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ABSTRACT 

'Ibis study is concerned with designing and implementing a 
portable numerical software library suitable for microcom:puters. 
'Ibe nature and use of microcomputers are examined and from this 
examination and the type of user community expected, the aims of 
the library are then established. These aims help to determine 
the nature of the library. 

Having established the nature of the library, each area in 
mathematical computation for which routines are to be written is 
then examined. Algorithms whose implementations satisfy certain 
criteria such as reliability, suitability for microcomputers, 
speed are selected for inclusion in the library. 

'Ibe library is written in such a way that a double precision 
version of the li~rary can easily be made from the available 
single precision version. Suggestions as to how the library can be 
tuned are also given. 
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CHAPTER 1 

INT:ii0DUCTION 

1.1 Aims and Objectives 

Although little work has been done in the area of program 

libraries for microcomputers, we already have a small numerical 

software library designed by Genz a.Dd Hopkins (68), written in 

BASIC, whose emphasis is on portability. There are business packages 

such as "account payable", "Cash journals", "general ledger", 

"Invoicing" etc and software designers seem to have concentrated 

more in these areas. Portability is scarcely considered in 

designing such packages. For the scientific users of microcomputers, 

a general purpose numerical software library would be a valuable 

tool. 

This research is thus aimed at designing and implementing a 

general purpose numerical software library which is suitable for 

microcomputers in order to fill a gap in the existing available 

software. In addition the library will be designed to satisfy the 

following conditions: 

a) The library will be portable. This will ma~e it possible for 

the library to be transferred to different microcomputers or to 

change compilers of the same language with little or no change 

to the library. 

b) The library will serve a wide range of scientific users of 

microcomputers and it will be easy to use. 

c) Any architectural advantages of microcomputers would be 

exploited in the design of the library. 
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d) The library will be small but powerful. This means that 

only subroutines that solve problems which are frequently 

encountered by the users will be included. 

1.2 The concept of a program library 

A program library is defined by Gill et al (71) as a: 

"set of routines that are conceived and written 
within a unified framework, to be available to 
a general community of users". 

The concept of a Library, of scrolls and later of books, has been 

known for hundreds of years. (The Library of Alexandra was formed 

in the fourth century B.C.). The extension to a collection of 

routines was made by Wheeler in Cambridge shortly after the advent 

of the electronic computer. 

Initially, a user who required a computer routine to solve a 

particular numerical problem would typically consult research 

journals that might contain a theoretical description of an 

appropriate method, and then write his own code. Unfortunately, 

such personalized implementations were subject to a significant 

risk of unreliability, because of a lack of attention to details 

of prograi1UT1.ing or numerical analysis. Furthermore, as the complexity 

of numerical methods increased, it become impractical for individuals 

to write their own versions of all necessary algorithms, even given 

the will to do so. 

Subsequently, it became the practice among authors of new 

numerical methods to publish computer programs as well as 

theoretical descriptions. Although this development was a step 
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in the right direction, in many ways the situation was even 

more com:licated. The quality of the published programs varied 

enormously, and there was little uniformity of standards 

concerning progra.rn.ming structure and style. In addition, the 

published software was often inadequate for general use (for 

example, it had been tested only on a small set of well-behaved 

test problems, or was unable to recover from numerical difficulties). 

Under these conditions the user was obliged to undertake a search 

of the literature, among a large collection of published routines, 

with no guidelines to assist in making a good choice. 

Because the proliferation of alternative routines proved to be 

an ineffective means for providing good softwaJre, an awareness 

developed of the need for program libraries. As with a library of 

books, a program library is prepared according to some principle and 

purpose. It may be a general library, for example, NAG (117), IMSL 

(94) seeking to cover common requirements over a broad field. It 

may be a subject library, aiming to cover a particular area in depth 

(for example the numerical solution of ordinary differential equations) 

or it may be a topic library, addressing the requirements of a 

particular community (for example quantum chemistry). 

For a library to suceed it must, from the outset, be directed 

to a particular purpose (for example the solution of numerical and 

statistical computational problems). It is also of fundamental 

importance to identify its :primary users. The purpose determines 

which subject areas will be included; the users, the manner and 

depth in which these areas will be covered and presented. 
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l.J Brief description of subjects covered in succeeding chapters 

A summary of the remaining chapters is now given. 

Chapter 2: 

Chapter J: 

Chapter 4: 

Chapter 5: 

Chapter 6: 

Chapter?: 

This chapter provides a background to large 

and small computers. The advantages and 

disadvantages of microcomputers are given and 

the aims of the library are also discussed. 

This chapter proposes a method of implementing a 

numerical software library that will satisfy the 

required aims. 

In this chapter, communication between routines and 

users through formal parameter list is selected. 

The naming of routines a..nd the method of error 

handling in the library are also discussed. 

This chapter is concerned with selecting and 

implementing algorithms for solving a system of 

simultaneous linear equations, finding inverse of 

a rnatri~ and obtaining the determinant of a matrix. 

This chapter is concerned with selecting and 

implementing algorithms for finding a root of a 

non-linear function and the zeros of a real 

polynomial. 

This chapter is concerned with selecting and 

implementing algorithms for numerical evaluation 

of definite integrals. 



Chapter 8: 

Chapter 9: 

Chapter 10: 

Chapter 11: 

Cha::,ter 12: 
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This chapter is concerned with selecting and 

implementing algorithms for obtaining the numerical 

solution of ordinary differential equations. The 

two main areas considered are initial-value problems 

and boundary-value problems. 

This chapter is concerned with selecting and 

implementing algorithms for the determination of 

an optimum value of a non-linear function of one 

or more variables and fitting a curve to a set of 

data points. 

This chapter is concerned with selecting and 

implementing algorithms for evaluating special 

functions. Routines for obtaining machine dependent 

quantities are also discussed. 

This chapter suggests how the library can be tuned. 

The effect of tuning on some selected library routines 

is also examined. 

This chapter contains a summary of the research aims 

achieved, the limitations of the study and suggestions 

for further research. 
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CHAPTER 2 

BACKGROUND TO MICROCOM}UT2RS AND NUMERIC.AL SOFTWAR.S 

2.1 Large and Small Computers 

Computers have the configuration typified by that shown in 

fig 2.1. They can be defined in their simplest form as a 

system of hardware that performs arithmetic operations, 

manipulations of data (usually in binary form) and decisions. 

The control unit together with the arithmetic and logic unit form 

what is usually referred to as the Central Processing Unit (CFU). 

There are three main types of computers in common usage. 

There are large (mainframe) computers like the IBM 370, Univac 1100 

or Burroughs 6700 and are found in large corporations, banks, univer­

sities and scientific laboratories. They are used in a general­

purpose manner to solve complex scientific and engineering problems, 

such as space craft guidance, weather prediction or electronic and 

structural design. They also perform large-scale data processing 

such as handling of records for banks, insurance companies, stores, 

utilities and government agencies. These tasks usually involve 

extremely large number of calculations and tra.~sfer of data. The 

central processing unit of large computers is usually made up of 

random logic; such as flip-flops, gates, counters, transistors, 

registers and other medium-scale-integration (MSI) circuits. These 

"Maxicomputers" can cost several million pounds; including complete 

systems of peripheral equipment, such as magnetic tape units, magnetic 

disc units, card punchers and readers,keyboards>and printers. They 

are typically very fast and have large memories and backing store. 
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Mini-computers, although having almost the same configuration 

are much smaller in their storage capacity and slower in their 

speed of operation. They are widely used in industrial control 

systems, scientific applications for schools and laboratories and 

in business applications for smaller businesses. Consequently, they 

have prices that are in order of thousands of pounds (including input/ 

output peripheral equipments). 

Microcomputers are the smallest and newest member of the 

computer family. They generally consist of several integrated 

circuit (IC) chips, including a micro-processor chip, memory chips, 

and input/output interface chips. These chips are a result of the 

tremendous advances in large-scale integration (LSI) of circuitry 

where several thousand transistors can be placed on a single integrated 

circuit. A chip is the small rectangular piece of silicon on which 

this integrated circuit is implemented. The micro-processor is a 

new LSI component which implements most of the functions of traditional 

processor in a single chip. For the purpose of this research, a 

microcomputer will thus be defined as a computer whose CPU has been 

implemented using an LSI microprocessor. The progress of LSI 

technology now allows the implementation of a complete simple 

computer on a single chip. Microcomputers have small memories 

(typically 64K)and are cheaper (from hundred to thousands of pounds) 

and slower than mini-computers. 

Mini-computers and micro-computers, will not replace large 

computers in the areas already mentioned in which large computers 

are used, however small computers (mini-computers and micro-computers) 
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can of course, solve similar problems when the calculations are 

less complex or the amount of data is smaller. This means that 

small computers could perform laboratory calculations or handle 

records for a small business. The greatest usage of micro-computers 

has occured in areas outside the typical applications of large 

computers. They are usually part of a dedicated system in that 

they perform a specific task for that system. They typically 

perform control and real-time tasks such as guiding a missile, 

being a part of a machine tool, a banking terminal, managing a 

warehouse and are not shared by large number of users. In such 

cases, using large computers would be highly uneconomical. 

Table 2.1. summarizes some of the qualities of large computers 

and small computers. The large computer described is IBM J70/model 

168. The mini-computer described is the DIGIT.AL Equipment (DEC) 

PDP 11/45 while the micro-computer is the Intel MCS-80, based on 

the Intel 8080 microprocessor, and a.re chosen to be representatives 

of the various types of computers. It can be seen from table 2.1 

·that apart from cost, large computers perform better than small 

ones in terms of speed, storage, software and peripherals. On the 

other hand, small computers have the advantage of low cost. 

2.1.1. Software 

It is not necessary to discuss each of the items mentioned in 

table 2.1 in more details since the area of interest for this 

research is under software. Far more software is available for 

large computers as compared with small computers. For example, 

every major computer language or other systems programs can be used 

on an IBM 370. Not only does IBM supply a large amount of software, 



- ll -

also other sources specialize in writing progra.'Tls for IBVi 

computers. Significantly, less software is available for 

minicomputers, but the manufacturers and independent sources 

do supply several operating systems compilers for most corrunon 

languages and other programs. For microcomputers, little 

software was initially available, but the amount of software 

is now on the increase. FORTRA...'N', BASIC, PASCAl, and other 

compilers are now available for most microcomputers a.Dd the gap 

between minicomputers and microcomputers is decreasing rapidly. 

2.2 Summary of hardware and software problems of microcomputers 

Before discussing how the libra..ry should be designed to 

suit microcomputers and the user community, it is pertinent to 

know precisely most of the hardware and software problems of 

microcomputers. This will help in formulating the structure 

of the proposed library. Table 2.2 summarizes some of the 

hardware qualities of various microcomputers and the limitations 

of microcomputers are given below. These limitations are the 

direct reasons for designing program libraries specially for 

microcomputers instead of transfering the existing ones in large 

computers directly to microcomputers. 

a) The memory size of microcomputers is usually small (generally 

from 8K - 64K bytes). 

b) Floating-point computation is generally done by software 

while it is done by hardware in large computers and as a 

result for example, it takes 5.7 usec for CDC 6400 (129) to 

perform floating-point multiplication while it takes the 

Texas micro-computer TX990/4 60 usec to perform the same 

operation which is over ten times slower. 
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c) The backing store for microcomputers is very limited and 

small (usually two floppy discs or cas-sette tapes or paper 

tape at a time) 

d) Although microcomputers have just come to the scene, th~ ngmber 

is higher than large computers and they are more varied. 

Infact, microcomputers with different microprocessors have 

different assembly languages. 

e) For large computers, a user only submits a program and 

collects the results at the counter or printer (most of the time). 

For microcomputers, the user needs to put in more effort 

especially if the high level language used to write the 

program is FORTRAN. In that case the program is first compiled 

and if compilation is successful, a link operation is then 

performed to link the compiled program to the high level 

language runtime subprograms and other subprograms called 

by the user's program. The linked output is either 

immediately executed or the user still has to load the 

linked output for execution. All these stages are usually 

done automatically by large computers. The linking process in 

microcomputers can take up to six minutes or more. The breaking 

down of the steps in microcomputers is as a result of small 

memory sizes and backing store. 

f) There are very few standards governing the storage of 

information on the different types of backing store. 

In otherwords, a listing of a program done by one microcomputer 

on a diskette or cassette, cannot be retrieved by another different 
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microcomputer. A standard, the Kansas city standard, does 

exist for the storage of binary information on cassette tapes. 

However, experience has shown that it is the cassette recorder 

used (usually a standard audio recorder) which needs to be 

transported. Two major difficulties arise and these arethe 

fluctuation in the tape speed on different recorders (this may 

be in excess of JO%) and the speed of transmission of data 

(a slow rate of JOO baud, is actually required for accurate 

transmission - this is much slower than that used by most 

manufacturers 1200 + baud). 

g) For a large computer, there is usually an advisory service 

provided. This means that difficulties encountered during the 

use of a library routine can be discussed in the centre. This 

is not usually the case with microcomputers since they can be 

owned by individuals and small organisations which cannot 

provide such services. Infact, the number of users of one 

microcomputer is very small compared with a large computer 

and as a result it would be uneconomical to provide such a 

service. 

h) The number of high level languages implemented on microcomputers 

is still small when compared with large computers. 

i) Fewer people are ready to invest in software designed for 

microcomputers. 

On the bright side, microcomputers are cheap and can be part 

of a machine tool. They can easily be moved from place to place 

and are now using home accessories such as cassette players and 



televisions for input and output. I ower consumption is low and 

faster microprocessors are being developed. 

2.J The need for numerical software 7ib,aries for microcomnuters 

One major area of software is that of program libraries. A 

program library is more than a collection of routines. The 

programs have to be written within a unified frai'llework. Many 

program libraries are available for large computers, they range 

from common mathematical functions and record-handling programs 

to such high specialised application programs such as accounting 

for a 1,articular tn·e of business or solutions to a particular 

class of engineering problems. One of the areas in which many 

program libraries have been designed is Numerical Software. 

Such library programs are used to solve problems in arplied 

sciences and Engineering. There are at present many grour,s 

designing numerical software libraries for large comi;:uters. The 

list includes IHSL (94) (International Mathematical and Statistical 

I.i braries) which produced the first numerical software li bra...ry 

for the IBM J60 - 370 range; NAG (117) (Numerical Algorithm Group) 

which has large libraries in FORTRAN, ALGOL 60 and a smaller library 

in AJ_,GOL 68; EISPACK ( 151) which specializes on designing special 

purpose packages such as HINIACK for minimization and LIN:::-ACK 

for solving linear equations, all written in FORTRAN and PORT 

(64) recently produced by BELL Laboratories for many large 

computers a.ri.d minicomputers. A more recent library is SLAC (25), 

produced by Stanford University computer centre for many machine 

ranges. Most of the aou-v"8 libraries were originally designed 
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for use on large mainframe computers, though PORT and NAG are 

extending their libraries to minicomputers. 

This obviously shows that numerical software libraries are 

important. The reasons being that, with the availability of such a 

library; 

a) duplication of programming effort is reduced for the library 

user. 

b) well-tested, well-tuned routines are used. 

c) dangers are "flagged" • 

d) "state of the art" algorithms are made available. 

e) storage and (;d,~ r·•l'l<t;., .... costs are reduced. 

f) elapsed time to get a working program is reduced. 

Although microcomputers are mainly used for specific 

(dedicated) tasks, there are now general purpose microcomputers 

owned by individuals, schools, universities and industry. Because 

of the low price, the number of users and owners is on the increase 

and some of these users are involved in numerical computation. 

It can therefore be seen that the reasons given for the design of a 

numerical software library·for large computers also apply for 

microcomputers. There is no reason why this new technology cannot 

be used for numerical calculations. Already in the field of 

Engineering calculations, methods which are appropriate for 

microcomputers are being discovered, (see Ver:ruijt (163) and Waters 

et al (168) for more details) and this trend is likely to continue. 
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Little has been done towards designing and implementing a 

general purpose numerical software library suitable for micro 

computers. There is however a small numerical software library 

designed by Genz and Hopkins (68), written in BASIC, whose 

emphasis is mainly on portability. 

2.4 Considerations in designing a program library 

Designing a program library for computers is a complicated 

task and this complication is even more noticable when the target 

machine is a microcomputer. The reasons for this complication are as 

follows:-

Firstly, it is necessary that each subprogram should qualify 

as ngood" software and the task of developing a sound and careful 

implementation of a numerical method is known to be extremely difficult 

and time consuming even for eXperts. The princip\e.c.,_ upon which good_ 

computer programs for numerical methods should be based have been 

discussed by many authors in ,19-:-'j·,,..,j contexts. (see Cody (29), Rice 

(136) Ford and Hague (53), Ford and Sayers (56) ) 

The qualities which most of the authors feel numerical software should 

satisfy are: 

a) stability 

b) robustness 

c) accuracy 

d) reliability 

e) portability 

f) speed. 
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Numerical stability ensures that any errors introduced 

during calculation do not grow unduly, while robustness is the 

ability of the algorithm to cope adequately with a wide range of 

situations which may not be evident before steps of the algorithm 

have been carried out. This means that the domain of problems 

which the routine is able to accept is "sufficiently large". 

Naturally, it would be advisable to include an algorithm that is 

capable of achieving high accuracy, if requested, subject only to the 

limitations of the particular computer upon which the algorithm 

is implemented. Reliability enables the user to have confidence 

in the results obtained using the algorithm. This means that the 

requested accuracy is attained nearly all the time. 

It is also of importance for an algorithm not to vary in 

performance in different machines. This will make it possible 

for the algorithm to be implemented in different machines thereby 

making the algorithm to be portable. Clearly if two algorithms 

solve the same class of problems and satisfy the previous 

conditions, then that which requires fewer operations is judged to 

be better because it will be faster. Hence speed is also 

important in choosing a routine. 

Unfortunately, some of these qualities are inherently contradictory. 

The requirements of high accuracy and speedy calculation can 

clash. This is true with methods for solving ordinary differential 

equations. If low accuracy is required, a fast Runge - Kutta 

method can be used while for high accuracy, either a Runge-Kutta 
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method of very high order or Adams or GEAR'S methods are used 

and these methods are slow. Reliability and speed can also clash, 

especially in the area of quadrature. Generally adaptive schemes 

are faster (more efficient) than non-adaptive schemes, but non-adaptive 

schemes a.re more reliable than adaptive schemes. See Rice (1J6) and 

Lyness and Kaganove (106) for more details. 

It follows that the creation of any computer program, necessarily 

involves decisions, implicit and explicit, concerning the relative 

weight and importance to be assigned to the possibly conflicting 

attributes. 

Secondly, the Library should display a global design that is 

consistent with the assumption that the routines will be useful to 

a general user community. However, users have vo~j"'"l interests. As 

an example, a Library program may be used to solve a problem for 

which the cost of computer time is negligible compared with the 

implications of failing to solve the problem or of finding an 

inaccurate solution, so that the need for reliability dominates all 

other criteria. In another application of the same routine to 

another problem, however, the most importiailt consideration may be 

speed of execution, even at the risk of inaccuracy or failure. 

Finally, microcomputers have small memories and as a result 

selected routines may not be as current as possible if such current 

routines require much storage. A large number of routines will also 

be difficult to store. 
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These reasons show that it is difficult to design a library 

which will satisfy the ideals of each user and as a result any 

library will inevitably be subject to criticism, from some users. 

It is therefore essential for a library designer to state his aims 

from the beginning. 

2.5 Aims of the Library. 

The advantages of microcomputers are largely economic and are 

few. This means that a library designer for microcomputers is 

faced with many problems. However, an attempt will be made to 

overcome most of the disadvantages and when able, some of these 

disadvantages will be exploited to create a suitable library for 

microcomputers. In order to overcome most of these difficulties 

mentioned about microcomputers and for the library to be of use to 

a considerable number of microcomputer users who are involved in 

scientific calculations, the library will be designed with the following 

aims. 

2.5.1 Intended users 

Intended users include scientists, students (schools, universities 

and colleges). These are the people who make great use of microcomputers 

for numerical computation. The library will be designed to satisfy 

the needs of both advanced and novice programmers in scientific 

calculations. It will contain software to solve problems which are 

basic in that field. This means that the library will serve a wide 

range of scientific users of microcomputers. 
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2.5.2 The Library Routines. 

Attempt will be made to provide sound, careful implementations 

of methods for solving useful categories of numerical problems. 

Routines that use little memory and are easy to use will be at advan­

tage. The number of routines included will be small, but the 

library will still be powerful. This means that only routines 

which solve problems which are frequently encountered by the users, 

will be included. Also routines which can exploit the special 

features of microcomputers will be of high priority. 

2.5.3 Portability 

Many definitions have been given to the word - portability. 

(see Aird et al (2), Waite (165), Brown (16) ). The following 

definition given by IFIP working group (on numerical software) 

(57) will be adopted: 

"A :program will be described as portable over a given range of 
machines and compilers if without any alteration, it can compile and 
run to satisfy specified performance criteria on that range". 

Most Libraries (64) usually include the exception of providing 

machine dependent quantities of the host computer at installation. 

Machine dependent quantities will be discussed later. On the other 

hand, if in transferring a program between members of a given range 

of machines and compilers, some changes have to be made to the base 

version before it satisfies specified performance criteria on each 

of the machines and compilers, then such a program will be described 

as transportable provided: 
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i) the changes lend themselves to mechanical implementation 

by a processor. 

ii) the changes are limited in number, extent and complexity. 

As it has been pointed out, microcomputers are different from 

each other and it will be uneconomic if a library designed and 

written for them cannot compile and give reasonable results in 

many microcomputers. In otherwords, a library which can compile, 

run and produce reasonable results in many microcomputers is 

desirable. This saves duplication of effort and hence time a.t'1d 

money. This library will therefore be portable according to 

IFIF definition. 

2.5.4 Installation and usage 

Since those who will install the library are not likely to be 

experts in numerical software, the library will be such that it 

can be easily installed, No knowledge of the hardware or machine 

dependent quantities will be required. 

The library will be easy to use, and if there is any routine 

which the author thinks a novice programmer will find difficult 

to use, an easy-to-use version of the same routine will be 

provided. This means that the calling sequence of each of the 

routines will be made simple. Also a good documentation will be 

given. It must be stressed that ease of use is vital since there 

will be nobody (except the documentation) to exrlain to the user 

how a routine is used. 
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CHAPTER J 

NATURE OF T'rlE LIBRARY 

The nature of the library should closely reflect the aims 

of the library. This means that in formulating the nature of the 

library, the aims should constantly be taken into great 

consideration. Therefore in this chapter, care was taken in 

deciding what language should be used, how the library should be 

stored, the way algorithms should be selected and how machine dependent 

quantities should be determined. 

J.2. Language Selection 

Attempts are being made to design high level languages 

specially for microcomputers. FORTH (89) is one of such languages 

and this trend is likely to continue until a particular language 

becomes very popular with microcomputers. Already PASCAL is 

being regarded as the language for microcomputers from many 

9,u,£h·tt-r-~, ( see microsystems 81 preview ( 112)) and a standard is 

already being agreed on. However old and well known languagesare 

also available in many microcomputers. Some of these are PL/M, 

FORTRAN, BASIC, COBOL, ALGOL 60, Assembler language. But the number 

of microcomputers that have these languages vary. 

