Aston University

Some pages of this thesis may have been removed for copyright restrictions.

If you have discovered material in Aston Research Explorer which is unlawful e.g. breaches
copyright, (either yours or that of a third party) or any other law, including but not limited to
those relating to patent, trademark, confidentiality, data protection, obscenity, defamation,
libel, then please read our Takedown policy and contact the service immediately

(openaccess@aston.ac.uk)

THE DESIGN AND IMPLEMENTATION OF
A PORTABLE OPERATING SYSTEM
FOR MICROCOMPUTERS

H. T. ESENDAL

Submitted for the Degrezs of
Doctor of Philosophy

University of Aston in Birmingham

April 1981

ABSTRACT

THE DESIGN AND IMPLEMENTATION OF
A PORTABLE OPERATING SYSTEM
FOR MICROCOMPUTERS

by
Huseyin Tugrul Esendal
For the degree of Doctor of Philosophy
University of Aston in Birmingham

April 1981

Communication and portability are the two main problems
facing the |user. An operating system, called PORTOS, was
developed to solve these problems for wusers on dzdicated
microcomputer systems.

Firstly, an interface language was defined, according to
the anticipated requirements and behaviour of its potential
users. Secondly, the PORTOS operating system was developed as
a processor for this language.

The system is currently running on two minicomputers of
highly different architectures. PORTOS achieves its
portability through its high-level design, and implementation
in CORAL66.

The interface language consists of a set of user commands
and system responses. Although only a subset has bean
implemented, owing to time and manpower constraints, promising
results were achieved regarding the usability of ths language,
and its portability.

KEYWORDS

Operating Systems
Portability
High-level Languages
Microcomputers

age

-

o

—

N

o

1

o
o

.
tup

=
il
NS
[op}

O
L
o
o
=
33

~
O

1.2

£

2

[ia]

M

Processor

5.

2

r~
N

e
™

(g}

[aw)
o

<
e}

ommAanad

~

E

3.2.1 CREAT

(ae1

1

Zom

T
R o

™
o

DE

3.2.2

o
™

i

nao

y
=3

omine

o

ZOPY

o

e

o

.

g!

Comman

UNLOCK

.6

2

(ol

L

I}

)
1

T
d
i
. ,W
3

4

U
Q

o
W2

2

e

jEa]

1
.
~
.
o

-
[ag!

=

et

-~
O

LINK

B
3

]
RIS AE

-

ommand

~

Q
=2
ea)
23]

Chapter Page

£ ey eipTa - . e .
D SYSTEM DESIGN ONTO PRIMITIVES ¢ e s e v e n e e e s e e e e 71
501 M Py T
2.1 Muemory Residoncy e etk e e s e e e s e e e e s e e s 71
- -
5.2 e ¢ o s s s % m s s s s s s s e v s 2 e = e 72
[
5.3 e s s s e s & e e e w4 e e s s e e 73
5. e s e v s s e e s 3 e & s = = e = 74
c .
5. POGRTOS e e s e e s e e s e e e 77
SART 11
- o . Lres . :
& NTATION COWNSIDERATIONS ¢ s s e e s &z e s s 4 e e 79

5.1 e e e s e e v e v s 79
e s s s e 8w v e s 20

c e e e e e e s s e =

6.1.3 Existing Applications Languages e e s s e v e e a2

~

CORAL

5.2 Host Computo

5.2.1 TL 220/190 e e e e e v e e e s 84
6.2.2 PRIME 307 Computer Systom C e e e e e sy e e 23

6.3 Tmplementation Subsat s e e e e v e e e e s s e e e e 993
P

7 DHE TARLY EXPEZRIMENTS B 22
7.1 Found of PORTOS e s e e e s s s s s e e s e = s s 52
7.2 PORTOZ On Thoe ICL~-19043 e s s s e s s s s w s = e v s s 93

2.2.1 e s a e e e s e e e e s 24

7.2.2 Simul e s e v x e e s s e e e e s e s Qs
7.2.3 PORTOS R 25 e e o+ e w e e v s e e e s s w s s 36

41
<«
o

. .

990/10

TI

I

e
o)

PORTO

o1

191

o~
G

107
104
105

o
(@
—

102

-

PRIME 300

o

ths
lor

1

o

o
C
)

[

m{,
.

2.1.4

i

[als

(LS
b}

D

-

1190

1
Q
[
8]
n
e

Compar

ii\i

3

VL

HHE RN

[

o,

n

0
pments

o0

)

1
~
¢

[RIS
L

at

£

ions

Dy

[

aon
o~

Ll

v

fle

Jata

m

T
R
&

-~
-

R

~
Dy o o™
A o o~ < r~ o8 o < o~ Nel — o o o tg} [&)
oot — — o ol i QN 1a! o o~ [t} r~ (o — o - —
[SYR — - — — — — o — - - o~ o] QN o
- L o L) 2 * ® L] e » - 3 . L3 o e
L] . . L] - £) » » - a o o L] -] e
. B . . « . o . - . B . . . N B
— —
N . B B < o e
(o] —
- - L] a * » a ° . i, ™M S °
lea) o)
° . ° 0 » ® . « o [o3 .
4 -t = o
. - » ® N ° ’ . lea})] °
o) 6! 04 b
. . o o o rd . £ .
kS Q ¢ ke] ~— ~
b 3 3 » - -4 0 -
o " A + - 7 ©
2 ot . » I 1 1 < S .
[= > N il 4+ a el
) o] . ° -~] o a) 3 = -
(5] o o) 0 C LJ
2} - ° 1] ot I w U4 .
a o m s3] @] jn} O
m D . - . 4 § e} 9]) .
) jn O O U 9] o
js] el ° « o o oy .
om o ™) 0 B "
o e . 5 A A+ 3 ’ s
i [o] o 10} o) -
- . = o B! Q c .
4] aj £ aid o
w) by & .
N o ~t i a3}
o C N [} [} “ a C — -
= jo 3 - [on) o] o o o
= o0 c . ™ k3 S S o .
o] 8} 3 o N] 9] 3
@] 84 = o [o] N, 4 .
g o = N4
(4] 0 O — w A £} " 6! .
(@] (@] @} [o [0 O 9] O O
£+ [= Yy =3 = IS £ = £ -
jad a4 [o4 jad e [ad 24 a4
O O @) ~~ — o O o) O O .
a8 1y [a7 = = 0 a8} 4 [af] o [a¥]
= .
[jag (@] (@] ca] Feq & oo —) ¥ w3 N =
) by X % b x % ® £ B o 9
1A - - o - - -~ - 4 ool -t [e4}
&) nd Le! i Ty 3 e ke el 1 el O
— [o N o o) o o [o o Z
b})] ¢ 9} 3 ¢ o o o &
Z joR) Oy [oR 4 [of) o, (o o Q G [aN ot
13N] Qs O [o N o [N o] o o) 2y N 0y [z}
ny ot & 4 £ = < <2 G < =5 <3 Lz

. LD

Figura Puage

e -~
1.1 The PORTOS Do v v s a6 e e e a w e e % a4 w 4
2.1 pvC Fil e e s e e s aa e e s e e e e e e e e e e e 12
4.1 5 e s s e s e s e e e e e e e e e 573
1.2 Entry Formal o . . s 0 e 6 i e e s e s s v . s 54
4.3 Sector Format s e e & s s e 4 e & 2 4 4 % s a s e o & 57
4.4 PORTOS Chuannal Allocation For I-D © o a4 s s s x e s e @ 53
4,5 FError Codes in OPEN Primitive e s e 4 e 2 e s e s e s B2
4.6 PORTOS I-0 Table Format e S10.
4,7 List s @ 8 3 s s s @ s & & & « 8 ° = s s 64
4.8 Flow of Control e s e e s s 3 s s s s s e e e 565
5.1 PORTOS Tasks e e 4 e e s s s e e s s s e s e e e s 72
5.2 mory Organizatlon o ¢ o v e o v e e s s e osos . 74

dified Languages

o

(@] N
N —_
3 =
S
D
W
(@]
o
4
i
O
=
=)
w
-
I
2
(w3
[N
O
o
(62
®
.
.
°
.
.
®
.

()}
o
o
-
—
=
[}
w)
O
(e}
4

!
O
-
o)
[¢H
=~
o
)
r
e
Q
3
n
o

.

.

.

.
.
.

.

o

.

.

.

.

-

.

[$2]

W

—h

03

8.2 Order of Residency o0 Disk o ¢ o s o s s 4 s s s e e e e

N
o
]

The author would like to express his gratitude to the following people:

M E . N ~ . . .
Mr. I. He. Gould, B.Sc¢., M.Phil., FBCS, his supervisor, for his

guidance, help, and patience throughout the duration of this

Mr. K. J. Bowcock, B.Sc., FIMA, FBCS, Head of Department, Computer

Centre, for his help in overcoming the managerial problems

Mr. W. R. Dawvy, M.A., M.Sc., LBCS, formerly of the Department of

Electrical Engineaving, for his help with the implementation

of PORTOS on the Texas 990/10

Dr. M. J. Walker, M.Sc. Ph.D., for his help with the
r i I

implaementation of PORTOS on the PRIME 300

Mr. J. B. Lowe, M.Sc., FBCO, for his company, encouragemaant,

and help when it was most nseded

Mr. N. Toye, Laboratory Officer, for his help with the numesrous
problems that arose during the implementation on the PRIME 300

and his company in the laboratory

Mr. G. P. Gerrard, Operations and S=rvices Manager, Loughborough
University of Technology, Computer Centre, for his help with ths

practical problems of system compilation on the PRIME 300

CHAPTER 1 : INTRODUCTION

This thesis presents the design and implementation of a portable

interactive operating system called PORTOS, developed for use on
microprocessor-based single-user computer systems (henceforward
referred to as microcomputers). The objectives of PORTOS are to

facilitate user communication with the computer and to provide for

software compatibility on different machines.

1.1) Why Microcomputers?

Microcomputers are cheap to acquire, maintain, and run. Unlike
mainframe computers, they can bs used when and where needed without
being prohibited by costs. They are also robust and highly reliable.
The environmental constraints that govern the operation of large

computers have little or no effect on microcomputers.

This low-cost availability and versatility has brought
considerable computing power to within reach of a large number of
users, both organizations and individuals, for whom it was previously
infeasible. There are, however, two problems facing these users:

communication and software portabilitye.

1.2) Problems Encountered by Users

1¢2.1) Communication

Communication means the user's interaction with the computer for
control functions that lie outside the domain of his programming
language. It takes the form of a command-and-response dialogue. The
user types in his command on the keyboard and waits for the response
on the display unit, indicating either success or failure, so that he

can decide on his next move.

This dialogue makes the wuser an active participant in the
computing process, the outcome of which depends on the availability of
a suitable interface language. Suitability is a measure of how well

this language fulfils the user's needs and responds to his skills.

Many interface languages frequently display the characteristics
of being an afterthought to operating system design [5, 797, Their
awkward syntax, unnatural constructs, and poor semantics render them
needlessly cumbersome, unhelpful, and error-prone. As a result, these
languages fail to reflect the user's "closeness"” to the computer and

establish the required rapport between the two.

1.2.2) Portability

Portability is the ease with which programs can be transferred
from one computer system to another [86]. It is an attractive software

characteristic because users who are committed to any one computer are

getting fewer. They are often forced into relocation for personal

ains; t i . . .
g i or the rapid advances in microprocessor technology render their

computers obsolete; or they can afford to upgrade their computing

powar at shorter intervals.

Whatever the reasons may be, economic considerations wmake it
desirable to transfer those long-life programs in which time and
effort have been invested. Problems arise if the new computer is from
a different manufacturer, which, considering the wide choice of
alternatives currently available, is very likely. It then becomes

necessary to adapt these programs to their new environment.

Re-programming, which is a wasteful and discouraging task, 1is
minimized by the use of machine-~indepesndent languages. They hide the
underlying architectur2 behind compilers, and thus enable users to
develop portable software that suffers the least disruption after the
transfer. The portability achieved at program level, however, 1is

offset by the problems encountered at user level.

