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Thesis Summary

For analysing financial time series two main opposing viewpoints exist, either capital
markets are completely stochastic and therefore prices follow a random walk, or they are
deterministic and consequently predictable. For each of these views a great variety of tools
exist with which it can be tried to confirm the hypotheses. Unfortunately, these methods are
not well suited for dealing with data characterised in part by both paradigms.

This thesis investigates these two approaches in order to model the behaviour of financial
time series. In the deterministic framework methods are used to characterise the dimen-
sionality of embedded financial data. The stochastic approach includes here an estimation
of the unconditioned and conditional return distributions using parametric, non- and semi-
parametric density estimation techniques. Finally, it will be shown how elements from these
two approaches could be combined to achieve a more realistic model for financial time series.
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Chapter 1

Introduction

Analysing statistical regularities in financial time series for the purpose of, for instance, risk
modelling and strategic investment management is a hard and challenging task for several
reasons. One point is that there is still no widely accepted theory of financial markets, al-
though major contributions have been made during the last decades. Furthermore, empirical
characteristics of financial data present a serious hindrance: they are rather noisy, nonlinear
and nonstationary. An analysis needs therefore robust but flexible models which can cope
with these attributes. In turn, in the absence of prior knowledge, those models require an
enormous amount of data to estimate reliably the relevant statistics. Unfortunately, for fi-
nancial data on a daily or longer time scale this condition is hardly met. Consequently, a
statistical analysis becomes an ill-posed problem.

Due to these difficulties the analysis of financial time series has been focussed so far on
models with strongly simplifying assumptions. The linear stochastic framework, for instance,
assumes the noise to be the dominant component while the dynamics is restricted to be
linear. In contrast, in nonlinear deterministic models it is the nonlinearity which accounts for
‘interesting’ behaviour in a system while the noise is completely ignored. These two model
classes have been applied in the financial domain, however, it is recognised today that they
explain empirical phenomena in financial data only insufficiently. To overcome this deficit
this thesis outlines a potential framework combining elements from both domains accounting.

for instance, for noise in a nonlinear environment.

1.1 Capital markets

Capital markets are one of several domains which have been attracted a lot of attention
from the machine learning community, especially in the context of time series analysis. This
problem domain strongly exhibits the features of nonstationarity, noise and nonlinearity due
to complex interactions of influential factors. This provides a challenge for the academic

community as well as for practitioners to apply statistical methods for specific problems such



CHAPTER 1. INTRODUCTION

as portfolio management, currency exchange rate prediction, option pricing. risk analvsis and
many more.

To provide the background of capital markets as the application domain of this thesis. first
the market’s structure and function will be summarised. Afterwards the two main analysing
paradigms are briefly discussed along with some established theories and models. Finally,

studies will be outlined which show contradictory results to the theories. thus providing a
motivation for this thesis.

1.1.1 Structure and function

Capital markets are places where venture capital is continuously allocated to potentially
profitable investments. According to different types of investments, markets are divided into
several segments in which certain assets are traded.

In stock markets the traded assets are company shares whose prices depend on the com-
pany’s performance and its perception by the market participants. In contrast, the return
of investment in bond markets is usually determined a priori over a specified time horizon.
In commodity markets materials, such as metals, grain, and heating oil, are traded, while
currency markets provide possibilities to exchange foreign currencies. Finally, in futures and
options markets the conditions of trades can be fixed in advance, while execution is left to a
later moment.

For an investment decision in those markets three relevant parameters are usually consid-
ered: the expected return and risk of an investment as well as its time horizon. Additional

market constraints such as transaction costs remain ignored in the context of this thesis.

1.1.2 Analytical concepts

For the analysis of capital markets and, more specifically, the evaluation of profitable invest-
ments, there exist two complementary viewpoints. In the fundamental approach analysts
try to estimate the book value! of an asset by determining the influence of business-relevant
factors. A trading recommendation is then given according to the discrepancy between the
real price and the book value.

Fundamental analysis is rule-oriented since explicit causal relationships are modelled using
a priori knowledge. It is therefore more subjective but also more flexible for unseen situations
in contrast to technical analysis. The latter’s objective is to find statistical patterns in asset
prices which requires a large amount of data for reliable results. For this purpose a huge
number of methods have been developed in the areas of statistical pattern recognition, time

series analysis and machine learning. All these approaches share the assumption that past

IThe book value can be defined as the sum of all cash flows that owners of the share expect to receive in
the future.

12



CHAPTER 1. INTRODUCTION

patterns will be repeated in the future creating opportunities to exploit them. Consequently.
in the case of poor data or truly new situations a purely technical approach will fail. How-
ever, due to its less subjective nature and the now available computer power and amount of

financial data, technical or quantitative analysis is becoming more and more important in the

investment decision process.

1.1.3 Theories and models

One of the earliest technically oriented studies regarding the behaviour of asset prices was
published by Bachelier in 1900, in which statistical methods, originated for analysing games
of chance, were applied to describe stock price returns (Fama, 1965). The so-called Bachelier-
Osborne mode] assumes that price changes from one transaction to the next are independent
and identically distributed (i.i.d.), transactions are spread fairly uniformly over time and
the distribution of price changes has a finite variance. In the limit of a large number of
transactions the accumulated price change represents the sum of i.i.d. random variables.
Therefore the central limit theorem suggests for accumulated returns a normal distribution
with a variance proportional to the time scale of the summation.

Based on the Bachelier-Osborne model one of the most widely accepted theories about
capital markets, the Efficient Markets Hypothesis (EMH), was developed in the 1960s (Coot-
ner, 1964; Fama, 1970). Within the EMH the concept of the rational investor assumes that
all market participants act rationally, are risk averse and have homogeneous expectations
towards the risk and return for the assets they are interested in. A further important point
is concerned with information efficiency. This refers to the notion that all publicly available
information is processed and reflected immediately in the prices. Changes in the prices are
therefore triggered only due to new information. Thus, by random occurrence of new infor-
mation, the price changes themselves should be random, drawn from an i.i.d. process. This is
usually assumed to be Gaussian according to the same argument as for the Bachelier-Osborne
model. Nevertheless, other limit distributions can be derived for modified summation schemes

of the price fluctuations.

1.1.4 Empirical studies

Since the EMH was established, researchers have been trying to determine to what extent
capital markets are really efficient. A lot of studies indeed support the theories. However,
also a significant number of surveys found anomalies not explainable by the concepts of the
Efficient Market Hypothesis.

Regarding daily financial returns, for instance, it is currently widely recognised that their
distributions have fatter tails and higher peaks around the mean than a Gaussian distribution

(Fama, 1965; Sharp, 197C). As a consequence, models based on normality, such as the Modern

13



CHAPTER 1. INTRODUCTION

Portfolio Theory (Markowitz, 1952), might give unreliable results. For example, in reality an
investor faces a higher risk in stock markets than perceived under the normality assumption.

Concerning the independence of successive returns, predictive structure has been detected
on different time scales of the price series; the so-called calendar effects. For instance. the
month-of-the-year effect is the statistical anomaly that stock returns in the US and UK are
highest in specific months due to the fiscal year (Gultekin and Gultekin, 1983; Haugen and
Lakonishok, 1988).

A similar phenomenon is observable on a daily basis. It has been shown that on average
there is a smaller return with a higher variance on Mondays then on any other weekday
(Hsieh, 1989; Abraham and Tkenberry, 1994).

On a day-to-day basis also significant autocorrelations in the returns have been found in
financial markets (Brock, 1991; Hsieh, 1991). Furthermore, the magnitude of this autocorre-
lation seems to depend on the volatility at that time (LeBaron, 1992). Additionally, strong
correlation was also found between the volatility and the volume in a stock market (LeBaron,
1993).

Although just a small fraction of interesting studies concerning market efficiencies, they
demonstrate the existence of statistical structure in financial time series. Nevertheless, these
empirical facts can at most weaken the concept of information efficiency since they represent
just statistical inefficiency. Real investments according to these predictions are very often

not profitable due to the costs to acquire information and perform the transaction.

1.2 Time series analysis

Time series analysis is one powerful tool for revealing statistical patterns in time series. It
provides the methodological framework for analysing financial data in this thesis. This chap-
ter introduces the background of this analytical framework by considering first the goals of
time series analysis and one important issue arising from that: complexity. Empirical features
of financial time series are considered which increase the complexity and make the analytical
process therefore more difficult. Finally, specific time series models will be introduced which

are relevant for the thesis.

1.2.1 Analysis goals

Four objectives can be distinguished within time series analysis (Gershenfeld and Weigend,
1994; Chatfield, 1996): forecasting, modelling, characterisation and control. Forecasting
means to predict the future continuation of the time series using past and present infor-
mation. An example is to predict tomorrow’s share price based on today’s price and other

market data.

14
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In contrast, modelling tries to capture the underlying dynamics of the system which has
generated the time series. Thus an appropriate model takes care of the long-term behaviour
and it becomes possible to simulate data from the model. Economists are interested. for
instance, in modelling the relationships between macro-economic variables in order to under-
stand the conditions for stable economic growth.

In characterisation or feature extraction the goal is to find descriptive properties of the
time series which could be helpful for modelling and forecasting. Such invariants can be the
complexity, the related number of degrees of freedom, stability, signal-to-noise ratio, dominant
frequencies, the occurrence of turning points and the forecastability of the time series.

Finally, control refers to activities in which the knowledge gained in modelling and char-

acterisation is actively used in order to, for instance, optimise portfolios or minimise risk by

hedging strategies.

1.2.2 Complexity

One of the most important issues in time series analysis is the complezity of the system
producing the time series and of the model used to describe this system. There exists no
unique definition for complexity; however, intuitively model complezity refers to the effective
number of model parameters and their interaction in order to represent the data and their
inherent relationships (Bishop, 1995). In contrast, data or system complezity is associated
with the number of factors and their interactions necessary to produce the data (Lowe and
Hazarika, 1997; Gershenfeld and Weigend, 1994).

A mismatch in data and model complexity has serious consequences for the result of the
modelling process. With too low a complexity, some relevant structure in the data remains
ignored. In contrast, an over-complex model will besides incorporating the interesting aspects
also fit the noise in the data. Thus, the training patterns are simply memorised instead of
generalised. As a consequence a low training error is accompanied with a higher error on
unseen, so-called validation data. The aim is therefore to match the data with the model

complexity in order to represent the statistically relevant structure in the training data.

1.2.3 Empirical time series features

High data complexity typically arises from the presence of one or more of the main features
of real-world time series: noise, nonlinearity and nonstationarity. Noise is present in all real-
world time series and caused, for instance, by, e.g., measurement errors, inherent uncertainty
in the system or the effect of a large number of uncorrelated and unidentifiable factors. Noise
can therefore be seen as a random fluctuation around the ‘true’ signal and, consequently.
could be modelled probabilistically.

Nonlinearity is the generalisation of a linear dependency to a general smooth functional

15



CHAPTER 1. INTRODUCTION

form not excluding linear behaviour per se. A system is usually characterised as nonlinear
when it reacts disproportionally to a variation in its input. A simple example of a nonlinear
function is the tangent hyperbolicus which often acts as the activation function in nonlinear
neural network models.

Nonstationarity is one of the most problematic issues in time series analysis since there
exists no universal notion of nonstationarity and the definitions are rather subjective and
depend on the viewpoint one might wish to take. Nevertheless, for the context of capital
markets several empirical issues can be related to different concepts of nonstationarity.

The most rigorously defined is the concept of statistical nonstationarity which requires
that the probability distribution describing the system is time-independent. However, in that
sense seasonal and daily regimes for the electricity load demand are nonstationary, although
these patterns occur regularly. Therefore it seems to be reasonable to classify the presence
of quasi-periodic stationary regimes as multi-stationarity (Weigend et al., 1995).

In contrast, evolutionary nonstationarity refers to the case when the underlying dynamics
of a system is smoothly changing over time a-periodically. This behaviour can only be
analysed when shorter segments of the time series are quasi-stationary such that the change
can be tracked. This allows, under conditions for the smoothness of the dynamics and the
involved noise, an adaptive modelling of the hidden mechanism which rules the system. An
example for the evolution of a system is the capital market itself. Apart from the gradual
changes in recording and publishing market and company information, its character has been
changing qualitatively due to, e.g., the introduction of derivatives in the 1970s, computer-

based trading strategies throughout the 1980s and on-line brokering facilities in the 1990s.

1.2.4 Generative time series models

In order to analyse time series which exhibit the features of noise, nonlinearity and non-
stationarity a large number of models and techniques have been developed in the machine
learning community. It is therefore useful to classify time series models according to the as-
sumptions they make about the underlying generative process. Two possible categorisations
useful for the purpose of this thesis are, for instance, static vs dynamic and deterministic vs
stochastic models.

A static model contains no temporal information and therefore explains the current time
series value as a function of external inputs and noise. In contrast, for dynamical models
the current values are conditional on the previous values. Deterministic models assume a
complete dependence of the current time series value from external inputs or previous values
while stochastic models take as well noise into account and therefore express dependencies
via probability distributions.

The general case for a static time series model can be represented by a map f from a

16
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multivariate input? and a multivariate noise term €; to the scalar observed value z;:

zt = f(ut, €). (1.1)

This produces interesting behaviour only for the stochastic model class where, for simplicity,
the noise contribution € can be assumed to be normally distributed®. The deterministic
version leads to a simple regression problem without noise and is therefore easily solvable,

however, it is not very realistic.

In contrast, dynamical models allow temporal dependencies on a finite sequence z;_, =

(T¢—1,...,2¢—q) of d past time series values:

Ty = f(T-1,ut, €) (1.2)

For a linear function f the linear stochastic dynamical model class appears. One representa-
tive is the linear autoregression model introduced by Yule (1927) as a technique to forecast

future values in a time series using a weighted linear combination of past values:
Iy = ﬂ.r:l?t_], +c (13)

with a weighting vector @ € R? and a bias ¢ € R In this framework noise is necessary to
corrupt the linear dynamics of the system in order to produce some ‘interesting’ behaviour. A
linear function f in a dynamical system without noise produces a time series which will either
diverge, converge or oscillate periodically without external stimulus. Therefore, referring to
linear systems one usually implies a stochastic dependence.

The simplicity of the linear approach made this model class very popular. Nevertheless,
the applicability for real-world problems is limited. Several examples have been found for
which linear models achieve only suboptimal results, for instance, the case of population
growth dynamics (May, 1976).

Progress in this problem was made during the 1980s due primarily the availability of
increased computational power together with more sophisticated algorithms accounting, for
instance, for a nonlinear regressor function f. For example, Tong (1990) developed with the
threshold autoregressive model one of the first nonlinear techniques using two local linearities
activated via a threshold.

Another important step was the method of state-space reconstruction by using a time-
delay embedding (Takens, 1981). With that the theory of nonlinear deterministic dynamical
systems (NDDS), emerged as a useful tool for time series analysis. Within this framework
several algorithms were introduced for characterising the intrinsic dimensionality of a system,
the degree of nonlinearity and forecastability (Grassberger, 1983; Brock et al., 1987; Wolf et
al., 1985).

2Systems incorporating external information via an input are called non-autonomous compared to au-
tonomous systems which use2 only its own past data and possibly noise.
3 Any non-normal distribution can be obtained via an arbitrary nonlinear transformation of a Gaussian.
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CHAPTER 1. INTRODUCTION

The majority of research in time series analysis has considered either stochastic or nonlin-
ear deterministic models for dynamical problems and (linear and nonlinear) stochastic models
for static problems. In this thesis we will investigate nonlinear stochastic dynamical models
by combining elements from both approaches.

Two further issues concerning the noise and stationarity need to be discussed. So far only
process noise was considered which enters the system and therefore alters the continuation of
the time series. This is different from the blurring by the measurement process. It is therefore
necessary to distinguish observational noise 7, as a perturbation of the true signal which does
not effect the dynamics of the generating process. For simplicity, the noise is here assumed
to be additive. Thus, an observation y; can be considered a noisy version of the underlying

system variable or hidden state x; which is obtained via the observation function g:

vt = g(x¢) + - (1.4)

All the discussed models concerning nonlinearity, noise and dynamics assume time-invariant
functional relationships. This can lead to serious drawbacks in cases where these relation-
ships change over time. Modelling this evolutionary nonstationary can be attempted with

the time-window approach or by parameterising the model with the time ¢:

a:t:f(mt—]:ui!t:ft)' (15)

However, in that case fewer data points are available to estimate the parameters which could
affect the reliability of the estimates and the statistics of the underlying dynamics. This means
such a model can only detect successfully changes which are smooth enough to produce an

arbitrary number of samples from which the structural properties can be estimated.

1.3 Thesis structure

Financial time series provide a challenging environment for statistical pattern analysis due to
the inherent noise, nonlinearity and nonstationarity. Proposed models for dealing with these
problems consider often just one of these features in order to ease the modelling problem.
Unfortunately, this might leave out important aspects of the data leading to suboptimal
results. The aim is therefore to establish a framework which combines relevant aspects and
allows therefore an adaptive modelling of a probability distribution driven by a nonlinear
dynamics.

This thesis introduces a framework to analyse financial time series with statistical methods
developed in the machine learning community. Within this framework common assumptions
about the nature of financial returns are tested whose results lead to proposing a model for

time-varying distributions of financial price changes.
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CHAPTER 1. INTRODUCTION

The specific problem of extracting statistical regularities in financial time series will be
examined from both, the determinstic and the stochastic viewpoint. We will report briefly
some of these methods, show their results for a selected but representative set of financial
time series and discuss the limitations of both approaches. A framework will be outlined
which combines elements from both viewpoints and has great theoretical abilities to model
the generator behind the actual time series.

Before considering the two paradigms for time series modelling in more detail, the next
Chapter introduces some practical aspects of the modelling methodology in the context of this
thesis. This includes issues such as data, preprocessing, model selection, parameter estimation
and model evaluation.

The first part of the thesis deals with nonlinear deterministic dynamical models ignoring
any noise affecting the underlying dynamics. Chapter 3 introduces briefly the background and
tests for nonlinearity detection. The aim is to investigate if this methodology is applicable for
financial time series in the context of nonstationarity and noise. Specifically, we estimate the
correlation integral and based on that explore possibilities to determine fractal dimensions of
financial return time series in the context of noise and nonstationarity.

In the second part noise is taken explicitly into account by modelling the fluctuations in
financial time series by a distribution. For such a distribution we investigate their properties
concerning independence, identity and normality.

The natural starting point for a stochastic analysis is therefore the estimation of the
unconditional probability density of financial returns. Chapter 4 discusses density estima-
tion using parametric distribution such as the stable Paretian, Cauchy, Laplace and Weibull
distribution and introducing the Bootstrap maximum likelihood approach to estimate the pa-
rameters for some of the distributions. Besides investigating semi-parametric methods such
as Gaussian mixture models, we also propose and explore the use of mixture models with
combined Gaussian and Laplace basis functions.

After analysing the shape of the unconditional distribution, the hypothesis of indepen-
dence in financial returns is tested by estimating their conditional distribution given previous
values. For this purpose we propose a mixture model approach in order to estimate the static
two-dimensional return distribution. Furthermore, we enhance a non-parametric dynamic
independence test with a Bootstrap component.

All the stochastic methods mentioned operate directly in the observation space and try to
estimate a distribution either unconditionally or conditional upon previous values. Assuming
an underlying cause for the observations which in turn represent perturbed versions of the
true underlying value, Chapter 5 investigates if such static factor models, e.g., principal and
independent component analysis, can perform dimensionality reduction and feature extrac-
tion. Specifically, we apply single-channel versions of these algorithms to financial data using

delay coordinate vector embedding and discuss acquired problems and results.
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CHAPTER 1. INTRODUCTION

However, these hidden factor models are static, ignoring time-dependencies and hence can-
not explain explicitly phenomena such as persistence in the second-order moment (volatiliry
clustering). Therefore the third part of the thesis considers a model for distributions with

time-varying parameters.

There a nonlinear state space model will be proposed which encompasses particle filtering
and smoothing of the involved distributions. Since an a prior:i model is in general not
available, a learning scheme to estimate the model parameters from the data is presented.
This model allows nonlinearities for the hidden dynamics as well for the observation process
and non-Gaussian distributions and therefore should be very flexible for modelling a large
range of real-world time series. A comparison with a linear state space model in terms of
results and problems will be provided using artificial data.

The efficacy and validity of the proposed scheme is considered in the final part of the thesis,
where the evidence is accumulated and the relative success and failure of the framework is

discussed together with suggestions for extensions for future work.
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Chapter 2

Practical modelling aspects

An empirical analysis of a time series usually consists of data preprocessing, model selec-
tion, parameter estimation and model evaluation. These issues will be discussed here in
detail. First, some initial exploration and important preprocessing techniques will be intro-
duced which help to choose an appropriate model. Afterwards strategies will be reviewed
for estimating the parameters of the selected model. Finally, techniques will be outlined for

determining the quality of the model with respect to the data and other models.

2.1 Data preprocessing

Data preprocessing includes all transformations performed on the raw time series data with
the purpose of bringing them in a proper form for a further analysis. In this thesis a time
series X denotes a finite time-discrete realisation of a variable X (t) € R* which varies with

time ¢ € Ny and is observed at equally spaced time points:
X ={z},. (2.1)

In the financial context such a time series can represent, e.g., prices p; of an asset sampled
every day at the market’s closing. Since prices follow often a geometric growth process and
usually exhibit a variance which depends on the price’s level a logarithmic transformation of
the prices is frequently applied to achieve a stabilised and less dependent variance (Chatfield,
1996).

For some problems it is more interesting to predict the change rather than the level of the
quantity. Using this differencing approach the time series becomes more normally distributed
and statistically stationary than the log prices. This thesis therefore uses daily log prices and

returns 7y derived as their first-order differences:
r¢ = log py — log pt—1. (2.2)

Such returns represent simply the yield from holding an asset over the one-step time period

(Fama, 1965). In general it is recommended to perform a transformation of the data to make
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them normal, using, for instance, the Box-Cox transform which includes the log as a special
case:

5L a0,
yr = (2.3)
logz;, X=0.

In case the log transformation is inappropriate, the parameter A can, for instance. be de-
termined as the value which minimises the deviation from a Gaussian in the form of the
third-order cumulant.

Beside such basic transformations it is necessary to inspect the data visually as part of
an ezploratory analysis before any further modelling activities. In a time series plot one can
spot, e.g., trends, seasonal behaviour and other important characteristics such as outliers.
Further visual techniques are scatter plots for investigating the relationship between two
variables and histograms for summarising the distribution of the data.

Outliers can be defined as values in the time series seemingly not consistent with the
remaining data. They usually stem from measurement errors. However, sometimes, despite
being technically correct, they are the result of exceptional circumstances which should be
modeled in a specific way and not in the context of the usual behaviour of a system.

One example of a rare event is the global stock market crash on the 19" of October
1987. On that day the S&P 500 index declined by about 20%, a value outside 20 standard
deviations and more than twice the value of the second biggest negative return (estimated over
a time range of 70 years). Such a value dominates heavily empirical estimates of higher-order
statistics, such as the skewness or kurtosis. Therefore it should be viewed as an outlier and
consequently excluded when one is interested in analysing the typical stock market behaviour.

Beside confirming outliers, a visual inspection can help to segment the full dataset into
subsets with obviously different characteristics such as volatility. This approach has been
applied to all datasets in order to avoid averaging statistical properties over different regimes.
As an example, Figure 2.1 shows the full dataset of the Dow Jones Industrial Average index
for about 100 years together with a suggested segmentation separating different levels of

volatility.

