
TOWARDS A COMPUTER UNDERSTANDING

OF PROGRAM DESIGN

VOLUMES 1 AND 2

VOLUME 1

Philip Ainsley Fox

Submitted for the Degree of

Doctor of Philosophy

The University of Aston in Birmingham

November 1984

The University of Aston in Birmingham

Towards a Computer Understanding

of Program Design

Philip Ainsley Fox

Submitted for the Degree of
Ooctor of Philosophy

1984

Summary

Program design is one of the many processes involved
in program development and is considered to be essential
to the development of structured programs. Consequently

this research has been concerned with the analysis of
program design since it is considered to be of equal
importance to other areas of Artificial Intelligence (AI)
research, which analyse the program cade. Because a
rigorous program design results in a program containing
few errors, a system capable of analysing program designs
should assist these other related areas of Al.

This research has developed the Framework for
Analysing Program Designs (or FAPD) in order to analyse
the kinds of program design produced by programmers

using the principles of structured programming. The
process of analysis is viewed as comprising four
distinct phases, which are referred to as pre-semantic
analysis, semantic analysis, generation of comments and
code generation. The results of analysis take the form
of a coded version of the program design together with
any comments about the code. Analysis is based ona
set of structures which have been developed in order to
represent phrases and statements often used in a program
design. Attached to each structure is a procedure,
referred to as a class instance, which translates its
structure into a particular programming language.

FAPD has been implemented and tested within a system
called DACE (which is a Design Analysing and Commenting
Environment). FAPD is discussed within the context of
the system and the results from testing it are discussed
in detail. The conclusions are drawn that FAPD represents
a viable approach to the computer analysis of program
designs, the system has some influence on those who use
it and that class instances are a useful acquisition to
the set of tools currently available to researchers in Al.

Keywords ; design, program, structure, class instance.

Acknowledgements

I would like to thank my supervisor, Or. A.J.

Harget for his many helpful comments and encouragement,

and fir. I.H. Chisholm for his assistance in all aspects

of this research, I would Particularly like to thank

all my colleagues at Cadbury-Schweppes plc who made the

final stages of this research possible. Finally, I

would like to thank my parents and Mr. and Mrs. f.Re

Thompson for their assistance in getting this thesis

into its printed form.

The work of this thesis has been supported

financially by the Science Research Council.

a

CONTENTS

Volume 1

ENUTROUUCT LON, eis cioleietreiele o'c:e'elsieie sis’ grele's ls slave slavarcieves se

ek Agmscand Objectives .cdseeesss

1.2 Program Design (M\G(6)9 6 O'S O'S 6)6\6'00)4.018 obo 6.4/o.0-—\eieiacele,

1.3 Scope of Program Design for this PrOjeCt See. sis

1.4 Analysing a Program Design cesceccccecccccces

RELATED AREAS OF ARTIFICIAL INTELLIGENCEee0~

2.1 Program Verification ..e.

eee Program Uaderstanding rece sists elec oeels asweele cle

202.1 Katz and Manna Pee c cece ns cr rece cnes

2.2.2 Goldstein eee merece cer csceseseseceseees

Bvcus RUED) seieielvic e's viciceeeieis esse elescleesiccee oeeicie

wecea LUKSY) Secs

202.5 Rich and Shrobe Pome e cree cree e renee ces

2.2.6 Waters Beemer cee rer cnr aces cercccssccces

2.2.7 Others eee were ec en ners cees

eeslescece

23 Automatic Programming os esses vielese sees cise

2.4 Intelligent Teaching Systems .ee.

oe eecceee

205 Computational Linguistics <.<<.ccccesesescesce

2.6 Programming Languages for Novice Programmers.

THE FRAMEWORK FOR ANALYSING PROGRAM DESIGNS cesses

3.1 General Points Pomme e eee ees eeeeeees

3.2 Pre-Semantic Analysis secec Cece eee ceeeeee

Se@el IMELOdUCEION siesiccicwisies sicceoeiescvecees o

Seeded Lexical and Syntax Analysis ..ccscccvece

3.2.2.1 Function of Syntax Analysis «se...

Seeegs2 Scope’ of the Syntax sivces« cece ee ee'e

3-22.35 Definition of Recognised Words ..ecc

32262.4 The Syntax of a Program Design

4

10

10

ll

19

23

44

49

52

oo

60

64

64

Se@e2e5 Lexical Analysis ‘sewissclsic'sciele eicoe-¢

3.2.2.6 Syntax Analysis CO eereccccesccccce

3.2.3 Preparation for Semantic Analysis .essece

Se) SBMINELSMANALYSLS © (ict ow.0.0 esisioe's viecdielv s eiobiees

35.1 Function of Semantic Analysis .eccoccces

5.3.2 Representation of a REOOLAM! seeiawe ee eeerse

3.3.3 Analysis of a Design Statement cecececce

30304 Scope of Semantic Analysis .secccccccesces

Jes Generation jaf Comments: M.sisreesisisisiee's © sie cisclany

GeSeCOGea Generation | isiccw visislecieieseuioree oa cs's «stele

IMPLEMENTATION EOE WDACE © svslecieielels saiciee 6 sices aelerew

4.1 Relationship between System and FAPD cesecee

Ged hacr lites eAVat lable | ltels cc's egisisae's be ciceeesn's

4.3 User Interaction . Peer eee eee eens eee enee

4.4 Pre-Semantic Analysis within DACE -cececcecee

4.5 Semantic Analysis, Generation of Comments

and Code Generation within DACE eesccsccce

RESULTS FROM ANALYSING PROGRAM DESIGNS .eeccovee

5.1 Example

5.2 Example

3 Example

5.4 Example

5 Example

~6 Example

5.7 Example

5.8 Example

1

2

4

2

8

Seem meme er ene ec ence ee wares eeeesee

Comm meee e reer eee reeeeeseeseeeses

Peewee meee cece rceserceeseseseeces

Pee meee eee er rere reeeeeesesssesces

Poem mee meee eer e meres ererereseeeeee

ee ie ed

Reem e eee e reer sees creer eesesceres

See exansles 95 LO and WL" cece ess cecelsare o scewe.e 6

RESULTS FROM USING DACE wccccccccvccccccccccecce

6.1 Objectives and Methodology ceecccvccccccccce

6.2 Problem Solutions eee meee ence er cece eeee

(6)

80

86

86

wo G

100

103

108

th?

112

114

116

121

126

132

133

140

150

159

163

171

178

183

187

193

193

1398

Ge oeSysten=USer Inter tacer steiniaic cists oe esrs ele piel.

6.3.1 Hardware Considerations

6.3.2 Software Considerations

6.4 Results of Pre and Post Test Exercises and

GUESETONMALLES: ‘sicie eee eieasikiwl tle bee es sivicieies

CONCLUSIONS) (5 s/ciesie vlecle's ea sivcis owes cisicwcicis sles cies

el Basis Ot PAPE ccs ccwiels cele clele oc ¢ eeleisivies «oa

7-2 Evaluation of FAPD Sec c cece ceccecccece

7.3 Evaluation of DACE Peewee eee cereseccene

74 Suggestions for Further Work Pee ewer eeeee

203

203

205

are

alt

2he,

21g

224

227

CONTENTS

Volume 2

APPENDIX A Cem meee meme rere renee eee ereereesseseene

An Example of the Format of the Syntax Tree,

Amended Syntax Tree and Assertions Produced

by DACE Cece cece errr reer ececcsceereeeserevece

APPENDIX 6 Seem meee reer errr eres seereeeee ceee

B.l1 The Grammar of a Program DeSign «seecovscccoce

Be2 > Semantic DETIAIELONS, ‘s~s-scr since ssc sieisisielss oc

B.3 The Assertion Language eseccceceee
 ee eeeeee

APPENDIX C ceccecsceccccecccccccevevcescceccesoesece

Cel Structures Used by the Semantic Analyser wee.

C.2 Structures Used to Generate Comments .ceecooe

APRENOIX Do cececcwccnveacvvcvecvccuvsievesccceccccecics

FUrther RESULTS cescesccccsiccccrvoccvcececsussces

APPENDIX E cocceccccvcccccescccvcccccscccccecceccces

Program Listing of DACE eocccccee

eee eeee

APPENDIX F ceccccccccercccceccccnccccccccceceescecce

Fel Questionnaire on Program Design «eececosesece

Fe2 Summary of Replies .seeoee

APPENDIX CG secceccecccccccecccccccccerecvereeecveces

G.1l System Handouts ...

Ge2 QUestionnalre weccccacecscvcvcevcsccesececes

Gas Summary GF REPIAEST . scissc ese seeeeea Usleueslne «

REFERENCES 9 seccwvcvcccccecicscvccccvovevcsvcceccovces

i3

18

18

si

1660

160

163

168

168

188

192

200

DIAGRAMS

The First Stage of @ Program DeSign ~.cecccscoos 14

The Second Stage of a Program Design eeecoccccee 14

The Third Stage of a Program Design «ceccccesesee 15S

The Coded Version of a Program Design «seseccccee 17

An Alternative Prooram Oesign’ <ecccccccccscvccce 22

The Syntax Tree of the Statement

MSETAT AND EB GOTH TOI! sewecsencsvicessecceca OL

The Syntax Tree and the Amended Syntax Tree

of the Statement "SET A AND B BUTH TO 1" 83

An Example of the Results Produced by the

Semantic Analysis Routines as dleisieseels weecees SL

The Syntax Tree and the Amended Syntax Tree of

the Statement "INPUT TEN NUMBERS INTO AN ARRAY" 94

10

il

12

13

14

LS:

16

LY

i8

The Assertions and Program Code Which Represent

the Statement "INPUT TEN NUMBERS INTO AN ARRAY" 99

Ihe: Struettine Of the «System wise esiee celtics cece) 2L7

User Interaction With Module 1 of the System .. 119

User Interaction with Modules 2 and 3 of the

SYSEOM Soccer dcsceeccecececcecneecoescoececs 122

User Interaction with Module 4 of the System .. 123

The Class Instances TC-ASSERT-#READ,

TC-ASSERT=#ASS and TC-#ASS-ASSIGN wsecvccesee 128

Results from Analysing a Program Design Which

Finds the larger of Two ValueS «secsccceceee 134

The Top-Level Function in the Semantic Analyser 137

Results From Analysing a Program Design Which

Finds the Average of a List of Values eeeece 141

19

20

2k

22

23

24

2

26

at

28

Zo

Results From Analysing a Program Design Which

Converts Yards, Feet and Inches Into Inches ..

Results from Analysing a Program Design Which

Generates the Fibonacci SerieS sessecceeees

Results from Analysing a Program Design Which

Searches an Array eee

eee ee neeeee

Results from Analysing a Program Design which

Generates the Fibonacci Series by Using

 an Array Ce ere ce cererseerecsoceceseccecee

Results From Analysing a Program Design Which

Searches a Sorted Array .

Results From Analysing a Program Design Which

Calctilates Income Tax Payable ceccecesevcee

Results From Analysing a Program Design Which

Contains an Unrecognised Symbol ceccoevecee

Results From Analysing a Program Design Which

Contains an Unrecognised Form of a Construct...

Results From Analysing a Program Design Which

Contains an Unrecognised Phrase oe

Summary of Results From Using DACE ceccsseoeee

Syntax Errors Analysed by Exercise Number

eye?

160

172

278

185

189

189

£94

194

te: INTRODUCTION

1.1 Aims and _ Objectives

The motivation behind this work was derived from

studying the topic of program understanding which is

an area of research in Artificial Intelligence (AT).

The objective of program understanding is to determine

whether or not a program performs as intended, by

matching a program's actual performance with a

specification of what it is intended to achieve. Any

discrepancies between the two will indicate the

departure of the program from its specification and

then an attempt can be made either to correct the

program or to provide some useful debugging information.

Program design is one of the many processes

involved in program development of which coding is the

final part. The importance of program design is well

established and is considered to be essential to the

development of structured programs. In our opinion,

research concerned with the analysis of program design

should be of equal importance to that given to the

related area of program understanding. This is not

the case at the present time. Thus in an attempt to

rectify this situation, a system for analysing program

designs was investigated. It is hoped fhat such a

system could be used to impress upon a programmer the

importance of the design process and the level of

detail required in a program desian.

10

In the remaining sections of this chapter we define

the term "program design" and then consider how, in

general terms, a program design may be analysed.

Sections 1.2 and 1.3 are concerned with the principles of

program design. Section 1.4 concludes the Introduction

by discussing how the results from analysing a program

design can be suitably represented.

1.2 Program Design

To-day we live in a society which places considerable

reliance on the computer. Recent progress in the area of

hardware technology, together with ever-reducing costs,

have led to computers being used in a larger number of

applications. Consequently software has increased in

complexity with a concomitant increase in the need for

software clarity, modifiability and efficiency. These

requirements can only be achieved if programmers adopt a

disciplined approach to the process of program development.

Early attempts at imposing discipline led to the

development of the principles of structured programming

(Dijkstra 1968, Wirth ig71]. These principles propose

that a program should be successively refined into a

series of sub-problems, each of which needs to be solved

in order to solve the original problem. This has the

benefit that each sub-problem produced is easier to solve

than the original. Furthermore, each sub-problem can be

considered separately and decomposed further until as Wirth

(wirth 1971] states:

"this successive decomposition or refinement

of specifications terminates when all
instructions are expressed in terms of an

underlying computer or programming language ..."

o:

A solution to the original problem, namely a program

design, can be expressed using suitable combinations of:

a) a Sequence of actions;

b) a selection of actions according to the results

of some condition; and

c) a repetition of actions,

where an action is defined to be either a single instruc-

tion, such as the addition of two numbers, or an instruc-

tion which is itself comprised of a set of simpler actions.

The latter is often referred to as a compound statement.

Consequently at each stage of the decomposition the

programmer must decide how his solution can be expressed

using a combination of the three programming options

described above.

Let us consider how this method might be used in

order to design an ALGOL 68C program for the following

problem specification:

"A company has a number of weekly paid employees

who receive their wages in cashe The company operates

a piecework scheme which means the wage bill can vary

considerably from week to week. The number of employees

together with their individual earnings (in pence) are

recorded weekly in a data file. Calculate the number of

£5 and £1 notes, together with the number of SOp, 10p,

Sp, 2p and lp coins the cashier will need in any given

week to pay out the wages"

A solution to this problem is shown in diagrams

1 to 4 inclusive. The first stage in the solution is

to decide how the problem can best be solved using a

combination of the three options outlined above.

12

Typically a programmer can use the target language, chosen

here to be ALGOL 68C, to express the solution to those

sub-problems which are easily solved. Less tractable

sub-problems can be left until a later stage in the design

process. A typical first attempt at the program design is

shown in diagram l. This illustrates that in terms of the

programming options given earlier (see section 1.2) the

initial design is described in terms of a single or direct

action, the read statement in line 2 followed by "n" repeti-

tions of the single activity in line 4 and a second direct

action, the print statement in line 5.

The solution in diagram 1 is now defined in terms of

the two sub-problems in lines 4 and 5, namely the

processing of an employee's data and the printing of the

results. The programmer can now concentrate attention on

the first of these two sub-problems. Since the process

for analysing an employee's data involves several calcula-

tions, a compound statement is chosen. The result is

shown in diagram 2 which illustrates how the processing of

an employee's data has been broken down into the eight sub-

problems shown in lines 4 to ll inclusive. Collectively

these form a compound statement delimited by the ALGOL 68C

reserved words 00 and OD. The solution is now defined in

terms of these eight sub-problems together with the sub—

problem in line 13 which still remains to be considered.

Each of the steps contained within the loopbody may

be considered in turn and diagram 3 illustrates how the

first two steps may be made more explicit. At this stage

the solution has been reduced from nine to seven sub-—

problems, (shown in lines 10 to 15 and line 17 of

V
A
R
W
D
S

a
U
b
R
w
W
N
=

a

19

11

12
13

14

begin int 0%

read (n);
for i to n
“do process data for employee od;
output the number of coins and the _

number of notes needed

end

Diagram 1

The First Stage of a Program Nesiagn

begin int n;
TT) Bead (ays

fon, ton ea
“do input the value of wage ;

~~ calculate the number of fivepounds

needed so far ;
calculate the number of poundnotes

needed so far ;
calculate the number of fiftypences

needed so far ;
calculate the number of tenpences

needed so far ;
calculate the number of fivepences

needed so far ;
calculate the number of twopences

needed so far ;
calculate the number of onepences

needed so far ;
od 5

output the number of coins and the
number of notes needed

end

Diagram 2

The Second Stage of a Program Design

14

F
P
O
M
R
I
M
F
H
V
A
W
N
H

5

12

13:

14

S

16
17

18

int n, wage, fivepounds ;
read (n) ;
fivepounds :=090 ;
for 4 50 1
“do Yead (wage) ;

~~ while wage >= 500
do fivepounds :=

wage :=

begin

od 5
calculate the number

needed
number
needed
number
needed
number
needed
number
needed
number
needed

calculate the

calculate the

calculate the

calculate the

calculate the

od
output the number of coins

number of notes
end

Diagram 3

The Third Stage of a Program Desian

he

wage —
fivepounds + 1
590,

of poundnotes

so far 3
of fiftypences
so far ;

of tennences
so far ;
of fivepences
so far ;
of twopences

so: far 5
of onenences
so far

and the
needed

diagram 3), and a moment's thought at this stage shous

that each of the remaining calculations in the loopbody

will involve similar design decisions to those taken for

the first calculation. Hence because similar processing

is required the programmer may decide to implement each

calculation in the form of a procedure. The final

program would then be similar to that shown in diagram 4.

By using the principles of structured programming, a

concise and efficient implementation has been achieved

without any subsequent loss of clarity. The decomposition

has not followed any practical guidelines and each decision

has been based largely on a knowledge of the use of certain

programming constructs and schema to achieve a desired

result. Recent work in the area of structured programming

has been directed towards imposing some criteria on which

to base this decision-making process. Current programming

methodologies such as those of Jackson [Jackson 1975] and

Warnier (Warnier 1974] propose structuring programs on the

basis of the logical structure of the date, whereas

Constantine [Yourdon and Constantine 1975] and Myers

(Myers 1975) propose programs should be structured according

to the functional decomposition of the problem.

An analysis conducted at the University of Aston

amongst 85 students attempted to guage programmer's

behaviour and attitudes to the design stage of program

development. Each student was asked to complete a

questionnaire and this together with the results obtained

are given in Appendix F. The students represented a

considerable variation in programming experience and

knowledge, from novice programmers to those with several

16

O
P
I
M
D
K
U
N
V
A
W
H
—
 beain

end

int n, waqe, fivepounds, poundnotes,
fiftypences, tenpences, fivepences,
twopences, onepences ;

proc denominations = (ref int numberof,

int value) void :
begin while wage >= value

do. wage := wage - value ;
numberof := numberof

2 ot
od

end 5
read (n) ;
fivepounds := poundnotes := fiftynences
:= tenpences fivepences twonences
?= onepences a

Ory i= toon
do read (wage) ;

denominations (fivepounds, 599)
denominations (poundnotes, 199)
denominations (fiftypences, 59)
denominations (tenpences, LO s
denominations (fivepences, 5) ;
denominations (twopences, 2) ;
denominations (onepences, 1)

od;
print (fivepounds, "fivepound notes are

required", newline,
poundnotes, "'onepound notes are

required", newline,
fiftypences, "fiftypence coins are

required", newline,
tenpences, '"tennence coins are

required", newline,
fivepences, "fivepence coins are

required", newline,
twopences, "twopence coins are

required", newline,
onepences, "onepence coins are

required", newline)

Diagram 4

The Coded Version of a Program Desian

17

years programming experience. The novice programmers,

that is those currently learning programming, formed the

dominant group (62 students). The main conclusions drawn

from an analysis of the questionnaires are:

a) 42 of the 62 novices do not write out a program

design every time a program is developed;

b) 37 out of 61 students stated that for problems

considered to be simple, program designs were not

developed;

icy 53 students thought the time spent teaching them

program design was adequate but 55 felt they would

benefit from extra tuition. Furthermore 72 said

they would take advantage of a system capable of

analysing program designs;

d) 39 students found the program design stage more

difficult than coding. Only 18 students thought

coding was the more difficult and the remainder felt

they were both equally difficult.

This latter result indicates that students find the formula-

tion of program designs difficult and that they would benefit

from any support that could be given to them during this

stage. Such support would be important because a rigorous

program design facilitates program development. Hence a

system such as that proposed should prove beneficial

because deficient program designs will be highlighted.

This thesis proposes a framework for analysing

examples of program design which is referred to hereafter

as the Framework for Analysing Program Designs (or FAPD).

Since none of the criteria for decomposition, which are out-

18

lined above, have been universally accepted, examples of

program design are often of widely differing forms.

Because of this and because of time constraints, it has

not been possible to investigate methods for analysing

all of the different approaches to program design.

Consequently before proposing a method, a decision is

needed concerning the kind of program design which should

be studied. The choice of this form is the subject of

the following section.

1.3 Scope of Program Design for this Project

It was decided that attention should be concentrated

on analysing program designs which have been written

using an informal method similar to that used in section

1.2. It was also decided that FAPD should aim to

analyse program designs which use only a limited set of

basic programming constructs. The reason for this is

that because of time constraints it has not been possible

to analyse program designs whose solution requires the use

of a wide range of programming constructs. Consequently

it was decided to concentrate on those designs which can

be coded using suitable combinations of assignment, read

and print statements, loops and conditionals and to omit

more advanced programming concepts such as procedures.

The implications of this omission are discussed in the

final chapter.

In order to define more clearly the kinds of program

Gesign which this project should concentrate on, let us

now consider how these basic programming constructs can be

introduced to students who do not have prior knowledge of

ig

computing. At the University of Aston, first-year

computer science students initially learn that programming

consists of two related activities. The first of these

involves understanding a problem and formulating a program

design to solve the given problem, The second involves

converting the design into a particular programming

language. Students are taught to formulate a design in

a manner suitable for conversion into a target language

and consequently they are introduced to structures for

denoting repetition and choice. These structures are

identified as having the same format as those used in the

target language. If ALGOL 68C was the programming

language, then the structures would be identified as

WHILE - O00 - OD for repetition and IF - THEN —

[Else -] FI for choice, where [ELSE -] represents an

optional item. At each stage of the design process, the

decisions available to the novice may be summarised as:

a) a sequence of actions

b) a selection of actions which is achieved using

a conditional structure of the same format as

that used in the target language; and

c) a repetition of actions which is achieved using

a loop structure of the same format as that used

in the target language,

where an action could be either a single instruction or

a compound statement. Examples of single instructions

are the arithmetic expression, the read, print or

assignment statement.

After being taught how to formulate a design the

student is then taught the coding details of ALGOL 68C

20

such as the exact forms of the assignment, print and read

statements together with other syntactic details such as

the declaration of variables and the placement of semi-

colons. With time and experience the student also

becomes familiar with other constructs such as the CASE

clause for denoting a special form of selection, the FOR

loop as an alternative to the WHILE construct and data

structures such as the array.

The program design in diagram 3 has been generated in

order to illustrate how an experienced programmer might

tackle the problem. Similarly the design in diagram 5

has been generated in order to illustrate the kind of

program design which FAPO, described later in this thesis,

can analyse. The latter diagram contains statements

such as:

initialise fivepounds to 0O (leas)

whereas the design in diagram 3 has specified the same

instruction in terms of the target language, viz:

fivepounds s= 0 (ile2)

Statement (1.1) can be used instead of (1.2) when the

programmer is inexperienced in using the syntactic features

of the target language. Once the program design has been

written in sufficient detail then the programmer need only

concentrate on the coding details.

If we compare diagrams 3 and 4, the differences

between the two can be described in terms of the

decomposition. It has been determined that each of

the calculations enclosed in the loopbody requires a loop

structure and so the procedure facility of ALGOL 68C has

21

N
O
U
A
W
N
 =

O
n

am

15

16
7)
18

read the first number into n
initialise fivepounds to 9
initialise i to 1
while
do

od

iis less than or equal to n
read the next number into wage
while wage is greater than or equal to 500
do increment the value of. fivenounds

by 1
decrease the value of wage by 590

od
calculate the number of poundnotes

needed so far
calculate the number of fiftypences

needed so far
calculate the number of tenpences

needed so far
calculate the number of fivepences

needed so far
calculate the number of twopences

needed so far
calculate the number of onepences

needed fo far
increment i

output the number of coins and the number
of notes needed

Diagram 5

An_ Alternative Program Desian en ee ee

22

been used to collectively describe these calculations.

Consequently this decomposition has resulted in a somewhat

simple and efficient solution. However, if the programmer

has no comprehension of advanced programming concepts such

as a procedure, the stage following that shown in diagram 3

might merely show each of the remaining calculations decom-=

posed into the appropriate loop structure. If the

programmer has learnt the coding details of the target

language then the design is now converted into code,

otherwise the solution has been expressed as explicitly as

his limited knowledge of programming has allowed.

This section is concluded by stating that the term

"program design" is used throughout the remainder of this

thesis to mean designing programs using the principles of

structured programming in the manner already described.

Also for the reason outlined at the beginning of this

section, the Framework for Analysing Program Designs is

aimed at analysing examples such as that shown in diagram 5

which can be coded using a limited set of target language

constructs. By accepting designs similar to that shown

in diagram 5 FAPD should be of benefit to programmers of

varying experience. It is interesting to note from the

questionnaire that 67 out of 84 students thought that the

program design stage was necessary for all programmers

whatever their experience. Nevertheless it is expected

that novice programmers will derive the greatest benefit.

1.4 Analysing a Program Design

The concluding remarks of the previous section

defined the term "program design" to be the process of

designing a program according to the principles of

23

structured programming. Having defined this term and

shown how a program design can be produced according to

these principles (see diagram 5) we must now consider how

Program designs of this type can be analysed. This project

has taken the view that analysing a program design is a

process of translating a design into an alternative format

which can then be manipulated more easily than the original

design. This format does not contain any of the ambi-

guities or inferences which may have existed in the

original design because they will have been removed during

the translation process. If any comments are generated

during translation then the programmer can use them as a

basis for revising the solution before finally submitting

a coded version of the design to a computer for compilation

and execution.

In terms of this project, a series of assertions has

been chosen as the format into which a program design is

translated. These assertions represent a coded version of

the design and can then be used to produce a program

together with any comments about its content. There are

several reasons why this representation has been chosen.

Firstly, it provides a convenient format for showing a

user if the process of designing the program is complete.

If the process is not complete then the results show those

statements in the design which have not been analysed and

which require further refinement. Statements that have

been analysed successfully are now expressed in terms of

the target programming language and therefore need no

further refinement. The design process is complete when

24

all statements have been successfully analysed. The

programmer then knows the design process is complete and

any final modifications can be made before running the

Program on the computer. It is interesting to note that

36 out of 84 students who completed the questionnaire on

Program design usually wrote out a single program design

before converting it into a programming language. This

indicates that a process of stepwise refinement has not

been followed and consequently the resulting program design

could lack structure and detail. In this case, high-

lighting those statements which should be refined further

will encourage students to spend more time on designing

programs.

Secondly, this representation could prove particularly

useful for novice programmers. Typically, a novice might

have been taught the principles of program design prior to

learning the coding details of the particular target

language. FAPD could then be used within a system which

takes the role of an experienced programmer who can show a

novice how his design could be implemented. Any anomalies

such as using variables without first initialising them,

together with information on how statements in the design

have been converted into code could be noted and commented

upone

A third reason for choosing this definition of

analysing a program design is that FAPD could be used to

act as a front-end to an existing system of program under-

standing. If FAPD is capable of producing a coded version

of the design, the code could then be tested:

25

a) for syntactic correctness by using an existing

compiler for the target programming language; and

b) by using some of the existing theories of program

understanding.

Program understanding attempts to match a program's actual

performance against its specification. Any discrepancies

between the two show that the Program, and hence the design

from which it has been derived, is in error.

This section concludes the Introduction to the topic

of program design analysis. Chapter 2 provides a

discussion of some related AI work before the discussion

returns to the Framework for Analysing Program Designs in

Chapter 3. FAPD is described with reference to a system

which is capable of analysing and commenting upon some

simple program designs. Chapter 4 discusses details of

the system's implementation and Chapters 5 and 6 analyse

some of the results obtained from using the system.

Chapter 7 concludes the thesis with an evaluation of this

research together with some suggestions for further work.

26

2. RELATED AREAS OF ARTIFICIAL INTELLIGENCE

2.1 Program Verification

A method for analysing programs to determine whether

or not they perform as intended has been a goal of computer

science for many years. The initial work in this area

came to be known as program verification. Program

verification uses mathematical logic as the basis for

analysis and attempts to prove the correctness of a program

in a similar manner to the way a mathematical theorem is

proved. The deficiencies of this area will now be

discussed in order to illustrate the reasons behind the

development of program understanding as an AI topic. Some

of the approaches to program understanding are then

discussed in Section 2.2.

A prerequisite of proving a program using this method

is a specification of what the program is intended to

achieve. This specification is represented by a series

of assertions which describe the intended values of the

program's output variables in terms of the program's

input variables. Any restrictions on the program's

inputs must also be represented in a similar manner.

Because of its similarity to mathematical theorem proving,

a theory of program verification often represents these

assertions in a form based on first-order predicate logic.

In order to analyse a program other assertions must

also be made to describe the values of variables at various

points in the program. To determine whether a program

performs as intended entails proving the truth of these

27

assertions together with those describing the intended

output values. Successive assertions are proved true

by showing that a previous assertion together with the

intervening code, imply the truth of the current

assertions. Tf all assertions are proved true then

the program has been successfully matched against its

specification. The disadvantage of program verification

is that it only proves whether or not a program performs

as intended. It does not attempt to diagnose the cause

of an error. This limitation has led to the growth of

a related area of research which throughout this thesis

is referred to as program understandina.

Dee Program JInderstandinag

The topic of program understanding will be described

in terms of those research workers considered to have

made major contributions to the topic.

2.2.1 Katz and Manna

As we stated in the previous section many systems

which attempt to verify a program are inadequate since

they do not diagnose the cause of errors in incorrect

programs. However a further disadvantage is that the

system user must provide not only those assertions

describing the program's output values, but also the

intermediate inductive assertions. Katz and Manna

{katz and Manna 1976] have suggested a unified solution

to these problems and have proposed that the analysis

of a program should be based on what is actually

28

occurring in the program rather than some theoretical

specification. Whenever a system of program verification

fails to prove a program it is unclear whether the code is

bugged or the system is unable to produce a correct proof.

Hence Katz and Manna have suggested that program analysis

should be based on, what they call, invariant assertions.

These are used to express the actual relationships among

the variables of the program and are derived directly

from the program text rather than from a separate

definition given by the programmer. Consequently these

invariants are independent of the program's output

specification and can be used either to verify that the

program performs as intended or that it is bugged. In

the latter case, the same invariant assertions can then

be used to locate the errors and modify the program.

To eliminate erroneous code two approaches have

been advocated. The first has been termed a conservative

approach and means that the program must be proved

incorrect before it can be modified. The second

approach which is more radical modifies the program

regardless of its state of correctness. This means a

correct program is often modified and its efficiency may

be reduced as a result. However this approach is of

merit since modification guarantees a proof of correctness.

Whichever anproach is chosen, the basic technique of

debugging is the same. This technique modifies a

program systematically by using the invariants together

with information about how they were generated. This

29

information is stored in the form of an invariant table

which contains everything used to establish each variant

such as the rule applied and nrecisely how the proaqram

statements and/or other variants were used in its

derivation. Debugging proceeds by walking through this

invariant table, proposing and testing new variants which

have been generated as candidates that could lead to the

Program being vroved correct.

Although the discussion above is based on a set of

proposals which have not been implemented, this work is

of significance since it demonstrates the inadequacies of

program verification and has put forward some pronosals

for overcoming them. Many of the other theories,

outlined in this section, stress the importance of building

a rich description of how the program can be analysed.

This description often performs a similar function to the

invariant table discussed above and is used in a similar

way to aid the debugging process.

2.2.2 Goldstein

Goldstein [Goldstein 1975] discusses a system called

MYCROFT for debugging simple LOGO programs. The input to

MYCROFT is a bugged LOGO program together with a model

which uses pre-defined geometric predicates to describe

the intended outcome of that program. MYCROFT analyses

the program and builds a description of the picture

actually drawn and a plan explaining the relationship

between the program and model. This plan allows MYCROFT

30

to bind sub-pictures to model parts and to produce a list

of violated model statements. The debugger then attempts

to repair each violation in the list in order to vroduce

an edited program which satisfies the model.

