A

e, - A=Y

' OF PROGRAM DESIGN

i Ll B ;

aak ==

st %
- ' N v i !
(] - 4 o
P R L
o & el ale gt
i o - :r'_‘" 4 i -
_' e AL T

o i
=

X

R S L T

The University of Aston in Birmingham

Towards a Computer Understanding
of Program Oesign

Philip Ainsley Fox

Submitted for the Degree of
Doctor of Philosophy

1984
Summary

Program design is one of the many processes involved
in program development and is considered to be essential
to the development of structured programs. Consequently
this research has been concerned with the analysis of
program design since it is considered to be of equal
importance to other areas of Artificial Intelligence (AI)
research, which analyse the program code. Because a
rigorous program design results in a program containing
few errors, a system capable of analysing program designs
should assist these other related areas of Al,

This research has developed the Framework for
Analysing Program Designs (or FAPD) in order to analyse
the kinds of program design produced by programmers
using the principles of structured programming. The
praocess of analysis is viewed as comprising four
distinct phases, which are referred to as pre-semantic
analysis, semantic analysis, generation of comments and
code generation. The results of analysis take the form
of a coded version of the program design together with
any comments about the code. Analysis is based on a
set of structures which have been developed in order to
represent phrases and statements often used in a program
design. Attached to each structure is a procedure,
referred to as a class instance, which translates its
structure into a particular programming language.

FAPD has been implemented and tested within a system
called DACE (which is a Design Analysing and Commenting
Environment). FAPD is discussed within the context of
the system and the results from testing it are discussed
in detail. The conclusions are drawn that FAPD represents
a viable approach to the computer analysis of program
designs, the system has some influence on those who use
it and that class instances are a useful acquisition to
the set of tools currently available to researchers in Al.

Keywords : design, program, structure, class instance.

Acknowledgements

I would like to thank mYy SUPBrYisor, P, £.7.
Harget for his many helpful comments and encouragement,
and Mfir. I.H, Chisholm for his assistance in all aspects
of this research. I would particularly like to thank
all my colleagues at Cadbury=-Schweppes plc who made the
final stages of this research possible, Finally, I
would like to thank my parents and Mr. and Mrs. M.R.
Thompson for their assistance in getting this thesis
into its printed form.

The work of this thesis has been supported

financially by the Science Research Council.

1

CONTENTS

Volume 1

ERTRUDMCT TN s s o wmaiines o:es:e sins s saisy b aide s ssssen
Lad Rims) and ODJEctives) cosesussonsiseseeehasoass
k&2 Prooram DES100 . aswswesos dseses s tvesssorbainad
1.3 Scope of Program Design for this Prgject] s eeah
l.4 Analysing a Program DeSign ececeeceeccssscscsces
RELATELD AREARS OF ARTIFICIAL INTELLIGENCE .suecsise
2l PEORram VEriFIEation saseneossseses s st ves

2e2 Program Understanding D I R I N SN I

2.2.1 Katz and Manna S E SIS I ARSI L EBEEREEELTESE S S
2.2.2 GOldstEin'...........
2.2.3 RUth ‘.'.....'..........'........'.'.....

cvded LUNBY | asamssiti@asandsnsisasnessssaes ois
2.2.5 Rich and Shrobe sesccccsencsssssscnscene
2.2.6 Waters ®esecssssscessssssscsssssnssennns
Z2e2.7 Others B S A AP
2.3 Automatic Programming * saseesiss smesosenasse

2.4 Intelligent Teaching SYSLEMsS cesiscsescesssine
2.5 Computational LINQUISEICS wevescessssoseesss
2.6 Programming Langquages for Novice Programmers.
THE FRAMEWORK FOR ANALYSING PROGRAM DESIGNS eeees
3¢l General Points saines slemninsiens sisiesinessssesnen
32 Pre=Semantic ARalyEis' sesessssoannmesdessnss
Swded INEXOUUCEION snascesesesisossissssocsnss
3e2e2 LERical and Syntax Analysis seecesscenss
3¢2.2.1 Function of Syntax ANalySiS eecececoss
Sededad SCOpR OF the SYaLAR wsesesssssss s
3e2e243 Definition of Recognised WOLrdS eeeee

Jeleleb The Syntax of a Program Design

4

10

K.

235

27

38
41
44
48
92
55
60
64

64

Qe Bs2.8 Lexical BAalysSis secerssievcsessnees

3-2-2.6 Syﬂtax AnalySiS RN R N R R R

3¢2.3 Preparation for Semantic ANalySiS ceeeees

3.3 Semantic Analysis

L B AR L B O BB B B B I N I R R

Jedel Function of Semantic AnNalySis ecesesscesse

e de2 Representation aof a Program cececessecosses

3.3¢3 Analysis of a Design Statement eecescecses

dede4 Scope of Semantic ANAlYySiS ceseesesccess

Dy Generation of Comments L R R I N A SN S A

3.5 Code Generation

LR L B B O B A A A N I A A N A A)

IMPLEMENTHTION UF DACE L N N N T R]

