Aston University

Som’efpages of this thesis may have been removed for copyright restrictions.

If you have discovered material in Aston Research Explorer which is unlawful e.g. breaches
copyright, (either yours or that of a third party) or any other law, including but not limited to
those relating to patent, trademark, conﬂdentiality, data prOtection, obscenity, defamation,
libel, then please read our Takedown policy and contact the service immediately
(openaccess@aston.ac.uk) " '

MATHEMATICAL SOFTWARE FCR MICROCOMPUTERS

BY

EMMANUEL AMANO CNIBERE

THESIS SUBMITTED FOR Ph.D DEGREE

IN OCTCBER 1981

MATHEMATICAL SCFTWARE FCR MICROCCMYUTERS:
THESIS SUBMITTED FOK Ph.D DEGREE 1981

EMMANUEL AMANO ONIBERE

ABSTRACT

This study is concerned with designing and implementing a
portable numerical software library suitable for microcomruters.
The nature and use of microcomputers are examined and from this
examination and the type of user community expected, the aims of
the library are then established. These aims help to determine
the nature of the library.

Having established the nature of the library, each area in
mathematical computation for which routines are to be written is
then examined. Algorithms whose implementations satisfy certain
criteria such as reliability, suitability for microcomputers,
speed are selected for inclusion in the library.

The library is written in such a way that a double precision
version of the library can easily be made from the available
single precision version. Suggestions as to how the library can be
tuned are also given.

KEY WORDS: MICROCOMFUTER, NUMERICAL, SOFTWARE, PORTABLE, FORTRAN

ACKNOWLEDGEMENT

I would like to thank :

Dr. L.J. Hazlewood for his help and supervision
throughout this study.

Dr. M. J. Walker for his help throughout this study.
The University of Benin and Federal Government of
Nigeria for their financial assistance.

My wife Cluscla for her spiritual and physical suprort
throughout this study, being a source of comfort during
difficult times.

My mother who constantly prays for me.

CONTENTS

Charter 1
1.1

1.2

1.3

Chapter 2.

2.2

2.3

2.4
2.5

Chagter }:

Introduction

Alms and Cbjectives

The concept of a program library

Brief descrirption of subjects covered in

succeeding chapters

Background to microcomputers and numerical
scftware.

Large and small computers
2.1.1 Software

Summary of hardware and software problems of
microcomputers.

The need for numerical software libraries for
microcomputers

Considerations in designing a pfogram lib;ary

Aims of the Library

2.5.1 Intended users

2.5.2 The Library Routines
2.5.3 Fortability

2.5.4 Installation and usage

Nature of the library
3.1 Introduction

3.2 Language Selection

PAGE

15
17
20
20
21
21

22

23
23

23

3.3
3.4

3.5
3.6
3.7
3.8

Chapter 4
4.1

k.2
4.3

Charter 5:
5.1
5.2

Choosing a fortran dialect for the library
The selection of topics to be included in the
library

Method of algorithm selection

Storage of the library

Transportability

Specification of machine~dependent quantities
3.8.1 Specification of machine-dependent

guantities in the library

Library and user interface
Parameter list

Naming of routine

Error handling

4.3.1 Error handling in the library

Algebraic linear systenms

Introduction

cimultaneous linear systems

5.2.1 Special cases

5.2.2 Algorithm selection for linear system
of equations

'~ 5,2.2.1 General purrose Algorithms

5.2.2.2 Algorithms for tridiagonal system
5.2.3 Implementation and Modification of

Selected Algorithms

32
34

41

45

b7

51

51
53

61
61

65

5.3

5.4

5.5

Chapter 6:
6.1

6.2

Matrix Inversion
5.3.1 Algorithm selection for matrix inversion
5.3.2 Implementation and modification of

selected algorithms

Determinant
5.4.1 Algorithm selection for determinant
5.4.2 Implementation of selected algorithm

Content of charter

Roots of non-linear functions
Introduction
Non-linear functions
6.2.1 Choosing appropriate algorithm for
non-linear functions
6.2.1.1 Methods based on an initial value
6.2.1.2 Methods based on two or three interpolation
points
6.2.1.3 Bracketing retention methods based on
two points
6.2.1.4 Hybrid Methods
6.2.1.5 Selected Algorithm

6.2.2 Modification of selected routine

70
70

72

72
72
73

74

76

76
76

77
77

78

82

82
83

6.3 Polynomials

6.3.1 Selecting appropriate algorithm

6.4,

Chapter 7:
7.1
7.2
7.3

7.4
7.5

Chapter 8:

8.1
8.2

8.3.

6.3.1.1 Composite method
6.3.1.2 Using minimization
6.3.1.2 Three stage algorithm for real polynomials
6.3.1.4 Selected algorithm
6.3.2 Modification of selected routine

Contents of chapter

Quadrature

Introduction
Problem area

Selecting aprropriate algorithms

7.3.1 Integrand defined by a set of data points
7.3.2 Integrand defined over a finite interval
7.3.3 Integrand defined over a semi-infinite

interval

Modification of selected routines

Contents of Chapter

Ordinary differential equations
Introduction

Problem area

8.2.1 initial-value problems

8.2.2 Two point boundary=-value problem
Algorithm selection

8.3.1 Non-stiff initial-value problenms

87
89
92

ol
95

96
96
96
97
98
99
102

107
108

111
111

112

8.4.

8.5

Charter 9:
9.1

9.2

9.3

9.4

8.3.2 Stiff initial-value problem
8.3.3 Algorithms for two=point boundary-value
vroblems

Implementation and modification of selected

algorithms and subroutines.

Content of chapter

Cptimization and least squares approximation
Introduction
Cptimization
9.2.1 Selecting appropriate algorithm for
optimization
9.2.1.1 Methods for single variable non-linear
functions
9.2.1.2 Methods for functions of several

variables

- 9.2.2 Modification of selected routine

Least Squares approximations
9.3.1 Selecting appropriate algorithm for
least squares approximation

g.3.2 Modification of selected routine

Contents of Chatter

Charter 10: Approximation of special functions and

determination of machine constants

114

116

117

118

122

123

125

126

127

128

129

130

10.1 Introduction
10.2 Special functions
10.2. 10.2.1 Method of approximation
10.2.2 Implementing algorithms that use
many store constants
10.2.3 The hyperbolic sine, SINH
10.2.4, The hyperbolic Cosine, CCUSH
10.2.5 The error function ERF
10.2.6 Bessel functions of the first kind
Jor 94
10.2.7 Bessel functions of the second
kind Yo, Yl
10.2.8 Routine to perform the summation of
Chebyshev series
10.3 Reoutines that deliver machine derendent
quantities
10.3.1 Routine that delivers machine depen=-
dent integers
10.3.2 Routine that delivers machine

precision

10.4 Contents of Chapter

Chavpter 11: Tuning of the library

et A=

11.1 Introduction

11.2 Floating -

point multiplication

11.3 Array accessing

131

132

134

136

136

137

138

140

142

143

143

146

150
150
152

153

=t
l__.)
-

‘_.7
}..,J
un

Chacter 12:

12.1
12.2
12.3

Bibliograrhy:

AFTENDIX As

ATTDRDIN 3B

APPENDIX C:

ATPENDIX D:

AFTENDIX E:

ATPENDIX F:

AFPENDIX Gs

Inbuilt mathematical functions

Effect of tuning on some selected routines

Research aims achieved
Suggestions for further research

Recent developments and the future

Installation of the library and general usag

Algebraic linear systems

Roots of non-linear functions

Subroutines for quadrature

Subroutines for ordinary differential

equations

Minimization and least squares arproximation

Special functions and machine constants

{o)
<

158
160

163
163
164
165

Bl

Cl -

El =

>
)
fo.d

B29

C20

D24

E21

G33

CHAPTER 1

INTRODUCTION

1.1 Aims and Objectives

Although little work has been done in the area of program
libraries for microcomputers, we already have a small numerical
software library designed by Genz and Hopkins (68), written in
BASIC, whose emphasis is on portability. There are business packages
such as "account payable", "Cash journals", "general ledger”,
"Involcing" etc and software designers seem to have concentrated
more in these areas. Portability is scarcely considered in
designing such packages. For the scientific users of microcomputers,
a general purpose numerical software library would be a valuable

tool.

This research is thus aimed at designing and implementing a
general purpose numerical software library which is suitable for
microcomputers in order to fill a gap in the existing available
software. In addition the library will be designed to satisfy the
following conditions:

a) The library will be portable. This will meke it possible for
the library to be transferred to different microcomputers or to
change compilers of the same language with little or no change
to the library.

b) The library will serve a wide range of scientific users of
microcomputers and it will be easy to use.

c) Any architectural advantages of microcomputers would be

exploited in the design of the library.

d) The library will be small but powerful. This means that
only subroutines that solve problems which are frequently

encountered by the users will be included.

1.2 The concept of a program library

A program library is defined by Gill et al (71) as a:
"set of routines that are conceived and written

within a unified framework, to be available to
a general community of users".

The concept of a Library, of scrolls and later of books, has been
known for hundreds of years. (The Library of Alexandra was formed
in the fourth century B.C.). The extension to a collection of
routines was made by Wheeler in Cambridge shortly after the advent

of the electronic computer.

Initially, a user who required a computer routine to solve a
particular numerical problem would itypically consult research
Jjournals that might contain a theoretical description of an
appropriate method, and then write his own code. Unfortunately,
such personalized implementations were subject to a significant
risk of unreliability, because of a lack of attention to details
of programming or numerical analysis, Furthermore, as the complexity
of numerical methods increased, it become impractical for individuals
to write their own versions of all necessary algorithms, even given
the will to do so.

Subsequently, it became the practice among authors of new
numerical methods to publish computer programs as well as

theoretical descriptions. Although this development was a step

in the right direction, in many ways the situation was even

more comulicated., The quality of the published programs varied
encrmously, and there was little uniformity of standards

concerning programming structure and style. In addition, the
published software was often inadequate for general use (for
example, it had been tested only on a small set of well=behaved

test problems, or was unable to recover from numerical difficulties).
Under these conditions the user was obliged to undertake a search

of the literature, among a large collection of published routines,

with no guidelines to assist in meking a good choice.

Because the proliferation of alternative routirnes proved to be
an ineffective means for providing good software, an awareness

developed of the need for program libraries, As with a library of

books, a program library is prepared according to some principle and
purpose. It may be a general library, for example, NAG (117), IMSL
(94) seeking to cover common requirements over a broad field. It

may be a subject library, aiming to cover a particular area in depth
(for example the numerical solution of ordinary differential equations)
or it may be a topic library, addressing the requirements of a

particular community (for example quantum chemistry).

For a library to suceed it must, from the outset, be directed
to a particular purpose (for example the solution of numerical and
statistical computational problems). It is also of fundamental
importance to identify its primary users. The purpose determines
which subject areas will be included; the users, the manner and

depth in which these areas will be covered and presented.

1.3 Brief description of subjects covered in succeeding chapters

A summary of the remaining chapters is now given.

Chapter 2:

Chapter 3:

Chapter 4:

Chagter 5s

Chapter 6:

Chapter 7:

This chapter provides a background to large
and small computers. The advantages and
disadvantages of microcomputers are given and

the aims of the library are also discussed.

This chapter proposes a method of implementing a
numerical software library that will satisfy the

required aims.

In this chapter, communication between routines and
users through formal parameter list is selected.
The naming of routines and the method of error

handling in the library are also discussed.

This chapter is concerned with selecting and
implementing algorithms for solving a system of
simultaneous linear equations, finding inverse of

a matrix and obtaining the determinant of a matrix.

This chapter is concerned with selecting and
implementing algorithms for finding a root of a
non-linear function and the zeros of a real

polynomial.

This chapter is concerned with selecting and
implementing algorithms for numerical evaluation

of definite integrals.

Chepter 8:

Chapter G:

Chapter 10:

Chapter 11:

Charter 12:

This chapter is concerned with selecting and
implementing algorithms for obtaining the numerical
solution of ordinary differential eguations. The
two main areas considered are initial-value problems

and boundary-value problems.

This chapter is concerned with selecting and
implementing algorithms for the determination of
an optimum value of a non~linear function of one
or more variables and fitting a curve to a set of

data points.

This chapter is concerned with selecting and
implementing algorithms for evaluating special
functions., Routines for obtaining machine dependent

quantities are also discussed.

This chapter suggests how the library can be tuned.
The effect of tuning on some selected library routines

is also examined.

This chapter contains a summary of the research aims
achieved, the limitations of the study and suggestions

for further research.

-6 -

CHAPTER 2

BACKGROUND TO MICROCOMrUTERS AND NUMERICAL SOFTWAR®

2.1 Large and Small Computers

Computers have the configuration typified by that shown in
fig 2.1. They can be defined in their simplest form as a
system of hardware that performs arithmetic operations,
manipulations of data (usually in binary form) and decisions.
The control unit together with the arithmetic and logic unit form

what is usually referred to as the Central Processing Unit (CFrU).

There are three main types of computers in common usage.
There are large (mainframe) computers like the IBM 370, Univac 1100
or Burroughs 6700 and are found in large corporations, banks, univer=-
sities and scientific laboratories. They are used in a general-
purpose manner to solve complex scientific and engineering problems,
such as space craft guidance, weather prediction or electronic and
structural design. They also perform large-scale data processing
such as handling of records for banks, insurance companies, stores,
utilities and government agencies. These tasks usually in?olve
extremely large number of calculations and transfer of data. The
central processing unit of large computers is usually made up of
random logic; such as flip-flops, gates, counters, transistors,
registers and other medium-scale-integration (MSI) circuits. These
"Maxicomputers" can cost several million pounds; including complete
systems of peripheral equipment, such as magnetic tape units, magnetic
disc units, card punchers and readers,keyboards,and printers. They

are typically very fast and have large memories and backing store.

CONTROL UNIT

LOdNT

ARITHMETIC AND

LOGIC UNIT

MEMORY

FIG. 221

I0dLN0

Mini-computers, although having almost the same configuration

are much smaller in their storage capacity and slower in their

speed of operation. They are widely used in industrial control
systems, scientific applications for schools and laboratories and

in business applications for smaller businesses. Consequently, they
have prices that are in order of thousands of pounds (including input/

output peripheral equipments).

Microcomputers are the smallest and newest member of the
computer family. They generally consist of several integrated
circuit (IC) chips, including a micro-processor chip, memory chips,
and input/output interface chips. These chips are a result of the
tremendous advances in large-scale integration (ISI) of circuitry
where several thousand transistors can be placed on a single integrated
circuit. A chip is the small rectangular piece of silicon on which
this integrated circuit is implemented. The micro-processor is a
new LSI component which implements most of the functions of traditional
processor in a single chip. For the purpose of this research, a
microcomputer will thus be defined as a computer whose CPU has been
implemented using an LSI microprocessor. The progress of LSI
technology now allows the implementation of a complete simple
computer on a single chip. Microcomputers have small memories

(typically 64K)and are cheaper (from hundred to thousands of pounds)
and slower than mini-computers.
Mini-computers and micro-computers, will not replace large

computers in the areas already mentioned in which large computers

are used, however small computers (mini=-computers and micro-computers)

INTEL
IBM 370/168 DEC PDP 11/45 MCS-80

COST £2.2 million £25,000 £125

NUMBERS OF GENERAL

PURPOSE REGISTERS 64 16 8

PROCESSOR ADD TIME 0.13 us 0.9 us 2.0 us

WORD LENGTH (BITS) 32 16 8

MEMORY CAPACITY

(8-BIT BYTES) 8.4 million 256K EHK

MAXIMUM I/0 DATA

RATE (BYTES/SEC) 16 million 4 million 500,000

PERIPHERAL (FROM

MANUFACTURE R ALL TYPES WIDE VARIETY PAPER
TAPE
READER,
FLOPPY
DIsC,
PROM
FPROG.

SOFTWARE ALL TYPES WIDE VARIETY ASSEMB~-
LER
MONITOR,
PL/M,
EDITOR.

1K = 1024 bytes

TABLE 2.1

- 10 -

can of course, solve similar problems when the calculations are
less complex or the amount of data is smaller. This means that
small computers could perform laboratory calculations or handle
records for a small business. The greatest usage of micro-computers
has occured in areas outside the typical applications of large
computers. They are usually part of a dedicated system in that
they perform a specific task for that system. They typically
perform control and real-time tasks such as guiding a missile,
being a part of a machine tool, a banking terminal, managing a
warehouse and are not shared by large number of users. In such
cases, using large computers would be highly uneconomical.

Table 2.1. summarizes some of the gualities of large computers
and small computers. The large computer described is IBM 370/model
168. The mini-computer described is the DIGITAL Equipment (DEC)

PDP 11/45 while the micro-computer is the Intel MCS-80, based on
the Intel 8080 microprocessor, and are chosen to be representatives
of the various types of computers. It can be seen from table 2.1
that apart from cost, large computers perform better than small
ones in terms of speed, storage, software and peripherals. On the

other hand, small computers have the advantage of low cost.

2.1.1. Software

It is not necessary to discuss each of the items mentioned in
table 2.1 in more detalls since the area of interest for this
research is under software. Far more software is available for
large computers as compared with small computers. For example,
every major computer language or other systems programs can be used

on an IBM 370. Not only does IBM supply a large amount of software,

also other sources specialize in writing programs Tor IBM
computers., Significantly, less software is available for
minicomputers, but the manufacturers and independent sources
do supply several operating systems compilers for most common

e

-

languages and other programs. For microcomputers, 1itt
software was initially available, but the amount of software

is now on the increase. FORTRAN, BASIC, PASCAL and other
compilers are now available for most microcomputers and the gap

between minicomputers and microcomputers is decreasing rapidly.

2.2 Summary of hardware and software problems of microcomputers

Before discussing how the library should be designed to

suit microcomputers and the user community, it is pertinent to

know precisely most of the hardware and software problems of

microcomputers. This will help in formulating the structure

of the proposed library. Table 2.2 summarizes some of the

hardware qualities of various microcomputers and the limitations

of microéomputers are given below. These limitations are the
direct reasons for designing program libraries specially for
microcomputers instead of transfering the existing ones in large
computers directly to microcomputers.

a) The memory size of microcomputers is usually small (generally
from 8K - 64K bytes).

b) Floating-point computation is generally done by software
while it is done by hardware in large computers and as a
result for example, it takes 5.7 usec for CDC 6400 (129) to
perform floating-point multiplication while it takes the
Texas micro-computer TX990/L 60 usec to perform the same

operation which is over ten times slower,

- 12 -

=
@ E 142] (:_j‘)]
o |28 |3 (3B ”
= H O =3 B+ O
2wl- 8 |R2|EY 2
= |"5l88 |EEI°E| o | 83
= m [Bxy E OB o~ (R f—u% -4 Q E
N = O E = E@ 93] a:z Orv | x O
o S an O [= ~ =1 E Ay ~—
P ERIEBEE T |au|i6 =
2% |25 52 |[Eg|EE|aE | &
s 2 |8 828 ExlER| A<
MANUFACTURERS
MOTCROLA 8/8 | 89 |11 4| 0™ | YES 16800
TEXAS 990/4 16/16 | 69 [2/31 32K| 16 | NO TMS 9900
71L0G 8/8 1150+ {1/5.75 G4x| 4 | YBS | Z - 80
CROMECO 8/8 | 150+ 11.0/5.75 G4x| | vES | Z - 80
INTEL 8/8 | 78 |1.5/3.75 | 6y & YES 80804
DATA GENERAL 16/161 42 | 1.2/29.5 | 32¢] & NO mN 601

ot

* USES STACK K = 1024

Table 2.Z2a General purpose microcomputers

architectural qualities.

(see Burky (19) for more details).

The backing store for microcomputers is very limited and

small (usually two floppy discs or cassette tapes or paper

tape at a time)

Although microcomputers have just come to the scene, the number
is higher than large computers and they are more varied.
Infact, microcomputers with different microprocessors have
different assembly languages.

For large computers, a user only submits a program and
collects the results at the counter or printer (most of the time).
For microcomputers, the user needs to put in more effort
especially if the high level language used to write the

program is FORTRAN. In that case the program is first compiled
and if compilation is successful, a link operation is then
performed to link the compiled program to the high level
language runtime subprograms and other subprograms called

by the user's program. The linked output is either
immediately‘execuﬁed or the user still has to load the

linked output for execution. All these stages are usually -
done automatically by large computers. The linking process in
microcomputers can take up to six minutes or more. The breaking
down of the steps in microcomputers is as a result of small
memory sizes and backing store.

There are very few standards governing the storage of
information on the different types of backing store.

In otherwords, a listing of a program done by one microcomputer

on a diskette or cassette, cannot be retrieved by another different

microcomputer. A standard, the Kansas city standard, Jdoes

exist for the storage of binary information on cassette tapes.
However, experience has shown that it is the cassette recorder
used (usually a standard audio recorder) which needs to be
transported. Two major difficulties arise and these arethe
fluctuation in the tape speed on different recorders (this may
be in excess of 30%) and the speed of transmission of data

(a slow rate of 300 baud, is actually required for accurate
transmission - this is much slower than that used by most
manufacturers 1200 + baud).

g) For a large computer, there is usually an advisory service
provided. This means that difficulties encountered during the
use of a library routine can be discussed in the centre. This
is not usually the case with microcomputers since they can be
owned by individuals and small organisations which cannot
provide such services. Infact, the number of users of one
microcomputer is very small compared with a large computer
and as a result it would be uneconomical to provide such a
service,

h) The number of high level languages implemented on microcomputers

is still small when compared with large computers.

i) Fewer people are ready to invest in software designed for
microcomputers.
On the bright side, microcomputers are cheap and can be part

‘,? of a machine tool., They can easily be moved from place to place

and are now using home accessories such as cassette players and

televisions for input and output. 7Tower consumption is low and

~

faster microprocessors are being developed.

—d

£.3 The need for numerical software libraries for microcemputers

One major area of software is that of program libraries. A
program library is more than a collection of routines. The
programs have to be written within a unified framework. Many
program libraries are available for large computers, they range
from common mathematical functions and record-handling prograns
to such high specialised applicaticn programs such as accounting
for a particular type of business or solutions to a particular
class of engineering problems. One of the areas in which many
progran libraries have been designed is Numerical Software.

.

Such library programs are used to solve problems in applied

sciences and Engineering. There are at present many grours

jo)

esigning numerical software libraries for large computers. The
list includes IMSL (94) (International Mathematical and Statistical
ILibraries) which produced the first numerical software library

for the IBM 360 - 370 range; NAG (117) (Numerical algorithm Group)
which has large libraries in FORTRAN, ALGCL 60 and a smaller library
in ALGOL 68; EISPACK (151) which specializes on designing special
purpose packages such as MINIACK for minimization and LINIACK

for solving linear equations, all written in FORTRAN and PORT

(64) recently produced by BELL Laboratories for many large
computers and minicomputers. A more recent library is SLAC (25),
produced by Stanford University computer centre for many machine

ranges. Most of the above libraries were originally designed

- 16 -

for use on large mainframe computers, though PORT and NAG are

extending their libraries to minicomputers.

This obviously shows that numerical software libraries are
important. The reasons being that, with the availability of such a

library.

a) duplication of programming effort is reduced for the library
user.

b) well-tested, well-tuned routines are used,

c) dangers are "flagged" .

d) “"state of the art" algorithms are made available.

e) storage and Cénpilafion costs are reduced.

) elapsed time to get a working program is reduced.

Although microcomputers are mainly used for specific
(dedicated) tasks, there are now general purpose microcomputers
owned by individuals, schools, universities and industry. Because
of the low price, the number of users and owners is on the increase
and some of these users are involved in numerical computation.

It can therefore be seen that the reasons given for the design of a
numerical software library for large computers also apply for
microcomputers. There is no reason why this new technology cannot
be used for numerical calculations. Already in the field of
Engineering calculations, methods which are appropriate for
microcomputers are being discovered, (see Verruijt (163) and Waters

et al (168) for more details) and this trend is likely to continue.

- 17 -

Little has been done towards designing and implementing a
general purpose numerical software library suitable for micro
computers. There is however a small numerical software library
designed by Genz and Hopkins (68), written in BASIC, whose

emphasis is mainly on portability.

2.4 Considerations in designine a program library

Designing a program library for computers is a complicated
task and this complication is even more noticable when the target
machine is a microcomputer. The reasons for this complication are as

followss~

Firstly, it is necessary that each subprogram should qualify
as "good" software and the task of developing a sound and careful
implementation of a numerical method is known to be extremely difficult
and time consuming even for experts. The principies upon which good.
computer programs for numerical methods should be based have been
discussed by many authors in varyintcontexts. (see Cody (29), Rice
(136) Ford and Hagﬁe (53), Ford and Sayers (56))
The qualities which most 6f the authors feel numerical software should
satisfy are:
a) stability
b) robustness
c) accuracy
d) reliability
e) portability

f) speed.

- 18 -

Numerical stability ensures that any errors introduced
during calculation do not grow unduly, while robustness 1s the
ability of the algorithm to cope adequately with a wide range of
situations which may not be evident before steps of the algorithm
have been carried out. This means that the domain of problems
which the routine is able to accept is "sufficiently large".
Naturally, it would be advisable to include an algorithm that is
capable of achieving high accuracy, if requested, subject only to the
limitations of the particular computer upon which the algorithm
is implemented. Reliability enables the user to have confidence
in the results obtained using the algorithm. This means that the

requested accuracy is attained nearly all the time.

