set of estimated targets %,,, the least squares can be solved directly by
W = &tX, (2.87)
where &1 = [<I>T<I>]_l ®" is the pseudo-inverse of @ (see e.g. (Horn and Johnson, 1985)).
But x,, are not fixed due to the change of % Thus an approach is to repetitively estimate the

targets at cach iteration. However, the targets estimated by (2.86) may be poor in the early training
stage, and hence lead to the increase of the error. Usually a parameter 7 set to a value in the range

(0,1) can be introduced to cope with this problem. To estimate the targets, we have

ok
Xn =Y, — 5 (2.88)

k3
7 1s initially small, then is increased as E decreases during the training procedure. The algorithm is
referred to as the shadow-targets algorithm, because it is shadowing the standard Sammon Mapping
generation procedure where a gradient-descent optimisation is used, when the estimated target x,, is
identical to the new point by using the equation (2.88).
The experimental result

First we visualised the oil dataset with Neuroscale; the result is shown in Figure 2.10. It is similar

to the result presented in Figure 2.3. However, Annular and Laminar classes do not appear so tightly










Chapter 3

Extensions to the GTM

In this chapter we discuss two novel extensions to the GTM. (1) Local directional curvatures. Since
the GTM forms a “smooth” two-dimensional projection manifold, we can analytically compute its local
directional curvature at any point on the manifold using tools from differential geometry. Curvature
plots are useful for discovering regions where the projection manifold is bent. (2) Visualisation of the
dataset involving missing values using class information constraints (that is data with class labels).
This 1s helpful in the construction of informative visualisation plots, even when many of the training

points are incomplete.

3.1 Introduction

With the aid of projection visualisation plots, it is possible to see relationships among data points,
learn information about clusters and find “outliers” in the high dimensional data space. However,
a visualisation plot by itself is usually not enough when the mapping from the latent space to the
data space is non-linear. We need a set of tools for monitoring the “amount of non-linearity” in the
projection manifolds. These knowledge can only be obtained from the geometry of the projection
manifold in the high dimensional data space.

Magnification factors, which are discussed in section 2.6.2, describe how regions in the latent
(visualisation) space are stretched or compressed when mapped to the data space. For example,
regions of stretch in the manifold can highlight boundaries between well-separated clusters in the data
space. Magnification factors can represent the extent to which the regions are magnified on projection
to the data space, however, it may be rather difficult to interpret if the manifold has a complex shape
in the data space. So the user may also need second-order quantities, such as local curvature, which
quantifies the bending of complicated folds in the data space. Since the GTM forms a “smooth”
two-dimensional projection manifold, we can analytically compute its local directional curvature at
any point on the manifold using tools from differential geometry.

When visualising data points, one is often faced with the problem of incomplete data. Often, this
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Is solved via the deletion of incomplete records. However, this commonly results in the loss of useful
information. For example, in drug design, data with missing values may include one or more new drug
candidates. Therefore it is important to use all available values as well as any additional information
to reconstruct or infer the missing values. It is often the case that the visualisation plot is more helpful
when data is labelled with class information (using color or sign for each class, for example), which
is readily available in many datasets. Here, we would like to find a way of training the GTM model
with incomplete data, and also reconstruct the missing values using additional class information. In
this way the data, including the missing components, can be shown in a visualisation plot that is as
“faithful” as possible.

Formulation of the local curvatures of the GTM manifold is detailed in section 3.2. Section 3.3
gives a detailed description of the process of incorporating class information into the GTM training
process. The usefulness of these extensions are further illustrated with experimental results, which

are presented in the respective sections.

3.2  Local directional curvatures of GTM manifolds

3.2.1 Derivation
For the GTM, given a point x € H in the latent space, its image under the map y is
y(x) = We(x), (3.1)

where Wiis a D x M matrix of weight parameters and B(x) = (¢po(x),.. ., dm(x))" including a bias
term.
The image of the latent space H forms a smooth L-dimensional manifold in the data space, which

Is referred as the projection manifold £2, given by
Q=y(H) = {y(x) e RP|x e n}. (3.2)

Now imagine a simple case in which y(z) is one-dimensional. The first derivative of y(z) gives the
slope of the curve, while the second derivative gives the rate of change of slope, which is related to the
curvature. Generally, the local curvature of y(z) can be described by two orthogonal components, one
being normal to the slope and the other tangential, involving second order partial derivatives. The
normal component measures how much the Image is curved as z changes. The tan gential component
measures the change of the projection in the direction of the slope. Our aim is to calculate the normal
component of the second derivative.

Figure 3.1 illustrates the basic idea of directional curvature in the case of a two-dimensional latent
space.

Let h be a unit directional vector, h = (hy, hs, ..., hi)”. Let x(b), in the latent space H, represent

a straight line passing through a point xg(xq € ) along h:

x(b) = xo + bh, (3.3)
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Loy

Latent space H Vs Data space D

Figure 3.1: Explanation of local directional derivative of the visualisation manifold. A straight line
x(b) passing through the point x in the latent space H is mapped via y to the curve (lifted line)
1(b) = y(x(b)) in the data space D. Curvature of u at y(xp) = p(0) is related to the directional
curvature of the projection manifold y(H) with respect to the direction h. The tangent vector f(0)
to p at p4(0) lies in Tx, (dashed rectangle), the tangent plane of the manifold y() at 1(0).

which is defined by the parameters b € R.
As the parameter b varies, the image of the line x(b) generates a curve in the projection manifold
€2,
1(b) = y(xg + bh), (3.4)

called a lifted line. The tangent to this curve at y(xg) = (0) is

o = [

- [/’ Dy (x) dz,(b)

dx, db } _
X=Xg,b=0

=1l

L
= >,

r=}

= TW p, (3.5)
where

F(]) = W‘I’g,l)(XO)

w [ 0910x0) 0da(x0)  Iwi(x0)\”
Oz, = Oz, 7 Oz,

(3.6)

15 a (column) vector of partial derivatives of the GTM map y (at xo € H) with respect to the r-th

latent space variable z,, and T'!) is the D x L matrix
) 1) (1 1)
r = e i (3.7)

The tangent vector (0) to the lifted line p(b) is a linear combination of the columns of '™ and so

the range of the matrix T'") is the tangent plane Tx, of the projection manifold £ at y(x¢) = (0).
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The second directional derivative (Seber and Wild, 1989) of x(b) at x(0) is

L L
. _ 0 Iy (x) | daz(b)
oy = li O {Z Ox, h'} db
J X=Xg,b=0

s=1 r=1|
_ Xj:i y(x) b
Ox, 0z 7
r=1 s=1 X=Xg
L L

I
(]
(]
o

(3.8)

where rﬁ;ﬁ is a column vector of second-order partial derivatives of y (at xo € H) with respect to the

r-th and s-th latent space variables,

I = Wul)(x)

_ w (Phi0) Peaxe)  Pewlx)”
Ow,0xs * 02,0z, 7 Ow,0x,

(3.9)

The derivatives are computed at x, € H.
We decompose /i(0) into two orthogonal components, one lying in the tangent space Tx,, the other

lying in its orthogonal complement T;LCO,

i(0) = il (0) + i (0),  ji'(0) € Tx,, j(0) € Tx,. (3.10)

The component jill(0) describes changes in the first-order derivatives due to varying speed of
parameterization, while the direction of the first-order derivatives remains unchanged. Changes in the
first-order derivatives that are responsible for the curving of the projection manifold € are described
by the component ji*(0).

jill(0) = XTji(0), where IT is called the orthogonal projection of D onto Tx,. The IT is a linear

operator described by the projection matrix
(1) (1) !
[1=T_ (F ) , (3.11)

where (I‘(”)T is the psendo-inverse of T'Y. We need the orthogonal projection of D onto T;go, which

is represented by I — I, where I'is the D x D identity matrix. So i(0) is given by
AT(0) = (I-1I) ji0)

L L
ﬁ—ﬂn(ﬂny}P:E:ﬂihTm} (3.12)

r=1 s=1

I

The directional curvature at £(0) associated with the latent space direction h is the (Euclidean)
norm of the vector ji+(0). It measures the degree of local curvature of the visualisation manifold €
in the data space D (Bates and Watts, 1980). It is the embedding curvature of £ C D at y(xo),
evaluated with respect to the latent space direction h.

The meaning of curvature values

By using the equations discussed in this section, it can be shown that when a two-dimension sphere
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is embeded in a high-dimensional space, this definition of curvature gives the reciprocal of the:sphere
radius. So with a large radius, we obtain a small curvature; while a small radius will give a large
curvature. Intuitively, embedding curvature may be considered as measuring the degree to which the
projection manifold is curved in the data space (Amari, 1985).
Computational considerations

Since L < D, and usually L = 2 for visualisation, the computational effort needed to evaluate
i (0) must be dominated by the projection matrix IT, whose scaling is O(LD?). While a single
evaluation of the second directional derivative ji(0) (for one given direction in latent space) would
require O(L?) operations, which is typically much less than the O(LD?) scaling of IT.

In practice, we consider a finite set of directions Ny, so as to detect in which direction the projection
manifold is maximally curved. For a total of IV}, directions, the number of computational steps required

to evaluate is /V, times larger than for a single direction.

3.2.2 Showing the local directional curvatures and magnification factors
e Displaying the local directional curvatures

First, the number N, of different latent space directions h with respect to which the curvatures
will be computed is determined. In the case of a two-dimensional latent space, the directions
h;, correspond to the IV), equidistant points on the unit circle, subject to the constraint that the
first direction is (1,0). For the GTM model, we calculate the Euclidean norm of the directional
curvature ji(0) from equation (3.12) at each latent space centre xy, in each direction. In the
visualisation plot, we show, for each latent space centre xy, direction h yielding the maximal
norm fi*(0). The length of the direction line and the degree of shading of the corresponding
patch are proportional to the maximal norm of ji*(0).
e Showing the local magnification factors

We evaluate the local magnification factor at each latent space centre x, & = 1,2, ..., K, which
is the Jacobian of the GTM map y(x;; W) at x;. (see section 2.6.2). The magnification factor
is represented by the degree of shading of the corresponding patch. In order to view plots
conveniently, we use a log, scale. So values more than 0 indicate the projection manifold is

stretched in the data space, whereas values less than 0 indicate compression.

3.2.3 Experimental results

In the experiments reported here, the latent (visualisation) space of the GTM was the square [—1, 1] x
[~1,1] and the latent space centres x; € H were positioned on a regular 15 x 15 square grid and
there were 16 basis functions ¢,, centred on a regular 4 x 4 square grid. Magnification factors and

directional curvatures were evaluated at each latent space centre xy,.

e Synthetic data
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In the first experiment we randomly generated 1000 data points in R® lying on the two-

dimensional manifold shown in Figure 3.2 (a), and is defined by

1, . .
t3 = sin(r)/r, andr = 5(1%]3 +13), (1, t2) € [4,4]. (3.13)

As expected, after training, the GTM projection manifold displayed in Figure 3.2 (b) closely
followed the two-dimensional distribution of the data points. Latent space layouts of local mag-
nification factors and directional curvatures are shown in Figures 3.2 (¢) and (d), respectively.
The curvature and expansion patterns in the projection manifold (Figure 3.2 (b)) are clearly
reflected in the curvature and magnification factor plots. The form of the projection manifold
can be approximately guessed on the basis of its local first and second order characterizations.
Now, let us look at plot (d). As mentioned in section 3.2.1, it suggests that the high curvature
in the middle of the plot correspond to the small value of the radius of a sphere. This is proven
from plot (b), where the corresponding part of projection manifold is the top. The value of
colour bar in plot (d) says the degree to which the manifold is curved when it is projected into
the data space. The bigger value it is, the more curvature it forms.

Moreover, to test the GTM’s robustness, we did experiments on ten different datasets randomly
generated from the same two-dimensional manifold shown in Figure 3.2 (a). The corresponding
results are shown in Figure 3.3. The left column of it displays projection manifolds, the right
one directional curvature plots. Looking at plots (c), (i) and (j) in Figure 3.3, we noticed the
GTM model failed to capture the non-linearity of the function (3.13) three times. This is due
to the dependence of EM algorithm on the initialisation. With a poor start, the EM algorithm
converged to some local minima. Table 3.1 lists the corresponding average negative log-likelihood
for each model. The poor models (see Figure 3.3 (¢), (i) and (j)) have higher values of negative
log-likelihood than the others. As for models, where the GTM successfully captured the non-
linearity of the function, their curvature plots can reasonably reflect the curvatures of their
corresponding projection manifolds. These results suggest that when the data distribution is
known, we can use the curvature for detecting the failure of the GTM model, such as plots (c),
(i) and (j). Furthermore, one may use the magnification factor and curvature plots to detect the
failure of the GTM model even when the data distribution is unknown. In these cases, one can
train GTM models with different parameters and then observe the magnification factors and/or
curvatures to extract the similarities, which may be considered the intrinsic structures captured
by the fitted models. For those models with significantly different magnification factors and/or

curvatures, it may suggest that they fail to fit the data distributions.

e Oil flow data (see section 1.5.2)

The visualisation plot for this set is shown in Figure 3.4. Three classes were separated well. The
g I
corresponding directional curvature plot and magnification factor plot are presented in Figures

3.5 and 3.6. The curvature plot reveals that the two-dimensional projection manifold is folded
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3.3.1 Introduction

In this part, we outline the statistical framework defining missing data mechanisms which render some
of data unobservable and review several basic approaches to dealing with incomplete data as well. The

context presented is based on (Little, 1992).