It must be made clear that choosing a programming language 

for writing a numerical software library is a critical step upon 

which the practicability of using the library depends. Most of the 

existing numerical software for mainframe and minicomputers is written 



in FORTRAN and ALGOL. Also most of the existing numerical 

software of microcomputers is written in BASIC, because almost 

all (if not all) microcomputers that have high level language 

compilers or interpreters have BASIC as one of them. This is as 

a result of little storage usually required by BASIC compilers 

or interpreters. There is the JK control BASIC, 8K North star 

BASIC, 16K Cromenco BASIC and most are usually ROM based. Most 

people buy microcomputers because they are cheap and as a result 

any development made which decreases the price of a microcomputer 

is very much welcome.dby buyers. Also buyers are more interested 

about how much their computer can do than how efficiently it does 

it. This is why a microcomputer which has a ROM based BASIC 

interpreter is likely to sell more than FORTRAN compiling micro 

systems requiring considerable system software such as loaders, 

libraries, debugger etc, since this will make the price for the 

1(',tt'C,Y higher than the former. 

On the other hand FORTRAN Code in general :runs at five to 

twenty times faster than equivalent BASIC code in currently 

available microcomputers. Also at present most numerical software 

is written in FORTRAN and ALGOL 60. This means that a new library 

for numerical computation does not suffer too much from the problem 

of translation if it is written in FORTRAN. This will also reduce 

design time or programming time. Although FORTRAN as a programming 

language is getting out dated, it is still the "native" language 

for scientific (numeric) programming and the level of software 

technology supporting FORTRAN and the comparative level of 
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standardization makes it attractive. Most scientific programmers 

are used to FORTRAN and learning a new language just to use a 

library is not encouragable. A prospective user of this library 

is likely to have been using a library written in FORTRAN. This 

means that such user need not translate the old programs if this 

library is written in FORTRAN. Continuity is thereby maintained. 

It must be remembered that microcomputer memories are getting 

cheaper and hence larger. Already many microcomputers now have 

FORTRAN compilers. The list includes Motorola, Cromenco, Intel, 

Zilog, Texas, mNova, Altos, Superbrain, Rair Black Box, Apple, 

Complec series I, Terodec. The Tx 990/4 Texas microcomputer 

FORTRAN compiler needs 48K of memory and it satisfies the 

ANSI 1966 standard completely with many extra functions. 

Also there is the 48K Zilog FORTRAN compiler. 

PASCAL is now gaining ground with microcomputers and is regarded 

as the language for microcomputers in the future but it is not a 

strong numerical language when compared to FORTRAN. Also very 

small numerical software has been written in PASCAL. Languages 

usually have areas of specialization. COBOL for commercial 

programming, FORTRAN for scientific computation, LISP for list 

processing, PASCAL for structured programming and it embraces 

commercial and scientific programming without implementing 

both in full. Also from the author's knowledge, at present the 

th :a+v have PASCAL compilers and those having number of microcomputers -

FORTRAN is about the same. 
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Assembly language is excellent when it comes to speed, but 

writing a routine in such a language to evaluate complicated 

expressions can be a tedious job. Also portability becomes 

impossible. In concluding, it is suggested that for small 

microcomputers (personal computers) a library written in BASIC 

is preferable because they do not have other high level language 

compilers or interpreters. For medium size or large 

microcomputers, a library written in FORTRAN is advisable. As it 

has been mentioned, many numerical software routines and libraries, 

have been written in FORTRAN and if this library is to be written 

in BASIC, then a translation is needed if any of the routines written 

in FORTRANoY~ required to be in the library. Also medium or large 

microcomputers will not make use of their fast FORTRAN code compared 

to BASIC code except the library is again translated to FORTRAN 

which is a duplication of effort. 

The new library was written in FORTRAN because of the following 

reasons: 

a) The routines will execute faster 

b) Many of the routines which were included in the library 

did not need any translation since they were already 

written in FORTRAN 

c) A small library has already been written in BASIC and 

writing another one in BASIC might be a duplication of 

effort. 
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d) The library can easily be tra.Dslated into BASIC if it is 

to be implemented in a small microcomputer that have no 

FORTRAN compiler. This will be better than first tra.rislating 

many routines from FORTRAN to BASIC in order to form the 

library and then translating the library from BASIC to 

FORTRAN for large or medium size microcomputers that have 

FORTRAN compilers. 

e) FORTRAN is still a very strong language for numerical 

calculations. 

f) Memory cost is decreasing and as a result many personal 

computers will soon have memory large enough for FORTRAN 

compiler. 

g) Prospective users, apart from school students, are likely 

to be those who have been writing programs in FCRTRAN before 

and a library written in FORTRAN for microcomputers will make 

the library as close as possible to libraries written for 

mainframes. This will make user's adjustment time as small 

as possible. 

h) A large number of microcomputers now have FORTRAN 

compilers and this means that the library will be available 

for many microcomputer users. 

CHOOSING A FORTRAN DIALECT FOR THE LIBRARY 

The library will be a failure in terms of its usefulness 

if it fails to compile and produce meaningful results on most 
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microcom,uters which have FORTRAN compilers. In order to achieve 

portability, manuals for different FORTRAN dialects used by 

microcomputers were collected. Table J.Ja shows some of their 

differences from ANSI 1966 standard FORTRAN in areas which are related 

to routine design and numerical calculations. 

Table J.Ja has shown that out of the seven FORTRAN compilers 

considered, only ore satisfies the ANSI 1966 stc:u:1::l2,::ccL 'I'his 

obviously will make portability more difficult. Although they 

do not satisfy the ANSI 1966 standard, most of them have constructs 

in excess of ANSI 1966 standard FORTnAN. As an exam:i_;le Intel. 

FORTRAN-BO has many qualities of FORTRAN 77 (IF---THEN--ELSE) 

FORTRAN has gone through many standardization~. Some are the 

ANSI 1966a (6), ANSI 1966b (7) ANSI 1977 (8) and more are still 

to come. The main aim is to encourage portability. Unfortunately, 

many compilers writers do not still keep to these standards, and 

this explains the differences shown in table J.Ja. A dialect of 

FORTRAN known as FFORT described by Ryder (14J) is another attempt 

to provide a c.o"'"f''"1-;t~\-t. -, FORTRAN dialect and it has been used to 

write a numerical software library known as PORT (64) for large 

and mini computers. FFORT is a portable subset of ANSI 1966a standard 

FORTRAN and as a result it is more restrictive. The nature of 

microcom:ruters call for a subset of ANSI 1966a which is even more 

restrictive than F'FORT and at the same time not as restrictive as 

FORTRAN II or Basic FORTRAN. 
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ATTRIBUTE MOTOROLA TEXAS ziux; CROl'IENCO INT.t,;L DATA MICRO-
FORTRA.N- GEN- SOFT-
80 ER.AL 80 

mNOVA 

Single preci- * * * * * * * 
sion Arith. 

& Functions 

Double * * * * * 
Precision 

Arith. & 

Functions 

Variable * * * * * * 
Names up to 

six charact-

ers 

Arguments of * * * * * * 
Functions can 

be Array 

elements 

Complex Arith. * * 
& Functions 

Satisfies * 
ANSI 1966 

Standard 

Table J.Ja Some attributes of FORTRAN Compilers. 



- JO -

Co My c, \-i'-"\ee. FORTRAN ( CF) designed by Day (J9) is a dialect 

which in general is more restrictive than PFORT, but not as 

restrictive as Basic FORTRAN. H th t f · t .owever, e na ure o microcorn:pu ers 

still calls for more restrictions on CF and these are: 

a) Variable names should not be more tha.D five 

characters - as in FORTRAN II. 

b) No Complex arithmetic should be used and if there is 

the need for complex arithmetic to be performed, 

functions must be included in the library to perform 

such arithmetic. 

c) In tol''"-?";-a;\e.. FORTHAN, it is suggested that a subprogram 

should not be more than 200 lines long in order to make 

compilation possible in some systems. In microcomputers, 

this number is reduced to 120 excluding comment lines. 

If a subprogram is more than this size, it is split 

to two or more subrrograms. 

d) There should not be more than five continuation lines 

or fifteen consecutive comment lines. 

e) The statement DO I= Il, 12, IJ should be in one line. 

f) In the master or base library, only single precision 

and integer arithmetic should be us'?d.. aLo o::i.ly 

integer and single precision functions such as INT, 

EXP, SIN etc should be used. This means that the 

master library must be in single precision. 
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Order of ~+"+g~ents sh l' b · th 1 · ~ ~vav~,.. , OU Q e in . e fol owing 1orm: 

i) Header Statement (PROG.?iAM, SUBROUTINE, FUNCTION, 

BLOCK DATA) 

ii) Type statements 

ii" 1·) - External statements 

iv) Dimension statements 

v) COK10N statement 

vi) EQUIVALENCE statements 

vii) DATA statements 

viii) ixecutable and FORMAT statements 

vix) Elm line 

This order agrees with ANSI 1966a, but it is more restrictive. 

Comment lines can appear between the header statement (ie SUBROUTINE, 

PROGRAM, BLOCK DATA) and the END line. 

The Motorola FCRTRAN is very minimal. It does not allow 

labelled COMMCN neither does it allow more than six variables 

in the para.meter list of subprograms. The expression X * * Y 

where X and Y are real numbers is not acceptable, rather a 

function, POW.ER which is not in ANSI 1966a, is used to compute 

X * * Y. Also the use of C * L iK (where C and K are constants) 

as an array subscript is invalid. Even 

A = SIN(X) + COS(Y) 

Cannot give <:.1 con-"-c-t result but 

A = SIN( x; + o.o + COS(Y) 

does. This shows that there is a fault in the way temporary 
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storage is handled by Motoro.1.~a r"','"'.K~,..,.,1
1
:::i,.i·• p·1 _ n=, com l er. 

that much will be lost if a dialect is chosen to satisfy Motorola 

This shows 

FCRTRMI com:;Jil er, because other compilers listed in Table J. Ja 

are not affected by these restrictions. This was why they were 

not mentioned in table J.Ja. It can also be seen that from the 

attributes listed in table J.Ja, Motorola F'ORTRAN Compiler has 

only two. All the others have at least the integer and single 

precision (real) functions that are in - ANSI 1966a set of inbJilt 

functions. 

With the additional restrictions (a tog), a library written 

in such a dialect will be able to compile in all the microcomputers 

mentioned above except Motorola M68oo ( until it is u:;..,graded). 

The above additional restrictions were arrived at after studying 

the various FORTRAN' manuals for microcomputers. Such a library 

should be able to comI-,ile in microcomputers that have FORTRAN 

Compilers that satisfy ANSI 1966a except for complex or double 

rrecision arithmetic. The new library was written in this dialect 

and its na.me is FONUSOLIM (}ortable Numerical Software Library for 

.Microcomputers). 

J.4. The selection of topics to be included in the libra:sl 

The contents and structure of a library should reflect 

directly the needs and requirements of the user community. It 

has been mentioned that intended users of this library are students 

(universities, colleges a..nd schools) and scientists. Some of these 

scientists might be invo_ veu. in r • • 1 ~ • esearch Fortunately, some 

statistics have been obtained concerning the usage of a numerical 
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soft'h'are library in a Computer centre of a university by Aird 

et al (J) arid that of a research laboratory by Bailey et al 

(10). T!,eir findings helned in deciding which topics in 

numerical computation should be included in the library. Table 

J.4a shows the findings of Aird et al (J) and the list is in order 

of the number of accesses made to each area. The area or topic 

that is accessed most comes first. Tne same applies to 

Table J.4b resulting from the work of Bailey eial (10). Since 

such statistics are not available for schools, a probable list 

of areas likely to be of use to such a community is given in 

table J.4c. 

One of the disadva...ritages of using past libraries contents to 

determine the contents of a new library is that some areas which 

are useful to the user community might not be included in the 

old libraries. However it is considered reasonable to use areas 

mentioned in the tables to determine which areas should be 

included in the library. To include only areas which are actu2,lly 

needed by the user community being considered, the following 

method was used for selection. Areas which ar.pear at least in 

two of the three lists were selected. Also if an area is not 

lower than the fourth position in a list, then it was also 

included in the library. Using this method of selection, the 

author felt that only subprograms that solve l'Toblems which are 
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frequently encountered by the user~ were included in the 

library. This made the library to be small, but stilJ powerful. 

The de:rth to which an area is dealt with should reflect the 

user community and the storage available. Table J.4d gives the 

list of areas to be included in the library. However, the author 

found insufficient time to complete the design of all the routines 

for the different areas. Future designers car1 implement the 

remaining areas and if possible exr:,a.nd the list a.'1d each area 

covered. 

J.5 Method of algorithm selection 

Having chosen the problem areas, it is then necessary to 

determine the apiropriate algorithms which are suitable for solving 

the type of problems envisaged in that area. It is commonly 

accepted that each algorithm included in a library should 

enjoy the following six characteristics: 

i) Stability 

ii) Robustness 

iii) accuracy 

iv) reliability 

v) portability 

vi) sreed. 

(106) 1 However as the basis of ( see Lyness a.rid Kaga.nove ; • 

algorithm selection is primarily directed by user need, it is 

(b O .r-_, the sb,rn of technical development sometimes necessary ecause -v 

in some areas) to provide an algorithm that fails to exhibit 
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Topics 

Linear equations 

Eigensystem 

Systems of Ordinary Differential ~g_uations 

Least Squares 

Fourier approximation 

Quadrature 

Zeros of a function 

Special functions 

Determinants of a matrix 

Minimization 

Inverse of a matrix 

Numerical inversion of Laplace transform 

Nonlinear equation and systems of nonlinear equations 

Approximating the derivatives of a function 

Table J.4a TOFICS IN A UNIVERSITY CO.MPUTER CENTRE 

LIBRARY ( IN ORDER OF :Nl.JMEER OF ACCESS.ri:S 

MAD2 BY U S~RS) . 



Topics 

Quadrature 

Zeros of a polynomial 

F'ast fourier transform 

Special functions 

Spline fitting 

Ordinary differential equations 

Linear equations 

Zeros of a function 

Least squares polynomial fitt~ng 

Minimization 

Determinants 

Eigen system 

Sorting 

Table J.4b: TOPICS IN A RESEA.'lCH LABORATORY LIBRMff 

(IN ORDER OF :t-nJMBiR OF ACCESSES MADE BY 

USERS). 
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Topics 

Linear equations 

Roots of a function 

Roots of a polynomial 

Inverse of a matrix 

Minimization 

Quadrature 

Least squares 

Ordinars differential equations 

Determina.11.ts 

Special functions 

Table J.4c SUGGESTED T01-ICS IN A SCHOOL LIBRARY 

(IN ORDER OF NUMBER OF ACC}!_,'SSES MADE BY 
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m • 1.op1cs 

Linear equations 

Inversion of a matrix 

Determinants 

Ordinary differential equations 

Quadrature 

Zeros of a function 

Least Squares 

!-~inimization 

Special functions 

Fourier approximation 

Eigen system, 

Table J.4d: SEI£CTED TOPICS (IN ORDER OF PrtIORITY) 



any or indeed all of the ;:;bov~ h- _ , _ . . 
- '=' C.,araCT'::'Ylst1cs (Ford an::l Sayers 

( 56) ) . 

of technic;:;7 dev, + h -- e.,_oi::_,men v "'S "'" 1· .,.., .,_ , t 
'c.c '-"" myorc-ant par to n7 av -in 

.,I,. - V -

selecting an alaorithm. n• tl ~ r1rs Y, the process of developing 

algorithms suitable for· 1 imp ementation in microcomputers is in 

its earlvv st;:;~es. Cecon~l . h . --a u u. Y, 1n c. oos1ng an algorithm, the 

restrictive nature of microcomD·uters, 1·n t f _ - erms O- architecture 

and software has to be taken into account. So in choosing an 

algorithm, the following questions have to be asked (in order of 

importance) . 

i) Is it reliable? ( will it make high quality software? 

Has it been tested and found reliable?) 

ii) Is the algorithm suitable for implementation on or can 

it be modified to suit microcomputers? (This is mostly 

in terms of memory requirements and software requirements) 

iii) Is it simple to use? 

iv) Does it take a reasonable amount of execution time? 

It is suggested that the algorithm should, whenever possible, 

satisfy the first two conditions before being included in the 

library. In some cases a reliable algorithm might require high 

memory requirements. Such algorithms were discarded in favour 

of a less efficient one that required lower memory space. This 

is because an algorithm will be of no use if the computer cannot 

t · 
1
· t 

0
-.L" 1· -J.~ 1· t leaves only a very small amount of storage con a1n 

for the programmer. A suggested maximum amount of storage that 



a compiled routine should taJze is 6K bytes. Obviously a routine 

of any size is likely to tak:e more storage after it has been 

linked with inbu-.1· lt f'unc+.i· ons such ::a.c:, "'q'U'°.,,.e - ~ ,, -- ~ ~ root, multiplication 

etc and the actual sizes of arrays have been given. Tne 

compiled output of a11y routine in the library by Tx990/4 micro­

computer in less than 6K. This method of selection of algorithms 

ensures the selection of algorithms that exploit the architecture 

of microcomputers and are of use to the expected user community. 

J.6 Storage of the library 

The two types of libraries rroposed by Nelson (119) for 

microcomputers are ROM and disc based libraries and reasons are 

given by him to support a RCM based library for :Sngineering 

problems. Such a library he explained should be coded in machine 

language and should contain mainly mathematically formalized 

o;erations. Also the library would. be basically incor:ruptible, 

reliable, fast to access and requires no interfacing or maintenance. 

Since IONTJSG::.:..,IVi is a general-purpose library for numerical 

Dut,. at; on ther_P ::ire liJ:el v to be chan;;;en~ 2.s ;;,,,.: ., more efficient corn_ ... , _ ~ ,.1 1.a> 

and microcomputer oriented algorithms a.re discovered. Hence having 

the library in ROM will make the changes more difficult. Also 

installation of the library by those who have no good k..nowledge 

of hardware will be difficult 2J1d the writing of the library in 

·1 , t b''i·t,r 1·rn-o~c-1·ble T()."71 TSn-_tT1\'l .. lS. machine code wi 1 ma.Ke per a l.1 J 1 !c- ::,._,_ - • - _l\l_,_, . -· --

therefore disc based. 
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PONUSDLII'-': is designe,:: in such a way that do"G.ble i::recision 

er partial double precision versions of the libr2.ry can easily 

be formed from the single precision version. It is commonly 

sug0ae~ted ~vhat ~11 nu~e · 7 t t' h ld b · · - ~-- ., , .. r1c2.-'- com:rm a ions s. ou e aone in 

double precision. This improves accuracy and reduces the effect 

of ill-conditioning. However for mic:rocom:;:uters, we are plagued 

with the problem of small computer memory and as a result the 

available space has to be used judiciously. So if the li brarJ 

is to be installed in a microcomputer that has enough memory, 

especially those that have hai-d discs, there is no reason why 

the double precision version car..not be implemented if double 

precision arithmetic is available. For microcom:puters that have 

small memory but also have double precision arithmetic, the 

partial double precision version of ?ONUSOLIM is suggested. Only 

intermediate results are computed in double-precision, in a 

partial double precision version suhprogram. 

In order to achieve easy change from the single precision 

version of POl'."JSOLIM to other forms the folJ.owing steps were 

taken. 

a) No real variables were declared explicitly 

b) When a double precision version of any subprogram is 

created, all the real variables become double length 

' · · \ In. order to achieve this (i.e. double precision;. 

all the real variables are declared as double-length, 



c) 
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but this declaration is made dormant by placing 

"C." at the beginning of the declaration. The 

removal of "C." activates the declaration. Similarly 

variables that are used to store intermediate double­

precision results during partial double precision 

computation are declared double length with "C-" placed 

at the beginning of the declaration. '.file removal of 

"C- 11 activates this declaration. 

Sometimes, there is the need to change a whole line as 

the double r;recision version is being created. For 

example, consider the subroutine: 

SUBROUTINE RF2LE (ID, N, A, B, IFAIL) 

Q = A(I,J)M B 

T = SQRT( Q.) 

RETURN 

END 

When the double precision version is being created, the statement 

T = SQRT(Q) 

is expected to become 

T = DSQRT(Q) 



In order to achieve this convPr:0-1· on., · ....,r.J'U"' "'T --- . 1n ru~ 0CL_M, the subroutine 

SUEROUTINi: 

Q == A(I,J) lo{ B 

T = SQRT ( Q) 

T == DSQRT ( Q) 

R.E1URN 

El'~D 

The removal of c~ a.~d the previous line 

T = SQRT(Q) 

results in creating a double precision version. In PONUSOLIM 

there are always such pairs if the function has both single and 

double precision versions. The same approach is used for creating 

partial double-precision version except that "C+" is used instead 

Transferring a program from one microcomputer to another of 

different make is still a difficult task. One method which is 

tedious, is to list the program and ta..~e the hard cory to the 

other microcomputer where it is again typed in. Fa:per tape input 

is another possibility and there are cheap manually or,erated 



readers, but they a.re tedious to use This approach appears 

to be the easiest and cheapest means if micro:processor is 

stand alone. However, there is the added cost of a read.er. Those 

who cannot afford a read.er have to input the libra....ry by the first 

method which is rather tedious. 

A program is written to convert the single :r-recision version 

to either double precision or partial double precision once the 

input of the single precision has been done. For those using the 

first method to input the program, it wi11 be better for them to 

create the version of the library that they want E,traight from 

the listing. There are three options and these are: 

a) Nothing should be changed if single :r,recision version is 

being implemented. 

b) For partial double precision version, all the "C-" should 

be removed. Each "C+" a..l'.ld the :preceding line should be 

removed. 

) d bl · · · all "C- 11 '"'na' ",." sho·uld c For ou e Iffe cu:,i on version , = v 

be removed. Each "C*" and the preceding line should be 

removed. 

so from the single precision version, the other versions can 

easily be created either ma..nually or with the help of a program. 

It must be remembered that when the double precision version of 

· th real ~rguments of the routine must be any routine is in use, , e - --

dec1ared as double :r-,recision in the calling program· It can 



therei·ore be seen that, while P8illSCLIM is by itseli portable, 

its ''1UY-I.D./S\tS are tram:oporta,ble. 

If a routine was broken up to two or more routines just 

because of its length or a ju!Tlp which might be out of ra.nge, 

then all these routines are kept in one file. Each other routine 

is in its own file. However if the microcomputer has a large 

backing store which can accomodate all the routines in the library, 

(which is very unlikely), systems programs for linking and user's 

program, there is no reason why the libra.ry cannot be in one 

file. In that situation, the "FIND" command which is present in 

many microcomputers with FORTRAN compilers can be used to select 

the library routines called by a user's program. 

J.8 Snecification of machine - denendent ouantities 

The :C::ZF_ working group on Numerical Software has produced 

a list of machine dependent quantities and this list is given by 

FORD (55). The list is divided into Arithmetic set, Input/output 

set, and miscellaneous set. Nany libraries do not keep to this 

The provision of machine dependent quantities by numerical 

software libraries has been a problem for some time. These 

quantities have reduced the portability power of computer libraries. 

Three ways library designers for large computers have used to get 

these quantities into nmning programs are now examined. 
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In the first method, machine - dependent qua..'1ti ties are 

marked in the master source tape, so that the correct values can 

be generated when a particular machine - dependent version of the 

library is being created. INS}_ ( 94) used this approach. This 

method has the advantage that the generated version can be made 

to be efficient for a given comruter-compiler enviroment. 