The first operation that MYCROFT undertakes is to

document how the program performs. This documentation

is organised as sets of assertions in a database bound

together with sequences representing what hapnened and

why. There are three kinds of documentation which may

be summarised as:

a) process annotation which records the effects of

executing each program statement. This annotation

is generated by imperative semantics associated with

each LOGO primitive;

b) planning advice which tries to find clues on how

the program can be segmented. In this respect

MYCROFT views a program as comprising main stens

(which are represented by the code required to

achieve a particular goal) and prepatory steps (which

are the interfaces between main steps);

¢) debugging advice which describes suspicious code

within the program such as sequences of contiguous

uses of the same primitive.

The second operation within MYCROFT is to find the

plan. The plan finder assumes a linear structure to

the user's plan and attempts to match model parts with

modular main steps and relations between model parts with

31

prepatory steps. The result of this matching operation

is a list of violated model predicates.

The final operation is a debugging operation and

involves correcting these violations. To achieve this

the debugger uses two types of procedural knowledae.

The first of these is a collection of general debuaging

strategies which use a linear attack as they try to

repair a program. The first step in debugging is to

fix each main sten independently. Following this the

main steps are treated as inviolate and the relations

between model parts are fixed by debuaging prepatory

steps. MYCROFT will also use comments generated by the

plan finder to suggest the location of repairs and it

will compare alternative debugging strategies in an

attempt to choose those which will cause minimal change

to the user's code. The second type of procedural

knowledge used by the debugger is concerned with giving

directions for fixing particular geometric and logical

predicates.

Goldstein's work is of significance for showing how

the concept of linearity together with rich program

descriptions facilitate understanding and debuaging.

However the two main criticisms of his theory are:

a) the subset of LOGO used is too restrictive; and

b) the model used to snecify the intended effect of

a program is very detailed and often more complex

than the program it describes.

32

The Framework for Analysing Program Designs is

Similar to Goldstein's work since they both represent

some of the results of analysis in the form of assertions

stored in the database. Goldstein's work is also of

relevance to the author's since MYCROFT does not use the

model of intended outcome in order to document how a

program performs. This illustrates that some useful

information about a program can be derived without

necessarily knowing what that program is intended to

achieve.

2.2.3 Ruth

Ruth [Ruth 1976] was concerned with various

implementations of a known algorithm. His theory of

intelligent program analysis is based on a knowledge of

what must be accomplished and how code is used to express

intentions. This theory has been implemented in a

system, written in the AI programming language CONNIVER,

which analyses a program by using a description of the

task the program is to accomplish (c.f. Goldstein's

model of intended outcome), which the user provides,

together with a built-in body of knowledge of how

intentions can be realised in code. The system's

knowledge is in the form of programming experts which

know how actions can be coded and organised and what the

common sources of errors in program writing are.

The user provided description of the program task

must be pre-defined using constructs and mechanisms

(ise. loops and conditionals) in a form which the

a3

analyser can recognise. The analyser knows how these

constructs and mechanisms can be re-arranged and

reorganised to produce equivalent variations and how they

can be coded. The user can then type in a program,

which must be written in a simple LISP-like language, for

analysis. If the program is correct but the system

cannot match it against the pre-defined description, it

will be either misunderstood or not understood at all.

The pre-defined description and the program both

comprise a list of actions and analysis is concerned

with matching the two lists. This analysis is under-

taken by an action list matcher(ALM) which will continue

operating until there is a failure or the list of actions

in the pre-defined description has been exhausted. For

an action in the description to be matched with an action

in the program they must be equivalent not only in terms

of their values but also in terms of the constructs they

use. To do this the system has an expert for each

action that can be used in the predefined description.

An expert checks whether the current action that the ALM

is trying to match is present and properly implemented at

the current point in the code. Tf it is not, then an

error is reported. Errors are classified as either

recoverable or non-recoverable. The analyser has

specific knowledge of a few common programming errors

which it can recognise and fix. These are termed

recoverable errors because they can be fixed without

substantial chanage to the observed code. Generally

34

speaking, non-recoverable errors are those where something

vital is missing or something unwanted is present.

Although Ruth's work is impressive, an important

drawback is that analysis concentrates on a description

of the values of the variables. Later research [Lukey 1980]

has shown that other types of description can provide

useful aids to understanding. However Ruth's work is of

Televance because it shows how recognition of various

schema can contribute to program understanding.

The framework described in this thesis proposes that

the translation of a program design statement into a

target language can be achieved using a procedure called

a class instance. In this respect class instances are

similar to Ruth's experts except that an expert is called

on the basis of the actions contained in the predefined

description of a program task, whereas a class instance

is called on the basis of what appears in a program

design. It should also be noted how they are used for

different purposes. An expert is used to determine

whether or not an action has an equivalent form in the

program, whereas a class instance is used to create a

coded version of a statement or phrase.

22204 Lukey

Lukey [Lukey 1980] has developed a system, called

PUDSY, which can understand and debug some simple

PASCAL (sub-) programs. He distinguishes between two

types of debugging. The first is based on recognising

general constraints on correct and rational programs.

An error tynical of this kind is a loop which will never

terminate. The second type is based on a comparison of

a program's intended and actual operation. The input to

PUDSY is a PASCAL program together with a formal

specification of its intended outcome. The system will

then build up a description of how the program actually

operates and matches this against its specification.

Any discrepancy between the two indicates the program is

bugged. The code is then edited by identifying and

generating a specification for the piece of code

responsible.

Lukey emphasises how the success of his debuaging

strategy depends to a large extent on the availability of

a rich program descrintion. In this respect the process

of understanding a program involves:

a) segmenting a program;

b) describing its flow of information;

c) describing the values of variables; and

d) recognising debugging clues.

The first step in this process is to seament the program

into distinct units, which Lukey calls chunks. Once

this has been achieved PUDSY will then specify how these

chunks communicate with each other. This involves

identifving those variables whose values have been used

in, but which were determined prior to, the current chunk.

These are known as a chunk's inputs. Similarly, a

36

chunk's outputs are those variables whose values are

used by subsequent chunks or which are returned to the main

body of a program as either the value of the subprogram

or the value of a parameter. The second type of program

description is based on the analysis of the inputs and

outputs and is a high-level description of how information

flows from one chunk to another.

The segmentation of a program together with the

description of information flow provides a framework for

the third type of program description which describes the

values of a program's variables. Each chunk may now be

described by making assertions about its output variables.

These assertions describe the values held by the output

variables, in terms of the input variables, when control

leaves the chunk. To do this two methods are used. The

first method involves the recognition of a particular

series of statements followed by their description. The

second method uses a technique of symbolic evaluation in

order to derive the necessary assertions.

The fourth type of program description involves a

recognition of debugging clues. For instance, the way

in which a variable is intended to be used ina program

could possibly be determined from its name. For example

PUDSY makes a note of a variable named COUNT if it is not

used to count anything. By comparing a program's

specification with its description, a list of mismatches

can also be produced and by tracing a path back through

37

the assertions which it has produced, PUDSY identifies

the code source of a mismatch. Once this has been done

a series of edits are proposed and tested and the most

successful of these is chosen. Finally the consequences

of an edit are tested to ensure that it has removed

the bug.

Lukey's work is impressive because he has demonstrated

that to understand a program, other types of description,

in addition to the values of variables are useful. He has

also shown the importance of these different types

interacting. However, he does noint out that to a larae

extent this method of description is also inadequate

since it does not make use of some potentially useful

sources of information such as, for example, input and

output pairs, information derived from execution errors

or traces of a program's execution.

2.2.5 Rich and Shrobe

Rich and Shrobe [Rich and Shrobe 1978] have developed

a system which plays the role of a programmer's

apprentice for expert programmers who are writing LISP

programs to manipulate hash tables. These programs are

described by the system in terms of the hash tables on

which they operate, the input and output specifications

of the segments which comprise the Program and the

hierarchical representation of the Program's internal

structure. The latter of these descriptions is referred

to as the plan.

38

The first tyne of description is concerned with hash

tables which in effect form the data for a program and

which the user must describe in terms of the abstract

definition known to the system. The second form of

description is represented by the input and output

specifications of the program's segments and is supplied

by the programmer. In terms of code, a program seqment

could be, for instance, a function definition, the body

of a conditional or several lines of open code. A

segment is described by a series of specifications which

contain information about the data flowing into and out

of the segment. These snecifications are a formal

statement of the conditions acting upon or the relation-—

ships between, values of the data at the time the segment

is entered. A segment's output values are also described

in a similar manner.

One of the most interesting aspects of this work is

the third form of program description, known as the plan.

Rich and Shrobe have devised a method of representing

plans which allows them to be used not only for describing

a user's program but also for describing the system's

programming knowledaqe. The programmer and apprentice

first work at this plan level and interact in order to

develop an abstract representation of the program's

intended structure. To do this the apprentice must know

some of the basic techniques for manipulating hash tables

such as deleting elements from a linked list. The

apprentice can now compare the seqment snecifications

39

with the plan and the user can modify it if any errors

are found. When the segment specifications are found

to be consistent, the user can type in the code and the

apprentice ensures that it conforms to the predefined plan.

Tn order to describe the structure of a program the

apprentice uses two kinds of plan. The first is called

a surface plan and describes the flow of control and of

data between various parts of the program. The second

is referred to as the deep plan which shows how a program

operates and whereas the surface plan is explicitly

stated in a program, the deep plan is not. In order to

understand a program the apprentice makes use of the code,

the surface plan and the deep plan. To establish whether

or not the code fits the plan, the apprentice first uses

the program to derive the surface plan and then compares

it with the deep plan, by using its general programming

knowledge. A deep plan is expressed in terms of purpose

links which describe the logical structure of a program.

Consequently if a programmer attempts to modify a program,

it is the purpose links that denote which of the other

segments will be affected and in what ways. These links

are also used when a surface plan segment is matched

against a deep plan seqment. The apprentice declares

the two forms of plan are equal, only if the data and

control flow links surrounding the surface plan segment

are consistent with the data flow and purpose links

surrounding the deep plan seqment.

40

In conclusion we can say that the work of Rich and

Shrobe has made a significant contribution to automatic

program understanding. Their work is significant not

only because certain aspects of it have been implemented

in a system, whereas some other studies have not, but

also because their notion of a deep plan shows how they

have confronted the problem of finding a suitable

representation for programming knowledae. However a

disadvantage of their proposals is that the user must

still supply some of the information required for analysis.

The user's task would be simplified if information about

the deep plan or about the input and output values of the

program segments, at the level of detail required by the

present system, did not have to be supplied.

2.2.6 Waters

The work of Waters [waters 1976, Waters 1978,

Waters 1979, Waters 1982] has close links with that

described in the previous section. Rich and Shrobe have

laid out the initial design for a programmer's apprentice

and have developed the concept of a plan for representing

programming knowledge. Waters [waters 1076] has designed

a limited system aimed at the area of mathematical FORTRAN

programs and has extended the notion of a plan by

proposing how it could be segmented. Recently Waters

[waters 1082] has also produced an initial implementation

of this programmer's apprentice. The following

discussion will concentrate only on this implementation

because, in terms of this study, it is the most relevant

41

aspect of his work.

The programmer's apprentice (PA) which has been

implemented is comprised of five parts. These are an

analyser which constructs the plans relating to a nrogram,

a coder which converts a plan into a program, a drawer

which converts a plan into a graphical representation, a

library of plans and a special plan editor which allows

the plan rather than the program to be edited. From

this we can see that the concept of a plan is central to

this implementation. Indeed, one of the most significant

aspects of this work has been the use of plans to

represent not only programs but also programming

knowledge.

The implementation of the PA is in the form of an

editor which allows a user to build up a program and

then edit its plan. To build a program the user types

in commands requesting the PA to undertake operations

such as the definition of a procedure for which the user

has provided an appropriate name. The procedure body

can then be filled in by using phrases such as "successive

refinement' to indicate that the result is calculated

using a loop construct. In terms of the PA's components

described above, the plan relating to this phrase is

stored in the library and the coder knows how this Plan

can be represented in a programming language.

Having built up a program by using library plans

together with actual pieces of code, the user can then

edit his program by modifvina its structure. To do this

a proarammer must use the system provided vocabularv to

42

refer to plans and narts of a plan. Once a dlan is

modified the coder can then be called to translate the

plan into code. However a user may sometimes use the

normal text editor instead of the plan editor. Tn this

situation the PA is used in the opposite sense and the

analyser is called to determine the form of the

resulting plan.

So far the discussion has concentrated on what the

PA is capable of analysing, however as Waters noints out,

there are three areas of which it has no comprehension.

Firstly, the PA uses no description to aid analysis,

unlike the avprentice of Rich and Shrobe which uses a

description of a hash table to aid analysis. Secondly it

does not have any knowledge of the program specification

and thirdly it is not capable of recoanisinag that library

plans may be inter-related.

There are two aspects of the PA which are relevant

to the research described in this thesis. Firstly, both

areas of research are concerned with analysing statements

in terms of a programming language. However, there is

considerable difference in the way this knowledge is used.

Waters is concerned with creating and modifying an abstract

specification of a program whereas our study is concerned

with producing a coded version of the design. In this

respect, the work of Waters is more ambitious since it

directly attacks how programming knowledge can be

represented, independently of the target language. Also

43

this research is concerned with automatically detecting

any anomalies in a program, whereas the PA leaves this

task to the programmer. Secondly, when editing a plan,

the PA allows the programmer to use the pronoun "it" to

refer to the object which is the current focus of the

system's attention. This research uses a similar

approach to deal with any pronominal references found in

a program design.

The work of Waters, together with that of Rich and

Shrobe represents some of the most significant research

in this area at the present time. Their objective of

finding a suitable representation for programs and

programming knowledge and the implementation of that

representation dictates that the project is long-term.

Nevertheless their work provides some justification for

believing that future systems will be capable of providing

some sinificant programming support.

2-2-7 Others

Let us now conclude the discussion of program

understanding by referring to the research undertaken by

Smith and Hewitt [Smith and Hewitt 1974], Miller [Miller

1978 , Ramsay [Ramsay 1980] and Eisenstadt and Laubsch

[Eisenstadt and Laubsch 1980]. These are discussed in

chronological order.

Smith and Hewitt have put forward proposals for a

programmer's apprentice which are designed to work within

the area of Hewitt's ACTORS formalism [Hewitt, Bishop and

Steiger 1973]. Their aim is to develop an apprentice

44

which can assist the programmer in tasks such as

formulating and maintaining the consistency of specifi-

cations and ensuring that the modules which comprise a

program perform as intended. It is also envisaged that

the apprentice will be able to answer questions about

the relationships between modules.

In order to verify a program, Smith and Hewitt have

Geveloped a technique which they have called meta-

evaluation. This technique is based on the process

which a programmer goes through when he symbolically

executes his program to see if it works. These proposals

have the disadvantage that analysis of a program depends,

to a large extent, on the specifications provided by the

user, and analysis does not produce any detailed descrip-

tions of its own.

Miller's work is worth mentioning since it aims to

understand both the planning and debugging processes.

This work is discussed by Miller within the context of a

system, called SPADE-O, which interacts with programmers

who are planning and debugging programs written in the

LOGO programming language. SPADE-O leads a programmer

through a hierarchical planning process by providing a

vocabulary of concepts for describing plans, bugs and

debugging techniques. The system represents the planning

process in terms of a tree-like structure. The system

user is shown this structure so that he can identify the

alternative paths that can be followed in order to produce

@ program, SPADE-O will then lead its user through these

paths by choosing the next likely goal. As the tree is

45

traversed, the system leaves messages on the various

paths which may be used later on to guide the debugging

process.

Some of the bugs which Miller has identified are

based on his adopted theory of planning. Thus, a

pragmatic bug is defined as an incorrect choice of path

in the planning tree. Conversely, a semantic bug is

where the picture produced by the LOGO program is not the

intended one. Most of the other research studies into

program understanding have derived the information

necessary for debugging from the program. Consequently

Miller's work is of interest since some of the information

used by SPADE-0 is derived from another source, namely its

record of those decisions taken by the programmer during

the planning process.

Eisenstadt and Laubsch have discussed their work on

a debugging assistant. The assistant is intended to

help students who are using the programming language SOLO,

which has primitives similar to MICRO-PLANNER, for

operating on assertions in a data base. Students use

the assistant when problems arise which need to be solved.

The assistant is comprised of four modules which are

referred to as the intent-specifier, the instantiator,

the coder and the translator.

The intent-specifier is used to determine what the

code is supposed to achieve. To produce these intentions

the intent-specifier uses a plan library which is comprised

of high and low level plans. Low level plans denote how

a general operation, such as an assignment, can be achieved

46

whereas a higher level plan is used to denote operations

which are relevant to the particular problem the student

is working on. The intentions produced by the intent-

specifier are then used by the instantiator in order to

propose several possible plans for execution. How these

plans can be implemented in SOLO is known to the coder.

However the results of its analysis are not in the actual

form required by the SOLO syntax, but instead they are

expressed in a conceptual form suitable for execution by

a SOLO virtual machine. The fourth module is the

translator which takes the student's code and translates

it into a form which can be compared directly with the

abstract plan. This comparison is based on symbolic

evaluation and shows why a piece of code has failed. Lf

the assistant has a model of what the code is intended to

achieve then the student can be shown examples of a correct

implementation.

The work of Eisenstadt and Laubsch is of interest

since it is concerned with using both domain independent

program understanders as used by Rich and Shrobe and Lukey

(see sections 2.2.5 and 2.2.4) as well as expert debuggers

such as those used by Ruth (see section 2.2.3). A third

aspect which has also been emphasised is that the assistant

should provide a friendly user interface. Since the

research described in this thesis has also been implemented

in an interactive system, this third aspect is also a goal

in developing the Framework for Analysing Program Designs.

Finally, let us consider the work of Ramsay, who has

developed a system, called SH4, which matches a LISP

47

program against an English description of what it is

supposed to achieve. SH4 has two sets of data to

analyse - the description and the program. Each is

analysed and the two sets of records which are produced

can then be matched against each other to see if the

program performs as expected. The system then makes a

copy of the program and uses the English description to

insert comments into that program. A set of flow charts

representing the procedures which have been described,

together with fragments of code showing how these proce-

dures have been implemented, is also produced.

Using a piece of English text to describe the program

means that after producing the two sets of records neither

the normal techniques of program verification, nor symbolic

evaluation can be used, since it is unclear which parts of

the program fit which specification. Ramsay has tackled

this problem by using hypothesisers to suggest links between

the program and its text. Once these links have been

established symbolic evaluation can be used to verify the

program.

Many of the existing theories of program under-

standing rely on proving assertions at various points

throughout the program. However, these theories require

that the intended outcome of a program should be specified

in a formal manner. Consequently this specification is

awkward to define and error-prone. Ramsay's work is

important since it has shown how a less formal program

specification can be used which, from a system user's

point of view, is the preferred approach. However as

48

Ramsay admits, the descriptions on which SH4 operates are

too detailed for the system to be a practical tool at

present.

23 Automatic Programming

The area of automatic programming is concerned with

Jeveloping a system which can generate a program from a

formal specification of what the program is intended to

achieve. within this area, the work of Sussman [Sussman

1975] and his system HACKER, have received a great deal

of attention in the AI literature. HACKER inhabits the

Same world as Winograd's SHROLU [Winograd 1972] and writes

programs containing instructions which undertake primitive

operations such as picking up a block.

If the first program, which has been produced to

solve a given problem, is not totally correct then an

iterative procedure, aimed at locating and eliminating all

bugs, is entered. Whenever a bug is found, HACKER tries

to classify it, so that a similar error can be avoided in

the future. For instance, if HACKER is asked to pick up

a block which is currently supporting another, it is not

able to determine that the uppermost block must be removed

before the lower one can be accessed and as a result the

program which it produces to undertake this operation will

be bugged. However this error is then analysed in general

terms so that in the future, a similar or identical situa-

tion will not lead to the same error being committed again.

The debugging process is based on a detailed purposive

commentary which HACKER uses to denote the intended outcome

of each section of code. The first time a program is run,

49

this commentary is used to check if the code performs as

specified and any bugs are classified according to the

five categories of error defined for HACKER. The work of

Sussman is significant, not only for its contribution to

the area of automatic programming, but also because it is

relevant to AI theories of program understanding and

debugging and skill-learning.

In recent years an automatic programming system,

called psi [C. Green 1976, C. Green 1977] has been

developed by a research team at Stanford University.

Green and Barstow [Green and Barstow 1978] who are part

of this team, have emphasised how their work is concerned

primarily with the organisation and structure of

programming knowledge which can be used by a computer to

write programs. The PSI system contains knowledge in the

form of approximately 400 rules and is comprised of two

phases: an acquisition phase and a synthesis phase. The

acquisition phase is concerned with finding out, from the

user, what the program is intended to achieve and building

a high level model of this intention. The synthesis

phase uses a coder, written by Barstow, and an effeciency

expert written by Kant [Kant 1977] which combine in order

to produce an efficient program. The rules which the

coder uses are sufficiently general for them to be used in

various domains such as symbolic programming, sorting,

graph theory and simple number theory. The coder writes

programs in LISP and although some of the rules are

specific to this language, approximately three-quarters of

them are independent of any programming language.

50

Manna and Waldinger [Manna and Waldinger 1975] have

claimed that an automatic program synthesis system must

combine reasoning and programming ability with a good deal

of knowledge about the subject matter of the program.

This approach towards Program synthesis is the method on

which HACKER and PSI are based. Despite the claims of

Manna and Waldinger, Bauer [Bauer 1973] has attempted to

show that some useful analysis can still be undertaken

without knowing the subject matter of the program. Sauer

has developed a program which can synthesise procedures

for computations such as, for example, multiplying two

numbers using repeated addition or sorting the values held

in an array. Since it does not use a problem specifi-

cation its analysis is based upon a knowledge of variables

and parameters and their general use.

Finally let us briefly consider the work of Koffman

and Blount [Koffman and Blount 1975] who have embodied a

method of automatic programming within a teaching system.

This system teaches machine language programming and

represents all problems given to a user in terms of an

ANO/OR goal tree. This tree represents a complex problem

in terms of three sub-problems which are referred to as the

input, processing and output phases. The system represents

each sub-problem as a sequence of primitive tasks for which

it can generate alternative forms of machine code. This

means that either a user can be supplied with the code for

the simpler sub-problems so that attention can be diverted

to more difficult areas or, each of a user's statements can

be checked against those produced by the system.

51

Unfortunately the power of the system is limited since it

Can produce code only for the primitive tasks and although

there may be more ways of solving a problem the user must

follow a similar solution to that defined by the system.

In terms of the research discussed in this section

the work on the PSI system would seem to hold the best

prospects for the future. It is interesting to note how

long term projects such as this and the programmer's

apprentice of Waters (see section 2.2.6) are both

concerned with finding a suitable representation for

programming knowledge. Since PSI is an automatic

programming system and the programmer's apprentice is

concerned with program understanding and debugging it

would seem that research into the representation of

programming knowledge could benefit those areas of AI

which are concerned with understanding different aspects

of the programming process.

2.4 Intelligent Teaching Systems

Because the Framework for Analysing Program Designs

has been incorporated within an interactive system, a

discussion of how AI techniques can be applied to the area

of computer assisted instruction (CAI) is relevant to this

chapter. Embedded within an intelligent teaching system

is a coach which may perform all, or a subset of the

following:

a) checking a student's answer;

b) generating meaningful error messages;

c) providing "hints" on how to solve a problem

when the student requests help;

S2

d) providing a model solution to a problem; and/or

e) updating a model of a student's knowledge.

At the present time systems have been developed which

incorporate coaching to teach basic mathematical skills

[Burton and Brown 1979] > basic reasoning techniques

[Goldstein 1979], electronic trouble shooting [Brown,

Burton and Bell 1975, Brown, Burton and de Kleer 1982]

the solution of quadratic equations [O'Shea 1978] and

medical diagnosis [ciancey 1979). There are four

principal features of these systems.

Firstly they have an expert embedded within the

system which can solve problems in the given domain. As

a result there is no need to store a data base of model

solutions. Secondly, all problems given to the student,

together with the answers to these problems and the

student's state of knowledge are all defined in terms of

a fundamental set of skills. Hence if the expert is

asked to solve the same problem as the student, then the

two answers can be analysed in terms of the same skills.

A comparison of the two will now show which skills the

expert used and the student did not. Such an analysis

highlights those techniques in which the student is

deficient and since the problems are also defined in terms

of the same skills, the next problem can be chosen in order

to give practice in the areas of weakness. Goldstein

[Goldstein 1979] not only analyses his subject area into

an underlying set of skills but he also sees each skill

going through five phases of development and refinement

as the student becomes more competent.

SS)

A third feature of an intelligent teaching system

is that answers are not assessed for correctness but are

analysed in terms of whether the appropriate skills have

been used. Consequently error messages can emphasise

the techniques which an expert would have used in the

same situation, The fourth feature is that any hints

Qiven to the student can be based on an expert's approach

to solving the problem. This highlights one of the main

disadvantages of the expert known as SOPHIE [Brown, Burton

and Bell 1975] which has been called a “black box" because

it does not solve a problem in the same way a student is

expected to. Because the underlying mechanisms which the

expert used were not passed on to the student, subsequent

versions of SOPHIE [sroun, Burton and de Kleer 1982] have

aimed to use inference techniques similar to those used

by students.

In terms of the research described in this thesis, one

objective has been to develop a system which possesses the

first of these four features, that is a system which displays

expertise in the subject area of analysing and commenting

upon a program design. The form of analysis which FAPD

undertakes allows the generation of some meaningful error

messages and in this respect FAPD does not mark any program

designs as merely right or wrong but instead undertakes a

deeper analysis. However, FAPD does not analyse a program

design in terms of a fundamental set of skills.

Barr et al (Sarr, Beard and Atkinson 1976] have

developed a system for teaching introductory programming

techniques in BASIC. The curriculum used by their system

54

has one hundred different programming problems which are

defined in terms of skills such as printing a literal

string or using a counter variable in a loop. The student

is also modelled in terms of the skills he has acquired

and consequently a problem can be selected on the basis of

how that student has performed on earlier problems. Once

the program has been written, data can then be used to test

the program. The program is also checked for the BASIC

statements that should have been used. For example a

problem might have been chosen to teach the FOR statement,

and so the checker analyses the answer to determine if

this has been included. If it has not then a suitable

error message is printed. In common with the attributes

of an intelligent coach described earlier in this section,

this system can also provide the student with useful hints

on how to solve a problem.

Generally speaking, defining the programming process

in terms of a fundamental set of skills is a research topic

which is growing in importance. Consequently the work of

experimental psychologists such as Green [T.R.Green 1977)

who has investigated techniques for measuring how well a

program has been understood, could be used in intelligent

CAI systems which teach programming. The growing interest

in applying AI techniques to CAI systems together with

experimental work such as that just described indicate

that research into these systems could increase signifi-

cantly in the future.

2.5 Computational Linguistics

There has been a considerable amount of research into

55

computational linguistics. Although numerous natural

language question answering systems have been developed

(for a review of the entire field see Bruce [Bruce 1975]),

this discussion will concentrate on the work of Burton

[8urton 1876] since it is considered most relevant to the

problems with which we are concerned.

Burton discusses a paradigm for constructing efficient,

friendly man-machine interface systems using subsets of

natural language in limited domains. The primary purpose

of his work was to develop a set of techniques for

embedding semantic and pragmatic information into a natural

language interface module. The techniques were implemented

in the "intelligent" CAI system SOPHIE [8rown et al 1975,

Brown et al 1982], which is a reactive learning environment

concerned with electronic troubleshooting. In a typical

troubleshooting session the student is confronted with an

electronic circuit containing a fault. The student can

then interrogate SOPHIE in an effort to locate the fault.

The natural language subset which SOPHIE accepts is

described by a "semantic grammar". A semantic grammar is

so-called because it specifies relationships in both

semantic/conceptual and syntactic terms. It has two

advantages over syntactic grammars. Firstly, semantic

constraints can be used to make predictions during the

Parsing process which reduces both the number of alter-

Natives which must be checked and the amount of syntactic

(grammatical) ambiguity. It also allows the parser to

skip words at controlled places in the input and ellipsed

or deleted phrases to be recognised. Secondly, a

56

Semantic grammar can be used to characterise those

sentences which the system should try to handle.

Because the grammar is based on conceptual entities,

semantic interpretation can proceed in Parallel with

parsing. Each rule in the grammar characterises all of

the ways of expressing a concept or relationship in terms

of other constituent concepts. Thus the rule for

<MEASUREMENT> is:

<MEASUREMENT> := <MEASURABLE/QUANTITY><PREP> <PART>

which defines all the ways a student can express a

measurable quantity. Rules of this type allow similar

concepts to be generalised and so voltage, current,

resistance and power for example would each be termed a

<MEASURABLE/QUANTITY>. This is similar to the method

adopted in this research whereby words such as ASSIGN,

CALCULATE, DECREASE and FIND are all defined as

<assignment command word>'s. They all have the same

definition because their occurrence in a design statement

indicates the statement can be implemented as an assign-

ment statement.

One use of a semantic grammar is to predict possible

alternatives that must be checked. The <MEASUREMENT>

tule for example, can be used in conjunction with the

phrase "the voltage at it" to restrict the possible

interpretations of "it" to locations such as nodes and

terminals. A second use of the semantic grammar is to

recognise simple deletions. When the grammar finds the

phrase "the collector" it uses the fact that the concept

of a TERMINAL has constituent concepts of TERMINAL-TYPE

S57

and a PART to deduce that a PART has been deleted.

Because the dependencies between the constituent parts

determine that the deleted PART must be a transistor, the

meaning of the phrase is then "the collector of some

transistor". Which transistor is determined when the

meaning is evaluated in the present dialogue context.

Thirdly, the semantic grammar can be used to overcome the

problem of ellipsis. In the following example:

What is the voltage at node 5 ? (264)

At node 1 ? (2.2)

At node 2 ? (2650)

What about between nodes 7 and 8 ? (2.4)

(2-2), (263) and (2.4) are elliptic utterances because

they do not express complete thoughts but only give

differences between the intended thought and (2.1). The

appropriate grammar rule can be used with these examples

to identify which concept is possible given the current

context.

Once the parser has determined the existence and class

of a pronoun/deleted object, the context mechanism is

invoked. This mechanism uses the meaning of the student's

previous statements and the response calculated by the

system to determine the proper referent. The context

mechanism also knows how each procedural specialist

appearing in the parse uses its arguments. For example,

the specialist MEASURE's first argument must be a quantity

and the second argument a part, junction, section, terminal

or node. Thus when the context mechanism looks for a

referent which can be either a PART or a JUNCTION it will

$8

look at the second argument only of MEASURE.

The problem of ellipsis is concerned with finding a

Previously mentioned use for a currently specified object.

In the example:

What is the base current of Q4 ? (28)

In 95 ? (2.6)

the given object is "Q5" and the earlier function is "base

current", Since 95 is recognised by the non-terminal

<TRANSISTOR/SPEC>, the context mechanism searches for a

specialist in a previous parse which accepted the given

class as an argument. When one is found, the new phrase

is substituted into the proper argument position and the

substituted meaning is used as the meaning of the ellipsis.

This research has also been concerned with how the context

of a statement or phrase can help to determine its meaning.

Section 5.3 discusses how the word RESULT for example,

cannot be analysed in isolation but must be considered in

its wider context.

Burton's work is important because it shows how a

semantic grammar provides a paradigm for organising know-

ledge required for understanding. If a system does not

encompass a useable subset of the language a student must

expend problem solving energies discovering how to formulate

questions. A semantic grammar helps to overcome this

problem by providing insights into a useful class of

dialogue constructs. Burton has also shown that it can

permit efficient handling of pronomalisations and ellipsis.

However the work does have limitations. Firstly, the

context mechanism works well in the given domain but does

53

not solve all the problems of reference since Charniak

{Charniak 1972] has shown how much real world knowledge

is sometimes required. The major limitation of the

current technique is its inability to return more than

one possible referent. At present it considers each in

turn until it finds one satisfactory. Secondly, as Burton

admits, the primary goal was to develop a useful system and

as such the research does not advance our theoretical under-

standing of natural language.