Missing data mechanisms

There are several different mechanisms that lead to missing data, and these strongly influence the
procedure used to cope with missing data. To formalise the notion of missing data mechanism, we

define E, a missing data indicator matrix, given by

1, tg, observed,
Sdn &

0, t4n missing.
We assume that the dataset T = {t,}n=1.. ~ can be divided into an observed component T and a
missing component T™. Three types of missing data mechanism are distinguished by considering the
conditional distribution P(Z|T, ¢), where ¢ denotes a set of unknown parameters.
e Missing completely at random (MCAR).
P(E|T, ) = P(E|yp); that is the distribution of = does not depend on the observed or missing
values T.
o Missing at random (MAR).
P(EIT, ) = P(E|T?, ¢); that is the distribution of = is related to the observed data but not
to the missing data.
e Not missing at random (NMAR).
That is P(Z|T?, T™, ¢) may depend on missing values.
As an example, consider a simple case. Suppose ¢, the first variable in t, involves missing values.
If the probability P(Z|T, ¢)
1. is independent of data values, then the mechanism is MCAR,;
2. depends only on the values of the other variables, which are £y, -+, tp, then the mechanism is

MAR;

3. depends on the value of ¢;, then the mechanism is NMAR.

Several common techniques for analysing incomplete data

1. Complete-case analysis.
This approach confines attention to cases where all D variables are available, which implies that

cases with any missing values are simply deleted.
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Advantage: Standard statistical analyses for complete-data can be used directly without modi-
fication.
Disadvantage: Tt is a waste of information due to discarding incomplete cases. In addition, if

the MCAR assumption does not hold, bias will be introduced to parameter estimation.

2. Available-case analysis.

This method uses the largest set of available cases in each variable to estimate each parameter.
One version of available case analysis appears in (Dixon, 1983). It estimates the mean jq and

- 2
variance o, as follows:

1 ng
Hdid = — Z t(lna (314)
Tta n=1
1 N
2 2
Odd = m ;(tdn - /.M) , (315)

where ng is the number of available cases in dth variable. When estimating the covariance o2,

the number ngq of available cases is considered with both ¢, and ty observed. The covariance

‘2 . v
oy 1s given by
1 aal

03(1’ = Nt 1 Z(tdn - ﬂd)(trl’n. - .U:u'.')- (316)
bdd'

n=1
Advantage: It can use information from incomplete cases.
Disadvantage: The sample size is different from variable to variable. Sometime it is difficult
to analyse results under this change. In addition, it also has problems of comparability across

variables if the data are not MCAR.

3. Imputing unconditional means.

This technique imputes (or fills in) missing data 4, by pg, the unconditional sample mean of
the recorded values of t,.
Assuming MCAR, if the estimated covariance for observed data from available cases is o2, given
by (3.16), then the variance of the observed and imputed data together is %‘V‘%aim which is
. g . . . . . 7 -1
biased by a factor %\{:—!] The sample covariance of t4 and tg is biased by a factor ENL—T
Figure 3.11 shows a simple example. Clearly, expectations of data with ¢y missing always lie
along a horizontal line. Unconditional mean imputation ignores the covariance structure in the

observed data. So it biases the estimate of the covariance.

4. Imputing conditional means.

A more intelligent method is to fill in missing values by calculating means conditioned on ob-
served variables, in which case the regression coefficients are functions of mean p and covariance
matrix 3. One common method for imputing conditional means discussed in (Buck, 1960) esti-

mates p and 3 based on only the complete cases, and then uses linear regression to fill in missing
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largely overcome this problem as they combine much of the flexibility of nonparametric methods

with the analytic advantages of parametric methods (Bishop, 1995).

In the next section, we shall show how the EM algorithm for Gaussian mixture models can be

extended to inconiplete datasets.

3.3.2 The EM algorithm for Gaussian mixture models with missing inputs

This framework was proposed in (Ghahramani and Jordan, 1994). Consider a mixture of K Gaussian
models (see section 2.2.3). Binary assignment variables zj, are introduced in the usual way to specify
which component of the mixture generated the data point. zx, = 1 if and only if t,, is generated by

component k, otherwise zx, = 0.

o
1

m
t n

of the parameters matching the missing and observed components of the data and each data vector

We write each data point t,, as , where m and o denote sub-vectors and sub-matrices

can have a different pattern of missing components, which means the missing values maybe appear in
different positions for each data point.
To handle missing data, the EM algorithm combining both the assignment variables and the

missing inputs T can be written as follows:

e F—step: to compute the expectation of the error function (Eeomp), where Eion, given by
equation (2.6) can be rewritten as:

N K N K

Beomp == 9 zralog P(k) = > >z log pltal0s)- (3.22)

n=1 k=1 n=1 k=1
We can ignore the first term since we only estimate the parameters of p(t,,]0)). For the Gaussian
distribution with the full covariance matrix (see equation (2.18)), we can expand the second term

of the right hand side in equation (3.22):

, LR D
Ec(n’n,p = Z Z Zﬁ:?'a,[iloglzki + EIOBQW
n=1} k=1
1 o oNT v —1,00/7 ¢
+§(tn "_l‘l‘;c)j EI:], (tl)l_ —“I“‘Z)
+(t4 = p) S - pE)
1, Ta—1.1 .
5 = )T = i) (3.23)

where g, and ¥, denote the means and covariances of the kth Gaussian respectively. We use m
and o superscripts to denote subvectors and submatrices of the parameters matching the missing
and observed components of the data. Note that the superscript, for example, (-1, oo) denotes

00 o7
b k b k

inverse followed by submatrix operations; X is divided into corresponding
ETTL(/ ZHLTTL
k k
tO
tot =
tm
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o M —step: to update parameters by minimising the expected error (Eeomp) With-respect to the
parameters

¢ = aremin{ Eeomp)- (3.24)
[

The expected value in the E—step is taken with respect to both sets of missing variables. After
taking the expectation, the sufficient statistics for the parameters include three unknown terms, Zen,
zZpnth and zkﬂ,tzltle, so we must calculate the expectations for these three terms. To compute these
expectations, variables }\”n are introduced,

~m

= (4 = 1,80,0) =+ SPORET (45 — ), (3.25)

which is the least-squares linear regression between t} and t° predicted by the ktl ) Gaussian. Ex-
pectation of zp, 18 (zjn|t2,01) = Ry, which is defined as follows, measured only on the observed

dimensions of t,.

R[\- — |2’\'l_1/2 exp{ {)—( ﬂ‘[\)[z ( n ._.,1‘]\)} (3 26)
ZA’—l |2/~f’]_1/2 eXp { é F"A-.') 2;.-,/ (t,, — l‘k’)}
As for the second and third terms, we get
(2t 62, 0) = (a0, 00 (L0 12k = 1,65,06) = Rinti, (3.27)
and
. _,)'I'
<ZI\ ntmt‘m |‘1)7 > = <7l»n“',170k.>(t:;1t:,' ‘an =1 t:,;ek>
- T ~71 «m’]‘
= BB - BT R 4 b, ). (3.28)

After computing these expectations in the E—step, the M —step uses them substituted into equatbions
(2.20) and (2.23) to reestimate the means and covariances. We substitute the values of EL’; for the
missing values of t,, to reestimate the mean vector in equation (2.20). We substitute the values of
(zpm - E’f”):"f’ E’“O + t:;ty:l ) for the outer product matrices involving the missing data of t,, to
reestimate the covariance matrix in equation (2.23). Note that there are simplifications for Gaussian

distribution with non-full covariance matrix. In this case, variables tA,L are simplified to be equal to

™ in equation (3.25).
iy, q

3.3.3 Incorporating missing values into the EM algorithm for the GTM
model

We can extend the Gaussian mixture model EM algorithm to the GTM as follow. In the E—step for

the GTM, the expectation of zp, is (z1n|t8,05) = Ry, where

L\D/2 . 2
(£) exv {~2lIy0es W) - tall?

i

5 (£)7 exn { -2y W) -t

Rin = , (3.29)

}

measured only on t2, the observed dimensions of t.
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As mentioned in section 2.5, the GTM itself is a Gaussian mixture model. The mean g, of a-single
Gaussian k in the data space is equal to the image y(x;; W) of the latent grid node x;, mapped using

an RBF network. Following equation (3.25), we introduce

(6 2k = 1,6,04)

YN

Ky
|

fl

-1
(yzl)old + 2;\7)02;\)0 (l‘;)) _ (yz)of'd)’ (330)

which is the least-squares regression between t!* and t2 predicted by the kth Gaussian, and ‘old’ de-
notes the value computed in the last M —step, (y7)% = (W ®(x5))™ and (y£)?* = (Woa®(x1))°-
As the covariance matrix of the GTM is isotropic, £ = 7', and the covariance of missing and ob-

served values £ is equal to 0. So we have:
k {
tyy = (.YT)OZ{”'- (3.31)

In the A —step, the weights are updated to W e, as described in equation (2.59) for complete training

data, which has the form as follows:
W, @G®T = TRT 37 (3.32)
where the missing values are filled in with the posterior means,

(6162, 8, Z Ryt (3.33)

k=1

The inverse variance is updated using the following formula:

N K
5 = o S0 ST R (I8 = 21 + el = y21)) (3.34)
n=1 k=1
where
(anHtm y377.“2> — 7.)/7“([))—-])01{] (L;‘t,)’ (t;:jl) _ 2(1';””), yl‘:l
+yi) i (3.35)

and 7, is the number of missing values in data point t,; y% and y}* are computed using (W e, P (x1))°

and (W, ®(x;))™ . A more detailed derivation can be found in Appendix A.

3.3.4 Learning with class-conditional information

When visualising a set of data points T = {t|,...,t,} from a set of class-labelled points T, =
{(t1, 1), (ta,¢2), .y (Env,en) ), with class labels ¢, from a set C = {Cy,...,Cs}, one can use the class
information as a clue for reasoning about missing values in the corrupted data points t,,. Given
a corrupted point t,, instead of computing the responsibilities Ry, = P(x[ty), we determine the
class-conditionael responsibilities

Ripne = X;.]t ~n)

. Pbwclty) (3.36)

S P, ealt?)
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By the (standard) assumption of conditional independence of observed variables; given the hidden

ones, we have

p(ty, cnlxi) = p(t3Ixu) Plenlxk). (3.37)
Using a flat prior on the latent space centres P(xz) = 1/K, k=1,2,.., K,

p(t), cnlxs) P(xp)
ZA’:l 2ocee Pty Cilxp ) P(xy)
ptg [xi) Penlxp) P(x)
b 2ociec PUER X ) P(Cilxpr ) P (%)
= Rip Plenlxy). (3.38)

P(xp,cplty) =

The distribution of class labels, conditioned on the latent space centres xj, is computed by de-
termining the “mass” of uncorrupted training points “explained” by x; and belonging to a class
C;ecC,

Ztug’j’cmnp;cnzci I)(tnlxk)

Zt" ETeomp ])(t,,,lxl.:)

where Toomp 15 a collection of uncorrupted training points. This means we are assuming that the

P(Cilxy) = , (3.39)

mechanism for missing data does not depend on the class.

Using equations (3.37) and (3.38), (3.36) can be rewritten as

p(ty %) Plen|xy)

Rknc
ZA’“} p 7,|xk') r (C'nlxk’)
| Pxilen

= pltapa) Plxen) (3.40)

S P00 ) Plxir]en)”

where for C; € C,
C;

P(x;|Ci) = il lxk) (3.41)

Z} 1= P(Ci|xp) .
It follows from (3.40), that unlike the original latent centres’ responsibilities Ry,,, where a flat prior
P(xy) = 1/I is imposed, the class-conditional responsibilities, Ry, are calculated using a class-
conditional prior on latent space, P(x,|C;), C; € C. When faced with corrupted data points, such
class-conditional priors help us to eliminate (at least to some degree) multi-modalities in the posterior
over the latent space centres. This may be no longer a true EM algorithm. However, in our experiments
there was no occasion on which the likelihood decreased during training, even with large numbers of

missing values.

3.3.5 Summary of the algorithm

Briefly, our algorithm can be described as follows: a density model (GTM) of the data is learned
in an unsupervised way from the incomplete training data using an EM algorithm where sufficient
statistics for the missing data are estimated from equations (3.29) and (3.35) in the EF—step. Note
that the responsibility Ry, in equation (3.29) is measured only on the observed dimensions of t,,. For
visualisation purposes, the missing values are filled in by computing the means of their conditional

distributions given by equation (3.33). In the A —step, the weights are updated using equation
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missing values and original values for each data point are shown in plots and they are joined by a
red line. If an algorithm works well, the estimated missing values and their corresponding original
values will be close together and the red lines between them will be very short. It suggests that
the EM algorithm combining the class-conditional information is highly successful, while the missing
values estimated using class-conditional mean imputation lie on straight lines. Note how the greater
uncertainty in estimating missing data for Algorithm II leads to much larger variance in the trained
GTM. Plot (c) displays the test set likelihood. It shows that the network can perform better using
Algorithm I than using Algorithm IT and still performs well with even up to 60% missing values in

the training dataset.

0Oil Flow Data

In this experiment, we randomly chose 200 data points from each class in the oil pipeline flow dataset
for training, while the remainder constitutes the test set. A GTM with a two-dimensional latent
space was used to model and visualise the data. In each set, 50% of the data points in each class are
incomplete, with between 6 and 9 of the 12 values removed.