However a char1ge of compiler or a new computer, requires extensive 

changes in the master source and the programs that control it. 

These requirements, together with the requirement that u;:;dates 

and corrections be generated in machine-dc~endent form before being 

distributed, ma~e a sizable staff of maintenance people necessary. 

The second approach uses subprogra~s to determine the machine­

dependent quantities, such as the base of the arithmetic, the number 

of character stored in an integer storage unit e.t.c. (see Gentleman 

et al (67), George (69), Malcolm (108) for more details). These 

subrrograms can then be called at run-time either by the library 

routines or user's program. The subprograms used are not given 

a.11y :prefixed values and as a result they are not particularized 

for each target cor-.puter. This is the ideal condition for total 

portability. Unfortunately, the algorithms designed so far do 

not work for all cases. The algorithm of George (69) demands 

that the input and output unit numbers be provided by the user 

and it has failed for Honeywell 6050 (BCD Mode). Also for 

com;uters in which the floating-point registers contain more 

bits than a word or a multiple of words in storage, such as 

Honeywell 600 and ICL 4-130 
1 

Malcolm's (108) algorithm failed 
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Cvling to these 

limitations, this ap~roach is hardly used. 

The third method uses subprograms that can be rarticularized 

for each target com:;,uter and then called at nm-time, in order 

to obtain the desired machine c.ependent q_uai,ti ties. No conr:utation 

is done since the values are :;:refixed. This method is used in 

J~/Hr c,rl(\ f>o~T libraries, Description of this method is given by 

Redish et al (lJ5), Fox et al (63) and Ford et al (56). This 

method is desirable since only the machine dependent quantities 

are changed as one move from one computer or compiler to another. 

The coding still remains the sai11e a.'1d. apart from these particular 

subprograms, no other subprogram in the library is :particularized. 

However, the problem of achieving total portability is still there. 

Somebody is needed to obtain these quantities from the hardhare 

and language manuals of the computer. In some cases these qua'1ti ties 

are not given explicitly and it is even worse when it comes to 

· ters Tln· 1· s means that the installation of the li brarv m1crocompu ~. - ~J 

is likely to require the help of an expert. 

J.8.1 Specification of machine-dependent quantities in the libra....ry .. 
After surveying the three methods, the question that is still 

to be answered is which one is most aprropriate for microcomputers 

1 ~ t 1·nstall? .~or l_a.~rge if roNUSOLIM is to be portab e ariu easy o • '-' 

t h . h ,.,1· 11 be used- by a lar.a-0 e number of peo:;le, it is compu ers W1 lC n 
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ea2y to get a specialist to inst2-ll such a library but for a 

microcom:uter which mi"~h+ b~ USPrl b,· 1· + h ,n, - , - 8 v - -- ~ '--1..lSu a. ... ancuu1- OI peor-1..e, 

it will be desirable for an ordinary user to install it. Using 

the third method implies that the user may have to provide what 

he or she does not know or understand. Also this method does 

not meet the portability requirement of POlrJSC:: .. IM. The first 

th d . d" +'n• 1 t . me o is even more l.cI icu t o im1-lement since more changes a.re 

required. 

Pithough the second method has been a failure on many large 

computers, it is not likely to be a failure on microcom:;::uters. 

Tne reason being that, the reasons given for the collapse of 

this method in large systems are not likely to occur in 

microcomputers. AS a..11. example, floating-point corrE.,utation 

still being performed by software. The floating-point J2-bit 

hardware register just develor,ed for microcomputers is a 

multiple of the size of a word which is usually 16 or 8 bits. 

The main reason why Malcolm (E ~-) algorithm failed in some 

large computers was that floating-point registers have few extra 

bits in order to ?erform floating - point computations more 

accurately. This is not likely to be the case with microcom:;uters 

because of their simple nature. When it comes to the number of 

characters in an integer storage unit, the number is always two. 

This is a situation where the restrictive nature of microcomputers 

has helped. However as it has been mentioned, this method of 

getting machine-dependent quantities into a running program uses 

much computer time. To overcome these froblems, the following 



method is used to get machine-cie:;,endent quantities into a running 

prograrr-1, 

Since PONUSOLH1 is for numerical computation only the arithmetic 

set and the standa::::·J. butp·c1i ·iini t are considered and the list of 

machine-dependent quantities is made uD 

i) Base of arithmetic 

0 :, • 
.L • 

ii) Number of Base digits in the ma..ritissa 

iii) Relative precision 

iv) Range of numbers representable 

v) Output unit number. 

In PONUSOl.IM during installation, some suhprograms are 

used to determine the machine-dependent quantities. These 

sub~;rogra:1s are 1,rovided in the library. Once these quantities 

have been determined, the subprogra8s are then modified so that 

the determined values become ;,refixed values. As an example, 

if the function 

RSAL FUN~:TION RFlMQ(R) 

RETURN 

END 

is used to calculate the machine relative error, then after 

it has been obtained (say 0.953:::-06) the function can be modified 

to become: 



DATA RHA.CH/0,9532-06/ 

RCT'URN 

.END 

This means that in PO\uSCLH1, the second and third 

methods are combined. The user need not provide what he or 

she does not know neither is time wasted in computing the 

machine-de:endent g_ua.riti ties as in the second method, each time 

the function is called. 

There ere still no methods for computing the out,vt unit 

number. The provision of this number ca.nnot rose any problems 

since a user of a microcomputer is very likely to know this 

number before writing a progra~ for that microcomputer. High 

portability is therefore maintained and a user is saved from 

the :problem of reading the various manuals of the system, to 

obtain the necessary machine-dependent quantities, in order to 

install the library. 



CHA.:T~R 4 

LIB?\A.RY A.t'm US~J~ INT2RFACE: 

4.1 Para.meter list 

Routines have to communicate with one another a.Dd the user. 

In FORTRAN there are two possible me&~s of communication and 

these are: 

In 

i) through formal parameter list. 

ii) through CCMMON storage. 

the library, the first approach is adopted because: 

a) With COHMON, it is impossible to include arrays of 

variable dimension. Th.is means bad management of 

storage which ca.Dnot be overlooked in microcomputers 

where memory size is small. 

b) A better understanding of a routine is accomplished 

if all the qua.Dtities upon which its execution depends 

are in the parameter list. This understanding is greatly 

hampered when the COMMON statement is used. 

Occas~o.'\(..\\\j , in the library COMMON storage is exploited. 

Sometimes, a subroutine to perform a single task such as finding 

the roots of a nolynomial or integrating a function may be longer 

than the number of lines suggested for a routine or there may be a 

jump which might be out of range. In such cases the subroutine has 

to be broken into two or more subroutines. The user is only aware 

of the main subroutines that call on others. In order to reduce the 
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amount of storage used by these subroutines, most of the 

variables used by the subroutines and are local to the subroutines 

are put in CO}TI10N storage, so that they can be shared by the 

subroutines. The naming of the COMMON storage is in accordance with 

the way subroutines are named in }ONUSOlIM. This removes the possi­

bility of duplication of names either by a user or the librfury 

designer. 

Local and workspace arrays are also included in the parameter 

list. However if a local array is known to be of fixed size 

(mostly CAn (.\rn)of constants) then it is excluded from the parameter 

list since no storage is wasted by declaring it internally (in the 

subroutine). Effort is made to reduce the size of the parameter 

list of subroutines as much as possible. A disadvantage of using 

formal parameter list for communication is that the list can become 

very long thereby putting off some users. In the library, the size 

of the longest para.~eter list is twelve which is moderate. The 

idea of variable parameter list is now being put into practice in 

FORTRAN libraries (see Uday et al (162), ·cill et al (71) ) . The 

user need not specify some parameters and these are set by default 

so that a flexible subroutine that has a long parameter list can 

also serve as an easy-to-use routine. This approach is not 

popular yet and it might create additional difficulties for 

those who are not fa..~iliar with it. Such a library is likely 

to be complicated and updating could be difficult. 



4.2 Naming of Routines. 

A good library should be such that the names of the 

individual routines should be: 

a) Systematic - so that users ca.,_'1 easily find their 

hay around the contents of the li bra.._ry. 

b) easily identified - so that users ea.~ recognise the area 

in mathematics to which a routine belongs. 

c) "short and snappy" - so that the individual names are 

easily remembered. 

The last characteristic is not difficult to fulfil since at 

most only five characters are used in F'ONUSOLIM for naming routines. 

In order to fulfil items one and two, the following method of 

naming routines was adopted. Tr1e first letter of a subroutine 

name is "R". A function name can start with I, R, D depending on 

whether the function is an integer, a real or double precision 

function respectively. This is in accorda.~ce with the way 

supplied inbuilt functions are named in FORTRAN language. The 

next character stands for the language used to write the routine. 

The next character is a digit and it shows the number of the 

routine in the problem area. The last two characters stand for the 

problem area a.~d they act as abbreviation to the :problem area. 

As an example, consider 

SUBROUTINE, RFlLi (ID, N, A, 1, IFAIL) 

The n~me R~.,7.ur~ means that this subroutine is written in 
l. ""'" - -

FORTRAN, and it is the first routine under linear equations. 



In a situation where the number of routine:::, is more than nine 

in a particular :;:roblem area, such an a.rea is divided into 

smaller problem areas. In the libra1J', such a situation did not 

arise. Such na~es are not common and as a result, the danger of 

duplication of routine names by users is reduced. 

4.J Error handling 

In most libraries, any routine which can reach an error state 

is normally eq_ui:pp.i.:1 ..,,-i th ways of informing the user that an 

error has occurred. The errors or failures considered here are not 

the usual run-time errors detected by the compiling system such as 

overflow, rather it is those that must be anticipated by the author 

of the routine arid can be detected by explicit coding in the library 

routine. Such errors normally result from: 

a) a user supplying a parameter which is out of range. This 

means that computation cannot proceed. 

b) the inability of the routine to produce the desired 

results, such as determining the inverse of a singular 

matrix·or decomposing a zero matrix. 

Communicating errors to users is done in different ways in 

different libraries. The NAG library (118) written in FORTRAN 

· d t r IF'T 0
· 1· n the parameter list of any routine prov1 es a parame e · tu.L, .. 

which is likely to reach an error state. Also IFAIL is included in 

th Utl. ne ]}'AIL is set by the calling the parameter list of e error ro · 

t . tak If I Ff,JL is input as zero (hard program to control the ac 10n en. _ 

f ·1) th r me~sage is printed and execution terminated. a1 , en an erro . :::,,_ 



An alternative option is that :i:FJ..Il is input as one (soft fail), 

the error routine assigns the current error number to I}'AIL 

now used as output parameter and exit from the routine to 

continue execution. It is left for the user to decide what to do 

next from the error number assigned to IF"AIL. The former option 

is restrictive but simple to use while the later option is flexible 

but not suitable for an inexperienced user, 

In NAG ALGOL 68 Library, the setting of the flag ::FAIL to 

zero or one is replaced by two procedures NAGHAIID a..'1d NAGSOFT. 

A user can also write his own error procedure. 

In } ORT ( 64) there are two types of errors: "fatal" and 

"recoverable". For a fatal error, an error message is printed a.rid 

call is made to a dump routine which lists the names of the variables 

and their values when the dump was called and prints out the list 

of routines which are active. Execution is then terminated. For 

a recoverable error, an error message is also .printed a.rid execution 

terminated if recovery mode is not being used. Under recovery mode 

(which is good for experienced users) execution is not terminated 

if the error is recoverable and a user can 

i) determine whether an error has occurred and if so, 

obtain the error number 

ii) print any current error message 

iii) turn off the error state and 

iv) leave the recovery mode. (see Fox et al (64,63) for more 

' + • 1 ) ae val S • 



Some libraries such as IMSL (94) define in greater detail 

the degree of severity of an error from "warning" through "a.n error 

for which the routine has taken a def2..ul t action" to "da.11gerous but 

non termin2..ting error" and finally "terminating error". 

4.J.l Error hand.ling in the library. 

For the inexperienced user, the safest action in all cases is 

to ITint an error message and stop. The experienced user normally 

wants to control error ha.nd.ling to some extent. Intended users 

of PONUSO:'...IM fall into two categories and effort should be made to 

satisfy them without making the library too complicated or unnecessarily 

large. In PON1JSOLIM only the soft o:;:tion as in NAG FORTnAN library 

is used with some modifications. Since only one option is used, IFAIL 

need not be assigned any value before a routine is called. When a.'1 

error occurs, an error message is printed and exit from the routine 

is forced. IF'AIL is assigned the error number of the error message 

before exit from the routine. An experienced user can manipulate 

IFP_IL to allow computation to continue. A casual or novice user 

can include the statement. 

IF ( .lFAIL. N.2. 0) STOP 4.Ja 

just after a call to a routine in order to terminate execution. 

H'J..IL is always assigned the value zero on a successful exit from 

a routine. If a user forgets to test the error flag on exit 

from a routine, the printing of an error message (if there is an error) 

makes the user aware that the results produced at the end 

of the run are not correct. This makes error handling in 

Sl.mple but also flexible. This method ensures the PONUSOLI.M 

following: 



a) Lrror messages are printed, making the user know 

the cause of error without referring to the documentation. 

b) It is possible to use the result of partial success which 

is fOssible in some routines. 

c) It is possible to perform further calls to the routine 

with :~FAIL left with its value on exit in the first call. 

The main disadvantage, is the need for a casual or novice 

user to include statement 4.Ja ea.eh time a routine with an error 

flag is called. 
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CHAfTER 5: 

ALGEBRAlC LINEAR SYSTEMS 

5,1 Introduction 

In this cha;,ter, algori thrns for solving a system of simultaneous 

linear equations, finding the inverse of a matrix and obtaining the 

determinant of a matrix are discussed. The ones considered suitable 

for microcomputers are implemented to form a part of the library. 

5.2 Simultaneous linear Systems 

One of the most frequent problems encountered in scientific 

comr-,utation is the solution of a system of simultaneous linear equations. 

Some of the sources of linear equation problems include (i) discrete 

algebraic systems (ii) the local linearization of simultaneous nonlinear 

equations (iii) a1proximation of continuous differential or integral 

equations by finite, discrete algebraic systems. In most cases, there 

are many equations as unknown and such a system can be written in the form: 

Ax= b 

where A is a given real square matrix of order n and bis a given 

column vector of n components. and x is an unknown column vector of 

n components. 

In a more general form 5.2a can be expressed as: 

AX= B 5,2b 

where A is a given mxn real matrix and Bis a given mx p matrix and ''f... 
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an unknown n x ; matrix. Fortunately it is usually :-r'ossible to solve 

equation 5.2b by using the algorithm that solved equation 5.2a. 

This can be done in the following manner su~pose the algorithm used to 

solve 5.2a is called Tl, then 

i) if m == n but P> 1, AX = B can be solved by a:i:plying Tl, 

? times to Ax== b, changing beach time. 

ii) if m> n, it means that the number of equations is more 

than the number of unknowns. AX= B can be transformed 

to the form mentioned in (i) by 

AT AX= ATB 5.2c 

T where A is the transpose of A. Equation 5.ic is now of 

the form (i). However such problems tend to be ill-conditioned. 

iii) If m< n, it means that the number of equations is less than 

the number of unknowns. AX=B can be transformed to the form 

(i) by fixing (n-m)x p values for X. This is rather a 

simplified way of getting to form (i). 

It is intended that the library should be as compact as possible. 

This means that care has to be taken in selecting problem a._-reas. It 

has been mentioned that most linear systems are of the form 5,2a and 

it has been shown that it is possible to solve the general form of 

linear systems (5.26) by applying the algorithm used to solve 5.?f:i 

repeatedly after some transformations. Considering these points and 

realising that only the essentials should be included in the library, 
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it was strongly felt that only algorithms for solving equation 

5.2a should be considered for implementation in the library. 

Matrix A of equation j.2a can be symmetric, banded, dense, 

sparse, Hermitian or have other pro~erties. There are suitable algorithms 

for each type of linear system and by using such algorithms, storage 

or time or both can be saved. However, because of the size of this 

library, it is not possible to provide routines for each special case. 

Special cases are only considered if this could result in saving of 

~ storage, or if it is not possible to obtain a reliable general 

fUn,ose algorithm that can r;rodce results of fair accuracy. Algorithms 

for solving any linear system of n equations with n unknowns are 

considered for inclusion in the library. 

5.2.1 S·uecial Cases 

There are many SJ-ecial cases, but only tridiagonal systems are con­

sidered. Such linear systems can result from (i) boundary value 

rroblem for an ordinary differential equation (ii) one-dimensional 

heat equation. The number _of equations is usually very large and as a 

result it may not be possible or at least very wasteful to store all 

the mm element~,. By using algorithms specially designed for trid.iagonal 

linear systems, only Jn-2 elements of matrix A need be stored. Ti--.1:.. stu 't°'-Ef· 

requirement is drastically reduced. Only this s~ecial case is 

included in the library since much storage is saved. Another area 

where storage can be saved is symmetric linear systems. 
2 Only ½(n +n) 

storage locations are needed to store the nxn symmetric matrix. The 

t Stored l.·s not as simule as the way the elements way these elemen s are ~ 

t red Thl.·s can be a problem to a novice of tridiagonal systems are so • 
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user. Alternatively, the Syrrunetric matrix can be stored as an 

mm matrix. The algorithms usually a:i::1-lied ( see Bunch et al ( 18) ) 

leave ·th"'-
10'-"e"half of the matrix untouched. It is therefore possible 

to :preserve the elements of the origjnal matrix with 

very little extra storage (for storing the diagonal elements). This 

is useful if iterative refinement of the solution obtained is to be 

carried out. But only few users are likely to refine their solutions. 

Also iterative refinement is costly and it should only be done when 

it is very necessary. Since only the essential special cases are to be 

included, the reasons for including a S?ecial routine for symmetric 

linear systems are not sufficiently strong. 

5.2.2. Algorithm Selection for Linear System of Equations 

In this section, some algorithms for obtaining the solution of a 

linear system of algebraic equations Ax= b with a stored nxn real matrix 

A and n-vector b and x are discussed. 

5.2.2.1 General Fur:::ose Algorithms 

Algorithms commonly used to solve equation 5,2a a_-re based on 

triangular factorization. The major part of the computation T is 

the triangular decomposition TA ) LU, where T is an aptly 

chosen permutation matrix, L is unit lower matrix with ILij \ <. 1 

and u is upper triangular. Then x is obtained by solving: 

Le = b 5.2d 

and 

Ux :::: c 5,2e 
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The factorization may be done either by Gaussian elimination or by 

the compact method due to Crout. Normally L and U are written 

over A. There are other methods but these two a...-re the most 

conunonly used. 

By definition, (TA) .. 
lJ 

i- 1 

min(i,j) 
= ~ L.k Uk. 

k=l 1 J 

Thus u .. = (TA) .. - L L. ku .. 
J.J J.J k=l 1 KJ 

Gaussian elimination 

subtracts one term at a time wheras Crout's algorithms computes the 

whole expression as soon as all the terms are known. With Crout's 

method, it is possible to perform double precision addition of the 

single precision products during the summation 1. kuk., thereby 
L J 

producing higher accuracy. If inner products are not so accumulated, then 

the two algorithms will produce the same results and so are indistin­

guishable on grounds of accuracy. Moreover, both methods require the 

same number of arithmetic operations on the elements of A. (see 

Forsythe and Moler (59), Stewart (1.56) for more details.) 

The accumulation of the inner products in Crout offers a clever 

alternative. The matrix is retained in the given pTecision (no doubling 

of storage) and sim~ly the additions and scalar products LLikukj are 

performed to double accuracy. The normal assumption here is that the 

full double precision result of the given precision multiplication 

Lik Ukj is available at no extra cost. This is not true with 

Tx990/4 microcom;.,uter, for example and cannot be obtained in 

.ANSI FORTRAN on any microcom~uter. So if this extra accuracy is 

required, then there must be a delibrate effort to achieve it at 
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extra cost. This i~ d b ~ one y :performing the summation in the 

following manner: 

P = 0.0 D 00 

DO 10 K = l,M 

10 F = ?+ DBLE(L(I,K)) *U(K,J) 

It has been shown by Farlett and Wang (129) that apart from 

very few FORTRAN com~ilers, Gaussian elimination method is faster 

than Crout method by 25 percent for standard compilers and about 

8 percent for 0 11timizing compilers. 

Other methods used to solve linear systems are mostly variations 

of Gaussian or Crout methods. These variations a....-re aimed at special 

class of linear systems. 

Crout's variation was selected for implementation. The main 

reason being that, because of storage r,roblem of microcomputers, the 

double precision version of the library is not likely to be implemented 

in most microcomputers. It is most likely that where double precision 

arithmetic is available, the partial double precision version of the 

library will be imrlemented. This means that the partial double precision 

version of any routine should be made to produce results which are 

accurate as much as possible even if this is to result in extra cost. 

Crout's method offers this opportunity. By performing only the 

smnmaton~Likukj in double precision, a higher accuracy can be 

achieved with little cost. The cost of iterative refinement is far 

higher than this, although refinement gives better result. 
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5.2.2.2 ~orithms for Tridia.gonal Systems 

A tridiagonal system of linear equations can be ex1Tessed as: 

-.- --, 
7 

l-1 c2 0 
X d 5.2f 

.L 1 

a2 b2 c3 
x2 d2 

:::.. 

0 
a b X d 

n n n n 

and modified forms of either Gaussian elimination or Crout method 

is used to solve the system. For example, if Crout method is being used, 

then 

0 

A= LU= 0 
u 

n 

1 

i 
L_ 

0 

/(b m ) i = 3, .••. , n-1 m =a -c.l ·1 i i i-1 1- l-

0 

m 1 
n 



The equation :ux = d is 

Y1 = d_ 
' ..,_ l 

soived 

y. = 
l 

as follows: 

d. - m. 
l l 

x. = (y. 
l l 

y. 7 
i-..,_ 

' :: '.)..,. - . , n 

x.+1c.)/u. i = n-1 .•. , l 
l l l 

Programs for solving tridiagonal systems using modified form of 

either Gaussian elimination or Crout method can be found in 

Leavenworth (103), Sprague (1_54) Osterby (125) and Johnson et al 

( 93). Also a discussion on si,,ecial form of tridiagonal systems and 

algorithms can be found in Osterby (125), The double precision 

;:urrrn1ation Likukj is not useful here since the range of summation 

is just one. All implementations are basically the same. The only 

advantage of Lsterby implementation is that subscripted variables 

are used more efficiently. This will hardly make any difference in 

microcomputers since floating-point computation takes most of the time. 

Also Csterby implementation uses Gaussian elimination method. His 

method is selected because the reason for choosing Crout method for 

the general case is not apdicable for tridiagonal systems. 