2.2 Parameter estimation

After preprocessing the data a model has to be chosen, for instance, from those introduced
in Chapter 1. This choice has to be made according to the aim of the analysis and the prior
knowledge available about the data. Once a parameterised model has been selected the next
step is to fit this model to the data by estimating its parameters, a process called learning.
For the example of estimating the probability density function, which will be discussed in
detail in Chapter 4, we briefly summarise the Bayesian inference approach. After that the

Bootstrap approach is sketched as one alternative parameter estimation technique.
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Figure 2.1: The daily closing prices of the Dow Jones Industrial Average (DJIA) for over
100 years: prices on a log scale (top) and returns (bottom). The segmentation into the four
datasets of approximately second-order stationarity (with respect to a time scale of several
years) indicated by the vertical bars

2.2.1 Bayesian inference

In density estimation a simple model with parameters 6 = (61,0s,...) is given by p(z | X, 0),
the probability to obtain a value x given the dataset X of all observations. The task at hand
is now to estimate the 8. Due to the stochastic nature of the model and the finiteness of
the data (sampling error) such an estimate is better represented by a distribution p(6 | X)
than just a single point. This distribution is called posterior since it is computed after the
full dataset X has been seen. In contrast, the prior distribution p(6) does not depend on
the dataset since it represents the a priori knowledge about the parameters and is therefore
available before the data have been seen. This natural uncertainty in the parameter estimate
is taken into account in the partial Bayesian approach by integrating the model distribution

over all possible model parameters:
pel®) = [ ol@]%,0)p(60] %) do. (24)

The full Bayesian approach goes a step further and integrates out the uncertainty of the
model structure referring to its architecture and configuration. However, since this approach
quickly becomes impractical for higher input dimensions and complex model classes, models

are usually selected based on qualitative criteria. Here we adopt therefore at most a partial

Bayesian approach.
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Nevertheless, for a high-dimensional parameter space even the partial Bayesian approach
needs to be simplified since the integral defined above may be difficult to compure. Assuming
an arbitrary large number of observations a highly peaked posterior p(8 | X) can be expected
around its most probable solution 8*. This allows an approximation by a delta function
(0 — 0") leading to p(z | X) = p(x | X,8%). The remaining question is how to calculate *?
One choice is to compute the mode of the posterior distribution p(8 | X) by maximising the

posterior, therefore referred to as the mazimum a posterior: (MAP) approach:

OMAP — arg mgxp(ﬂ | X). (2.5)
This is still problematic if the posterior p(6 | X) o p(X | 0) p(0) depends on a complex prior
p(6). In the case of a flat prior or one which is strongly dominated by the likelihood p(X | @)
the prior can be ignored. Then the most probable parameters are found by simply maximising

this likelihood:

oML = arg max p(X | 6) (2.6)

Here we adopt this mazimum likelihood (ML) approach and write the likelihood £ as a

function of the model parameters
L(0) =p(X|06) (2.7)

or, instead of maximising £(@) directly, we minimize the negative total log likelihood function
J(0) = —log L£(8). For this minimisation several gradient-based optimisation algorithms have

been proposed. For instance, the Newton-Raphson method uses the inverse of the second-

a2
567

computationally very expensive but may also suffer from numerical problems leading to slow

order partial derivatives matrix H = ( ) of the negative log-likelihood. This is not only
or no convergence at all (Gupta and Mehra, 1974).

To avoid this difficulty the Gauss-Newton method, also known as scoring, has been sug-
gested, which takes the expectation of H, the Fisher information matrix, with respect to the
whole sample space. Besides the high computational costs, this approach experiences prob-
lems for singular or near singular estimates for this matrix causing the likelihood to actually
decrease or to converge only very slowly.

In order to avoid these practical problems very often the prior and posterior distributions
are assumed to be Gaussian which simplifies the inference process since the distributions
involved can be expressed analytically rather than approximately. In such a case Bayesian
inference is equivalent to the Kalman filter which will be discussed further in the context of

state space models in Chapter 6.

2.2.2 The Bootstrap approach

One problematic point with maximum likelihood is the assumption regarding a highly peaked

likelihood function, usually idealised to a delta function representing a single point. Instead
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of such an estimator a Gaussian approximation could be used, for which its variance gives
an idea about the certainty of the estimate of the most likely solution. However, for the
general case where the sampling statistics is unknown the Gaussian approximation might not
be appropriate. In this case the Bootstrap approach is a powerful alternative tool. By using
the Bootstrap approach empirical error bars can be estimated as an approximation for the
width of the likelihood function (Zoubir and Boashash, 1998; Hall, 1992).

Since the Bootstrap approach will be used here on several occasions its main concept is
briefly introduced in the following. A non-parametric bootstrap is based on a set X = {z,};
of N* data points for which a statistic 6 of interest needs to be estimated. Such an estimate
= 6(X) can be obtained with the following procedure:

1. Create N Bootstrap sample sets of N* samples each by uniform sampling from & with
replacement.

2. Compute the statistic of interest 6@ for each Bootstrap sample s = 1,...,N.

3. For N > 100 the 0() represent approximately the distribution of #. Assuming a normal
distribution for 6 the estimator @ is given as the mean  of all §) with empirical

standard error &y:

j= X EN:Q(%') B ol i(e(i) —h)2. (2.8)
K= N=d
For a non-normal case the percentile approach can be used: all 6 are ordered as-
cendingly; the lower bound for the (1 — ) x 100 confidence interval is the value at
position (a/2) x N in this ranking, the corresponding upper value is given at position
(1—a/2) x N.

2.3 Model evaluation

After estimating the model parameters it is necessary to test the validity of the established
model. One approach is that already mentioned in Section 1.2.2; estimation of the training
and generalisation performance with several quantitative measures. Some of the most com-
mon ones are briefly summarised next. After this another approach will be discussed which
evaluates the quality of a model compared to a hypothesis about the nature of the time series

under investigation.

2.3.1 Performance measures

Using a quantitative measure allows to compare the quality of the model on training and

validation data. This is necessary in order to determine if the model has generalised the
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structure or simply memorised the peculiarities in the training data. In general a model can
fit the training data very well using an arbitrary number of model parameters and sufficient
training time. However, using too many parameters, or equivalently an overcomplex model,
will achieve a poor performance on unseen data, since the model will have fitted also the noise
in the training data. This behaviour is called overfitting and can be avoided by regularising
and restricting the model complexity.

Nevertheless, overfitting can also take place when one model is repeatedly validated on the
same set for different parameters and finally the best model is chosen. Then the validation
set became actually part of the training process and does not give necessarily good estimates
of the generalisation error.

One example of a commonly used performance measure for predictive models is the mean
squared error (MSE) assuming that the distribution of the forecasting error is Gaussian. The

MSE is the average squared error for the predictions &; = E[z; | ®;1]:

T
1
BEuse = = Y (@ — &)°. (2.9)
T =1

The related normalised mean squared error (NMSE) represents the normalisation by the
naive predictor which takes for each time series value of the test set the mean of the training

set:

Z!{:l(mt S :f:t)z
T s
i (e — AE")?

A more appropriate quality measure for probabilistic models is to use the likelihood £(0) =

EnMSE = ; (2.10)

p(Xr|0) which gives the probability that a particular model has generated the observed
data. In fact, it can be shown that the mean square error is part of the likelihood for a
Gaussian model. However, it is difficult to compare the log-likelihood for models of different
complexity. A related diagnostic measure for non-Gaussian distributions has been developed
by Diebold et al. (1998):

Tt
P(X <ol ®r)= [ Pla|®)ds (2.11)

—00
which is the probability of the model to obtain a value less than or equal to the observation
x;. For a valid predictive distribution, P should be uniformly distributed with zero autocor-
relation. This is relevant in case the conditional distribution p(z441 | ®¢) is not Gaussian-like
but bimodal, for instance. Due to its Gaussian assumption the mean squared error is then
practically useless.

Besides calculating such error measures on training and validation data, it makes sense
to compare the performance of the model with other conventional techniques and naive

predictors in order to check whether superior performance has been achieved.
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2.3.2 Hypothesis testing

An approach to evaluate descriptive in contrast to forecasting models can be based on ac-
cepting or rejecting a hypothesis. A so-called null hypothesis is made about the generating
process of the data (Theiler et al., 1992). Besides this hypothesis a discriminating statistic
6 is needed which quantifies some aspect of the time series by a certain real number. Then,
the statistic is computed for the original data and compared with the one expected under the
null hypothesis. If the difference is significant, the null hypothesis can be rejected.

For financial prices a very general null hypothesis is the random walk which means that
the returns are generated by an i.i.d. random process. A further restriction can be made
regarding a specific distribution of this process such as a Gaussian. In this thesis we will test
descriptive statistics for the original data against three types of datasets. which are called
surrogate data, according to the term used by Theiler.

The first type of surrogate data corresponds to Gaussian white noise with the sample
mean and variance of the original time series. Such a dataset contains therefore no temporal
information. A second type is the original time series with the sign of each data point is
flipped randomly, suggested by Weigend (1999). This destroys directional structure while
amplitude correlations remain intact.

To test if a certain diagnostic statistic is due to linear or nonlinear structure in the data a
third type of surrogate data can be employed. The nonlinear temporal structure is removed
by randomising the phase in a Fourier representation of the data while all linear correlations
are still present.

A fourth type of surrogate data can be used when all temporal structure needs to be
destroyed while the distribution should be kept intact. Then a surrogate can be created by

sampling uniformly with replacement from the original time series.
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Chapter 3

Deterministic Modelling

In the first part of the thesis, we adopt the deterministic approach for analysing financial time
series. The focus is therefore on the nonlinearity in the dynamics while noise is assumed to be
statistically insignificant. In the following we briefly introduce the background of nonlinear
dynamical deterministic systems and describe and apply tests to detect nonlinearity and to
characterise the underlying deterministic generator. We investigate if this methodology is
applicable for financial time series especially in the context of nonstationarity and noise.
Specifically, we will estimate correlation integrals, and based on that, fractal dimensions.
Working mainly with univariate time series the embedding approach will be applied using

the delay coordinate method and the singular spectrum approach.

3.1 Introduction

An explanation why the theory of dynamical systems has attracted so much interest in the
recent years in finance is twofold. At first, there is the recognition of the failure of the Random
walk model to explain empirical phenomena such as volatility clustering and extreme events,
such as crashes. Second, nonlinear dynamical deterministic systems can produce ‘random’
looking time series despite each value being completely determined by previous one. This
qualitatively different behaviour compared to linear systems stems from the nonlinearity
and the unproportional reaction to changes in the system’s input. Furthermore, with the
additional property of sensitivity to initial conditions their long-term behaviour becomes
unpredictable.

With the appearance of some practical algorithms to quantify the behaviour of nonlinear
deterministic systems, e.g., via dimension and Lyapunov estimates (Grassberger, 1983; Wolf
et al., 1985) and sufficient computing power to realise these algorithms the capital markets
became a challenging field of study in the aftermath of the stock market crash in 1987. Ele-
ments of dynamical systems theory started to emerge in economics, finance and social sciences

in order to explain phenomena such as crowd behaviour leading to panics and crashes (Loistl
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and Betz, 1994; Vaga, 1990; Peters, 1991). However, a clear definition for chaos actually
still does not exist. Specific studies have dealt, for instance, with detecting nonlinearity. one
pre-requisite for chaos, and reported slightly positive identification (Hsieh, 1991: Scheinkman
and LeBaron, 1989).

The motivation for reviewing the deterministic concept is to provide some tools for data
analysis in order to get an idea about the dimensionality of the system which has been
creating the data. This can then be used in the modeling process, for instance, for matching
the system complexity with the model complexity.

The main character of this approach is the assumption of a low-dimensional hidden deter-
ministic generator which produces the observations. With the embedding approach the aim
is to reconstruct a space topologically equivalent to the phase space, the embedding space, in

order to investigate properties of the system. This will be outlined next in more detajl.

3.2 Dynamical systems

In contrast to stochastic processes, the evolution of a deterministic system can theoretically
be completely described by a set of differential equations of the form

dz(t)
dt

&(t) = = F(z) (3.1)

where z is an element of the phase space S C RP, which is the space of all states the
system can evolve in. With that the current state of the system is fully determined by its
previous one. Since observations made from real world systems are usually at discrete times,
the differential equation (3.1) is modified to an explicit functional dependency of the current

state x; at time ¢ on the previous state:

Ty = f({l?f__l) (32)

Unfortunately, for real-world systems a noise-free trajectory is impossible due to, for instance
measurement and truncation errors. Furthermore for more complex systems the underlying
equations are usually unknown, the phase space is not accessible and its dimension is often
not known neither. However, usually one or more variables generated by the system over
time are observable. This can be understood as a projection from the higher-dimensional
phase space to the (usually) one-dimensional time domain, resulting in a scalar time series.

In the context of capital markets such a projection could be, for instance, the currency
exchange rate between two countries. Economists believe that the exchange rate reflects
numerous factors influencing the system of economic interaction of the two countries, e.g..
differences in the general economic situation, interest rates, consumer prices. working produc-

tivity, trade balance and political stability. While it is not feasible to know all the relevant
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factors nor to measure them precisely, the exchange rate is measurable at a relatively high
frequency and accuracy.

In this thesis we are interested in characterisation and forecasting based on the scalar
time series. Therefore it is useful to reconstruct the unknown phase space by deriving and
combining relevant information from the immediate past for every point in the time series.
This process is called embedding and represents a mapping of the observed time series into
a higher-dimensional embedding space. According to Whitney’s embedding theorem such a
reconstruction results in a topologically equivalent space under appropriate conditions and
can therefore be used for an analysis of the system.

Eckmann and Ruelle (1985) suggested as an embedding to take the current value z; of

the time series together with some higher-order differences’:
= 1 2 dg—1
Ty = ($tav :rt'.'v $£,...,v .’Bt) (33)

where dp denotes the dimension of the embedding, therefore called embedding dimension.
Unfortunately, for noisy time series this will amplify the noise to the level of the signal’s
amplitude (Loistl and Betz, 1994). Due to the high amount of noise in financial data this
method seems not to be applicable and is therefore not used here.

A more robust approach is the concept of delay coordinate vectors, introduced by Packard
et al. (1980)?. There an embedding or delay vector x; € RE is constructed by putting
together dp past values:

Ty = (mta Ti—1yenes $t~(d5_1)r] (3.4)

with the embedding delay T € N,7 > 1 representing the time difference between the compo-
nents within the embedding vector.

A third possibility for an embedding is to use principal and independent components
which will be discussed in more detail later in the context of static factor models. These
techniques give a valid embedding since they represent linear and noise-free transformations
of the data. In that way no information is lost and the dynamics are not altered.

For all these embedding approaches there are certain requirements concerning the em-
bedding parameters in order to achieve a proper embedding. For instance, the embedding
dimension dg has to fulfill the relation to the (unknown) fractal dimension D of the system
introduced by Mané (1981)

dg > 2Dp + 1. (3.5)

The fractal dimension Df represents the number of degress of freedom used by the system
and is therefore unknown. It was proven by Takens (1981) that for an embedding dimension

fulfilling the above condition the dynamics of a stationary system can be reconstructed. This

IThe k-th order difference is defined for z. as Vrz, = VE~ g, — V¥ g,y with Vo) = z¢
2The use of previous time series values for prediction can be traced back to Yule (1927) who used this
approach for the famous sunspot forecasting example
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Figure 3.1: Phase space (left) and embedding space (right) with embedding dimension dg = 2
(for visual purpose) and delay 7 = 3 reconstructed for the sampled y-coordinate of the Lorenz
time series

is done by embedding an infinite long and noise free time series generated by the system into
a dp-dimensional embedding space via Equation (3.4).

For an appropriate value for the embedding delay 7 there exist two main constraints. If
7 is too small, the vector components are too close together and the resulting embedding
vectors are grouped around the identity line in R%2. With a 7 too big, information will be
lost from values between z; and z;_, or, even more important, the coordinates belong to
different states in the phase space.

As a practical choice it was suggested to take, for instance, the first zero-crossing of
the autocorrelation function as the embedding delay (Schuster, 1994). Still, this only ensures
linear independence between the components. A similar method which takes also nonlinearity
into account is to choose the first local minimum of the mutual information of delayed versions
of the time series (Fraser and Swinney, 1986).

In order to test for nonlinear relationships in the data the visual approach of phase plots
can be used in which the coordinates of the state space vectors are plotted against each other.
Strong deterministic structure can be detected with phase plots easily since the state space
vectors will be restricted to a lower-dimensional set, called atiractor, in contrast to stochastic
systems which will fill out the whole space eventually.

One example of a three-dimensional nonlinear deterministic system is the Lorenz model
developed in the context of weather simulation and forecast (Lorenz, 1963). This model is
given by set of three differential equations: = sly—z),y=rz—y—2zzand 2 =zy— bz
with parameters r = 28, b = 8/3 and s = 10. The three-dimensional phase space and the

embedding space reconstructed from a scalar time series 3 is shown in Figure 3.1.

3A time series of 4000 points was generated via a 4th-order Runge-Kutta integration using dt = 0.01 and
a sampling of every tenth y-coorcinate.
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Figure 3.2: Two-dimensional embedding for consecutive S&P 500 prices p; (left) and returns
r (right) thus 7 = 1

In comparison to the plots for the Lorenz model, Figure 3.2 shows for the S&P 500 index
the results of the two-dimensional embedding for the log prices and for the corresponding
returns with embedding delay 7 = 1. This value has been chosen since financial return time
series do usually not possess significant autocorrelation. In contrast to the low-dimensional
Lorenz system no ‘regular’ structure can be recognised here. The embedded returns seem to
be a Gaussian-like cloud of points, therefore the embedded log prices are located around the

diagonal.

3.3 Dimension estimation

Two main techniques are commonly used to determine the dimensionality of a system for
characterising and forecasting purposes. The first method is the delay coordinate method
combined with approximations of the fractal dimension of the system via information and
correlation dimension. The second uses the singular systems approach to approximate the
rank of the covariance matrix as the dimensionality of the system representing the signal
separated from the noise. Here we focus on the first approach only.

The concept of fractal dimensions was developed by Hausdorff (1919) in order to quantify
nonlinear correlation in dynamical systems which leads to a dynamics which restricts the
trajectory of the system to a subspace called a manifold of a lower fractional dimension.
Mandelbrot introduced for this the term ‘fractal dimension’ and showed its applicability for
characterising several artificial and natural systems (Mandelbrot, 1982).

For the purpose of this thesis we need to restrict the attention to practical estimators of
the fractal dimension Dg of a system,c for which several methods have been developed. The
intuitive way to determine dimensional measures is to compute the number of points within

a hypercube of a given radius or vice versa to determine the radius necessary to contain a
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fixed number of neighbours and to determine the scaling behaviour of these numbers.

3.3.1 Information dimension

The information dimension is one practical estimator for the fractal dimension of a system.
Central in this approach is the distribution of point distances in the embedding space as an
estimate for the probability of obtaining a point in a certain region of that space. For this
purpose the local density n;(r) at a d-dimensional point z; in the embedding space is defined

as the expectation of the number of points in a neighborhood around z; of radius r:

ni(r) = lim —— Z O(r — ||lz; — ;1)) (3.6)

N—ooco N
J =1,j#1

with the Heaviside unit-step function ©

1 s>0
O(s) = (3.7)
0 otherwise.
and the Euclidean norm as the distance measure ||-||. The scaling behaviour of the expectation
of the log of this local density can now be investigated in a log-log plot for different radii r.
The slope of this scaling behaviour for r approaching zero defines the information dimension:

D = — lim E[].Og ‘ni('f')] )
g logr

(3.8)

Due to the log used inside the expectation, the information dimension can also be seen as a

measure for how much information is necessary to localise a point on the attractor.

3.3.2 Correlation dimension

Grassberger (1983) suggested approximating the fractal dimension by the correlation dimen-

sion. The so-called correlation integral C(r) is defined as the expectation of the local density
ni(r):

C(r) = E[n(r)] = lirglmﬁz:n, (3.9)

In contrast to the information dimension, here the expectation is taken before applying the
log transform. With that the correlation integral C(r) is equivalent to inverse cumulative
histogram of the distribution of distances. It can therefore be calculated with the histogram
approach for density estimation which will be discussed in Section 4.2.2. The correlation
dimension D is now defined as the scaling behaviour of the correlation integrals in the limit

ofr = 0:
C log E[n;
Dy = lim ___log (r) = lim - e 0 [ (T)]

= (3.10)
r—0 logr r—0  logr
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Figure 3.3: Correlation integral estimates for various algorithm variants for the Lorenz time
series with dg = 2,...,10, 7 = 3 and ¢ = 19. Top row: Log of the mean correlation integral
log E[C(r)] (left) and expected log correlation integral E[log C(r)] against logr (middle) and
log number of neighbours log N against expected log radius E[log 7(N)] (right), bottom row:
the corresponding local gradient with respect to logr.

3.3.3 Nearest neighbour approach

Unfortunately, in experimental situations with only a limited number of available data both
methods suffer from averaging over all n;(r) for a given radius r. For a small enough radius
rmin there are not enough data points to represent the correct saling behaviour. The same
happens near the attractor border for a radius ryq.. There the scaling behaviour is distortet.
However, inside the region [Fymin, Tmaz] the scaling law should hold. So if this interval could be
determined an improvement in the estimation of the fractal dimension can be made (Holzfuss,
1987). Therefore the method of nearest neighbours (NN) was proposed where the radius is
determined which contains a given number of neighbours:
log N

Ry = NS0 E[logr(N)]

(3.11)

This avoids choosing a too small or too big radius and rather estimates these limits automat-
ically, as for instance rmin can be determined as the average radius from a data point to the

closest next one.

3.3.4 Comparison

Figure 3.3 shows, for the Lorenz example, the correlation integrals and number of neighbours

versus the cube radius together with the corresponding slopes. Note that the algorithms used
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only 4000 data points and that the estimated local gradient amplifies small datasize effects.
Comparing these methods we found, first, that all algorithms estimate the fractal dimension
in the region [—3, 0] as being approximately 2.0 for a growing embedding dimension, however
with different accuracy.

For instance, the information dimension shows better scaling properties than the correla-
tion dimension and the method of nearest neighbours gives clearer results in terms of a longer
linear part and slope closer to the true value. In the figure it can be seen, furthermore, that
the slopes for the information dimension and the method of nearest neighbours are less spread
and better behaved at the borders of the scaling region than for the correlation dimension.
It also seems that the nearest neighbour approach is more constant in the slopes for smaller
radii.

Similar results have been achieved as well for other low-dimensional examples of nonlin-
ear deterministic maps. Therefore the algorithm for estimating the information dimension
estimated via the nearest neighbour method will be primarily used for the simulations with

financial data.

Noise impact on the dimension estimate

To be more realistic and to allow some noise in the time series it is useful to assess the impact
of noise for the estimation of the fractal dimension. The experiment was therefore repeated
using 1% and 25% additive observational noise as well as 1% process noise for the Lorenz
time series. Figure 3.4 shows the results using the NN approach where it can be seen that
the noise has the effect of increasing the calculated dimension. While the 1% observational
noise lifts the estimates for the dimension within the linear region just slightly above 2, the
1% process noise results in a divergence of the dimension estimate in a similar way as the

25% observational noise.

Surrogate datasets

As introduced in Section 2.3.2 it is necessary to apply such nonlinear algorithms on surrogate
datasets in order to discuss the results properly considering, for example, the cause of a found
convergence in the estimate. Therefore two different types of surrogates have been created
for the Lorenz time series.

For the first version the phases in a Fourier transform were shuffled. The second series
was created by an autoregressive model of order 4 with the AR coefficients estimated from
the original data. Figure 3.5 shows a time series segment of the original and the surrogate
data as well as the slopes for the different test cases against the embedding dimension. There
a saturation in the slope of the correlation integral can be observed for the original time

series beginning with embedding dimension dg = 5 (note that this confirms the embedding
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Figure 3.4: Estimates for the correlation integral for a noisy Lorenz time series: 1% process
(left), 1 % (middle) and 25 % (right) observational noise
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Figure 3.5: Segment of 200 points of the original Lorenz time series together with two sur-
rogate datasets (left) and the D; estimates for the fractal dimension (by the NN approach)
for growing embedding dimension for the original time series and the two surrogates (right).
One surrogate is a phase-shuffled version, the other is an AR(4) filtered Gaussian noise series
with the same linear correlation structure as the original Lorenz time series

requirement dg > 2D + 1) resulting in a value of 2.03 & 0.02 averaged over dg = 5,...,8,
quite close to the analytical value of Dy = 2.05 (Grassberger, 1983). In contrast, the dimen-
sion estimate for the surrogate datasets seems to grow almost linearly with the embedding
dimension as expected. Concerning the noise it can be noticed that for the low-level of 1%
only a slight increase in the estimated dimension can be noticed. However, for 25% noise the
result is not different from one obtained for a surrogate dataset. This shows that noise with

an arbitrary amplitude will finally mask the deterministic content in the data completely.
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Figure 3.6: Correlation integral estimates for the three algorithms for IBM returns with
dg = 2,...,20, 7 = 1 and t = 1. Top: mean correlation integral log E[C(r)] (left) and
expected correlation integral E[log C(r)] against logr (middle) and number of neighbours N
against E[logr(N)] (right). Bottom: corresponding local gradients with respect to logr

Financial dataset

In order to test the ability of these algorithms with financial data the IBM returns time series
was choosen (set 1 with 4981 data points) and the correlation integrals C(r) and the cube
sizes 7(IN') were computed for an embedding dimension dg = 2,...,20 and a range of radii r
and numbers of neighbours N.

Figure 3.6 contains the results for the original data in terms of the correlation integrals
and their slopes. There it can be noticed that the information dimension for both algorithm
variants does not saturate for an increasing embedding dimension. However, the slope for the
correlation dimension seems to reach a plateau at around 6 although the estimates look more
‘erratic’ than those for the information dimension. The most reliable algorithm seems to be
the nearest neighbour method since there the slopes are smoother compared to the other two
approaches.