4.1 Relationship between System and FAPD ceveesee

4,2 Facilities Available Peeser st sssss s e

4.3 User Interaction

L L B O LB BB O BB O B R N Y N Y

4.4 Pre-=5emantic Analysis within DACE .eececcecces

4.5 Semantic Analysis, Generation of Comments

and Code Generation within DACE eeeecessss

RESULTS FROM ANALYSING PROGRAM DESIGNS ecececescee

5.1 Example
5.2 Example

3 Example
5.4 Example

S5 Example
«6 Example
5.7 Example

5.8 Example

5.9 Examples 39,

l LA L L B B O B I O O R R N A A I B R I N N I W)

2 L N O N N N N N N N N N N R]

2
~d LR L I N N N N N N N N N NN NN

4 L B B I B B I B R I I I I O Y

5 L I B LB B B O O I B I B B R R R R R I I A R)

8 LI B O LB B BB BB BN B B BN N NN B B R R N B AN Y

? LU L O B L B I B I O R B B N B RN R R N R RN

8 LR L L B B B B B BN O BN B B B BN B RN OB BN B N W)

lU and ll S e s PG AP RNTREIEPTRE SRR S

RESULTS FROM USING DACE ecevessceccscsccccccnces

6.1 Objectives

6.2 Problem

S5olutions

and NethDleDgy R I I N N N

® 8 8 8 80 SRR AR AEE e

1o
76
80

86

100
103
108
112
112
114
116

121

126
132
133
140
150
159
163
e
178
183
187
183
183

198

Ge3 SYStEm-USEr Interface *Pes e s vesssersssenEn e

6.3.1 Hardware Considerations
6.3.2 Software Considerations

B.4 Results of Pre and Post Test

L B B O O B B O B BN B BN

L O B O B B B

Exercises and

Questionnaire L I T WP AR,

CDNCLUSIONS L R L I BB BN AR RN R R BN NEN Y

?ol Basis of FRPED R N N E E E R

7¢2 Evaluation of FAPD s e s s e s sss e e s RN EY RSN

T Evaluation of DACE A R N R R R R)

7.4 Suggestions for Further Work

LB I B B O B B O

203

203

205

212
217
217
219
224

227

CONTENTS

Volume 2

AppE['j[JIx ;‘ LA O L B O O B B B I O B R B B N R R B B R R R I R I Y 3

An Example of the Format of the Syntax Tree,

Amended Syntax Tree and Assertions Produced

by E.)AEEl.................l.-.....l.l..... 3
ADPENDIX H L L I N A T T I I R R I I I I I T I I I R B N B) 5
Bed The Grammar of a Program DeSign seecsessesssie)

Bel"™ Samantic Definitions sesssesssnssssvsesensses 10
Bl #he RSSertion Language siisscisssnsisesssenese 13
RPRENDLIN LT G0 ess s assevssennsssssssssonsnstoesessnsse 18
Cel Structures Used by the Semantic Analyser 18
Ce2 Structures Used to Generate CommentsS eeseeee 25

RppENDIxD 8P ERSEEEEREE RS EE S AR SRR R 28

Further Results S s s s e s s st ss s e s B e e e RE e EERBEGES 28
AppENDIxE L BB B B O B B BN B BN R B RN R R B R B N R I A I A B AN B R) 50
Program LiStiﬂg of DACE R A A A I A A N R W R R R 51

APPENDIX F coesssvccovvssceoscscssscnssnnsssscssssnssss 160
Fel Questionnaire on Program Design eceessssecess LBO
Fe2 Summary of RepliesS eeececscccsscssscsssncsss 163

REPENDIX G @onsnovenssnsosssssssssnsnnsnasesssnssacos 168
G.l System Handouts ceseesesecccsscccsssrcsccceee 168
Ge2 QuUestionnNailre seseecasessessssssssssnssnsses LOB
Gad SumnacyY ol REplias™ s ideeeceis oeeeiesia valaneses s 4o

REFEHEI‘UCE.i L B I B DB I R I I I B B B BN B R B B I R B D B B B B BN 2UD

(o]

w

10

11

12

13

14
15

16

17

18

DIAGRAMS

The First Stage of a Program 0esign eceeeeeseases
The Second Stage of a Program Design ecesecsssccee
The Thirdg Stsge of a Program Desigh seceesesvess
The Coded Version of a Program Design seseescecee

An Alternative Program DeSign sesessesseesessese

The Syntax Tree of the Statement

1'SET A AP\JD B BUTH TD l" L R N NN N N

The Syntax Tree and the Amended Syntax Tree

of the Statement "SET A AND B BUTH TO 1" .eecee

An Example of the Results Produced by the

Semantic Analysis Routines o's sisinin s aleis 0006 eiee

The Syntax Tree and the Amended Syntax Tree of

the Statement "INPUT TEN NUMBERS INTO AN ARRAY"

The Assertions and Program Code Which Represent

14
14

17
22

81

83

81

the Statement "INPUT TEN NUMBERS INTC AN ARRAY" gg

The Structiure of the SVUSEEM | seessseesssesssies
User Interaction With Module 1 of the System ..
User Interaction with Modules 2 and 3 of the
SYSLEM ceeessccssscsccssssosacnssssssssnsss
User Interaction with Module 4 of the System ..
The Class Instances TC-ASSERT-#READ,
TC=ASSERT~#ASS and TC-=#ASS=ASSIGN sesccscee
Results from Analysing a Program Design which
Finds the larger eof Tud Values esssaseeesss
The Top=-Level Function in the Semantic Analyser
Results From Analysing a Program Design Which