It is also of importance for an algorithm not to vary in
performance in different machines. This will make it possible
for the algorithm to be implemented in different machines thereby
making the algorithm to be portable. Clearly if two algorithms
solve the same class of problems and satisfy the previous
conditions, then that which requires fewer operations is judged to
be better because it will be faster. Hence speed is also

important in choosing a routine,

Unfortunately, some of these gqualities are inherently contradictory.
The requirements of high accuracy and speedy calculation can
clash., This is true with methods for solving ordinary differential
equations. If low accuracy is required, a fast Runge - Kutta

method can be used while for high accuracy, either a Runge-Kutta

method of very high order or Adams or GEAR'S methods are used

and these methods are slow. Reliability ahd speed can also clash,
especially in the area of quadrature. Generally adaptive schemes

are faster (more efficient) than non-adaptive schemes, but non-adaptive
schemes are more reliable than adaptive schemes. See Rice (136) and

Lyness and Kaganove (106) for more details.

It follows that the creation of any computer program, necessarily
involves decisions, implicit and explicit, concerning the relative
weight and importance to be assigned to the possibly conflicting

attributes.

Secondly, the Library should display a global design that is
consistent with the assumption that the routines will be useful to
a general user community. However, users have'ww@«qinterests. As
an example, a Library program may be used to solve a problem for
which the cost of computer time is negligible compared with the
implications of failing to solve the problem or of finding an
inaccurate solution, so that the need for reliability dominates all
other criteria. In another application of the same routine to
another problem, however, the most importient consideration may be

speed of execution, even at the risk of inaccuracy or failure.

Finally, microcomputers have small memories and as a result
selected routines may not be as current as possible if such current
routines require much storage. A large number of routines will also

be difficult to store.

These reasons show that it is difficult to design a library

which will satisfy the ideals of each user and as a result any
library will inevitably be subject to criticism, from some users.
It is therefore essential for a library designer to state his aims

from the beginning.

2.5 Alms of the Library.

The advantages of microcomputers are largely economic and are
few. This means that a library designer for microcomputers is
faced with many problems. However, an attempt will be made to
overcome most of the disadvantages and when able, some of these
disadvantages will be exploited to create a suitable library for
microcomputers. In order to covercome most of these difficulties
mentioned about microcomputers and for the library to be of use to
a considerable number of microcomputer users who are involved in

scientific calculations, the library will be designed with the following

aims.

2.5.1 1Intended users

Intended users include scientists, students (schools, universities
and colleges). These are the people who make great use of microcomputers
for numerical computation. The library will be designed to satisfy
the needs of both advanced and novice programmers in scientific
calculations. It will contain software to solve problems which are
basic in that field. This means that the library will serve a wide

range of scientific users of microcomputers.

2.5.2 The Library Routines,

Attempt will be made to provide sound, careful implementations
of methods for solving useful categories of numerical problems.
Routines that use little memory and are easy to use will be at advan-
tage. The number of routines included will be small, but the
library will still be powerful. This means that only routines
which solve problems which are frequently encountered by the users,
will be included. Also routines which can exploit the special

features of microcomputers will be of high priority.

2.5.3 Portability

Many definitions have been given to the word - portability.
(see Aird et al (2), Waite (165), Brown (16)). The following
definition given by IFIP working group (on numerical software)

(57) will be adopted:

"A program will be described as portable over a given range of
machines and compilers if without any alteration, it can compile and
run to satisfy specified performance criteria on that range".

Most Libraries (64) usually include the exception of providing
machine dependent quantities éf the host computer at installation.
Machine dependent quantities will be discussed later. On the other
hand, if in transferring a program between members of a given range
of machines and compilers, some changes have to be made to the base

version before it satisfies specified performance criteria on each

of the machines and compilers, then such a program will be described

as transportable provided:

- P27 -

1) the changes lend themselves to mechanical implementation

by a processor.

ii) the changes are limited in number, extent and complexity.

As it has been pointed out, microcomputers are different from
each other and it will be uneconomic if a library designed and
written for them cannot compile and give reasonable results in
many microcomputers. In otherwords, a library which can compile,
run and produce reasonable results in many microcomputers is
desirable, This saves duplication of effort and hence time and
money. This library will therefore be portable according to

IFIP definition.

2.5.4 Installation and usage

Since those who will install the library are not likely to be
experts in numerical software, the library will be such that it
can be easily installed. UNo knowledge of the hardware or machine

dependent quantities will be required.

The library will be easy to use, and if there is any routine
which the author thinks a novice programmer will find difficult
to use, an easy-to-use version of the same routine will be
provided. This means that the calling sequence of each of the
routines will be made simple. Also a good documentation will be
given. It must be stressed that ease of use is vital since there

will be nobody (except the documentation) to explain to the user

how a routine is used.

CHAPTER 3

NATURE OF THE LIBRARY

3.1 Introduction

The nature of the library should closely reflect the aims
of the library. This means that in formulating the nature of the
library, the aims should constantly be taken into great
consideration. Therefore in this chapter, care was taken in
deciding what language should be used, how the library should be
stored, the way algorithms should be selected and how machine dependent

quantities should be determined.

3.2. lLanguage Selection

Attempts are being made to design high level languages
specially for microcomputers. FORTH (89) is one of such languages
and this trend is likely to continue until a particular language
becomes very popular with microcomputers. Already PASCAL is
being regarded as the language for microcomputers from many
quavlerg, (see microsystems 81 preview (112)>and a standard is
alréady being agreed on. However old and well known languages are
also available in many microcomputers. Some of these are PL/M,
FORTRAN, BASIC, COBOL, ALGOL 60, Assembler language. But the number

of microcomputers that have these languages vary.

Tt must be made clear that choosing a programming language
for writing a numerical software library is a critical step upon
which the practicability of using the library depends. Most of the

existing numerical software for mainframe and minicomputers is written

in FORTRAN and ALGOL. Also most of the existing numerical

sof'tware of microcomputers is written in BASIC, because almost
all (if not all) microcomputers that have high level language
compilers or interpreters have BASIC as one of them, This is as
a result of little storage usually required by BASIC compilers

or interpreters. There is the 3K control BASIC, 8K North star
BASIC, 16K Cromenco BASIC and most are usually ROM based. Most
people buy microcomputers because they are cheap and as a result
any development made which decreases the price of a microcomputer
is very much welcomedby buyers. Also buyers are more interested
about how much their computer can do than how efficiently it does
it. This is why a microcomputer which has a ROM based BASIC
interpreter is 1likely to sell more than FORTRAN compiling micro
systems requiring considerable system software such as loaders,
libraries, debugger etc, since this will make the price for the

letter higher than the former.

On the other hand FORTRAN Code in general runs at five to
twenty times faster than equivalent BASIC code in currently
available microcomputers. Also at present most numerical software
is written in FORTRAN and ALGOL 60. This means that a new library
for numerical computation does not suffer too much from the problem
of translation if it is written in FORTRAN. This will also reduce
design time or programming time. Although FORTRAN as a programming
language is getting out dated, it is still the "native" language
for scientific (numeric) programming and the level of software

technology supporting FORTRAN and the comparative level of

K
~

standardization makes it attractive. Most scientific programmers

are used to FORTRAN and learning a new language Just to use a
library is not encouragable. A prospective user of this library
is likely to have been using a library written in FORTRAN. This
means that such user need not translate the olgd programs 1f this
library is written in FORTRAN. Continuity is thereby maintained.
It must be remembered that microcomputer memories are getting
cheaper and hence larger. Already many microcomputers now have
FORTRAN compilers. The list includes Motorola, Cromenco, Intel,
Zilog, Texas, mNova, Altos, Superbrain, Rair Black Box, Apple,
Complec series I, Terodec. The Tx 990/4 Texas microcomputer
FORTRAN compiler needs 48K of memory and it satisfies the
ANST 1966 standard completely with many extra functions.
Also there is the 48K Zilog FORTRAN compiler.

PASCAL is now gaining ground with microcomputers and is regarded
as the language for microcomputers in the future but it is not a
strong numerical language when compared to FORTRAN. Also vexry
small numerical software has been written in PASCAL. Languages
usually have areas of specialization. COBOL for commercial
programming, FORTRAN for scientific computation, LISP for list
processing, FASCAL for structured programming and it embraces
commercial and scientific programming without implementing

both in full. Also from the author's knowledge, at present the

number of microcomputers that have PASCAL compilers and those having

FORTRAN is about the same.

Assembly language is excellent when it comes to speed, but
writing a routine in such a language to evaluate complicated
expressions can be a tedious job. Also portability becomes
impossible, In concluding, it is suggested that for small
microcomputers (personal computers) a library written in BASIC
is preferable because they do not have other high level language
compilers or interpreters. For medium size or large
microcomputers, a library written in FORTRAN is advisable. As it
has been mentioned, many numerical software routines and libraries,
have been written in FORTRAN and if this library is to be written
in BASIC, then a translation is needed if any of the routines written
in FORTRANave required to be in the library. Also medium or large
microcomputers will not make use of thelr fast FORTRAN code compared
to BASIC code except the library is again translated to FORTRAN

which is a duplication of effort.

The new library was written in FORTRAN because of the following
reasonss
a) The routines will execute faster
b) Many of the routines which were included in the library
did not need any translation since they were already
written in FORTRAN
¢) A small library has already been written in BASIC and

writing another one in BASIC might be a duplication of

effort.

4) The library can easily be translated into BASIC if it is
to be implemented in a small microcomputer that have no
FORTRAN compiler. This will be better than first translating
many routines from FORTRAN to BASIC in order to form the
library and then translating the library from BASIC to
FORTRAN for large or medium size microcomputers that have
FORTRAN compilers.

e) FORTRAN is still a very strong language for numerical
calculations.

f) Memory cost is decreasing and as a result many personal
computers will soon have memory large encugh for FORTRAN
compiler,

g) Prospective users, apart from school students, are likely
to be those who have been writing programs in FCRTRAN before
and a library written in FORTRAN for microcomputers will make
the library as close as possible to libraries written for

mainframes. This will make user's adjustment time as small

as possible.
h) A large number of microcomputers now have FORTRAN

compilers and this means that the library will be available

for many microcomputer users.

3.3 CHOCSING A FORTRAN DIALECT FOR THi LIBRARY

The library will be a failure in terms of its usefulness

if it fails to compile and produce meaningful results on most

- 28 -

microcomputers which have FORTRAN compilers. In order to achieve
portability, manuals for different FORTRAN dialects used by
microcomputers were collected. Table 3.3a shows some of their
differences from ANSI 1966 standard FORTRAN in areas which are related

to routine design and numerical calculations.

Table 3.3a has shown that out of the seven FORTRAN compilers
considered, only oresatisfies the ANSI 1966 stenderd. This
obviously will make portability more difficult. Although they
do not satisfy the ANSI 1966 standard, most of them have constructs
in excess of ANSI 1966 standard FORTRAN. As an example Intel.

FORTRAN-80 has many qualities of FORTRAN 77 (IF---THEN--ELSE)

FORTRAN has gone through many standardizations. Some are the
ANSI 1966z (6), ANSI 1966b (7) ANSI 1977 (8) and more are still
to come. The main aim is to encourage portability. Unfortunately,
many compilers writers do not still keep to these standards, and
this explains the differences shown in table 3.3a. A dialect of
FORTRAN known as FFORT described by Ryder (143) is another attempt
to provide a tompatibie * FORTRAN dialect and it has been used to
write a numerical software library known as PORT (64) for large
and mini computers. FFORT is a portable subset of ANSI 1966a standard
FORTRAN and as a result it is more restrictive. The nature of
microcomruters call for a subset of ANSI 1966a which is even more

restrictive than PFORT and at the same time not as restrictive as

FORTRAN II or Basic FORTRAN.

O

ATTRIBUTE

MOTOROLA |TEXAS

ZI1.0G § CROMENCO

INT&L
FORTRAN=-
80

DATA { MICHO=-
GEN=~ SOFT=-
ERAL | 80

mNOVA

Single preci=-
sion Arith.

& Functions

Double
Precision
Arith. &

Functions

Variable
Names up to
six charact~

ers

Arguments of
Functions can
be Array

elements

Complex Arith.

& Functions

Satisfies
ANSI 1966

Standard

e et
T R

Table 3.3a

H

Some attributes of

FORTRAN Compilers.

Comparible FORTRAN (CF) designed by Day (39) is a dialect

which in general is more restrictive than PFORT, but not as

restrictive as Basic FORTRAN. However, the nature of microcomputers

still calls for more restrictions on CF and these are:

a)

b)

d)

f)

Variable names should not be more than five
characters « as in FORTRAN II.

No Complex arithmetic should be used and if there is
the need for complex arithmetic to be performed,
functions must be included in the library to perform

such arithmetic.

In compatible FORTRAN, it is suggested that a subprogram
should not be more than 200 lines long in order to make
compllation possible in some systems. In microcomputers,
this numBer is reduced to 120 excluding comment lines.

If a subprogram is more than this size, it is split

1o two or more subprograms.

There should not be more than five continuation lines

or fifteen consecutive comment lines.

The statement DO I = I1, I2, I3 should be in one line,
Tn the master or base library, only single precision

o~
|

and integer arithmetic should be us=d. also only

i

{

integer and single precision functions such as INT,
EXP, SIN etc should be used. This means that the

master library must be in single precision.

g, Order of statements should be in the following form:
i) Header Statement (PROGRAM, SUBROUTINE, FUNCTION,
BLOCK DATA)
i1) Type statements
111) External statements
iV) Dimension statements
V) COMAON statement
vi) EQUIVALENCE statements
vii) DATA statements
viii) Executable and FORMAT statements
vix) END line

This order agrees with ANSI 1666a, but it is more restrictive,

PROGRAM, BLOCK DAT4) and the END line.

The Motorola FCRTIRAN is very minimal. It does not allow
labelled COMMCN neither does it allow more than six variables
in the parameter list of subprograms. The expression X % = Y
where X and Y are real numbers is not acceptable, rather a
function, POWER which is not in ANSI 1966a, is used to compute
X % % Y. Also the use of C ¥ L 4K (where C and X are constants)

as an array subscript is invalid. Even
4 = SIN(X) + cos(Y)
Cannot give 4 covrect result but
A= SIN(X, + 0.0 + COs(Y)

does. This shows that there is a fault in the way temporary

™

Comment lines can appear between the header statement (ie SUBRCUTINE,

storage 1s handled by Motorola FCRTRAN compiler. This shows

that much will be lost if a dialect is chosen to satisfy Motorola
FCRTRAN compiler, because other compilers listed in Table 3.3a
are not affected by these restrictions. This was why they were
not mentioned in table 3.3a. It can alsc be seen that from the
attributes listed in tadble 3.3a, Motorola FORTRAN Compiler has
only two. All the others have at least the integer and single
precision (real) functions that are in - ANSI 1966a set of inbuilt

functions.

With the additional restrictions (a to g), a library written
in such a dialect will be able to compile in all the microcomputers
mentioned above except Motorola MABOO (until it is upgraded).
The abcove additional restrictions were arrived at after studying
the various FORTRAN manuals for microcomputers. Such a library
should be able to compile in microcomputers that have FORTHAN
Compilers that satisiy ANST 1966a except for complex or double
rrecision arithmetic. The new library was written in this dialect
and its name is TONUSOLIM (Fortable Numerical Software Liﬁrary for

Microcomputers).

3.4, The selection of topics to be included in the library

The contents and structure of a library should reflect
directly the needs and requirements of the user community. It

has been mentioned that intended users of this library are students

. ‘s . . Contists. Some of these
(universities, colleges and schools) and scientists. DSome of

scientists might be involved in research. Fortunately, some

statistics have been obtained concerning the usage of a numerical

software library in a Computer centre of a university by Alrd

et al (3) and that of a research laboratory by Bailey et al

(10). Their findings helped in deciding which topics in

numerical computation should be included in the library. Table

3.4a shows the findings of Aird et al (3) and the list is in order
f the number of accesses made to each area. The area or topic
that is accessed most comes first. The same applies to

Table 3.4b resulting from the work of Bailey etal (10). ESince

such statistics are not available for schools, a probable 1ist

of areas likely to be of use to such a community is given in

table 3.4c.

One of the disadvaniages of using past libraries contentis to J
determine the contents of a new library is that some areas whicﬁ
are useful to the user community might not be included in the
0ld libraries. However it is considered reasonable to use areas
mentioned in the tables to determine which areas should be
included in the library. To include only areas which are actuelly
needed by the user community being considered, the following
method was used for selection, Areas which appear at least in
two of the three lists were selected. Also if an area is not

lower than the fourth position in a list, then it was also

included in the library. Using this method of selection, the

author felt that only subprograms that solve problems which are

N
[ﬂ
m

O
ot
@
or
o

et
[$3]
o
(@]
O
F
o+

m

(]

g2}
jon

o

o
ot

o

(¢4}

j=
n
c+ [¢)]

(o] =

n
b
D
H
¢}
Ja
fui
Oy
fmt
jad
jon
[42]
2y
[N
3
“t
oy
[¢3]

library. This made the library

1555

The derth to which an area is dealt

=
[N
ot
jox
9]
o
O
o
b
u
H
0]
It
-]
D
@]
c+
c—*.
=2
[¢]

user community and the storage available. Table 3.44 gives the
list of areas to be included in the 1ibrary. However, the author
found insufficient time to complete the design of all the routines
Tor the different areas. Future designers can implement the

renaining areas and if possible expand the list and each area

covered.

3.5 Method of algorithm selection

Having chosen the problem areas, it is then n

4]

ce

n
o

ary to

.

determine the apwopriate algorithms which are suitable for solving
the type of problems envisaged in that area. It is commonly
accepted that each algorithm included in a library should

enjoy the following six characteristics:

i) Stability
ii) Robustness
iii) accuracy
iv) reliability

v) portability

vi) speed.

P

(see Lyness and Kaganove (106)). However as the basis o

*

. . . o . 3 a4
algorithm selection 1s primarily directed by user need, it 1s

= o4 Seal ; om
sometimes necessary (because of the stage of technical development

in some areas) to provide an algorithm tha fails to exhibit

Systems of Crdinary Differential Fgquations
Least Squares

Fourier approximation

GQuadrature

Zeros of a function

Special functions

Determinants of a maetrix

Minimization

Inverse of a matrix

Numerical inversion of Laplace transform
Nonlinear equation and systems of nonlinear equations

Approximating the derivatives of a function

Table 3.4a : TOFICS IN A UNIVERSITY COMPUTER CENTHE

LIBRARY (IN ORDER CF NUMBER OF ACCESSES

MADZ BY USERS).

Zeros of a polynomial

Fast fourier transform

mn

pecial functions
Spline fitting

Ordinary differential equations

Linear eguations ;

Zeros of a function

Least squares polynomial fitting |
Minimization ;
Determinants
Eigen system
Sorting ?
Table 3.4b: TOPICS IN A RESEARCH LABCRATORY LIBRARY ;

(IN ORDER OF NUMBLR OF ACCESSES MADE BY

USERS).

T T e

SIS

Topilcs

Linear equations
Roots of a function
Roots of a polynomial
Inverse of a matrix

Minimization

Quadrature

least squares

Crdinary differentizl equations
Determinants

Special functions

Table 3.4c : SUGGESTED TO-ICS IN A SCHCOL LIBRARY

(IN ORDER OF NUFMBEZR OF ACCESSES MADE BY

Linear equations

Inversion of a matrix
Determinants

Ordinary differential equaticns
Quadrature

Zeros of a function

Least Sguares

Minimization

Special functions

Fourier approximation

Eigen system,

Teble 3.4d: SELECTEZD TOPICS (IN ORDER

OF PRIORITY)

any

[
¢}
H
]
o3
[
D
W
Io?
W
[

s

O

Hh

o

s

m

56)) Covioe Vol . .
(56)). Obviously when it comes to microcomiuters, the staze

T hnical b .
of technical development has an important part to rlayv in

selecting an algorithnm. Firstly, the process of developing
algorithms suitable for implementation in microcomputers is in
its early stages. Secondly, in choosing an algorithm, the
restrictive nature of microcomputers, in terms of architecture
and softiware has to be taken into account. So in choosing an
algorithm, the following questions have to be asked (in order of
importance).

1) Is it relisble? (will it make high quality software?

Has it been tested and found reliable?)

ii) 1Is the algorithm suitable for implementaticn on or can

it be modified to suit microcomputers? (This is mostly

in terms of memory requirements and software requirements)

iii) Is it simple to use?

iv) Does it take a reasonable amount of execution time?

Tt is suggested that the algorithm should, whenever possible,

satisfy the first two conditions before being included in the

library. In some cases & reliable algorithm might require high

memory requirements. Such algorithme were discarded in favour

of a less efficient one that required lower memory space. This

is because an algorithm will pe of no use if the computer cannot

contain it or if it leaves only a very small amount of storage
~ i
for the programmer. A suggested maximum amount of storage that

a compiled routine should take is €K bytes. Obviously a routine

of any size is likely to take more storage after it has been

3

1

s

linked with inbuilt functions such as square root, multiplicatio
etc and the actual sizes of arrays have been given. The

compiled output of any routine in the library by Tx990/4 micro-
computer in less than 6K. This method of selection of algorithms
ensures the selection of algorithms that exploit the architecture

of microcomputers and are of use to the expected user community.

3,6 Storage of the library

The two types of libraries jroposed by Nelson (11%) for

microcomputers are ROM and disc based libraries and reasons are
given by him to support a RCM based library for Engineering
problems. Such a library he explained should be coded in machine
language and should contain mainly mathematically formalized
operations. Also the library would be basically incorruptible,
reliable, fast to access and requires no interfacing or maintenance,
Since TONUSCLIM is a general-purpose library for numerical

v to be changes zs new, more efficlent

¢}
i3
..g
®
o]
fute
~
]
e}

computation, ther
and microcomputer oriented algorithms are discovered. Hence having
the library in ROM will make the changes more difficult. Also
installation of the library by those who have no good knowledge

of hardware will be difficult and the writing of the library in

machine code will meke portability imrossible

therefore disc based.

NTIE AT T 2 . . s s .y
PONUECLIM 1s designed in such a2 way that doubl

)]

precision versions of the library can easily
be formed from the single precision version. It is commonly

suggested that all numerical computations should be done

(=0

double precision. This im

v

roves accuracy and reduces the effect
of ill-conditioning. However for microcomputers, we are plagued
vith the problem of small computer memory and as a result the

ibrary

[

available space has to be used judiciously. So if the
is to be installed in a microcomputer that has enough memcry,
especially those that have hard discs, there is no reason why

the double preéision version cannot be implemented if double
precision arithmetic is availzble. For microcomputers that have
small memory but also have double precision arithmetic, the
partial double precision version of FONUSCLIM is suggested. Only
intermediate results are computed in double-precision, in a

partial double precision version subprogram.

In order to achieve easy change from the single precision
version of PONUSOLIM to cther forms the following steps were
taken.

a) No real variables were declared explicitly

b) When a double precision version of any subprogram is

created, all the real variables become double length
(i.e. double precision). In order to achieve this

all the real variables are declared as double~length,

[y
<
<
X
Y.
“
[&
ik
<
o f
:
:
%

'
e

N
1

but this declaration is made dormant by placing
"C." at the beginning of the declaration. The
removal of "C." activates the declaration. Similarly
variables that are used to store intermediate double-
precision results during partial double precision
computation are declared double length with "C=" placed

at the beginning of the declaration. The remcval of

"C=" activates this declaration.

c) Sometimes, there is the need to change a whole line as
the double precision version is being created. For

example, consider the subroutine:

SUBROUTINE RF2LE (ID, N, A, B, IFAIL)
1

Q=A(I,0)x B

T

it

SQRT(Q)

RETURN

ERD

When the double precision version is being created, the statement

T = SQRT(Q

is expected to become

T = DSQRT(Q)

rder to achleve this ¢ el :
In order to achieve this conversion in PONUSCLIM, the subroutine

is written as:

SUBROUTINZ RF2LEZ (ID, N, A, R, IFATL)

4
%

€

T = SQrT (Q)
Cx T = DSQRT (Q)
,
3
RETURN .
END

The removal of Cx and the previous line

T = SRN(Q)
results in creating a double precision version. In PONUSOLINM
there are always such pairs if the function has both single and
double precision versions. The same approach is used for creating
partial dcuble-precision version except that "C+" is used instead

of "C

Transferring a program from one microcomputer to another of
different make is still a difficult task. One method which is
tedious, is to list the progranm and take the hard cory to the
other microcomputer where 1t is again typed in. Faper tape input

is another possibility and there are cheap manually operated

reacexr

wn

, but they are tedious to use . This approach appears

to be the easiest and cheapest means if microprocessor is
stand alone. However, there is the added cost of a reader. Those

who cannot afford a reader have to input the library by the first

nethod which is rather tedious.

A program 1s written to convert the single precision version
to either double precision or partial double precision once the

input of the single precision has been done. For those using the

first method to input the program, it will be betier for them to
create the version of the library that they want straight from
thz listing. There are three options and these are:

on is

-t

a) Nothing should be changed if single precision vers
being implemented.

b) For partial double precision version, all the "C-" should
be removed. Each "C+" and the preceding line should be
removed.

¢) For double precision versionm, all "C-" and "C." should

be removed. Each "Cx" and the preceding line should be

removed,

So from the single precision version, the other versions can

o

ol

easily be created either manually or with the help of a program.
Tt must be remembered that when the double precision version of

. 43 1
any routine is in use, the real arguments of the routine must be

declared as double precision in the calling program. It can

\

h
v

™
4
Q

ci

re be seen that, while PONUSCLIM is by itsel? portable,

its vaviaats . are transportable.

I

[N

& routine was broken up to two or more routines Just
because of its length or a jump which might be out of range,

then all these routines are kept in one file. Each other routine

=5

s in its own file. However if the microcomputer has a large

backing store which can accomodate all the routines in the 1

e

brary,
(which is very unlikely), systems programs for linking and user's
program, there 1s no reason why the library cannot be in one

file. In that situation, the "FIND" command which is present in

many micrccomputers with FORTRAN compilers can be used to select

the library routines called by a user's program.

