
TOWARDS A COMPUTER UNDERSTANDING

OF PROGRAM DESIGN

VOLUMES 1 AND 2

VOLUME 1

Philip Ainsley Fox

Submitted for the Degree of

Doctor of Philosophy

The University of Aston in Birmingham

November 1984

The University of Aston in Birmingham

Towards a Computer Understanding

of Program Design

Philip Ainsley Fox

Submitted for the Degree of
Ooctor of Philosophy

1984

Summary

Program design is one of the many processes involved
in program development and is considered to be essential
to the development of structured programs. Consequently

this research has been concerned with the analysis of
program design since it is considered to be of equal
importance to other areas of Artificial Intelligence (AI)
research, which analyse the program cade. Because a
rigorous program design results in a program containing
few errors, a system capable of analysing program designs
should assist these other related areas of Al.

This research has developed the Framework for
Analysing Program Designs (or FAPD) in order to analyse
the kinds of program design produced by programmers

using the principles of structured programming. The
process of analysis is viewed as comprising four
distinct phases, which are referred to as pre-semantic
analysis, semantic analysis, generation of comments and
code generation. The results of analysis take the form
of a coded version of the program design together with
any comments about the code. Analysis is based ona
set of structures which have been developed in order to
represent phrases and statements often used in a program
design. Attached to each structure is a procedure,
referred to as a class instance, which translates its
structure into a particular programming language.

FAPD has been implemented and tested within a system
called DACE (which is a Design Analysing and Commenting
Environment). FAPD is discussed within the context of
the system and the results from testing it are discussed
in detail. The conclusions are drawn that FAPD represents
a viable approach to the computer analysis of program
designs, the system has some influence on those who use
it and that class instances are a useful acquisition to
the set of tools currently available to researchers in Al.

Keywords ; design, program, structure, class instance.

Acknowledgements

I would like to thank my supervisor, Or. A.J.

Harget for his many helpful comments and encouragement,

and fir. I.H. Chisholm for his assistance in all aspects

of this research, I would Particularly like to thank

all my colleagues at Cadbury-Schweppes plc who made the

final stages of this research possible. Finally, I

would like to thank my parents and Mr. and Mrs. f.Re

Thompson for their assistance in getting this thesis

into its printed form.

The work of this thesis has been supported

financially by the Science Research Council.

a

CONTENTS

Volume 1

ENUTROUUCT LON, eis cioleietreiele o'c:e'elsieie sis’ grele's ls slave slavarcieves se

