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Summary 

Program design is one of the many processes involved 
in program development and is considered to be essential 
to the development of structured programs. Consequently 

this research has been concerned with the analysis of 
program design since it is considered to be of equal 
importance to other areas of Artificial Intelligence (AI) 
research, which analyse the program cade. Because a 
rigorous program design results in a program containing 
few errors, a system capable of analysing program designs 
should assist these other related areas of Al. 

This research has developed the Framework for 
Analysing Program Designs (or FAPD) in order to analyse 
the kinds of program design produced by programmers 

using the principles of structured programming. The 
process of analysis is viewed as comprising four 
distinct phases, which are referred to as pre-semantic 
analysis, semantic analysis, generation of comments and 
code generation. The results of analysis take the form 
of a coded version of the program design together with 
any comments about the code. Analysis is based ona 
set of structures which have been developed in order to 
represent phrases and statements often used in a program 
design. Attached to each structure is a procedure, 
referred to as a class instance, which translates its 
structure into a particular programming language. 

FAPD has been implemented and tested within a system 
called DACE (which is a Design Analysing and Commenting 
Environment). FAPD is discussed within the context of 
the system and the results from testing it are discussed 
in detail. The conclusions are drawn that FAPD represents 
a viable approach to the computer analysis of program 
designs, the system has some influence on those who use 
it and that class instances are a useful acquisition to 
the set of tools currently available to researchers in Al. 
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te: INTRODUCTION 

1.1 Aims and _ Objectives 

The motivation behind this work was derived from 

studying the topic of program understanding which is 

an area of research in Artificial Intelligence (AT). 

The objective of program understanding is to determine 

whether or not a program performs as intended, by 

matching a program's actual performance with a 

specification of what it is intended to achieve. Any 

discrepancies between the two will indicate the 

departure of the program from its specification and 

then an attempt can be made either to correct the 

program or to provide some useful debugging information. 

Program design is one of the many processes 

involved in program development of which coding is the 

final part. The importance of program design is well 

established and is considered to be essential to the 

development of structured programs. In our opinion, 

research concerned with the analysis of program design 

should be of equal importance to that given to the 

related area of program understanding. This is not 

the case at the present time. Thus in an attempt to 

rectify this situation, a system for analysing program 

designs was investigated. It is hoped fhat such a 

system could be used to impress upon a programmer the 

importance of the design process and the level of 

detail required in a program desian. 
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In the remaining sections of this chapter we define 

the term "program design" and then consider how, in 

general terms, a program design may be analysed. 

Sections 1.2 and 1.3 are concerned with the principles of 

program design. Section 1.4 concludes the Introduction 

by discussing how the results from analysing a program 

design can be suitably represented. 

1.2 Program Design 

To-day we live in a society which places considerable 

reliance on the computer. Recent progress in the area of 

hardware technology, together with ever-reducing costs, 

have led to computers being used in a larger number of 

applications. Consequently software has increased in 

complexity with a concomitant increase in the need for 

software clarity, modifiability and efficiency. These 

requirements can only be achieved if programmers adopt a 

disciplined approach to the process of program development. 

Early attempts at imposing discipline led to the 

development of the principles of structured programming 

(Dijkstra 1968, Wirth ig71]. These principles propose 

that a program should be successively refined into a 

series of sub-problems, each of which needs to be solved 

in order to solve the original problem. This has the 

benefit that each sub-problem produced is easier to solve 

than the original. Furthermore, each sub-problem can be 

considered separately and decomposed further until as Wirth 

(wirth 1971] states: 

"this successive decomposition or refinement 

of specifications terminates when all 
instructions are expressed in terms of an 

underlying computer or programming language ..." 

o:



A solution to the original problem, namely a program 

design, can be expressed using suitable combinations of: 

a) a Sequence of actions; 

b) a selection of actions according to the results 

of some condition; and 

c) a repetition of actions, 

where an action is defined to be either a single instruc- 

tion, such as the addition of two numbers, or an instruc- 

tion which is itself comprised of a set of simpler actions. 

The latter is often referred to as a compound statement. 

Consequently at each stage of the decomposition the 

programmer must decide how his solution can be expressed 

using a combination of the three programming options 

described above. 

Let us consider how this method might be used in 

order to design an ALGOL 68C program for the following 

problem specification: 

"A company has a number of weekly paid employees 

who receive their wages in cashe The company operates 

a piecework scheme which means the wage bill can vary 

considerably from week to week. The number of employees 

together with their individual earnings (in pence) are 

recorded weekly in a data file. Calculate the number of 

£5 and £1 notes, together with the number of SOp, 10p, 

Sp, 2p and lp coins the cashier will need in any given 

week to pay out the wages" 

A solution to this problem is shown in diagrams 

1 to 4 inclusive. The first stage in the solution is 

to decide how the problem can best be solved using a 

combination of the three options outlined above. 

12



Typically a programmer can use the target language, chosen 

here to be ALGOL 68C, to express the solution to those 

sub-problems which are easily solved. Less tractable 

sub-problems can be left until a later stage in the design 

process. A typical first attempt at the program design is 

shown in diagram l. This illustrates that in terms of the 

programming options given earlier (see section 1.2) the 

initial design is described in terms of a single or direct 

action, the read statement in line 2 followed by "n" repeti- 

tions of the single activity in line 4 and a second direct 

action, the print statement in line 5. 

The solution in diagram 1 is now defined in terms of 

the two sub-problems in lines 4 and 5, namely the 

processing of an employee's data and the printing of the 

results. The programmer can now concentrate attention on 

the first of these two sub-problems. Since the process 

for analysing an employee's data involves several calcula- 

tions, a compound statement is chosen. The result is 

shown in diagram 2 which illustrates how the processing of 

an employee's data has been broken down into the eight sub- 

problems shown in lines 4 to ll inclusive. Collectively 

these form a compound statement delimited by the ALGOL 68C 

reserved words 00 and OD. The solution is now defined in 

terms of these eight sub-problems together with the sub— 

problem in line 13 which still remains to be considered. 

Each of the steps contained within the loopbody may 

be considered in turn and diagram 3 illustrates how the 

first two steps may be made more explicit. At this stage 

the solution has been reduced from nine to seven sub-— 

problems, (shown in lines 10 to 15 and line 17 of
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begin int 0% 

read (n); 
for i to n 
“do process data for employee od; 
output the number of coins and the _ 

number of notes needed 

end 

Diagram 1 

The First Stage of a Program Nesiagn 

begin int n; 
TT) Bead (ays 

fon, ton ea 
“do input the value of wage ; 

~~ calculate the number of fivepounds 

needed so far ; 
calculate the number of poundnotes 

needed so far ; 
calculate the number of fiftypences 

needed so far ; 
calculate the number of tenpences 

needed so far ; 
calculate the number of fivepences 

needed so far ; 
calculate the number of twopences 

needed so far ; 
calculate the number of onepences 

needed so far ; 
od 5 

output the number of coins and the 
number of notes needed 

end 

Diagram 2 

The Second Stage of a Program Design 
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int n, wage, fivepounds ; 
read (n) ; 
fivepounds :=090 ; 
for 4 50 1 
“do Yead (wage) ; 

~~ while wage >= 500 
do fivepounds := 

wage := 

begin 

od 5 
calculate the number 

needed 
number 
needed 
number 
needed 
number 
needed 
number 
needed 
number 
needed 

calculate the 

calculate the 

calculate the 

calculate the 

calculate the 

od 
output the number of coins 

number of notes 
end 

Diagram 3 

The Third Stage of a Program Desian 
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of fiftypences 
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diagram 3), and a moment's thought at this stage shous 

that each of the remaining calculations in the loopbody 

will involve similar design decisions to those taken for 

the first calculation. Hence because similar processing 

is required the programmer may decide to implement each 

calculation in the form of a procedure. The final 

program would then be similar to that shown in diagram 4. 

By using the principles of structured programming, a 

concise and efficient implementation has been achieved 

without any subsequent loss of clarity. The decomposition 

has not followed any practical guidelines and each decision 

has been based largely on a knowledge of the use of certain 

programming constructs and schema to achieve a desired 

result. Recent work in the area of structured programming 

has been directed towards imposing some criteria on which 

to base this decision-making process. Current programming 

methodologies such as those of Jackson [Jackson 1975] and 

Warnier (Warnier 1974] propose structuring programs on the 

basis of the logical structure of the date, whereas 

Constantine [Yourdon and Constantine 1975] and Myers 

(Myers 1975) propose programs should be structured according 

to the functional decomposition of the problem. 

An analysis conducted at the University of Aston 

amongst 85 students attempted to guage programmer's 

behaviour and attitudes to the design stage of program 

development. Each student was asked to complete a 

questionnaire and this together with the results obtained 

are given in Appendix F. The students represented a 

considerable variation in programming experience and 

knowledge, from novice programmers to those with several 

16
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end 

int n, waqe, fivepounds, poundnotes, 
fiftypences, tenpences, fivepences, 
twopences, onepences ; 

  

proc denominations = (ref int numberof, 

int value) void : 
begin while wage >= value 

do. wage := wage - value ; 
numberof := numberof 

2 ot 
od 

end 5 
read (n) ; 
fivepounds := poundnotes := fiftynences 
:= tenpences fivepences twonences       
?= onepences a 

Ory i= toon 
do read (wage) ; 

denominations (fivepounds, 599) 
denominations (poundnotes, 199) 
denominations (fiftypences, 59) 
denominations (tenpences, LO s 
denominations (fivepences, 5) ; 
denominations (twopences, 2) ; 
denominations (onepences, 1) 

od; 
print (fivepounds, "fivepound notes are 

required", newline, 
poundnotes, "'onepound notes are 

required", newline, 
fiftypences, "fiftypence coins are 

required", newline, 
tenpences, '"tennence coins are 

required", newline, 
fivepences, "fivepence coins are 

required", newline, 
twopences, "twopence coins are 

required", newline, 
onepences, "onepence coins are 

required", newline) 

Diagram 4 

The Coded Version of a Program Desian 
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years programming experience. The novice programmers, 

that is those currently learning programming, formed the 

dominant group (62 students). The main conclusions drawn 

from an analysis of the questionnaires are: 

a) 42 of the 62 novices do not write out a program 

design every time a program is developed; 

b) 37 out of 61 students stated that for problems 

considered to be simple, program designs were not 

developed; 

icy 53 students thought the time spent teaching them 

program design was adequate but 55 felt they would 

benefit from extra tuition. Furthermore 72 said 

they would take advantage of a system capable of 

analysing program designs; 

d) 39 students found the program design stage more 

difficult than coding. Only 18 students thought 

coding was the more difficult and the remainder felt 

they were both equally difficult. 

This latter result indicates that students find the formula- 

tion of program designs difficult and that they would benefit 

from any support that could be given to them during this 

stage. Such support would be important because a rigorous 

program design facilitates program development. Hence a 

system such as that proposed should prove beneficial 

because deficient program designs will be highlighted. 

This thesis proposes a framework for analysing 

examples of program design which is referred to hereafter 

as the Framework for Analysing Program Designs (or FAPD). 

Since none of the criteria for decomposition, which are out- 

18



lined above, have been universally accepted, examples of 

program design are often of widely differing forms. 

Because of this and because of time constraints, it has 

not been possible to investigate methods for analysing 

all of the different approaches to program design. 

Consequently before proposing a method, a decision is 

needed concerning the kind of program design which should 

be studied. The choice of this form is the subject of 

the following section. 

1.3 Scope of Program Design for this Project 

It was decided that attention should be concentrated 

on analysing program designs which have been written 

using an informal method similar to that used in section 

1.2. It was also decided that FAPD should aim to 

analyse program designs which use only a limited set of 

basic programming constructs. The reason for this is 

that because of time constraints it has not been possible 

to analyse program designs whose solution requires the use 

of a wide range of programming constructs. Consequently 

it was decided to concentrate on those designs which can 

be coded using suitable combinations of assignment, read 

and print statements, loops and conditionals and to omit 

more advanced programming concepts such as procedures. 

The implications of this omission are discussed in the 

final chapter. 

In order to define more clearly the kinds of program 

Gesign which this project should concentrate on, let us 

now consider how these basic programming constructs can be 

introduced to students who do not have prior knowledge of 

ig



computing. At the University of Aston, first-year 

computer science students initially learn that programming 

consists of two related activities. The first of these 

involves understanding a problem and formulating a program 

design to solve the given problem, The second involves 

converting the design into a particular programming 

language. Students are taught to formulate a design in 

a manner suitable for conversion into a target language 

and consequently they are introduced to structures for 

denoting repetition and choice. These structures are 

identified as having the same format as those used in the 

target language. If ALGOL 68C was the programming 

language, then the structures would be identified as 

WHILE - O00 - OD for repetition and IF - THEN — 

[Else -] FI for choice, where [ELSE -] represents an 

optional item. At each stage of the design process, the 

decisions available to the novice may be summarised as: 

a) a sequence of actions 

b) a selection of actions which is achieved using 

a conditional structure of the same format as 

that used in the target language; and 

c) a repetition of actions which is achieved using 

a loop structure of the same format as that used 

in the target language, 

where an action could be either a single instruction or 

a compound statement. Examples of single instructions 

are the arithmetic expression, the read, print or 

assignment statement. 

After being taught how to formulate a design the 

student is then taught the coding details of ALGOL 68C 

20



such as the exact forms of the assignment, print and read 

statements together with other syntactic details such as 

the declaration of variables and the placement of semi- 

colons. With time and experience the student also 

becomes familiar with other constructs such as the CASE 

clause for denoting a special form of selection, the FOR 

loop as an alternative to the WHILE construct and data 

structures such as the array. 

The program design in diagram 3 has been generated in 

order to illustrate how an experienced programmer might 

tackle the problem. Similarly the design in diagram 5 

has been generated in order to illustrate the kind of 

program design which FAPO, described later in this thesis, 

can analyse. The latter diagram contains statements 

such as: 

initialise fivepounds to 0O (leas) 

whereas the design in diagram 3 has specified the same 

instruction in terms of the target language, viz: 

fivepounds s= 0 (ile2) 

Statement (1.1) can be used instead of (1.2) when the 

programmer is inexperienced in using the syntactic features 

of the target language. Once the program design has been 

written in sufficient detail then the programmer need only 

concentrate on the coding details. 

If we compare diagrams 3 and 4, the differences 

between the two can be described in terms of the 

decomposition. It has been determined that each of 

the calculations enclosed in the loopbody requires a loop 

structure and so the procedure facility of ALGOL 68C has 

21



N
O
U
A
W
N
 =
 

O
n
 

am 

15 

16 
7) 
18 

read the first number into n 
initialise fivepounds to 9 
initialise i to 1 
while 
do 

od 

iis less than or equal to n 
read the next number into wage 
while wage is greater than or equal to 500 
do increment the value of. fivenounds 

by 1 
decrease the value of wage by 590 

od 
calculate the number of poundnotes 

needed so far 
calculate the number of fiftypences 

needed so far 
calculate the number of tenpences 

needed so far 
calculate the number of fivepences 

needed so far 
calculate the number of twopences 

needed so far 
calculate the number of onepences 

needed fo far 
increment i 

output the number of coins and the number 
of notes needed 

Diagram 5 

An_ Alternative Program Desian en ee ee 
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been used to collectively describe these calculations. 

Consequently this decomposition has resulted in a somewhat 

simple and efficient solution. However, if the programmer 

has no comprehension of advanced programming concepts such 

as a procedure, the stage following that shown in diagram 3 

might merely show each of the remaining calculations decom-= 

posed into the appropriate loop structure. If the 

programmer has learnt the coding details of the target 

language then the design is now converted into code, 

otherwise the solution has been expressed as explicitly as 

his limited knowledge of programming has allowed. 

This section is concluded by stating that the term 

"program design" is used throughout the remainder of this 

thesis to mean designing programs using the principles of 

structured programming in the manner already described. 

Also for the reason outlined at the beginning of this 

section, the Framework for Analysing Program Designs is 

aimed at analysing examples such as that shown in diagram 5 

which can be coded using a limited set of target language 

constructs. By accepting designs similar to that shown 

in diagram 5 FAPD should be of benefit to programmers of 

varying experience. It is interesting to note from the 

questionnaire that 67 out of 84 students thought that the 

program design stage was necessary for all programmers 

whatever their experience. Nevertheless it is expected 

that novice programmers will derive the greatest benefit. 

1.4 Analysing a Program Design 

The concluding remarks of the previous section 

defined the term "program design" to be the process of 

designing a program according to the principles of 
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structured programming. Having defined this term and 

shown how a program design can be produced according to 

these principles (see diagram 5) we must now consider how 

Program designs of this type can be analysed. This project 

has taken the view that analysing a program design is a 

process of translating a design into an alternative format 

which can then be manipulated more easily than the original 

design. This format does not contain any of the ambi- 

guities or inferences which may have existed in the 

original design because they will have been removed during 

the translation process. If any comments are generated 

during translation then the programmer can use them as a 

basis for revising the solution before finally submitting 

a coded version of the design to a computer for compilation 

and execution. 

In terms of this project, a series of assertions has 

been chosen as the format into which a program design is 

translated. These assertions represent a coded version of 

the design and can then be used to produce a program 

together with any comments about its content. There are 

several reasons why this representation has been chosen. 

Firstly, it provides a convenient format for showing a 

user if the process of designing the program is complete. 

If the process is not complete then the results show those 

statements in the design which have not been analysed and 

which require further refinement. Statements that have 

been analysed successfully are now expressed in terms of 

the target programming language and therefore need no 

further refinement. The design process is complete when 
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all statements have been successfully analysed. The 

programmer then knows the design process is complete and 

any final modifications can be made before running the 

Program on the computer. It is interesting to note that 

36 out of 84 students who completed the questionnaire on 

Program design usually wrote out a single program design 

before converting it into a programming language. This 

indicates that a process of stepwise refinement has not 

been followed and consequently the resulting program design 

could lack structure and detail. In this case, high- 

lighting those statements which should be refined further 

will encourage students to spend more time on designing 

programs. 

Secondly, this representation could prove particularly 

useful for novice programmers. Typically, a novice might 

have been taught the principles of program design prior to 

learning the coding details of the particular target 

language. FAPD could then be used within a system which 

takes the role of an experienced programmer who can show a 

novice how his design could be implemented. Any anomalies 

such as using variables without first initialising them, 

together with information on how statements in the design 

have been converted into code could be noted and commented 

upone 

A third reason for choosing this definition of 

analysing a program design is that FAPD could be used to 

act as a front-end to an existing system of program under- 

standing. If FAPD is capable of producing a coded version 

of the design, the code could then be tested: 
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a) for syntactic correctness by using an existing 

compiler for the target programming language; and 

b) by using some of the existing theories of program 

understanding. 

Program understanding attempts to match a program's actual 

performance against its specification. Any discrepancies 

between the two show that the Program, and hence the design 

from which it has been derived, is in error. 

This section concludes the Introduction to the topic 

of program design analysis. Chapter 2 provides a 

discussion of some related AI work before the discussion 

returns to the Framework for Analysing Program Designs in 

Chapter 3. FAPD is described with reference to a system 

which is capable of analysing and commenting upon some 

simple program designs. Chapter 4 discusses details of 

the system's implementation and Chapters 5 and 6 analyse 

some of the results obtained from using the system. 

Chapter 7 concludes the thesis with an evaluation of this 

research together with some suggestions for further work. 
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2. RELATED AREAS OF ARTIFICIAL INTELLIGENCE 

2.1 Program Verification 

A method for analysing programs to determine whether 

or not they perform as intended has been a goal of computer 

science for many years. The initial work in this area 

came to be known as program verification. Program 

verification uses mathematical logic as the basis for 

analysis and attempts to prove the correctness of a program 

in a similar manner to the way a mathematical theorem is 

proved. The deficiencies of this area will now be 

discussed in order to illustrate the reasons behind the 

development of program understanding as an AI topic. Some 

of the approaches to program understanding are then 

discussed in Section 2.2. 

A prerequisite of proving a program using this method 

is a specification of what the program is intended to 

achieve. This specification is represented by a series 

of assertions which describe the intended values of the 

program's output variables in terms of the program's 

input variables. Any restrictions on the program's 

inputs must also be represented in a similar manner. 

Because of its similarity to mathematical theorem proving, 

a theory of program verification often represents these 

assertions in a form based on first-order predicate logic. 

In order to analyse a program other assertions must 

also be made to describe the values of variables at various 

points in the program. To determine whether a program 

performs as intended entails proving the truth of these 
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assertions together with those describing the intended 

output values. Successive assertions are proved true 

by showing that a previous assertion together with the 

intervening code, imply the truth of the current 

assertions. Tf all assertions are proved true then 

the program has been successfully matched against its 

specification. The disadvantage of program verification 

is that it only proves whether or not a program performs 

as intended. It does not attempt to diagnose the cause 

of an error. This limitation has led to the growth of 

a related area of research which throughout this thesis 

is referred to as program understandina. 

Dee Program JInderstandinag 

The topic of program understanding will be described 

in terms of those research workers considered to have 

made major contributions to the topic. 

2.2.1 Katz and Manna 

As we stated in the previous section many systems 

which attempt to verify a program are inadequate since 

they do not diagnose the cause of errors in incorrect 

programs. However a further disadvantage is that the 

system user must provide not only those assertions 

describing the program's output values, but also the 

intermediate inductive assertions. Katz and Manna 

{katz and Manna 1976] have suggested a unified solution 

to these problems and have proposed that the analysis 

of a program should be based on what is actually 
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occurring in the program rather than some theoretical 

specification. Whenever a system of program verification 

fails to prove a program it is unclear whether the code is 

bugged or the system is unable to produce a correct proof. 

Hence Katz and Manna have suggested that program analysis 

should be based on, what they call, invariant assertions. 

These are used to express the actual relationships among 

the variables of the program and are derived directly 

from the program text rather than from a separate 

definition given by the programmer. Consequently these 

invariants are independent of the program's output 

specification and can be used either to verify that the 

program performs as intended or that it is bugged. In 

the latter case, the same invariant assertions can then 

be used to locate the errors and modify the program. 

To eliminate erroneous code two approaches have 

been advocated. The first has been termed a conservative 

approach and means that the program must be proved 

incorrect before it can be modified. The second 

approach which is more radical modifies the program 

regardless of its state of correctness. This means a 

correct program is often modified and its efficiency may 

be reduced as a result. However this approach is of 

merit since modification guarantees a proof of correctness. 

Whichever anproach is chosen, the basic technique of 

debugging is the same. This technique modifies a 

program systematically by using the invariants together 

with information about how they were generated. This 
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information is stored in the form of an invariant table 

which contains everything used to establish each variant 

such as the rule applied and nrecisely how the proaqram 

statements and/or other variants were used in its 

derivation. Debugging proceeds by walking through this 

invariant table, proposing and testing new variants which 

have been generated as candidates that could lead to the 

Program being vroved correct. 

Although the discussion above is based on a set of 

proposals which have not been implemented, this work is 

of significance since it demonstrates the inadequacies of 

program verification and has put forward some pronosals 

for overcoming them. Many of the other theories, 

outlined in this section, stress the importance of building 

a rich description of how the program can be analysed. 

This description often performs a similar function to the 

invariant table discussed above and is used in a similar 

way to aid the debugging process. 

2.2.2 Goldstein 

Goldstein [Goldstein 1975] discusses a system called 

MYCROFT for debugging simple LOGO programs. The input to 

MYCROFT is a bugged LOGO program together with a model 

which uses pre-defined geometric predicates to describe 

the intended outcome of that program. MYCROFT analyses 

the program and builds a description of the picture 

actually drawn and a plan explaining the relationship 

between the program and model. This plan allows MYCROFT 
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to bind sub-pictures to model parts and to produce a list 

of violated model statements. The debugger then attempts 

to repair each violation in the list in order to vroduce 

an edited program which satisfies the model. 

The first operation that MYCROFT undertakes is to 

document how the program performs. This documentation 

is organised as sets of assertions in a database bound 

together with sequences representing what hapnened and 

why. There are three kinds of documentation which may 

be summarised as: 

a) process annotation which records the effects of 

executing each program statement. This annotation 

is generated by imperative semantics associated with 

each LOGO primitive; 

b) planning advice which tries to find clues on how 

the program can be segmented. In this respect 

MYCROFT views a program as comprising main stens 

(which are represented by the code required to 

achieve a particular goal) and prepatory steps (which 

are the interfaces between main steps); 

¢) debugging advice which describes suspicious code 

within the program such as sequences of contiguous 

uses of the same primitive. 

The second operation within MYCROFT is to find the 

plan. The plan finder assumes a linear structure to 

the user's plan and attempts to match model parts with 

modular main steps and relations between model parts with 
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prepatory steps. The result of this matching operation 

is a list of violated model predicates. 

The final operation is a debugging operation and 

involves correcting these violations. To achieve this 

the debugger uses two types of procedural knowledae. 

The first of these is a collection of general debuaging 

strategies which use a linear attack as they try to 

repair a program. The first step in debugging is to 

fix each main sten independently. Following this the 

main steps are treated as inviolate and the relations 

between model parts are fixed by debuaging prepatory 

steps. MYCROFT will also use comments generated by the 

plan finder to suggest the location of repairs and it 

will compare alternative debugging strategies in an 

attempt to choose those which will cause minimal change 

to the user's code. The second type of procedural 

knowledge used by the debugger is concerned with giving 

directions for fixing particular geometric and logical 

predicates. 

Goldstein's work is of significance for showing how 

the concept of linearity together with rich program 

descriptions facilitate understanding and debuaging. 

However the two main criticisms of his theory are: 

a) the subset of LOGO used is too restrictive; and 

b) the model used to snecify the intended effect of 

a program is very detailed and often more complex 

than the program it describes. 
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The Framework for Analysing Program Designs is 

Similar to Goldstein's work since they both represent 

some of the results of analysis in the form of assertions 

stored in the database. Goldstein's work is also of 

relevance to the author's since MYCROFT does not use the 

model of intended outcome in order to document how a 

program performs. This illustrates that some useful 

information about a program can be derived without 

necessarily knowing what that program is intended to 

achieve. 

2.2.3 Ruth 

Ruth [Ruth 1976] was concerned with various 

implementations of a known algorithm. His theory of 

intelligent program analysis is based on a knowledge of 

what must be accomplished and how code is used to express 

intentions. This theory has been implemented in a 

system, written in the AI programming language CONNIVER, 

which analyses a program by using a description of the 

task the program is to accomplish (c.f. Goldstein's 

model of intended outcome), which the user provides, 

together with a built-in body of knowledge of how 

intentions can be realised in code. The system's 

knowledge is in the form of programming experts which 

know how actions can be coded and organised and what the 

common sources of errors in program writing are. 

The user provided description of the program task 

must be pre-defined using constructs and mechanisms 

(ise. loops and conditionals) in a form which the 
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analyser can recognise. The analyser knows how these 

constructs and mechanisms can be re-arranged and 

reorganised to produce equivalent variations and how they 

can be coded. The user can then type in a program, 

which must be written in a simple LISP-like language, for 

analysis. If the program is correct but the system 

cannot match it against the pre-defined description, it 

will be either misunderstood or not understood at all. 

The pre-defined description and the program both 

comprise a list of actions and analysis is concerned 

with matching the two lists. This analysis is under- 

taken by an action list matcher(ALM) which will continue 

operating until there is a failure or the list of actions 

in the pre-defined description has been exhausted. For 

an action in the description to be matched with an action 

in the program they must be equivalent not only in terms 

of their values but also in terms of the constructs they 

use. To do this the system has an expert for each 

action that can be used in the predefined description. 

An expert checks whether the current action that the ALM 

is trying to match is present and properly implemented at 

the current point in the code. Tf it is not, then an 

error is reported. Errors are classified as either 

recoverable or non-recoverable. The analyser has 

specific knowledge of a few common programming errors 

which it can recognise and fix. These are termed 

recoverable errors because they can be fixed without 

substantial chanage to the observed code. Generally 
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speaking, non-recoverable errors are those where something 

vital is missing or something unwanted is present. 

Although Ruth's work is impressive, an important 

drawback is that analysis concentrates on a description 

of the values of the variables. Later research [Lukey 1980] 

has shown that other types of description can provide 

useful aids to understanding. However Ruth's work is of 

Televance because it shows how recognition of various 

schema can contribute to program understanding. 

The framework described in this thesis proposes that 

the translation of a program design statement into a 

target language can be achieved using a procedure called 

a class instance. In this respect class instances are 

similar to Ruth's experts except that an expert is called 

on the basis of the actions contained in the predefined 

description of a program task, whereas a class instance 

is called on the basis of what appears in a program 

design. It should also be noted how they are used for 

different purposes. An expert is used to determine 

whether or not an action has an equivalent form in the 

program, whereas a class instance is used to create a 

coded version of a statement or phrase. 

22204 Lukey 

Lukey [Lukey 1980] has developed a system, called 

PUDSY, which can understand and debug some simple 

PASCAL (sub-) programs. He distinguishes between two 

types of debugging. The first is based on recognising



general constraints on correct and rational programs. 

An error tynical of this kind is a loop which will never 

terminate. The second type is based on a comparison of 

a program's intended and actual operation. The input to 

PUDSY is a PASCAL program together with a formal 

specification of its intended outcome. The system will 

then build up a description of how the program actually 

operates and matches this against its specification. 

Any discrepancy between the two indicates the program is 

bugged. The code is then edited by identifying and 

generating a specification for the piece of code 

responsible. 

Lukey emphasises how the success of his debuaging 

strategy depends to a large extent on the availability of 

a rich program descrintion. In this respect the process 

of understanding a program involves: 

a) segmenting a program; 

b) describing its flow of information; 

c) describing the values of variables; and 

d) recognising debugging clues. 

The first step in this process is to seament the program 

into distinct units, which Lukey calls chunks. Once 

this has been achieved PUDSY will then specify how these 

chunks communicate with each other. This involves 

identifving those variables whose values have been used 

in, but which were determined prior to, the current chunk. 

These are known as a chunk's inputs. Similarly, a 
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chunk's outputs are those variables whose values are 

used by subsequent chunks or which are returned to the main 

body of a program as either the value of the subprogram 

or the value of a parameter. The second type of program 

description is based on the analysis of the inputs and 

outputs and is a high-level description of how information 

flows from one chunk to another. 

The segmentation of a program together with the 

description of information flow provides a framework for 

the third type of program description which describes the 

values of a program's variables. Each chunk may now be 

described by making assertions about its output variables. 

These assertions describe the values held by the output 

variables, in terms of the input variables, when control 

leaves the chunk. To do this two methods are used. The 

first method involves the recognition of a particular 

series of statements followed by their description. The 

second method uses a technique of symbolic evaluation in 

order to derive the necessary assertions. 

The fourth type of program description involves a 

recognition of debugging clues. For instance, the way 

in which a variable is intended to be used ina program 

could possibly be determined from its name. For example 

PUDSY makes a note of a variable named COUNT if it is not 

used to count anything. By comparing a program's 

specification with its description, a list of mismatches 

can also be produced and by tracing a path back through 
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the assertions which it has produced, PUDSY identifies 

the code source of a mismatch. Once this has been done 

a series of edits are proposed and tested and the most 

successful of these is chosen. Finally the consequences 

of an edit are tested to ensure that it has removed 

the bug. 

Lukey's work is impressive because he has demonstrated 

that to understand a program, other types of description, 

in addition to the values of variables are useful. He has 

also shown the importance of these different types 

interacting. However, he does noint out that to a larae 

extent this method of description is also inadequate 

since it does not make use of some potentially useful 

sources of information such as, for example, input and 

output pairs, information derived from execution errors 

or traces of a program's execution. 

2.2.5 Rich and Shrobe 

Rich and Shrobe [Rich and Shrobe 1978] have developed 

a system which plays the role of a programmer's 

apprentice for expert programmers who are writing LISP 

programs to manipulate hash tables. These programs are 

described by the system in terms of the hash tables on 

which they operate, the input and output specifications 

of the segments which comprise the Program and the 

hierarchical representation of the Program's internal 

structure. The latter of these descriptions is referred 

to as the plan. 