Figure 3.15 displays the results on the training set. It suggests that Algorithm I can be an
improvement over the two other algorithms for missing data. Plot (b) shows better separation of
classes and matches better to the result obtained from the complete dataset (plot (a)). After using
class-conditional mean imputation, some strongly overlapped clusters appear in plot (¢) since the same
means are substituted for missing values of the same class. As for plot (d), which was obtained just
by the generic algorithm, the homogeneous and annular classes are not separated well as we did not
use the class-conditional prior knowledge in the training process.

Figure 3.16 presents projections of test data points with trained GTM models. Looking at this
figure, the model trained by Algorithm I (plot (b)) has a good generalization performance. Again,
rather than having significant overlaps (see plot (¢)), plot (b) presents better separation of classes and
matches better to the result obtained from the complete dataset (plot (a)). As for the result with the
generic algorithm (see plot (d)), it is similar to plot (b), however, the points from class homogeneous
and ennular at the bottom-left corner were not separated.

We see from Figures 3.15 and 3.16 that Algorithm 1 has better training results than the others,
however, its average negative log-likelihood on test dataset is a bit greater than Algorithm II (see Table
3.2). Because this result was unexpected given the training set visualisation, we looked in more detail

at two models trained with Algorithms I and II. We plotted each test data point probability density

Complete dataset | Algorithm I | Algorithm II | Algorithm III

NLL -4.2334 -1.4422 -1.5908 -0.5066

Table 3.2: Average negative log-likelihood on oil test dataset with different algorithm.
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Figure 3.15: Oil flow training set: (a) training on the complete dataset. The remaining plots show
results for models trained on incomplete data. (b) EM algorithm combining the class-conditional
information (Algorithm I); (¢) standard EM using conditional mean imputation (Algorithm II); (d)
generic EM without class information (Algorithm III). The classes homogeneous, annular and laminar
are represented by square, star and circle signs respectively.
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Figure 3.16: Oil flow test dataset: (a) training on the complete dataset. The remaining plots show
results for models trained on incomplete data. (b) EM algorithm combining the class-conditional
information (Algorithm I); (¢) standard EM using conditional mean imputation (Algorithm II); (d)
EM without class information (Algorithm III). The classes homogeneous, annular and laminar are
represented by square, star and circle signs respectively.
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Figure 3.19: Image training dataset: (a) training on the complete dataset. The remaining plots show
results for models trained on incomplete data. (b) EM algorithm combining the class-conditional
information (Algorithm 1); (c) standard EM using conditional mean imputation (Algorithm II); (d)
generic EM without class information (Algorithm III). The classes Cement+Path, Brickface+Window,
Grass+Foliage and Sky are represented by cross, circle, diamond and plus signs respectively.
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Figure 3.20: Image test set: (a) training on the complete dataset. The remaining plots show results for
models trained on incomplete data. (b) EM algorithm combining the class-conditional information (Al-
gorithm 1); (c) standard EM using conditional mean imputation (Algorithm II); (d) generic EM with-
out class information (Algorithm IIT). The classes Cement+Path, Brickface+Window, Grass+Foliage
and Sky are represented by cross, circle, diamond and plus signs respectively.
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Figure 3.21: Probability density against each data point
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regions of interest when constructing detailed low-level visualisation plots, which we will introduce in
chapter 4.

In section 3.3, we have shown how incomplete data and class information can both be included
in the GTM training process. Consider a special case, where each class is a simple (Gaussian-like)
cluster in the data space. In this case, we believe that filling in the missing values by using the simple
class-conditional mean imputation can obtain a good visualisation result. However, if there exist many
incomplete data in each class, the plot will have significant overlaps. On the other hand, if there are
several clusters, for example, 2 well-separated dense clusters in each class in the data space, then the
class mean of this multimodal distribution can be a low probability point, in which case using the
simple class-conditional mean imputation is inappropriate. The new algorithm is preferable to the
simple strategy of just filling in the missing values with conditional means. The problem of multiple
modes in the GTM responsibilities for missing data can be overcome (at least to some degree) by
means of the class-conditional prior and this significantly improves both the visualisation plot and the

fit of the model.

80




Chapter 4

Hierarchical Latent Trait Models

This chapter describes the hierarchical latent trait model (HLTM) with noise models from the expo-
nential family of distributions. The basic building block is the latent trait model (LTM). We have
developed an interactive visualisation software system based on this visualisation algorithm, which is
useful for data analysis and data mining in high dimensional data space. We have applied the HLTM
to three datasets and compared it with a hierarchical (linear) latent variable model. Employing

hierarchical latent trait models in HTS dataset is a new application.

4.1 Introduction

It is known that a single two-dimensional visualisation plot is not sufficient, to capture all of the inter-
esting information when datasets are complex. For example, the 18 dimensional image dataset fitted
by a simple two-dimension projection manifold shown in section 3.3.6. In that case, the projection
manifold was far away from the data points. This has motivated researchers to develop hierarchical
visualisation systems, which allow the complete dataset to be visualised at the top level, with sub-
clusters of data points visualised at deeper levels. In Bishop and Tipping (1998), authors proposed
a locally linear hierarchical visualisation system, while in Titio and Nabney (2002), the model was
extended to non-linear projection manifolds, but with a Gaussian noise model (i.e. with the GTM as
the basic component).

Since the latent trait model has a probabilistic formulation, it is straightforward to provide an
extended EM algorithm to build the hierarchical tree. Kaban et al. (2002) briefly gave a general
formulation of hierarchical latent trait mixture models. In this chapter we review their work and
give more details. Furthermore, this chapter is devoted to actual applications including text mining
and HTS data analysis. From the hierarchical visualisation approach, we can learn more internal
structures of a dataset with refined and detailed representations at the deeper levels. Readers will see
how this visualisation system helps us to learn useful knowledge from data.

In the next section, we will briefly introduce a mixture of LTMs. The generalised formulation for
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hierarchical LTMs is provided in section 4.3. Section 4.4 describes the hierarchical LTM visualisation
implementation. We will present some experimental results on “real-world” datasets in section 4.5,
where the application of this sort of visualisation in HTS is new. This chapter will be ended in section

4.6 by summarising some key issues.

4.2 Mixtures of latent trait models

Before we set up the hierarchical model, let us consider a mizture of A latent trait models. The

corresponding density function p(t) is

A
t) =Y Pla)p(tla), (4.1)

a=1]
where P(a) are the non-negative mixture coefficients (prior probabilities), corresponding to the mix-

ture components p(t|a) and satisfying Z (a) = 1, and p(t|a) is a distribution on a data space D,

a-—J
t € R¥, defined by each model a,
K,
p(tla) = p(tlx{,0.)p(x}), (4.2)
k=1

where the conditional distribution p(t|x%,8,) is a member of the exponential family given by equation
(2.67) and p(x}) is a uniform prior over the latent space given by equation (2.54).
The mixture can be trained by an EM algorithm. Given the training data points ¢={t1,...,tn}

of Li.d. in the data space, the log-likelihood function (log £) of the mixture of LTMs is

N N A
log £ = Z logp(t,) = Z I()gz P(a)p(t,|a)
n=1] n=1 a=1
Ka
= Z ng P(a) Zp(f,,[x,, )p(x). (4.3)
n=1 a=}

Now the missing data include binary assignment variables Vn,a, indicating which model is responsible
for generating which data point t,,, and z{ indicating which latent space centre X} in model a
generated t,,. Thus the corresponding complete data log-likelihood is

A K,

Ecomp = 10{3 Lcomp = Z Z Vn,a Z an lofg (P((L)])(t“, Xy )) (44)

n=1 a=} k=1
We do not know the values of Zin and vy, o, but use their conditional expectations, which are given
by posterior probabilities B, and P(alt,), respectively. Rf  can be computed from equation (2.72),
corresponding to the competition among the latent space centres within each LTM a. P(alt, ) measures
the probability that the observed value t,, was generated by the ath component of the mixture, and

by using Bayes’ theorem it is given by

P(a)p(t,]a)
Plalt,) = .
(eltn) S0 Pla)p(ta)a’)

(4.5)
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Considering the corresponding expected complete data log-likelihood, we have

N A Ka
Lomp Z Z P altn) Z Pi\n O)P(ﬁmXA )) (46)
n=1 a=1 k=1

Maximisation of (4.6) with respect to P(a), using a Lagrange multiplier, gives the estimation equation
of mixture coefficients in the M ~step:

N

53 Plalt.). (4.7)

n=1

Similarly, maximisation of (4.6) with respect to parameters ,, gives:

TxT T
TRG (I)n = g(g(l(:t)a)Ga(I)a 3 (48)
where @, is a M x K matrix with elements (®,)r; = ¢;(xx), T is a data matrix, R, is a K x
N matrix containing scaled responsibilities (Rg)pn = P(alt,)Rf,, and G, is a K x K diagonal

elements corresponding to responsibilities of latent space centres for the whole data sample, (Gg)ix =

Zﬁ:] (Rn)kn-

4.3 General framework for hierarchical latent trait models

The hierarchical latent trait model arranges a set of LTMs and their corresponding plots in a tree

structure 7 in a top-down fashion. In this section, we describe how a hierarchical tree is built

4.3.1 Hierarchical trees

Consider a hierarchical tree 7 shown in Figure 4.1. We follow the notation (see Table 4.1) introduced
in (Tino and Nabney, 2002). The position of each model in T is given by two numbers, which specify
its level and its index in that level. The Root is at level 1 of the structure 7.

In fact, we can construct a simple two-level hierarchical tree in this way: first, a single LTM is
used to visualise the whole dataset in the top level (Root), then we consider a mixture of A LTMs
to fit the density of the data by applying the method described in section 4.2. The user decides an
appropriate number of models to fit at the second level and their initial positions on the basis of the
top plot. The user selects points ¢; (e.g., the centre of each cluster). These points are transformed
into the data space and then used to initialise parameters of each sub-model. We will describe in more
detail how this is done in section 4.3.5. This is an interactive way with a practical applicability.

Note that since this is a visualisation method, the quality of which is not particularly “quantifiable”
but rather is assessed subjectively by the user, it does make sense to allow the user to choose the
initial centres for the clustering procedure. Remember that the user only selects the initialisation,
and an EM optimisation of the clusters is still performed at each stage. Perhaps using K-means is
another choice, however, we still need to choose K and we need to initialise the centres reasonably

too. The user can usually make a good choice of sub-models locations when the plot shows clusters.

83




CHAPTER 4. HIERARCHICAL LATENT TRAIT MODELS

Root=[1,1}
Level 1
[N(2).2]
Level 2
O
o
O
\[N(D. 1)
Level [
A+, ]
Level &1 000
M
Figure 4.1: An example of a hierarchical tree.
Notation Explanation Examples
n . Parent(la = g
Parent(M) the first-generation ancestor Parent(la,2]) = Root,
’ of M Parent([b, £+ 1]) = [1,4].

Children(M)| the set of first-generation Children(foot) = {[1,2],(2,2], ., [N(2), 2]},
descendants of M Children([1,€]) = {[1,€+1],[2,£+1),--- ,[b, £+ 1]}.

Level(Root) = 1,

Level(M) level of M in T Level([u, 2]) = 2,

Level([b, ¢ +1]) = £+ 1.

Nodes(t) = Upsenotese—ry Children(M),

Nodes(/) the set of nodes at level £, Nodes(1) = {Root },

Nodes(€+1) = {[1,£+1],[2,0+1],..., [N(£ + 1), + 1]}

N-tuple of nodes defining the | Path(Root) = (Root),

Path(M) path from Root to M, Path([a, 2]) = (Root, |a, 2]),
where N = Level(M) Path([b, £+ 1]) = (Root, [1,2],- - ,[1,],[b, £ + 1]).
Leaves(T) E{h(-) set of nodes without chil- LB(J,'UGS(T) — {[2) 2]7 - [N(f), f}) - [N(Z + 1),5 + 1]}
ren

Note: Path(M) can be written in an element-wise formn, e.g.,
Path([b, £+ 1])1 = Root, Path([b, £ + 1]); = [1,2],- -, Path([b, £ + 1]) ¢y, = [b,£ + 1].

Table 4.1: Notation for a hierarchical tree
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data at the top level; then the user determines regions of interest on the visualisation plot. These
regions of interest are then transformed into the data space in order to build a set of child LTMs.
After seeing a set of new plots at the second level, the user can decide if it, is necessary to continue
and 1f so, they will select further regions in the lower level plots that they would like to model in a
greater detail. The training of hierarchy of LTMs proceeds in a recursive fashion.

The hierarchy of LTMs is trained using an EM algorithm to maximise its likelihood with respect
to the data sample ( = {t,,ts,--- ,tnx}. The log-likelihood function of the hierarchy 7 of LTMs is

N

log £ =" logp(ta|T), (4.9)

n=1
where the distribution p(t,|7) is a mixture of models M at leaves of the tree 7. Each model M
defines a probability distribution p(t|M) in the data space. We have rewritten equation (4.1) for a
hierarchical mixture as

pEIT) = > P(M)p(tIMm), (4.10)
Me Leaves(T)

where unconditional mixing coefficients P(M) are given by

Level(M)
PM) = ] P(Path(M)i|Path(M);_,)
= P(i/:/;|Pa,remf(/\/i))P(Pa'rent(M)), (4.11)

and P(M|Parent(M)) is called parent-conditional mixture coefficient. For Root, P(Root) = 1.