ek Agmscand Objectives .cdseeesss

1.2 Program Design (M\G(6)9 6 O'S O'S 6)6\6'00)4.018 obo 6.4/o.0-—\eieiacele,

1.3 Scope of Program Design for this PrOjeCt See. sis

1.4 Analysing a Program Design cesceccccecccccces

RELATED AREAS OF ARTIFICIAL INTELLIGENCEee0~

2.1 Program Verification ..e.

eee Program Uaderstanding rece sists elec oeels asweele cle

202.1 Katz and Manna Pee c cece ns cr rece cnes

2.2.2 Goldstein eee merece cer csceseseseceseees

Bvcus RUED) seieielvic e's viciceeeieis esse elescleesiccee oeeicie

wecea LUKSY) Secs

202.5 Rich and Shrobe Pome e cree cree e renee ces

2.2.6 Waters Beemer cee rer cnr aces cercccssccces

2.2.7 Others eee were ec en ners cees

eeslescece

23 Automatic Programming os esses vielese sees cise

2.4 Intelligent Teaching Systems .ee.

oe eecceee

205 Computational Linguistics <.<<.ccccesesescesce

2.6 Programming Languages for Novice Programmers.

THE FRAMEWORK FOR ANALYSING PROGRAM DESIGNS cesses

3.1 General Points Pomme e eee ees eeeeeees

3.2 Pre-Semantic Analysis secec Cece eee ceeeeee

Se@el IMELOdUCEION siesiccicwisies sicceoeiescvecees o

Seeded Lexical and Syntax Analysis ..ccscccvece

3.2.2.1 Function of Syntax Analysis «se...

Seeegs2 Scope’ of the Syntax sivces« cece ee ee'e

3-22.35 Definition of Recognised Words ..ecc

32262.4 The Syntax of a Program Design

4

10

10

ll

19

23

44

49

52

oo

60

64

64

Se@e2e5 Lexical Analysis ‘sewissclsic'sciele eicoe-¢

3.2.2.6 Syntax Analysis CO eereccccesccccce

3.2.3 Preparation for Semantic Analysis .essece

Se) SBMINELSMANALYSLS © (ict ow.0.0 esisioe's viecdielv s eiobiees

35.1 Function of Semantic Analysis .eccoccces

5.3.2 Representation of a REOOLAM! seeiawe ee eeerse

3.3.3 Analysis of a Design Statement cecececce

30304 Scope of Semantic Analysis .secccccccesces

Jes Generation jaf Comments: M.sisreesisisisiee's © sie cisclany

GeSeCOGea Generation | isiccw visislecieieseuioree oa cs's «stele

IMPLEMENTATION EOE WDACE © svslecieielels saiciee 6 sices aelerew

4.1 Relationship between System and FAPD cesecee

Ged hacr lites eAVat lable | ltels cc's egisisae's be ciceeesn's

4.3 User Interaction . Peer eee eee eens eee enee

4.4 Pre-Semantic Analysis within DACE -cececcecee

4.5 Semantic Analysis, Generation of Comments

and Code Generation within DACE eesccsccce

RESULTS FROM ANALYSING PROGRAM DESIGNS .eeccovee

5.1 Example

5.2 Example

3 Example

5.4 Example

5 Example

~6 Example

5.7 Example

5.8 Example

1

2

4

2

8

Seem meme er ene ec ence ee wares eeeesee

Comm meee e reer eee reeeeeseeseeeses

Peewee meee cece rceserceeseseseeces

Pee meee eee er rere reeeeeesesssesces

Poem mee meee eer e meres ererereseeeeee

ee ie ed

Reem e eee e reer sees creer eesesceres

See exansles 95 LO and WL" cece ess cecelsare o scewe.e 6

RESULTS FROM USING DACE wccccccccvccccccccccecce

6.1 Objectives and Methodology ceecccvccccccccce

6.2 Problem Solutions eee meee ence er cece eeee

(6)

80

86

86

wo G

100

103

108

th?

112

114

116

121

126

132

133

140

150

159

163

171

178

183

187

193

193

1398

Ge oeSysten=USer Inter tacer steiniaic cists oe esrs ele piel.

6.3.1 Hardware Considerations

6.3.2 Software Considerations

6.4 Results of Pre and Post Test Exercises and

GUESETONMALLES: ‘sicie eee eieasikiwl tle bee es sivicieies

CONCLUSIONS) (5 s/ciesie vlecle's ea sivcis owes cisicwcicis sles cies

el Basis Ot PAPE ccs ccwiels cele clele oc ¢ eeleisivies «oa

7-2 Evaluation of FAPD Sec c cece ceccecccece

7.3 Evaluation of DACE Peewee eee cereseccene

74 Suggestions for Further Work Pee ewer eeeee

203

203

205

are

alt

2he,

21g

224

227

CONTENTS

Volume 2

APPENDIX A Cem meee meme rere renee eee ereereesseseene

An Example of the Format of the Syntax Tree,

Amended Syntax Tree and Assertions Produced

by DACE Cece cece errr reer ececcsceereeeserevece

APPENDIX 6 Seem meee reer errr eres seereeeee ceee

B.l1 The Grammar of a Program DeSign «seecovscccoce

Be2 > Semantic DETIAIELONS, ‘s~s-scr since ssc sieisisielss oc

B.3 The Assertion Language eseccceceee
 ee eeeeee

APPENDIX C ceccecsceccccecccccccevevcescceccesoesece

Cel Structures Used by the Semantic Analyser wee.

C.2 Structures Used to Generate Comments .ceecooe

APRENOIX Do cececcwccnveacvvcvecvccuvsievesccceccccecics

FUrther RESULTS cescesccccsiccccrvoccvcececsussces

APPENDIX E cocceccccvcccccescccvcccccscccccecceccces

Program Listing of DACE eocccccee

eee eeee

APPENDIX F ceccccccccercccceccccnccccccccceceescecce

Fel Questionnaire on Program Design «eececosesece

Fe2 Summary of Replies .seeoee

APPENDIX CG secceccecccccccecccccccccerecvereeecveces

G.1l System Handouts ...

Ge2 QUestionnalre weccccacecscvcvcevcsccesececes

Gas Summary GF REPIAEST . scissc ese seeeeea Usleueslne «

REFERENCES 9 seccwvcvcccccecicscvccccvovevcsvcceccovces

i3

18

18

si

1660

160

163

168

168

188

192

200

DIAGRAMS

The First Stage of @ Program DeSign ~.cecccscoos 14

The Second Stage of a Program Design eeecoccccee 14

The Third Stage of a Program Design «ceccccesesee 15S

The Coded Version of a Program Design «seseccccee 17

An Alternative Prooram Oesign’ <ecccccccccscvccce 22

The Syntax Tree of the Statement

MSETAT AND EB GOTH TOI! sewecsencsvicessecceca OL

The Syntax Tree and the Amended Syntax Tree

of the Statement "SET A AND B BUTH TO 1" 83

An Example of the Results Produced by the

Semantic Analysis Routines as dleisieseels weecees SL

The Syntax Tree and the Amended Syntax Tree of

the Statement "INPUT TEN NUMBERS INTO AN ARRAY" 94

10

il

12

13

14

LS:

16

LY

i8

The Assertions and Program Code Which Represent

the Statement "INPUT TEN NUMBERS INTO AN ARRAY" 99

Ihe: Struettine Of the «System wise esiee celtics cece) 2L7

User Interaction With Module 1 of the System .. 119

User Interaction with Modules 2 and 3 of the

SYSEOM Soccer dcsceeccecececcecneecoescoececs 122

User Interaction with Module 4 of the System .. 123

The Class Instances TC-ASSERT-#READ,

TC-ASSERT=#ASS and TC-#ASS-ASSIGN wsecvccesee 128

Results from Analysing a Program Design Which

Finds the larger of Two ValueS «secsccceceee 134

The Top-Level Function in the Semantic Analyser 137

Results From Analysing a Program Design Which

Finds the Average of a List of Values eeeece 141

19

20

2k

22

23

24

2

26

at

28

Zo

Results From Analysing a Program Design Which

Converts Yards, Feet and Inches Into Inches ..