Finds the Average of a List of ValuesS eeeses

PET

iR

122
123

128

134

137

141

19

20

21

22

25

24

25

26

27

28

29

Results From Analysing a Program Design Which
Converts Yards, Feet and Inches Into Inches ..
Results from Analysing a Program Design Which
Generates the Fibonacci Serieés eessecccssss
Results from Analysing a Program Oesign Which
Searches an ATT8Y eeessssesscsnscsssasncsces
Results from Analysing a Program Design which
Cenerates the Fibonacci Series by Using
an Array sssbsansmsassnesssessasenssesens
Results From Analysing a Program Design Which
Searches a Sorted Array SR O O RS Tr
Results From Analysing a Program Design Which
Calciilates Income’ lTax Payatle sesesesssessen
Results From Analysing a Program Design Which
Contains an Unrecognised Symbol .ceeesscsses
Results From Analysing a Program Design Which
Contains an Unrecognised Form of a Construct..
Results From Analysing a Program Design Which
Contains an Unrecognised Phrase cescsesece
Summary of Results From Using DACE eeeessscccs

Syntax Errors Analysed by Exercise Number ess.

152

160

172

178

185

188

188

1974

194

é ey INTRODUCTTON

1.1 Aims and Objectives

The motivation behind this work was derived from
studying the topic of program understanding which is
an area of research in Artificial Intelligence (AT).
The objective of program understanding is to determine
whether or not a program performs as intended, by
matching a program's actual performance with a
specification of what it is intended to achieve. Any
discrepancies between the two will indicate the
departure of the proaram from its specification and
then an attempt can be made either to correct the
program or to provide some useful debugging information.

Program design is one of the many processes
involved in program development of which coding is the
final part. The importance of program design is well
established and is considered to be essential to the
development of structured programs. In our opinion,
research concerned with the analysis of program design
should be of equal importance to that given to the
related area of program understanding. This $s not
the case at the present time. Thus in an attempt to
rectify this situation, a system for analysina program
designs was investiqgated. It is hoped fhat such a
system could be used to impress upon a programmer the
importance of the design process and the level of

detail required in a proaram desian.

10

In the remaining sections of this chapter we define
the term "program design" and then consider how, in
general terms, a program design may be analysed.

Sections 1.2 and 1.3 are concerned with the principles of
program design. Section l.4 concludes the Introduction
by discussing how the results from analysing a program
design can be suitably represented.

1.2 Program Design

To-day we live in a society which places considerable
reliance on the computer. Recent progress in the area of
hardware technology, together with ever-reducing costs,
have led to computers being used in a larger number of
applications. Consequently software has increased in
complexity with a concomitant increase in the need for
software clarity, modifiability and efficiency. These
requirements can only be achieved if programmers adopt a
disciplined approach to the process of program development.

Early attempts at imposing discipline led to the
development of the principles of structured programming
[Dijkstra 1968, wirth lB?l]. These principles propaose
that a program should be successively refined into a
series of sub-problems, each of which needs to be solved
in order to solve the original problem. This has the
benefit that each sub-problem produced is easier to solve
than the original. Furthermore, each sub-problem can be
considered separately and decomposed further until as Wirth
[wirth 1871] states:

"this successive decomposition or refinement

of specifications terminates when all

instructions are expressed in terms of an

underlying computer or programming language ..."

Ll

A solution to the original problem, namely a program
design, can be expressed using suitable combinations of:

a) a sequence of actions;

b) a selection of actions according to the results

of some condition; and

c) a repetition of actions,
where an action is defined to be either a single instruc-
tion, such as the addition of two numbers, or an instruc-
tion which is itself comprised of a set of simpler actions.
The latter is often referred to as a compound statement.
Consequently at each stage of the decomposition the
programmer must decide how his solution can be expressed
using a combination of the three programming options
described above.

Let us consider how this method might be used in
order to design an ALGOL 68C program for the following
problem specification:

"A company has a number of weekly paid employees
who receive their wages in cashe. The company operates
a plecework scheme which means the wage bill can vary
considerably from week to week. The number of employees
together with their individual earnings (in pence) are
recorded weekly in a data file. Calculate the number of
£€5 and £1 notes, together with the number of 50p, 10p,
5p, 2p and lp coins the cashier will need in any given
week to pay out the wages"

A solution to this problem is shown in diagrams
1l to 4 inclusive. The first stage in the solution is
to decide how the problem can best be solved using a
combination of the three options outlined above.

12

Typically a programmer can use the target language, chosen
here to be ALGOL 68C, to express the solution to those
sub-problems which are easily solved. Less tractable
sub-problems can be left until a later stage in the design
process., A typical first attempt at the program design is
shown in diagram 1l. This illustrates that in terms of the
programming options given earlier (see section 1.2) the
initial design is described in terms of a single or direct
action, the read statement in line 2 followed by "n" repeti-
tions of the single activity in line 4 and a second direct
action, the print statement in line 5.