2.6 Programming Languages for Novice Programmers

Kreitsberg and Swanson [kreitsberg and Swanson 1974]

describe the "computer shock" which novice programmers may

encounter when faced with the problem of Planning an

algorithm. Novices have problems in understanding what a

Program can do for them and its relation to the problem

which they are trying to solve. Miller [Miller 1975]

found that when specifying a plan to a human being the

specification was "qualificational" rather than "conditional".

Thus to a human being we might say "PUT RED THINGS IN

BOX 1" whereas a computer program must specify "IF THING

IS RED THEN PUT IN BOX 1", In this respect a programming

language such as PROLOG (Pereira, Pereira and Warren 1979]

might have advantages for novices. This is because PROLOG

specifies plans in terms of goals rather than in terms of

an algorithm.

Novices find specifying the flow of control very

difficult [du Boulay and O'Shea 1980]. Because this is

central to programming in algorithmic languages it may be

beneficial to implement programming languages so that

60

certain hidden actions are accompanied by external changes.

Flow of control within the BIP system [Barr et al 1976] is

made visible by showing pointers which move around the

Program text as it is executed. Similarly Mayer [Mayer

1979] represents the workings of a BASIC machine in terms

of a small set of "transactions" where a transaction con-

sists of an "operation", an "object" and a "location".

The transactions explain the sequence of events while a

BASIC program is running and are simple enough to be

understood by a novice.

Du Boulay and O'Shea also describe three languages

designed specifically for novices. The first is SOLO

(Eisenstadt 1978] « which is a language for manipulating

a relational database. User defined procedures can invoke

primitives which add, remove, print etc database structures.

Because the students had no prior knowledge of computing,

the software enviroment had to be non-threatening

[Eisenstadt 1983). To achieve this SOLO was designed so

that students could quickly use it to undertake powerful

operations. Hence, although the language has only ten

primitives, these are sufficiently powerful for beginners

to do interesting projects. The English meanings of

primitive names such as NOTE, FORGET and DESCRIBE corres—

pond closely to the actual jobs they perform within the

SOLO virtual machine. This is similar to the way in which

words such as GET, OUTPUT and INCREMENT are used to specify

actions within a program design (see Chapter 3). Functional

simplicity was achieved in SOLO by restricting the scope of

the database searching mechanism and by delaying the

introduction of certain language features until the novice

61

had progressed to a given point. Syntactic simplicity

was increased by arranging that whenever a student typed

the IF part of a conditional, the system would issue

prompts for both the THEN and the ELSE part. Sime et al

[Sime, Arblaster and Green 1977] has shown that this is

a successful method of reducing errors in conditionals.

The visibility of the language is enhanced by presenting

database items at the terminal in a form that both suggests

the meaning of the item and is in agreement with the teach-

ing material.

The second language is a microprocessor based assembly

language. The system (based on the Intel 8049) provides

only ten instructions: LOAD, STORE, ADD, DECREMENT, JUMP,

JUMP IF ZERO, INPUT, OUTPUT, CALL and EXCLUSIVE OR. The

system also contains a number of predefined subroutines

that can be called by the user's program and whose instruc—

tions can be examined although the code for the interpreter

itself is inaccessible. These subroutines illustrate the

idea of program modularity. The functional simplicity of

the notional machine is achieved at the expense of having a

complicated program interpreting the user's key presses.

The facility to examine the code of the subroutines is one

step towards language visibility although it is accepted

that visibility could be improved. Despite these

restrictions, the work is important since it allows the

user to be introduced to a wide range of computing ideas

including planning, coding, running and debugging programs

and flow of control.

The third programming language developed for novices is

ELOGO. This is a procedural, interactive language with

62

facilities for drawing using a turtle and for symbol

manipulation using integers, words and lists as data

types [McArthur 1974]. & user's initial introduction

to programming is via a buttonbox and a turtle, where

each button represents an instruction. Thus labels on

a button correspond to what the novice must type when a

teletype is used. This simple notional machine implied

by the button box and the turtle provides a foundation to

build the user's understanding of the complete ELOGO

system implemented on the mainframe. The main task for

the system's users is the interactive definition, testing

and debugging of procedures. A novice decomposes a

complex task into simpler sub-tasks which may also need

further decomposition. Because the basic programming

unit is the procedure, the notional machine is functionally

simple. In an effort to increase language visibility

hidden actions such as storing a procedure are concluded

with a written comment from the system.

Languages such as those described above are important

for two reasons:

a) they allow the novice to start writing and running

programs very quickly, which helps to sustain

interest; and

b) they embody facilities for making certain of the

actions of the notional machine open to view.

In terms of the research described in this thesis, the

first of these reasons was a primary consideration in

choosing an appropriate program design language.

63

3. THE FRAMEWORK FOR ANALYSING PROGRAM DESIGNS

3.1 General Points

This chapter details a method of analysing a program

design referred to as the Framework for Analysing Program

Designs (or FAPO). FAPD views analysis as the translation

of a program design into a series of assertions which

represent how the design could be implemented in a

particular programming language. These assertions are

then used to produce a coded version of the design together

with any comments concerning its implementation. Broadly

speaking, the process of analysis is viewed as comprising

four distinct phases:

a) pre-semantic analysis which converts a program

design into a form acceptable to the semantic

analyser;

b) semantic analysis which analyses statements often

found within a program design in terms of the

particular programming language in which the

design will be implemented;

c) generation of comments which uses the assertions

produced through semantic analysis to derive the

implications of implementing the design in code.

At this stage these comments are also represented

by a series of assertions; and

d) code generation which uses the results of the

previous two phases to produce a program in the

target language together with any comments

concerning its implementation in this form.

FAPD is directed towards analysing and commenting

64

upon the kind of program design produced using a

methodology similar to the one taught to first year

computer science students at the University of Aston

(see section 1.3). At the time research commenced the

primary programming language taught to these students was

ALGOL 68. Consequently this language was chosen as the

target language for this study. The system described in

this thesis analyses a program design by converting it

into an ALGOL 68C program together with any comments

considered pertinent. For this reason examples of coded

statements used in the remainder of this chapter will be

written in ALGOL 68C.

In this respect we can say that the system is an

implementation of FAPD. Since first year students are

now taught the same method of program design but use

PASCAL as the target language, FAPD could also be

implemented within a system which analyses a program

design in terms of the target language PASCAL. In general

FAPD is limited more by the format of the program design

than by the choice of programming language. This chapter

discusses FAPD within the context of the system and atten-

tion will be drawn to those aspects which are dependent on

the choice of implementation.

3.2 Pre-Semantic Analysis

3.2e1. Introduction

The first phase of the analysis process has been

termed pre-semantic analysis. This phase is responsible

for converting the design into a form acceptable to the

semantic analyser. It consists of two processes, the

65

first of which undertakes lexical and syntax analysis in

order to determine whether or not the design conforms to

@ pre-defined syntax (referred to as the "grammar of a

Program design"). Successful analysis means the design

can be (partially) analysed, but failure means it contains

Programming language constructs and/or design statements

which are outside the scope of FAPD, The second process

amends the syntax tree which has been produced by the first

process, This amendment involves eliminating any insigni-

fFicant words and converting the syntax tree into a series

of structures. The result of this second process is

referred to as an "amended syntax tree" and represents the

data on which the semantic analyser operates.

Throughout this section examples of syntax trees and

amended syntax trees have been illustrated in a format

more helpful to the discussion than the actual format

produced by the system. This latter format is often a

LISP list structure, examples of which are contained in

Appendix A. It should also be noted that all design

statements used in this chapter are shown using upper-case

characters. This is because the system described in

Chapters 4, 5 and 6 requires a program design to be

inputted using this format.

3.2.2 Lexical and syntax Analysis

3.2.2.1 Function of Syntax Analysis

Any system which understands natural language must be

limited by the number of words contained in the vocabulary

of that system. Similarly FAPD can only analyse those

examples which use the set of programming language constructs

66

which have been considered for inclusion. Thus FAPD is

limited both by the size of its vocabulary and by the

number of target language constructs that have been con-

sidered. However, there is an additional difficulty in

analysing a program design. This arises because of the

unlimited number of variable names that can be used and

which must be recognised by the system if a complete

analysis is to be accomplished. Because of this a

method of keyword analysis such as that used by ELIZA

(weizenbaum 1966, Weizenbaum 1967] is inappropriate to

this research. Simply noting variable names when they

are declared is also not possible in this case, since

program designs do not generally contain variable

declarations.

The recognition of variable names could be simplified

by defining a list of names which a programmer must use.

However, this approach is rejected as too restrictive.

Since meaningful variable names are an important feature

of quality software, a programmer should not be constrained

to a list of variable names which may prove inappropriate

for a particular application. The method adopted in this

study is to define a syntax to which design statements must

adhere. This syntax defines where identifiers are allowed

and in so doing it gives FAPD a criterion for determining

which of the unrecognised words are possible variable names.

Although this approach obviously imposes some limitations on

the variety of statements which can be accepted, it is

hoped these limitations are not too restrictive.

3.2.2.2 Scope of the Syntax

Although this research has concentrated on analysing

program designs similar to that shown in diagram 5 (see

section 1.2), considerable variations in program design

may exist in practice. Whereas diagram 5S contains design

statements such as:

INITIALISE FIVEPOUNDS TO O (3.1) and

READ THE NEXT NUMBER INTO WAGE (3.2)

the author has noticed examples where other variations

such as:

FIVEPOUNDS € O (323)

READ THE NEXT NUMBER (AND CALL IT WAGE) (3.4)

are used. The observed form of a program design is often

a combination of personal trait and teaching method. Also

the distinction between design statements and code is often

less marked when the programmer has experience of a parti-

cular programming language. In this respect a design

statement such as:

WHILE I IS LESS THAN N (3.5)

oo one or more design statements od (3.6)

may sometimes be written as:

WHILE I<N (3.7)

DO one or more design statements 0D (3.8)

The variety of statements which FAPD aims to encompass

should not be unduly restricted. However in order to

undertake syntax analysis it is necessary to define the

kinds of statements that should be included. Consequently

it was decided to concentrate on defining the syntax of

statements such as (3.1), (3.2) and (3.5) rather than

Ses)» (oe4h) OF 1CSat) « By doing so it can be stated

68

clearly that a program design should not contain operators

such as "<" or symbols such as parentheses. Since target

language constructs such as "<" are also prohibited, this

means that the only features of a programming language a

Programmer need know are those used to denote selection and

repetition of actions. In a system which uses ALGOL 68C

as the target language, selection and repetition are

denoted by the constructs IF-THEN-ELSE-FI and WHILE-00-0D

respectively.

The syntactic format of a program design, which FAPD

is capable of analysing is expressed formally as a meta-

language (see Appendix 8). Program designs not adhering

to this format are rejected before they are passed to the

semantic analysis routines. Hence the syntax adopted

imposes one of the main limitations on the scope of FAPD.

3220263 Oefinition of Recognised Words

Many of the statements within the type of program

design under consideration are in an imperative form.

Statements (3.1) and (3.2) are typical of this form since

they use the verbs INITIALISE and READ in an imperative

context. Because a sentence which uses INITIALISE in

this manner will normally be coded into an assignment

statement, INITIALISE has been defined within FAPD as an

"assignment command word". Qther imperatives which are

defined as assignment command words include ASSIGN,

INCREMENT and SET. Similarly, imperatives may be defined

as arithmetic command words, read command words and print

command words since they indicate that the design state-

ments in which they are used are normally coded as arith-

metic expressions and read and print statements respectively.

63

Any word that is to be recognised must be entered

into a dictionary. Each entry is of the following form:

[<word> <list of one or more definitions > 3.3)

where a word unless it is one of the reserved words such as

IF, WHILE or O00 for example, must be described in terms of

one or more of the nineteen different definitions on which

the syntax is based. Hence, the imperative form of a

verb, such as INITIALISE, can be defined as:

(INITIALISE assignment command word] CoO)

Within an imperative statement considerable attention must

also be given to prepositions. If we consider the

design statement:

ADD A TO 6 U8 (3.12)

the preposition TO is of special significance since in

this instance, it separates the two arguments A and 8

relating to the arithmetic command word ADD. Consequently

it is defined in the dictionary as a separator.

Prepositions are important words in the process of

program design analysis, not only for this reason, but

also because they can be used to derive the meaning of a

design statement. For instance the different meanings of:

DIVIOE A 8Y 8 (3.12) and

OIVIOE A INTO B (S13)

derives purely from the different prepositions used. The

same preposition can also be used for more than one

imperative, as in:

ADD A TO 8 ANO ASSIGN THE RESULT TO ANS (3.14)

where TO denotes the effect and destination of the verbs

ADO and ASSIGN respectively. In this example each

occurrence of the preposition is used in connection with

70

the verb immediately preceding it. Conversely a

preposition may not be compatible with a particular verb.

For instance in statement (3.12) the preposition BY could

not be replaced with the preposition TO. In terms of the

dictionary definitions used by FAPD, TO is determined to

act as a separator for ADD and ASSIGN but not for DIVIUE.

The dictionary definition for the word 8Y will now appear as:

[BY (separator (INCREASE DECREASE DIVIDE

INCREMENT DECREMENT MULTIPLY))] (315))

which denotes that BY can be used as a separator for any

of the verbs INCREASE, DECREASE, DIVIDE, INCREMENT,

DECREMENT and MULTIPLY.

A third form of dictionary entry is where a word can

have multiple definitions, only one of which is applicable

in any given statement. Each definition may be a single

item as in (3.10) or an item containing some additional

information as in (3.15). The possibility of multiple

definitions can be illustrated by comparing the use of SUM

in the following two statements:

SUM A AND 8B (3.16) and

BIVIDE THE SUM IBY 2 ese ae)

Statement (3.16) specifies the arithmetic operation which

has to be undertaken. However, if a design contains

(3.16) followed immediately by statement (3.17) we can

surmise the latter use of SUM refers to the arithmetic

expression in the previous line. In this respect SUM

can be used as either a verb, which means it must be

defined within the dictionary as an assignment command

word, or as a noune In the latter case it refers to

the result of the preceding arithmetic expression and

Cx

hence it is defined within FAPD's dictionary as a

reference. As a result the dictionary entry for SUM is:

[SUM reference assignment command word] (3.18)

This use of the term reference means that the word can

be used to reference objects previously defined. Hence

pronouns such as IT and THEM would also fall into this

category.

The fourth and final type of dictionary entry is that

used for reserved words such as IF and WHILE. A typical

definition of a reserved word is:

[iF IF] (3.19)

where the fact that the word and its definition are

identical is used to indicate the occurrence of a reserved

word.

This section has shown how words are defined by

referring to four examples of entries in the dictionary -

(e1G),, (3515), (3618) and (5.19). Although only seven

definitions have been considered in this section, other

definitions include "adjective" for words such as NEXT and

FIRST, "article" for AN and THE and "constant" for a

numerical word such as ONE, TWO, or THREE. A comprehensive

list of all words recognised by the system together with

their definitions appears in Appendix 8.

3020204 The Syntax of a Program Design

The previous section stated that many of the state-

ments within the type of program design being considered,

display a similarity to the imperative form of a sentence.

Consequently, a statement such as:

INITIALISE FIVEPOQUNDS TO O (3.20)

72

can be described by the basic format:

< command word> <arguments > (3e21)

In this case INITIALISE is the command word and FIVEPOUNDS

and O are both arguments. The previous section pointed

out that the command word of a statement gives some indica-

tion of how that statement can be implemented in code.

For this reason (3.20) is defined as an "assignment design

statement", Because the syntax of a design statement is

based on the imperative form of a sentence FAPD defines

read, print and arithmetic design statements as those

statements which commence with a read command word, print

command word and arithmetic command word respectively.

This research is concerned with analysing only those

program designs which can be implemented in a programming

language using loops, conditionals, assignment, read and

print statements. Hence in terms of the syntactic

definitions used by FAPD, a program design must consist of

these statements written in their design form together with

arithmetic design statements. The reasons for including

the latter syntactic unit will now be elaborated.

Within a program it is usually the case that the

result of an arithmetic expression will be used by another

statement. In the following example:

INPUT THREE NUMBERS (3.22)

ADD THEM TOGETHER (3ee5)

PRINT THE RESULT (3.24)

the arithmetic expression in line (3.23) can only be

incorporated into the PRINT statement once the meaning

of RESULT has been determined. Consequently the design

1S

must be nassed as syntactically correct in order for the

semantic analyser to combine lines (3.23) and (3.24) into

a sinale statement. Hence the grammar of a program

desian must allow an arithmetic desiqn statement to be

used in the manner illustrated above.

This approach to syntax analysis allows an initial

judaement to be made on whether or not a desian will

result in a syntactically correct program. Thus any

program design which contains a proagrammina lanquaae

construct such as a loop or a conditional in an incorrect

format would be analysed as syntactically incorrect.

Although a program design comprisina of statements (3522),

(3.23) and (3.24) annears valid the correctness of each

individual statement cannot be determined at this stage.

For instance, the validity of statement (3.23) can only

be determined when the meaning of the pronoun THEM is

derived. Conseauently the checking of individual state-—

ments must be left until the semantic analysis phase has

derived the meanings of arguments such as THREE NUMRERS,

THEM and RESULT.

This section has illustrated how the syntactic

definition of a program design has been derived. Recause

of the method used for analysina a program desian (see

section 1.4) the syntax is defined in terms of the

programming language statements used in its implementation.

Now that the syntax of a program design has been discussed

we can consider the syntax of individual desian statements.

24

This is outlined in section 3.3.2.6 which traces how an

assignment desiqn statement is checked for syntactic

correctness.

3.2.2.5 Lexical Analysis

The primary operation within the first phase of the

analysis is undertaken by the scanner. This is responsible

for reading in a program design and performina lexical

analysis. The scanner searches the dictionary for each

word and if found forms the appropriate token. Tf a word

has a sinale definition then the token appears as:

[reference (RESULT)] (3.25)

indicating that RESULT is defined within the dictionary

as a reference. Alternatively a word can have multiple

definitions in which case its token has a form similar

to the followina:

[adjective (POSITIVE) (adjective reference)] (3.26)

which indicates that the word POSITIVE is used as an

adjective within the current context. However in case

this is incorrect a list of the alternative definitions

of POSITIVE is appended onto the end of the token. Any

unrecognised words are given one of two definitions. If

the word is a digital representation of a number (i.e. 1, 2

rather than ONE, TWO) it is defined as a constant, other-

wise it is assumed to be a user defined variable name.

The token stream for the following statement:

SET A AND B BOTH TO 1 (3.27)

is of the following form:

75

[assianment command word (seTy] (3.28)

[article (A)] (3.29)

[conjunction (AND)] (3.30)

[variable name (8)] (3-51)

[variable name (Rory] (335.32)

[\ separator (ADD ASSIGN ITNITIALTSE SET UPNATE))

(TO) [(separator (ADP ASSIGN INITIALISE SET

UPPATE)) boolword-3]] (3.33)

[constant Q)y] (3.34)

which shows that SET, A, AND, TO and 1 are all recoanised

words whereas B and ROTH are not. The syntax analyser,

described in the following section, is entered when all

the words in the program design have been described in

terms of the basic syntactic units.

3.2.2.6 Syntax Analysis

Syntax analysis is responsible for recognisina the

syntactic structure of the tokens delivered by the

scanner. Tt checks the structure for correctness and

if valid it produces a parsed representation of the

program desian in the form of a syntax tree. Tf the

structure is incorrect, an error is reported. The

method of syntax analysis used for a program design

relies heavily on backtracking since there is a frequent

need to parse a word with multiple definitions. Indeed,

since a programmer can use any recognised (but not

reserved) word as a variable name, this means most words

can have at least two definitions. For instance A can

76

be used as the indefinite article as shown by the

following statement:

INPUT A VALUE INTO X (3385))

or as the previous section illustrated, a programmer

could use A as a variable, viz:

SET A AND 8B BOTH TO 1l (3.36)

Let us consider how FAPD's approach to syntax analysis

uses the grammar of a program design and a backtracking

mechanism in order to successfully parse (3.36), by re-

defining A as a variable name and BOTH as a word that can

be ignored. The syntactic format of a program design is

specified by a grammar (see Appendix 8). The grammar

contains a set of rules which can be described concisely in

a meta-language called S8ackus Naur Form (BNF). The

grammar of an assignment design statement is defined in

modified BNF as:

<assignment design statement >::= < assignment

command word > <arguments >

[<separator> <separated arguments>

{<con junction > <separated arguments >|

<separator> <separated arguments>)}] (3.37)

As parsing continues from left to right SET will be

successfully parsed as the <assignment command word> and

the grammar relating to <arguments> allows A to be parsed

as an article. An article could be used in this position

for statements such as (3.35) and:

SET A COUNTER TO O (3.38)

However this approach to the parsing of statement (3.36)

VG

is halted once ANi) is encountered since the definition of

<argumentis> does not allow a conjunction to immediately

follow an article.

At this point the backtracking mechanism is invoked

in order to find an alternative parsing. Because the

current focus of attention is the definition of

<arguments> , the backtracking mechanism will be confined

initially to those tokens successfully parsed within this

part of the grammar. If no alternative is found, then

backtracking is resumed higher up the tree. The only

token successfully parsed according to the definition of

farguments> is that relating to A. Consequently the

token for A is changed from:

[article (A)] (3.39)

to [variable name (A) (variable name) article] (3.40)

and parsing according to this new definition is attempted.

If the token had been changed to:

[variable name (A) (variable name article)] (3-41)

then the syntax analyser would have parsed it continually

as an article, since it looks at all possible definitions,

denoted by the list containing variable and article,

rather than confining attention to the current definition,

which is variable name. The form of definition (3.49)

forces A to be parsed as a variable name. At this stage

statement (3.36) has only one token that can be redefined.

However if there had been more then all possible alter-

natives would have been tried before reporting failure.

78

This new definition of A together with the existing

definitions of AND and B are now successfully parsed

according to the definition of <argquments> .

The grammar of (3.37) states that the next token in

the token stream should be a separator. However the

next token in the stream is:

[variable name (ROTH) (3.42)

which indicates that BOTH is an unrecognised word. Since

its definition is inconsistent with the current context

and because it is an unrecognised word it can be

discarded for the moment. Consequently token (3.42)

is altered to:

[ignorable word (Born) | (3.43)

before it is added to the tree. It is important to

note that it is not discarded entirely but is retained

and may be redefined as a variable name during a future

back-up.

Successful parsing of SET A AND RB is sufficient

evidence of an assignment design statement since (3.37)

indicates anything else is optional. The grammar of an

assianment design statement has been defined in this way

in order to encompass statements such as:

INITTALTSE I (3.44)

where no senarator or second arqument appears. Tn

statement (3.36) the next token is a separator. Tn

order to continue parsing in this part of the tree, we

must be able to connect the senarator TO with the

preceding command word. The token's additional

79

information indicates this is allowed and consequently

parsing continues after abbreviating the token by

changing it from:

[« Senarator (ADD ASSIGN INTTTALTSE SET UPNATE)) (TO)

[(separator (ADD ASSIGN ITNITIALTSE SET UPNATR))

boolword-3]] (3.45)

to [(senarator (SEP) C10) [(separator (SET))

boolword-3]] (3.46)

After successfully parsing the remainina token, the

syntax tree for (3.36) is complete and is shown in

diagram 6. Once the statement has been parsed success-—

fully, syntax analysis is complete and the second process

within the phase of pre-semantic analysis can be entered.

3.2.3 Preparation for Semantic Analysis

Now that the program design has been narsed, the

second phase of pre-semantic analysis can be entered. The

prime function of this phase is to convert the syntax

tree into a series of structures which the semantic

analyser can recoanise. This series is referred to as

an "amended syntax tree". The syntax trees produced for:

SET A AND B ROTH TO 1 (3.47)

TNTITTALTSE SUM TO O AND COUNTER TO OO (3.48)

INITIALISE THE FIRST TWO ELEMENTS OF

THE ARRAY (3.49)

are not identical. The semantic analyser however,

requires that all statements which are implemented usina

the same target language construct should have a similar

80

ut
OL

H
L
O
d

d
UNV

WV
L
a
S
u

F
U
S
W
S
z
e
Z
S

94}
FO

o
e
T
T

x
X
e
p
U
A
S

SUL

9
 we
x
b
e
r
d

L
ad

Vv

<
j
u
e
z
s
u
o
d
>

HLOd
Q
u
e
u

e
t
q
e
t
r
e
a
>

UNV
u
e
u

a
t
q
e
r
z
e
A
>

Q
u
e
u
n
b
s
e
d
>

OL
<
b
r
o
m

a
t
q
e
x
o
u
b
t
>

G
u
o
u
n
b
x
e

Q
u
c
w
n
6

1
LAS

G
r
u
c
u
n
b
r
e

pe
z
e
i
e
d
e
s
>

<
a
o
z
e
a

e
d
a
d

S
e
e

<
P
r
o
m

p
u
e
u
u
o
s

q
u
e
u
U
b
t
s
s
e
>

aa
a
e

G
u
a
u
i
a
z
e
y
s

u
b
t
s
e
p

q
z
u
s
w
u
b
T
s
s
e
>

81

representation. Consequently because statements (3.47),

(3.48) and (3.49) will all be implemented as assignment

statements they will have the same structure. A structure

is used to represent common elements within a program

design. FAPD proposes a set of structures, some of which

are derived from the syntactic format of a design, and

some of which have been specifically developed to aid

semantic analysis. Preparation for semantic analysis is

concerned solely with producing the former of these.

The general form of a structure is defined as:

[<name of structure > <one or more structure

fields>] (3.50)

A typical structure is:

[#ASS <assignment command word> ARGUMENT

<separator> ARGUMENT] (3.51)

which is that used for the representation of an

assignment design statement. Thus the syntax trees

for statements such as (3.47), (3.48) and (3.49) can all

be represented by the structure shown above. This has

been given the structure name 4#ASS and contains four

structure fields. Diagram 7 shows design statement

(3.36) together with its syntax and amended syntax trees.

The amended tree shows how SET and TO have been entered

into the appropriate fields and how ARGUMENT is used to

denote a general field which can be filled with other

structures.

In order to produce this amended form we need to

know how to treat each non-terminal of the grammar.

82

ut
OL

HLOd
@

GNV
V

LS,
3U8WazeIS

eux
FO

SerL
XePUAG

popusuly
oy}

pue
Seal

XeUAG
SUL

L

<a
-

>

g
:

>
g
u
s
u
N
n
b
r
e

\

T
e
x
6
e
 ta

[()
isnootf]

is)
avatt]

[iw
avatt]

|)
OL

e
o

ssv4t]

?
ST

90%}
xejZUAS

dy}
JO

WAOZ
p
o
p
u
s
w
e

uy

d
Vv

\;
/

HLog
<Queu

otqetzea>
UNV

<6ueu
atqetxeA>

\
\

<
b
r
0
m

e
T
q
e
r
o
u
b
t

o
e

e
e

r
a
n
l
i
t
e
d
>

E
p
o
s
?

G
i
u
s
e
u
n
b
r
e

pezerze
d
e
>

e
e
e

A
.

S
o

o
p
e

s
e
d
a
s
>

i
e

e
a
r
s

<pi0om
p
u
e
w
w
o
s

z
u
o
w
u
d
t
s
s
e
>

<
G
u
e
w
s
z
e
y
s

u
D
t
s
e
p

z
u
s
w
u
b
T
s
s
e
>

83

Within the syntax tree all non-terminals are shown in

angled brackets. “t the lowest level of the tree,

non-terminals such as assignment command word, variable

name, conjunction, separator and constant are merely the

dictionary definitions of SET, A and B, AND, TO and 1

respectively. At a higher level non-terminals such as

assianment design statement and arguments are shown to

comprise a series of other non-terminals. The way in

which a non-terminal is treated is derived from its

semantic definition.

A non-terminal which is comprised of other non-

terminals is semantically defined in one of two wavs:

a) it can be defined as a structure with multiple

fields. Thus structure (3.51) is the definition of

an assignment design statement and denotes how each

of the non-terminals, assignment command word,

araquments, separator and constant, shown in

diagram 7 are to be treated; or

b) it may be defined as a non-terminal that can be

ignored. This is used for an element of the

grammar such as ¢arquments> which does not

require its own structure because it is further

defined in terms of other non-terminals. In

diagram 7,<arguments> is analysed as a series of

two structures relating to the variables A and R.

A non-terminal which is a dictionary definition is

defined in one of three ways:

84

a) it can be defined as a structure with a single

field. Thus variable name and constant

are defined as the classes:

[#var word] (3.52) and

[#CONST WORD] respectively (3.53)

Oiagram 7 shows how the WORDs A, 8 and 1 have

been entered into these classes;

b) a second possibility is when a dictionary

definition is defined as a field within a structure.

Two examples of this are <assignment command word>

and <separator> which are two fields within

Structure (3.51). In the amended tree these are

filled by SET and TO respectively;

c) words which do not make a significant contribution

to the semantic context of a sentence can be

eliminated. Thus AND and 80TH in statement (3.36)

are discarded before the semantic analyser is

entered. In this respect we can say that any

words which are defined within FAPD as either

<ignorable word>or <conjunction> can be eliminated.

Appendix 8B shows how each non-terminal of the grammar is

semantically defined into one of the five classes

described above.

This section has based its discussion on the

analysis of a single statement. In practice however, a

typical program design consists of loop and conditional

constructs along with read, print, assignment and

arithmetic design statements. Consequently the amended

85

syntax tree of a complete desian should contain structures

to denote these constructs. The production of an amended

tree marks the end of pre-semantic analysis and the desian

is now in a form suitable for semantic analysis.

3.3 Semantic Analysis

3.3.1 Function of Semantic Analysis

The primary function of semantic analysis is to

build a series of assertions which represents a coded

form of the program design. Tts secondary function is

to initiate the processes which detect any implications

of forming this representation. These nrocesses run in

parallel with the semantic analyser, although any

implications are noted as a side effect and do not

influence any of the semantic routines. The nrevious

section outlined a set of general structures used for

recognising design statements. Semantic analysis is

based on the recognition of specific instances of each

general structure. The general structure for assignment

design statements was shown to be:

[#ass <assianment command word> ARGUMENT

<Senarator> ARGUMENT] (3.54)

and two instances of this general structure are:

[#ass ASSIGN first arqument> TO <Gecond

araument>] (3655)

[#ass INITTALTSE <first argument> TO

<second argument >] (3.56)

Attached to each structure is a procedure which

translates its structure into a particular proqrammina

86

language. Consequently if ALGOL 68C is the target

language then the procedure attached to (3.55) will

produce an assertion which denotes the following

assignment statement:

<econd argument> := first argument>(3.57)

Conversely the procedure attached to (3.56) will produce

an assertion which denotes the statement has been

analysed as having the following implementation:

€first arqument> := <econd argument> (3.58)

Recause (3.55) and (3.56) have the same structure name

(i.e. #ASS) they are defined as both belonging to the

same class. Consequently the procedures attached to

each of these structures are referred to as class

instances.

The results produced by each class instance are

determined, to some extent, by the choice of target

language. For example, if ALGOL 68R is the target

language, then the class instance which recognises

the statement:

READ TEN NUMBERS INTO AN ARRAY (3.59)

implements this by using a single READ statement in

the following manner:

READ (ARROL); (3.60)

where ARRO1l is the name of the array. Alternatively

if PASCAL is the nrogramming lanquage then the same

class instance would produce the following implementation:

FOR T:= 1 TO 19 DO READ (ARROL [I]); (3-61)

Thus chanaes in the taraet language will require that the

87

class instances be re-programmed. However in order to

keep alterations of this kind to a minimum, a method of

representing a program, irrespective of the target

language, has been devised (see section 3.3.2). By

doing this the only class instances that need to be

re-programmed are those for which the target language

uses different constructs. If the target language is

changed from ALGOL 68C to LISP, say, then class instances

relating to structures (3.55) and (3.56) can be left

unaltered since they are implemented as assignment

statements in both languages.

At this stage it is important to note that class

instances of the type discussed above are incapable of

determining the implications, if any, of their results.

For example the class instance which recognises statements

containing the word INITIALISE cannot differentiate

between the following two statements:

INITIALISE a Ta 4 (3.62)

INITIALISE 4 Ta ae (3.63)

Consequently there is no guarantee that the program

produced by analysing a program design will be free of

compilation errors. It is felt that the detection of

such errors is the responsibility of a compiler and

therefore need not be duplicated within FAPD.