In order to assess the significance of these results the three algorithms were also applied
to surrogate data created by shuffling the IBM returns. Figure 3.7 shows slopes for the
information dimension similar to those for the original data. In contrast, the correlation
dimension seems to grow stronger with the embedding dimension for the surrogate than for
the original data. However, since the underlying correlation integrals exhibit a less strongly

linear scaling behaviour in the log-log plot these results have to be treated carefully.
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Figure 3.7: Correlation integral estimates for the three algorithms for surrogate IBM returns
with dg = 2,...,20, 7 = 1 and ¢t = 1. Top: mean correlation integral log E[C(r)] (left) and
expected correlation integral E[log C(r)] against logr (middle) and number of neighbours N
against E[logr(N)] (right). Bottom: corresponding local gradients with respect to logr

Computing the slope automatically by looking for the linear scaling region within the log-
log plot then it can be seen in Figure 3.8 that the best linear scaling region has been achieved
by the nearest neighbour method for computing the information dimension. This can be
concluded from the small error bar (the standard deviation of a least-squares fit through
all data points in the linear scaling region) and the relatively smooth increase of the slope
compared to the more ‘erratic’ behaviour of the other methods.

In a summary, the algorithms tested for dimensional estimates are not able to distinguish
between the financial data in their original and surrogate form. The correlation dimension
estimates seem to vary a lot, is less well behaved than the estimates for the other approaches.
The information dimension estimate seems to grow slower for the original data than for the
surrgate ones, although a saturation cannot be confirmed. All methods suffer heavily from
the small size of the linear region which violates first the intention to determine the ‘usual’
scaling behaviour which actually requires a scaling behaviour which exists over the majority
of the range. The second point is with such small linear ranges the calculated dimension

estimates are prone to error due to the small number of points.
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Figure 3.8: Slopes for the three algorithms for the fractal dimension estimates of original (left)
and surrogate (right) IBM returns (The algorithm for the correlation dimension calculates
log E[C(r)], the one for the information dimension determines E[log C(r)] and the method
of the nearest neighbours computes E[logr(N)]).

Pointwise correlation dimension for nonstationary time series

Beside the noise, another important empirical issue needs to be tested as well; nonstationar-
ity. Skinner et al. (1993) suggested the method of a pointwise estimate for the correlation
dimension (PD2). There the scaling behaviour is determined for a number of reference points
in order to keep it computationally feasible. These reference points are fairly evenly spread
over time. In the stationary case the mean of the dimension estimates over all reference
points is called the averaged pointwise dimension and approximates the information dimen-
sion (Holzfuss, 1987).

We extend this approach to using reference vectors within a moving time window. Figure
3.9 shows the results using this algorithm on nonstationary data. The time series consists of
three consecutive segments of 4000 points each, starting with the phase-shuffled surrogate,
followed by the original Lorenz time series and the AR(4) Gaussian surrogate. The pointwise
dimension was estimated for embedding parameters dg = 2,...,8, 7 =3, t = 10, Ny = 10%
and a moving time window of 1000 points. Removing the five ‘outliers’ greater than four in
® —2.00+022.

This algorithm has been applied to the financial return time series using a maximum

the middle segment an average dimension is calculated as pDy

embedding dimension of dg = 20, an embedding delay 7 = 1 and a set of 40% reference
points. As an example, Figure 3.10 shows the results for the IBM dataset. It can be seen
that the correlation integral approach (N (7)) estimates consistently higher slopes respectively
dimensions than the nearest neighbour approach (r(N)). An interesting finding is that the
latter produces a similar mean but with a smaller variance for the scrambled data. In contrast,
the N(r) approach achieves a slightly higher average on the scrambled data with a similar

mean.
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Figure 3.9: Estimates for the pointwise correlation dimension for a nonstationary time series
consisting of three subsets each of 4000 points: the Lorenz time series as the middle segment.
the phase-shuffled surrogate on the left and the linear surrogate of this series on the right
side
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Figure 3.10: Estimates for the pointwise correlation dimension for set 1 of IBM returns using
the original returns (left) and the scrambled version (right) using both the correlation integral
approach (N(r)) and the nearest neighbour approach (r(N))

This behaviour has been confirmed with the other financial data tested. This difference
in the results on the original and scrambled data is not large enough to confirm the presence
of nonlinear structure in the data. Furthermore, the variation in the statistics seems to be
random and not temporally emphasised. For this behaviour two explanations are possible.
Bither there is no nonlinearity in the data at all or the nonlinear relationships are changing

so fast that they cannot be traced using daily data only.

3.4 Discussion

This chapter summarised the concept of deterministic dynamical systems applied to time

series analysis. Under the premise of the availability of noise-free data this approach is theo-
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retically able to reveal a nonlinear systems dynamics. One important tool in this framework
is the estimation of the numbers of degrees of freedom respectively the dimension of the data
generator by the approach of the correlation and information dimensions.

The motivation to use this concept for the analysis of financial data stems from the obser-
vation that random looking systems can actually have very simple deterministic equations.
The question was therefore if there is any nonlinear dynamics in financial prices which could
cause observed peculiar behaviour, particularly in situations such as stock market crashes,
for instance.

Using the techniques of dimension estimation we have demonstrated that there is no indi-
cation for a low-dimensional attractor for daily financial prices or returns. In the performed
experiments either the dimension estimates did not converge or similar estimates were also
obtained for randomised data.

Apart from the possibility of a simple lack of the assumed nonlinear dynamics one expla-
nation for these findings might be the presence of noise masking the deterministic relations.
Such an effect has been confirmed by tests on synthetic data. There it has been shown that
observational noise and to a much stronger degree process noise raise the dimension estimate
and finally lead to non-convergence for the estimate.

On a daily or longer time scale it seems therefore unlikely to identify chaos. Since intra-
day data were not tested here it could be speculated that nonlinear relationships could be
present on a shorter time.

However, here another direction is taken using the same daily time scale. Since noise
seems to be an important factor for the results found, it would be useful to take the noise
explicitly into account and allow therefore a probabilistic dependency of the current time
series value from the past. This paradigm will be used throughout the remainder of this
thesis. First, we concentrate on the modelling of the noise without any assumptions about

dependencies. Finally, linear and nonlinear dynamics will be allowed, too.
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Chapter 4

Density modelling

In the second part of the thesis we accept the intrinsic stochastic nature of the process which
generates financial returns. This means we allow noise to enter the generating process and
therefore model it in a probabilistic way, hence the need to characterise the distribution of
financial returns.

The aim for this chapter is therefore to confirm or reject common hypotheses about the
nature of financial distributions and to find an efficient way of modelling those densities since
this will be necessary later for more complex models. Beside marginal distributions we are
also interested in joint and conditional distributions. Looking for a fewer number of factors
which explain a huge number of simultaneous observations and to separate process from
observational noise is the aim of static factor models. These will be explored in the following
chapter. Finally, allowing a dynamics for the return generating process we will propose a
nonlinear state space model for tracking the time-varying non-Gaussian return distribution.

Since density modelling is an essential tool for analysing stochastic time series and plays
an important role in finance e.g., for option pricing and risk analysis, we explore in this
chapter techniques for estimating the density of financial returns. Distributions of price
changes are modeled, for example, in order to analyse the return and risk of an investment.
This translates into a prediction for the mean and the spread of the distribution of returns of
investment. Furthermore, such returns are often assumed to be independent and identically
distributed and follow, for instance, a Gaussian distribution. These assumptions are made
in several models of capital markets as e.g., the Efficient Market Hypothesis (Fama, 1965),
Modern Portfolio Theory (Markowitz, 1952) and the Capital Asset Price Theory.

Using a set of representative financial time series we will demonstrate empirical evidence
for non-iid behaviour and specifically, the non-Gaussianity of returns. These findings are the

motivation for a nonlinear approach to model the evolution of the predictive distribution in

a later chapter.



CHAPTER 4. DENSITY MODELLING
4.1 Introduction

A discrete-time stochastic or random process X is a collection {Xt:t=0+1.£2 .. .} of
time-indexed random variables X;. In the context of stochastic modelling we refer to a
finite realisation X = {z;}7_, of such a random process as a time series. Thus a stochastic
time series is only partially determined by past values and should therefore be modeled as a
probability density function conditional on past values.

A stochastic process is called strictly stationary if the joint distribution of a finite-
dimensional subset of all families remains constant. The weak form of stationarity requires
only constant first and second order moments.

In this chapter we are interested in characterising a stochastic process by its underlying
distribution. Beside a brief introduction to relevant elements of distribution theory, meth-

ods are investigated for modelling of unconditional and conditional distributions of financial

returns.

4.1.1 Distribution, density and characteristic functions

The distribution of a continuous random variable X can be fully specified either by its
cumulative distribution function or the characteristic function. The cumulative distribution
function (c.d.f.) determines the probability P to obtain a value for X less than a specific
value z: F(z) = P(X < z) € [0,1]. With that F' is monotone and its derivative with respect
to z defines the probability density function p(z):

dF(z)
= ; 4.1
p(z) = — (4.1)
Due to the properties of F this is always greater or equal to zero and integrates to one:
o0
osp@ <l [ pa)ds=1 (42)
—00

The characteristic function ®(t) of a distribution is the expectation of e'™X for t € R under
p(z), the Fourier transform of the probability density function:
m Y
() = / €' p(z) dz. (4.3)
—00
Unlike the density the characteristic function is always guaranteed to exist'. In the case that
the p.d.f. does exist as well, it can be expressed by the corresponding inverse transform
1 0 —ilz
== e " O(t)dt. (4.4)
pla) = 5= [ et
Since the p(z) has to be real, ®(t) and ®(—t) are complex conjugate? to each other. It follows

furthermore, that ®(0) = 1. This means ®(t) needs to be considered only for ¢ > 0 which

IFor the class of stable Paretian distributions one cannot write in general a closed form for the probability

density function (Cp. with Section (4.3.1)). . . | '
2A complex conjugate peir ®(t) and ®(—t) differs just in the sign of the imaginary part therefore

R{®(t)} = R{®(—1)} and 3{2(t)} = —I{2(-1)}.
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allows a further simplification in order to get real values for the p.d.f. after the numerical

transform of the characteristic function:

p(z) = % -/:o cos(tz)R{P(¢)} + sin(tz)S{D(¢)} dt. (4.5)

The probability density, the cumulative distribution and the characteristic function are unique
representations of a distribution. In the following some summaries about distributions are

introduced which can often be used in case the full p.d.f. is, for instance, to difficult to derive.

4.1.2 Measures, moments and cumulants

For distributions with their probability mass concentrated in one particular area a useful
description can be made in terms of the location of this concentration. One important measure
for this is, for instance, the mean p which is the expectation of X under its distribution:

o0

p= [ zp(z) dz (4.6)

—00
A more robust feature is the median z,, which divides the cumulative probability into two
equal parts:

1

F(zm) =1~ Flam) = 5. (4.7)

A third important quantity is the mode T.0de = arg max, p(z) as the z with a corresponding
maximum in p(z). If beside this global maximum there are no further local maxima the
distribution is unimodal. In case that p(z) has several local maxima the distribution is
multi-modal with each local mode defined via p(Zmode) = 0 and H(Zmode) < 0.

Beside these measures of location unimodal distributions can also be described in terms of
dispersion about its location. For instance, the average absolute deviation from the median
T, defines the mean deviation v as

{oo]
= f |z — zm| p(z) dz (4.8)
—00
while the variance or squared standard deviation o? represents the mean squared distance

from the mean p:

g2 = /'00 (z — p)? p(z) dz. (4.9)

-0
Generalising this concept of measures of location and dispersion leads to the moments of the
distribution. The statistical moment M, about zero of order n € Ny is the expectation of X™
under its distribution: .
M, = / z" p(z) dz. (4.10)
—0o0
This determines My = 1 and M; = p which in turn is used to define the central moments

m,, about the mean of order n € N:

= [ @yl da. (4.11)
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With that it follows m; = 0 and my = o2, Apart from this descriptive purpose, the moments
can be used to approximate the characteristic function since they appear as coefficients in a

power series expansion of ®(t) using the Taylor series expansion of e't*:

o~ @ e o~ (it)"
®(t) = Z = z" p(z) dz =Z Y M,,. (4.12)
n=0 st n=0
Naturally, the moments can be derived from the characteristic function via
And"O(t)
M, = (=i)" : %
Rt U B » (4.13)

Beside the moments another set of descriptive figures exists which can be derived from the

log of the characteristic function:

nd" log ®(t)

K’ﬂ = (‘—i) dt”

(4.14)

t=0

Thus, the cumulants are therefore the coefficients in a power series expansion of log @(t):

("Bn Ko (4.15)

log ®(t) = i
n=1

Combining now Equation (4.12) and (4.14) the first four cumulants can be expressed via the

moments as
2 2
kKi=DM =pu, Ky=ma=0" K3=m3, K4=mg—3m3, (4.16)

which will be used in this thesis. For notational convenience we also write v and & to
denote the third and fourth cumulant respectively. Furthermore, higher-order cumulants are
often normalised by the corresponding power of the standard deviation in order to get a
dimensionless quantity:

Gy =k fo™, (4.17)

a form we will adopt here as well. This is equivalent of normalising the data to zero mean
and unit variance before estimating the cumulants.

Using cumulants instead of moments is motivated by the properties of cumulants. All of
them are additive compared to just first two moments. However, although cumulants repre-
sent characteristic features of a distribution, they as well as the moments do not determine
a distribution completely, since two different distributions can have the same set of moments
(Stuart and Ord, 1994).

Furthermore, moments and cumulants do not always exist since the integrals in Equation
(4.10) do not necessarily converge for every distribution3. If they do exist they are a set of
constants describing the distribution in a useful way. Beside the mean and the variance two

higher-order cumulants are often used for descriptive purposes.

3For example, the Cauchy distribution p(z) = 77!(1 + z%)~" has no moments at all.
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The third cumulant, the skewness, measures the asymmetry of the distribution around its
mean. A positive skewness indicates a heavier tail (including more probability ma-s) towards
positive values and wvice versa. Moreover, the fourth cumulant, the kurtosis. represents the
relative peakedness or flatness of the distribution compared to the normal one. The bigger
the kurtosis the more probability is concentrated around the centre and in the extreme tails
of the distribution compared to the normal distribution.

In the financial context these cumulants are of interest since distributions of asset returns
are very often characterised by the mean as the expected return and the variance accounting
for the risk of an investment. Furthermore, taking skewness and kurtosis into account for
instance in risk analysis, will achieve more accurate results for non-normal data than using
the variance alone.

In that way cumulants can be used to express non-Gaussianity since for the normal
distribution all but the first two cumulants are zero. Thus, the deviation from zero for
higher-order cumulants can be taken as a measure of the non-Gaussian character of the data.

For multi-variate data cumulants can also be used to quantify dependencies between the
variables since for independent X;, it follows that E[X;, ... X;,] =0 apart from ¢ = -+ = ip.
This can be derived by expressing the characteristic function in terms of cumulants for a
multi-dimensional random vector X = (X,...,Xm). In that case the characteristic function
is defined for t = (t1,...,tm) € R™ as follows

oo p— 00 ,in m
a(t) :/;met[m Ip(@)dz=exp Y S D Kirgati -t (4.18)

n=1 " J1yenin=1

using the kth-order joint cumulant tensor, ki, , .., defined as (Tong, 1990)

T
K'ila-v-:im = Z(_l)p_l(p - 1)! ]E H X‘ij i ]E H Xij (4.19)
p=1 Jj€Ev jEUp
where the summation extends over all partitions (vy,vs,...,vp) of (1,2,...,n). Assuming a

zero first-order cumulant x; = E[X;] = 0 for each X, the second, third and fourth cumulant

tensors are given as

Kij = E[XiX;] (4.20a)
Kijk = ]E[XinXk] (4.20b)
Kijet = B[ XiX; X Xi] — Kijkl — Kikktj — Kitkjk (4.20c)

from which the expressions for marginal cumulants in Equation (4.16) can be recovered using

equal sub-indices.
One important property of cumulants is that they can be estimated from the data without

any prior knowledge about the data. This non-parametric approach has a complexity which
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grows with the number of data points and is in contrast to parametric models which assume a
specific structure of the data. Then their parameters have to be estimated from the observed
data. Due to their implied structure for the data as well as their data-independent complexity
parametric methods are less flexible but more robust against overfitting compared to non-
parametric techniques. For this reason we will also use beside non-parametric techniques
for the estimation of cumulants and density functions some parametric distribution models
which have been suggested for financial returns. Furthermore, we will look at mixture models

as a semi-parametric approach for density estimation as a way to combine the advantages of

each estimation paradigm.

4.2 Non-parametric estimation techniques

Here, cumulants will be used in several ways. Next we will propose a reliable technique
to estimate sample cumulants and investigate their characterisation abilities for the set of
selected financial time series. Afterwards we will explore the use of cumulants to approximate
the characteristic function. Later we will summarise a cumulant-based algorithm to test the
hypothesis of independence in successive financial returns and finally apply with independent
component analysis an algorithm which diagonalises the cumulant tensor of fourth order to

achieve statistically independent sources.

4.2.1 Sample cumulants

For practical purposes sample cumulants are estimated in the usual way by approximating
the expected values as time averages over the whole dataset. Thereby, care has to be taken in
determining the cumulants directly from the data since they are sensitive to extreme values;
the higher the cumulant’s order the more sensitive it is due to the power involved. This limits
their use in the case of relatively short time series.

To avoid this problem we propose using the Bootstrap approach, introduced in Section
2.2, for a reliable estimate of the cumulants. For each of 1000 Bootstrap runs with the
sample size of the original dataset the first four cumulants are calculated for the financial
price returns. Assuming normal distributed cumulant estimates its mean approximates the
true cumulant. Additionally, the standard deviation of the sample cumulants provides an
error bar on the mean estimate.

Figure 4.1 shows the Bootstrap estimates for the first and second sample cumulant for
each dataset. These results are also listed in Appendix D in Table D.1. It can be observed
that the mean is close to zero for all investigated time series. Furthermore, for stock prices
and indices there is a tendency for a positive mean. This can be interpreted as the average
economic growth or price inflation of a financial asset. The only one exception is set 2 for

the DJIA which covers the time of the Great Depression from 1929 until 1933.
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Figure 4.1: First four sample cumulants for all datasets
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Concerning the variance it is interesting to note strong variations between the different
datasets as well as within some of them. This emphasises the importance of a careful segmen-
tation of the data in subsets of second-order quasi-stationarity during the preprocessing (cp.
Section 2.1). Otherwise periods with different variances are averaged which will lead to ques-
tionable results. In summary, the prior of higher variance for commodities and single stocks
compared to aggregated indices, currencies and bonds can be confirmed by the investigated
examples.

For the skewness, it seems to be fair to conclude that all financial series tend to be slightly
skewed though with no dominant direction apart from stock indices which on average seem
to be slightly negatively skewed.

Regarding the kurtosis values significantly greater than zero can be found for all time
series, with especially high values for the stock indices and the commodities. This confirms
the notion of leptocurtic behaviour for financial returns. Summarising the results for all
cumulants, it can be stated that the distribution of Bond returns is close to a Gaussian
while all others investigated financial time series seems to deviate from this distribution
significantly.

Another interesting, though not surprising, feature is the strong correlation in the results
for set 3 and 4 of DJIA and set 1 and 2 of SP500, bearing in mind these sets cover exactly
the same trading period. Since both indices cover the U.S. stock market some correlation
can be expected. Nevertheless, it is remarkable that despite the differences in breadth and
the way these two indices are calculated (cf. Appendix A), the statistical properties seem to

be not significantly affected.

4.2.2 Probability density function

In the following we discuss first kernel-based methods for a non-parametric estimation of the

probability density function and of the characteristic function. Finally, we will investigate the

effect of using a finite number of the cumulants to approximate the characteristic function.
A naive non-parametric estimator for the probability density function p(z) places a Dirac

delta function? at each point z; in the data set:

1 T
pla) =7 )8z — ). (4.21)
i=1

For a practical estimator the delta function is replaced by a kernel K(z) > 0 which takes

points in the neighborhood of z into account:

L 1l (T _
pe)=z) T EK\—— ) (422)

iThe Dirac delta function é is defined via its integral property ff‘jm f(z)d(z — zo) dz = f(xo).
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with h as the kernel width. If the kernel K is a simple threshold function like

1 Jul<05
K(u) = (4.23)
0 otherwise

then Equation (4.22) estimates the histogram which we use here for comparative purposes.

However, this is still a discontinuous representation of the true probability density. A

smoothed estimate can be obtained by using kernels without strict membership functions.

such as the Gaussian kernel
1 1,2

Var

e 2
One important parameter in this kernel approach is the kernel width A which has to be chosen

K(u) = (4.24)

carefully. If it is too small the density estimator will tend to overfit in low-density regions.
while an h too big might smooth out some important characteristics of the density function.
4.2.3 Characteristic function

Using the representation of the probability density function in Equation (4.21) the delta
estimate of the empirical characteristic function ®(t) can be obtained as the Fourier transform

of p(z): _ L T
®5(t) = / i {E Z 6(z — xt)} dz = = Z ettt (4.25)
=09 t=1 f=1

In analogy to using the kernel to approximate the p.d.f. the same can be done here by

replacing the delta function in equation (4.25) with the kernel function K(u) leading to

1 3 7
§ : it K

Th 1[8 ’ (
=

which becomes for the Gaussian kernel from Equation (4.24)

‘”) dz (4.26)

T

i Semmp? L —tewr ] NS i _ g 4.27

B(t) = 2:/ w? dr=e 2 E et = By (t)Ps(t). (4.27)
' Th\/2?r T t=1

This is the convolution of the kernel function K (*5*) with the delta estimate ®4(t) for ®(t)
according to Equation (4.25). This makes it clear that computing the characteristic function
from the data is not more efficient or accurate than the probability density function.
Another method for approximating the characteristic function is to calculate the sample
cumulants and to reconstruct with them the power series defined in Equation (4.15). Since
every non-Gaussian distribution has an infinite number of non-zero coefficients in this power
series, such an approximation suffers from truncating higher-order cumulants which cannot
be reliably determined. This leads to oscillations outside a certain interval around the origin.
Increasing the order of the approximation is unfortunately not of great help since error in

higher-order cumulants brings another imprecision.
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r :
1ignored. For instance, the occurrence of too many extreme values was attributed to a different

mechanism generating the returns. Consequently, these values were usually excluded from
the analysis.

In the early 1960s Mandelbrot proposed using stable Paretian distributions as a wider class
of distributions for modelling financial returns (Mandelbrot, 1963). This includes as special
cases the Gaussian and Cauchy distribution. Recently, another class of stable distributions
has been suggested which includes, for instance, the Weibull and Laplace distribution (Mittnik
and Rachev, 1993). In contrast to the Gaussian both classes of stable distributions have the
ability to model skewed and leptokurtic behaviour in financial returns.

The drawback of such more complex distribution models is the increased effort to fit
their parameters. Here we use the maximum likelihood approach to estimate the model
parameters, which is straightforward for the Gaussian and Laplace distributions since the
parameter solutions can be written down explicitly. For Cauchy and Weibull distributions a
quasi-Newton nonlinear optimisation technique has to be applied in order to maximise the
likelihood.

For the general case of the stable Paretian distribution this needs furthermore a numerical
approximation of the p.d.f. using the inverse Fourier transform of the characteristic function
given in Equation (4.4) to compute the likelihood function and of its derivative with respect
to the model parameters. Here a quasi-Newton optimisation is employed again to obtain
optimal parameter estimates.

Since the maximum likelihood parameters are derived from samples only, the influence
of the sampling error needs to be assessed. Therefore the Bootstrap approach introduced in

Section 2.2.2 is applied to provide error bars for each parameter estimate.

4.3.1 Deterministic summation stable distributions

Two reasons should be pointed out for using stable distributions for modelling asset returns.
The first is their already mentioned ability to model rich behaviour of distributions including
the fat tails and asymmetry which have been observed for financial returns. The second
is that the Generalised Central Limit Theorem points to stable distributions as the only
possible non-trivial limit of normalised sums of independent identically distributed terms
(Nolan, 1999). This means that a linear combination of copies X; of a stable distributed

variable X remains stable up to scaling and shift:
XZap(X1®X2®---®Xn) +bn (4.28)

with a, > 0, b, € R and = denoting distributional equivalence. Using summation as the
operation ® and a deterministic n, the class of stable Paretian distributions appears (some-
times also referred to as Lévy distributions). From this class we look at two special cases.

the Gaussian and the Cauchy distribution.
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Stable Paretian distributions

For the class of stable Paretian distributions one cannot write in general a closed torm for the

probability density function. Nevertheless, the log of its characteristic function is given as

log &(2) = it — |yt|* [1 — iB sgn(t) tan 2 a#l e,20)
it — |yt|* [1 + 4B sgn(t]% loglt|]] a=1

with scaling parameter v > 0, mode § € R and the sign function sgn’. The skewness
B € [-1,1] controls the symmetry of the distribution; hence for B > 0 the distribution is
skewed right and has therefore a longer tail on the right then on the left, and for 8 = 0
we obtain symmetric stable distributions. Note that the skewness represented by 8 is not
identical with the third-order cumulant, although both give usually the same qualitative
result.