The solution in diagram 1 is now defined in terms of
the two sub-problems in lines 4 and S, namely the
processing of an employee's data and the printing of the
results.,. The programmer can now concentrate attention on
the first of these two sub=-problems. Since the process
for analysing an employee's data involves several calcula-
tions, a compound statement is chosen, The result is
shown in diagram 2 which illustrates how the processing of
an employee's data has been broken down into the eight sub-
problems shown in lines 4 to 1l inclusive. Collectively
these form a compound statement delimited by the ALGOL B8C
reserved words DO and 0D. The solution is now defined in
terms of these eight sub-problems together with the sub-
problem in line 13 which still remains to be considered.

Each of the steps contained within the loopbody may
be considered in turn and diagram 3 illustrates how the
first two steps may be made more explicit. At this stage

the solution has been reduced from nine to seven sub-

problems, (shown in lines 10 to 15 and line 17 of

nE W =

>

b o=

o)}

10

11

12
13

14

beqgin it ng
read (n):
for 1 6. n
~ do process data for emnloyee od;
output the number of coins and the
number of notes needed

end

Diagram 1

The First Stage of a Program Desian

beain int nj
read (n);
for 3 to ‘o
" do input the value of wage ;
T calculate the number of fivepounds
needed so far ;
calculate the number of poundnotes
needed so far ;
calculate the number of fiftypences
needed so far ;
calculate the number of tenpences
needed so far ;
calculate the number of fivepences
needed so far ;
calculate the number of twopences
needed so far ;
calculate the number of onepences
needed so far

og 3
output the number of coins and the
number of notes needed
end

Niagram 2

The Second Stage of a Proaram Design

14

0 VNV HAWN=

2

12

13

14

15

16
17

18

int n, wage, fivepounds ;
read (n) ;
fivepounds := 0 ;
fox i to n
~ do read
T while
92

begin

(wage) ;

wage >= 500

fivepounds :=
wage := wage -
od ;
calculate the number
needed
number
needed
number
needed
number
needed
number
needed
number

needed

calculate the

calculate the

calculate the

calculate the

calculate the

od
tput the number of coins
number of notes

ou

end

NDiagram 3

The Third Staage of a Program Desian

15

fivepounds + 1
500

of
so
of
so
of
so
of
so
of
so
of
so

poundnotes
far ;
fiftypences
far ;
tennences
far ;
fivepences
8% 3
twopences
far ;
onenences
far

and the
needed

diagram 3), and a moment's thought at this stage shouws
that each of the remaining calculations in the loopbody
will involve similar design decisions to those taken for
the first calculation. Hence because similar processing
is required the programmer may decide to implement each
calculation in the form of a procedure. The final
program would then be similar to that shown in diagram 4.

By using the principles of structured programming, a
concise and efficient implementation has been achieved
without any subsequent loss of clarity. The decomposition
has not followed any practical guidelines and each decision
has been based largely on a knowledge of the use of certain
programming constructs and schema to achieve a desired
result, Recent work in the area of structured programming
has been directed towards imposing some criteria on which
to base this decision-making process. Current programming
methodologies such as those of Jackson [JackSOn 1875] and
Warnier [warnier 19?4] propose structuring programs on the
basis of the logical structure of the data, whereas
Constantine [Yourdon and Constantine 1975] and Myers
[Myers 1975) propose programs should be structured according
to the functional decomposition of the problem.

An analysis conducted at the University of Aston
amongst 85 students attempted to guage programmer's
behaviour and attitudes to the design stage of program
development. Each student was asked to complete a
questionnaire and this together with the results obtained
are given in Appendix F. The students represented a
considerable variation in programming experience and

knowledge, from novice programmers to those with several

16

DNV ALWN=

int n, waae, fivepo
fiftypences, te
twopences, onep
denominations

beain

Droc

while
do

beain

od
end ;
read (n) ;
fivepounds := poun
:= tenpences := f
:= onepences := 0O
fore i to h
do read (wage) ;
denominations
denominations
denominations
denominations
denominations
denominations
denominations
od ;
print (fivepounds, "
poundnotes, '
fiftypences,
tenpences, 't
fivepences, "
twopbences, 't
”0

onepences,

end

Diagram 4

The Coded Version of a Progr

poundnotes,
fivepences,

unds,
nnences,
ences ;
= (ref int numberof,
int value) void

———

wage >= value
wage := wage - value ;
numberof := npumberof

o+ 'l
dnotes := fiftypences
ivepences := twopences

(fivepounds, 500)
(poundnotes, 1N0N)
(fiftypences, 50)
(tenpences, 10) ;
(fivepences, 5) ;
(twopences, 2) ;
(onepences, 1)

- an aw

fivepound notes are
required", newline,
onepound notes are
required'", newline,
"fiftypence coins are
required', newline,
enpence coins are
required'", newline,
fivepence coins are
required'", newline,
wopence coins are
required'", newline,
nepence coins are
required'", newline)

am Desian

)

years programming experience. The novice programmers,

that is those currently learning programming, formed the

dominant group (62 students). The main conclusions drawn
from an analysis of the questionnaires are:

a) 42 of the 62 novices do not write out a program
design every time a program is developed;

b) 37 out of 61 students stated that for problems
considered to be simple, program designs were not
developed;

c) 53 students thought the time spent teaching them
program design was adequate but 55 felt they would
benefit from extra tuition. Furthermore 72 said
they would take advantage of a system capable of
analysing program designs;

d) 39 students found the program design stage more
difficult than coding. Only 18 students thought
coding was the more difficult and the remainder felt
they were both equally difficult.