3.8 Specification of machine - dependent guantities

The 3717 working group on Numerical Software has produced
a list of machine dependent quantities and this list is given by
FORD (55). The 1list is divided into Arithmetic set, Input/output

set, and miscellaneous set. HMany libraries do not keep to this

The provision of machine dependent gquantities by numerical
software libraries has been a problem for some time. These
gquantities have reduced the portability power of computer libraries.
1ibrary designers for large computers have used to ge

Three ways

o) g ramined
tI’IPS‘:’ Qdmtl—tleo 1)’1to Iw“nnlna‘ PI‘06 ms are Iow examinea,

i
=
[N

]

(/‘

In the first method, machine - dependent guentities are

, so that the correct values can

method has the advantage that the generated version can be made
to be eificlent for a given comruter-compiler enviroment.
However a change of compiler or a new computer, requires extensive

changes in the master source and the programs that control it.

3

n

o~
<

e requirements, together with the requirement that up

and corrections be generated in machine-decendent form before bein

distributed, make a sizable staff of maintenance people necessary.

The second approach uses subprograms to determine the machine-
dependent quantities, such as the base of the arithmetic, the number
of character stored in an integer storage unit e.t.c. (see Gentleman
et al (67), George (69), Malcolm (108) for more details). These
subrrograms can then be called at run-time either by the library
routines or user's program. The subprograms used are not given
any prefixed values and as & result they are not particularized
for each target computer. This 1s the ideal condition for total
portability. Unfortunately, the algorithms designed so far do

"or all cases. The algorithm of George (69) demands

o
o+
=
o
H
o
-

. P 3 I TR
that the input and output unilt numbers be provided by the user

and it has failed for Honeywell 6050 (BCD Mode). Also for

:

com:uters in which the floating-point registers contaln more
bits than a word or a multiple of words in storage, such as

Honeywell 600 and ICL 4130, Malcoln's (108) algorithm failed

to produce the correct results., This second approach is also

$iov since the quantities have to be computed. Owing to these
e b ot S e o 3 3

limitations, this apirocach is hardly used.

The third method uses subprograms that can be particularized
for each target computer and then called at run-time, in order

esired machine

aT
=

o)
2,

to obtain the

’U
”3

endent quantities. No computation

is done since the values are T

H

efixed. This method is used in
NAG and PORT libraries. Description of this method is given by
Redish et al (135), Fox et al (63) and Ford et al (56). This
method is desirable since only the machine dependent quantities
are changed as one move from one computer or compiler tc another
The coding still remains the same and apart from these particular

subprograms, no other subprogram in the library is perticularized.

However, the problem of achieving total portabiliiy is still there,

Somebody is needed to cbtain these quantities from the hardware
and langzuage manuals of the computer. 1In some cases these gquantities
are not given explicitly and it is even worse when it comes to

microcomputers., This means that the installation of the library

is 1likely to require the help of an expert.

by

3.8.1 Specification o

machine-dependent gquantities in the library

After surveying the thrée methods, the gquestion that is still
to be answered is which one is most appropriate for microcomputers
1if TONUSOLIM is to be portable and easy to install? For large

. . 5 sroe 1 T vle, it is
computers which will be used by a large number ol peorle, it i

- LE -

easy to get a specialist to install such a library but Tor =
microcomruter which might be used by just a handful of peorle,
it will be desirable for an ordinary user to install it. Using

the third method implies that the user may have to provide what

he or she dces not know or understand. Also this method doe

u

not meet the portability requirement of PONUSCIIN., The firs

s

method is even more difficult to implement since more change

n
B
M

required.

Although the second methed has been a failure on many large
computers, it is not likely to be a fallure on microcomputers.
The reason being that, the reasons given for the collapse of
this method in large systems are not likely to occcur in
microcomputers. AS an example, flozting-point computation is
still being performed by software. The floating-point 32-bit
hardware register Just developed for microcomputers is a
multiple of the size of a word which is usually 16 or 8 bits.
The main reason why Malcolm (10z) algorithm failed in some
large computers was that floating-point registers have few extra
bits in order to perform floating - point computations more
accurately. This is not likely to be the case with microcomputers
because of their simple nature. When it comes to the number of
characters in an integer storage unit, the number is always two.
This is a situation where the restrictive nature of microcomputers
has helped. However as it has been mentioned, this method of

. . 313 . i 1 am uses
getting machine-dependent guantities into a running program u

much computer time. To overcome these problems, the following

i
.
i

tince PONUSOLIM is for numerical computation only the arithmetic

set and the standaxd nutpui unit are considered and the list of

machine-dependent quantities is made up of:

Base of arithmetic

(W

[N
e
N’ S’ N

Number of Base digits in the mantissa
Relative precision
iv) Range of numbers representable

v) Output unit number.

In PONUSOLIM during installation, some subprograms are

Thes

[}

ct
fla]
[
)
3
+
e
ct
Jtn
©
n

used to determine the machine-dependen
subprograms are provided in the library. Once these quantities
have been determined, the subprozrams are then modified s¢ that

the determined values become prefixed values. As an example,

~h

if the function

REAL FUNQTION RF1MQ(R)

RETURN

END
is used to calculate the machine relative errcr, then after
it has been obtalr

to become:

ined (say 0.9532-06) the function can be modifie

-

a

™

e

RZAIL FUNCTION EFINMQ

i

(58

v, the second and third

methods are combined. The user need not provide what he or

0
ja g
o
N

oes not know neither is time wasted in computing the

machine~derendent gquantities as in the second method, each time

There are still no methods for computing the outrut unit
number. The provision of this number cannot pose any problems

since a user of a microcomputer is very likely to know this

number before writing a program for that microcomputer. High

the problem of reading the various manuals of the system, to
obtain the necessary machine~-dependent quantities, in order to

install the library.

CHATTER &4
e oM el Gt

LIBRARY AND US:R INTERFACE

4,1 Parameter list

Routines have to communicate with one another and the user.
In FORTRAN there are two possible means of communication and
these ares
i) through formal parameter list.
ii) through CCMMON storage.

In the library, the first approach is adopted because:

a) With COMMON, it is impossible to include arrays of
variable dimension. is means bad management of
storage which cannot be overlooked in microcomputers
where memory size is small.

b) A better understanding of a routine is accomplished
if all the gquantities upon which its execution depends
are in the parameter list. This understanding is greatly

hampered when the COMMON statement is used.

Occasionally , in the library COMMON storage is exploited.
Sometimes, a subroutine to perform a single task such as finding
the roots of a polynomial or integrating a function may be longer
than the number of lines suggested for a routine or there may be a
jump which might be out of range. In such cases the subroutine has
to be broken into two or more subroutines. The user is only aware

of the main subroutines that call on others. In order to reduce the

[l

amount of storage used by these subroutines, most of the

variables used by the subroutines and are local to the subroutines
are put in COMMON storage, so that they can be shared by the
subroutines. The naming of the COMMON storage is in accordance with
the way subroutines are named in FONUSOLIM. This removes the pessi-

bility of duplication of names either by a user or the library

designer,

Local and workspace arrays are also included in the parameter
list. However if a local array is known to be of fixed size
(mOStlyiM\&nijf constants) then it is excluded from the parameter
list since no storage is wasted by declaring it internally (in the
subroutine). Effort is made to reduce the size of the parameter
list of subroutines as much as possible. A disadvantage of using
formal parameter list for communication is that the list can become
very long thereby putting off some users. In the library, the size
of the longest parameter list is twelve which is moderate. The
idea of variable parameter list is now being put into practice in
FORTRAN libraries (see Uday et al (162), Gill et al (71)). The
user need not specify some parameters and these are set by default
so that a flexible subroutine that has a long parameter list can
also serve as an easy-to-use routine. This approach is not
popular yet and it might create additional difficulties for

those who are not Tamiliar with it. Such a library is likely

to be complicated and updating could be difficult.

4.2 Naming of Routines,

A good library should be such that the names of the
individual routines should be:
a) Systematic - so that users can easily find their

way around the contents of the 1library

Je

b) easily identified - so that users can recognise the area
in mathematics to which a routine belongs.
c) "short and snappy" - so that the individual names are

easily remembered.

The last characteristic is not difficult to fulfil since at
most only five characters are used in PONUSCLIM for naming routines.
In order to fulfil items one and two, the following method of
naming routines was adopted. The first letter of a subroutine
name is "R"™. A function name can start with I, R, D depending on
whether the function is an integer, a real or double precision
function respectively. This is in accordance with the way
supplied inbuilt functions are named in FORTRAN language. The
next character stands for the langusge used to write the routine.
The next character is a digit and it shows the number of the
routine in the problem area. The last two characters stand for the
problem area and they act as abbreviation to the problem area.

As an example, consider
SUBROUTINE RF1LE (ID, N, A, I, IFAIL)
The name RF1LE means that this subroutine is written in

1 1 it 3 i i inear equations.
FORTRAN, and it is the first routine under linear equation

In a situation where the number of routines is more than nine

in a particular troblem area, such an area is divided inte
smaller problem areas. In the library, such a situation did not
arise. Such names are not common and as a result, the danger of

duplication of routine names by users is reduced.

4.3 Error handling

In most libraries, any routine which can reach an error state
is normally equipped with ways of informing the user that an
error has occurred. The errors or failures ceonsidered here are not
the usual run-time errors detected by the compiling system such as
overflow, rather it is those that must be anticipated by the author
of the routine and can be detected by explicit coding in the library
routine. Such errors normally result from:
a) a user supplying a parameter which is out of range. This
means that computation cannot proceed.
b) the inability of the routine to produce the desired
results, such as determining the inverse of a singular

matrix -or decomposing a zero matrix.

Communicating errors to users is done in different ways in
different libraries. The NAG library (118) written in FORTRAN

provides a parameter IFAIL, 1in the parameter list of any routine

which is likely to reach an error state. Also IFAIL is included in

the parameter list of the error routine. FAIL is set by the calling

progran to control the action taken. I IFAIL is input as zero (hard

fail), then an error message is printed and execution terminated.

n

An alternative option is that IFAIL is input as one (soft fail),
the error routine assigns the current error number to TFAIL

now used as output parameter and exit from the routine to

continue execution. It is left for the user to decide what to do
next from the error number assigned to IFAIL. The former option
is restrictive but simple to use while the later option is flexible

but not suitable for an inexperienced user.

In NAG ALGOL 68 Library, the setting of the flag IFAIL to
zéro or oné is replaced by two procedures NAGHARD and NAGSOFT,

A user can also write his own error procedure.

In YORT (64) there are two types of errors: "fatal" and

"recoverable". For a fatal error, an error message is printed and
call is made to a dump routine which lists the names of the variables
and their values when the dump was called and prints out the list

of routines which are active. Execution is then terminated. For

a recoverable error, an error message 1s alsoc .printed and execution
terminated if recovery mode is not being used. Under recovery mode

(which is good for experienced users) execution is not terminated

if the error is recoverable and a user can

i) determine whether an error has occurred and if so,
obtain the error number

print any current error message

e
e

turn off the error state and

'._J-
(=0
e
~—r g s

leave the recovery mode. (see Fox et al (64,63) for more

[
<<

details).

~

Some libraries such as IMSL (94) define in greater detail

¥

the degree of severity o "an error

4

an error from "warning" through
for which the routine has taken a default action" to "dangerous but

.

non terminating error" and finally “terminating error”

4.3.1 Error handling in the library.

For the inexperienced user, the safest action in all cases is
to print an error message and stop. The experienced user normally
wants to control error handling to some extent. Intended users
of PONUSCLIM fall into two categories and effort should be made to
satisfy them without making the library too complicated or unnecessarily
large. In PONUSOLIM only the soft ortion as in NAG FORTAAN library
is used with some modifications. Since only one option is used, IFAIL
need not be assigned any valus before a routine is called. When an
error occurs, an error messagée is printed and exit from the routine
is forced. TFAIL is assigned the error number of the error message
before exit from the routine. An experienced user can manipulate
TFATL to ailow computation to continue. A casual or novice user
can include the statement.

IF ((1FAIL. N&. O) STOP 4.3a

Just after a call to a routine in order to terminate execution.
TFAIL is always assigned the value zero on a successful exit from
a routine. If a user forgets to test the error flag on exit
from a routine, the printing of an error message (if there is an error)
makes the user aware that the resultis produced at the end

of the run are not correct. This makes error handling in

PONUSCLIM simple but also flexible. This method ensures the

following:

a) Irror messages are printed, making the user know
the cause of error without referring to the documentation.
b) It is possible to use the result of partial success which
is possible in some routines.
c) It is possible to perform further calls to the routine

with ~FAIL left with its value on exit in the first call.

The malin disadvantage, is the need for a casual or novice
user to include statement 4.3a each time a routine with an error

flag is called.

- 58 -

CHAYTER 53

ALGEBRATIC 1INEAR SYSTEMS

5.1 Introduction

In this chagpter, algorithms for sclving a system of simultaneous
linear equations, finding the inverse of a matrix and obtaining the
determinant of a matrix are discussed. The ones considered suitable

for microcomputers are implemented to form a part of the library.

5.2 Simultaneous linear Systems

One of the most frequent problems encountered in scientific
computation is the solution of a system of simultaneous linear equations.
Some of the sources of linear equation problems include (i) discrete
algebraic systems (ii) the local linearization of simultaneous nonlinear
equations (iii) approximation of continuous differential or integral
equations by finite, discrete algebraic systems. In most cases, there

are many equations as unknown and such a system can be writien in the form:

Ax =D 5.2&

where A is a glven real square matrix of order n and b is a given

column vector of n components, and X is an unknown column vector of

n components.
In a more general form 5.2a can be expressed as:
AX =3B 5.2b

where A is a given mxn real matrix and B is a given mx p matrix and X

an unknown n X t matrix. Fortunately it is usually possible to solve
equation 5.2b by using the algorithm that solved equation 5.2a.

This can be done in the following manner su;pose the algorithm used to

solve 5.2a 1is called T1, then

i) ifm-=n but p>1, AX = B can be solved by arplying T1,
» times to Ax = b, changing b each time.
ii) if m>n, it means that the number of equations is more
than the number of unknowns. AX = B can be transformed

to the form mentioned in (i) by

A" A X = A"B 5.2¢

where AT is the transpose of A. Equation 5.zc is now of

the form (i). However such problems tend to be ill-conditioned.
i3i) If m¢n, it means that the number of equations is less than

the number of unknowns. AX=B can be transformed to the form

(i) by fixing (n-m)x P values for X. This is rather a

simplified way of getting to form (i).

It is intended that the library should be as compact as possible.
This means that care has to be taken in selecting rroblem areas. It
has been mentioned that most linear systems are of the form 5.2a and
it has been shown that it is possible to sclve the general form of
linear systems (5.26) by applying the algorithm used to solve 5.2}
repeatedly after some transformations. Considering these points and

realising that only the essentials should be included in the library,

- 60 =

it was strongly felt that only algorithms for solving equation

5.2a should be considered for implementation in the library.

Matrix A of equation 5.2a can be symmetric, banded, dense,
sparse, Hermitian or have other properties. There are suitable algorithms
for each type of linear system and by using such algorithms, storage
or time or both can be saved. However, because of the size of this
library, it is not possible to rrovide routines for each special case.
Speclal cases are only considered if this could result in saving of
much storage, or if it is not possible to obtain a reliable general
urpose algorithm that can prodce results of fair accuracy. Algorithms
for solving any linear system of n equations with n unknowns are

considered for inclusion in the library.

5.2.1 Special Cases

There are many srecial cases, but only tridiagonal systems are con-

sidered. Such linear systems can result from (1) boundary value

rroblem for an ordinary differential equation (1i) one~-dimensional

heat equétion. The number of equations is usually very large and as a
result it may not be possible or at least very wasteful to store all

the nxn elements. Bf using algorithms specially designed for tridiagonal
linear systems, only 3n=2 elements of matrix A need be stored. The Staveye

requirement is drastically reduced. Only this special case is
jncluded in the library since much storage is saved. Another area

2
. s 1
where storage can be saved is symmetric linear systems. Only $(n"+n)

Storage locations are needed to store the nxn symmetric matrix., The

way these elements are stored is not as simple as the way the elements

of tridiagonal systems are stored. This can be a problem to a novice

- 61 -

user, ternatively, the Symmetric matrix can be stored as an

nxn matrix. The algorithms usually arplied (see Bunch et al (18))
leave the leweehalf of the matrix untouched. It is therefore possible

to rreserve the elements of the original matrix with

very little extra storage (for storing the diagonal elements). This
is useful if iterative refinement of the solution obtained is to be
carried out. But only few users are likely to refine their solutions.
Also iterative refinement is costly and it should only be done when

it is very necessary. Since only the essential special cases are to be
included, the reasons for including a special routine for symmetric

linear systems are not sufficiently strong.

5.2.2. Algorithm Selection for Linear System of Eguations

In this section, some algorithms for obtaining the solution of a
linear system of algebraic equations Ax = b with a stored nxn real matrix

A and n-vector b and x are discussed.

5.2.2.1 General Furvose Algorithms

Algorithms commonly used to solve equation 5.Za are based on
triangular factorization. The major 7part of the computation T is
the triangular decomposition TA ~———3 LU, where T is an aptly
chosen permutation matrix, L is unit lower matrix with L5 5 | < 1

and U is upper triangular. Then x is obtained by solving:

Ic = b 5.24

and
5.2e

The factorization may be done either by Gaussian elimination or by
the compact method due to Crout. Normally I and U are written

over A. There are other methods but these two are the most

commonly used.

min(i,)
By definition, (TA>ij = ;%?: Ly Ukj
=]
1-]
Thus U, = (TA)ij -5 LigVgs Gaussian elimination

k=1
subtracts one term at a time wheras Crout's algorithms computes the
whole expression as soon as all the termsaare known. With Crout's
method, it is possible to perform double precision addition of the

single precision products during the summation LikUkj’ thereby

producing higher accuracy. If inner products are not so accumulated, then
the two algorithms will produce the same results and so are indistin-
guishable on grounds of accuracy. Moreover, both methods require the

same number of arithmetic operations on the elements of A. (see

Forsythe and Moler (59), Stewart (156) for more details.)

The accumulation of the inner products in Crout offers a clever
alternative. The matrix is retained in the given precision (no doubling
of storage) and simply the additlons and scalar products:EfLikUkj are
performed to double accuracy. The normal assumptlion here is that the

full double precision result of the given precision multiplication

L.k U is available at no extra cost. This 1s not true with
ik "kJ
Tx990/4 microcomputer, for example and cannot be obtained in

ANST FORTRAN on any microcomputer. 5o if this extra accuracy is

required, then there must be a delibrate effort to achieve it at

extra cost. This is done by prerforming the summation in the

following manner;

P=0.0D00

DO 10 K = 1,M
10 P = P+ DBLE(L(I,X)) =U(K,J)

It has been shown by Farlett and Wang (129) that apart from
very few FORTRAN comzilers, Gaussian elimination method is faster
than Crout method by 25 percent for standard compilers and about

8 percent for optimizing compilers.

Other methods used to solve linear systems are mostly variations
of Gaussian or Crout methods. These variations are aimed at special

class of linear systems.

Crout®s variation was selected for implementation. The main
reason being that, because of storage rroblem of microcomputers, the
double precision version of the library is not likely to be implemented
in most microcomputers. It is most likely that where double precision
arithmetic is available, the partial double precision version of the
library will be implemented. This means that the partial double precision
version of any routine should be made to produce results which are
accurate as much as possible even if this is to result in extra cost.
Crout's method offers this opportunity. By verforming only the

; _in double precision, a higher accuracy can be
summatonffilikUkJ in 1% '

achieved with 1ittle cost. The cost of iterative refinement is far

higher than this, although refinement gives better result.

5.2.2.2 Algorithms for Tridiagonal Systems

A tridiagonal system of linear equations can be expressed as:

i T T
by c, <::> xl dl 5.2
a b c
2 2‘ 3 x2 d2
% bn *n dn
- LY

and modified forms of either Gaussian elimination or Crout method

is used to solve the system. For example, if Crout method is heing useqd,

then

[l
o’

where ul 1

Y
ol
Qs
=]
Do
it
NQ’
~
o
',._.l

i=3, vee ey n"’l

- 65 -

The eguation 1Ux = 4 is sclved as follows:
Y, =4, ¥y, =4, -m y, vE -0

Xg = yn/un T (yi - xi+lci>/ui i=n=-1 ..., 1

Programs for solving tridiagonal systems using modified form cf
either Gaussian elimination or Crout method can be found in
Leavenworth (103), Sprague (154) Usterby (125) and Johnson et al
(93). Also a discussion on suecial form of tridiagonal systems and
algorithms can be found in Usterby (125). The double precision

Summation is not useful here since the range of summation

LixYks
is Just one. All implementations are basically the same. The only
advantage of (sterby implementation is that subscripted variables

are used more efficiently. This will hardly make any difference in
microcomputers since floating-point computation takes most of the time.
Also (sterby implementation uses Gaussian elimination method. His

method is selected because the reascn for choosing Crout method for

the general case is not apilicable for tridiagonal systems.

5.2.3 Imrtlementation and Modification of Selected Algorithms

For the general case, two subroutines are used to solve the systenm
Ax = b. The first subroutine uses Crout factorization to decomuose
A to LU, while the second is used to obtain the solution by solving
LUx = b, using both forward and backward substitutions. The reason
for using two subroutines is that it is yossible to use the decom, csed
form of matrix A to find its inverse and determinant. These are

discussed later.

From the test carried out by Farilet and Wang (129) it was
known that for some FORTRAN compilers, using rointers for interchanges
of rows or columns of a matrix take more time than physical interchange
of rows or columns and it is opposite for some. They conclude that
explicit interchanges are not very expensive. This however depends
on the size of matrix A. Infact there are at most (n-1) of them
and they add negligibly to the runtime if n is small. The use of
pointers and physical interchange of rows was tested using Tx990/4
microcomputer. The test was carried out using different arrangements
of the rows and obtaining the average time. From table 5a it can
be seen that there is no significant difference between the time for
using vointers and physical interchange of rows. This was to be expected
since floating=-7oint computation takes more time than array accessing in
microcom:uters. (the ratio of floating-roint multiplication to accessing
an array element of two dimensions is 6:1 for Tx990/4‘ microcomputer.)
Although the results of table 5a may not be true for some other
microcomyuters, it was felt that there was no need for the extra
complexities involved by using pointers. Alson is not likely to be
large because of storage restriction of microcomputers. The subroutine
for decomposition therefore incorporates partial pivoting and physical

interchange of rows.

NUMBER OF EQUATIONS

TIME IR

SECCNDS

USING :OINTERS

FHYSICAL INTERCHANGES

10

20

30

0.9

5.6

0.9

5.6

15.8

Table 5a Using Fointers and Fhysical Interchanges

¥When implementing Crout's algorithm, one of the aims was that

the result produced should be as accurate as possible. In order to

achieve this, a test was carried out to show the effect of scaling

of matrix A Ybefore decomposition.

such that

0.1B-02 & |a; ;| & 0.158 01

The elements of matrix A were

and the scaling was performed by dividing each row by the absolute

value of the element with the highest magnitude in that row. The

errors measured were:

1 j;:: 7.2
Root Mean Square (RMS) = 2 (Xi' Xi)
i=1
a o =
an ma f(xi xi)/xi;
Error Bound = pl't

where ii is approximate solution, P and t are base of arithmetic

and number of mantissa p—digits respectively.

The result obtained 1s shown in table 5b. From table 5b it can be
seen that scaling can help in producing more accurate results. However
this is not always true but scaling can always help in testing for near

singularity more effectively. Scaling was therefore incorporated.

SCALING (ERROR) NO SCALING (ERROR)

NUMBER OF EQUATICNS ERROR BOUND RMS ERRCR BOUKD | RMS
10 é 0.32E=5 10 0.46E~5
20 18 0.66E-5 L7 0.16E-4
30 52 0.18E-4 322 0.11E=3

Table 5bs Effect of scaling

For large srarse systemg time can be saved if a check for a zero
multiilier is performed before multiylication is done. When the
system is dense, there is loss of time, but such time lost is small
compared to the time gained when the system is sparse. The fest to
confirm this can be found in Smith and Guire (153). Since the subroutine
is not likely to be used for large sparse systems owing to storage

restriction, this modification was not incorporated.

A third subroutine is used to refine the solution obtained from
the first two subroutines. Refinement is usually exrpensive
and it should only be used when high accuracy of results is very

essential. The refinement is carried out by computing
r = b~ Ax 5.2¢g
in extended precision and solving LUe = r. The new approximation

x +e is usually more accurate. This can be repeated to increase the
o

accuracy of the solution and the process is referred to as iterative

refinement. It is only the partial double precision version that is
available since any other version cannot improve the initial solution
obtained from single precision or partial double-precision versions of

the subroutines used to solve the system.

The subroutine used for sclving tridiagonal systems is the

FORTRAN version of the subroutine by Osterby (125) except that a test

for singularity is included.

- 70 -

Matrix Inversion

Ln
AUS)

If A, a square matrix of order n, is non-singular (has rank n)
then its inverse X exists and satisfies the equations AX = XA = I

(vhere I is identity or unit matrix). The jth colum of X is

the solution of the 1linear equations ij = e.j where ej is the

.th . .

Jt column of I. Also if R = AY = I, then R is called the
"residual“matrix and a bound for the relative error in X is given by

f{ R ” i.e,

f{x - H S “ R lg 5.3a

[+ |

On the other hand, if A is square (nxn) and singular, or if it is
shaped (mxn) with m 4 n, then matrix A has no inverse but it has what

is called a Generalized or Fseudo Inverse Z2 which satisfies the

equations
aza = zaz, (az)T = Az, (22)° =z 5.3b

Note that these conditions are also satisfied by the inverse X of

A if A is sgquare and non-singular.

It is known that the Generalized Inverse Z is hardly used

and as a result only the inverse X of A 1is considered.