38



The first tyne of description is concerned with hash 

tables which in effect form the data for a program and 

which the user must describe in terms of the abstract 

definition known to the system. The second form of 

description is represented by the input and output 

specifications of the program's segments and is supplied 

by the programmer. In terms of code, a program seqment 

could be, for instance, a function definition, the body 

of a conditional or several lines of open code. A 

segment is described by a series of specifications which 

contain information about the data flowing into and out 

of the segment. These snecifications are a formal 

statement of the conditions acting upon or the relation-— 

ships between, values of the data at the time the segment 

is entered. A segment's output values are also described 

in a similar manner. 

One of the most interesting aspects of this work is 

the third form of program description, known as the plan. 

Rich and Shrobe have devised a method of representing 

plans which allows them to be used not only for describing 

a user's program but also for describing the system's 

programming knowledaqe. The programmer and apprentice 

first work at this plan level and interact in order to 

develop an abstract representation of the program's 

intended structure. To do this the apprentice must know 

some of the basic techniques for manipulating hash tables 

such as deleting elements from a linked list. The 

apprentice can now compare the seqment snecifications 
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with the plan and the user can modify it if any errors 

are found. When the segment specifications are found 

to be consistent, the user can type in the code and the 

apprentice ensures that it conforms to the predefined plan. 

Tn order to describe the structure of a program the 

apprentice uses two kinds of plan. The first is called 

a surface plan and describes the flow of control and of 

data between various parts of the program. The second 

is referred to as the deep plan which shows how a program 

operates and whereas the surface plan is explicitly 

stated in a program, the deep plan is not. In order to 

understand a program the apprentice makes use of the code, 

the surface plan and the deep plan. To establish whether 

or not the code fits the plan, the apprentice first uses 

the program to derive the surface plan and then compares 

it with the deep plan, by using its general programming 

knowledge. A deep plan is expressed in terms of purpose 

links which describe the logical structure of a program. 

Consequently if a programmer attempts to modify a program, 

it is the purpose links that denote which of the other 

segments will be affected and in what ways. These links 

are also used when a surface plan segment is matched 

against a deep plan seqment. The apprentice declares 

the two forms of plan are equal, only if the data and 

control flow links surrounding the surface plan segment 

are consistent with the data flow and purpose links 

surrounding the deep plan seqment. 
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In conclusion we can say that the work of Rich and 

Shrobe has made a significant contribution to automatic 

program understanding. Their work is significant not 

only because certain aspects of it have been implemented 

in a system, whereas some other studies have not, but 

also because their notion of a deep plan shows how they 

have confronted the problem of finding a suitable 

representation for programming knowledae. However a 

disadvantage of their proposals is that the user must 

still supply some of the information required for analysis. 

The user's task would be simplified if information about 

the deep plan or about the input and output values of the 

program segments, at the level of detail required by the 

present system, did not have to be supplied. 

2.2.6 Waters 

The work of Waters [waters 1976, Waters 1978, 

Waters 1979, Waters 1982] has close links with that 

described in the previous section. Rich and Shrobe have 

laid out the initial design for a programmer's apprentice 

and have developed the concept of a plan for representing 

programming knowledge. Waters [waters 1076] has designed 

a limited system aimed at the area of mathematical FORTRAN 

programs and has extended the notion of a plan by 

proposing how it could be segmented. Recently Waters 

[waters 1082] has also produced an initial implementation 

of this programmer's apprentice. The following 

discussion will concentrate only on this implementation 

because, in terms of this study, it is the most relevant 
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aspect of his work. 

The programmer's apprentice (PA) which has been 

implemented is comprised of five parts. These are an 

analyser which constructs the plans relating to a nrogram, 

a coder which converts a plan into a program, a drawer 

which converts a plan into a graphical representation, a 

library of plans and a special plan editor which allows 

the plan rather than the program to be edited. From 

this we can see that the concept of a plan is central to 

this implementation. Indeed, one of the most significant 

aspects of this work has been the use of plans to 

represent not only programs but also programming 

knowledge. 

The implementation of the PA is in the form of an 

editor which allows a user to build up a program and 

then edit its plan. To build a program the user types 

in commands requesting the PA to undertake operations 

such as the definition of a procedure for which the user 

has provided an appropriate name. The procedure body 

can then be filled in by using phrases such as "successive 

refinement' to indicate that the result is calculated 

using a loop construct. In terms of the PA's components 

described above, the plan relating to this phrase is 

stored in the library and the coder knows how this Plan 

can be represented in a programming language. 

Having built up a program by using library plans 

together with actual pieces of code, the user can then 

edit his program by modifvina its structure. To do this 

a proarammer must use the system provided vocabularv to 
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refer to plans and narts of a plan. Once a dlan is 

modified the coder can then be called to translate the 

plan into code. However a user may sometimes use the 

normal text editor instead of the plan editor. Tn this 

situation the PA is used in the opposite sense and the 

analyser is called to determine the form of the 

resulting plan. 

So far the discussion has concentrated on what the 

PA is capable of analysing, however as Waters noints out, 

there are three areas of which it has no comprehension. 

Firstly, the PA uses no description to aid analysis, 

unlike the avprentice of Rich and Shrobe which uses a 

description of a hash table to aid analysis. Secondly it 

does not have any knowledge of the program specification 

and thirdly it is not capable of recoanisinag that library 

plans may be inter-related. 

There are two aspects of the PA which are relevant 

to the research described in this thesis. Firstly, both 

areas of research are concerned with analysing statements 

in terms of a programming language. However, there is 

considerable difference in the way this knowledge is used. 

Waters is concerned with creating and modifying an abstract 

specification of a program whereas our study is concerned 

with producing a coded version of the design. In this 

respect, the work of Waters is more ambitious since it 

directly attacks how programming knowledge can be 

represented, independently of the target language. Also 
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this research is concerned with automatically detecting 

any anomalies in a program, whereas the PA leaves this 

task to the programmer. Secondly, when editing a plan, 

the PA allows the programmer to use the pronoun "it" to 

refer to the object which is the current focus of the 

system's attention. This research uses a similar 

approach to deal with any pronominal references found in 

a program design. 

The work of Waters, together with that of Rich and 

Shrobe represents some of the most significant research 

in this area at the present time. Their objective of 

finding a suitable representation for programs and 

programming knowledge and the implementation of that 

representation dictates that the project is long-term. 

Nevertheless their work provides some justification for 

believing that future systems will be capable of providing 

some sinificant programming support. 

2-2-7 Others 

Let us now conclude the discussion of program 

understanding by referring to the research undertaken by 

Smith and Hewitt [Smith and Hewitt 1974], Miller [Miller 

1978 , Ramsay [Ramsay 1980] and Eisenstadt and Laubsch 

[Eisenstadt and Laubsch 1980]. These are discussed in 

chronological order. 

Smith and Hewitt have put forward proposals for a 

programmer's apprentice which are designed to work within 

the area of Hewitt's ACTORS formalism [Hewitt, Bishop and 

Steiger 1973]. Their aim is to develop an apprentice 
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which can assist the programmer in tasks such as 

formulating and maintaining the consistency of specifi- 

cations and ensuring that the modules which comprise a 

program perform as intended. It is also envisaged that 

the apprentice will be able to answer questions about 

the relationships between modules. 

In order to verify a program, Smith and Hewitt have 

Geveloped a technique which they have called meta- 

evaluation. This technique is based on the process 

which a programmer goes through when he symbolically 

executes his program to see if it works. These proposals 

have the disadvantage that analysis of a program depends, 

to a large extent, on the specifications provided by the 

user, and analysis does not produce any detailed descrip- 

tions of its own. 

Miller's work is worth mentioning since it aims to 

understand both the planning and debugging processes. 

This work is discussed by Miller within the context of a 

system, called SPADE-O, which interacts with programmers 

who are planning and debugging programs written in the 

LOGO programming language. SPADE-O leads a programmer 

through a hierarchical planning process by providing a 

vocabulary of concepts for describing plans, bugs and 

debugging techniques. The system represents the planning 

process in terms of a tree-like structure. The system 

user is shown this structure so that he can identify the 

alternative paths that can be followed in order to produce 

@ program, SPADE-O will then lead its user through these 

paths by choosing the next likely goal. As the tree is 
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traversed, the system leaves messages on the various 

paths which may be used later on to guide the debugging 

process. 

Some of the bugs which Miller has identified are 

based on his adopted theory of planning. Thus, a 

pragmatic bug is defined as an incorrect choice of path 

in the planning tree. Conversely, a semantic bug is 

where the picture produced by the LOGO program is not the 

intended one. Most of the other research studies into 

program understanding have derived the information 

necessary for debugging from the program. Consequently 

Miller's work is of interest since some of the information 

used by SPADE-0 is derived from another source, namely its 

record of those decisions taken by the programmer during 

the planning process. 

Eisenstadt and Laubsch have discussed their work on 

a debugging assistant. The assistant is intended to 

help students who are using the programming language SOLO, 

which has primitives similar to MICRO-PLANNER, for 

operating on assertions in a data base. Students use 

the assistant when problems arise which need to be solved. 

The assistant is comprised of four modules which are 

referred to as the intent-specifier, the instantiator, 

the coder and the translator. 

The intent-specifier is used to determine what the 

code is supposed to achieve. To produce these intentions 

the intent-specifier uses a plan library which is comprised 

of high and low level plans. Low level plans denote how 

a general operation, such as an assignment, can be achieved 
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whereas a higher level plan is used to denote operations 

which are relevant to the particular problem the student 

is working on. The intentions produced by the intent- 

specifier are then used by the instantiator in order to 

propose several possible plans for execution. How these 

plans can be implemented in SOLO is known to the coder. 

However the results of its analysis are not in the actual 

form required by the SOLO syntax, but instead they are 

expressed in a conceptual form suitable for execution by 

a SOLO virtual machine. The fourth module is the 

translator which takes the student's code and translates 

it into a form which can be compared directly with the 

abstract plan. This comparison is based on symbolic 

evaluation and shows why a piece of code has failed. Lf 

the assistant has a model of what the code is intended to 

achieve then the student can be shown examples of a correct 

implementation. 

The work of Eisenstadt and Laubsch is of interest 

since it is concerned with using both domain independent 

program understanders as used by Rich and Shrobe and Lukey 

(see sections 2.2.5 and 2.2.4) as well as expert debuggers 

such as those used by Ruth (see section 2.2.3). A third 

aspect which has also been emphasised is that the assistant 

should provide a friendly user interface. Since the 

research described in this thesis has also been implemented 

in an interactive system, this third aspect is also a goal 

in developing the Framework for Analysing Program Designs. 

Finally, let us consider the work of Ramsay, who has 

developed a system, called SH4, which matches a LISP 
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program against an English description of what it is 

supposed to achieve. SH4 has two sets of data to 

analyse - the description and the program. Each is 

analysed and the two sets of records which are produced 

can then be matched against each other to see if the 

program performs as expected. The system then makes a 

copy of the program and uses the English description to 

insert comments into that program. A set of flow charts 

representing the procedures which have been described, 

together with fragments of code showing how these proce- 

dures have been implemented, is also produced. 

Using a piece of English text to describe the program 

means that after producing the two sets of records neither 

the normal techniques of program verification, nor symbolic 

evaluation can be used, since it is unclear which parts of 

the program fit which specification. Ramsay has tackled 

this problem by using hypothesisers to suggest links between 

the program and its text. Once these links have been 

established symbolic evaluation can be used to verify the 

program. 

Many of the existing theories of program under- 

standing rely on proving assertions at various points 

throughout the program. However, these theories require 

that the intended outcome of a program should be specified 

in a formal manner. Consequently this specification is 

awkward to define and error-prone. Ramsay's work is 

important since it has shown how a less formal program 

specification can be used which, from a system user's 

point of view, is the preferred approach. However as 
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Ramsay admits, the descriptions on which SH4 operates are 

too detailed for the system to be a practical tool at 

present. 

23 Automatic Programming 

The area of automatic programming is concerned with 

Jeveloping a system which can generate a program from a 

formal specification of what the program is intended to 

achieve. within this area, the work of Sussman [Sussman 

1975] and his system HACKER, have received a great deal 

of attention in the AI literature. HACKER inhabits the 

Same world as Winograd's SHROLU [Winograd 1972] and writes 

programs containing instructions which undertake primitive 

operations such as picking up a block. 

If the first program, which has been produced to 

solve a given problem, is not totally correct then an 

iterative procedure, aimed at locating and eliminating all 

bugs, is entered. Whenever a bug is found, HACKER tries 

to classify it, so that a similar error can be avoided in 

the future. For instance, if HACKER is asked to pick up 

a block which is currently supporting another, it is not 

able to determine that the uppermost block must be removed 

before the lower one can be accessed and as a result the 

program which it produces to undertake this operation will 

be bugged. However this error is then analysed in general 

terms so that in the future, a similar or identical situa- 

tion will not lead to the same error being committed again. 

The debugging process is based on a detailed purposive 

commentary which HACKER uses to denote the intended outcome 

of each section of code. The first time a program is run, 
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this commentary is used to check if the code performs as 

specified and any bugs are classified according to the 

five categories of error defined for HACKER. The work of 

Sussman is significant, not only for its contribution to 

the area of automatic programming, but also because it is 

relevant to AI theories of program understanding and 

debugging and skill-learning. 

In recent years an automatic programming system, 

called psi [C. Green 1976, C. Green 1977] has been 

developed by a research team at Stanford University. 

Green and Barstow [Green and Barstow 1978] who are part 

of this team, have emphasised how their work is concerned 

primarily with the organisation and structure of 

programming knowledge which can be used by a computer to 

write programs. The PSI system contains knowledge in the 

form of approximately 400 rules and is comprised of two 

phases: an acquisition phase and a synthesis phase. The 

acquisition phase is concerned with finding out, from the 

user, what the program is intended to achieve and building 

a high level model of this intention. The synthesis 

phase uses a coder, written by Barstow, and an effeciency 

expert written by Kant [Kant 1977] which combine in order 

to produce an efficient program. The rules which the 

coder uses are sufficiently general for them to be used in 

various domains such as symbolic programming, sorting, 

graph theory and simple number theory. The coder writes 

programs in LISP and although some of the rules are 

specific to this language, approximately three-quarters of 

them are independent of any programming language. 
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Manna and Waldinger [Manna and Waldinger 1975] have 

claimed that an automatic program synthesis system must 

combine reasoning and programming ability with a good deal 

of knowledge about the subject matter of the program. 

This approach towards Program synthesis is the method on 

which HACKER and PSI are based. Despite the claims of 

Manna and Waldinger, Bauer [Bauer 1973] has attempted to 

show that some useful analysis can still be undertaken 

without knowing the subject matter of the program. Sauer 

has developed a program which can synthesise procedures 

for computations such as, for example, multiplying two 

numbers using repeated addition or sorting the values held 

in an array. Since it does not use a problem specifi- 

cation its analysis is based upon a knowledge of variables 

and parameters and their general use. 

Finally let us briefly consider the work of Koffman 

and Blount [Koffman and Blount 1975] who have embodied a 

method of automatic programming within a teaching system. 

This system teaches machine language programming and 

represents all problems given to a user in terms of an 

ANO/OR goal tree. This tree represents a complex problem 

in terms of three sub-problems which are referred to as the 

input, processing and output phases. The system represents 

each sub-problem as a sequence of primitive tasks for which 

it can generate alternative forms of machine code. This 

means that either a user can be supplied with the code for 

the simpler sub-problems so that attention can be diverted 

to more difficult areas or, each of a user's statements can 

be checked against those produced by the system. 
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Unfortunately the power of the system is limited since it 

Can produce code only for the primitive tasks and although 

there may be more ways of solving a problem the user must 

follow a similar solution to that defined by the system. 

In terms of the research discussed in this section 

the work on the PSI system would seem to hold the best 

prospects for the future. It is interesting to note how 

long term projects such as this and the programmer's 

apprentice of Waters (see section 2.2.6) are both 

concerned with finding a suitable representation for 

programming knowledge. Since PSI is an automatic 

programming system and the programmer's apprentice is 

concerned with program understanding and debugging it 

would seem that research into the representation of 

programming knowledge could benefit those areas of AI 

which are concerned with understanding different aspects 

of the programming process. 

2.4 Intelligent Teaching Systems 

Because the Framework for Analysing Program Designs 

has been incorporated within an interactive system, a 

discussion of how AI techniques can be applied to the area 

of computer assisted instruction (CAI) is relevant to this 

chapter. Embedded within an intelligent teaching system 

is a coach which may perform all, or a subset of the 

following: 

a) checking a student's answer; 

b) generating meaningful error messages; 

c) providing "hints" on how to solve a problem 

when the student requests help; 
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d) providing a model solution to a problem; and/or 

e) updating a model of a student's knowledge. 

At the present time systems have been developed which 

incorporate coaching to teach basic mathematical skills 

[Burton and Brown 1979] > basic reasoning techniques 

[Goldstein 1979], electronic trouble shooting [Brown, 

Burton and Bell 1975, Brown, Burton and de Kleer 1982] 

the solution of quadratic equations [O'Shea 1978] and 

medical diagnosis [ciancey 1979). There are four 

principal features of these systems. 

Firstly they have an expert embedded within the 

system which can solve problems in the given domain. As 

a result there is no need to store a data base of model 

solutions. Secondly, all problems given to the student, 

together with the answers to these problems and the 

student's state of knowledge are all defined in terms of 

a fundamental set of skills. Hence if the expert is 

asked to solve the same problem as the student, then the 

two answers can be analysed in terms of the same skills. 

A comparison of the two will now show which skills the 

expert used and the student did not. Such an analysis 

highlights those techniques in which the student is 

deficient and since the problems are also defined in terms 

of the same skills, the next problem can be chosen in order 

to give practice in the areas of weakness. Goldstein 

[Goldstein 1979] not only analyses his subject area into 

an underlying set of skills but he also sees each skill 

going through five phases of development and refinement 

as the student becomes more competent. 
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A third feature of an intelligent teaching system 

is that answers are not assessed for correctness but are 

analysed in terms of whether the appropriate skills have 

been used. Consequently error messages can emphasise 

the techniques which an expert would have used in the 

same situation, The fourth feature is that any hints 

Qiven to the student can be based on an expert's approach 

to solving the problem. This highlights one of the main 

disadvantages of the expert known as SOPHIE [Brown, Burton 

and Bell 1975] which has been called a “black box" because 

it does not solve a problem in the same way a student is 

expected to. Because the underlying mechanisms which the 

expert used were not passed on to the student, subsequent 

versions of SOPHIE [sroun, Burton and de Kleer 1982] have 

aimed to use inference techniques similar to those used 

by students. 

In terms of the research described in this thesis, one 

objective has been to develop a system which possesses the 

first of these four features, that is a system which displays 

expertise in the subject area of analysing and commenting 

upon a program design. The form of analysis which FAPD 

undertakes allows the generation of some meaningful error 

messages and in this respect FAPD does not mark any program 

designs as merely right or wrong but instead undertakes a 

deeper analysis. However, FAPD does not analyse a program 

design in terms of a fundamental set of skills. 

Barr et al (Sarr, Beard and Atkinson 1976] have 

developed a system for teaching introductory programming 

techniques in BASIC. The curriculum used by their system 
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has one hundred different programming problems which are 

defined in terms of skills such as printing a literal 

string or using a counter variable in a loop. The student 

is also modelled in terms of the skills he has acquired 

and consequently a problem can be selected on the basis of 

how that student has performed on earlier problems. Once 

the program has been written, data can then be used to test 

the program. The program is also checked for the BASIC 

statements that should have been used. For example a 

problem might have been chosen to teach the FOR statement, 

and so the checker analyses the answer to determine if 

this has been included. If it has not then a suitable 

error message is printed. In common with the attributes 

of an intelligent coach described earlier in this section, 

this system can also provide the student with useful hints 

on how to solve a problem. 

Generally speaking, defining the programming process 

in terms of a fundamental set of skills is a research topic 

which is growing in importance. Consequently the work of 

experimental psychologists such as Green [T.R.Green 1977) 

who has investigated techniques for measuring how well a 

program has been understood, could be used in intelligent 

CAI systems which teach programming. The growing interest 

in applying AI techniques to CAI systems together with 

experimental work such as that just described indicate 

that research into these systems could increase signifi- 

cantly in the future. 

2.5 Computational Linguistics 

There has been a considerable amount of research into 
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computational linguistics. Although numerous natural 

language question answering systems have been developed 

(for a review of the entire field see Bruce [Bruce 1975]), 

this discussion will concentrate on the work of Burton 

[8urton 1876] since it is considered most relevant to the 

problems with which we are concerned. 

Burton discusses a paradigm for constructing efficient, 

friendly man-machine interface systems using subsets of 

natural language in limited domains. The primary purpose 

of his work was to develop a set of techniques for 

embedding semantic and pragmatic information into a natural 

language interface module. The techniques were implemented 

in the "intelligent" CAI system SOPHIE [8rown et al 1975, 

Brown et al 1982], which is a reactive learning environment 

concerned with electronic troubleshooting. In a typical 

troubleshooting session the student is confronted with an 

electronic circuit containing a fault. The student can 

then interrogate SOPHIE in an effort to locate the fault. 

The natural language subset which SOPHIE accepts is 

described by a "semantic grammar". A semantic grammar is 

so-called because it specifies relationships in both 

semantic/conceptual and syntactic terms. It has two 

advantages over syntactic grammars. Firstly, semantic 

constraints can be used to make predictions during the 

Parsing process which reduces both the number of alter- 

Natives which must be checked and the amount of syntactic 

(grammatical) ambiguity. It also allows the parser to 

skip words at controlled places in the input and ellipsed 

or deleted phrases to be recognised. Secondly, a 
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Semantic grammar can be used to characterise those 

sentences which the system should try to handle. 

Because the grammar is based on conceptual entities, 

semantic interpretation can proceed in Parallel with 

parsing. Each rule in the grammar characterises all of 

the ways of expressing a concept or relationship in terms 

of other constituent concepts. Thus the rule for 

<MEASUREMENT> is: 

<MEASUREMENT> := <MEASURABLE/QUANTITY><PREP> <PART> 

which defines all the ways a student can express a 

measurable quantity. Rules of this type allow similar 

concepts to be generalised and so voltage, current, 

resistance and power for example would each be termed a 

<MEASURABLE/QUANTITY>. This is similar to the method 

adopted in this research whereby words such as ASSIGN, 

CALCULATE, DECREASE and FIND are all defined as 

<assignment command word>'s. They all have the same 

definition because their occurrence in a design statement 

indicates the statement can be implemented as an assign- 

ment statement. 

One use of a semantic grammar is to predict possible 

alternatives that must be checked. The <MEASUREMENT> 

tule for example, can be used in conjunction with the 

phrase "the voltage at it" to restrict the possible 

interpretations of "it" to locations such as nodes and 

terminals. A second use of the semantic grammar is to 

recognise simple deletions. When the grammar finds the 

phrase "the collector" it uses the fact that the concept 

of a TERMINAL has constituent concepts of TERMINAL-TYPE 
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and a PART to deduce that a PART has been deleted. 

Because the dependencies between the constituent parts 

determine that the deleted PART must be a transistor, the 

meaning of the phrase is then "the collector of some 

transistor". Which transistor is determined when the 

meaning is evaluated in the present dialogue context. 

Thirdly, the semantic grammar can be used to overcome the 

problem of ellipsis. In the following example: 

What is the voltage at node 5 ? (264) 

At node 1 ? (2.2) 

At node 2 ? (2650) 

What about between nodes 7 and 8 ? (2.4) 

(2-2), (263) and (2.4) are elliptic utterances because 

they do not express complete thoughts but only give 

differences between the intended thought and (2.1). The 

appropriate grammar rule can be used with these examples 

to identify which concept is possible given the current 

context. 

Once the parser has determined the existence and class 

of a pronoun/deleted object, the context mechanism is 

invoked. This mechanism uses the meaning of the student's 

previous statements and the response calculated by the 

system to determine the proper referent. The context 

mechanism also knows how each procedural specialist 

appearing in the parse uses its arguments. For example, 

the specialist MEASURE's first argument must be a quantity 

and the second argument a part, junction, section, terminal 

or node. Thus when the context mechanism looks for a 

referent which can be either a PART or a JUNCTION it will 
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look at the second argument only of MEASURE. 

The problem of ellipsis is concerned with finding a 

Previously mentioned use for a currently specified object. 

In the example: 

What is the base current of Q4 ? (28) 

In 95 ? (2.6) 

the given object is "Q5" and the earlier function is "base 

current", Since 95 is recognised by the non-terminal 

<TRANSISTOR/SPEC>, the context mechanism searches for a 

specialist in a previous parse which accepted the given 

class as an argument. When one is found, the new phrase 

is substituted into the proper argument position and the 

substituted meaning is used as the meaning of the ellipsis. 

This research has also been concerned with how the context 

of a statement or phrase can help to determine its meaning. 

Section 5.3 discusses how the word RESULT for example, 

cannot be analysed in isolation but must be considered in 

its wider context. 

Burton's work is important because it shows how a 

semantic grammar provides a paradigm for organising know- 

ledge required for understanding. If a system does not 

encompass a useable subset of the language a student must 

expend problem solving energies discovering how to formulate 

questions. A semantic grammar helps to overcome this 

problem by providing insights into a useful class of 

dialogue constructs. Burton has also shown that it can 

permit efficient handling of pronomalisations and ellipsis. 

However the work does have limitations. Firstly, the 

context mechanism works well in the given domain but does 
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not solve all the problems of reference since Charniak 

{Charniak 1972] has shown how much real world knowledge 

is sometimes required. The major limitation of the 

current technique is its inability to return more than 

one possible referent. At present it considers each in 

turn until it finds one satisfactory. Secondly, as Burton 

admits, the primary goal was to develop a useful system and 

as such the research does not advance our theoretical under- 

standing of natural language. 

2.6 Programming Languages for Novice Programmers 

Kreitsberg and Swanson [kreitsberg and Swanson 1974] 

describe the "computer shock" which novice programmers may 

encounter when faced with the problem of Planning an 

algorithm. Novices have problems in understanding what a 

Program can do for them and its relation to the problem 

which they are trying to solve. Miller [Miller 1975] 

found that when specifying a plan to a human being the 

specification was "qualificational" rather than "conditional". 

Thus to a human being we might say "PUT RED THINGS IN 

BOX 1" whereas a computer program must specify "IF THING 

IS RED THEN PUT IN BOX 1", In this respect a programming 

language such as PROLOG (Pereira, Pereira and Warren 1979] 

might have advantages for novices. This is because PROLOG 

specifies plans in terms of goals rather than in terms of 

an algorithm. 

Novices find specifying the flow of control very 

difficult [du Boulay and O'Shea 1980]. Because this is 

central to programming in algorithmic languages it may be 

beneficial to implement programming languages so that 
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certain hidden actions are accompanied by external changes. 

Flow of control within the BIP system [Barr et al 1976] is 

made visible by showing pointers which move around the 

Program text as it is executed. Similarly Mayer [Mayer 

1979] represents the workings of a BASIC machine in terms 

of a small set of "transactions" where a transaction con- 

sists of an "operation", an "object" and a "location". 

The transactions explain the sequence of events while a 

BASIC program is running and are simple enough to be 

understood by a novice. 

Du Boulay and O'Shea also describe three languages 

designed specifically for novices. The first is SOLO 

(Eisenstadt 1978] « which is a language for manipulating 

a relational database. User defined procedures can invoke 

primitives which add, remove, print etc database structures. 

Because the students had no prior knowledge of computing, 

the software enviroment had to be non-threatening 

[Eisenstadt 1983). To achieve this SOLO was designed so 

that students could quickly use it to undertake powerful 

operations. Hence, although the language has only ten 

primitives, these are sufficiently powerful for beginners 

to do interesting projects. The English meanings of 

primitive names such as NOTE, FORGET and DESCRIBE corres— 

pond closely to the actual jobs they perform within the 

SOLO virtual machine. This is similar to the way in which 

words such as GET, OUTPUT and INCREMENT are used to specify 

actions within a program design (see Chapter 3). Functional 

simplicity was achieved in SOLO by restricting the scope of 

the database searching mechanism and by delaying the 

introduction of certain language features until the novice 

61



had progressed to a given point. Syntactic simplicity 

was increased by arranging that whenever a student typed 

the IF part of a conditional, the system would issue 

prompts for both the THEN and the ELSE part. Sime et al 

[Sime, Arblaster and Green 1977] has shown that this is 

a successful method of reducing errors in conditionals. 

The visibility of the language is enhanced by presenting 

database items at the terminal in a form that both suggests 

the meaning of the item and is in agreement with the teach- 

ing material. 

The second language is a microprocessor based assembly 

language. The system (based on the Intel 8049) provides 

only ten instructions: LOAD, STORE, ADD, DECREMENT, JUMP, 

JUMP IF ZERO, INPUT, OUTPUT, CALL and EXCLUSIVE OR. The 

system also contains a number of predefined subroutines 

that can be called by the user's program and whose instruc— 

tions can be examined although the code for the interpreter 

itself is inaccessible. These subroutines illustrate the 

idea of program modularity. The functional simplicity of 

the notional machine is achieved at the expense of having a 

complicated program interpreting the user's key presses. 

The facility to examine the code of the subroutines is one 

step towards language visibility although it is accepted 

that visibility could be improved. Despite these 

restrictions, the work is important since it allows the 

user to be introduced to a wide range of computing ideas 

including planning, coding, running and debugging programs 

and flow of control. 

The third programming language developed for novices is 

ELOGO. This is a procedural, interactive language with 
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facilities for drawing using a turtle and for symbol 

manipulation using integers, words and lists as data 

types [McArthur 1974]. & user's initial introduction 

to programming is via a buttonbox and a turtle, where 

each button represents an instruction. Thus labels on 

a button correspond to what the novice must type when a 

teletype is used. This simple notional machine implied 

by the button box and the turtle provides a foundation to 

build the user's understanding of the complete ELOGO 

system implemented on the mainframe. The main task for 

the system's users is the interactive definition, testing 

and debugging of procedures. A novice decomposes a 

complex task into simpler sub-tasks which may also need 

further decomposition. Because the basic programming 

unit is the procedure, the notional machine is functionally 

simple. In an effort to increase language visibility 

hidden actions such as storing a procedure are concluded 

with a written comment from the system. 

Languages such as those described above are important 

for two reasons: 

a) they allow the novice to start writing and running 

programs very quickly, which helps to sustain 

interest; and 

b) they embody facilities for making certain of the 

actions of the notional machine open to view. 

In terms of the research described in this thesis, the 

first of these reasons was a primary consideration in 

choosing an appropriate program design language. 
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3. THE FRAMEWORK FOR ANALYSING PROGRAM DESIGNS 

3.1 General Points 

This chapter details a method of analysing a program 

design referred to as the Framework for Analysing Program 

Designs (or FAPO). FAPD views analysis as the translation 

of a program design into a series of assertions which 

represent how the design could be implemented in a 

particular programming language. These assertions are 

then used to produce a coded version of the design together 

with any comments concerning its implementation. Broadly 

speaking, the process of analysis is viewed as comprising 

four distinct phases: 

a) pre-semantic analysis which converts a program 

design into a form acceptable to the semantic 

analyser; 

b) semantic analysis which analyses statements often 

found within a program design in terms of the 

particular programming language in which the 

design will be implemented; 

c) generation of comments which uses the assertions 

produced through semantic analysis to derive the 

implications of implementing the design in code. 

At this stage these comments are also represented 

by a series of assertions; and 

d) code generation which uses the results of the 

previous two phases to produce a program in the 

target language together with any comments 

concerning its implementation in this form. 