Moving to a different computer invariably means having to learn a
new set of commands and conventions, because every manufacturer
implements its own particular interface language. The differences
manifest themselves in the actual command repertoire, syntax,
capabilities, and response to users. The re-learning and
familiarization necessitated by this lack of uniformity naturally
results in a considerable waste of time and effort. Interface language

incompatibility thus emerges as the main obstacle to portability.

1.3) The PORTOS Approach

PORTOS offers a solution to these problems, firstly, by providing
an interface language that emphasizes usability, and secondly, by

making this language available on different computers.

The PORTOS development consists of the four major stages shown in
Figure 1.1, where the function of each subsequent stage is simply to

implement the previous one.

Figure 1.1 : The PORTOS Development

The Users

Hardware

The primary objective 1is to enable the user to express his
intentions in his own terms. The starting point, therefore, 1is the
specification of the personal and computational requirements of

potential users.

PORTOS Interface Language, or PIL for short, defines a virtual
computer to satisfy these requirements, and allows the user access to
it. The constructs and facilities of the language determine the manner
of communication and the user's capabilities on it [28]. This virtual
computer is then implemented and supported by the PORTOS operating

system, which is itself implemented on the host hardware in CORAL66.

1.3.1) Interface Language Design

Proposals to aid the development of user-orientated interface
languages include the transformation of system design from an art form
into an engineering discipline [6]; the imitation of person-to-person
communication [56]; the flexibility of the user interface so that

differential responses can be made to a variety of users [92]; and the

parameterization of user-computer interaction {58].

The current lack of sufficient data in this field makes it
premature to formulate a definite approach. A user-orientated
language, by implication, must be based on the user's requirements.
Language design, on the other hand, still remains very much a matter

of experience and personal preferences.

A dialogue between the designers and users is therefore required
for a successful design [48]. The main problem here is that, while
feedback and iteration are crucial to the subsequent improvement of
the language, the two parties are not necessarily in contact during

the initial stages.

For this reason, the design of PIL is based on prediction and

integration. The methodology is to predict the wuser's requirements,

and then to integrate them with experience and knowledge in order to

define a functionally and structurally suitable language. This

approach 1is similar to that employed by the UNIQUE command language

[64] in which a set of properties that an ideal language should have
'

are defined and then implemented in user terms, within the bounds of

practicality.

1.3.2) Operating System Design

PORTOS is designed as a processor for PIL [79]. Its facilities

are orientated towards the requirements of the PIL virtual computer.

The design approach 1is a combination of different techniques
{89]« Its general structure is top-down, starting with PIL and going
down to the hardware. The kernsl, which constitutes the bulk of the
system, is designed in terms of modules and interfaces. Within each
module, however, the approach is essentially bottom-up. The basic
functions are designed first, to support the development of the higher

levels.

PORTOS is made portable, firstly, by design, and secondly, by
implementation in CORAL66. Processor portability in turn makes PIL
portable, which then removes the user's need to learn new interface
languages and modify programs; this being the second objective of

PORTOS.

1.4) Presentation

The contents of the thesis are divided into three parts. Part I
covers the design phase of the development while part II covers the
implementation. Part III contains the discussion of the results and an

appraisal of the approach.

PART I : DESIGN

CHAPTER 2 : DESIGN CONSIDERATIONS

2.1) The Starting Point

2.1.1) User Characteristics and Requirements

PORTOS users are snvisaged to be non-computer specialists Ffor
whom the computer is simply a convenient tool with which to solve

non-computing problems as quickly and painlessly as possible.

The focus of attention for these “casual" wusars is their
particular problem and not the tools at hand. They nesed or prefer the
computer solution but it still constitutes a small part of their work.
They have & limited knowledge of computer science which they do not
seek to enhance, because it is sufficient for this limited and

subjective usage.

The typical PORTOS wuser, therefore, reguires only the major
control functions for his coemputing activities. Consequenitly, he has

neither the reason nor the inclination to tackle thz intricacies of

I

complex interface language. He seesks eas2 o

u
-
0
u
=
{
0
)
o]
jon
9]
O
2
Q)
(v
o
s
n
)
t
D

to minimize his involvement in all extransou

on his problem.

i
5
D

Q

omputer is judged by thes usar purely on the grounds of Thow
well it serves his needs, based on threec considerations. Firstly, the
facilities at his disposal for problem solving; secondly, the means by

which he can control these facilities; and thirdly, the manner and

quality of computer response to his input.

The role played by this last consideration is genarally
over-shadowad by the obvious importance of the first two. It should

not be naglected, however, because the user's attitute to computing is

greatly influsnced by it. Firstly, all error messages should be
meaningful and self-explanatory. hey should convey sufficient

information for the user to remedy the situation easlily and quickly.

hat are difficult to understand or relate to tha operation

=
@
[}
0
N
Q
©
v
ot

being performed reduce usability and alisnate the user.

Secondly, response time 1s a major contributor to satisfactory
interaction. The user should be provided with suitable monitoring
messages wnen performing time~-consuming operations such as
compilation. These messages ave necessary to dispel the Ffeelings of
annoyance and anxiety that arise when a computer shows no apparent

signs of activity for more than a few seconds after a command has been

issuad. The aim 1s to ke2p the user occupied, as well as to impart
relevant information, while his command is baing processed.
The specific requirements of PORTCS users, and how they are

3

2+1.2) Applications To Be Supported
Microcomputers are highly suitable for a vast range of
applications, which can be divided into three groups: network, process

control, and stand-alone [27, 34, 71].

Network and process control applications are problem orientated

h
0

and the computer is vun in a dedicated environment for a specifi

purposa. Stand-alone applications, on the other hand, are user
orientated. Tt computer is employed as a smaller version of the

general-purpose mainframe computer for suct functions as small
business data processing, scientific problem solving, and hobby

)

computing. It is these applications which are of interest +o PORTOS

{

Users.
A stand-alone microcomputer is totally dedicated to the user's
particular problem but only for as 1long as he requires it. The

computer may Dbe subsequently used with the same degree of dedication
to solve a completely different problem. This orientation towards the

's personal convenience and advantage has given ris2 to the term

o

sex

"personal computer'" to describe thess microcomputers [45].

ersonal computers are expacted in the near future to replace the

(T
oy
o]

typewriter and the filing cabinet in offices, and to perform
necassary acquisition, storage, and presentation of information [24].
They arz not suitable for large data base and information retrieval
applications, however, owing to th= limited capacity of their mass

storage devices.

O

2.1.3) Target Hardware Configuration

®

S5mall physical siz is a distinguishing characteristic of
paersonal computers. A typical configuration consists of a CPU (a
microprocessor with random-access memory), a Visual Display Unit (VDU)

for user communication, a dual-drive diskette (or floppy disk) unit

for mass storage, and a hardcopy printer [3]. This configuration 1is

2.2) PORTOS Virtual Computer

The next step is to find a computer that will satisfy the above

reguiremsnts. Since there is no real computer that can achieve

r
=)
-
w
<
o

virtual computer which is specifically dssigned for the purposa is

aeeded. The PORTOS Virtual Computer (PVC) is such a system. It is a
single~user, file-orientated interactive computer, the details of

which are presented below.

2.2.1) Single-language and Multi-language Systems

The PVC is a multi-languags computer system, 1like the Motorola
EXORciger [54]1, Texas Intruments TX930 [3238], and North Star Horizon
[60]. On these systems, programming and operating system control
functions are kept separate in thelr respective languages. Advantages

arce functional suitability, improved computer control through physical

]
t

(

separation of logically sapavate functions, and independen

levelopment through modularity.

Those systems that combine programming and control functions in

anguage are called single-language systems. Their control

[

the same
commands may be an integral part of the languags repertoire, as in the
Commodore PET [21], Apple [1], and Hewlett-Packard HP2000 [40] systems
using BASIC. Altevrnatively, they may take ths form of procedure calls,

as in SOLO using Concurrent PASCAL [38] and 03556 using BCPL [R3].

The single-language approach is particularly attractive to the
non-computer scientist, because both his algorithm and system problems
can be solved from within the same language. Theoretically speaking,
any programming language can be extended to include the necessary
control functions for wuse 1in similar environments (39, 507.
Wiederhold, for example, reports on such an implementation using
PL/ACME and LISP [25].

The main disadvantage of single-language systems is that they
confine their users to one language for all their needs, regardless of
suitability. Furthermore, programming and system control activities
differ in purpos=, data types, and scope rules, which makes the
separation of languages more meaningful. For a more comprehansive
discussion on this subject, the reader is referred to the Proceedings
of the IFIP Working Conferencs on Command Languagas, 1975, HNorth

Holland, where the final verdict is in favour of the multi-language

approach [39].

11

2.2.2) Files and File References

The PVC has an external and static fi iling system. All files are
accessible at any time and they remain in existence until explicitly
deleted by the user. The types of files recognizad by the system are

listed in Figure 2.1.

Figure 2.1 : PVC Files

Type of File Contents

Character ASCII Information

Object Semi-compiled Binary
(assembler/compiler output)

Binary Executable Binary

Each file has a user-defined unique "file raference” by which it
is identified. & complete file reference consists of a Filename and a

with the

i~
ot
v
r_-l
'._l
0
z
@
h
1
i
o
I

suffix. The use of the suffix is optional.

same name but different characteristics or contents to exist in the

A filenama can be up to six characters long. Any ASCIIT character
except comma and period may appear in it, in any orderxr. The suffix
name, 1f used, is two characters long. The first charvacter is always a

The seacond

period, which also separates it from the filenans

character can be any ASCII character except comma.

If the suffix name is omitted in a file reference, then a default

name is assumed depending on the operation being performed. These

default names, which are listed in Fic

2

ure 2.2, are aimed at

U,

simplifying the management of files during software development. The
user should refrain from using these suffix names outside +their

assignad domains in order to presarve consistency of usage and avoid

Figure 2.2 : Dafault Suffix Names

Suffix Meaning
N Assembler Source
«B Executable Binary
L Listing (compiler)
.M Listing {assembler)
Ne Object Code
.8 Compiler Source

2.2.3) System Configuration

All information is contained in files, and all files are kept on

diskette. PVC differentiates between diskettes as eithsr system or
user, similar to the Olivetti P6060 system ([67]. Commands are
interpreted by programs on system diskette to manipulate the

information on user disketta,.

Drives 0 and 1 of tha diskette unit are dedicated to system and

user diskettes respectively. Drive 0, which is called SYSTEM, is
inaccessible to the user except through spccial commands, thus

offering the system programs additional protection. Drive 1, called

USER, which is also tha default drive, is always directly accessible.

13

The alternative is for the system to share diskettes with t

12
user. Sharing, howaver, leads to duplication of information. The

system, or at least a minimum self-supporting subset of it, must exist
on every diskette, thus leaving the user (or the system) a limited
amount of space for programs and data.

Limited space means more diskettes in use during a session. This
in turn means a higher rate of diskette handling by the user, reduced
processing, and loss of usability. The objective behinc separation is

to minimize these undesirable characteristics.

2.3) PORTOS Interface Language (PIL)

The PVC is defin=d to the user by PIL. The definition includes
establishing the interface through which the user can communicate with

this computer and employ the facilities provided on it.

Communication involves a two-way flow of information. In order to
defines a suitable interface, therefore, PIL distinguishes betwesen the
input to and output from the computer, as command and rasponse

respectively. This distinction is reflected in its organization. PIL

consists of two languages: (1) PORTOS Command Languige (PCL) to handle
the user input to the computer and (2) PORTOS Rasponse Language {PRL)

to huandle the computer output to the user.

Simplicity and respons

ign.

N
aae

S The

simplicity o

unambiguous syntax within

meaningful names and defau

characterized by guick and i

as fully as possible, with

detaills are presented in Cha

are fundamentally alien to m
help the

a

custom-built vocabulary of

conceptual framework that

processability and memory us

=3

PIL employs simple

corresponding s2t of resp

Familiar words and charvacter

language, in order to

It is, howev

control function.