The stability index o € (0,2] determines the shape of the distribution: « is the slope of
the tails in a log-log plot and determines the total probability contained in the tails of the
distribution; the smaller « is, the more probability is contained. For a > 1 the mode § is
equal to the mean p otherwise the mean does not exist. All other moments exists only for
a = 2 which produces the normal distribution.

Fama (1965) lists three, unfortunately problematic, methods to estimate the stability
index. First, @ could be determined as the slope of p(z) against z in a double-log plot since
the tails of stable Paretian distribution follow the Pareto law: lim; o0 P(X > z) oc 27®. This
requires a number of observations in the tails not feasible for daily data. As a second method,
range analysis is suggested, which determines the scaling behaviour of the interfractile range
of accumulated returns. However, these statistics are biased for dependencies in the returns.
The third method is sequential analysis, which looks at the scaling of the sample variance for
an increasing sample size. Unfortunately, Fama concluded that this approach gives rather
unreliable results.

Therefore, we estimate the four parameters of the stable distribution with a maximum
likelihood nonlinear optimisation scheme. Chobanov et al. (1996) have applied the maximum
likelihood approach to determine the stable parameters for currency exchange rates. Nolan
(1997) describes in detail the approach and its properties. Thereby the characteristic function
is numerically transformed from the Fourier space into the p.d.f. domain. This allows to
calculate the likelihood for the whole data set. Then the partial derivatives with respect to
the model parameters can be computed numerically (details can be found in Appendix C.1).

In order to estimate also error bars and those parameters the Bootstrap approach is
applied here again. Therefore the maximum likelihood solution is computed for 100 Bootstrap

sample sets drawn from the original returns dataset. For the nonlinear optimisation part the

5The sign function is defined as sgn(z) = + [ i’l?—zldt =—1forz<0,0forz=0and 1 forz>0.
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Figure 4.3: Stable parameters a and f for all datasets

quasi-Newton method is employed. The whole parameter estimation algorithm runs until
convergence of the parameters o, # and 7. The mode § can be computed as the sample
mean /. Assuming a normally distributed parameter statistics we report in Table D.5 the
mean with one standard deviation of the 100 Bootstrap estimates for all datasets. Since
one Bootstrap sample has to be reasonably big (at least 10® data points) and 100 Bootstrap
runs should be performed as a minimum this approach is computationally very intensive.
However, it achieves good results as long as the initial conditions are set properly. Here we
chose to initialise « = 1.8, 8 = 0 and v = 0.5.

Figure 4.3 summarises graphically the results for the stable parameters o and the skewness
parameter 3. Regarding the stability it can be noticed that a majority of the values lies around
the interval [1.7,1.8]. The exceptions are set 2 for the DJIA (Great Depression period), the
British Pound and the bonds time series which have a slightly lower stability.

For the skewness we see a similar outcome as for the third sample cumulants in section
4.2.1. There is a tendency for U. S. stock indices to be negatively skewed while the single
stocks investigated here show positiv skewness. For the bonds and commodities a small
negative bias for the skewness seems to be present. However, here the results differ slightly
from those for the third sample cumulant. This is especially the case for the commodities

were also relatively large error bars have been obtained.

The Gaussian distribution

The Gaussian distribution is the standard distribution for white noise processes due to its
good approximation abilities for many real-world phenomena and its analytical properties
(e.g., being stable under linear transformations, being the limit distribution for the sum of
i i.d. random variables with finite variance). The Gaussian appears as a stable distribution for

5 . TR 2 A oy g e
o = 2 with mean g = & ard variance 0 = 292, Its characteristic function is ®(t) = e~ 27"
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Figure 4.4: Stable distribution estimate for SP500 (left) and GBPUSD (right): Histogram for
set 1 (training) and set 2 (test) together with the numerical approximation of the p.d.f. for
the stable, the Cauchy and the Gaussian distribution fitted on the training set

and the probability density function is given by

1 _r—u)2
p(w;m02)=me 27, (4.30)

The Cauchy distribution
The Cauchy or Lorentzian distribution is a symmetric stable distribution with @ = 1 and
B = 0. Its c.f. is given by ®(t) = *~"*l. From that the probability density is obtained as

5
m (v + (2 —6)?)

Note that § is the mode respectively the median of the distribution and that v and § are not

p(z;0,7) = (4.31)

related to the variance or the mean of the distribution since these do not exist.

The general fitting capabilities of the Gaussian, Cauchy and general stable Paretian dis-
tribution for financial returns is demonstrated for two examples of SP500 and GBPUSD in
Figure 4.4. There neither the Cauchy nor the Gaussian seem to achieve a good modelling
result while the stable Paretian distribution fits the density remarkably well.

The results for the Gaussian, the Cauchy and the stable Paretian distribution for all
datasets in terms of estimated parameters and corresponding negative log-likelihood are in-
cluded in Table D.3, D.7 and D.5. Note that the parameters for the Gaussian are identical

with the first two cumulants in Table D.1. Therefore they are not reported here again.

4.3.2 Random summation stable distributions

If the number of variables n in Equation (4.28) is a random variable itself rather than deter-
ministic the class of random summation stable distributions appears. Chobanov et al. (1996)
motivate this random summation scheme by the assumption that financial markets may

change their probabilistic structure randomly in time. Therefore the price changes should
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Figure 4.5: Random stable distribution estimate for SP500 (left) and GBPUSD (right): His-
togram for set 1 (training) and set 2 (test) together with the pdf estimate for the asymmetric
(a) and symmetric (s) Weibull distribution fitted on the training set

only be accumulated until the time horizon n for which the structure is intact. Modelling
now the time horizon n as a random variable with a geometric distribution leads to the ran-
dom summation scheme in contrast to the deterministic summation for the stable Paretian

distribution family.

The Weibull distribution

One representative of the class of random summation stable distributions is the symmetric

(double-sided) Weibull distribution given by its density function
1 a
plzion ) = sAale - p|e e M=l (4.32)

with scale A > 0, shape parameter o > 0 and shift € R. In case of o < 1 it is defined only
for  # p. The symmetric form assumes that negative and positive returns (after the shift)
have the same distribution. Mittnik and Rachev (1993) report good modelling properties
for the Weibull distribution applied to the S&P 500 stock index compared to several other

parametric distributions including the stable Paretian one.

The Laplace distribution

For a = 1 the symmetric Laplace or double ezponential distribution appears from the Weibull

distribution with its probability density function

A
plain ) = § oM, (439

Figure 4.5 shows the fit for the Weibull distribution on the previously used two datasets
SP500 and GBPUSD. Since the Laplace fit is virtually identical with the Weibull fit (cf. with

the near unity value for @) only the Weibull fit is plotted in its symmetric and asymmetric

form.
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4.4 Mixture models

The limitations of parametric and non-parametric density estimation techniques in terms of
requirements for data or prior knowledge motivate the use of a combination of elements of
both approaches. In contrast to kernel-based techniques, in a mixture model only a small
number of basis functions is used to represent the density. This reduces the computational
cost of computing the p.d.f. and restricts the model complexity. On the other hand. an
arbitrarily large number of kernels still allows a greater flexibility than most parametric
models especially for multi-modal distributions.

Here we are interested in mixture models as an efficient density estimation technique since
this will be needed later in an automated procedure for density representation. Therefore
the standard Gaussian mixture model will be described briefly, first. Then we will present a
mixture model composed of several Gaussian and one Laplace component for which the EM
algorithm will be sketched. Finally, a modified version of the EM algorithm is proposed in
order to allow a distribution estimate with mixture models for weighted samples.

In a mixture model the probability density p(z) is approximated as a sum of M parametrised

density functions p(z | j) weighted by their corresponding prior probabilities P(j):

M
p(z) =Y p(z|3) P()- (4.34)
j=1

The model parameters specifying the component densities and prior probabilities can be
estimated in a maximum likelihood framework. Using 6 to denote the vector of all model
parameters, the vector 6 has to be found which maximises the likelihood £(6) of the model
given the data. Assuming that the dataset X consists of i.i.d. samples z;, this likelihood is

equivalent to the joint probability of all the samples z;:

T
£(0) =p(x|0) = [ p(z:16). (4.35)
t=1

This is equivalent to minimising the error function E defined as the negative log-likelihood for
which the expectation-maximisation (EM) algorithm was proposed by Dempster et al. (1977).
Further details of the EM algorithm for Gaussian mixtures can be found in Appendix C.6

The fit of a typical Gaussian mixture model is shown in Figure 4.6 for the SP500 and
GBPUSD returns. It can be seen that the model has achieved a smooth representation of
the data with just three Gaussian components. Nevertheless, nonstationarity, for instance
in the form of larger variance of the SP500 test set compared to the training set, limits the
model’s ability to generalise. In contrast, for the GBPUSD time series the generalisation
seems to be successfull. Mixture models share this problem with all other models which
assume stationarity, achieving therefore only suboptimal results.

One practical question related to generalisation is, of course, how many components to

use in the mixture and if all of these should be actually Gaussians. Earlier we have shown
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Figure 4.6: Mixture model density estimates for SP500 (left) and GBPUSD (right): Estimates
for the pdf via a GMM (dashed) with three components and a GLMM (solid) with two

Gaussians and one Laplace component for set 1 (training) compared to the histogram for set
1 (dot) and set 2 (circle).

that financial returns typically possess a significant leptocurtic distribution. For those we
have furthermore noticed that mixtures with few Gaussian basis functions have difficulties
modeling the peaked shape around the centre of the distribution and the non-Gaussian tails.

Since the Laplace distribution introduced in Equation (4.33) achieves good modelling re-
sults especially in the tails and the centre of the distribution we suggest to use one Laplace
component in a combined mixture model. This will save the use of several Gaussian compo-
nents in order to approximate leptocurtic behaviour. The result is a less complex model since
fewer parameters have to be determined. The modification of the EM algorithm in order to
update the Laplace component is straight forward, the details are given in Appendix C.7.

Figure 4.6 shows, beside the Gaussian mixture approximation, also the Gaussian-Laplace
combined mixture fit. It turns out that while both approaches model the centre of the
distribution almost identically, they differ in the tails. While the pure Gaussian mixture still
models the log probability in the tails eventually as declining quadratically, the combined
mixture achieves a linear fit.

In order to evaluate in more detail the quality of these two model classes Figure 4.7 shows
the modelling error as a function of the number of components in the mixture. Since mixture
models are sensitive to initial conditions we report here the mean of the log likelihood with
errorbars for 100 runs of each model. It becomes clear that a single Laplace provides a better
fit than a single Gaussian. Furthermore, using a two component model the Gauss-Laplace
mixture is still superior to the pure Gaussian one. However, using three or more Gaussians
in each model achieves similar results and also does not seem to change the log likelihood
significantly.

Furthermore, this figure confirms the results for the fit of the probability density in Figure
4.6. The likelihood results are quite different for the training and test set of SP500 returns
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Figure 4.7: Mixture model likelihoods for SP500 (top) and GBPUSD (bottom): mean of
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(circle) and a GLMM (cross) for set 1 as training data (left) and set 2 as test data (right)
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compared to the GBPUSD data. There an almost identical likelihood has been achieved on

the test set. This could be the effect of a present nonstationarity in the stock m:rket. Such
a possibility will be addressed in a later chapter.

4.5 Conditional density estimation

In theory, all of the non-parametric and semi-parametric techniques for density estimation
discussed so far can be extended to multi-dimensional cases. A practical problem occurs here
since the number of data points required for a reliable density estimate grows exponentially
with the dimension of the data. For this reason the estimation of conditional probabilities is
practical for low dimensions only. Furthermore, we have previously demonstrated the diffi-
culties within the kernel density approach to determine optimal kernel widths. For detecting
dependency in financial returns we will therefore consider here only the usage of Gaussian
mixture models and multivariate cumulants.

For the purpose of demonstrating short-term dependencies in financial time series we
additionally restrict ourselves to one independent and one dependent variable. The aim 1s
therefore to determine the conditional probability p(y | z) of obtaining y given z. Assuming
the joint density p(z,y) has been already determined, the conditional density p(y|z) can be

derived via Bayes’ theorem

__pz,y)

For unimodal or highly peaked conditional distribution where a Gaussian approximation is
feasible a prediction for the most likely value can be made as the expectation of obtaining y
while having observed the value z:

g =Ely|z] = /w yp(y|z)dy. (4.37)

—00

In a similar way the conditional variance E [(y —9)?| :z:] can be obtained via
oo
#=Elw-9*lsl = [ w-0p0ln)d (4.38)
In order to apply this approach for time series, z will be identified with the current value of
the time series z; and y represents the next value z¢4; thus we are interested in p(z441 | ¢)-
Then the joint distribution of consecutive values p(z¢, 74+1) and the marginal distribution
p(z;) are estimated, finally the conditional distribution p(zss1 | z¢) can be determined via

Equation 4.36.

4.5.1 Multi-dimensional Gaussian mixture models

In order to illustrate the capability of Gaussian mixture models for conditional probability

density estimation two-dimensional mixture models have been trained on the first dataset of
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Figure 4.8: Expectations for the mean § = E[y|z] and the variance E [(y — 9)? | z] for the
conditional probability density for the first set of SP500 returns (top) and the surrogate
version (bottom) estimated by 100 runs of a 2d Gaussian mixture model with 7 components,
trained each for 25 iterations

S&P500 returns and a surrogate version (sampling with replacement). Figure 4.8 shows the
average of the mean expectation over 100 runs with the one standard deviation errorbars.

There it becomes clear that there is some positive correlation between today’s and tomor-
row’s return which can be reliably estimated in the range [—2, 2] and is additionally confirmed
by a linear regression. Furthermore, this correlation also tends to be slightly nonlinear in
the tails suggesting that an extreme daily return is usually compensated the next day by a
return with the opposite sign.

In contrast to these findings, a hypothesis of independent z; and z;+; implies that the
conditional distribution p(z41|z¢) should be represented by an approximately constant dis-
tribution equal to the marginal distribution p(x;+1). Therefore the distribution’s mean and
variance should be constant, too. However, the volatility or conditional variance also varies

and is strongly positively correlated with the amplitude of todays return. This corresponds
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| Performance criterion | Approach [ S&P500 | Surrogate ]
Normalised mean squared error linea:r 0.958 1.000 |
nonlinear 0.993 1.798
Annualised excessive profit in % hnea'r 14 0 |
nonlinear 11 0
: St linear 54 52
C t
orrect sign prediction in % " 54 59 ]

Table 4.1: Performance results for linear and nonlinear regression of 1-day-ahead returns
using a Gaussian mixture model for the test set of the S&P500 data compared to a surrogate
version using sampling with replacement

to the common observation of persistence in volatility in financial time series.

The predictions made with this nonlinear model have been evaluated with three different
error criteria. Table 4.1 summarises the results: The main error criterion, the normalised
mean squared error is for both regressions just slightly smaller than one. This corresponds
also to a just above chance number of correct sign predictions.

The annualised excessive profit has been calculated by accumulating each day's return
multiplied by the sign of the prediction assuming zero transaction costs. The total return
is then reduced by the gain of the underlying equity itself. In order to annualise the total
excessive return this quantity is divided by the total number of trading days in the period
considered and multiplied by the number of annual trading days (253). Remarkable is here the
poor performance of the nonlinear approach compared to the linear one. One can attribute
this result to either overfitting or a non-stationarity. However, the estimate for the conditional
mean shown in Figure 4.8 is of a quite typical form which has been confirmed also for other
time series. Therefore we are going to focus on the issue of nonstationarity next by using a

test of the change of linear and nonlinear correlation over time.

4.5.2 Non-parametric independence test

Deco et al. (1997) proposed a non-parametric approach based on higher-order cumulants to
test statistical dependency in univariate financial time series. This test is briefly introduced
since we will propose here a Bootstrap estimation of the cumulants in order to obtain a
reliable statistics about the evolution of correlation in financial time series.

In order to estimate cumulant tensors for a scalar time series, X; is identified as the
variable X lagged by 7 steps in time, which leads to the embedding approach introduced
in Chapter 3. Hence, for a given time series X embedding vectors z; of dimensionality m
and with time lag At are constructed according to Equation (3.4). A generic  consists
therefore of the single components z1,...,Zx. The null hypothesis is now defined as in-
dependence in successive values of the time series. Therefore. the joint probability density

p(x) = p(z1,22,....Zm) should be equal to the product of the single density p(z1) and the
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remaining joint density p(z2,....z;,):

Hy = p(z1,%2,...,Zm) = p(z1) p(22, . . . . Tm). (4.39)

Testing this null hypothesis directly in the probability space means to estimate the density.
which might be difficult for a high data dimension m due to the exponentially growing number
of data points required for a reliable estimate.

Using the Fourier space instead, the independence condition can be expressed in terms
of the characteristic functions involved. As for probabilities, the characteristic function of
independent components is the product of the characteristic functions for each component

(Stuart and Ord, 1994), and the null hypothesis in Equation (4.39) therefore becomes
log ®(t1,...,tm) = log ®(t1) + log ®(t2, ..., tm). (4.40)

Expanding this in multi-dimensional cumulant tensors «;,, ;. defined in Equation (4.18) and

marginal cumulants in Equation (4.15) it becomes

o0 m 00 . m

YL Y midatiaeetin= = &My s otk (4.41)
ﬂ.’ J1eedn 1 202 ¥in T ﬂ.l 1 1 Kfjl...Jn g1+ bgn .

n=1 jlv-"sjn=1 n=1 j-l“,,‘jn:Q

with the one-dimensional cumulant ™ of order 7 for the vector element 7 defined in Equation

(4.14). Note that here we use now nﬁ“) corresponding to t; instead of x,. Re-arranging this
and writing for the scalar cumulant mg-“) = Kjy..jn With jj = -+ = j, = j we get

© n M

Do D (=8ujig) Kijpuga ity -, =0 (4.42)

with d;,, ;. as Kroenecker’s delta®. Since this has to be fulfilled for all possible ¢, the
coefficients (1—01;,. j,) K1j,...j, have to be zero for all j,...,j, = 1,...,m. This is equivalent
to testing the deviation of the relevant cumulants from zero and building the following cost
function 5 -
s=Y. > Ky (4.43)
n=11<jp<-<jn=2
Here only cumulants up to fourth order are considered since higher cumulants suffer from the
estimation problem. Furthermore, we modify this approach slightly by calculating the cost
functions sq, s3 and s4 separately for each cumulant rather than summing up the deviations
for each cumulant in Equation (4.43), as otherwise the higher-order cumulants dominate
the lower-order ones. Therefore it seems to be more expressive to look at each cumulant
individually.
Another variation is used here concerning the calculation of the significance of the cumu-

lants’ deviations. Deco et al. (1997) suggested to compute this significance by normalising

SKroenecker’s delta is defined as éj,..;, =1 for j1 =+ = jn and 0 otherwise.
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Figure 4.9: Second and third-order cumulants statistics for SP500 returns of set 1: Original
statistics shows the mean with one standard deviation errorbars for 100 bootstrap runs of
the original data. The surrogate statistics represents the mean and one standard deviation
errorbar for 100 runs of randomised data (sampling with replacement). The mean for the
original data for both cumulants can be recognized as being always above the one for the
surrogate data and showing a bigger variation in its amplitude. Each statistic was computed
for an embedding vector of six successive returns, a moving time window of 250 points which
overlaps to 50%.

the original statistics with the mean and standard deviation of the results on a number of
surrogate datasets. Since the statistics is rather log-normal distributed than normal we pro-
pose here to use the mean and standard deviation of the log of the statistics. Figure 4.9
shows the results for the second and third cumulant for the SP500 time series. There the
scale is the original one, mean and standard deviation have been computed in the log space
and transformed back to the original space via exponentiation.

It can be seen there that the correlation is varying significantly with time and in compar-
ison, that the statistics for the randomised data are relatively stable for the second and third
cumulant. The results for the fourth order cumulant are quite similar to those for the third
order and are therefore not shown here. The results demonstrate that over relatively short
periods of time there is a correlation not explainable by the independence assumption. This
correlation shows a certain persistence’ and therefore could be used for predictive purposes.

The idea by Deco et al. (1997) to select with this approach those periods which show
significant correlation might be useful in order to train a model with such a subset instead of
presenting all data. However, since only a fraction of the original time series would be selected
we will pursue here a rather different approach in the next chapter. There a model will be

discussed which assumes a certain temporary state corresponding to a specific correlation.

"Having a window overlap of 50% means there should not be any correlation between everv other window.
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4.6 Discussion

This chapter has provided a detailed discussion of analysing the distribution of daily financial
returns and their properties. Under the assumption of independent and identically distributed
returns different techniques for estimating the marginal probability density were introduced
first in order to determine features of the return distribution such as shape, mode and sym-
metry. Finally, leaving this assumption we investigated the hypothesis of independence and
identity of the distribution within a multivariate framework.

Concerning the properties of financial return it has been confirmed with the non-parametric
technique of cumulants that their mean is near zero and that the variance strongly varies for
different types of the underlying asset. Furthermore, a significantly positive kurtosis can be
found for almost all financial time series indicating heavier tails and higher peaks than the
normal distribution (leptocurtic).

These findings have been confirmed also by the kernel-based density estimation techniques.
There problems have been noticed regarding the determination of hyper-parameters such
as the kernel width, for example, and the quality of the estimate for low density regions
attributed to the lack of samples and a model for the data. Therefore parametric density
models were fitted to the data as well with superior results for the stable Paretian and the
Laplace distribution compared to the Gaussian and the Cauchy distribution.

The experiments with mixture models have shown that they are in general capable of
modelling heavy-tailed distributions arbitrarily well with a few basis functions only. This
represents therefore a more efficient technique than kernel density estimators. A combined
Laplace-Gaussian mixtures is capable of modelling leptocurtic distributions with fewer com-
ponent than a pure Gaussian mixture. However, the difference in terms of the likelihood
vanishes for a higher number of components. Therefore the standard Gaussian mixture
model will be used during the remainder of this thesis.

Testing the hypothesis of independence in successive daily returns we found that they are
slightly positively correlated, especially around the mean of the distribution. Even stronger
is the correlation in their magnitude. However, comparing a linear with a nonlinear fit,
represented by a two-dimensional Gaussian mixture model, the nonlinear model does not

seem to be superior.
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Chapter 5

Static factor models

Stock prices in a specific market segment are often significantly correlated due to, for instance,
similarity in their business profile. One can then ask for the cause of these correlations and
speculate that those are induced by a common factor which is hidden. The task at hand
would then, for instance, to extract from the observed stock prices those common hidden
factors.

This chapter discusses the application of principal component analysis and independent
component analysis for univariate financial time series. In order to perform single-channel
versions of these techniques, we work within the embedding framework, using delay coordinate
vectors to obtain a multidimensional representation of the system dynamics at each time
instance. The main objective is to investigate if these techniques are able to perform feature
extraction, signal-noise-decomposition and dimensionality reduction since that would enable

a further inside look into the behaviour and mechanics of financial markets.

5.1 Introduction

Three main problems have been identified for restricting the progress in the analysis of
financial time series: the existence of nonlinear behaviour between financial variables, the
nonstationarity of relationships among the relevant variables, and a low signal-to-noise ratio.
The limited results achieved so far by basic neural networks architectures for forecasting
prices of financial equities based upon their past can be attributed to these three character-
istics: noise limits the amount of information which can be extracted at each time instance,
nonstationarity restricts the number of data points in time used to filter out the noise in order
to disclose the deterministic components in the data, and nonlinearity couples the degrees of
freedom in the system preventing model simplifications by divide-and-conquer strategies.
These considerations motivate the use of unsupervised feature extraction methods to
transform the problem from the time domain to an alternative space capable of revealing

‘interesting’ structure in the data. The extracted features can then be used for forecasting
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purposes. The role of the feature space is to provide an easier signal-noise-decomposition than
in the time domain and with that a dimensionality reduction. Furthermore, it could allow
an explicit modelling of nonstationarity when time is taken into account as an independent
variable.

Here two methods for feature extraction are investigated: principal component analysis
and independent component analysis. These techniques will be used to decompose financial
time series into ‘interesting’ components which could then be connected to e.g.. political,
economical or psychological factors influencing financial markets.

Previous attempts in this domain have been restricted to looking at ensemble methods
using multiple time series from specific markets (Back and Weigend, 1997). In contrast, here
univariate data are used and therefore single-channel versions of these two algorithms are
performed. In order to do this, the embedding framework, introduced in Chapter 3 is again
employed by using delay coordinate vectors. Thus, both methods are applied on a d x n

embedding matrix Y = (y;,...,y,) consisting of embedding vectors y, € R? defined in
Equation (3.4).