This latter result indicates that students find the formula-

tion of program designs difficult and that they would benefit

from any support that could be given to them during this
stage. Such support would be important because a rigorous

program design facilitates program development. Hence a

system such as that proposed should prove beneficial

because deficient program designs will be highlighted.
This thesis proposes a framework for analysing

examples of program design which is referred to hereafter

as the Framework for Analysing Program Designs (or FAPD).

Since none of the criteria for decomposition, which are out-

18

lined above, have been universally accepted, examples of
program design are often of widely differing forms.
Because of this and because of time constraints, it has
not been possible to investigate methods for analysing
all of the different approaches to program design.
Consequently before proposing a method, a decision is
needed concerning the kind of program design which should
be studied, The choice of this form is the subject of

the following sectione

1.3 Scope of Program Design for this Project

It was decided that attention should be concentrated
on analysing program designs which have been written
using an informal method similar to that used in section
l.2 & It was also decided that FAPD should aim to
analyse program designs which use only a limited set of
basic programming constructs. The reason for this is
that because of time constraints it has not been possible
to analyse program designs whose solution requires the use
of a wide range of programming constructs. Consequently
it was decided to concentrate on those designs which can
be coded using suitable combinations of assignment, read
and print statements, loops and conditionals and to omit
more advanced programming concepts such as procedures.
The implications of this omission are discussed in the
final chapter.

In order to define more clearly the kinds of program
design which this project should concentrate on, let us
now consider how these basic programming constructs can be

introduced to students who do not have prior knowledge of

13

computing. At the University of Aston, first-year
computer science students initially learn that programming
consists of two related activities. The first of these
involves understanding a problem and formulating a program
design to solve the given problem. The second involves
converting the design into a particular programming
language. Students are taught to formulate a design in
a manner suitable for conversion intoc a target language
and consequently they are introduced to structures for
denoting repetition and choice. These structures are
identified as having the same format as those used in the
target language. If ALGOL 68C was the programming
language, then the structures would be identified as
WHILE - D0 - 0D for repetition and IF - THEN -
[ELSE -] FI for choice, where [ELSE -] represents an
optional item. At each stage of the design process, the
decisions available to the novice may be summarised as:
a) a sequence of actions
b) a selection of actions which is achieved using
a conditional structure of the same format as
that used in the target language; and
C) a repetition of actions which is achieved using
a loop structure of the same format as that used
in the target language,
where an action could be either a single instruction or
a compound statement. Examples of single instructions
are the arithmetic expression, the read, print or
assignment statement.
After being taught how to formulate a design the

student is then taught the coding details of ALGOL 68C

20

such as the exact forms of the assignment, print and read
statements together with other syntactic details such as
the declaration of variables and the placement of semi-
colons. With time and experience the student also
becomes familiar with other constructs such as the CASE
clause for denoting a special form of selection, the FOR
loop as an alternative to the WHILE construct and data
structures such as the array.

The program design in diagram 3 has been generated in
order to illustrate how an experienced programmer might
tackle the problem. Similarly the design in diagram 5
has been generated in order to illustrate the kind of
program design which FAPD, described later in this thesis,
can analyse, The latter diagram contains statements
such as:

initialise fivepounds to O f)
whereas the design in diagram 3 has specified the same
instruction in terms of the target language, viz:
fivepounds 1= 0 { 1e2)
Statement (l.l) can be used instead of (l.2) when the
programmer is inexperienced in using the syntactic features
of the target language. Once the program design has been
written in sufficient detail then the programmer need only
concentrate on the coding details.

If we compare diagrams 3 and 4, the differences
between the two can be described in terms of the
decomposition. It has been determined that each of
the calculations enclosed in the loopbody requires a loop

structure and so the procedure facility of ALGOL G68C has

21

NOoun bW =

L 2l o)

11

L2

13

14

15

16

7
18

read the first number into n
initialise fivepounds to 0
initialise i to 1

while

do

od

i is less than or equal to n

read the next number into wage

while wage is greater than or equal to 500

do increment the value of fivenounds

by 1
decrease the value of wage by 50N

od

calculate the number of poundnotes
needed so far

calculate the number of fiftypences
needed so far

calculate the number of tenpences
needed so far

calculate the number of fivepences
needed so far

calculate the number of twopences
needed so far

calculate the number of onepences
needed fo far

increment i

output the number of coins and the number

of notes needed

NDiagram 5

An Alternative Program Desian

22

been used to collectively describe these calculations.
Consequently this decomposition has resulted in a somewhat
simple and efficient solution. However, if the programmer
has no comprehension of advanced programming concepts such
as a procedure, the stage following that shown in diagram 3
might merely show each of the remaining calculations decom-
posed into the appropriate loop structure. If the
programmer has learnt the coding details of the target
language then the design is now converted into code,
otherwise the solution has been expressed as explicitly as
his limited knowledge of programming has allowed.