5.2.3 Im,lementation and Modification of Selected Algorithms 

For the general case, two subroutines are used to solve the system 

Ax.= b. The first subroutine uses Crout factorization to decom::ose 

A to LU, while the second is used to obtain the solution by solving 

LUx = b, using both fo:cward ar:d backward substitutions. The rea2on 

~or u2 inB two subroutines is that it is iossible to use the decom, osed 

form of matrix A to find its inverse and determinant. These are 

discussed later. 
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From the test carried out by Farllet a.Dd Wang (129) it was 

known that for some FORTRAi~ com?ilers, using ~ointers for interchanges 

of rows or columns of a matrix take more time than physical interchange 

of rows or columns and it is opposite for some. They conclude that 

ex:;:licit interchanges are not very expensive. This however depends 

on the size of matrix A. Infact there a..re at most (n-1) of them 

and they add negligibly to the runtime if n is small. The use of 

pointers and physical interchange of rows was tested using Tx.990/4 

microcomputer. The test was carried out using different arrangements 

of the rows and obtaining the average time. From table 5a it can 

be seen that there is no significant difference between the time for 

using ~~ointers and physical interchange of rows. This was to be exr,ected 

since floating-;;oint com1,,utation taJ.ces more time than array accessing in 

microcom;uters. (the ratio of floating-:roint multiplication to accessing 

an array element of two dimensions is 6:1 for Tx990/4 microcomputer.) 

Although the results of table 5a may not be true for some other 

m.icrocom::;uters, it was felt that there was no need for the extra 

comrlexities involved by using pointers. Alson is not likely to be 

large because of storage restriction of microcomputers. The subroutine 

for decomfosition therefore incorporates partial pivoting and physical 

interchange of rows. 
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TIJV"i.E IN SECONDS 

NUMBER OF EQUATIONS USING :r OINTERS lHYSICAL INTERCHANGES 

10 0.9 0.9 

20 5.6 5.6 

JO 15.9 15.8 

Table .5a Using Fointers and Physical Interchanges 

When implementing Crout's algorithm, one of the aims was that 

the result produced should be as accurate as possible. In order to 

achieve this, a test was carried out to show the effect of scaling 

of matrix A before decomposition. The elements of matrix A were 

such that 

O.lE-02 <.. \a .. \ < o.15E 01 
1J -

and the scaling was performed by dividing each row by the absolute 

value of the element with the highest magnitude in that row. The 

errors measured were: 



Root Mean Square (m-E) = j ~ n 

L 
i=l 

(x.-x.) 2 
l l 

and max I (x. -x. )/x. I 
l l l 

Error Bound = 1-t 
f> 

-where xi is approximate solution, ~ and tare base of arithmetic 

and number of mantissa p-digits resyectively. 

The result obtained is shown in table 5b. From table 5b it can be 

seen that scaling can help in producing more accurate results. However 

this is not always true but scaling can always help in testing for near 

singularity more effectively. Scaling was therefore incorporated. 

~,CALING (ERROR) NO SCALING (ERROR) 

NUMBER OF EQUATIONS ERROR BOUND RMS ERROR BOUND RMS 

10 6 0.32E-5 10 0.46E-5 

20 18 0.66E-5 47 0.16E-4 

30 52 0.18E-4 322 O.llE-J 

Table 5b: Effect of scaling 



For large s;::arse system.,;., time can be saved if a check for a zero 

mul ti~lier is performed before mul tillication is done. wnen the 

system is dense, there is loss of time, but such time lost is small 

compared to the time gained when the system is sparse. 1f--.e.: 1:e s.-t to 

confirm this can be found in Smith and Guire ( 153). Since the subroutine 

is not likely to be used for large sparse systems owing to storage 

restriction, this modification was not incorJ.•orated. 

A third subroutine is used to refine the solution obtained from 

the first two subroutines. Refinement is usually expensive 

and it should only be used when high accuracy of results is very 

essential. The refinement is carried out by comiiuting 

r = b- Ax 
0 

5.2g 

in extended nrecision and solving LUe = r. The new approximation 

x · +e is usually more accurate. This can be re1)eated to increase the 
0 

accuracy of the solution and the process is referred to as iterative 

refinement. It is only the partial double precision version that is 

available since any other version cannot improve the initial solution 

obtained from single precision or partial double-frecision versions of 

the subroutines used to solve the system. 

The subroutine used for solving tridiagonal systems is the 

FORTRAN version of the subroutine by osterby (125) except that a test 

for singularity is included. 
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5.3 Yiatrix Inversion 

If A, a square matrix of order n, is non-singular (has rank n) 

then its inverse X exists and satisfies the equations AX== XA = I 

(where I is identity or unit matrix). The .th f X J 1:olumn o is 

the solution of the linear equations Ax.= e. where e. is the 
J J J 

j
th 

column of I. Also if R == AX - I, then R is called the 

"residual"matrix and a bound for the relative error in X is given by 

// R II i.e. 

5,Ja 

On the other hand, if A is square (nxn) and singular, or if it is 

shaped (mxn) with m f n, then matrix A has no inverse but it has what 

is called a Generalized or Iseudo Inverse Z which satisfies the 

equations 

en 

AZA = ZAZ, (ZA).1. == ZP. 5,Jb 

Note that these conditions are also satisfied by the inverse X of 

A if A is square and non-singular. 

It is known that the Generalized Inverse Z is hardly used 

and as a result only the inverse X of A is considered. 

5.J.1 Algorithm Selection for Matrix Inversion 

The algorithms for finding the inverse of a square non-singular 

matrix are few. The reason being that any algorithm used to solve 

Ax b 5,Jc 
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invsr,;e X ci A by e:_ving 

Ax. = e. 
J J 

j=l, ..•. , n .5.Jd 

h . th .th th 
w ere x j is e J column of X and e j the j colu.Inn of I. Already 

an algorithm for solving equation 5.3 c has been selected and im1,,lemented 

and it involves the use of Crout compact decomposition method. Ap:plying 

this method, the inverse of A can be determined. 

There is another algorithm by George (70) and it determines the 

inverse of A in A, by using a modified form of Gaussian elimination 

method. This algorithm is very useful when it comes to the use of 

storage. Cnly the matrix A and three other one dimensional matrices of 

size n are needed for its im:;lementation. Crout method requires two 

nxn matrices (A and the inverse of A) and a one dimensional matrix of 

size n. This means that for n>2, George (70) algorithm requires 

less storage. However, the 1,rogram size of both algorithms is about the 

same, and Crout 's iur;:lementation produces more accurate results and is 

faster than George's implementation. This means that if George '.s imple­

mentation is used to determine the inverse of large matrix (a job 

that it can do better than Crout's imylementation in terms cf storage) 

the results produced are likely to be poor in terms of accuracy and 

therefore not reliable. 

Crout im;lementation was chosen since it is reliable and faster 

than Georges' im:;:,lementation. So al though, algorithms that requires 

less storage are ideal for microcomi•uters, reliability is also 

essential. Also since there is already a subroutine for decom:posing 

the matrix A, only the subroutine for solving LUX= I need be written. 
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5.J.2 Implementation and Modification of Selected Algorithms 

Tne subroutine for decomposition is first used to decompose 

matrix A. A second subroutine, which is actually the subroutine 

for calculating the inverse of A is then used to solve LUX= I or 

LUx. = e. 
J J ,j=l, ... -,n. Before solving for X, a check should 

be made to be sure that decomposition was successful. 

5.4. Determinant 

The aim is to find the determinant of matrix A = ( a,, .J which 

is usually defined as 

det(A) = 
n.' 

L°+ 
k=l 

..!...._,• 

a a
2 

•••••• a , 
1- - n- 5.4a 

where the blank subscripts are filled in by some permutation of the 

integers 1 to n, and A an nxn matrix. Only square matrices are 

considered since the determinants of matrices of other sizes are not 

defined. No s1)ecial cases of square matrices are considered. It is 

felt that in most cases, users are interested in finding the determinant 

of a general square matrix. 

5.4.1 Algorithm Selection for Determinant 

Once matrix A has been decomposed to LU, the determinant of A 

can easily be obtained from 

n 

det(A) = det(LU) = det(L) *det(U) = TTuii 
i=l 

5,4b 

· 1 t 'angular matrix This is the method provided L is a unit ewer r1 • 
I-
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commonly used and other algorithms are very rare. 

Since there is already a subroutine for decomposition 
-· 9 

this same common method is used in the library. 

5.4.2 Imr,lementation of Selected Algori tb.m 

Overflow or underflow can easily occur if the determinant of 

matrix A is com~uted from 

det(A) directly 

To overcome this :rroblem, the determinant is usually obtained 

as a :power of a number in the form: 

det(A) 
a2 5.4c = ~b 

where f 6 ~ / ~ I < 1 and a
2 

a positive or negative integer, while 

b is the base used by the computer. This re~resentation is not very 

convenient especially for an inexperienced user. 

The following approach is adopted in }ONUSOLIM. It is known that 

log ldet(A) l = 

n 

L, log I uii 
i=l 

5.4d 

Since logarithm to base ten is always available in most machine 

FCRTRAN compilers, it was chosen for use. By obtaining the determinant 
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in logarithm form, overflow or underflow can be avoided. After 

obtaining the determinant in logarithm form, a test is carried out 

to determine whether overflow or underflow will occur if the 

antilogarithm is found. If it is known that overflow or underflow 

will not occur, the determinant is obtained and IFAIL set to zero. 

If overflow or underflow will occur, the logrithm to base ten of the 

determinant is returned to the user and the sign of the determinant is 

returned by IFAIL (-1 or +1). 

The use of logarithms may result in some loss of accuracy because 

of cancellation in the sum (see Forsythe et a1(59)) while an extended 

product can be computed with very little round-off error. This }.;roblem 

is overcome by performing double 1-,recision summation of the logarithms 

of ukk when the partial double precision version of the routine is 

implemented. 

5.5 Content of ChaDter 

ROUTINE NAME PUfilOSE STORAGE(BYTES) 

RFlLE Decomposes an nxn matrix into LU where 1,362 

Lis a unit lower matrix and U an upper 

matrix. 

RF21E Solves LUX = b 690 

RFJLE Refines the solution of 1.Ux=B 1,242 

RF41E Solves trid.iagonal systems 648 

RFlIN Computes the inverse of a non singular 

nxn matrix after decom1,)osi tion. 648 

RFlDE Determines the determinant of a square 690 

t. after decomposition. ma r1.x 
L 
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Note that the amount of storage given is that of the compiled 

output of the routine using Tx.990/4 microcom:puter. 
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CHNTER 6 

ROCTS OF NON-LINEAR FUNCTIONS 

6.1. Introduction 

Finding a root of a non-linear function is one of the problem 

areas that occurs frequently in numerical computation. In this 

chapter this area is discussed and an algorithm used to comrute 

the roots of a non-linear function (trancedental functions) is selected. 

Polynomials which are special form of non-linear functions, are also 

discussed. 

6.2. Non-linear Functions 

Only functions of single real variable are considered. They 

are usually of the form 

f(x) = 0 

where x is a single real variable. 

6a 

x2 + Cos(x) - 4 = 0 . • • • • • • • • • • • • • • • • • • • • . 6b 

Equation 6b is an example of a function of single real variable. 

Only the real roots are determined. The main reason being that 

determining the com1,lex roots of a function usually involves the 

use of comr,lex arithmetic ( except polynomials). PONUSOLIM tries to 

avoid the use of complex arithmetic since most FORTRAN complilers 

for microcomputers do not have complex arithmetic. 
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6.2.1 Choosing appropriate algorithm for non-linear Functions 

Many algorithms have been designed to find the real roots of a 

function of a single real variable. Most of these algorithm (if not all) 

are iterative in nature. A survey of some of these algorithms which 

are derivative free is given by Swift (158) and this will help 

in deciding which algorithm should be included in the libra...ry. 

(see swift (}_53), Brent (14), Dekker (41) Forsythe (60). Johnson 

(93). Davies et al (37) for more details). Derivative free methods 

are usually more attractive to users and as_a result only such methods 

will be discussed. See Werner (169), King (98), Neta (120) for methods 

using derivatives. 'I.he algorithms can be grou1,,ed in the following 

manner: 

6.2.1.1 Methods based on aJ1 initial value 

ALGORIT'rlMS 6.1 

Let f(x) == O f(x) is rearranged such 

that 

x = F(x) 

Set x = a where "a" is the initial guess. 
0 

For k==l, 2, ••••••••••••• do 

"a" should be closed enough to the real root to be determined. 

Sure Of to a r oot, it is required that convergence 

• 0 9 • • • • • e • • • • • • • • • a It • 0 • • 

6.la 

6.lb 

To be 

6.lc 
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ALGORITrlN 6.2 Continuation Method 

The basic idea of the continuation method is to solve a sequence of 

sub:problems, each of which is easier to solve than the original 

problem, so that the solutions of the sub-problems converge to the 

desired zero of f(x). 

let d... be a zero of f(x) and x initial approximation to the 
0 

root of f(x). Consider the sequence of subproblems; 

k = 1,2, .•••• ,m 

such that g(x, 1) = O and g(«,o) = 0 
0 

The sequence 0 • • • • • > G = 0 
m 

is determined, thus computing (Y.. as efficiently as i.,ossible. See 

Avila (9), Swift and Lind.field (159) for more details. A modification 

of this method can be seen in (159) where it is compared with the 

comuined Brent and search algorithms. It is found to be reliable 

to a great extent. 

6.2.1.2 Methods based on two or three interpolation points 

ALGORITHM 6.J Secant Method 

l f • (:x ) 1· n the Newton's method with the This algorithm rep aces 

arproximation 

f(~) - f(~-1) 

(~ - ~-1) 

6.Ja 



- ?c; -

such that we set x
0 

= a, x
1 

=band for 

At least, we are saved from the problem of differentiating the 

function. However the ;"roblem of choosing a "good" a, b is still 

there. 

There are the Jfrullers (115), Inverse quadratic (127), inter. elation, 

rational a-:: ,roximation ( 90) methods which use three interpolation : oints. 

(see Swift (158) for details). 

These methods are not reliable for all the problems antici1:ated. 

As an exam le, all the algorithms failed to find the root of 

f(x) = x9 + 10
4 ......................... 6.Jc 

in the interval (-2,1). Also they failed to solve the equation 

f(x) =(15x - 1) / 14x 6. Jd 

given that the root is in the interval (.001,1). Tnese are the findings 

c·f Swift ( 158) . 
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The algori tr.uns needed in I ONUSOLIM should be general purpose 

and reliable• This conditions are not satisfied by algorithms in 

this section. 

6.2.l.J. Bracketing retention methods based on two l)oints 
• 

Before any of these algorithms to be described is used, an interval 

(a,b) must be determined such that~ 

f(a) ~ f(b) < 0 

Such algori thrns re1.eatedly obtain a new 1--•oint c E ( a, b) and const:ruct 

a smaller interval (a,c,) or (c,b) within which the zero lies. The 

interval where there is a sign change is chosen for the next iteration 

Note that if f(x) is a continuous function whose zero is required, then 

f(a) * f(b)"- 0 if the single zero lies within the interval (a,b). 

Continuing in this manner, the interval can be made sufficiently 

small to obtain the required accuracy. The various algori thrns that 

use this a?proach are distinguished by the way c is chosen. 

ALGORITHM 6.4. Bisection Method 

In bisection method c = ½(a+b) and in general 

if 

for k 

X ==a 
0 

= 1, 2, .. ••••••••• 

then 

do 

6.4a 

and 

. I 

I 
i 

I 
ii 

I 
I 
l 
I 
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f'(" ) - f( \ ~ -"• - Xr --, ) 
K K-.L 

This is one of the methods for which an a priori estimate of the 

number of function evaluations can be made: • + . 
l.., lS 

( 
b-a 

2+ log2 It. I ) where 'c. is the accuracy required. 

A.:::..G·~RITHVi 6.5 Regula Falsi 

This algorithm is basically the same ~s i·nverse 7 • • t 1 t· - _inear in er; o a ion 

or Secant method exce.t that the end ioints are chosen to bracket the 

root. 

Set x
0 

= a, ~ = b 

for k=l,2, .••••••• , do 

There are other algorithms under this section. Such as the 

Illinois method published by Dowell et al (42). Pegasus method 

described by Dowell et al (4J). There is also the Anderson and 

Bjorck method (5). Algorithms under this section prove to be more 

reliable than algorithms in section 10.J.2. There are very few 

failures in the test carried out by Swift (158). Infact it is only 

Regula Falsi that 



failed in two :;,roblems. However more functions evaluations are 

required when comrared to methods in section 6.2.1.2 that use interpo­

lation. 

6.2.l.4 Hybrid Method~ 

This section is made ur of methods that combine inter1:olation 

(methods in 6.2.1.2) with bisection (method in section 6.2.1.J) in 

order to retain the bracking property. It will suffice to say that 

under this section we have the Dekker's method (41), Brent's method 

(14), algorithm Mand R (described by Bus and Dekker (20) ). 

These methods combine the fast rate of convergence of interpolation 

methods with the reliability of methods in section 6.2.1.3 that 

retain bracketing of the root. In the test ca-.-rried out by Swift (158), 

none of tr.ese algorithms failed. 

6.2.1.5 Selected Algorithm 

From all indications the selected algorithm should come from 

either section 6.2.1.4. (Hybrid Methods) or continuation method. 

The continuation method has the advantage of the user not 

producing an interval that contains a root. Also from the test 

carried out by Swift et al (159) failure only occurred when (i) there 

are roots having mul ti:i:;lici ty greater than one, ( ii) the starting 

value is a zero of f'(x). 

t al Ys be avoJ..ded Swift (1~8) in his These conditions canno ~ wa • ~ 

that Brent's method should be used as a general conclusion suggested 

1 since only one routine is used to non-linear equation so ver. 

· th"s library, the algorithm chosen 
solve non-linear equations in J. 

' • 
' ri 
I 

I 
i 

I 
' t 
II• 

I 
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should solve as many ,:roblems as possible in this area. From Swift 's 

conclusion, Brent's method was selected because: 

1. By the claims of Brent (15), the algorithm will always 

converge, even with floating-point a_rj_ thmetic and infact the 

number of function evaluations cannot exceed a number roughly equal 

to 

( (__L:__AJ 
( log2(~TOiT7 
( r 

where TOL l = 0.5 * T01 + 2.0 * EPS * ABS(B) (fil S is the 

machine relative error, T0l is the accuracy demanded by the 

user). This shows that the algorithm is reliable. 

2. The com"'iled 1irogram of Brent algorithm using Tx990/4 micro­

com;,uter FORTRAN com:;:iler took 1742 bytes of storage which is 

reasonable (although algorithms in sections, 6.2.1.1., 6.2.1.2. 

use less storage), 

J. Brent (15) also claimed that roughly ten function evaluations 

a.re typically needed for smooth functions. This means that not 

much computer time is used by this algorithm. 

4. The majority of i:,ractical 1,roblems have k..nown bracketing interval. 

6.2.2. Modification of selected routine 

The routine that im;lements Brent's algorithm can be found in 

Brent (14, 15), Forsythe et al (pO) and the four parameters supplied 

by the user a.re (i) the tolerance (ii) the bracketing interva1 (a,b) 

(iii) the function whose root is to be determined. 
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In the version im:~lemented in l ONlJSC)~IM, a check is made to be 

sure whether the user su:plied an interval that contains a root. If 

the interval contains a root, Brent's ~1g r·th · l"ed d" tly a. o 1 m 1s ac_,p 1 1rec . 

C1therwise, a search for such interval is carried out using a search 

algorithm (159). If such interval is not obtained after 1000 function 

evaluations, an exit is forced with IFAI:i.J set to one. After 

obtaining such an interval, Brent's algorithm is then a:;::plied. 

The search can fail. From the test ca.."'Tied out in (159), the 

search failed mainly when the function is a 1;-olynomial with a small 

root. Such failure will not be much of a lffoblem since there is a 

routine in the library to determine the zeros of iolynomials. It must 

be stressed that no failure will occur after the bracketing interval 

has been determined. 

The argument~ tolorance is dropped from the '.Parameter list since 

most users are likely to be more interested in obtaining a root which 

is accurate to machine precision. Tolorance is fixed at 5* machine 

precision. Users are saved from the rroblem of choosing the tolerance. 

A new argument IFAIL is introduced to communicate to the user the 

result of the search. With these modifications, a user's knowledge of 

an interval that contains a root can be exploited. This is not so with 

continuation method. 

6.3 } olynomial12_ 

A J- olynom.ial is usually exJJressed in the form: 



F (z) = n + n-1 a z a, z 
0 .l. 

n 
:; L n-i a.z 

:i. 

i=O 

with complex coefficients 

and r is a zero of P(z) 

F(r): 0 

+ n-2 a2z + 

a, 
0 

if 

~ a • • • e • a n 

a + 0 
0 

P is called a real polynomial if all the coefficients are real. 

6c 

6d 

Only real polynomials will be considered. One of the reasons being 

that working with complex variables means using more comyuter storage. 

As it will be revealed later, many algorithms used in determining 

the zeros of polynomials use much storage and the amount of storage 

used will be substantially increased if a complex version of such 

algorithm is im:i,;lemented. For real polynomials the zeros can still be 

com_;Jlex, but such complex zeros occur as pairs of conjugate com:;,;lex numbers 

x+iy, x-iy. For a polynomial of degree n, there are n solutions and 

some of these solutions or zeros may not be distinct. Infact l can be 

written as: 

multi:p..ce zero. 

k 

:r(z) :; n (z-ri)mi 

i=l 

are the distinct zeros with multiplicity 

~ res1)ectively. If m. >l, 
l. 

It should be mentioned that a 

r. is called a 
l. 

6e 
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multirle zero is also a zero of the derivative of ~(z). 

6.J.l. Selecting a~~,-~ ro-priate algorithm 

Computing the zeros of a 1;olynomial is a com.f:,licated task and 

many algorithms have been proposed to perform this task. 

Iterative methods are mostly used and most of the algorithms converge 

to one or two zeros at a time. In computing these zeros, there are 

usually many practical problems such as round off errors, ill-conditioning 

(see Peter and Wilkinson (132) for details). A zero is described to be 

ill-conditioned if it is sensitive to small changes in the coefficients 

of the polynomial. Zeros which have their ratio close to one are 

ill-conditioned. So it can be safely said that multiple zeros are ill-­

conditioned. Most algorithms factor out a computed zero and this 

process is referred to as deflation. The algorithm :i.,,roceeds to 

find the next zero by working on the deflated polynomial. This process 

is continued until all the zeros are com1;uted. Because of the 

fundamental limitations of computer arithmetic, the computed value of 

P(r) will not necessarily be exactly zero. This will therefore limit the 

accuracy of the next root to be com::-uted after deflation. The 

deflation process also introduces its own error and this can pose a 

problem if the zeros are ill-conditioned. 

Many algorithms are able to determine the com~lex roots of real 

:polynomial, (which are conjugate) without using complex arithmetic. 

A quadratic factor of the form (z
2
+uz+v) is obtained with real 

coefficients u, v. The list of fundamental algorithms include 

Newton's method, Bairstow's method, Bernoulli's method,Graeffe's 

root-squaring method, Lin's method and laguerre's method. Some 
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more sophisticated methods (some of which are based on localization 

, rocedures) include, the use of Sturm sequence, the Lehmer-Shur 

algorithm and the quotient-difference algorithm. (see Householder 

(85) for more details). 

However there are ,more recent methods that incorporate some or 

none of the above methods and they can be a:;::plied to larger set of 

-;olynomials. Since the selected algorithm will be general :;:uryose, 

it is better to consider the algorithms which are general purpose and 

can compute conjugate zeros using only real arithmetic. It is only when 

such algorithms are not suitable for microcomputers that we can go a 

ste; lower. 