Note that models corresponding to non-leaf nodes of 7 play their role only in the process of
creating the hierarchical model. Once the hierarchy is trained and the mixture coefficients (4.11) are
established, we need these non-leaf models only if we wish to extend or retrain the hierarchical model
structure in the future (Tino and Nabney, 2002). Thus to extend the hierarchy to level £4 1, we write
p(t]T) in two parts: one is given by leaves which do not belong to level £+ 1, and the other by leaves

at level £+ 1,

p(t|T) = > PM)p(tIm)
MELeaves(T)
= S P(M)p(t|M) + > P(M)p(t|M).  (4.12)
MeLeaves(T)\Nodes(f+1) MeENodes(€+41)

Since at present, models M at level £+ 1 are new, while all the other nodes in the hierarchy are fixed,
the log-likelihood function (log £) is maximised by maximising the restricted log-likelihood function

(E) confined only to the LTMs at level £+ 1,

N
E) =% " log > P(M)p(tn|M)| . (4.13)

n=1 MeENodes(E41)

Using equation (4.11), equation (4.13) can be written as

[\f
ple+1) — Z log Z P(M|Parent(M))P(Parent(M))p(t,|M)| . (4.14)
n=1 MEeENodes(£+1)
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Determination of the parameters of the models can again be viewed as a missing data problem. Here,
i contrast with a mixture of latent trait models (see section 4.2), we have three types of hidden

variable. We denote A is a node at level ¢.

Assignment variables v, y. These indicate which LTM at level ¢ generated the nth data point.

Equation (4.14) can be rewritten as

]\7
=3 > wvwlog ST PIMIN) P )p(ta M) | - (4.15)
n=1 N Nodes(£) MEChildren(N)
We do not know the value of v, ar, but can compute its expectation, which is the posterior

probability P(A|t,) that LTM A generated t,,. We take the expectation of (4. 15) and obtain

B Z Z P(N|t,)log | P(N) Z PMIN)p(t | M)| . (4.16)

n=1 NeNodes(£) MEeChildren(N)

Assignment variables v, 1 x. These indicate that, given the parent A responsible for generating
a point t,, which of its children M generated t,,. Again, we are able to calculate the expectation

of ¥, aq)ar, Which is given by (parent-conditional) responsibilities P(M|A, t,,).

Assignment variables z;\!. These indicate which latent space center xM € #, k = 1,2,..., K of

the LTM M corresponds to the noise model that generated t,, (see equation (2.67)). As before,

we only have the responsibilities R given by equation (2.72).

Now we are ready to write the complete-data restricted likelihood function confined only to the

LTMs at level €+ 1. Irom equation (4.16), it has the form

K aq
comp Z Z ])("l\/”t“) Z I/’%MLN’ Z ZI{\: IOg [P(A/)]J(MIN)P(LIH Xi\/t)] ’
n=1 N&Nodes(l) MEeChildren(N) k=]
(4.17)
Taking the expectation, we have:
(B Z Yo PWIt) > PMINt,)
n=1 NeNodes{l) MeChildren(N)
K aq
> Ritlog [PIN)P(MIN)p(tn, x{)] - (4.18)
k=1

Since p(tn, x31) = p(ta|x2",8.44)p(xM), equation (4.18) involves four terms,

N K aq
terml = Z Z -P(«/\/‘itn) Z P(M|N> tTL) Z Rm l()gP(N)

n=1 NeNodes(t) MEChildren(N) k=1

K
term?2 = Z Z P(Nlt,) Z P(MIN t,,) Z Ry log P(MIN),
n=1 NeNodes(£) MeChildren(N) k=]
N K am
term3 =" > PNt > P(MIN t) > R log plta)xi, 0.a1),

n=1 A& Nodes(t) MeChildren(N) k=1
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N K aq

termd = Z Z P{N|t,) Z P(M|N t,,) Z R logy o(x1").

n=1 A€ Nodes(l) MeChildren(N)

With conditions

K aq

Mo v
ZPI\N_L 1;(72—0’
and

> P(MIN,t,) =1, P(MIN,t,) >0,
MEChildren(N)

these four terms can be simplified as:

_7\!
terml =" 3" P(Nt,) log P(N), (4.19)
n=1 NeNodes(f)
/\f
term2= %" > P(Nt,) > P(MIN, t,,) log P(M|N), (4.20)
n=1 ANENodes(() MEChildren(N)

N K aq
tem3 =" 3" P(N[t,) > PMIN,6,) > R og p(bax,001),  (4.21)

n=1 N€Nodes(t) MEeChildren(N) k=1

termd = logj

Z > Pt (4.22)

n=1 N'€ Nodes(¢)
Terml and termd are constant with respect to the adjustable parameters of LTMs at level £ + 1
Maximising (4.20) with respect to the parent-conditional mixture coefficients P(MIN), must take
account of the constraint

> P(M|N) = 1.

MeChildren(N)

After a straightforward calculation (see Appendix C). we obtain
8 Pl >

> opet PMt)

P(M|Parent(M)) = (4.23)
Z“ , P(Parent( M)[f”)
where
P(Mltn) = P(M|Parent(M), t,) P(Parent(M)]t,), (4.24)
(Mleent(M))p(tn:M) )
P(M|Parent(M), t,, _ 42
(MiParent(A), t,) = ZM eim) PM [Parent M)p(t, | M) (4.25)
and
[M] = Children(Parent(M)). (4.26)
Maximising (4.21) with respect to § .4, using equations (2.67) and (2.69), we obtain
TRy ® 1 = g0mPr)Ga Py, (4.27)

where Rag = (rff)i=i =1, N rit is calculated by using the equation (2.72) to calculate R
firstly, then rescaled by P(M|t,) from equation (4.24), ie. 1)t = P(Mt,)RM; Gag is a diagonal

N N
matrix with elements (G aq) s = Yoy T
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When solving (4.27), in general a non-linear optimization algorithm is required (see section 2.6.1).
But if the link function g(-) is the identity, one gets the closed form for updating W, in M —step of

HGTM, while ;3_;,1 must be calculated by using the following equation (Tino and Nabney, 2002):

L S PMIt) T2 REIIWA() — tall® (4.28)
B DY N P(Mit,)
4.3.3 Summary of the EM algorithm

The hierarchical LTM is trained using EM to maximise its likelihood with respect to the data sample
¢ = {t1,ta,...,tn}. The hierarchy is trained in a top-down fashion, starting with the Root model,
and proceeds in a recursive fashion. When child LTMs of a node are being constructed, the EM
algorithm calculates expectations of assignment variables in the E—step and updates the corresponding
parameters in the A/ —step until it converges.

E-—step

We estimate the posterior over all hidden variables, using the “old” values of LTM parameters. Given
1 ) g 1

a data point t,, € D,

e imposing P(Root|t,,) = 1, the unconditional (on parent) model responsibilities are recursivel
I 3 > I ) Yy

determined by (4.24);

e cquation (4.25) is used to compute the model responsibilities corresponding to the competition

among models belonging to the same parent;
e responsibilities of the latent space centres x7', k = 1,2, ..., K, corresponding to the competi-

tion among the latent space centres in each model M are calculated using (2.72).

M —step
The parameters are estimated using the posterior over hidden variables computed in the F—step.
e Parent-conditional mixture coefficients are determined by equation (4.23).
e Parameters 8,4 are calculated by solving equation (4.27). For HGTM, inverse variances /jx,,] is
computed using (4.28).
4.3.4 Mixed data

Since the observed variables are assumed to be independent given the latent variables, we can cope
with mixed data by simply multiplying the corresponding distribution in the EF—step. In the M —step,
the formulation for a Gaussian noise model is the same as the GTM, but for Bernoulli and multinomial

distributions, we must use those described in the LTM (see section 2.6.1).
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4.3.5 Practical Considerations
Initialisation

As shown in Figure 4.3, with an unsuccessful initialisation, the mixture will have a poor performance.
The basic idea of our initialisation procedure is illustrated in Figure 4.5. When initialising sub-models
there are two things to determine: the number of sub-models and the initial parameters of the sub-
models. We view the problem of initialising sub-model parameters primarily as one of locating which
region of data space each sub-model should be responsible for. To do this, regions of interest are defined
by the user in the latent (visualisation) space. The points c¢; selected in the latent space H correspond
to the “centres” of these regions. ¢; is mapped to Qa(c;), the image under the corresponding parent
LTM N,
Qn(ci) = gOne(cy)).
The “regions of interest” in data space are created as Voronoi compartments Vi = 1,..., A

(Aurenhammer, 1991):
Vi = {t e R7|d(t, Q2 (c;)) = min (i(t,Qj\r(cj))} , (4.29)
J

which are bounded by hyperplanes. Each compartment contains the corresponding mapped centre

Q/\K(Ci) € D.

Initialise locally by applying PCA
to cach Voronoi compartment,
then run one EM iteration

Latent space 3
The centre of in cach compartment.

—"a region of intercst

| g0ory >

x1

A Voronoi compartment

Figure 4.5: Initialisation by applying PCA locally.

In the case of a Gaussian noise model, the child LTMs are initialised by local PCA in the corre-
sponding Voronoi compartments (Tino and Nabney, 2002). When using other noise models such as
Bernoulli or multinomial distributions, the PCA-initialised LTMs are in addition individually trained
for one EM iteration only on the data in the corresponding Voronoi compartment. This is different
from fitting the mixture of child models to the whole dataset. This localised EM iteration “settles” the
component LTMs to their corresponding modelling regions. Empirically, this initialisation strategy

works very well.
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The user can visualise the points captured by a particular child LTM M, by modifying the plot
of its parent, Parent(M), so that instead of the parent responsibilities, P(Parent(M)] t,,), the
responsibilities of the model M, P(M]| t,), are used. This is done by simply clicking with a
mouse on a child LTM plot which the user is willing to observe. Alternatively, the user can
modulate with responsibilities P(Parent(M)] t,) all the ancestor plots up to Root, i.e. all plots
appearing in Path(Parent(AM)). The chosen child plot is highlighted by a bold red frame. The
ancestor plots appear in bold green frames. Such a modulation of ancestor plots is an important
tool helping the user to relate children plots to their parents. This way we can see which points
in ancestor plots are explained in the child plot. This is a useful tool especially when high
curvatures happen in the parent plot, in which case points far from a region centre ¢; may be

explained in the corresponding child plot. An example can be seen in section 4.5.3.

e a list of a group of points

The user clicks with a mouse on a point in the visualisation space to obtain more knowledge
on that data point. We list a group of points, closest to the clicked point in the latent space,
with their indices in the dataset, or ID number (e.g. compounds may be identified by labels)
directly if available. According to these indices (IDs), one can find out property values of those
points in the data space. This can be of help to further research why projections of these points
are so close and enable the user to identify those properties in common among points in a given
cluster.
e corresponding hierarchical visualisation of magnification factors

The hierarchical structure of plots used for plotting the LTMSs’ projections is also used to show
the magnification factors of LTMs in the hierarchy. For every LTM, the method for evaluating
magnification factors is the same as described in section 2.6.2. The intensities of the magnifi-
cation factors are scaled with respect to the minimal and maximal magnification factors in the
whole hierarchy. The scale is shown as a color bar near the top visualisation plot corresponding
to the root LTM. The user can get a locally scaled plot of magnification factors by clicking on
a chosen plot corresponding to a local LTM M. Magnification factors of the LTM M are then
shown scaled with respect to the minimal and maximal magnification factors of M. A log, scale
is used for viewing, where values more than 0 indicate the manifold is stretched in data space,

and the reverse for compression.

e corresponding local curvatures in the hierarchy for the Gaussian noise model

For each GTM in the hierarchy tree, the approach for calculating the local curvature is described
in section 3.2.1. The basic method for displaying the local directional curvatures of each GTM
is the same as described in section 3.2.2. As in the case of magnification factors, the intensity of
curvatures in the hierarchy of GTMs is scaled by the minimal and maximal curvatures found in

the whole hierarchy. A locally scaled plot of curvatures can be obtained by clicking on a chosen
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plot corresponding to a local GTM.

4.5 Experimental results

In this section, we evaluate the hierarchical LTM visualisation algorithm on 3 real-world datasets. We
used a common configuration for all models in the hierarchy reported here, though the algorithm is
derived in a general setting in which individual LTMs M in the hierarchy can have different sets of
latent space centres X']:,M, k=1,2,..., K, and basis functions qb]-, 7=1,2,..., Maq. In particular, the
latent space H was taken to be the two-dimensional interval H = [~1,1] x [~1,1], the latent space
centres x;' € H were positioned on a regular 15 x 15 square grid and there were 16 radial basis
functions ¢; centered on a regular 4 x 4 square grid. The basis functions were spherical Gaussians
with a common width o chosen equal to the distance from each centre to its neighbour. We account
for a bias term by using an additional constant basis function ¢y7(x) = 1, for all x € H. In all
our experiments, we imposed (as usual in LTM) a uniform prior P(x;) over the latent space grid.
This ensures that all regions of the latent space can be used for visualisation purposes with “equal
importance”.

Note that, as mentioned in section 4.4, in the interactive mode, the “centres” of the regions
of interest are shown as circles labeled by numbers. These numbers determine the order of the
corresponding child LTM subplots from left to right. In this case, those plots without labeled numbers

are leaves in a hierarchy tree.

4.5.1 Document dataset

As the first example, we tested our algorithm on a binary dataset, which is a subset of the document
dataset (sce section 1.5.4). 100 data points were randomly selected from each class.