5.2 Factor analysis

Factor analysis is at the core of several generative models from which specialised cases such
as principal and independent component analysis can be developed. The key assumption
here is the complete temporal independence of observations and their underlying factors.
The factors are hidden, uncorrelated variables ; which are modeled for simplicity as a

multivariate Gaussian random variable with zero mean and unit covariance:

Ty = €y, (51)
€ N(U,I). (52)

The observations y, are functions of the factors contaminated with zero mean Gaussian noise

with covariance matrix 2:

y, = Gzi+mny, (5.3)
f R N(O:E): (54)

using a linear observation function G. The observations will therefore be noisy and due to
G possibly intra-correlated. The task at hand is to determine the hidden variables x; given
the observations y,. In order to do that the structure of the covariance matrix X has to
be restricted in some way. Only with a proper constraint is the model forced to distinguish
between signal and noise. Otherwise the model would simply take the empirical covariance

of the observations as the estimate of ¥ and set the observation function G to the identity.
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There are several possible restrictions of the covariance matrix. T he standard for the
common factor analysis is to use a diagonal matrix ¥ = diag(oy,...,04). Going a step further
to assume equal variance in each dimension of the data leads to a scalar covariance matrix 3 =
oI which corresponds to the sensible or probabilistic principal component analysis (Roweis
and Ghahramani, 1999; Tipping and Bishop, 1997). For the limiting case ¥ = lim,_,g o1 it
can be shown that the solutions are the eigenvectors of the empirical covariance matrix, in
other words, the principal components.

The latter approach will be discussed next in more detail. Afterwards one extension is
outlined for including the non-Gaussian case, independent component analysis. A follow-

ing chapter will also investigate models, such as the Kalman filter, which allow temporal

correlation between the observations.

5.3 Principal component analysis

Principal components represent those orthonormal axes of Y onto which the retained vari-
ance under projection is maximal (Jolliffe, 1986). Assuming a zero-mean Y the principal

components can be obtained as the d eigenvectors u; of the covariance matrix C given by

]_ n
C= n z YiY;- (5.5)
i=1
The eigenvectors form as column vectors the eigenmatrix U = (uy, ug, ..., ug) € R¥*? whose

inverse U ! = U’ maps the dataset Y into the feature or hidden factor space. The result is

a source matrix X of (up to second order) decorrelated source vectors z; given as
X=U'y. (5.6)

The corresponding eigenvalue )\; is the variance of the i* of d rows in X and therefore
expresses the relevance of the eigenvector for this projection. Performing now a projection of
an input vector y; with only the first ¢ < d dominant eigenvectors u; a mapping is defined
from the d-dimensional y; onto a ¢-dimensional vector z; defining a subspace of the original
input space

z; = Ugy;. (5.7)

In this way, PCA can be viewed as a linear mapping from R? to R? and performs therefore
a linear dimensionality reduction. Such a projection can then be further analysed instead
of the original one. By using the PCA approach a linear reduction in the dimensionality of
the dataset is achieved though the most relevant information was kept. That makes it easier
to analyse the data in terms of reduced computational resources and model complexity.

Therefore very often this technique is used for preprocessing purposes.
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Figure 5.1: Eigenspectrum for set 1 (left) and set 2 (right) of the SP500 data as the log of
the eigenvalues for the prices (top) and as the eigenvalues for the returns (left) of the original
dataset (dotted) compared to the statistics for 100 runs of resampled returns indicated by
the mean and two standard deviations (thin)

Following (Broomhead and King, 1986) in this feature space the signal is represented
by the most ‘important’ components, while the noise is accounted for in the least ones. In
PCA importance is defined as the size of the eigenvalue, since it represents the proportion
of variance explained by the corresponding principal component. The plot of the sorted
eigenvalues against their number is called the eigenspectrum which can be used to perform a
signal-noise-decomposition (Cattell, 1966). For a stochastic system a smooth (exponential)
decline of the eigenvalues is expected. Any deviation from that in form of e.g., a sharp,
discontinuous decline, is an indication of deterministic structure in the data.

Figure 5.1 shows the eigenspectrum for the prices and returns of the two SP500 datasets
and compares them to the ones expected for a truly random process. To simulate such a
process randomly resampled returns were used. Here we used both log prices and returns
and created embedding vectors of dimension 50 with a one day lag. Minor deviations can
be observed here for the prices, for example around component number 10 for set 2 and

around component number 25 for set 1. Additionally, the last eigenvalues have all a less than
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Figure 5.2: Original eigenspectrum for set 1 (left) and set 2 (right) of the SP500 data (dotted)
compared to the statistics for 100 runs on randomly flipped returns indicated by the mean
and two standard deviations (thin)

expected size.

In contrast, for the returns the deviation from the expected spectrum are very clear. This
indicates the presence of some deterministic structure in the data. For set 2 even a structural
break is evident at component number 9 indicating the begin of the noise floor.

One explanation could be the phenomenon of persistent volatility in financial returns.
In order to test this the eigenspectrum was calculated for 100 samples of randomly flipped
returns for both datasets. In Figure 5.2 it can be observed that there are still significant
although slightly smaller differences between the spectra for the original data and the expected
one for a time series. Furthermore, the error bar on the estimate for the 100 Bootstrap runs
is slightly larger that for the scrambled version. This could indeed be interpreted as an
indication for the presence of volatility persistence.

In Figure 5.3 the nine most important principal components for the prices and returns are
shown. It can be seen that the components for the prices are represented by sine functions
with increasing frequency. This is easily verified via a spectral decomposition. However,
similar results were obtained for other financial as well as random time series. This means
that the principal components of embedded prices account first of all for the Random walk
structure in the prices.

In contrast, principal components for the returns seem to be less well behaved. The
eigenvectors differ quite significantly for the two datasets. However, this could be simply due
to a different sorting order.

In order to test this hypothesis further experiments were performed in which local eigen-
values were computed for a fixed set of eigenvectors. A local eigenvalue is here defined as the

moving variance of the projection onto the corresponding principal component.

A™ = Var({U'z: )}, _) (5.8)
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Figure 5.3: The nine most important principal components (eigenvectors) for the SP500
prices (top) and the returns (bottom), to be read from left to right and top to bottom for
the set 1 (left) and set 2 (right)
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Figure 5.4 shows the results for a segment of 4000 points of the first SP500 dataset. For
the prices the top six local eigenvalues can clearly be separated. They move slowly and
it turns out the order of the first three eigenvectors is hardly ever changing. In contrast,
the ranking of components of higher order can change from time to time. Furthermore, the
relative importance compared to each other is changing significantly as well. For example.
at one time the first component accounts for almost all variance (around point 250) while at
other times many more components are needed (around point 1600).

For the returns just the first, third and fifth local eigenvalue are shown for visual clarity
since the remaining are strongly correlated to those displayed. For them it is characteristic

to change more abruptly. Furthermore, no clear dominance of one eigenvector over all others
can be observed.

5.4 Independent component analysis

Since PCA is linear and based entirely on second-order statistics the question arises naturally,
if the problem at hand is linear or nonlinear. In the latter case higher-order statistics should
be able to achieve better results. One extension to PCA pursued here is therefore independent
component analysis.

In ICA the equivalence to the eigenmatrix U in PCA is a mixing matrix A with its
columns as independent components. Its inverse W separates linearly the embedding matrix
X into statistically independent sources S = W X. In contrast to PCA the demixing matrix
diagonalises not only the covariance matrix but also higher-order cumulant tensors.

For the estimation of the demixing matrix W several algorithms have been proposed.
Here we use the FastICA! approach (Hyvirinen and Oja, 1997) for which the following
assumptions are made: The sources are statistically independent, there is at most one source
with a Gaussian distribution and the signals are stationary. Furthermore, it is assumed that
there are as many signals as sources and that the mixing occurs instantaneously.

However, one problem remains for ICA: the ranking of the independent components and
sources. With PCA, a ranking is defined according to the size of the eigenvalues. In ICA, those
‘eigenvalues’ are normalised to one. Therefore, Cardoso and Souloumiac (1993) suggested to
order the columns in the mixing matrix A, the ICs, according to their Euclidean norm Lo,
since the sources with the most energy appear then first in the source matrix S. Using the
Ly norm on the ICs is one reliable approach since this ranking is equivalent to a sorting
according to the reconstruction performance of each single independent source S; and this
corresponds as well to the ranking of the principal sources and components.

Figure 5.5 shows this norm of the independent components respectively sources for the

prices and returns of the SP500 data. It can be observed that for the prices one component

1The software for the FastICA is available at http://www.cis.hut.fi/projects/ica/fastica/.
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Figure 5.4: The top six moving eigenvalues for the prices (top) and the first, third and fifth
moving eigenvalues for returns (bottom) of the last 4000 points of set 1 of the SP500 data
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Figure 5.5: The mean normalised Ly norm of the independent components A; for sp500 prices
(top) and returns (bottom) for set 1 (left) and set 2 (right) compared to the mean and one
standard deviation for 10 runs of randomised data (sampling with replacement)
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Figure 5.6: The twelve most important independent components A; for SP500 prices (top)
and the returns (bottom) from left to right and top to bottom for set 1 (left) and set 2 (right)

accounts for most of the information like in the PCA, and that the importance of the following
ICs declines smoothly. For the returns the result is a partially discontinuous decline in the
first third of the spectrum, like in PCA.

According to the chosen ranking, the twelve most important independent components for
the prices and returns are presented in Figure 5.6. Here a completely different behaviour
compared to the principal components can be observed: For the prices a straight-forward
representation of the independent components as sine functions is not possible. Furthermore,
for both prices and returns the ICs seem to be similar to each other, either due to having just
the opposite sign or being shifted by a certain lag. That could be the result of using delayed
vectors in the embedding process.

As last we want to show in Figure 5.7 the reconstruction quality of ICA by mixing just
the most important components and comparing them with the original data. For the SP500
prices in dataset 2 just the first component was chosen since it had the most importance and
dominated clearly all others. For the returns the first 13 components were selected according

to the norm of the mixing vectors (cp. Figure 5.5). It can be seen that the reconstruction is
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Figure 5.7: The reconstruction results for the SP500 prices (left) and returns (right). The
original data (thick) is superimposed by the corresponding reconstracted time series (thin).
For the prices just the most important component was taken while for the returns the first
13 components were used for the reconstruction.

quite poor for the prices and the returns. This also does not change significantly when using
a few more components. The noisy behaviour is characteristic for the reconstruction. An
expected denoising ability for the ICA can not be found. In contrast, the returns and prices

seem to be even more noisy than the original data.

5.5 Discussion

This chapter has demonstrated the application of principal and independent component anal-
ysis as examples of factor models for single-channel financial time series. The motivation was
to allow independent hidden factors without any dynamics to produce correlated observations
via a linear and nonlinear transformation without any additional noise.

Since the analysis was performed on univariate data only the embedding approach with
delayed coordinate vectors was used. As a null hypothesis randomised data were created via
sampling with replacement. Both methods achieved significantly different results in terms
of the eigenspectra for the original and randomised data. However, for a different version
of random data, where the magnitude is kept intact and just the sign of the returns are
randomly flipped the same results have been obtained. This means the univariate application
of principal and independent component analysis extracts structure which represents the
dependency of the current return on the magnitude of the previous one. In other words, it
accounts for the persistence of the volatility in financial returns.

Furthermore, we have shown that the importance of the principal and independent compo-
nents can change over time. Importance is here defined as the size of the eigenvalue. resulting
in the eigenspectrum, and the Euclidian norm of the independent component. Concerning

the form of the estimated components, the results are quite different. While the principal
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components can be represented as orthogonal sine functions, the independent components
are much closer in their morphology to the signals but do not have an obvious analytical
representation.

Furthermore, the experiments have revealed evidence of clustering in the independent
components. This could lead to a dimensionality reduction by deriving prototypical com-
ponents of the correlated groups achieving a sparse representation of the signals. A further
step for both methods would be also to use temporal information beside the spatial one in
order to avoid the shift effect in components respectively source. Allowing such a temporal
structure in the model and additionally observational noise leads to the next chapter which

introduces state space models. These models can be understood as a factor model with a
hidden dynamics.
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Chapter 6

State space models

The main objective of this chapter is to propose a nonlinear state space model and to test if
the non-Gaussian filter and smoother techniques involved, such as the particle filter, are able
to perform better than the linear Kalman filter on financial time series. The general idea
for using state space models is to allow for nonstationarity by tracking the distribution of
financial returns conditional on previous data and to learn the evolution of this distribution
from one time step to the next. Since the previous chapters have shown nonlinearity and non-
Gaussianity for financial returns the nonlinear model discussed should achieve an improved
predictive distribution which can then be used in the context of investment decision problems
instead of a representation of the distribution by only its mean and variance.

The structure of this chapter is as follows. It will briefly give the foundations of linear and
nonlinear state space models and discuss possibilities of performing inference and learning
simultaneously. Thereby we will introduce an extension of the particle filter, the Hybrid
particle filter and apply the same methodology for smoothing purposes, too. Furthermore,
we will describe the representation of the nonlinear model equations by RBF networks and
discuss a maximum-likelihood learning scheme for all model parameters. Finally, we apply

these concepts to an artificial time series and discuss the corresponding problems.

6.1 Introduction

In time series analysis one common aim is to obtain a forecast conditional on previous data.
Naturally, one question arises about how many past values are sufficient in order to capture
all the information necessary for an accurate prediction. Here the concept of a hidden variable
or factor (formally introduced in Chapter 5) might be helpful. Such a variable of arbitrary
dimension is introduced to represent all predictive information. Thus the original time series
can be seen as a sequence of observations depending fully on the sequence of the hidden
variable. This circumvents the problem of long-range dependencies in the observations and

allows separate modelling of the dynamics and noise structure in the hidden variable and of
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the observation process.

As one example, such hidden variables might explain the phenomenon of clustered volatil-
ity in financial time series. There, almost no significant correlation exist between consecu-
tively observed returns, the relative price changes, but strong correlation persists for their
amplitude. So it can be imagined that there exist an underlying volatility process. in the
form of a time-varying variance. This process creates then random samples observed as the
returns in financial times series (Timmer and Weigend, 1997; Engle, 1995).

If the hidden variables are assumed to be discrete then this model family is equivalent
to the family of (discrete) hidden Markov models. The underlying dynamics can then be
modeled via a transition matrix which represents the conditional probabilities to obtain a
certain state next given the current state. Since we are here interested in continuous variables
the conditional probabilities cannot be represented by such a transition matrix. Instead a
nonlinear function is used which is defined on the range of the hidden state and is modeled
by a radial basis function network. This continuous hidden Markov model is also known as
state space model.

The goal of this chapter is to model the evolving distribution of financial prices and returns
using hidden variables within this state space model framework. The predictive distribution
for the observed returns can then be used to optimise trading strategies in terms of, for
example, risk minimisation. One fundamental representative of this model class for tracking
and forecasting densities, the Kalman filter, assumes Gaussian distributions at each time step
and linear underlying and observation processes. With that assumption the evolution of the
distributions can be easily derived.

However, in Chapter 4 we have shown some evidence that financial returns follow non-
Gaussian distributions and, furthermore, have confirmed mildly nonlinear relationships. Nat-
urally, under these conditions the Kalman filter assumptions do not hold anymore and the
tracking and learning becomes more difficult. Therefore we extend the linear framework by
allowing a nonlinearity in the underlying dynamics as well as in the observation process.

The remaining sections of this chapter are organised as follows. First, the model is
introduced with its underlying assumptions. Then it will be discussed how to infer the
hidden state sequence and how to estimate the model parameters. For this task one learning
approach, the expectation-maximisation algorithm, will be outlined. After a short summary
of the linear model, the nonlinear version of state space models as well as corresponding
strategies for inference and learning will be discussed in detail. Finally, experiments and

results will be reported and discussed on artificial data.
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6.2 State space models

A state space model represents a system characterised by an underlying but unobservable and
thus hidden state z; € R* and an observation y; € R™ attributed to the system at a discrete
time ¢. The current state z, is assumed to be a first-order Markov process, depending only
on the last state z;_;, an available input u; € R" and an additive Li.d. system or dynamical
noise wy € R" drawn from a zero-mean Gaussian distribution with an n X m covariance
matrix Q. This dependency can therefore be modeled by the system transition function
fi R'xR 5 R" as

zr = fi(Ti-1, %) + wy (6.1)

and writing the state dependency in a probabilistic way the system transition density can be

obtained as a Gaussian with a nonlinear mean:

p(ee | Te-1) = N(fo(@i-1,u1), Q). (6.2)

Since the state cannot be observed, the only available information about the system and its
underlying process is the observation y, obtained by the observation function g, : R* —» R™

relating it to the hidden state z; via

Y = g¢(xt) + vy, (6.3)

with additive! i.i.d. zero-mean Gaussian observation noise v, € R™ parametrised by an mxm
covariance matrix R. In analogy to the system transition density, this can be represented

probabilistically as the observation density

p(y¢ | =) = N(gy(1), R) (6.4)

The advantage of such state space models becomes clear: instead of modelling the dependency
of the current observation y, on all previous observations y,...,y;_; directly, the current
observation depends just on the current hidden state x, itself following a first-order Markov
process.

Beside the system transition and observation density, it is necessary to specify the initial
state density p(x;), modelled for simplicity as a Gaussian with a mean = € R*, and ann xn

covariance matrix V:
p(z1) = N(m, V). (6.5)

Finally, the form of the system and observation function f; and g; has to be specified. In

the linear case these functions are represented by matrices. In the nonlinear context here,

! Using additive Gaussian noise for the system and observation equation is less restrictive than in the linear
case, since non-Gaussian distributions can be emulated to a certain degree by the allowed nonlinearities in the
state and observation process (Ghahramani and Roweis, 1999).
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we model them by radial basis function (RBF) networks (Broomhead and Lowe, 1988)2.
Such RBF networks have been used by Roweis and Ghahramani (1999) in the context of
the Extended Kalman filter. Furthermore, we assume the functions to be time-invariant and
drop therefore the time index t from now on.

In the following, two sections will consider separately the two basic tasks for state space

models: inference and learning. After that we will discuss one specific algorithm to actually
perform these tasks.

6.3 Inference

Inference in the context of state space models means to discover the sequence of hidden
states given the observations and the model parameters for either descriptive or predictive
time series analysis. In a descriptive sense this hidden state sequence is used to explain
the corresponding observations. For example, in radar tracking of an airplane only noisy
measurements can be observed from a set of sensors about the position of the plane. The
aim is here then to infer its true position represented by the hidden states.

In other cases, where the meaning of the hidden states is not clear in advance, a lower-
dimensional representation of the observations by these states might aid an interpretation
and explanation. In speech recognition, for instance, where a compact description of the
observations given in form of time-varying frequency spectra is required, the hidden states
have been found to represent phonemes forming words on a higher level of inference (Rabiner,
1989).

Applying this concept in a financial context, all stock prices in a particular market can
be thought as noisy observations about the hidden market ‘state’. It can be speculated that
such a state could reflect e.g., macro-economic fundamentals and important political events.
Thus, once the hidden states have been inferred from the observations they can be further
analysed in order to find support for various market hypotheses. This raises another issue
which will be discussed comprehensively in the next section: when there is no model available
in advance then it has to be estimated along the hidden states.

Another reason for using state space models is the ability to predict future observations
based on estimated current hidden states. One example is the anticipation of the trajectories
of two aircrafts close to each other in the sky in order to avoid their collision. A financial
example is the forecast for a single stock based on the current market state.

After motivating the inference for state space model we are going now to outline how to
achieve its two objectives. First we discuss how to predict future observations and then focus

on the retrieval of the hidden states.

2 Another network architecture, multilayer perceptrons (MLP), has been employed by (Briegel and Tresp,
1998) for nonlinear state space models.
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Since the observations might follow a non-Gaussian distribution, a point prediction of the
mean and variance is not entirely adequate. Therefore we need to consider the fn'l predictive
distribution p(y,,, | V4, 8) given the time series ); = {y,}5-, of all t previous observations
and the model parameters . Those parameters remain fixed during the inference, therefore
we drop 6 as a conditional term in the distributions throughout the remainder of this section.

The predictive distribution p(y,,; | s) is the product of the predictive state distribution
p(zt41]Vt) and the observation density defined in Equation (6.4) integrated over the hidden
states @y q:

'P(yt+1 | V) = fp(yt+1 1 $t+1)P(3‘t+1 Iyz) dxii (6.6)

The predictive state distribution in turn is obtained by propagating forward the current

posterior state distribution p(x4|)};) via the system density according to Equation (6.2):

p(@e1|r) = fp(mt+1 | zt) p(zt | Vt) dey (6.7)

and the posterior state distribution is finally computed using Bayes’ theorem

(Y| xe) plee | Vi)
(Y| Vi-1) .

Note that the evidence p(y,|Y;—1) is here the prediction made for the current observation

p(ze| V) =

(6.8)

at the previous time step ¢ — 1. This suggests the following two-step iterative procedure
for retrieving the hidden state and predicting the observation: Given a posterior estimate
for the current state the next predictive state distribution is calculated in the prediction
step via the system density. In the following update step, the now available observation is
taken into account to correct this prediction via Bayes’ theorem resulting in the posterior
distribution. The procedure starts with the initial state density p(z;) given in Equation (6.5)
as the predictive distribution p(21 | Jy) and iterated through the whole observation sequence.

According to which observations ), are used to retrieve the hidden state x; at time ¢
inference is distinguished into prediction, based only on previous observations (7 < t) and
filtering, where previous and current observations are used (7 < t). The process which takes
also future values into account (7 < T') is called smoothing and its objective is to obtain the
conditional distribution

p(@is1 | 2) p(®e41 | V1)
p(zes1 | V1)

p(zt | Vr) = P(ﬂ?t[yt)/ Azt (6.9)

given all observations Yr. Naturally, this smoothing distribution cannot be utilised for pre-
dictions, since future observations are used for its estimation. However. smoothing allows
us to obtain less ambiguous and less noisy estimates for the hidden states which facilitates
their interpretation. Furthermore, in case the model parameters are not known in advance,
the learning of the underlying dynamics becomes easier and more robust. This issue will be

discussed in detail in the next section.
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Finally, it needs to be emphasised that the integrals for prediction. filtering and smooth-
ing are analytically solvable only for a small class of parametric distributions. such as the
Gaussian, for instance. The linear Kalman filter and smoother will therefore be analysed
briefly in section 6.5. In the case of arbitrarily smooth nonlinearities, the system and obser-
vation equations can be linearised locally via Taylor expansion. The distributions are then
approximated by Gaussians and the linear Kalman filter equations can be applied, leading to
the Extended Kalman filter (Anderson and Moore, 1979) which will not be considered here
further.

A more general approach to deal with nonlinearity in the state transition and observation
function is the particle filter we will examine here in detail. Such a filter uses samples from
the distribution instead of its parametric form. In section 6.6 we discuss strategies to obtain

and use these samples to approximate the distributions of interest.

6.4 Learning

In many real-world time series problems there is only limited or even no knowledge available
about the underlying model of the time series. In such cases the model parameters have to
be estimated along with the hidden state sequence based on the available observations only.
We will therefore discuss in this section the Bayesian treatment of this problem first and then
derive an approach for inferring the most probable model parameters.

During inference one computes the posterior distribution p(X7 | Yr, 8) of the hidden state
given the observations and the model parameters 8. Now the hidden states and parameters
need to be estimated simultaneously. Therefore, we are interested in the joint posterior
distribution of the hidden states and model parameters given the observations, which can be

obtained via Bayes’ theorem as

p(Xr | Yr,0)p(0|Vr)
p(Vr)

with the posterior parameter distribution p(@|Yr) representing the uncertainty in their es-

p(XT,0|Vr) =

(6.10)

timate.
Here we adopt the mazimum likelihood (ML) approach for estimating the model param-

eters @ and write the likelihood £ as a function of those parameters
£(6) = p(Vr |6) = [ p(¥r,Vr|0)d2r. (6.11)

Now the joint distribution p(Xr, Vr | @) of all states and observations can be factorised under

the Markov assumption into a product of system and observation density terms:

T

T
p(Xr, Yr|6) = p(a1) [ [ pla: | 2e-1) [[ ol | 20). (6.12)
t=2 t=1
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However, as already mentioned earlier, instead of maximising L£(@) directly, it is useful to
maximise the total log likelihood of the observations:
X 0
log £(6) = [ p(r | Ir,0) 1og%x§|y—3;!9—;d%~. (6.13)
In order to maximise this log-likelihood function with respect to the model parameters, several
gradient-based optimisation algorithms have been proposed as mentioned in Section 2.2. Here
we use exclusively the expectation-maximisation (EM) algorithm for the combined inference
and learning problem (Dempster et al., 1977). Shumway and Stoffer (1982) proposed the EM
algorithm to estimate the hidden state distributions and to learn the model parameters in an
elegant and simple way.
In contrast to nonlinear optimisation methods which maximise the likelihood function
directly, the EM algorithm divides the problem into two parts. Using the abbreviation

q(Xr) = p(Xr|Yr,0) for the posterior state distribution, the log-likelihood in Equation
(6.13) can be re-written in the following way:

log £(8) = fQ(XT) logp(XT:yTio)dXT“/Q(XT) log q(Xr) dXT (6.14)

= F(q(&7), 6). (6.15)

This decomposition allows a two-step iterative maximisation procedure which will be repeated
until convergence. In each step the log-likelihood is maximised with respect to either the

distribution ¢(&7) or the model parameters @ while the other quantity remains fixed:

E step: ¢iy1 < arg max F(q,8;)

M step: @i41 <=a.rgm51xf(qz-+1,9)

At first, inference is performed in the ezpectation step: the state distribution ¢(X7r) is esti-
mated conditional on all observations and current model parameters. Then learning takes
place in the mazimisation step: the model parameters @ are trained using the new estimate
gi+1 for the distribution ¢(X7). This step can be simplified since the second term in Equation
(6.14), the entropy of the state distribution is fixed at this point. Therefore only the first
term, the ezpected log likelihood

Q(6) = [ p(Xr | Vr, ) log p(Xr, Vr | 8) dXr (6.16)

needs to be maximised. This is done in the usual way by setting its derivative with respect
to the model parameters to zero and then solving these equations to get the new parameter
estimates.