Results from Analysing a Program Design Which

Generates the Fibonacci SerieS sessecceeees

Results from Analysing a Program Design Which

Searches an Array eee

eee ee neeeee

Results from Analysing a Program Design which

Generates the Fibonacci Series by Using

 an Array Ce ere ce cererseerecsoceceseccecee

Results From Analysing a Program Design Which

Searches a Sorted Array .

Results From Analysing a Program Design Which

Calctilates Income Tax Payable ceccecesevcee

Results From Analysing a Program Design Which

Contains an Unrecognised Symbol ceccoevecee

Results From Analysing a Program Design Which

Contains an Unrecognised Form of a Construct...

Results From Analysing a Program Design Which

Contains an Unrecognised Phrase oe

Summary of Results From Using DACE ceccsseoeee

Syntax Errors Analysed by Exercise Number

eye?

160

172

278

185

189

189

£94

194

te: INTRODUCTION

1.1 Aims and _ Objectives

The motivation behind this work was derived from

studying the topic of program understanding which is

an area of research in Artificial Intelligence (AT).

The objective of program understanding is to determine

whether or not a program performs as intended, by

matching a program's actual performance with a

specification of what it is intended to achieve. Any

discrepancies between the two will indicate the

departure of the program from its specification and

then an attempt can be made either to correct the

program or to provide some useful debugging information.

Program design is one of the many processes

involved in program development of which coding is the

final part. The importance of program design is well

established and is considered to be essential to the

development of structured programs. In our opinion,

research concerned with the analysis of program design

should be of equal importance to that given to the

related area of program understanding. This is not

the case at the present time. Thus in an attempt to

rectify this situation, a system for analysing program

designs was investigated. It is hoped fhat such a

system could be used to impress upon a programmer the

importance of the design process and the level of

detail required in a program desian.

10

In the remaining sections of this chapter we define

the term "program design" and then consider how, in

general terms, a program design may be analysed.

Sections 1.2 and 1.3 are concerned with the principles of

program design. Section 1.4 concludes the Introduction

by discussing how the results from analysing a program

design can be suitably represented.

1.2 Program Design

To-day we live in a society which places considerable

reliance on the computer. Recent progress in the area of

hardware technology, together with ever-reducing costs,

have led to computers being used in a larger number of

applications. Consequently software has increased in

complexity with a concomitant increase in the need for

software clarity, modifiability and efficiency. These

requirements can only be achieved if programmers adopt a

disciplined approach to the process of program development.

Early attempts at imposing discipline led to the

development of the principles of structured programming

(Dijkstra 1968, Wirth ig71]. These principles propose

that a program should be successively refined into a

series of sub-problems, each of which needs to be solved

in order to solve the original problem. This has the

benefit that each sub-problem produced is easier to solve

than the original. Furthermore, each sub-problem can be

considered separately and decomposed further until as Wirth

(wirth 1971] states:

"this successive decomposition or refinement

of specifications terminates when all
instructions are expressed in terms of an

underlying computer or programming language ..."

o:

A solution to the original problem, namely a program

design, can be expressed using suitable combinations of:

a) a Sequence of actions;

b) a selection of actions according to the results

of some condition; and

c) a repetition of actions,

where an action is defined to be either a single instruc-

tion, such as the addition of two numbers, or an instruc-

tion which is itself comprised of a set of simpler actions.

The latter is often referred to as a compound statement.

Consequently at each stage of the decomposition the

programmer must decide how his solution can be expressed

using a combination of the three programming options

described above.

Let us consider how this method might be used in

order to design an ALGOL 68C program for the following

problem specification:

"A company has a number of weekly paid employees

who receive their wages in cashe The company operates

a piecework scheme which means the wage bill can vary

considerably from week to week. The number of employees

together with their individual earnings (in pence) are

recorded weekly in a data file. Calculate the number of

£5 and £1 notes, together with the number of SOp, 10p,

Sp, 2p and lp coins the cashier will need in any given

week to pay out the wages"

A solution to this problem is shown in diagrams

1 to 4 inclusive. The first stage in the solution is

to decide how the problem can best be solved using a

combination of the three options outlined above.

12

Typically a programmer can use the target language, chosen

here to be ALGOL 68C, to express the solution to those

sub-problems which are easily solved. Less tractable

sub-problems can be left until a later stage in the design

process. A typical first attempt at the program design is

shown in diagram l. This illustrates that in terms of the

programming options given earlier (see section 1.2) the

initial design is described in terms of a single or direct

action, the read statement in line 2 followed by "n" repeti-

tions of the single activity in line 4 and a second direct

action, the print statement in line 5.

The solution in diagram 1 is now defined in terms of

the two sub-problems in lines 4 and 5, namely the

processing of an employee's data and the printing of the

results. The programmer can now concentrate attention on

the first of these two sub-problems. Since the process

for analysing an employee's data involves several calcula-

tions, a compound statement is chosen. The result is

shown in diagram 2 which illustrates how the processing of

an employee's data has been broken down into the eight sub-

problems shown in lines 4 to ll inclusive. Collectively

these form a compound statement delimited by the ALGOL 68C

reserved words 00 and OD. The solution is now defined in

terms of these eight sub-problems together with the sub—

problem in line 13 which still remains to be considered.