5.3.1 Algorithm Selection for Matrix Inversion

The algorithms for finding the inverse of a sguare non-singular

matrix are few. The reason being that any algorithm used to solve

5.3¢c

—

- 71 -

call als. be used tc find the inverse X of A4 by scoving

Ax., = e, J=1...

. .th
where Xj is the J7 column of X and ej the jth column of I. Already
an algorithm for solving equation 5.3c¢ has been selected and implemented
and it involves the use of Crout compact decomposition method. Applying

this method, the inverse of A can be determined.

There is another algorithm by George (70) and it determines the
inverse of A in A, by using a modified form of Gaussian elimination
method. This algorithm is very useful when it comes to the use of
storage. Cnly the matrix A and three other one dimensional matrices of
size n are needed for its imylementation. Crout method requires two
nxn matrices (A and the inverse of A) and a one dimensional matrix of
size n. This means that for n»2, George (70) algorithm requires
less storage. However, the program size of both algorithms is about the
same, and Crout's implementation produces more accurate resulis and is
faster than George's implementation. This means that if George's imple=
mentation is used'to determine the inverse of large matrix (a Job
that it can do better than Crout‘s implementation in terms cf storage)

the results produced are likely to be poor in terms of accuracy and

therefore not reliable.

Crout im:lementation was chosen since it is reliable and faster
than Georges' implementation. So although, algorithms that requires
less storage are ideal for microcomyuters, reliability is also
essential. Also since there is already a subroutine for decomrosing

the matrix A, only the subroutine for solving LUX = I need be written.

- 72 -

5.3.2 Implementation and Modification of Selected Algorithms

The subroutine for decomposition is first used to decompose
matrix A, A second subroutine, which is actually the subroutine
for calculating the inverse of A is then used to solve WX =1 or

Lij = ej »J=1,...,n. Before solving for X, a check should

be made to be sure that decomposition was successful.

5.4, Determinant

The aim is to find the determinant of matrix A = (& .) which

<

is usually defined as

—

n!
det(a) = % 1i 8 B, ceeeeed 5.4a

where the blank subscripts are filled in by some permutation of the
integers 1 to n, and A an nxn matrix. Only sgquare matrices are
considered since the determinants of matrices of other sizes are not
defined. No special cases of square matrices are considered. It is
felt that in most cases, users are interested in finding the determinant

of a general square matrix.

5.4.1 Algorithm Selection for Determinant

Once matrix A has been decomposed to LU, the determinant of A
can easily be obtained from

n

s g———

det(A) = det(Iv) = det(L) #det(U) = l luii 5.4p

i=1

provided L is a unit lower triangular matrix. This is the method

commonly used and other algorithms are very rare.

Since there is already a subroutine for decomposition,

this same common method is used in the library.

5.4.2 Implementation of Selected Algorithm

Overflow or underflow can easily occur if the determinant of

matrix A 1is computed from

il
|
.—,——*——: s
R z
}.Jo
H’

det(A) directly

To overcome this problem, the determinant is usually obtained

as a power of a number in the form:

a

Get(a) = ab’ 5-4e

where %6 < lalt <1 and a,- a positive or negative integer, while

b is the base used by the computer. This reypresentation is not very

convenient especially for an inexperienced user.

The following approach is adopted in FONUSCLIM. It is known that

det(A), = ZE::log
3=1

£

|
log g |

Since logarithm to base ten is always available in most machine

FCRTRAN compilers, it was chosen for use. By obtaining the determinant

- 74 -

in logarithnm form, overfliow or underf

low can be avoided. After

obtaining the determinant in logarithm form, a test is carried out

to determine whether overflow or underflow will occur if the

antilogarithm is found. If it is known that overflow or underflow
will not occur, the determinant is obtained and IFAIL set to ZET0o.

If overflow or underflow will occur, the logrithm to base ten of the

determinant is returned to the user and the sign of the determinant is

returned by IFAIL (-1 or +1).

The use of logarithms may result in some loss of accuracy because
of cancellation in the sum (see Forsythe et al(59)) while an extended
product can be computed with very little round-off error. This rroblem
is overcome by performing double yrecision summation of the logarithms

of ukk when the partial double rrecision version of the routine is

implemented,
5.5 Content of Charter
ROUTINE NAME PURy OSE STORAGE(BYTES)
RF1LE Decomposes an nxn matrix into LU where 1,362
L is a unit lower matrix and U an upper
matrix.
690
RF2LE Solves LUX = b 9
RF3LE Refines the solution of LUx=B 1,242
RF4LE Solves tridiagonal systems 648
RF1IN Computes the inverse of a non singular
nxn matrix after decomposition. €48
RF1DE Determines the determinant of a square 690
matrix after decomposition.

..'75..

Note that the amount of storage given is that of the compiled

output of the routine using Tx990/4'microcomputer.

CHATTER 6

ROCTS CF NON-LINEAR FUNCTICNS

6.1. Introduction

Finding a root of a non-linear function is one of the problem
areas that occurs frequently in numerical computation. In this

chapter this area 1s discussed and an algorithm used to compute

the roots of a non-linear function (trancedental functions) is selected.

Polynomials which are special form of non-linear functions, are also

discussed,

6.2, Non-linear Functions

Only functions of single real variable are considered. They

are usually of the form

f(X) = O s 6 66CH8 60 e P BULGES S EPOERGECEY G 68.

where x 1is a single real variable.

X2+COS<X)-4=O t 5 €6 68O OEL GG OGO6EUTEOOG & 6b

Equation 6b is an example of a function of single real variable.

Only the real roots are determined. The main reason being that

- s N
determining the complex roots of a function usually involves the

use of complex arithmetic (except polynomials). PONUSOLIM tries to

avoid the use of complex arithmetic since most FORTRAN complilers

for microcomputers do not have complex arithmetic.

_77..

6.2.1 Choosing aprrorriate algorithm Tor non-linear Functions

Many algorithms have been designed to find the real roots of a
function of a single real variable. Most of these algorithm (if not all)
are iterative in nature. A survey of some of these algorithms which
are derivative free is given by Swift (158) and this will help
in deciding which algorithm should be included in the library.

(see gwift (253), Brent (14), Dekker (41) Forsythe (60). Johnson %
(93). Davies et al (37) for more details). Derivative free methods
are usually more attractive to users and as_a result only such methods
will be discussed. See Werner (169) King (98), Neta (120) for methods
using derivatives, The algorithms can be grouped in the following

manners

6.2.1,1 Methods based on an initial value

ALGORITHMS 6.1

5

Let f(x)

fi

0 f(x) is rearranged such

that

F(x) 6.1a

b
L]

Set x, =a where "a" is the initial guess,

For K=1, 2, cesescssesseelO

xk+1 = F(Xk> s esecscsoGOLOLEEEEOGELEOEEOEGLROEOES 6.1b

"a" should be closed enough to the real root to be determined. To be

sure of convergence to a root, it is required that

IF' oood [€1 vrmremeee 6.1c

ALGORITHM 6.2 Continuation Method

The basic idea of the continuation method is to solve a sequence of
subproblems, each of which is easier to solve than the original
problem, so that the solutions of the sub-troblems converge to the

desired zero of f(x).

let & be a zero of f(x) and X initial approximation to the

root of f(x). Consider the sequence of subproblems;
g(x, ek) = f(x) - ka(xo), € 8(0,1) 6.2a
k = l,z,-;.:.;m

such that g(x_, 1) = 0 and glt,0) =0

The sequence 1>91> 92>>9m=0

is determined, thus computing o as efficiently as possible. See
Avila (9), Swift and Lindfield (159) for more details. A modification
of this method can be seen in (159) where it is compared with the

combined Brent and search algorithms. It is found to be reliabile

to a great extent.

6.,2,1.2 Methods based on two or three intervolation points

ALGORITHM 6.3 Secant Method

This algorithm replaces f'(*) in the Newton's method with the

arproximation

f(xk) - f(xk_l) 6.3a

(= %10

..79..

such that we set x = g, x1 = b and for
o 1

k=1, 2, ..c.... do

. X -~ 1
Xpa1 = ¥ - & k-1 HI(X) veeeeenrconononnse 6.3
Kl K (fok) - f(x > i

k-l)

At least, we are saved from the problem of differentiating the
function. However the ;rcblem of choosing a "good" a,b is still

there.

There are the Mullers (115), Inverse quadratic (127), inter. clation,
rational arrroximation (90) methods which use three interpclation ;cints.

(see Swift (158) for details).

These methods are not reiiable for all the problems anticl.ated.

As an exam le, all the algorithms failed to find the root of
f(x>=X9+1O—4 e & & e e O C R E QB E »e s e &6 R G R 6.3C

in the interval (-2,1). Also they failed to solve the equation

£(x) =(15x - 1) / 14x 6.3d

given that the root is in the interval (.001,1). These are the findings

of Swift (158).

The algorithms needed in IONUSOLIM should be general purpose
and reliable. This conditions are not satisfied by algorithms in

this section.

£.2.1.3. Bracketing retention methods based on two woints

Before any of these algorithms to be described is used, an interval

(a,b) must be determined such that :

f(a) % f(v) € 0
Such algorithms rereatedly obtain a new point ¢ € (a,b) and construct
a smaller interval (a,c,) or (c,b) within which the zero lies. The
interval where there 1s a sign change is chosen for the next iteration
Note that if f(x) is a continuous function whose zero is required, then
f(a) # f(b)< 0 if the single zero lies within the interval (a,b),
Continuing in this manner, the interval can be made sufficiently
small to obtain the required accuracy. The various algorithms that

use this approach are distinguished by the way ¢ is chosen.

ALGORITHM 6.4. Bisection Method

In bisection method ¢ = i(atb) and in general
if

¥ =a X1 = b, then

fOI‘ k =1, 2, serEcPe OO OO O do

=.1_ -+ B EEEEEEE NI R S N A 6‘48,
X = 2% %)

if f(xk) *% f(xk+1) > 0 setxp=X and

f(xk) = f(x

Tl
KL

This is one of the methods for which an & priori estimate of the

number of function evaluations can be made: it is

. b=a . .
(2+ iog2~7757~—) wnere ¢ 1s the accuracy required.

AZGURITHIM 6.5 Regula Falsi

This algorithm is basically the same as inverse linear inter; claticn
or Secant methcd exce.t that the end icints are chosen to bracket the

rcot.

Tor k=1,2, .cisseee, 4O

xk+1=xk~<xk_xk-l)x f(xk, ce..6.52a
' k-1

(%) = f(x
*k

If £(x,) * f(xk+l) >0 set x f(xk) = f(xk_l)

There are other algorithms under this section. Such as the
T1linois method published by Dowell et al (42). Pegasus method
described by Dowell et al (43). There is also the Anderson and
Bjorck method (5). Algorithms under this section prove to be more
reliable than algorithms in section 10.3.2. There are very few

failures in the test carried out by Swift (158). 1Infact it is only

Regula Falsi that

i
"

I

Srmsmse e s

failed i WO rrobl .)
alled in two rroblems. However more functions evaluations are

required when compared to methods in section 6.2.1.2 that use interpo-

lation.

6.2.1.4 Hybrid Methods

This section is made up of methods that combine intercolation
(methods in 6.2.1.2) with bisection (method in section 6.2.1.3) in
order to retain the bracking property. It will suffice to say that
under this section we have the Dekker's method (41), Brent's method

(14), algorithm M and R (described by Bus and Dekker (20)).

These methods combine the fast rate of convergence of interpclation
methods with the reliability of methods in section 6.2.1.3 that
retain bracketing of the root. In the test carried out by Swift (158),

none of these algorithms failed.

6.2.1.5 Selected Algorithm

From all indications the selected algorithm should come from

either section 6.2.1.4. (Hybrid Methods) or continuation method.

The continuation method has the advantage of the user not
producing an interval that contains a root. Also from the test
carried out by Swift et al (159) failure only occurred when (i) there

are Toots having multiplicity greater than one, (ii) the starting

value is a zero of £'(x).

These conditions cannot always be avoided, Swift (158) in his

conclusion suggested that Brent's method should be used as a general

. . si one routine is used to
non-linear equation solver. Since only

solve non-linear equations in this 1library, the algorithm chosen

L G LA R A N S loming

e S 7 g M P

e

s

- 83 -

should solve as many troblems as possible in this area. From Swifti's

conclusion, Brent's method was selected because:

1. By the claims of Brent (15), the algorithm will always
converge, even with floating-point arithmetic and infact the

number of function evaluations cannot exceed a number roughly equal

to

) 2
glogZE ?OLlA ;

where TOLL = 0.5 % TOL + 2.0 % EPS = ABS(B) (E:S is the
machine relative error, TCL is the accuracy demanded by the

user). This shows that the algorithm is reliable,

2. The com;iled program of Brent algorithm using TX990/4 micro-
computer FORTRAN comziler took 1742 bytes of storage which is
reasonable (although algorithms in sections, 6.2.1.1., 6.2.1.2.

use less storage}-

3. Brent (15) also claimed that roughly ten function evaluations
are tyrically needed for smooth functions. This means that not

much comruter time is used by this algorithm.

4, The majority of rractical iroblems have known bracketing interval.

6.2.2 Modification of selected routine

ow

The routine that imrlements Brent's algorithm can be found in

Brent (14, 15), Forsythe et al (60) and the four parameters supplied

N 2 3 \
by the user are (i) the tolerance (11) the bracketing interval (a,b)

(1ii) the function whose root is to be determined.

In the version imrlemented in L ONUSCLIM, a check is made to be
sure whether the user surplied an interval that contains a root. If
the interval contains a root, Brent's algorithm is azplied directly.
(therwise, a search for such interval is carried out using a search
algorithm (159). If such interval is not obtained after 1000 function
evaluations, an exit is forced with IFAIL set to one. After

obtaining such an interval, Brent's algorithm is then arplied.

The search can fail. From the test carried out in (159), the
search failed mainly when the function is a polynomial with a small
root. Such failure will not be much of a problem since there is a
routine in the library to determine the zeros of :1olynomials. It must
be stressed that no failure will occur after the bracketing interval

has been determined.

The argument, tolorance is dropped from the parameter list since
most users are likely to be more interested in obtaining a root which
is accurate to machine precision. Tolorance 1s fixed at 5% machine
Precision. Users are saved from the problem of choosing the tolerance.
A new argument IFAIL is introduced to communicate to the user the
result of the search. With these modifications, a user's knowledge of

an interval that contains a root can be exploited. This is not so with

continuation method.

6.3 olynomials

A jolynomial F is usually expressed in the form:
+

Flz) =az® + 23.121')“1 + a2 2% ciecves & bc
0 1 2 n
n
_ :E n=i
aiZ a % 0
i=0
rith ol ffici
Wi complex coefficients Bor By Bny ceesseeey a,
and r is a zero of p(z) if
Hr) =0 64

P is called a real polynomial if all the coefficients are real.

Cnly real polynomials will be considered. One of the reasons being

that working with complex variables means using more computer storage.

As it will be revealed later, many algorithms used in determining

the zeros of polynomials use much storage and the amount of storage

used will be substantially increased if a complex version of such

algorithm is imylemented. For real polynomials the zeros can still be
complex, but such complex zeros occur &as pairs of conjugate comylex numbers
x+iy, x-iy. For a polynomial of degree n, there are n solutions and

some of these solutions or zeros may not be distinct. Infact I can be

written as:

k
SORBERCENE | 6e

i=

ot

r, are the distinct zeros with multiplicity

T] .>1, 1r, is called a
m respectively. If ml>- .

where rl,rz,.....,

ml, ng CRCECRUIE S R] 1

multip.e zero. . It should be mentioned that a

multicle zero is also a zero of the derivative of i (z).

6.3.1. Selecting atyropriate algorithm

Computing the zeros of a polynomial is a complicated task and
many algoritihms have been provosed to perform this task.
Iterative methods are mostly used and most of the algorithms converge
to one or two zeros at a time. In computing these zeros, there are
usually many practical problems such as round off errors, ill-conditioning
(see Peter and Wilkinson (132) for details). A zero is described to be
ill~conditioned if it is sensitive to small changes in the coefficlients
of the polynomial. Zeros which have their ratio close to one are
ill-conditioned. So 1t can be safely said that multiple zeros are ill-
conditioned. Most algorithms factor out a computed zero and this
process is referred to as deflation. The algorithm proceeds to
£ind the next zero by working on the deflated polynomial. This process
is continued until all the zeros are computed. Because of the
fundamental limitations of computer arithmetic, the computed value of
P(r) will not necessarily be exactly zero. This will therefore limit the
accuracy of the next root to be comruted after deflation. The
deflation process also introduces its own error and this can pose a

problem if the zeros are 311-conditioned.

Many algorithms are able to determine the complex roois of real
colynomial, (which are conjugate) without using complex arithmetic.

2 . . .
A quadratic factor of the form (z“+uz+v) is obtained with real

coefficients u,v,b The list of fundamental algorithms include

Newton's method, Bairstow's method, Bernoulli's method, Graeffe's

root-squaring method, Lin's method and laguerre's method. Some

- 87 -

more sophisticated methods (some of which are based on localization
rrocedures) include, the use of Styurnm sequence, the Lehmer-Shur

algorithm and the quotient-difference algorithm. (see Householder

(85) for more details).

However there are.more recent methods that incoryporate some or
none of the above methods and they can be arplied to larger set of
iolynomials. ©Since the selected algorithm will be general rur,.ose,
it is better to consider the algorithms which are general purpose and
can compute conjugate zeros using only real arithmetic. It is only when
such algorithms are not suitable for microcomputers that we can go a

ster lower.

6.3.1.1. Com.osite method

This algorithm is derived by Dunaway (45) and it consists of

several parts and it can be summarized as followss

1. The input coefficients are scaled initially to minimize the
variation of orders of magnitude of the coefficients. The

scaling is performed in a special way to achieve this.

2. The polynomial is factored, through the use of Euclid's algorithm
for obtaining the greatest common divisor of a polynomial and its deri-
vatives intc m factors. Each factor polynomial tocesses only simple

is the greatest multiplicity of any zero in the

zeros and mn

original rolynomial.

3 The zeros of these factor polynomials are then calculated. If

the degree of the factor polynomial is less than three, the zeros

are found directly. If not the following ste;s are taken.

a) The real zeros are obtained by the use of Sturm's sequence
in which an interval is found which contains a unique real
zero. The Newton-Raphson method is then used to obtain each
real zero.

b) By using the values of the real zercs, an interval is
fcund in which k + 1 peints are determined. Kk being the

number of complex zeros. An intervolatry polynomial

¢(z) = E(2)/R(z) 6.6a

is uniquely determined by k+1 roints, zg and their

associated values:

¥y = Q(Zi> / R(zi) i=1, tveee., k¥l 6.6b

where Q(z) represents the factor vclynomial whose roots are
being determined. R(z) represents the ,olynomial containing
the real zeros of Q(z). C(z) will then contain the com;lex

zeros of Q(z).

¢) The polynomial C(z) containing the complex zeros of Q(z) can
then have its zeros calculated by the use of an iterative

procedure based on an approximation of & function by a rational

function which uses initial values produced by the Lehmer-Shur

method. If by the use of sturms theorem, it is determined that

there are no real zercs, the iterative process is a.plied

..89..

directly on the factor polynomial.

4, The calculated zeros are then scaled according to the scale
factor used on the original input coefficients. The

multiplicities of the zeros are also calculated.

From the test results given by Dunaway (45) the algorithm is
reliable and it can deal with multiyple zeros with a high degree of
efficiency. It is not restricted to any class of polynomials that
are real. Most algorithms find it difficult to deal with multirle zeros.
However, the algorithm is made uyp of many parts such as Newton=Rarhson
method, Lehmur~ Schur method, Sturm method, Fuclid's algorithm;
forming an interpolation polynomial, sorhisticated scaling; solving
rational function. Also the application of the Euclid's algcerithm
requires the use of many one-dimensional arrays for work space. The
coding of this algorithm requires a great amount of storage, which a
microcomputer may not be able to provide. For a large computer, this

algorithm can make a good numerical software.

6.3.1.2. Using minimization

Another algorithm is that due to Grant and Hitchins (76, 77). They

transformed the problem of finding a zero of a polynomial to that of

minimizing the function:
2
4 (z) = RZ(X.y> + J°(x,¥) 6.7a

where R and J are real functions. Equation 6.7a is obtained from the

exrression

H(2) = F(x+ iy) = R<x,yj +13(x,y) 6.7v

where solving the equation
R(x,y) = 0 = J(x,y) | 6.7¢

was transformed into equation 6.7a and it was shown to be equivalent

to finding the zeros of P(z),

To compute a zero the following steps are taken:

1. An initial value

, g;ooig
z. = - is chosen.

2. The rrocess of mlnlmlzatlon is carrled out by commutlng

oz given by

. s) o

_when R T and the partlal derlvatlves H and J are all taken

'aigzd and are comyuted a_ descrlbed by W11k1nsen (170)
3 . .

where >\M is chosen to satisfy the following condition.

. -k, {
For Nk = 2 z;K> = 2 4)_‘/_\zi and 7\k is chosen as
k

large as Tossible, so that

¥zg) - ¢<z§k)) 2 2 A b 6.7¢

where ¢ is some small ypositive number. It is the %k that satisfies

6.7f that is called Ay

A return is made to step 2 if sufficient accuracy has not been
reached, otherwise factor out the computed zero or zeros using
Teter et al (132) composite deflation method and return to step 1.
Qccassionally, saddle points are met and an exit from the routine

is forced. A re-entry is possible with a new starting point without

destroying already comuuted zeros.

This routine, compared to others of the same class, uses less
storage. Infact it uses only two one-dimensional arrays as
worksypace, each having the dimensién of (N+1), where N is the
degree of the polynomial. Only two other basic algorithms are
jncluded and these are Schur test and Agams test which do not
require much coding. Zeros which are well-conditioned are

computed to rrecision allowed by machine arithmetic.

When it comes to multirple roots, its efficiency is reduced.

The algorithm is included in the NAG library.

J
N0
N

¥

6.3.1.3 Three Stage algorithm for real polynomials

This algorithm was develo ed by Jenkins and Traub (92). The method
is centered around what they defined as fixed-shift K volynomials.
With these polynomials it is possible to rerform iteration for a linear

factor or a quadratic factor of the polynomial.

Stage 1. (No=-Shift lrocess)
K(O) ('Z) = ¥ (Z) 6.8&

[4
where T (z) is the first derivative of polynomial ¥(Z) and K(O) (2)

is the first fixed-shift K polynomial.

Com ute (
+ A kM(o) |)
k(A1) (z) = 1 (i)(Z) _ kM(o)) § 6
p (0)
>\= O, 1, -.Q‘-o.lcyrﬂ-l
where M is usually taken to be 5. A value
arrived at after many tests.
This transformation helps the small zeros to stand out.
Stage 2 (fixed-Shift process)
Q(,) is defined as a real quadratic polynomial
N = g + v 6.8°
a(z) = 2+ :

The zeros &, and s, of(6.8c) which are real or complex

conjugates are selected such that ‘Sl\ = B

B < min || 1=1,2, civeeens,d

where P. are roots of i(z) and }(sl) Eh r(sz) F O
Qi = Q(el) = (Ql"s:{) (e.l = 52>
and Q = minl Q&\ 1= 2, coevvenaey J

If\Ql\L\Qi\ 122, cereenns

the linear factor method is used for iteration. IT
‘Ql ‘= &QZ\< XQS _ 1= 35eedieinnsd
the quadratic factor method 1s used for iteration.
Stage (Variable-Shift process)
At this stage the actual iterative irocess is carried out.
(see Jenkins and Traw (92) for details of computer implementation).
The description of this algorithm is lengthy and only a very short

descrirtion has been given here.

Only real arithmetic is used in computing the roots. An extensive
test is carried out by Dunaway (45) and this algorithm is shown to
be fast, reliable and always converging. However it has problems with
multinle roots just as Grant and Hitchin's (77) method. But unlike
Grant and Hitchins method, it reguires a large amount of storage. Infact
its FCRTRAN code (91) is made up of 548 lines and 1t uses seven one-

dimensional arrays of size (¥+1) each as workspace where N is the degree

of the polynomial.

6.3.1.4. Selected algorithm

The algorithm due to Grant and Hitchins was chosen for the
fact that it requires less storage than others in the same grou.. It
is reliable excert for multirle roots which are troblem for to most other
zero finding algorithms including the three stage algorithm. The
algorithm even with single- . recision arithmetic produced reliable
results for volynomials of degrees as high as twenty-six.
This is important since the double~precision version is not likely to
be imrlemented in most microcomiuters. This algorithm is still the one
that uses maximum storage in the library and should be reilaced as soon

as possible with a smaller and still efficient algorithm.

6.3.2. Modification of selected routine

The routine imulementing this algorithm is made up of eight
arguments. The ;arameter IND is set to (i) zero on a successful
exit (ii) one if something was wrong with the supplied polynomial
(1i1) two if a saddle point is detected. In case (iii) a re-entry is
usually possible by iroviding the routine with an initial value close to

the unit circle.

In the modified version im;lemented in :ONUSCLIM, the argument
TOL which stands for tolorance is removed from the rarameter list
and it is fixed in the routine as the machine precision. Also if a
saddle uoint is found, no exit is forced rather, a value close to

the unit circle is assigned as initial value and comiutation

continued. If that initial value does not result in a solution, a different

i l] hree times and sfter this number
one is assigned. Thls can be done t _ ,

an exit is forced and the number of zeros computed 1s stored in N1

which on entry held

the number of ccefficients of the volynomial, IFAI. (which is used
instead of IND) is set to twe to make the userto be aware that not

all the zeros were comiuted and he should check N1 for the number of

zeros found. This situation will hardly arise.

With this modification, users are saved from the 1roblem of
choosing a proper initial value when a saddle point is met. Infact é
the user is unaware of a saddle point and the condition IFAIL=2 is

6

very unlikely to arise. When the routine was tried on Z2 +1 which

has saddle points, all the zeros were computed to machine precision.