6.J.1.1. Comjosite method 

'Ibis algorithm is derived by Dunaway (45) and it consists of 

several :parts and it can be summarized as follows: 

1. 'Ille input coefficients are scaled initially to minimize the 

variation of orders of magnitude of the coefficients. The 

scaling is performed in a s1-1ecial way to achieve this. 

2. 'Ille :polynomial is factored, through the use of Euc1.id • s algorithm 

for obtaining the greatest common divisor of a polynomial and its deri­

vatives into m factors. Each factor polynomial ~ocesses only simple 

zeros and m is the greatest multiplicity of any zero in the 

original rolynomial. 

3, 'Ille zeros of these factor polynomials are then calculated. If 

the degree of the factor polynomial is less than three, the zeros 
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are found directly. If not the following ste: s are taken. 

a) The real zeros are obtained by the use of Sturm 1 s sequence 

in which an interval is found which contains a unique real 

zero. The Newton-Raphson method is then used to obtain each 

real zero. 

b) By using the values of the real zeros, an interval is 

fcund in which k + l points are determined. k being the 

number of complex zeros. An interpolatry polynomial 

c(z) = P(z)/R(z) 

is uniquely determined by k+l -,oints, z. and their 
- l. 

associated values: 

i = l, ... , •. , k+l 

6.6a 

6.6b 

where Q( z) re};resents the factor }.Jo1ynomial whose roots are 

being determined. R(z) represents the yolynomial containing 

the real zeros of Q(z). C(z) will then contain the com1lex 

zeros of Q(z). 

c) The polynomial C(z) containing the complex zeros of Q(z) can 

then have its zeros calculated by the use of an iterative 

procedure based on an approximation of a function by a rational 

function which uses initial values produced by the Lehmer-Shur 

method. If by the use of sturms theorem, it is determined that 

there are no real zeros, the iterative process is a plied 



directly on the factor polynomial. 

4. The calculated zeros are then scaled according to the scale 

factor used on the original input coefficients. The 

rnul ti;Jlici ties of the zeros are also calculated. 

From the test results given by Dunaway (45) the algorithm is 

reliable and it can deal with mul tiJ,le zeros with a high degree of 

efficiency. It is not restricted to any class of polynomials that 

are real. Most algorithms find it difficult to deal with multi~le zeros. 

However, the algorithm is made Uj..: of many /arts such as Newton-Rachson 

method, 1ehmur- Schur method, Sturm method, ~uclid's algorithm; 

forming an inteI'l:,olation };';olynomial, soi:;histicated scaling, solving 

rational function. Also the a:;..;plication of the Euclid' s algorithm 

requires the use of many one-dimensional arrays for work s~ace. The 

coding of this algorithm requires a great amount of storage, which a 

microcomputer may not be able to provide. For a large com~uter, this 

algorithm can make a good numerical software. 

6.J.1.2. Using minimization 

Another algorithm is that due to Grant and Hitchins (76, 77). They 

transformed the vroblem of finding a zero of a polynomial to that of 

minimizing the function: 

al f t ·on~ ~quation 6.7a is obtained from the where Rand J are re unc i ~- ~ 

ex_rression 
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}(z) = F(x + iy) = R(x,y) + i J(x,y) 

where solving the equation 

R(x,y) = 0 = J(x,y) 

was transformed into equation 6.7a and it was shown to be equivalent 

to finding the zeros of P(z). 

To com.:::,ute a zero the followin~ steps are taken: 

1. An initial value 

is chosen. 

2. The J;roces$ of minimization is carried. out by computing 

z. given by 
1 

1 

when R, J and the partial derl vati ves Rx and J x are all,_ taken 

at z i and are computed as described by Wilkinscm (170) 

3. Z.i+l = z. + 
1 

6.7d 
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where /\M is chosen to satisfy the following condition. 
"). k r,) For t\k = 2- ' 1.K z , 1 d zi = i + 1\j...::-,.zi an /\ k is chosen as 

large as ~:ossible, so that 

6.7f 

where 0-- is some small J:JOSitive number. It is the A. that satisfies 
k 

6.7f that is called AM 

4. A return is made to step 2 if sufficient accuracy has not been 

reached, otherwise factor out the computed zero or zeros using 

Teter et al (132) composite deflation method and return to step 1. 

Occassionall~ saddle points are met and an exit from the routine 

is forced. A re-entry is possible with a new starting :point without 

destroying already com:;1uted zeros. 

This routine,compared to others of the same class.uses less 

storage, Infact it uses only two one-dimensional arrays as 

works~ace, each having the dimension of (N+l), where N is the 

degree of the polynomial. Only two other basic algorithms are 

included and these are Schur test and Aa_ams test which do not 

require much coding. Zeros which are well-conditioned are 

comr1uted to i::,recision allowed by machine arithmetic. 
1· -

When it comes to multirle roots, its efficiency is reduced. 

The algorithm is included in the NAG library. 
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6.J.1.J '.Inree Stage algorithm for real 2olynomials 

This algorithm was develo~,ed by Jenkins and Tra.-1b ( 92). The method 

is centered around what they defined as fixed-shift K ~olynomials. 

With these :;,olynomials it is possible to 1,erform iteration for a linear 

factor or a quadratic factor of the polynomial. 

Stage 1. (No-Shift lrocess) 

6.8a 

where } 
1 

( z) is the first derivative of polynomial 1-( z) and / O) ( z) 

is the first fixed-shift K ~olynomial. 

r 0m ute: 
k ~ ( o) 

p ( o) 

r,.= 0, 1, .•••••••• , N - 1 

where M is usually taken to be 5. A value 

arrived at after many tests. 

This transformation helps the small zeros to stand out. 

Stage 2 (fixed-Shift process) 

Q(z) is defined as a real quadratic }JOlynomial 

== z2 + UZ + V 

f( , 8) which are real or complex 
The zeros '\ and s 2 o o. c 

conjugates are selected such that \ 61 \ = l3, 

6.8b 

6.8P 



where r. are roots of 
l 

and = 
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i = 2, .•.••••• j 

f 0 

i = 2 J G- G • O $ C If e Cl J j 

the linear factor method is used for iteration. If 

the quadratic factor method is used for iteration. 

Stage J (Variable-Shift process) 

At this stage the actual iterative frocess is carried out. 

( see Jenkins and Traub ( 92) for details of comfuter im1,lementation). 

The descri;tion of this algorithm is lengthy and only a very short 

descriition has been given here. 

Only real arithmetic is used in com:i:Juting the roots. An extensive 

test is carried out by Dunaway (45) and this algorithm is shown to 

be fast, reliable and always converging. However it has problems with 

multi~Jle roots just as Grant and Hitchin's (77) method. But unlike 

Grant and Hi tchins method, it requires a large a.mount of storage. Infact 

its F'CRTRAN code ( 91) is made up of _sl+8 lines and it uses seven one­

dimensional arrays of size (N+l) each as works1-Jace where N is the degree 

of the polynomial. 



6.J.1.4. Selected algorithm 

The algorithm due to Gra.Dt and Hitchins was chosen for the 

fact that it requires less storage than others in the sa..'!le grou: . It 

is reliable exce,.t for mul th:le roots which are :;-,roblem for to most other 

zero finding algorithms including the three stage algorithm. The 

algorithm even with single-rrecision arithmetic produced reliable 

results for I;olynomials of degrees as high as twenty-six. 

This is imJ.ortant since the double-precision version is not likely to 

be im~ilemented in most microcom'.;uters. This algorithm is still the one 

that uses maximum storage in the library and should be rerlaced as soon 

as possible with a smaller and still efficient algorithm. 

6. 3. 2. Modification of selected routine 

The routine im1.•lementing this algorithm is made U}) of eight 

arguments. The Jarameter IND is set to (i) zero on a successful 

exit (ii) one if something was wrong with the sup:,:;lied polynomial 

(iii) two if a saddle r,oint is detected. In case (iii) a re-entry is 

usually jOssible by 1,roviding the routine with an initial value close to 

the unit circle. 

In the modified version imilemented in lONUSOLIM, the argument 

TOL which stands for tolorance is removed from the ,;,arameter list 

and it is fixed in the routine as the machine precision. Also if a 

saddle ;,oint is found, no exit is forced rather, a value close to 

the unit circle is assigned as in.i tial value and com1 utation. 

continued. If that initial value does not result in a solution, a different 

one is aE-:signed. This can be done three times a11d ;:.:fter this number, 

an exit is forced and the number of zeros computed is stored in Nl 

which on entry held 
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the munber of coefficients of the :;,olynomia.l. IFAL .. ( which is used 

instead of IND) is set to two to make the useito be aware that not 

all the zeros were com:;,,uted and he should check Nl for the number of 

zeros found. This situation will hardly arise. 

With this modification, users are saved from the ~roblem of 

choosing a 1,ro~er initial value when a saddle yoint is met. In.fact 

the user is unaware of a saddle point and the condition IFAIL=2 is 

very unlikely to arise. When the routine was tried on 226+1 which 

has saddle 1•oints, all the zeros were computed to machine precision. 

6.4 Contents of Cha~:ter 

ROUTINE NAME PUfil C;SE 

R.FlRF This routine searches for an inter­

val containing a root if this is not 

given. It then aJ;plies Brent's 

method (based on linear interpolation 

and bisection) once an interval 

containing a root is known. 

RFlZP This routine determines all the roots 

of a real rolynomial (using Grant 

and Hitchins algorithm). 

STORAGE (BYTES) 

1,742 

5,872 

Note that the amount of storage given is that of the com1Jiled output 

of the routine using Tx990/4 microcomputer. 



- 96 -

CHAPTER 7: 

QUADRATURE 

7.1 Introduction 

This cha;,ter is concerned with the numerical evaluation of 

definite integrals. Some algorithms are discussed and a set suitable 

for inclusion in the library is selected. 

7.2. Problem Area 

Only one-dimensional definite integrals of the form 

b 

I == f w(x)f(x)dx 7 .2a 
a 

where w(x) is a specified weight function (usually f(x) is a user-defined 

function and called the integrand) are considered. This is the type 

of quadrature that occurs frequently in computation. One-dimensional 

definite integrals of the tyve 7,2a can be subdivided into three 

broad areas: 

i) Integrand defined by a set of data points. 

ii) Integrand defined over a finite interval. 

iii) Integrand defined over a semi-infinite interval. 

Obviously some of these subdivisions can again be subdivided but 

it is shown later that it is possible to use algorithms for these 

three subdivisions to solve most other integral problems. There 

is a delibrate effort to reduce the number of routines as much as 

possible 60 as to have a small and yet powerful library. 
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7.J. Selecting A:,;pro;-riate Algorithms 

The aim of the algorithms • th' in is chapter in some cases is to 

com.:-,ute I such that 

0<.'l<l 7,Ja 
where 

I = f w(x)f(x) dx 
a 

and £ is a requested error bound. Almost all quadratures for the 

evaluation of I are essentially a weighted sum of a number (say N) 

of integrand values written in the form 

where w. 
J 

x. 
J 

N 

IN ::: L w. f(x .) 
J J 

j = 1, 2, 

j = 1, 2, 

j=l 

• • • • II • f 

• ••••• t 

N 

N 

are the weights and 

are the abscissae 

7,Jb 

Fixed schemes are defined as those schemes in which the abscissae 

x. are determined only by the rule that is a1)plied and do not 
J 

depend in any way upon f(x). Fixed automatic methods such as J>atterson 

(130) use a sequence of N-point rules from a particular family of 

formulae to '-'rovide successively better arproxirnation to I as N is 

increased. An automatic scheme is classed as ada-sti ve if the choice 

of the points at which the integrand is evaluated is based on or 

"ada: ted to" the behaviour of the integrand. Otherwise the method l::: 

termed non-adaptive or fixed. A survey of the various algorithms for 

numerical integration is given by Dixon (44) and this will heli: in 



deciding which algorithms should be implemented in the library. 

The methods used for the various areas are now discussed and the 

required algorithms selected. 

7.3.1. Integand defined by a set of data points 

This is a situation where the integrand is available in the 

form of a table with arbitrary spacing. Such situation is common 

especially when ex:;,eriments are ;)erf ormed. We are given two arrays: 

and 

x. ( 
1 

i=l, • 111 e • •, N 

a £.. 

i=l, •••• ,N 

For equally spaced abscissas, there are many methods such as 

Simpson's rule, traiezoidal rule etc but only the general case 

where the abscissas are spaced arbitra...~ly will be considered. 

Two routines are recommended by Dixon (44) and these are AVINT 

written by Hennoin (83) and adapted by Davis and Rabinowitz (38). 

This routine uses overlapping quadratics and thus incorporates some 

smoothing. 

The second routine INT4rT is due to Gill and Miller (72). It 

uses cubic interpolation of the data and .i:rovides an indication of 

the reliability of the result by com~aring it with the corresponding 

result obtained with piecewise quartics. 
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Both routines do not use much storage but AVINT uses less 

storage than INT41T (1,932 bytes). However INT4~T has the advantage 

of ~-roviding an indication of the reliability of the result obtained 

and as a result of this,INT4lT was included in the library instead 

of AVINT. 

7.3.2. Integrand defined over a finite interval. 

Most available algorithms fall into this category and as a 

result choosing a routine for this problem area is difficult. 

There are algorithms which are more efficient when used to 

integrate well-behaved functions. By a "well-behaved function" it 

is meant one that can be approximated by a polynomial of reasonable 

degree. Tnis means that the function is continuous, bounded and 

possesses a sufficient number of continuous and bounded derivatives. 

Functions that vary rapidly over some part of the range such as highly 

oscillatory function are not regarded as well-behaved functions. Fixed 

schemes and fixed automatic methods are used to integrate well-behaved 

functions. Some of these fixed methods are Newton-cotes rules, Gauss­

legendre rules, Romberg quadrature, clenshaw-Curtis quadrature (27) 

and Iatterson's family (130). A s\JIVey and comiarison of these 

methods can be found in Dixon (44). 

The aim here is to select a general purpose algorithm which should 

be able to deal with both well-behaved and badly-behaved functions. 

Adar,tive methods are usually a~plied to badly behaved functions. The 

reason being that, the region where the function is badly behaved is 

discovered by such methods and more attention is concentrated on such~ 

a region, thereby producing efficient results. So while fixed method use 



LO 

a series of rules over one interval, adaptive method generally use 

one rule ever a series of subinterval. The rule is usually of lcw 

order and taken from the rules used to integrate well-behaved 

::~unctions. :.ome of the adaptive schemes that use Newton-Cotes rules 

are INI.5:rT (113), QNC? (96) and QUAD \96:, based on Newton-Cotes 5, 7 

and 10-point rules respectively while SQUAK (105) and EIJvirSON ( 111) 

are both based on Newton-Cotes J _,_ oint rule. 

Another set of adaptive schemes use Gauss-Legendre rules and they 

are GAUSS (96) which uses both 5-point and ?-point rules. The 7-~oint 

rule is used to determine the accuracy of the 5-point rule. AIND (lJJ: 

uses 10-pcint rule and its accuracy is checked by a 0 ,lying the 21-point 

Kronrod rule. Robinson's GAUSS (141) scheme was designed to eliminate 

the wastage which is inherent in Gaussian methods. It uses the J-point 

rule in any interval and at each stage, if subdivision is necessary, this 

interval is divided into three more in such a way that each old Gauss 

point becomes the middle Gauss point in one of the new intervals. In 

AIND and GAUSS (96) 21 and 11 evaluations are wasted respectively when 

subdivision occurs. This is what Robinson's Gauss tried to avoid. 

The third set of adaptive schemes uses Clenshaw-Curtis rule and the 

set includes ADAY~AJJ (123) which is called "doubly adaptive" in that 

it can choose both the order of the Clenshaw-Curtis ru1e and the 

interval over which to avly it. Under this group is S·LITABS (122) 

and an algorithm by Cranley and }atterson (J2) that uses 7th order 

Clenshaw-Curtis rule. 

CADRE (40) and RBUN (96) are based on Romberg quadrature. 
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QSUBA ( lJl) designed by :-atterson uses all the rules in 

Patterson's family (from 1 to 255-:;-,oint rule) for each subinterval. 

In h.2~v conclusion, Dixon ( 44) said that any of the following 

AD~QUAD, AIND, CADRE, INTj:;-T, QNC7, QUAD, SFLITABS could cope reliably 

and efficiently with many different ty,es of integrand and would 

:_rovide a good general library routine. 

Since only one routine is to be included in the library for a 

finite interval with a known integrand, it is imi:ortant to select an 

ada:tive scheme which does not use the end points a,b during integra­

tion so that integration can be ;;ossible even if the integrand is not 

defined at those points. Also if there is a singularity (c say) in the 

interval over which the function is to be integrated, then by ex:pressing, 

b C b 1 w(x)f(x)dx 

a 

= ~ w(x)f(x)dx + J w(x)f(x)dx 

a C 

?.Jc 

the function can be integrated over the whole interval. This condition 

eliminates most of the methods already mentioned. Routines that use 

1fatterson's family or any of the Gauss Rules satisfy this condition. 

Although QSUBA is not included in the list suggested by Dixon, the 

routine was chosen. It must be mentioned that it was after the survey 

carried out by Dixon had been done that QSUBA was _1-ublished. 

This algorithm can be regarded as'tioubly ada,tive" to a large 

extent because the number of rules ap~lied depend on the function and 

the interval. If the function is well-behaved, the problem is reduced 

to that of fixed automatic scheme because the different rules of 

}atterson's family are applied to the whole interval. 
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If the function is badly-behaved in some areas, subdivision is invoked 

and successive rules are a plied to each subinterval. On exhausting all 

the rules if the error criteria is not still met, further subdivision 

of the subinterval is done. It can be seen that a:;:,art from halving 

the interval, the rule a;plied varies in order. 

Although the amount of data to be stored is large (J81), the storage 

required is small com_0 ared to other ad.a; ti ve schemes. As an exam1 le, 

CADRE uses an array of size 2t049 requiring about BK bytes. There 

is also a 10 x 10 array and a lengthy rrogram size. Surely such 

storage requirement is too demanding for a microcom:;uter. The program 

size of /DPQUAD is also large. Another adv2.~tc:_;:? nf Q.,SUBA is that. 

it can easily be modified to reduce its stcrage requirements. 

The test on Q.SUBA carried out by ratterson (1Jl) shows that it is 

com_reti ti ve with CADRE which is a recommended method. 

Integrand defined over a semi-infinite interval 

Sometimes the function is known but the interval ove~ which the 

integration is to be r,erformed is semi-infinite. This can be represented 

as: 

($) 

j w(x)f(x)dx 

0 

7.Jd 

Any infinite ra.'1ge can be re-;-resented in this form. Ac:. an exam1 le, 

if we are given. 
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fYJ 

~ w(x)f(x)dx 
a 

then by re;lacing x by x-a in f(x) we have 

C$) I w(x)f(x)dx = 
a 

Also if we are told to compute 

cP 1 w(x)f(x)dx 
- (1(;J 

This can be transformed to 

. r:P 

~ w ( X) f ( X) dx ::. 
_O() 

by 1:,utting x =-y. 

~ 

~ w(x) f(x) dx + 
D 

(':fJ> 

J w(x-a)f(x-a)dx 
0 

00 

~ w(-y)f(-y)dy 
0 

7,Je 

7,Jf 

7,Jg 

So although, there are algorithms to evaluate (7.Jg) directly, 

algorithms for evaluating (7.Jd) can also be used. It must be mentioned 

that there are many rroblems encountered when integrating a function 

over an infinite range. One of the problems is, it is im;,ossi ble to 

attach any validity to the result of any a:r:;,roxirnate scheme in the 

absence of theoretical information about the convergence of the 

integral itself. Most of the available techniques can easily be misused 

to · rovide a finite a~~proximation to a divergent integral. 
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Methods used are usually fixed methods. The user s:;_,ecifies n, the 

number of abscissas to be used, and the particular rule reQuired. 

The methods do not usually give an estimate of the accuracy of the result. 

If a function is known to be convergent, it may be l,ossible to use Gauss­

Laguerre formula. The laguerre formula for approximating the integral 

over a semi-infinite interval is given by 

c,t:> 

) .-x g(x) d.x 

0 

o<...s<.o0 

Here the abscissas x. are the zeros of the laguerre polynomial 
K 

Ln(x) (Ln(x) = (-l)nxn+ ....•. ) 

and 

The weight function in this case is e 
-x 

The generalized laguerre formula uses the weight function 

w(x) 
0(. -x = X e >-1 and 

7.Jg 

7,Jk 

. ' n. \ ( n + ol.. + l_) 2 n ( 'j; ..... 7. Jl 
(2n): g 

OL.. ~ <-1 



105 

The abscissas are the zeros of the generalized or associated laguerre 

j,0 olynomial Ln (d-..)c x) and 

n! \ (n+0\+1) 

(L . (o1s)( ) )2 
n+l xk 7.Jm 

Only the form ?.Jg is considered for inclusion in the library. There 

are usually tables (157) for wk and ~. Such tables he 11, in simplifying 

the job of computing (7.Jd). If f(x) cannot easily be ex~,ressed as 

e-xg(x), a simple way out is to set g(x) = ex f(x). 

Simpson (1.50) a:;rlied lognormal distribution to i:•erform numerical 

integration over a semi-infinite interval. In his conclusion he 

mentioned that his method is a~propriate for integrands that have a 

"sharply spiked" behaviour and that it is suitable in some cases where 

laguerre quadrature is an a1propriate method. 

It is also possible to integrate a function over a semi-infinite 

range by using a mixture of analytic and numerical techniques (38). One 

of such techniques is to transform the integrand to a finite range. 

This usually introduces a singularity at one of the end-1,oints. A 

numerical technique is then a:pplied to the transformed integrand. As 

an example the substitution 

X == 

transforms 

l-1 
t 

r:IJ 

J f(x)dx 

0 

to 
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dt 

In this form QSUBA can be applied to obtain an answer. 

The laguerre quadrature is chosen since Sirn:pson's conclusion 

does not show that his method is su:i:,erior to that of laguerre in all 

cases• Also the:re are tables already available for the computation 

of laguerre quadrature. This is not so with Simfson's method. 

In imi;lementing laguerre quadrature the tabulated weights and 

abscissa,:, were used. For single r,recisicn n was given the value 

sixteen while for double :rrecision version n was given the value of 

twenty-five. In most libraries, n is chosen by the user but in this 

library n is fixed. This was done because care has to be taken in 

choosing n for the fact that underflow or overflow can easily occur 

if n is large. For some microcomputers, the range of real numbers is 

between 10-38 to 1038 and for n=25, the minimum weight is .13158E-J5. 

As n gets larger, the minimum weight gets smaller and this is why a 

maximum of n=25 was chosen. It was felt that the abscissae and the 

weights should be com:puted by the routine also, instead of storing 

them as data. This approach will reduce the i:-roblern of transferring the 

;,rogram from one comr,uter to another which is likely to be done manually. 

There will be no need to co;,y fifty data numbers and n can be varied 

by the user. The problem is that overflow can easily occur, when 

corn uting the weights because it involves the corn~utation of factorials 

as it can be seen from equation 7. 3k. This apr,roach has to be discarded. 