This section has given an outline of the aims of

semantic analysis and section 3.3.2 now describes the

method used for representing the coded version of a

program design. This is described in preparation for

section 3.3.3 which gives a more detailed account of

how a design statement is converted into its coded form.

88

3.3.2 Representation of a Program

An objective in developing FAPD was to make it, as

far as possible, independent of the choice of programming

language. Consequently, as long as the same method of

program design is used, FAPD should be applicable to

examples that are eventually coded into different

programming languages, such as PASCAL or ALGOL 68C. In

order to achieve this objective, a method of representing

a program has been devised which is independent of the

target language. This representation is called an

assertion language.

FAPD is limited to those examples which, when

implemented in a target language, can be represented by

FAPD's assertion language. The assertion language has

been developed in order to represent the following

features of a programming language:

a) loops of the WHILE rather than the FOR variety;

b) conditionals of the IF -— THEN - ELSE variety;

c) assignment statements;

d) read statements;

e) print statements;

f) boolean expressions;

g) arithmetic expressions;

h) variables;

i) numerical values; and

j) arrays and array elements

Any program design which does not use a combination of

these ten features is beyond the scope of FAPD. From

the discussion in section 3.2.2.2 it follows that the

main limitations on the variety of examples which can

83

be analysed are the grammar of a program design together

with FAPD's assertion language. At this stage it is

important to note that any design which uses loops of the

FOR variety or special selection statements such as the

CASE construct or references to sub-procedures cannot be

analysed and will not be processed by the semantic

analyser.

In order to represent the ten language features

listed above, seventeen different forms of an assertion

have been developed. The general form of any assertion

is defined as:

[< type of assertion> <one or more assertion fields>

<assertion name>] (3.64)

The <type of assertion> gives some indication of the

kind of information contained in the assertion fields.

Typical of these are #VAR, #CONST and #COND used to

denote assertions containing variable names, numerical

values and conditional statements respectively. An

assertion field can contain either a string of alpha-

numeric characters or a bracketed list of one or more

<assertion name>s. Diagram 8 illustrates a program

design together with the ten assertions which the semantic

analysis routines would use for this particular example.

Because of the hierarchical nature of the assertion

language, assertion (AS1) is referred to as the top-most

assertion and hence an<assertion name>is not required.

It has a single field indicating the design has been

analysed as consisting of the read, assignment and print

statements, which are represented by assertions (AS2),

g0

The program design is as follows :

TNPUT THREE NUMBERS

ADD THEM TOGETHER AND ASSIGN THE RESULT TO ANSWER
PRINT THE VALUE OF ANSWER

The assertions to represent this program design are :

(AS1) fepesToN (RDI Al p1)|

(AS2) fRREAP = (v1. -v2_—v3)__ nil]

(AS3) [Hass (v4) (1) at]

(AS4) [HEXPR + (v1) (82) El]

(AS5) fHEXPR + (V2) (v3) Ea]

(AS6) f#pRINT (v4) pi]

(AS7) fAvaR NILE vi]

(As8) f#vAR NILL v2]

(AS9) [H#VAR -NILL v3]

(AS19) [HvAR ANSWER vad

Diagram 8

An_Example of the Results Produced by the

Semantic Analysis Routines

o1

(AS3) and (AS6) respectively. Assertions (AS4) and

(ASS) are the results of analysing the statement ADD THEM

TOGETHER. These show than an #€XPRession assertion has

three fields, the first of which contains a dyadic arith-

metic operator. The operator's arguments are contained

in the remaining two fields, which for a correctly formed

expression should contain the <assertion name>of either

a #CONSTant, #VARiable, array #E€LEMENT or an arithmetic

4+#EXPRession assertion.

It is important to notice that the assertions do not

contain any information concerning the coding details of

a particular language, for example the exact placement of

semi-colons or the form of variable declaration statements.

Also the assertions are sufficiently general to denote

statements in more than one language. For instance (AS3)

and its related assertions can be used to represent either

the ALGOL 68 statement:

ANSWER := IDROL + IORO2 + IORO3 (3.65)

or even the LISP statement:

(SETQ ANSWER (PLUS IDRO1 IORO2 IDRO3)) (3.66)

The responsibility of converting it into either of these

forms can be left until the code generation phase (see

section 3.5). Assertions (AS7), (AS8) and (ASS) show

that the variables relating to the THREE NUMBERS have

been given default names of NILL. Since the semantic

analyser uses an <assertion name> rather than an actual

name in order to build the assertions, the task of

generating suitable identifier names such as IDRO1, IDRO2

and IORO3 can also be delegated to the phase of code

92

generation. Further details of the assertion language

can be found in Appendix B which contains a formal defini-

tion of the language showing how it can be used to

represent a coded version of a program design.

3.3.3 Analysis of a Design Statement

In this section we consider how semantic analysis

converts the results of pre-semantic analysis into a

series of assertions. Semantic analysis will be

discussed by referring to the processes involved in

analysing the following design statement:

INPUT TEN NUMBERS INTO AN ARRAY (3.67)

Six class instances are used to produce the assertions

which represent this statement's implementation in

ALGOL 68C.

Diagram 9 shows modified forms of the syntax and

amended syntax trees relating to statement (3.67) which,

for it to be analysed, needs a class instance for each of

the four structures labelled (Cl), (C2), (C3) and (C4).

For ease of discussion, this section will refer to the

different class instances by using these labels. The

amended syntax tree is analysed in a depth first, left

to right manner and hence class instance (Cl) is the

first to be considered. This class instance is used to

recognise any design statement containing the read command

word INPUT and to produce the appropriate assertion(s)

which, in this case, is an ALGOL 68C READ statement. The

first operation involves analysing the left hand argument

by searching for class instance (C2). A search is then

made for class instance (C4). If the search is successful,

then the results of these two instances are considered

og

w
A
V
G
U
V

NV
O
L
N

SadaNIN
NAL

LNGNTy
FUsWeIeZS

C47
FO

CoLL
XePUAS

popusuly
oy}

PUL
dea]

XeJUAG
SUL

[(
s
e
e
i
n
)

asiadt]

Cs
[\avaav)

aad]
(v9)

Ch)

\

)
OLN

AV
aav

dv

<
g
o
U
u
e
t
e
s
o
I
>

<
9
[
3
1
}
4
¥
>

V
L
N
L

<
i

\
<
y
U
u
e
w
n
b
i
e
>

<
1
O
p
e
i
e
U
s
s
y
S

a
t

6
wWeIDetG

(to)

Naw
WIN

Dadu#]
(eo)

r
|

)
d
a
n
t

avaudt)
C
i
o

ST

9
0
1
}

X
Y
}
P
U
A
S

94}
JO

W
I
O
T

P
e
p
u
c
u
R

Uy

S
a
d
a
n

NAL

|
yo

¢
s
u
e
t
e
j
o
i
I
y

K
p
r
o
m

[
e
o
t
T
r
e
w
n
u
>
y
d

\
ae

<
e
s
n
e
l
[
o

s
d
u
e
i
t
e
s
e
i
>

<
P
p
i
o
M

p
u
e
w
w
o
d

persi>
y
i

<
}
U
s
W
e
}
e
}
S

U
D
T
S
e
p

peor
>

94

together within the overall context of a read design

statement.

Class instance (C2) is concerned with typical

phrases likely to be found within design statements such

as TWO NUMBERS and FOUR VALUES for example. The first

Operation of (C2) like that of (Cl) involves deriving

the meaning of the arguments within the current context.

This is achieved by calling class instance (C3) in order

to derive the meaning of NUMBERS. Within the scope of

FAPD, NUMBERS must refer to a set of numerical values

and in terms of FAPD's programming knowledges a value

can be stored in either an array element or a variable.

Hence the first attempt at analysis assumes the programmer

has used NUMBERS as a reference to a set of variables, the

size of that set being undefined. In terms of the asser-

tion language we can say that NUMBERS is analysed as

meaning (V1 V2 «+. WN) where Vl, V2, V3 etc are the

names of variable assertions with the following format:

[#tvAR NILL vi] (3.68)

f#vaR wit. v2] (3.69)

etc.

[#vAR NILL vn] (3.70)

In general, any class instance attempts to convert its

structure into the appropriate assertions, the names of

which represent the results of its analysis. However

before leaving class instance (C3) it is necessary to

record how NUMBERS has been analysed. This is necessary

in case the word is used again within the same designe

For instance if a design contained statement (3.67)

95

followed by:

ADD THE NUMBERS TOGETHER (3.71)

then NUMBERS obviously refers to the same variable names.

In order to detect this we link the assertions to the

design by making an intermediary assertion of the form:

[##REFV NUMBER (UI 2 cee VN)] (327.2)

An intermediary assertion is defined to be an assertion

which either aids semantic analysis or the generation of

comments but which is not used by any subsequent phase

in the analysis. Consequently intermediary assertion

(3.72) is not required by the code generator in order to

print a coded version of design statements (3.67) or (3.71).

Statement (3.67) has been specifically chosen as an

example because it illustrates how any class instance

attempts to analyse how its structure can be implemented

in a programming language, even though the results of its

analysis are often revised when considered in a wider

context. Thus class instance (C2) can now revise the

list of variable assertion names from one of indeterminate

size to one comprising just ten names. As a side effect

intermediary assertion (3.72) is also amended to:

[#REFV NUMBER (WUie U2 oreee LO) (3.73)

and the list (Vl V2 ... vV10) now represents the results

of analysing the left hand argument of class instance (Cl).

Class instance (Cl) now attempts to analyse the right

hand argument and search for a class instance which recog-

nises the word ARRAY. (C4) is found and an array asser-

tion of the following form is made:

fHARRAY NILL (LB1) (UBL) Al) (3.74)

where NILL is the default mame of an array and (L81) and

96

(U81) are the names of assertions which contain the values

of the array's lower and upper bounds respectively. At

this stage we have no criterion for determining these values

and hence they are assigned default values of 1 and N

respectively. These values are represented by the

following assertions:

[#Lwe i LB1] (ets)

[#ues N uB1 J (3.76)

So far, analysis has used four class instances, all of

which are based on the structures formulated by pre-

semantic analysis. However semantic analysis often needs

to use a series of additional class instances in order to

complete its operation. A comprehensive list of all

structures defined by FAPD is contained in Appendix C.

For the statement under discussion, two additional class

instances are required. The first of these has the format:

[#FROARGS <first argument > <second argument >] (3.77)

and it is invoked whenever the first argument of a read

design statement is analysed as a list of variable asser-

tion names and when the second argument is analysed as the

name of an array assertion.

In terms of statement (3.67) this class instance

will perform three operations:

a) Now that the number of values which are to be read

in has been determined, the upper bound of the array

can be re-defined. Consequently the array is

re-defined as one of ten elements by altering

assertion (3.76) to:

[#uPs 1a uBl J (3.78)

b) Each of the variable assertions Vl to v1l0 can be

97

erased and as a result the intermediary assertion

(3.73) is altered to:

HRREFV NumBER (Al)] (3.79)

which indicates that NUMBER now refers to an array

of ten elements. If the word is used within a

phrase such as FIRST NUMBER, this intermediary

assertion is used by a class instance to infer that

it means the first element of the array.

c) The following assertion is made which denotes a

series of values are to be read into an array:

[4#READ (Al) RD1] (3.80)

The second of the additional class instances is called to

determine how an assertion such as this can be incorporated

into the results of analysing previous statements. It has

the following structure:

[oesIGn ARG <assertion names>] (3.81)

and is invoked whenever its argument is the name of a

#READ assertion. This class instance makes the appro-

priate loop and assignment assertions that are necessary

when reading values into an array using the programming

language ALGOL 68C.

Semantic analysis of statement (3.67) is now complete

and diagram 10 summarises the analysis by showing the

original design statement together with the results

produced by the six class instances. The ALGOL 68C code,

also shown, can be derived from knowing that the result of

analysing statement (3.67) is represented by a list of

just two assertion names - (AS1 LP1l). This shows that

the design statement has been analysed as comprising an

assignment statement (AS1), followed by a loop (LP1).

98

(ass (v1) (LR1) Asi]

[Var NTE. v1]

[#LO9P (R1) (pp AS2) tpi]

[#ROOLOP <= (vt) (URTV) Ri]

(#REAN (FI) rni]

(#ELEMENT = (41) (vty. fel]

[#ass (W1) (B1) AS2]

(HeyrR «© (v1) (c1)—B1]
[#consT 1. 1]

THARRAY ONTLL (LRT) (URI) AN]

(#iwR 1 Lp1]

[#uPB 19 WRI]

[#REFV NUMBER (Al)]

A coded form of the statement is

TPRAI := 1;

"WHILE TDROI <= 19

mo READ (ARROI (tne a1] yee anes

Diagram 19

The Assertions and Program Code Which Represent

the Statement "TNPUT TEN NUMBERS TNTO AN ARRAY"

939

Because of the hierarchical nature of the assertion

language all other information needed to produce the code

can be obtained via each of these assertions.

3.3.4 Scope of Semantic Analysis

The phrase "program design analysis" is used through-

out this thesis to mean the conversion of a program design

into a series of assertions which represent a coded version

of that design. Consequently this research has aimed to

develop a series of class instances capable of implement-

ing a design in a programming language. The knowledge

contained within a class instance has been confined to

common programming techniques in much the same way that

knowledge is confined to the blocks world in Winograd's

system [Winograd 1972].

The kind of examples which FAPD aims to analyse are

those which require elementary programming skills in order

to be implemented. Hence a typical statement within such

a program design could be:

CALCULATE THE TOTAL OF THE VALUES

OF THE ELEMENTS OF THE ARRAY (3.82)

The implementation of this statement is important since it

demonstrates how a loop structure is often used to index

consecutive elements of an arraye In terms of FAPD's

assertion language, statement (3.82) is represented by:

[#PRED TOTAL (Al) PL] (3.83)

GHRARRAY NILL (LtB81) (uB1) Al] (3.84)

where assertion (3.83) is an intermediary assertion

denoting that the operation TOTAL is to be applied to

an arraye Thus statements such as:

100

FIND THE AVERAGE OF THE ELEMENTS OF

THE ARRAY (3.85) and

FIND THE MAXIMUM VALUE OF A AND B AND C (3.86)

can also be represented by similar intermediary assertions

such as;

(PRED AVERAGE (AL) P2] (3.87) and

(HEPRED maxImuM (V1 V2 v3) P3] (3.88)

where (Al) is the assertion name of an array and Vl, V2 and

V3 are assertion names relating to the variables A, B and C.

Hence, because statements (3.82), (3.85) and (3.86) can all

be represented in this manner they are considered to be

within the scope of FAPD's semantic analysis.

Generally speaking, a statement is within this scope

if all the information required for its implementation can

be derived from the following two sources:

a) from a class instance which is capable of translating

a common design statement or phrase into a target

language. Class instances for predicates such as

TOTAL, MAXIMUM and AVERAGE can also be developed since

the intuitive meaning of such words is sufficiently

explicit to allow their use in more than one design

exercise;

b) from the results of analysing previous statements in

a program design. Consider a program design which

contains a statement for finding the average value of

the elements of an array. In this situation the class

instance relating to the calculation of an average

must be able to determine if the design contains a

previous statement which calculated the total of the

values held in the array elements. If such a state-

101

ment exists then the class instance must use the

results from analysing this previous statement in

order to implement the code for calculating the

average.

Conversely a statement is beyond the scope of semantic

analysis when some of the information required for its

implementation cannot be derived from either of these sources,

A statement typical of this is:

PROCESS OATA FOR EMPLOYEE (3.89)

This was referred to in chapter 1 as a general statement

covering the various operations used to derive the number of

notes and coins a company cashier requires to pay out to an

employee on the company's payroll. However this statement

could also be found in a program design which uses the

number of hours worked by an employee, together with his

tax allowances etc. to calculate the total money earned by

that employee in any given weeke In this respect the

meaning of statement (3.89) can only be derived from

knowing the domain of discourse or the context within

which the statement is made. This information is usually

contained in a problem specification and since FAPD makes

no use of the specification, then statements such as (3.89)

are considered to be beyond the scope of semantic analysis.

Ignorance of the program specification also means that

FAPD cannot determine if the design performs as intendede

However, since FAPD views the process of analysing a

program design as the translation of a program design into

code, some of the existing theories of program understanding

could be used to determine if the code(and hence the

design) agrees with the specification. Although state-

102

ments such as (3.89) are beyond its scope, semantic

analysis should not be prevented from analysing other

statements within the same design. Provided a statement,

which cannot be analysed is syntactically valid, it is

left unattended and attention is diverted to other state-

ments within the design. If this occurs the design is

said to be partially analysed.

3.4 Generation of Comments

Semantic analysis is concerned with building a series

of assertions which represent a coded form of the program

design. As these assertions are constructed it also

initiates those processes which detect the implications

of forming this representation. This third phase in the

analysis process runs parallel to semantic analysis.

However any implications are noted only as a side effect

and are not used by the semantic routines. One of the

main objectives of this phase is to make comments about

those statements whose implementation contains a program

errore Typical errors are statements which use a variable

without first initialising it and statements whose

implementation might lead to an array index being out of

bounds. These errors are noted and converted into the

appropriate English text during the code generation phase.

It is hoped that any comments are of a form which a

programmer would find useful.

Just as FAPD defines a set of classes for analysing

common elements within a program design, it also defines

a set of classes (outlined in full in Appendix C) for

detecting if the results of semantic analysis are erroneous.

Hence these classes are based on the structure of the

103

assertions used to represent a coded version of the design.

In this respect, certain errors in an assignment statement

are detected by having class instances which are called

whenever an assertion of the following form is made:

[#ass (<assignment argument 1>) (<assignment

argument 2>) <4ASS assertion name >] (3.90)

Other comments about assignment statements can only be

detected by considering an assertion of the form shown in

(3.90) within the context of previous lines. For this

reason comments about assignment statements are sometimes

generated by class instances of the following forms:

[bestcn <assertion names>] (3.91)

{LoopsoDY <assertion names>

<#LO0P assertion name>] (3.92)

Class instances with a structure similar to (3.91) are

used to consider a particular line within the current

context of the program design. The current context in

this study is taken to mean the preceding design state-

ments. Similarly class instances with a structure

similar to (3.92) will be used whenever the current

statement is within a loopbody.

For every comment made about an assignment statement

there must be class instances of these forms. Hence

whenever the semantic routines incorporate an assertion

into a program, all those class instances with the same

structure as (3.91) are invoked. If any class instance

detects an error then the appropriate information is

recorded in a comment assertion which has the following

general format:

104

[comm <comment number > <information>

< list of assertion names or a line number >

<assertion name >] (3.93)

where <information> could be a variable's assertion name

or an unrecognised statement which is used by the code

generator to produce the appropriate English text and the

<list of assertion names or a line number> is used to

denote where in the coded version of the design, this

comment refers. All comments are initially represented

in this manner and <comment number> is an integer

reference number used to denote the various errors and

comments that can be detected and generated.

The results of analysing a statement such as:

SET A, 10 eTRE WALUE BOF — 6 (3.94)

are represented by assertions such as

[#ass (v1) (v2) AS1] (3.95)

[# vaR A v1] (3.96)

(# VaR 8 v2] (3.97)

Consequently we use a class instance with structure (3.91)

in order to check if all the variables used on the right

hand side of the statement (such as 8B in this example)

have been previously defined. Similarly we need a class

instance with structure (3.92) to detect the same error

for an assignment statement contained within a loop. ae

the variable 8 had not been assigned a value then the

appropriate class instance would record that fact by

making the following assertion:

f#comm 8 (v2) (ASL) . C2) (3.98)

This contains all the information the code generator needs

105

to inform the programmer which variable (denoted by

assertion V2) has been incorrectly used and where

(denoted by assertion AS1l).

In addition to detecting errors within individual

statements, it is also necessary to consider the results

obtained from analysing a statement, within the context of

previous results. For instance two statements such as:

QUTPUT THE SUM OF A AND 8B (3.99) and

ASSIGN THE RESULT TO ANSWER (3.100)

are analysed into the following print and assignment

statements, both of which are correct, but which together

form an inefficient piece of code:

PRINT (A + 8); (S5002)

ANSWER := A + B; (3.102)

The same operation can be achieved more efficiently by

ANSWER := (A + 8B); (3 103)

PRINT (ANSWER) ; (3.104)

Thus whenever an arithmetic design statement is met, a

class instance considers the expression produced in the

light of any similar expressions previously analysed.

Whenever statements such as (3.99) and (3.100) are found

this class instance detects that when the two results are

combined they display an unnecessary duplication of an

arithmetic expression. The information necessary for

making an appropriate comment is then recorded for later

use. This is achieved by making an assertion similar to:

f#ecomm “10 (G2) (er €2) c2] (3.105)

where £1 and £2 are the assertion names corresponding to

the arithmetic expressions in statement (3.101) and (3.102).

So far the discussion has been concerned with comments

106

involving erroneous statements, but comments can also be

made to show how various statements within the design have

been implemented. For example if the design contains a

statement such as:

OUTPUT THE VALUES OF THE ARRAY (3.106)

then the fact that this is implemented in ALGOL 68C by

using a loop structure is noted using the same form of

comment assertion already discussed. A comment which

outlines how statements such as (3.106) can be converted

into a particular programming language are particularly

useful for programmers who still find the implementation

of such statements relatively difficult.

The results obtained from analysing a design are now

represented by a set of assertions. Each assertion is

restricted to one of three forms which indicates where in

the analysis process they were produced:

a) an assertion may have been produced during semantic

analysis and consequently is used to represent a

coded version of the design;

b) alternatively it may have been produced by the phase

currently under discussion in which case it represents

a comment that will be made about the coded version

of the design;

c) a third type of assertion has been termed an

intermediary assertion. Assertions of this type are

produced by either the semantic routines or the

routines responsible for generating any comments.

However these routines use intermediary assertions

as a method of aiding their own analysis and

107

consequently this category of assertions is

superfluous to code generation.

The task of printing the assertions, described in (a) and

(b), in a readable form is the responsibility of the

fourth, and final, stage of the analysing process known

as code generation.

365 Code Generation

FAPD views the process of analysis as the translation

of a program design into a series of assertions which

represents how statements within the design can be realised

in terms of a particular programming language (see section

1.4). In this respect pre-semantic analysis, semantic

analysis and generation of comments are the three main

processes. The fourth process, known as code generation,

is concerned with converting the results of the last process

into a computer executable form - namely a coded version of

the design. Any comments pertinent to the program design

are also converted into a readable form at this stage.

In order to print a program, code generation must take

care of the coding details of the target language, such as

how variables are declared and where semi-colons and

parentheses are needed. An important feature of FAPD is

how the results of analysis can be used to represent the

same statement in different languages. Thus in order to

print the results in different programming languages we

need only provide different code generators. At this

stage it is important to note that code generation is

concerned only with printing a program and does not build

a representation of its results in the same way as that

achieved by pre-semantic analysis, semantic analysis and

108

generation of comments.

The initial operation of the code generator is to

generate oppropriate variable names for any variables or

arrays which have been given a default name of NILL (see

assertion (3.84) in section 3.3.4). Once this has been

done all declarations can be carried out and the program

printed. The assertion language has a hierarchical

format and an example of a top-level assertion is:

[#DESTGN (cl LP1)] (3.107)

The program can be printed by first of all finding this

assertion and then searching for those assertions with

names Cl and LPl. In this respect the operation of

the code generator can be thought of as a systematic walk

through all the assertions.

Conditionals and loops are represented by assertions

such as:

[#cono (81) (ASL AS2) (AS3 AS4) Cl] (3.108)

[#Loop (82) (ASS as6) tel J (3.109)

where Bl and 82 are boolean expressions. AS1 and AS2

are contained in the first leg of a conditional (ise. they

are executed if 81 is true), AS3 and AS4 are contained in

the second leg of a conditional and ASS and AS6 are both

contained in a loopbody. Many ALGOL 68 programs contain

compilation errors because the programmer has used the

semi-colon as a terminator and not as a separator.

Because assertions (3.107), (3.108) and (3.109) provide a

convenient method of representing blocks within a program,

the correct use of a semi-colon as a continuation character

is made easier. Assertion (3.107) shows how the coded

version of the design is represented by a conditional - Cl -

109

and a loop - LPl. This representation allows the code

generator to detect that a semi-colon is required after

each element in the list (Cl LP1) apart from the last one.

If semantic analysis has failed to analyse a statement,

then the amended syntax tree corresponding to this state-

ment is incorporated into the appropriate assertion. For

instance if the phrase NOT END OF NUMBERS is not analysed

within the following context:

WHILE NOT ENO OF NUMBERS

oo one or more design statements oD (S010)

then the amended tree corresponding to this is included

within the appropriate boolean assertion. As the coded

version of the design is being printed the code generator

can detect that the assertion contains an unrecognised

statement and this is then converted into the following

comment assertion:

[#comm 1 (END OF NUMBERS) (3) C3] (Sea)

where (3) denotes the line number on which the unrecognised

statement has been printed.

Whenever a comment such as (3.111) which has a

reference number of 1, is produced we say that FAPD has

resulted in a partial analysis of the design. Consequently

the coded version of such a design cannot be tested on a

computer. If analysis had resulted in a complete analysis

then the statements for opening and closing input and out-

put channels would need to be inserted before the program

could be executed. However for the sake of clarity the

code generator does not do this.

This chapter has detailed a framework aimed at

analysing a program design. Throughout the discussion

110

attention has been drawn to those factors which impose

limitations on FAPD's scope, and discussion of these is

continued in the concluding chapter. In order to test

FAPD it has been implemented within a system called DACE

(which is a Design Analysing and Commenting Environment).

The following chapter will now discuss details of this

implementation before the results from its analysis are

discussed in chapters 5 and 6.

lll

4. IMPLEMENTATION OF DACE

4.1 Relationships between System and FAPD

Before some of the implementation details of DACE are

considered it is necessary to determine the relationship

between the system itself and FAPD which it tests.

Lukey [Lukey 1978] describes his system, PUDSY, as an

implementation of a model of part of his theory and DACE

can be described in a similar manner.

The preceding chapter described how a set of general

classes can be used to categorise the kinds of statements

found within a program design. within each class there

are a set of specific instances, called class instances

which are used for recognising common statements and

phrases. Because the system incorporates a particular

set of class instances it is said to represent a model of

FAPD. In order to test the validity of FAPD it is

considered unnecessary to incorporate within the system

a comprehensive library of all statements and phrases

which could be recognised.

In order to analyse a design we must have some method

for recognising when a class instance appears in a design.

Later sections in this chapter describe how this has been

achieved by using facilities available in the programming

language MICRO-PLANNER. The choice of this language is

therefore a decision concerned with how FAPD can best be

implemented. As far as FAPD itself is concerned, class

instances could be implemented by other programming

techniques in other languages. A second implementation

decision is the choice of the program design's target

112

language. Preceding chapters have already given reasons

why ALGOL 68C has been chosen, but as far as FAPD is

concerned, so long as the same method of program design is

used and programs in the target language can be represented

by the FAPD's assertion language, then other target

languages could have been chosen. It is estimated that

modifying the system to accommodate a different target

language would take six to eight man weeks.

A third detail of this implementation concerns the

programming language subset, which is used to implement

a program design. The system described in this thesis

uses a subset of ALGOL 68C. Hence the fact that this

subset contains integer and boolean, but not real variables,

is an implementation decision. The assertion language

which has been implemented in this study can represent the

following features of an ALGOL 68C program:

a) loops of the following format:

WHILE -- DO - oD

b) conditionals of the following format:

If == THEN ‘== ELSE =={ FI

c) assignment statements

d) read statements

e) print statements

f) boolean expressions

g) arithmetic expressions

h) integer and boolean variables

i) constant integer values

j) one-dimensional integer arrays and array elements

which are considered to be sufficiently comprehensive for

analysing a wide variety of program designs.

113

4.2 Facilities Available

Prior to implementing FAPO, decisions were required

about which computer and programming language of those

available, were most appropriate for the development of

the system. At the time research commenced the following

machines were available: the University of Aston's ICL

19045 computer, the Computer Centre's Prime 250 mini-

computer, the University of Birmingham's DEC 20/60 computer

and the CDC 7600 and ICL 1904S computers at the University

of Manchester Regional Computer Centre. Qf these, the

DEC 20/60 computer was chosen because it is a powerful,

interactive machine which also provided three Al pro-

gramming languages. These were LISP [Bobrow et al 1973,

Quam and Diffie 1972, LeFaivre 1978], MICRO-PLANNER

[Baumgart 1972] and CONNIVER [McDermott and Sussman 1974]

The programming language LISP provides more compre-

hensive facilities for word/character handling than

languages such as ALGOL 68 and FORTRAN. In addition it

also aids the interactive development of a system by

providing facilities such as a LISP editor, for editing

LISP functions, and powerful TRACE and BREAK packages to

aid debugging. The Rutgers/UCI version of LISP, which is

available on the DEC, allows functions to be either inter-

preted or compiled. Compiled functions can improve

execution time by a factor of twenty and in addition, take

up less memory space.

MICRO=PLANNER is a LISP-based language based on Carl

Hewitt's robot language PLANNER {Hewitt 1969]. Like the

LISP system, MICRO-PLANNER also provides special editing

and tracing packages, however unlike LISP it cannot be

114

compiled. The principal feature of the language is the

facility to call functions by name or pattern. Thus

every function must have a pattern. An example of a

Pattern could be:

(REF (THY x)) (461)

where (THV X) is a MICRO-PLANNER variable which can take

any value. Hence whenever statements of the following

forms are made:

(THGOAL (HREF TOTAL) (THTBF THTRUE)) (4.2)

(THGOAL = [#REF = SUM) (THTBF THTRUE)) (4.3)

then all functions with pattern (4.1) are invoked until

the correct function is found. Conversely a statement

such as:

(THGOAL [HVAR TOTAL] (THTBF THTRUE)) (4.4)

which does not match pattern (4.1) would not be called.

This method of pattern directed invocation has been used

to great effect by researchers in AI, such as Winograd

[Winograd 1972] and Charniak [Charniak 1973]. Since

analysing a program design involves recognising patterns

of design statements, MICRO-PLANNER seems an ideal choice

for implementing FAPD. The control structure simulates

a depth first search of a tree, which backtracks auto-

matically whenever an impasse is reached. Backtracking

in this fashion is undirected and could be made more

efficient if controlled by the programmer [Bobrow and

Raphael 1974].

This criticism led to the development of CONNIVER

which allows the programmer to determine how a program

should continue once an impasse is reached. Although

CONNIVER now seems to be the preferred language, it was

UTS

decided after an initial investigation to implement FAPD

using LISP and where appropriate MICRO-PLANNER. The

system does not require the automatic backtracking

mechanism of Micro-Planner and so the criticism referred

to above is not applicable to this implementation.

4.3 User Interaction

DACE runs on the University of Birmingham’ DEC 20/60

Computer under the control of the TOPS-20 operating system

and takes up 65K words of a 36-bit computer store.

Chapter 3 gave details of four phases in the analysing

process and diagram 11 shows how they have been implemented

in terms of four system modules. A box represents a set

of programs and arrows denote how data flows from one to

the other. It can be seen that the modules operate in a

sequential manner except for semantic analysis and genera-

tion of comments which run in parallel. The series of

arrows emanating from the former has been used to indicate

that whenever a statement or phrase is analysed, the results

are passed on to the module for generating comments before

the next statement is analysed. Module 1 is written in

LISP whereas the other three are all implemented in MICRO-

PLANNER. Because the second and third modules run in

parallel DACE operates by entering the LISP system once,

and the MICRO-PLANNER system twice.

In order to enter a program design the LISP system

must be called and module 1 loaded. Whenever the DEC's

LISP system is called a special initialisation file is

automatically loaded. when operating under the author's

Usernumber this special file asks the user if he wishes to

use DACE and if this is so then the LISP functions

116

Module
2

(29K
words)

Coded Version of the

Program Nesign

t

Lexical Analysis

L

Syntax Analysis

J a eee Det

Preparation for Semantic

Analysis

Module 1

(13K words)

Semantic Analysis

Generation Module
of Comments a

ice e eee

‘
and Comments

Diaaram_ 11

The Structure of the System we Eee Ceure 1OF “the System

de

Code Generation Modu Le
(12K words)

Program Nesiaqn

(11K

words)

contained in module 1 are entered and the user is invited

to enter his design. Diagrams 12, 13 and 14 show how a

user interacts with the system and in each diagram the

user's responses have been underlined. Diagram 12 shows

how the design need not be typed in in any particular

format since DACE re-prints it with appropriate inden-

tations.