6.4 Contents of Chauter

ROUTINE NAME PUR* USE STORAGE (BYTES)

RF1RF This routine searches for an inter- 1,742
val containing a root if this is not
given. It then applies Brent's
method (based on linear interﬁolation
and bisection) once an interval

containing a root is known.

RF1ZP This routine determines all the roots 5,872
of a real polynomial (using Grant

and Hitchins algorithm).

Note that the amount of storage given is that of the compiled output

of the routine using Tx990/4 microcomputer.

QUADRATURE

7.1 Introduction

This chapter is concerned with the numerical evaluation of

A — . . .
definite integrals. Come algorithms are discussed and a set suitable

for inclusion in the library is selected.

7.2. Problem Area

Only one-dimensional definite integrals of the form

b
I = J‘w(x)f(X)dx 7.2a

a

where w(x) is a specified weight function (usually f(x) is a user-defined
function and called the integrand) are considered. This is the type
of quadrature that occurs frequently in computation. One-dimensional

definite integrals of the type 7.2a can be subdivided into three

broad areas:

i) Integrand defined by a set of data points.
1i) Integrand defined over a finite interval.

3i3) Integrand defined over a semi-infinite interval.

Obviously some of these subdivisions can again be subdivided but
it is shown later that it is possible to use algorithms for these

three subdivisions to solve most other integral problems. There

is a delibrate effort to reduce the number of routines as much as

possible so as to have a small and yet powerful library.

7.3. Selecting Avpro.riate Algorithms

im of th y i 3 :
The aim of the algorithms in this chapter in some cases is to

com_ute I such that

‘T-Il(i 0<e <1 7.3a
where
b
I = J> w(x)f(x) dx
a

and £ is a requested error bound. Almost all gquadratures for the
evaluation of I are essentially a welghted sum of a number (say N)

of integrand values written in the fornm

N

IN = ZE:wj f(xj) 7.3b

i1
where wj » J=1,2, .ve.v.y, N are the weights and

ceey N are the abscissae

>
e

I
ot
™

Fixed schemes are defined as those schemes in which the abscissae

Xx. are determined only by the rule that is ayplied and do not

depend in any way upon f(x). Fixed automatic methods such as Fatterson
(130) use a sequence of N-point rules from a particular family of

formulae to .rovide successively better arproximation to I as N is

increased. An automatic scheme is classed as adavtive if the choice

of the points at which the integrand is evaluated is based on OT

n

"ada-ted to" the behaviour of the integrand. Otherwise the method is

termed non-adaptive or fixed. A survey of the various algorithms for

numerical integration is given by Dixon (k) and this will hely in

i

e
}\
¥

deciding which algorithms should be implemented in the library.

The methods used for the various areas are now discussed and the

required algorithms selected.

7.3.1. Integrand defined by a set of data points

This is a situation where the integrand is available in the
form of a table with arbitrary spacing. Such situation is common
especially when exieriments are verformed. We are given two arxrrays:
x. € [a,Bl i=1, «.eoey N

& ¢ 9 @ ‘-
a £ x1<x2< 4xn £ b

and

[
]

3 f(xi) i=1, veo., N

For equally spaced abscissas, there are many methods such as
Simpson's rule, trapezoidal rule etc but only the general case
where the abscissas are spaced arbitrarily will be considered,
Two routines are recommended by Dixon () and these are AVINT
written by Hennoin (83) and adapted by Davis and Rabinowitz (38).

This routine uses overlapring quadratics and thus incorporates some

smoothing.

The second routine INT4:T is due to Gill and Miller (72). It
useec cubic interpolation of the data and ,rovides an indication of

the reliability of the result by comparing it with the corresponding

result obtained with piecewise quartics.

Both routines do not use much storage but AVINT uses less
storage than INT4. T (1,932 bytes). However INTH T has the advantage
of vroviding an indication of the reliability of the result obtained
and as a result of this,INT4IT was included in the library instead

of AVINT.

7.3.2. Integrand defineg over a finite interval.

Most available algorithms fall into this category and as a

result choosing a routine for this problem area is difficult.

There are algorithms which are more efficient when used to
integrate well=behaved functions. By a "well-behaved function" it
is meant one that can be approximated by a polynomial of reascnable
degree. This means that the function is continuocus, bounded and
possesses a sufficient number of continuous and bounded derivatives.
Functions that vary rapidly over some part of the range such as highly
oscillatory function are nct regarded as well-behaved functions. Fixed
schemes and fixed automatic methods are used to integrate well=-behaved
functions. Some of these fixed methods are Newton-cotes rules, Gauss=-
legendre rules, Romberg quadrature, (lenshaw-Curtis quadrature (27)
and Tatterson's family (130). A survey and comparison of these

methods can be found in Dixon (44).

The aim here is to select a general purpose algorithm which should

be able to deal with both well-behaved and badly-behaved functions.

Adactive methods are usually a:plied to badly behaved functions. The

reason being that, the region where the function is badly behaved is

disco

-

vered by such methods and more attention is concentrated on such

a region, thereby producing efficient results. So while fixed method use

a series of rules over one interval, adaptive method generally use
one rule cver a series of subinterval. The rule is usually of low
order and taken from the rules used to integrate well-behaved
functions. fome of the adaptive schemes that use Newton=Cotes rules
are INTS:T (113), QNC7 (96) and QUAD {96 based on Newton-Cotes 5,7
and 10-point rules respectively while SQUAK (105) and SIMFSON (111)

are both based on Newton~Cotes 3 .oint rule.

Another set of adaptive schemes use Gauss-Legendre rules and they
are GAUSS (96) which uses both 5-point and 7-point rules. The 7-voint
rule 1s used to determine the accuracy of the 5-point rule. AIND (133:
uses 10-pcint rule and its accuracy 1s checked by a +lying the 2l-point
Kronrcd rule. Robinson's GAUSS (141) scheme was designed to eliminate
the wastage which is inherent in Gaussian methods. It uses the 3-point
rule in any interval and at each stage, if subdivision is necessary, this
interval is divided into three more in such a way that each cld Gauss
point becomes the middle Gauss point in one of the new intervals. 1In
AIND and GAUSS (96) 21 and 11 evaluations are wasted respectively when

subdivision occurs. This is what Robinson's Gauss tried tc avoid.

The third set of adaptive schemes uses Clenshaw-Curtis rule and the
set includes ADAPQUAD (123) which is called "doubly adaptive" in that
it can choose both the order of the‘Clenshaw—Curtis rule and the
interval over which to apyly it. Under this group is S:LITABS (122)
and an algcrithm by Cranley and Fatterscn (32) that uses 7th order

Clenshaw-Curtis rule.

CADRE (LO) and RBUN (96) are based on Romberg quadrature.

QSUBA (131) designed by “atterson uses all the rules in

Patterson's family (from 1 to 255-voint rule) for each subinterval.

In hew conclusion, Dixon (44) said that any of the following
AD:QUAD, AIND, CADRE, INT5:T, QNC7, QUAD, SFLITABS could cope reliably
and efficiently with many different ty es of integrand and would

trovide a good general library routine.

Since only one routine is to be included in the library for a
finite interval with a known integrand, it is important to select an
ada:tive scheme which does not use the end points a,b during integra-
tion so that integration can be j7ossible even if the integrand is not
defined at those points. Also if there is a singularity (c say) in the

interval over which the function is to be integrated, then by expressing,

b c b
Sw(x)f(x)dx = g w(x)f(x)dx + &w(x)f(x)dx 7.3¢

the function can be integrated over the whole interval. This condition
eliminates most of the methods already mentioned. Routines that use
‘Fatterson's family or any of the Gauss Rules satisfy this condition.

Although QSUBA is not included in the list suggested by Dixon, the

routine was chosen. It must be mentioned that it was after the survey

carried out by Dixon had been done that QSUBA was prublished.

This algorithm can be regarded as 'Houbly ada, tive” to a large

extent because the number of rules ap;lied depend on the function and

the interval. If the function is well-~behaved, the problem is reduced

to that of fixed automatic scheme because the different rules of

Tatterson's family are applied to the whole interval.

- 102 -

If the function is badly-behaved in some areas, subdivision is invoked
and successive rules are a .plied to each subinterval. On exhausting all
the ruies if the error criteria is not still met, further subdivision

of the subinterval is done. It can be seen that atart from halving

the interval, the rule a:plied varies in order.

Aithough the amount of data to be stored is large (381), the storage
required is small com,ared to other ada;tive schemes. As an examjle,
CADRE uses an array of size 2,049 requiring about 8K bytes. There
is also a 10 x 10 array and a lengthy program size. Surely such
storage requirement is too demanding for a microcomiuter. The program
size of LfDPQUAD is also large. Another advantoge of QSUBA is that.
it can easily be modified to reduce its stcrage requirements.

The test on QSUBA carried out by ratterson (131) shows that it is

competitive with CADRE which is a recommended method.

7.3.3. Integrand defined over a semi-infinite interval

cometimes the function is known but the interval ovexr which the

integration is to be performed is semi-infinite. This can be represented
ass

©
S‘W(XDf(X)dX 7.3d

(o)

Any infinite range can be rerresented in this form. As an exam;le,

if we are given.

o0
g w(x)f(x)dx 7.3e
a
then by re;lacing x by x-a in f(x) we have
® o2
X w(x)f(x)ax = j W(x-a)f(x~a)dx 7.3
a o
Also if we are told to compute
o
Sw(x)f(x)dx 7.38
- &R
This can be transformed to
® o2 *
Xw(x)f(x)dx = Sw(x) f(x) dx + w(=y)f(~y)dy
- D ©

by jutting x ==-y.

So although, there are algorithms to evaluate (7.3g) directly,
algorithms for evaluating (7.3d) can also be used. It must be mentioned
that there are many troblems encountered when integrating a function

over an infinite range. One of the problems is, it is imyossible to

attach any validity to the result of any arproximate scheme in the

absence of theoretical information about the convergence of the

integral itself. Most of the available techniques can easily be misused

to -rovide a finite a-proximation to a divergent integral.

Methods used are usually fixed methods. The user specifies n, the
number of abscissas to be used, and the particular rule required.
The methods do not usually give an estimate of the accuracy of the result.
If a function is known to be convergent, it may be ;ossible to use Gauss-
Laguerre formula. The laguerre formula for approximating the integral

over a semi-infinite interval is given by

~ o N2 [L2n))y 7.3
Seﬂ g(x) ax = Zwkg(xk> + %gng! ¢ ©
c k=1

o< ¥ < oo

Here the abscissas X, are the zeros of the laguerre polynomial

In(x) (Ln(x) = 1) Leel)

and >
(n?) X
' 2 7.3k ;
(Lnt1(x)) :
The weight function in this case is e X
The generalized laguerre formula uses the weight function
w(x) = L™, o >-1 and
o n)
A - n.' r(n +d\+l)‘ izn N -'.'.?.31
x e g(x) ax = zwk g(xk> * T (2n)! e (% .
- k=1 ’

0<% <1

- 105 -

The abscissas are the zeros of the generalized or asscciated laguerre

volynomial Ln(dJ(x) and

n! rﬁn-% A+1)

™))P ceeees 70

k

Only the form 7.3g is considered for inclusion in the library. There
are usually tables (157) for W and Xy - Such tables hely in simplifying
the job of computing (7.3d). If f(x) cannot easily be ex;ressed as

e Yg(x), a simple way out is to set g(x) = e* £(x).

Simpson (150) arplied lognormal distribution to perform numerical
integration over a semi=-infinite interval. 1In his conclusion he
menticned that his method is appropriate for integrands that have a
"sharply spiked" behaviour and that it is suitable in some cases where

laguerre quadrature is an appropriate method.

It is also possible to integrate a function over a semi-infinite
range by using a mixture of analytic and numerical techniques (38). One
of such techniques is to transform the integrand to a finite range.

This usually introduces a singularity at one of the end-points. A

numerical technigue is then applied to the transformed integrand. As

an example the substitution

)
it
e+

oo

transforms J-f(x)dx
)

to

1

1 \
j f('{ - .‘.) at
0 2

In this form QSUBA4 can be applied to obtain an answer.

The laguerre quadrature is chosen since Simpson's conclusion
does not show that his method is superior to that of laguerre in all
cases. Also there are tables already available for the computation

of laguerre quadrature. This is not so with Simpson‘s method.

In implementing laguerre quadrature the tabulated weights and
abscissas were used. For single precisicn p was given the value
sixteen while for double precision version n was given the value of
twenty-five. In most libraries, n is chosen by the user but in this
library n is fixed. This was done because care has to be taken in
choosing n for the fact that underflow or overflow can easily occur
if n 1is large. For some microcomputers, the range of real numbers is
between 1038 4o 1078 and for n=25, the minimum weight is .13158E-35.
As n gets larger, the minimum weight gets smaller and this is why a
maximum of n=25 was chosen. It was felt that the abscissae and the
weights should be computed by the routine also, instead of storing
them as data. This approach will reduce the problem of transferring the

trogram from one computer to another which is likely to be done manually.

There will be no need to coyy fifty data numbers and n can be varied

by the user. The problem is that overflow can easily occur, when

com-uting the weights because 1t involves the computation of factorials

as it can be seen from equation 7.3k. This approach has to be discarded.

n
During the summation jz:wi f(xi)
i=1

, a check is garried out to stop

the addition of further terms if the term to be added will not

have any significant effect on the sum. This check helyrs to reduce
the _ossibility of underflow. Using pre-com-uted weights and abscissae
makes laguerre quadrature faster than when these values have to be

first computed.

7.4, Modification of selected routines

The only routine modified was QSUBA (131). This was done so as
to reduce the amount of storage used by the routine. In the original,
there is an array of size 391 which has to be initialized. This can
rose a vroblem when the program is being transferred manually. The
255-~0int rule is arplied in the original version. In the modified
version, the maximum rule used is the 3l-point rule and the size of
the array to be initialised is reduced to 48. Also the number of
subintervals which can be stacked was increased from 100 to 150.

This was to compensate for the reduction of the order of the rules
arplied. There was no substantial difference between the modified

and the original one in terms of reliability. This routine always

succeed in producing an approximation of the integral. If it is not
sossible to achieve the accuracy required by the user, the integral is

computed to the accuracy possible and this accuracy is made known to

the user.

7.5 Contents of Chayjter

ROUTINE NAME PUR: CSE STORAGE (BYTES)

RF1QU Evaluates a definite integral to 2,632
a specified accuracy using the
adaptive method described by

fTatterson.

RF4QU Estimates the value of an

integral of the form 432

[=9]

ge-x f(x)dx

¢

using Gauss-laguerre guadrature.

RF5QU Estimates the value of a definite
integral when the function is 1,932
specified numerically, using the
method described by Gill and

Miller

Note that the amount of storage given is that of the compiled

outyut of the routine using Tx990/4 microcomputer.

- 106G -

CHAPTER 8;

ORDINARY DIFFERENTIAL EQUATICNS

8.1 Introduction

In this chayter, the numerical solution of ordinary differential
equations is discussed. The two main areas considered are initial-value
problems (those in which all boundary conditions are srecified at one
coint) and boundary-value problems (those in which the boundary
conditions are distributed between two points). Some algorithms

suitable for microcomuputers are selected and implemented.

8.2. froblem area

Differential equations serve as mathematical descriptions for many

physical problems and phenomena. As an example, the equation

ay (x) + by (x) + cy(x) = F(x) 8.2a

occurs in the study of vibrating or oscillating mechanical systems or

electrical circuits.

However before a solution is determined, it is convenient to exrress

higher order eguations in the form of a system of first order equations

such as:
y = gi (X, yl, yz,-,yn) 8,2b

+
where Yy Ypr seeees y, are functions of x and y; & d%;/dx.

For a system of n first-order equations, n assocliated boundary

- 110 -

conditions are required to define the solution uniquely. Most
ordinary differential eguations of order greater than one can be
reduced to the first order form by introducing new variables. For
example; suppose we are given the following system of ordinary

differential equations:

(Zz'l)/y 8.2¢

~«
i

zZz = =2

This can be reduced to first order form by vutting Yy =¥, Yo =Y

€
y3 =z, Yy, =% and the system may then be written as

1.7 %
' 2
v, = (37 -1/
y3' = -y, 8.24
y4 = "y3

The boundary conditions are usually specified values of the dependent

variables at certain points. For example, we have an initial=-value

problem if we are given the values of Ypr Ypr eevens¥ at x = X .
These conditions would make it possible for us to integrate the
equations numerically from the point x = X, to some srecified end-roint.

We have a boundary-value problem if for examile we are given values of

o-.y;,V‘ LU = b'
Yir Ypr eeeeey ¥ oat x=aand Yoo Ipupr cec n 2t x

These conditions would be sufficient to define a solution in the

range a £ x 4 b, but the problem cannot be solved by direct

integration from either x=a or x=b.

8.2.1 Initial-value problems

Initial=value problems can be divided into two broad sections
(i) non-stiff (ii) stiff. Stiff ordinary differential equations are
such that certain engenvalues of the Jacobian matrix (‘bgi/’ayi)
have large negative real parts. This imglies that the solutions of such
CDE contain rapidly decaying transient terms. Stiff ODE require special
numerical methods of solution since the methods designed for non-stiff
problems tend to be expensive to use on problems which are stiff and
conversely. It is thus appropriate to select two algorithms, one for
non-stiff ODE and the other for stiff CDE. 4 full discussion on sti7Z CIZ is
=iver in (80) and a survey of methods for solving non-stiff ODE is given by

Enright et al (47).

8.2.2. Two woint boundary-value troblems

Algorithms used to solve two-point boundary-value problems of order
n usually require much storage when implemented. As aﬁ example, the
algorithm by Paleker (128) requires (i) tramsposition (ii) inversion
(i1i) random generation of numbers (1iv) algorithms for solving initial-value

problems (v) at least four two-dimensional arrays.

Fortunately, a large number of practical problems are usually of

order two, and in view of the limited storage available on micro systems,

only the special case of two=-point boundary-value problem of order two

ie censidered.

8.3. Algorithm selection

8.3.1 Non=-stiff initial-value problems

There are many algorithms for the solution of non-stiff initial=-value
rroblems. One grous of fundamental methods is standard Runge-Kutta
methods which is a class of formulae of various orders of accuracy
(see Lambert (101) for more details). These are some of the
oldest methods. A modification to these methods was made by Fehlberg (51)
giving rise to Runge-Kutta-Fehlberg formulas of orders ur to eight, with
built-in strategies for estimating local errors. These formulas are
similar to the usual s-stage exulicit Runge-Kutta formulas exceyt that

two approximations are computed at a 1oint. For one equation:

s
Y0p) = y0x) +h 2wk, 8.3.1a
.=1
and
s
% N *
y (Xi+l) = y(xi) + h ;E: Wy kj 8.3.1b
Fl

The local error in the approximation y(xi41) is O(hp+l) and in
y*(xi+1) it is O(h?*z) where p is the order of the formula. This
justifies using y*(xi+1) - y(xi+l) as an estimate of the local error
introduced by accepting the approximation y(xi+l). This ability to
determine the local error helps in an automatic stey change program.
These methods are particularly appealing because of their sim.licity,

ease of implementation and use.

The Adam's method are a family of linear multistey methods of

i A i i n variable order, variable
varing order. A well-written routine based o ,

step Adam's method will generally be more efficient over a wide range of

accuracy fequirements than a fixed-order, variable-stepy Runge-Kutta

routine. Exam. les of such routines include DVDQ and DVOA, written by
Krogh (99, 100). The routines begin with a first order formula and
use formulas u: to thirteenth order which are based on a backward-
difference representation of Adam's formulas. Subroutine V(AS designed
by Sedgwick (147) uses this same écproach. Cther routines

are DIFSUB by Gear (65,, STE: and DE by Shamyine and Gordon (148).
Because of the variable order, all these routines tend to be mcre
complicated. Hence they require more storage than routines based on

Runge~-Kutta methods.

Another group of routines uses extrapclation methods. Such routines

include DESUB by Crane and Fox (31) and it is based on an algorithm by

Gragg (75), Bulirsch and Stoer (17). This subroutine was later imoroved
and called DIFSYl and it is a variable order extrapolation method

which attempts to use the higher order formulas on each step. 1In
general, methods that are based on extrapolation are somewhat less
flexible than those based on the other metheds. Moreover, they tend

to be somewhat less efficient especially for high accuracy requirements.

Enright and Hull (47) after testing methods for solving non-stiff
initial-value problems, recommended that a general purpose program
library should include at least the following three methods (i) a variable-
order Adam's method similar to VOAS or DVDQ (useful when {gi§ are
expensive to evaluate) (ii) a fourth order Runge-Kutta-Fehlberg
method (when &gi% are not expensive to evaluate) (iii) extrapolation
method similar to DESUB or DIFSYl. Also Guita (78) after performing

tests to determine the overhead costs of various subroutines for solving

non-stiff ODE, concluded that a Runge-Kutta-Fehlberg code (such as

- 114 -

subroutine RKF45 in (60) written by Shampine and Watts) should be
used at low accuracies and an implementation of the seventh order

Runge~-Kutta - Fehlberg formula should be used at high accuracics or
70ssibly a variable order Runge-Kutta code like RKSW of Shampine and

Wisniewski (149).

In this library, only one subroutine is to be included for solving
non-stiff initial-value iroblems. Such a subroutine should (i)
be easy to use (ii) require little storage (iii) be reliable. From
what has been discussed, it was felt that RKF45 was better suited.
A subroutine (RKF7) based on the seventh order Runge-Kutta-Fehlberg
formula was rejected on the grounds that the fifth and higher orders
of Runge~Kutta-Fehlberg formulas are misleading for problems in which
theizyig dervend slightly to only a small extent on the dependent
variables %‘ . For example if one integrates the equation y‘ = f(x),
the error estimate turns out to be zero and step will be accepted. They
also require more storage. Since the double precision version is not
1ikely to be imrlemented in most microcomputers because of storage

problems, results of very high accuracy are not likely to be requested

by many users.

8.3.2 Sstiff initial=value problem

Many algorithms have been developed for the solution of stiff

initial-value problems. A subroutine DIFSUB written by Gear (65)

was later improved by Hindmarsh (84) and called GEAR. Both subroutines

are im.lementations of a variable-order, variable-step multistep method

which uses the backward differentiation formulas of orders one to six

developed by Gear (66). These subroutines have been widely tested and

used in many program libraries. The Hindmarsh modification is
said to be of modest improvement of efficiency but slightly less
reliable. (see Enright et al (46)). Both subroutines are considered

to be efficient and reliable exce.t when the Jacobian has eigenvalues

close to the imaginary axis. The subroutine EFISODE is Byrne and
Hindmarsh's (21) counterpart of DIFSUB and GEAR, using variable-step,

form of backward differentiation formulas.

SDBASIC is an implementation of a variable-order,variable-stev
second derivative multistep method develoyed by Enright (48) and
subsequently discussed in some details in Enright (49,50). It uses
formulas ur to order nine and is reliable and efficient but less

comuetitive to GEAR on nonlinear iroblems.

Some subroutines based on Runge=Kutta methods include IM:RK and GENRK
and they are not usually efficient and they are unreliable for nonlinear

rroblems. See Enright et al (46) for a more detailed discussion.

Subroutine STINT is based upon a variable-step, variable-order method
which uses cyclic composite multisteyp formulas of orders one to seven
and the method was developed and implemented by Tendler et al (160)

STINT is said to be robust, moderately efficient but it is not in

general as efficient as GEAR.

There are many new methods which are still to be testied rigorocusly.

cuch methods include those of Scraton (146) which are derived from the

use of solynomials. There are also methods by Cash (22, 23) in which

one uses extended backward differentiation formula and the other is

based on Runge-Kutta methods. Jackson et al (88) modified EFISODE

- 116 -

so that a fixed leading coefficient is used instead of a variable one.

Since almost all well tested algorithms for the solution of stiff
initial-value .roblems have some disadvantages, there is still a
search for a general purrose algorithm whose implementation is reliable,
efficient and robust. The algorithms whose im:lementations qualify as
good software such as GEAR, STINT, SDBASIC, require much storage. For
exam.le, the FCRTRAN code of STINT is over 400 lines (excluding routines
for solving a systemiof linear equations, function to be integrated,
routine for ayproximating or evaluating partial derivatives). Many arrays
are also required and the same applies to GEAR. Because of the amount
of storage required by these subroutine, no subroutine was included for
the solution of stiff initial-value problems in that the cost of implemen-

tation is more than their usefulness.

8.3.3. Algorithms for two=: oint boundary-value rroblems

The boundary-value jroblem to be solved is of the form
y' = f(xy,y") 8.3.3a
with the values of y specified at x=a and x=b or with y® specified at

x = a and y srecified at x = b.

The methods of solution for boundary-value problems can be

classified into three basic categories:

i) finite difference methods

ii) shooting methods

i3i) collocation methods and others

- 117 -

Finite difference methods require much storage since there is
usually a large number of linear or nonlinear simultaneous equations
to be soived. The smaller the interval size, the more the number of
the equations. A finite difference method s,ecially designed for
two-point boundary-value problems of order two can be found in Chawla (24).
It requires the use of Newtcn -Raphson for the solution of a system
of nonlinear equations. A subroutine im;lementing Newton-Raphson is
not available in the library. Finite difference methods cannot be
a-propriate for implementation in a microcomputer since they require

much com:uter storage to _roduce results of reascnable accuracy.

Collocation methods are only suitable for well=behaved problems
and since uroblems which are not well behaved are also to be solved,

collocation methods are not a.prouvriate.

Shooting methods also require the solution of linear or nonlinear
simultaneous equations but in this case, the number of equations is
the same as the number of boundary conditions. They also reguire a

subroutine for solving initial-value troblems, but such a subroutine

is provided in the library.