A hierarchy of LTMs down to level four was trained on this data collection and a final hierarchical
projection plot is shown in Figure 4.8. The corresponding magnification factor plot is presented in Fig-
ure 4.9. By clicking on the last level-three LTM M modeling points from topic “talk.politics.mideast”,
we can trace the position of points locally captured by M in the visualisation plots of all its ances-
tors. The corresponding plot, Figure 4.10, is a child-modulated ancestor plot (see section 4.4). With
reference to Figure 4.8, we see that the position of these points are reasonable.

Interestingly, looking at the fourth level-two LTM M in Figures 4.8 and 4.9, we found that the
points were grouped into two clusters, even though they were from the same topic “talk.politics.mideast”.
To investigate further, we focused on the corresponding LTM M model. An enlarged view of the mag-
nification factor plot is presented in Figure 4.11. 1t indicates that there are two sub-classes separated
along the dark boundary appearing in Figure 4.11. The lists of five most probable dictionary words,
the top of the reference vector g(6®(xy), for each latent space centre is displayed in Figure 4.12. In
this plot, each cell of the 15 by 15 table corresponds to one grid point. For the ease of the reader,

we have plotted two smaller shaded areas surrounded by dotted-lines. The left one seems likely to be
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Figure 4.12: The most probable words formed in each of the 15 by 15 latent grid points by the binomial
latent trait model.
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Figure 4.15: A magnification factor plot of a hierarchy of GTMs fitted to the training set of the image
data.

Figure 4.16: A curvature plot of a hierarchy of GTMs fitted to the training set of the image data.
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4.5.3 HTS data

In the last experiment we visualised the HTS data (see section 1.5.1). Again, we applied LTMs
with Gaussian distributions. We trained a three-level hierarchy of GTMs on this data collection.
The resulting projection, magnification factor and curvature plots are presented in Figures 4.19, 4.20
and 4.21, respectively. The models constructed by the GTM technique did not use any structural
descriptors.

Researchers from Pfizer Central Research are interested in those data points which are close to each
other but belonging to different classes. For example, in the first level-two plot in Figure 4.19, most of
the points from the 0-active class surround the 7-active class, while the points from the 2-active class
are mostly grouped with those from the I-active class. Researchers further investigated these groups
of compounds. The full chemical descriptors for the structure were obtained and a structure-based
clustering tool was applied to determine the homology of compounds based on the most prominent ring
system. The compounds were partitioned into groups that had significant overlap with the clustering
observed in the GTM visualisations. The key distinction between the two techniques is that GTM
utilizes mainly biological data and no structure information and the proprietary clustering tool uses
only structural descriptors and no biological information.

Preliminary conclusions suggest that hierarchical visualisation using the GTM provides meaningful
clustering of compound-related data based on biological information and a limited number of physio-
chemical parameters. But more importantly the analysis suggests that there is potential for clustering
compounds based on biological data which is meaningful in the light of grouping by purely structural
parameters. This implies some similarity between how a Medical Chemist would view the compounds
and the GTM visualisation.

One more interesting phenomenon arises from looking at Figure 4.22, given by the child-modulated
ancestor plot technique. The points appearing at the top of the root plot, mainly from class 2-active
seem to belong to cluster 1 (i.e. the first level-two plot) with reference to Figure 4.19. In fact, however,
they were captured by the second model (i.e. the second level-two models) and represented at the fifth
level-three. This can be explained by Figure 4.21, the curvature plot. There exist high curvatures in
the corresponding two areas. It indicates that the projection manifold was highly curved to fit those
points belonging to cluster 2 in the data space.

Figure 4.23 shows the hierarchical visualisation down to level five of the HTS data obtained by
PhiVis. Looking at the plot, we see that most of the active compounds were only separated at the
third level (see the third and fourth sub-plots at this level and their parent at the second level), while
this was achieved at the top level with HLTM (see Figure 4.19). In addition, we noticed that with a

simple linear transformation, there were significant. overlaps even at the fifth level.
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The number of components is then chosen according to

a=argmin{E(,a),a = Gmin,- -, Gmaz } (5.1)

Q

where E is some model selection criterion.

5.2.1 Selection criteria

Past work has used a wide range of solution criteria: Akaike’s information criterion (AIC), infor-
mational complexity criterion (ICOMP), minimum description length (MDL), Schwarz’s Bayesian
information criterion (BIC) and minimum message length (MML).

We assume we have a dataset ¢ including N independent observations of a random variable with

probability density function p(t).

e Akaike’s Information Criterion (AIC)

Akaike (1973 and 1974) developed a decision-making strategy based on the Kullback-Leibler

information measure Dy, given by

Dicr = [ p(®)10gp(t) dt - [ pe)t0gp(l0) at, (5.2)

where p(t|6) is our model of the density function, and p(t) the (unknown) true density. Akaike
suggested that the model be adopted giving the minimum of the expected Dy from the true
model. Note that the first term of the right hand side in equation (5.2) does not depend on the

model. So we are interested in the expectation of the second term, which can be expressed as

E= (/\p(t) log p(t]9) dt). (5.3)

In a model selection problem, Akaike framework proceeds by selecting a model having largest E.
The problem is to find a consistent estimator of £. One of the most important characteristics
of term [ p(t)logp(t|f) dt is that its natural estimate, the average log-likelihood given by
/\L 0g p((@), can be obtained without the knowledge of p(t) (Akaike, 1974). However, it can be
shown that this estimator is biased. An information criterion for model selection can be based

on the bias-connected log-likelihood given by
log p(¢18) — b, (5.4)

where b is a biased term.

Akaike showed that term b is asymptotically equal to ¢, which is equal to the total number of
parameters in the model. The information criteria are usually expressed in terms of twice of
negative of equation (5.4). Thus Akaike information criterion, estimator of Kullback-Leibler

information, can he written as

AIC(V,) = —2logp(¢|8) + 2c¢. (5.

(&2}
wt
-
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The V, having a componments is selected with the minimum value of AIC(V,). There are a
number of extensions of the AIC. One of them is proposed by Bozdogan (1983):

~2(N =1 —q - %)logp(¢l6)

AIC(V,) = =

+ 3¢, (5.6)
where 4 is the largest number of components considered, ¢ is the number of estimated parame-
ters, and ¢ is the number of parameters specifying each component of the mixture.

It has been observed that in the mixture context, AIC tends to overestimate the correct number
of components (Celeux and Soromenho, 1996).
e Informational Complexity Criterion (ICOMP)

ICOMP criterion is described in (Bozdogan, 1990; Bozdogan, 1993), which is aimed at improving

on the performance of AIC. It has the form

ICOMP(V,) = —2logp(¢|8) + C(1(8)~"), (5.7)
where
_ trace(1(8)~! _

CX(6)™") =clog <—#-—)> —log (|1(8)7"]) , (5.8)

and I(8) is the expected Fisher Information matrix given by

0 log p(¢|6)

1(0) = (———=—>-2%), 5.9
6) = 5058" ) (5.9)

and ¢ is the number of estimated parameters. We select the V, with the minimum value of
[COMP(V,). Celeux and Soromenho (1996) found that when the component covariance matrices
were very different, ICOMP tends to overestimate the number of components in a mixture model.
e Schwarz’s Bayesian Information Criterion (BIC)

Rissanen (1986) derived his minimum description length (MDL) criterion based on coding theory
(Cover and Thomas, 1991) for model selection. Schwarz (1978) independently developed the
same criterion called Bayesian information criterion (BIC). The goal of the Bayesian analysis is
to observe the data, compute the posterior probability of each model, and choose one having
the highest posterior probability.

For each mixture model with parameters 8, there is a prior density denoted by p(8). The

integrated likelihood p(¢) is given by
e = [pl6.0)ds
= [ expliogpl6.0} @, (5.10)
where p(6.C) = p(@)p(([6).

To approximate the integral (5.10), Laplace’s approach is used. First we let 8 to denote the

posterior mode, satisfying )
9logp(6,¢)

=0 (5.11)
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Employing a second order Taylor series expansion of log p(8, ¢) around the maximum a posterior
(MAP) estimate 8, we obtain

log p(6,¢) ~ logp(8,¢) — =(6 —8)TH(B)(9 - 6), (5.12)

I\)I)—'

where H(H) denotes the negative Hessian matrix of log p(8, ¢) evaluated at § = 6,

HO) = | 5 10e 6.0 y (5.13)
Substituting this approximation for log p(6, ¢) into equation (5.10), yields
WO = expllogs,0) [ 1{ ©—-0)"H )6 - )} 0
= p(é,om) O (5.14)
In terms of logarithms, the integrated log-likelihood is approximated as
logp(¢) = logp(B) +logp(¢|B) - ~101;|H( )+ 2 101;(27f) (5.15)

An important variant on equation (5.15) can be obtained by assuming that the prior is sufficiently

flat. In this case, by using Laplace’s approach, we have
- ~ 1, = c =
logp(¢) = log p(6) +1ogp(CIB) ~ 51T, O] + £ log(2n), (5.16)
where 8 is a maximum likelihood estimate and T (()) is the observed information matrix, given
Oi%vgﬂ; In equation (5.16), when N — oo, the terms which are a function of N begin
to dominate the others, and we obtain the BIC formula, given by
BIC(V,) = —2logp(¢|8) + clog N. (5.17)
We select the model V, with the minimum value of BIC(V,).

o The Wallace-Freeman minimum message length (MML)

Minimum message length (MML) (Wallace and Dowe, 1999) strategies select, among the models
inferred from ¢, the one which minimises length of the message transmitting (. The message
consists of two parts - one specifying the model parameters, the other specifying the data given
the model:

Length(8, () = Length(8) + Length(¢|). (5.18)
By Shannon theory (Cover and Thomas, 1991), Length(8) is no less than [—log P(8)] (based
on a prior over the model space), and Length(([#) no less than [—log(p(¢]#))]. [!] denotes the
smallest integer no less than [. We will neglect rounding to integer values.

Here we introduce a particular form of the MML approach, offered by Wallace and Freeman

(1987), which is given by

7(6,¢) = —logp(8) — log p(¢16) + - log [L(8)] + (1 +logke), (5.19)

I\DI)—-
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vhere 1(@) is the expected Fisher information matrix, having the form
0% log p(¢|6) )
0008"

1% log () -
- [0 ™—EE2 R ac, (5.20)

16) =

I

and Kk is a c-dimensional optimal quantizing lattice constant. We select the model with the
minimum values of 7(0,¢). A detailed review of the Wallace-Freeman MML can be found in

Appendix D.

A more detailed review can be found in (McLachlan and Peel, 2000, Chapter 6), where other
approaches, such as nonparametric methods including a number of graphical tools like histograms
and normal scores plots (Cassie, 1954; Harding, 1948), and methods of moments used to test for the
number of components in cluster analysis (Dacunha-Castelle and Gassiat, 1997; Vlassis and Likas,

1999}, are described.

5.2.2 Penalized log-likelihood interpretation

The model selection procedures described above can be expressed as penalized log-likelihoods (Green,
1998):
Epen = logp(€16) — (8, C). (5.21)

The penalties associated with Schwarz’s approach (5.16) and the MML (5.19) are given respectively
by

m:—bw@ﬂwﬁgm n_q%@m (5.22)

pw:—kgmw+§thWD+gU+kgm) (5.23)

For p,, 8 is the MAP estimate in order to make the Laplace approximation, whereas for ., 8 is the

one which minimises ,,.

5.2.3 Summary of previous work

In (Oliver et al., 1996), authors gave an empirical comparison of criteria. They concluded that the
MML criterion performs better than some other criteria, such as A1C, BIC and ICOMP. Particularly,
they found that the MML criterion is more conservative than AIC, BIC and ICOMP criteria. That
means, when the criteria cannot test the correct number (the actual number is known as they generated
the data from some predefined distributions) of components, the MML criterion is more likely to
predict the number of components less than the true values, while AIC, BIC and ICOMP criteria
often gave more components than the real values. In fact, this is a drawback of these methods since
the assessed mixture may include some models having zero mixture probabilities. For example, a 3-
component mixture including one whose mixing coefficients approaches zero may not be distinguished

from a 2-component mixture without that “dying” model.
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A direct approach is to find the “best” overall model in the whole set of available models {V,}a,..0,. 00
directly, rather than selecting one among a set of candidate models. This, in fact, is the principle
of the MML principle (Wallace and Dowe, 1999). Previous uses of the MML as a model selection

criterion for mixtures do not strictly adhere to this perspective.

5.3 MML formulation for unsupervised learning of mixture

models

5.3.1 MML formulation for unsupervised learning of mixture models

Recently, Figueiredo and Jain (2002) extended the MML framework to unsupervised learning of mix-
ture models; the algorithm is able to select the “appropriate” number of components while the pa-
rameters of each model are estimated in the usual way. The novelty of their proposed approach is
that parameter estimation and model selection are integrated in a single algorithm, rather than using
a model selection criterion on a set of pre-estimated candidate models. Their approach can be applied
to any type of parametric mixture model for which it is possible to write an EM algorithm. In this
section, we briefly reformulate in our notation their key results.

The particular form of the MML criterion adopted in (Figueiredo and Jain, 2002) is of the form

# = argmin (0, (), where
0

1 g 1
20,0) = ~logp(8) — log p(Cl6) + 5 log |1(8)| + % <1 + log E)

where I(8) is the expected Fisher information matrix, [I(9)] is the determinant of I(#), and c is the
dimension of 8. Comparing with equation (5.19), they approximated x. by 1]z’ which arises from
hyper-cubic quantization regions when ¢ = 1. Actually, x. does not vary much and approaches an
asymptotic value, (2me) ™! & 0.05855 (Conway and Sloane, 1993).