Each of the steps contained within the loopbody may

be considered in turn and diagram 3 illustrates how the

first two steps may be made more explicit. At this stage

the solution has been reduced from nine to seven sub-—

problems, (shown in lines 10 to 15 and line 17 of

V
A
R
W
D
S

a
U
b
R
w
W
N
=

a

19

11

12
13

14

begin int 0%

read (n);
for i to n
“do process data for employee od;
output the number of coins and the _

number of notes needed

end

Diagram 1

The First Stage of a Program Nesiagn

begin int n;
TT) Bead (ays

fon, ton ea
“do input the value of wage ;

~~ calculate the number of fivepounds

needed so far ;
calculate the number of poundnotes

needed so far ;
calculate the number of fiftypences

needed so far ;
calculate the number of tenpences

needed so far ;
calculate the number of fivepences

needed so far ;
calculate the number of twopences

needed so far ;
calculate the number of onepences

needed so far ;
od 5

output the number of coins and the
number of notes needed

end

Diagram 2

The Second Stage of a Program Design

14

F
P
O
M
R
I
M
F
H
V
A
W
N
H

5

12

13:

14

S

16
17

18

int n, wage, fivepounds ;
read (n) ;
fivepounds :=090 ;
for 4 50 1
“do Yead (wage) ;

~~ while wage >= 500
do fivepounds :=

wage :=

begin

od 5
calculate the number

needed
number
needed
number
needed
number
needed
number
needed
number
needed

calculate the

calculate the

calculate the

calculate the

calculate the

od
output the number of coins

number of notes
end

Diagram 3

The Third Stage of a Program Desian

he

wage —
fivepounds + 1
590,

of poundnotes

so far 3
of fiftypences
so far ;

of tennences
so far ;
of fivepences
so far ;
of twopences

so: far 5
of onenences
so far

and the
needed

diagram 3), and a moment's thought at this stage shous

that each of the remaining calculations in the loopbody

will involve similar design decisions to those taken for

the first calculation. Hence because similar processing

is required the programmer may decide to implement each

calculation in the form of a procedure. The final

program would then be similar to that shown in diagram 4.

By using the principles of structured programming, a

concise and efficient implementation has been achieved

without any subsequent loss of clarity. The decomposition

has not followed any practical guidelines and each decision

has been based largely on a knowledge of the use of certain

programming constructs and schema to achieve a desired

result. Recent work in the area of structured programming

has been directed towards imposing some criteria on which

to base this decision-making process. Current programming

methodologies such as those of Jackson [Jackson 1975] and

Warnier (Warnier 1974] propose structuring programs on the

basis of the logical structure of the date, whereas

Constantine [Yourdon and Constantine 1975] and Myers

(Myers 1975) propose programs should be structured according

to the functional decomposition of the problem.

An analysis conducted at the University of Aston

amongst 85 students attempted to guage programmer's

behaviour and attitudes to the design stage of program

development. Each student was asked to complete a

questionnaire and this together with the results obtained

are given in Appendix F. The students represented a

considerable variation in programming experience and

knowledge, from novice programmers to those with several

16

O
P
I
M
D
K
U
N
V
A
W
H
—
 beain

end

int n, waqe, fivepounds, poundnotes,
fiftypences, tenpences, fivepences,
twopences, onepences ;

proc denominations = (ref int numberof,

int value) void :
begin while wage >= value

do. wage := wage - value ;
numberof := numberof

2 ot
od

end 5
read (n) ;
fivepounds := poundnotes := fiftynences
:= tenpences fivepences twonences
?= onepences a

Ory i= toon
do read (wage) ;

denominations (fivepounds, 599)
denominations (poundnotes, 199)
denominations (fiftypences, 59)
denominations (tenpences, LO s
denominations (fivepences, 5) ;
denominations (twopences, 2) ;
denominations (onepences, 1)

od;
print (fivepounds, "fivepound notes are

required", newline,
poundnotes, "'onepound notes are

required", newline,
fiftypences, "fiftypence coins are

required", newline,
tenpences, '"tennence coins are

required", newline,
fivepences, "fivepence coins are

required", newline,
twopences, "twopence coins are

required", newline,
onepences, "onepence coins are

required", newline)

Diagram 4

The Coded Version of a Program Desian

17

years programming experience. The novice programmers,

that is those currently learning programming, formed the

dominant group (62 students). The main conclusions drawn

from an analysis of the questionnaires are:

a) 42 of the 62 novices do not write out a program

design every time a program is developed;

b) 37 out of 61 students stated that for problems

considered to be simple, program designs were not

developed;

icy 53 students thought the time spent teaching them

program design was adequate but 55 felt they would

benefit from extra tuition. Furthermore 72 said

they would take advantage of a system capable of

analysing program designs;

d) 39 students found the program design stage more

difficult than coding. Only 18 students thought

coding was the more difficult and the remainder felt

they were both equally difficult.

This latter result indicates that students find the formula-

tion of program designs difficult and that they would benefit

from any support that could be given to them during this

stage. Such support would be important because a rigorous

program design facilitates program development. Hence a

system such as that proposed should prove beneficial

because deficient program designs will be highlighted.

This thesis proposes a framework for analysing

examples of program design which is referred to hereafter

as the Framework for Analysing Program Designs (or FAPD).

Since none of the criteria for decomposition, which are out-

18

lined above, have been universally accepted, examples of

program design are often of widely differing forms.