The shooting method due to ralekar (128) was chosen and

im-lemented. The im;lementation of this algorithm for problems of

order two required 220 FORTRAN statements, including auxilliary

subroutines. Also this method does not require the use of a Jacobian

matrix needed for the solution of simultaneous nonlinear equations.

8.4. Imrlementation and modification of selected algorithms and

subroutines.

The coding of RKFU45 can be found in Forsythe et al (60). No

= 118 -

major modifications were made exceot that the size of the rarameter list
was reduced and the absolute error fixed at machine tolerance. Alsc the
number of the states of the error flag was reduced to twc. These

ste.s were taken in order to reduce the com lication in the calling
sequence of the subroutine, but care was taken to retain rarameters and
error states which are useful for communication between user and the
subroutine. It must be remembered that this subroutine is used to

solve initial=value problems which are not stiff to a moderate accuracy
(u. to 10-6).

Finally, ralekar's algorithm was coded s:reclally for boundary-value
vroblems of order twé.No subroutines for trans.osition, inversion, and
generation of initial values were required. The code was therefore
substantially reduced. It uses a modified form of the routine described
above to integrate the resulting initial value croblems. It is known
that most boundary-value problems are not stiff and this was why a
modified form of the routine for integrating initial-value problems
was incorvorated without any reservation. Obviously the subroutine

rrovided for boundary-value problems 1s somewhat restricted in the area

of ayplication.

8.5 Content of Cha:.ter

NAME }UR-OSE STCRAGE(BYTES)
RF1DI solves non-stiff initial=-value vro-
8
blems and it is the same as RKF4 5 3,35
with some modifications
RF3DI solves two=-g;oint boundary-value 4,480

problems of order two of the form

y" = f(x,5,¥")

- 119 =

Note that the amount of storage given is that of the compiled

outrut of the routine using Tx990/4 microcomputer.

- 120 =~

CHA- TER 9

OFTIMIZATION AND LEAST SQUARES AF: ROAIMATION

9.1, Introduction

In this chapter, an attempt is made to select and implement some
algorithms for the determination of the optimum value of a function.
Cptimization is a wide area and as a result only a limited rart of it
is considered. An algorithm that uses the method of least squares to

fit a curve to a set of data points is also selected and implemented.

9.2 Citimization

An ortimization problem involves minimizing or maximizing a
function of several variables possibly subject to some restrictions on
the values of the variables defined by a set of constraint functions.
It will suffice to speak only of minimization, since the problem of
maximizing a given function can be transformed into a minimization

.roblem simply by multiplying the function by -l1.

Minimization problems are typically of the form:

n
T:].: Minimize F(?ﬁ) _)_(.e R R R R N 9.2&
X
<
Subject to Ci(z) = 0 i=1,2, ...,m
7

/
where F and (ci) are given real-valued functions. The set (Ci) is

the set of constraints functions while F 1is referred to as the

objective function. Minimization algorithms are designed to solve

- 121 =

-articular categories of problems where each category is defined by the
wrojerties of the objective and constraint functions as illustrated

below. (see Gill et al (71)).

“ro.erties of F(x) Properties of fci(fi)

Nonlinear No constraints
sum of squares of nonlinear

functions nonlinear
linear linear

sum of squares of linear

functions s..arse

Quadratic urper and lower bounds

It is unlikely that a single, all-turpose algorithm, that will yroduce

efficient solution of minimization problems will be obtained.

As it can be seen, there are many categories of problems and

to include algorithms to cover all categories of problems in the library

requires a substantial amount of storage and coding. Infact in the

NAG library (102) there are about forty five routines for minimization

alone. Indeed, special libraries are avallable for minimization alone

(121) The area selected is that of unconstrained minimizatiocn of

nonlinear functions. There is no outstanding reason why this grea is

chosen exce:it that it is one of the more common areas in the field

of ontimization. Moreover, since the sum of squares of nonlinear

- 122 =

functions and quadratic function's are also nonlinear functions, the
routine selected for nonlinear functions should be able tc co e with
these other two ty,es of functions, although such routine will not be

as efficient as routines designed specifically for such cases.

The problem can now be formulated as:

T2: Minimize F(x) x€er " ceeeseess 9.2D
X
where F(z} is a nonlinear function of n real variables X = (xl,xz, ...,xn)T

Nonlinear functions will be considered in the two categoriess Single
variable nconlinear functions and multivariable nonlinear functions. Two

routines are selected to cover these cases.

9.2.1 Selecting aviroirriate algorithm for optimization

The algorithms to be considered are those that locate the local
minimum of a nonlinear function. It should be mentioned that most
of the algorithms used for determining the local minimum of a function
of many variables are lengthy, thereby requiring a great amount of storage.
As an example, an easy-to-use version in NAG library (117) (subroutine
EO#CGF) uses another twelve subroutines. Also a derivative-free-version
uses other ten subroutines and it has twenty three variables in its
parameter list. Such storage usage and long jparameter list is not
com,actible with the nature of microcom,uters and a secticn of users
for which the library is being designed. OUnly derivative-free methods

will be considered since this will reduce the amount of work a user has

to do before making use of such a routine.

- 123 -

Any attem t to reduce the work required by the user, usually
results in the associated .rcblem, the reduction of freedom for the
user. However, realizing the com.lexities of minimization .roblems,
and the tyre of user community in mind, such reduction of freedom
is not ocut of _.lace. A survey of methods used for unconstrained

minimization is given by Gill and Murray (73).

9.2.1.1 Methods for single variable non-linear functions

%
The algorithms under this section are concerned with finding x

at which the function f(x) (a single variable version of F(x)) attains
its minimum value over a given interval (a,b) by evaluating the function
at .oints within (a,b,) and com.aring their magnitude. Such methods
include Fibonacci search, Golden-section search and successive
asproximation. These methods are discussed in Kiefer (97), Johnson
(95) and Berman (12) res,ectively. These methods are guaranteed to

converge, but the rate of convergence is at most linear.

Another class of methods is based on successive function inter, olation.

The function f(x) is a.proximated by a simple function f(x) which agrees
exactly with f(x) in either function value or function value and
derivatives at a certain number of points. f(x) is usually
chosen to reflect the behaviour of f(x). For details of how (%)

can be chosen, see Murray and Wright (116) and Gill and Murray (73).

For example, su.pose, ?(x) is chosen to be a quadratic polynomial

which agrees with f(x} at three points in (ayb>r then the new

a:proximation to £ 3is the stationary point of f(x) which can easily

be comouted. The stationary point of F(x) will be in the interval

(a,b) rrovided exact arithmetic is used and the old values of the

- 124 -

function ¥(x) bracket the minimunm.

This means that the interval of uncertainty must be reduced and one
of the ways of doing this is to discard a point and retain those that
bracket the minimum just as in the case of function-com:arison methods.
This a.proach may result in retaining a high function value for some
while thereby slowing down the rate of convergence. An alternative is
to discard the point corresponding to the highest function value since
this is likely to be the least useful in any subsequent interpolations.
It can be shown that under mild conditions on f(x), if such algorithm
converges, it does so at a superlinear rate (see Brent (15)). Unfortu-
nately the interval defined by the new set of .oints need no longer
bracket the minimum and under these circumstances the inter.clation
formula cannot be relied upon to yield a function value which is lower

than any of those used in the interpolation formula.

There is a class of methods based on safeguarded successive-interpolation
schemes. These methods combine the guaranteed convergence attribute of
the function comparison methods with the superlinear asymptotic rate
of convergence of successive iolynomial intericlation schemes. A step
of a function comparison method is used if using polynomial approximation
will result in obtaining new set of roints which will no longer bracket
the minimum. So at worst, the rate of convergence is linear and we
Brent (15) combined the golden-section search

are sure of convergence.

and successive tarabolic intervolation.

Brent's algorithm and his im;lementation was selected in that it is

easy to use, reliable, uses a small amount of storage, The rate of

s s .
convergence is superlinear if (%) >0. No derivatives are required.

- 125 -

g.2.1.2. Methods for functions of several variables

The best derivative-free minimization methods suggested by Gill
and Murray (73, are those based on using quasi-Newton or conjugate=-

gradient methods with finite-difference a proximations to the

gradient vector g(x) (g(x) = (3F_ _F eevevens, QE;,>).
Bxl’axz ’ LR

Unfortunately, the uy to date derivative-free algorithms based on

these methods are equally storage consuming.

An algorithm designed by Fleck and Bailey (52) uses geometric
programming to locate the minimum of a function. This algorithm is
derivative-free, but it can only be avplied to very s,ecific functions
(such as functions having positive coefficients only) which

obviously reduces its suitability for inclusion in the library.

Another derivative-free algorithm is that due to Rosenbrock (105).
It was originally vrogrammed by Machura and Mulawa (107), however the
trogram has undergone many changes so as to increase its efficiency
and reliability. The algorithm finds the local minimum of a function
of n variables for an unconstrained jproblem by conducting cyclic
searches varallel to each of the n orthogonal unit vectors, the
coordinate directions, in turn. n such searches constitute one
stage of the iteration process. For the next stage, a new set of n
orthogonal unit vectors is generated such that the first vector of this
set lies along the direction of greatest advance for the previous stage.
The Gram-Schmidt orthogonalization rrocedure is used to calculate the

new unit vectors. For more details see Rosenbrock (142). Com:ared

to other routines, it requires a small amount of storage (2,380 bytes)

- 126 -

and as a result this routine was selected. The routine was

tested on Rosenbrock, Box, wood, rowell, Cregg functions and the

results were satisfactory.

9.2.2 Modificaticn of selected routine

The rcutine for single variable nonlinear function was left
unmodified. However modifications were carried out on the routine for
minimizing a nonlinear function of several variables, written by
Machura and Mulawa (107). The subroutine M(NITR to be surplied by the
user was re laced by Jjust a test for convergence so that the user need
not su;ply any subroutine. It was also noticed that the search process
can become stuck on one side of the minimum and overflow or underflow
can occur as a result. This situation usually results from the user
sunplying an initial value of x which is very far from the correct
solution or the user asking for an accuracy which is not attainable by
the routine. To overcome this jroblem, a test was included to detect
such an oceurrence and an exit made from the routine. The values
of x and F(x) before this situation arised are also returned. The
user can then either use another starting value or can request for
less accuracy. Re-orthogonalizations were performed. For n less
than five, only one re-orthogonalization is made, while for 5< n <10,
two re-crthogonalizations are made. For ns10 , three re-orthogonaliza-
tions are performed. All internally declared arrays were removed and

added to the Larameter list. There are only twelve variables in the

rarameter 1list. This is small compared to other minimization routines.

- 127 -

G.3 Least Squares a.proximations

The following .roblem occurs in many different branches of science.

Su.pose we are given m data ;oints

(Xi; }’i) izl, ceven gl

and corres onding vositive constants (weight) e I=l, ceees,m. HWe
think of x as the inde;endent variable and y the de.endent variable

satisfying some unknown (known) functional relationshi:

y; = T(xy) 9.3a

The aim is to choose coefficients ¢ Cn such that the

1, 02, v oo e ey

a;Lroximation

Px) = o B (0 + e (x) + enit e f(x) 930

minimizes

m

> wy (Bx) -)" 9.3¢

i=1

where ¢1' o wevvens ¢n are given basis functions and m>n. This is what is
referred to as the method of least squares. The basis functions can

be rolynomials (inciuding trigonometric or Chebyshev functions) or

some other nonlinear functions. Although other basis .olynomials

may be more a:.pro.riate,

Jo .3d
B =7 7

- 128 -

was chosen. This is mainly as a result of its simylicity. Hence

P(x) = Cpt X 4 i+ cnxn-‘1 9.3e

After Correenees Cf have been computed, it is easy for a user to

evaluate f(x) by the use of nested multiplication.

9.3.1 Selecting arpropriate algorithm for least squares aprroximation

One of the methods used for computing the coefficients for general
least=-squares problems is based on matrix factorization known as the
Singular Value Decompositicn or SVD. The SVD approach begins with a
matrix which is known in the statistical analysis of experiments as the
design matrix. It is the rectangular matrix A with m rows and n

columns whose elements are
aij-*-,éj(ti) i=1, veeveeee,mand j=1,....,n G.3f

Using this matrix, Cls -seey € aTE determined by arplying Househclder
transformation. See Forsythe et al (60), Wilkinson and Reinsch (171).
lawson and Hanson (102) for more details. This method is reliable to
a great extent but it requires more storage and computer time than most
other methods. Subroutine SVD by Golub and Reinsch (74) uses this

approach.

¥ost other subroutines use orthogonal polynomials generated by
Gram~Schmidt process. The set of such subroutines include SQUARS,

LSFITUW, 124, LZ2B.

SQUARS written by Rice (138) uses the method of orthogonal

polynomials., The three term relationship

- 129 -

Pean(®) = (ax+ 3B, v (x) - CFpenq (%)

is used to define the orthogenal rolynomials and to evaluate them. The

three term recurrence coefficients Ak’ Bk C, are com.uted using

k
y
Forsythe (58) a'proach. However for a non rolynomial basis the three
term recurrence coefficients are com uted by Gram-Schmidt .rocess.

(ccasionally the method of SVD is significantly better conditioned

than this method.

LSFITUW written by Makinson (109) uses very small storage and
it is comwetitive with other subroutines that use orthogonal rolynomials.
Cnly pclynomial basis functions are used which is in accordance with the
basis selected in section 9.3.

Subroutines 124 and 1L2B written by Wampler (167) are based on a
modified form of Gram=-Schmidt process. From test results (Wampler
(167)), it has been shown that even for ill-conditioned least-squares

vroblems, a high standard of accuracy is still maintained when those

two subroutines are used, but they require large amount of storage.

Subroutine LSFITUW was selected because of its small storage

requirements and ease of use.

9.3.2. Modification of selected routine

The subroutine was first translated to FORTRAN and arrays Al and BE

were removed from the .arameter list since it was felt that what they

-rovided for the user was not essential.

9.4 Contents of Cha: ter

R

SUBRCUTINE NAME

3|

PURT C

€3]

STCRAGE

RF1IMI

RF2MI

Determines the local
minimum in an interval
(a,b) of a non linear
single variable function

using Brent's algorithm

Determines the local
minimum of a non-linear
function of several
variables using Rosenb-

rock algorithm.

Fits least squares
polynomial to a set of

given data points.

2,598

2,570

Note that the amount of storage given is that of the com.iled

output of the routine using Tx990/4 microcom uter.

CHA*TER 10

i PROXIMATICN UF SPECTAL FUNSTICNS AND DETERMINATICN

~

10.1 Introduction

In this chalter, some commonly occurring thysical and mathematical
functions are discussed and algorithms to approximate these functions
are im_lemented. Functions for determining machine de_.endent

guantities are alsc imjlemented.

.2 S-ecial functions

There are many physical and mathematical functicns (see Abramowitz
and Stegun (1) for details) but only few of these are included in

PONUS(LIM. Those included are common and are frequently used.

They are:
i) <inh , hyperbclic sine
i3) Cosh , hyperbolic cosine
'iii) Ezf , the ervor function
iv) Jo ., Bessel function of the first kind
v) %“ . Bessel function of the first kind
vi) Yo . Bessel function of the second kind
vii) b | Bessel function of the second kind

These are considered for real values of the argument only.

- 132 =

10,2.1 Method of a wroximation

\ Functions are usually avproximated by the use of series. If

f(x} is a given function defined in the interval (a,b), then

o o3

i f(x) = g(x) E 2., yr(x) 10.2a
=0

, where g(x) is some suitable auxiliary function which extracts any

singularities, asymytotes and if jossible, zercs cf the function in

the range in question. Since the comiuter cannot evaluate an infinite
series, a truncation of the series is made when the desired accuracy

i has been reached. Equation 10.Za can therefore be written as:

n

. Mo 3 - A 2
£(x) = elx) :?: a. ¥ (x) 10.2b

I=0

The truncated series can be of many forms. The idea is to find a

o
-l '\‘ t
series (E 2., yr(x/) such tha
Y=o
n
Flx) - &lx) E a, ¥v.(x) | €€ a<x<b 10.2¢
r={
n
where € >0 is the required accuracy and E a. yr(x) is computed
r=0

with as few number of arithmetic orperaticns as possible.

This gives rise to what is called the mini-max a.proximation. An

n is said to be the mini-max re.resentation of a function

a.proximatio

if it minimises the maximum error. Unfortunately, this mini-max

a vroximation is expensive to obtaln. (see Hart et al (81) for details).

Near mini-max a}proximations have to be considered.

Frobabliy, the most im. ortant series for a.proximating a given
function in the given range (-1,1) is that ;roduced by Chebyshev

where

o0 4

() = g(x)) C_T(t) 10.

r=0

N
(@)

and t = t(x) is a ma;ping of the general range (a,b) to the specific

range (-1,+1) required by the Chebyshev .olynomials,
\ A .
T{t, = Cos (r Cos "t). _ 10.2e

For a detalled descri.tion of the ;ro.erties of the Chebyshev . ociynomials,
see Clenshaw (28) andFox etez) (62,. Cne of the reasons for preferring
Chebyshev ex.ansion to c¢ther series 1ljes in the fact that for many
functions the coefficients Cr tend to zero ra.idly and when this is the

case, we may take the first omitted term C_,. T ., (t) as an

1

a proximation to the error committed by using

n

P (t) = E C,. T, (Y 10.2f

=0
Fortunately, the difference between the true mini-mex ;olynomial
(ayproximation) and the itruncated Chebyshev exiansion is seldom
sufficiently great to be of significance if the interval (a,b) and the
auxiliary functién g(x) are well chosen. Also the ccefficients Cr of

Chebyshev - expansion are easy to com ute compared with ;roducing the

mini-max .olynomial. The Chebyshev exi.ansion (10.2f) is always

stable on an interval (see Rice (37) for more details).

- 134 -

Fer a well=behaved function, the Chebyshev expansion can be

transformed to a sim;le ;olynomial such that

I

P (t) = ii:ér T_(t) brtr 10.2g
=0
The sim.lie :olynomial can then be evaluated by the efficient
Horner's method of nested multi,lication using n multi. lications and
n additions. This form will be used only for very simple functions.
However, a mcre stable and accurate form of evaluating Pn(t) is to use the

Chebyshev coefficients Cr and to form the recursion

Vn - bn’ nl 0

13 = - Y e -

\k 2t Vk+1 Vk+2 + Ck k=n=l, n=2, .cece, 1
Vo=t Vg -V, 4+ = Pn(t).

This evaluation requires n+l multiilications and 2n additions. The
increase in the number of additions is small. The accuracy and

stability obtained in return is worth this small increase in cost,

10.2.2 Implementing algorithms that use many store constants

Since most of the s.ecial functions are to be approximated by
sim.le or Chebyshev polynomials, it is ;ertinent to discuss how
the coefficientsof these ,olynomials are to be stored. In FCRTRAN,

if double .recision arithmetic is available, for every real function

provided, there are single and double precision versions. In the
L ~ .

library therefore, the two versions are made available in a separate

. : 14 utines where it is
form for each s, ecial function (unlike other routl !

. - : 3 Sm:] 2 M
1eft for the erson implementing the library to im:lement one version).

5 £ ~13h ~3 e - < . - N
Thus 17 double .recision arithmetic is available, the two versions shouid

be made available for each s.ecial function.

In storing the ccefficients, scme FURTRAN com,ilers will detect
an errcr if the constants contain more than a certain number of digits
in the mantissa of the number. The number of digits allowable for some
mainframe com uters are as follows:

IBM

ICL system 4

)
g Single irecision 6 digits
% Double precision 16 digits

ICL 2900

ICL 1900 g

ICI 4100 % Singie irecision 12 digits

Burroughs) Double .recision 21 digits

DEC 1D 10 ; Single rrecision 8 digits i

) Double w.recision 16 digits

¢pc 6000/7000) Single ;recision 14 digits

Double ,recision 28 digits.

(see Schonfelder (144) and Forsythe (60))

Fortunately for most or known FCRTRAN comiilers for microcomputers,
the number of digits for single precision is between 7 and 8 while for
double Tecision is between 16 and 17. Hence single :recision constants
can be stored using u. to 8 digits and 17 digits for double rrecision

without causing error during com;ilation. 1In this library, 8 digits

and 16 digits are used to re- resent single yrecision and double rrecision

- 136 -

numbers res ectively, in floating .oint form. The various functions are

nov discussed,

10.2.3 e hyierbolic sine, SINH

This functicn is defined as

sinh(x) = 0.5(e*-e™%) 10.2.3a

In most high level languages, especially FCRTRAN, a built in

. X, ‘o
function to evaluate e is available and ac a result Sinh(x) can

easily be obtained. Unfortunately for x close to zero ¥~ e and

RN X =X, e s a1 s .
the difference e =e = in Sinh(x, can result in a large relative error.

To cvercom is ,roblem, Sinh(x) is a;jroximated by a solynomial for
To cve e this ,robl Sinh{x i

x small. This means that

* 0.5(e*~e™¥) lx [> 0.5

10.2.3b
Sinh{x) = 9 -

) A : £ : 4
The sim.le polyncmial ¥ (X) is used since the function being

. . _ .c . PN s
arproximated is sim le. This means that the coefficients of the

Lolynomial can be re.resented to a high accuracy in the com:.uter.

. bl 3 is gl in Hart et al (81).
The .olynomial a, proximation used 1s given i (81)

10.2.4 The hyperbolic Cosine, cosH

This function is defined as

Cosh(x) = 0.5 (e’+e™%) 10.2.4a

. . . X . . - s [Ep—
since a function to evaluate e” is usually availabie in FCRTRAN

com:ilers, Cosh(x) can be evaluated directly from the above formula.

10.2.5 The error function ERF

The error function is defined as
2 et at 10.2.5a
Erf(x) = -=

Note that Erf(-x) = - Erf(x) and Erf(x) is an increasing function of
x and it is ajproximated by:

el
4

x E_ a. T, () t = 2(%)2 -1 !x !5_ 4
n
=0 10.2. 5¢

2
Erf(x) = < Sign (x) (1- 2 ig::?rTr(t>) E> ’X ‘> .

| |
t-Z%Z—l
sign (x) |x |2 "

Sign (x) is 41 depending on the sign of x. For single rrecision
version. R was chosen to be 4.0 while for double rrecision version
4

R was chosen to be 6.5. See Clenshaw (28) for the a:iroximating

polyncmial.

- 138 -

10.2.6 Bessel functions of the first kingd JO’ Jl

Bessel functions of order v are solutions of the differential
equation

2 2

2% dw + zdw + (22 - vz)w =0 10.2.6a

W
dzZ dz

Only the special cases Jo(z) and Jl(z) are to be considered
where ¥ is 0O or 1. These functions have infinite number of
zeros on the real axis, all of which are simple with possible exception

of z = O,

Some algorithms which do not use Chebyshev series to approximate
Jo and J; have been formulated by Borsc-Suran (13) and Wojciki (172).
Overflow was observed to occur frequently when the routine by Wojciki
(172) was tested. The algorithm due to Borsc-Supan has been observed
to give results to a high accuracy. But these are iterative in nature
and as a result they are not as efficient as those based on Chebyshev

polynomials. A more recent algorithm is that by Amos et al (4) but

it is rather lengthy, therefore not suitable for use in a microcomputer

library.

Using Chebyshev polynomials we have:

J (%) = Z‘ar T.(t) R, <|x]< 8 10.2.6b
=0

t=2x(F -1

2 (p(x) Cos(x - ﬂ/q) - Q/(x) sin (x -ﬁ/ur))

x|

for }XP-B
\J_,___,’ -
with Eo(x) = Z b, Tr(t)
=0

t=2(2)° -1 10.2.6c

Q%) = Z 1,(%)

I=c

-

and Rs a small number close to zero.

In FCONUSCLIM RS was experimentally chosen to be the square root of

machine precision. Similarly for Jl we haves

X
[
X
Jl(x) = 5 % a. Tr(t) R < {x‘f_ 8
r=0
with t = 2(%)2 -1 10.2.64

2 (P (%) COS(X"BW/Q,) - @ (x) sin (x- 3TT/LQ)
l S

L ‘x‘>8

- 140 -

where ,
Bos 2 ¢, T(t))
=0 §
' %t—z(—gg-l 10.2.6¢
Ql - jz:: “r Tr(t) !
s)

and RS was experimentally chosen to be 0.002 for the single trecision
version and 0.1 % square root of machine precision for the double

‘recision version.

We need only consider a,proximaticns for x »0, since JO(-X) = J (x)
o

and Jl(-x). See Clenshaw (28) for approximating Chebyshev :olynomials.
When a simple polynomial re.resentation obtained from Hart et al (81}

was tried, large error was observed for large values of x.

Once JO and J1 have been obtained, . others of higher order can

be calculated by the recurrence relation

\ - 121] -
J -}(xj = P J (X> n](X> 10.2.6f

10.2.7 Bessel functions of the second kind YO, Yl

These are also solutions of the differential equation given by 10.2.6a.
These solutions have a logarithmatic branch points at the origin and they

are not defined for negative x. Like the Bessel functions of the

first kind, they have an infinite number of zeros on the real axis,

all of which are simi.le, with the yossible exception of z = o

(1‘

2@ 4y S

t - - 10.2.7a

, 2 ,
o(x) = ;—Tln(X) JO(X) +ZarTr<t) RS x¢ 8
, =0

-2t

% = 0.57721566490153286062D 00 the Biller constant and R_was

experimentally chosen to be the square root of the machine precision.

similarly

- 142 -

- 2
= O0<x < RS
v) - . .t
1 = 1in(x) J1(x) -%—x + % Ear 'rr(t)
< =0
R<x < 8 and t = 2(%)2-1
2 . Y i
= (Pl(x) Sin (x- 3 /4) + Ql(X) Cos(x~ 31‘4))
. x>8
where: b
. |
P(x) = zcr Tr(t>E
=0 §
| _ 82
t = 2(;{-) -1
Ql(x) = chr(t) ‘

and RS is a small positive number and it was experimentally choseg
to be 0.1 = square root of machine precision in PONUSCLIM. Since

Y (x) and Y. (x) are undefined for x £ 0, the implementing routines
will indicate a failure exit for negative arguments. Approximating

Chebyshev polynomial is given in Clenshaw (28).