When entering a design certain rules should be

obeyed. These may be summarised as:

a) the design should be terminated by the string xxx

which must appear at the start of a new line. This

string must not be followed by a space, otherwise

the design is terminated incorrectly and the user is

given another invitation to type. At this point the

terminating string should be typed in correctly.

DACE now parses the program design up to and including

the first occurrence of the terminating string xxx.

Provided an incorrect termination is rectified in the

manner just described it does not prohibit further

analysis. However it can lead to distortions in the

pretty-printed version of the design. The requirement

that the terminating string should not be followed by

a space occurs because of the way in which the LISP

system reads a line of data.

b) Diagram 12 shows how two or more consecutive design

statements should be separated by the string **.

This string is used to print consecutive statements

on different lines. If the separator string between

two statements is omitted then the system will not

only print the statements on the same line but will

118

@LISP

Do you wish to use DACE a system For analysing
and commenting

upon some simple program designs ? When the system prints: —

please type Y or N followed by the < return > key

#Y

Please input the design when the system types :—

At the end of a line press <return> and the system
will again respond with :-

In order to terminate the input type the string ###
at the start of a newline followed by <return> and
please ensure no spaces follow that string

-READ_N AND INITIALISE I TO 1
-WHILE I IS LESS THAN OR EQUAL TO WN
-DO PROCESS DATA FOR EMPLOYEE ## INCREMENT I oD
EK

The design has been entered and
syntax analysis has started

The design is as follows :-

READ N AND INITIALISE I TO 1
WHILE I IS LESS THAN OR EQUAL TO N
Do

PROCESS DATA FOR EMPLOYEE #+#
INCREMENT I

oD
RHE

Syntax analysis of this design was successful
The syntax tree is being amended
The syntax tree has been successfully amended

Do you wish to carry on ? Please type
Yor N followed by < return >

#Y

When the system types: —

e
Please respond by typing PLNR < return >

€

Diagram 12

User Interaction With Module 1 of the System

lig

also encounter difficulty in differentiating between

the statements. The latter difficulty arises because

the syntax analyser uses the string as an indication

that parsing in the current part of the syntax tree

should be complete and thus parsing of the next state-

ment can be initiated. If it is not used, then the

syntax analyser first of all tries to parse the next

token according to the grammar of the current part of

the syntax tree. Failure to do this implies that

the current part of the syntax tree has been success-—

fully parsed or that parsing must continue at another

point in the syntax tree. Hence the use of «x

increases the efficiency of the syntax analyser.

c) ALGOL 68C allows the use of a single quote or a

period to denote a reserved word such as IF, WHILE

etc. but in a program design these are unnecessary

and indeed illegal.

d) All words and characters must be in upper-case.

e) Within a print design statement any sequence of

words which the user intends to print as text should

start and finish with the character #. ALGOL 68C

uses double quotation marks for the same purpose,

however this is difficult to implement in a LISP

based system because the LISP READ function will

read in anything enclosed in double quotation marks

as a single item. Consequently, double quotation

marks are not recognised and would be treated by

the system as a user defined variable name.

Failure to comply with rules (c), (d) or (e) can result

in a design being analysed as syntactically incorrect.

120

After the design has been entered, lexical and syntax

analysis are undertaken and, if successful, the syntax

tree is amended in preparation for semantic analysis.

Diagram 12 shows how module 1 has been successfully

completed and the user informed of the steps necessary

for entering the next phase. In diagram 13, the second

and third modules have been loaded automatically by a

special MICRO-PLANNER initialisation file. Typing (START)

causes semantic analysis to commence and any comments to

be noted. To print the results from this phase in a

readable form, the MICRO-PLANNER system must be left and

re-entered with module 4 loaded.

Diagram 14 shows how typing (PRINT-CODE) causes the

results to be entered before the program and comments are

printed at the terminal. The program and comments are

also filed so a hard copy is available if desired.

Collectively, diagrams 12, 13 and 14 depict a complete

terminal session with DACE.

4.4 Pre-Semantic Analysis within DACE

Pre-semantic analysis within DACE is achieved by

carrying out lexical analysis, syntax analysis and

preparation for semantic analysis in a sequential manner.

The principal feature of this implementation is the way

the syntax and semantic definitions have been divorced

from the procedures that use them. The syntactic format

of a program design is specified by its grammar (see

Appendix 8B). This grammar contains a set of rules

written in a modified form of BNF. A typical rule of

this grammar is:

L2i

@PLNR

MICRO-PLANNER
22> READING (PLINR . INI)
THINIT

When the system prints: -
O%

please respond by tuping (START) < return >

2>> TOP LEVEL
LISTENING THVAL

O# (START)

The semantic analyser has now been entered

Semantic analysis is now complete

Do you wish to carry on 7 Please type
Y or N followed by < return >
*Y
When the system types: —

a

please respond as you have just done
by typing PLNR < return >
@

Diagram 13

User Interaction With Modules 2 and 3 of the System

122

@PLNR

MICRO-PLANNER
>>> READING (PLR | INT)
VHINIT

When the system prints: —
O#

Please respond by tuping (PRINT-CODE) <return>

>>> TOP LEVEL
LISTENING THVAL

O* (PRINT-CODE) ace ae

The design is as follows :-—

READ N AND INITIALISE I To 4
WHILE I IS LESS THAN OR EQUAL TO NN
DO

PROCESS DATA FOR EMPLOYEE «+:
INCREMENT I

ap
Kae

& coded form of the design is:-

0 “BEGIN “INT ING
1 READ (N) i
2 Eos 4
3 ‘WHILE I <= N
4 “DO < PROCESS DATA FOR EMPLOYEE > 5 Lael Ht
& “OD
F “END

The following are some comments on the ahove:—

1 Re line 4: The design gives insufficient
detail to analyse
<PROCESS DATA FOR EMPLOYI-E:>
The design does not contain any output statements Before the coded version could be run one or more PRINT statements need to be inserted

Le]

Analysis is now complete. Your design
together with the coded
version and comments are stored in CODE. RES
Do you wish to leave the MICRO-PLANNER system
Please type

Yor N followed by < return >
ey “

Diagram 14

User Interaction With Module 4 of the System

223

< loop> ::= <while> <boolean expression> <do>

<series> <od> (4.5)

where items in angled brackets are non-terminals which are

further defined elsewhere in the grammar (see Appendix 8B).

The syntax analyser within DACE uses a technique

called top-down analysis. This technique uses the

Qrammar to build a syntax tree by starting from the top—

most definition and working downwards in a depth first

manner. At each stage an attempt is made to replace the

left most non-terminal in the syntax tree by a suitable

expression derived from the rules of the grammar.

A basic difficulty in top-down analysis is encountered

when a rule employs left recursion. For instance if the

definition for a series of design statements was to be

written as:

€series> ::= <series> <** ><statements> |

<statements> (4.6)

then because the term <series> is recursively defined,

searching would continue indefinitely. This problem is

overcome by re-writing rules in a right recursive manner.

Thus the above definition becomes:

<series> ::= <statements> <#x« ><series> |

<statements> (407)

An alternative solution is to rewrite definitions in a

modified 8NF form which allows the use of two additional

features. These are {x} which denotes zero or more

occurrences of X and [x] which denotes an occurrence of

X is optional. This approach has been used to specify

the grammar of a program design and so expression (4.7)

can be expressed using iteration instead of recursion

124

as follows:

<series> ::= <statements> {<xw> <statements>} (4.8)

One approach to top-down parsing is recursive descent

which involves writing a recursive procedure corresponding

to each non-terminal of the grammar. The method does not

allow back-up and thus once an item is parsed an alterna-

tive parsing cannot be considered. Thus if an impasse is

reached a syntax error has been detected and an appropriate

error message can be made.

A second approach to top-down parsing uses a set of

general procedures driven by a representation of the

grammar. In order to implement a syntax analyser, the

latter of these two approaches was chosen. The reason

for this is that backup must be used whenever a recognised

word has been used as a variable name. For instance

consider the use of NEXT in the following statements:

SET NEXT ELEMENT TO 1 (4.9)

SET NEXT TO 1 (4.10)

In statement (4.9) NEXT is used as an adjective whilst in

(4.10) it is used as a variable name. However in state-

ment (4.10) the fact that NEXT is used as a variable is

not apparent until the word TO is analysed, at which point

it is necessary to back-up and revise the parsing of NEXT.

Although this approach also has the advantage of easy

modification, its persistent use of back-up means it is

often inefficient. It is also poor at handling errors

because it is unable to determine the point at which an

error occurred (c.f. top-down analysis using recursive

descent). Consequently whenever DACE discovers an error

the design is re-printed for the user, together with a

125

general error message indicating a syntax error has been

found. In this situation the analysing process is not

able to proceed and the user is therefore not able to load

and execute the semantic analyser.

If parsing is successful then the syntax tree can be

amended in preparation for semantic analysis. In order

to achieve this, each non-terminal of the grammar has a

semantic definition (see Appendix 8). This definition

is used by a set of procedures to form a series of classes

which the semantic analyser can recognise. By adopting

this approach the semantic definitions can be altered

without changing the procedures that use them. Consequently

as the system was extended in order to analyse an increas-

ing variety of examples, it was modified more easily than

it would have been with the definitions procedurally

embedded. Once the syntax tree has been amended, the

operation of module 1 is complete. The LISP system is

now exited and the MICRO-PLANNER system is entered in

order to start the semantic analysis and possible genera-

tion of comments.

4.5 Semantic Analysis, Generation of Comments

and Code Generation within DACE

The remaining three modules of DACE are discussed in

this section because they are all implemented in MICRO-

PLANNER» Chapter 3 defined a class instance to be a

structure which represents statements often found in a

program design, together with a function that implements

the structure in terms of a particular programming

language. Consequently this section is concerned with

126

how a class instance can be coded using a MICRO-PLANNER

theorem.

Let us recall (see section 3.2.3) that in the pre-

semantic analysis phase, attempts are made to convert the

syntax tree for any assignment design statement into the

following general form:

[#ASS <assignment command word> ARGUMENT

<separator> ARGUMENT] (4.11)

Consequently whenever semantic analysis discovers a

structure similar to (3.11) in the amended syntax tree,

the appropriate class instance must be called to derive

its meaning. MICRO-PLANNER allows theorems to be called

by a pattern and so commands can be written which have

the effect of searching through all the known theorems

for any with a pattern which matches (4.11).

The theorems in diagram 15 are typical of those used

by DACE. In each case the theorem's pattern has been

underlined. From this diagram we can see that the pattern

of TC-ASSERT- #ASS matches (4.11) whereas those of

TC-ASSERT— ##READ and TC- #ASS-ASSIGN do note Consequently

TC-ASSERT - #ASS is invoked. Because DACE is a model of

FAPD a particular class instance may not be represented in

the set. To overcome this, TC-ASSERT-4#READ and TC

ASSERT-4#ASS are general theorems which are used to deal

with all possible examples of read and assignment design

statements respectively. If the amended tree contains

something of the form:

[#ass ASSIGN <first argument> TO

<second argument>] (4.12)

then the procedure TC-ASSERT= #ASS is called. This

LZ

N
O
I
S
S
Y
~
S
S
V
4
t

—
O
L

PUe
S
S
V
H

-
~
L
U
Y
S
S
V
-
O
L
*
d
V
a
u
H

-
L
U
A
S
S
V
-
o
L

S
o
o
u
e
z
s
u
y

S
S
e
T
D

U
L

Sl
wexbetd

(
W
A
Y
O
S
H
L

C
C
E
W
S
Y
O
S
H
L

1

V
A
H
L

C
L
S
N
V
é
$

W
H
Y
O
S
H
L

G
A
S
I
O
N
S
H
L
I

C
(
S
S
V
i
l
-
L
Y
a
s
S
v
-
—
s
a
)

SNVEes
D
L
A
S
H
I
4

C
i
V
é
d

G
O
U
V
E
S

O
L
A
S
H
L
I

Cevéeds
T
O
N
V
E
S

D
I
A
S
H
I
}

G
N
V
H
L
I

Y
O
H
L
)

(
E
v
e
$

d
a
S
é
$

T
¥
é
$

N
O
I
S
S
Y

W
S
V
H
)

(
S
N
Y

c
o
u

T
O
N
Y

d
S

ey
TV)

A
S
N
O
O
H
L
)

N
O
I
S
S
V
-
S
S
Y
#
-
9
1

d
O
Y
d
d
a
d
)

(
W
S
Y
O
S
H
L

(
(
S
N
V
E
$

W
A
Y
O
F
H
L

C
A
A
D
D
N
S
H
L
)

C
C
C
(
N
E
S

I
S
I
)

S
N
V
E
S

O
L
A
S
H
L
I

C
(
N
E
S

G
V
é
s

d
d
S
é
$

T
e
s

G
U
O
M
e
s

SsViE)
E
C
W
A
S
N
A
S
)

Né$S
O
L
A
S
H
L
I

U
N
V
H
L
I

C
C
C
A
N
Y
L
H
L

S
a
l
e
)

(€dQ0NHLL)
(
E
v
e
s

d
a
S
e
S

T
¥
E
$

G
N
O
M
E
S

W
S
V
I
)

“
W
O
O
S
H
L
)

S
N
V
E
S

O
L
A
S
H
L
I

(
e
v
e

u
O
H
L
)

%
d
a
S
é
$

T
v
é
s

G
U
O
M
E
s

S
S
V
I
)

(N
S
N
Y

@V
daS

T¥
G
H
G
M
)

A
S
N
O
D
H
L
)

S
S
V
#
-
L
Y
A
S
S
Y
-
9
1

d
O
Y
d
s
g
a
)

(
W
3
Y
O
3
H
L

(
(
S
N
Y
V
2
$

W
H
Y
O
S
H
L

A
S
A
a
D
I
N
S
H
L
)

C
C
L
(
N
E
$

L
S
1
1
)

S
N
V
E
S

O
L
A
S
H
I
I

C
i
N
e
S

S
¥
e
s

d
a
S
E
S

T
¥
E
H

G
U
O
M
E
S

Q
V
A
a
e
H
)

L
Y
S
S
S
Y
V
H
L
I

E
(
W
A
S
N
S
O
)

NéE$
O
L
A
S
H
I
T

C
N
Y
H
I
I

C
C
C
A
N
Y
L
H
L

S
@
L
H
L
)

(
@
C
O
N
H
L

>
(
e
v
e
s

d
a
S
é
%

I
V
E

G
Y
O
M
E
S

W
a
M
H
)

Q
O
H
 >

S
N
V
E
$

D
A
S
S
H
L
I

Y
O
H
L
)

(
E
v
e
8

d
a
S
é
$

T
U
E
S

G
U
O
M
E
S

a
v
a
u
n
)

(N
S
N
Y

@V
uaS

Ty
a
Y
O
M
)

A
S
N
O
D
H
L
)

Q
V
a
u
t
-
L
Y
A
S
S
Y
-
9
L

d
O
Y
N
d
d
3
d
)

128

procedure alters the class name from #4#ASS to #ASM (so

that it does not call itself) and then searches for a

class instance with the following structure:

[asm ASSIGN <first argument? TO

<second argument >] (4.13)

Oiagram 15 shows that TC- 4ASS-ASSIGN is the class

instance which matches this new structure. It analyses

the arguments and if successful, makes the necessary

assertions. If the statement cannot be analysed fully

or the particular class instance is not known then

TC-ASSERT- #ASS acts as a safety net. The following

assertion, which indicates that semantic analysis has

failed, is then generated:

[Hass ASSIGN <first argument> TO

<second argument> asl] (4.14)

This example illustrates how implementation and

FAPD differ slightly. Whereas FAPD (see section 3.3.1)

states that class instances are represented by, for

example:

[Hass ASSIGN <first argument> TO

<second argument> i (4.15)

[#ass INITIALISE <first argument> TO

A <second argument>] (4.16)

for the reasons outlined above, these are represented

within the system as:

[#kasm ASSIGN <first argument> TO

<second argument>] (4.17)

[#ASM INITIALISE <first argument> TO

<second argument> il (4.18)

129

There are three different forms of MICRO-PLANNER

theorems. However the requirements of the system mean

that only two of these forms need to be used. These

are consequent and antecedent theorems. So far the

discussion has concentrated on consequent theorems

(indicated by the definition THCONSE on the second line

of each theorem). Whenever a search is made through a

set of consequent theorems, that search is terminated

as soon as a theorem succeeds. Conversely, whenever

antecedent theorems (denoted by the definition THANTE)

are called by pattern, all theorems are tested for a

pattern match regardless of whether any have already

succeeded.

Let us now consider how these different attributes

can be used within the system. when a design statement

is analysed the set of class instances is searched for a

particular instance. In this respect consequent theorems

provide an ideal method for representing the majority of

class instances known to the semantic analyser. For

every assertion used to represent a piece of code or a

comment, the code generator has a theorem which prints

the assertion in a readable form. For this reason

consequent theorems are also used as the basis for code

generation.

As soon as a design statement has been analysed, the

results (in the form of one or more assertions) are passed

on to the routines for generating comments. Comments

are noted by class instances whose structure matches the

assertions produced by semantic analysis. However

because a result may provide several implications, the

130

search must continue through all the appropriate class

instances. For this reason any class instances used for

generating comments are represented by MICRO-PLANNER

antecedent theorems.

Section 3.3.3 defined an intermediary assertion to

be an assertion which aids semantic analysis or the

generation of comments. These assertions are often

derived as incidental to the process of analysing a

statement or phrase. This is a similar technique to

that used to generate any comments and hence any inter-

mediary assertions formed by the semantic analyser are

also made by MICRO-PLANNER antecedent theorems.

This concludes a discussion of FAPD and its imple-

mentation. The next two chapters give details of the

results obtained from the operation of DACE. The final

chapter uses these results to draw some conclusions

concerning both FAPD and its implementation.

131

5. RESULTS FROM ANALYSING PROGRAM DESIGNS

This chapter discusses the results obtained from

applying DACE to eleven program designs, carefully chosen

so as to illustrate the scope of DACE. The first seven

of these represent examples which DACE is able to analyse.

The eighth contains statements which are beyond the scope

of FAPD and consequently have been only partially analysed

by DACE. The last three examples represent those designs

which cannot be analysed because they do not conform to

our definition of a program design. Appendix D contains

the results from analysing a further 24 examples.

The examples which have been used to test FAPD and

the system have been derived from various sources.

Examples 1, 2, 3, 5, 6 and 9 were taken from problems

given to computer science students. Examples 4, 7 and

10 were derived by the author and examples 8 and ll were

taken from the literature. Some examples have been

modified slightly in order to conform to the requirements

of the system. For example, the string «x has been

inserted to clearly distinguish between consecutive state-

ments and the loop structures specified in examples 8 and

11 have been altered from the PASCAL to the ALGOL 68C

format. Generally speaking, the examples discussed in

this chapter have been chosen because they provide a wide

Tanging examination of the scope of DACE. The format of

some results has been modified slightly in order to

accommodate the different page size required for this

report.

Lo2

Sel Example 1

The program design shown in diagram 16 has been

produced to meet the following problem specification?

input two integer values and output the larger value.

If the values are equal then a message indicating

this should be printed together with the value.

The solution to this problem is important since it

involves the use of an elementary programming technique,

namely the nested conditional. Since the program design

for this problem is relatively simple, it allows us to

consider the complete process followed by DACE without

having to refer to those processes responsible for

analysing more complex aspects of a design.

For the sake of clarity, previous chapters have

often shown results in a modified form. Consequently,

Appendix A has been included to illustrate the actual

results produced for this particular example by the

routines for pre-semantic analysis, semantic analysis

and generation of comments.

Diagram 16 shows the format of the results produced

by the code generator. This format always follows a

similar pattern with the user's design being followed by

a coded version of the design together with any comments.

The line numbers within the design (ie DS1 to 0S14) have

not been produced by the system but are inserted in all

the examples given in this chapter so that the discussion

can refer to particular statements. The program design

printed in this results section is not necessarily in the

same format as that typed in by the user since the code

generator re-prints it with consecutive statements on

133

The design is

(DS1) INPUT
(ps2) IFA
(DS3) THEN
(DS4)
(DSS) ELSE
(DS6)
(DS7)
(pss)
(DS9)
(DS10)
(DS11i)
(DS12) FI

as follows :-

A AND B
IS LARGER THAN B

SET ANSWER TO A

ASSICN B 10 ANSWER
IF A IS FQUAL TO B
THEN

PRINT # SUITABLE MESSAGE #
x

(DS13) OUTPUT ANSWER
(DS14) xe

A coded form

0 ‘BEGIN

1

2

3
4
S

6

7
8

a
10 ‘END

of the design is:-

“INT ANSWER, By Ai
READ (A,B)
EE A> B
“THEN ANSWER := A
‘ELSE ANSWER BG

oe A= 8
‘THEN PRINT ("SUITABLE MESSAGE")
tex

es
PRINT (ANSWER)

Diagram 16

Results From Analysing a Program Desiaqn Which Finds

the Larger of Two Values

134

different lines and any loops and conditionals suitably

indented. Because the coded version is also pretty

printed in a similar manner, adopting this approach makes

it easier for the user to see the correspondence between

the two forms.

All programs produced by DACE adopt a similar format.

They are numbered, starting at line 0, and the opening

lines always declare all integer variables, boolean

variables and any array used in the design. Consequently,

OACE does not have the ability to declare variables

locally. The program is printed using upper case

characters and any reserved words are preceded by a single

quotation marke Since analysis of this example did not

produce any comments, a discussion of these is deferred

until a later example.

The syntax analysis of this example was successful

which means that DACE is capable of at least partially

analysing the design. During this stage DACE has

successfully used the grammar of a program design to

determine that A has been used throughout as a variable

name and not as the indefinite article which is its more

common occurrencee The syntax tree has then been

successfully amended and the words AND, THAN and TO,

which are used in lines (DS1), (DS2) and (087)

respectively, have all been discarded because they are

superfluous to semantic analysis. In this example IS

could also have been eliminated from lines (082) and

(087) since the appropriate boolean operator can be

derived from knowing the meanings of LARGER and EQUAL

However, if the word IS was to be ignored in a similar

135

fashion to AND, then the meaning of the following state-

ment could not be derived:

IF A IS POSITIVE

THEN one or more design statements Fie (S00)

This is because the meaning of the phrase A IS POSITIVE

would be represented by a list similar to (A POSITIVE).

In the following statement:

IF A AND POSITIVE ARE GREATER THAN O

THEN one or more design statements FI (5.2)

the meaning of A AND POSITIVE is also represented by an

identical list and hence it would have been impossible to

differentiate between the two phrases.

The top level of the amended tree will show that the

design is comprised of three main items which are the read

design statement in line (DS1), the conditional in lines

(052) to (0512) inclusive and an output design statement

in line (0S13). The way in which these items are

processed is shown in diagram 17 which contains the top-

level function of the semantic analyser written in an

ALGOL=-like notation. This shows how the design is

analysed from top to bottom and how DACE can analyse the

design only if it has three class instances which corres-

pond to the three structures in the amended tree. Once

the appropriate class instance has been found and the

meaning of a statement or construct has been derived, this

meaning must then be considered within the overall context

of the design. Diagram 17 shows that the meaning of a

statement which is not contained within either a loop or

a conditional is derived from class instances with the

following structure:

136

TREE :> amended syntax tree produced by pre-semantic
analysis

all the structures in TREE
considered

have not been

WHTLE

13

NEXT := next structure in TREE which has not
been considered

IF there is a class instance corresponding to NEXT

RESULTS := list of one or more assertion names
produced by calling this class
instance

WHILE all the assertion names in RESULTS have
not been considered

bo NEXT-ASSERTTON := next assertion name in
RESULTS not yet considered

IF there is a class instance
corresnonding to :
[PESIGN ARG <value of NEXT-

ASSERTION>]
THEN

TEMP := List of one or more
assertion names vroduced by

calling this class instance
amend RESULTS by replacing NEYT-

ASSERTION with TEMP

NEMT-ASSERTION := first assertion
name in the list called TEMP

fy

look for any implications of
incornorating “T-ASSERTION into
the overall design

}

NEXT is a structure which DACE cannot
recoanise c

RESULTS := list of one or more names of
default assertions

10

oe

ANSWER := list of assertion names produced so
far from the analysis of TREE

op

¢ a coded version of TREE is now renresented by those
assertions whose names comprise the list ANSWER c¢

Diagram 17

The Top-Level Function in the Semantic Analyser

137

[DESIGN ARG <assertion names>] (5.3)

The function for analysing statements in a loopbody

is essentially similar to that shown in diagram 17.

However instead of considering the meaning of a statement

within the context of the overall design it considers the

meaning within the context of a loop by looking for class

instances of the form:

[LooPsoDY ARG <assertion names>

< +#L00P assertion name> | (5.4)

rather than (5.3). Similarly it will then look for any

implications of incorporating the results into the loop

rather than the overall context of the program design.

The results in diagram 16 show that each statement in

the design can be implemented using a single statement in

the target language. However, DACE is able to determine

that the meaning of a statement such as:

FINO THE TOTAL OF THE VALUES OF THE ARRAY (5.5)

is described by more than one ALGOL 68C statement.

Consequently the inner loop in diagram 17 is used to

consider each of these in turn within the overall context

of the design.

Now that these general points about DACE have been

discussed, let us conclude the discussion of this example

by considering the depth of analysis which it achieved in

producing the results of diagram 16. The information

required to do this has been derived from the following

four sources:

a) DACE's vocabulary which at the time of writing

consists of 110 words;

b) the grammar of a program design:

138

c) the semantic definitions of all non-terminals in the

grammar; and

d) class instances. At the time of writing, the

semantic analysis is based on 128 class instances.

Any comments are generated by using the 26 class

instances which together with the code generator can

produce 18 different comments. Appendix C contains

a comprehensive list of all class instances imple-

mented in DACE.

The first three of these (ie a, b and c) are used

during pre-semantic analysis to determine how consecutive

words and phrases can be combined into meaningful units.

The vocabulary and grammar are also used to determine that

A is used as a variable name. Thus at the end of this

stage, DACE has determined that lines (0S4) and (0S6) will

both be implemented as assignment statements although it

is not yet able to note the differing effect that SET and

ASSIGN have on the treatment of the arguments A, B and

ANSWER. Recognising differences such as this is the

responsibility of the semantic analyser which uses two

class instances of the form:

[#RASM SET ARGUMENT <separator> ARGUMENT] (5.6)

[#ASM ASSIGN ARGUMENT <separator>

ARGUMENT] (S.7)

where the meanings of ARGUMENT and <Separator> are as

defined in Chapter 3. In addition to class instances

such as these, DACE also requires separate class instances

for different words or phrases with similar meanings.

Thus the meanings of lines (059) and (0S13)are derived

from the following two instances:

133

[# PRM PRINT ARGUMENT J (5.8)

LpRm OUTPUT ARGUMENT] (5.9)

As later examples will illustrate, the results shown

in diagram 16 do not illustrate clearly the degree of

detailed analysis that had to be undertaken by DACE. For

instance it had to determine that the variables A and 8

have been defined prior to their use in lines (052),

(084), (056) and (DS7), and in addition that the value

assigned to ANSWER in line (DS6) did not overwrite the

value assigned to the same variable in (DS4).

5Se2 Example 2

The program design shown in diagram 18 was produced

in reply to the following problem specification:

find the sum and average of a list of integer values.

The list is contained in a data file and is termi-

nated by a zero.

The analysis of this example will be discussed by

considering each line of the design in turn.

(0S1) has been recognised as a read design statement

with two arguments - FIRST VALUE and Xe DACE first of

all attempts to analyse the word VALUE without taking into

consideration the context in which it appears. Since

VALUE has not been analysed prior to the current line, it

is assumed that it is used in this line as a variable.

Hence at this stage, the analysis of VALUE is identical to

its analysis of the following statement:

SET VALUE TO 3 (5.10)

The phrase FIRST VALUE is then considered. In this

example because VALUE has been analysed as a single

140

The design

(DS1)
(DS2)
(DS3)
(DS4)
(DSS)
(DS6)
(DS7)
(DSB)
(DS?)

(DS10)
(ps11)

is as follows :-

GET FIRST VALUE INTO X ##
INITIALISE SUM TO O AND I TO 1
WHILE X IS NOT EQUAL TO oO
DO

ADD THIS VALUE TO SUM SO FAR #*
INCREMENT [4#
GET NEXT VALUE

OD

DIVIDE THE SUM OF VALUES
BY THE NUMBER OF VALUES #*

OUTPUT THE RESULT
Hee

A coded form of the design is:-

0 ‘BEGIN INT 1, SUM, Xi
a READ (X) i

2 SUM := 0;

3 1:2 i;
4a ‘WHILE X /= 0

3 ‘DO SUM SUM + Xi
6 T:= T+ 3

a READ (X)

8 ‘OD i

9 PRINT (SUM % I)
10 ‘END

Diagram 18

Results From Analysing a Program Design Which
Finds the Average of a List of Values

141

variable, the adjective FIRST is ignored. However given

the following pair of statements:

INPUT TWO VALUES (Som)

MULTIPLY THE FIRST VALUE BY 36 (5.12)

DACE would recognise that in (5.12) the use of FIRST is

significant and would use it to distinguish between the

two variables in (5.11). The second argument of (0S1) -

X - is an unrecognised word and syntax analysis has shown

that in this example it has been used as a variable.

After analysing these two arguments their meanings are

represented by the following three assertions:

[#var VALUE vj (5.13)

[#vaR x v2] (5.24)

[4FREFV VALUE = (V1) J (5.15)

the last of which is an intermediary assertion indicating

that VALUE is used to refer to a variable of the same

name. The meanings of FIRST VALUE and X are then

considered together, within the context of a read design

statement and in so doing it follows that in this context,

VALUE is used not as a variable but as a reference to the

contents of Xe Consequently assertion (5.13) is erased

and the intermediary assertion (5.15) is amended to:

(HREFV vALUE (v2)] (5.16)

The meaning of the current line is then denoted by the

following representation of an ALGOL 68C read statement:

fH#ReaD (v2) asi) (3.27)

(0S2) is a design statement which illustrates one of

the weaknesses of pre-semantic analysis. The amended

syntax tree of this statement is comprised of the

following two structures:

142

[#tass INITIALISE ((4#VAR(SUM))) TO

((#CONST(0)) (#VAR(T)))] (5.18)

[#ass NILL NILL TO ((#CONST(1)))] (5.39)

However in order to convey the correct meaning the

amended syntax tree should contain the following:

[#kaSS INITIALISE ((#VAR(SUM))) TO

((4#CONST(0)))] (5.20)

[HASS INITIALISE ((#VAR(T))) TO

((##CONST(1)))] (5-21)

The vrincipal reason why (5.29) and (5.21) are not

produced is that DACE amends the syntax tree in a single

mass. Consequently the decision as to whether an

argument appears on the left hand or right hand side of an

assignment statement is often unclear at this stage.

For instance, because words such as BOTH and RESPECTIVELY

are effectively ignored in the following two statements,

the use of COUNTER3 is ambiguous until it is considered

within the overall context of the statement:

INITIALISE COUNTER1 AND COUNTER2 TO

1 AND COUNTER3 RESPECTIVELY (5.22)

INITTALISE COUNTER1 AND COUNTER2 BOTH

TO 1 AND COUNTER3 TO 2 (S523)

In statement (5.22) the value of COUNTER3 is being

used, viz:

COUNTER1:= 1; COUNTER2 := COUNTER3; (5.24)

whereas in (5.23), COUNTER3 is being assigned a value,

VEZ

 COUNTER1:= 13; COUNTER2 :=13; COUNTER3 (5.25)

In order to produce structures (5.29) and (5.21) the

143

results would need to be revised at the end of statement

(NS2), that is DACE would need to undertake more than one

pass of a syntax tree (c.f. single and multiple pass

compilers). However if DACE was extended to do this

then syntax and semantics may have to be integrated as

well. For example, given the statement:

SET A AND B TQ C AND /P AND E TO 1 (5.26)

it is unclear whether this means:

Ai SB ee Cs Hits 25 ly (5.27) ox,

al

Aoeme Ce. Bom De 1; (5.28)

A decision between these two alternatives could be based

on, for instance, whether or not the variable D had been

assigned a value prior to the current line. Tf it had,

but that value had not been used, then statement (5.28)

would be chosen instead of (5.27). However this approach

is obviously based on a dubious assumption. Since the

analysis of statements such as (DS2) and (5.26) is

complex, an approach based on this method would require

considerable research for its implementation and

evaluation.