This section is concluded by stating that the term
"program design" is used throughout the remainder of this
thesis to mean designing programs using the principles of
structured programming in the manner already described.
Also for the reason outlined at the beginning of this
section, the Framework for Analysing Program Designs is
aimed at analysing examples such as that shown in diagram 5
which can be coded using a limited set of target langquage
constructs.,. By accepting designs similar to that shown
in diagram 5 FAPD should be of benefit to programmers of
varying experience. It is interesting to note from the
questionnaire that 67 out of 84 students thought that the
program design stage was necessary for all programmers
whatever their experience. Nevertheless it is expected

that novice programmers will derive the greatest benefit.

l.4 Analysing a Program Design

The concluding remarks of the previous section

defined the term "program design" to be the process of

designing a program according to the principles of

23

structured programming. Having defined this term and
shown how a program design can be produced according to
these principles (see diagram 5) we must now consider how
program designs of this type can be analysed. This project
has taken the view that analysing a program design is a
process of translating a design into an alternative format
which can then be manipulated more easily than the original
designe. This format does not contain any of the ambi-
guities or inferences which may have existed in the
original design because they will have been removed during
the translation process. If any comments are generated
during translation then the programmer can use them as a
basis for revising the solution before finally submitting

a coded version of the design to a computer for compilation
and execution.

In terms of this project, a series of assertions has
been chosen as the format into which a program design is
translated. These assertions represent a coded version of
the design and can then be used to produce a program
together with any comments about its content. There are
several reasons why this representation has been chosene.

Firstly, it provides a convenient format for showing a
user if the process of designing the program is complete.
If the process is not complete then the results show those
statements in the design which have not been analysed and
which require further refinement. Statements that have
been analysed successfully are now expressed in terms of
the target programming language and therefore need no

further refinement. The design process is complete when

24

all statements have been successfully analysed. The
programmer then knows the design process is complete and
any final modifications can be made before running the
program on the computer. It is interesting to note that
36 out of 84 students who completed the questionnaire on
program design usually wrote out a single program design
before converting it into a programming language. This
indicates that a process of stepwise refinement has not
been followed and consequently the resulting program design
could lack structure and detail. In this case, high-
lighting those statements which should be refined further
will encourage students to spend more time on designing
programs.

Secondly, this representation could prove particularly
useful for novice programmers. Typically, a novice might
have been taught the principles of program design prior to
learning the coding details of the particular target
language. FAPD could then be used within a system which
takes the role of an experienced programmer who can shou a
novice how his design could be implemented. Any anomalies
such as using variables without first initialising them,
together with information on how statements in the design
have been converted into code could be noted and commented
upcn.

A third reasan for choosing this definition of
analysing a program design is that FAPD could be used to
act as a front-end to an existing system of program under=-
standing. If FAPD is capable of producing a coded version

of the design, the code could then be tested:

25

a) for syntactic correctness by using an existing
compiler for the target programming language; and
b) by using some of the existing theories of program
understanding.
Program understanding attempts to match a program's actual
performance against its specification. Any discrepancies
between the two show that the program, and hence the design
from which it has been derived, is in error.
This section concludes the Introduction to the topic
of program design analysis. Chapter 2 provides a
discussion of some related AI work before the discussion
returns to the Framework for Analysing Program Designs in
Chapter 3. FAPD is described with reference to a system
which is capable of analysing and commenting upon some
simple program designs. Chapter 4 discusses details of
the system's implementation and Chapters S and 6 analyse
some of the results obtained from using the system.
Chapter 7 concludes the thesis with an evaluation of this

research together with some suggestions for further work.

26

2 RELATED AREAS OF ARTIFICIAL INTELLIGENCE

2.1 Program Verification

A method for analysing programs to determine whether
or not they perform as intended has been a goal of computer
science for many years., The initial work in this area
came to be known as program verification. Program
verification uses mathematical logic as the basis for
analysis and attempts to prove the correctness of a program
in a similar manner to the way a mathematical theorem is
proved., The deficiencies of this area will now be
discussed in order to illustrate the reasons behind the
development of program understanding as an AI topic. Some
of the approaches to program understanding are then
discussed in Section 2.2.

A prerequisite of proving a program using this method
is a specification of what the program is intended to
achieve., This specification is represented by a series
of assertions which describe the intended values of the
program's output variables in terms of the program's
input variables, Any restrictions on the program's
inputs must also be represented in a similar manner.
Because of its similarity to mathematical theorem proving,
a theory of program verification often represents these
assertions in a form based on first-order predicate logic.

In order to analyse a program other assertions must
also be made to describe the values of variables at various
points in the program. To determine whether a program

performs as intended entails proving the truth of these

2

assertions together with those describing the intended
output values. Successive assertions are proved true
by showing that a previous assertion together with the
intervening code, imply the truth of the current
assertions. If all assertions are proved true then
the program has been successfully matched against its
specification. The disadvantage of program verification
is that it only proves whether or not a program nperforms
as intended. It does not attempt to diaanose the cause
of an error. This limitation has led to the growth of
a related area of research which throughout this thesis
is referred to as program understanding.

gt Proagram .IInderstandinag

The topic of program understanding will be described
in terms of those research workers considered to have
made major contributions to the topic.