In (Figueiredo and Jain, 2002), I(8) was replaced by the complete-data’ Fisher information matrix
I.(6) since, in general, 1(8) cannot be obtained analytically. I.(8) upper-bounds I(8) (Titterington et

al., 1985) and has a block-diagonal structure
I.(8) = N block-diag{ P(1)I"V(8,), ..., P(A)11)(8,4),F},

where P(a),a = 1,..., A are the mixing coefficients; Im(ﬂu), is the Fisher information matrix for a sin-
gle observation produced by the a-th mixture component, and F is the Fisher matrix of a multinomial
distribution over mixing coefficients, whose determinant is |F| = (P(1)P(2)--- P(A))™" (Titterington

et al., 1985). Then we have

A A
log|1.(0)] = log|NIy|+ Z log | P{a)Lyg] + Z log [IVV(0,)| - Z log P(a)
a=1 a=1]
A A
= clogN + Z log I (0,)] + (Q = 1) Z log P(a), (5.25)
a=1 a=1

'Training set ( extended with the set of assignment variables for mixture components.
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where Iy, and Iy are the ¢ x ¢ and @ x @ identity matrices respectively, and @ is the number of free
parameters in each individual mixture component. We assume that the priors are independent, which

means

p(8) = p(P(1), .., P(4)) [] p(60)- (5.26)

A non-informative Jeffreys’ prior (Bernardo and Smith, 1994) is imposed on both the vector of

mixing coefficients {P(a)} and the parameters 8, of individual mixture components:

p(8.) oc\/ 1V (6,)] (5.27)
p(P(1),..., P(A)) & \/|F| = (P(1)P(2) - P(4))7'/?, (5.28)

for \
0<P(1),...,P(A) <1 and Y P(A)=1. (5.29)

For an A-component mixture, ¢ = @A + A. Now the equation (5.24) becomes
, 1

Q< (NP A, N AQ+1)
2068,0) = o a;log ( B > + 5105-1—2 t = — log p(C16). (5.30)

The objective function in equation (5.30) does not make sense if we allow any of the P(a)’s to be zero
(Figueiredo and Jain, 2002). Since we want a short code for the data, to specify the mixture model,
we only code the parameters of mixture components a with positive prior P(a). The number of such

components is denoted by A;. We obtain:

16,¢) = % > log <N§;(”‘)> + % log % + f‘ﬂ#}l — log p(c16). (5.31)
a:P(a)>0
Details concerning the derivation of (5.31) are given in Appendix E.1.
Minimisation of (5.31) with respect to P(a) must consider the constraints (5.29). This can be
achieved by introducing a Lagrange multiplier \. With A fixed, we obtain the following re-estimation
formulas for the mixture coefficients in the M —step (Figueiredo and Jain, 2002) (the derivation is

presented in Appendix E.2)

max {0, ——g')— + Z:‘]:] P(ultn)}
P(a) = a=1,2,..., A4, (5.32)

AT max {O, -2+ s P(a’|tn)}

where component responsibilities P(a|t,,) are determined by the Z—step

Pla)p(t,la)

P(alt,) = 7 . , (5.33)
Y= Pla)p(tsla’)
in which case, the mixing coefficients are given by
N
. P(alt,
]')(CI,) Zn—] ( | ’1) (534)

- Z:’:l Zgl-:l P(a,ltn))
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and other parameters in the M-step:

8, = argming(8, ¢). (5.35)

Free parameters of the individual LTMs are fitted to the data ¢ using the EM algorithm outlined
i section 4.3 applied to mixtures of LTMs?. Note that LTMs corresponding to zero ]3((1) become
irrelevant and so equation (5.32) effectively performs component annihilation (Figueiredo and Jain,

2002).

5.3.2 The algorithm for mixture latent trait models

Note that in this section we will just focus on the algorithm for mixture latent trait models.

Given the training data ¢, we use the MML approach to find the “appropriate” number of mixture
component LTMs that “explain” ¢ in a probabilistic manner. LTMs that are good probabilistic
generating models of the data capture the data distribution well and hence yield “good” visualisation
plots, which means the projection manifold follows closely the data distribution and so the visualisation
plot is a “good” representation of the data distribution. To start the training process, we choose the
maximum number of components A,,,, we are willing to consider. The A4, points are selected
randomly from the training dataset in the data space, and correspond to those points Q(c) discussed
in section 4.3.5. Then, we initialise the component LTMs using the method described in section 4.3.5.

However, if we directly use EM with the M-step in equations (5.32) and (5.35), it may happen
that Z ey Plalty,) < %z(a =1, , Apae), where A4, is too large. That leads priors to be zero
and components without enough initial support. As in (Figueiredo and Jain, 2002), we adopt the
component-wise EM (CEM) algorithm (see Section 2.2.2), i.e. rather than simultaneously updating all
the LTMs, we first update the parameters 8 of the first LTM by equation (4.27), while the parameters
of the remaining LTMs are fixed, then we recompute the model responsibilities {P(alt,)}A, by
equation (5.33) and mixture coefficients P(a) for all components in the mixture. After this, we move
to the second component, update 8, in the same way, and recompute {P(alt,)}2_,, etc., looping
through all mixture components. If one of the component LTMs dies (P(a.) = 0), redistribution of its
probability mass to the remaining components increases their chance of survival.

After convergence of CEM, we still have to check whether a shorter message length can be achieved
by having a smaller number of mixture LTMs (down to Ay = 1).* This is because equation (5.3 )
obtained with fixed A4 does not consider the additional decrease in (6, ) caused by the decrease in
A4. So we simply iteratively kill off the weakest LTM (with the smallest P(a)) and re-run CEM until
convergence. Finally, the winning mixture of LTMs is the one that leads to the shortest message length
7(0.¢) (see equation (5.31)). Since the LTM itself is a mixture model, it involves an EM algorithm (see
section 2.6.1) in updating the parameters 8, of the ath LTM when going through each LTM within

the CEM procedure for a mixture of LTMs. This case is different from the simple Gaussian mixture

2A mixture of LTMs can be considered as a two-level hierarchical LTM. Mixture components are children of the rool.
31f we knew that the number of mixture components was no less than some number A, we would stop at
At = Anin (Figueiredo and Jain, 2002).
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model.  When using CEM for Gaussian mixture models, the parameters of each Gaussian model
are estimated by those one-step equations, which are equation (2.19) for updating the corresponding
mixture coefficient, equation (2.20) for the mean and equation (2.21), (2.22) or (2.23) for covariance
matrix.

Empirically, we observed that “strong” LTMs which survived for longer time periods tended to be
over-trained. One does not encounter such problems when dealing with simple mixtures of Gaussians.
However, the LTM is a constrained mixture in that the “centres”, €(x;) (equation (2.76)), cannot
move separately. Therefore, we adopted the following technique: after a component LTM has been
eliminated and before starting a new competition of the remaining LTMs for the data explained by it,
we re-initialise the remaining LTMs so that they remain in their respective positions determined by
the MML-based technique, but have a “fresh start” with less complicated projection manifolds. For
each LTM we collect the data points for which that LTM has responsibility (equation (5.33)) higher
than a threshold A = 0.80 ~ 0.85. We then initialise and train individual LTMs for 1 epoch in the
traditional way (Bishop et al., 1998; Kaban and Girolami, 2001), each on the corresponding model-
restricted set, as if they were not members of a mixture. After this re-initialisation step, the CEM
algorithm is applied to the full mixture on the whole datasct. A detailed pseudo-code description of
the algorithm is listed in Table 5.1.

To illustrate this algorithm, we did an experiment on a toy dataset of 800 points t = (ty,t,t3)7
lying on four two-dimensional manifolds (“humps”) (see Figure 5.2 (a)). We associated the points in
the four “humps” with four different classes, C;, i = 1,2, 3, 4, having four different labels. After training
(Apaz = 10), a 6-component mixture was constructed. Projection manifolds of the 6 LTMs are shown
in Figure 5.2 (b). Note that 6 child plots provide understandable subgroups of the data; and that
the 6 projection manifolds closely approximate the four “humps” of the original generating manifold

The corresponding hierarchy of visualisation plots can be seen in Figure 5.3. Figure 5.4 reveals the

15 15%
! 1
05!
i c,s~'
0
i °
‘051\ ‘051‘
1-d
H -1 4
15 ﬂ\ -15«!
2 \:" B !
4
(a) (b)

Figure 5.2: (a) A two dimensional manifolds in data space; (b) Projection manifolds in data space of
the second-level LTMs trained on the toy data.
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Inputs: A, Apar, € niters, initial parameters 8(0) = {6y,...,84,,..,P),...

ax?

Output: Mixture model in 8,

7 — O 4 — 4,71(11:7 Jmin & +00
uﬁ,”) —p(tnlfa), for a=1,..., Apae,andn=1,... N
while A+ > -’lmin do
repeat
jeg+1

fora=1to A, do
for loops = 1 to niters do
E-step
Compute posteriori: equation (2.72); rescaled by (5.33)
M-step
update the parameters of current LTM: equation (4.27)
end for
Compute equation (5.32)
{P(1),..., P(Amaa)} < {PQ), ..., P(Amae)}( Zam = Pla))™!
if P(a) ==
_44, = .4_{‘ - 1,
initialise the remainder of components using data which has high
responsibilities, while keeping the corresponding priors’ values.
end if
end for

(_{él)"' é\”“,.u]s( ) ( lll(ll)})
( ( )’C) Ay Za P{a) >Ulofj <M) AZL IOI:) + —/‘_L(‘M Z,, 1 IOBZ

untll 160G = 1),0) = 28(),¢) < e|3(8( — 1),0)]
(1), )S Jmin then

Jmin & (0 (4),¢)

91;( st 0( )
end if
a* « argmin{P(a) > 0}, Pa*) « 0, Ay « Ay =1,
initialisg the remainder of components using data which has high
responsibilities, while keeping the corresponding priors’ values.

end while

5 P(-’il’lﬂ,(lu'll ) }

P(a)

(n)

U g3

Table 5.1: The complete algorithm
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the threshold A (in our experiments we set A = 0.9). This is a similar case mentioned in section
5.3.2, where all child models arises from the same parent model ‘Root’, whose responsibility is 1. We
then run the MML-based learning of mixtures of LTMs (section 5.3.2) on this reduced dataset. The
resulting local mixture is viewed as an initialisation for the full EM algorithm for training hierarchies
of LTMs (section 4.3.3). This way, the “appropriate” number of LTMs is determined along with their
initial locations.

When we consider the log-likelihood as a criterion in the training process of a hierarchical system,
what we obtain to update weight matrix is equation (4.27), where Raq is to simply rescale R,";’l
(equation (2.72)) with P(M|t,,) (equation (4.24)). We cannot directly apply this for mixtures at
deeper levels of the hierarchy, since the MML would mean it was no longer a quadratic problem. To
keep the principled framework for the whole hierarchical visualisation system, we apply the MML
technique just for sub-model initialisation. As for the training process, the procedure keeps the same

as the one described in 4.3.3.

5.5 Summary of the hierarchical visualisation procedure

We have developed software, based on NETLAB, to implement the hierarchical visualisation. The basic
procedure can be summarised as follows:
Step 1. Input normalisation.

A simple linear rescaling is useful when observed variables have significantly different values. For
example, when we dealt with the screen data, for each variable t,, we computed its mean t; and

. 9 - . - . .
variance oy with respect to the whole dataset. Then a set of re-scaled variables was given by

~ ta — ty
g = ———.
]

A more complex rescaling can be found in (Bishop, 1995) (Chapter 8).
Step 2. Initialise structural parameters.

A set of structural parameters have to be initialised before the training process. Consider a two-
dimensional latent space. Key parameters are the shape of latent space, RBF centres’ layout, width of
RBYF kernels. For example, for the experiments in this thesis, we chose the regular grid for both Shape
of latent space and RBF centres’ layout, and selected the mean of the minimum distance from each
centre to its neighbour as Width of RBF kernels. Several different choices can be found in NETLAB.
More details on the selection of these parameters have been discussed in section 2.5.2.

Step 3. Train the whole dataset using one single LTM.

Practically, we considered criteria for stopping the training process as follows:

e Firstly, to observe whether or not the error function is convergent;

Usually for datasets used in this thesis, it converged in 60 to 120 iterations.

e Then to observe whether or not projections of data points change obviously in the plot.
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For some discrete datasets, even when the error function is approaching convergence, the vi-
sualisation plot can still change a lot compared with one obtained after a fow more training

iterations.

Step 4. Select a mode for determining regions of interest.

One can analyse visualisation plots with auxiliary variables, e.g. both magnification factors and
curvatures. If clusters are separated clearly, then the user can select the centres using the interactive
mode. Otherwise, by choosing the automatic mode, the minimum-message-length-based method will
be used. In this case, the user will suggest a maximum number of components A,,,, which they would
like to consider. For datasets used in this thesis, we chose A,,.. = 10. One can also set 2 minimum
number of components A,,;,. This means that the user Just wants to consider a reasonable number
of components between A,,,, and Amin.

Step 5. Train sub-models together and setting up plots at the next level.
Step 6. Repeat step 4 and 5 for each sub-model.
Some practical considerations can be found in section 4.3.5.
Step 7. Show final results for analysis.
One will obtain a hierarchical projections plot and a magnification factors plot. For continuous

data, we also have a curvature plot to support data analysis.

5.5.1 Experimental results

In this section we illustrate the semi-supervised hicrarchical LTM visualisation algorithm on four

»

“real-world” data collections.