Because of this and because of time constraints, it has

not been possible to investigate methods for analysing

all of the different approaches to program design.

Consequently before proposing a method, a decision is

needed concerning the kind of program design which should

be studied. The choice of this form is the subject of

the following section.

1.3 Scope of Program Design for this Project

It was decided that attention should be concentrated

on analysing program designs which have been written

using an informal method similar to that used in section

1.2. It was also decided that FAPD should aim to

analyse program designs which use only a limited set of

basic programming constructs. The reason for this is

that because of time constraints it has not been possible

to analyse program designs whose solution requires the use

of a wide range of programming constructs. Consequently

it was decided to concentrate on those designs which can

be coded using suitable combinations of assignment, read

and print statements, loops and conditionals and to omit

more advanced programming concepts such as procedures.

The implications of this omission are discussed in the

final chapter.

In order to define more clearly the kinds of program

Gesign which this project should concentrate on, let us

now consider how these basic programming constructs can be

introduced to students who do not have prior knowledge of

ig

computing. At the University of Aston, first-year

computer science students initially learn that programming

consists of two related activities. The first of these

involves understanding a problem and formulating a program

design to solve the given problem, The second involves

converting the design into a particular programming

language. Students are taught to formulate a design in

a manner suitable for conversion into a target language

and consequently they are introduced to structures for

denoting repetition and choice. These structures are

identified as having the same format as those used in the

target language. If ALGOL 68C was the programming

language, then the structures would be identified as

WHILE - O00 - OD for repetition and IF - THEN —

[Else -] FI for choice, where [ELSE -] represents an

optional item. At each stage of the design process, the

decisions available to the novice may be summarised as:

a) a sequence of actions

b) a selection of actions which is achieved using

a conditional structure of the same format as

that used in the target language; and

c) a repetition of actions which is achieved using

a loop structure of the same format as that used

in the target language,

where an action could be either a single instruction or

a compound statement. Examples of single instructions

are the arithmetic expression, the read, print or

assignment statement.

After being taught how to formulate a design the

student is then taught the coding details of ALGOL 68C

20

such as the exact forms of the assignment, print and read

statements together with other syntactic details such as

the declaration of variables and the placement of semi-

colons. With time and experience the student also

becomes familiar with other constructs such as the CASE

clause for denoting a special form of selection, the FOR

loop as an alternative to the WHILE construct and data

structures such as the array.

The program design in diagram 3 has been generated in

order to illustrate how an experienced programmer might

tackle the problem. Similarly the design in diagram 5

has been generated in order to illustrate the kind of

program design which FAPO, described later in this thesis,

can analyse. The latter diagram contains statements

such as:

initialise fivepounds to 0O (leas)

whereas the design in diagram 3 has specified the same

instruction in terms of the target language, viz:

fivepounds s= 0 (ile2)

Statement (1.1) can be used instead of (1.2) when the

programmer is inexperienced in using the syntactic features

of the target language. Once the program design has been

written in sufficient detail then the programmer need only

concentrate on the coding details.

If we compare diagrams 3 and 4, the differences

between the two can be described in terms of the

decomposition. It has been determined that each of

the calculations enclosed in the loopbody requires a loop

structure and so the procedure facility of ALGOL 68C has

21

N
O
U
A
W
N
 =

O
n

am

15

16
7)
18

read the first number into n
initialise fivepounds to 9
initialise i to 1
while
do

od

iis less than or equal to n
read the next number into wage
while wage is greater than or equal to 500
do increment the value of. fivenounds

by 1
decrease the value of wage by 590

od
calculate the number of poundnotes

needed so far
calculate the number of fiftypences

needed so far
calculate the number of tenpences

needed so far
calculate the number of fivepences

needed so far
calculate the number of twopences

needed so far
calculate the number of onepences

needed fo far
increment i

output the number of coins and the number
of notes needed

Diagram 5

An_ Alternative Program Desian en ee ee

22

been used to collectively describe these calculations.

Consequently this decomposition has resulted in a somewhat

simple and efficient solution. However, if the programmer

has no comprehension of advanced programming concepts such

as a procedure, the stage following that shown in diagram 3

might merely show each of the remaining calculations decom-=

posed into the appropriate loop structure. If the

programmer has learnt the coding details of the target

language then the design is now converted into code,

otherwise the solution has been expressed as explicitly as

his limited knowledge of programming has allowed.

This section is concluded by stating that the term

"program design" is used throughout the remainder of this

thesis to mean designing programs using the principles of

structured programming in the manner already described.

Also for the reason outlined at the beginning of this

section, the Framework for Analysing Program Designs is

aimed at analysing examples such as that shown in diagram 5

which can be coded using a limited set of target language

constructs. By accepting designs similar to that shown

in diagram 5 FAPD should be of benefit to programmers of

varying experience. It is interesting to note from the

questionnaire that 67 out of 84 students thought that the

program design stage was necessary for all programmers

whatever their experience. Nevertheless it is expected

that novice programmers will derive the greatest benefit.

1.4 Analysing a Program Design

The concluding remarks of the previous section

defined the term "program design" to be the process of

designing a program according to the principles of

23

structured programming. Having defined this term and

shown how a program design can be produced according to

these principles (see diagram 5) we must now consider how

Program designs of this type can be analysed. This project

has taken the view that analysing a program design is a

process of translating a design into an alternative format

which can then be manipulated more easily than the original

design. This format does not contain any of the ambi-

guities or inferences which may have existed in the

original design because they will have been removed during

the translation process. If any comments are generated

during translation then the programmer can use them as a

basis for revising the solution before finally submitting

a coded version of the design to a computer for compilation

and execution.