During the summation 
n 
~w. f(x.) L 1 1 

i==l 

, a check issarried out to stop 
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the addition of further terms if the term to be added will not 

have any significant effect on the sum. This check helys to reduce 

the __ ,ossi bili ty of underflow. Using pre-com::uted weights and abscissae 

makes laguerre quadrature faster than when these values have to be 

first com:;mted. 

7.4. Modification of selected routines 

The only routine modified was QSUBA (131). This was done so as 

to reduce the amount of storage used by the routine. In the original, 

there is an array of size 391 which has to be initialized. This can 

:pose a : roblem when the program is being transferred manually. The 

255- oint rule is a:·,plied in the original version. In the modified 

version, the maximum rule used is the 31-:point rule and the size of 

the a_-rray to be initialised is reduced to 48. Also the number of 

subintervals which can be stacked was increased from 100 to 1_50. 

This was to compensate for the reduction of the order of the rules 

arplied. There was no substantial difference between the modified 

and the original one in terms of reliability. This routine always 

succeed in producing an approximation of the integral. If it is not 

rossible to achieve the accuracy required by the user, the integral is 

computed to the accuracy possible and this accuracy is made known to 

the user. 
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Contents of Cha1-;ter 

ROUTINE NAME PUifr OSE 

RFlQU Evaluates a definite integral to 

a specified accuracy using the 

adaptive method described by 

RF4QU 

RF5QU 

l atterson. 

Estimates the value of an 

integral of the form 

CJ:) 

J e-x f(x)dJ< 

0 

using Gauss-laguerre quadrature. 

Estimates the value of a definite 

integral when the function is 

specified numerically, using the 

method described by Gill and 

Miller 

STORAGE (BYTES) 

2,632 

4J2 

1,932 

Note that the amount of storage given is that of the compiled 

outrJut of the routine using Tx.990/4 microcomputer. 
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CHAPT'iR 8: 

ORDINARY DIFFERENTIAL EQUATICNS 

8.1 Introduction 

In this charter, the numerical solution of ordinary differential 

equations is discussed. The two main areas considered are initial-value 

problems ( those in which all boundary conditions a.re S}:·ecified at one 

~oint) and boundary-value problems (those in which the boundary 

conditions are distributed between two points). Some algorithms 

suitable for microcomuuters are selected and implemented. 

8.2. }roblem area 

Differential equations serve as mathematical descriptions for many 

physical problems and phenomena. As an example, the equation 

n 4 

ay (x) + by (x) + cy(x) = F(x) 8.2a 

occurs in the study of vibrating or oscillating mechanical systems or 

electrical circuits. 

However before a s0lution is determined, it is convenient to exrress 

higher order equations in the form of a system of first order equations 

such as: 

8.2b 

where Y are functions of x and y: = dX ldx. 
Y1,Y2•·•···• n 1. l· 

For a system of n first-order equations, n associated boundary 
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conditions are required to define the solution uniquely. Most 

ordinary differential equations of order greater than one can be 

reduced to the first order form by introducing new variables. F'or 

example; suppose we are given the following system of ordinary 

differential equations: 

II 

y = 2 
(z -1)/y 8.2c 

II 

z = -z 

This can be reduced to first order form by l-JUtting y1 = y, 

y = z, 
3 

y4 = z and the system may then be written as 

Y1 = Y2 

(Y3 
2 

- 1)/yl Y2 = 

Y3 = -Y4 8.2d 

Y4 = -Y3 

The boundary conditions are usually srecified values of the dependent 

variables at certain ~oints. For example, we have an initial-value 

problem if we are given the values of Y1 , Y2 , •••••,Y at X = X • n o 

These conditions would make it possible for us to integrate the 

equations numerically from the point x = x
0 

to some S'. 0ecified end-roint. 

We have a boundg-value Groblem if for exam:;,le we are given values of 

...•• , y at x ~ a and 
m ym+l' ym+2' • • • • • • • , y~ at x = b . 

These conditions would be sufficient to define a solution in the 
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range a L... x ~ b, but the problem cannot be solved by direct 

integration from either x=a or x=b. 

8.2.1 Initial-value problems 

Initial-value ~roblems can be divided into two broad sections 

(i) non-stiff (ii) stiff. Stiff ordinary differential equations are 

such that certain engenvalues of the Jacobian matrix ( 0 g./ 0 y.) 
1 1 

have large negative real parts. This imtlies that the solutions of such 

CDE contain rapidly decaying transient terms. Stiff ODE require special 

numerical methods of solution since the methods designed for non-stiff 

problems tend to be ex;,ensive to use on 1_;,roblems which are stiff and 

conversely. It is thus appropriate to select two algorithms, one for 

non-stiff ODE and the other for stiff CDE. A fuJ.J. o:i ~ru.ssion ori si:i '.'.= CDS is 

giver. in (RO) and a survey of methods :tor solving non-stiff ODE' is given by 

Enright et al (47). 

8.2.2. Two -r:,oint boundary-value ~roblems 

Algorithms used to solve two-1_:,oint boundary-value problems of order 

n usually require much storage when im;ilemented. As an exami.,le, the 

algorithm by Paleker (128) requires ( i) trans1;osi tion (ii) inversion 

(iii) random generation of numbers (iv) algorithms for solving initial-value 

problems (v) at least four two-dimensional arrays. 

Fortunately, a large number of practical problems are usually of 

order two, and in view of the limited storage available on micro systems, 

only the s:;:)ecial case of two-point boundary-value :problem of order two 

is c-0nsidered. 

8.J. Algorithm selection 
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8.J.l Non-stiff initial-value problems 

There are many algorithms for the solution of non-stiff initial-value 

1-roblems. One grou:,:; of fundamental methods is standard Runge-Kutta 

methods which is a class of formulae of various orders of accuracy 

(see Lambert (101) for more details). These are some of the 

oldest methods. A modification to these methods was made by Fehlberg (51) 

giving rise to Runge-Kutta-Fehlberg formulas of orders u::.~ to eight, with 

built-in strategies for estimating local errors. These formulas are 

similar to the usual s-stage ex,Jlici t Runge-Kut ta formulas exce, t that 

two an)roximations are computed at a }c•Oint. For one equation: 

and 

The local error 

i\x.+_) it is 
J. l 

justifies using 

= 
s 

y(x.)+h~w.k. 
i L J J 

j=l 

s 

= y(x.) 
J. 

+ h 

in the approximation y(xi+l) is 

O(h~,+2) where p is the order of 

y*(xi+l) y(xi+l) as an estimate 

8.J.la 

k. 
J 

8.J.lb 

O(h'*1) and in 

the formula. This 

of the local error 

introduced by acce:_,ting the approximation y(xi+l). This ability to 

determine the local error hel;;s in an automatic ste;j change program. 

These methods are ;_)articularly appealing because of their sim_lici ty, 

ease of im-;:lementation and use. 

'Ihe Adam's metho& are a family of linear multistey methods of 

varing order. A well-written routine based on variable order, variable 

od WJ.·1-1.· generally be more efficient over a wide range of ste1-1 Adam's meth 

· f · d order variable-step, Runge-Kut ta accuracy requirements than a ixe - , 
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routine. Exam les of such routines include DVDQ and DVOA, written by 

Krogh (99, 100). The routines begin with a first order formula and 

use formulas u to thirteenth order which are based on a backward­

difference representation of Adam's formulas. Subroutine VCAS designed 

by Sedgwick (147) uses this same a::proach. ether routines 

are DIFSUB by Gear ( 65:;, STE} and DE by Shampine and Gordon ( 148). 

Because of the variable order, all these routines tend to be more 

com~licated. Hence they require more storage than routines based on 

Runge-Kutta methods. 

Another group of routines uses extrapolation methods. Such routines 

include D~SUB by Crane and Fox (Jl) and it is based on an algorithm by 

Gragg (75), Bulirsch and Stoer (17). This subroutine was later im:Toved 

and called DIFSD and it is a variable order extra;Jolation method 

which attempts to use the higher order formulas on each ste;). In 

general, methods that are based on extra1,olation are somewhat less 

flexible than those based on the other methods. Moreover, they tend 

to be somewhat less efficient es~ecially for high accuracy requirements. 

Enright and Hull (47) after testing methods for solving non-stiff 

initial-value problems, recommended that a general purpose program 

library should include at least the following three methods (i) a variable­

order Adam's method similar to VOAS or DVDQ (useful when {gi} are 

expensive to evaluate) (ii) a fourth order Runge-Kutta-Fehlberg 

method (when \gi~ are not expensive to evaluate) (iii) extrapolation 

method similar to DESUB or DIFSYl. Also Gu-:_,ta ( 78) after performing 

tests to determine the overhead costs of various subroutines for solving 

non-stiff ODE, concluded that a Runge-Kutta-Fehlberg code (such as 
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subroutine RKF45 in (60) written by Shampine and Watts) should be 

used at low accuracies and an implementation of the seventh order 

Runge-Kutta - Fehlberg formula should be used at high accuracios or 

~ossibly a variable order Runge-Kutta code like RKSW of Shampine and 

Wisniewski (149). 

In this library, only one subroutine is to be included for solving 

non-stiff initial-value 1roblems. Such a subroutine should ( 1) 

be easy to use (ii) require little storage (iii) be reliable. From 

what has been discussed, it was felt that RKF45 was better suited. 

A subroutine (RKF7) based on the seventh order Runge-Kutta-Fehlberg 

formula was rejected on the grounds that the fifth and higher orders 

of Runge-Kutta-Fehlberg formulas are misleading for ~roblems in which 

the 1 y ~ ~ de-c,end slightly to only a small extent on the dependent 

variables Y. 
l 

• 
For exam~le if one integrates the equation y = f(x), 

the error estimate turns out to be zero and step will be accepted. They 

also require more storage. Since the double precision version is not 

likely to be imrlemented in most microcomputers because of storage 

problems, results of very high accuracy are not likely to be requested 

by many users. 

8.J.2 Stiff initial-value problem 

Many algorithms have been developed for the solution of stiff 

initial-value problems. A subroutine DIFSUB written by Gear (65) 

was later im;roved by Hindmarsh (_84) and called GEAR. Both subroutines 

are im,-Jlementations of a variable-order, variable-step multistep method 

which uses the backward differentiation formulas of orders one to six 

developed by Gear (66). These subroutines have been widely tested and 
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used in many program libraries. The Hindmarsh modification is 

said to be of modest irn~iYovement of efficiency but slightly less 

reliable. (see Enright et al (46) ). Both subroutines are considered 

to be efficient and reliable exce_'.:t when the Jacobian has eigenvalues 

close to the imaginary axis. The subroutine EFISODE is Byrne and 

Hindmarish's (21) counterpart of DIFSUB and GEAR, using variable-step, 

form of backward differentiation formulas. 

SDBASIC is an implementation of a variable-order,variable-step 

second derivative multistep method develoj_jed by Enright (48) and 

subsequently discussed in some details in Enright (49,.50). It uses 

formulas m to order nine and is reliable and efficient but less 

com~,etitive to GEAR on nonlinear 1,roblems. 

Some subroutines based on Runge-Kutta methods include IMrRK and GENRK 

and they are not usually efficient and they are unreliable for nonlinear 

problems. See Enright et al (46) for a more detailed discussion. 

Subroutine STINT is based upon a vari~ble-step, variable-order method 

which uses cyclic composite multistev formulas of orders one to seven 

and the method was developed and implemented by Tendler et al (160) 

STINT is said to be robust, moderately efficient but it is not in 

general as efficient as GEAR. 

There are many new methods which are still to be tested rigorously. 

such methods include those of Scraton (146) which are derived from the 

use of ;:,olynomials. There are also methods by Cash ( 22, 23) in which 

one uses extended backwa...rd differentiation formula and the other is 

based on Runge-Kut ta methods. Jackson et al ( 88) modified EIISODE 
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so that a fixed leading coefficient is used instead of a variable one. 

Since almost all well tested algorithms for the solution of stiff 

initial-value eroblems have some disadvantages, there is still a 

search for a general pUIJ:ose algorithm whose im1,lementation is reliable, 

efficient and robust. The algorithms whose im~lementations qualify as 

good software such as GEAR, STINT, SDBA.SIC, require much storage. For 

exam-le, the FORTRAN code of STINT is over 400 lines ( excluding routines 

for solving a system of linear equations, function to be integrated, 

routine for a>proximating or evaluating partial derivatives). Many arrays 

are also required aJ1d the same applies to GEA.B. Because :::,-[ the a-:r,::=unt 

of storage required by these subroutine, no subroutine was included for 

the solution of stiff initial-value r,roblems in that the cost of im_rlemen­

tation is more than their usefulness. 

8.3.3. Algorithms for two- oint boundary-value :-roblems 

The boundary-value 1Toblem to be solved is of the fonn 

y" = f(x,y,y') 8.J.Ja 

with the values of y specified at x==a and x=b or with y• specified at 

x == a and y s:i::ecified at x = b. 

The methods of solution for boundary-value problems can be 

classified into three basic categories: 

i) finite difference methods 

ii) shooting methods 

iii) collocation methods and others 
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Finite difference methods require much storage since there is 

usually a large number of linear or nonlinear simultaneous equations 

to be solved. The smaller the interval size, the more the number of 

the equations. A finite difference method s1,ecially designed for 

two-point boundary-value problems of order two can be found in Chawla (24). 

It requires the use of Newton -Raphson for the solution of a system 

of nonlinear equations. A subroutine im1,lementing Newton-Raphson is 

not available in the library. Finite difference methods cannot be 

a"_propriate for implementation in a microcom_,-:uter since they require 

much com,uter storage to >roduce results of reasonable accuracy. 

Collocation methods are only suitable for well-behaved problems 

and since vroblems which are not well behaved are also to be solved, 

collocation methods are not a~ pro;,riate. 

Shooting methods also require the solution of linear or nonlinear 

simultaneous equations but in this case, the number of equations is 

the same as the number of boundary conditions. They also require a 

subroutine for solving initial-value r·roblems, but such a subroutine 

is 1,rovided in the library. 

The shooting method due to }alekar (128) was chosen and 

im::-lemented. The im;'.lementation of this algorithm for froblems of 

order two required 220 FORTRAN statements, including auxilliary 

subroutines. Also this method does not require the use of a Jacobian 

matrix needed for the solution of simultaneous nonlinear equations. 

8.4. Im}•lementation and modification of selected algorithms and 

subroutines. 

The coding of RKF45 can be found in Forsythe et al (60). No 



major modifications were made exceJt that the size of the r:arameter list 

was reduced and the absolute error fixed at machine tolerance. Alsc the 

number of the states of the error flag was reduced to two. These 

ste, s were taken in order to reduce the com1_lication in the calling 

sequence of the subroutine, but care was taken to retain ~aram.eters and 

error states which are useful for communication between user and the 

subroutine. It must be remembered that this subroutine is used to 

solve initial-value problems which are not stiff to a moderate accuracy 

(u._ to 10-6). 

Finally, }alekar's algorithm was coded s:·ecially for boundary-value 

1-1roblems of order two.No subroutines for trans,osition, inversion, and 

generation of initial values were required. The code was therefore 

substantially reduced. It uses a modified form of the routine described 

above to integrate the resulting initial value r,roblems. It is known 

that most boundary-value 1-roblems are not stiff and this was why a 

modified form of the routine for integrating initial-value ;roblems 

was incorc:,orated without any reservation. Obviously the subroutine 

1;rovided for boundary-value rroblems is somewhat restricted in the area 

of a~,plication. 

8.5 Content of Cha'.ter 

NAME 1-UR:r:OSE STC:RAGE(BYTES) 

RFlDI solves non-stiff initial-value ::Jro-

blems and it is the same as RKF45 3,358 

with some modifications 

RFJDI solves two-;•oint boundary-value 4,48o 

problems of order two of the form 

y 11 
- f(x,y,y') 
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Note that the amount of storage given is that of the com:;·dled 

outcut of the .routine using Tx.990/4 microcomputer. 



f 
f. 

f 
I 
' 

- 120 -

CHA: 'YER 9 

OFTINIZATICN AND LEAST SQUARES AF~ ROAI.MATION 

Introduction 

In this chapter, an attempt is made to select and implement some 

algorithms for the determination of the o}..timum value of a function. 

Cptimization is a wide area and as a result only a limited Tart of it 

is considered. An algorithm that uses the method of least squares to 

fit a curve to a set of data points is also selected and imflemented. 

9.2 C:timization 

An 01-timization i.;roblem involves minimizing or maximizing a 

function of several variables ~ossibly subject to some restrictions on 

the values of the variables defined by a set of constraint functions. 

It will suffice to speak only of minimization, since the problem of 

maximizing a given function can be transformed into a minimization 

.1:'roblem simply by mul ti~lying the function by -1. 

.Minimization problems are tn~ically of the form: 

TI: Minimize F(~) x <f. 

)( 

n 
R ••e••••••o•~•••••• 

Subject to ;{ 
- / 

C. (x) 
J. -

0 

where F· and (c.) are given real-valued functions. 
J. 

The set 

9.2a 

(C.) is 
J. 

the set of constraints functions while F is referred to as the 

objective function. Minimization algorithms are designed to solve 
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,-articular categories of problems where each category is defined by the 

~ro:erties of the objective and constraint functions as illustrated 

below. (see Gill et al (71) ). 

Nonlinear 

sum of squares of nonlinear 

functions 

linear 

sum of squares of linear 

functions 

Quadratic 

No constraints 

nonlinear 

linear 

s~ arse 

upper and lower bounds 

It is unlikely that a single, all-:;-:urpose algorithm, that will 1roduce 

efficient solution of minimization rroblems will be obtained. 

As it can be seen, there are many categories of problems and 

to include algorithms to cover all categories of rroblems in the library 

requires a substantial amount of storage and coding. Infact in the 

NAG library (102) there are about forty five routines for minimization 

alone. Indeed, special libraries are available for minimization alone 

(121). The area selected is that of unconstrained minimization of 

nonlinear functions. There is no outstanding reason why this area is 

chosen exce i't that it is one of the more common areas in the field 

f t . · t· Moreover, since the sum of squares of nonlinear o o ,-, imiza ion. 
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functions and quadratic function's are also nonlinear functions, the 

routine selected for nonlinear functions should be able tc co e with 

these other two ty,.es of functions, al though such routine will not be 

as efficient as routines designed specifically for such cases. 

T2: 

The problem can now be formulated as: 

Minimize F(~ 

X 

x E.R n . . . . . . . • . 9. 2b 

where F(~) is a nonlinear function of n real variables x = (x1 ,x2 , ••• ,xn)T 

Nonlinear functions will be considered in the two categories: Single 

variable nonlinear functions and multivariable nonlinear functions. Two 

routines are selected to cover these cases. 

9.2.1 Selecting au, ro1"riate algori thrn for oi:timization 

The algorithms to be considered are those that locate the local 

minimum of a nonlinear function. It should be mentioned that most 

of the algorithms used for determining the local minimum of a function 

of many variables are lengthy, thereby requiring a great amount of storage. 

As an example, an easy-to-use version in NAG library (117) (subroutine 

E04CGF) uses another twelve subroutines. Also a derivative-free-version 

uses other ten subroutines and it has twenty three variables in its 

1arameter list. Such storage usage and long }'arameter list is not 

corn\ actible with the nature of microcomi•uters and a section of users 

for which the library is being designed. Only derivative-free methods 

will be considered since this will reduce the amount of work a user has 

to do before making use of .such a routine. 
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Any attem t to reduce the work required by the user, usually 

results in the associated ,roblem, the reduction of freedom for the 

user. However, realizing the com,lexities of minimization "roblems, 

and the tyye of user cominuni ty in mind, such reduction of freedom 

is not out of rlace. A survey of methods used for unconstrained 

minimization is given by Gill and Murray ( 73). 

9.2.1.1 Methods for single variable non-linear functions 

The algorithms under this section are concerned with finding x 

at which the function f(x) (a single variable version of F(x)) attains 

its minimum value over a given interval (a,b) by evaluating the function 

at , oints within (a, b,) and com:;,aring their magnitude. Such methods 

include Fibonacci search, Golden-section search and successive 

a~,proximation. These methods are discussed in Kiefer (97), Johnson 

(95) and Berman (12) res:,.,ectively. These methods are guaranteed to 

converge, but the rate of convergence is at most linear. 

Another class of methods is based on successive function inter.,,olation. 

The function f(x) is a1proximated by a simple function f(x) which agrees 

exactly with f(x) in either function value or function value and 

derivatives at a certain number of points. f(x) is usually 

chosen to reflect the behaviour of f(x). For details of how f(x) 

can be chosen, see Murray and Wright (116) and Gill and Murray (?J). 

For exam:r:le, su-=pose, f(x) is chosen to be a quadratic :polynomial 

which agrees with f(x) at three points in (a,b), then the new 

a:proximation to is the stationary J)Oint of f(x) which can easily 

t d The S tationary -,.,oint of f( x) will be in the interval be com:::u e. 

(a,b) rroYided exact arithmetic is used and the old values of the 
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function f(xJ bracket the minimum. 

This means that the interval of uncertainty must be reduced and one 

of the ways of doing this is to discard a 1;oint and retain those that 

bracket the minimum just as in the case of function-com:arison methods. 

This a:,proach may result in retaining a high function value for some 

while thereby slowing down the rate of convergence. An alternative is 

to discard the yoint corresponding to the highest function value since 

this is likely to be the least useful in any subsequent inter~olations. 

It can be shown that under mild conditions on f(x), if such algorithm 

converges, it does so at a superlinear rate (see Brent (15) ). Unfortu­

nately the interval defined by the new set of J.-'oints need no longer 

bracket the minimum and under these circumstances the inter_;_,olation 

formula cannot be relied u;on to yield a function value which is lower 

than any of those used in the inter~olation formula. 

There is a class of methods based on safeguarded successi ve-inter..::,olation 

schemes. These methods combine the guaranteed convergence attribute of 

the functio:p. com)arison methods with the su:perlinear asymptotic rate 

of convergence of successive } olynomial inter~:olation schemes. A stet' 

of a function com;Jarison method is used if using polynomial approximation 

will result in obtaining new set of Goints which will no longer bracket 

the minimum. So at worst, the rate of convergence is linear and we 

are sure of convergence. Brent (15) combined the golden-section search 

and successive 1,arabolic inter_;.;olation. 

Brent's algorithm and his im: lementation was selected in that it is 

easy to use, reliable, uses a small amount of storage. The rate of 

• suyierlinear if f" (~) > 0. No derivatives are required. convergence is .,, 
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9.2.1.2. Methods for functions of several variables 

The best derivative-free minimization methods suggested by Gill 

and Vrurray (7J) are those based on using quasi-Newton or conjugate­

gradient methods with finite-difference a_pproximations to the 

gradient vector 1£(~) ......... , oF ) ) ox . 
n 

Unfortunately, the u,:,; to date derivative-free algorithms based on 

these methods are equally storage consuming. 

An algorithm designed by Fleck and Bailey (52) uses geometric 

1)rogramming to locate the minimum of a function. This algorithm is 

derivative-free, but it can only be a1.plied to very s,ecific functions 

( such as functions having 1.-osi ti ve coefficients only) which 

obviously reduces its suitability for inclusion in the library. 

Another derivative-free algorithm is that due to Rosenbrock (105). 