However, since the amended syntax trees shown in

(5.18) and (5.19) are produced, DACE has two class

instances which recognise that these particular structures

actually mean the same as (5.29) and (5.21). The

arguments SUM, 9, IT and 1 are all considered in a similar

manner to the arguments of the previous read desian

statement. That is, a first attempt is made at their

implementation which may be subsequently revised in the

144

light of more information. Hence a first attempt to

analyse SUM assumes it is a variable name which in this

case happens to be correct. However, if a program

design specifies that the values held in the elements of

an array are to be added together and then the following

statement is met:

OUTPUT THE SUM (529)

DACE will revise the initial assumption and will determine

correctly that SUM refers to the previous arithmetic

operation rather than a variable name.

The word TO in statements (DS2) and (053) is analysed

differently and hence two definitions of this word must be

incorporated into the dictionary. Because (052) is an

assignment design statement which starts with INITIALISE,

TO has been analysed as a separator (see section 3.22.3).

This form of analysis means that the semantic analyser is

able to determine which of the arguments SUM, 0, I and 1

appear on the left hand side and right hand side of an

assignment statement. Consequently whenever TO is used

as a separator its role is significant and therefore

cannot be ignored. However the meaning of (DS3) can

still be derived even when IS and TO are ignored. Hence

according to FAPD the use of TO in (053) is found to be

insignificant and as a result it is discarded before the

semantic analyser is entered.

(0S5) is a statement which DACE has recognised will

be implemented as an arithmetic expression. Again the

arguments are considered individually with VALUE being

the first to receive attention. In order to be consistent

DACE must be able to detect the previous analysis of VALUE.

145

This is achieved by referring to the intermediary

assertion (5.16) which shows that VALUE has previously

been used to refer to X. Therefore the assumption is

made that VALUE retains the same role in statement (OSS).

Since the words SU and FAR have not been met

previously DACE must consider whether they could be user

defined variable names. However since they do not comply

with the grammar of a program design they are redefined as

words that can be ignored and hence they are discarded

before semantic analysis is initiated. After success-—

fully forming the ALGOL 68C arithmetic expression corres—

ponding to the current line, it must be incorporated into

an assignment statement. Because (055) is within a loop,

DACE recognises that this describes a summation and there-

fore requires the following form of an assignment statement:

SUM := SUM + X (5.30)

In order to do this DACE considers if there are any

arithmetic expressions of the following forms which will

be executed on each loop iteration:

sum + variable name> (5.31) or

TOTAL + <variable name> (5.32)

Hence if the statement had been, say:

ADD THIS WALUE TO A (S205)

then DACE would have created the following statement:

TORO] : X +A (5.34)

where IDRO1l is a variable name generated by the system.

(056) is assumed to mean:

INCREMENT Te Yeto (5.35)

Since this appears within the loopbody, it is assumed by

DACE that I is a loopcounter which is used to define the

146

number of times statements (0S5) and (DS7) have been

executed.

(057) is very similar to (0S1) except that the former

does not specify the name of the variable into which the

NEXT VALUE should be assigned. Since VALUE has been used

previously in connection with the variable X then the NEXT

VALUE is obtained by using a READ statement and assigning

the inputted value to the same variable X.

(0S9) shows how SUM has been used in a different

manner to its use in previous statements. Previously,

SUM had been used as a noun but in the current statement

its meaning has been derived by considering it within the

context of the following phrase:

SUM OF VALUES (S550)

Its use in this context implies that an arithmetic

operation is to be performed. Consequently OACE attempts

to form an arithmetic expression in the same way that it

would for a statement such as:

(FIND THE) SUM OF A AND B (5237)

Analysis of (5.36) indicates that a single variable,

namely X, is being summed and that this cannot be

represented by an arithmetic expression similar to the

one considered for example in (5.33). As a result

previous lines are considered to see if they can provide

information which will facilitate the analysis. In

doing so it is found that the variable SUM has been used

previously to store the sum of consecutive values read

into X. Similarly in order to derive the meaning of

NUMBER OF VALUES, DACE looks back for any variables

147

incremented at the same time that a value was read into

X in the loopbody. Once I is found the appropriate

arithmetic expression can be formed and incorporated into

an assignment statement.

(0510) is a print statement with one argument -

RESULT. In a similar way to its analysis of SUM and

VALUE, DACE first attempts to analyse it as a variable

name. This meaning is rejected when it is considered

within the context of the print statement, and an alter-

native meaning is considered, namely that RESULT refers to

some previously defined value. However, because there is

no previous reference in the design to RESULT, then the

meaning of (0S10) is revised to:

PRINT THE RESULT (OF A PREVIOUS O ATION) (5.38)

Since the last operation was the arithmetic expression of

the previous line DACE assumes that the user intends the

result of this operation to be printed. If the results

of analysing (089) and (0510) were now printed, the code

generator would produce:

IOROL := SUM % I; (5.39)

PRINT (IORO1); (5.40)

where IDROl is a variable name generated by DACE. However

because the assignment statement has been generated by the

System and not specified by the user, DACE combines these

two statements into the single statement shown in line 9

of the coded version of the design.

The results of diagram 18 show that the methods used

by DACE are adequate for analysing this design. However

the following points should be mentioned in conclusion:

a) because VALUE has been used throughout to refer to a

148

b)

c)

single variable, DACE has not used the adjectives

FIRST, THIS and NEXT to help in the analysis of lines

(0S1), (0S5) and (0S7) respectively. Consequently

line (0S7) for instance would have produced a

similar result if it had been written:

GET A VALUE (5.41)

This is perfectly adequate for this example. How-

ever if VALUE had been used to refer to more than

one variable then DACE would have realised the

significance of an adjective much as FIRST and would

have included it in the analysis;

in order to derive the meaning of SUM OF VALUES and

NUMBER OF VALUES in line (DS9) reference had to be

made to previous lines in order to associate their

meaning with SUM and I respectively. The definition

of these variables is then assumed by DACE to take

the form shown in lines 5 and 6 of the coded version

and any other definitions that may have been given in

the program design are ignored;

the same representation is given to the meanings of

VALUE and VALUES ie (V2) where v2 is the assertion

name of the variable X, viz:

fevaR =x v2) (5-42)

Consequently if the loop had been followed by a

statement such as:

IF THE VALUES ARE EQUAL TO 5

THEN one or more design statements

FI (5.43)

then DACE would have considered this to mean:

149

5.3

if iXe= $

THEN meaning of the design statements

FI (5.44)

which may not have been what the user intended. To

remedy this situation, one possibility is to represent

the meaning of VALUES by a list of the form:

(V2 2 wren 0 VD) (5.45)

where V2 is the name of assertion (5.32) above.

When the meaning of VALUES (ie (5.45)) is considered

within the context of the boolean expression in

statement (5.43) it is apparent that the user wishes

to test whether all the values held by X are equal

ta 15 By using (5.45) to represent VALUES it is

evident that the position of (5.43) is in error and

that it should have been incorporated into the

loopbody.

Example 3

Let us now consider a set of results which show that

during analysis of a program design, an error has been

detected which has led to a comment being generated about

the coded version of the design. Comments are also

generated:

a)

b)

c)

dg)

to show the user that the results are inefficient

(see Example 4);

to show an omission (see comment 5 in Example 5);

to indicate that the design cannot be analysed in

full (see comment 3 in Example S); and/or

to emphasise the relationship between the program

design and the coded version of the design(see

comment 6 in Example 6).

150

Diagram 19 contains a program design which is based

on the following problem specification:

design a program which inputs three values

representing a measurement in yards, feet and

inches. Convert these values into a single

measurement in inches and output the result.

Before discussing the results, let us consider the

general format of the comments produced by DACE. Any

comments are printed after the coded version of the

design and are numbered for ease of identification. The

majority of them also refer the user to the appropriate

line number(s) in the code. The same comment always

produces similar text, hence if the same error as that

shown in diagram 19 is detected in another example, DACE

will produce the same wording apart from different line

numbers and variable name. Whenever an assertion

representing a comment is generated it is linked to the

results of semantic analysis by an assertion name and the

appropriate line numbers are detected later during code

generation. As each line of the program is printed, the

code generator detects whether any comments have been

assigned to the line. If so, then the assertion name is

replaced with the current line number and the comment

name is added to a list of any previous comments. Thus

the position of a comment in the list is defined by its

order of occurrence. Various lines in the program

design are now discussed in order to show how the results

have been produced.

(0S1) is recognised as a statement that will be

implemented as a READ statement. From the results of

151

The design is as follows :-

(DS1) INPUT THREE NUMBERS #*

(DS2) MULTIPLY THE FIRST NUMBER BY 36
AND ASSIGN THE RESULT TO INCHES ##

(DS3) MULTIPLY THE SECOND NUMBER BY 12
AND ASSIGN THE RESULT TO INCHES ##

(DS4) ADD THE LAST NUMBER TO THE VALUE OF INCHES
SO FAR AND OUTPUT THE RESULT

(DSS) HEH

A coded form of the design is:—-

° ‘BEGIN “INT IDROS, IDRO2, IDRO1, INCHES
1 READ (IDROS, IDRO2, IDRO1) ;
2 INCHES := IDROS X 36;
Sg INCHES := IDRO2 X 12;
4 PRINT (IORO1 + INCHES)
Ss “END

The following are some comments on the above:—

1 Re Lines 2 and 3: The value assigned
to the variable< INCHES >

has been overwritten without being used

Diagram 19

Results From Analysing a Program Design Which

Converts Yards, Feet and Inches Into Inches

152

pre-semantic analysis the first item that the semantic

analyser attempts to analyse is NUMBERS. Since this has

not been analysed prior to the current line, DACE considers

it to mean a list of integer variables, the length of

which is undefined. How can such a list be suitably

represented? Since Dace's analysis of phrases such as

ONE NUMBER, TWO VALUES etc. is confined to those which

contain words (such as ONE and TWO) whose equivalent

numerical value is in the range 1 to 10, a list of

variables of undefined length can be represented by a

list which is greater than ten elements in length.

Consequently a list of undefined length is represented by;

(vl v2 west.) (5.46)

where each element is the assertion name of a variable,

viz:

(4#evaR ontLtL vl J (5.47)

(EVAR Nike v2 J (5.48)

etc. :

[#vaR NILL vil J (5.49)

After considering the phrase THREE NUMBERS, this list is

shortened to (Vl V2 V3) and all the variables represented

by the assertion names V4 to V1ll are discarded.

From the coded version of the design it can be seen

that DACE has generated the names IORO1, IORO2 and IORO3

to denote the variables relating to THREE NUMBERS.

Generally speaking, DACE produces system defined variable

names by using a special LISP function which it

initialises to IDROO. Because this LISP function

restricts all generated names to a length of five

characters, any names generated by DACE must lie within

SS,

the rage IORO1, IDRO2 to IORSS.

(082), (053) and (054) are all similar since they

actually comprise two design statements joined by the

conjunction AND. Pre-semantic analysis has detected

this and has divided each of them into two parts.

Consequently the semantic analyser has considered each

part in turn before combining the results into a single

statement in the same way that the results of (DS9) and

(0S10) were combined in Example 2.

These three lines also illustrate the point made in

the previous section about the significance of adjectives.

In this example FIRST, SECOND and LAST are all used to

define which of the THREE NUMBERS is being referred to.

Both the previous and current examples also contain words

and phrases, the meaning of which can only be derived by

considering previous lines in the program design. In

this example DACE must consider the wider context in order

to derive the meaning of RESULT in (052), (DS3) and (054).

To achieve this, the semantic analyser maintains a list of

those variable names relating to the last three arithmetic

expressions mentioned prior to the current line. By

doing so the meaning of a word such as RESULT, which is

often used in program designs, can be derived without

having to undertake an expensive search of preceding lines

each time it is used. In Example 2 the meanings of

phrases such as SUM OF VALUES and NUMBER OF VALUES were

also derived in a similar manner from notes made by the

semantic analyser when the following statements were

formed in the loopbody:

SUM := SUM + X (5-59)

ieee ted (55)54,)

Generally speaking notes are made about those variables

which are defined implicitly eq NUMRER OF VALUES in

Example 2, rather than through an explicit definition eg

INCREMENT I in Example 2.

The principal feature of this example is the way in

which the comment relating to the variable INCHES has

arisen. An obvious way of doing this would be to watch

for consecutive pairs of statements, which assign values

to the same variable. Whilst this approach would be

adequate for this example DACE uses a more general method

which can detect assignments to the same variable even

when several statements senarate the assianments. The

basis of this method is that any variables defined in a

read or assignment statement should have these values

used before the variables are redefined. For instance in

the current example DACE notices from (DS1) that the first

value read in is subsequently used in (NDS2) and thus any

subsequent modification of FIRST NUMBER would be accented.

However since the variable INCHES is assigned a value in

(DS2) and then again in (NS3) before the first value has

been used, a suitable comment is generated.

The method outlined above is complicated when we

come to consider loops and conditionals. For instance

consider the use of the variable RESULT in the following

fragment of a program:

RESULT := a value (Se52:)

IF condition is true (5.53)

THEN (5.54)

RESULT := a value (5.55)

FI; (5.56)

RESULT := a value C5657)

DACE does not consider that the assignment in (5.55)

overwrites the assignment in (5.52) since the former is

contained within a conditional construct and thus the

possible execution of (5.55) will be determined at run-

-time. In this respect statements (5.52) and (5.55)

represent alternative values of RESULT. However when

statement (5.57) is analysed DACE will make two comments

indicating that both the previous values have been

overwritten. To accomplish this DACE has noted that

statement (5.55) is contained within a conditional whereas

statements (5.52) and (5.57) are not. Once it is noted

that statement (5.57) is not contained in either a loop

or a conditional it is evident that the execution of this

statement is unconditional. Consequently the execution

of this statement must effectively overwrite any values

assigned to the variable RESULT in previous lines. The

consequences of this also need to be considered in the

following program fragment:

RESULT := a value; (5.58)

IF condition is true (5.59)

THEN (5.69)

156

variable name := RESULT (S268)

FI; (5.62)

RESULT := a value (5.63)

In this situation DACE gives the user the benefit of the

doubt and even though the conditional may not be entered

it is assumed the value assigned to RESULT has been used

in line (5.61) before the variable RESULT has been

redefined in (5.63). Consequently DACE would not

generate a comment for a section of code similar to this.

From the discussion of this example four conclusions

can be drawn:

a) firstly it has been emphasised how DACE often makes

a first attempt at analysis which may be subsequently

revised as the context widens. This approach is

similar to that adopted by Sussman [Sussman 1975]

for his automatic programming system — HACKER;

as semantic analysis proceeds, DACE makes assertions,

the form of which is unique and predefined, to

denote those variable names which it considers may be

referred to by words or phrases rather than by name.

For instance, a list of variable names is maintained

so that whenever RESULT is met in a similar context

to that found in lines (NS2), (NS3) or (DS4) the

appropriate variable name can be derived. An

alternative approach would be to search through

preceding lines in an attempt to determine the

meaning of such words and phrases. This approach

157

c)

would be more difficult to implement since the

first attempt to derive the meaning of a word such as

RESULT ignores the context in which it is used.

Hence at this stage of the analysis it cannot detect

easily those results obtained from analysing

preceding lines. A search could be made only when

the entire line is considered within the overall

context of the design. Furthermore, the results may

have to be modified when considered in this wider

context;

although words similar to RESULT are first considered

in isolation, their true meaning can only be derived

after considering them in a wider context. For

instance in (DS4) it is only after considering

RESULT within the context of the statement OUTPUT

THE RESULT that it is realised that the user wishes

to access some previously defined value. In

contrast, in the following statement the context of

RESULT indicates that RESULT is being used as a

variable name:

SET RESULT TO 0 (5.64)

constructs such as the loop and conditional

complicate the process of determining whether a

variable has been incorrectly overwritten before it

is used. Because these constructs alter the top-

-down execution of consecutive lines the implications

of forming an assignment statement say, can only be

158

determined after taking into account whether or not

that statement has been found in a loop or a

conditional statement.

5.4 Example 4

Diagram 20 shows a program design which has been

produced to solve the following problem:

Fibonacci numbers are defined as:

yy 25535 5578, IS. sete.

OF Unia = UN + Un aa where U; = Ua = 1. Design

a program to generate the first fifteen numbers

of this series.

Let us consider the program design in some detail.

(DS2) is comprised of an assignment and a print design

statement. The first of these constructs is similar to

that discussed in Chapter 3. The word BOTH is

unrecognised and consequently an attempt is made to

analyse it as a variable name. However since LASTRESULT

was analysed as a variable name for similar reasons and

the grammar specifies that two variable names cannot be

used consecutively, it is concluded that BOTH has little

significance and thus can be discarded. After analysis

of line (DS2) has been completed, DACE has determined that

RESULT appears on the left hand side of an assignment

statement and consequently it is being used as a variable

name. This is in contrast to its use in the previous

two examples where it was used to refer to the result of

a previous operation. Consequently when RESULT is found

159

The design is as follows :—

(DS1) INITIALISE J TO 2 HE
(ps2) SET RESULT AND LASTRESUI.T BOTH TO 1

AND PRINT THEIR VALUES
(DS3) WHILE J IS LESS THAN 15
(DS4) DO
(ps5) OUTPUT THE TOTAL OF RESULT AND LASTRESULT

AND ASSIGN IT TQ TEMP #%
(DS6) SET LASTRESULT 10 RESULT

AND RESULT 710 THE VALUE OF TEMP #4
(DS7) INCREMENT J
(DSB) OD
(DS9)
(DS10) #4

& coded form of the design is:-

oO ‘BEGIN “INT TEMP, LASTRESULT, RESULT, Ji
1 a 2}

2 RESULT i
3 LASTRESULT := 1:
4 PRINT (RESULT, LASTRESULT) ;
3 ‘WHILE Woe eis
6 “DO PRINT (RESULT + LASTRESULT? ;
7 FeMP ULT 4+ LASTRESULT;
8 LASTRESULT : + RESULT;
2 RESULT TEMP;
10 Jrs J
it “OD
12 ‘END

The following are some comments on the above: —

1 Re Lines 6 and 7 : The expression
< RESULT + LASTRESUILT Shas been

unnecessarily duplicated Only one is needed

Diagram 29

Results From Analysing a Program Nesiqn Which

Generates the Fibonacci Series ee eee ee Se Ree

160

in (DS6), DACE assumes that reference is being made to

the same variable.

The analysis of the print design statement is

important for the way in which the phrase THEIR VALUES has

been analysed. Research into natural language

understanding has shown that understanding pronominal

references of this sort is very difficult. The method

used by DACE is to keep a note of the last subject(s)

mentioned in the current block. For instance when THEIR

VALUES is analysed, DACE recognises that the variable

RESULT and LASTRESULT were both mentioned in the current

line and that J was the subject of the preceding line.

Since the meaning of THEIR VALUES must be plural, RESULT

and LASTRESULT are chosen instead of J.

(DS5) shows how this technique has been used again to

determine the meaning of IT. After forming the PRINT

statement in line 6, the current subject and the one that

IT is assumed to refer to, is then taken as the arithmetic

expression contained in this statement. DACE recognises

that the addition of RESULT and LASTRESULT has been

carried out twice without either variable being assiogned

a new value. Consequently, a comment to this effect is

made, the text of which is sufficiently general to make

the user reconsider how the coded version might be

improved. Thus the following implementation would be

more efficient:

TEMP := RESULT + LASTRESULT; (5-65)

PRINT (TEMP); (5.66)

161

To make this comment a technique has been used which is

similar to that described in the previous section for

detecting that the value of a variable has been over-

-written before it has been used. Whenever an arithmetic

expression is formed NACE makes a note of all the variable

names used in that expression. If that expression is

then subsequently used without any of the constituent

variables being redefined, then an identical value

ensues. In this case, DACE would generate an appropriate

comment regardless of the senaration between the two

invocations of the expression.

The principal features of this set of results are:

a) that DACE has analysed RESULT correctly as a variable

name. This is in direct contrast to its use in

previous examples;

b) that DACE has detected a statement in line (ps5)

which is computationally inefficient;

¢) the way in which the meanings of THEIR VALUES and

IT have been derived.

Considering these three features, the derivation of the

meanings of pronominal references presents the greatest

difficulty. To derive their meaning, the ideal situation

would be if DACE made use of the followina:

i) a knowledge of the results obtained from analysing

Previous lines; and

ii) a knowledge of the problem specification.

For example, if we consider the phrase THETR VALUES in

162

line (0S2) we know from (i) that this phrase must: refer

to a combination ofJ, RESULT and LASTRESULT and further-

more that RESULT and LAST RESULT are mentioned within the

same line. However it is from (ii) that we derive most

of the significant information. From the problem speci-

fication we know that the Fibonacci series entails adding

successive terms. Since RESULT and LASTRESULT denote

the first two (and other) consecutive terms we can deduce

that it is THEIR VALUES which are to be printed. In

terms of the results displayed in diagram 20, OACE has

used approach (i) above, but not (ii). Chapter 3 has

already stated that a knowledge of the problem specifi-

cation is outside the bounds of FAPD and other consequences

of this are discussed in section 5.8.

5.5 Example 5

So far all the examples discussed in this chapter

have been analysed fully. However this fifth example

illustrates how DACE may sometimes only Partially analyse

a design. A partial analysis will result in a coded

version of the design together with those design state-

ments and/or phrases which DACE cannot analyse. The

example shown in diagram 21 contains an array, which in

terms of the constructs known to DACE, represents the

most complicated, and therefore the most difficult,

programming concept with which it can deal. The program

design in diagram 21 is intended to solve the following

problem:

a data file comprises eleven integer values.

Determine how many of the first ten values are equal

163

The design is as follows :-

(ps1) INPUT TEN NUMBFRS INTO AN ARRAY ##
(DS2) INITIALISE A COUNTER TO O
(DS3) WHILE NOT END
(DS4) DO
(DSS)
(DS6) IF NEXT ELEMENT IS EQUAL TO xX
(DS7) THEN
(DS8) INCREMENT THE COUNTER
(DS9) FL
(DS10)
(pSii) OD
(DS12)

(DS13) ###

A coded form of the design is:-

‘BEGIN “INT IDRO1, X, COUNTER;
C1:10] “INT ARROL;
IDRO1 := 1;
‘WHILE IDRO1 <= 10
“DO READ (ARROICIDRO1I) ;

IDRO1 := IDROL + 1
“ERY 7
COUNTER := 0;
‘WHILE ‘NOT < END >
‘DG oe ARROLC< UNDEFINED >] = X

‘THEN COUNTER := COUNTER + 1
he

‘OD
“END

The following are some comments on the above:—

1

2

Re line 1 : An array < ARROL > of 10 elements has
been declared
Re lines 2 to 6: These lines have been generated
in order to read
values into the elements of the array < ARRO1 >
Re line 8 : The design gives insufficient
detail to analyse <END>
Re line 9 : The design gives insufficient
detail to analyse <UNDEFINED>
Re line 9: The variable X has been used
but it has not bean initialisad
Re line 10 : The value assigned to the
variable < COUNTER > has never been used
The design does not contain any output statements
Before the coded version could be run one or more
PRINT statements need to be inserted

Diagram 21

Results From Analysing a Program Design Which

Searches an Array

164

to the eleventh. An array should be used to store

the first ten values and an integer variable for

the eleventh.

Let us consider the program design in some detail.

(0S1) contains the first mention of an array. DACE can

only handle a program design which uses a single array and

consequently whenever the user refers to an array or an

array element in a program design it is assumed that

reference is being made to the same array. OACE could be

extended to deal with program designs containing more than

one array, however this would create problems of ambiguity

unless the user specified clearly the array being referred

to. To deal with such problems would require further

considerable research effort.

Since an array has not been mentioned prior to (051)

the following assertions are made in its representation:

[#aRRAY NILL (LBL) (UB1) al] (5.67)

[#lweB 1 cta1j (5.68)

(#upB oN uBl] (5.69)

where assertion (5.67) shows that the array has been given

the default name NILL. In the absence of any other informa

tion it is assumed that the size of the array will be

determined at the time of execution (see Example 6) and

hence the default values of the lower and upper bounds are

set to l and N respectively. However, once DACE considers

the two arguments TEN NUMBERS and ARRAY together we can see

from line 1 of the coded version that assertion (5.69) has

been changed and the value of the upper bound has been

revised to 10. The first of the comments illustrates how

OACE will always refer the user to this array declaration

165

and that the code generator has named the array ARROL

(c.f. IDRO1l for the integer variable). The results of

analysing line (0S1) are shown in lines 2 to 6 inclusive

of the coded version and the second comment has been

produced so that the user can identify easily the code

necessary for reading values into an array. Two other

array operations known to DACE and for which the ALGOL 68C

code can be given are:

a) finding the sum of the values held in the elements

of the array; and

b) the printing of these values.

(052) and (088) are statements which have used A and

THE as the indefinite and definite article respectively.

Lines 7 and 10 of the coded version show how these articles

have been ignored and COUNTER has been analysed as a

variable name.

(0S3) represents a statement which DACE can only

partially analyse. The third comment informs the user of

this fact and lines 8 and 9 of the code show how those

items which cannot be translated into the target language

are printed in angled brackets. The word END has the

same dictionary definition as COUNTER (and RESULT which

has been met in previous examples) and so DACE treats them

both in a similar fashion. At first DACE assumes that

ENO has been used as a variable name. However from its

position in the line (which is in direct contrast to the

position of COUNTER in (DS2)), it is recognised that the

user wishes to access some value. Consequently it

interrogates previous lines for evidence that a variable

called END has been assigned a value. Because no evidence

166

is found the assumption that END is a variable is revised

and it is left as a word which is too general to be analysed.

If END had been defined as a variable name then a comment

similar to that of comment 5 would have been produced.

Statement (DS6) has been only partially analysed

because of the failure to analyse NEXT ELEMENT. This

result is brought to the attention of the user in line 9

of the coded version and comment 4. The term UNDEFINED

in line 9 is a general term which DACE inserts into the

program code when it cannot be established definitely

that an item has been given a value, such as the array index

in this case. The fact that it has only partially

analysed this phrase can be attributed to two reasons.

Firstly, whenever an array is used in connection with a

loop DACE assumes the loop is used to access consecutive

array elements. Consequently during the scope of the

loop, statements of the following form are scanned for:

<variable name> := <variable name>

+ <constant> (5.70)

where <constant> has an integer value of 1 and the

<variable name> is used as the array index. However in

order to use a variable name for this purpose the assign-

ment (5-70) must not appear within a conditional statement

since it must be executed on each iteration of the loop.

This is necessary so that a variable such as COUNTER in

line (DS8) is not used. This emphasises again the

importance of considering statements within the context

in which they are found.

After analysing the loopbody, DACE has failed to find

a statement similar to (5.70) and so it reconsiders the

167

boolean expression at the start of the loop. If this

expression had given a more definite indication that the

loop was being used to access successive elements of the

array, then an assignment statement similar to that of

(5.70) would have been generated so that the array index

could have been inserted. The fact that the boolean

expression in line (DS3) did not give any indication that

the loop was being used to access successive elements of

the array is the second reason why this line has been

analysed only partially. The opposite case to that

found here is dealt with in Example 6. The fifth comment

also relates to (DS6) and in particular to the fact that

X is treated, and indeed can only be treated, as a variable

name. This may be contrasted with the analysis of a word

such as END, which may or may not be a variable name, the

actual decision depending upon the context in which it is

found.

The analysis of line (0S8) indicates that the variable

COUNTER is redundant in this program design. This is

brought to the attention of the user in comment 6. The

technique used to achieve this has been described previously

in Example 3. It is assumed that whenever a variable is

defined it will never be used throughout the remainder of

the program design. An assumption that DACE then tries

to disprove. For example when line (0S2) was analysed,

DACE noted that COUNTER was simply assigned a value and

thus only appeared on the left hand side of an assignment

statement. However as soon as the expression:

COUNTER + 1 ($671)

was formed as a result of analysing (058) it was noted

168

that COUNTER was now to be found on the right hand side of

an assignment statement. Despite this DACE is able to

determine from the single reference to COUNTER in line

(DS8) that COUNTER has no Significance in this program

design.

This method of noting the definition and possible

redefinition of variables is complicated by a loop

construct because it alters the top-down control flow of

the program. Reconsider for example the following loop

which DACE produced in the previous example:

WHILE J < 15 (5.72)

'oo PRINT (RESULT + LASTRESULT); (5.73)

TEMP := RESULT + LASTRESULT; (5.74)

LASTRESULT := RESULT; (54,75)

RESULT == TEMPS (5.76)

hs ae (5677)

‘op (5.78)

If DACE had disregarded the control structure of the loop

then it would have deduced incorrectly that the values

assigned to LASTRESULT, RESULT and J had never been used.

Consequently at the end of the loop DACE reconsiders the

statements higher in the loop in order to detect that the

values assigned to LASTRESULT and RESULT in lines (5.75)

and (5.76) have been used elsewhere, in this case in line

(5.73)and furthermore that the variable J has been used

in the boolean expression of line (5.72).

The final comment shows that DACE always expects a

Program design to include a statement which will be

analysed as a PRINT statement. Since DACE recognises

that a program design is intended to be implemented as a

169

Program, the only way that the results can be described

is by printing them. If DACE could analyse a design which

a user intended to implement as a procedure say, then no

print statements would be necessary since the results are

returned to the main body of the program. On the other

hand DACE does not require that a program design has an

input statement. Example 4 which calculates the

Fibonacci series illustrates that such a statement is not

a prerequisite of a meaningful program design.

Let us conclude this section by making two points

about the method used to deal with arrays:

a) DACE can only handle program designs which use a

single, one dimensional integer array. According

to the grammar of a program design there is no way

that a user can specify the bounds of the array.

Consequently it is assumed the lower bound is

always 1 and the upper bound is given a default

value of N (see Example 6) which may be revised in

the light of subsequent analysis. If a program

design does not contain a statement of this sort but

uses a loop construct to read values into the array,

then DACE does not derive the array bounds from

information contained in the loop. Instead DACE

assumes that in this situation the array bounds will

be determined by the value of the variable N at run-

time. It is felt that the user will derive the

greatest benefit from this approach, since the

results obtained from analysing the loop can now be

used (see Example 6) to show the user those factors

170

which have influenced the range of elements accessed

by the loop ;

b) generally speaking the policy which DACE adopts

towards analysing program designs which contain an

array is that all elements of the array should be

accessed. This reflects the common approach taken

to the processing of arrays. Hence the analysis is

concerned with operations on an entire array and

expects a loop, for example, to access all elements

in an array. The consequences of this are

illustrated in Example 6.

5.6 Example 6

Diagram 22 shows an example of a program design which

calculates the first N terms of the Fibonacci series where

the value of N is determined at the time of program

execution. The difference between this program design and

that of Example 4, which also calculated the Fibonacci

series, is that the current example stores the terms in an

array before printing them.

(0S1) illustrates that in order for DACE to declare

an array it does not necessarily have to meet the word ARRAY

in the program design. In this example the word ELEMENTS

has led to three array assertions being made which are

Similar to (5.67), (5.68) and (5.69) in the previous

section. However unlike the previous example, line 2 of

the coded version shows that the upper bound has not been

revised and therefore the default value of N has remained

throughout. Line 1 of the coded version illustrates how

DACE always expects the value of N to be read in and

alternative methods of assignment are not considered.

Ta

The desi

(DS1)
(DS2)
(DS3)
(DS4)

(pss)
(DS)
(DS7)

A coded form of the design

‘BEG

N
Q
O
u
s
p
U
M
e
K
O

“END

is gn

SET THE FIRST
WHILE NOT END
DO

as follows

TWO ELEMENTS
OF ARRAY

Tos?