In terms of this project, a series of assertions has

been chosen as the format into which a program design is

translated. These assertions represent a coded version of

the design and can then be used to produce a program

together with any comments about its content. There are

several reasons why this representation has been chosen.

Firstly, it provides a convenient format for showing a

user if the process of designing the program is complete.

If the process is not complete then the results show those

statements in the design which have not been analysed and

which require further refinement. Statements that have

been analysed successfully are now expressed in terms of

the target programming language and therefore need no

further refinement. The design process is complete when

24

all statements have been successfully analysed. The

programmer then knows the design process is complete and

any final modifications can be made before running the

Program on the computer. It is interesting to note that

36 out of 84 students who completed the questionnaire on

Program design usually wrote out a single program design

before converting it into a programming language. This

indicates that a process of stepwise refinement has not

been followed and consequently the resulting program design

could lack structure and detail. In this case, high-

lighting those statements which should be refined further

will encourage students to spend more time on designing

programs.

Secondly, this representation could prove particularly

useful for novice programmers. Typically, a novice might

have been taught the principles of program design prior to

learning the coding details of the particular target

language. FAPD could then be used within a system which

takes the role of an experienced programmer who can show a

novice how his design could be implemented. Any anomalies

such as using variables without first initialising them,

together with information on how statements in the design

have been converted into code could be noted and commented

upone

A third reason for choosing this definition of

analysing a program design is that FAPD could be used to

act as a front-end to an existing system of program under-

standing. If FAPD is capable of producing a coded version

of the design, the code could then be tested:

25

a) for syntactic correctness by using an existing

compiler for the target programming language; and

b) by using some of the existing theories of program

understanding.

Program understanding attempts to match a program's actual

performance against its specification. Any discrepancies

between the two show that the Program, and hence the design

from which it has been derived, is in error.

This section concludes the Introduction to the topic

of program design analysis. Chapter 2 provides a

discussion of some related AI work before the discussion

returns to the Framework for Analysing Program Designs in

Chapter 3. FAPD is described with reference to a system

which is capable of analysing and commenting upon some

simple program designs. Chapter 4 discusses details of

the system's implementation and Chapters 5 and 6 analyse

some of the results obtained from using the system.

Chapter 7 concludes the thesis with an evaluation of this

research together with some suggestions for further work.

26

2. RELATED AREAS OF ARTIFICIAL INTELLIGENCE

2.1 Program Verification

A method for analysing programs to determine whether

or not they perform as intended has been a goal of computer

science for many years. The initial work in this area

came to be known as program verification. Program

verification uses mathematical logic as the basis for

analysis and attempts to prove the correctness of a program

in a similar manner to the way a mathematical theorem is

proved. The deficiencies of this area will now be

discussed in order to illustrate the reasons behind the

development of program understanding as an AI topic. Some

of the approaches to program understanding are then

discussed in Section 2.2.

A prerequisite of proving a program using this method

is a specification of what the program is intended to

achieve. This specification is represented by a series

of assertions which describe the intended values of the

program's output variables in terms of the program's

input variables. Any restrictions on the program's

inputs must also be represented in a similar manner.

Because of its similarity to mathematical theorem proving,

a theory of program verification often represents these

assertions in a form based on first-order predicate logic.

In order to analyse a program other assertions must

also be made to describe the values of variables at various

points in the program. To determine whether a program

performs as intended entails proving the truth of these

27

assertions together with those describing the intended

output values. Successive assertions are proved true

by showing that a previous assertion together with the

intervening code, imply the truth of the current

assertions. Tf all assertions are proved true then

the program has been successfully matched against its

specification. The disadvantage of program verification

is that it only proves whether or not a program performs

as intended. It does not attempt to diagnose the cause

of an error. This limitation has led to the growth of

a related area of research which throughout this thesis

is referred to as program understandina.

Dee Program JInderstandinag

The topic of program understanding will be described

in terms of those research workers considered to have

made major contributions to the topic.

2.2.1 Katz and Manna

As we stated in the previous section many systems

which attempt to verify a program are inadequate since

they do not diagnose the cause of errors in incorrect

programs. However a further disadvantage is that the

system user must provide not only those assertions

describing the program's output values, but also the

intermediate inductive assertions. Katz and Manna

{katz and Manna 1976] have suggested a unified solution

to these problems and have proposed that the analysis

of a program should be based on what is actually

28

occurring in the program rather than some theoretical

specification. Whenever a system of program verification

fails to prove a program it is unclear whether the code is

bugged or the system is unable to produce a correct proof.

Hence Katz and Manna have suggested that program analysis

should be based on, what they call, invariant assertions.

These are used to express the actual relationships among

the variables of the program and are derived directly

from the program text rather than from a separate

definition given by the programmer. Consequently these

invariants are independent of the program's output

specification and can be used either to verify that the

program performs as intended or that it is bugged. In

the latter case, the same invariant assertions can then

be used to locate the errors and modify the program.