Control Language of CDC computers,

programming language owing to its computational powears

naximize

iveness are the key Ffactors in their

el
~

f PCL is realized in terms of a low-level

a high-level command structure, with

1t s=2ttings. The responsiveness of PRL is

nformative replies to the us

out becoming prohibitive in length.

ter 3.

commandsg represent a very limited

powars {about that command languages

an; casier would not

and that making them

other hand, experience has shown

verb-like commands not creates

only

is easy to learn and use, but

age.

command structure, supplemented by

onses, to provide a friendly interface.

s are used consistently throughout tha

user

usability and compensate for

er, a single-purpose language, confined to

This is unlike, for example,

which also Dbe

can

r
L

19].

1

2.3.1) User Activities and PCL Commands

- . , ‘ A . ;

The PVC being a user-dedicated computer on whic there 1s no
visible sharing of resources, removes the neasd for scheduling (ox
passive) commands. As a result, PCL is defined exclusively in terms of

action (or active) commands.

Four types of user activity are identified by PCL. They are fil

handling, software development, system ingquiries, and system
oparations. Each activity in turn consists of a number of events and

each event is associated with a high-level command.

user and minimizes the number of commands in the language. Suitable
default settings in turn minimize the number of parameters and special
characters in the command string. The aim is to snable the user to
perform even the most complex operations with only a few simple

commands.

The study by Boies [9] into the behaviour of interactive users on
the IBM T55/360 reveals that, out of over 390 commands available to
them, the majority know and use only a few, or they use them only in

the simplest form. The same can be said of users on other similar

The GEORGE3 command language, for example, also has a large
number of commands, each one of which represents a basic system

function [62, 66]. Any operation that is not defined by a Dbuilt-in

16

~ oo A 3 - ; e B} . . ~ . .
commanc 1s performed by issuing a saquence of commands. It is a

powerful but, for the majority of users, an unnecessarily detailed and

essentially low-level language. Extensive usc is therefore made of it

6]

macro facility to create a high-level repertoire and reduce the number

of commands that users need to learn.

Absolute reduction in the number of commands in a language will,
however, lead to other problems. JCL/360, for example, has only three
commands: JOB, EXEC, and DD. This being the case tha necessary
information 1is supplied as parameters, and this leads to a difficult
syntax that is awkward to use [5]. So much so that a macro facility is

again needed 1in order to simplify its use. PCL makes no attempt to

combine different events in the same command.

2.3.2) PCL Syntax

PCL. is a command-orientated language, the syntax of which is
presented in Appendix A. Each command string begins with the command
name, may optionally take one or more parameters, and is always

terminated by carriage return.

o

There are no conditional or jump commands in the language an

=
Q
c
peb)
It}
o)
4
I
W
ot
I
~
®
w
0
o
O
o
(93
W

hense no label in the command string. Other la

~
@
e}
o
®
]
|._J
=
9]
e}
—d
o
sl

block structuring and variables, which are consides
control languages [14, 37, 62], are also exciuded. These constructs
are meaningful only within a macro (or command) definition facility,
which PCL does not have for two reasons. Firstly, the usesr himself is
expected to be in control interactively at all times to maka thea

(&)

17

decisi a ! e he i : -
decisions regarding the issuing of commands. Secondly, the small and

simple user-orientated command repertoire of PCL eliminates the need

for this facility

The command name specifies the operation to be performed. The
parameters, if any, define the entities involved in that operation.

One or more spacss separate the command name from its parameters, and

commas separate the parameters themselves from =ach other.

93]

All leading spacaes are ignored and each comma may be followed by
one Or more spaces to improve readability. RAny spaces embedded in the
parameters themselves, however, are significant. The only other

special character is the period (.), which acts as a s2parator batwaen

the filename and its suffix, if present.

The Futuredata 2300 control 1languags [35], for example,
represaents each command by a single letter, and spaces are not allowed
in the command string. This concatination of the command name with its
parameters renders the command string awkward in appearance as well as
in usa. The gain in processability is negligible when comparad with

the loss in usability.

PCL physically scparates ths command name from its paramsters for
a4 more readable and hence a mores usable command string. From the
procassability point of view, any charactar may be used as a separator
and the outcome would be the same. Texas Instruments TX990 command
language [83], for example, allows space and comma as interchangeable

Separatorse.

18

Fronm I = o 3+ . . N
From the usability point of view, however, thess characters in

their respective roles as defined by

'

CL, are preferable for two
reasons. Firstly, they are used in written English for the same
purposes and would therefore Dbe more natural and meaningful to the
user. Secondly, the visible break in the command string as provided by

space 1s essential for the required rsadability and usability.

2.3.3) Command Names

PCL uses meaningful and descriptive command names so that the
usar can assoclate each command logically with the operation being
performed. This means, for example, the use of the nams DELETE to

1

ile rather than, say, DEL or DF. Meaningful names are also

rh

delete a
easier to remember than abbreviations and they minimize the chances of

issuing wrong commands.

Command names are restricted to an upper limit of six characters.
i oyt

r

It is the author's experience that this allows sufficient scope for
the creation of meaningful names without becoming unacceptable in
length. Longer names reduce the usability of commands and do not

necessarily aid clarity.

This restriction naturally poses a problem when a command name
tends to be longer than six characters. In that case, if attempts to

replace it with an equivalent but shorter name are unsuccessful, then

an abbreviation which rasults in minimal loss of understandability is

used.

19

2.3.4) System Responses

PRL has two constructs: message and prompt. A message informs the
user of an event, condition, or status, and resumes execution. A
prompt, on the other hand, informs the usar that an input is expected
from him and waits until it is received. The semantic content of the

prompt dictates the type of input expected.

There are three kinds of messages: error, information, and
monitoring. Error messages appear whenever a syntactic, semantic, or
execution illegality is detected. These messages are usually short and
do not exceed a single line. Information messages appear in response
to an inguiry made by the user. These generally extend over a numbar

of 1lines to aid clarity. Monitoring messages, which vary in length,

Is

acknowledge user commands and keep him informed of the proces

)

U

ing

activities.

In order to help the user to associlate a particular response with
his input, PRL messages contain, wherever applicable, the relevant
operative words extracted from the input string. This feature is

particularly helpful in, but not exclusive to, error messages.

A prompt is always issued from within a communications
envivronmant, which the usar enters ian order to perform a given

operation. A communications environment is defined by a set of valid
data on which these inputs act, and a set of responses.

inputs, some

tate which, once

-}
[
3
r
D
a
[V}
Q
o
-
<
(¢
W

Lach such environment, rtherefore, 1s a

6]

1 - - 30 17 der O { & 1t
ered, oxpects further input from the user in ordevr to complcte its

Ina

an

specified function.

The EDIT command, for example, is a request to enter the EDIT
communications environment, requiring the wuser to issue editor
commands. The COPY command, on the other hand, if issued with the
required parameters in the same input string, may enter any number of
states to perform its operation. It does not, howeaver, create a

communications environment because no further interaction with the

us2r 1S Necessary.
A prompt can ba either a guestion or a communications environment

indicator. The reply to a question prompt is a dir=zctive, the nature
of which depends on the semantics of the gquestion. The reply to a

lways a command that beslongs

W

communications environment indicator is

to that particular environment.

Users often issue commands that are out of context. This is dus
to wuser forgetfulness or computer £failure to indicate cleavly the

current environment [2]. Unable to remedy the former, PRL concentrates
on the latter. Each communications environment that expacts command
input from the user has its own unique indicator, with which to prompt

him and indicate the type of command expected.

2.3.5) PRL Syntax

PRL is a string-orientated language that follows closely the same

rules as written English.

3
=
©
i
®

The length of a PRL string is determined by its samantics.

[a)
—

are no syntactic restrictions on it. The only exception to this rule
is the communications environment indicator. It never exceeds a few
characters in length, and the user has to consider its logical rather

than semantic content before replying.

A prompt is always terminated by thes ASCII character "bell™. A
message, on the other hand, 1is terminated by the PRL end-of-message

in

o

[}

character, which consists of one ASCII carriage return and two
fead characters. Long messages that extend over a number of lines are
brokaon up by the PRL end-of-lins character. It consists of one

carriage return and one line feed character.

[\
IS
@
<
©
=
<
b
D
=z
0]
h
w
G
¢33
ct
o
=
w
U
Vo)
0]

2.4.1) System Startup

The startup {(or bootstrap) operation consists of simply placing

the system diskette in drive 0 and initiating the hardware bootstrap

routine. The objective is to bring the system "alive". If all goes
well, then PIL acknowledges the startup operation with the following
message and prompt on the terminal:

QORTOS DEV=1.0 (4.5.79) NOW RUNNING
IF IN DOUBT, TYPEZ HELP

GO,

The messags gives the development number and the implementation

date of the current version of PORTOS for identification purpos=s. The

prompt "GO," is the PIL communications envivoament indicator. The

o
t

commands presented in Chapter 3 are now available to the user. There

is no logging in or any other mandatory initialization procedure

If an error is detected during the processing of a command, the
user 1s next prompted with "ER," following the arror message. This i3

to draw attention to the fact that the previous command has been
ignored, Only successful completion is followed by the "GO," prompt.

Any command that 1s not recognized, gives rise to the message

<command name> IS NOT A PORTOS COMMAND

Three characters have specilal control functions during input from
tha terminal., "RBackspace™ (CTRL and H) erases the most recent
character in the input string. "Del" cancels the whole line, to which
the system replies with the message "*CANCEL*" on thg cancelled 1line,
and the special prompt "?" on tha next lins. "Break" (CTRL and P) 1is
the "panic button". The system responss is to display "*BREAK*" on a
new line, abandon the current activity, whatever it may be, and return

the user to the PIL communications environmant. These characters are

effective regardless of the current communications environment.

2.4.2) Communications Environment Hierarchy
As soon as the system is started up, and whenaver 1t is 1idle
thereafter, the user enters the PIL communications environment. This

is regarded as the top of the hierarchy. Tha user may, depending on

what commands are issued, either remain in this environment or enter
any other that exists under it. Entr to and exit from a
communications environment is achieved by issuing the appropriate
command [821]. Exit from an environment is always to the "parent”

above.

PIL commands create thelr own sub-communications environment only

when further commands are required to perform the specified operation,

such as file editing; or confirmation is required for a potasntially

destructive operation, such as diskette initialization; or user
convenience dictates it owing to multiple-parameter input, such as

date and time initialization.

The Texas Instruments DX 990/10 control language, for example,

i

always prompts thz user for every paramcter, but simplifies the task

by retaining the latest entry. That is to say, cach command creates
its own communications snvironment, even 1f only to accept a single
parameter. The TSS/370 control language, on the other hand, has a

partial prompting mechanism for any missing mandatory parameters.

PIL commands, aided by default settings, require the minimum

nunmber of parameters. The presence of mandatory parameter

4]
v}
(]
6]

inherent in ths samantics of the command, which makes them easy to

membder. This renders the creation of any additional communications

s

environment unnecessary. The rigidity of the resulting mechanism 1is

balanced by freedom Erom the overhsads associated with the prompter

~

program [65].

In order to ensure system integrity, the user should terminate

his interaction with the computer, that is to say, unload diskettes or
switch power off, only when he 1s in the PIL communications
environment and following a prompt. This is the "safe" state, when no

access operations are in progress that may corrupt the £iling

2.5) PIL Procassor

The function of a language processor is to bridge the gap between
the virtual computer defined by the language and the host computer on

1ich it is to exist. The processor of PIL

-

s the PORTOS operating

2.5.1) Compilers and Interpreters

Interface language processors range from simple interpreters to
big multi-pass compilers. For example, JCL/360 is compiled, whereas
GEORGE3 is interpreted. It is also possible to compile a language into
some intermediate code and then interpret this <code by a resident

runtime system {47, 55].