FAPD is directed towards analysing and commenting 
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upon the kind of program design produced using a 

methodology similar to the one taught to first year 

computer science students at the University of Aston 

(see section 1.3). At the time research commenced the 

primary programming language taught to these students was 

ALGOL 68. Consequently this language was chosen as the 

target language for this study. The system described in 

this thesis analyses a program design by converting it 

into an ALGOL 68C program together with any comments 

considered pertinent. For this reason examples of coded 

statements used in the remainder of this chapter will be 

written in ALGOL 68C. 

In this respect we can say that the system is an 

implementation of FAPD. Since first year students are 

now taught the same method of program design but use 

PASCAL as the target language, FAPD could also be 

implemented within a system which analyses a program 

design in terms of the target language PASCAL. In general 

FAPD is limited more by the format of the program design 

than by the choice of programming language. This chapter 

discusses FAPD within the context of the system and atten- 

tion will be drawn to those aspects which are dependent on 

the choice of implementation. 

3.2 Pre-Semantic Analysis 

3.2e1. Introduction 

The first phase of the analysis process has been 

termed pre-semantic analysis. This phase is responsible 

for converting the design into a form acceptable to the 

semantic analyser. It consists of two processes, the 
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first of which undertakes lexical and syntax analysis in 

order to determine whether or not the design conforms to 

@ pre-defined syntax (referred to as the "grammar of a 

Program design"). Successful analysis means the design 

can be (partially) analysed, but failure means it contains 

Programming language constructs and/or design statements 

which are outside the scope of FAPD, The second process 

amends the syntax tree which has been produced by the first 

process, This amendment involves eliminating any insigni- 

fFicant words and converting the syntax tree into a series 

of structures. The result of this second process is 

referred to as an "amended syntax tree" and represents the 

data on which the semantic analyser operates. 

Throughout this section examples of syntax trees and 

amended syntax trees have been illustrated in a format 

more helpful to the discussion than the actual format 

produced by the system. This latter format is often a 

LISP list structure, examples of which are contained in 

Appendix A. It should also be noted that all design 

statements used in this chapter are shown using upper-case 

characters. This is because the system described in 

Chapters 4, 5 and 6 requires a program design to be 

inputted using this format. 

3.2.2 Lexical and syntax Analysis 

3.2.2.1 Function of Syntax Analysis 

Any system which understands natural language must be 

limited by the number of words contained in the vocabulary 

of that system. Similarly FAPD can only analyse those 

examples which use the set of programming language constructs 
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which have been considered for inclusion. Thus FAPD is 

limited both by the size of its vocabulary and by the 

number of target language constructs that have been con- 

sidered. However, there is an additional difficulty in 

analysing a program design. This arises because of the 

unlimited number of variable names that can be used and 

which must be recognised by the system if a complete 

analysis is to be accomplished. Because of this a 

method of keyword analysis such as that used by ELIZA 

(weizenbaum 1966, Weizenbaum 1967] is inappropriate to 

this research. Simply noting variable names when they 

are declared is also not possible in this case, since 

program designs do not generally contain variable 

declarations. 

The recognition of variable names could be simplified 

by defining a list of names which a programmer must use. 

However, this approach is rejected as too restrictive. 

Since meaningful variable names are an important feature 

of quality software, a programmer should not be constrained 

to a list of variable names which may prove inappropriate 

for a particular application. The method adopted in this 

study is to define a syntax to which design statements must 

adhere. This syntax defines where identifiers are allowed 

and in so doing it gives FAPD a criterion for determining 

which of the unrecognised words are possible variable names. 

Although this approach obviously imposes some limitations on 

the variety of statements which can be accepted, it is 

hoped these limitations are not too restrictive. 

 



3.2.2.2 Scope of the Syntax 

Although this research has concentrated on analysing 

program designs similar to that shown in diagram 5 (see 

section 1.2), considerable variations in program design 

may exist in practice. Whereas diagram 5S contains design 

statements such as: 

INITIALISE FIVEPOUNDS TO O (3.1) and 

READ THE NEXT NUMBER INTO WAGE (3.2) 

the author has noticed examples where other variations 

such as: 

FIVEPOUNDS € O (323) 

READ THE NEXT NUMBER (AND CALL IT WAGE) (3.4) 

are used. The observed form of a program design is often 

a combination of personal trait and teaching method. Also 

the distinction between design statements and code is often 

less marked when the programmer has experience of a parti- 

cular programming language. In this respect a design 

statement such as: 

WHILE I IS LESS THAN N (3.5) 

oo one or more design statements od (3.6) 

may sometimes be written as: 

WHILE I<N (3.7) 

DO one or more design statements 0D (3.8) 

The variety of statements which FAPD aims to encompass 

should not be unduly restricted. However in order to 

undertake syntax analysis it is necessary to define the 

kinds of statements that should be included. Consequently 

it was decided to concentrate on defining the syntax of 

statements such as (3.1), (3.2) and (3.5) rather than 

Ses)» (oe4h) OF 1CSat) « By doing so it can be stated 
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clearly that a program design should not contain operators 

such as "<" or symbols such as parentheses. Since target 

language constructs such as "<" are also prohibited, this 

means that the only features of a programming language a 

Programmer need know are those used to denote selection and 

repetition of actions. In a system which uses ALGOL 68C 

as the target language, selection and repetition are 

denoted by the constructs IF-THEN-ELSE-FI and WHILE-00-0D 

respectively. 

The syntactic format of a program design, which FAPD 

is capable of analysing is expressed formally as a meta- 

language (see Appendix 8). Program designs not adhering 

to this format are rejected before they are passed to the 

semantic analysis routines. Hence the syntax adopted 

imposes one of the main limitations on the scope of FAPD. 

3220263 Oefinition of Recognised Words 

Many of the statements within the type of program 

design under consideration are in an imperative form. 

Statements (3.1) and (3.2) are typical of this form since 

they use the verbs INITIALISE and READ in an imperative 

context. Because a sentence which uses INITIALISE in 

this manner will normally be coded into an assignment 

statement, INITIALISE has been defined within FAPD as an 

"assignment command word". Qther imperatives which are 

defined as assignment command words include ASSIGN, 

INCREMENT and SET. Similarly, imperatives may be defined 

as arithmetic command words, read command words and print 

command words since they indicate that the design state- 

ments in which they are used are normally coded as arith- 

metic expressions and read and print statements respectively. 
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Any word that is to be recognised must be entered 

into a dictionary. Each entry is of the following form: 

[<word> <list of one or more definitions > 3.3) 

where a word unless it is one of the reserved words such as 

IF, WHILE or O00 for example, must be described in terms of 

one or more of the nineteen different definitions on which 

the syntax is based. Hence, the imperative form of a 

verb, such as INITIALISE, can be defined as: 

(INITIALISE assignment command word] CoO) 

Within an imperative statement considerable attention must 

also be given to prepositions. If we consider the 

design statement: 

ADD A TO 6 U8 (3.12) 

the preposition TO is of special significance since in 

this instance, it separates the two arguments A and 8 

relating to the arithmetic command word ADD. Consequently 

it is defined in the dictionary as a separator. 

Prepositions are important words in the process of 

program design analysis, not only for this reason, but 

also because they can be used to derive the meaning of a 

design statement. For instance the different meanings of: 

DIVIOE A 8Y 8 (3.12) and 

OIVIOE A INTO B (S13) 

derives purely from the different prepositions used. The 

same preposition can also be used for more than one 

imperative, as in: 

ADD A TO 8 ANO ASSIGN THE RESULT TO ANS (3.14) 

where TO denotes the effect and destination of the verbs 

ADO and ASSIGN respectively. In this example each 

occurrence of the preposition is used in connection with 
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the verb immediately preceding it. Conversely a 

preposition may not be compatible with a particular verb. 

For instance in statement (3.12) the preposition BY could 

not be replaced with the preposition TO. In terms of the 

dictionary definitions used by FAPD, TO is determined to 

act as a separator for ADD and ASSIGN but not for DIVIUE. 

The dictionary definition for the word 8Y will now appear as: 

[BY (separator (INCREASE DECREASE DIVIDE 

INCREMENT DECREMENT MULTIPLY)) ] (315)) 

which denotes that BY can be used as a separator for any 

of the verbs INCREASE, DECREASE, DIVIDE, INCREMENT, 

DECREMENT and MULTIPLY. 

A third form of dictionary entry is where a word can 

have multiple definitions, only one of which is applicable 

in any given statement. Each definition may be a single 

item as in (3.10) or an item containing some additional 

information as in (3.15). The possibility of multiple 

definitions can be illustrated by comparing the use of SUM 

in the following two statements: 

SUM A AND 8B (3.16) and 

BIVIDE THE SUM IBY 2 ese ae) 

Statement (3.16) specifies the arithmetic operation which 

has to be undertaken. However, if a design contains 

(3.16) followed immediately by statement (3.17) we can 

surmise the latter use of SUM refers to the arithmetic 

expression in the previous line. In this respect SUM 

can be used as either a verb, which means it must be 

defined within the dictionary as an assignment command 

word, or as a noune In the latter case it refers to 

the result of the preceding arithmetic expression and 
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hence it is defined within FAPD's dictionary as a 

reference. As a result the dictionary entry for SUM is: 

[SUM reference assignment command word] (3.18) 

This use of the term reference means that the word can 

be used to reference objects previously defined. Hence 

pronouns such as IT and THEM would also fall into this 

category. 

The fourth and final type of dictionary entry is that 

used for reserved words such as IF and WHILE. A typical 

definition of a reserved word is: 

[iF IF] (3.19) 

where the fact that the word and its definition are 

identical is used to indicate the occurrence of a reserved 

word. 

This section has shown how words are defined by 

referring to four examples of entries in the dictionary - 

(e1G),, (3515), (3618) and (5.19). Although only seven 

definitions have been considered in this section, other 

definitions include "adjective" for words such as NEXT and 

FIRST, "article" for AN and THE and "constant" for a 

numerical word such as ONE, TWO, or THREE. A comprehensive 

list of all words recognised by the system together with 

their definitions appears in Appendix 8. 

3020204 The Syntax of a Program Design 

The previous section stated that many of the state- 

ments within the type of program design being considered, 

display a similarity to the imperative form of a sentence. 

Consequently, a statement such as: 

INITIALISE FIVEPOQUNDS TO O (3.20) 
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can be described by the basic format: 

< command word> <arguments > (3e21) 

In this case INITIALISE is the command word and FIVEPOUNDS 

and O are both arguments. The previous section pointed 

out that the command word of a statement gives some indica- 

tion of how that statement can be implemented in code. 

For this reason (3.20) is defined as an "assignment design 

statement", Because the syntax of a design statement is 

based on the imperative form of a sentence FAPD defines 

read, print and arithmetic design statements as those 

statements which commence with a read command word, print 

command word and arithmetic command word respectively. 

This research is concerned with analysing only those 

program designs which can be implemented in a programming 

language using loops, conditionals, assignment, read and 

print statements. Hence in terms of the syntactic 

definitions used by FAPD, a program design must consist of 

these statements written in their design form together with 

arithmetic design statements. The reasons for including 

the latter syntactic unit will now be elaborated. 

Within a program it is usually the case that the 

result of an arithmetic expression will be used by another 

statement. In the following example: 

INPUT THREE NUMBERS (3.22) 

ADD THEM TOGETHER (3ee5) 

PRINT THE RESULT (3.24) 

the arithmetic expression in line (3.23) can only be 

incorporated into the PRINT statement once the meaning 

of RESULT has been determined. Consequently the design 
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must be nassed as syntactically correct in order for the 

semantic analyser to combine lines (3.23) and (3.24) into 

a sinale statement. Hence the grammar of a program 

desian must allow an arithmetic desiqn statement to be 

used in the manner illustrated above. 

This approach to syntax analysis allows an initial 

judaement to be made on whether or not a desian will 

result in a syntactically correct program. Thus any 

program design which contains a proagrammina lanquaae 

construct such as a loop or a conditional in an incorrect 

format would be analysed as syntactically incorrect. 

Although a program design comprisina of statements (3522), 

(3.23) and (3.24) annears valid the correctness of each 

individual statement cannot be determined at this stage. 

For instance, the validity of statement (3.23) can only 

be determined when the meaning of the pronoun THEM is 

derived. Conseauently the checking of individual state-— 

ments must be left until the semantic analysis phase has 

derived the meanings of arguments such as THREE NUMRERS, 

THEM and RESULT. 

This section has illustrated how the syntactic 

definition of a program design has been derived. Recause 

of the method used for analysina a program desian (see 

section 1.4) the syntax is defined in terms of the 

programming language statements used in its implementation. 

Now that the syntax of a program design has been discussed 

we can consider the syntax of individual desian statements. 
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This is outlined in section 3.3.2.6 which traces how an 

assignment desiqn statement is checked for syntactic 

correctness. 

3.2.2.5 Lexical Analysis 

The primary operation within the first phase of the 

analysis is undertaken by the scanner. This is responsible 

for reading in a program design and performina lexical 

analysis. The scanner searches the dictionary for each 

word and if found forms the appropriate token. Tf a word 

has a sinale definition then the token appears as: 

[reference (RESULT) ] (3.25) 

indicating that RESULT is defined within the dictionary 

as a reference. Alternatively a word can have multiple 

definitions in which case its token has a form similar 

to the followina: 

[adjective (POSITIVE) (adjective reference)] (3.26) 

which indicates that the word POSITIVE is used as an 

adjective within the current context. However in case 

this is incorrect a list of the alternative definitions 

of POSITIVE is appended onto the end of the token. Any 

unrecognised words are given one of two definitions. If 

the word is a digital representation of a number (i.e. 1, 2 

rather than ONE, TWO) it is defined as a constant, other- 

wise it is assumed to be a user defined variable name. 

The token stream for the following statement: 

SET A AND B BOTH TO 1 (3.27) 

is of the following form: 
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[assianment command word (seTy] (3.28) 

[article (A)] (3.29) 

[conjunction (AND)] (3.30) 

[variable name (8)] (3-51) 

[variable name (Rory ] (335.32) 

[\ separator (ADD ASSIGN ITNITIALTSE SET UPNATE) ) 

(TO) [(separator (ADP ASSIGN INITIALISE SET 

UPPATE)) boolword-3] ] (3.33) 

[constant Q)y] (3.34) 

which shows that SET, A, AND, TO and 1 are all recoanised 

words whereas B and ROTH are not. The syntax analyser, 

described in the following section, is entered when all 

the words in the program design have been described in 

terms of the basic syntactic units. 

3.2.2.6 Syntax Analysis 

Syntax analysis is responsible for recognisina the 

syntactic structure of the tokens delivered by the 

scanner. Tt checks the structure for correctness and 

if valid it produces a parsed representation of the 

program desian in the form of a syntax tree. Tf the 

structure is incorrect, an error is reported. The 

method of syntax analysis used for a program design 

relies heavily on backtracking since there is a frequent 

need to parse a word with multiple definitions. Indeed, 

since a programmer can use any recognised (but not 

reserved) word as a variable name, this means most words 

can have at least two definitions. For instance A can 

76



be used as the indefinite article as shown by the 

following statement: 

INPUT A VALUE INTO X (3385)) 

or as the previous section illustrated, a programmer 

could use A as a variable, viz: 

SET A AND 8B BOTH TO 1l (3.36) 

Let us consider how FAPD's approach to syntax analysis 

uses the grammar of a program design and a backtracking 

mechanism in order to successfully parse (3.36), by re- 

defining A as a variable name and BOTH as a word that can 

be ignored. The syntactic format of a program design is 

specified by a grammar (see Appendix 8). The grammar 

contains a set of rules which can be described concisely in 

a meta-language called S8ackus Naur Form (BNF). The 

grammar of an assignment design statement is defined in 

modified BNF as: 

<assignment design statement >::= < assignment 

command word > <arguments > 

[<separator> <separated arguments> 

{<con junction > <separated arguments >| 

<separator> <separated arguments>)}] (3.37) 

As parsing continues from left to right SET will be 

successfully parsed as the <assignment command word> and 

the grammar relating to <arguments> allows A to be parsed 

as an article. An article could be used in this position 

for statements such as (3.35) and: 

SET A COUNTER TO O (3.38) 

However this approach to the parsing of statement (3.36) 
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is halted once ANi) is encountered since the definition of 

<argumentis> does not allow a conjunction to immediately 

follow an article. 

At this point the backtracking mechanism is invoked 

in order to find an alternative parsing. Because the 

current focus of attention is the definition of 

<arguments> , the backtracking mechanism will be confined 

initially to those tokens successfully parsed within this 

part of the grammar. If no alternative is found, then 

backtracking is resumed higher up the tree. The only 

token successfully parsed according to the definition of 

farguments> is that relating to A. Consequently the 

token for A is changed from: 

[article (A)] (3.39) 

to [variable name (A) (variable name) article] (3.40) 

and parsing according to this new definition is attempted. 

If the token had been changed to: 

[variable name (A) (variable name article) ] (3-41) 

then the syntax analyser would have parsed it continually 

as an article, since it looks at all possible definitions, 

denoted by the list containing variable and article, 

rather than confining attention to the current definition, 

which is variable name. The form of definition (3.49) 

forces A to be parsed as a variable name. At this stage 

statement (3.36) has only one token that can be redefined. 

However if there had been more then all possible alter- 

natives would have been tried before reporting failure. 
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This new definition of A together with the existing 

definitions of AND and B are now successfully parsed 

according to the definition of <argquments> . 

The grammar of (3.37) states that the next token in 

the token stream should be a separator. However the 

next token in the stream is: 

[variable name (ROTH) (3.42) 

which indicates that BOTH is an unrecognised word. Since 

its definition is inconsistent with the current context 

and because it is an unrecognised word it can be 

discarded for the moment. Consequently token (3.42) 

is altered to: 

[ignorable word (Born) | (3.43) 

before it is added to the tree. It is important to 

note that it is not discarded entirely but is retained 

and may be redefined as a variable name during a future 

back-up. 

Successful parsing of SET A AND RB is sufficient 

evidence of an assignment design statement since (3.37) 

indicates anything else is optional. The grammar of an 

assianment design statement has been defined in this way 

in order to encompass statements such as: 

INITTALTSE I (3.44) 

where no senarator or second arqument appears. Tn 

statement (3.36) the next token is a separator. Tn 

order to continue parsing in this part of the tree, we 

must be able to connect the senarator TO with the 

preceding command word. The token's additional 
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information indicates this is allowed and consequently 

parsing continues after abbreviating the token by 

changing it from: 

[« Senarator (ADD ASSIGN INTTTALTSE SET UPNATE)) (TO) 

[(separator (ADD ASSIGN ITNITIALTSE SET UPNATR) ) 

boolword-3] ] (3.45) 

to [(senarator (SEP) C10) [(separator (SET) ) 

boolword-3] ] (3.46) 

After successfully parsing the remainina token, the 

syntax tree for (3.36) is complete and is shown in 

diagram 6. Once the statement has been parsed success-— 

fully, syntax analysis is complete and the second process 

within the phase of pre-semantic analysis can be entered. 

3.2.3 Preparation for Semantic Analysis 

Now that the program design has been narsed, the 

second phase of pre-semantic analysis can be entered. The 

prime function of this phase is to convert the syntax 

tree into a series of structures which the semantic 

analyser can recoanise. This series is referred to as 

an "amended syntax tree". The syntax trees produced for: 

SET A AND B ROTH TO 1 (3.47) 

TNTITTALTSE SUM TO O AND COUNTER TO OO (3.48) 

INITIALISE THE FIRST TWO ELEMENTS OF 

THE ARRAY (3.49) 

are not identical. The semantic analyser however, 

requires that all statements which are implemented usina 

the same target language construct should have a similar 
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representation. Consequently because statements (3.47), 

(3.48) and (3.49) will all be implemented as assignment 

statements they will have the same structure. A structure 

is used to represent common elements within a program 

design. FAPD proposes a set of structures, some of which 

are derived from the syntactic format of a design, and 

some of which have been specifically developed to aid 

semantic analysis. Preparation for semantic analysis is 

concerned solely with producing the former of these. 

The general form of a structure is defined as: 

[<name of structure > <one or more structure 

fields>] (3.50) 

A typical structure is: 

[#ASS <assignment command word> ARGUMENT 

<separator> ARGUMENT] (3.51) 

which is that used for the representation of an 

assignment design statement. Thus the syntax trees 

for statements such as (3.47), (3.48) and (3.49) can all 

be represented by the structure shown above. This has 

been given the structure name 4#ASS and contains four 

structure fields. Diagram 7 shows design statement 

(3.36) together with its syntax and amended syntax trees. 

The amended tree shows how SET and TO have been entered 

into the appropriate fields and how ARGUMENT is used to 

denote a general field which can be filled with other 

structures. 

In order to produce this amended form we need to 

know how to treat each non-terminal of the grammar. 
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Within the syntax tree all non-terminals are shown in 

angled brackets. “t the lowest level of the tree, 

non-terminals such as assignment command word, variable 

name, conjunction, separator and constant are merely the 

dictionary definitions of SET, A and B, AND, TO and 1 

respectively. At a higher level non-terminals such as 

assianment design statement and arguments are shown to 

comprise a series of other non-terminals. The way in 

which a non-terminal is treated is derived from its 

semantic definition. 

A non-terminal which is comprised of other non- 

terminals is semantically defined in one of two wavs: 

a) it can be defined as a structure with multiple 

fields. Thus structure (3.51) is the definition of 

an assignment design statement and denotes how each 

of the non-terminals, assignment command word, 

araquments, separator and constant, shown in 

diagram 7 are to be treated; or 

b) it may be defined as a non-terminal that can be 

ignored. This is used for an element of the 

grammar such as ¢arquments> which does not 

require its own structure because it is further 

defined in terms of other non-terminals. In 

diagram 7,<arguments> is analysed as a series of 

two structures relating to the variables A and R. 

A non-terminal which is a dictionary definition is 

defined in one of three ways: 
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a) it can be defined as a structure with a single 

field. Thus variable name and constant 

are defined as the classes: 

[#var word] (3.52) and 

[#CONST WORD] respectively (3.53) 

Oiagram 7 shows how the WORDs A, 8 and 1 have 

been entered into these classes; 

b) a second possibility is when a dictionary 

definition is defined as a field within a structure. 

Two examples of this are <assignment command word> 

and <separator> which are two fields within 

Structure (3.51). In the amended tree these are 

filled by SET and TO respectively; 

c) words which do not make a significant contribution 

to the semantic context of a sentence can be 

eliminated. Thus AND and 80TH in statement (3.36) 

are discarded before the semantic analyser is 

entered. In this respect we can say that any 

words which are defined within FAPD as either 

<ignorable word>or <conjunction> can be eliminated. 

Appendix 8B shows how each non-terminal of the grammar is 

semantically defined into one of the five classes 

described above. 

This section has based its discussion on the 

analysis of a single statement. In practice however, a 

typical program design consists of loop and conditional 

constructs along with read, print, assignment and 

arithmetic design statements. Consequently the amended 
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syntax tree of a complete desian should contain structures 

to denote these constructs. The production of an amended 

tree marks the end of pre-semantic analysis and the desian 

is now in a form suitable for semantic analysis. 

3.3 Semantic Analysis 

3.3.1 Function of Semantic Analysis 

  

The primary function of semantic analysis is to 

build a series of assertions which represents a coded 

form of the program design. Tts secondary function is 

to initiate the processes which detect any implications 

of forming this representation. These nrocesses run in 

parallel with the semantic analyser, although any 

implications are noted as a side effect and do not 

influence any of the semantic routines. The nrevious 

section outlined a set of general structures used for 

recognising design statements. Semantic analysis is 

based on the recognition of specific instances of each 

general structure. The general structure for assignment 

design statements was shown to be: 

[#ass <assianment command word> ARGUMENT 

<Senarator> ARGUMENT] (3.54) 

and two instances of this general structure are: 

[#ass ASSIGN first arqument> TO <Gecond 

araument>] (3655) 

[#ass INITTALTSE <first argument> TO 

<second argument >] (3.56) 

Attached to each structure is a procedure which 

translates its structure into a particular proqrammina 
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language. Consequently if ALGOL 68C is the target 

language then the procedure attached to (3.55) will 

produce an assertion which denotes the following 

assignment statement: 

<econd argument> := first argument>( 3.57) 

Conversely the procedure attached to (3.56) will produce 

an assertion which denotes the statement has been 

analysed as having the following implementation: 

€first arqument> := <econd argument> (3.58) 

Recause (3.55) and (3.56) have the same structure name 

(i.e. #ASS) they are defined as both belonging to the 

same class. Consequently the procedures attached to 

each of these structures are referred to as class 

instances. 

The results produced by each class instance are 

determined, to some extent, by the choice of target 

language. For example, if ALGOL 68R is the target 

language, then the class instance which recognises 

the statement: 

READ TEN NUMBERS INTO AN ARRAY (3.59) 

implements this by using a single READ statement in 

the following manner: 

READ (ARROL); (3.60) 

where ARRO1l is the name of the array. Alternatively 

if PASCAL is the nrogramming lanquage then the same 

class instance would produce the following implementation: 

FOR T:= 1 TO 19 DO READ (ARROL [I]); (3-61) 

Thus chanaes in the taraet language will require that the 
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class instances be re-programmed. However in order to 

keep alterations of this kind to a minimum, a method of 

representing a program, irrespective of the target 

language, has been devised (see section 3.3.2). By 

doing this the only class instances that need to be 

re-programmed are those for which the target language 

uses different constructs. If the target language is 

changed from ALGOL 68C to LISP, say, then class instances 

relating to structures (3.55) and (3.56) can be left 

unaltered since they are implemented as assignment 

statements in both languages. 

At this stage it is important to note that class 

instances of the type discussed above are incapable of 

determining the implications, if any, of their results. 

For example the class instance which recognises statements 

containing the word INITIALISE cannot differentiate 

between the following two statements: 

INITIALISE a Ta 4 (3.62) 

INITIALISE 4 Ta ae (3.63) 

Consequently there is no guarantee that the program 

produced by analysing a program design will be free of 

compilation errors. It is felt that the detection of 

such errors is the responsibility of a compiler and 

therefore need not be duplicated within FAPD. 

This section has given an outline of the aims of 

semantic analysis and section 3.3.2 now describes the 

method used for representing the coded version of a 

program design. This is described in preparation for 

section 3.3.3 which gives a more detailed account of 

how a design statement is converted into its coded form. 
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3.3.2 Representation of a Program 

An objective in developing FAPD was to make it, as 

far as possible, independent of the choice of programming 

language. Consequently, as long as the same method of 

program design is used, FAPD should be applicable to 

examples that are eventually coded into different 

programming languages, such as PASCAL or ALGOL 68C. In 

order to achieve this objective, a method of representing 

a program has been devised which is independent of the 

target language. This representation is called an 

assertion language. 

FAPD is limited to those examples which, when 

implemented in a target language, can be represented by 

FAPD's assertion language. The assertion language has 

been developed in order to represent the following 

features of a programming language: 

a) loops of the WHILE rather than the FOR variety; 

b) conditionals of the IF -— THEN - ELSE variety; 

c) assignment statements; 

d) read statements; 

e) print statements; 

f) boolean expressions; 

g) arithmetic expressions; 

h) variables; 

i) numerical values; and 

j) arrays and array elements 

Any program design which does not use a combination of 

these ten features is beyond the scope of FAPD. From 

the discussion in section 3.2.2.2 it follows that the 

main limitations on the variety of examples which can 
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be analysed are the grammar of a program design together 

with FAPD's assertion language. At this stage it is 

important to note that any design which uses loops of the 

FOR variety or special selection statements such as the 

CASE construct or references to sub-procedures cannot be 

analysed and will not be processed by the semantic 

analyser. 

In order to represent the ten language features 

listed above, seventeen different forms of an assertion 

have been developed. The general form of any assertion 

is defined as: 

[< type of assertion> <one or more assertion fields> 

<assertion name>] (3.64) 

The <type of assertion> gives some indication of the 

kind of information contained in the assertion fields. 

Typical of these are #VAR, #CONST and #COND used to 

denote assertions containing variable names, numerical 

values and conditional statements respectively. An 

assertion field can contain either a string of alpha- 

numeric characters or a bracketed list of one or more 

<assertion name>s. Diagram 8 illustrates a program 

design together with the ten assertions which the semantic 

analysis routines would use for this particular example. 

Because of the hierarchical nature of the assertion 

language, assertion (AS1) is referred to as the top-most 

assertion and hence an<assertion name>is not required. 

It has a single field indicating the design has been 

analysed as consisting of the read, assignment and print 

statements, which are represented by assertions (AS2), 
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The program design is as follows : 

TNPUT THREE NUMBERS 

ADD THEM TOGETHER AND ASSIGN THE RESULT TO ANSWER 
PRINT THE VALUE OF ANSWER 

The assertions to represent this program design are : 

(AS1) fepesToN (RDI Al p1)| 

(AS2) fRREAP = (v1. -v2_—v3)__ nil] 

(AS3) [Hass (v4) (1) at] 

(AS4) [HEXPR + (v1) (82) El] 

(AS5) fHEXPR + (V2) (v3) Ea] 

(AS6) f#pRINT (v4) pi] 

(AS7) fAvaR NILE vi] 

(As8) f#vAR NILL v2] 

(AS9) [H#VAR  -NILL v3] 

(AS19) [HvAR ANSWER vad 

Diagram 8 

An_Example of the Results Produced by the 

Semantic Analysis Routines 
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(AS3) and (AS6) respectively. Assertions (AS4) and 

(ASS) are the results of analysing the statement ADD THEM 

TOGETHER. These show than an #€XPRession assertion has 

three fields, the first of which contains a dyadic arith- 

metic operator. The operator's arguments are contained 

in the remaining two fields, which for a correctly formed 

expression should contain the <assertion name>of either 

a #CONSTant, #VARiable, array #E€LEMENT or an arithmetic 

4+#EXPRession assertion. 

It is important to notice that the assertions do not 

contain any information concerning the coding details of 

a particular language, for example the exact placement of 

semi-colons or the form of variable declaration statements. 

Also the assertions are sufficiently general to denote 

statements in more than one language. For instance (AS3) 

and its related assertions can be used to represent either 

the ALGOL 68 statement: 

ANSWER := IDROL + IORO2 + IORO3 (3.65) 

or even the LISP statement: 

(SETQ ANSWER (PLUS IDRO1 IORO2 IDRO3)) (3.66) 

The responsibility of converting it into either of these 

forms can be left until the code generation phase (see 

section 3.5). Assertions (AS7), (AS8) and (ASS) show 

that the variables relating to the THREE NUMBERS have 

been given default names of NILL. Since the semantic 

analyser uses an <assertion name> rather than an actual 

name in order to build the assertions, the task of 

generating suitable identifier names such as IDRO1, IDRO2 

and IORO3 can also be delegated to the phase of code 
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generation. Further details of the assertion language 

can be found in Appendix B which contains a formal defini- 

tion of the language showing how it can be used to 

represent a coded version of a program design. 

3.3.3 Analysis of a Design Statement 

In this section we consider how semantic analysis 

converts the results of pre-semantic analysis into a 

series of assertions. Semantic analysis will be 

discussed by referring to the processes involved in 

analysing the following design statement: 

INPUT TEN NUMBERS INTO AN ARRAY (3.67) 

Six class instances are used to produce the assertions 

which represent this statement's implementation in 

ALGOL 68C. 

Diagram 9 shows modified forms of the syntax and 

amended syntax trees relating to statement (3.67) which, 

for it to be analysed, needs a class instance for each of 

the four structures labelled (Cl), (C2), (C3) and (C4). 

For ease of discussion, this section will refer to the 

different class instances by using these labels. The 

amended syntax tree is analysed in a depth first, left 

to right manner and hence class instance (Cl) is the 

first to be considered. This class instance is used to 

recognise any design statement containing the read command 

word INPUT and to produce the appropriate assertion(s) 

which, in this case, is an ALGOL 68C READ statement. The 

first operation involves analysing the left hand argument 

by searching for class instance (C2). A search is then 

made for class instance (C4). If the search is successful, 

then the results of these two instances are considered 
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together within the overall context of a read design 

statement. 