In contrast to the direct optimisation techniques mentioned above, the EM algorithm
always finds a mode of the likelihood function £(8). It is furthermore guaranteed to increase

or at least to stay flat in every iteration. An additional feature is its simplicity in deriving the
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equations for the expectation and maximisation step. Therefore EM is used in cases where
the likelihood function is difficult to maximise with respect to the model parameters directly.
Nevertheless, since second-order derivatives of the error function are not calculated, the EM
algorithm does not provide error bars and suffers from slow convergence towards the end of
the learning.

One final note has to be made: (Roweis and Ghahramani, 1999) showed that the covari-
ance matrix @ for the system noise can be set to the unity matrix since the scale of the
noise can be shifted to the system transition function. This reduces the number of equivalent
solutions. Another ambiguity arises from the ordering of the components in the hidden state
vector. Therefore an arbitrary ranking scheme could be employed. For the linear case an
ordering was suggested based on the norm of the columns in the observation matrix G. We
will come back to those technicalities when we consider the learning of the model.

Depending on the functional form of the system and observation densities we will get
different classes of solutions which we are going to describe in the following. For Gaussian
densities a solution can be obtained via the Kalman filter and smoother in combination with
the maximisation of the likelihood. That will be summarised next. After that we will outline

an extension for the nonlinear, non-Gaussian case.

6.5 The linear case

In the linear Gaussian state space model the system transition and observation function f
and g in Equation (6.1) and (6.3) are constrained to be linear transformations represented
by an n x n system transition matrix F', an n x r input transformation matrix H and an

m X n output matrix G which results in

ry = Fzi 1+ Hup +wy (6.17)
Yy, = Gzt (6.18)

Based on these equations the conditional state and observation densities are given by Gaus-

sians linear in their mean:

p(mt | wt—l) — (2-”)—?1;"12 |Q|_1f2 e"%{Er—Fmtq—Hu:]’Q_l[wt—F:m..l—Hugl (619)
Py, | xi) = (2m) ™2 |R|7Y/? e 3w Gad By ~Gad (6.20)
P(icl) o (Qn_)—-nﬂlvl—lﬂ e*%[wl_-,-r]fv-l[;c;—frf. (6.21)

For the E step of the EM algorithm the expected log-likelihood Q(0) = E [log p(Xr, Y7 | 6) | V1]
defined in Equation (6.16) has to be computed. For notational convenience we denote with

xy, and V), the expectations for the mean and the covariance of the hidden state x; given
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all observations up to time 7:

zy, = Elzt|Yr] (6.22)
Vt|1' = E [(mt - mt|r)(mt - mt|‘.")Jr | y‘r] : (6.23)

Next we will discuss how these expectations are computed in the E step. After that, the M

step will be considered, which estimates the model parameter with a maximum likelihood
approach.

6.5.1 The Kalman filter and smoother

With a Gaussian state and observation distribution defined in Equation (6.19) and (6.20),
filtering necessarily results in Gaussians for the predictive distribution p(y;|Yi-1) of the
observations, as well as for the predictive state distribution p(z;|Y¢—1) and the posterior dis-
tribution p(x; | V), with corresponding means y;,_;, T4¢—; and @, and covariance matrices

Eije-15 Vt1t—1 and Vy, respectively:

Py | Vi-1) = N(yt[t—112t|t—1) (6.24)
p(xe | Ve-1) = N(@gi-1, Vije—1) (6.25)
(x| M) = N(“’titavﬂt) (6.26)

In order to estimate the mean and covariance parameters the following Kalman filter (for-
ward) recursions are performed by analogy with the Equations (6.6), (6.7) and (6.8) with the
predictive state distribution p(x1|Yo) given by the initial state density p(z1) and therefore

Lijo =T and V]i[] =V

Typ1 = Fay_qp-1 + Huy (6.27)
V-1 = FViqa F' +Q (6.28)
Yig-1 = G‘Bt]t—l (6.29)
By = GV G@+R (6.30)
K; = Vﬂt_lG’Et‘ltl_l (6.31)
Ty = Typ—1 + Koy — Yyje-1) (6.32)
Vig = Vi1 — KiGVie (6.33)
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Now the smoothed expectations xyr, Vyr and V7 are computed for the mean, the spa-
tial and temporal covariance respectively, via a set of Kalman smoother (backward) recursions
in analogy to Equation (6.9):

Ji-1 = Vi1 F'VG (6.34)

Ty = Tp-1jg—1 + Je1(@yr — Fopgp—y — Huy) (6.35)
Viagr = V-1 +Jea(Vge — Vi)t (6.36)

| Vicrt—or = Viapa o+ Jee1(Vigoayr — FVi_y4-1)Ji-s (6.37)

with initialisations for 7\r and Vg given by the posterior estimates in Equation (6.32)

and (6.33) from the forward recursions and Vrp_yp = (I - KrG)FVp_yr_,.

6.5.2 Learning the linear model

In order to estimate the model parameters 8 = (F,G,H,R,Q,n, V) the expected log-
likelihood Q(@) is maximised with respect to #. Here abbreviations are used for the mean
& = xy T, the spatial covariance Py = Vyp + mtIT‘nrtiT and the temporal covariance Py 1 =
Vit—r + mtiT:B;—lIT for an efficient notation. The new parameter estimates, denoted by
*, are obtained via setting the corresponding derivative of Q to zero (Shumway and Stoffer,
1982; Ghahramani and Hinton, 1996) and solving the equation. This results in the following

new estimates:

T T -1
F* = (Zpt,t—l) (Z-Pt—l) (6.38)
t=2 =2
T iz =i
G* = ( yt:i:;) (Z Pt) (6.39)
t=1 f==1
P T —1
H* = (Z (:ﬁt—Fmt_l)u;) (Zutu;) (640)
t=2 t=2
; I
= %Qy;y;—c*:ety;) (6.41)
1 T T
G = g (Z By~ ZPH,t) (6.42)
=2 t=2
o= 3 (6.43)
V* = P —#3). (6.44)

Regarding the quality of the algorithm, the total log-likelihood can be computed completely
during the filter (forward) pass in the ‘innovations’ form (Gupta and Mehra, 1974). This uses
the evidence p(y; | Vi—1) in the Bayesian update equation of the state posterior. In the linear

context the evidence is a Gaussian, defined in Equation 6.24, which gives a straight forward
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expression for the negative log-likelihood E of the full dataset:

T
E=—logL=~logp(Yr|0) = - logp(y;|Ve_1,6)
t=1

T
- Z lOg {(2ﬂ)dm!{2 |El_1’Ilr2 e_%('yt“ytit—l)rz_l(y:‘ym_l)}

t=1

mT e
= —5— log(27) + 3 Z{log Bge-1l + (e — Y1) Sy (ye — ya‘.lf—l)}' (6.45)

t=1

It rather reflects the quality of the predictions than of the smoothed values which is more

useful for fair comparison with other methods.

The results using this linear paradigm will be discussed after the nonlinear approach has

been introduced in order to allow a comparison.

6.6 The nonlinear case

The advantage of the linear Kalman filter for time series analysis lies in its analytical sim-
plicity: all integrals can be computed by deriving the mean and the covariance of the corre-
sponding Gaussian distributions. The drawback is its lack of applicability for nonlinear and
non-Gaussian problems. The natural desire is therefore to allow more flexibility in the model
in the form of nonlinear dynamics and non-normal predictive distributions. Unfortunately,
in general this has the consequence that the solutions for the distributions involved cannot
be computed analytically any more.

For the purpose of allowing non-Gaussian distributions we will therefore follow here the
approach of representing the distributions of interest by an arbitrary number of samples
(Gordon, 1996; Kitagawa, 1987; Pitt and Shephard, 1997). These samples are then used to
perform inference. For obtaining such samples efficiently we propose a combined strategy
of using a rejection sampler and Gaussian mixture models. This inference stage with its
individual components for prediction, filtering and smoothing will be considered next.

In order to permit nonlinear system and observation equations we propose afterwards
using radial basis function networks which can be trained efficiently with the EM algorithm
in the learning stage of the model. Finally, there also implementation issues will be discussed,

such as initialisation, the choice of the hidden state dimension and convergence.

6.6.1 The particle filter

In contrast to the analytical approach a distribution p(z) is represented in the particle filter
by a (generic) set X = {zn}_, of N samples @, from its distribution. This representation
is sufficient since an arbitrarily large number of such samples can be used by Monte Carlo

methods to approximate any integral of interest (Appendix B).
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This approach can therefore be used in the prediction step of the particle filter in the
following way (Algorithm 1): The predictive state distribution p(xt | Yi-1), defined in Equa-
tion (6.7), can be estimated based on a set Xio1jt-1 = {;cif)m_i},{f_l of previous posterior

samples @;_yj;_1 ~ p(x-1|Vi-1). Applying Monte Carlo the predictive distribution can be
approximated as

N
p(xe| Yi-1) =/P(3’t|wt 1) P(@e—1 | V1) dayy ~ — Z (@¢| 2oy =2(™).  (6.46)

This means that samples representing the predictive distribution p(z; | ;_;) can be created
by propagating i.i.d. samples from the previous posterior through the system via the sys-
tem equation given in Equation (6.1). Therefore, N* samples are drawn uniformly with
replacement from A;_;;;_; and mapped to a set Xt!t L= {a: N"  of prediction samples

tjt—1Sn=
Ty = F(®_ g5 e, wh).

Algorithm 1 The particle filter: The set A} 1 = {mi’i)l]t_l}le of previous posterior
samples @;_1j;_1 ~ p(T¢-1 | Vi-1) is transformed into a set Xy, = {mgﬁ)}i};l of current poste-
rior samples ;¢ ~ p(x¢ | Vi) using the current system input u;, the observation y,, and the

state space model (f, g, Q, R)

% Forward propagation of posterior state samples
forn=1to N* do
n~N(0,Q)

Ly ~ Xt—llt—l

! <« f(xn, us, wy)

an < p(y:| z7)
end for
% Normalisation of weighting factors
forn =1 to N* do

Tn <= qn/ Zi:v:‘l qk
end for
% Re-sampling of prediction samples weighted by the likelihood
forn=1to N do

zn ~ {(x},m;)}C, such that Pz, = ) =7,
end for

return X; = {x 3N,

In the update step the prediction samples in Tt , are used to create, via Bayes’ the-
orem in Equation (6.8), the sample set &}; = {:ctl ; NV_| representing the current posterior

distribution p(z; | V) for the filtered estimates of the state z;.
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For the implementation of this step it was suggested to use, for instance. the sam-
pling/importance re-sampling (SIR) method (Gordon, 1996; Pitt and Shephard, 1997). Its
idea is to draw a sample a:iﬁ)_l uniformly with replacement from Xyj¢-1 and then to accept
it with probability 7(™ = ¢ /S ¢®) using the likelihood ¢(®) = p(y, |m§|’;3_1). Further
details including an algorithm are given in Appendix B.2. Similar to this is the method of
rejection sampling (RS) discussed in Appendix B.3 with the difference of normalising 7, by
its largest value over all n.

In the context of the nonlinear state space model we experienced a more time-efficient
performance by the rejection sampler compared to SIR. This stems from the different normal-
isation with the consequence of a higher acceptance rate for the rejection sampler. However,
both methods suffer when the likelihood is very different from the prior. In that case the
proposed samples are too often rejected leading to a dramatic increase in computation time.
This is demonstrated in Figure 6.1 for a nonlinear and bimodal prediction problem®. Note
that by using an acceptance ratio as the likelihood normalised by the maximum likelihood
over the entire sample set a huge improvement for the computation is achieved.

As an alternative to this direct sampling method we propose therefore a hybrid method
which uses a Gaussian mixture model similar to an idea in (Gordon, 1996; Gordon, 1997).
The key is to recognise that the desired posterior distribution is represented by the discrete
distribution over the supporting points {mgﬁll}ff:‘l (which are the predictive samples) with
their associated weighting coefficients 7, as the probability mass (representing the normalised
likelihood). Gordon (1996) suggests an algorithm which places Gaussian kernels at every
data point and then merges successively close kernels together building up a mixture model.
Unfortunately, this approach seems to be rather subjective in terms of merging strategies and
is furthermore computationally expensive for a large sampling set. Therefore, we propose a
direct approximation of a Gaussian mixture model from the weighted data samples.

Using this approach the sampling part becomes more efficient for strongly differing prior
and posterior distributions. Additional computational effort is only necessary for the mixture
approximation which is independent of differences in prior and likelihood. The posterior is

therefore modelled in the usual way by a mixture of Gaussian kernels
M
plae| V) =Y N(ze; 15, 55) Py (6.47)
Jj=1

with mean p;, covariance matrix 3; and prior probability P; for the jth of M < N com-
ponents. The difference to the usual update equations for the GMM in the maximisation
step of the EM algorithm is that the values z, are not equally probable but occur with
probability 7,. In Appendix C.8 we derive a modified version of the EM algorithm for this

problem. There it is shown that the posterior component probabilities P(j | z,) are computed

3Here the Kitagawa example is used which is discussed in detail in Section 6.7.
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Figure 6.1: Prior, likelihood and Posterior for a bimodal prediction problem. The prior and
posterior distributions are represented by a histogram and the current true hidden state z;
by a dashed line. The likelihood p(y:|z:) for all prior samples z;" having observed y; is
plotted in the normalised form where each likelihood is divided by the maximum value over
the whole sample set. Note that since the likelihood is here very different from the prior it
takes a longer time to accept a proposed sample and with that to reach a reasonable size for
the posterior sample set. Therefore the SIR algorithm suffers from a strong deviation of prior
and likelihood
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by simply weighting the usual EM update with the likelihood coefficients Tn-

p(xn|j) Pj

P(jlmn)*:P(jlmn)Wn= p(:c)

?Tn.

We refer to this version as a Gaussian mixture model for weighted samples (WGMM). This

is used from now on for estimating a distribution which can be written as the product of two
other distributions.

6.6.2 The particle smoother

Beside the tendency for SIR and RS to degenerate the distributions involved in the NSSM

such a purely sample-based approach is also impractical for non-trivial problems. Recalling

the definition for the smoothing distribution from Equation (6.9) as

p(zt | Vr) = 3’t|y)/ ztil:;t) p(@es1 | V1) deiyy (6.48)

it can be noticed that in order to estimate the smoothed distribution p(z;|Yr) the current
posterior p(z¢|Y;) is needed as well as the next predictive p(zi41|);) and smoothing dis-
tribution p(xs41 | Yr). This means all these distributions, respectively their representative
samples have to be stored which becomes computationally unfeasible quickly for real-world
problemé. Nevertheless, using now the mixture models estimated during the prediction and
filtering step allows a compact representation of the distribution and thus an efficient sam-
pling and evaluation.

In order to estimate the smoothed density p(x:|Yr) the particle approach is applied in
the same way as for filtering in the previous section. Now the posterior p(z;|);) is chosen
as the proposal density to get a sample set Xy; = {:cﬂ;] }N_,. This leaves estimating the

weighting coefficient 7, as the approximation of the integral in Equation (6.48):

K

(n) _ (k)
p(ziy1 |z = 2y, ) p(@ey1 = | V)
Ty = / 2t p(@e41 | Vr) depyq =~ t(‘;)l't (6.49)
p(@es1| M) k=1 P(@err =20, [ 1)
(k)

with propagated samples z = f(a:m ,ut,wgkj) for k = 1,...,K and K > 1 using

t+1]t
the representations for the posterior distribution p(z¢+1|Y:) and the smoothed distribution
p(x41 | Vr) estimated in the previous smoothing step. Finally, the smoothed distribution can
now be estimated via the weighted Gaussian mixture model approach (Appendix C.8) acting

on the set {(mg;), )}, of samples :cgrg) with their corresponding weighting coeflicient .
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6.6.3 Learning the nonlinear model

Using the Gaussian distributions in Equations (6.2) and (6.4), representing the nonlinear

state space model, the log of the joint probability distribution in Equation (6.12) becomes

T T
logp(¥r,7r) = - log|RI~ 3" [y, - (@l R™ [y, — g(ar)
=1

T—1 T
) 1ong|__2‘;[$t_f(mt-hut)]rqwl[$t — F(@e—1. u)]

=k
2

T(n+m)

1
log |V| — E[wl i (2] — 7] — 5

log 27. (6.50)

Taking now the expectations <> with respective to the state distribution p(Xr | Vr,0) we
get finally the expected log likelihood as

T

Z{y;R_lyt = zy;R_l<9($t)> + (9(%)’3_19(%))}

l t;l
A (o) (e e

Q(6) = —

b | =

(6.51)
= <f($t—lsut}fQ_lwt> + (f(mt—laut),Q_]f(xt—laut)>}

— % {(:B"IV_I:Ih) =; <:1;"1>V_'1?r — 'n-’V_1<:z:1> +7'V1ir + log|V|}
T T—1 (n+m)

T
= — -
5 108 |R| — ——log|Q| - —

log 2.

Filtering, smoothing and learning will be performed on the training set while ‘true’ prediction
is only performed on the test set. In addition, for the learning we can fix the centres the
RBF networks after a few iterations using factor analysis for initialisation purposes, then
only the weights have to be adapted, which represents a linear optimisation problem. When
a Gaussian kernel is used in the RBF networks also the widths can remain fixed after being
determined by a Gaussian mixture model, for instance.

Furthermore, it seems useful to restrict the output function of the RBF networks to
approach zero outside the range of available data by not providing a bias unit. It seems to be
a valid prior to set a function value to zero for an unseen input. This prevents amplifications
and oscillations for the network functions and the hidden state sequence during the learning

process.

6.7 Comparison

This section focuses on the prediction ability of the nonlinear model compared to the linear

model. As one artificial example the following system of equations has been chosen (Kitagawa,
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Figure 6.2: The training and test samples for the Kitagawa example: The next hidden state
sample 7,1 (left) and the current observation sample y; (right) as a function of the current
hidden state sample z; superimposed with the corresponding system and observation function.

1987):
T 2541
T = — + Py + 8cos 1.2t + vy (6.52)
z}
v = 55t+w (6.53)

with zg ~ N(0,5), v, ~ N(0,10) and w¢ ~ N(0,1).

A time series of 2000 data points has been generated of which the first 1600 serve as
the training data and the remaining 400 points are used for test purposes. The training
and test points for the hidden state and the observation are plotted in Figure 6.2 against the
current state sample. There the nonlinear and nontrivial nature of the system and observation
function becomes clear.

To model such a complex nonlinearity the system and observations function are repre-
sented each by a RBF network with ten hidden units and a thin plate spline kernel (2 logr).
As a sufficient and computationally feasible number of prior and posterior samples we choose
10000 and 1000 respectively. For a smaller size, such as 1000 and 100 for the two sample sets
respectively, the problem of degenerating distributions in the Gaussian mixture fitting step
occured very often for this particular example.

To test the suffiency we applied the filter and smoother for the given model and realized a

very good estimation of the hidden state sequence. The NSSM was initialised with the state
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Figure 6.3: The first 50 observations y; of the test set of the Kitagawa example (thick)
superimposed by the mean of the Kalman prediction (dashed) and the predictive distribution

of the NSSM represented as a contour plot of equal probabilities of 0.03, 0.06, 0.12, 0.24 and
0.48.

estimate of the Kalman smoother and the estimates for the noise covariances R and Q as
well as the initial (Gaussian) state distribution represented by its mean x and its covariance
V. The latter parameter then remained fixed during the process while the system and the
observation function were updated in the M step after each new E step. The running time is
several days on a Pentium III workstation due to the chosen size of the sample sets. During
a limited test period several trials (order of ten) were performed, however, the computational
complexity prohibits the usually desired trial size (order of one hundred).

The first segment of 50 points in the test set is shown together with the linear and
nonlinear prediction in Figure 6.3. For the Kalman estimate it is sufficient to report just
the mean. For the nonlinear filter the mean would be misleading. As it can be seen the
predictive distribution is very often positive skewed indicating a higher probability for larger
positiv values. However, the results in terms of the achieved loglikelihood are not too different.
In Figure 6.4 the loglikelihoods for the training and test set are shown for each iteration along
with the values achieved for the Kalman filter. Despite exceeding the better value for the
loglikelihood on both training and test set for the NSSM after just one iteration only a slightly
superior value is achieved in saturation (after five iterations).

One possible explanation is that the initialisation by the linear solution obtained with
the Kalman smoother is leading to a local minimum. From there the algorithm is not able to

“escape” to a different minimum in the error function. In order to analyse this phenomenon
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Figure 6.4: The log of the likelihood for the training (solid) and test (dashed) set of the

Kitagawa example for the nonlinear state space model (circled line) and the linear state space
model (straight line). For the LSSM only the last value is used for a better comparison.
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Figure 6.5: The learned nonlinear functions in the NSSM for the nonlinear state space model
example represented by a RBF network for the Kitagawa data: The next hidden state z;4)
(left) and the current observation y; (right) as a function of the current hidden state z;.
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Figure 6.6: The first 50 observations y; of the test set of the IBM example (thick) superim-
posed by the mean of the Kalman prediction (dashed) and the predictive distribution of the
NSSM represented as a contour plot of equal probability densities of 0.03, 0.06, 0.12, 0.24
and 0.48.

Figure 6.5 shows both the system and the observation function depending on the current
hidden state. The reconstructed (smoothed) hidden states range from around —1 to 3. This
means that the system function maps preferably into a smaller positive interval such that
the state values would collapse in the absence of noise. Within the mentioned interval the
system function can furthermore roughly approximated by a semi-linear function which could
explains the just slightly better performance compared to the linear Kalman filter.

It can therefore be concluded that by combining.the two stages in this way with the
initialisation by the linear solution is not sufficient to guarantee a significantly superior results
than what can be obtained via the linear approach.

It is furthermore difficult to use an different initialisation scheme automatically. For
instance, a random initialisation was tried instead of using the linear solution by the Kalman
filter. This was even less efficient than the linear initialisation and furthermore lead to
numerical problems such as collapsing Gaussian kernels in the Gaussian mixture estimation
of the involved densities, the collapse of the sample distribution due to a highly peaked prior
and numerical overflow due to an amplifying system function.

Despite these unexpected results we studied the capability of such a model to predict
the one-day ahead value of IBM returns. For computational reasons we choose the last 1500
point of the set 4 of the IBM data and allocated 1000 points for the training and 500 for the

test. The model structure remained the same as in the experiment before, 10 hidden units for
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Figure 6.7: The log of the likelihood for the training (solid) and test (dashed) set of the IBM

example for the nonlinear state space model (circled line) and the linear state space model
(straight line). For the LSSM only the last value is used for a better comparison.
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Figure 6.8: The learned nonlinear functions in the NSSM for the nonlinear state space model
example represented by a RBF network for the IBM returns: The next hidden state x4,
(left) and the current observation y; (right) as a function of the current hidden state ;.
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the RBF networks with a thin plate spline activation function. The initialisation was done
again with the solution by a linear Kalman filter.

Figure 6.6 shows the first 50 points of the test set together with the mean of the Kalman
prediction and a contour plot to represent the predictive probability density of the nonlinear
model. It can be seen that the linear solution is equivalent with the mean of the training set.
The mode of the predictive distribution of the nonlinear model is much closer to zero, the
distribution itself is slightly positively skewed. However, in terms of likelihood the difference
is almost negligible. In Figure 6.7 for the nonlinear solution is better than for the linear one,
however, not to a large amount.

It was therefore interesting to see the form of the approximated systems and observation
function. Figure 6.8 shows that these functions are modelled as being highly nonlinear. It
seems also that overfitting occurs in the center of the data distribution. Furthermore, since

the model does not achieve a significantly better performance than the linear model it could

be concluded that the solution presents a local minimum.

6.8 Discussion

This chapter has provided a framework for a nonlinear state space model as an extension
to the static factor models introduced earlier. In comparison to other approaches for state
space modeling the proposed model is neither restricted in its internal dynamics nor in the
observation function.. The system and observation function are both modelled by individual
RBF networks allowing a rich class of nonlinear functions. Furthermore, the use of Gaussian
mixture models makes it possible to have non-Gaussian posterior and predictive distributions
such as multimodal and asymmetric distributions.