SET THE CURRENT ELEMENT TO THE SUM OF
THE PREVIOUS TWO ELEMENTS

OD
OUTPUT THE ARRAY
HHH

is:

IN “INT IDRO2, IDRO1,N
READ (N)
C1:N] “INT ARROI:
ARROICLI] := i
ARROLC2I Li
IDRO2 := 33
‘WHILE IDRO2 <= N
‘DO ARROLCIDRO2Z] := ARROLCIDRO2 —- 13

+ ARROICIDRO2 —- 2];
IDRO2 := IDRO@ + 1

Soba

IDRO1 := 1i
‘WHILE IDROL <= N
‘po PRINT (ARROLCIDRO11)

IDROL := IDROL + 1

“OD

Diagram 22 (continued on
following page)

Results From Analysing a Program Design Which

Ganoretes The Fibonacci Series by Using an Array

172

The following are some comments on the above:—

2

2

Re lines 1 and 2: An array < ARROL > of N elements has
been declared
Re line 7 : IDRO2 has bexn used to index the array
Consequently the first iteration of the loop
references the eleament ARRO1ICSI
If this was not intended or is an incorrect analysis
change either the initial value of IDRO2
or the index
Re line 7 : IDRO2 - 1 has been used to index the array
Consequently the final iteration of the loop
references the element ARROICN — 1]
If this was not intended or is an incorrect analysis
change either the index or the boolean expression
following WHILE
Re line 7 : IDRO2 - 1 has been used to index the array
Consequently the first iteration of the loop

references the element ARRO1C21
If this was not intended or is an incorrect analysis
change either the initial value of IDRO2
or the index
Re line 7 : IDRO2 - 2 has been usad to index the array
Consequently the final iteration of the loop

references the element ARRON — 21
If this was not intended or is an incorrect analysis
change either the index or the bonlean expression
following WHILE

Re lines 10 to 14 : These lines have been generated
in order to print

the values held in the elaments of the array < ARROL >

Diagram 22 (continued from
previous page)

Results From Analysing a Program Design Which

Generates The Fibonacci Series by Using an Array

= i735

(DS2) contains the phrase NOT END OF ARRAY which is

recognised as meaning the loop is being used to access

consecutive elements of the array. For reasons outlined

at the end of the previous section it then expects the

first iteration to access the element specified by the

lower bound of the array (ise. ARROL {.)) and the last

iteration to access the element specified by the upper

bound of the array (i.e. ARROL {n] Oe The previous

example illustrates how DACE scans the loopbody for an

assignment of the following form:

<variable name> := <variable name> + <constant> (5.79)

where “variable name> is used as an index to the array

and <constant> is assigned an integer value of 1 so that

consecutive elements of the array may be accessed. It

was also stated that if such an assignment was not found,

but that there was sufficient evidence to indicate that

the loop was being used to index consecutive elements of

the array, then an assignment similar to (5.79) would be

generated. Since the current line makes an implicit

reference to the upper bound of the array this is

considered sufficient evidence to produce the assignment.

It was not undertaken in the previous example because a

phrase such as NOT END would imply that the loop was to

be terminated according to some other criterion. DACE

analyses the current line as having the following meaning:

<variable name> <= N (5.80)

If a statement such as (5.79) is found in the loopbody

then the variable name in (5.80) can be replaced by the

actual name.

174

(054) is important because it shows how phrases such

as CURRENT ELEMENT and PREVIOUS TwO ELEMENTS are analysed.

Because of DACE's expectations about loops and arrays the

index of the elements corresponding to these phrases is

considered relative to:

arRol [<variable name> J (5.81)

where variable name is the same as that defined and found

tn(S.79)i. The meanings of CURRENT and NEXT ELEMENT are

both represented as (5.81), since the latter is assumed to

imply that successive iterations of the loop will consider

successive elements of the array. In a similar manner

the phrase PREVIOUS TwO ELEMENTS is assumed to mean those

elements which were indexed on the previous two iterations

of the loop and which therefore can be represented by the

following format:

ARROL [<variable name> - 1) (5.82)

ARROL [<variable name> - 2) (5.83)

Whenever array elements of this type are met, DACE notes

the value of <variable name> that is expected on the

first and last iterations of the loop. For example when

(5.81) is met it denotes that <variable name> should be

initialised to 1 before entry to the loop and contain the

value N on the last iteration of the loop. If this situa-

tion is found in the program design, then the results of

the analysis meet DACE's expectations about arrays and

loops. However the expectations of these values have had

to be revised by VACE after consideration of (5.82). The

variable name should now be initialised to 2 before

entering the loop. If these expectations are met then

LTS

the following situation will hold true:

Array element Array element

accessed on the accessed on the

first iteration last iteration

of the loop of the loop

ARRO} [<variable name>] arror [>] arRoi [nN]

ARROI [<variable name>

= il appnr [1] ARRON [x-1]

which illustrates DACE's policy of trying to ensure that

somewhere within the loop, the first iteration will access

arro1[1] and the last iteration will access arRo1[N].

From this discussion it is now apnarent that once (5.83)

has been considered NACE expects the variable name to be

initialised to 3 rather than 2. Fach of the elements

(5.81), (5.82) and (5.83) have only affected the

exnectation of the initial value of the variable name.

However if an element similar to:

ARRO1[<variable name> + 1] (5.84)

is met then PACE would expect variable name to have a

value equal to N-1 rather than N on the final iteration

of the loop. Comments 2, 3, 4 and 5 of the results

summarise those features of arrays which concern PACE and

which have been described above. Comments 2 and 4 relate

to the first iteration of the loop and point out how the

index can be affected by either the initial value of the

variable or the exnression used as the array index.

Conversely comments 3 and 5 are concerned with the

176

elements accessed on the last iteration of the loon and

point out how these can be altered by changing either the

boolean expression at the start of the loop or the

expression used as the index.

(MSS) marks the end of the loop and it is at this

stage that the variable name will be replaced by the

actual name of any variable which has been included in an

assianment statement similar to (5.79). The results

show this has not been found and hence DACE has created a

variable, with the name IDRO2, for this nmurnose. Line

5 shows how it has been initialised correctly and line 8

shows that the assignment statement has been aenerated

correctly.

(NS6) shows another array operation which DACE is

capable of analysing, namely printina the values held in

the elements of the array. The final comment has been

produced in order to refer the user to that portion of

the code which carries out this operation.

In addition to the conclusions drawn at the end of

the previous section concerning DACE's policy towards

arrays, the following may be added:

a) because the size of the array is undefined, the code

generator has automatically included a READ statement

prior to its declaration. At present DACE cannot

identify if the design contains a statement for this

purnose,. For instance if the first line of the

design had been:

Leg

b)

5.7

READ A VALUE INTU N (5.85)

then DACE would not have associated variable N with

the size of the array even if this had been the

implication of the statement. Generally speaking

a statement such as (5.85) is considered too vague

to associate with the definition of array size.

DACE would require a more specific statement, such as:

READ THE SIZE OF THE ARRAY INTO N (5.86)

in order to associate the variable N with the upper

bound of the array;

the comments which LACE makes about array elements

used in a loop are based on the fact that there is

no certain way of deciding whether a phrase such as

NEXT ELEMENT means:

ARROL [<variable name>] (5.87)! or

arrol [<variable name> + 1] (5.88)

since the actual assignment will depend upon the

context of the loopbody. Consequently the comments

have been chosen deliberately to display this

indecision and the final decision on correctness is

left to the user. The important point here is that

DACE brings to the attention of the user the effect

on the array index of choosing certain operations.

Since an array index that is outside the bounds of

the array is a common error, it is hoped that this

form of analysis will help to avoid such a situation.

Example 7

Diagram 23 is a further example of a program design

which shows how OACE deals with arraySe This design has

been produced in accordance with the following problem

178

The design is as follows --—

(DS1)
(DS2)

(DS3)
(DS4)
(DS5)
(DS6)
(DS7)
(DSB)

(DS?)
(DS10)
(DS11)
(DS12)
(DS13)
(DS14)
(DS15)
(DS14)
(DS17)
(DS18)
(DS19)

INPUT TEN NUMBERS IMIO AN ARRAY ##
SET RESULT TO THE VALUE OF THE LAST ELEMENT

OF THE ARRAY AND INITIALISE FOUND
WHILE I IS LESS THAN 11 AND NOT FOUND
DO

INCREMENT I
IF NEXT ELEMENT IS LARGER THAN x
THEN

SET FOUND TO TRUE AND RESULT TO
THE VALUE OF THE PREVIOUS ELEMENT

Er

OD
IF RESULT IS EQUAL TO x
THEN

PRINT # ARRAY CONTAINS X #
ELSE

PRINT # ARRAY DOES NOT CONTAIN X #
Gd

HE

& coded form of the design is:-

N
O
N
G
u
U
S
U
N
H
O
 ‘BEGIN “INT IDROL, X, I, RESULT:

“BOOL, FOUND;
C1: 10] “INT ARROL;
IDROL := 3;
MBILE. IDROL <= 10
‘DQ READ (ARROICIDROLI) ;

IDROL := IDRO1 + 1
“OR
RESULT ARRO1010]1;
FOUND < UNDEFINED >

‘WHILE I < 11 “AND ‘NOT FOUND
‘DO Pore I #1;

IE ARROICI] > xX
‘THEN FOUND : “TRUE

RESULT := ARROICI - 1]

‘FL
70D 3

Diagram 23 (continued on
following page)

Results From Analysing a Program Design Which

Searches a Sorted Array ate eee Eee RAY,

LZ9

i7

i?
20
21

The

se (a RESULT = x
“THEN PRINT ("ARRAY CONTAINS kK")

PRINT ("ARRAY DOES NOT CONTAIN Xx")

‘EL

“END

following are some comments on the above: -

Re Line 2: @n array < ARROI > of 10 elements has been declared
Re lines 3 to 7: These lines have been generated in order te read
values into the elements of the array
Re line 9: The design gives insuffici
detail to enalyse UNDEF INED>S
Re lines 10 and 11 : The variable 1 has been used but it has not been initialised
Re line 11: {he variable I has been used
but it has not
been initialised Variables used in this manner are usually initialise prior to entering the loop Re line 12: I has been used to index the array Consequently the final iteration of the loop references the element ARROLC1i]
This will cause an execution error since
the index is outside
the bounds of the array In order
to rectify change either
the index or the boolean expression following WHILE Re lines 12 and 17 : The variable X has been used
but it has not been initialised

Diagram 23 (continued from
previous page)

Results From Analysing a Program Design Which

Searches a Sorted Array Soo 8 sorted Array

180

specification:

read ten integer values, which have been sorted into

ascending order, from a data file. Another value

can then be read in and the program should determine

whether or not this value is contained in the sorted

The program design shows how this has been solved by

reading ten values into an array and by using a loop

structure to search through the array elements for the

given value. Since the values are in ascending order,

the loop shows how the search can be terminated without

necessarily considering all the elements.

Let us consider those lines within the design which

illustrate points not yet discussed. (082) and line 9

in the coded version show that INITIALISE FOUND has been

partially analysed. In this respect DACE has inserted

a general term - UNDEFINED — to show that the assignment

is incomplete.

(0S3) and (DS2) show alternative uses of the word

AND. In (DS2) it has been used as a conjunction and

consequently has been discarded before semantic analysis

was initiated. However lines (DS3) and 10 illustrate

AND is always implemented as a boolean operator when it

appears in the boolean expression of a loop or conditional.

(055) corresponds to line 11 in the coded version and

for reasons outlined in previous sections the variable I

has been used to index the array elements in lines 12

and 14. The fourth and fifth comments also relate to

this variable. The first of these points out that in

order to avoid an execution error, I should have been

1861

assigned a value prior to the current line i.e. line 10.

The fifth comment supplements the fourth and has been

made because DACE has recognised that this special form

of an assignment statement has been included in the loop-

body as a possible array indexing operation.

(056) contains the phrase NEXT ELEMENT and because

the appropriate variable name was discovered in the

previous line, DACE has analysed this to mean:

ARROl [1] (5.89)

instead of the more general form:

ARROL [<variable name>] (5.90)

which was necessary in the previous example. The

sixth comment brings to the attention of the user the fact

that line 12 of the coded version will cause an execution

error on the final iteration of the loop. In making

this comment DACE has shown that the techniques discussed

in the previous section are sufficiently general to cater

for different loop terminating conditions and array

indexing operations. More specifically, DACE is capable

of recognising that the array elements accessed on the

final iterations of the following loops are the same:

WHILE I < 11 (5.91)

"pO Tepe titles (5.92)

statements which reference

arrol [1] (5.93)

"00 (5.94) and

VUE TUE St <a ae (5.95)

"po statements which reference

arrol [1] (5.96)

182

Ls ean (S.97,)

"Od (5.98)

The absence of a comment about the array index in line 14

also shows that DACE has correctly analysed that in the

final iteration of the loop ARROL (10) will be accessed.

To deduce this it has to take into consideration the

actual form of the boolean operator used at the start of

the loop, the position of the assignment statement (ise.

the one in line 11) within the loopbody and the arith-

metic expression used to index the array.

In addition, although this is not shown by the

results, DACE has recognised that in order to reference

the first element of the array on the first iteration of

the loop, I should be initialised to 2, Because the

user has specified the variable I both in the boolean

expression in (0S3) and the statement in (DSS) it is

considered that the actual initialisation of I should be

given by the user. Similarly, although there is no

reason why DACE could not be extended to complete the

assignment in line 9 it is considered that since the user

has partially specified the assignment statement, he

should be encouraged to complete the specification.

5.8 Example 8

Some of the program designs previously considered in

this chapter have contained statements which DACE is not

capable of analysing or for which an incorrect analysis

had been made. Let us now consider an example of a

Program design which contains statements that cannot be

analysed because they are beyond the scope of FAPO.

This example has been included to show how DACE deals

183

with such a situation. Oiagram 24 shows a program

design based on the following problem specification

calculate the income tax to be paid by each employee

of a company. The information available for each

employee comprises that employee's earnings, the

number of dependents, expenses and type of employee

(ise. whether a man, woman or teenage person). No

employee should pay negative tax and a compulsory

works charity contribution depends on employee type -

(a man pays £5, a woman £2 and a teenager £1). The

rate of tax is 35% and a £150 tax free allowance is

made for each dependent. Expenses and charity

contribution are tax deductible.

This specification together with the program design shown

in diagram 24 are based on those used by Wilson and

Addyman [wilson and Addyman 1978] to illustrate

programming by stepwise refinement. Let us consider

why lines (0S4) to (058) inclusive have been only

partially analysea.

As was stated in chapter 3 successful analysis of

a statement requires that all the information necessary

for that analysis must be derived from the following

two sources :

a) from a class instance which is used to derive the

meaning of a common design statement; and/or

b) from the results of analysing previous statements

in the design.

In this respect the meaning of statements such as (0S4)

to (0S8) could be derived from the first of these sources.

However class instances for analysing terms such as

184

The design is as follows :-

(DS1) READ N AND INITIALISE I To 1
(DS2) WHILE I IS LESS THAN OR EQUAL TO N
(DS3) po

(DS4) READ DATA FOR EMPLOYEE #*
(DSS) CALCULATE CHARITYLEVY #*
(DS6) CALCULATE TOTALEXPENSES ##
(DS7) CALCULATE ALLOWANCE #*
(DSs8) CALCULATE TAX ##
(DS9) PRINT TAX OWING ##

(DS10) INCREMENT I
(DS11) OD
(DSi2)
(DS13) #*##

A coded form of the design is:-

0 ‘BEGIN OUR, TAX, ALLOWANCE, TOTALEXPENSES
CHARITYLEVY, £, Ni

1 READ (N) i
= Ti pests
3 ‘WHILE [<= N
4 ‘DO READ (< DATA FOR EMPLOYEE >)
3 CHARITYLEVY := < UNDEFINED >
& TOTALEXPENSES := < UNDEFINED >
Ze ALLOWANCE := < UNDEFINED >;
8 TAX := < UNDEFINED >;
2 PRINT (TAX)
10 Tee i+ tf
11 ‘OD
12 ‘END

The following are some comments on the above:-—

1 Re line 4: The design gives insufficient
detail to analyse <DATA FOR EMPLOYEE>

2 Re line 5: The design gives insufficient
detail to analyse <UNDEFINED>

3 Re line 5: The value assigned to the variable
< CHARITYLEVY > has never been used

4 Re line 6: The design gives insufficient
detail to analyse <UNDEFINED>

9 Re line & : The value assigned to the variable
< TOTALEXPENSES > has never been used

6& Re line 7 : The design gives insufficient
detail to analyse <UNDEFINED>

7 Re line 7: The value assigned to the variable
< ALLOWANCE > has never been used

8 Re line @ : The design gives insufficient
detail to analyse <UNDEFINED>

Diagram 24

Results From Analysing a Program Design Which

Calculates Income Tax Payable

185

CHARITYLEVY, TOTALEXPENSES etc. would be specific to

this problem and if implemented for general cases would

lead to the problem of combinatorial explosion. Hence

the basic approach pursued in this study is to develop

class instances which are sufficiently general to be

applicable to more than one problem. An alternative

approach would be to develop a collection of general

class instances which could interrogate the problem

specification for information to aid this analysis.

However one of the main limitations of FAPD is that it

makes no use of this specification to help its analysis.

Consequently analysing statements such as those considered

in statements (0S4) to (0S8) is beyond the scope of FAPD.

Let us consider DACE's analysis of this program

design. (0S4) has been implemented as a READ statement.

However DACE does not recognise the phrase DATA FOR

EMPLOYEE. It has no comprehension of the concept of

an EMPLOYEE, and consequently has tried to analyse it as

a variable name. The phrase DATA FOR EMPLOYEE is

unrecognised and hence is left in its original form.

(055) to (DS8) have all been implemented as assign-

ment statements and CHARITYLEVY, TOTALEXPENSES, ALLOWANCE

and TAX are considered to be variable names. From the

results we can see that OACE incorrectly expects each of

these calculations to produce a single result. Because

the initial assumption is that assignment statements are

required and then because it is found subsequently that

these statements are not required, comments 3, 5 and 7

are generated.

(059) has been analysed and a PRINT statement

186

produced. Syntax analysis has determined that QWING

can be ignored for the same reason that 80TH was ignored

in line (DS2) of Example 4 (see section 5.4).

Consequently DACE has realised that the value assigned

to the variable TAX in the previous line has in fact been

used and as a result no comment is made about line 8 in

the coded version.

This example illustrates how DACE has attempted to

analyse a program design even though the full meaning of

some statements cannot be derived. It is important that

examples such as this are tested for two reasons. Firstly,

although a program design may not be analysed completely

the results from analysing portions of it, such as (US1l),

(0582), (059) and (0510), will provide the user with some

benefit. Although the design needs further refinement

before it can be analysed completely, comments such as

this are still considered to be useful at this stage.

Secondly, defining the scope of FAPD and the system is a

very difficult problem which can only be clarified by

considering results such as those given in diagram 24.

An important point illustrated by this example is

that DACE provides assistance in the process of stepwise

refinement by indicating those lines which need to be

specified in more detail before the design stage is

complete. In this example lines 4 to 8 of the coded

version show those statements which the user needs to

refine further in order to complete the design stage.

5.9 Examples 9, 10 and 11

The results considered so far in this chapter have

been produced by subjecting program designs to the four

187

processes of analysis that comprise DACE. However to

conclude this chapter, consideration now turns to three

examples which do not conform to the grammar of a program

design. In this respect they have been rejected after

the syntax analysis stage and consequently have not been

Passed to the pre-semantic routines or subsequent stages.

These three examples have been specifically chosen

because they represent three different kinds of syntax

errore

Diagram 25 is typical of the results produced by

DACE whenever it considers a program design is syntacti-

cally incorrect. This shows that the user's design has

been pretty printed and is followed by a single message

(the text of which is always the same) indicating that a

syntax error has been found. The design has been stored

in a file named CODE.RES so that the user can obtain a

hard copy and establish why analysis of the design has

failed. Because the syntax error message does not give

any indication of why a design has been rejected, any

users of DACE would require some details of the possible

causes of syntax errors.

Let us now consider why each of these designs has

been rejected. Syntax analysis of Example 9 has failed

because line (0S2) contains an unrecognised symbol,

namely € . At this point DACE has invoked its back-

tracking mechanism in an attempt to find an alternative

parsing. Since this has also failed, the design has

been rejected as syntactically incorrect. Lines (083),

(086) and (0510) contain other symbols which will also

cause syntax errorse The rejected symbols are <,>and +

188

The design is as follows :-

(DS1)
(DS2)
(DS3)
(DS4)
(DSS)
(DS6)
(DS7)
(ps8)
(DS9)
(DS10)
(DS11)
(DS12)
(DS13)

GET FIRST VALUE OF DATA INTO MAXSOFAR ##*
COUNTER <- 1
WHILE COUNTER < 1000
DO

GET NEXT VALUE OF DATA INTO N
IF N > MAXSOFAR
THEN

MAXSOFAR <- N
Les
COUNTER <- COUNTER + 1

oD
OUTPUT MAXSOFAR WITH SUITABLE TEXT
HH

A syntax error has been found in this design

Diagram 25

Results From Analysing a Program Design Which

Contains an Unrecognised Symbol

The design is as follows :—

(DS1)
(DS2)
(DS3)
(DS4)
(DSS)
(DS6)
(DS7)
(pss)
(DS9)
(DS10)
(DSi1)
(DSsi2)
(DS13)
(DS14)
(DS15)
(DS14)
(DS17)

(DS18)
(DS19)
(DS20)
(DS21)
(DS22)

SET MAX AND MIN TO FIRST VALUE #x
SET NOCONSIDERED To 2
WHILE NOCONSIDERED IS LESS THAN 1000
DO

GET NEXT VALUE
IF THE VALUE IS LARGER THAN MAX ##
SET MAX TO THIS VALUE
THEN

INCREMENT NOCONSIDERED
ELSE

IF THE VALUE IS LESS THAN MIN #%
SET MIN TO THIS VALUE
THEN

INCREMENT NOCONSIDERED
ra

Fr

QD
OUTPUT MAX AND MIN
HH

A syntax error has been found in this design

Diagram 26

Results From Analysing a Program Design Which
Contains an Unrecognised Form of a Construct

189

respectively. In order for lines (052) and (0S3) to be

analysed, they should have been written in the following

forms:

SET COUNTER To 1 (5.99) and

WHILE COUNTER IS LESS THAN 1000 (5.100)

Example 10 has failed because of line (087) and

illustrates a second category of syntax error. This

shows that the grammar of a program design does not allow

@ statement which will be implemented as an assignment

statement to appear at the start of a conditional.

Consequently this represents those errors where the

target language constructs for repetition and choice

have not been used as required.

Finally, Example 11 represents a third form of

syntax error. Lines (052) and (0S4) are based on

examples found in Findlay and watt [Findlay and Watt

1g81] and it is the phrase NEXT SUMMAND contained in

(084) which has caused the error. This has been

analysed in the same way that phrases such as THIS VALUE

and FIRST ELEMENT are analysed. However whereas DACE

contains dictionary definitions of words such as VALUE

and ELEMENT, the current implementation of the system

does not recognise the word SUMMANO and therefore it has

been analysed as a variable name. A phrase comprising

an adjective followed by a variable name does not fit

the grammar of a program design and consequently the

design has been rejected. It is interesting to note

that if THE and NEXT were omitted and the line had read:

190

The design is as follow i.

(DSi >
(DS2)
(DS3)
(DS4)
(DSS)
(DS4)
(DS7)

INITIALISE SUM FO O
WH} NOT END OF DATA
bU

READ THI NEXT SUMMAND AND ADD IT TO SUM
oD

OUTPUT VALUE OF Sur
ea

A syntax error has been found in this design

Diagram 27

Results From Analysing a Program Design Which

Contains an Unrecognised Phr

197

READ SUMMAND ADD IT TO SuM (5.101)

as a variable name would have

analysis of SUMMA

resulted in the syntax analysis being successful and

the program design being analysed.

6. RESULTS FROM USING DACE

6.1 wojectives and Methodology

In the previous chapter, the scope of DACE was

described by considering its application to eleven program

designs. In this chapter we describe an evaluation of

DACE using a group of people with various levels of

programming experience. By using people of dissimilar

experience, conclusions might be drawn concerning the type

of user who derives the greatest benefit from using the

system. All the examples and results discussed in this

chapter were derived from the evaluation exercise.

For the purposes of this report, all those who

Participated in the tests are referred to as "users",

Eighteen people took part in the experiment and diagram 28

shows how they can be classified. All the students

(ie categories 1 to 6) came from the University of Aston

and categories 1, 2 and 6 were learning to program. All

the undergraduate students were studying for either a

single honours degree in computer science or a combined

honours degree in computer science and another subject.

None of the M.Sc. IT students had degrees in computer

science. The primary programming language used by all

the students was PASCAL. The others (ie category 7)

were graduates from industry, who did not have degrees in

computer science, were not professional programmers nor

wrote programs on a regular basis. Each user undertook

a maximum of five different programming exercises, the

solutions to which were submitted to DACE. The total

EBS,

T
O
V
G

w
o
r
y

Sz
T
N
S
o
y

Jo

Se
w
e
x
t
b
e
r
q

 ar

€
ot

Sj
S
i
e
u
i
9

Z

ev
0¢

P
s
q
t
u
e
p
n
i
s

(11)
A
H
O
T
O
U
Y
.
E
L

U
O
I
Z
B
U
I
T
O
T
U
L

OS
9

=
S

t
€

V
e
x
,

-
S
j
u
a
p
n
y
s

e
z
e
N
p
e
A
b
r
e
p
u
n

Sxznoucy
p
e
u
t
q
u
i
o
d

¢

L
St

€
€

x
#
e
8
,

=
S
j
Z
U
e
p
n
z
s

@
}
y
e
n
p
e
z
H
1
e
p
u
n

s
x
z
n
o
u
o
y

a
t
b
u
t
s

¢

LE
6L

v
¢@

2
e
a
K

-
S
s
}
U
u
a
p
n
y
s

a
z
e
N
p
e
i
H
b
1
9
e
p
u
n

s
a
n
o
u
o
y

e
T
b
6
u
t
s

€

S
6

oS
T

2
e
8
,

-
S
j
u
a
p
n
y
s

a
z
e
n
p
e
r
G
6
r
1
e
p
u
n

s
x
n
o
u
o
y

a
t
6
u
t
s

z

€
6

@
T

r
e
a
x

-
S
z
u
a
p
n
y
s

a
z
y
e
n
p
e
z
6

A
e
p
u
n

s
a
n
o
u
o
y

p
a
u
t
q
u
o
s

3

(z)
(te)

u
o
T
}
d
t
a
r
0
S
0
q

AxoObdy

oy
peta

Tuqne
Sud

TsSeq
W
e
i
b
o
r
q

S
u
d
t
S
e
q

w
e
r
b
o
r
g

S
z
0
s
y

3O
T
S
q
u
n
n

3O
t
e
q
u
n
y

JO
az8qunN

number of different solutions which were submitted by

users from each category is shown in column 2 of diagram

28. Column 3 shows the number of solutions which were

resubmitted because the original version contained a

syntax error.

Before starting the evaluation exercise each user was

given handouts containing instructions. As far as possible

the names of the handouts are included in this discussion

so that the reader can refer to the appropriate material in

Appendix G. The experiment took the following form:

a) because of a lack of standard terminology all students

were given an "Introduction" handout which explained

the phrase program design;

b) users who were not computer science students were

given a handout entitled "Notes on Program Design".

This was considered necessary since these users may

not have been aware of the importance of this part

of program development. Although the handout

referred to constructs for denoting selection and

repetition of actions, the fact that these were

ALGOL 68C constructs was not mentioned. Knowledge

of the target language is not a prerequisite for

using DACE and in an effort not to overburden

students with unnecessary detail, any reference to

ALGOL 68C was avoided;

c) all users undertook a pre-test and a post-test

exercise to solve somewhat similar problems. It

was hoped that a comparison between the two solutions

would ascertain the effect (if any) that DACE had on

195

d)

a student's performance. The two problems (see

Exercises la and 1b) were carefully chosen in order

to allow the more experienced users to include

advanced programming concepts (eg arrays) in the

solution and the less experienced users to formulate

a solution without using, or indeed knowing, such

concepts. The order in which the two problems were

tackled was varied so that any difference in problem

complexity would be nullified;

after the pre-test exercise had been completed users

were asked to read the "Introductory Notes for the

System User". These notes outlined the basic

operation of DACE, the kinds of program designs which

could be analysed and some possible causes of syntax

errorse A list of system recognised words was also

included. For similar reasons to those outlined in

(b) above, no reference was made to ALGOL 68C. To

sustain their interest users were encouraged to use

the system as quickly as possible instead of spending

an inordinate amount of time trying to understand

every detail within the handout;

users were then given a series of exercises which

required program designs to be developed for particular

problems. The users were requested to write the

solution out prior to inputting it into the system.

This meant the time spent logged-on to the DEC was

kept to a minimum. This was important since the

longer a user was logged-on, the more marked was the

196:

2

9)

deterioration in response time. Once the design

had been formulated, the system was called up and

the user allowed to submit his solution to DACE.

The DEC's PHOTO facility recorded all interactions

between DACE and the user. DACE then displayed the

results of its analysis and the user was given the

next exercise in the series;

if DACE reported that the program design contained a

syntax error, the user was asked to read section 4

of the Introductory Notes which listed some possible

causes. The user could then submit a revised

solution to the system. If the revised version also

contained a syntax error, the user was informed

verbally of the cause and was then shown a "Model

Solution". These solutions were intended to make

the user more aware of the kinds of program design

which DACE can accept. It was emphasised that they

were not the only solution which the system would

accept and numerous variations were possible. The

user would then be given the next programming

exercise;

a set of systematic instructions were given to users

whenever they asked for help because they had run

into difficulties, The first set (Instructions 1")

was used if a program design was being entered.

These instructions could be used when either:

i) the user had typed a control character which had

generated a LISP interrupt; or

ii) the user wished to correct previous lines in

the input.
187

h)

i)

In both cases it was necessary to reinput the

program design and the instructions gave details of

how to do this. The second set ("Instructions 2")

was used after the program design had been entered

but module 1 (see diagram 12) was still in operation.

These instructions also requested the program design

to be resubmitted. The final set ("Instructions 3")

was used whenever difficulties arose with either

modules 2 and 3 (see diagram 13) or module 4 (see

diagram 14). Typical difficulties here would bea

user typing START instead of (START). These

instructions gave details for re-entering the

current system module;

Once the exercises had been completed, the users

were asked to complete a "Questionnaire" so that

their evaluation of the system could be assessed.

The text will refer to the results of this

questionnaire (see Appendix G);

finally, the users were asked to complete the

post-test exercise.

6.2 Problem Solutions

The series of programming exercises undertaken by

the users was designed to test their ability to deal with

some basic programming concepts. The programming

exercises involved designing programs for the following

problems:

Exercise 1: Input an integer value which represents a

measurement in yards. Output the

corresponding number of inches.

198

Exercise 2: Input ten integer values. Print each of

these values and their total.

Exercise 3 : Input two integer values and print a

message stating whether or not the two

values are equal.

Exercise 4; Inout ten numbers. Output how many of

these numbers have a value greater than 100.

Exercise 5 : A data file contains a set of positive

integer values. The end of the set is

signified by a 0. Find the total of

these values.

when analysing the users' solutions to these

exercises DACE detected many errors although some others

went undetected. Out of 131 program designs, 77 were

rejected by DACE because they contained errors. Some of

the factors which caused DACE to reject program designs

were :

a) the use of statements which did not conform to the

grammar of a program design caused most errors.

Typical of these statements are PUT IN LENGTH and

RESULT IS INCHES. The former statement is rejected

because PUT is not a recognised word whereas the

latter is unacceptable because RESULT and IS are used

in the wrong context. Errors of this type are

difficult to diagnose but using a list of recognised

words can help. Thirty-five program designs sub-

mitted to DACE contained incorrect statements of

this type;

b) incorrect use of xx was also a common error. Out of

19g

c)

d)

131 program designs, 27 used xx incorrectly, although

6 out of 18 users used it correctly at all times. The

fact that 8 users thought the instructions on the use

of xx were insufficient and 11 found it easier to use

with practice suggests that greater tuition is

required in this area prior to using the system.

Occasionally a user failed to delimit xx with spaces

which meant a statement such as READ THE VALUE INTO

Axx was analysed as READ (Am), where Axx was

assumed to be a variable. Fifteen program designs

contained syntax errors because the character + was

not delimited by spaces. Users obviously had similar

problems with «. and + and on this basis any future

versions of the Introductory Notes should place

greater emphasis on the use of spaces;

the next section will discuss how the — key was often

used in an attempt to correct mistypings. If it is

used during the input of a program design then a

control character is read in and a syntax error

generated. This occurred in seven of the program

designs submitted to DACE. The next section also

discusses how using a Lynwood terminal and typing O

with the shift - lock on caused a LISP interrupt. On

one occasion a user tried to overcome the problem by

taking action which did not rectify the situation,

but rather yielded an incomplete program design

resulting in a syntax error;

ten program designs did not specify the correct form

200

of a conditional. Seven of these were due to FI

being omitted. Loops seemed to cause fewer problems

and OO was never omitted. Two program designs con-

tained-loops in an incorrect format. Both of these

related to the same user who had specified the

following

FOR COUNT EQUAL TO 1 TO 10 DO —— oD

Errors concerning loops and conditionals were not

repeated by the same user on any subsequent exercise.