Structural parameter selection was the same as in section 4.5. Note that, as mentioned in section
4.4 in the interactive mode, the “centres” of the regions of interest are shown as circles labeled by
numbers. These nunbers determine the order of the corresponding child LTM subplots from left to

right.

Image segmentation data

As the first example we visualise the image segmentation dataset. The final hierarchical visualisation
plot of GTMs can be seen in Figure 5.9. The Root plot contains clusters of overlapping projections.
Six plots at the second level were constructed using the unsupervised MMT, technique (A4, = 10).
Note that the second-level LTMs already separate the four classes fairly well and are readable enough
to be analysed further in the interactive mode. For example, we selected three, two and two “centres”
respectively for regions of interest (shown as circles) in the first, third and fourth level-two plots.
Furthermore, we repeated the experiment with the BIC initialisation. Again, we applied K —means
to initialise sub-models. The range of the number of components was from 2 to 10. Finally, a 10-
component mixture was constructed. By comparison with Figure 5.9, segments at the second level

are dispersed. Because the dataset was not well-separated in the Root plot, the BIC did not obtain a
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of the relationships among sub-plots in the visualisation hierarchy. In Figure 5.13, we highlight the
visualisation plots which include the data points captured by the first model.at the fourth level. It
indicates that most points from the topic ‘sci.space’ are explained in this'sub-model.

Figure 5.14 shows the magnification factor plots for the projection hierarchy of the document
dataset in Figure 5.12. There is a dark band slightly left of centre in the 11th level-3 model. The
band divides different topics in the data space. From the corresponding model in Figure 5.12, we see
that the left part mostly involves topic ‘talk.politics.misc’, and the right contains a mixture of topics.

For a detailed analysis, we focus on the fourth level-three LTM model in Figure 5.14. The corre-
sponding projection plot in Figure 5.12 contained only documents from a single topic, ‘sci.space’. An
enlarged view of the magnification factor plot is presented in Figure 5.15. It can be seen that there
is a dark band around the diagonal line of the plot. Hence, we infer that documents in either side of
the band correspond to different clusters and that a change of sub-topic happens. The list of 5 most
probable dictionary words for each latent space centre is shown in Figure 5.16. With reference to
Figure 5.15, two clusters are found in corresponding regions. Key words for each latent space centre
inside the region bounded by the solid border are completely the same and have the same orderings.
They appear to refer to documents relating to space shuttle launches, while key words inside the
region with the dashed border seem to be associated with articles concerning space orbits.

Although the magnification factor plots may help us, we must indicate that it may not be useful
for comparing the absolute clustering compactness across the plots or levels, since the magnification

factor plots is scaled (i.e. normalised).

Yeast dataset

In the last experiment we visualise the yeast dataset in Figure 5.17, and we demonstrate application
of the unsupervised MML technique at a lower level in the hierarchy.

We trained a four-level hierarchy of LTMs on the yeast data and the resulting projections are
displayed in Figure 5.17. Again, the Root plot looks ‘messy’. Two plots at the second level were
constructed using the unsupervised MML technique (A4, = 10). The first level-two plot is clear
enough for the user to select the centres in the interactive mode (as shown in the figure). We used the
MML algorithm as an initialisation technique for constructing child plots of the second level-two plot
(Apmar = 5). Two resulting child plots included readable clusters. Figure 5.18 is the child-modulated
ancestor plot. The data points captured by the first model at the 4th-level are highlighted. Again
this figure tell us which data points in the parent plot are explained by the child plot. As viewed, the
points grouped are mostly from class ME3 and their positions in the corresponding plots are displayed.

Figure 5.19 presents a result with the same conditions, but without the “fresh start”. We see ME3
class were finally divided into two sub-clusters at the level four, while this class were more reasonably
grouped into one cluster at the fourth level in Figure 5.17. It suggests that it can give a better model

with a “fresh start”.
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Figure 5.14: Plots of magnification factors in the hierarchy of LTMs fitted on the document data.
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Figure 5.15: A visualisation plot of magnification factors for a LTM.

5.6 Discussion

In this chapter we have presented a semi-supervised hierarchical visualisation system. The proposed
system gives the user a choice of initialising the child plots of the current plot in either interactive,
or automatic mode. In the automatic manner, an approach based on the MML is employed and the
initialisation has improved with a “fresh start”. We have further showed how to use magnification
factor plots to analyse the dataset and find out sub-clusters.

Compared with other techniques for the model order selection, this approach seamlessly combines
model selection criterion into an EM-based training algorithm. It is particularly useful when user has

no idea how to choose the areas of interest due to highly overlapping dense data projections.
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Chapter 6

Conclusions

In this final chapter we summarise the work described in previous chapters. Our method can be
employed in many domains. As examples, we sketch out what can be obtained in Web mining and

microarray data expression. Finally, we discuss some development directions and end the whole thesis.

6.1 Chapter summary

The research described in this thesis focuses on searching for a viable approach to visualise a large
quantity of data. The method we applied and further developed is a general framework of a hierarchy
constructed from latent trait models, which transforms the original observed data, either continuous
or discrete, to a lower dimensional space by revealing the structure in the dataset as accurately as
possible. The clusters represented in each projection plot in the hierarchical tree provide a key to
understanding the relationship between data points in the data space. The application of this type of
visualisation techniques to the large HTS dataset has revealed useful information to our collaborators
at Pfizer. Morcover, this approach can be used in other domains, e.g. as shown in this thesis, document

data mining.

e Chapter 2
In this chapter, we reviewed the general framework of mixture models and EM algorithms, and
investigated several latent variable models, such as PPCA (which recasts classical PCA into a
framework of density models), GTM and LTM. We also discussed Neuroscale, which is a non-
linear topographical projection. From experimental results using these approaches, we concluded
that both GTM and LTM, involving a non-linear mapping from the latent space to the data
space, are effective tools for visualising the large HTS dataset. However, it is known that a
single plot is not enough to capture all important information from a more complex dataset.

This motivated us to further develop a hierarchical system based on LTM and GTM.

e Chapter 3
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In this chapter, we described extensions to the GTM in two directions.

1. Since the GTM forms a smooth manifold, it allows us to use differential geometry as an
analysis tool. We studied curvatures of the manifold based on second order derivatives.
We visualised the curvatures’ direction and magnitude, which may indicate how curved the
manifold is when embedded in the data space.

2. One practical difficulty in the use of the GTM arises from incomplete data points in a
dataset. For visualisation purposes, we integrated the estimation of missing values into the
model training process using an EM algorithm. Better estimates of missing values can be

achieved by using additional class information as a constraint.

e Chapter 4

In this chapter, the LTM is extended to a hierarchical structure with nodes corresponding to
local models. We integrated projection visualisation, magnification factors, curvatures and the
point-list into our hierarchical visualisation system. In interactive mode the user is responsible
for choosing regions of interest, which are used for parameter initialisation of the mixture of
I TMs in the next level. We improved the standard initialisation so as to deal with discrete
data. We illustrated this hierarchical system on several data sets with different noise models
from exponential families. Experimental results suggest the system is helps to capture more
interesting information in the deeper levels. Especially, the results we obtained to the HTS data
is useful to Pfizer’s Medicinal Chemists.
e Chapter 5

In this chapter, we further improved our hierarchical visualisation system by providing an auto-
matic initialisation mode based on the MML principle. Experimental results suggested that this
mode is useful when facing a heavily overlapping and messy plot, for which a reasonable num-
ber of components and their positions can be automatically determined by the algorithm. By
comparison with the BIC, an alternative method of model selection, our approach can provide

a better separation.

6.2 Applications

Our approach can be used for analysing Jarge datasets and searching for unexpected relationships in
the data. The resulting techniques typically construct several local models that represent the structure
of the data in an easily understandable way. Usually, the data represented in one plot in the deeper
levels of the hierarchy have more similarities than at shallower levels, since the members of one cluster
different from one another as little as possible (Spath, 1980). This can help us to find similar records
from databases and search for documents which describe a similar topic.

The method can be applied in many industrial applications, such as medical genetics, text databases,

and so on. In the area of language technology people are interested in finding interrelated stories from
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different news feeds. Using our approach, news text can be classified into topic classes. Then the
interconnected chains of news corresponding to event reports can be recognised. In this section, we

discuss two more possible applications.
e Web mining.

As the Web becomes more and more popular in the whole world today, the amount of information
on it is growing extremely quickly. A survey on web mining research can be seen in (Kosala and
Blockeel, 2000).

Usually a user inputs a set of keywords using a searching engine, which will respond with a list
of pages according to the similarity to the keywords. One of the key tasks of Web mining is Web
document classification or categorization, which can be used for indexing (Kosala and Blockeel,
2000).

Here we consider a case ignoring the sequence in which the words appear and the document has
no structure, e.g. HTML tag, in it.

By using a hierarchical latent trait model, the original document vector representation is trans-

formed into two-dimensional space. What we can find are

_ Similar documents in the same topic but with different sub-topics;

_ Similar documents with lots of similar terms in the same sub-topic.

e Microarray data.
With current revolutionary developments in the life sciences, scientists are studying genes with
immense zeal and interest. DNA microarrays, also known as DNA or gene chips, allow scientists
to measure the expression level of thousands of genes from a single biological sample on one
microchip (Jagota, 2001).
A microarray or chip contains thousands of spots. Each spot includes thousands to millions of
copies of a single DNA strand representing a gene. These chips work by following a property of
DNA and RNA: complementary base pairing.
If 2 DNA molecule from a tissue sample binds to a gene on a spot of the chip, the researcher can
infer that the molecule from the sample has the complementary sequence of that gene’s. The
DNA or RNA molecules are added fluorescent tag or other label, which can be detected by a
scanmner. Once a chip has been scanned, a computer converts the raw data into a color-codded
readout (Friend and Stoughton, 2002).
Microarray data is often expressed as an N x D matrix T where N are number of genes, D
biological samples and ¢4 denotes the expression level of gene n in sample d.
Note that usually before microarray data is stored in a database, it may have undergone a number
of transformations. So it is important for the user to know what transformations have been done

to the data. What we can discover from microarray data using hierarchical visualisation are
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— Cenes with similar expression patterns over all samples.
It is useful to find outliers and any genes whose function is similar to-a known gene.

Since there are thousands of genes, it may generate a highly messy plot. If so, the automatic
mode based on MML will be of help to further cluster the similar points.
— Samples with similar expression patterns.

Scientists may also want to know whether or not a sample is a cancerous, or which subtype
of this kind of cancer it is, and so on. At this time, we consider D samples as iuputs, while
N genes as variables. There is a challenge here since variables involve with thousands of
genes. However, this difficulty can be overcome by using PCA to reduce dimensionality first
and transform data points onto a smaller number of principal components as new dataset

to further visualise.

6.3 Discussion and open questions

The hierarchical visualisation algorithm we have proposed can be further developed in several direc-

tions.
1. Extensions to the LTM.

e Curvature for latent trait model.
In this thesis, we just consider local directional curvatures of the GTM manifolds. As a
natural development, one can compute curvatures on the manifold formed by the LTM. In
that case, the image of the line x(b) generates a curve in the projection manifold governed

by the link function (see section 2.6), so the equation (3.4) can be re-written as
1(b) = g(@ pm®(xo + bh)). (6.1)

Then the embedding curvature ji*(0) can be calculated using the same way as for the GTM.
e Incorporating missing values into the EM algorithm for the LTM model
Here we discuss the case of the Bernoulli distribution. As we did for the GTM, to incorpo-
rate missing data we must calculate the appropriate expectations of the sufficient statistics
in the E—step. For the Bernoulli mixture, they are (zrn|t2,8)) given by Ry, (equation
(2.72)) computed over the observed ty; and (zp,t™|t2,0) given by Re.p, where pptis
the probability of the kth variable being 1 in the mth dimension. The M —step uses these
expectations to update equation (2.75). The extension to the multinomial distribution is

straightforward.

2. Temporal data.

The standard GTM described in this thesis assumes that the data is generated as an independent,

identically distributed sample. However, in some applications this assumption is not valid. For
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temporal data, an extension has been proposed by incorporating a hidden Markov model for
transitions in the latent space (Bishop et al., 1997). Since the model is trained using an EM
algorithm, it is straightforward to develop it in a hierarchy system. In particular, the hierarchical
visualisation plot can be used to compare different states and analyse where and how much

changes that happened between two steps.

3. Speeding up training

The most computationally consuming part of the training process is in the second level, where
a mixture of LTMs are trained with the whole dataset (see section 4.3.5). One way to resolve
this problem is to speed up the training procedure of each LTM. As mentioned by Bishop et al.
(1998), incremental learning (Neal and Hinton, 1999) can be used for training, in which case,
instead of doing a full E'—step, a suitable fraction of the total number of data points is chosen to
calculate the corresponding responsibilities. In this way there is a possibility that the algorithm
would converge faster because the model will be updated for a small fraction rather than having
to wait for a full E—step over all data points. In addition, in the M —step, we adopted a batch
gradient descent technique (see section 2.6). However, a more efficient method may to employ

scaled conjugate gradients or other non-linear optimisation techniques (Nabney, 2001).