Portable control languages such as UNIQUE, GCL, and ABLE are ail
implemented by compilers [72]. Theilr machine-independent commands are
translated into the equivalent commands of the host operating system.
These compiler-generated commands are then sxecuted by tha system as

if they were issued directly by the user himself.

[\
&2

Compile

]
w

offer several advantages. They can be made to generate
commands that ensure the optimal use of the target machine and exploit
its desirable features. Because compiler output is predictable,
changes can be readily made to accommodate long-term variations in
hardware availability. Furthermore, theay enable character code
conversions to be easily made in networks of dissimilar computers.
Their major disadvantage 1is the time overhead, which is
accaptable in batch mode but not for interactive use. The alternatives
are either to base the interface language on pre~compiled procadures

or to make it directly interpretive.

PORTOS adopts the latter approach. Interpretive processing
minimizes the computer responss time and is ideally suited to the

command-and-response type of processing for which PIL is designed.

2.5.2) Processor Facilities

PORTOS treats the real computer as the host, and not its
operating system. It translates PCL commands into a form which it can
understand and obey directly. In this context, the term "real" refers
to the computer defined by the host assembly language. The fact that
this computer is an abstraction of even simpler machine operations is
ignored, Dbecause the assembly language is sufficiently closa to tha

hardware for all control functions reguired by PORTOS.

This approach avoids the overheads, which would otherwise be

incurred, of translating PCL commands into host system commands before

they can be obeyed, and of de-translating host replies into PRL
constructs., It also protects PIL from the influence, for example on

filenames, of any would-be host system.

In order to maintain this service, PORTOS provides Ffacilities for
user communication, the storage and access of information on diskette,
loading and execution of programs, memory management, and Thardware

— b

control. Their details are presented in Chapters 4 and 5.

2.5.3) Processor Portability

PIL is made portable by the availability of its processor on

different computers. The aim is to simplify this availability so as to
maximiza the number of host computers. The portability under

1
¥

consideration here, therefore, is that of the PORTOS operating system

1

ne PIL processor.

in its capacity as t

To consider thz portability of an operating system may appear in
the first instance as a contradiction in requirvements. An op2rating
system is designed for low-level hardware control on beshalf of the
user, for which it reguires the intimacy of access that only the host
assembly language can provide. Portability, on the other hand,

-1
t

requires machine independence in order to have freedom from the

binding characteristics of the underlying architecture.

gtudies have shown that only about 5% of an operating system 1is
actually machine dependent, and that the rest can be expressed in

high-level algorithmic terms [17, 87]. Adharing to this approas

i
Q
oy

I

PORTOS achieves its portability in three steps. The first is its
separation into machine-dependent and indepandent parts during design.
This is followed by the representation of its machine~independent
parts in suitably machine-independent algorithms. The final step is

the use of CORALG6 to implement these algorithms.

The concept of high-level operating systems without portability

is not new. The Burroughs Corporation,

h

or example, have bsen using
Extended ALGOL and ESPOL to write their Master Control Program (MCP)

[Sa1t

opzrating systems on the B5000 and B6000 range of computers since 19561

—
(92
N

fo—
e

Thes2 languages, however, are orientated towards the particular

host architecture and hence the MCP is not portable. Extended ALGOL,

for =2xample, 1s 80% ALGOLSDO and 20% extensions but in a typical

program the extensions constitute about 50% of the code [12].

Other similar systems include ths RMX-30 real-time operating

=

system written in PL/M for the Intel 8080 microprocessor [13], the

N

EUS time-gharing operating system written in PASS for the DEC PDP-11

computer [80], and the MCTS operating system written in MALUS for the

CDC STAR computer [57].

1

The objective behind such high-level operating systems is

®

increased readability and maintainability [99]. Mor time 1is spent
reviewing software than actually writing it, Dbscause most systems are
in a constant state of development during their lifetime in order to
keep up with changing demands. High-level language constructs are

logically and syntactically closer to natural languages, so that

programs become easier to understand and modify.

Portability is a recently recognized objective. The arguments
against it were that, in addition to the basic unsuitability of
high-level languages to systems programming, the architectural
differences between computers would render the operating system of one
unreasonably inefficient on another [10, 31, 32}. It has been shown,
however, by such operating systems as SOLO [38], MUSS [33], UNIX [5¢],
Os6 [81], THOTH [16], and TRIPOS ([74], that careful design and
implementation will offer portability at an acceptable level of

efficiency.

The two issues normally considered when assessing the efficiency
of an operating system are: (1) the interface language, and (2) its

implementation.

Interface language efficiency determines the wusability of the
computer at user level, based on the syntactic and semantic features
of the language. It is measured in terms of the work invested or the
number of commands issued by the user in order to achieve a given
objective. Portable operating systems, by providing the same commands
and facilities on different computers, eliminate such variations in

efficiency; thus leaving the implementation as the only issue.

Implementation efficiency determines the ease with which the
computer can process user commandse. In other words, 1t 1is the
efficiency of the operating system itself. The factors affecting it

are program size and execution speed. Program size determines the

amount of space occupied by the system, 1n memory as well as on disk,

which in turn determines what is available to the user. Execution

speed, in this respect, is not the actual speed of the computer but

the elapsed time between consecutive commands.

tmplementation efficiency is, therefore, reflected in the user
interface as storage utilization and response time. Their minimization

is sought so as to increase the overall system usebility.

PORTOS differs from the above-mentioned operating systems in two
respects: firstly, it is meant for use on personal computers.
Secondly, its design objectives az. user-orientation and friendliness,

to which portability is a major corollary.

The limited storage capacity and speed of microcomputers mean
that care must be taken to ensure minimal rescurce consumption by the
System. The PORTOS design is, therefore, orientated towards simplicity
and ease of implementation; the objective being to minimize, firstly,
the adverse effects on the user interface, and secondly, the

fluctuations in efficiency between the various implementations.

The user would be affected if, for example, the full facilities
of the interface language were not available due to storage
limitations on the hogt computer; or the storage requirements of the
operating system were to inhibit the transfer and development of large

programs; or, to & lesser degree, the response time were to vary

noticeably from computer to computer.

A portable system is always more wasteful of storage space and

slower in execution than the hand-coded assembly version. This is due

29a

to not only the inherent languag

and compiler lnefficiencies but also

el - mi ~y - 3 .
the programming m('thOGOlogy dlctated by pPortability requirements Th
cme . e

problem is resolved by the moduy? . ,
@uiarization apg Structuring of the

5 s at i [R SRy - 3
Operating system, as well ag the choice of implementation 1
° lenta language.

These fa S 5% Flhe .
Thes actors, as they apply to PORTOS, are presented in detail

in the subsequent chapters, Presented below, &s an example dre the
g s e
consiaerations taken into account when designing the facilities for

information sStorage and SeCurity to meet the above constraints
C .

4 major function of computers is to store information and allow
the user access to it On request. The logical Structuring of this
information can take the form of a database (also called a databank)
oY individual files. PORTOS employs a conventional filing system
because, as it was pointed out in Section 2.1.2, the storage

limitations of microcomputers make databases unsuitable to implement.

A filing system can be organized in different ways. One approach
that is particularly well-suited to random-access devices is the

tree-structured filing system. In this organization, nodes represent

the directories and branch lines represent the paths leading to each

file or other (sub-) directories. The structure can be extended to any

depth or level of complexity.

There are different ways in which such a filing system can be

: i whole of the
Mméde available to the user. He may, for example, view the who
58 & f1 at an
filing system as one unit and be allowed to access any file at any
b‘.\

File pathe 11s approach
time by specifying the relevant directory-to-file path. This éapp

is exemplified by the DX 10 operating system, where any number of
sub-directories may be specified before the target file.
Alternatively, he may be required to Mattach" to a particulax
directory and be allowed to access only those files that exist under
it. Naturally, those files that exist under a different (sub-)
directory Dbecome accessible following & new attach operation. An

example of this approach is the PRIMOS operating system.

These multi-level filing systems offer the user additional power
in organizing or grouping his files. The resulting implementation,
however, 1is space and/or time consuming, either or both of which may
be critical on small computer systems. This is why PORTOS employs a
single-level filing system, as mentioned earlier 1in Section 4.3.1,
where a single directory contains all the files and sub-directories
are not allowed. This approach is similar to that employed by the

RT-11 operating system of DEC PDP-11 computers.

The hardware configuration for which PORTOS is intended was
presented in Section 2.1.3. Each diskette is taken as an independent
unit and represented by a self-contained directory. The user himself
acts as the "master directory" in keeping track of what each directory
(or diskette) contains. The diskette directory is implicitly defined
during file access operations and are therefore hidden from the user.
This approach was chosen because it is the simplest and the least
resource-consuming form of the tree-structured filing systems. 1t

facilitates not only the implementation but also the user interface.

Two vital issues related to information storage are privacy and

security. Privacy 1s the protection of user files against unauthorized

29%¢

access while securit . .
é ' urity is their protection against malicious or

accidental damage.

PORTOS ha '
as no facilities for privacy because, on single-user

gystems, the user 1s the sole owner of the complete system and all its

1 ey @y - N)
files, even if only conceptually. By the same token, there is assumed

to be no danger of malicious destruction of information.

Protection against accidental damage or loss, however, 1s & major
issue. The damage may result from a command inadvertantly issued by
the user oY Some computer error, caused by either the hardware or the
software. Moreover, diskettes, owing to their manufacturing
characteristics and limitations, are particularly vulnerable to

physical damage through their handling by the user.

Security 1S maintained by duplicating the infoymation stored on

the system. On large systems, this operation (called dumping) involves

the copying of all those files that have been created or accessed

since the last dump. It may be per formed automatically by the

operating systeml at regular intervals or it may be command-initiated

by the operator. 1n cither case, the user remains unaffected and

therefore unaware of the qump operation taking place; except IO,
- Q A -

: i iain the 1ncrease in
possibly, a message on his terminal to expid

1nacc sibili crtain informatlicn.
spons] { ¢ access bility o ce& a
resp se time Or the temporary in £

aval ity of a peripheral device
i i) sesumes the availabli
Automatic dumping assum
i ; timer program to
dedicated to this purpose. and also the running of a prog
'] environment.
he d y in & multi-programmlng (oxr tasking) environmen
initiate the dumpe

ro
o]
Q.

Ne ey assumptlion 1s up[)]C-\b N 1 N
. Lo Lhe K1ina of person' fole) + fo~
a < I[lE/ uters X

which PORTOS is meant. Firstly, &
¢ G

Sulitah .
Sultable dedicated peripheral is not

avallable owing to ec Cm
ave 9 *o economical reasons, and secondly, they do not hav
~XYr e ave

the capaclty to support effective multi~prOQramming

A limited form of automatic dumping which is applicable to

ersonal computers is the ati) R
p creation of a “backup" copy of all those

files the contents of which are modified by the editor. This way if

- - T) 7Y ¢ Ty

anytning goes wrong, a copy of the original file is available to the
s [y = - = i

USEr « slnce a separate device cannot be made available, however, this

backup copy 1s kept on the same device, which creates two problems.

Firstly, these backup copies occupy valuable space on diskette;
and deleting them to make room for other files, which is a natural
tendency, defeats the whole purpose of making copies. Secondly, 1f the
diskette directory is corrupted or the diskette itself is physically
damaged, then the whole diskette becomes inaccessible and both the

original file and its backup copy are lost.

PORTOS employs the command-driven approach, enabling the user to

dump his files as and when he sees fit. The purpose-~built MOVE

command, the details of which are presented in the next chapter, cdan

] indivi iles directory to another
copy either individual files oI the whole N

diskette. This alternative places the responsibility of securing his

R a torage
files on the user himself, but makées no additional demands on S g

or the processing power of the computer-
officienct system that is edsy

As a result, PORTOS is a simple,

to implement and use.