This indicates that the users could adapt quickly to

these constructs and the identification of a single

error was sufficient to reinforce the system's

requirements;

e) finally, the syntax errors in two designs were caused

by spelling mistakes. In these cases THEN and LES

had been typed instead of THAN and LESS.

Although DACE reported numerous syntax errors, this

analysis shows that they fall into a small number of

distinct categories. The Introductory Notes contained

some causes of syntax errors which the users could try and

relate to their program designs. The analysis above

could be used to make these notes more succinct and to

emphasise those errors which occurred most frequently.

Qther errors such as not delimiting ** and +: with spaces

could be overcome by extending DACE to include a prepocessor.

This could check the characters within a word in order to

identify if spaces had been missed. Thus #INCHES# and

Axm could be separated into # INCHES # and A »* before

Parsing was initiated.

201

The 54 program designs accepted by DACE were

inspected by the author to determine if they contained

errors of logic. Of these 54 designs, 20 contained

errors which were not detected by DACE because of its

lack of domain knowledge. These errors may be

summarised as follows :

a)

b)

c)

d)

the wrong variable was output as the result. A

typical example is printing the variable used to

count the number of loop iterations instead of the

variable used to store the sum of a number series;

a conditional statement was incomplete ie there was

no ELSE *part.. This is similar to Miller's obser-

vation [Miller 1975] that novice programmers tend to

underspecify algorithms and do not specify the actions

to be undertaken when a set of conditions is not

satisfied;

the branches of a conditional were inadvertently

reversed such that the actions did not match the

results of the condition;

loops did not terminate. This was because the

variable used to count the number of loop iterations

was not updated inside the loopbody or the variable

updated within the loopbody was the wrong one;

a program design tried to read in more than the

specified number of data values. This was because

loop and input statements had not been combined

correctly.

202

6.3 System-User Interface

6.3.1 Hardware Considerations

This section is concerned with the system's

implementation on the DEC 20/60. Testing the system

with the users showed that the following factors affect

the usability of the current system :

a) the response time which varied according to the time

of day. The best response was obtained before 10.00am

and after 6.00pm. For a small program design (ie one

of three lines) analysis took appriximately 2 minutes

at 8.30am but anything up to 35 minutes at 1.00pm.

Because the DEC is used by students at the University

of Birmingham, the response times noted above would

have been better during vacations. However, the

availability of students meant that the experiment

had to take place during term time and often when the

DEC was used most heavily (ie 10.00am to 6.00pm).

Response time is important because one of the primary

requirements for an effective system-user interface is

speed. If the time which the system takes to respond

is excessive, a user could forget information or lose

interest. Miller [Miller 1968] has shown that

excessive delays in response time seriously affect

the performance of computer tasks via terminals;

b) the students who took part in the tests all used the

HARRIS 800 computer at the University of Aston. This

allows them to use the terminal key marked <€— to move

the cursor back over previous characters so that mis-

typings can be corrected. When using the DEC ,

2U3

c)

the €- key appears to have the same effect because it

can be used to backspace and then change characters on

the screen. However, this effect is local and using

the key actually generates a control character. LY et

is used during the input of a program design DACE reads

this control character which can result in either a

syntax error or distortions in the results. The actual

result depends upon the context in which it is used.

Although the Introductory Notes stated that the DELETE

or RU8SOUT key should be used, most people still used

the € key. Even when the importance of not using the

< key was stressed (verbally) prior to using DACE,

some users still tended to use it "automatically"

all users accessed DACE via a Lynwood or Newbury 8000

terminal at the University of Aston. The Lynwood

terminals caused two problems. Firstly, these

terminals did not have a TTY CAPS key. This key

allows all letters to be typed as if the shift lock

was one Any key which is not a letter is accepted

as if the shift-lock was off. The absence of a

TTY CAPS key meant that the shift-key was used

continually. Some users found this difficult to

adapt to and often switched it on or off at the

wrong times. This obviously increased the time

spent typing a program design. Secondly, depressing

OQ with the shift-lock on caused a LISP interrupt which

is normally used by a LISP programmer in order to

break into a program execution. This is obviously

confusing for anyone unfamiliar with LISP. Whenever

204

this happened the user was informed of why it had

occurred and was returned to the DEC's monitor level.

This meant the system had to be re-entered and the

program design resubmitted. The instructions for

doing this were contained in the handout.

6.3.2 Software Considerations

The system software will obviously affect the usability

of the system. This section discusses how users interacted

with the programs that comprise DACE. One of the main

factors affecting the system-user interface is that a user

must type the instructions for calling the system modules

(see diagrams 12, 13 and 14). The system was designed in

this way so that the results from one module could be

listed before the next module was called. This as

particularly useful for anyone developing or extending the

system but not desirable for normal use. The modules

which comprise DACE also print out statements such as

"The semantic analyser has now been entered" and "Semantic

analysis is now complete". These and similar statements

were an aid to system development because they identified

how far the analysis of a program design had progressed.

The questionnaire showed that 4 out of 18 users found such

statements difficult to understand. Ou Boulay and Q'Shea

[gu Boulay and O'Shea 1980] emphasise that one of the

difficulties facing the novice programmer is to understand

what is going on in the computer. Consequently future

versions of DACE might benefit from having these statements

Suppressed. The results from using DACE showed that

205

further consequences of a user having to type instructions

for loading and running the system modules are:

a)

b)

c)

when users were asked to type (START) and (PRINT-CODE)

many responded by omitting the parentheses (diagrams

13 and 14 illustrate when these instructions must be

typed). (START) and (PRINT-CODE) each invoke a

MICRO-PLANNER theorem and omitting the parentheses

Causes an error. Errors of this sort and the

Temedial action to be taken were described in a

handout ;

diagrams 13 and 14 also show that users are asked if

they wish to proceed to the next system module. This

facility was used during the development of the system

so that any LISP or MICRO-PLANNER functions could be

edited before the next module was loaded. The easiest

way to do this was to remain in the LISP or mMICRO-

PLANNER system so that the context editor could be

used. Diagram 12 shows that when users first enter

the LISP system they are asked if they wish to use DACE.

Since a negative reply leaves them in the LISP system

the only reason for doing this is again to aid system

development. Because the system has retained many

features which were included to facilitate its develop-

ment this meant that users were required to input

extra information ;

users were often confused about which control level

was currently in operation. This caused the following

errors

i) when DACE asked users if they wished to proceed to

206

the next system module, some tried to list the file

containing their program design. This can only be

done at the DEC monitor level and not within DACE ;

ii) users tried to input a program design when they were

at the DEC monitor level instead of typing LISP (see

diagram 12) in order to access DACE;

iii) when the system asked users if they wanted to use

DACE some tried to input a program design instead of

replying yes or nose

These results are similar to those of Cannara

[Cannara 1976] who showed that some students misunder-

stood the computational context and tried to run a program

while it was being edited or vice versa.

Many of the errors noted in (a), (b) and (c) could be

eliminated by writing a macro which could load and run the

various modules as and when they are required. This

would reduce the number of instructions which the user

must type. Eisenstadt [Eisenstadt 1983] has implemented

a software environment where users are automatically

connected to the environment once they are logged on.

This minimises their interaction with any other system or

monitors. A similar implementation is also applicable to

future versions of DACE. One restriction imposed by the

current implementation of DACE is that any revisions to a

program design can only be achieved by inputting the whole

of the revised version. This is necessary because DACE

does not load and analyse a program design from a file.

If this was possible either a special system editor or the

DEC editor could be used to revise an existing program

design. The instructions for revising program designs

are contained in a handout. One user typed in the

following as the final statement of a loopbody

ADD NUMBER TQ TOTAL #*

and then realised that inputting the loop delimiter OD

would generate an error because x* should not be used

prior to a reserved word. The error was corrected by

typing in a dummy statement of the following form

ADD NUMBER TO TOTAL wx

output +

oD

The lack of editing facilities was regarded as a dis-

advantage by 6 out of the 18 users.

A final point about the input phase concerns the use

of the string “ax to terminate the program design. If

a user types a space after the string the design is

terminated incorrectly and the user is given another

invitation to type. Although the screen instructions

emphasise the importance of doing this correctly mistakes

are inevitable. On those occasions when such mistakes

did occur the users were able to rectify them.

DACE's analysis of certain statements included in

some solutions will now be discussed. Users made state-

ments such as MULTIPLY YARDS BY 36 and ADO 1 TO COUNT

to denote YARDS := YARDS * 36 and COUNT := COUNT + l.

However the current implementation of DACE then analysed

these statements to mean IDROl := YARDS * 36 and

IDRO1 := COUNT + 1 where IDROl is a variable name

generated by the system. This was obviously at variance

208

with the user's intentions. At present an assignment

statement such as YARDS := YARDS * 36 can be achieved by

stating for example

MULTIPLY YARDS BY 36

ASSIGN THE RESULT TO YARDS

An assignment statement such as COUNT := COUNT + 1

could be effected by stating INCREMENT COUNT BY “Le

Another occurrence which presented difficulties For

DACE was for the use of a statement such as QUTPUT NUMBER

#FINCHES # to mean PRINT (NUMBER, "INCHES"). DACE analysed

this statement to mean PRINT (NUMBER). The first reason

for this analysis is that the delimiter 4é and the string

INCHES were not separated by spaces and consequently

HINCHESH was considered to be a single word. In terms of

the grammar of a program design it is used in the same

context as SO and FAR in the statement OUTPUT TOTAL so FAR.

Because SO, FAR and #INCHES# are all unrecognised, the

context in which they are found allows them to be ignored.

The second reason why DACE has ignored #INCHESH is that

the original statement should have included AND. The

desired effect could have been achieved by the statement

OUTPUT NUMBER AND #*# INCHES 4. It is recommended that in

future any users of DACE are made more aware of these

requirements. A suitable note could be added to the

Introductory Notes.

Another interesting occurrence was the use of

abbreviations or alternative spellings. Examples of

these are INPUT THE NO and INITIALIZE which should

have been written as INPUT THE NUMBER and INITIALISE.

209

The SOPHIE system [S8urton 1976] handles these problems

by expanding abbreviations and correcting spelling

mistakes before parsing is commenced. This is a

facility which could be incorporated into a more

sophisticated version of DACE. Burton discussed elliptic

utterances which were also encountered in this exercise.

Consider the following section of a program design

INPUT THE NO

MULTIPLY BY 36

PUT IN LENGTH

The first statement is quite explicit whereas the second

and third contain an implicit reference to THE NO.

Burton solved this problem by using rules in a semantic

grammar to identify which concept or class of concepts is

possible from the context available in the elliptic

utterance. In terms of the statement MULTIPLY BY 36.

the two possibilities are

MULTIPLY <integer number > BY 36

MULTIPLY <variable name > BY 36

To distinguish between these possibilities a search

could be made through previous lines for an appropriate

<integer number> or <variable name>. Although this

is beyond the current capability of DACE, it could be

achieved by using a modern natural language parser such

as that developed by Burton.

Design statements such as those noted above do not

contain sufficient detail for DACE to analyse them.

Similarly statements such as CALCULATE INCHES and INPUT

NUMBERS carry insufficient detail but the nature of the

missing detail is quite different. Knowing the prodlem

210

specification allows us to infer that the latter state-

ment means INPUT TWO NUMBERS. However DACE has no

Knowledge of the problem specification and so NUMBERS

is analysed as a list of undefined length. Analysing

a phrase such as CALCULATE INCHES can only be achieved

by using the problem specification and real world know-

ledge about the number of inches in a yard. This gives

us an interesting insight into the user's perception of

DACE. The Introductory Notes state that the system

displays how a program design could be represented in

code. If users appreciated this then they obviously

thought DACE was more sophisticated than it actually was.

A final software consideration is that of syntax

errorse The techniques used for syntax analysis mean

that the cause of a syntax error is not known and users

always receive the following message :

A syntax error has been found in this design

This does not identify the location or nature of the

error and this was commented upon by 8 out of 18 users.

Parsing halts as soon as the first syntax error is found

which, despite the message above, does not necessarily

mean that the design contains only one error. Burton

states that an intelligent system should act intelligently

when it fails. This is important for naive users, to

whom the system should always appear "natural". In this

respect any future work on DACE should consider alternative

methods of syntax analysis that provide better error

diagnostics.

The eighteen users who took part in the experiment

ail

submitted 131 program designs to DACE. Of these 77,

(58+8%) contained syntax errors and diagram 29 shows how

these were related to the five exercises which were under-

taken. It is significant that 49°4% of the designs which

contained syntax errors were solutions to the first two

exercises. This and the very small number of errors in

the solution to Exercise 5 indicate that by the end of the

experiment users were becoming more aware of the reasons

why syntax errors occur. This is also apparent when we

consider the program designs which were revised and resub-

mitted because they contained syntax errors (see columns 3

and 4). For Exercise 2, 10 out of 11 solutions which were

revised were also rejected by the syntax analyser. However

by the time Exercise 4 was undertaken, 7 out of 11 failed

for a second time, but 4 were revised correctly. Similarly

all three of the revised solutions to Exercise 5 were passed

as syntactically correct.

6.4 Results of the Pre and Post Test Exercises and the

Questionnaire

This section discusses the solutions to the pre and

post test exercises and the questionnaire. Although we

are unable to draw any general conclusions from the analysis

of the pre and post test exercises the following observa-

tions can be made :

a) 13 out of 18 users described their solutions to the

pre test exercise in the expected sense without using

PASCAL code. However 16 users wrote out their solu-

o @ a @ tions to the post test exercise in the expected

and

212

a
t
e
q
u
m
N

e
s
t
o
r
e
x
y

Aq
p
a
s
A
T
e
u
y

S
x
0
a
a
y

x
e
q
U
A
G

6c.
wWeabetq

Oe
vb

Lv
43

WI

oO
€

€
o
e

S

Z
tl

LE
et

p

Z
ol

LL
et

€

OL
IT

et
8t

zZ

9
6

or

)
(e)

(z
Ge

a
v
d

OF
T
o
i
s
y

xe
V
U
A
S

e
T
O
V
a

OF
Poy

T
T
u
q
n
s
e
y

s
u
b
i
s
e
d

O
u
r
u
t
e
z
y
u
o
y

S
u
b
t
s
e
q

pezyztuqnsS
SUD

TSoq
JO

d
o
q
u
n
n

W
e
I
D
O
I
G

JO
L
O
q
U
N
N

w
e
i
b
o
r
d

JO
xtequnn

w
e
i
b
o
z
q

jo
t
e
q
u
m
y

b) the post test solutions obtained from 2 of the users

showed that their approach was more disciplined than

it had been for the pre test exercise. However, the

pre and post test solutions from another user were

both lacking in discipline.

These results are encouraging since they seem to indicate

that DACE had some influence on the student's performance

even in the short exercise undertaken.

Some of the results from the questionnaire were

discussed in the previous section and the remainder will

now be considered. Although the primary programming

language for most users was PASCAL and DACE's target

language is ALGOL 68C, 15 out cf 17 users had no diffi-

culty identifying the relationship between their program

design and the coded version. This is probably because

the programming exercises were relatively simple and at

this level there are only minor differences between

ALGOL 68C and PASCAL. The one aspect of the coded

version which users did query was the symbol /= which

is the relational operator "not equal to" in ALGOL 68C.

The corresponding operator in PASCAL is <>.

Users were also questioned about the utility of the

comments produced by DACE. Six users reported that they

had no difficulty in relating all the comments to the

coded version of the program design and six others that

they had no difficulty with over half the comments. Only

two users reported that they found some comments

particularly useful, whilst eight users felt that over

half the comments produced were useful. The comment

214

which was considered particularly useful concerned the

use of a variable not previously initialised. One of the

main purposes of DACE is to focus the user's attention on

the program design rather than the coding. It was notice-

able that some users saw deficiencies in a program design

as soon as it was listed on the screen by DACE. These

deficiencies, such as specifying the branches of a condi-

tional incorrectly, would not necessarily have been

commented upon by DACE. Hence the fact that fifteen users

stated they would redesign at least one of their solutions

was probably due to other factors besides the comments

produced by DACE. The questionnaire also showed that

seven users thought there was no need to undertake a

program design for any of the problems set but five of

these users said they would have redesigned some of their

solutions because of the analysis and comments produced by

DACE. This indicates that DACE must have had some

influence on their thinking.

Of those questionned only two thought that they would

spend more time designing programs in the future, the

remainder stating that they would not modify their alloca-

tion of time. However, seven users thought that DACE had

left them better equipped to formulate program designs, two

of the users stating that DACE had demonstrated a way of

specifying program designs which they found quite useful.

To be applicable to a large audience the program

designs which the system accepts should be in a format as

close as possible to that which programmers normally use.

215

This seems to have been achieved to a satisfactory level

since all those who used the system reported that they did

not have to significantly alter the way they normally wrote

out program designs. The modifications which most people

had to make concerned the way they normally specified loops

and conditionals and restricting the words used to those

recognised by the system. The former modification is

obviously because the system was developed at a time when

students at the University of Aston were taught ALGOL 68

whereas the primary teaching language is now PASCAL.

Consequently this restriction is considered to be specific

to the current implementation of DACE. The second modifi-

cation could be overcome to some extent by extending the

system dictionary to include additional keywords. One

solution to this problem was incorporated into the SOPHIE

system [srown, Burton and de Kleer 1982]which automati-

cally recorded any messages not understood so that the

future development of the system was partially prescribed.

A similar facility would obviously help any further

development of DACE. Users were also questionned about

the usefulness of the Introductory Notes. Although some

improvements to these notes have already been suggested,

it was noted that sixteen out of eighteen users found them

sufficiently detailed to use the system.

216

7. CONCLUSIONS

Vel Basis of FAPD

The details of FAPD have been given in previous

chapters and now two fundamental ideas on which it is

based are reconsidered. Firstly, we need to evaluate

the benefits of developing a framework which when applied,

is capable of analysing program designs. Secondly, we

need to consider the implications of representing the

results of analysis in the form of a coded version of the

program design.

This thesis has viewed the programming process as

comprising two related phases, namely the design of a

program and the subsequent coding of that design. This

research has concentrated on analysing examples produced

during the former of these two phases. Because the

constructs for repetition and choice are the only aspects

of a target language which FAPD accepts, a programmer is

forced to delay any decisions concerning the coding

details of a design until a later stage. The importance

of program design is now well established in the develop-

ment process of good, structured programs. Although its

importance is recognised, difficulties occur in determining

when a program design is finalised. The system described

in previous chapters can highlight those sections of a

program design which need to be refined further.

Consequently this emphasises that coding cannot be started

until these sections have been specified in greater detail.

Since the system is also capable of recognising deficient

program designs, the development of working programs can

be attained more readily whether by manual or automatic

eu

MEanSe

If we accept that these reasons support development

of a framework then consideration must be given to

evaluating the way in which FAPD analyses a program

design. The results from analysing a design are

represented in the form of a series of assertions. These

assertions are used to represent a coded version of the

design from which a program together with any associated

comments can be produced. There are several advantages

in choosing this form of analysis. The principal

advantage is that it provides a convenient format for

representing the results of analysis. Since this format

is based on a subset of the syntax of a programming

language, it is well-defined and furthermore has obviated

the need to develop another form of representation. Lt

also means that the results can be printed in a form

which is easy to comprehend.

A second advantage of this definition is that the

coded version of the design can be analysed to see if it,

and hence the design itself, performs as intended. This

analysis could be achieved either by executing the program

using example input and output pairs or by adapting some

of the existing theories of program understanding.

Thirdly, for novice programmers who have only just learned

the coding details of a programming language, the coded

version of a design should illustrate particular language

features.

FAPD's method of analysis means that any errors

which are detected are referred to the coded version of

the design, and brought to the attention of the user for

218

correction. Although FAPD may not detect all errors,

even a partial detection is considered beneficial to the

user. For such program designs the user may wish to

resubmit an improved design taking into account the

comments of DACE on the initial design. This process

may, of course, be repeated. This is important because

the questionnaire on program design showed that 45 out of

85 users would not amend their program design when they

found errors of logic in the cade. Hence the analysis

undertaken by DACE emphasises that designing programs is

an iterative process and solutions often need revising.

Both of these basic ideas were discussed in the

opening chapter. At the same time a third idea was

introduced which was concerned with the kinds of program

design FAPD can accept. This idea is discussed in the

following section.

7e2 Evaluation of FAPD

The Framework for Analysing Program Designs is

comprised of four distinct phases :

a) pre-semantic analysis, the first operation of which

is concerned with parsing a program design.

Successful parsing means that any target language

constructs which may have been used are in their

correct format and the statements within that design

are of a form that can be analysed. The syntax

tree is then converted into a series of structures

which the semantic analyser can recognise;

b) semantic analysis is concerned with implementing the

structures produced in the pre-semantic analysis

phase in terms of a particular programming language.

219

This implementation is undertaken by a collection

of procedures where each procedure defines one

recognisable structure. These procedures, which

are called class instances, collectively define the

body of programming knowledge incorporated within

FAPD. Each class instance attempts to implement

its own structure in the target language even though

the results of doing so may be revised subsequently

by other class instances when they are considered in

the wider context;

c) comments are generated when the results produced

by the semantic analysis routines carry certain

implications for the user. Further comments may

also be generated by the sets of class instances;

d) code generation, as the name implies, is used to

convert the results of the previous two phases into

a coded version of the program design. The results

from semantic analysis are printed in the form of a

program in the particular target language considered.

Any comments are converted into the appropriate text

and printed after the coded program. Any line

numbers given in the comment statements refer to the

line numbers of the coded program.

Since FAPD has no knowledge of the problem specifi-

cation, the degree of analysis possible is obviously

limited. Hence the full implication or inference of a

statement may go undetected. This particular problem

can be illustrated by referring to the following problem

specification:

Design a program to find the average

of ten numbers (7ed)

and the following design statement which could be contained

within a design which meets this specification:

INPUT THE NUMBERS INTO AN ARRAY C7e 2)

The reader will have no difficulty in using the problem

specification to infer that the array has ten elements.

However, without the benefit of this knowledge, DACE has

no means of determining the correct size of the array.

Hence the array is analysed as comprising N elements,

where the value of \N is to be determined at the time of

program execution. However, as the discussion of

Example 8 in chapter 5 showed, even knowing the problem

specification still does not guarantee a complete

analysis of the program design. Example 8 was specifi-

cally chosen to show that a complete analysis can only

be achieved by incorporating into FAPD real world

knowledge of concepts such as employee, tax, charity etc..

Let us now conclude this discussion by stating that,

at present, FAPD makes use of two sources of information

to analyse any statement. These sources may be

summarised as:

a) the results obtained from analysing previous lines

in the same design; and

b) class instances which recognise and then represent,

in terms of the target programming language,

particular statements and phrases within the design.

The results discussed in chapters 5 and 6, together with

those contained in Appendix 0 support the claim that

these two sources provide sufficient information to under-

take some useful analysis. However the depth of

analysis could be improved by making use of a third

source, namely the problem specification. Because of

the problems of combinatorial explosion, limited computer

storage space and the difficulties of finding a suitable

form of representation it is not feasible for FAPD to

make use of real-world knowledge at the present time.

FAPD is not intended to apply to all possible forms

of a program design. The general form of the design

must be similar to those used in the previous chapter.

These contained a limited set of target language

constructs interspersed with Enlish-like statements.

In order to be analysed, these statements must conform

to the grammar of a program design and consequently this

Qrammar, together with the dictionary, define the variety

of statements which can be analysed. Let us now evaluate

the adequacy of this grammar.

At present, the only target language constructs

which the grammar allows are conditionals and loops of

the same format as those of the target language. As

discussed previously, this prohibits the use of state-

ments such as:

I <a lG (7.3) and

COUNTER + 1 (7.4)

which must be written in forms such as:

I IS LESS THAN 10 (7.5) and

ADD 1 TO COUNTER (7.6)

Occasionally program designs contain statements of both

sorts and so prior to developing FAPD a decision was

required on whether or not all these forms should be

i} N nN

recognised. As a matter of policy it was decided not to

allow target language symbols such as +, =, and>. This

is consistent with the policy that the principal benefi-

ciaries of DACE will be novice programmers who might not

be expected to know such terms.

The grammar also prohibits the use of punctuation

marks such as commas and full-stops. This means that

statements cannot be expressed as concisely as they might

have been otherwise. For example, a statement such as:

INITIALISE A,B,C AND D (7.7)

must be written as:

INITIALISE A AND B AND C AND D (7.8)

Similarly, although the grammar is adequate for specifying

Simple operations such as:

ADD A TO B (7.9)

the text required to implement more complex operations

such as;

ALLOW := ALLOWANCEPER * DEPENDENTS » EXPENSES (7.10)

is necessarily more protracted.

The assertion language used to represent the results

from semantic analysis also limits the scope of FAPD in a

similar way to the grammar of a program design. Any

program design which cannot be represented by the asser-

tion language is beyond the scope of FAPD. Since it can

represent only a subset of a programming language at

present, we need to evaluate whether this subset is

adequate, As the examples given in chapters 5 and 6 and

Appendix D show, the subset is adequate for designing a

variety of programs. In this respect it would seem that

the limitations it places on the variety of examples

223

which can be analysed are less than those imposed by the

grammar of a program design.

FAPD analyses program designs which have been

formulated according to the principles of structured

programming. However the main vehicle for this technique

namely procedures, is excluded from this framework and

therefore represents a limitation of DACE. Hence

programmers cannot use FAPD to define and test several

sub-procedures which comprise a super-procedure. Ideally

a programmer should be allowed to decompose a complex

task into simpler sub-tasks. These subd-tasks may need

further decomposition and so sub-procedures may need to

call sub-sub-procedures and so one Hence, future

research could investigate the possibility of extending

FAPD so that it could analyse such program constructs.

This is comparable to a programmer running and debugging

the sub-procedures before testing the procedure which

calls them.

This section has evaluated the Framework for

Analysing Program Designs and in the following section

the performance of DACE will be discussed and evaluated.

Because DACE is based on FAPD, the points discussed in

this section are also relevant to the system. Conse-

quently, the following section will concentrate on

evaluating how FAPD has been implemented,

73 Evaluation of DACE

DACE has been used to test the Framework for

Analysing Program Designs and was found to be capable of

analysing many examples. However the examples on which

it has been tested (see chapter 5 and Appendix 0D) may be

224

thought of as a specification of its capabilities.

Section 5.9 contained three program designs which have

been rejected because they do not conform to the specified

grammar of a program design. However, because of the

method used for syntax analysis (see section 4.4), the

syntax error message is very general and does not give

any indication to the user of the point of occurrence of

the error. In an evaluation exercise, the results of

which were described in chapter 6, eight out of eighteen

users considered this to be a disadvantage. The results

from using DACE showed that the main cause of syntax errors

were using the separator xx incorrectly and using state-

ments which do not conform to the required format.

Let us now evaluate the programs that comprise the

four phases of analysis and give some suggestions for

possible improvements. The first operations on a design

involve lexical and syntactic analysis. Lexical analysis

is undertaken by the scanner which is relatively unsophis-

ticated and merely entails scanning the dictionary for

definitions of all words contained in the design. The

system does not have the ability to recognise different

words of the same derivation and thus such words will go

unrecognised unless contained in the dictionary. A more

sophisticated method of lexical analysis is obviously

needed to overcome the problem.

A scanner for a high-level language often builds a

symbol table which contains details of any variable names

found. Since DACE does not produce such a symbol table

at present, the efficiency of the syntax analyser could

also be improved by the inclusion of such a data structure.

225

For example, after parsing a statement such as:

SET A TO. (GetL)

the fact that A has been used as a variable name instead

of an article could be recorded in a symbol table. At

present, whenever A is met in subsequent lines within the

same design, DACE cannot detect how it has been analysed

previously and hence it will try to parse it as an article

again. In cases such as this, the symbol table could be

used so that A is always analysed as a variable name

before calling the back-up mechanism to consider other

possibilities. The results from using DACE showed that

a word which is parsed as a variable name in one line can,

in some contexts, be ignored in subsequent lines. In

these cases a symbol table could be used to ensure that

such words are retained.

The sets of class instances on which semantic

analysis and generation of comments are based have been

implemented as MICRO-PLANNER consequent and antecedent

theorems. These theorems have proved a good choice and

have allowed the system to be easily extended in order to

cater for a wider variety of examples. The manner in

which they are called has also proved adequate for

analysing the examples which have been used to test FAPD.

At present, as soon as the semantic analyser forms some

results, they are passed over to see if any comments can

be generated (see diagram 11). Such an approach means

that if ever the results from analysing a previous line

need to be altered, substantial work is required in order

to back-up and erase any assertions made by the class

instances responsible for generating comments. For the

226

examples contained in this thesis, considerable backing-

up has not been necessary although as the number of

examples is increased, consideration should be given to

this possibility. In this respect, one possibility

would be to run the semantic analyser in isolation and

then the results from analysing a complete design could

be passed over for the generation of comments. The

choice of consequent and antecedent theorems would not be

affected but it would mean that a back-up mechanism would

be easier to implement. The adequacy of the system-user

interface was discussed in the previous chapter. The main

difficulties stemmed from the fact that DACE was still in

the development stage and the student's lack of familiarity

with the DEC 20/60 computer.

In conclusion, we can say that the decisions which

have been taken during the development of the system have

been justified by the results obtained from the operation

of DACE. However, it has been noted that the system

could be improved, and some suggestions for improvement

have been made above.

7.4 Suggestions for Further Work

Suggestions for further research have been made

throughout this chapter. However it is worth summarising

the achievements of this Tesearch, and in so doing some

additional areas which are also worthy of further investi-

gation will be identified. First of all, analysing a

Program design has been identified as an area of research

which should receive just as much attention as the similar

area of automatic program understanding and debugging.

It has been shown how the Framework for Analysing Program

227

Designs could be used to complement some of the existing

theories of program understanding by using it as a

possible front-end to some of these systems. However, to

do this a method must be derived for representing and

using facts contained in the problem specification. The

framework which has been developed in this study can only

do this by procedurally embedding such knowledge in the

form of class instances. This approach has been rejected

as too specific and an alternative approach would be to

devise a method for representing this knowledge, which

could then be usec by a set of general procedures. If

this was achieved, analysing a program design would be

based on the following three sources of information:

a) class instances which are used to derive how common

statements and phrases can be represented in terms

of a particular programming language;

b) knowledge of the context derived from analysing

preceding lines in the same program design; and

c) knowledge of the problem specification.

Since a class instance could then make use of two sources

of information (ise. (b) and (c)) consideration would

have to be given to the organisation and calling of the

class instances since both of these sources are equally

important.

The problem of organising knowledge in this way is

similar to the problem of how the four phases of analysis

that comprise FAPD should be organised. Broadly speaking,

these phases are called sequentially, with the results

from one phase forming the input for the next. However

Example 2 in chapter 5 discussed the possibility of

228

integrating syntax and semantics in order to improve the

depth of analysis. The benefits of doing so have been

discussed by Winograd [winograd 1972] and hence a

possibility for future research would be to investigate

the feasibility of this approach.

This research has also advocated how a special

procedure, referred to as a class instance, can be used

to recognise design statements and to generate any

comments about a coded version of those statements.

These class instances are the means by which DACE can

undertake some useful analysis. They are conceptually

similar to Rutn's [Ruth 1976] experts but they are used

for different purposes. This research has shown that

class instances represent a satisfactory methodology for

work of this kind. Consequently the concept of a class

instance provides a useful acquisition to the set of tools

currently available to researchers in Al.

Finally FAPD has been implemented in a system, the

results from which support the contention that FAPOD

represents a viable approach to the computer analysis of

program designs. To evaluate the system it was used by

a group of people with various levels of programming

experience. This evaluation exercise seemed to indicate

that using the system had some influence on their

performance. Given the importance of the process of

program design in the development of structured programs,

in our opinion VACE represents a software environment

which provides support to the programmer.

229