2.2,1 Katz and Manna

As we stated in the previous section many systems
which attempt to verify a program are inadequate since
they do not diagnose the cause of errors in incorrect
programs. However a further disadvantage is that the
system user must provide not only those assertions
describing the program's output values, but also the
intermediate inductive assertions. Katz and Manna
[Katz and Manna 1Q7é]hav9 suggested a unified solution
to these problems and have proposed that the analysis

of a program should be based on what is actually

28

occurring in the program rather than some theoretical
specification. Whenever a system of program verification
fails to prove a program it is unclear whether the code is
bugged or the system is unable to produce a correct proof.
Hence Katz and Manna have suggested that program analysis
should be based on, what they call, invariant assertions.
These are used to express the actual relationshins amonag
the variables of the nrogram and are derived directly
from the program text rather than from a separate
definition given by the programmer. Consequently these
invariants are independent of the program's output
specification and can be used either to verify that the
program performs as intended or that it is bugged. TIn
the latter case, the same invariant assertions can then
be used to locate the errors and modify the program.

To eliminate erroneous code two approaches have
been advocated. The first has been termed a conservative
approach and means that the program must be proved
incorrect before it can be modified. The second
approach which is more radical modifies the program
regardless of its state of correctness. This means a
correct program is often modified and its efficiency may
be reduced as a result. However this approach is of
merit since modification guarantees a proof of correctness.

Whichever anproach is chosen, the basic technique of
debugging is the same. This technique modifies a
program systematically by using the invariants together

with information about how they were generated. This

29

information is stored in the form of an invariant table
which contains everything used to establish each variant
such as the rule applied and nrecisely how the Droaram
statements and/or other variants were used in its
derivation. Debugging nroceeds by walking through this
invariant table, pronosing and testing new variants which
have been generated as candidates that could lead to the
nrogram being vroved correct.,

Although the discussion above is based on a set of
proposals which have not been implemented, this work is
of significance since it demonstrates the inadequacies of
program verification and has put forward some pronosals
for overcoming them. Many of the other theories,
outlined in this section, stress the importance of building
a rich description of how the proaram can be analysed.
This description often nerforms a similar function to the
invariant table discussed above and is used in a similar
way to aid the debugging process.

2.2.2 Goldstein

Goldstein [@oldstein 1975] discusses a system called
MYCROFT for debugging simple LOGO programs. The input to
MYCROFT is a bugged LOGO program together with a model
which uses pre-defined geometric nredicates to describe
the intended outcome of that program. MYCROFT analyses
the program and builds a description of the picture
actually drawn and a plan explaining the relationship

between the program and model. This plan allows MYCROFT

30

to bind sub-pictures to model parts and to produce a list

of violated model statements. The debugger then attempts

to repair each violation in the list in order to bproduce
an edited program which satisfies the model.

The first operation that MYCROFT undertakes is to
document how the nrogram performs. This documentation
is organised as sets of assertions in a database bound
together with sequences representing what happened and
why. There are three kinds of documentation which may
be summarised as:

a) process annotation which records the effects of
executing each program statement. This annotation
is generated by imperative semantics associated with
each LOGO primitive;

b) planning advice which tries to find clues on how
the program can be segmented. In this respect
MYCROFT views a program as comprising main stens
(which are represented by the code required to
achieve a particular goal) and prepatory stens (which
are the interfaces between main steps);

c) debugging advice which describes suspicious code
within the program such as sequences of contiguous
uses of the same primitive.

The second operation within MYCROFT is to find the
plan. The plan finder assumes a linear structure to
the user's plan and attempts to match model parts with

modular main steps and relations between model parts with

A

nrepatory steps. The result of this matchinag operation
is a list of violated model predicates.

The final operation is a debugging operation and
involves correcting these violations. To achieve this
the debugger uses two types of procedural knowledge.

The first of these is a collection of general debuaaing
strateagies which use a linear attack as they try to
repair a program, The first sten in debuggina is to
fix each main sten independently. Following this the
main steps are treated as inviolate and the relations
between model parts are fixed by debuaging prepatory
steps. MYCROFT will also use comments generated by the
nplan finder to suggest the location of revairs and it
will compare alternative debugging strategies in an
attempt to choose those which will cause minimal change
to the user's code. The second type of procedural
knowledge used by the debugger is concerned with giving
directions for fixing particular geometric and logical
predicates.

Goldstein's work is of significance for showing how
the concept of linearity together with rich program
descriptions facilitate understanding and debuaaing.
However the two main criticisms of his theory are:

a) the subset of LNOGO used is too restrictive; and
b) the model used to snecify the intended effect of
a proagram is very detailed and often more complex

than the program it describes.

32

The Framework for Analysing Program Designs is
similar to Goldstein's work since they both represent
some of the results of analysis in the form of assertions
stored in the database. Goldstein's work is also of
relevance to the author's since MYCROFT does not use the
model of intended outcome in order to document how a
program performs. This illustrates that some useful
information about a program can be derived without
necessarily knowing what that program is intended to
achieve.

2.2.3 Ruth

Ruth [Ruth 1976] was concerned with various
implementations of a known algorithm. His theory of
intelligent program analysis is based on a knowledge of
what must be accomplished and how code is used to express
intentions. This theory has been implemented in a
system, written in the AI programming language CONNIVER,
which analyses a program by using a description of the
task the program is to accomplish (c.f. Goldstein's
model of intended outcome), which the user provides,
together with a built-in body of knowledge of how
intentions can be realised in code. The system's
knowledge is in the form of programming experts which
know how actions can be coded and organised and what the
common sources of errors in program writing are.