Class instance (C2) is concerned with typical 

phrases likely to be found within design statements such 

as TWO NUMBERS and FOUR VALUES for example. The first 

Operation of (C2) like that of (Cl) involves deriving 

the meaning of the arguments within the current context. 

This is achieved by calling class instance (C3) in order 

to derive the meaning of NUMBERS. Within the scope of 

FAPD, NUMBERS must refer to a set of numerical values 

and in terms of FAPD's programming knowledges a value 

can be stored in either an array element or a variable. 

Hence the first attempt at analysis assumes the programmer 

has used NUMBERS as a reference to a set of variables, the 

size of that set being undefined. In terms of the asser- 

tion language we can say that NUMBERS is analysed as 

meaning (V1 V2 «+. WN) where Vl, V2, V3 etc are the 

names of variable assertions with the following format: 

[#tvAR NILL vi] (3.68) 

f#vaR wit. v2] (3.69) 

etc. 

[#vAR NILL vn] (3.70) 

In general, any class instance attempts to convert its 

structure into the appropriate assertions, the names of 

which represent the results of its analysis. However 

before leaving class instance (C3) it is necessary to 

record how NUMBERS has been analysed. This is necessary 

in case the word is used again within the same designe 

For instance if a design contained statement (3.67) 
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followed by: 

ADD THE NUMBERS TOGETHER (3.71) 

then NUMBERS obviously refers to the same variable names. 

In order to detect this we link the assertions to the 

design by making an intermediary assertion of the form: 

[##REFV NUMBER (UI 2 cee VN) ] (327.2) 

An intermediary assertion is defined to be an assertion 

which either aids semantic analysis or the generation of 

comments but which is not used by any subsequent phase 

in the analysis. Consequently intermediary assertion 

(3.72) is not required by the code generator in order to 

print a coded version of design statements (3.67) or (3.71). 

Statement (3.67) has been specifically chosen as an 

example because it illustrates how any class instance 

attempts to analyse how its structure can be implemented 

in a programming language, even though the results of its 

analysis are often revised when considered in a wider 

context. Thus class instance (C2) can now revise the 

list of variable assertion names from one of indeterminate 

size to one comprising just ten names. As a side effect 

intermediary assertion (3.72) is also amended to: 

[#REFV NUMBER (WUie U2 oreee LO) (3.73) 

and the list (Vl V2 ... vV10) now represents the results 

of analysing the left hand argument of class instance (Cl). 

Class instance (Cl) now attempts to analyse the right 

hand argument and search for a class instance which recog- 

nises the word ARRAY. (C4) is found and an array asser- 

tion of the following form is made: 

fHARRAY NILL (LB1) (UBL) Al) (3.74) 

where NILL is the default mame of an array and (L81) and 

96



(U81) are the names of assertions which contain the values 

of the array's lower and upper bounds respectively. At 

this stage we have no criterion for determining these values 

and hence they are assigned default values of 1 and N 

respectively. These values are represented by the 

following assertions: 

[#Lwe i LB1] (ets) 

[#ues N uB1 J (3.76) 

So far, analysis has used four class instances, all of 

which are based on the structures formulated by pre- 

semantic analysis. However semantic analysis often needs 

to use a series of additional class instances in order to 

complete its operation. A comprehensive list of all 

structures defined by FAPD is contained in Appendix C. 

For the statement under discussion, two additional class 

instances are required. The first of these has the format: 

[#FROARGS <first argument > <second argument >] (3.77) 

and it is invoked whenever the first argument of a read 

design statement is analysed as a list of variable asser- 

tion names and when the second argument is analysed as the 

name of an array assertion. 

In terms of statement (3.67) this class instance 

will perform three operations: 

a) Now that the number of values which are to be read 

in has been determined, the upper bound of the array 

can be re-defined. Consequently the array is 

re-defined as one of ten elements by altering 

assertion (3.76) to: 

[#uPs 1a uBl J (3.78) 

b) Each of the variable assertions Vl to v1l0 can be 
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erased and as a result the intermediary assertion 

(3.73) is altered to: 

HRREFV NumBER (Al) ] (3.79) 

which indicates that NUMBER now refers to an array 

of ten elements. If the word is used within a 

phrase such as FIRST NUMBER, this intermediary 

assertion is used by a class instance to infer that 

it means the first element of the array. 

c) The following assertion is made which denotes a 

series of values are to be read into an array: 

[4#READ (Al) RD1] (3.80) 

The second of the additional class instances is called to 

determine how an assertion such as this can be incorporated 

into the results of analysing previous statements. It has 

the following structure: 

[oesIGn ARG <assertion names>] (3.81) 

and is invoked whenever its argument is the name of a 

#READ assertion. This class instance makes the appro- 

priate loop and assignment assertions that are necessary 

when reading values into an array using the programming 

language ALGOL 68C. 

Semantic analysis of statement (3.67) is now complete 

and diagram 10 summarises the analysis by showing the 

original design statement together with the results 

produced by the six class instances. The ALGOL 68C code, 

also shown, can be derived from knowing that the result of 

analysing statement (3.67) is represented by a list of 

just two assertion names - (AS1 LP1l). This shows that 

the design statement has been analysed as comprising an 

assignment statement (AS1), followed by a loop (LP1). 
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(ass (v1) (LR1) Asi] 

[Var NTE. v1] 

[#LO9P (R1) (pp AS2) tpi] 

[#ROOLOP <= (vt) (URTV) Ri] 

(#REAN (FI) rni] 

(#ELEMENT = (41) (vty. fel] 

[#ass (W1) (B1) AS2] 

(HeyrR «© (v1) (c1)—B1] 
[#consT 1. 1] 

THARRAY ONTLL (LRT) (URI) AN] 

(#iwR 1 Lp1] 

[#uPB 19 WRI] 

[#REFV NUMBER (Al) ] 

A coded form of the statement is 

TPRAI := 1; 

"WHILE TDROI <= 19 

mo READ (ARROI (tne a1] yee anes 

Diagram 19 

The Assertions and Program Code Which Represent 

the Statement "TNPUT TEN NUMBERS TNTO AN ARRAY" 
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Because of the hierarchical nature of the assertion 

language all other information needed to produce the code 

can be obtained via each of these assertions. 

3.3.4 Scope of Semantic Analysis 

The phrase "program design analysis" is used through- 

out this thesis to mean the conversion of a program design 

into a series of assertions which represent a coded version 

of that design. Consequently this research has aimed to 

develop a series of class instances capable of implement- 

ing a design in a programming language. The knowledge 

contained within a class instance has been confined to 

common programming techniques in much the same way that 

knowledge is confined to the blocks world in Winograd's 

system [Winograd 1972]. 

The kind of examples which FAPD aims to analyse are 

those which require elementary programming skills in order 

to be implemented. Hence a typical statement within such 

a program design could be: 

CALCULATE THE TOTAL OF THE VALUES 

OF THE ELEMENTS OF THE ARRAY (3.82) 

The implementation of this statement is important since it 

demonstrates how a loop structure is often used to index 

consecutive elements of an arraye In terms of FAPD's 

assertion language, statement (3.82) is represented by: 

[#PRED TOTAL (Al) PL] (3.83) 

GHRARRAY NILL (LtB81) (uB1) Al] (3.84) 

where assertion (3.83) is an intermediary assertion 

denoting that the operation TOTAL is to be applied to 

an arraye Thus statements such as: 
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FIND THE AVERAGE OF THE ELEMENTS OF 

THE ARRAY (3.85) and 

FIND THE MAXIMUM VALUE OF A AND B AND C (3.86) 

can also be represented by similar intermediary assertions 

such as; 

(PRED AVERAGE (AL) P2] (3.87) and 

(HEPRED  maxImuM (V1 V2 v3) P3] (3.88) 

where (Al) is the assertion name of an array and Vl, V2 and 

V3 are assertion names relating to the variables A, B and C. 

Hence, because statements (3.82), (3.85) and (3.86) can all 

be represented in this manner they are considered to be 

within the scope of FAPD's semantic analysis. 

Generally speaking, a statement is within this scope 

if all the information required for its implementation can 

be derived from the following two sources: 

a) from a class instance which is capable of translating 

a common design statement or phrase into a target 

language. Class instances for predicates such as 

TOTAL, MAXIMUM and AVERAGE can also be developed since 

the intuitive meaning of such words is sufficiently 

explicit to allow their use in more than one design 

exercise; 

b) from the results of analysing previous statements in 

a program design. Consider a program design which 

contains a statement for finding the average value of 

the elements of an array. In this situation the class 

instance relating to the calculation of an average 

must be able to determine if the design contains a 

previous statement which calculated the total of the 

values held in the array elements. If such a state- 
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ment exists then the class instance must use the 

results from analysing this previous statement in 

order to implement the code for calculating the 

average. 

Conversely a statement is beyond the scope of semantic 

analysis when some of the information required for its 

implementation cannot be derived from either of these sources, 

A statement typical of this is: 

PROCESS OATA FOR EMPLOYEE (3.89) 

This was referred to in chapter 1 as a general statement 

covering the various operations used to derive the number of 

notes and coins a company cashier requires to pay out to an 

employee on the company's payroll. However this statement 

could also be found in a program design which uses the 

number of hours worked by an employee, together with his 

tax allowances etc. to calculate the total money earned by 

that employee in any given weeke In this respect the 

meaning of statement (3.89) can only be derived from 

knowing the domain of discourse or the context within 

which the statement is made. This information is usually 

contained in a problem specification and since FAPD makes 

no use of the specification, then statements such as (3.89) 

are considered to be beyond the scope of semantic analysis. 

Ignorance of the program specification also means that 

FAPD cannot determine if the design performs as intendede 

However, since FAPD views the process of analysing a 

program design as the translation of a program design into 

code, some of the existing theories of program understanding 

could be used to determine if the code(and hence the 

design) agrees with the specification. Although state- 
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ments such as (3.89) are beyond its scope, semantic 

analysis should not be prevented from analysing other 

statements within the same design. Provided a statement, 

which cannot be analysed is syntactically valid, it is 

left unattended and attention is diverted to other state- 

ments within the design. If this occurs the design is 

said to be partially analysed. 

3.4 Generation of Comments 

Semantic analysis is concerned with building a series 

of assertions which represent a coded form of the program 

design. As these assertions are constructed it also 

initiates those processes which detect the implications 

of forming this representation. This third phase in the 

analysis process runs parallel to semantic analysis. 

However any implications are noted only as a side effect 

and are not used by the semantic routines. One of the 

main objectives of this phase is to make comments about 

those statements whose implementation contains a program 

errore Typical errors are statements which use a variable 

without first initialising it and statements whose 

implementation might lead to an array index being out of 

bounds. These errors are noted and converted into the 

appropriate English text during the code generation phase. 

It is hoped that any comments are of a form which a 

programmer would find useful. 

Just as FAPD defines a set of classes for analysing 

common elements within a program design, it also defines 

a set of classes (outlined in full in Appendix C) for 

detecting if the results of semantic analysis are erroneous. 

Hence these classes are based on the structure of the 
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assertions used to represent a coded version of the design. 

In this respect, certain errors in an assignment statement 

are detected by having class instances which are called 

whenever an assertion of the following form is made: 

[#ass (<assignment argument 1>) (<assignment 

argument 2>) <4ASS assertion name >] (3.90) 

Other comments about assignment statements can only be 

detected by considering an assertion of the form shown in 

(3.90) within the context of previous lines. For this 

reason comments about assignment statements are sometimes 

generated by class instances of the following forms: 

[bestcn <assertion names>] (3.91) 

{LoopsoDY <assertion names> 

<#LO0P assertion name>] (3.92) 

Class instances with a structure similar to (3.91) are 

used to consider a particular line within the current 

context of the program design. The current context in 

this study is taken to mean the preceding design state- 

ments. Similarly class instances with a structure 

similar to (3.92) will be used whenever the current 

statement is within a loopbody. 

For every comment made about an assignment statement 

there must be class instances of these forms. Hence 

whenever the semantic routines incorporate an assertion 

into a program, all those class instances with the same 

structure as (3.91) are invoked. If any class instance 

detects an error then the appropriate information is 

recorded in a comment assertion which has the following 

general format: 
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[comm <comment number > <information> 

< list of assertion names or a line number > 

<assertion name >] (3.93) 

where <information> could be a variable's assertion name 

or an unrecognised statement which is used by the code 

generator to produce the appropriate English text and the 

<list of assertion names or a line number> is used to 

denote where in the coded version of the design, this 

comment refers. All comments are initially represented 

in this manner and <comment number> is an integer 

reference number used to denote the various errors and 

comments that can be detected and generated. 

The results of analysing a statement such as: 

SET A, 10 eTRE WALUE BOF — 6 (3.94) 

are represented by assertions such as 

[#ass (v1) (v2) AS1] (3.95) 

[# vaR A v1] (3.96) 

(# VaR 8 v2] (3.97) 

Consequently we use a class instance with structure (3.91) 

in order to check if all the variables used on the right 

hand side of the statement (such as 8B in this example) 

have been previously defined. Similarly we need a class 

instance with structure (3.92) to detect the same error 

for an assignment statement contained within a loop. ae 

the variable 8 had not been assigned a value then the 

appropriate class instance would record that fact by 

making the following assertion: 

f#comm 8 (v2) (ASL) . C2) (3.98) 

This contains all the information the code generator needs 
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to inform the programmer which variable (denoted by 

assertion V2) has been incorrectly used and where 

(denoted by assertion AS1l). 

In addition to detecting errors within individual 

statements, it is also necessary to consider the results 

obtained from analysing a statement, within the context of 

previous results. For instance two statements such as: 

QUTPUT THE SUM OF A AND 8B (3.99) and 

ASSIGN THE RESULT TO ANSWER (3.100) 

are analysed into the following print and assignment 

statements, both of which are correct, but which together 

form an inefficient piece of code: 

PRINT (A + 8); (S5002) 

ANSWER := A +  B; (3.102) 

The same operation can be achieved more efficiently by 

ANSWER := (A + 8B); (3 103) 

PRINT (ANSWER) ; (3.104) 

Thus whenever an arithmetic design statement is met, a 

class instance considers the expression produced in the 

light of any similar expressions previously analysed. 

Whenever statements such as (3.99) and (3.100) are found 

this class instance detects that when the two results are 

combined they display an unnecessary duplication of an 

arithmetic expression. The information necessary for 

making an appropriate comment is then recorded for later 

use. This is achieved by making an assertion similar to: 

f#ecomm “10 (G2) (er €2) c2] (3.105) 

where £1 and £2 are the assertion names corresponding to 

the arithmetic expressions in statement (3.101) and (3.102). 

So far the discussion has been concerned with comments 
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involving erroneous statements, but comments can also be 

made to show how various statements within the design have 

been implemented. For example if the design contains a 

statement such as: 

OUTPUT THE VALUES OF THE ARRAY (3.106) 

then the fact that this is implemented in ALGOL 68C by 

using a loop structure is noted using the same form of 

comment assertion already discussed. A comment which 

outlines how statements such as (3.106) can be converted 

into a particular programming language are particularly 

useful for programmers who still find the implementation 

of such statements relatively difficult. 

The results obtained from analysing a design are now 

represented by a set of assertions. Each assertion is 

restricted to one of three forms which indicates where in 

the analysis process they were produced: 

a) an assertion may have been produced during semantic 

analysis and consequently is used to represent a 

coded version of the design; 

b) alternatively it may have been produced by the phase 

currently under discussion in which case it represents 

a comment that will be made about the coded version 

of the design; 

c) a third type of assertion has been termed an 

intermediary assertion. Assertions of this type are 

produced by either the semantic routines or the 

routines responsible for generating any comments. 

However these routines use intermediary assertions 

as a method of aiding their own analysis and 
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consequently this category of assertions is 

superfluous to code generation. 

The task of printing the assertions, described in (a) and 

(b), in a readable form is the responsibility of the 

fourth, and final, stage of the analysing process known 

as code generation. 

365 Code Generation 

FAPD views the process of analysis as the translation 

of a program design into a series of assertions which 

represents how statements within the design can be realised 

in terms of a particular programming language (see section 

1.4). In this respect pre-semantic analysis, semantic 

analysis and generation of comments are the three main 

processes. The fourth process, known as code generation, 

is concerned with converting the results of the last process 

into a computer executable form - namely a coded version of 

the design. Any comments pertinent to the program design 

are also converted into a readable form at this stage. 

In order to print a program, code generation must take 

care of the coding details of the target language, such as 

how variables are declared and where semi-colons and 

parentheses are needed. An important feature of FAPD is 

how the results of analysis can be used to represent the 

same statement in different languages. Thus in order to 

print the results in different programming languages we 

need only provide different code generators. At this 

stage it is important to note that code generation is 

concerned only with printing a program and does not build 

a representation of its results in the same way as that 

achieved by pre-semantic analysis, semantic analysis and 

108



generation of comments. 

The initial operation of the code generator is to 

generate oppropriate variable names for any variables or 

arrays which have been given a default name of NILL (see 

assertion (3.84) in section 3.3.4). Once this has been 

done all declarations can be carried out and the program 

printed. The assertion language has a hierarchical 

format and an example of a top-level assertion is: 

[#DESTGN (cl LP1)] (3.107) 

The program can be printed by first of all finding this 

assertion and then searching for those assertions with 

names Cl and LPl. In this respect the operation of 

the code generator can be thought of as a systematic walk 

through all the assertions. 

Conditionals and loops are represented by assertions 

such as: 

[#cono (81) (ASL AS2) (AS3 AS4) Cl] (3.108) 

[#Loop (82) (ASS as6) tel J (3.109) 

where Bl and 82 are boolean expressions. AS1 and AS2 

are contained in the first leg of a conditional (ise. they 

are executed if 81 is true), AS3 and AS4 are contained in 

the second leg of a conditional and ASS and AS6 are both 

contained in a loopbody. Many ALGOL 68 programs contain 

compilation errors because the programmer has used the 

semi-colon as a terminator and not as a separator. 

Because assertions (3.107), (3.108) and (3.109) provide a 

convenient method of representing blocks within a program, 

the correct use of a semi-colon as a continuation character 

is made easier. Assertion (3.107) shows how the coded 

version of the design is represented by a conditional - Cl - 
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and a loop - LPl. This representation allows the code 

generator to detect that a semi-colon is required after 

each element in the list (Cl LP1) apart from the last one. 

If semantic analysis has failed to analyse a statement, 

then the amended syntax tree corresponding to this state- 

ment is incorporated into the appropriate assertion. For 

instance if the phrase NOT END OF NUMBERS is not analysed 

within the following context: 

WHILE NOT ENO OF NUMBERS 

oo one or more design statements oD (S010) 

then the amended tree corresponding to this is included 

within the appropriate boolean assertion. As the coded 

version of the design is being printed the code generator 

can detect that the assertion contains an unrecognised 

statement and this is then converted into the following 

comment assertion: 

[#comm 1 (END OF NUMBERS) (3) C3] (Sea) 

where (3) denotes the line number on which the unrecognised 

statement has been printed. 

Whenever a comment such as (3.111) which has a 

reference number of 1, is produced we say that FAPD has 

resulted in a partial analysis of the design. Consequently 

the coded version of such a design cannot be tested on a 

computer. If analysis had resulted in a complete analysis 

then the statements for opening and closing input and out- 

put channels would need to be inserted before the program 

could be executed. However for the sake of clarity the 

code generator does not do this. 

This chapter has detailed a framework aimed at 

analysing a program design. Throughout the discussion 
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attention has been drawn to those factors which impose 

limitations on FAPD's scope, and discussion of these is 

continued in the concluding chapter. In order to test 

FAPD it has been implemented within a system called DACE 

(which is a Design Analysing and Commenting Environment). 

The following chapter will now discuss details of this 

implementation before the results from its analysis are 

discussed in chapters 5 and 6. 
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4. IMPLEMENTATION OF DACE 

4.1 Relationships between System and FAPD 

Before some of the implementation details of DACE are 

considered it is necessary to determine the relationship 

between the system itself and FAPD which it tests. 

Lukey [Lukey 1978] describes his system, PUDSY, as an 

implementation of a model of part of his theory and DACE 

can be described in a similar manner. 

The preceding chapter described how a set of general 

classes can be used to categorise the kinds of statements 

found within a program design. within each class there 

are a set of specific instances, called class instances 

which are used for recognising common statements and 

phrases. Because the system incorporates a particular 

set of class instances it is said to represent a model of 

FAPD. In order to test the validity of FAPD it is 

considered unnecessary to incorporate within the system 

a comprehensive library of all statements and phrases 

which could be recognised. 

In order to analyse a design we must have some method 

for recognising when a class instance appears in a design. 

Later sections in this chapter describe how this has been 

achieved by using facilities available in the programming 

language MICRO-PLANNER. The choice of this language is 

therefore a decision concerned with how FAPD can best be 

implemented. As far as FAPD itself is concerned, class 

instances could be implemented by other programming 

techniques in other languages. A second implementation 

decision is the choice of the program design's target 
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language. Preceding chapters have already given reasons 

why ALGOL 68C has been chosen, but as far as FAPD is 

concerned, so long as the same method of program design is 

used and programs in the target language can be represented 

by the FAPD's assertion language, then other target 

languages could have been chosen. It is estimated that 

modifying the system to accommodate a different target 

language would take six to eight man weeks. 

A third detail of this implementation concerns the 

programming language subset, which is used to implement 

a program design. The system described in this thesis 

uses a subset of ALGOL 68C. Hence the fact that this 

subset contains integer and boolean, but not real variables, 

is an implementation decision. The assertion language 

which has been implemented in this study can represent the 

following features of an ALGOL 68C program: 

a) loops of the following format: 

WHILE -- DO - oD 

b) conditionals of the following format: 

If == THEN ‘== ELSE =={ FI 

c) assignment statements 

d) read statements 

e) print statements 

f) boolean expressions 

g) arithmetic expressions 

h) integer and boolean variables 

i) constant integer values 

j) one-dimensional integer arrays and array elements 

which are considered to be sufficiently comprehensive for 

analysing a wide variety of program designs. 
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4.2 Facilities Available 

Prior to implementing FAPO, decisions were required 

about which computer and programming language of those 

available, were most appropriate for the development of 

the system. At the time research commenced the following 

machines were available: the University of Aston's ICL 

19045 computer, the Computer Centre's Prime 250 mini- 

computer, the University of Birmingham's DEC 20/60 computer 

and the CDC 7600 and ICL 1904S computers at the University 

of Manchester Regional Computer Centre. Qf these, the 

DEC 20/60 computer was chosen because it is a powerful, 

interactive machine which also provided three Al pro- 

gramming languages. These were LISP [Bobrow et al 1973, 

Quam and Diffie 1972, LeFaivre 1978], MICRO-PLANNER 

[Baumgart 1972] and CONNIVER [McDermott and Sussman 1974] 

The programming language LISP provides more compre- 

hensive facilities for word/character handling than 

languages such as ALGOL 68 and FORTRAN. In addition it 

also aids the interactive development of a system by 

providing facilities such as a LISP editor, for editing 

LISP functions, and powerful TRACE and BREAK packages to 

aid debugging. The Rutgers/UCI version of LISP, which is 

available on the DEC, allows functions to be either inter- 

preted or compiled. Compiled functions can improve 

execution time by a factor of twenty and in addition, take 

up less memory space. 

MICRO=PLANNER is a LISP-based language based on Carl 

Hewitt's robot language PLANNER {Hewitt 1969]. Like the 

LISP system, MICRO-PLANNER also provides special editing 

and tracing packages, however unlike LISP it cannot be 
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compiled. The principal feature of the language is the 

facility to call functions by name or pattern. Thus 

every function must have a pattern. An example of a 

Pattern could be: 

(REF (THY x)) (461) 

where (THV X) is a MICRO-PLANNER variable which can take 

any value. Hence whenever statements of the following 

forms are made: 

(THGOAL (HREF TOTAL) (THTBF THTRUE)) (4.2) 

(THGOAL = [#REF = SUM) (THTBF THTRUE)) (4.3) 

then all functions with pattern (4.1) are invoked until 

the correct function is found. Conversely a statement 

such as: 

(THGOAL [HVAR TOTAL] (THTBF THTRUE)) (4.4) 

which does not match pattern (4.1) would not be called. 

This method of pattern directed invocation has been used 

to great effect by researchers in AI, such as Winograd 

[Winograd 1972] and Charniak [Charniak 1973]. Since 

analysing a program design involves recognising patterns 

of design statements, MICRO-PLANNER seems an ideal choice 

for implementing FAPD. The control structure simulates 

a depth first search of a tree, which backtracks auto- 

matically whenever an impasse is reached. Backtracking 

in this fashion is undirected and could be made more 

efficient if controlled by the programmer [Bobrow and 

Raphael 1974]. 

This criticism led to the development of CONNIVER 

which allows the programmer to determine how a program 

should continue once an impasse is reached. Although 

CONNIVER now seems to be the preferred language, it was 
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decided after an initial investigation to implement FAPD 

using LISP and where appropriate MICRO-PLANNER. The 

system does not require the automatic backtracking 

mechanism of Micro-Planner and so the criticism referred 

to above is not applicable to this implementation. 

4.3 User Interaction 

DACE runs on the University of Birmingham’ DEC 20/60 

Computer under the control of the TOPS-20 operating system 

and takes up 65K words of a 36-bit computer store. 

Chapter 3 gave details of four phases in the analysing 

process and diagram 11 shows how they have been implemented 

in terms of four system modules. A box represents a set 

of programs and arrows denote how data flows from one to 

the other. It can be seen that the modules operate in a 

sequential manner except for semantic analysis and genera- 

tion of comments which run in parallel. The series of 

arrows emanating from the former has been used to indicate 

that whenever a statement or phrase is analysed, the results 

are passed on to the module for generating comments before 

the next statement is analysed. Module 1 is written in 

LISP whereas the other three are all implemented in MICRO- 

PLANNER. Because the second and third modules run in 

parallel DACE operates by entering the LISP system once, 

and the MICRO-PLANNER system twice. 

In order to enter a program design the LISP system 

must be called and module 1 loaded. Whenever the DEC's 

LISP system is called a special initialisation file is 

automatically loaded. when operating under the author's 

Usernumber this special file asks the user if he wishes to 

use DACE and if this is so then the LISP functions 
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contained in module 1 are entered and the user is invited 

to enter his design. Diagrams 12, 13 and 14 show how a 

user interacts with the system and in each diagram the 

user's responses have been underlined. Diagram 12 shows 

how the design need not be typed in in any particular 

format since DACE re-prints it with appropriate inden- 

tations. 

When entering a design certain rules should be 

obeyed. These may be summarised as: 

a) the design should be terminated by the string xxx 

which must appear at the start of a new line. This 

string must not be followed by a space, otherwise 

the design is terminated incorrectly and the user is 

given another invitation to type. At this point the 

terminating string should be typed in correctly. 

DACE now parses the program design up to and including 

the first occurrence of the terminating string xxx. 

Provided an incorrect termination is rectified in the 

manner just described it does not prohibit further 

analysis. However it can lead to distortions in the 

pretty-printed version of the design. The requirement 

that the terminating string should not be followed by 

a space occurs because of the way in which the LISP 

system reads a line of data. 

b) Diagram 12 shows how two or more consecutive design 

statements should be separated by the string **. 

This string is used to print consecutive statements 

on different lines. If the separator string between 

two statements is omitted then the system will not 

only print the statements on the same line but will 
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@LISP 

Do you wish to use DACE a system For analysing 
and commenting 

upon some simple program designs ? When the system prints: — 
# 
please type Y or N followed by the < return > key 

#Y 

Please input the design when the system types :— 

At the end of a line press <return> and the system 
will again respond with :- 

In order to terminate the input type the string ### 
at the start of a newline followed by <return> and 
please ensure no spaces follow that string 

-READ_N AND INITIALISE I TO 1 
-WHILE I IS LESS THAN OR EQUAL TO WN 
-DO PROCESS DATA FOR EMPLOYEE ## INCREMENT I oD 
EK 

The design has been entered and 
syntax analysis has started 

The design is as follows :- 

READ N AND INITIALISE I TO 1 
WHILE I IS LESS THAN OR EQUAL TO N 
Do 

PROCESS DATA FOR EMPLOYEE #+# 
INCREMENT I 

oD 
RHE 

Syntax analysis of this design was successful 
The syntax tree is being amended 
The syntax tree has been successfully amended 

Do you wish to carry on ? Please type 
Yor N followed by < return > 

#Y 

When the system types: — 

e 
Please respond by typing PLNR < return > 

€ 

Diagram 12 

User Interaction With Module 1 of the System 
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also encounter difficulty in differentiating between 

the statements. The latter difficulty arises because 

the syntax analyser uses the string as an indication 

that parsing in the current part of the syntax tree 

should be complete and thus parsing of the next state- 

ment can be initiated. If it is not used, then the 

syntax analyser first of all tries to parse the next 

token according to the grammar of the current part of 

the syntax tree. Failure to do this implies that 

the current part of the syntax tree has been success-— 

fully parsed or that parsing must continue at another 

point in the syntax tree. Hence the use of «x 

increases the efficiency of the syntax analyser. 

c) ALGOL 68C allows the use of a single quote or a 

period to denote a reserved word such as IF, WHILE 

etc. but in a program design these are unnecessary 

and indeed illegal. 

d) All words and characters must be in upper-case. 

e) Within a print design statement any sequence of 

words which the user intends to print as text should 

start and finish with the character #. ALGOL 68C 

uses double quotation marks for the same purpose, 

however this is difficult to implement in a LISP 

based system because the LISP READ function will 

read in anything enclosed in double quotation marks 

as a single item. Consequently, double quotation 

marks are not recognised and would be treated by 

the system as a user defined variable name. 

Failure to comply with rules (c), (d) or (e) can result 

in a design being analysed as syntactically incorrect. 
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After the design has been entered, lexical and syntax 

analysis are undertaken and, if successful, the syntax 

tree is amended in preparation for semantic analysis. 

Diagram 12 shows how module 1 has been successfully 

completed and the user informed of the steps necessary 

for entering the next phase. In diagram 13, the second 

and third modules have been loaded automatically by a 

special MICRO-PLANNER initialisation file. Typing (START) 

causes semantic analysis to commence and any comments to 

be noted. To print the results from this phase in a 

readable form, the MICRO-PLANNER system must be left and 

re-entered with module 4 loaded. 

Diagram 14 shows how typing (PRINT-CODE) causes the 

results to be entered before the program and comments are 

printed at the terminal. The program and comments are 

also filed so a hard copy is available if desired. 

Collectively, diagrams 12, 13 and 14 depict a complete 

terminal session with DACE. 

4.4 Pre-Semantic Analysis within DACE 

Pre-semantic analysis within DACE is achieved by 

carrying out lexical analysis, syntax analysis and 

preparation for semantic analysis in a sequential manner. 