To eliminate erroneous code two approaches have

been advocated. The first has been termed a conservative

approach and means that the program must be proved

incorrect before it can be modified. The second

approach which is more radical modifies the program

regardless of its state of correctness. This means a

correct program is often modified and its efficiency may

be reduced as a result. However this approach is of

merit since modification guarantees a proof of correctness.

Whichever anproach is chosen, the basic technique of

debugging is the same. This technique modifies a

program systematically by using the invariants together

with information about how they were generated. This

29

information is stored in the form of an invariant table

which contains everything used to establish each variant

such as the rule applied and nrecisely how the proaqram

statements and/or other variants were used in its

derivation. Debugging proceeds by walking through this

invariant table, proposing and testing new variants which

have been generated as candidates that could lead to the

Program being vroved correct.

Although the discussion above is based on a set of

proposals which have not been implemented, this work is

of significance since it demonstrates the inadequacies of

program verification and has put forward some pronosals

for overcoming them. Many of the other theories,

outlined in this section, stress the importance of building

a rich description of how the program can be analysed.

This description often performs a similar function to the

invariant table discussed above and is used in a similar

way to aid the debugging process.

2.2.2 Goldstein

Goldstein [Goldstein 1975] discusses a system called

MYCROFT for debugging simple LOGO programs. The input to

MYCROFT is a bugged LOGO program together with a model

which uses pre-defined geometric predicates to describe

the intended outcome of that program. MYCROFT analyses

the program and builds a description of the picture

actually drawn and a plan explaining the relationship

between the program and model. This plan allows MYCROFT

30

to bind sub-pictures to model parts and to produce a list

of violated model statements. The debugger then attempts

to repair each violation in the list in order to vroduce

an edited program which satisfies the model.

The first operation that MYCROFT undertakes is to

document how the program performs. This documentation

is organised as sets of assertions in a database bound

together with sequences representing what hapnened and

why. There are three kinds of documentation which may

be summarised as:

a) process annotation which records the effects of

executing each program statement. This annotation

is generated by imperative semantics associated with

each LOGO primitive;

b) planning advice which tries to find clues on how

the program can be segmented. In this respect

MYCROFT views a program as comprising main stens

(which are represented by the code required to

achieve a particular goal) and prepatory steps (which

are the interfaces between main steps);

¢) debugging advice which describes suspicious code

within the program such as sequences of contiguous

uses of the same primitive.

The second operation within MYCROFT is to find the

plan. The plan finder assumes a linear structure to

the user's plan and attempts to match model parts with

modular main steps and relations between model parts with

31

prepatory steps. The result of this matching operation

is a list of violated model predicates.

The final operation is a debugging operation and

involves correcting these violations. To achieve this

the debugger uses two types of procedural knowledae.

The first of these is a collection of general debuaging

strategies which use a linear attack as they try to

repair a program. The first step in debugging is to

fix each main sten independently. Following this the

main steps are treated as inviolate and the relations

between model parts are fixed by debuaging prepatory

steps. MYCROFT will also use comments generated by the

plan finder to suggest the location of repairs and it

will compare alternative debugging strategies in an

attempt to choose those which will cause minimal change

to the user's code. The second type of procedural

knowledge used by the debugger is concerned with giving

directions for fixing particular geometric and logical

predicates.

Goldstein's work is of significance for showing how

the concept of linearity together with rich program

descriptions facilitate understanding and debuaging.

However the two main criticisms of his theory are:

a) the subset of LOGO used is too restrictive; and

b) the model used to snecify the intended effect of

a program is very detailed and often more complex

than the program it describes.

32

The Framework for Analysing Program Designs is

Similar to Goldstein's work since they both represent

some of the results of analysis in the form of assertions

stored in the database. Goldstein's work is also of

relevance to the author's since MYCROFT does not use the

model of intended outcome in order to document how a

program performs. This illustrates that some useful

information about a program can be derived without

necessarily knowing what that program is intended to

achieve.

2.2.3 Ruth

Ruth [Ruth 1976] was concerned with various

implementations of a known algorithm. His theory of

intelligent program analysis is based on a knowledge of

what must be accomplished and how code is used to express

intentions. This theory has been implemented in a

system, written in the AI programming language CONNIVER,

which analyses a program by using a description of the

task the program is to accomplish (c.f. Goldstein's

model of intended outcome), which the user provides,

together with a built-in body of knowledge of how

intentions can be realised in code. The system's

knowledge is in the form of programming experts which

know how actions can be coded and organised and what the

common sources of errors in program writing are.

The user provided description of the program task

must be pre-defined using constructs and mechanisms

(ise. loops and conditionals) in a form which the

a3

analyser can recognise. The analyser knows how these

constructs and mechanisms can be re-arranged and

reorganised to produce equivalent variations and how they

can be coded. The user can then type in a program,

which must be written in a simple LISP-like language, for

analysis. If the program is correct but the system

cannot match it against the pre-defined description, it

will be either misunderstood or not understood at all.

The pre-defined description and the program both

comprise a list of actions and analysis is concerned

with matching the two lists. This analysis is under-

taken by an action list matcher(ALM) which will continue

operating until there is a failure or the list of actions

in the pre-defined description has been exhausted. For

an action in the description to be matched with an action

in the program they must be equivalent not only in terms

of their values but also in terms of the constructs they

use. To do this the system has an expert for each

action that can be used in the predefined description.