The user provided description of the program task
must be pre-defined using constructs and mechanisms

(i.e. loops and conditionals) in a form which the

33

analyser can recognise. The analyser knows how these
constructs and mechanisms can be re-arranaged and
reorganised to produce equivalent variations and how they
can be coded. The user can then type in a proqgram,
which must be written in a simple LISP-like lanquage, for
analysis. If the program is correct but the system
cannot match it against the pre-defined description, it
will be either misunderstood or not understood at all.
The pre-defined description and the program both
comprise a list of actions and analysis is concerned
with matching the two lists. This analysis is under-
taken by an action list matcher(ALM) which will continue
operating until there is a failure or the list of actions
in the pre-defined description has been exhausted. For
an action in the description to be matched with an action
in the program they must be equivalent not only in terms
of their values but also in terms of the constructs they
use. To do this the system has an expert for each
action that can be used in the predefined description.
An expert checks whether the current action that the ALM

is trying to match is present and properly implemented at

the current point in the code. It 1t is not, then an
error is reported. Errors are classified as either
recoverable or non-recoverable. The analvser has

specific knowledge of a few common programming errors
which it can recognise and fix. These are termed
recoverable errors because they can be fixed without

substantial chanae to the observed code. Generally

34

speaking, non-recoverable errors are those where something
vital is missing or something unwanted is present.

Although Ruth's work is impressive, an important
drawback is that analysis concentrates on a description
of the values of the variables. Later research [Lukey 1380]
has shown that other types of description can provide
useful aids to understanding. However Ruth's work is of
relevance because it shows how recognition of various
schema can contribute to program understanding.

The framework described in this thesis proposes that
the translation of a program design statement into a
target language can be achieved using a procedure called
a class instance. In this respect class instances are
similar to Ruth's experts except that an expert is called
on the basis of the actions contained in the predefined
description of a program task, whereas a class instance
is called on the basis of what appears in a program
design. It should also be noted how they are used for
different purposes. An expert is used to determine
whether or not an action has an equivalent form in the
program, whereas a class instance is used to create a
coded version of a statement or phrase.
2.2.4 Lukey

Lukey [Lukey 1980] has developed a system, called
PUDSY, which can understand and debug some simple
PASCAL (sub=-) programs, He distinguishes between tuwo

types of debugging. The first is based on recognising

ageneral constraints on correct and rational pbrograms.
An error tynical of this kind is a loop which will never
terminate. The second tvpe is based on a comparison of
a program's intended and actual oneration. The input to
PUDSY is a PASCAL program together with a formal
specification of its intended outcome. The system will
then build un a description of how the program actually
operates and matches this acainst its specification.
Any discrepancy between the two indicates the nrogram is
bugged. The code is then edited by identifying and
generating a specification for the piece of code
responsible.
lLukey emphasises how the success of his debuagaging

strategy depends to a large extent on the availability of
a rich program descrintion. In this respect the process
of understanding a program involves:

a) segmenting a program;

b) describing its flow of information;

c) describing the values of variables; and

d) recognising debugging clues.
The first step in this process is to seament the nrogram
into distinct units, which Lukey calls chunks. Once
this has been achieved PIUDSY will then specify how these
chunks communicate with each other. This involves
identifvinag those variables whose values have been used
in, but which were determined prior to, the current chunk.

These are known as a chunk's inputs. Similarly, a

36

chunk's outputs are those variables whose values are

used by subsequent chunks or which are returned to the main
body of a program as either the value of the subprogram

or the value of a parameter. The second type of proaram
description is based on the analysis of the inputs and
outputs and is a high-level description of how information
flows from one chunk to another,

The segmentation of a proagram together with the
description of information flow provides a framework for
the third type of program description which describes the
values of a program's variables. FEach chunk may now be
described by making assertions about its output variables.
These assertions describe the values held by the output
variables, in terms of the input variables, when control
leaves the chunk. To do this two methods are used. The
first method involves the recognition of a particular
series of statements followed by their description. The
second method uses a technique of symbolic evaluation in
order to derive the necessary assertions.

The fourth type of program description involves a
recognition of debugging clues. For instance, the way
in which a variable is intended to be used in a program
could possibly be determined from its name. For example
PUNDSY makes a note of a variable named COUNT if it is not
used to count anvthing. By comparing a program's
specification with its description, a list of mismatches

can also be produced and by tracing a path back through

37

the assertions which it has produced, PIUNSY identifies
the code source of a mismatch. Once this has been done
a series of edits are proposed and tested and the most
successful of these is chosen. Finally the consequences
of an edit are tested to ensure that it has removed

the bug.

Lukey's work is impressive because he has demonstrated
that to understand a program, other types of description,
in addition to the values of variables are useful. He has
also shown the importance of these different types
interacting. However, he does noint out that to a large
extent this method of descrintion is also inadequate
since it does not make use of some potentially useful
sources of information such as, for example, input and
output pairs, information derived from execution errors
or traces of a program's execution.

2.2.5 Rich and Shrobe

Rich and Shrobe [?ich and Shrobe 1973] have developed
a system which plays the role of a programmer's
apprentice for expert programmers who are writing LISP
programs to manipulate hash tables. These programs are
described by the system in terms of the hash tables on
which they operate, the input and output specifications
of the segments which comprise the program and the
hierarchical renresentation of the program's internal
structure. The latter of these descriptions is referred

to as the nplan.

38