The principal feature of this implementation is the way 

the syntax and semantic definitions have been divorced 

from the procedures that use them. The syntactic format 

of a program design is specified by its grammar (see 

Appendix 8B). This grammar contains a set of rules 

written in a modified form of BNF. A typical rule of 

this grammar is: 
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@PLNR 

MICRO-PLANNER 
22> READING (PLINR . INI) 
THINIT 

When the system prints: - 
O% 

please respond by tuping (START) < return > 

2>> TOP LEVEL 
LISTENING THVAL 

O# (START) 

The semantic analyser has now been entered 

Semantic analysis is now complete 

Do you wish to carry on 7 Please type 
Y or N followed by < return > 
*Y 
When the system types: — 

a 

please respond as you have just done 
by typing PLNR < return > 
@ 

Diagram 13 

User Interaction With Modules 2 and 3 of the System 
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@PLNR 

MICRO-PLANNER 
>>> READING (PLR | INT) 
VHINIT 

When the system prints: — 
O# 

Please respond by tuping (PRINT-CODE) <return> 

>>> TOP LEVEL 
LISTENING THVAL 

O* (PRINT-CODE) ace ae 

The design is as follows :-— 

READ N AND INITIALISE I To 4 
WHILE I IS LESS THAN OR EQUAL TO NN 
DO 

PROCESS DATA FOR EMPLOYEE «+: 
INCREMENT I 

ap 
Kae 

& coded form of the design is:- 

0 “BEGIN “INT ING 
1 READ (N) i 
2 Eos 4 
3 ‘WHILE I <= N 
4 “DO < PROCESS DATA FOR EMPLOYEE > 5 Lael Ht 
& “OD 
F “END 

The following are some comments on the ahove:— 

1 Re line 4: The design gives insufficient 
detail to analyse 
<PROCESS DATA FOR EMPLOYI-E:> 
The design does not contain any output statements Before the coded version could be run one or more PRINT statements need to be inserted 

Le]
 

Analysis is now complete. Your design 
together with the coded 
version and comments are stored in CODE. RES 
Do you wish to leave the MICRO-PLANNER system 
Please type 

Yor N followed by < return > 
ey “ 

Diagram 14 

User Interaction With Module 4 of the System 
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< loop> ::= <while> <boolean expression> <do> 

<series> <od> (4.5) 

where items in angled brackets are non-terminals which are 

further defined elsewhere in the grammar (see Appendix 8B). 

The syntax analyser within DACE uses a technique 

called top-down analysis. This technique uses the 

Qrammar to build a syntax tree by starting from the top— 

most definition and working downwards in a depth first 

manner. At each stage an attempt is made to replace the 

left most non-terminal in the syntax tree by a suitable 

expression derived from the rules of the grammar. 

A basic difficulty in top-down analysis is encountered 

when a rule employs left recursion. For instance if the 

definition for a series of design statements was to be 

written as: 

€series> ::= <series> <** ><statements> | 

<statements> (4.6) 

then because the term <series> is recursively defined, 

searching would continue indefinitely. This problem is 

overcome by re-writing rules in a right recursive manner. 

Thus the above definition becomes: 

<series> ::= <statements> <#x« ><series> | 
  

<statements> (407) 

An alternative solution is to rewrite definitions in a 

modified 8NF form which allows the use of two additional 

features. These are {x} which denotes zero or more 

occurrences of X and [x] which denotes an occurrence of 

X is optional. This approach has been used to specify 

the grammar of a program design and so expression (4.7) 

can be expressed using iteration instead of recursion 
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as follows: 

<series> ::= <statements> {<xw> <statements>} (4.8) 

One approach to top-down parsing is recursive descent 

which involves writing a recursive procedure corresponding 

to each non-terminal of the grammar. The method does not 

allow back-up and thus once an item is parsed an alterna- 

tive parsing cannot be considered. Thus if an impasse is 

reached a syntax error has been detected and an appropriate 

error message can be made. 

A second approach to top-down parsing uses a set of 

general procedures driven by a representation of the 

grammar. In order to implement a syntax analyser, the 

latter of these two approaches was chosen. The reason 

for this is that backup must be used whenever a recognised 

word has been used as a variable name. For instance 

consider the use of NEXT in the following statements: 

SET NEXT ELEMENT TO 1 (4.9) 

SET NEXT TO 1 (4.10) 

In statement (4.9) NEXT is used as an adjective whilst in 

(4.10) it is used as a variable name. However in state- 

ment (4.10) the fact that NEXT is used as a variable is 

not apparent until the word TO is analysed, at which point 

it is necessary to back-up and revise the parsing of NEXT. 

Although this approach also has the advantage of easy 

modification, its persistent use of back-up means it is 

often inefficient. It is also poor at handling errors 

because it is unable to determine the point at which an 

error occurred (c.f. top-down analysis using recursive 

descent). Consequently whenever DACE discovers an error 

the design is re-printed for the user, together with a 
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general error message indicating a syntax error has been 

found. In this situation the analysing process is not 

able to proceed and the user is therefore not able to load 

and execute the semantic analyser. 

If parsing is successful then the syntax tree can be 

amended in preparation for semantic analysis. In order 

to achieve this, each non-terminal of the grammar has a 

semantic definition (see Appendix 8). This definition 

is used by a set of procedures to form a series of classes 

which the semantic analyser can recognise. By adopting 

this approach the semantic definitions can be altered 

without changing the procedures that use them. Consequently 

as the system was extended in order to analyse an increas- 

ing variety of examples, it was modified more easily than 

it would have been with the definitions procedurally 

embedded. Once the syntax tree has been amended, the 

operation of module 1 is complete. The LISP system is 

now exited and the MICRO-PLANNER system is entered in 

order to start the semantic analysis and possible genera- 

tion of comments. 

4.5 Semantic Analysis, Generation of Comments 

and Code Generation within DACE 

The remaining three modules of DACE are discussed in 

this section because they are all implemented in MICRO- 

PLANNER» Chapter 3 defined a class instance to be a 

structure which represents statements often found in a 

program design, together with a function that implements 

the structure in terms of a particular programming 

language. Consequently this section is concerned with 
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how a class instance can be coded using a MICRO-PLANNER 

theorem. 

Let us recall (see section 3.2.3) that in the pre- 

semantic analysis phase, attempts are made to convert the 

syntax tree for any assignment design statement into the 

following general form: 

[#ASS  <assignment command word> ARGUMENT 

<separator> ARGUMENT] (4.11) 

Consequently whenever semantic analysis discovers a 

structure similar to (3.11) in the amended syntax tree, 

the appropriate class instance must be called to derive 

its meaning. MICRO-PLANNER allows theorems to be called 

by a pattern and so commands can be written which have 

the effect of searching through all the known theorems 

for any with a pattern which matches (4.11). 

The theorems in diagram 15 are typical of those used 

by DACE. In each case the theorem's pattern has been 

underlined. From this diagram we can see that the pattern 

of TC-ASSERT- #ASS matches (4.11) whereas those of 

TC-ASSERT— ##READ and TC- #ASS-ASSIGN do note Consequently 

TC-ASSERT - #ASS is invoked. Because DACE is a model of 

FAPD a particular class instance may not be represented in 

the set. To overcome this, TC-ASSERT-4#READ and TC 

ASSERT-4#ASS are general theorems which are used to deal 

with all possible examples of read and assignment design 

statements respectively. If the amended tree contains 

something of the form: 

[#ass ASSIGN <first argument> TO 

<second argument> ] (4.12) 

then the procedure TC-ASSERT= #ASS is called. This 
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procedure alters the class name from #4#ASS to #ASM (so 

that it does not call itself) and then searches for a 

class instance with the following structure: 

[asm ASSIGN <first argument? TO 

<second argument >] (4.13) 

Oiagram 15 shows that TC- 4ASS-ASSIGN is the class 

instance which matches this new structure. It analyses 

the arguments and if successful, makes the necessary 

assertions. If the statement cannot be analysed fully 

or the particular class instance is not known then 

TC-ASSERT- #ASS acts as a safety net. The following 

assertion, which indicates that semantic analysis has 

failed, is then generated: 

[Hass ASSIGN <first argument> TO 

<second argument> asl] (4.14) 

This example illustrates how implementation and 

FAPD differ slightly. Whereas FAPD (see section 3.3.1) 

states that class instances are represented by, for 

example: 

[Hass ASSIGN <first argument> TO 

<second argument> i (4.15) 

[#ass INITIALISE <first argument> TO 

A <second argument> ] (4.16) 

for the reasons outlined above, these are represented 

within the system as: 

[#kasm ASSIGN <first argument> TO 

<second argument> ] (4.17) 

[#ASM INITIALISE <first argument> TO 

<second argument> il (4.18) 
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There are three different forms of MICRO-PLANNER 

theorems. However the requirements of the system mean 

that only two of these forms need to be used. These 

are consequent and antecedent theorems. So far the 

discussion has concentrated on consequent theorems 

(indicated by the definition THCONSE on the second line 

of each theorem). Whenever a search is made through a 

set of consequent theorems, that search is terminated 

as soon as a theorem succeeds. Conversely, whenever 

antecedent theorems (denoted by the definition THANTE) 

are called by pattern, all theorems are tested for a 

pattern match regardless of whether any have already 

succeeded. 

Let us now consider how these different attributes 

can be used within the system. when a design statement 

is analysed the set of class instances is searched for a 

particular instance. In this respect consequent theorems 

provide an ideal method for representing the majority of 

class instances known to the semantic analyser. For 

every assertion used to represent a piece of code or a 

comment, the code generator has a theorem which prints 

the assertion in a readable form. For this reason 

consequent theorems are also used as the basis for code 

generation. 

As soon as a design statement has been analysed, the 

results (in the form of one or more assertions) are passed 

on to the routines for generating comments. Comments 

are noted by class instances whose structure matches the 

assertions produced by semantic analysis. However 

because a result may provide several implications, the 
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search must continue through all the appropriate class 

instances. For this reason any class instances used for 

generating comments are represented by MICRO-PLANNER 

antecedent theorems. 

Section 3.3.3 defined an intermediary assertion to 

be an assertion which aids semantic analysis or the 

generation of comments. These assertions are often 

derived as incidental to the process of analysing a 

statement or phrase. This is a similar technique to 

that used to generate any comments and hence any inter- 

mediary assertions formed by the semantic analyser are 

also made by MICRO-PLANNER antecedent theorems. 

This concludes a discussion of FAPD and its imple- 

mentation. The next two chapters give details of the 

results obtained from the operation of DACE. The final 

chapter uses these results to draw some conclusions 

concerning both FAPD and its implementation. 
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5. RESULTS FROM ANALYSING PROGRAM DESIGNS 

This chapter discusses the results obtained from 

applying DACE to eleven program designs, carefully chosen 

so as to illustrate the scope of DACE. The first seven 

of these represent examples which DACE is able to analyse. 

The eighth contains statements which are beyond the scope 

of FAPD and consequently have been only partially analysed 

by DACE. The last three examples represent those designs 

which cannot be analysed because they do not conform to 

our definition of a program design. Appendix D contains 

the results from analysing a further 24 examples. 

The examples which have been used to test FAPD and 

the system have been derived from various sources. 

Examples 1, 2, 3, 5, 6 and 9 were taken from problems 

given to computer science students. Examples 4, 7 and 

10 were derived by the author and examples 8 and ll were 

taken from the literature. Some examples have been 

modified slightly in order to conform to the requirements 

of the system. For example, the string «x has been 

inserted to clearly distinguish between consecutive state- 

ments and the loop structures specified in examples 8 and 

11 have been altered from the PASCAL to the ALGOL 68C 

format. Generally speaking, the examples discussed in 

this chapter have been chosen because they provide a wide 

Tanging examination of the scope of DACE. The format of 

some results has been modified slightly in order to 

accommodate the different page size required for this 

report. 
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Sel Example 1 

The program design shown in diagram 16 has been 

produced to meet the following problem specification? 

input two integer values and output the larger value. 

If the values are equal then a message indicating 

this should be printed together with the value. 

The solution to this problem is important since it 

involves the use of an elementary programming technique, 

namely the nested conditional. Since the program design 

for this problem is relatively simple, it allows us to 

consider the complete process followed by DACE without 

having to refer to those processes responsible for 

analysing more complex aspects of a design. 

For the sake of clarity, previous chapters have 

often shown results in a modified form. Consequently, 

Appendix A has been included to illustrate the actual 

results produced for this particular example by the 

routines for pre-semantic analysis, semantic analysis 

and generation of comments. 

Diagram 16 shows the format of the results produced 

by the code generator. This format always follows a 

similar pattern with the user's design being followed by 

a coded version of the design together with any comments. 

The line numbers within the design (ie DS1 to 0S14) have 

not been produced by the system but are inserted in all 

the examples given in this chapter so that the discussion 

can refer to particular statements. The program design 

printed in this results section is not necessarily in the 

same format as that typed in by the user since the code 

generator re-prints it with consecutive statements on 
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The design is 

(DS1) INPUT 
(ps2) IFA 
(DS3) THEN 
(DS4) 
(DSS) ELSE 
(DS6) 
(DS7) 
(pss) 
(DS9) 
(DS10) 
(DS11i) 
(DS12) FI 

as follows :- 

A AND B 
IS LARGER THAN B 

SET ANSWER TO A 

ASSICN B 10 ANSWER 
IF A IS FQUAL TO B 
THEN 

PRINT # SUITABLE MESSAGE # 
x 

(DS13) OUTPUT ANSWER 
(DS14) xe 

A coded form 

0 ‘BEGIN 

1 

2 

3 
4 
S 

6 

7 
8 

a 
10 ‘END 

of the design is:- 

  

“INT ANSWER, By Ai 
READ (A,B) 
EE A> B 
“THEN ANSWER := A 
‘ELSE ANSWER BG 

oe A= 8 
‘THEN PRINT ("SUITABLE MESSAGE") 
tex 

es 
PRINT (ANSWER) 

Diagram 16 

Results From Analysing a Program Desiaqn Which Finds 

the Larger of Two Values 
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different lines and any loops and conditionals suitably 

indented. Because the coded version is also pretty 

printed in a similar manner, adopting this approach makes 

it easier for the user to see the correspondence between 

the two forms. 

All programs produced by DACE adopt a similar format. 

They are numbered, starting at line 0, and the opening 

lines always declare all integer variables, boolean 

variables and any array used in the design. Consequently, 

OACE does not have the ability to declare variables 

locally. The program is printed using upper case 

characters and any reserved words are preceded by a single 

quotation marke Since analysis of this example did not 

produce any comments, a discussion of these is deferred 

until a later example. 

The syntax analysis of this example was successful 

which means that DACE is capable of at least partially 

analysing the design. During this stage DACE has 

successfully used the grammar of a program design to 

determine that A has been used throughout as a variable 

name and not as the indefinite article which is its more 

common occurrencee The syntax tree has then been 

successfully amended and the words AND, THAN and TO, 

which are used in lines (DS1), (DS2) and (087) 

respectively, have all been discarded because they are 

superfluous to semantic analysis. In this example IS 

could also have been eliminated from lines (082) and 

(087) since the appropriate boolean operator can be 

derived from knowing the meanings of LARGER and EQUAL 

However, if the word IS was to be ignored in a similar 
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fashion to AND, then the meaning of the following state- 

ment could not be derived: 

IF A IS POSITIVE 

THEN one or more design statements Fie (S00) 

This is because the meaning of the phrase A IS POSITIVE 

would be represented by a list similar to (A POSITIVE). 

In the following statement: 

IF A AND POSITIVE ARE GREATER THAN O 

THEN one or more design statements FI (5.2) 

the meaning of A AND POSITIVE is also represented by an 

identical list and hence it would have been impossible to 

differentiate between the two phrases. 

The top level of the amended tree will show that the 

design is comprised of three main items which are the read 

design statement in line (DS1), the conditional in lines 

(052) to (0512) inclusive and an output design statement 

in line (0S13). The way in which these items are 

processed is shown in diagram 17 which contains the top- 

level function of the semantic analyser written in an 

ALGOL=-like notation. This shows how the design is 

analysed from top to bottom and how DACE can analyse the 

design only if it has three class instances which corres- 

pond to the three structures in the amended tree. Once 

the appropriate class instance has been found and the 

meaning of a statement or construct has been derived, this 

meaning must then be considered within the overall context 

of the design. Diagram 17 shows that the meaning of a 

statement which is not contained within either a loop or 

a conditional is derived from class instances with the 

following structure: 
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TREE :> amended syntax tree produced by pre-semantic 
analysis 

all the structures in TREE 
considered 

  

have not been 

  

WHTLE 

13 

NEXT := next structure in TREE which has not 
been considered 

IF there is a class instance corresponding to NEXT 

  

  

RESULTS := list of one or more assertion names 
produced by calling this class 
instance 

WHILE all the assertion names in RESULTS have 
not been considered 

bo NEXT-ASSERTTON := next assertion name in 
RESULTS not yet considered 

IF there is a class instance 
corresnonding to : 
[PESIGN ARG <value of NEXT- 

ASSERTION> ] 
THEN 

TEMP := List of one or more 
assertion names vroduced by 

calling this class instance 
amend RESULTS by replacing NEYT- 

ASSERTION with TEMP 

NEMT-ASSERTION := first assertion 
name in the list called TEMP 

  

fy 

look for any implications of 
incornorating “T-ASSERTION into 
the overall design 

  

} 

NEXT is a structure which DACE cannot 
recoanise c 

RESULTS := list of one or more names of 
default assertions 

10 

oe 

ANSWER := list of assertion names produced so 
far from the analysis of TREE 

op 

¢ a coded version of TREE is now renresented by those 
assertions whose names comprise the list ANSWER c¢ 

Diagram 17 

The Top-Level Function in the Semantic Analyser 
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[DESIGN ARG <assertion names>] (5.3) 

The function for analysing statements in a loopbody 

is essentially similar to that shown in diagram 17. 

However instead of considering the meaning of a statement 

within the context of the overall design it considers the 

meaning within the context of a loop by looking for class 

instances of the form: 

[LooPsoDY ARG <assertion names> 

< +#L00P assertion name> | (5.4) 

rather than (5.3). Similarly it will then look for any 

implications of incorporating the results into the loop 

rather than the overall context of the program design. 

The results in diagram 16 show that each statement in 

the design can be implemented using a single statement in 

the target language. However, DACE is able to determine 

that the meaning of a statement such as: 

FINO THE TOTAL OF THE VALUES OF THE ARRAY (5.5) 

is described by more than one ALGOL 68C statement. 

Consequently the inner loop in diagram 17 is used to 

consider each of these in turn within the overall context 

of the design. 

Now that these general points about DACE have been 

discussed, let us conclude the discussion of this example 

by considering the depth of analysis which it achieved in 

producing the results of diagram 16. The information 

required to do this has been derived from the following 

four sources: 

a) DACE's vocabulary which at the time of writing 

consists of 110 words; 

b) the grammar of a program design: 
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c) the semantic definitions of all non-terminals in the 

grammar; and 

d) class instances. At the time of writing, the 

semantic analysis is based on 128 class instances. 

Any comments are generated by using the 26 class 

instances which together with the code generator can 

produce 18 different comments. Appendix C contains 

a comprehensive list of all class instances imple- 

mented in DACE. 

The first three of these (ie a, b and c) are used 

during pre-semantic analysis to determine how consecutive 

words and phrases can be combined into meaningful units. 

The vocabulary and grammar are also used to determine that 

A is used as a variable name. Thus at the end of this 

stage, DACE has determined that lines (0S4) and (0S6) will 

both be implemented as assignment statements although it 

is not yet able to note the differing effect that SET and 

ASSIGN have on the treatment of the arguments A, B and 

ANSWER. Recognising differences such as this is the 

responsibility of the semantic analyser which uses two 

class instances of the form: 

[#RASM SET ARGUMENT <separator> ARGUMENT] (5.6) 

[#ASM ASSIGN ARGUMENT <separator> 

ARGUMENT] (S.7) 

where the meanings of ARGUMENT and <Separator> are as 

defined in Chapter 3. In addition to class instances 

such as these, DACE also requires separate class instances 

for different words or phrases with similar meanings. 

Thus the meanings of lines (059) and (0S13)are derived 

from the following two instances: 
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[# PRM PRINT ARGUMENT J (5.8) 

LpRm OUTPUT ARGUMENT] (5.9) 

As later examples will illustrate, the results shown 

in diagram 16 do not illustrate clearly the degree of 

detailed analysis that had to be undertaken by DACE. For 

instance it had to determine that the variables A and 8 

have been defined prior to their use in lines (052), 

(084), (056) and (DS7), and in addition that the value 

assigned to ANSWER in line (DS6) did not overwrite the 

value assigned to the same variable in (DS4). 

5Se2 Example 2 

The program design shown in diagram 18 was produced 

in reply to the following problem specification: 

find the sum and average of a list of integer values. 

The list is contained in a data file and is termi- 

nated by a zero. 

The analysis of this example will be discussed by 

considering each line of the design in turn. 

(0S1) has been recognised as a read design statement 

with two arguments - FIRST VALUE and Xe DACE first of 

all attempts to analyse the word VALUE without taking into 

consideration the context in which it appears. Since 

VALUE has not been analysed prior to the current line, it 

is assumed that it is used in this line as a variable. 

Hence at this stage, the analysis of VALUE is identical to 

its analysis of the following statement: 

SET VALUE TO 3 (5.10) 

The phrase FIRST VALUE is then considered. In this 

example because VALUE has been analysed as a single 
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The design 

(DS1) 
(DS2) 
(DS3) 
(DS4) 
(DSS) 
(DS6) 
(DS7) 
(DSB) 
(DS?) 

(DS10) 
(ps11) 

is as follows :- 

GET FIRST VALUE INTO X ## 
INITIALISE SUM TO O AND I TO 1 
WHILE X IS NOT EQUAL TO oO 
DO 

ADD THIS VALUE TO SUM SO FAR #* 
INCREMENT [ 4# 
GET NEXT VALUE 

OD 

DIVIDE THE SUM OF VALUES 
BY THE NUMBER OF VALUES #* 

OUTPUT THE RESULT 
Hee 

A coded form of the design is:- 

  

  

  

0 ‘BEGIN INT 1, SUM, Xi 
a READ (X) i 

2 SUM := 0; 

3 1:2 i; 
4a ‘WHILE X /= 0 

3 ‘DO SUM SUM + Xi 
6 T:= T+ 3 

a READ (X) 

8 ‘OD i 

9 PRINT (SUM % I) 
10 ‘END 

Diagram 18 

Results From Analysing a Program Design Which 
Finds the Average of a List of Values 
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variable, the adjective FIRST is ignored. However given 

the following pair of statements: 

INPUT TWO VALUES (Som) 

MULTIPLY THE FIRST VALUE BY 36 (5.12) 

DACE would recognise that in (5.12) the use of FIRST is 

significant and would use it to distinguish between the 

two variables in (5.11). The second argument of (0S1) - 

X - is an unrecognised word and syntax analysis has shown 

that in this example it has been used as a variable. 

After analysing these two arguments their meanings are 

represented by the following three assertions: 

[#var VALUE vj (5.13) 

[#vaR x v2] (5.24) 

[4FREFV VALUE = (V1) J (5.15) 

the last of which is an intermediary assertion indicating 

that VALUE is used to refer to a variable of the same 

name. The meanings of FIRST VALUE and X are then 

considered together, within the context of a read design 

statement and in so doing it follows that in this context, 

VALUE is used not as a variable but as a reference to the 

contents of Xe Consequently assertion (5.13) is erased 

and the intermediary assertion (5.15) is amended to: 

(HREFV  vALUE (v2)] (5.16) 

The meaning of the current line is then denoted by the 

following representation of an ALGOL 68C read statement: 

fH#ReaD (v2) asi) (3.27) 

(0S2) is a design statement which illustrates one of 

the weaknesses of pre-semantic analysis. The amended 

syntax tree of this statement is comprised of the 

following two structures: 
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[#tass INITIALISE (( 4#VAR(SUM))) TO 

(( #CONST(0)) ( #VAR(T)))] (5.18) 

[#ass NILL NILL TO (( #CONST(1)))] (5.39) 

However in order to convey the correct meaning the 

amended syntax tree should contain the following: 

[#kaSS INITIALISE ((#VAR(SUM))) TO 

(( 4#CONST(0)) )] (5.20) 

[HASS INITIALISE (( #VAR(T))) TO 

(( ##CONST(1)) )] (5-21) 

The vrincipal reason why (5.29) and (5.21) are not 

produced is that DACE amends the syntax tree in a single 

mass. Consequently the decision as to whether an 

argument appears on the left hand or right hand side of an 

assignment statement is often unclear at this stage. 

For instance, because words such as BOTH and RESPECTIVELY 

are effectively ignored in the following two statements, 

the use of COUNTER3 is ambiguous until it is considered 

within the overall context of the statement: 

INITIALISE COUNTER1 AND COUNTER2 TO 

1 AND COUNTER3 RESPECTIVELY (5.22) 

INITTALISE COUNTER1 AND COUNTER2 BOTH 

TO 1 AND COUNTER3 TO 2 (S523) 

In statement (5.22) the value of COUNTER3 is being 

used, viz: 

COUNTER1:= 1; COUNTER2 := COUNTER3; (5.24) 

whereas in (5.23), COUNTER3 is being assigned a value, 

VEZ 

    COUNTER1:= 13; COUNTER2 :=13; COUNTER3 (5.25) 

In order to produce structures (5.29) and (5.21) the 
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results would need to be revised at the end of statement 

(NS2), that is DACE would need to undertake more than one 

pass of a syntax tree (c.f. single and multiple pass 

compilers). However if DACE was extended to do this 

then syntax and semantics may have to be integrated as 

well. For example, given the statement: 

SET A AND B TQ C AND /P AND E TO 1 (5.26) 

it is unclear whether this means: 

Ai SB ee Cs Hits 25 ly (5.27) ox, 

  

al 

  

Aoeme Ce. Bom De 1; (5.28) 

A decision between these two alternatives could be based 

on, for instance, whether or not the variable D had been 

assigned a value prior to the current line. Tf it had, 

but that value had not been used, then statement (5.28) 

would be chosen instead of (5.27). However this approach 

is obviously based on a dubious assumption. Since the 

analysis of statements such as (DS2) and (5.26) is 

complex, an approach based on this method would require 

considerable research for its implementation and 

evaluation. 

However, since the amended syntax trees shown in 

(5.18) and (5.19) are produced, DACE has two class 

instances which recognise that these particular structures 

actually mean the same as (5.29) and (5.21). The 

arguments SUM, 9, IT and 1 are all considered in a similar 

manner to the arguments of the previous read desian 

statement. That is, a first attempt is made at their 

implementation which may be subsequently revised in the 
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light of more information. Hence a first attempt to 

analyse SUM assumes it is a variable name which in this 

case happens to be correct. However, if a program 

design specifies that the values held in the elements of 

an array are to be added together and then the following 

statement is met: 

OUTPUT THE SUM (529) 

DACE will revise the initial assumption and will determine 

correctly that SUM refers to the previous arithmetic 

operation rather than a variable name. 

The word TO in statements (DS2) and (053) is analysed 

differently and hence two definitions of this word must be 

incorporated into the dictionary. Because (052) is an 

assignment design statement which starts with INITIALISE, 

TO has been analysed as a separator (see section 3.22.3). 

This form of analysis means that the semantic analyser is 

able to determine which of the arguments SUM, 0, I and 1 

appear on the left hand side and right hand side of an 

assignment statement. Consequently whenever TO is used 

as a separator its role is significant and therefore 

cannot be ignored. However the meaning of (DS3) can 

still be derived even when IS and TO are ignored. Hence 

according to FAPD the use of TO in (053) is found to be 

insignificant and as a result it is discarded before the 

semantic analyser is entered. 

(0S5) is a statement which DACE has recognised will 

be implemented as an arithmetic expression. Again the 

arguments are considered individually with VALUE being 

the first to receive attention. In order to be consistent 

DACE must be able to detect the previous analysis of VALUE. 
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This is achieved by referring to the intermediary 

assertion (5.16) which shows that VALUE has previously 

been used to refer to X. Therefore the assumption is 

made that VALUE retains the same role in statement (OSS). 

Since the words SU and FAR have not been met 

previously DACE must consider whether they could be user 

defined variable names. However since they do not comply 

with the grammar of a program design they are redefined as 

words that can be ignored and hence they are discarded 

before semantic analysis is initiated. After success-— 

fully forming the ALGOL 68C arithmetic expression corres— 

ponding to the current line, it must be incorporated into 

an assignment statement. Because (055) is within a loop, 

DACE recognises that this describes a summation and there- 

fore requires the following form of an assignment statement: 

SUM := SUM + X (5.30) 

In order to do this DACE considers if there are any 

arithmetic expressions of the following forms which will 

be executed on each loop iteration: 

sum + variable name> (5.31) or 

TOTAL + <variable name> (5.32) 

Hence if the statement had been, say: 

ADD THIS WALUE TO A (S205) 

then DACE would have created the following statement: 

TORO] : X +A (5.34) 

where IDRO1l is a variable name generated by the system. 

(056) is assumed to mean: 

INCREMENT Te Yeto (5.35) 

Since this appears within the loopbody, it is assumed by 

DACE that I is a loopcounter which is used to define the 
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number of times statements (0S5) and (DS7) have been 

executed. 

(057) is very similar to (0S1) except that the former 

does not specify the name of the variable into which the 

NEXT VALUE should be assigned. Since VALUE has been used 

previously in connection with the variable X then the NEXT 

VALUE is obtained by using a READ statement and assigning 

the inputted value to the same variable X. 

(0S9) shows how SUM has been used in a different 

manner to its use in previous statements. Previously, 

SUM had been used as a noun but in the current statement 

its meaning has been derived by considering it within the 

context of the following phrase: 

SUM OF VALUES (S550) 

Its use in this context implies that an arithmetic 

operation is to be performed. Consequently OACE attempts 

to form an arithmetic expression in the same way that it 

would for a statement such as: 

( FIND THE ) SUM OF A AND B (5237) 

Analysis of (5.36) indicates that a single variable, 

namely X, is being summed and that this cannot be 

represented by an arithmetic expression similar to the 

one considered for example in (5.33). As a result 

previous lines are considered to see if they can provide 

information which will facilitate the analysis. In 

doing so it is found that the variable SUM has been used 

previously to store the sum of consecutive values read 

into X. Similarly in order to derive the meaning of 

NUMBER OF VALUES, DACE looks back for any variables 
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incremented at the same time that a value was read into 

X in the loopbody. Once I is found the appropriate 

arithmetic expression can be formed and incorporated into 

an assignment statement. 

(0510) is a print statement with one argument - 

RESULT. In a similar way to its analysis of SUM and 

VALUE, DACE first attempts to analyse it as a variable 

name. This meaning is rejected when it is considered 

within the context of the print statement, and an alter- 

native meaning is considered, namely that RESULT refers to 

some previously defined value. However, because there is 

no previous reference in the design to RESULT, then the 

meaning of (0S10) is revised to: 

  

PRINT THE RESULT (OF A PREVIOUS O ATION) (5.38) 

Since the last operation was the arithmetic expression of 

the previous line DACE assumes that the user intends the 

result of this operation to be printed. If the results 

of analysing (089) and (0510) were now printed, the code 

generator would produce: 

IOROL := SUM % I; (5.39) 

  

PRINT ( IORO1 ); (5.40) 

where IDROl is a variable name generated by DACE. However 

because the assignment statement has been generated by the 

System and not specified by the user, DACE combines these 

two statements into the single statement shown in line 9 

of the coded version of the design. 

The results of diagram 18 show that the methods used 

by DACE are adequate for analysing this design. However 

the following points should be mentioned in conclusion: 

a) because VALUE has been used throughout to refer to a 
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b) 

c) 

single variable, DACE has not used the adjectives 

FIRST, THIS and NEXT to help in the analysis of lines 

(0S1), (0S5) and (0S7) respectively. Consequently 

line (0S7) for instance would have produced a 

similar result if it had been written: 

GET A VALUE (5.41) 

This is perfectly adequate for this example. How- 

ever if VALUE had been used to refer to more than 

one variable then DACE would have realised the 

significance of an adjective much as FIRST and would 

have included it in the analysis; 

in order to derive the meaning of SUM OF VALUES and 

NUMBER OF VALUES in line (DS9) reference had to be 

made to previous lines in order to associate their 

meaning with SUM and I respectively. The definition 

of these variables is then assumed by DACE to take 

the form shown in lines 5 and 6 of the coded version 

and any other definitions that may have been given in 

the program design are ignored; 

the same representation is given to the meanings of 

VALUE and VALUES ie (V2) where v2 is the assertion 

name of the variable X, viz: 

fevaR =x v2) (5-42) 

Consequently if the loop had been followed by a 

statement such as: 

IF THE VALUES ARE EQUAL TO 5 

THEN one or more design statements 

FI (5.43) 

then DACE would have considered this to mean: 
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5.3 

if iXe= $ 

THEN meaning of the design statements 

FI (5.44) 

which may not have been what the user intended. To 

remedy this situation, one possibility is to represent 

the meaning of VALUES by a list of the form: 

(V2 2 wren 0 VD) (5.45) 

where V2 is the name of assertion (5.32) above. 