10.2.8 Routine to perform the summation of Chebyshev series.

Since Chebyshev polynomials are used to approximate most of the

special functicns, a routine was designed to compute

using the recursion described by 10.2h. This routine is very valuable
es .eclally in cases where up to two or three Chebyshev polynomials
summations are required by one s:iecial function. Irovision of such a
routine will obviously reduce the total amount of storage used by

routines that are based on Chebyshev polynomials.

10.3 Routines that deliver machine de:.endent quantities

In chapter 3, it was thought necessary to have available rcutines
that deliver machine dependent quantities. During the installation of
the library, the routines _rovided sam,le the host com uter to obtain
these quantities. The routines are then modified so that the comruted
quantities become :refixed values so as to decrease execution time of

routine. The modified routines are the ones finally included in the

library. In what follows a discussion on how the initial routines are
written and how they can be modified during installation before finally
being included in the library is given. The quanties to be com.uted
are radix, mantissa length, relative precision, range of numbers

representable.

10.3.1 Routine that delivers machine dependent integers

Table 10a reveals some of the machine dependent quantities cof
different microcomputers having FCRTRAN Comiilers. There is very
1ittle variation and as a result some assumptions can be made to
the routines for determining these quantities. It must be mentioned
that the situation is nct the same for languages 1ike BASIC (see Genz et al

(68)). In this case the restrictive nature of microcomputers and the

-k -

ATTRIBUTE {MUTCR.-A TEXAS 990/# ZILCG | CRUMENC.| INTEL DG
FORTRAN ~7
80
Micro:ro=- | M6B0OO TMS9900 280 280 8080/ mN601
Cessor 8085
Radix 16 16 2 2 2 16
Range of 10 78< ix '< 10-7<8|x l< 153<81 X 10—38< 10‘384 10"7;8; x |
floating- | 1077 1072 STCL N LI < 1077
. .38
Loint 10 1038
numbers
Range of 32768 to |=32768 to [|=32768 -32768 |=32768 -32768
integers +32767 +32767 to to to to
+32767 +32767 (432767 +32767
No of char
in an integer 2 2 2 2 2 2
storage unit

MACHINE QUANTITIES.

- 145 -

language chosen are of help. From table 10a, the range c¢f integer

values and the number of Characters that can be stored in one integer
storage unit are the same for the microcom uters considered. The

function IF1MQ is used to com,ute the integer quantities and the quantities

ares

1. Standard output unit number
2. the BASE-B
3. the number of BASE—? digits in the mantissa of a single vrecision

real number. This will be taken as an integer value aithough in

large computers, it can be a non-integer value.
4, Maximum ex. onent of fioating-.cint values (10 = = Emax).
5. Minimum exponent of floating- oint values (10 % * Emin).
6. YMaximum integer re.resentable

Minimum integer re,resentable

~1

8. Hantissa length of double ,recision real numbers (which is included

only if double-, recision arithmetic is available).

The integer function IFIMQ written to determine all these

gquantities is centered on Malcoinm (108) algorithm. The function is

referenced as:
IBASE = IF1MQ(I) 10.3a

The value of 1 determines which of the above items is to be
comuted. Values which are known to be the same for different
microcom, uters such as the largest and smallest integers are _refixed in

the function instead of being comg.uted. Double-precision real numbers

have the same characteristics as single yrecision real numbers excert

- 1UE -

for the mantissa length. It will therefore be a waste of storage

to cbtain ancther version to cater for double=, recision numbers.

IFIMG 1is first used to determine items 2 to 8. C(nce these

quantities have been obtained IF1MQ can then be modified as for exam le:

INTEGER FUNCTICN IF1MQ(I)

DIMENSICN IMACH(8)

DATA IMACH/1,16,6,75,~78, 32767, -32768, 14/
IF1MQ = IMACH(I)

RETURN

END

The DATA line s.ecifies the various quantities determined by the
initial IF1MQ. The first integer in the DATA line (1) stands for the
standard cutiut unit number which must be specified during installation.
In this modified form, IF1MQ is faster and occuries less storage. It
is this form that is made available during installation for use

either by other routines or users.

Integers can also be of double~length but the range of double-length
integers is not included in the 1ist because of the comilication that
this will cause. Some FCRTRAN compilers that have double-length integers

do not have double-.recision floating-point numbers and vice versa.

10.3.2 Routine that delivers machine ,recision

The only floating-point quantity which is included in the library set

of machine dependent quantities is the machine precision or relative

recision Tli. This is a very im ortant machine de.endent quantity
for numerical com.utation. It may be defined tc be the smallest
~ositive number such that the evaluation of 1.0 + T(i and 1.0=-TCL

is a resulit different from 1.0 and therefore satisfies
1.0 - L <« 1.0< 1.0 + TCL 10.3.2a
TCUL is the smallest value that satisfies 10.3.2a. It is alsoc known that

T -
B~ t for cho;red arithmetic

10.3.2b

for rounded arithmetic

[SI=S
v ¢

~
where B is the base and t is the number of B digits in the mantissa
TCL helwus to know when iteration can be sto:ped and it also helyps in

testing for ill-conditioning.

Cbviously TOL can easily be obtained from equation 10.3.2b
since all the quantities needed for the comiutation of TCL can be obtained
by the use of Malcolm (108) algorithm. However, there is a direct
method for com.uting the machine precision, T(I, which is faster than
using equation 10.3.2b (see Forsythe et al (60)). Functions RF2HMQ and

DF2MQ are based on this direct method. The direct method obtains TCL by

forming the sequence.

4
1 P ‘%" %‘, R EEEE RN "2'1’2\

until one of the terms satisfies the definition of TCL. Once the

- 148 -

initial RFZMQ or DF2M{ has been used to obtain TC., these functions
can then be modified. Note that DF2MQ is the double .recisicn version
of RF2MQ. If there is no double-;recision arithmetic, then DFZ2MQ is

not im lemented.

Using RFZMQ and DFZMQ, the value T(L for the Texas microcom. uter
Tx990/4 was found to be 0.95367436E-06 by RF2MQ for single .recision
and 0.2220446049250313D-15 by DF2MQ for double ,recision. These values
agreed with equation 10.3.2b. RF2MQ can then be modified when the

library is being installed to become for exam. le:

REAL FUNCTICN RF2MQ (R)
DATA TCL / 0. 9536743E-06/
RE2MQ = TCL

RETURN

END

Note that variable R is there for RFZMQ to satisfy the requirements of

a functicn in FURTRAN. The same modification can be ayplied to

DF2MQ.

10.4 Ccntents of Cha ter

RUUTINE HNAMY

IR CgF

RF1SF
DF1SF
RF2SF
DF2SF
RF3SF
DF3SF
RF4CE
DF3SF
DF5SF
DFsSF
RFESF
DF6SF
RE7SF
DFE7SF

RFEBSF

DFESF

JFINMQ

RF2NQ

DFZHQ

Evaluates Sinh(x)

Double .recision version of RFISF

Evaluates

Double .recision version of RF2YF

Cosh(x)

Evaluates error function Erf(x)

Double recision
Evaluates Bessel
Double irecisiocn
Evaluates Bessel
Double precision
Evaluates Bessel
Double jrecision
Evaluates Bessel

Double .recision
n 1]

Com:utes E ar

r=0

version of RF35F
functicn JO
versicn of RF4SF
function Jl
versicn of RF5SF
function YO
version of RF6SF
unction Yl

version oF RF7SF

T,(%)

Double :recision version of RFESF

Determines integer machine de;endent

constants

Determines machine relative error

Double irecision version of RF2MQ

636
o84
794
1164

778
1160

Note that the amount of storage is the com.iled outiut of the routine

using Tx990 microcom uter.

ety

Y

11.1 Intrcduction

It is intended that the execution time of the routines in the
library should be as small as possible and that they should use efficiently
other com uter rescurces. However there are several reasons why this

is nct usually possible:

i) Com.ilers frequently do not vroduce optimum cbject code in
that some of the algorithms needed to optimize code are nct yet
known and others are tco cestly tc implement. For micrccom.uters
where storage is a critical resource the cost cf imilementing an
optimizing com.iler 1s very high. Alsoc some of the library
routines distributed with the computers are inefficient.

ii) Frogrammers concentrate on getting a “rogram to work as soon as

~ossible rather than on optimizing its efficiency. They also
learn just enough about a programming language, but not enough

about how to write them well. (see Waldbaum (164) for some

other reasons).

It is .ossible for an ex.erienced .rogrammer to eliminate the second
set of reasons why programs are inefficient. 1In :CNUSCLIM steis were

taken to eliminate these second set of reasons bys

avoiding DATA TYrE conversion whenever possible.

removing constant multipliers in a loop.

fodo
e

pdn
p— e

re,lacing arithmetic IF statement with logical IF statement

o h
(S
e
P—g

whenever possible since the latfer is usually faster than the

former.

SR

5
i
i%
b
o
i
b
.

- 151 -

ivy aVOiding BN e Ssay y initialization

V) removing a test which cannot be satisfied in an inner loo. to an

cuter loo..

vi) selecting algorithms whose im. lementations do not require too

much storage.

vii) avoiding the use c¢f internally declared arrays whenever vossible.
/ k

viii) using the summation

e

TR

Q= 0.0

DO 10 K=1,M

10 Q=&+t A(I,K) = (K, J:1)

A(I,3r1) = A(I,31) - q

instead ofs

DO 10 K= 1, M
10 A(I,J:1) = A(1,371) - A(I,K) # A(K,J:1)

thereby avoiding unnecessary array accesses.

Unfortunately, a programmer has little control over the first set

of reasons given for the inefficiency cf com,uter programs in their

use of com.uter resources. However imurovements can be made if some
frequently used portions of the library routines where the compiler is
inefficient are identified, and such portion ¢f the routines written in
assembly language. Identifying the necessary rortions or areas can

be tedicus and as a result only the more obvious ones are considered. .In
what follows, scme routines are written in assembly language to revlace

selected ;ortions of the library routines. The effect of these routines

on some selected library routines is then examined. The details of this
type of medification c¢r tuning are system de endent but the princi les

are the same. The micrccom:uter used in this exercise was the Tx990/4.

1142 Floating ~ .oint multiplication

(ne of the statements frequently included in a .artial Double

‘recision Version ((D:V) of a routine in the library is

D

)
[
o

DB.E (4) ® B

where D 1is declared as DOUELE | RECISION and A,B are single .recision
real variables. In executing this statement, A and B are both extended
tc decuble .recision by filling the extension with zeros. The
multiilication is then carried cut in double irecisicn without the

knowledge that half of each number (A and B) is filled with zeros.

To im rove statement 1lla, a function named DALTM was written in
assembler language to re.lace DBLE(A) % B. Table 11.2a shows the execution
time for varicus statements. It can be seen that DALTM is faster than
DBiE(A) ® B. In implementing.DAlTM, the hardware integer multi;licatiocn
avaiiable in Tx990/4 was used instead of the usual shift o,eration.

Infact, when oniy shift o erations were used, DALTM took 1.65 msec.
In FCRTRAN 77, a function similar to DALTH is ;rcvided as a standard

inbuilt function. Notice that the execution for multiplication is less

than that cf addition. This is not usually the case for most micrccomputers

and it might be due to the avaiiability of hardware integer multiply

which can be incor.orated into software fioating~-voint multiplication.

..153«.

STATEMENT TIMe
D = DAITM (A,B) 0.95 msec
D = DBLE(A) % B 1.70 msec
C = A¥ B C.60 msec
C = A+B 0.65 msec
C = A-B 0.70 msec
r = A/B' 1.30 msec

TABLE 11.2a: Timing For Arithmetic Statements.

C = Single .recision real variable.

11.3 Array accessing

Although the com.uter time for array accessing is small ccmpared
with floating-'oint com.utation, the amount of time taken by array
accesses in a routine can be substantial if the number cf array
accesses is high. To this effect, the manner in which a two-dimensicnal
array is accessed in a DO loo: was investigated by studying the assembler

Tcrm ofs

0.0

i

Q
DO 10 J=L,M

10 g =Qq+ A(T,J)% X(J)

which was ,roduced by Tx990/4 FLRTRAN com,iler. It was noticed that

an integer multi,lication was cerformed each time the array A was

- 154 -

accessed. (The ratic of integer additicn to integer multi licaticn
with respect to execution time is about 1:3.. It is however

possible tc replace the three lines abive with a function. It is of the form

REA. FUNCTI(N RAITA (4, X, ID, I, 1,

and uses addition in place of mulitiplication when accessing array A. 1D

is the declared row size of A in the referencing (sub) program.

FUNCTICN:
REA: FUNCTICN RA2TA (A, X, ID, J, ., M)

was used to re lace:s

Q= 0.0
DO 10 1 = i,M

10 @=¢q+ A(T,J)x x(J)

It uses additicn instead of multi.lication when accessing array A. ID

is the declared row size of A in the referencing (sub) program.

Functicn:

RiA.. FUNCTIUN RA3TA (4,B,ID,I,J,1,N)

was used tc re.lace:

Q= 0.0
DO 10 K =1,M

10 g= ¢+ A(I,K)x* B(K,J)

It uses addition instead of multi lZicaticn for both A and B when

accessing A or B. ID is the declared row size of A and B in the

referencing (sub) :.rogram.

..155._

Finally the functicn:

REA. FUNCTI(N Ra4T4(A,B,ID,I,d,.,HM)

was used tc re.lace

It uses additicn tc access both A and B in

ID is the declared row size of A and B in the referencing (sub) rrogran.

10

§ = 0.0

DO 10 K =1,M

Q=Q+ A(I,K) % B(J,K)

.tace of multi.licaticn.

Three of these functicns were timed to measure the time which cculd be

saved 1f these functions were used to re.lace the necessary -ortions in

a maln rogram. The ,ortions they re laced in a main ,rogram were

alsc timed and in each case =1 and M = N where

N 1is the matrix size.

SR I URTICN ' (RTICN
N RALITA { CRTICN RE.LACED { RA3TA RE-LACED RALTA RE 1 ACED
10 J12.4 i2.4 msec 12.6 12.6 msec| 12.4 13.0 msec
msec msec msec
20 {24.2 24 .4 msec 24 .4 25.4 244 25.2 msec
msec msec msec msec

TAB:E 11.3as

Timing of functions

Frem table 11.3a, there is very littie difference between the

time for the execution ¢f the functions and the portions they re. laced.

It was felt that these functions shcou.d be tested in a subrcutine
envircnment instead of a main .rogram environment since the functions
are tc be used by subroutines. Twe subrcutines SUBl1 and SUBZ were

therefcre considered.

!,._.J

SUBRCUTINE SUBL(ID,N,A,X,F)

2 DIMENSICN A(ID,N), X (N)

3 I=1

4 Q= 0.0

5 DO 10 J=1, N

6 10 Q=q+ A(I,d)= x(J)

7 P=Q

8 Q=a-x(2)

9 RETURN
10 END

1 SUBROUTINE SUB2(ID,N,A,B,X,P)
2 DIMENSICN A(ID,N), B(ID,N)
3 I1=1

b J=1

5 Q= 0.0

6 e 10 K=1, N

i 10 Q=g+ A(I,K)x B(K,J)

8 P=Q

9 Q=q- A(I1,9)

10 RETURN

11 END

Both SUBL and SUBZ were timed and SUBL1 was then modified by replacing
iines 4-6 with RAITA and then time. Similariy SUB2 was mcdified by
re.lacing lines 5-7 with RA3TA and then timed. Table 11.3b shows

the result obtained.

N SUEL SUBL WITH RA1TA SUB2 ‘SUB2 WITH RASTA
10 | 15.4msec 13.4 msec 16.6 msec 14.0 msec
20 125.8 msec 25.4 msec 31.2 msec 26.0 msec

TABIE 11.3b Timing of SUBl and SUBZ.

From the results, it can be sald that the .otential saving in time
would be substantial for subrcutines which invclve a large amount of
array mani.ulations. The reason for these different timings is that
in a main ;rogram enviromment, the time gained by the function is offset
by the overheads involved in referencing a function. Cn the other
hand, the subroutines and the res ective functions have almost the same
overheads. The difference in time is therefore increased. Using RALTA,
RA2TA, RA3TA and RA4TA to im.rove the s eed of subroutines is therefore
justified. Much time can be saved in the area of stiff ordinary
differential equations and eigenvalue ,roblems if these functions are

incor. orated.

Double recision functions DA1TA, DAZ2TA, DA3TA, DA4TA were created

from RALTA, RA2TA, RA3TA, RAHTA resiectively by replacing the single

- 158 -

recision multi licaticon in them with DAITM. Functions DALTA, DAZTA,
DA3TA and DA4TA can imurcve the s:eed of .artial double .recisicn
routines in the library substantially. Function DAITA was timed in a

main ;rogram environment by re:lacing:

Q= 0.0
DO 10 J=L,M
10 Q=Qq+ DB.E (A(T,J)) = Xx(J)

with DAITA, where @ is declared as DOUBLE :RECISILN. Tab ¢ shows

i
®
[]
'__J
L

W

the resulits obtained.

N DAITA PORTI(N RE: LACED
|
|

10 16.8 msec 29.6msec

20 31.4 msec . 58.8 msec

TABLE 11.3¢ Timing for DAITA and rortion replaced.

11.4 Inbuilt mathematicai functions

The most usual algorithms for the evaluatiocn of standard mathematical
functicns are based on classical approximaticns cf numerical analysis (see
for exam le IBM FURTRAN IV Library functions (86) and (nibere (124))

For such methods, mathematical identities are used tc reduce the

sroblem to one in which the argument lies in a standard range

(which may vary with the functions and with the machine in use).
For arguments within the standard range, the function is a proximated
by a olynomial, rational or other simple functicn (see Hart et al (81)

for more details).

Uniike cliassical methcds, the .rime wur:iose of Chen ajgorithms
is tc minimize the necessity for true multi lication and divisicn
¢ erations during executicn. In their place "pseudo-multi.lication", each
of which invcives a single shift o.eration and singie addition ¢ eration

are used. (see Chen (26) and Richards (138) for mcre details):

In microcom. uters, where floating-.oint multi licetion is ex;ensive,
it was felt that the use c¢f ":seudo-multi.lication" would reduce executicn
time c¢f inbuilt standard mathematical functions based on classicai methods
that use true multiplications. (ne of the reasons given for the
inefficiency of com:uter programs is that some of the library routines
distributed with the com.uter are inefficient. In crder tc determine
the quaiity of the .rovided inbuilt standard mathematical functicns, the
functicn SQRT and ALCGE were tested against the im. lementation of Chen
algorithms for square roct and lcgarithm to base e. Aithough it was nct
ex licitly known from available manuals, it was felt that the inbuilt
mathematical functions in Tx990/4 were based on classical methods.

Table 11.4a shows the timing of two inbuilt functions and the

corres.cnding Chen algorithms. The time is given in msec.

E 'zxﬂup}“.&@.'

- 160 =
SQUARE R T .G T. BASE E
ARGUMENT ﬁmcmm CHEN MACHINE CHEN
0.5 2.8 9.6 4.4 £.6
0.562 3,0 9.0 4.6 13.0
0.75 2.8 15.0 4.6 6.0
0.6875 2.8 10.8 5.0 11.6
0. 666666 2.8 10.0 4,6 9.0

TABLE 11.4a Timing for SQRT and AL{GE

From table 11.4a it is obvicus that Chen algorithms are very siow
com ared with inbuilt mathematical functions SQRT and AL(GE. The
reascn is that in rerforming true floating- cint multiilicaticn in
Tx990/4, hardware integer mulitirliication 1s combined with few shift
c.erations while Chen algorithms can oniy be efficient if software
malti lication is verformgd by using only shift o eraticns. 1s0o in

the Tx990/4 floating~- oint addition is even slower than flocating-point

multi.iication which is not usualliy the case for most Com uters.

No functions were therefore written to replace the ones :rovided in
Tx990/4 FLRTRAN library. However the ;ossibility of incliuding integer

multi iication in Chen algorithms is still tc be studied.

1x.5 Effect of tuning on some seiected routines

To test whether some of the llbrary routines can be improved

by the use of the functions written for tuning jur.cses, two subroutines

- 161 -

RF1LE and RFZLE used to solve system of Linear equaticns were

mcdified by re, lacing the necessary .orticns of these subroutines

with the corres.onding tuning functions. Since both RFiLE and

RF2L.E are needed tc soive a system of linear equations comiletely, they
were timed together. Table 11.5a shows the result obtained. :D:V

stands for Fartial Double :recision Version and N is the number of equa=-

tions.
N RFi.E & RFZ2LE MUDIFIED VERSIUN =DV MUDIFIED VERSION
10 1.06 sec 1.02 sec 1.82 sec 1.22 sec
20 6.04 sec 5.56 sec 11.70 sec 6.72 sec

TARLE 11,5as Timing for RFLLE and RFZLE
It can be seen from table 1l.5a that a substantial increase in s:ieed
can be achieved if the necessary library routines(particulariy the

rartial double rrecision version) are tuned.

There is still much to be done in the area cf tuning of the
library since only the obviocus as.ects have been discussed here.
(nce these functicns have been written, they can then be included
in what is called the base file of the ilbrary which is always linked
to a user's ,rogram whenever any library routine is called or

referenced by a user’s .rogram.

- 162 -

The behaviour cf TX990/4'michQomputer has not been tyuicai of most
other microcom uters. This is maihly because, it is a sixteen=-bit machine

and it‘has hardware integer multi:ly and divideq which is not typical

“‘of“mest microcomputers.

- 163 -

CHA-TER 123

CLNCLUSILN

12.1 Research aims achieved

The main aim of this study was to design and implement a general

pur.ose numericai software library whichs-

a) is suitable fcr microcom.uters.

b) is _ortable.

c) serves a wide range ¢f scientific users of microcom.uters !
and is easy tc use.
d) takes advantage of architectural features of microcom uters.

e) is small and yet powerful.

By studying the various versions of FURTRAN com ilers available on
microcom.uters and finally using a subset cf comfxi¥&ﬂi F(RTRAN to
write the library, it was feit that the library is .ortable to a

great extent.

The areas in scientific com.utation included in the library were
selected from three different libraries used by different ty.es of

scientific programmers. The areas selected were the cnes frequently

used. This means that the library is small but yet ;owerful and can
serve a wide range of scientific users. Delibrate efforts were made to
seiect algorithms whose im lementations required moderate amcuntsof
storage sc that the resulting routines were sultab:ie for microcom uters.

In some cases .ess than o.timum algorithms have been chosen because cf

their moderate sicrage requirements. (ccasicnally routines were

modified sc¢ as to make them mire easy to use.

Fina--y, the features of microcomputers were exploited mainiy 1in

the area of determining machine dependent constants.

It can therefoure be said that ail the research aims f this study

have been achieved.

2.2 Sugegestions for further research

Occasicnally, iess than optimum aigurithms have been chosen for

inciusion in the library. The reascn is cliear:y that a subrcutine is
«f nc¢ use if there is nct encugh sufficient storage for its use. In
mcst cases when a-gorithms are modified to im rove their efficilency,

they usuaily require more storage. This means that scme efficient and

reliab.e algcrithms wi:l hardly ever be chosen for im _ementaticn in
micrecom uters. This cails for a rigorous study of these "classical

methcds” for scientific com utation. There is the need to examine

a _gorithms in the area of c¢lynemia's, stiff ordinary differentia’ equaticns,
very large systems of linear equations and other areas where the

implementing rcutines of the aigorithms require .arge amcunt cf

storage. This examinatiun shcuid ay attention to the reguirements

of aigorithms for micriccem uters, in .articular storage requirements

and the s.cwness of fioating~- .cint ccm utaticns. The a:gorithms
deve:c ed shcu.d be such that they are c¢ssib.e tc¢ im .ement using a
high .eve. language and the resu.ting routines shou:d be easy to use.

The Toutines shou.d c¢f course also exhibit alli the ncrma-. attribute

of :ibrary routines.

- 165 -

2.3 Recent deve cepments and the future

The fie.d of micrce.ectronics is ex anding rapid.y and scme f
cur scfiware . ruboems are being su.ved by hardware deve.c ments. For
exam' le, Intel has intrcduced twe new math rocessor chi s, 6231 (fixed
oint) and 8232 (ficating ,oint) which increase the .erfcrmance of a
micrcecem uter system by a factcr of u tc 100 times when carrying
cut mathematical c¢.erations. Bcoth chi s act as dedicated eri heral
interfacing directiy to Intel's 8080, 8065, 8088 micrccom:.uters in
addition tu all other general ur cse rocessors with 8-bit data bus.

This cbvicusly scives the roblem of slcow fioating- c¢int ¢ eration.

Storage cost is decreasing and high Zevel Languages such as BASIC,

-ASCAL, FURTRAN are now being made readily avaiiablie in many micrccomiuters.
The .anguage F(RTH (89) s ecialiy designed for microcom uters is yet tc
prove itself since it is stili ncot avai.able on mest micrccem uters.

PASCAL seems to be more .o urar than FLRTH as a language for microcomputers

but PASCA. has many defects for scientific library software.

The cost of micrucoumputers is decreasing and their ower 1is
increasing dramaticaily. Mcre .ecpie Wiii now be abie to afcerd
microcom,uters and the need to develc and make availiab.e geod
quatity numerica: scftware to assist these invoived in scientific

com utaticns wii: increase.

BIBLI. GRATHY

Abramcwitz M and Stegun I.A., (.968) Handbock cf mathematical

functicns., Dover efublications.