However, the richness in this model has so far prevented effective inference and learning.
The main problems have been attributed to an improper initialisation either with the linear
solution from which it seems to be difficult to avert or a random one which might far from
the solution or even lead to a divergence in the estimation process.

One possibility to handle these problems could be to start with several random initial-
isations and to stop updating those which show numerical problems. However, since this
algorithm has a high time and space complexity due to the sampling procedures involved a
multiple run with different initial configurations seems to be computationally too demanding
at the moment.

A more promising approach would be the usage of a further restricted system and ob-
servation function, for instance, in form of a moderate and smooth nonlinearity, such that
the estimation is less likely to show the same numerical difficulties. This would furthermore
avoid overfitting. However, we realised earlier that the used network configuration was neces-

sary to approximate the nonlinear system function in the Kitagawa example. Restricting the
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network’s complexity could then mean to underfit the data and therefore to be even closer to
the linear solution. This could mean that a fixed network configuration is less favurable here.
It remains to be tested if a model with a growing complexity achieves a better generalisation
performance. Additionally, different kernel functions could be tested for the RBF networks.
Here only thin plate spline functions were used since they showed the best approximation
capabilities on the Kitagawa example and furthermore do not require a width parameter
such as the variance for the Gaussian kernel. However, this and other kernels could be tested
provided a robust update scheme for the width exists.

A similar approach could be tried for the Gaussian mixture models. Here a maximum
number of modes could be determined in advance as well as a minimum covariance of each
mixture component in order to avoid the collapse of a component.

Concluding the experiments it must be said that with the currently available learning
scheme the theoretical generalisation capabilities of such a model are not exhausted. However,
improvements in terms of the initialisation and the ability to escape local minima as well as

the continuously increasing availability of computational ressources should show the practical

relevance of such a model, soon.
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Chapter 7

Conclusion

The goal of this thesis was to analyse financial returns from two angles: the deterministic and
the stochastic paradigm. Historically, these two branches have focused on different aspects
in financial data under opposit assumptions. However, both approaches also have not been
able to fully explain all empirical phenomena indicating useful and missing elements in both
of them.

In order to investigate how valid those assumptions are and how a model could be derived
which incorporates useful elements from each side, a hierarchy of hypotheses about the nature
of financial returns was established and tested. Starting from both angles with the most basic
assumptions the test results at each level were then used to obtain a more complex model
leading finally to a fusion of the elements into one model.

At first, a specific approach from dynamical systems theory has been employed in order
to test if the apparent ‘random’ behaviour in financial returns is caused by a nonlinear deter-
minism. Here we used several algorithms for estimating the fractal dimension of embedded
returns. Unfortunately, either the assumption of a low fractal dimension could not have been
confirmed or the difference in the dimension estimate compared to the one of randomised
data is not significant. This leads to the conclusion that for the tested financial data no
low-dimensional deterministic structure has been found. Since it is infeasible to detect a
high-dimensional determinism in daily financial returns due to the lack of sufficient data
the only practical choice is to assume that either noise has corrupted the deterministic data
part or that the return itself is noise. Unfortunately, the method employed for dimension
estimation relies on the assumption that the available data are noise-free.

The next step was therefore to look at the other end of the spectrum of analytical tools for
methods which can deal with noise. For that purpose several density estimation techniques
were explored. Using parametric distributions we have shown that the hypothesis of a Gaus-
sian random walk for financial time series cannot be confirmed. Instead, stable distributions
like the Paretian or Laplace fit the data better. Furthermore, a kernel density estimator was

employed for approximating the probability density and the characteristic function. Since
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such non-parametric methods are very costly and also unreliable for low-density regions a
semiparametric approach such as the Gaussian mixture model was investigated There the
advantage of different basis functions was demonstrated. Furthermore, an extension for a
mixture model estimate of weighted samples was introduced.

All the used density estimation techniques confirmed the leptokurtic (fat tails and highly
peaked) and slightly skewed, and therefore non-Gaussian shape of financial return distribu-
tions. Since the Gaussian assumption is still broadly used in the financial industry, the risk
for a portfolio drawdown, for instance, will therefore be under estimated.

Beside marginal also conditional distributions of the current return given the previous
return were estimated. The results confirmed a slightly positive correlation in the mean and
a variance growing with the amplitude of the current return.

In order to explore the idea of such a correlation being introduced due to a linear or
nonlinear transformation of truly independent factors principal and independent component
analysis was performed on embedded financial data. Both methods confirmed the significant
correlation structure within the magnitude of returns. This correlation seems also to change
slowly over time. However, a clear-cut way of separating noise from the signal and therefore
a dimensionality reduction could not be achieved.

Nevertheless, all these methods are static approaches, ignoring explicitely time-dependencies
although they can be applied for a moving time-window. However, they cannot explain why
volatility persists over time. They can only detect this phenomenon. The idea was therefore
to implement a temporal structure in the model in order to allow a certain dependency of the
current from previous values. This lead to a (dynamical) state space model. In such a model
an underlying dynamical volatility process, for instance, can result in returns correlated in
their magnitude.

Such a temporal structure was implemented in the model by a linear and nonlinear system
function. Those can be represented by a matrix transformation or a nonlinear neural network.
For the nonlinear state space model it is furthermore necessary to allow non-Gaussian distri-
butions as a result of a nonlinear transformation of a Gaussian distribution. Here Gaussian
mixture models were used as efficient, flexible and compact density estimators. In order to
perform inference in this model the particle filter approach was employed. The created parti-
cles in turn were used to estimate the mixture models. Despite the theoretical opportunities,
the lack of an efficient initialisation scheme and numerical problems have prevented so far a

practical use of this model.
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Appendix A

Datasets

This appendix introduces the datasets used in this thesis. These include daily time series of
stock indices and prices, foreign currencies exchange rates, government bonds and commodity
prices. Table A.1 summarises each time series in the form of the number of totally available
points and the place on which the equity was traded to that price. Thereby the currencies’
exchange rates are given as the value of the foreign currency in US Dollar. The futures price

series are all continuous contracts.

| Dataset | Description | Points | Place |
Stock market indices
DJIA Dow Jones Industrial Average 28336 | NYSE
SP500 Standard & Poors 500 18991 | NYSE
DAX German Stock Market Index 10000 | Frankfurt
Single stock prices
COCA Coca Cola 7472 | NYSE
IBM International Business Machines Corp. 9457 | NYSE
Foreign currencies exchange rates futures
DEMUSD | Deutschmark/US-Dollar futures 6179 | US
GBPUSD | British Pound/US-Dollar futures 6178 | US
Government bond futures
USNOTES | US Treasury 10 years Notes futures J 4349 J UsS
[ USBONDS | US Treasury 30 years Bonds futures | 5532 | US |
Commodity futures
COFFEE | Coffee futures 7503 | US
SILVER Silver futures 7424 | US

Table A.1: Description of the financial datasets used with daily prices including the total
number of prices and the trading place.

Regarding the stock data sets the following comments are necessary: The New York Stock
Exchange (NYSE) closed August 1 until December 11, 1914 due to war. On December 12
the market opened again and finished that day with —33% compared to the last trading
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day before the war. Therefore this return was removed from the set 1 of the DJIA series of
one-day returns in order not to bias the estimate. Furthermore, the whole time series was
divided into four datasets with approximately constant variance. For instance. set 2 covers
the time around the global stock market crash in 1929, the following Great Depression and
the recovery during which the variance is significantly higher during that time. In set 3 the
three returns from October 19th to 21st 1987 accounting for the crash and a short recovery
were removed. The same was done for the other US stock index S&P 500 and the stocks

COCA and IBM. In total the following outliers have been removed:
e DJIA: 4 (12-Dec-1914, 19-Oct-1987 until 21-Oct-1987)
» SP500, COCA, IBM: 3 (19-Oct-1987 until 21-Oct-1987)
o DAX: 2 (29-May-1970, 16-Oct-1989)

Another important issue concerns the breadth of the Dow Jones Industrial average. Before
August 1914 the index included 12 stocks, but it was expanded to 20 stocks when the exchange
reopened. A further expansion took place on October 1, 1928 to 30 stocks. This number
has been kept constant since, however, stocks are irregularly substituted in order to take
into account the changing capitalisation of the corresponding companies. Another important
difference between the DJIA and SP500 is that SP500 incorporates dividends and uses a
weighting according to market capitalisation which is not done for the DJIA. There the
prices of the 30 stocks are taken and simply averaged.

Table A.2 gives an overview of all the training and test sets for each time series. The
choice of how to split a data set into different subsets is not trivial in case of nonstationary
data (LeBaron and Weigend, 1997). Therefore we have selected segments of the time series
which appear to be stationary, at least up to second order. Furthermore we checked for
outliers which are outside ten standard deviations from the mean. This is mainly an issue
for the stock prices and indices during the crash in October 1987. Figure 2.1 shows the price
and return of the DJIA for 100 years with the separation in the four sets.

The data have been acquired from the following public sources:

e DJIA:
1896-1999 http://www.economagic.com/em-cgi/data.exe/djind/day-djiac
1901-1998 ftp://ftp.quoteline.ch/dj1900d.exe
1900-1993 ftp://wueconb.wustl.edu/econ-wp/data/papers/9603/9603001.tar.gz
1928-1999 http://chart.yahoo.com/d?s="DJI

e SP500:
http://chart.yahoo.com/d7s=SPX
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| Dataset [ Type | Points | Begin End | Outliers |
set 1 9500 26-May-1896 | 14-Jul-1928 1
DJIA set 2 3499 16-Jul-1928 | 08-Apr-1940 0
set 3 8000 | 09-Apr-1940 | 21-Apr-1970 0
set 4 7332 | 22-Apr-1970 | 29-Apr-1999 3
SP500 set 1 8000 | 09-Apr-1940 | 21-Apr-1970 0
set 2 7332 | 22-Apr-1970 | 29-Apr-1999 3
DAX set 1 5000 09-Aug-1963 | 05-Nov-1982 1
set 2 3998 08-Nov-1982 | 10-Jul-1998 1
IBM set 1 5000 02-Jan-1962 | 08-Dec-1981 0
set 2 4453 | 09-Dec-1981 | 28-Jul-1999 3
COCA set 1 3736 | 01-Jan-1970 | 12-0ct-1984 0
set 2 3732 15-0ct-1984 | 28-Jul-1999 3
set 1 3000 14-Feb-1975 | 07-Jan-1987 0
DEMUSD | oot 2 | 3178 | 08-Jan-1987 | 02-Aug-1999 | 0
set 1 3000 14-Feb-1975 | 07-Jan-1987 0
GBPUSD | oot 9 | 3177 | 08-Jan-1987 | 02-Aug-1999 0
set 1 2000 | 04-May-1982 | 30-Mar-1990 0
USNOTES set 2 2348 02-Apr-1990 | 02-Aug-1999 0
set 1 2500 16-Aug-1979 | 11-Jul-1989 0
USBONDS | (ot 9 | 2531 | 12-Jul-1989 | 02-Aug-1999 0
set 1 4000 | 06-Jan-1970 | 27-Dec-1985 0
SILVER set 2 | 3423 | 30-Dec-1985 | 02-Aug-1999 0
set 1 3500 | 20-Aug-1973 | 26-Aug-1987 0
COFFEE | ot 9 | 3002 | 26-Aug-1987 | 02-Aug-1999 | 0

Table A.2: Description of the individual datasets used: the number of returns excluding the
outliers, the begin and end date of each set and the number of excluded data points
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o IBM:

http://chart.yahoo.com/d7s=IBM

e GBPUSD, DEMUSD, USNOTES, USBONDS, SILVER, COFFEE:
http://www.chdwk.com/data/futures.html
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Appendix B

Monte Carlo methods

This appendix provides a brief summary of Monte Carlo methods for integrating non-normal
distributions via the approach of averaging over a finite number of samples from that distri-
bution. Specifically, two relevant methods are described: Sampling/importance resampling

and rejection sampling.

B.1 Introduction

Monte Carlo methods are used to calculate the expectation E[F(X)] of an integrand of
interest F'(X) under the distribution p(z) where this cannot be solved analytically due to
the non-Gaussianity of p(z) or nonlinearity of F' (Neal, 1996; MacKay, 1995):

E[F(X)] = / Fla)pla)de. (B.1)

Using a set X = {z,}_, of N samples z, ~ p(z) allows us to represent p(z) by the empirical
density function p(z) as a sum of Dirac delta functions at the , according to Equation (4.21).

Then the above integral can be approximated by the sum of the function values of these N

samples:
. 1
BF(0] = [ F@)i@)do = > Flan) (B.2)
n=1

This means that a distribution can be represented to an arbitrary degree by its own samples.
Such samples can be produced, for example, by sampling first uniformly with replacement
from the sample set X and then applying the function F to each of these proposed samples.
This approach is applied, for instance, in the prediction step of the inference for nonlinear
state space models in Equation (6.46).

The remaining problem is to provide samples from p(x) which is not always trivial. It
is feasible in the case that p(x) is proportional to an easy to sample from density g(x)
weighted by a likelihood term 7(x). Samples can then be obtained by proposing from ¢(z)

and accepting it with a probability proportional to m(z). This method is employed. for
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instance, when Bayes’ theorem is applied in the update step of the inference part in order to
compute the posterior distribution in Equation (6.8). The two strategies used here for using

the likelihood term 7(z) in order to obtain samples from p(x) are now summarised.

B.2 Sampling/importance resampling

Sampling /importance resampling has been frequently used in the context of nonlinear state
space models (Gordon, 1996; Gordon, 1997; Pitt and Shephard, 1997). It requires that
[S m(z)de = 1 and w(z) > 0. In this way the weight m(z) itself represents the proba-
bility with which the proposed sample is accepted. Given a set {(z},7,)}Y_, of samples
z;, ~ p(x) and weighting coefficients 7, € (0,1) an algorithm can be derived easily for the

sampling/importance resampling approach which is sketched in Algorithm B.2.

Algorithm 2 Sampling/Importance Resampling: Given a set {(z},7,)} ", of samples =, ~
p(x) and weighting coefficients 7, € (0,1) with Z;};l mn = 1 representing the distribution
m(x) it produces a set {mk}kN=1 of samples z; ~ p(x) n(x)

for k =1to N do
repeat
n~U(l,N*)
u~U(0,1)
until u < m,
Py =2
end for

return {zy }j_,

SIR will become very imprecise when 7, is very.variable, which means it has a high
variance. This happens when the likelihood is very peaked compared to the prior. SIR is
furthermore vulnerable to sample impoverishment, the collapsing of the sample set to a single

point. It also needs a large sample sizes in order to achieve a random sample set.

B.3 Rejection sampling

A slightly modified sampling method is rejection sampling (Pitt and Shephard, 1997). The

variation is to normalise the weighting coefficients by the maximum coefficient:

= — (B.3)

" max; m;

For a continuous case it might be difficult to determine max; m; exactly. However. for a

discrete set of samples, like here, this is not an issue. This results therefore in a significant
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speed-up and with that allows a larger sample size. Nevertheless, the problem of highly

peaked priors compared to the likelihood remains.
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Appendix C

ML estimation for parametric and

mixture distributions

This appendix describes in detail the maximum likelihood (ML) approach of determining
parametric and semiparametric density models. For all these models the likelihood of the
data can be evaluated as a function of the model parameters. The ML approach simply
determines then those parameters which give the highest likelihood to the data. In the
following the ML procedure is discussed for the stable Paretian distribution, the Gaussian,
Cauchy, Weibull and Laplace distributions. For all but the stable Paretian this is straight-
forward. There a nonlinear optimisation needs to be performed, which is considered in detail
next. After, the ML approach is briefly reviewed for Gaussian mixture models and finally
discussed thoroughly for the combined mixture model and the weighted Gaussian mixture

model.

C.1 Stable Paretian distributions

Parameter estimation for stable distributions is performed via a nonlinear bootstrap. Since
the parameters a, 8 and y in Equation (4.29) are constrained to certain intervals a parameter
transformation is necessary to be able to use a unconstrained nonlinear optimisation tool.
Therefore the following re-parameterisations have been used with initial values ap. Bo and ¥y

to start the iterative estimation procedure:

e For the stability index a € (1,2) we introduce & = — log %}“1- and use the sigmoid

function! in order to define a = sigm(&) + 1. The derivative is g—g =(a-1)(2-a). As
a prior for ag one could sample uniformly from (1,2). However, we found empirically

a much more efficient scheme is to sample from (1.5, 1.9), a more likely range for this

parameter.

I The sigmoid function is defined as sigm(z) = (1 + e *)" ' e (0,1).



APPENDIX C. ML ESTIMATION FOR PARAMETRIC AND MIXTURE DISTRIBUTIONS

o For the skewness 6 € (—1,1) we take 8 = — log(

—1) with inverse 8 = 2sigm(B) — 1
and derwatlve = (B+1)(1 - B) and set By =

 For the scaling parameter v > 0 a simple log transformation is sufficient such as ¥ =

5 - 2 . . o =
logy and inverse v = €7 with derivative B_T = e7 = «. Its initial value is set to
IT
Yo = \/62/2.

* The mode ¢ € R is unconstrained and can furthermore be set to § = i for @ > 1. the
only case which we are going to consider here.

C.2 The Gaussian distribution

For the Gaussian distribution the sample negative log-likelihood E can be obtained from the
probability density function in Equation (4.30):

1
E = 5]0g(

(C.1)

The maximum likelihood solution for the parameters can then be derived explicitly as the

sample mean 2 and the sample variance §2:

T Lo
=z o &=z (m— ) (C.2)
t=1 t=1

In order to get an unbiased estimate 62 for the variance, T in the denominator is replaced
by T' — 1 (Bishop, 1995).

C.3 The Cauchy distribution

For the Cauchy distribution with its p.d.f. given in Equation (4.31) the negative sample
log-likelihood E is given by

T
1 2 2
E:logw—log'y+f;10g{7 + (z¢ — 6)%} (C.3)

In order to estimate the parameters E is differentiated with respect to d and +:

T
xt~6 6E 1 2 g |
TZ 2_|. $t_5 8')/ 0 Tt=172+($1~5)2

These partial derivatives are then used by a quasi-Newton nonlinear optimisation tool to

minimise F.
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C.4 The Weibull distribution

The negative sample log-likelihood E is derived for the Weibull distribution from the density
function in Equation (4.32) as

E =log?2 — log(\a) + Z || — == Zlog |24 (C.5)

where all values z; = 0 are excluded from the calculation. The corresponding derivatives are
then

OF 1 A 4 aE L, Li
T LU CE 8 S

C.5 The Laplace distribution

For the Laplace distribution the maximum likelihood solution for the parameters can be

calculated analytically from the negative sample log-likelihood E using the probability density
function in Equation (4.33):

i
A
E=log2—log/\+TZ|$t—u|. (C.7)

Its partial derivatives with respect to the median p and A are given as:

T
OF A OF T
o =TT TR

Setting these to zero yields /i = &, the sample median according to Equation (4.7) and X as

e
P_ﬁ-—&

xy — . (C.8)
t=1

the inverse of the sample mean absolute deviation corresponding to Equation (4.8):
1 T
A== o — 4l C.9
Y= ; |zt — A (C.9)

C.6 Gaussian mixture models

The error function E is defined as the negative log-likelihood given in Equation (4.35):

E = —log L(#) = Zlog {Zp T4|] } (C.10)

The Expectation step of the EM algorithm estimates the posterior probability P(j|z) that a
given data point z has been generated by the component j of the model. In the Maximisation

step new parameter estimates are determined by minimising the likelihood based on the
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densities p(z | j) given by

p(z|j) = N(z|pj,0?) =

1 (z — pj)2
exp { ———1— 3. g1l
271'0?- { 2032 ( )

the parameter update equations have the following form:

EfT:] P(jizf) Tt

4 B Plle C12)
f Eg: P(j | z¢) (x4 — pr)?
2 1 ;
K ST PG|z (C.13)
1 T
P = ?ZP(jlmt) s
t=1

Thereby the * marks a new value after the update. The posterior probability P(j|z) for
component j is given via the Bayes’ theorem as

1o PEIDP _ p(ali)P, r
RIS ET) o

C.7 Gauss-Laplacian mixture models

The update equations for the combined Gaussian-Laplace mixture model distribution can
easily be adapted by using the partial derivatives of the error function E with respect to the
median p and the scale ) in Equation (C.8):

i T

oE oFE 1

= =—X E P(L|z;)sgn(zy — p), N E P(L|zt) (X = | — #|) (C.16)
t=1 t=1

with the Laplace prior P(L) and posterior P(L|z;) = %ﬂﬂ. Setting these to zero

yields

= Sic1 P(Ll)
, ?:1 P(L|z¢)|xe — p*|

(C.17)

K" =argmin > P(Llzy) > P(L|zy)

Ti>p T<lp

as the new parameter estimates for the Laplace component within the mixture. The Gaussian
components are updated the same way as before according to Equations (C.12), (C.13) and
(C.14) with j running over all Gaussian components.

C.8 Gaussian mixture model for weighted data

Here we present a modification to the usual EM algorithm for Gaussian mixture models for

the case of unequally weighted data samples. In this general case the task is to approximate
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a continuous density function p(z) with a mixture model given a set {(z,.m,)}2_, of samples

~ p(z) with weighting coefficients , with mn > 0 and Z —1Tn = 1 rep.esenting a
proba.blhty measure for the discrete set of z,,

In the normal version of mixture models, as dealt with in the two previous sections, the
observed data z,, are equally-probable samples, thus their corresponding weights 7, = VL.
For unequal weights the EM algorithm has to be modified slightly. This more general EM
version will be used later to determine the posterior distribution from a set of prior samples
with corresponding likelihoods.

Using m(z) to denote the probability function induced by the , we are interested in the

product p(z) = ¢(z) 7(z) which will be modelled as a Gaussian mixture parameterised by
B= {(Pjrﬂjagf)}_jﬂil

M
=Y " p(z|j) P; (C.18)
i=1

with the component density functions p(z|j) being normals given in Equation (C.11). The
mixture model is estimated by minimising the Kullback-Leibler divergence between the ‘true’

distribution p(z) and the approximating distribution p(x):

KL(p.9) = - [ plo)log B da (.19
The goal is to find the parameter vector 8* which minimises this divergence:
&= a.rgmein {— /p(:c] log E ; dm} (C.20)

Since the entropy term [ p(z)logp(z)dz in Equation (C.19) does not depend on 6, it is
sufficient to maximise just the second term, the cross-entropy between the distributions p
and p. This can be approximated for an arbitrarily large number of samples z, ~ p(z) by a
finite sum: "

E = /p(:::) m(z)logp(z) dr =~ Zﬂn log p(zn) (C.21)

n=1
which defines the error function E we are going to maximise. The derivative of £ with respect

to a distributional parameter 6 is then given by

N
OE Z e A 1 3p In) (022)

mn

and the derivatives of the mixture model densu:y p(z,) with respect to the model parameters

become

(933(1?1) . s Tp — Kj (023)
s p(zn|J) P, 2 ]

2 dc . (20 —15)° _ C.24

_%32___ = § ($R|J)PJU§ 032 1 ( )
~ M

6}:9(:1:,1) = Y p(aal4) [P — P()Ps] = P; [p(eali) = plzn)]- (C.25)

00 ,

—

1=
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Setting now the derivatives of E to zero for each model parameter and using Baves® theorem

for the posterior probability P(j | Z7) = p(zx | 5) P;[p(z,) we obtain

N

0 = > mP(j|2a) (2 — ;) (C.26)
n=1
N

0 = > mP(j|z,) [(_%_;;"_iﬁ_ll (C.27)
> p(zal7) ;D(J)

0 = Y x,p;BInll) ~PZa) :
a; f p(zn) 528

This results in the following solutions for the new parameter estimates (denoted by ):

N i
* = P n n
p; = =85 (Jl,m)“ e (C.29)
n=1 P(J |xn)?rn
N . *\2
. 1 Pli|zg) s (€ — 113
o = Zamt Plon) 2 ) —
> n=1P(7|zn) ™
N
P} = ) P(j|za)mn. (C.31)
n=1

With that the only modification to the usual EM algorithm is to multiply the posterior
probabilities P(j | z,) with the weighting coefficient 7, at the begin of each EM iteration:

P(j | Tn)" = P(j|Tn) mn, (C.32)

then the new parameter estimates are obtained as usual via the Equations (C.29), (C.30) and
(C.31).
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Appendix D

Density estimation results

This appendix summarises the results obtained by parametric and semiparametric density
estimation techniques. For parametric distributions the estimated parameters are reported
along the corresponding log likelihood. However, first the estimated four sample cumulants
are listed in Table D.1 for all datasets. Note that the first two cumulants coincide with
the mean and variance parameters for a Gaussian distribution. Table D.2 provides then a
summary of the achieved log likelihoods for all estimation techniques for the DJIA data using
set 1 as training and set 2 as a test set and vice versa.