When the meaning of VALUES (ie (5.45)) is considered 

within the context of the boolean expression in 

statement (5.43) it is apparent that the user wishes 

to test whether all the values held by X are equal 

ta 15 By using (5.45) to represent VALUES it is 

evident that the position of (5.43) is in error and 

that it should have been incorporated into the 

loopbody. 

Example 3 

Let us now consider a set of results which show that 

during analysis of a program design, an error has been 

detected which has led to a comment being generated about 

the coded version of the design. Comments are also 

generated: 

a) 

b) 

c) 

dg) 

to show the user that the results are inefficient 

(see Example 4); 

to show an omission (see comment 5 in Example 5); 

to indicate that the design cannot be analysed in 

full (see comment 3 in Example S); and/or 

to emphasise the relationship between the program 

design and the coded version of the design(see 

comment 6 in Example 6). 
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Diagram 19 contains a program design which is based 

on the following problem specification: 

design a program which inputs three values 

representing a measurement in yards, feet and 

inches. Convert these values into a single 

measurement in inches and output the result. 

Before discussing the results, let us consider the 

general format of the comments produced by DACE. Any 

comments are printed after the coded version of the 

design and are numbered for ease of identification. The 

majority of them also refer the user to the appropriate 

line number(s) in the code. The same comment always 

produces similar text, hence if the same error as that 

shown in diagram 19 is detected in another example, DACE 

will produce the same wording apart from different line 

numbers and variable name. Whenever an assertion 

representing a comment is generated it is linked to the 

results of semantic analysis by an assertion name and the 

appropriate line numbers are detected later during code 

generation. As each line of the program is printed, the 

code generator detects whether any comments have been 

assigned to the line. If so, then the assertion name is 

replaced with the current line number and the comment 

name is added to a list of any previous comments. Thus 

the position of a comment in the list is defined by its 

order of occurrence. Various lines in the program 

design are now discussed in order to show how the results 

have been produced. 

(0S1) is recognised as a statement that will be 

implemented as a READ statement. From the results of 
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The design is as follows :- 

(DS1) INPUT THREE NUMBERS #* 

(DS2) MULTIPLY THE FIRST NUMBER BY 36 
AND ASSIGN THE RESULT TO INCHES ## 

(DS3) MULTIPLY THE SECOND NUMBER BY 12 
AND ASSIGN THE RESULT TO INCHES ## 

(DS4) ADD THE LAST NUMBER TO THE VALUE OF INCHES 
SO FAR AND OUTPUT THE RESULT 

(DSS) HEH 

A coded form of the design is:—- 

° ‘BEGIN “INT IDROS, IDRO2, IDRO1, INCHES 
1 READ (IDROS, IDRO2, IDRO1) ; 
2 INCHES := IDROS X 36; 
Sg INCHES := IDRO2 X 12; 
4 PRINT (IORO1 + INCHES) 
Ss “END 

The following are some comments on the above:— 

1 Re Lines 2 and 3: The value assigned 
to the variable< INCHES > 

has been overwritten without being used 

Diagram 19 

Results From Analysing a Program Design Which 

Converts Yards, Feet and Inches Into Inches 
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pre-semantic analysis the first item that the semantic 

analyser attempts to analyse is NUMBERS. Since this has 

not been analysed prior to the current line, DACE considers 

it to mean a list of integer variables, the length of 

which is undefined. How can such a list be suitably 

represented? Since Dace's analysis of phrases such as 

ONE NUMBER, TWO VALUES etc. is confined to those which 

contain words (such as ONE and TWO) whose equivalent 

numerical value is in the range 1 to 10, a list of 

variables of undefined length can be represented by a 

list which is greater than ten elements in length. 

Consequently a list of undefined length is represented by; 

(vl v2 west.) (5.46) 

where each element is the assertion name of a variable, 

viz: 

(4#evaR ontLtL vl J (5.47) 

(EVAR Nike v2 J (5.48) 

etc. : 

[#vaR NILL vil J (5.49) 

After considering the phrase THREE NUMBERS, this list is 

shortened to (Vl V2 V3) and all the variables represented 

by the assertion names V4 to V1ll are discarded. 

From the coded version of the design it can be seen 

that DACE has generated the names IORO1, IORO2 and IORO3 

to denote the variables relating to THREE NUMBERS. 

Generally speaking, DACE produces system defined variable 

names by using a special LISP function which it 

initialises to IDROO. Because this LISP function 

restricts all generated names to a length of five 

characters, any names generated by DACE must lie within 
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the rage IORO1, IDRO2 to IORSS. 

(082), (053) and (054) are all similar since they 

actually comprise two design statements joined by the 

conjunction AND. Pre-semantic analysis has detected 

this and has divided each of them into two parts. 

Consequently the semantic analyser has considered each 

part in turn before combining the results into a single 

statement in the same way that the results of (DS9) and 

(0S10) were combined in Example 2. 

These three lines also illustrate the point made in 

the previous section about the significance of adjectives. 

In this example FIRST, SECOND and LAST are all used to 

define which of the THREE NUMBERS is being referred to. 

Both the previous and current examples also contain words 

and phrases, the meaning of which can only be derived by 

considering previous lines in the program design. In 

this example DACE must consider the wider context in order 

to derive the meaning of RESULT in (052), (DS3) and (054). 

To achieve this, the semantic analyser maintains a list of 

those variable names relating to the last three arithmetic 

expressions mentioned prior to the current line. By 

doing so the meaning of a word such as RESULT, which is 

often used in program designs, can be derived without 

having to undertake an expensive search of preceding lines 

each time it is used. In Example 2 the meanings of 

phrases such as SUM OF VALUES and NUMBER OF VALUES were 

also derived in a similar manner from notes made by the 

semantic analyser when the following statements were 

formed in the loopbody:



SUM := SUM + X (5-59) 

ieee ted (55)54,) 

Generally speaking notes are made about those variables 

which are defined implicitly eq NUMRER OF VALUES in 

Example 2, rather than through an explicit definition eg 

INCREMENT I in Example 2. 

The principal feature of this example is the way in 

which the comment relating to the variable INCHES has 

arisen. An obvious way of doing this would be to watch 

for consecutive pairs of statements, which assign values 

to the same variable. Whilst this approach would be 

adequate for this example DACE uses a more general method 

which can detect assignments to the same variable even 

when several statements senarate the assianments. The 

basis of this method is that any variables defined in a 

read or assignment statement should have these values 

used before the variables are redefined. For instance in 

the current example DACE notices from (DS1) that the first 

value read in is subsequently used in (NDS2) and thus any 

subsequent modification of FIRST NUMBER would be accented. 

However since the variable INCHES is assigned a value in 

(DS2) and then again in (NS3) before the first value has 

been used, a suitable comment is generated. 

The method outlined above is complicated when we 

come to consider loops and conditionals. For instance 

consider the use of the variable RESULT in the following 

fragment of a program:



RESULT := a value (Se52:) 

IF condition is true (5.53) 

THEN (5.54) 

RESULT := a value (5.55) 

FI; (5.56) 

RESULT := a value C5657) 

DACE does not consider that the assignment in (5.55) 

overwrites the assignment in (5.52) since the former is 

contained within a conditional construct and thus the 

possible execution of (5.55) will be determined at run- 

-time. In this respect statements (5.52) and (5.55) 

represent alternative values of RESULT. However when 

statement (5.57) is analysed DACE will make two comments 

indicating that both the previous values have been 

overwritten. To accomplish this DACE has noted that 

statement (5.55) is contained within a conditional whereas 

statements (5.52) and (5.57) are not. Once it is noted 

that statement (5.57) is not contained in either a loop 

or a conditional it is evident that the execution of this 

statement is unconditional. Consequently the execution 

of this statement must effectively overwrite any values 

assigned to the variable RESULT in previous lines. The 

consequences of this also need to be considered in the 

following program fragment: 

RESULT := a value; (5.58) 

IF condition is true (5.59) 

THEN (5.69) 
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variable name := RESULT (S268) 

FI; (5.62) 

RESULT := a value (5.63) 

In this situation DACE gives the user the benefit of the 

doubt and even though the conditional may not be entered 

it is assumed the value assigned to RESULT has been used 

in line (5.61) before the variable RESULT has been 

redefined in (5.63). Consequently DACE would not 

generate a comment for a section of code similar to this. 

From the discussion of this example four conclusions 

can be drawn: 

a) firstly it has been emphasised how DACE often makes 

a first attempt at analysis which may be subsequently 

revised as the context widens. This approach is 

similar to that adopted by Sussman [Sussman 1975] 

for his automatic programming system — HACKER; 

as semantic analysis proceeds, DACE makes assertions, 

the form of which is unique and predefined, to 

denote those variable names which it considers may be 

referred to by words or phrases rather than by name. 

For instance, a list of variable names is maintained 

so that whenever RESULT is met in a similar context 

to that found in lines (NS2), (NS3) or (DS4) the 

appropriate variable name can be derived. An 

alternative approach would be to search through 

preceding lines in an attempt to determine the 

meaning of such words and phrases. This approach 
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c) 

would be more difficult to implement since the 

first attempt to derive the meaning of a word such as 

RESULT ignores the context in which it is used. 

Hence at this stage of the analysis it cannot detect 

easily those results obtained from analysing 

preceding lines. A search could be made only when 

the entire line is considered within the overall 

context of the design. Furthermore, the results may 

have to be modified when considered in this wider 

context; 

although words similar to RESULT are first considered 

in isolation, their true meaning can only be derived 

after considering them in a wider context. For 

instance in (DS4) it is only after considering 

RESULT within the context of the statement OUTPUT 

THE RESULT that it is realised that the user wishes 

to access some previously defined value. In 

contrast, in the following statement the context of 

RESULT indicates that RESULT is being used as a 

variable name: 

SET RESULT TO 0 (5.64) 

constructs such as the loop and conditional 

complicate the process of determining whether a 

variable has been incorrectly overwritten before it 

is used. Because these constructs alter the top- 

-down execution of consecutive lines the implications 

of forming an assignment statement say, can only be 
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determined after taking into account whether or not 

that statement has been found in a loop or a 

conditional statement. 

5.4 Example 4 

Diagram 20 shows a program design which has been 

produced to solve the following problem: 

Fibonacci numbers are defined as: 

yy 25535 5578, IS. sete. 

OF Unia = UN + Un aa where U; = Ua = 1. Design 

a program to generate the first fifteen numbers 

of this series. 

Let us consider the program design in some detail. 

(DS2) is comprised of an assignment and a print design 

statement. The first of these constructs is similar to 

that discussed in Chapter 3. The word BOTH is 

unrecognised and consequently an attempt is made to 

analyse it as a variable name. However since LASTRESULT 

was analysed as a variable name for similar reasons and 

the grammar specifies that two variable names cannot be 

used consecutively, it is concluded that BOTH has little 

significance and thus can be discarded. After analysis 

of line (DS2) has been completed, DACE has determined that 

RESULT appears on the left hand side of an assignment 

statement and consequently it is being used as a variable 

name. This is in contrast to its use in the previous 

two examples where it was used to refer to the result of 

a previous operation. Consequently when RESULT is found 
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The design is as follows :— 

(DS1) INITIALISE J TO 2 HE 
(ps2) SET RESULT AND LASTRESUI.T BOTH TO 1 

AND PRINT THEIR VALUES 
(DS3) WHILE J IS LESS THAN 15 
(DS4) DO 
(ps5) OUTPUT THE TOTAL OF RESULT AND LASTRESULT 

AND ASSIGN IT TQ TEMP #% 
(DS6) SET LASTRESULT 10 RESULT 

AND RESULT 710 THE VALUE OF TEMP #4 
(DS7) INCREMENT J 
(DSB) OD 
(DS9) 
(DS10) #4 

& coded form of the design is:- 

  

    

    

oO ‘BEGIN “INT TEMP, LASTRESULT, RESULT, Ji 
1 a 2} 

2 RESULT i 
3 LASTRESULT := 1: 
4 PRINT (RESULT, LASTRESULT) ; 
3 ‘WHILE Woe eis 
6 “DO PRINT (RESULT + LASTRESULT? ; 
7 FeMP ULT 4+ LASTRESULT; 
8 LASTRESULT : + RESULT; 
2 RESULT TEMP; 
10 Jrs J 
it “OD 
12 ‘END 

The following are some comments on the above: — 

1 Re Lines 6 and 7 : The expression 
< RESULT + LASTRESUILT Shas been 

unnecessarily duplicated Only one is needed 

Diagram 29 

Results From Analysing a Program Nesiqn Which 

Generates the Fibonacci Series ee eee ee Se Ree 
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in (DS6), DACE assumes that reference is being made to 

the same variable. 

The analysis of the print design statement is 

important for the way in which the phrase THEIR VALUES has 

been analysed. Research into natural language 

understanding has shown that understanding pronominal 

references of this sort is very difficult. The method 

used by DACE is to keep a note of the last subject(s) 

mentioned in the current block. For instance when THEIR 

VALUES is analysed, DACE recognises that the variable 

RESULT and LASTRESULT were both mentioned in the current 

line and that J was the subject of the preceding line. 

Since the meaning of THEIR VALUES must be plural, RESULT 

and LASTRESULT are chosen instead of J. 

(DS5) shows how this technique has been used again to 

determine the meaning of IT. After forming the PRINT 

statement in line 6, the current subject and the one that 

IT is assumed to refer to, is then taken as the arithmetic 

expression contained in this statement. DACE recognises 

that the addition of RESULT and LASTRESULT has been 

carried out twice without either variable being assiogned 

a new value. Consequently, a comment to this effect is 

made, the text of which is sufficiently general to make 

the user reconsider how the coded version might be 

improved. Thus the following implementation would be 

more efficient: 

TEMP := RESULT + LASTRESULT; (5-65) 

PRINT (TEMP); (5.66) 
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To make this comment a technique has been used which is 

similar to that described in the previous section for 

detecting that the value of a variable has been over- 

-written before it has been used. Whenever an arithmetic 

expression is formed NACE makes a note of all the variable 

names used in that expression. If that expression is 

then subsequently used without any of the constituent 

variables being redefined, then an identical value 

ensues. In this case, DACE would generate an appropriate 

comment regardless of the senaration between the two 

invocations of the expression. 

The principal features of this set of results are: 

a) that DACE has analysed RESULT correctly as a variable 

name. This is in direct contrast to its use in 

previous examples; 

b) that DACE has detected a statement in line (ps5) 

which is computationally inefficient; 

¢) the way in which the meanings of THEIR VALUES and 

IT have been derived. 

Considering these three features, the derivation of the 

meanings of pronominal references presents the greatest 

difficulty. To derive their meaning, the ideal situation 

would be if DACE made use of the followina: 

i) a knowledge of the results obtained from analysing 

Previous lines; and 

ii) a knowledge of the problem specification. 

For example, if we consider the phrase THETR VALUES in 
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line (0S2) we know from (i) that this phrase must: refer 

to a combination ofJ, RESULT and LASTRESULT and further- 

more that RESULT and LAST RESULT are mentioned within the 

same line. However it is from (ii) that we derive most 

of the significant information. From the problem speci- 

fication we know that the Fibonacci series entails adding 

successive terms. Since RESULT and LASTRESULT denote 

the first two (and other) consecutive terms we can deduce 

that it is THEIR VALUES which are to be printed. In 

terms of the results displayed in diagram 20, OACE has 

used approach (i) above, but not (ii). Chapter 3 has 

already stated that a knowledge of the problem specifi- 

cation is outside the bounds of FAPD and other consequences 

of this are discussed in section 5.8. 

5.5 Example 5 

So far all the examples discussed in this chapter 

have been analysed fully. However this fifth example 

illustrates how DACE may sometimes only Partially analyse 

a design. A partial analysis will result in a coded 

version of the design together with those design state- 

ments and/or phrases which DACE cannot analyse. The 

example shown in diagram 21 contains an array, which in 

terms of the constructs known to DACE, represents the 

most complicated, and therefore the most difficult, 

programming concept with which it can deal. The program 

design in diagram 21 is intended to solve the following 

problem: 

a data file comprises eleven integer values. 

Determine how many of the first ten values are equal 
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The design is as follows :- 

(ps1) INPUT TEN NUMBFRS INTO AN ARRAY ## 
(DS2) INITIALISE A COUNTER TO O 
(DS3) WHILE NOT END 
(DS4) DO 
(DSS) 
(DS6) IF NEXT ELEMENT IS EQUAL TO xX 
(DS7) THEN 
(DS8) INCREMENT THE COUNTER 
(DS9) FL 
(DS10) 
(pSii) OD 
(DS12) 

(DS13)  ### 

A coded form of the design is:- 

‘BEGIN “INT IDRO1, X, COUNTER; 
C1:10] “INT ARROL; 
IDRO1 := 1; 
‘WHILE IDRO1 <= 10 
“DO READ (ARROICIDRO1I) ; 

IDRO1 := IDROL + 1 
“ERY 7 
COUNTER := 0; 
‘WHILE ‘NOT < END > 
‘DG oe ARROLC< UNDEFINED >] = X 

‘THEN COUNTER := COUNTER + 1 
he 

‘OD 
“END 

The following are some comments on the above:— 

1 

2 

Re line 1 : An array < ARROL > of 10 elements has 
been declared 
Re lines 2 to 6: These lines have been generated 
in order to read 
values into the elements of the array < ARRO1 > 
Re line 8 : The design gives insufficient 
detail to analyse <END> 
Re line 9 : The design gives insufficient 
detail to analyse <UNDEFINED> 
Re line 9: The variable X has been used 
but it has not bean initialisad 
Re line 10 : The value assigned to the 
variable < COUNTER > has never been used 
The design does not contain any output statements 
Before the coded version could be run one or more 
PRINT statements need to be inserted 

Diagram 21 

Results From Analysing a Program Design Which 

Searches an Array 
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to the eleventh. An array should be used to store 

the first ten values and an integer variable for 

the eleventh. 

Let us consider the program design in some detail. 

(0S1) contains the first mention of an array. DACE can 

only handle a program design which uses a single array and 

consequently whenever the user refers to an array or an 

array element in a program design it is assumed that 

reference is being made to the same array. OACE could be 

extended to deal with program designs containing more than 

one array, however this would create problems of ambiguity 

unless the user specified clearly the array being referred 

to. To deal with such problems would require further 

considerable research effort. 

Since an array has not been mentioned prior to (051) 

the following assertions are made in its representation: 

[#aRRAY NILL (LBL) (UB1) al] (5.67) 

[#lweB 1 cta1j (5.68) 

(#upB oN uBl] (5.69) 

where assertion (5.67) shows that the array has been given 

the default name NILL. In the absence of any other informa 

tion it is assumed that the size of the array will be 

determined at the time of execution (see Example 6) and 

hence the default values of the lower and upper bounds are 

set to l and N respectively. However, once DACE considers 

the two arguments TEN NUMBERS and ARRAY together we can see 

from line 1 of the coded version that assertion (5.69) has 

been changed and the value of the upper bound has been 

revised to 10. The first of the comments illustrates how 

OACE will always refer the user to this array declaration 
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and that the code generator has named the array ARROL 

(c.f. IDRO1l for the integer variable). The results of 

analysing line (0S1) are shown in lines 2 to 6 inclusive 

of the coded version and the second comment has been 

produced so that the user can identify easily the code 

necessary for reading values into an array. Two other 

array operations known to DACE and for which the ALGOL 68C 

code can be given are: 

a) finding the sum of the values held in the elements 

of the array; and 

b) the printing of these values. 

(052) and (088) are statements which have used A and 

THE as the indefinite and definite article respectively. 

Lines 7 and 10 of the coded version show how these articles 

have been ignored and COUNTER has been analysed as a 

variable name. 

(0S3) represents a statement which DACE can only 

partially analyse. The third comment informs the user of 

this fact and lines 8 and 9 of the code show how those 

items which cannot be translated into the target language 

are printed in angled brackets. The word END has the 

same dictionary definition as COUNTER (and RESULT which 

has been met in previous examples) and so DACE treats them 

both in a similar fashion. At first DACE assumes that 

ENO has been used as a variable name. However from its 

position in the line (which is in direct contrast to the 

position of COUNTER in (DS2)), it is recognised that the 

user wishes to access some value. Consequently it 

interrogates previous lines for evidence that a variable 

called END has been assigned a value. Because no evidence 
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is found the assumption that END is a variable is revised 

and it is left as a word which is too general to be analysed. 

If END had been defined as a variable name then a comment 

similar to that of comment 5 would have been produced. 

Statement (DS6) has been only partially analysed 

because of the failure to analyse NEXT ELEMENT. This 

result is brought to the attention of the user in line 9 

of the coded version and comment 4. The term UNDEFINED 

in line 9 is a general term which DACE inserts into the 

program code when it cannot be established definitely 

that an item has been given a value, such as the array index 

in this case. The fact that it has only partially 

analysed this phrase can be attributed to two reasons. 

Firstly, whenever an array is used in connection with a 

loop DACE assumes the loop is used to access consecutive 

array elements. Consequently during the scope of the 

loop, statements of the following form are scanned for: 

<variable name> := <variable name> 

+ <constant> (5.70) 

where <constant> has an integer value of 1 and the 

<variable name> is used as the array index. However in 

order to use a variable name for this purpose the assign- 

ment (5-70) must not appear within a conditional statement 

since it must be executed on each iteration of the loop. 

This is necessary so that a variable such as COUNTER in 

line (DS8) is not used. This emphasises again the 

importance of considering statements within the context 

in which they are found. 

After analysing the loopbody, DACE has failed to find 

a statement similar to (5.70) and so it reconsiders the 
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boolean expression at the start of the loop. If this 

expression had given a more definite indication that the 

loop was being used to access successive elements of the 

array, then an assignment statement similar to that of 

(5.70) would have been generated so that the array index 

could have been inserted. The fact that the boolean 

expression in line (DS3) did not give any indication that 

the loop was being used to access successive elements of 

the array is the second reason why this line has been 

analysed only partially. The opposite case to that 

found here is dealt with in Example 6. The fifth comment 

also relates to (DS6) and in particular to the fact that 

X is treated, and indeed can only be treated, as a variable 

name. This may be contrasted with the analysis of a word 

such as END, which may or may not be a variable name, the 

actual decision depending upon the context in which it is 

found. 

The analysis of line (0S8) indicates that the variable 

COUNTER is redundant in this program design. This is 

brought to the attention of the user in comment 6. The 

technique used to achieve this has been described previously 

in Example 3. It is assumed that whenever a variable is 

defined it will never be used throughout the remainder of 

the program design. An assumption that DACE then tries 

to disprove. For example when line (0S2) was analysed, 

DACE noted that COUNTER was simply assigned a value and 

thus only appeared on the left hand side of an assignment 

statement. However as soon as the expression: 

COUNTER + 1 ($671) 

was formed as a result of analysing (058) it was noted 
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that COUNTER was now to be found on the right hand side of 

an assignment statement. Despite this DACE is able to 

determine from the single reference to COUNTER in line 

(DS8) that COUNTER has no Significance in this program 

design. 

This method of noting the definition and possible 

redefinition of variables is complicated by a loop 

construct because it alters the top-down control flow of 

the program. Reconsider for example the following loop 

which DACE produced in the previous example: 

WHILE J < 15 (5.72) 

'oo PRINT (RESULT + LASTRESULT); (5.73) 

TEMP := RESULT + LASTRESULT; (5.74) 

LASTRESULT := RESULT; (54,75) 

RESULT == TEMPS (5.76) 

hs ae (5677) 

‘op (5.78) 

If DACE had disregarded the control structure of the loop 

then it would have deduced incorrectly that the values 

assigned to LASTRESULT, RESULT and J had never been used. 

Consequently at the end of the loop DACE reconsiders the 

statements higher in the loop in order to detect that the 

values assigned to LASTRESULT and RESULT in lines (5.75) 

and (5.76) have been used elsewhere, in this case in line 

(5.73)and furthermore that the variable J has been used 

in the boolean expression of line (5.72). 

The final comment shows that DACE always expects a 

Program design to include a statement which will be 

analysed as a PRINT statement. Since DACE recognises 

that a program design is intended to be implemented as a 
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Program, the only way that the results can be described 

is by printing them. If DACE could analyse a design which 

a user intended to implement as a procedure say, then no 

print statements would be necessary since the results are 

returned to the main body of the program. On the other 

hand DACE does not require that a program design has an 

input statement. Example 4 which calculates the 

Fibonacci series illustrates that such a statement is not 

a prerequisite of a meaningful program design. 

Let us conclude this section by making two points 

about the method used to deal with arrays: 

a) DACE can only handle program designs which use a 

single, one dimensional integer array. According 

to the grammar of a program design there is no way 

that a user can specify the bounds of the array. 

Consequently it is assumed the lower bound is 

always 1 and the upper bound is given a default 

value of N (see Example 6) which may be revised in 

the light of subsequent analysis. If a program 

design does not contain a statement of this sort but 

uses a loop construct to read values into the array, 

then DACE does not derive the array bounds from 

information contained in the loop. Instead DACE 

assumes that in this situation the array bounds will 

be determined by the value of the variable N at run- 

time. It is felt that the user will derive the 

greatest benefit from this approach, since the 

results obtained from analysing the loop can now be 

used (see Example 6) to show the user those factors 
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which have influenced the range of elements accessed 

by the loop ; 

b) generally speaking the policy which DACE adopts 

towards analysing program designs which contain an 

array is that all elements of the array should be 

accessed. This reflects the common approach taken 

to the processing of arrays. Hence the analysis is 

concerned with operations on an entire array and 

expects a loop, for example, to access all elements 

in an array. The consequences of this are 

illustrated in Example 6. 

5.6 Example 6 

Diagram 22 shows an example of a program design which 

calculates the first N terms of the Fibonacci series where 

the value of N is determined at the time of program 

execution. The difference between this program design and 

that of Example 4, which also calculated the Fibonacci 

series, is that the current example stores the terms in an 

array before printing them. 

(0S1) illustrates that in order for DACE to declare 

an array it does not necessarily have to meet the word ARRAY 

in the program design. In this example the word ELEMENTS 

has led to three array assertions being made which are 

Similar to (5.67), (5.68) and (5.69) in the previous 

section. However unlike the previous example, line 2 of 

the coded version shows that the upper bound has not been 

revised and therefore the default value of N has remained 

throughout. Line 1 of the coded version illustrates how 

DACE always expects the value of N to be read in and 

alternative methods of assignment are not considered. 

Ta



The desi 

(DS1) 
(DS2) 
(DS3) 
(DS4) 

(pss) 
(DS) 
(DS7) 

A coded form of the design 

‘BEG 

N
Q
O
u
s
p
U
M
e
K
O
 

“END 

is gn 

SET THE FIRST 
WHILE NOT END 
DO 

as follows 

TWO ELEMENTS 
OF ARRAY 

Tos? 

SET THE CURRENT ELEMENT TO THE SUM OF 
THE PREVIOUS TWO ELEMENTS 

OD 
OUTPUT THE ARRAY 
HHH 

  

is: 

  

IN “INT IDRO2, IDRO1,N 
READ (N) 
C1:N] “INT ARROI: 
ARROICLI] := i 
ARROLC2I Li 
IDRO2 := 33 
‘WHILE IDRO2 <= N 
‘DO ARROLCIDRO2Z] := ARROLCIDRO2 —- 13 

+ ARROICIDRO2 —- 2]; 
IDRO2 := IDRO@ + 1 

Soba 

IDRO1 := 1i 
‘WHILE IDROL <= N 
‘po PRINT (ARROLCIDRO11) 

IDROL := IDROL + 1 

“OD 

Diagram 22 (continued on 
following page ) 

Results From Analysing a Program Design Which 

Ganoretes The Fibonacci Series by Using an Array 
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The following are some comments on the above:— 

2 

2 

Re lines 1 and 2: An array < ARROL > of N elements has 
been declared 
Re line 7 : IDRO2 has bexn used to index the array 
Consequently the first iteration of the loop 
references the eleament ARRO1ICSI 
If this was not intended or is an incorrect analysis 
change either the initial value of IDRO2 
or the index 
Re line 7 : IDRO2 - 1 has been used to index the array 
Consequently the final iteration of the loop 
references the element ARROICN — 1] 
If this was not intended or is an incorrect analysis 
change either the index or the boolean expression 
following WHILE 
Re line 7 : IDRO2 - 1 has been used to index the array 
Consequently the first iteration of the loop 

references the element ARRO1C21 
If this was not intended or is an incorrect analysis 
change either the initial value of IDRO2 
or the index 
Re line 7 : IDRO2 - 2 has been usad to index the array 
Consequently the final iteration of the loop 

references the element ARRON — 21 
If this was not intended or is an incorrect analysis 
change either the index or the bonlean expression 
following WHILE 

Re lines 10 to 14 : These lines have been generated 
in order to print 

the values held in the elaments of the array < ARROL > 

Diagram 22 (continued from 
previous page) 

Results From Analysing a Program Design Which 

Generates The Fibonacci Series by Using an Array 
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(DS2) contains the phrase NOT END OF ARRAY which is 

recognised as meaning the loop is being used to access 

consecutive elements of the array. For reasons outlined 

at the end of the previous section it then expects the 

first iteration to access the element specified by the 

lower bound of the array (ise. ARROL {.) ) and the last 

iteration to access the element specified by the upper 

bound of the array (i.e. ARROL {n] Oe The previous 

example illustrates how DACE scans the loopbody for an 

assignment of the following form: 

<variable name> := <variable name> + <constant> (5.79) 

where “variable name> is used as an index to the array 

and <constant> is assigned an integer value of 1 so that 

consecutive elements of the array may be accessed. It 

was also stated that if such an assignment was not found, 

but that there was sufficient evidence to indicate that 

the loop was being used to index consecutive elements of 

the array, then an assignment similar to (5.79) would be 

generated. Since the current line makes an implicit 

reference to the upper bound of the array this is 

considered sufficient evidence to produce the assignment. 

It was not undertaken in the previous example because a 

phrase such as NOT END would imply that the loop was to 

be terminated according to some other criterion. DACE 

analyses the current line as having the following meaning: 

<variable name> <= N (5.80) 

If a statement such as (5.79) is found in the loopbody 

then the variable name in (5.80) can be replaced by the 

actual name. 
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(054) is important because it shows how phrases such 

as CURRENT ELEMENT and PREVIOUS TwO ELEMENTS are analysed. 

Because of DACE's expectations about loops and arrays the 

index of the elements corresponding to these phrases is 

considered relative to: 

arRol [ <variable name> J (5.81) 

where variable name is the same as that defined and found 

tn(S.79)i. The meanings of CURRENT and NEXT ELEMENT are 

both represented as (5.81), since the latter is assumed to 

imply that successive iterations of the loop will consider 

successive elements of the array. In a similar manner 

the phrase PREVIOUS TwO ELEMENTS is assumed to mean those 

elements which were indexed on the previous two iterations 

of the loop and which therefore can be represented by the 

following format: 

ARROL [<variable name> - 1) (5.82) 

ARROL [<variable name> - 2) (5.83) 

Whenever array elements of this type are met, DACE notes 

the value of <variable name> that is expected on the 

first and last iterations of the loop. For example when 

(5.81) is met it denotes that <variable name> should be 

initialised to 1 before entry to the loop and contain the 

value N on the last iteration of the loop. If this situa- 

tion is found in the program design, then the results of 

the analysis meet DACE's expectations about arrays and 

loops. However the expectations of these values have had 

to be revised by VACE after consideration of (5.82). The 

variable name should now be initialised to 2 before 

entering the loop. If these expectations are met then 
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the following situation will hold true: 

  

Array element Array element 

accessed on the accessed on the 

first iteration last iteration 

of the loop of the loop 

ARRO} [<variable name>] arror [>] arRoi [nN] 

ARROI [<variable name> 

= il appnr [1] ARRON [x-1] 

which illustrates DACE's policy of trying to ensure that 

somewhere within the loop, the first iteration will access 

arro1[1] and the last iteration will access arRo1[N]. 