2%e

CHAPTER 3 : PORTOS INTERFACE LANGUAGE

3.1) PCL Commands angd PRL Responses

PCL commands are presented in their respective groups as definec
in Section 2.2.1. This division is for managerial purposes only. It
has no effect on how or when the user may issue them, or how they are
handled by the system. All file reference parameters, unless otherwise
stated, refer to files on the user diskette with no modifications to

their suffix names.

PRL responses are presented as appropriate to each command. Those
that apply to more than one command are mentioned only on their first
occurrence. Their presence should be assumed from then on whenever

applicable.

The language constructs are presented using the following
conventions: all upper-case words, either in the command or output
string, appear in full; command parameters contained in square
brackets ([]) are optional; and parameters containsd in sharp brackets

(<>) are replaced by the appropriate PCL entries.

3.2) File Handling Commands

3.2.1) CREATE Command
CREATE <characterfile reference> [,E=<eocf command>]

. : i t a
Enters the CREATE communications environment 1n order to create

30

the referenced file on diskette, and accept input from the terminal

until the end-of-file command is issued.

The over-writing of files is not allowed. If the user wishes to
re-create a file using an existing reference, he must first delete the

previous version. Otherwise, the command is ignored with the message

<file reference> ALREADY EXISTS

This 1is a precaution against accidental destruction of files and also

guarantees the uniqueness of each file reference.

The environment indicator is the ASCII character "backarrow"™ (),
following which any sequence of characters terminated by carriage
return (including null) may be entered. The maximum nunber of

characters per line is 80, which is the maximum width on most terminal

devices.

The end-of-file command to terminate the CREATE environment is
the string "OK" appearing as thes first two characters in the input
line. All trailing characters except carriage return are ignored. The
user has the option to change this command, 1in case the same string

appesars as part of his input, simply by specifying

E=xx

as a parameter in the command line, where xx are any two ASCII

characters.

31

3.2.2) DELETE Command

DELETE <file reference>

Deletes the referenced file from diskette if it is not protected
against deletion. If the file does not exist, then the command is
ignored with the message

<file reference> NOT FOUND

If the file does exist but it is protected against deletion, then

the command is ignored with the message

<file reference> IS LOCKED

3.2.3) RENAME Command

RENAME <oldfile reference>,<newfile reference>

Changes the file reference from oldfile to newfile. The contents,

characteristics, and attributes of the file remain unchanged after the

operation. The command is ignored if newfile already exists.

32

3.2.4) COPY Command

COPY <sourcefile reference>,<targetfile reference>[,0UST]

Creates targetfile and copies the contents of sourcefile to it.

Sourcefile remains unchanged after the operation. If targetfile

already exists, then the parameter OUST comes into effect. If present,

targetfile is over-written, providing it is not protected. Otherwise,

the command is ignored.

3.2.5) LOCK Command

LOCK <file reference>

Puts a lock on the referenced file in order to protect it against

deletion.

3.2.6) UNLOCK Command

UNLOCK <file reference>

Removes the lock on the referenced file.

33

3.2.7) LIST Command

LIST <characterfile reference> [,NUMBER]

Lists the contents of the referenced file on user terminal. The
listing, which is always terminated by the string "*EOF*", is preceded
by one and followsd by two blank lines as delimiters. The optional
qualifier NUMBER causes the display to be numbered from 1. If the file

is non~ASCII, then the command is ignored with the message

<file reference> UNSUITABLE FOR THIS OPERATION

3.2.8) PRINT Command

PRINT <characterfile reference>[,<qualifiers list>]

Lists the contents of the referenced file on the printer. The
listing is always terminated by the string "*EOF*" and form feed. On
those printers where form feed is inapplicable, it is replaced by an

appropriate number of line feeds.

The file reference parameter has two optional qualifiers: NUMBER,
to number the listing, and TITLE, to include a hesading. The numbering
is subject to the same constraints as in the LIST command . The
heading, which is repeated at the top of each page, contains the file
reference, the date and time when it was produced, and the page
nutber. The qualifiers may appear in the 1list in either order

separated by commas.

34

3.3) Software Development Commands

3.3.1) EDIT Command

EDIT <characterfile reference>

Enters the EDIT communications environment in order to edit the

referenced file. The response to the command is:

READY TO EDIT <file reference>

E?

where "E?" (for Edit) followed by one space is the environment

indicator, following which the user may issue any edit command.

The exact nature of the EDIT comnunications environment is
outside the scope of this current development. It is assumed that a
suitable editor will be subsequently included 1in the system. No
definition 1is therefore given of 1ts commands, except those that
affect PIL directly. The same also applies to the other commands in

this group.

Editing is a major operation in file maintenance and software

development. It has been shown that more than 75% of the commands

issued during a typical session are editing commands [9]. They should
have the same syntax as PIL commands, but in view of their extensive

i e or two characters.
use, the names may be abbreviated to one o c

There are two commands to take the wuser out of the EDIT

ironment. QUIT, to abandon it, and SAVE, to terminate it. QUIT does
env .

35

not take any parameters and the editor responds with the message

EDIT ABANDONED

after which the wuser is returned to the PIL communications

environment. The original file remains unaltered. The SAVE command has

on2 optional parameter:

SAVE [<Kfile reference>]

If the parameter is omitted, then the edited file is saved under
the original reference. The previous version is over-written but the
new file assumes its protection attributes. In other words, if the
original file has a lock on it, the editor will over-write it with the

new version but the saved file will remain protected.

If the user specifies a new reference and it already exists, then

he is prompted with the question

REPLACE?

because those systems that allow the over-writing of files without

confirmation are considered unsafe. If the answer is YES, the file is

over-written and the previous version is lost. If it is NO, then the

user is returned to the EDIT environment. Files are over-written in
=3 2 [S4

order to economize on diskette space. File generation numbers, whereby

different versions of the same file can exist under the same

reference, do not exist.

36

3.3.2) Language Processing Commands

<language name> <{sourcefile reference> [,P=<options list>]

Any language processor may exist under PIL. The command name 1is
taken from the language name either in full, such as CORAL and PASCAL,

or as an abbreviation of it, such as FORT for FORTRAN and MASS for

Macro Ass=mbler.

The sourcefile reference is a mandatory parameter, containing the
program to be assembled or compiled. Output from the processor is also
sent to files, the references for which are taken from the source
filename with the suffix name modified accordingly, as specified in
Figure 2.2. Any existing files are automatically over-written. This
approach was adopted because studies have shown that, in spite of the
desirability of interactive compilation to improve computer usability

[30], such facilities are seldom used [9].

In order to economize on diskette space, however, the processors
display all errors on the VDU by default and produce source listings
only on request. The behaviour of the processor is controlled by the
options 1list parameter, which takes the form of a character string.

Thesa options are particular to gach processor.

37

3¢3.3) LINK Command
LINK <objectfile reference>

Enters the LINK communications environment in order to link (or
consolidate) the referenced object program into an executable binary
program. If the suffix name in file reference is omitted, then ".0" is

assumad. The system responds to the command with

READY TO LINK <file reference>

L?

where "L?" (for Link) followed by one space 1is the environment
indicator, following which the user may issue any link command. When
all address references in the object module have been resolved, the

system displays the message
LINK COMPLETED

The usaer should then save the linked program in a binary file on

diskette with the SAVE command, which has the following format:
SAVE [<file reference>]

1f the parameter is omitted, then the original file reference is taken
with the suffix name ".B". Any existing version is over-written. If a
different file reference is given and it already exists, then the
confirmation procedure 1is the same as in EDIT command. The user may

also QUIT the LINK environment.

38

3.3.4) RUN Command

RUN <binaryfile reference>

Loads into memory from diskette and executes the referenced
binary program. If the suffix name in file reference is omitted, then
".B" 1s assumad. The user remains in the environment created by this
program until an exit is made to the PIL environment, either normally

on completion or abnormally on error.

3.3.5) DEBUG Command

DEBUG <binaryfile reference>

Enters the DEBUG communications environment in order to examine
the executional behaviour of the referenced binary program. If the
suffix name is omitted, then ".B" is assumed. The system responds to

the command with

READY TO DEBUG <file reference>

D?

where "D?" (for Debug) followed by one space is the environment
indicator, following which the user may issue any debug command. Exit

from the DEBUG communications environment 1s made with the QUIT

command .

39

3.4) Inquiry Commands

3.4.1) HELP Command

Enters the HELP communications environment in order to provide
the user with information regarding the commands available in the
system. The 1initial response to the command is to display the

following on the terminal:

PORTOS OPERATING SYSTEM COMMAND MENU

COMMAND TYPE GROUP NUMBER

FILE HANDLING
SOFTWARE DEVELOPMENT
INQUIRY

SYSTEMS

ALL (NAMES ONLY)

DV D W N -

WHICH GROUP DO YOU REQUIRE?

Depanding on the wuser's vreply, the information containad in
Appendix C is partially displayed. Any reply outside the range 1 to 5

is ignored with the message

1 TO 5 ONLY PLEASE

and the prompt repeated. The partial command display is then followed

by the prompt

DO YOU NEED HELP ON OTHER COMMANDS?

40

T answer is YES Cnitd . .
If the answer is YES, the initial menu is displayed again and the user

1s asked to select the group on which he needs help. If NO, he is

returned to the PIL environment with the message

DONE

The partial display of the menu, and only after an explicit
request from the user, offers several advantages. Firstly, the user is
given help only if and when he needs it. Secondly, when he does need
help, he is given the chance to concentrate on his particular area of
difficulty without having to repeat what may be already familiar to
him. Thirdly, the processing time of the command is minimized by

restricting the amount of information displayed.

This particular HELP command provides the user with information
on the wusage of those commands that are available to him in the PIL
communications environment. He may also nszed help on the commands
available in other environments. To cater for this situation, PIL
adopts the IBM System/370 TSO control language approach [65]. Each

communications environment has its own HELP command.

3.4.2) FILES Command

FILES [<parameter list>]

Displays the contents of the user diskette in terms of files on

the terminal as follows:

41

FILES ON DISK : <diskette name)>

<file reference 1> ... <file reference 6>

o e 0 8 8

where "diskette name" is the name given by the user to that diskette

during initialization. It is used for identification purposes only and

is not crucial to the processing of the command. Six file references

are displayed per line.

If the diskette is empty, say, after initialization, then the

following message is displayed:

FILES ON DISK : <diskette name>

NONE

The command may optionally take up to three parameters: SYSTEM,
PRINT, and DETAIL, any or all of which may appear in the list in any

order.

The parameter SYSTEM causes the contents of the system diskette
(in drive 0) to be displayed. The parameter PRINT sends the display to
the printer. The listing on the printer includes a heading by default,
indicating the date and the time when it was produced.
The parameter DETAIL causes additional information on each file

to b included in the display. The format is one file reference per
e ¢

line as follows:

42

FILES ON DISK : <diskette name>

REFERENCE TYPE PROTECT SIZE

REFERENCE is the filename followed by its suffix, if present. TYPE can
be ASCII, OBJECT or BINARY. PROTECT is either YES, if the file is
protected against deletion, or NO, if it is not. SIZE gives the length

of the file in number of sectors that it occupies on diskette.

3.4.3) SPACE Command

SPACE [<parameter list>]

Displays the available space on user diskette 1in terms of

sectors. The message format is as follows:

FREE SPACE ON DISK : <diskette name>

<n> SECTORS 0OUT OF <m>

where "n" is the number of free sectors and "m" 1is the total number of

sectors on the diskette. If n is equal to zero then the message "*DISK

FULL*" is also displayed.

The command has two optional parameters, SYSTEM and PRINT. Either
or both may appear 1in the parameter 1list in either order. The
parameter SYSTEM gives the free space on the system diskette and PRINT

sends the output to the printer.

43

3.4.4) TIME Commangd

TIME

Displays the date and the time of day on the user terminal.
Assuming that the indicators have been initialized correctly (using
the relevant PIL command), the message will have, for example, the

following format:

16.JUL.79 13:22:46

The command may also be issued without first performing the

initialization, in which case the time-~of-day indicator will display

the elapsed time. For example, the message

00.222.00 00.26.53

means the system has been running for 26 minutes and 53 seconds.