In the following Tables D.3, D.5, D.7, D.9 and D.11 the distributional parameters are
reported with the corresponding log likelihoods for the Gaussian, the stable Paretian, the
Cauchy, the Weibull and the Laplace distribution for each individual data set. Since for the
DJIA four data sets were used the Tables D.4, D.6, D.8, D.10 and D.12 contain the obtained

log likelihoods for the DJIA data using the parameters estimated for each set.
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| Dataset | Type || mean ;| variance o2 | skewness v | kurtosis x |
set 1 [[+0.02£0.01 | 1.03+0.03 | —047 £013 | 475209
- set 2 || —0.01£0.03 | 3.37+0.18 | 40134026 | 6.95+127
set 3 || +0.02+0.01 | 0.48+0.02 | —0.85+025 | 9.00+ 1.85
set 4 || +0.04+£0.01 | 0.90+0.03 | —0.21+0.15 | 4.38 + 0.98
" set 1 || +0.02+0.01 | 0.56£0.02 | —0.95 £ 025 | 10.13 £ L.79
set 2 || +0.04+0.01 | 0.82+£0.02 | —028+0.16 | 4.87+1.13
DAX set 1 || +0.00£0.01 | 0.67+0.02 | +0.06 £0.07 | L.14=0.20
set 2 || +0.06£0.02 | 1.37+0.06 | —0.50 £0.27 | 7.27 + 1.44
. set 1 || +0.01 £0.02 | L83 +0.06 | +0.20 £0.15 | 3.58 £ 0.71
set 2 || +0.054£0.02 | 2714012 | 40224020 | 5.53 +0.96
i set 1 || +0.03£0.02 | 231 £0.10 | —0.07£020 | 4.72 £ 1.05
set 2 || +0.09+£0.03 | 246009 | —0.07+0.14 | 2.75 + 0.66
set | || +0.01 £0.01 | 0.42+002 | +0.38 £0.22 | 3.35 % 1.36
DEMUSD | et o || +0.01+0.01 | 0384002 | —0.07+0.13 | 2.43 +0.38
GBPUSD | S 1 | ~000£002 [ 054£002 | +0.12+0.17 | 3.00%0.67
(= set 2 || —0.00+£0.02 | 0.52+£0.02 | —0.22+0.15 | 3.05+0.51
SIvER | 1 | F002E004 [ 472017 [ —012+008 | LI0£0.17
set 2 || —0.02+0.03 | 2324014 | —0.46 +0.30 | 6.42 + 1.60
COFFEE | St L | —002£004 | 403029 | —0.97£049 | 1082 £ 4.2
set 2 || +0.00+£0.05 | 506036 | +0.69 %+ 0.52 | 10.57 + 4.26

set 1 | 1000 £002 | 09L£003 | +0.10£009 | 1.28£0.28 |
USBONDS | (ot 9 || +0.0140.01 | 0314001 | —030+0.11 | 1.71+0.42
set 1 || +0.01 £001 | 0.30 £0.01 | +020+£0.14 | 221 £0.58
USNOTES | (ot o |l 40.0140.01 | 0.14+0.01 | —027+0.13 | 2.06 +0.45

Table D.1: First four sample cumulants with empirical error bars obtained as the standard
deviation of 1000 bootstrap estimates for each dataset. Note that the third and fourth
cumulants are normalised by the corresponding power of the second cumulant according to
Equation 4.17 in order to make these cumulants comparable over different datasets.

| Distribution “ Eq1 [ Ey;y H Ea2 | E1124l

Gauss 1.522 | 1.389 || 1.367 | 1.548
Stable 1.360 | 1.279 || 1.267 | 1.372
Cauchy 1.423 | 1.374 || 1.373 | 1.424
Weibull 1.408 | 1.315 || 1.301 | 1.425
Laplace 1.368 | 1.281 || 1.277 | 1.372
GMM3 1.355 | 1.278 || 1.264 | 1.377
GLMM2 1.357 | 1.275 || 1.266 | 1.375
KDE 1.367 | 1.375 || 1.271 | 1.290

Table D.2: Negative Log-likelihood on set 1 and set 2 for the DJIA for all investigated
distributions
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| Dataset Type | EGouss | EGauss | Esaie | E*siabe |
set 1 || 143 £0.01 - 1.37 £ 0.01 =
set 2 | 2.03 +0.03 - 1.90 4+ 0.02 -
DJIA ' :
set 3 1.05 4+ 0.02 - 0.96 + 0.01 -
set 4 || 1.36 +0.02 o 1.32 + 0.01 _
b set 1 | 1.13+0.02 | 1.16 £0.01 || L.02 €001 | 1.07 £ 001
set 2 || 1.32+0.02 | 1.37+0.02 | 1.27+0.01 | 1.33 4 0.02
oAx set 1 || 1.21£0.01 | 1.32 001 || 1.20 £0.01 | 1.98 £0.01
set 2 || 1.58+£0.02 | 1.75 4 0.05 || 1.49 +0.02 | 1.92 4 0.01
SR set 1 || 1.74+0.02 | 1.76 +£0.01 || 1.69+0.01 | 1.71 £ 0.01 |
set 2 | 1.9240.02 | 1.96 +0.03 || 1.85+0.01 | 1.87 +0.02
cocn set 1 || L84 £0.02 | 1.84£002 || 177 £002 | 178 £0.02
set 2 || 1.87+£0.02 | 1.87+0.02 | 1.84 +0.01 | 1.86 + 0.02
set L || 1.03+£0.02 | 103 £002 || 0.98£0.02]0.99 %002
DEMUSD | ot 9 || 1.06+0.02 | 1.06 +0.02 || 1.03 +0.02 | 1.03 + 0.02
eBpUSD | St L || 105 %002 [ 105002 [ 0.98 %002 | 099 %002
set 2 || 1.03+0.02 | 1.03+0.02 || 0.96 +0.02 | 0.96 + 0.02
set 1 || 137£002 | 1.81 £007 || 1.36 £0.02 | L59 £ 0.04
USBONDS | (9 | 0.83+0.02 | 1.04 +0.01 || 0.81 +0.02 | 0.98 % 0.01
set1 | 082002 | 1.0I£0.06 | 0.79 £0.02 | 0.80 £0.03
USNOTES | (ot 9 | 0.43+0.02 | 0.55+0.02 || 0.40 = 0.02 | 0.48 + 0.01
SLVER set 1 || 230 £0.03 | 2.54 £0.00 || 2.16 £ 0.02 | 2.24 £ 0.02
set 2 || 1.88+0.02 | 2.01 +0.02 | 1.79 + 0.02 | 1.86 + 0.02
. set1 11223 £0.03 | 2.25 £0.03 || 2.00 £ 0.02 | 2.11 £ 0.02
COFFEE | (v o | 2.3¢40.03 | 2.36 £ 0.04 || 2.25 +0.02 | 2.27 + 0.02

Table D.3: Negative log likelihood E and cross log-likelihood E* for the Gaussian distribution
obtained by 1000 bootstrap runs and for the stable Paretian distrbution using 100 bootstrap
runs on each dataset

[Set | E; | Ep | Ep | FEu |
ot L1 143001 168002 | 1.62+0.04 | 1.44+0.02
st 2 || 2.57+0.09 | 2.03+0.03 | 4104022 | 2.75+0.10
set 3 || 1.174+0.01 | 1.60+0.02 | 1.05+0.02 | 1.13+0.01
sot 4 | 1.37+001 | 1.6640.02 | 1.49+£0.03 | 1.36 +0.01
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Table D.4: Negative log-likelihood and cross log-likelihoods for the Gaussian distribution
obtained by 1000 maximum likelihood bootstrap runs on each DJIA dataset
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| Dataset o B ~ 5
1.71£0.02 | —0.21£0.02 | 0.58 £ 0.01 | £0.02 £ 001
- 1.47 £0.03 | —0.08+0.03 | 0.85+0.02 | —0.01 £ 0.03
1.74 £0.02 | —0.25+0.02 | 0.39 4+ 0.01 | +0.02 % 0.01
1.77 £ 0.02 | +0.00 £ 0.02 | 0.56 4+ 0.01 | +0.04 + 0.01
N 1.64 £0.02 [ —0.21 £ 0.03 | 0.39 £ 0.00 | +0.03 £0.01
1.75 +0.02 | —0.01 %+ 0.03 0.54 £ 0.01 | +0.04 + 0.01
oAx 1.88 £0.01 | +0.09 £0.12 | 0.53 £ 0.01 | +0.00 £ 0.01
1.76 + 0.02 | —0.21 + 0.06 | 0.66 + 0.01 | +0.06 + 0.02
o 177 £0.02 | +0.16 £ 0.05 | 0.82 £ 0.0L | 10.0l £0.02
1.75 + 0.02 | +0.10 + 0.06 | 0.96 £ 0.01 | +0.05 + 0.03
g 1.67 £ 0.02 | 10.06 = 0.06 | 0.84 £0.02 | +0.03 £0.03
1.83 £0.02 | +0.21 +0.06 | 0.98 + 0.02 | +0.10 + 0.02
1.65 £ 0.03 | +0.17 £ 0.04 | 0.38 £ 0.01 | 0.0l £0.01
DEMUSD | 1754 0.03 | +0.02+0.06 | 0.42 + 0.01 | +0.00 £ 0.01
1.56 £0.04 | —0.09 £0.04 | 0.36 £ 0.01 | —0.02 £ 0.01
GBPUSD 1l 1 61 +0.03 | —0.09+0.04 | 0.36 £ 0.01 | +0.00 £ 0.01
1.80 £ 0.03 | +0.03 £0.06 | 0.60 £ 0.01 | +0.00 £ 0.02
USBONDS |l 1 g3 4+ 0.04 | 018 +0.16 | 0.35 £ 0.01 | +0.01 £ 0.01
1.75 +£0.04 | —0.01 £0.06 | 0.33 £0.01 | +0.01 £ 0.01
USNOTES || § 75 4 0.03 | —0.14 +0.04 | 0.23 +0.01 | +0.01 + 0.01
1.61 £0.03 | —0.06 £0.03 | L2L£0.03 | +0.03 £ 0.04
SILVER 1.52 4 0.03 | —0.05 4 0.04 | 0.79 + 0.02 | —0.01 + 0.03
1.55 £0.03 | —0.05£0.05 | 1.08 £ 0.02 | +0.02 £ 0.04
COFFEE ||} 61 40.03 | —0.08+0.04 | 1.33+£0.03 | —0.01 +0.05

Table D.5: Estimates for the parameters a, S, v and § of the stable Paretian distribution
obtained by 100 quasi-newton maximum likelihood bootstrap runs on each dataset

[Set | E;n | Ep | E | Eju |
ot 1 | 137 2001 | 147001 | 148002 | L37£0.01
sot 2 || 2.04+003 | 1.90+0.02 | 2.37£0.04 | 2.08+0.03
sot 3 || 1.05+0.01 | 1.28+0.01 | 0.96+0.01 | 1.04+0.01
sot 4 || 1.3240.01 | 1.44 4001 | 1.41+£0.02 | 1.32+0.01

Table D.6: Negative log-likelihood and cross log-likelihoods for the Stable distribution ob-

tained by 100 maximum likelihood bootstrap runs on each DJIA dataset
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| Dataset | Type | ) [ ~ [ E E*
set 1 [[+0.07£0.01 | 0.50 £0.01 || 147 2001 -
_— set 2 || +0.05+0.02 | 0.75+0.02 || 1.95 4 0.02 =
set 3 || +0.05+0.01 | 0.33+0.00 || 1.07 4 0.01 -
set 4 || +0.04+0.01 | 0.48 +0.01 || 1.42 + 0.01 -
: set 1 | +0.06 £0.01 | 0.34 £0.00 || 1.10 £0.01 | 1.13 £ 0.01
P500
set 2| +0.040.01 | 0.45+0.01 || 1.37 +0.01 | 1.39 + 0.01
DAx set 1 | —0.01£0.01 | 0.46 £0.01 | 1.34 £0.01 | 1.37 £ 0.01
set 2 || +0.09+0.02 | 0.57 +£0.01 || 1.60 +0.01 | 1.62 + 0.02
— set 1 [ —0.03£0.02 | 0.69 £0.01 || 1.80 £ 0.01 | 1.81 £ 0.01
set 2 || +0.020.02 | 0.84+0.01 || 1.96 +0.01 | 1.98 + 0.02
coca set 1 | -+0.00 £0.02 | 0.73 £0.01 || 1.86 £0.02 | 1.87 £ 0.01
set 2 || +0.04£0.03 | 0.85+0.01 || 1.97 +0.01 | 1.98 + 0.02
set 1 || —0.02+0.01 | 0.32 + 0.0 || L.05 £ 0.02 | 1.06 £0.02
DEMUSD
set 2 || —0.02+0.01 | 0.35+0.01 || 1.12 +0.02 | 1.13 + 0.02
GBPUSD | ¢t L || +0-00£0.01 | 030001 || 1.04 £0.02 | 1.04 £0.02
set 2 || +0.01+0.01 | 0.31 +0.01 || 1.04 +0.02 | 1.04 + 0.02
set 1 || +0.01£0.02 | 0.50 £ 0.01 || 147 £ 0.02 | 1.55 £ 0.03
USBONDS | oot 2 || +0.02+0.01 | 0.30 +0.01 || 0.93+0.02 | .01 £ 0.01
set 1 || +0.02+0.01 | 0.28 £0.01 || 0.88 £ 0.02 | 0.92 £ 0.03
USNOTES [ o 5 || +0.01+0.01 | 0.19+0.00 || 0.51 + 0.02 | 0.55 0,02
SIvER |1 || +0-07£0.08 | LOL£002 [[ 2222002 | 2.2 £ 0.02
set 2 [ -+0.01£0.02 | 0.69+0.01 || 1.84+0.02 | 1.89 + 0.01
COFFEE | St 1 || +004%0.03 [ 0.95 £0.02 | 216 £0.02 | 217 £0.02
set 2 [ +0.06£0.04 | 1.13 £0.02 || 2.32 +0.02 | 2.33 + 0.02

Table D.7: Estimates for the parameters § and v for the Cauchy distribution obtained by
1000 maximum likelihood bootstrap runs on each dataset with the corresponding negative
log-likelihood E and cross log-likelihood E*

[Set | Ej; E) Ej; Ey, |
et L] L.47 £00L | 152+£001 | 161 £001 | 147 £001
set 2 || 2.00+0.02 |1.95+0.02 | 2.1240.03 | 200+ 0.02
set 3 || 1114001 | 1.2640.01 | 1.07+0.01 | 1.1140.01
set 4 || 1.42+0.01 | 1.48+0.01 | 1.46+0.01 | 1.42 +0.01

Table D.8: Negative log-likelihood and cross log-likelihoods for the Cauchy distribution ob-
tained by 1000 maximum likelihood bootstrap runs on each DJIA dataset
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| Dataset Type a ‘ A [ E E*
T set 1 || 1.07£0.01 | 137 003 = -
set 2 || 1.07+£0.12 | 0.85 + 0.20 - _
set 3 || 1.01+0.05 | 2.07 + 0.08 - s
set 4 | 1.10£0.01 | 1.45 + 0.02 . -
" set 1 110.99+0.03 [ 1.97 £0.04 | 1.03 £0.01 | 1.06 £0.01
set 2 || 1.08+0.01 | 1.52£0.02 | 1.27 +0.01 | 1.31 < 0.02
DA set 1 [[0.95£0.02 | 1.60£0.02 | 1.22£0.01 | 1.26 £0.01
set 2 || 1.09+0.03 | 1.18 +0.05 || 1.50 +0.02 | 1.55 < 0.02
T set 1 |[1.11£0.06 | 0.97 £0.10 | L.70 £ 002 | L73 200
set 2 || 1.17+0.11 | 0.82+0.15 || 1.89 + 0.03 | 1.90 % 0.03
Cocn set 1 || 1.32+0.10 | 0.77£0.12 || 1.84 £0.03 | 1.82 £0.04
set 2 || 118 +0.10 | 0.83+0.13 || 1.87 +0.03 | 1.88 & 0.03
set 1 || 0.97+£0.05 | 2.08£0.07 | 097 £002] 097 £000
REMUSD L oin | tootons | 108 togs | 1ot 0.02 | 1.03 +0.02
set 1 || 0.87 = 0.03 | 2.01 £0.05 || 0.95 £0.02 | 0.96 £0.03
GBEUSD  |gen | ometnos |1t e006 | 0o iots 0.97 + 0.02
set 1 || 111002 | 1392003 || L35 £002 | 154 005
USBONDS | i o [ 0994010 | 239017 || 0.83 £ 0.02 | 0.96 & 0.01
set 1 || 0.99£0.00 | 2.46 £0.17 || 0.79 £0.02 | 0.88 £0.06
USNOTES | et 5 || 0.84+0.11 | 3.10%0.29 || 0.45+0.04 | 0.48 £ 0.03
i set1 || L1L£0.19[0.73 2025 ] 2.25 £0.08 | 2.29 2009
SILVER set 2 || 1.07+0.09 | 0.91&0.17 || 1.80+0.03 | 1.86 % 0.08 |
set 1 || L1I0£0.17 [0.77£024 | 218 £007 [ 219 £ 0.07
COFFEE | (ot [ 1124021 | 0704027 | 2.36£0.10 | 237 £ 0.11

Table D.9: Estimates for the parameters a and A for the symmetric double-sided Weibull
distribution obtained by 1000 maximum likelihood bootstrap runs on each dataset with the
corresponding negative log-likelihood E and cross log-likelihood E*

Set E, | Ep, | Ej | Ejs |
set 1 || 1.37 £0.01 | 1.50£0.09 | 1.47 £0.02 | 1.37 £0.01
set 2 | 2.104+0.04 | 1.93+0.04 | 252 +£0.10 | 2.17 +0.04
set 3 | 1.05+0.01 | 1.324+0.15 | 0.98 +0.01 | 1.04 +0.01
set 4 | 1.32+£0.01 | 1.46+0.09 | 1.40+0.02 | 1.31 +0.01

Table D.10: Negative log-likelihood and cross log-likelihoods for the symmetric double-sided
Weibull distribution obtained by 1000 maximum likelihood bootstrap runs on each DJIA
dataset
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| Dataset Type || M X E [ EF
set 1 | +0.06+0.01 | 1.38 £0.01 || 1.37 £ 001 =
— set 2 | +0.03 +0.02 | 0.82 +0.02 || 1.89 + 0.02 -
set 3 || +0.05+0.01 | 2.05+0.02 || 0.97 +0.01 =
set 4 || +0.04+0.01 | 1.45+0.02 || 1.32 + 0.01 =
P set 1 | +0.06 +0.01 | 1.95 £ 0.02 || 1.03 £0.01 | 1.05 £ 0.01 |
set 2 || +0.044+0.01 | 1.52+0.02 || 1.27 +0.01 | 1.31 4 0.02
% set 1 || —0.00 £0.00 | 1.61 £0.02 || 1.22 £0.01 | 1.26 £0.01
set 2 || +0.07£0.02 | 1.21 +0.02 || 1.51 +0.02 | 1.56 + 0.02
s set 1 || —0.00+0.01 | 1.00 £ 0.01 || 1.69 £0.0L ] L71 £ 001
set 2 [ +0.01+0.03 | 0.84+0.01 || 1.87 +0.01 | 1.88 + 0.02
N— set 1 || +0.00 £0.00 | 0.93 £ 0.02 || 1.76 £0.02 | .77 = 0.01
set 2 || +0.01+0.03 | 0.85+0.01 || 1.85 +0.01 | 1.86 + 0.02
set I || —0.01+0.01 | 2.07 £ 0.03 ]| 0.96 £ 0.02 | 0.97 £ 0.02
DEMUSD | oot 9 || —0.01+£0.01 | 1.96 +0.03 | 1.02 +£0.02 | 1.02 = 0.02
GBPUSD | €L || +0-00£0.00 208 £0.04 | 0.96%0.02 | 0.96 £ 0.02
set 2 || +0.00+0.01 | 2.10 +0.04 || 0.95+0.02 | 0.95 + 0.02
seb L || +0.00£0.02 | 134002 || 1.36 £0.02 | 1.4 £0.04
USBONDS | ot o |l +0.01+£0.01 | 2.41 +0.04 || 0.82+0.02 | 0.94 % 0.00
set 1 || +0.01 £0.01 | 249 £0.05 || 0.78 = 0.02 | 0.86 £ 0,04
USNOTES | (ot 2 || +0.00+£0.01 | 3.65+0.07 || 0.40 +0.02 | 0.47 % 0.01
set 1 || +0.06 004 | 063001 [ 2.16£0.02 | 2.24 £ 0.0
SILVER set 2 || +0.00+0.02 | 0.92+0.02 | 1.77£0.02 | 1.84 +0.01
set 1 | +0.02£0.03 | 0.67 £0.01 || 2.00 £0.02 | 2.11 +0.01
COFFEE | sot 9 || +0.0240.03 | 0.58 +0.01 || 2.24 +0.02 | 2.25 +0.03

Table D.11: Estimates for the parameters p and A for the Laplace distribution obtained by
1000 maximum likelihood bootstrap runs on each dataset with the corresponding negative
log-likelihood E and cross log-likelihood E*

[Set | Ep | Ep [ By | Fu |
ot 1] 137 £001 | 149+ 001 | 1.47£0.02 | 138 %0.01
st 2 || 2.06+£0.03 | 1.89+£0.02 | 2.48+0.05 | 2.09+0.03
set 3 || 1.04+£0.01 | 1294001 | 0.97+0.01 | 1.0340.01
cet 4 || 1.32+0.01 | 1.46+£0.01 | 1.39+0.02 | 1.3240.01
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Table D.12: Negative log-likelihood and cross log-likelihoods for the Laplace distribution
obtained by 1000 maximum likelihood bootstrap runs on each DJIA dataset
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| Dataset [ Type | GMM E | GMM E* || GLMM E | GLMM E" |
i set 1 || 1.36£0.01 | 1.47£0.01 || 1.37 2001 | 1472001
set 2 || 1.89+0.02 | 2.00+0.04 || 1.89 +0.02 | 2.04 + 0.03
set 3 | 0.96+0.01 | 1.040.01 || 0.96 +0.01 | 1.04 + 0.01
setd | 1.3140.01 | 1.4040.02 || 1.31 £0.01 | 1.39 £ 0.02
I set 1 || 1.02 0.0 | 1.06 £ 0.01 || 1.02 £ 0.01 | 1.06 £0.01
set 2 | 1.26+0.01 | 1.3140.02 || 1.27 +0.01 | 1.31 +0.01
Sk set 1 | 1.20£0.01 | 1.25£0.01 || 1.20 £0.01 | 1.95 £ 0.01
set 2 | 1.49+0.01 | 1.62+£0.03 || 1.49 + 0.01 | 1.57 % 0.02
= set 1 || 1.69£0.01 | .71 £ 001 || 1.69 £0.01 | L.70 £ 0.01
set2 | 1.85+0.02 | 1.88+0.02 || 1.85+0.01 | 1.87 + 0.02
set 1 | 1.76 £ 002 | .78 £0.01 || 1.76 £0.02 | 177 £ 0.01
cocA set 2 | 1.84+0.01 | 1.85+0.01 || 1.83 +0.01 | 1.85 = 0.02
set 1 ] 0.96 £0.02 | 0.07 £0.02 || 0.96 £ 002 | 0.07 £0.02
DEMUSD | ot o || 1024002 | 1.0240.02 || 1.02+0.02 | 1,02+ 0.02
set 1 || 0.96 £0.02 | 0.97 £ 0.02 || 0.96 £0.02 | 0.07 £ 0.02
GBPUSD | et 2 || 0.95+0.02 | 0.96 +0.02 || 0.95+0.02 | 0.95 +0.02
set1 || 1.35£002 [ 1.63£005 || 1.35£002 | 168 £ 0.0
USBONDS | (ot o | 0.80+0.02 | 0.96 +0.01 || 0.80 +0.02 | 0.96 + 0.01
set1 [ 0772002 | 0.89 £0.03 || 0.78 £0.02 | 0.88 £ 0.04
USNOTES | ot 2 || 0.40 +0.02 | 0.47 +0.02 || 0.39 +0.02 | 0.47 £ 0.02
set1 || 2152002 | 227 £ 004 || 2.15 £0.02 | 2.23 £ 0.03
SILVER set 2 | 1.7740.02 | 1.85+0.02 || 1.77 £ 0.02 | 1.83 £ 0.02
set 1 | 2.00 £0.02 | 2.10 £0.02 || 2.08 £0.02 | 2.10 £ 0.02
COFFEE | (v o | 2244002 | 2.26 £0.02 || 2.24 +0.02 | 2.26 + 0.02

Table D.13: Negative log-likelihoods for mixture model distributions obtained by ML on each

dataset
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