From this discussion it is now apnarent that once (5.83) 

has been considered NACE expects the variable name to be 

initialised to 3 rather than 2. Fach of the elements 

(5.81), (5.82) and (5.83) have only affected the 

exnectation of the initial value of the variable name. 

However if an element similar to: 

ARRO1[<variable name> + 1] (5.84) 

is met then PACE would expect variable name to have a 

value equal to N-1 rather than N on the final iteration 

of the loop. Comments 2, 3, 4 and 5 of the results 

summarise those features of arrays which concern PACE and 

which have been described above. Comments 2 and 4 relate 

to the first iteration of the loop and point out how the 

index can be affected by either the initial value of the 

variable or the exnression used as the array index. 

Conversely comments 3 and 5 are concerned with the 
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elements accessed on the last iteration of the loon and 

point out how these can be altered by changing either the 

boolean expression at the start of the loop or the 

expression used as the index. 

(MSS) marks the end of the loop and it is at this 

stage that the variable name will be replaced by the 

actual name of any variable which has been included in an 

assianment statement similar to (5.79). The results 

show this has not been found and hence DACE has created a 

variable, with the name IDRO2, for this nmurnose. Line 

5 shows how it has been initialised correctly and line 8 

shows that the assignment statement has been aenerated 

correctly. 

(NS6) shows another array operation which DACE is 

capable of analysing, namely printina the values held in 

the elements of the array. The final comment has been 

produced in order to refer the user to that portion of 

the code which carries out this operation. 

In addition to the conclusions drawn at the end of 

the previous section concerning DACE's policy towards 

arrays, the following may be added: 

a) because the size of the array is undefined, the code 

generator has automatically included a READ statement 

prior to its declaration. At present DACE cannot 

identify if the design contains a statement for this 

purnose,. For instance if the first line of the 

design had been: 
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b) 

5.7 

READ A VALUE INTU N (5.85) 

then DACE would not have associated variable N with 

the size of the array even if this had been the 

implication of the statement. Generally speaking 

a statement such as (5.85) is considered too vague 

to associate with the definition of array size. 

DACE would require a more specific statement, such as: 

READ THE SIZE OF THE ARRAY INTO N (5.86) 

in order to associate the variable N with the upper 

bound of the array; 

the comments which LACE makes about array elements 

used in a loop are based on the fact that there is 

no certain way of deciding whether a phrase such as 

NEXT ELEMENT means: 

ARROL [ <variable name> ] (5.87)! or 

arrol [ <variable name> + 1] (5.88) 

since the actual assignment will depend upon the 

context of the loopbody. Consequently the comments 

have been chosen deliberately to display this 

indecision and the final decision on correctness is 

left to the user. The important point here is that 

DACE brings to the attention of the user the effect 

on the array index of choosing certain operations. 

Since an array index that is outside the bounds of 

the array is a common error, it is hoped that this 

form of analysis will help to avoid such a situation. 

Example 7 

Diagram 23 is a further example of a program design 

which shows how OACE deals with arraySe This design has 

been produced in accordance with the following problem 
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The design is as follows --— 

(DS1) 
(DS2) 

(DS3) 
(DS4) 
(DS5) 
(DS6) 
(DS7) 
(DSB) 

(DS?) 
(DS10) 
(DS11) 
(DS12) 
(DS13) 
(DS14) 
(DS15) 
(DS14) 
(DS17) 
(DS18) 
(DS19) 

INPUT TEN NUMBERS IMIO AN ARRAY ## 
SET RESULT TO THE VALUE OF THE LAST ELEMENT 

OF THE ARRAY AND INITIALISE FOUND 
WHILE I IS LESS THAN 11 AND NOT FOUND 
DO 

INCREMENT I 
IF NEXT ELEMENT IS LARGER THAN x 
THEN 

SET FOUND TO TRUE AND RESULT TO 
THE VALUE OF THE PREVIOUS ELEMENT 

Er 

OD 
IF RESULT IS EQUAL TO x 
THEN 

PRINT # ARRAY CONTAINS X # 
ELSE 

PRINT # ARRAY DOES NOT CONTAIN X # 
Gd 

HE 

& coded form of the design is:- 

N
O
N
G
u
U
S
U
N
H
O
 ‘BEGIN “INT IDROL, X, I, RESULT: 

“BOOL, FOUND; 
C1: 10] “INT ARROL; 
IDROL := 3; 
MBILE. IDROL <= 10 
‘DQ READ (ARROICIDROLI) ; 

  

IDROL := IDRO1 + 1 
“OR 
RESULT ARRO1010]1; 
FOUND < UNDEFINED > 

  

‘WHILE I < 11 “AND ‘NOT FOUND 
‘DO Pore I #1; 

IE ARROICI] > xX 
‘THEN FOUND : “TRUE 

RESULT := ARROICI - 1] 

    
  

‘FL 
70D 3 

Diagram 23 (continued on 
following page) 

Results From Analysing a Program Design Which 

Searches a Sorted Array ate eee Eee RAY, 
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i7 

i? 
20 
21 

The 

se (a RESULT = x 
“THEN PRINT ("ARRAY CONTAINS kK") 

PRINT ("ARRAY DOES NOT CONTAIN Xx") 

  

‘EL 

“END 

following are some comments on the above: - 

Re Line 2: @n array < ARROI > of 10 elements has been declared 
Re lines 3 to 7: These lines have been generated in order te read 
values into the elements of the array 
Re line 9: The design gives insuffici 
detail to enalyse UNDEF INED>S 
Re lines 10 and 11 : The variable 1 has been used but it has not been initialised 
Re line 11: {he variable I has been used 
but it has not 
been initialised Variables used in this manner are usually initialise prior to entering the loop Re line 12: I has been used to index the array Consequently the final iteration of the loop references the element ARROLC1i] 
This will cause an execution error since 
the index is outside 
the bounds of the array In order 
to rectify change either 
the index or the boolean expression following WHILE Re lines 12 and 17 : The variable X has been used 
but it has not been initialised 

  

Diagram 23 (continued from 
previous page) 

Results From Analysing a Program Design Which 

Searches a Sorted Array Soo 8 sorted Array 
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specification: 

read ten integer values, which have been sorted into 

ascending order, from a data file. Another value 

can then be read in and the program should determine 

whether or not this value is contained in the sorted 

The program design shows how this has been solved by 

reading ten values into an array and by using a loop 

structure to search through the array elements for the 

given value. Since the values are in ascending order, 

the loop shows how the search can be terminated without 

necessarily considering all the elements. 

Let us consider those lines within the design which 

illustrate points not yet discussed. (082) and line 9 

in the coded version show that INITIALISE FOUND has been 

partially analysed. In this respect DACE has inserted 

a general term - UNDEFINED — to show that the assignment 

is incomplete. 

(0S3) and (DS2) show alternative uses of the word 

AND. In (DS2) it has been used as a conjunction and 

consequently has been discarded before semantic analysis 

was initiated. However lines (DS3) and 10 illustrate 

AND is always implemented as a boolean operator when it 

appears in the boolean expression of a loop or conditional. 

(055) corresponds to line 11 in the coded version and 

for reasons outlined in previous sections the variable I 

has been used to index the array elements in lines 12 

and 14. The fourth and fifth comments also relate to 

this variable. The first of these points out that in 

order to avoid an execution error, I should have been 
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assigned a value prior to the current line i.e. line 10. 

The fifth comment supplements the fourth and has been 

made because DACE has recognised that this special form 

of an assignment statement has been included in the loop- 

body as a possible array indexing operation. 

(056) contains the phrase NEXT ELEMENT and because 

the appropriate variable name was discovered in the 

previous line, DACE has analysed this to mean: 

ARROl [1] (5.89) 

instead of the more general form: 

ARROL [<variable name> ] (5.90) 

which was necessary in the previous example. The 

sixth comment brings to the attention of the user the fact 

that line 12 of the coded version will cause an execution 

error on the final iteration of the loop. In making 

this comment DACE has shown that the techniques discussed 

in the previous section are sufficiently general to cater 

for different loop terminating conditions and array 

indexing operations. More specifically, DACE is capable 

of recognising that the array elements accessed on the 

final iterations of the following loops are the same: 

WHILE I < 11 (5.91) 

"pO Tepe titles (5.92) 

statements which reference 

arrol [1] (5.93) 

"00 (5.94) and 

VUE TUE St <a ae (5.95) 

"po statements which reference 

arrol [1] (5.96) 
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Ls ean (S.97,) 

"Od (5.98) 

The absence of a comment about the array index in line 14 

also shows that DACE has correctly analysed that in the 

final iteration of the loop ARROL (10) will be accessed. 

To deduce this it has to take into consideration the 

actual form of the boolean operator used at the start of 

the loop, the position of the assignment statement (ise. 

the one in line 11) within the loopbody and the arith- 

metic expression used to index the array. 

In addition, although this is not shown by the 

results, DACE has recognised that in order to reference 

the first element of the array on the first iteration of 

the loop, I should be initialised to 2, Because the 

user has specified the variable I both in the boolean 

expression in (0S3) and the statement in (DSS) it is 

considered that the actual initialisation of I should be 

given by the user. Similarly, although there is no 

reason why DACE could not be extended to complete the 

assignment in line 9 it is considered that since the user 

has partially specified the assignment statement, he 

should be encouraged to complete the specification. 

5.8 Example 8 

Some of the program designs previously considered in 

this chapter have contained statements which DACE is not 

capable of analysing or for which an incorrect analysis 

had been made. Let us now consider an example of a 

Program design which contains statements that cannot be 

analysed because they are beyond the scope of FAPO. 

This example has been included to show how DACE deals 
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with such a situation. Oiagram 24 shows a program 

design based on the following problem specification 

calculate the income tax to be paid by each employee 

of a company. The information available for each 

employee comprises that employee's earnings, the 

number of dependents, expenses and type of employee 

(ise. whether a man, woman or teenage person). No 

employee should pay negative tax and a compulsory 

works charity contribution depends on employee type - 

(a man pays £5, a woman £2 and a teenager £1). The 

rate of tax is 35% and a £150 tax free allowance is 

made for each dependent. Expenses and charity 

contribution are tax deductible. 

This specification together with the program design shown 

in diagram 24 are based on those used by Wilson and 

Addyman [wilson and Addyman 1978] to illustrate 

programming by stepwise refinement. Let us consider 

why lines (0S4) to (058) inclusive have been only 

partially analysea. 

As was stated in chapter 3 successful analysis of 

a statement requires that all the information necessary 

for that analysis must be derived from the following 

two sources : 

a) from a class instance which is used to derive the 

meaning of a common design statement; and/or 

b) from the results of analysing previous statements 

in the design. 

In this respect the meaning of statements such as (0S4) 

to (0S8) could be derived from the first of these sources. 

However class instances for analysing terms such as 
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The design is as follows :- 

(DS1) READ N AND INITIALISE I To 1 
(DS2) WHILE I IS LESS THAN OR EQUAL TO N 
(DS3) po 

(DS4) READ DATA FOR EMPLOYEE #* 
(DSS) CALCULATE CHARITYLEVY #* 
(DS6) CALCULATE TOTALEXPENSES ## 
(DS7) CALCULATE ALLOWANCE #* 
(DSs8) CALCULATE TAX ## 
(DS9) PRINT TAX OWING ## 

(DS10) INCREMENT I 
(DS11) OD 
(DSi2) 
(DS13) #*## 

A coded form of the design is:- 

0 ‘BEGIN OUR, TAX, ALLOWANCE, TOTALEXPENSES 
CHARITYLEVY, £, Ni 

1 READ (N) i 
= Ti pests 
3 ‘WHILE [ <= N 
4 ‘DO READ (< DATA FOR EMPLOYEE >) 
3 CHARITYLEVY := < UNDEFINED > 
& TOTALEXPENSES := < UNDEFINED > 
Ze ALLOWANCE := < UNDEFINED >; 
8 TAX := < UNDEFINED >; 
2 PRINT (TAX) 
10 Tee i+ tf 
11 ‘OD 
12 ‘END 

The following are some comments on the above:-— 

1 Re line 4: The design gives insufficient 
detail to analyse <DATA FOR EMPLOYEE> 

2 Re line 5: The design gives insufficient 
detail to analyse <UNDEFINED> 

3 Re line 5: The value assigned to the variable 
< CHARITYLEVY > has never been used 

4 Re line 6: The design gives insufficient 
detail to analyse <UNDEFINED> 

9 Re line & : The value assigned to the variable 
< TOTALEXPENSES > has never been used 

6& Re line 7 : The design gives insufficient 
detail to analyse <UNDEFINED> 

7 Re line 7: The value assigned to the variable 
< ALLOWANCE > has never been used 

8 Re line @ : The design gives insufficient 
detail to analyse <UNDEFINED> 

  

Diagram 24 

Results From Analysing a Program Design Which 

Calculates Income Tax Payable 
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CHARITYLEVY, TOTALEXPENSES etc. would be specific to 

this problem and if implemented for general cases would 

lead to the problem of combinatorial explosion. Hence 

the basic approach pursued in this study is to develop 

class instances which are sufficiently general to be 

applicable to more than one problem. An alternative 

approach would be to develop a collection of general 

class instances which could interrogate the problem 

specification for information to aid this analysis. 

However one of the main limitations of FAPD is that it 

makes no use of this specification to help its analysis. 

Consequently analysing statements such as those considered 

in statements (0S4) to (0S8) is beyond the scope of FAPD. 

Let us consider DACE's analysis of this program 

design. (0S4) has been implemented as a READ statement. 

However DACE does not recognise the phrase DATA FOR 

EMPLOYEE. It has no comprehension of the concept of 

an EMPLOYEE, and consequently has tried to analyse it as 

a variable name. The phrase DATA FOR EMPLOYEE is 

unrecognised and hence is left in its original form. 

(055) to (DS8) have all been implemented as assign- 

ment statements and CHARITYLEVY, TOTALEXPENSES, ALLOWANCE 

and TAX are considered to be variable names. From the 

results we can see that OACE incorrectly expects each of 

these calculations to produce a single result. Because 

the initial assumption is that assignment statements are 

required and then because it is found subsequently that 

these statements are not required, comments 3, 5 and 7 

are generated. 

(059) has been analysed and a PRINT statement 
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produced. Syntax analysis has determined that QWING 

can be ignored for the same reason that 80TH was ignored 

in line (DS2) of Example 4 (see section 5.4). 

Consequently DACE has realised that the value assigned 

to the variable TAX in the previous line has in fact been 

used and as a result no comment is made about line 8 in 

the coded version. 

This example illustrates how DACE has attempted to 

analyse a program design even though the full meaning of 

some statements cannot be derived. It is important that 

examples such as this are tested for two reasons. Firstly, 

although a program design may not be analysed completely 

the results from analysing portions of it, such as (US1l), 

(0582), (059) and (0510), will provide the user with some 

benefit. Although the design needs further refinement 

before it can be analysed completely, comments such as 

this are still considered to be useful at this stage. 

Secondly, defining the scope of FAPD and the system is a 

very difficult problem which can only be clarified by 

considering results such as those given in diagram 24. 

An important point illustrated by this example is 

that DACE provides assistance in the process of stepwise 

refinement by indicating those lines which need to be 

specified in more detail before the design stage is 

complete. In this example lines 4 to 8 of the coded 

version show those statements which the user needs to 

refine further in order to complete the design stage. 

5.9 Examples 9, 10 and 11 

The results considered so far in this chapter have 

been produced by subjecting program designs to the four 
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processes of analysis that comprise DACE. However to 

conclude this chapter, consideration now turns to three 

examples which do not conform to the grammar of a program 

design. In this respect they have been rejected after 

the syntax analysis stage and consequently have not been 

Passed to the pre-semantic routines or subsequent stages. 

These three examples have been specifically chosen 

because they represent three different kinds of syntax 

errore 

Diagram 25 is typical of the results produced by 

DACE whenever it considers a program design is syntacti- 

cally incorrect. This shows that the user's design has 

been pretty printed and is followed by a single message 

(the text of which is always the same) indicating that a 

syntax error has been found. The design has been stored 

in a file named CODE.RES so that the user can obtain a 

hard copy and establish why analysis of the design has 

failed. Because the syntax error message does not give 

any indication of why a design has been rejected, any 

users of DACE would require some details of the possible 

causes of syntax errors. 

Let us now consider why each of these designs has 

been rejected. Syntax analysis of Example 9 has failed 

because line (0S2) contains an unrecognised symbol, 

namely € . At this point DACE has invoked its back- 

tracking mechanism in an attempt to find an alternative 

parsing. Since this has also failed, the design has 

been rejected as syntactically incorrect. Lines (083), 

(086) and (0510) contain other symbols which will also 

cause syntax errorse The rejected symbols are <,>and + 
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The design is as follows :- 

(DS1) 
(DS2) 
(DS3) 
(DS4) 
(DSS) 
(DS6) 
(DS7) 
(ps8) 
(DS9) 
(DS10) 
(DS11) 
(DS12) 
(DS13) 

GET FIRST VALUE OF DATA INTO MAXSOFAR ##* 
COUNTER <- 1 
WHILE COUNTER < 1000 
DO 

GET NEXT VALUE OF DATA INTO N 
IF N > MAXSOFAR 
THEN 

MAXSOFAR <- N 
Les 
COUNTER <- COUNTER + 1 

oD 
OUTPUT MAXSOFAR WITH SUITABLE TEXT 
HH 

A syntax error has been found in this design 

Diagram 25 

Results From Analysing a Program Design Which 

Contains an Unrecognised Symbol 

The design is as follows :— 

(DS1) 
(DS2) 
(DS3) 
(DS4) 
(DSS) 
(DS6) 
(DS7) 
(pss) 
(DS9) 
(DS10) 
(DSi1) 
(DSsi2) 
(DS13) 
(DS14) 
(DS15) 
(DS14) 
(DS17) 

(DS18) 
(DS19) 
(DS20) 
(DS21) 
(DS22) 

SET MAX AND MIN TO FIRST VALUE #x 
SET NOCONSIDERED To 2 
WHILE NOCONSIDERED IS LESS THAN 1000 
DO 

GET NEXT VALUE 
IF THE VALUE IS LARGER THAN MAX ## 
SET MAX TO THIS VALUE 
THEN 

INCREMENT NOCONSIDERED 
ELSE 

IF THE VALUE IS LESS THAN MIN #% 
SET MIN TO THIS VALUE 
THEN 

INCREMENT NOCONSIDERED 
ra 

Fr 

QD 
OUTPUT MAX AND MIN 
HH 

A syntax error has been found in this design 

Diagram 26 

Results From Analysing a Program Design Which 
Contains an Unrecognised Form of a Construct 
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respectively. In order for lines (052) and (0S3) to be 

analysed, they should have been written in the following 

forms: 

SET COUNTER To 1 (5.99) and 

WHILE COUNTER IS LESS THAN 1000 (5.100) 

Example 10 has failed because of line (087) and 

illustrates a second category of syntax error. This 

shows that the grammar of a program design does not allow 

@ statement which will be implemented as an assignment 

statement to appear at the start of a conditional. 

Consequently this represents those errors where the 

target language constructs for repetition and choice 

have not been used as required. 

Finally, Example 11 represents a third form of 

syntax error. Lines (052) and (0S4) are based on 

examples found in Findlay and watt [Findlay and Watt 

1g81] and it is the phrase NEXT SUMMAND contained in 

(084) which has caused the error. This has been 

analysed in the same way that phrases such as THIS VALUE 

and FIRST ELEMENT are analysed. However whereas DACE 

contains dictionary definitions of words such as VALUE 

and ELEMENT, the current implementation of the system 

does not recognise the word SUMMANO and therefore it has 

been analysed as a variable name. A phrase comprising 

an adjective followed by a variable name does not fit 

the grammar of a program design and consequently the 

design has been rejected. It is interesting to note 

that if THE and NEXT were omitted and the line had read: 
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The design is as follow i. 

(DSi > 
(DS2) 
(DS3) 
(DS4) 
(DSS) 
(DS4) 
(DS7) 

    

INITIALISE SUM FO O 
WH} NOT END OF DATA 
bU 

READ THI NEXT SUMMAND AND ADD IT TO SUM 
oD 

OUTPUT VALUE OF Sur 
ea 

A syntax error has been found in this design 

Diagram 27 

Results From Analysing a Program Design Which 

Contains an Unrecognised Phr 
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READ SUMMAND ADD IT TO SuM (5.101) 

as a variable name would have 

  

analysis of SUMMA 

resulted in the syntax analysis being successful and 

the program design being analysed.



6. RESULTS FROM USING DACE 

6.1 wojectives and Methodology 

In the previous chapter, the scope of DACE was 

described by considering its application to eleven program 

designs. In this chapter we describe an evaluation of 

DACE using a group of people with various levels of 

programming experience. By using people of dissimilar 

experience, conclusions might be drawn concerning the type 

of user who derives the greatest benefit from using the 

system. All the examples and results discussed in this 

chapter were derived from the evaluation exercise. 

For the purposes of this report, all those who 

Participated in the tests are referred to as "users", 

Eighteen people took part in the experiment and diagram 28 

shows how they can be classified. All the students 

(ie categories 1 to 6) came from the University of Aston 

and categories 1, 2 and 6 were learning to program. All 

the undergraduate students were studying for either a 

single honours degree in computer science or a combined 

honours degree in computer science and another subject. 

None of the M.Sc. IT students had degrees in computer 

science. The primary programming language used by all 

the students was PASCAL. The others (ie category 7) 

were graduates from industry, who did not have degrees in 

computer science, were not professional programmers nor 

wrote programs on a regular basis. Each user undertook 

a maximum of five different programming exercises, the 

solutions to which were submitted to DACE. The total 

EBS,



 
 

    

T
O
V
G
 

w
o
r
y
 

Sz 
T
N
S
o
y
 

Jo 

  

Se 
w
e
x
t
b
e
r
q
 

      
 
 

  

 
 

  

 
 

  
 
 

 
 

 
 

 
 

 
 

 
 ar 

€ 
ot 

Sj 
S
i
e
u
i
9
 

Z 

ev 
0¢ 

P 
s
q
t
u
e
p
n
i
s
 

(11) 
A
H
O
T
O
U
Y
.
E
L
 

U
O
I
Z
B
U
I
T
O
T
U
L
 

OS 
9 

= 
S 

t 
€ 

V
e
x
,
 

- 
S
j
u
a
p
n
y
s
 

e
z
e
N
p
e
A
b
r
e
p
u
n
 

Sxznoucy 
p
e
u
t
q
u
i
o
d
 

¢ 

L 
St 

€ 
€ 

x
#
e
8
,
 

= 
S
j
Z
U
e
p
n
z
s
 

@
}
y
e
n
p
e
z
H
1
e
p
u
n
 

s
x
z
n
o
u
o
y
 

a
t
b
u
t
s
 

¢ 

LE 
6L 

v 
¢@ 

2
e
a
K
 

- 
S
s
}
U
u
a
p
n
y
s
 

a 
z
e
N
p
e
i
H
b
1
9
e
p
u
n
 

s
a
n
o
u
o
y
 

e
T
b
6
u
t
s
 

€ 

S 
6 

oS 
T 

2
e
8
,
 

- 
S
j
u
a
p
n
y
s
 

a
z
e
n
p
e
r
G
6
r
1
e
p
u
n
 

s
x
n
o
u
o
y
 

a
t
6
u
t
s
 

z 

€ 
6 

@ 
T 

r
e
a
x
 

- 
S
z
u
a
p
n
y
s
 

a
z
y
e
n
p
e
z
6
 

A
e
p
u
n
 

s
a
n
o
u
o
y
 

p
a
u
t
q
u
o
s
 

3 

(z) 
(te) 

u
o
T
}
d
t
a
r
0
S
0
q
 

AxoObdy 

oy 
peta 

Tuqne 
Sud 

TsSeq 
W
e
i
b
o
r
q
 

S
u
d
t
S
e
q
 

w
e
r
b
o
r
g
 

S
z
0
s
y
 

3O 
T
S
q
u
n
n
 

3O 
t
e
q
u
n
y
 

JO 
az8qunN 

 



number of different solutions which were submitted by 

users from each category is shown in column 2 of diagram 

28. Column 3 shows the number of solutions which were 

resubmitted because the original version contained a 

syntax error. 

Before starting the evaluation exercise each user was 

given handouts containing instructions. As far as possible 

the names of the handouts are included in this discussion 

so that the reader can refer to the appropriate material in 

Appendix G. The experiment took the following form: 

a) because of a lack of standard terminology all students 

were given an "Introduction" handout which explained 

the phrase program design; 

b) users who were not computer science students were 

given a handout entitled "Notes on Program Design". 

This was considered necessary since these users may 

not have been aware of the importance of this part 

of program development. Although the handout 

referred to constructs for denoting selection and 

repetition of actions, the fact that these were 

ALGOL 68C constructs was not mentioned. Knowledge 

of the target language is not a prerequisite for 

using DACE and in an effort not to overburden 

students with unnecessary detail, any reference to 

ALGOL 68C was avoided; 

c) all users undertook a pre-test and a post-test 

exercise to solve somewhat similar problems. It 

was hoped that a comparison between the two solutions 

would ascertain the effect (if any) that DACE had on 
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d) 

a student's performance. The two problems (see 

Exercises la and 1b) were carefully chosen in order 

to allow the more experienced users to include 

advanced programming concepts (eg arrays) in the 

solution and the less experienced users to formulate 

a solution without using, or indeed knowing, such 

concepts. The order in which the two problems were 

tackled was varied so that any difference in problem 

complexity would be nullified; 

after the pre-test exercise had been completed users 

were asked to read the "Introductory Notes for the 

System User". These notes outlined the basic 

operation of DACE, the kinds of program designs which 

could be analysed and some possible causes of syntax 

errorse A list of system recognised words was also 

included. For similar reasons to those outlined in 

(b) above, no reference was made to ALGOL 68C. To 

sustain their interest users were encouraged to use 

the system as quickly as possible instead of spending 

an inordinate amount of time trying to understand 

every detail within the handout; 

users were then given a series of exercises which 

required program designs to be developed for particular 

problems. The users were requested to write the 

solution out prior to inputting it into the system. 

This meant the time spent logged-on to the DEC was 

kept to a minimum. This was important since the 

longer a user was logged-on, the more marked was the 
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2 

9) 

deterioration in response time. Once the design 

had been formulated, the system was called up and 

the user allowed to submit his solution to DACE. 

The DEC's PHOTO facility recorded all interactions 

between DACE and the user. DACE then displayed the 

results of its analysis and the user was given the 

next exercise in the series; 

if DACE reported that the program design contained a 

syntax error, the user was asked to read section 4 

of the Introductory Notes which listed some possible 

causes. The user could then submit a revised 

solution to the system. If the revised version also 

contained a syntax error, the user was informed 

verbally of the cause and was then shown a "Model 

Solution". These solutions were intended to make 

the user more aware of the kinds of program design 

which DACE can accept. It was emphasised that they 

were not the only solution which the system would 

accept and numerous variations were possible. The 

user would then be given the next programming 

exercise; 

a set of systematic instructions were given to users 

whenever they asked for help because they had run 

into difficulties, The first set (Instructions 1") 

was used if a program design was being entered. 

These instructions could be used when either: 

i) the user had typed a control character which had 

generated a LISP interrupt; or 

ii) the user wished to correct previous lines in 

the input. 
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h) 

i) 

In both cases it was necessary to reinput the 

program design and the instructions gave details of 

how to do this. The second set ("Instructions 2") 

was used after the program design had been entered 

but module 1 (see diagram 12) was still in operation. 

These instructions also requested the program design 

to be resubmitted. The final set ("Instructions 3") 

was used whenever difficulties arose with either 

modules 2 and 3 (see diagram 13) or module 4 (see 

diagram 14). Typical difficulties here would bea 

user typing START instead of (START). These 

instructions gave details for re-entering the 

current system module; 

Once the exercises had been completed, the users 

were asked to complete a "Questionnaire" so that 

their evaluation of the system could be assessed. 

The text will refer to the results of this 

questionnaire (see Appendix G); 

finally, the users were asked to complete the 

post-test exercise. 

6.2 Problem Solutions 

The series of programming exercises undertaken by 

the users was designed to test their ability to deal with 

some basic programming concepts. The programming 

exercises involved designing programs for the following 

problems: 

Exercise 1: Input an integer value which represents a 

measurement in yards. Output the 

corresponding number of inches. 
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Exercise 2: Input ten integer values. Print each of 

these values and their total. 

Exercise 3 : Input two integer values and print a 

message stating whether or not the two 

values are equal. 

Exercise 4; Inout ten numbers. Output how many of 

these numbers have a value greater than 100. 

Exercise 5 : A data file contains a set of positive 

integer values. The end of the set is 

signified by a 0. Find the total of 

these values. 

when analysing the users' solutions to these 

exercises DACE detected many errors although some others 

went undetected. Out of 131 program designs, 77 were 

rejected by DACE because they contained errors. Some of 

the factors which caused DACE to reject program designs 

were : 

a) the use of statements which did not conform to the 

grammar of a program design caused most errors. 

Typical of these statements are PUT IN LENGTH and 

RESULT IS INCHES. The former statement is rejected 

because PUT is not a recognised word whereas the 

latter is unacceptable because RESULT and IS are used 

in the wrong context. Errors of this type are 

difficult to diagnose but using a list of recognised 

words can help. Thirty-five program designs sub- 

mitted to DACE contained incorrect statements of 

this type; 

b) incorrect use of xx was also a common error. Out of 
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c) 

d) 

131 program designs, 27 used xx incorrectly, although 

6 out of 18 users used it correctly at all times. The 

fact that 8 users thought the instructions on the use 

of xx were insufficient and 11 found it easier to use 

with practice suggests that greater tuition is 

required in this area prior to using the system. 

Occasionally a user failed to delimit xx with spaces 

which meant a statement such as READ THE VALUE INTO 

Axx was analysed as READ (Am), where Axx was 

assumed to be a variable. Fifteen program designs 

contained syntax errors because the character + was 

not delimited by spaces. Users obviously had similar 

problems with «. and + and on this basis any future 

versions of the Introductory Notes should place 

greater emphasis on the use of spaces; 

the next section will discuss how the — key was often 

used in an attempt to correct mistypings. If it is 

used during the input of a program design then a 

control character is read in and a syntax error 

generated. This occurred in seven of the program 

designs submitted to DACE. The next section also 

discusses how using a Lynwood terminal and typing O 

with the shift - lock on caused a LISP interrupt. On 

one occasion a user tried to overcome the problem by 

taking action which did not rectify the situation, 

but rather yielded an incomplete program design 

resulting in a syntax error; 

ten program designs did not specify the correct form 
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of a conditional. Seven of these were due to FI 

being omitted. Loops seemed to cause fewer problems 

and OO was never omitted. Two program designs con- 

tained-loops in an incorrect format. Both of these 

related to the same user who had specified the 

following 

FOR COUNT EQUAL TO 1 TO 10 DO —— oD 

Errors concerning loops and conditionals were not 

repeated by the same user on any subsequent exercise. 

This indicates that the users could adapt quickly to 

these constructs and the identification of a single 

error was sufficient to reinforce the system's 

requirements; 

e) finally, the syntax errors in two designs were caused 

by spelling mistakes. In these cases THEN and LES 

had been typed instead of THAN and LESS. 

Although DACE reported numerous syntax errors, this 

analysis shows that they fall into a small number of 

distinct categories. The Introductory Notes contained 

some causes of syntax errors which the users could try and 

relate to their program designs. The analysis above 

could be used to make these notes more succinct and to 

emphasise those errors which occurred most frequently. 

Qther errors such as not delimiting ** and +: with spaces 

could be overcome by extending DACE to include a prepocessor. 