3.5) System Commands

3.5.1) INDISK (initialize disk) Command

INDISK

Enters the INDISK communications environment in order to

initialize the diskette in drive 1 as an empty user diskette.

44

Initialization ins 3 5 w4l . . .
involves the writing of certain information to the

diskette in pre-defined locations, invisible to the user but essential

for housekeeping functions. It enables PORTOS to recognize and use new

diskettes that contain either alien information or none at all.
The system responds to the command with the following prompt:
NEW DISK IN DRIVE 12

The user should place the diskette to be initialized in drive 1, if he

has not already done so, and type YES. The next prompt is
NEW DISK ID?

to which the user should reply by typing in the name he wishes to give
that diskette (up to a maximum of six characters). The system then

responds with the following message and prompt:

READY TO INITIALIZE <diskette name>
OK IF CONTENTS LOST?

If the answer 1is YES, then the diskette 1is 1initialized and ths

completion of the process 1is acknowledged with the message

DONE

after which an exit is made to the PIL communications environment. If

the answer is NO, either to this or the first prompt, then the process

is abandoned with the message

45

INDISK ABANDONED

' o S i
The user is prompted twice for confirmation simply as a safety

M feYe! 3¢ hi Y N O 3 3
measure, because this command will irreversibly destroy the original

contents of the diskette in question.

3.5.2) INTIME (initialize time) Command

INTIME

Enters the INTIME comnunications environment in order to
initialize the system date and time-of-day indicators. The user is

prompted with the following questions:

INITIALIZE TIME
DAY (1-31)7 <n1>
MONTH (1ST 3 LETTERS)? <string>
YEAR (LAST 2 DIGITS)? <n2>
HOURS (0-23)? <n3>
MINUTES (0-59)? <n4>

where ‘"string™ is an ASCII string and "n1" through "n4" are either
one- or two-digit integer numbers as appropriate. Incorrect entries
are ignored with the message

CANNOT BE <entry> TRY AGAIN

and the prompt repeated.

46

3.5+3) MOVE Command

MOVE <data>,<source drive>,<target drive>

Enters the MOVE communications environment in order to transfer

data from the diskette in source drive to the diskette in target
drive. The data being moved may be the contents of either a single

file or the whole diskette.

If the data parameter is a file reference, then that file is
moved. If a file with the same reference already exists on target

diskette, then the user is prompted with

for confirmation Dbefore the move takes place. If the answer is YES,
then the existing file is over-written and an exit is made. If it 1is

NO, then the process is abandoned with the message

MOVE ABANDONED

and the user is returned to the PIL environment.

This option of the command serves two important functions. It

1 1 g s as com an also
enables the user to install his own programs as ommands d s

allows him to modify the existing system programsSe.

Any Dbinary file can be moved from USER diskette to SYSTEM

diskette and installed as a command in its own right. After the

47

operation, the fi . : .
U + the fllename (without its suffix) becomes the command name,

read to be issusc :
7 issued like any other PIL command. Any function or

non-target peripheral can thus be incorporated into the system, simply
by maintaining its handler Program on SYSTEM diskette.

Modifications to existing system programs may be carried out in
order to add a new facility, to improve efficiency, or to increass
power. The relevant source program is first moved from SYSTEM to USER
diskette so that it becomes accessible to the user. It may then be
edited and compiled like a user program. The final step would be to
install the resulting program back on the SYSTEM diskette. This

approach naturally requires knowledge of the system and its

implementation language.

The MOVE command also offers the ability to rename commands, into
a foreign 1language 1f necessary, as befits the user's needs. The
ability to augment or tailor PIL makes the system adaptable to
changing needs and helps the user to make better use of it. On the
other hand, the damage that can be done to language stability must
also be borne in mind. The same command may vary in behaviour on two
different computers because of modifications or users could end up
with totally different command repertoires depending on their

applications and choice of command names.

If the data parameter 1is the ASCII character asterisk (*), then

the complete contents of source diskette are moved to target diskette.

S e i 1 sot
This option is necessary to make copies of diskettes. The system

responds with following message and prompt:

43

MOVING DISK FROM {source> TQ {target>
<target> CONTENTS WILL BE LOST, OK?

£ 1@ g W 1
If the answer is NO, then the process is abandoned in the same

<

manner as before. If it is v¥Es, then the transfer takes place

following the message

MOVE IN PROGRESS...

If the target is USER, then the process is terminated with the

message

DONE

and exit 1is made to the PIL environment. If, however, target is
SYSTEM, then, not knowing the final contents of the diskette, the

command prompts the user with:

DONE
IS SYSTEM DISK IN DRIVE 072

so that if some other diskette is in drive 0, the user can reload the
relevant diskette. This prompt is nscessary to ensure correct system

configuration before continuing.

49

CHAPTER 4 : PORTOS OPERATING SYSTEM FACILITIES
M E S

4.1 Genaral Structure

The PORTOS operating system is divided into three levels. The top

level is the PIL interface, which consists of the PIL decoder and

command handler programs. Tt is built on a common set of primitive
operations, the semantics of which define PORTOS. The second level is
the machine-independent kernel to support these primitive operations
and manage resources. The bottom level is the hardware interface. It

contains the machine-dependent peripheral drivers and interrupt

handlers.

This structure is similar to that adopted by UNIX, which is said
to be instrumesntal in its portability [59]. Although PORTOS achieves
its portability differently from UNIX, it nevertheless benefits from
this division. Firstly, it facilitates the functional classification
and management of system operations. Secondly, it enables the

separation of machine-dependent sections from the rest of the system.

4.2) PIL Interface

4.2.1) PIL Decoder

The Ffunction of the decoder is to establish and maintain
& - 4 - -l

communication with the user via PlL. It is, in effect, a translator

he system.
between the PIL constructs and the rest of t %

50

The decoder accents one pr .
~=PtS one PCL command at a time from the user, and

checks it for synte ic . .
yntactic correctnsss, 1f no error is found, then it

passes the command to the relevant command handler program for

interpretation. This is done by setting wup a parameter table in

memory, searching the system diskette for the

named command, and
e . o .
initiating its handler program. Tnitiation is achieved by loading the

program into memory and transferring control to it.

When the active command handler program terminates its execution,
the decoder resumes control. It picks up the status code from the
program, translates it into the relevant PRL construct, and conveys it
to the user. After this, the decoder is ready to accept thsz next

command.

4.2.2.) Command Handler Programs

Each PCL command 1is interpreted by its corresponding command
handler program. The interpretation is actually performed by breaking
up the command into a series of primitive operations, that provide
such services as file management, memory management, input-output,

etc.

Command handler programs recognize each primitive operation by

.) . . s A
| m which to send or receive information. |
its name and the parameters by which

request for service is made by passing this name to the kernesl and
L o -

a0 1 1 28]
setting up the necessary parameters. Error checking 1s performed

before or after each request, as appropriate.

51

aw 3 . -
On exit from a command handler program, the control is returned

to the PIL decoder via the relevant primitive operation. The function

of the kernel now is to convey the necessary information to the

decoder via its parameter table.

4.3) PORTOS Kernel and Primitive Operations

The kernel is made up of six managers, which are similar in
concept to monitors [51]. Each manager is responsible for a particular
resource, and is defined by one or more primitive operations (or
primitives) to perform its function. A primitive itself may be defined

in terms of simpler primitives.

Managers, and primitives within them, are developed as
independent modules. During operation, the primitives interact, not
only with each other, but also with the other parts of the system,

through their individual interfaces.

A manager may be considerad as either high or low level,
depending on its closeness sither to the PIL computer or the hardware,
without becoming machine-dependent. The file manager, for example, is
high-level, whereas the memory manager 1s low-level. A high—levgl
manager can regquest service from any other at a lower level, but not
vice versa. Similarly, a primitive may be either high or low-level,
depending on its closeness to PIL or the internal operation of the
These managers and their primitives are

manager to which it belongs.

described belows.

52

4.3.1) File Manager

The PORTOS filing system has a single-level tree structure as
shown in Figure 4.1. At the root of the tree is the directory and the
branches are the files. The directory contains one entry per file that
exists under it. This structure is repeated on every diskette used by
PORTOS5 so that each diskette 1is 1logically self-containad for file

manipulation.

Figure 4.1 : PORTOS Filing System

Entry ! - =l=- - => File
Entry ! - =-1- - => File
. ! ! .

. ! ! .
Entry ! -~ —-il=- - => File

Directory

Each directory entry contains the relevant information that is

necessary to access that file, as shown 1in Figure 4.2. The file

the logical name by which the user refers to the file.

Tts attributes determine the operations that may be performed on 1it,

while the sector number gives the location on diskette where the

is actually stored.

53

o .
Figure 4.2 : Directory Entry Format

Word 0 | Type ! Protect ! Attributes
Word 1 ! t
Word 2 ! File Reference
—————————————————— (Filename + Suffix)
Word 3 ! t One character per byte
—————— e e e padded with spaces
Word 4 ! ! .
Word 5 ! Reserved
Word 6 ! Sector no. ! Address of 1st sector
—————————————————— occupied by file
Attributes
Type 0 ASCII
1 Object
2 Binary

Protec 0 Off (unlocked)
1 On (locked)

The following primitives are provided by the manager for file

manipulation:

copY FILE(SOURCE, TARGET, KEY)

copies the contents of file in SOURCE to TARGET on
user diskette. TARGET is created if it does not
exist. If TARGET already exists, KEY determinas
whether to delete it (if KEY=1) or not (KEY=0) .

CHANGE PROTECT(NAME, PROTECT KEY)

changes the protect attribute of the file NAME on
diskette in order to protect or unprotect it

user
Tha attribute 1is changed to

against deletione.
v1ocked" if PROTECT KEY=1 and to "unlocked” if

PROTECT KEY=0.

54

DELETE FILE(NAME, DEVICE)

deletes the file NAME on DEVICE (SYSTEM=0, USER=1)

and removes its entry from the directory.

RENAME FILE(OLDNAME, NEWNAME)

changes the reference of file OLDNAME on user
diskette to NEWNAME,

The existence of a file is made known to PORTOS by its directory
entry. Any file access, therefore, whether for purposes of
manipulation or data transfer, involves its directory entry. The
following primitives are provided for thes related house-keeping

operations:

MAKE ENTRY(NAME, DEVICE, TYPE, PROTECT, SECTOR}

makes an entry for file NAME in the directory on
DEVICE with attributes TYPE and PROTECT. The
manager creates the entry and returns the address
(SECTOR) of the sector that is allocated to the
file.

FETCH ENTRY(NAME, DEVICE, SECTOR, TYPE, PROTECT)

searches the directory on DEVICE for file NAME. If
it exists, its address on diskette and attributes
are returned to the calling routine. If not, then
-1 is returned in SECTOR.

KILL ENTRY(NAME, DEVICE, SECTOR})

removes the entry of file NAME from the directory
on DEVICE. The manager then returns the address of
the file on diskette to the calling routine. If

the entry is not found, then SECTOR is s2t to -1.

File reference manipulation is an important feature of file

§ wi imitives e provided for the relevant
management. The following primitives are p f c

suffix name manipulation:

WHAT SUFFIX(NAME)

returns the suffix name of file NAME as the single
character following the period. If the file has no
suffix name, then space (blank) is returned.

NEW SUFFIX(OLDNAME, NEWNAME, SUFFIX)

changes the reference of file OLDNAME to NEWNAME
by replacing its suffix name with SUFFIX, which
should contain a single character. If OLDNAME has

no suffix name, then SUFFIX is simply appended to
it with the period.

All PORTOS files are sequential. The directory entry always
points to the first sector occupied by that file. If more than one

saector 1s occupied, then they are chain-linked to each other by

pointers. The last sector in the chain contains zeros in its pointer
field.