It was originally ~rogrammed by Machura and Mulawa (107), however the 

rrogram has undergone many changes so as to increase its efficiency 

and reliability. The algorithm finds the local minimum of a function 

of n variables for an unconstrained 1,roblem by conducting cyclic 

searches 1>arallel to each of the n orthogonal unit vectors, the 

coordinate directions, in turn. n such searches constitute one 

stage of the iteration -;;rocess. For the next stage, a new set of n 

orthogonal unit vectors is generated such that the first vector of this 

set Jies along the direction of greatest advance for the r;revious stage. 

The Gram-Schmidt orthogonalization ~rocedure is used to calculate the 

new unit vectors. For more details see Rosenbrock (142). Com;ared 

to other routines, it requires a small amount of storage (2,J80 bytes) 
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and as a result this routine was selected. Tne routine was 

tested on Rosenbrock, Box, wood, }owell, Cregg functions and the 

results were satisfactory. 

9.2.2 Modification of selected routine 

The routine for single variable nonlinear function was left 

unmodified. However modifications were carried out on the routine for 

minimizing a nonlinear function of several variables, written by 

Machura and Mulawa (107). The subroutine MlNITR to be SUJ--plied by the 

user was re_laced by just a test for convergence so that the user need 

not su,_:ply any subroutine. It was also noticed that the search process 

can become stuck on one side of the minimum and overflow or underflow 

can occur as a result. This situation usually results from the user 

su:Jplying an initial value of x which is very far from the correct 

solution or the user asking for an accuracy which is not attainable by 

the routine. To overcome this 1roblern, a test was included to detect 

such an oc~rrence and an exit made from the routine. Tne values 

of x and F(~) before this situation arised are.also returned. The 

user can then either use another starting value or can request for 

less accuracy. Re-orthogonalizations were 1erf ormed. For n -less 

than five, only one re-orthogonalization is made, while for 5 '.S:_. n 5: 10, 

two re-orthogonalizations are made. For n~lO, three re-orthogonaliza­

tions are :;:·erformed. All internally declared arrays were removed and 

added to the 1,arameter list. There are only twelve variables in the 

1-arameter list. Tnis is small compared to other minimization routines. 
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9. J l,east Squares a._proximations 

The following "roblem occurs in many different branches of science. 

Su .·pose we are given m data ; oints 

( ) ._, 
X., y. l--1-, ••••• ,m 

l l 

and corresonding :,:ositive constants (weight) 

think of x as the inde -endent variable and y 

w., i=l, ..••• ,m. we 
l 

the de .. endent variable 

satisfying some unknown (known) functional relationshil-

y. = f(x.) 
l l 

9,Ja 

The aim is to choose coefficients such that the 

a, ·Lroximation 

minimizes 

/J(x) = c .. /5. ( X) + C rf,,
2 

( X) + , • • , • • + C /J ( X) 
i 1 'c n n 

m 

L wi (~(xi) - yi)
2 

i=l 

9.Jb 

9,Jc 

where ~l, ~
2

, ..• • • • , ~ n are given basis functions and m > n. This is what is 

referred to as the method of least squares. The basis functions can 

be ,·olynomials (including trigonometric or Chebyshev functions) or 

some other nonlinear functions. Al though other basis ,•olynornials 

,.(x) 
J 

= X 
j-1 9.Jd 
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was chosen. This is mainly as a result of its sim:;,licity. Hence 

After c
1

, ....•. , c have been computed, it is easy for a user to n 

evaluate ~(x) by the use of nested multiplication. 

9.Je 

9.J.l Selecting ar,propriate algorithm for least squares apiroximation 

One of the methods used for comruting the coefficients for general 

least-squares 1roblems is based on matrix factorization known as the 

Singular Value Decornposi tion or SVD. The SVD a1;proach begins with a 

matrix which is known in the statistical analysis of experiments as the 

design matrix. It is the rectangular matrix A with m rows and n 

columns whose elements are 

a .. = y5 .( t.) 
l.J J J. 

i = 1 , • • • • • • • • , m and j= 1 , • • • • , n 9.Jf 

Using this matrix, c1 , ..•. , en are determined by arplying Householder 

transformation. See Forsythe et al (60), Wilkinson and Reinsch (171). 

Lawson and Hanson (102) for more details. This method is reliable to 

a great extent but it requires more storage and computer time than most 

other methods. Subroutine SVD by Golub a.~d Reinsch (74) uses this 

approach. 

Most other subroutines use orthogonal polynomials generated by 

Gram-Schmidt process. The set of such subroutines include SQUARS, 

LSFITUW, L2A, 12B. 

SQUARS written by Rice (1J8) uses the method of orthogonal 

polynomials. The three term relationship 
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is used to define the orthogonal ; olynornials and to evaluate them. The 

three term recurrence coefficients ~• Bk, Ck are com:uted using 

Forsythe (58) aproach. However for a non folynomial basis the three 

term recurrence coefficients are com:uted by Gram-Schmidt ,rocess. 

lccasionally the method of SVD is significantly better conditioned 

than this method. 

LSFITUW written by Makinson (109) uses very small storage and 

it is com,;eti ti ve with other subroutines that use orthogonal r olynom.ials. 

C.:nly polynomial basis functions are used which is in accordance with the 

basis selected in section 9.3. 

Subroutines L2A and L2B written by Wam:;:,ler (167) are based on a 

modified form of Gram-Schmidt process. From test results (Wampler 

(167) ), it has been shown that even for ill-conditioned least-squares 

·:roblems, a high standard of accuracy is still maintained when those 

two subroutines are used. but they require large amount of storage. 

Subroutine 1SFIM was selected because of its small storage 

requirements and ease of use. 

9.3.2. Modification of selected routine 

The subroutine was first translated to FORTRAN and arrays Ju. and BE 

were removed from the .. arameter list since it was felt that what they 

: rovided for the user was not essential• 
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9,4 Contents of Cha.ter 

SUBRlUTDE NAME PUffi LSE STCRAGE 

I 

RFlHI Determines the local l,_568 

minimum in an interval 

(a,b) of a non linear 

single variable function 

using Brent's algorithm 

RF2MI Determines the local 2.598 

minimum of a non-linear 

function of several 

variables using Rosenb-

rock algorithm. 

RFlLS Fits least squares 2,570 

polynomial to a set of 

given data points. 

Note that the amount of storage given is that of the com,iled 

output of the routine using Tx990/4 microcom :uter. 
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CHP: 'YSR 70 

A~ PRCXIM_ATICN LF' SFEX IAL FUWTICNS Al'ID D2T":RMINATIC N 

CF MACHINE C'C.N~'.TANTS 

10.l Introduction 

In this cha~)ter, some conunonly occurring :;:,hysical and mathematical 

functions are discussed and algorithms to approximate these functions 

are im,_lemented. Functions fer determining machine de'-'endent 

quantities are also im;lemented. 

lC.2 S ecial functions 

There are many physical a.Dd mathematical functions (see Abrai~owitz 

and Stegun (1) for details: but only few of these are included in 

PONUSi:. LIM. Those included are common and are frequently used. 

They are: 

. \ f:inh hyperbolic sine l) 

ii) Cash hyperbolic cosine 

.iii) Erf the error function 

iv) Jo Bessel function of the first kind 

v) Jl Bessel function of the first kind 

vi) Yo Bessel function of the second kind 

.. \ 

yl Bessel function of the second kind 
Vll) 

These are considered for :real values of the argument only. 
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10.2.1 Method of a ~roximati0n 

Functions are usually aDpr0ximated by the use of series. If 

f(x) is a given function defined in the interval (a, b), then 

c,O 

f(x) = g(x) L_ar yr(x) 

r=O 

10.2a 

where g(x) is some suitable auxiliary function which extracts any 

singularities, asyrn:;:,totes and if i ossi ble, zeros cf the function in 

the range in question. Since the com_cuter cannot evaluate an infinite 

series, a truncation of the series is made when the desired accuracy 

has been reached. Equation 10.2a can therefore be written as: 

n 

:f'(x) "--' g(x) Lar Yr(x) 

r-=o 

The truncated series can be of 
<::P 

series ( La y (x) ) such 
r r 

,::o 

many 

that 

n I , f(x) - g(x) L_ar 
r-=O 

forms. 

y (x) r 

where 'f.> 0 is the required accuracy and 

10.2b 

The idea is to find a 

$_€. a<x<.b 10.2c 

n 

I_ar y (x) is computed 
r 

r=O 

with as few number of arithmetic o:;.,erations as possible. 

This gives rise to what is called the mini-max a~proximation. An 

a.proximation is said to be the mini-max re"resentation of a function 

if it minimises the maximum error. Unfortunately, this mini-max 

a:proximation is ex-pensive to obtain. (see Hart et al (81) for details). 

Near mini-max a1.proximations have to be considered. 
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Frobably, the most im_ ortant series for a
0
:proximating a given 

function in the given range (-1,1) is that ,roduced by Chebyshev 

where 

00 I 

f(x) = g(x) ~ er Tr( t) 

r=O 

10.2d 

and t = t(x) is a ma;ping of the general range (a,b) to the specific 

range (-1,+1) required by the ChebysheV rolynornials, 

T { t) r = Cos (r Cos -lt). 10.2e 

For a detailed descri, tion of the , ro ~•erties of the Chebyshev , olynomials, 

see Clenshaw (28) andFox et cJ. (62~. Cne of the reasons for preferring 

Chebyshe\r ex ansion to 0ther series lies in the fact that for many 

functions the coefficients C tend to zero ra:idly and when this is the 
r 

case, we may take the first omitted term Cn+l Tn+l (t) as an 

a;proximation to the error committed by using 

F (t) n 
= T ( t) r 10.2f 

Fortunately, the difference between the true mini-max ,_olynomial 

(a,proximation) and the truncated Chebyshev ex_;_ansion is seldom 

sufficiently great to be of significance if the interval (a,b) and the 

auxiliary function g(x) are well chosen. Also the coefficients C of 
r 

Chebyshev- e,c:pannion are easy to com~ute corn; ared with ;_roducing the 

mini-rnax .Jolynomial. The Chebyshev ex1.ansion (10.2f) is always 

stable on an interval (see Rice (37) for more details). 
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For a well-behaved function, the ,Chebyshev expansion can be 

transformed to a sim: le :,.•olynomial such that 

F (t) n T (t' r ) 10.2g 

Tne sim.le :olynomial can then be evaluated by the efficient 

Homer's method of nested rnulti,-lication using n multilications and 

n additions. This form will be used only for very simple functions. 

However, a more stable and accurate form of evaluating F ( ) n t is to use the 

Chebyshev coefficients er and to form the recursion 

V = b vn+l = 0 
n n' 

V = 2t Vk+l Vk+2 + 
k Ck k=n-1, n-2, ..... ' 1 

V = t Vl - V + b = p (t). 
0 2 0 n 

This evaluation requires n+l multLlications and 2n additions. The 

increase in the number of additions is small. The accuracy and 

stability obtained in return is worth this small increase in cost. 

10.2.2 Implementing algorithms that use many store constants 

Since most of the s"-ecial functions are to be a:pproximated by 

sim,-le or Chebyshev polynomials, it is 1•ertinent to discuss how 

the coefficients of these ,- olynomials a...--re to be stored. In FCRTRAN, 

if double ,.recision arithmetic is available, for every real function 

provided, there are single and double :precision versions. In the 

library therefore, the two versions are made available in a serarate 

form for each s;ecial function (unlike other routines where it is 

left for the ,•erson imJ:-,•lementing the library to im, lement one version). 
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Thus if double recision ari t'nmeti· c 2· s ava2· 1:-:.•o·..c' e, th t · h • -~ e wo versions s ouid 

be made available for each s:ecial function. 

In storing the c0efficients, some F\..;RTRAN corn, ilers will detect 

an error if the constants contain more than a certain number of digits 

in the mantissa of the number. The number of digits allowable for some 

mainframe corn. uters are as follows: 

IBI-1 ) 

ICL system 4 ~ 
) 

ICi.c 2900 ) 

IC'L 1900 ~ 
ICl 4100 ) 

) 
Burroughs) 

DEC rn: 10 l 
CDC 6000/7000) 

~ 

Single 1-recision 6 digits 

Double precision 16 digits 

Single },recision 12 digits 

Double .,recision 21 digits 

Single ,~recision 8 digits 

Double ~.recision 16 digits 

Single j.Tecision 14 digits· 

Double ;recision 28 digits. 

(see Schonfelder (144) and Forsythe (60) ) 

Fortunately for most or known FORTRAN com~ilers for microcom;,uters, 

the number of digits for single rrecision is between 7 and 8 while fer 

double recision is between 16 and 17. Hence single :recision constants 

can be stored using u to 8 digits and 17 digits for double :;::,recision 

without causing error during com;ilation. In this library, 8 digits 

and 16 digits are used to re: resent single 1,recision a.11d double :;::-recision 
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numbers res ectiveiy, in flo~ti·ng ,.01·nt --~orm. Tln · f +· - .·· ' - e various uncvions a.._-.-e 

now discussed. 

10.2.J The hy1 erbol ic sine , SI:NH 

This function is defined as 

Sinh(x) = ( 
X -X 0.5 e -e ') 

In most high level languages, esrecially FCRTRAN, a built in 

X 
function to evaluate e is avai1able and a2 a :r:-esu:2. t Sinh(x) can 

10.2.Ja 

easL'.y be obtai ncd. Unfortunately for x close to zero ex ::::: e -x and 

the difference ex-e-x in Sinh(x) can result in a large relative error. 

To overcome this ;roblern, Sinh(x) is a; ;rcxirnated by a :olynomial for 

x small. This means that 

10.2.Jb 
Sinh{x) = 

~ xLc T (t) r r 
= 

2 
t = 2x - l 

The sim le ;·olynomial }n(x2) is used since the function being 

· 1 TJnis means that the coefficients of the arproximated is sim e. 

1 · 7 be re.resented to a high accuracy in the com",uter. i o ynomiai can _ 

The olynomial a,proximation used is given in Hart et al ( 81). 

10.2.4 'Ibe hyperbolic Cosine, COSH 

This function is defined as 



Cosh(x) == 
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( 
X -X, 0.5 e +e ) 

since a function to evaluate ex is usually available in FCR'rRAN 

10. 2 .4a 

corn ilers, Cosh(x) can be evaluated directly from the above formula. 

10.2.5 The error function ERF 

The error function is defined as 

Erf(x) 2 
== --

Irr 
10.2 • .5a 

Note that Erf(-x) = - Erf(x) and Erf(x) is an increasing function of 

x and it is a;proximated by: 

Erf(x) = 

~ ~ ar Tr (t) 
r=O 

e-x2 ~crTr(t) ) 
Sign (x) (1- Ix I L 

t = 2(1) 2 
- 1 

X 

Sign (x) IX I > R 

l0.2.5c 

Sign (x) is +l depending on the sign of x. For single r,recision 

version, R was chosen to be 4.0 while for double ;recision version 

h t b 6 5 See Clenshaw (28) for the a~1-roximating R was c osen o e .. -

polynomial. 
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10.2.6 Bessel functions of the first kind J
0

, J
1 

Bessel functions of order v are solutions of the differential 

equation 

2 2 
z d w + 

dz2 
z dw + 

dz 

2 2 (z - '-J )w === 0 

Only the s~ecial cases J
0

(z) and J1 (z) are to be considered 

where -v is O or 1. These functions have infinite number of 

10.2.6a 

zeros on the real axis, all of which are simple with possible exception 

of z = O. 

Some algorithms which do not use Chebyshev series to approximate 

J
0 

and J
1 

have been fonnulated by Borsc-Suian (lJ) and Wojciki (172). 

Overflow was observed to occur frequently when the routine by Wojciki 

(172) was tested. The algorithm due to Borsc-Supan has been observed 

to give results to a high accuracy. But these are iterative in nature 

and as a result they are not as efficient as those based on Chebyshev 

polynomials. A more recent algorithm is that by Amos et al (4) but 

it is rather lengthy, therefore not suitable for use in a microcomputer 

library. 

Using Chebyshev polynomials we have: 
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I 

J (x) = 
0 

~ 

L a T (t) 
r r R <. Ix/< 8 s- -

10.2.6b 

r==o 

t = 2 * cu) 2 
_ 1 

~ (:p
0

(x) Cos(x - TT ;
4

) - Q
0
(x) Sin (x -j

4
) ) 

Lfor lxl> 8 
I 

with r
0
(x) = ~r Tr(t)l 

r=o ! 

; 

~(x) = ~r Tr(t) 

r=o 
j 

and R a small number close to zero. 
s 

8 2 t = 2(-) - 1 
X 

10.2.6c 

In ICNUSOLIM R was ex11erimentally chosen to be the sq_uare root of 
s 

machine precision. Similarly for J1 we haves 

I 

f Lar Tr(t) 
r==o 

10.2.6d 
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where 

:L = Lcr T (t) ) 
l. r 

~ r=o 

2 ( .£) 2 - 1 ) t = 10.2.6e 

L er 
) X 

Q~ = T (t) \ 
) 

.L r ) r=c ') 
I 

and Rs was experimentally chosen to be 0.002 for the single ~recision 

version and 0.1 * square root of machine precision for the double 

recision version. 

We need only consider arproximaticns for x>0, since J (-x) = J (x) 
0 0 

and J
1 

(-x). See Clenshaw (28) for approximating _Chebyshev -;:,olynomials. 

When a simple polynomial re:,,.resentation obtained from Hart et al ( 81) 

was tried.large error was observed for large values of x. 

Once J
0 

and J1 have been obtained, 

be calculated by the recurrence relation 

others of higher order can 

= _.e:._ J (x) - J 1(x) x n n-
10.2.6f 

10.2.7 Bessel functions of the second kind Y
0

, Y1 

These are also solutions of the differential equation given by 10.2.6a. 

These solutions have a logarithmatic branch points at the origin and they 

are not defined for negative x. Like the Bessel functions of the 

first kind, they have an infinite number of zeros on the real axis, 

all of which are simde, with the i,ossible exce:µtion of z = o 

~ 
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Using Chebyshev "}Jolynomials to a:.proximate Y we have: 
0 

0 .i., X 

y (x) ::.o 
0 2 L ::;.ln(x)J(x)+ 'aT(t) 

" o r r 
r=o 

x)2 t = 2(8 -1 

Sin 

X :>, B 
where 

F =L b T (t) ) 
0 r r· ) r;=o 

~ ' Lcr ) 
Qo = 1\.(t) 

' ~ ..,. 
r=o ) 

t 

R 
s 

R < x t.. 8 
s 

2( 9.) 2 = 
X - 1 

10.2.7a 

) 

10.2.7b 

""6 = o· . .57721_5664'9015.32'86062D 00 the Erue.r constant and R was 
s 

experimentally chosen to be the sg_uare rctot of the machine precision. 

similarly 



Y1(x) = 

where: 

- 2 
TTX 
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2 2 
TI ln(x) J1(x) - TT X + 

R <. X "- 8 and t = s 

i 
I I 

pl (x) = Lcr T ( t) I r , 
I 

r=o i 
I 

i 

I I 

Ql (x) = Le T (t) r r I 
r=o .) 

I 
X 

~r ~ T (t) r 
r=o 

2cE)2 - i 

8 2 t = 2(-) - 1 
X 

and Rs is a small positive number and it was experimentally chosen 

to be 0.1 ~ square root of machine precision in PONUSCLIM. Since 

Y
0

(x) and Y1(x) are undefined for x s 0, the implementing routines 

will indicate a failure exit for negative arguments. Approximating 

Chebyshev polynomial is given in Clenshaw (28). 

10.2.8 Routine to perform the summation of Chebyshev series. 

Since Chebyshev polynomials are used to approximate most of the 

special functions, a routine was designed to compute 



I 
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F (t) 
n 

r=o 

using the recursion described by 10.2h. This routine is very valuable 

es ecially in cases where up to two or three Chebyshev -polynomials 

summations are required by one s,,ecial function. : rovision of such a 

routine will obviously reduce the total a.mount of storage used by 

routines that are based on Chebyshev polynomials. 

10.3 Routines that deliver machine de. ,endent quantities 

In chapter J, it was thought necessary to have available routines 

that deliver machine de1;endent quantities. During the installation of 

the library, the routines ,.rovided sam~ le the host corn uter to obtain 

these quantities. The routines are then modified so that the comruted 

quantities become ~refixed values so as to decrease execution time of 

routine. The modified routines are the ones finally included in the 

library. In what follows a discussion on how the initial routines are 

written and how they can be modified during installation before finally 

being included in the library is given. The quanties to be corn ·uted 

are radix, mantissa length, relative rrecision, range of numbers 

representable. 

10.3.1 Routine that delivers machine de-i"endent integers 

Table 10a reveals some of the machine de:i:,endent quantities of 

different microcom;:,uters having FCRTRAN Com~ilers. There is very 

little variation and as a result some assum;,tions can be made to 

the routines for determining these quantities. It must be mentioned 

that the situation is net tbe same for languages like BASIC ( see Genz et al 

( 68)). In this case the restrictive nature of microcom_puters and the 
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AITRIBUTE J'1(_, TCHl _:_.A TEXAS 990/4 ZECG CRCI1ENC\._ INT1~'L 
FORTRAN-

DG 

8o 

Micro,ro- M6800 Tj,139900 z8o z8o 8080/ mN6ol 

cessor 8o85 

Rad.ix 16 16 2 2 2 16 

• 

Range of io-7~ 1x I< 10-~8
1 x I< (538 1 <Ix 10-38< 10-38.( 10-~8l X I 

floating- 1075 1075 l<1a38 Ix!< lxi < < 1075 

.,oint 
1038 1038 

numbers 

Range of -32768 to -32768 to -J2768 -32768 -32768 -32768 

integers +32767 +32767 to to to to 

+32767 +32767 +32767 +32767 

No of char 

in an integer 2 2 2 2 2 2 

storage unit 

I 

TAB:;:,E 10a: :MACHINE QUANTITIES, 



- 145 -

language chosen are of help. From table lOa, the range of integer 

values and the number of Characters that can be stored in one integer 

storage unit are the same for the microcom uters considered. The 

function IF'lMQ is used to comi. ute the integer quantities and the quantities 

are: 

1. Standard output unit number 

2. the BASE-~ 

J. the number of BASE-p digits in the mantissa of a single ~recision 

real number. This will be taken as an integer value although in 

large com1-,uters, it can be a non-integer value. 

4. Maximum ex onent of floating-.oint values (10 * ~ Emax). 

5. :Minimum exronent of floating-. oint values (10 * * Emin). 

6. Maximum integer re resentable 

7, Minimum integer re,resentable 

8. Hantissa length of double _" recision real numbers ( which is included 

only if double-,recision arithmetic is available). 

The integer function IFlMQ written to determine all these 

qua.riti ties is centered on Malcolm ( 108) algorithm. The function is 

referenced as: 

IBASE = IFlMQ( I) 10.Ja 

The value of I determines which of the above items is to be 

corn ,uted. Values which are known to be the same for different 

microcom,uters such as the largest and smallest integers are .refixed in 

the function instead of being com1.uted. Double-:precision real numbers 

have the same characteristics as single ;:recision real numbers exceft 
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for the mantissa length. It will therefore be a waste of storage 

to obtain another version to cater f_ or a.'ouble- re 1· • b ~c sion num ers. 