6.4 Conclusion

The semi-supervised visualisation hierarchy provides a method for modelling either continuous or
discrete data with non-linear structures in high-dimensional spaces. As has been exemplified in this
thesis, the important application of our work is visualisation of complex high-dimensional data in a
hierarchical tree. The possibility of computing magnification factors and directional curvatures and

incorporating them in visualisation plots, may make visualisation plots easier to interpret.
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Appendix A

Learning From Incomplete Data

For the GTM (Bishop et al., 1998), the negative log likelihood function is

N K
1
E=- Z an Z])(i,nlxk, W, %), |
n=1 k=1 |
pltalxi, W, E) = N(y(x); W), X) (A.1)
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We use m and o to denote subvectors and submatrices of the outputs y matching the missing and

observed components of the data.
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The form of the covariance matrix is often constrained to be diagonal, and for the GTM, it is further

constrained to be spherical with variance is 7. Thus the covariance matrix has this form:
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and it follows from equation A.3 that

D/2
o m B 6 m m 2
pts e W.B) = (=) e { =Sl -y 1P+ 10 -y 7]}
Using the binary indicator variables Z = {zn}f)\’:i, defined such that z, = (z15,...,2kn) and

zrn = L if t, is generated by Gaussian k, a complete-data negative log likelihood function can be
written:

N K

zzm{;n2w)—§lnﬁ+§[llt Syl e -y R ]}

For this model when there is no missing data, the E—step computes (zxn|t,, W, 8), which we

denote by posterior Ry,. This is the probability that Gaussian & generated data point n.

Prn
RA:71: 74 (A4)
Z/{»}pk’n
Let
D D ﬁ o [} m 7 p
A = z{gmEn) - Smp+S[Ile -y I+ ler -y 1P ] (A.5)

We now consider the expectation of the complete-data negative log likelihood in the form:

Ay = (zA.,,)<§11](27r) - g-ln ﬂ) + (an ” t, — v 1)
+(l e =y 1)

For the first and second terms on the right hand side, we note that only the indicator variables

zpn are missing, and so the expectation is (z,|t2,0) = Ry, (Ghahramani and Jordan, 1994), the
responsibility as defined in (A.4) measured only on the observed dimensions of t,,.
As for the third term in equation (A.5), both z, and t7* are missing. Considering the sufficient

statistics for the parameters,

Term3 = g(/h,ft”, )tr(((tz‘ -y -y 'iz,m = J.,tfl.",()))
’6 mem” o
= 2 <Z/ nlt,,) >tI‘ ((tn tn Izk’ll = ]7 tn) 0) -
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For the GTM,
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So, for the third term (A.G), we have:
B a7
Term3 = ';letr (}3—1)011‘11777:71 + ((yz))oid _ (y?))) ((yzl)old _ (yiﬂ.)) }

For the GTM:
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For observed data and filled-in data, we have
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Now we write both observed data t¢ and missing values filled by é;.-’;;. into vector t,,,
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This can be re-written as matrix form
TGEW = $TRT.

This concludes the M —step for the weights, we now consider the M —step for the variance:
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Thus
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where
e = v Plzen = 1) = nan (B7H) + 1y )" = il

and n,, is number of missing values in data point t,,.
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Quantities for computing

magnification factors

The exact form of the matrices Z is dependent on the specific noise-model being employed. There
require the first derivatives of the inverse link function g(-). We will provide here the expressions for

the models utilized in the experiments reported herein.

B.1 Independent Gaussian noise model

The Gaussian model the only member of the exponential family of distributions which is characterised

by a quadratic cumulant function
1

Galy) = 5':11}? (B.1)

Therefore, it has a linear inverse-link function and higher derivatives vanish.

g(/’(y) = Ya, (]32)
9s(y) _ (B.3)
0'!/11

B.2 Independent binomial noise model

In the case of binomial model, the cumulant function is
Galy) = log(1 + exp(ya)). (B.4)

The required derivative are then computed as follows:

_ explya) -

ga(y) = T+ expya)’ (B.5)

g (y) _ 0 d#d -
Oya ga(y)(1 —gyly)) d=d.

It can be seen that for independent noise models, the Fisher information matrix Z is diagonal.
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B.3 Multinomial noise model

APPENDIX B. QUANTITIES FOR COMPUTING MAGNIFICATION FACTORS

The multinomial member of the exponential family of distributions is identified by the cumulant

function of the following form,

Gly) =log( Y exp(ya))-

d=1:D
Accordingly, the first derivative is given by
exp(ya)
go(¥) = —
2 =1 exp(yar)
Iga(y) _ =8 (¥)84(y) d#d
Wa g (Y) —ga(Y)galy) d=d.

(B.7)




Appendix C

Mixing Coefficients

In the hierarchical latent trait model algorithm, maximising (4.20) with respect to the parent-conditional
mixture coeflicients P(M|N) in the M —step of the EM must take account of the constraint
> PM|N) = 1. (C.1)
MEChildren(N)
This can be achieved by introducing a Lagrange multiplier Ay and maximising

N
S Y Pt > P(M|N, t,) In P(M|N)

n=1 NeNodes(l) MeChildren(N)
+An > PMIN) =1]. (C.2)
MEChildren(N)
For a specific N = Parent(M), we have

N
C o= PPN 3 PIMIN 6 In POMIN)

nz=| M'eChildren(N)
AN S PM'IN)—1]. (C.3)
MeChildren(N)
We differentiate C' with respect to P(M|N) and set it zero,

N

oC' 1
—_— = PNt P [ t,) = 4 Ay = 0. C4
SV g W 1ta) POMIN, ) s + A (C4)
We have
N
> P(Nt,) P(MIN  t,) + AW P(MIN) = 0, (C.5)
n=]
f\!
Y PN, PIMIN, t,
P(.ML"\"’) — Zn:] ( ; ) ( | ) (CG)
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Substituting (C.6) into (C.1), we have
1 N
By > > P (Ntn) PIMIN  t,) =1 (.7

M'E€Children(N) n=1
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Furthermore, we obtain

N
A = =Y PNt > P(M'|N,t,)
n=1 MIeChildren(N)
N
= =Y PWN|tn). (C.8)
n=1

Finally taking (C.8) back into (C.6), we have

SN P (Nt,) P(MIN, t,)
SN P(Nt,)

P(MIN) = (C.9)
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Derivation of minimum message

length

D.1 MML in a univariate case

Let us consider the scalar parameter case first. We follow (Lanterman, 2001) to reformulate the
derivation of the MML criterion using our notation. Let 8, be a finite precision version of 8 with
quantization length s. The prior probability that 8 € [6;. — 5,6, + 3,] is approximately sp(f;,).
Expanding the log-likelihood as a function of the truncated value in a second order Taylor series
around 6 yields

(O - 072 togp(cle). (D)

: J
—log p(Cl61r) ~ = logp(CI0) = (Bir — 0) 5 10g P(CI9) - =

1
o9 2

We assume that the quantization error is uniformly distributed in [-£, £], and so (6 ~ 0;,) = 0;
(60— 06,)% = %, and we approximate sp(6;,) & sp(f) assuming the prior is smooth enough.
Now the expected value of the message length (see equation (5.18)) is given by
52 .
(Length(6,,,C)) ~ —log s — log p(8) — log p(¢|#) + ﬁI(C,U), (D.2)

where the first order Taylor series term of the right hand side in equation (D.1) vanishes after taking
the expectation due to assumptions on the uniform distribution of the quantization error, and Z((, 8)
is the observed Fisher information given by Z((,6) = —%”go”}—q—l.

Setting the derivative of (D.2) with respect to s to zero, we have

12
5= : D.3
T(C.0) -3)
Substituting (D.3) into (D.2), it yields the following equation
: 1 1
(Length(8,,,C)) ~ —logp(8) — log p(C|#) + 3 log Z(¢, 6) + 5(1 —log 12). (D.4)
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Approximating the observed Fisher information by the expected Fisher information, which has the

form
. 5 log p(¢]6)
1) = —(—22>2 D.5
0) = -(2), (0.5)
yields the approximation
1 1
(Length(f;,, ()) ~ —logp(8) — logp(C|) + 5 log I(6) + 5(1 —log12). (D.6)

The 6 which minimises (D.6) is the MML estimate.

D.2 MML in multiple dimensions

Now consider the multivariate case. This section follows (Oliver and Baxter, 1995). We assume that
the ¢ dimensional parameter space is partitioned into regions of volume V which is a function of 8. So
the prior probability is approximately Vp(@). In this case, the expected value of the message length is

117 0% log p(¢|6)

(Length(8,,)) ~ — log (Vp(8)) — log p(Cl8) — =~ | (8 = 8,,)

2V Jy 20° (0 —8,)dv. (D.7)

92 y 9 .
To make the message decodable, we make the approximation of replacing — Olﬁ"g”’?ggﬂ with the ezpected
Fisher information matrix I{8) and denote § = 8 — 8,,., so the integral part of (D.7), denoted by I, is
approximated by

1

I~ / 6" 1(6)ddv.
JV

B =
<]~

- - T
It will be convenient to make a change in coordinates ¥ = B™'8, where B is chosen so that § 1(8)0 =
AN
9 9.
Let p(d) be the transformed prior density, and let volume V in the #-space map into volume U in the

"

U-space. The expected message length is given by
1 g 12 B Y

(Length(8;,,0)) &~ —log(Up(¥)) — logp(C|6) + 1551" @' 9)du
JU
= —logU —logp(¥) ~ log p(¢|@) + %(19'1'1?)) (D.8)

Wallace and Freeman consider quantizing in multiple dimensions using optimal quantizing lattices.
For example, in two dimensions, the optimal quantizing lattice forms a hexagonal grid. In three
dimensions, the optimal lattice is a body-centres cubic lattice. In higher dimensions, the optimal
quantizing lattices arc actually unknown. We use k. to denote a constant relating to the geometry of
the ¢-dimensional lattice. The expected value of 19119 can be expressed in terms of the ¢-dimensional

optimal quantizing lattice constant «,,

LT .
9 9) = cr U, (D.9)
where k1 = 1/12 since (j_l{z/z 979 = 1/12). Conway and Sloane (1993) give bounds on the c-

dimensional optional quantizing lattice constants, k..
Therefore,

(Length(8:,, C)) ~ —log U — log p(¥) — log p(C|6) + %nCUQ/". (D.10)
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We differentiate equation (D.10) with respect to U and set it to zero. Then we have
U= n:c/ 2

In these new coordinates, the prior P(9) is

PN 1 _ ()
p(9) = p(6) - —1)(0)Jacob(B_i) = e (D.11)

For more details, see (Oliver and Baxter, 1995) (section 5, Appendix 1).

Using the above equation to translate back into the §-space, the message length is
1 ) c
(Length(8,,,¢)) = —logp(@) — log p(¢|8) + 3 log |1(8)] + 5(1 + log K¢). (D.12)

The MML estimate of 8 is the § which minimises (D.12).




Appendix E

The MML Framework for Mixture
Models

.1 The cost function of MML for mixture models

- 1
6 = argmin {~ logp(@) — logp(C|8) + 10[3 10| + = (1 + log - 2)} (E.1)
0
1 Q+1)A
(6.0 = —log [P, P(A) [] p0)] + S log @) + LD —10g12) ~ 1og picle)
a=}
A A
~ —log(P(1),..., P(A)™% = Zlogil(”(&l)l’i’ - {(Q-{ DAlog N +(Q - 1) Z log P(a)
a=] a=|
. (Q+1).
+ z log [11(6,)] + ~= 5 —(1 —log12) — log ])((|9)] (see section 5.3.1)
=} -
1 A 1 A
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Since we only code the parameters of mixture components with positive prior, we have

_ /\’P Ay, N (Q+1)Ay R
= 3 S NPl | - log T+ = — log p((16), (E.3)
a:P(a)>0
where A, denotes the number of components whose priors are positive.
E.2 Priors
The cost function of MML for mixture models is given by
_Q ’\ P Ay N (@+ 1Ay : -
10,0 = 5} Z + N log D] + 5 log p(C16), (E.4)

a:P{a)>0

where — log p(€l8) is the negative log likelihood E having form as follows:

N A
E= Z log {Z P(a)p(t,,lG(l)} . (E.5)

n=1 a=1

Introducing assignment variables z,,, we have

(omp = Z Z Zan 105 {1)(() p(tn |01L)} . (E6)

n=1a=1

The expectation of cost function of MML for mixture models is given by

O NP@ A, N (Q+1)A,
= =357 g — ¢ A
(6,0) 2;% o log 5+
A N A N
= log P(a) y  Plalt,) — SN Plat) log p(talfa). (E.7)
a=1 n=1} a=1| n=1

-

Minimisation (E.7) with respect to F?(a) must take account of the constraint

Z Ple)=1, and Pa)>0, a=12,...,A

a=1

This can be achieved by introducing a Lagrange multiplier A and minimising CF which is given by

0 & A N A
=3 Z ogPa") — Z log P(a') Z Pla'[t,) + A (Z Pla) - 1) ) (E.8)

a'=1 n=| o' =1

To differentiate CF with respect to P(a) and set it zero, we have

N

ocr _ 1 9 -5 P(altn):] +A=0. (E.9)

oP(a)  Pla) |2

n=l

Then we obtain N o
o Plalt,) — #
Pla) = Lin=) (;‘! -3 (E.10)

To obtain the value for A, we use the constraint

ZZ"]

a'=1

—1=0 (E.11)
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Then we have

4

A=Y <Z Pla'|tn) — g) .

o
Taking (E.12) back to (E.10), we have

N Q
_, P(alt,) — =
P(a) = —; Z”‘“IN (oltn) = 3 .
Z;y’:l (Z;z:] P(a'lltn) - %)
However, since P(a) > 0 for all a = 1,2,..., 4, we have

max {O, Z;Ll P(alt,) — %}
Pla) = : = .
Yoy 1‘1’121‘x{0, Yoy Pla'lty) — %}

(E.12)

(E.13)

(E.14)
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