An expert checks whether the current action that the ALM

is trying to match is present and properly implemented at

the current point in the code. Tf it is not, then an

error is reported. Errors are classified as either

recoverable or non-recoverable. The analyser has

specific knowledge of a few common programming errors

which it can recognise and fix. These are termed

recoverable errors because they can be fixed without

substantial chanage to the observed code. Generally

34

speaking, non-recoverable errors are those where something

vital is missing or something unwanted is present.

Although Ruth's work is impressive, an important

drawback is that analysis concentrates on a description

of the values of the variables. Later research [Lukey 1980]

has shown that other types of description can provide

useful aids to understanding. However Ruth's work is of

Televance because it shows how recognition of various

schema can contribute to program understanding.

The framework described in this thesis proposes that

the translation of a program design statement into a

target language can be achieved using a procedure called

a class instance. In this respect class instances are

similar to Ruth's experts except that an expert is called

on the basis of the actions contained in the predefined

description of a program task, whereas a class instance

is called on the basis of what appears in a program

design. It should also be noted how they are used for

different purposes. An expert is used to determine

whether or not an action has an equivalent form in the

program, whereas a class instance is used to create a

coded version of a statement or phrase.

22204 Lukey

Lukey [Lukey 1980] has developed a system, called

PUDSY, which can understand and debug some simple

PASCAL (sub-) programs. He distinguishes between two

types of debugging. The first is based on recognising

general constraints on correct and rational programs.

An error tynical of this kind is a loop which will never

terminate. The second type is based on a comparison of

a program's intended and actual operation. The input to

PUDSY is a PASCAL program together with a formal

specification of its intended outcome. The system will

then build up a description of how the program actually

operates and matches this against its specification.

Any discrepancy between the two indicates the program is

bugged. The code is then edited by identifying and

generating a specification for the piece of code

responsible.

Lukey emphasises how the success of his debuaging

strategy depends to a large extent on the availability of

a rich program descrintion. In this respect the process

of understanding a program involves:

a) segmenting a program;

b) describing its flow of information;

c) describing the values of variables; and

d) recognising debugging clues.

The first step in this process is to seament the program

into distinct units, which Lukey calls chunks. Once

this has been achieved PUDSY will then specify how these

chunks communicate with each other. This involves

identifving those variables whose values have been used

in, but which were determined prior to, the current chunk.

These are known as a chunk's inputs. Similarly, a

36

chunk's outputs are those variables whose values are

used by subsequent chunks or which are returned to the main

body of a program as either the value of the subprogram

or the value of a parameter. The second type of program

description is based on the analysis of the inputs and

outputs and is a high-level description of how information

flows from one chunk to another.

The segmentation of a program together with the

description of information flow provides a framework for

the third type of program description which describes the

values of a program's variables. Each chunk may now be

described by making assertions about its output variables.

These assertions describe the values held by the output

variables, in terms of the input variables, when control

leaves the chunk. To do this two methods are used. The

first method involves the recognition of a particular

series of statements followed by their description. The

second method uses a technique of symbolic evaluation in

order to derive the necessary assertions.

The fourth type of program description involves a

recognition of debugging clues. For instance, the way

in which a variable is intended to be used ina program

could possibly be determined from its name. For example

PUDSY makes a note of a variable named COUNT if it is not

used to count anything. By comparing a program's

specification with its description, a list of mismatches

can also be produced and by tracing a path back through

37

the assertions which it has produced, PUDSY identifies

the code source of a mismatch. Once this has been done

a series of edits are proposed and tested and the most

successful of these is chosen. Finally the consequences

of an edit are tested to ensure that it has removed

the bug.

Lukey's work is impressive because he has demonstrated

that to understand a program, other types of description,

in addition to the values of variables are useful. He has

also shown the importance of these different types

interacting. However, he does noint out that to a larae

extent this method of description is also inadequate

since it does not make use of some potentially useful

sources of information such as, for example, input and

output pairs, information derived from execution errors

or traces of a program's execution.

2.2.5 Rich and Shrobe

Rich and Shrobe [Rich and Shrobe 1978] have developed

a system which plays the role of a programmer's

apprentice for expert programmers who are writing LISP

programs to manipulate hash tables. These programs are

described by the system in terms of the hash tables on

which they operate, the input and output specifications

of the segments which comprise the Program and the

hierarchical representation of the Program's internal

structure. The latter of these descriptions is referred

to as the plan.

38

The first tyne of description is concerned with hash

tables which in effect form the data for a program and

which the user must describe in terms of the abstract

definition known to the system. The second form of

description is represented by the input and output

specifications of the program's segments and is supplied

by the programmer. In terms of code, a program seqment

could be, for instance, a function definition, the body

of a conditional or several lines of open code. A

segment is described by a series of specifications which

contain information about the data flowing into and out

of the segment. These snecifications are a formal

statement of the conditions acting upon or the relation-—

ships between, values of the data at the time the segment

is entered. A segment's output values are also described

in a similar manner.

One of the most interesting aspects of this work is

the third form of program description, known as the plan.

Rich and Shrobe have devised a method of representing

plans which allows them to be used not only for describing

a user's program but also for describing the system's

programming knowledaqe. The programmer and apprentice

first work at this plan level and interact in order to

develop an abstract representation of the program's

intended structure. To do this the apprentice must know

some of the basic techniques for manipulating hash tables

such as deleting elements from a linked list. The

apprentice can now compare the seqment snecifications

39