IFlMQ is first used to determine items 2 to 8. Cnce these 

quantities have been obtained IFlMQ can then be modified as for exam:le: 

INTSGER FUNCTICN IFlMQ(I) 

DIMSNSICN IMACH( 8) 

DATA IMACH/1,16,6,75,-78, 32767, -32768, 14/ 

IFU1Q = IMACH (I) 

RETURN 

E:ND 

The DATA line s,,ecifies the various quantities determined by the 

initial IFlMQ. The first integer in the DATA line (1) stands for the 

standard outi..,ut unit number which must be sr,ecified during installation. 

In this modified form, IFlMQ is faster and occu-: ies less storage. It 

is this form that is made available during installation for use 

either by other routines or users. 

Integers can also be of double-length but the range of double-length 

integers is not included in the list because of the com,lication that 

this will cause. Some FORTRAN comJ,ilers that have double-length integers 

do not have double-~,recision floating-1:-'oint numbers and vice versa. 

10.3.2 Routine that delivers machine ,recision 

The only floating-1-,oint quantity which is included in the library set 

of machine dependent quantities is the machine precision or relative 



recision 1\ ... L. This is a very im~ ortant machine de. endent quantity 

for numerical comutation. It may be defined to be the smallest 

ositive number such that the evaluation of 1.0 + Tl3 and 1.0-TC:L 

is a result different from 1.0 and therefore satisfies 

1.0 - TlL <.. 1.0 <. 1.0 + TCL 10.J.2a 

T01 is the smallest value that satisfies 10.J.2a. It is also known that 

7-t ;r for cho,: ed arithmetic 
10.J.2b 

TGl., = 
1 1-t 
2 p for rounded arithmetic 

where p is the base and t is the number of ~ digits in the mantissa 

TOl.- heL,s to know when iteration can be sto~:ped and it also hel1:,.s in 

testing for ill-conditioning. 

Obviously TOi can easily be obtained from equation 10.J.2b 

since all the quantities needed for the com~,utation of TOL can be obtained 

by the use of Malcolm (108) algorithm. However, there is a direct 

method for com~uting the machine precision, TCL, which is faster than 

., 2b ( F ythe et al (60) ) Functions RF2MQ and using equation 10.J, see ors _ · 

DF2MQ are based on this direct method. 

forming the sequence. 

l I 
1 
21 

1. 
'+' 

The direct method obtains TCL by 

until one of the terms satisfies the definition of TOL. Once the 
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initial RF2MQ or DF'2MQ has been used to obtain TC.:. , these functions 

can then be modified. Note that DF2MQ is the double .recision version 

of RF2MQ. If there is no double-;recision arithmetic, then DF2MQ is 

not im lemented. 

Using RF2HQ and DF2MQ, the value TCL for the Texas microcornuter 

Tx990/4 was found to be 0.95367436s-06 by RF2MQ for single ,recision 

and 0.222o446049250J1JD-15 by DF2MQ for double ,:recision. These values 

agreed with equation 10.J.2b. RF2MQ can then be modified when the 

library is being installed to become for exam.le: 

REAl F'UNCTICN RF2MQ (R) 

DATA TC~/ 0. 953674JE-06/ 

RF2MQ = TCL 

RETURN 

END 

Note that variable R is there for RF2MQ to satisfy the requirements of 

a function in FL1RTR.AN. The same modification can be ai.plied to 

DF2MQ. 
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10.4 Contents of Cha ter 

RuUTlNE NA!-t::; JUR :· c:1~· fTC,RAr;S (BV'f'H'C;) -·· .L ... ...J,. 

RFlSF Evaluates Sinh(x) 248 

DFlSF Double :recision version of RFlSF Jl6 

RF2SF Evaluates Cosh(x) 142 

DF2SF Double recision version of RF2SF 1_54 

lli~SF E,valuates error function Erf(x) J94 

DFJSF Double ; recision version of RFJ.5F 992 

RF4SF Evaluates Bessel function J .549 0 

DF'JSF Double ,recisicn version of RF4SF 896 

DF5SF Evaluates Bessel function Jl 6J6 

DF5SF Double rrecision version of RF5SF 984 

RF6SF Evaluates Bessel function y 794 0 

DF6SF Double 1-recision version of RF6SF 1164 

RF?SF E,valuates Bessel function yl 778 

DF?SF Double 0 recision version oF RF?SF 1160 
n ' 

RF8sF Com,,utes Lar Tr(t) 4o4 
r=o 

DF8sF Double , recision version of RF8sF 402 

IFlMQ Determines integer machine de;,endent 

constants -
RF2ViQ Determines machine relative error -
DF2MQ Double crecision version of RF2MQ -

Note that the amount of storage is the corn iled out:,ut of the routine 

using Tx990 microcom,-'uter. 
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CHAPT~R l 7 

TUii'ING \_F Trl:•, LIBrtA.c~Y 

11.1 Introduction 

It is intended that the execution time of the routines in the 

library should be as small as possible and that they should use efficiently 

other com uter resources. However there are several reasons why this 

is net usually possible: 

i) rom ilers frequently do not produce optimum object code in 

that some of the algorithms needed to or,timize code are net yet 

known and others are too costly to implement. For microcom:~uters 

where storage is a critical resource the cost cf im__:.,,lementing an 

optimizing com>iler is very high. Also some of the library 

routines distributed with the computers are inefficient. 

ii) Programmers concentrate on getting a ~~rograrn to work as soon as 

0
ossible rather than on optimizing its efficiency. They also 

learn just enough about a programming language, but not enough 

about how to write them well. (see Waldbaum (164) for some 

other reasons) • 

It is . ossible for an ex:~erienced ! rogrammer to eliminate the second 

set of reasons why programs are inefficient. In 1 C1'11J~;c.1-IM ste;_.s were 

taken to eliminate these second set of reasons by: 

i) avoiding DATA TYIE c0nversion whenever possible. 

ii) removing constant multipliers in a loop. 

iii) re
1 
lacing arithmetic H statement with logical IF statement 

whenever icossible since the laTT~Y is usually faster than the 

former. 
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iv; initialization 

v) remuving a test which cannot be satisfied in an inner loo. to an 

outer loo.- . 

vi) selecting algorithms whose im.lementations do not require too 

much storage. 

vii) avoiding the use cf internally declared arrays whenever 1ossible. 

viii) using the summation 

instead of: 

Q = 0.0 

DO 10 K=l,M 

10 Q = Q+ A(I,K) * A(K, Jil) 

A(I,Jll) = A(I,~1) - Q 

DO 10 K = 1, M 

10 A(I,J.t-1) = A(I,Jl·l) - A(I,K) * A(K,J.il) 

thereby avoiding unnecessary array accesses. 

Unfortunately, a programmer has little control over the first set 

of reasons given for the inefficiency of com,.uter programs in their 

use of com,uter resources. However im,,rovements can be made if some 

frequently used 1-,ortions of the library routines where the com:;.iler is 

inefficient are identified, and such portion of the routines written in 

assembly language. Identifying the necessary Jortions or areas can 

be tedi0us and as a result only the more obvious ones are considered. In 

what follows, some routines are written in assembly language to re~,lace 

selected ;ortions of the library routines. The effect of these routines 
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on some selected library routines is then examined. The details of this 

type of mc.,dification er tuning are system de endent but the princi les 

are the same. The micr0com,uter used in this exercise was the Tx990/4. 

L.2 Floating - . oint multiplication 

Cne of the statements frequently included in a _,artial Double 

recision Version (:D~V) of a routine in the library is 

D = lla 

where D is declared as DOUBLE 1 RECISION and A,B are single recision 

real variables. In executing this statement, A and Bare both extended 

to double ,recision by filling the extension with zeros. The 

multi~lication is then carried out in double ~recisicn without the 

knowledge that half of each number (A and B) is filled with zeros. 

To im rove statement lla, a function named DAlTM was written in 

assembler language to re,lace DBLE(A) * B. Table ll.2a shows the execution 

time for various statements. It can be seen that DAlTM is faster than 

DKE(A) * B. In implementing DAlTI-1, the hardwa..-re integer multi: lication 

avai~able in Tx990/4 was used instead of the usual shift o~eration. 

Infact, when only shift o erations were used, DAlTM took l.65 msec. 

In FCRTRAN 77, a function similar tc DAlTVi is ,rovided as a standard 

inbuilt function. Notice that the execution for multiplication is less 

than that cf addition. This is not usually the case for most microcomputers 

and it might be due to the availability of hardware integer multiply 

which can be incor-orated into software floating-point multiplication. 
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S TA IBJViENT THE 

D = DAlTM (A,B) 0.95 msec 

D = DBLE(A) ~ B 1.70 msec 

C = A* B c.60 msec 

C = A+B 0.65 msec 

C = A-B 0.70 msec 

r = A/B 1.JO msec 

TABLE 11.2a: Timing Fer Arithmetic Statements. 

C; Single ,recision real variable. 

11.3 Array accessing 

Although the com,uter time for array accessing is small com,ared 

with floating-:oint com.utation, the amount of time taken by array 

accesses in a routine can be substantial if the number of array 

accesses is high. To this effect, the manner in which a two-dimensional 

a..-rray is accessed in a DO 1- oo ,_ was investigated by studying the assembler 

form of: 

Q = o.o 

DO 10 J=:i._ ,M 

10 Q = Q + A(I,J~* X(J) 

which was ,roduced by Tx990JL1 FLRT~'1.AN corn, iler. It was noticed that 

an integer multi, lication was ~-erformed each time the array A was 



accessed• ( The ratic of integer addi ticn to integer multi licatic•n 

with respect to execution time is absut l :J: It is hcwever 

possible tc re place the three lines ab~ve with a function. It is of the form 

REA0 FUHCTic N RAl TA (A X ID I ~ 
, ' ' ' j_ ' 

and uses addition in place of multi~lication when accessing array A. ID 

is the declared row size of A in the referencing (sub) program. 

F'UNCTIC N: 

REA: FUNCTICN RA2TA (A, X, ID, J, .L, 11) 

was used to re lace: 

Q = o.o 

DO 10 l=.i,M 

10 Q = Q + A(I,J)~ x(J) 

It uses addition instead of multi lication when accessing array A. ID 

is the declared row size of A in the referencing (sub) ?rugram. 

Function: 

RE~- FUNCTIL N RAJTA (A,B, ID, I, J ,1, M) 

was used to re,lace: 

Q = o.o 

DO lO K = :i_,M 

10 Q = Q + A(I,K)M B(K,J) 

It uses addition instead of multi licaticn for both A and B when 

· A B ID 1·s the declared row size of A and Bin the accessing or . 

referencing (sub) ,rogram. 
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Finally the function: 

RE& FUNCTilN RA4TA(A,B,ID,I,J,:..,M) 

was used to re. lace 

Q = 0.0 

DO 10 K = L,M 

10 Q = Q + A(I,K) ~ B(J,K) 

Itusesadditicn tc access both A and Bin .lace of multi.iication. 

ID is the declared row size of A and B in the referencing ( sub) ~ rcgrarn. 

Three of these functions were timed to measure the time which cculd be 

saved if these functions were used to re.lace the necessary ortions in 

a main .rcgram. The 1 ortions they re laced in a main ,rograrn were 

also timed and in each case .c.,=l and M = N where N is the matrix size. 

RAlTA : CRTICN RE:LACED RAJTA 
~LRTICN RA4TA I C.RTIC N 

N RK LACED RE lACED 

10 12.4 J.2. 4 msec 12.6 12.6 msec 12.4 lJ.O msec 
msec msec msec 

20 24.2 24.4 msec 24.4 25.4 24.4 25.2 msec 
msec msec msec msec 

TABi.E E.Ja: Timing of functions 
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From table 11.Ja, there is very litLe difference between the 

time for the execution cf the functions and the t_Jortions they re.laced. 

It was felt that these functions shou:,..d be tested in a subroutine 

environment instead of a main ,rogram environment since the functions 

are to be used by subroutines. T'w0 subrcutines SU:Bl and SUB2 were 

therefore considered. 

l 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

jJ. 

10 

10 

SUBRCUTINE SUBl(ID IN, A,X ,:F) 

DHIBNSIGN A(ID,N), X ~N) 

I = l 

Q = 0.0 

DO 10 J = l, N 

Q = Q + A(I,J)* X(J) 

? = Q 

Q = Q - X(2) 

RE'l'URN 

END 

SUBROUTINE SUB2(ID,N,A,B,X,P) 

DIMENSILN A(ID,N), B(ID,N) 

I = l 

J = 1 

Q = 0.0 

DL 10 K=l, N 

Q = Q + A(I,K)* B(K,J) 

p = Q 

Q = Q - A(I ,J) 

RE'I'URN 

END 
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Both SUBl and SUB2 were timed and SUBl was then modified by replacing 

lines 4-6 with RAl TA and then time. Similarly SUB2 was modified by 

re __ lacing lines 5-7 with RAJTA and then timed. Table 11.Jb shows 

the result obtained. 

N SUBl SUBl wITH RAlTA EUB2 SUB2 11'.ITH RAJTA 

10 15.4msec lJ.4 msec 16.6 msec 14.0 msec 

20 29.8 msec 25.4 msec Jl.2 msec 26.0 msec 

TABlE 11.Jb Timing of SUBl and SUB2. 

From the results, it can be said that the .,otential saving in time 

would be substantial for subroutines which involve a large amount of 

array mani.ulations. The reason for these different timings is that 

in a main :rogram environment, the time gained by the function is offset 

by the overheads involved in referencing a function. Cn the other 

hand, the subroutines and the res ective functions have almost the same 

overheads. The difference in time is therefore increased. Using RAlTA, 

RA2TA, RAJTA and RA4TA to imfrove the seed of subroutines is therefore 

justified. Much time can be saved in the area of stiff ordina...ry 

differential equations and eigenvalue ,roblems if these functions are 

incor.orated. 

Double .recision functions DAlTA, DA2TA, DAJTA, DA4TA were created 

from RAlTA, RA2TA, RAJTA, RA4TA res:ectively by replacing the single 



recisic,n multi lication in them with DAlTM. Functions DAlTA, DA2TA, 

DAJTA and DA4TA can imyrcve the s.·. eed cf . arti· a.1" doub'e · · _ .. recision 

routines in the library substantially. Function DAlTA was timed in a 

main :;rogram environment by re:lacing: 

Q = G.0 

DO 10 J=L,M 

10 Q = Q + DB1E (A(I,J) ) !If X(J) 

with DAlTA, where Q is declared as D0UBlE , RECISLN. Table 11.Jc shows 

the results obtained. 

N l DAlTA P0RTil N RE LACED 
! 
1 

10 16.8 msec 29.6msec 

20 Jl.4 msec ,.58.8 msec 

TABLE 11.Jc Timing for DAlTA and 1ortion replaced. 

11.4 Inbuilt mathematical functions 

The most usual algorithms for the evaluation of standard mathematical 

functions are based on classical approximations of numerical analysis (see 

for exam le IBM FURTRAN IV ~.ibrary functions ( 86) and C.nibere (124) ) 

For such methods, mathematical identities are used to reduce the 

problem to one in which the argument lies in a standard range 
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(which may vary with the functions and with the machine in use). 

For arguments within the standa..-rd range, the function is a proximated 

by a olyncmial, rational er other simJ.:le function ( see Hart et aJ ( 81) 

for more details). 

Unlike classical methods, the .rime urcose of Chen a]gorithms 

is to minimize the necessity for true multi lication and division 

c ,erations during execution. In their :r-lace ":;:iseudo-mul ti _,lication", each 

of which involves a single shift o.eration and single addition o eration 

are used. (see Chen (26) and Richards (lJB) for more details).-

In microcom. uters, where floating-~.oint multi, lic2.tion is ex: ensi ve, 

it was felt that the use cf ":: seudo-rnul ti lication" would reduce execution 

time of inbui:it standard mathematical functions based on classical methods 

that use true multiplications. Cne of the reasons given for the 

inefficiency of cornuter programs is that some of the library routines 

distributed with the com.uter are inefficient. In order to determine 

the quality of the rovided inbuilt standard mathematical functions, the 

function SQRT and Al.OGE were tested against the im,Jementation of Chen 

algorithms for square root and logarithm to base e. A1-thcugh it was net 

ex licitly known from available manuals, it was felt that the inbuilt 

mathematical functions in Tx990/4 were based on classical methods. 

Table ll. 4a shows the timing of two inbuilt functions and the 

corres.onding Chen algorithms. The time is given in msec. 
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I ~,QU.!LBE R.', T ~cG T, BASE E.; 

AJiGUHENT I 1'1ACHIN'r; 1HEN MACHINI: CHEN 

0.5 2.8 9.6 4.4 6.6 

0.562 J.0 9.0 4.6 lJ.0 

0.75 2.8 15.0 4.6 6.o 

0.6875 2.8 10.8 5.0 11.6 

o.666666 2.8 10.0 4.6 9.0 

TABLE n.4a Timing for SQRT and AU __ GE 

From table ll.4a it is obvious that Chen algorithms are very slow 

corn ared with inbuilt mathematical functions SQRT and ALLGE. The 

reason is that in -~erforming true floating-, cint multi'-'lication in 

Tx.990/4, hardware integer rnulti1lication is combined with few shift 

o.erations while Chen algorithms can only be efficient if software 

multi lication is erforrned by using only shift o;erations. Also in 

the Tx.990/4 floating-.oint addition is even slower than floating-point 

multi _,lication which is not usually the case for most Com uters. 

No functions were therefore written to re:i::lace the ones :rovided in 

Tx.990/4 F;~.RTRAN library. However the : ossibili ty of including integer 

multi lication in Chen algorithms is still to be studied. 

1::...5 Effect of tuning on some se,ected routines 

To test whether some of the library routines can be improved 

by the use of the functions written for tuning i'Ur :Joses, two subroutines 

I 
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RFil__E and RF2LE used to solve system of linear eq_uaticns were 

mcdified by re,.1acing the necessary _.-orticns of these subroutines 

with the corres,onding tuning functions. Since both RFliE and 

RF2LE are needed tc solve a system of linear equations com;. letely, they 

were timed together. Table ll.5a shows the result obtained. }D:V 

stands for }artial Double •• recision Version and N is the number of equa-

tions. 

N RFL_,E & BF21E MC.DIFIED V-£RSILN :-D~ V f1LDIFIED VERSICN 

10 l.06 sec 1.02 sec l. 82 sec l.22 sec 

20 6.04 sec 5.56 sec 11. 70 sec 6.72 sec 

TAB1-E ll.5a: Timing for RFlLE and RF21E 

It can be seen from table ll,5a that a substantial increase in s:.eed 

can be achieved if the necessary library routines(particularly the 

partia1 double •recision version) are tuned, 

There is stil1 much to be done in the area cf tuning of the 

library since only the obvious asrects have been discussed here. 

cnce these functicns have been written, they can then be included 

in what is called the base file of the library which is always linked 

to a user's ,.rogra.m whenever any library routine is called or 

referenced by a user's .rogra.m. 
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The behaviour of Tx.990/4 microcom·uter has not been ty:ical of most 

other microcom.~,uters. This is mainly because, it is a sixteen-bit machine 

and it has ha.Piware integer mul ti,,ly and divide, which is not typical 

o:f · most mic:i;-.ocom;:uters. 
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CHkTER 12: 

12.l Research aims achieved 

The main aim of this study was to design and im:r:,lement a general 

pur. ose numerical software library which:-

a) is suitable fer microcom.,-uters. 

b) is ,ortable. 

c) serves a wide range of scientific users of microcomuters 

and is easy to use. 

d) takes advantage of architectural features of microcom uters. 

e) is small and yet powerful. 

By studying the various versions of FLRTRAN corn ilers available on 

microcom .uters and finally using a subset of compo,·1<6k F\ RTRAN to 

write the library, it was felt that the library is ortable to a 

great extent. 

The areas in scientific corn utation included in the library were 

selected from three different libraries used by different ty,es of 

scientific programmers. The areas selected were the ones frequently 

used. This means that the library is small but yet owerful and can 

serve a wide range of scientific users. Delibrate efforts were made to 

seiect algorithms whose im lernentations required moderate amounts of 

storage sc that the resulting routines were sui tabe for microcom uters. 

In some cases _;_ess than o tirnurn algorithms have been chosen because cf 
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their m::,derate stcrage requirements. '-ccasic.naliy n)utines were 

modified so as to make them mere easy t(_, use. 

Fina~--'-Y, the features of microcomputers were exploited mainly in 

the area of determining machine dependent constants. 

It can therefure be said that ail the research aims cf this study 

have been achieved. 

Suggestions fer further research 

Occasicnally, ..:..ess than optimum aj__gc,ri thms have been ch::isen for 

inc__:_usion in the library. The reason is c:iear.1y that a subrrntine is 

cf nc use if there is not encugh sufficient sturage for its use. In 

m0st cases when a-'-gorithms are modified to im rcve their efficiency, 

they usual1y require more storage. This means that scme efficient and 

reliab,_e algcrithms wi_:_l hardly ever be chosen for im _ementaticn in 

micrccom uters. This ca-:1s for a rigorous study c_,f these 11 c:1 assical 

methc,ds" fer scientific cc,m utati:m. There is the need to examine 

a_g.~ri thms in the· area of clyn,_mia~s, stiff ordinary differentia:. equations, 

very ~-arge systems of linear equations and other areas where the 

implementing rc,utines uf the a--'-gori thms require large amcunt cf 

st rage. This examinatiun shculd ay attenti0n t(,. the requirements 

uf aj_gori thms for micr'--ccm uters, in _articular storage requirements 

and the S.l.c,wness c;f floating- -c,int ccm utaticns. The a-1_gori thms 

deveJ(_ ed shculd be such th2.t they are cssib:;__e tc im cement using a 

high 1 eve_ language and the resu_ting routines sh0uid be easy to use. 

The rJutines shou:Cd cf course also exhibit a:t:;_ the ncrmai attribute 

,;;f .l.ibrary r0utines. 



:t2.J Recent deve_ q:,ments and the future 

c-ur s,_ ftware r,_biems are being s,,_c ved by hard.ware deve_ e,, ments. Fer 

exam- le, Intel has intrc,duced twv new math rocessor chi s, 82Jl (fixed 

oint) and 82J2 (fl0ating 1.oint) which increase the . erfcrmance c,f a 

micrcccm uter system by a factcr c·f u to 100 times when carrying 

cut mathematicai c.eraticns. Beth chi s act as dedicated eri heraJ. 

interfacing directly to Intel's 8080, 8085, 8088 microcom uters in 

addition tu all other general .ur cse rucessors with 8-bit data bus. 

This cbvieusly so~ves the rcblem of slew fioating- cint c eration. 

Sturage cost is decreasing and high :; evel J..anguages such as BASIC, 

-ASCAi_, Ft RTRAN are now being made readLy available in many microcom_;:uters. 

The ~anguage F\ RTH ( 89) s eciaily designed for microcom uters is yet tc 

prc.:ve itself since it is still not avaLable 0n must micrcccm uters .. 

PASCAL seems to be mere o. u1.ar than F'~RTH as a language fer microcom:-1uters 

but ?ASCA1 has many defects for scientific library software. 

The cost uf micrvcvmjJuters is decreasing and their c,wer is 

increasing dramaticaily. Mere eop.Le wLu now be able to afc,rd 

microcom, uters and the need tu develo and make availab..:.e g0od 

quad ty numerica.!.. software to assist these invcil ved in scientific 

cum utaticns wi}:; increase. 

T 
r! 
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