This could check the characters within a word in order to 

identify if spaces had been missed. Thus #INCHES# and 

Axm could be separated into # INCHES # and A »* before 

Parsing was initiated. 
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The 54 program designs accepted by DACE were 

inspected by the author to determine if they contained 

errors of logic. Of these 54 designs, 20 contained 

errors which were not detected by DACE because of its 

lack of domain knowledge. These errors may be 

summarised as follows : 

a) 

b) 

c) 

d) 

the wrong variable was output as the result. A 

typical example is printing the variable used to 

count the number of loop iterations instead of the 

variable used to store the sum of a number series; 

a conditional statement was incomplete ie there was 

no ELSE *part.. This is similar to Miller's obser- 

vation [Miller 1975] that novice programmers tend to 

underspecify algorithms and do not specify the actions 

to be undertaken when a set of conditions is not 

satisfied; 

the branches of a conditional were inadvertently 

reversed such that the actions did not match the 

results of the condition; 

loops did not terminate. This was because the 

variable used to count the number of loop iterations 

was not updated inside the loopbody or the variable 

updated within the loopbody was the wrong one; 

a program design tried to read in more than the 

specified number of data values. This was because 

loop and input statements had not been combined 

correctly. 
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6.3 System-User Interface 

6.3.1 Hardware Considerations 

This section is concerned with the system's 

implementation on the DEC 20/60. Testing the system 

with the users showed that the following factors affect 

the usability of the current system : 

a) the response time which varied according to the time 

of day. The best response was obtained before 10.00am 

and after 6.00pm. For a small program design (ie one 

of three lines) analysis took appriximately 2 minutes 

at 8.30am but anything up to 35 minutes at 1.00pm. 

Because the DEC is used by students at the University 

of Birmingham, the response times noted above would 

have been better during vacations. However, the 

availability of students meant that the experiment 

had to take place during term time and often when the 

DEC was used most heavily (ie 10.00am to 6.00pm). 

Response time is important because one of the primary 

requirements for an effective system-user interface is 

speed. If the time which the system takes to respond 

is excessive, a user could forget information or lose 

interest. Miller [Miller 1968] has shown that 

excessive delays in response time seriously affect 

the performance of computer tasks via terminals; 

b) the students who took part in the tests all used the 

HARRIS 800 computer at the University of Aston. This 

allows them to use the terminal key marked <€— to move 

the cursor back over previous characters so that mis- 

typings can be corrected. When using the DEC , 
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c) 

the €- key appears to have the same effect because it 

can be used to backspace and then change characters on 

the screen. However, this effect is local and using 

the key actually generates a control character. LY et 

is used during the input of a program design DACE reads 

this control character which can result in either a 

syntax error or distortions in the results. The actual 

result depends upon the context in which it is used. 

Although the Introductory Notes stated that the DELETE 

or RU8SOUT key should be used, most people still used 

the € key. Even when the importance of not using the 

< key was stressed (verbally) prior to using DACE, 

some users still tended to use it "automatically" 

all users accessed DACE via a Lynwood or Newbury 8000 

terminal at the University of Aston. The Lynwood 

terminals caused two problems. Firstly, these 

terminals did not have a TTY CAPS key. This key 

allows all letters to be typed as if the shift lock 

was one Any key which is not a letter is accepted 

as if the shift-lock was off. The absence of a 

TTY CAPS key meant that the shift-key was used 

continually. Some users found this difficult to 

adapt to and often switched it on or off at the 

wrong times. This obviously increased the time 

spent typing a program design. Secondly, depressing 

OQ with the shift-lock on caused a LISP interrupt which 

is normally used by a LISP programmer in order to 

break into a program execution. This is obviously 

confusing for anyone unfamiliar with LISP. Whenever 
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this happened the user was informed of why it had 

occurred and was returned to the DEC's monitor level. 

This meant the system had to be re-entered and the 

program design resubmitted. The instructions for 

doing this were contained in the handout. 

6.3.2 Software Considerations 

The system software will obviously affect the usability 

of the system. This section discusses how users interacted 

with the programs that comprise DACE. One of the main 

factors affecting the system-user interface is that a user 

must type the instructions for calling the system modules 

(see diagrams 12, 13 and 14). The system was designed in 

this way so that the results from one module could be 

listed before the next module was called. This as 

particularly useful for anyone developing or extending the 

system but not desirable for normal use. The modules 

which comprise DACE also print out statements such as 

"The semantic analyser has now been entered" and "Semantic 

analysis is now complete". These and similar statements 

were an aid to system development because they identified 

how far the analysis of a program design had progressed. 

The questionnaire showed that 4 out of 18 users found such 

statements difficult to understand. Ou Boulay and Q'Shea 

[gu Boulay and O'Shea 1980] emphasise that one of the 

difficulties facing the novice programmer is to understand 

what is going on in the computer. Consequently future 

versions of DACE might benefit from having these statements 

Suppressed. The results from using DACE showed that 
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further consequences of a user having to type instructions 

for loading and running the system modules are: 

a) 

b) 

c) 

when users were asked to type (START) and (PRINT-CODE) 

many responded by omitting the parentheses (diagrams 

13 and 14 illustrate when these instructions must be 

typed). (START) and (PRINT-CODE) each invoke a 

MICRO-PLANNER theorem and omitting the parentheses 

Causes an error. Errors of this sort and the 

Temedial action to be taken were described in a 

handout ; 

diagrams 13 and 14 also show that users are asked if 

they wish to proceed to the next system module. This 

facility was used during the development of the system 

so that any LISP or MICRO-PLANNER functions could be 

edited before the next module was loaded. The easiest 

way to do this was to remain in the LISP or mMICRO- 

PLANNER system so that the context editor could be 

used. Diagram 12 shows that when users first enter 

the LISP system they are asked if they wish to use DACE. 

Since a negative reply leaves them in the LISP system 

the only reason for doing this is again to aid system 

development. Because the system has retained many 

features which were included to facilitate its develop- 

ment this meant that users were required to input 

extra information ; 

users were often confused about which control level 

was currently in operation. This caused the following 

errors 

i) when DACE asked users if they wished to proceed to 
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the next system module, some tried to list the file 

containing their program design. This can only be 

done at the DEC monitor level and not within DACE ; 

ii) users tried to input a program design when they were 

at the DEC monitor level instead of typing LISP (see 

diagram 12) in order to access DACE; 

iii) when the system asked users if they wanted to use 

DACE some tried to input a program design instead of 

replying yes or nose 

These results are similar to those of Cannara 

[Cannara 1976] who showed that some students misunder- 

stood the computational context and tried to run a program 

while it was being edited or vice versa. 

Many of the errors noted in (a), (b) and (c) could be 

eliminated by writing a macro which could load and run the 

various modules as and when they are required. This 

would reduce the number of instructions which the user 

must type. Eisenstadt [Eisenstadt 1983] has implemented 

a software environment where users are automatically 

connected to the environment once they are logged on. 

This minimises their interaction with any other system or 

monitors. A similar implementation is also applicable to 

future versions of DACE. One restriction imposed by the 

current implementation of DACE is that any revisions to a 

program design can only be achieved by inputting the whole 

of the revised version. This is necessary because DACE 

does not load and analyse a program design from a file. 

If this was possible either a special system editor or the 

DEC editor could be used to revise an existing program



design. The instructions for revising program designs 

are contained in a handout. One user typed in the 

following as the final statement of a loopbody 

ADD NUMBER TQ TOTAL #* 

and then realised that inputting the loop delimiter OD 

would generate an error because x* should not be used 

prior to a reserved word. The error was corrected by 

typing in a dummy statement of the following form 

ADD NUMBER TO TOTAL wx 

output + 

oD 

The lack of editing facilities was regarded as a dis- 

advantage by 6 out of the 18 users. 

A final point about the input phase concerns the use 

of the string “ax to terminate the program design. If 

a user types a space after the string the design is 

terminated incorrectly and the user is given another 

invitation to type. Although the screen instructions 

emphasise the importance of doing this correctly mistakes 

are inevitable. On those occasions when such mistakes 

did occur the users were able to rectify them. 

DACE's analysis of certain statements included in 

some solutions will now be discussed. Users made state- 

ments such as MULTIPLY YARDS BY 36 and ADO 1 TO COUNT 

to denote YARDS := YARDS * 36 and COUNT := COUNT + l. 

However the current implementation of DACE then analysed 

these statements to mean IDROl := YARDS * 36 and 

IDRO1 := COUNT + 1 where IDROl is a variable name 

generated by the system. This was obviously at variance 
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with the user's intentions. At present an assignment 

statement such as YARDS := YARDS * 36 can be achieved by 

stating for example 

MULTIPLY YARDS BY 36 

ASSIGN THE RESULT TO YARDS 

An assignment statement such as COUNT := COUNT + 1 

could be effected by stating INCREMENT COUNT BY “Le 

Another occurrence which presented difficulties For 

DACE was for the use of a statement such as QUTPUT NUMBER 

#FINCHES # to mean PRINT (NUMBER, "INCHES"). DACE analysed 

this statement to mean PRINT (NUMBER). The first reason 

for this analysis is that the delimiter 4é and the string 

INCHES were not separated by spaces and consequently 

HINCHESH was considered to be a single word. In terms of 

the grammar of a program design it is used in the same 

context as SO and FAR in the statement OUTPUT TOTAL so FAR. 

Because SO, FAR and #INCHES# are all unrecognised, the 

context in which they are found allows them to be ignored. 

The second reason why DACE has ignored #INCHESH is that 

the original statement should have included AND. The 

desired effect could have been achieved by the statement 

OUTPUT NUMBER AND #*# INCHES 4. It is recommended that in 

future any users of DACE are made more aware of these 

requirements. A suitable note could be added to the 

Introductory Notes. 

Another interesting occurrence was the use of 

abbreviations or alternative spellings. Examples of 

these are INPUT THE NO and INITIALIZE which should 

have been written as INPUT THE NUMBER and INITIALISE. 
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The SOPHIE system [S8urton 1976] handles these problems 

by expanding abbreviations and correcting spelling 

mistakes before parsing is commenced. This is a 

facility which could be incorporated into a more 

sophisticated version of DACE. Burton discussed elliptic 

utterances which were also encountered in this exercise. 

Consider the following section of a program design 

INPUT THE NO 

MULTIPLY BY 36 

PUT IN LENGTH 

The first statement is quite explicit whereas the second 

and third contain an implicit reference to THE NO. 

Burton solved this problem by using rules in a semantic 

grammar to identify which concept or class of concepts is 

possible from the context available in the elliptic 

utterance. In terms of the statement MULTIPLY BY 36. 

the two possibilities are 

MULTIPLY <integer number > BY 36 

MULTIPLY <variable name > BY 36 

To distinguish between these possibilities a search 

could be made through previous lines for an appropriate 

<integer number> or <variable name>. Although this 

is beyond the current capability of DACE, it could be 

achieved by using a modern natural language parser such 

as that developed by Burton. 

Design statements such as those noted above do not 

contain sufficient detail for DACE to analyse them. 

Similarly statements such as CALCULATE INCHES and INPUT 

    
NUMBERS carry insufficient detail but the nature of the 

missing detail is quite different. Knowing the prodlem 
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specification allows us to infer that the latter state- 

ment means INPUT TWO NUMBERS. However DACE has no 

Knowledge of the problem specification and so NUMBERS 

is analysed as a list of undefined length. Analysing 

a phrase such as CALCULATE INCHES can only be achieved 

by using the problem specification and real world know- 

ledge about the number of inches in a yard. This gives 

us an interesting insight into the user's perception of 

DACE. The Introductory Notes state that the system 

displays how a program design could be represented in 

code. If users appreciated this then they obviously 

thought DACE was more sophisticated than it actually was. 

A final software consideration is that of syntax 

errorse The techniques used for syntax analysis mean 

that the cause of a syntax error is not known and users 

always receive the following message : 

A syntax error has been found in this design 

This does not identify the location or nature of the 

error and this was commented upon by 8 out of 18 users. 

Parsing halts as soon as the first syntax error is found 

which, despite the message above, does not necessarily 

mean that the design contains only one error. Burton 

states that an intelligent system should act intelligently 

when it fails. This is important for naive users, to 

whom the system should always appear "natural". In this 

respect any future work on DACE should consider alternative 

methods of syntax analysis that provide better error 

diagnostics. 

The eighteen users who took part in the experiment 
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submitted 131 program designs to DACE. Of these 77, 

(58+8%) contained syntax errors and diagram 29 shows how 

these were related to the five exercises which were under- 

taken. It is significant that 49°4% of the designs which 

contained syntax errors were solutions to the first two 

exercises. This and the very small number of errors in 

the solution to Exercise 5 indicate that by the end of the 

experiment users were becoming more aware of the reasons 

why syntax errors occur. This is also apparent when we 

consider the program designs which were revised and resub- 

mitted because they contained syntax errors (see columns 3 

and 4). For Exercise 2, 10 out of 11 solutions which were 

revised were also rejected by the syntax analyser. However 

by the time Exercise 4 was undertaken, 7 out of 11 failed 

for a second time, but 4 were revised correctly. Similarly 

all three of the revised solutions to Exercise 5 were passed 

as syntactically correct. 

6.4 Results of the Pre and Post Test Exercises and the 

Questionnaire 

This section discusses the solutions to the pre and 

post test exercises and the questionnaire. Although we 

are unable to draw any general conclusions from the analysis 

of the pre and post test exercises the following observa- 

tions can be made : 

a) 13 out of 18 users described their solutions to the 

pre test exercise in the expected sense without using 

PASCAL code. However 16 users wrote out their solu- 

o @ a @ tions to the post test exercise in the expected 

and 
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b) the post test solutions obtained from 2 of the users 

showed that their approach was more disciplined than 

it had been for the pre test exercise. However, the 

pre and post test solutions from another user were 

both lacking in discipline. 

These results are encouraging since they seem to indicate 

that DACE had some influence on the student's performance 

even in the short exercise undertaken. 

Some of the results from the questionnaire were 

discussed in the previous section and the remainder will 

now be considered. Although the primary programming 

language for most users was PASCAL and DACE's target 

language is ALGOL 68C, 15 out cf 17 users had no diffi- 

culty identifying the relationship between their program 

design and the coded version. This is probably because 

the programming exercises were relatively simple and at 

this level there are only minor differences between 

ALGOL 68C and PASCAL. The one aspect of the coded 

version which users did query was the symbol /= which 

is the relational operator "not equal to" in ALGOL 68C. 

The corresponding operator in PASCAL is <>. 

Users were also questioned about the utility of the 

comments produced by DACE. Six users reported that they 

had no difficulty in relating all the comments to the 

coded version of the program design and six others that 

they had no difficulty with over half the comments. Only 

two users reported that they found some comments 

particularly useful, whilst eight users felt that over 

half the comments produced were useful. The comment 
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which was considered particularly useful concerned the 

use of a variable not previously initialised. One of the 

main purposes of DACE is to focus the user's attention on 

the program design rather than the coding. It was notice- 

able that some users saw deficiencies in a program design 

as soon as it was listed on the screen by DACE. These 

deficiencies, such as specifying the branches of a condi- 

tional incorrectly, would not necessarily have been 

commented upon by DACE. Hence the fact that fifteen users 

stated they would redesign at least one of their solutions 

was probably due to other factors besides the comments 

produced by DACE. The questionnaire also showed that 

seven users thought there was no need to undertake a 

program design for any of the problems set but five of 

these users said they would have redesigned some of their 

solutions because of the analysis and comments produced by 

DACE. This indicates that DACE must have had some 

influence on their thinking. 

Of those questionned only two thought that they would 

spend more time designing programs in the future, the 

remainder stating that they would not modify their alloca- 

tion of time. However, seven users thought that DACE had 

left them better equipped to formulate program designs, two 

of the users stating that DACE had demonstrated a way of 

specifying program designs which they found quite useful. 

To be applicable to a large audience the program 

designs which the system accepts should be in a format as 

close as possible to that which programmers normally use. 
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This seems to have been achieved to a satisfactory level 

since all those who used the system reported that they did 

not have to significantly alter the way they normally wrote 

out program designs. The modifications which most people 

had to make concerned the way they normally specified loops 

and conditionals and restricting the words used to those 

recognised by the system. The former modification is 

obviously because the system was developed at a time when 

students at the University of Aston were taught ALGOL 68 

whereas the primary teaching language is now PASCAL. 

Consequently this restriction is considered to be specific 

to the current implementation of DACE. The second modifi- 

cation could be overcome to some extent by extending the 

system dictionary to include additional keywords. One 

solution to this problem was incorporated into the SOPHIE 

system [srown, Burton and de Kleer 1982]which automati- 

cally recorded any messages not understood so that the 

future development of the system was partially prescribed. 

A similar facility would obviously help any further 

development of DACE. Users were also questionned about 

the usefulness of the Introductory Notes. Although some 

improvements to these notes have already been suggested, 

it was noted that sixteen out of eighteen users found them 

sufficiently detailed to use the system. 
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7. CONCLUSIONS 

Vel Basis of FAPD 

The details of FAPD have been given in previous 

chapters and now two fundamental ideas on which it is 

based are reconsidered. Firstly, we need to evaluate 

the benefits of developing a framework which when applied, 

is capable of analysing program designs. Secondly, we 

need to consider the implications of representing the 

results of analysis in the form of a coded version of the 

program design. 

This thesis has viewed the programming process as 

comprising two related phases, namely the design of a 

program and the subsequent coding of that design. This 

research has concentrated on analysing examples produced 

during the former of these two phases. Because the 

constructs for repetition and choice are the only aspects 

of a target language which FAPD accepts, a programmer is 

forced to delay any decisions concerning the coding 

details of a design until a later stage. The importance 

of program design is now well established in the develop- 

ment process of good, structured programs. Although its 

importance is recognised, difficulties occur in determining 

when a program design is finalised. The system described 

in previous chapters can highlight those sections of a 

program design which need to be refined further. 

Consequently this emphasises that coding cannot be started 

until these sections have been specified in greater detail. 

Since the system is also capable of recognising deficient 

program designs, the development of working programs can 

be attained more readily whether by manual or automatic 
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MEanSe 

If we accept that these reasons support development 

of a framework then consideration must be given to 

evaluating the way in which FAPD analyses a program 

design. The results from analysing a design are 

represented in the form of a series of assertions. These 

assertions are used to represent a coded version of the 

design from which a program together with any associated 

comments can be produced. There are several advantages 

in choosing this form of analysis. The principal 

advantage is that it provides a convenient format for 

representing the results of analysis. Since this format 

is based on a subset of the syntax of a programming 

language, it is well-defined and furthermore has obviated 

the need to develop another form of representation. Lt 

also means that the results can be printed in a form 

which is easy to comprehend. 

A second advantage of this definition is that the 

coded version of the design can be analysed to see if it, 

and hence the design itself, performs as intended. This 

analysis could be achieved either by executing the program 

using example input and output pairs or by adapting some 

of the existing theories of program understanding. 

Thirdly, for novice programmers who have only just learned 

the coding details of a programming language, the coded 

version of a design should illustrate particular language 

features. 

FAPD's method of analysis means that any errors 

which are detected are referred to the coded version of 

the design, and brought to the attention of the user for 
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correction. Although FAPD may not detect all errors, 

even a partial detection is considered beneficial to the 

user. For such program designs the user may wish to 

resubmit an improved design taking into account the 

comments of DACE on the initial design. This process 

may, of course, be repeated. This is important because 

the questionnaire on program design showed that 45 out of 

85 users would not amend their program design when they 

found errors of logic in the cade. Hence the analysis 

undertaken by DACE emphasises that designing programs is 

an iterative process and solutions often need revising. 

Both of these basic ideas were discussed in the 

opening chapter. At the same time a third idea was 

introduced which was concerned with the kinds of program 

design FAPD can accept. This idea is discussed in the 

following section. 

7e2 Evaluation of FAPD 

The Framework for Analysing Program Designs is 

comprised of four distinct phases : 

a) pre-semantic analysis, the first operation of which 

is concerned with parsing a program design. 

Successful parsing means that any target language 

constructs which may have been used are in their 

correct format and the statements within that design 

are of a form that can be analysed. The syntax 

tree is then converted into a series of structures 

which the semantic analyser can recognise; 

b) semantic analysis is concerned with implementing the 

structures produced in the pre-semantic analysis 

phase in terms of a particular programming language. 
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This implementation is undertaken by a collection 

of procedures where each procedure defines one 

recognisable structure. These procedures, which 

are called class instances, collectively define the 

body of programming knowledge incorporated within 

FAPD. Each class instance attempts to implement 

its own structure in the target language even though 

the results of doing so may be revised subsequently 

by other class instances when they are considered in 

the wider context; 

c) comments are generated when the results produced 

by the semantic analysis routines carry certain 

implications for the user. Further comments may 

also be generated by the sets of class instances; 

d) code generation, as the name implies, is used to 

convert the results of the previous two phases into 

a coded version of the program design. The results 

from semantic analysis are printed in the form of a 

program in the particular target language considered. 

Any comments are converted into the appropriate text 

and printed after the coded program. Any line 

numbers given in the comment statements refer to the 

line numbers of the coded program. 

Since FAPD has no knowledge of the problem specifi- 

cation, the degree of analysis possible is obviously 

limited. Hence the full implication or inference of a 

statement may go undetected. This particular problem 

can be illustrated by referring to the following problem 

specification:



Design a program to find the average 

of ten numbers (7ed) 

and the following design statement which could be contained 

within a design which meets this specification: 

INPUT THE NUMBERS INTO AN ARRAY C7e 2) 

The reader will have no difficulty in using the problem 

specification to infer that the array has ten elements. 

However, without the benefit of this knowledge, DACE has 

no means of determining the correct size of the array. 

Hence the array is analysed as comprising N elements, 

where the value of \N is to be determined at the time of 

program execution. However, as the discussion of 

Example 8 in chapter 5 showed, even knowing the problem 

specification still does not guarantee a complete 

analysis of the program design. Example 8 was specifi- 

cally chosen to show that a complete analysis can only 

be achieved by incorporating into FAPD real world 

knowledge of concepts such as employee, tax, charity etc.. 

Let us now conclude this discussion by stating that, 

at present, FAPD makes use of two sources of information 

to analyse any statement. These sources may be 

summarised as: 

a) the results obtained from analysing previous lines 

in the same design; and 

b) class instances which recognise and then represent, 

in terms of the target programming language, 

particular statements and phrases within the design. 

The results discussed in chapters 5 and 6, together with 

those contained in Appendix 0 support the claim that 

these two sources provide sufficient information to under- 

 



take some useful analysis. However the depth of 

analysis could be improved by making use of a third 

source, namely the problem specification. Because of 

the problems of combinatorial explosion, limited computer 

storage space and the difficulties of finding a suitable 

form of representation it is not feasible for FAPD to 

make use of real-world knowledge at the present time. 

FAPD is not intended to apply to all possible forms 

of a program design. The general form of the design 

must be similar to those used in the previous chapter. 

These contained a limited set of target language 

constructs interspersed with Enlish-like statements. 

In order to be analysed, these statements must conform 

to the grammar of a program design and consequently this 

Qrammar, together with the dictionary, define the variety 

of statements which can be analysed. Let us now evaluate 

the adequacy of this grammar. 

At present, the only target language constructs 

which the grammar allows are conditionals and loops of 

the same format as those of the target language. As 

discussed previously, this prohibits the use of state- 

ments such as: 

I <a lG (7.3) and 

COUNTER + 1 (7.4) 

which must be written in forms such as: 

I IS LESS THAN 10 (7.5) and 

ADD 1 TO COUNTER (7.6) 

Occasionally program designs contain statements of both 

sorts and so prior to developing FAPD a decision was 

required on whether or not all these forms should be 

i} N nN



recognised. As a matter of policy it was decided not to 

allow target language symbols such as +, =, and>. This 

is consistent with the policy that the principal benefi- 

ciaries of DACE will be novice programmers who might not 

be expected to know such terms. 

The grammar also prohibits the use of punctuation 

marks such as commas and full-stops. This means that 

statements cannot be expressed as concisely as they might 

have been otherwise. For example, a statement such as: 

INITIALISE A,B,C AND D (7.7) 

must be written as: 

INITIALISE A AND B AND C AND D (7.8) 

Similarly, although the grammar is adequate for specifying 

Simple operations such as: 

ADD A TO B (7.9) 

the text required to implement more complex operations 

such as; 

ALLOW := ALLOWANCEPER * DEPENDENTS » EXPENSES (7.10) 

is necessarily more protracted. 

The assertion language used to represent the results 

from semantic analysis also limits the scope of FAPD in a 

similar way to the grammar of a program design. Any 

program design which cannot be represented by the asser- 

tion language is beyond the scope of FAPD. Since it can 

represent only a subset of a programming language at 

present, we need to evaluate whether this subset is 

adequate, As the examples given in chapters 5 and 6 and 

Appendix D show, the subset is adequate for designing a 

variety of programs. In this respect it would seem that 

the limitations it places on the variety of examples 
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which can be analysed are less than those imposed by the 

grammar of a program design. 

FAPD analyses program designs which have been 

formulated according to the principles of structured 

programming. However the main vehicle for this technique 

namely procedures, is excluded from this framework and 

therefore represents a limitation of DACE. Hence 

programmers cannot use FAPD to define and test several 

sub-procedures which comprise a super-procedure. Ideally 

a programmer should be allowed to decompose a complex 

task into simpler sub-tasks. These subd-tasks may need 

further decomposition and so sub-procedures may need to 

call sub-sub-procedures and so one Hence, future 

research could investigate the possibility of extending 

FAPD so that it could analyse such program constructs. 

This is comparable to a programmer running and debugging 

the sub-procedures before testing the procedure which 

calls them. 

This section has evaluated the Framework for 

Analysing Program Designs and in the following section 

the performance of DACE will be discussed and evaluated. 

Because DACE is based on FAPD, the points discussed in 

this section are also relevant to the system. Conse- 

quently, the following section will concentrate on 

evaluating how FAPD has been implemented, 

73 Evaluation of DACE 

DACE has been used to test the Framework for 

Analysing Program Designs and was found to be capable of 

analysing many examples. However the examples on which 

it has been tested (see chapter 5 and Appendix 0D) may be 
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thought of as a specification of its capabilities. 

Section 5.9 contained three program designs which have 

been rejected because they do not conform to the specified 

grammar of a program design. However, because of the 

method used for syntax analysis (see section 4.4), the 

syntax error message is very general and does not give 

any indication to the user of the point of occurrence of 

the error. In an evaluation exercise, the results of 

which were described in chapter 6, eight out of eighteen 

users considered this to be a disadvantage. The results 

from using DACE showed that the main cause of syntax errors 

were using the separator xx incorrectly and using state- 

ments which do not conform to the required format. 

Let us now evaluate the programs that comprise the 

four phases of analysis and give some suggestions for 

possible improvements. The first operations on a design 

involve lexical and syntactic analysis. Lexical analysis 

is undertaken by the scanner which is relatively unsophis- 

ticated and merely entails scanning the dictionary for 

definitions of all words contained in the design. The 

system does not have the ability to recognise different 

words of the same derivation and thus such words will go 

unrecognised unless contained in the dictionary. A more 

sophisticated method of lexical analysis is obviously 

needed to overcome the problem. 

A scanner for a high-level language often builds a 

symbol table which contains details of any variable names 

found. Since DACE does not produce such a symbol table 

at present, the efficiency of the syntax analyser could 

also be improved by the inclusion of such a data structure. 
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For example, after parsing a statement such as: 

SET A TO. (GetL) 

the fact that A has been used as a variable name instead 

of an article could be recorded in a symbol table. At 

present, whenever A is met in subsequent lines within the 

same design, DACE cannot detect how it has been analysed 

previously and hence it will try to parse it as an article 

again. In cases such as this, the symbol table could be 

used so that A is always analysed as a variable name 

before calling the back-up mechanism to consider other 

possibilities. The results from using DACE showed that 

a word which is parsed as a variable name in one line can, 

in some contexts, be ignored in subsequent lines. In 

these cases a symbol table could be used to ensure that 

such words are retained. 

The sets of class instances on which semantic 

analysis and generation of comments are based have been 

implemented as MICRO-PLANNER consequent and antecedent 

theorems. These theorems have proved a good choice and 

have allowed the system to be easily extended in order to 

cater for a wider variety of examples. The manner in 

which they are called has also proved adequate for 

analysing the examples which have been used to test FAPD. 

At present, as soon as the semantic analyser forms some 

results, they are passed over to see if any comments can 

be generated (see diagram 11). Such an approach means 

that if ever the results from analysing a previous line 

need to be altered, substantial work is required in order 

to back-up and erase any assertions made by the class 

instances responsible for generating comments. For the 
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examples contained in this thesis, considerable backing- 

up has not been necessary although as the number of 

examples is increased, consideration should be given to 

this possibility. In this respect, one possibility 

would be to run the semantic analyser in isolation and 

then the results from analysing a complete design could 

be passed over for the generation of comments. The 

choice of consequent and antecedent theorems would not be 

affected but it would mean that a back-up mechanism would 

be easier to implement. The adequacy of the system-user 

interface was discussed in the previous chapter. The main 

difficulties stemmed from the fact that DACE was still in 

the development stage and the student's lack of familiarity 

with the DEC 20/60 computer. 

In conclusion, we can say that the decisions which 

have been taken during the development of the system have 

been justified by the results obtained from the operation 

of DACE. However, it has been noted that the system 

could be improved, and some suggestions for improvement 

have been made above. 

7.4 Suggestions for Further Work 

Suggestions for further research have been made 

throughout this chapter. However it is worth summarising 

the achievements of this Tesearch, and in so doing some 

additional areas which are also worthy of further investi- 

gation will be identified. First of all, analysing a 

Program design has been identified as an area of research 

which should receive just as much attention as the similar 

area of automatic program understanding and debugging. 

It has been shown how the Framework for Analysing Program 
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Designs could be used to complement some of the existing 

theories of program understanding by using it as a 

possible front-end to some of these systems. However, to 

do this a method must be derived for representing and 

using facts contained in the problem specification. The 

framework which has been developed in this study can only 

do this by procedurally embedding such knowledge in the 

form of class instances. This approach has been rejected 

as too specific and an alternative approach would be to 

devise a method for representing this knowledge, which 

could then be usec by a set of general procedures. If 

this was achieved, analysing a program design would be 

based on the following three sources of information: 

a) class instances which are used to derive how common 

statements and phrases can be represented in terms 

of a particular programming language; 

b) knowledge of the context derived from analysing 

preceding lines in the same program design; and 

c) knowledge of the problem specification. 

Since a class instance could then make use of two sources 

of information (ise. (b) and (c) ) consideration would 

have to be given to the organisation and calling of the 

class instances since both of these sources are equally 

important. 

The problem of organising knowledge in this way is 

similar to the problem of how the four phases of analysis 

that comprise FAPD should be organised. Broadly speaking, 

these phases are called sequentially, with the results 

from one phase forming the input for the next. However 

Example 2 in chapter 5 discussed the possibility of 
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integrating syntax and semantics in order to improve the 

depth of analysis. The benefits of doing so have been 

discussed by Winograd [winograd 1972] and hence a 

possibility for future research would be to investigate 

the feasibility of this approach. 

This research has also advocated how a special 

procedure, referred to as a class instance, can be used 

to recognise design statements and to generate any 

comments about a coded version of those statements. 

These class instances are the means by which DACE can 

undertake some useful analysis. They are conceptually 

similar to Rutn's [Ruth 1976] experts but they are used 

for different purposes. This research has shown that 

class instances represent a satisfactory methodology for 

work of this kind. Consequently the concept of a class 

instance provides a useful acquisition to the set of tools 

currently available to researchers in Al. 

Finally FAPD has been implemented in a system, the 

results from which support the contention that FAPOD 

represents a viable approach to the computer analysis of 

program designs. To evaluate the system it was used by 

a group of people with various levels of programming 

experience. This evaluation exercise seemed to indicate 

that using the system had some influence on their 

performance. Given the importance of the process of 

program design in the development of structured programs, 

in our opinion VACE represents a software environment 

which provides support to the programmer. 
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