Aird T.J., Battiste, E.L. and Gregcry W.C. (1977) Fortability
¢t Mathematical Software ccded in FURTRAN. ACM Trans. c¢n

Math. Software 3,2 up 113-127.

Aird T.J., Dodson D., Houstis E., Rice J. (31973) statistics on
the use of mathematical subrcutines from a ccmputer centre.

ACM Signum Newsletter p8.

Amos D.E., Daniel S.L., and Weston K. (1977) C.D.C. 6600
Subroutines IBESS and JBESS for Bessel functions I.,)(x) and

Ju(x) x 2 0,9> 0. ACM Trans on Math. Software pp 93-95

Anderscn N., and Bjorck A. (1971) A new high order method cf
regu_a falsi ty.e for com.uting a root of an equation, BIT 13, .. 253 =

264,

ANSI 1966a American National Standard FURTRAN (ANS X3.9-1966)
ANSI 1966b American National Standard FCRTRAN (ANS X 3.10 = 1966).
ANSI 1977 American Naticnal Standard BSRX3.9 FURTRAN 1977

Aviia J.H. Jr. (1974, The feasibility of continuaticn methods
for ncn-linear equaticns. SIAM Journal of Numerica: Analysis

o 102 - 122.

?,‘z;‘,xz;:.vﬁ.‘@:?%!hzl

10,

12.

13.

16.

Bailey C.B., and Jones R.E. (1975) Usage and argument
monitering of a mathematical iibrary rcutines. ACM. Trans. on

Math. Software »p 196 - 209,

Baxrweil, V. dnd Gecﬁﬁﬁé(L976) A comparison of algerithms for
so.ving symmetric indefinite systems of .inear equaticns. ACM

Trans. on Math. Scftware pp 242 - 251.

Berman G. (1972) Minimization by successive a proximaticn.

SIAM Journal on Numerical Analysis pp 123 - 133.

Borsch-Supan (1960) Algorithm 21 Bessel function for a set of
integer orders Comm. ACM pp 600.
Brent R.-. (1971) An algorithm with guaranteed convergence fcr

finding a zerc of a function. Com uter Journal pphd2 - 445,

Brent R.7. (1973) Algcrithms for minimization withcut derivatives.

Prentice-Hall, Inc., Engiewcod Miiffs N.J.

Brown W.S. (1970) Scftware ortabiiity. In Repcrt of the 1969
NAT. conference on software Engineering Techniques J.N. Buxton and

B. Randei. Eds., NAT. Sci. Comm. pp 80 - o4

Bulirsch R. and Stcer J. (1966) Numerical treatment of «DES by

extra o.ation metheds. MNumerical Math. L= 13,

Bunch J.R., Kawfman .., Parlett B.N. (1976). Decem csiticn

of a symmetric matrix Numerical Math. pp 95 - 109.

20,

23.

24,

N
n

26.

27.

Bursky D (_97C) Microccmputer Ecard Data Manual. Hayden Brck

Com any, INC Rochelil.e Park, New Jersey.

Bus J.C. ., and Dekker T.J. (1974). Two efficient algorithms
with guaranteed ccnvergence for finding a zerc of a function.

Re ort N 13/74, Mathematisch Centrum, Amsterdam.

Byrne G.D., and Hindmarsh A.C. (1975) A cly-aigorithm for
the numerical solution cf ordinary Differential Equaticns.

ACM. Trans. - Math. e-ftware 7pp 7:-96

Cash J.B. (198C). Cn the integration of stiff system ¢f :DE's
using extended Backward Differentiaticn Formulae. Numerical

Math. pr 235 - 246.

Cash J.R. (1980) {n the design of variabie order, variabie ste
diagenaiiy im iicit Runge-Kutta algcerithm. Journa: of the

Institute Math. and its A plications pp 87-91.

Chaw:a M.M. (1978) High accuracy tridiagcnal finite difference
a proximaticns for nen-iinear two- cint boundary vaiue problems.

Journa. of the Institute Maths. and its a plicaticns pp 202 - 209.

Chan T.F., Coughran Jr. Grusse E.H. Heath MLT. (1980) 4 numerical

iibrary and its suppert. ACHM Trans. Numerical software pp 135-145.

Chen T. ., The autcmatic computaticn ¢f ex cnentia.s, Lcgarithnms,

ratio's and square rcots. IBM Research Report RJ 970.

Clenshaw C.W., and (urtis A.R. (1960) A method for numerical

integration ¢n an automatic cem uter Numerical Math. pp .97-205.

Do
o

30,

31.

)
o
.

W
o

F

oY (S
N

AWS)
~J

)
[ex}

169

Clenshaw *.W. (1962, Fathematical tables Vol. 5. Naticnal

Cody W.J. (1974). The construction of numerical scftware

libraries. SIAM Rev. . p 36 -~ 46.

Comart micrccom uter calalogue (1980). North star Flcating-point

Board.

Crane P.C. and Fox . .A. (1969) DESUB-Integration of a first
crder system cf (Dis Numerical HMath. (om uter programs iibrary
one, vol 2, 1. from uting research centre. Bell Tele. hcne

raboratory, Murray Hiil, N.J.A. A mcdified versicn of this

repert a peared as cha ter ¢ by ! .A. Fox in Mathematical scftware,

John Rice as editor, Academic ;ress, New Ycrk 1971,

(ranley R, and Patterson T.N.1. (1G71) (n the zutcmatic

rumerics’ evaluaticn ¢f definite integrals. “Tom uter Jocurna

Sl
H
A
O

!

’..
0
&

P,)

Nourt

Cromence FORTRAN IV instructiocn manual (187G

Dahlouist G. (1963) A s.ecial stability trcblem for linear

mu.tiste methods, BIT 3 pp 27 - 43

T TS AR 2 - - £ oe’
Data Generzl F(RTRAN programming manual (:G79,.

Davies A.M. 91976) Remark on algorithm 450. Comm. ACK Dp 300-301

avies M, and Davison (1676). 4n autcmatic search rocedure

o

by

inding real zercs. Numerical Math., Do 2G9-312.

#
It

Davies ¥.J.,, and Rabinwwitz F. (1967) Humerical integration

Eiaisdel Publishing Company, London.

39.

42,

43,

45,

46,

L.

48,

- 170 -

Day A.”. (1978) rom actibie Fertran Cambridge University FR-SE.
De Bocr ©.{197:, CADRS: An algorithm for numerical quadrature.
In mathematical scftware edited by J.R. Rice. Academic lress,
ACM Mcnogra.h series i 417 - L4g,

Dekker T.J., (1969) Finding a zero by a means cf successive
iinear inter._cliation. In ccnstructive as ects ¢f the fundamental
theorem of algebra (196%) edited by B. Dejon and b. Henrici.

Wiley. 1Inter science New York.

Dowell M., and Jarratt F (1971) A mcdified Regula falisi method

for com uting the root of an equation BIT 11 pp 168-i74.

Dowell M., and Jarratt (1972). The "Fegasus" method for

d

computing the root of an equation . BIT 12 pp 503 - 508,

Dixcn V.A. (1973) Numerical Quadrature: A Survey of available

aigorithms. Re ort NAC 36 National “hysical laboratory.

Dunaway D.K. (1974) Calculation of zercs of a real :olyncmial
through factorization using Buchid's aigorithm SIAM Jcurnal of

Numerical Analysis 11,6 tpp 1087-1104.

Enright W.H., Huli T.E., and :inberg B. (1975) Com aring numerical

methods for the sciution of stiff systems of (Dis BIT15 pp 10-48.

Enright W.H. and Huil T.E. (1976) Test results on initial-value

methods for non-stiff ODE‘'s.SIAM J(URNAL of Numericai: Analysis

13,6 . 944 - 961,

Enright W.H. (1972) Studies in the numericai sclution of stiff
(DE's De t. of com.uter Science Tech. Re. ort Ke. 46, University

of Toronto.

43,

50.

52,

53.

55.

56.

Enright W.H. (1974) Second derivative multi-ste methods for

Stiff (DE‘'s.SIAM Journa. on Numerical Analysis 11 p 32.=331.

Enright W.H. (1974) © timal second derivatives methods for Stiff
systems, in Stiff Differential systems. (edited by Willoughby)

Pienum Press pp G5 - 1il.

Fehiberg E. (1968) Ciassical Fifth, Sixth-, Seventh-, and eight -
crder Runge=-Kutta formulas with step size control, NASA Tech

Repcrt No 287, Huntsvilie. Ala.

F.eck R and Bailey J. (1975). Algorithm 87. Minimum of a ncn-linear

Functicn by the a; lication of the Geometric programming technique.

Com uter Journal .. 86-89.

Ford B. and Hague S.J. (1974). The organisation of numerical
argorithm libraries. In software for Numerica: Mathematics edited

by D.J. Evans Academic :ress, New York pp 357-372.

Ford B., and Bentley J. (1978)A iibrary designed for ail parties.
In Numericai-scftware: needs and availablility edited by D.A.H.

Jaccbs pp 3-.19.

Ford B (1978) rarameterizaticn of the envircnment for trans. ortable
numerical software IFIP working grou. (Numerical scfiware) W.G. 2.5.

Alsc in ACM Trans on Math. scftware 4, 2 pp 100-103.

Ford B, and Sayers D. (1971) Deveioping a singie numerical algcrithms

iibrary fer different machine ranges. ACM Trans. Math software 2,2

Pp 115-131.

57

58.

59.

60.

61.

62.

63.

..;]_?2..

Ford B., and Smith B.T.(1975) Transportable mathematical software.
A substitute for pcrtab.e mathematical scftware ositicn paper.

IFIP werking group 2.5.

Forsythe G. E. (1957) Generation and use of crthcgonal polynomials
for data~fitting with a digital computer. J. Soc. Indust. Appl.
Math. 5, pp 74-88.

Forsythe G.E., and Moler C. B. (1967). Ccmputer soiution of
ilinear system of aligebraic equaticns :rentice-Hall, Inc. Englewood

Cliffs, N.J.

Forsythe G.E. Malccim M.A.and Meler €8 (1977) Com uter methods for

Mathematical com utations Yrentice Halli, Inc. Engiewcod Cliffs Ned.
Fox .., and rarker I.B (1968) Chebyshev poiyncmia's in Numerical
analysis. Oxford University press.

Fox L. (1962) Numerical soiution of (DEs and . DEs. Fergauon

press, New Ycrk.

Fox P.A., Hall A.D., and Schrgyer N.(1978) Algorithm 528 Framework

for a pertable iibrary. ACH Trans. on Math. software 4,2

pp 177-.86

Fex LA, Hall A.D., and Schryer N (1978). The :(RT Mathematical

subroutine library. ACH Trans Math. Software. 4,2 pp 104-126.

Gear C.w. (1971) Algcrithm 407: DIFSUB for scluticn of (DE's.

\O

Comm. ACM 14,3 pp 185-:90.

66.

67.

66.

69.

70.

71.

72.

73.

7L

75.

..173..u

Gear C.W. (1972). The autcmatic integraticn of ordinary

differential equations Comm. ACH 14,3 pr 176-.7C.

Gentleman W.M. and Marcvich S.B, (1974) More on algorithms
that reveal proverties of flicating=point arithmetic.Ccmm. ACM

17,5 pp 276-277.

Genz A.C., and HoPkins 1.R. (1979) Portable numerical software

for microcomputers Private Communication.

Gecrge J.E. (1975) Argerithms to reveal the representaticn of
Characters, integers and ficating- oint numbers. ACM Trans. Math

Software 1, pp 210-216.

Gecrge R. (1962) Matrix Inversicn II Comm ACH 5 pp 437.

(ia7q)

Gili P.E., Muvvay W, Picken . and Wyight =4
The design and structure of a FURTRAN Prcgram library for

optimizaticn. ACM Trans. Math scftware 5,3, pr 359-283.

Gili P.E. and Milier G.F. (1970) An algcrithm for the integration

of unequally spaced data. National Physical lLaboratery.

Gill T.E. and Murray W. (1978) The design and im lementaticn of
software for uncenstrained optimization. Naticnal physical

Laboratory Report NACS 8/78.

Goiub G.H. and Reinsch C. (1970) Singuiar value decompositicn and

least squares scluticns. Numerical Maths 14, tp 403-420.

Gragg W.B. (1965). (n extrapclation algorithms fcr ordinary

initiai-value prcbiems SIAM Journal Numerical Analysis pp384-403

7.

78.

79.

81.

82.

3.

85.

- 174 -

Grant J.A. and Hitchins G.D. (1971). An always convergent minimi-
zaticn technigue for the scluticn of poiynomial equaticn. JIMA

8 pp 222 - 129.

Grant J.A., and Hitchins G.D. (1975). Two algorithms for the
sclution of polyncmial equation to 1imiting machine precision..8,

o 258-26L4.

Gu ta G.K. (1980) A note abcut cverhead ccsts in (DEs sclvers.

ACH Trans. Math. Software 1p 319-326.

Hague S. J. and Ford B (1976) "rortability-Prediction and

correctiocn", Scftware iractice and experience 6, p 61-69.

Hall G. and Watt J.M., (1976) Modern Numerical methods fcr

crdinary differential equations. Ciarendon ress (xford.

Hart J.F. et al (1968) Computer a..roeximations. John Wiley and

sons.,

Henderson D.S. and Wassyng A. (1978). A new methcd for the

sc:uticn of Ax = b. Numerical Math. 29 pp 287-289.

Hennicn (1962). Algorithm 77, Comm ACHM pp 96

Hindmarsh A.C. (1974) GEAR irdinary Differential equation scliver.
Repcrt UCID - 30001, rev 3 Lawrence rivermere laboratcry, Livermore

Caiifornia.

Householder A.S. (1970) The numerical treatment of single Non

linear equation. New York McGraw-Hill,

86.

88.

89.

90.

92.

93.

Ok,

g6.

- 175 -

IBM Cystem reference library "!ortran IV library subroutines”.

Intel Yoertran - o0 Lrogramming manual 1979.

Jackson K. R., and Sacks-Davis R. (1980) Ain alternative
implementation cf variable step-size multiste, formulas for stiff

(Dks. ACM Trans. Math. Software 6,3 pp 295-318.
James J. S., (1978) FORTH for microcomputers. SIG-LAN Notices.

Jarratt ., and Nudds D. (1965). The use of raticnal functions
in the iterative solution of equations on a digital comiuter.

Computer Journal 8 pp 62-65.

Jenwing M.A. (1975) Algorithm 473 Zeros of a real jclynomial

ACM Trans Math. Software 1,2.

Jenkins M.A., and Traub J.F. (1670) A three-stage algcrithm for real
polynomials using gquadratic iteration. SIAM Journal Numerical

Analysis 7,4 pp S45-566.

Johnson 1,.W. and Riess R.D. (1977) Numerical Analysis: Addison-

wesley Publishing com.any.

Johnson 0.G. (197i) IMSL'S ideas on subroutine library problems.

SIGNUM Newsietter (ACM) 6,3 pp 10-12.

Johnson S.M. (1955) Best exploration for a maximum in Fibonallian.
RAND Corporation Report RM 1590.

Kahaner D.K. (1971) Comparison of numerical guadrature fermulas.
Tn Mathematical Software. Edited by J.R. Rice, Academic FPress,

ACM Monogra h series pp 503 - 506.

97.

98.

99.

100.

101

102.

103.

104,

105.

106.

107.

- 176 -

Kiefer J. (1953) Sequential minimax search for a maximum.

Prcc. Am. Math, Soc., 4 pr 503-506.

King R.F. (1973) A family of fourth order methods for non-linear

equations. SIAM Journal MNumerical Analysis 10, pp 876 ~ 879.

Krcgh FuT. (1671) Suggestiuns on ccnversion (with listings) of
variable crder integrator. V(Dg, SVDQ and DVDQ. J.P.L. Tech.

Memc 278 California Inst. ¢f Tech Fasadonia.

Xrogh F.T. (i973). Cn testing a subroutine for the numerical

integration of (DEs. Journai ACM 20 pip 545 - 562.

Lambert J.D. (1977) Computatioqal methods in ordinary differential
equations. John ¥Wiley and some London.
Lawson C,L. and Hanscn R.I (1974) Sﬁlving least squares 71.roblems.

Frentice Hall Englewocod Ciiffs N.J.

Leavenworth B. (1960) Algorithm 20 Comm ACM 3, pp 602.

Linberg B. (1971) On smoothing and extrapolatiocn for the
tra.ezoidal rule BIT 11 pp 29-52.

iyness J.N. (1970). Algorithm 379. SQUANK (simpson quadrature used
ada;tively - noise killed) Comm. ACM 13, pp 260.

Lyness J. N. and Kaganove J.J. (1976) Comments on the nature of

automatic quadrature routines ACM Trans. Math, software 2,1 pp 65-81

Machura M. and Mulawa A. (1973) Algorithm 450 Rosenbrock

Function minimization. Comm. ACM pp 482-483.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

-177..

Malcolm M. A. (1972) Algorithms to reveal properties of floating-

roint arithmetic. Comm. ACM 15,11 7pp 949-951.

Makinson G. J. (1967) Algorithm 296. Generalized least squares

fit by orthogonal polynomials. Comm. ACM pp. 296-297.
M6800 resident fortran compiler reference manual (1977).

McKeeman W.M. and Testler L. (1963). Algorithm 182

Non-recursive adaptive integration.Comm. ACM 6. pr 315.
Microsystems 81 preview. Practical computing 4,3, 1981.

Miller G.F. ALGCOL procedure INTS5PT DNAC Naticnal Physical
laboratory, Teddingtons Middlesex. Details available from G. .

Miller.

Moler C.B. (1972) Algorithm 423. Linear equation solver. Comm.

Muller (1956). A method for solving algebraic equations using

automatic computer MTAC10 pp 208-215.

Murray W. and Wright M. (1976) Efficient linear search algorithms
for the logarithmic barrier function systems optimization

laboratory. Tech. Report SOL 76-18, Stanford University,California.
NAG FCRTRAN MARK B. yoi2 1421
NAG Mini Mannual Mark € 1981, ~

Nelson J.M (1980) Using microcomputers for engineering calculations.

Adv. in Engineering Software 2,1 pp 9-12.

120,

121.

122.

123.

124,

125.

127.

128.

129.

130.

- 178 -

Neta B. (1979) 4 sixth-order family of methods for non=linear

equations. Intern. J. Computer Math. 7 Sect. B pp 157-161.

NPL algorithms library (1980). A brief guide to the NFL Numerical

optimization software library.

O'Hara H. and Smith F.J. (1969) The evaluation of definite

integrals by interval subdivision. Computer Journal 12 pp 179 - 182,

Oliver J. (1972) A doubly-adaptive Clenshaw-Curtis quadrature

method. Computer Journal 15, pp 141-147.

Cnibere E.A. (1976) Mathematical functions of MU5. MSc dissertation

University of Manchester.

Osterby 0. (1979) Algorithm 108. Efficient solution of tridiagonal
linear systems.

Computer Journal 22,3 pp 283-284.

Ostrowski A.M. (1960) solving of equations and systems of equations.

Academic Press Inc. N.Y.

Palekar M.G. (1974) Mumerical solution of TWo-point Boundary value

problems. Intern. J. Computer Math. section B. pp 81-87.

Parlett B.N. and Wang Y. (1975) The influence of the compiler on the
cost of mathematical software = in particular on the cost of

triangular factorization. ACM. Trans. Math. Software 1,1

pp 35-46.

Patterson T.N.L. (1968) The optimum addition of points to quadrature

formula. Math. of computation 22 pp 847-856.

131.

132.

133.

134.

135.

136.

137.

138.

130.

ratterson T.N.L. (1973) Algorithm 468. Algorithm for automatic

numerical integration over a finite interval Comm. ACH ;p 694=-699.

Peter G. and Wilkinson J.H. (1971) Practical problems arising in the

solution of polynomial equations J. Inst. Math. Appl. 8 pp 16-35.

Piessens R. (1973) An algorithm for automatic integration.
Feiort TW1l3. Applied Mathematics and Frogramming Division. Katholieke

Universiteit leuven.

Ralston. A. and Wilf H. (1967) Mathematical methods for digital

computers Vol. II. John Wiley and sons pp 63-65.

Reddish K.A. and Ward W. (1971) Environment enquires for

mumerical analysis. SIGNUM newsletter (ACM) 6,1, pp 10-15.

Rice J.R. (1971). The challenge for mathematical software. 1In
mathematical software edited by J.R. Rice. Academic press N.Y.

pp. 27-41.

Rice J.R. (1965). -On the conditioning of polynomial and rational

forms. Numerical Math. 7, pr 426-435,

Rice J.R. (1971) SQUARS: An algorithm for least squares approximation.
In mathematical software edited by J.R. Rice. Academic Press.

N. Y. pp 451 - 476.

Richards C.D. (1978) A comparison of microprogramming algorithms
for evaluating common mathematical functions, with classical

methods. Msc dissertation, University of Newcastle upon Tyne.

140,

141,

142,

143.

144,

145,

146.

147.

148,

- 180 -

Roberts S.M. and Shipman J.S. (1971) Extension of the Goodman-Lance

method of adjoints. Intern. J. Computer Math. 3,1 pp 75.

Robinson I.G. (1971) Adartive Gaussian integration. Computer

Journal 3 pp 126~129.

Rosenbrock H.H. (1960) An automatic method for finding the
greatest or least value of a function. Computer Journal 3

Py 175~184.

Ryder B.G. (1974) The $EORT verifier. Software-practice and

Experience 6, 1 tp 71-82.

Schonfelder J. L. (1976) The production of special function routines
for a multi-machine library. Software-practice and experience 6,1

pr 71-82.

Scott M.R. (1975) On the conversion of boundary=value problenms
into stable initial-value problems via several invariant imbedding
algorithms. In Numerical solution of Boundary-value problems for

ODE edited by A.K. AZZIZ pr 89-ik6.

Scraton R.E. (1979) Some new methods for stiff differential

equations. Intern. Journal Computer Math. Section B 7, 1p 55-63.

Sedgwick A.E. (1973) An effective variable order variable step
Adams method. FhD thesis. Dept. of Computer science Tech.

Report No. 53, University of Toronto, Toronto Canada.

Shampine L.F, and Gordon M.X. (1975) Computer solution of CDEs.

San Francisco: W. H. Freeman.

- 181 -

149. Shampine L.F. and Wismewski J.A. (1978) A variable order Runge-
Kutta code RKSW and its performance. Rep SAND 78 - 1347. Sandia

Laboratory; Albuquerque.

150. Simpson I.C. (1978) MNumerical integration over a semi-infinite i

interval, using lognormal distribution; Numerical Math. 31, pp 71=76. §

151. Smith B. T. et al (1976)

Matrix Eigensystems Routines ~EISPACK guide Springer-verlag, New York.

152. Smith B.T., Boyle J.M. and Cody W.J. (1974). The NATS aprproach to
quality software. In Scftware for Numerical Mathematics edited by

D.J. Evans. Academic Fress. New York pp 357-372.

153. Smith D.A. and Guire (1977) Modifications to the Forsythe-Moler

algorithm for solving linear algebraic systems. Computer Journal

21,2 pp 174 - 177.
154. Sprague C.F. (1960) Algorithm 17, Comm. ACM 3, pp 602.

. 155. Sterbenz P.H. (1974) Floating-point computation.Prentice Hall

Inc. Englewood Cliffs N.J. pp 74=75.

156. Stewart G.W. (1973) Introduction to matrix computation. Academic

FPress N.Y.

157. Stroud A.H. and Secrest D. (1966) Gaussian quadrature formulas.

Prentice~Hall, Inc.

158, Swift A. (1977) Comparison of some derivative free methods for
numerical computation of real zeros of a function of a single

variable. Cccassional publications in Mathematics 3.

- 182 ~

159. Swift A. and Lindfield G.R. (1978) Comparison of a continuation
method with Brent®s Method for the numerical solution of a single

non-linear equation. The Computer Journal 21 pp 359-362.

160. Tender J.M., Bickart T.A. and Picel Z,(1978) A stiffly stable j
integration process using cyclic compesite methods, ACM Trans. Math.

Software 4,4 pp 339-368.

161 Texas Model 990 Computer FURTRAN, Frogrammer's Reference manual

1980,

o

162. Uday G. and Fellows D.M. (1981) Fortran routines with optimal

arguments. Software-Practice and Experience 11, pp 187 - 193.

163. Verruijt A (1980) Finite element Calculations on a microcomputer. ' A

Intern. Journal MNumerical Methods in Engineering 15,10 pp 1570 - 1574.

164 Waldbaum G. (1978) Tuning Comguter user's rrograms. IBM Research

Report R.J. 2409.

165. Waite W.M. (1970) Building a modile programming system. Computer

Journal 13 pp 28-31.

166. Wampler R. H. (1979) Solutions to weighted least squares problems

by Modified Gram-Schmidt with iterative refinement. ACM Trans. Math.

Software 5,4 pp 457 -465.

167. Wampler R.H. (1979) Algorithm 554: 1L2A and L2ZB, weighted least

squares solutions by modified Gram-Schmidt with iterative refinement.

ACM Trans. Math. Software 5,4 pyp 494-499.

168.

169.

170.

171,

172.

173.

Waters T.J. and Nelson J.M. (1980). A program for solving
potential iroblems on desk top computer. Adv. in Engineering

Software pp 67-78.

Werner W. (1981) Some efficient algorithms for the solution of a
single non-linear equation. Intern. Journal computer Math. Section

B 9, pp 141 - 149,

Wilkinson J.H. (1965). The algebraic eigenvalue problem. Oxford

University Press.

Wilkinson J.H and Reinsch C. (1971) Handbook for automatic

Computation. Heidelbergs Springer.

Wojcicki M.E. (1961) Algorithm 44: Bessel functions

computed recursively. Comm ACM pp 177.

Zilog Fortran language manual (1979).