The format of sectors on diskette is given in Figure 4.3. The
first four words are the header, which PORTOS uses for its own

house-keeping purposes. In the current version of the system, only the
second word is used as a pointer. The other three words are reserved
in anticipation of future developments and expanding reguirements. The

total number of words per s2ctor is hardware-dependent.

56

Figure 4.3 : Sector Format

Word !
0 ! t Reserved
Y a ————
Word 1 ! Next Sector Pointer to next sector
Word 2 f f Reserved
Word ¢
d 3 ¢ ! Raserved
Word 4 ! ! o
. i ! Data
Word n ! !

4.3.2) Input-Output Manager

The function of this manager is to handle the transfer of data to

and from the peripherals. All transfers are achieved via channels. The

following primitives are provided for this function:

READ RECORD(CHANNEL, BUFFER, N, RESULT)

reads N bytes into BUFFER from CHANNEL. RESULT is

set to 1 if the end of file is read, otherwise it

is 0.

WRITE RECORD(CHANNEL, BUFFER, N)

writes N bytes from BUFFER to CHANNEL.

READ CHAR(CHANNEL)

CHANNEL.

reads a single character from

57

WRITE CHAR(CHANNEL, DATA)

wrirtes a single character from DATA to CHANNEL.

Three devices arc c i
S dare recognized by the manager: VDU, printer, and

iskette. ! : i
diskette The allocation of channels to these devices is given 1in

1 1 =3 3 - N
Figure 4.4. All channels are dedicated to their respective devices and

cannot be used interchangeably.

Figure 4.4 : PORTOS Channel Allocation for I-0O

Channel Device Function
0 vDU Input-Output
1 Printer Output
2 -9 Diskette Input or Output

Diskette input-output is a special case in that the transfer of
data takes place actually to or from a particular file. It 1is
necessary to associate the file in question with a given channel for
the required function and then to break this 1link between the two

after the completion of data transfer. These operations are performed

by the following primitives respectively:

OPEN (CHANNEL, NAME, DEVICE, OPER, RESULT)

s CHANNEL to file NAME on system (DEVICE=0) ov

(DEVICE=1) diskette to read (OPER=1) or write
The error codes to which RESULT is
given in Figure 4.5 Other

open
user
(OPER=2) data.
set on return are

errors cause the primitive to be aborted.

CLOSE (CHANNEL)

to terminate the data

closes CHANNEL S50 &s i
related file.

transfer to oOr from the

58

Figure 4.5 Error Codes in OPEN Primitive

Code Meaning
0 OK
3 File not found (read)
4 File already exists (write)

Channels 0 and 1 do not need to be opened or closad for any data
transfers. The manager maintains an input-output table for diskette
access, the format of which is given in Figure 4.6, where logical file

references are associated with physical diskette locations. The

¢

following primitives are provided to access this table:

SEEK IO ENTRY
returns the index number of the first free entry
£

in the table. TIf the table is full, then -1 1is
returnad.

LOOKUP (CHANNEL)

returns the index number of the entry for CHANNEL.
If it is not found, then -1 is returned.

SHUTDOWN IO

closes all channels and clears the input-output

table.

59

Table 4.6 PORTOS I-0 Table Format

Word Contents Function

0 CHANNEL Channel number

1 SECTOR Address of current sector

2 FUNCTION 1 Read, 2 Write

3 WORD Address within io buffer

4 BYTE 0 Top byte, 1 Bottom byte

5 BUFFER Address of io buffer in memnory

The following primitives are provided to handle the Jdata

transfers involving the VDU:

GET RECORD(BUFFER, N)

reads N characters into BUFFER from vDU

PUT RECORD{BUFFER, N)

writes N characters from BUFFER to VDU

The GET RECORD primitive is provided specifically to implement

the control characters defined in Section 2.4.4 for input from the

CDU. The PUT RECORD simply complements it on output.

4,3.3) Diskette Manager

Before a file can sensibly exist under PORTOS, it must be
o~

allocated space on diskette and the system must be informed of 1its

address When the file 1is deleted, the space that it occupies is
2 e

asts.

- 1 (S o
f"leased O & allocation in rpspons\, tO aubquuent (1|
& Y L e e 2 Y u

A sectc i 2 -
ector 1s the smallest addressable unit on diskette for

read-write operations and is £1

p nerefore, also the unit of allocation.

The function of this manager is to monitor the availability of all

L g =) 4
free sectors on diskette and allocate or reclaim them as required. The

. o .
following primitives are provided by the manager for this purpose:

GIVE SECTOR(DEVICE, SECTOR)

allocates a sector on DEVICE (0 for system and 1
for user diskettes). The manager returns the
address of the allocated sector in SECTOR. If the
requast cannot be granted, i.e. the diskette 1is

full, then -1 is returned in SECTOR.

RELEASE SECTOR(DEVICE, SECTOR)

releas

(D

s the sector on DEVICE at address SECTOR.

Each diskette 1s viewed simply as a collection of individual

sectors, numbered from zero to some hardware-dependent upper limit.
The manager maintains a bit array called the Diskette Status Array,
the length of which is egual to the total number of sectors on
diskette. Each bit represents one sector and, depending on its
position in the array, enables a particular sesctor to be individually

addressed. A sector is available if its corresponding bit is set and

it is unavailable if reset. Sectors are thus allocated and released,
respectively, simply by resetting and setting their corresponding bit
in the status arraye

Each diskette, being logically self-contained, has its own status
array to reflect 1its availability. This array is also allocated a
The array size,

sector and stored on the diskette to which it belongs.

being a function of diskette size in terms of number of sectors, 1S

determined during implementation.

61

4.3.4) Memory Manager

The m: 1 5 , .
nanager usas the variable-length partitioned memory

allocation scheme, T . :
4 neme. It assumes a contiguous word-addressable store of a

given size and allocates partitions from this area as needed.

The heart of the manager is its "free partitions list"” When a
request 1s made, the manager scans this 1list wuntil it finds a
partition that is equal to or larger than the demand. When it does,
that partition is removed from the 1list and its base address is
returned to the calling program. If the partition in question is
larger than the demand, then it is split into two. The first part
becomes the allocated area and the s=cond part is returnad to the list

as a new free partition.

The manager has the following three primitives for this function:

ALLOCATE(SIZE, ADDR)

requests the allocation of SIZE words. The manager
returns the start address of the allocated area in
ADDR if the reguest is successful. If not, then -1

is returned.

FREE(SIZE, ADDR)

releases SIZE words starting at location ADDR.

INSERT (ADDR)

inserts the block starting at location ADDR into

m 3 1 1 .
it i i 2 he ck 1is
the free partitions 1ist. The size of the blo

given in the first word of the block.

62

The free partitions list is kept in ascending order of partition

size at all times. Two global variables, HEAD and TAIL, point to the

beginning and the end of the list respactively. Scanning is done from

head to taill so that the first fit is also the best.

When a partition is freed it is returned to the list for
subsequent re-allocation. The first task of the memory manager at this
point 1s to check for adjacent free partitions, and if there are any,
to merge them into one. 1Its next task is to scan the free partitions

list in order to determine at which point to insert the new partition,

because this part of the memory manager 1s also responsible for

maintaining the list 1in ascending order. The actual insertion of

either the original or the resulting new partition is a simple matter

of adjusting pointers.

The manager maintains its free partitions list by creating

self-contained partitions in memory and linking them together with

pointers, as shown in Figure 4.7. The convention used is as follows:
the first word of each partition gives its length and the sacond word
is a pointer to the next free partition in the chain. The last

partition in the list contains a zero in its second word.

63

Figure 4.7 : Free Partitions Lis

i
{
f
{
\'2
93}
s
N
]

This way the manager 1is relieved from the necessity of
maintaining a separate list with pointers to blocks of memory. The
partitions themselves make up the list in the form of a chain. The

manager only needs to know where to find the first partition in order

to be able to scan the list. The advantage of this scheme lies in the

fact that when a particular partition 1is allocated, the memory

locations containing the 1link information (however few) are also

allocated as part of the partition, so that memory waste 1s totally

¢liminated.

[t
[
[
0]
=

When the system is started up, the whole of the availabl

] initi | 5 & i t+ition. In the ~course of the
memory is initialized as a single partition I

execution of PORTOS this original partition may ba split up into any

nunber of smaller ones, linked with pointers, depending on the
smallest partition that can be allocated is ten

requasts made. The

words There 1s no upper limit to the number of partitions that may

64

exist at an ime A1
Y time Dbecause thaye is no need to impose such a
e ~ . i - - 4

restriction. The oy A
e The manager doeg not care how many partitions thare are

as long as there is a path to follow from ths head of the list to the

taile.

If the wmanager cannot satisfy a request for memory, then no
action is taken except to inform the calling program of ths outcome.
Regarding the requests to release a partition, the validity of the
parameters 1s assumed and the partition is returned to the list
without any checks. The misuse of this primitive would naturally cause
chaos as it is capable of corrupting the free partitions list if

supplied with invalid parameters.

4.3.5) CPU Manager

The function of this manager is to share the CPU amongst the
various system and user programs that would be running on it. PORTOS,
however, 1is a single-user single-programming operating system and the

sharing of the CPU is performed on a sequential basis. The flow of

control is always from the active program, of which there is only one

at any time, to other programs initiated by it. The overall flow of

control during execution is given in Figure 4.8,

65

Figure 4.8 Flow of Control in PORTOS

Hardware
!
!
Startup Program
!
1
PORTOS Kernel {—-—-—-=--
! 1
i i
PIL Dacoder !
1 i
Command Handler !
Program !

The following primitives are provided by the manager for transfer

of control bstwen programs:

EXECUTE(NAME, DEVICE, RESULT)
initiates the binary file NAME on DEVICE. RESULT
et

is set to 3 if the file is not found and it is s
to 10 if the file is not binary.

LOAD(DEVICE, SECTOR)

loads into memory the binary program at SECTOR on
DEVICE and transfers control to it.

ERROR(NAME, CODE)

of error CODE involving the

informs the usar
kernel.

entity NAME and returns control to the

EXIT(STATUS)

returns control to the kernel with condition

STATUS (OK if STATUS=0). It is the responsibility
of this primitive now to initiate the PIL decoder.

4.3.6) Task Manager

The function o is i ;
- f this manager is to coordinate the operation of

the memory-resid imiti
= U L ps en Y 7 o
Y) t primitives of PORTOS, known as tasks, which are

Qe 1 2 n - 3
responsible for the overall running of the system. The organization of
o - . . .
PORTOS in memory during execution and the details of the task manager
are presanted in Chapter 5. The name is included here for

completensess.,

4.3.,7) Miscellansous Primitives

GET PARAM(ARRAY)

gets the next parameter from the input string and
places it in ARRAY.

SET TIME(ARRAY)

initializes the system date and time indicators
from ARRAY as shown below:

Array
Word Contents
1 Day
2 1st 2 letters of month
3 3rd letter of month and space
4 Year
5 Hours
6 Minutes
7 Seconds

FETCH TIME(ARRAY)

installs the system date and time indicators in

ARRAY as shown above.

67

4.4) Hardware Interface

he f not Qr ¢ a 1re errace to € (&4 s the up -
- @] h 2 h rdW" n ace S pr xsent o] jog
p

levels a uniform i
picture of the underlying architecture, and kee

{ 03 AWAYC o Se . .
PORTOS unaware of any changes. This is achieved by defining an "ideal”
hardware machine, and interfacing that to PORTO3. This machine is
described by a set of primitive operations

Rl ’

to drive its peripherals,

an inte and a
handle interrupts, and perform all other low-level machine operations.

4.4.1) Peripheral Drivers

A pevipheral driver is an assembly language program that actually
operates or drives the relevant input-output device to perform the
physical transfer of data on it. "Physical” mesans that the data is

transferred without being interpreted in any way.

Each peripheral has its own driver program and each driver 1is

designed to handle one unit of information at a time. For the terminal

this is a single character, for the printer it is assumed to be a
line, even if it is a character printer, and for the diskette it is a
block, the size of which may vary from computer to computer. The

particular details of each peripheral are hidden behind this interface

within the actual driver programs.
PORTOS recognizes the following primitives to drive the VDU, the

printer, and the diskette unit:

i
i

GET CHAR

reads a single character from the VDU keyboard

and, if necessary, echo-prints it on the screen.

PUT CHAR(DATA)

prints the single character contained in DATA
the VDU screen.

on

PRINT LINE(BUFFER, N)

Prints N characters from BUFFER, or until CR is
encountered, on printer.

DISKOP(OPER, DEVICE, SECTOR, ADDR)

reads (1f OPER=1) or writes (1if OPER=2) onz block
of information from or to the diskette in DEVICE
(0 for system and 1 for user) into or from the
memory location ADDR. The address on diskette 1is
given by SECTOR.

4.4.2) Interrupt Handlers

Interrupts are generated internally by events such as Thardware
check, illegal instruction, and real-time clock, or externally by
peripherals. The system has programs to handle these interrupts, so as

3 util i hei > nsibility to
to e@nsure correct system executlone. It is thelr respo %

1 int e and return to the
service the relevant interrupt or request, £

ex 1 <] ti em, as appropriate.
interrupted program Or exit to the operating system, pprop

PORTOS provides the two primitives, INTERRUPT ON and INTERRUPT

OFF. to onable and disable external interrupts, respectively. To
, >

control the real-time clock, the primitives CLOCK ON and CLOCK OFF are

provided.

4.4.3) Machine Operations

The following primitives are provided to perform the machine

operations relevant to the execution of PORTOS.

RESET MACHINE

resets or initializes the hardware as appropriate,
which may be done by either loading certain
registers or executing priviledged instructions.

SUPERVISOR CALL

generates a software interrupt

LOAD PC(ADDR)

loads the program counter with the contents of
ADDR.

Also included in this group is the Dbootstrap program. Its

function is to reset the hardware, initialize the memory as expected

by PORTOS, and transfer control to the kernel. The bootstrap program
is classified as being hardware dependent, Dbecause it has to conform

to the architectural requirements of the host computer.

70

CHAPTER 5 : SYSTEM DESIGN ONTO PRIMITIVES

This chapter presents the design of the mechanism by which the

~ ¥ £ o0~ : . o .)
system facilities explained in Chapter 4 are employed by PORTOS during

5.1) Memory Residency

PORTOS primitives are classified as either memory-resident tasks
or diskette-resident system routines. Tasks are vread 1into memory
during the initial startup and remain there for the duration of the
user's interaction with the computer. System routinass are brought into
memory whan needed as part of command handler programs and they are

removed afterwards.

Limited memory space makes this distinction necessary. Ideally,

the whole of the operating system should be memory-resident for

efficiency. The area occupied by the system, however, is lost to the

user who needs it for software development. Total memory residency 1is

. LU 3 ol opt 37
therefore impractical, and sometimes impossible, except for very small

operating systems OT process—-dedicated computers.

. : choice age t= ANC
The important considerations are the choice of thases tasks and

i cutior e minimum requirement that the
their management during execution. Th q

task have to satisfy 1is the ability to recover from any previous
= E _ at

computer. In addition, frequently~used

state and retain control of the

71

r
§
!
|
!
?

rimitives ma also bo deo:
P b be designed as tasks to provide fast service for

system routines. Na .
turally, all interrupt handlers are also

memory-~resident.) ¢ . :
Y They are not recognized as tasks, however, because

thelr operation is not controlled by PORTOS

System Tasks

Ut
°

.,

i
~—

The PORTOS primitives designed as tasks are listed in Figure 5.1.
They constitute the nucleus that 1is responsible for the initial
startup and subsequent error recovery operations, as well as the

interpretive execution of the PIL commands by the handler programs.

Figure 5.1 : PORTOS Tasks

Task
Number Task Name

ALLOCATE
FREE

INSERT

GIVE SECTOR
RELEASE SECTOR
EXIT

LOAD

DISKOP

GET RECORD
PUT RECORD
SHUTDOWN IO
FETCH TIME

_—
— O O W0 UT W N

3
|8

The memory manager assumes control of the available memory space

the requests from the rest of the

before all else in order to service

system The bootstrap program, having installed the tasks in

ses the control to the EXIT task. Its

pre-defined memory locations, pas

function now is to dete i } P
termine ths exit status, reset the system if

necessary, and initiate the PIL decoder.

- ! AN =
Command handler and user programs are all treated in exactly the

same way Dy the tasks. They are loaded into memory, albeit from

A i . _ .
different diskettes, and given control. During progressing, programs
may request service from any task any number of times. On completion,

they always return control to the EXIT task, which then initiates the

PIL decoder as before.

The SHUTDOWN IO task is part of the error recovery operation. All
channels are closed on error exit to the operating system in order to
ensure file integrity. The DISKOP task is needed by the CPU management
tasks to access the diskette. It also services all subseguent diskatte
input-output requests. The diskette management tasks provide service
for both the file and input-output managers, while the GET RECORD and

PUT RECORD tasks serve all system routines wishing to communicate with

ct
g
[
jort
0
[¢]
2]
°

5.3) Memory Organization

i ! i cutior is shown in
The sharing of the main memory during execution 15

Figure 5.2. The nardware—-dedicated locations are used by the computer

i ; i + c registers, etc. The size and
for such functions as lnterrupt vectors, gis ;

details of this area are totally machine dependent. PORTOS occupies

1 ; The are: in he
the top end of the memory for its data and code. The area 1 t

middle is available to both user and system programs for general use.

73

Flgure 5.2 : PORTOS Memory Organization

low address ! ! Hardware-dedicated

. ! Locations

! ! General
! ! Memory area

! ! Data area

! ! Systems tasks
high address ! ! and interrupt handlers

The data area of PORTOS is divided into dedicated and
general-purpose locations. The dedicated locations are used by PORTOS
for its tables, system variables, pointers, etc. The general-purpose
locations are used for passing parameters between programs and tasks,

as well as between the tasks themselves.

The tasks are placed in memory in the same order as shown in

p=
0

Figure 5.1. The order in which the interrupt handlers are installed

not important providing the interrupt vector locations are initialized

accordingly. Thess functions are the responsibility of the bootstrap

progranm.

5.4) Task Management

a : i 3lled in memory, the tasks remain
After they have been 1nstallec

74

dormant (or ina ive . .
. (Ctive) until they are "activated". Any task can Dbe

activated at any time. It will run to completion and return control to

its "activator", whi ay be ei
) + WNICh may be either a system program or anothar task.

All activation an¢ ¢ acti :
é nd subsequent de-activation requests are handled by

\’_'C - . .)
Znich erfectlvely functions as a switchboard between

the tasks and their activators.

To activate a task means setting up the relevant parameters and
passing the control to it, which is actually a two-part operation. Any
program wishing to activate a task makes a request to the task manager
using the identification number of that task (Figure 5.1). This is the
"logical™ first half. The task manager then determines the memory
location of the task in question and passes tha control to it. This is

the "physical" second half.

ot

The task manager 1is, therefore, he translator of logical

requests into physical activations. It keeps track of which tasks have

been activated and in what order, so that the flow of control is not

e

lost. For this purpose, a table, called the "task vector table", is

maintained in the system data area to monitor task entry points,

return addresses, and the originator of every activated task.

i - er tasks but recursion or
A task may activate any nunber of other t s

. . A .
i i Ko} activated task is not allowed. A
the re-activation of a previously a e

i e 1 e re-activated.
task must complete its operation before it can be re tiva

h

is achieved

s
o
0
@
=

The transfer of control to the task manager

. ~ t] € =~
£l h the software interrupt mechanlsm of the host computer. Task
hroug ha 2 IS

08 into so € i rupts.
i ti aquests are converted by PORTOS into software interrupts
activation re

75

The hardware respons
L2 ONsSe to g . . R
p software interrupts is to generate a "trap"

and transfer c¢ ‘6 a4 3
i control to a handler routine, which in this case happens

to be the task manager.

Two levels . N .
evels of parameter passing are involved in task activation.

Firstls the manager has 3 . . .
Y. manager nas to know the identification number of the task

Ho ctilva . .
to be activated; and secondly, the tasks themselves need to send or

receive data as part of their service. This communication takes place

via the system data area. The information that the task manager needs

is in a dedicated location but the tasks themselves use the

genaral-purposa locations for parameter passing.

There is only ons "active" task in the system at any time. It
more than one task has been activated in the course of an operation,
then the most recent task is active and the others are temporarily
dormant. The return of control from the active task is always to its
"activator", unless an 2rror is detected, 1in which case control 1is

returnzd to the EXIT task to determine the cause.

The mechanism by which the active task returns the control to its

activator is to request the activation of "task zero'". Since no task

‘ . _ . o S so , sigqnate
with that identification number exists, 1t is reserved to design

"the activator of the current active task". The manager removes the

active task from the chain, restores the state of the CPU to that of

. . a3t
its activator, and resumas execution with the new active task.

76

5.5) Logical Portability of porrOg

PORTOS i .
0SS is now ready to be lmplemented. Bafore proceeding with th

[t)

implementation details, however, it would pe appropriate to assess th

D

logical portability of the system. The term “logical portability"

aeans e - {entat
means freedom from orientation towards any particular computer during

design. Physical portability is achieved as a result of this logical

portability if it is accompanied by the wuse of a high-level

implementation language.

PORTOS is logically portable at this stage because 1its managers
are built on machine-independent algorithms that can be implemented on
different computers. The file and input-output managers, for example,
are portable owing to the high-level nature of their functions. They
are orientated towards the PIL virtual computer and have no contact

with the hardware in any way.

The lower-level managers, on the other hand, are made portable

through the recognition of the simplest and most common architectural
characteristics so as to maximize mobility amongst the potential host

computers, the abstraction of those hardware features that they

control, and freedom from dependence on hardware support.

: ¢ assumes the memory space to be
The memory manager, for example, as s y sp

one contiguous sequentially—addressable block and initializes its free

. . e icable to al
partitions list accordingly. Such a configuration 1s applicable to all

computers and no hardware support 1is needed for its management. Also,

iEi i o initialized to reflect other memory
the free partitions list can be 1n

are set up correctly, the

i i rovidi i ointers
organizations. Providing tnhe D

77

managzr would remai
S N unaware of any such changes. This Ffreedom,

however limited it .
limite - ») '
4y be, naturally increases the flexibility and

therefore the portability of the manager

The diskette mg .
The diskette manager, on the other hand, by viewing diskettes

solel in erms o . .
= y & term of sectors, hides from PORTOS the existence of

s LW - cnoient =) —~ — ~ .
hardware-dependent features such as recording surfaces, cylinders, and

:] "hi is an abs ny ‘
tracxs. This 1is an abstraction to which any diskette can be made to

conform, simply by initializing the status array accordingly.

The manager is thus freed from having to reflect any particular
organization. Only during the actual diskette access operation is it
necessary to acknowledge the addressing requirements of the host
computer. The manager, therefore, owing to its logical addressing
scheme, can be implemented on any hardware and confine the physical

addressing of sactors to soms low-level machine-dependent routine.

The CPU and task managers assume, as the only hardware support
for their operations, the ability to access registers and control
simple requirements can be easily satisfied

software interrupts. These

by all computers and hence presant no portability problems.

7E

PART 1T IMPLEMENTATION

CHAPTER 6 : IMPLEMENTATION CONSIDERATIONS

6.1) Choosing The Implementation Language

The traditional approach to systems programming on microcomputers
is to wuse the host assembly language. Assembly languages, being
transparent, enable the creation of very compact and efficient
Programs. On the other hand, they are totally machine dependent.
Software implementation on a different computer would mean the
complete rewriting of the same programs, which is a wasteful and

unnecessary axercise.

Machine-independent assembly languagss, such as SICTRAN [251,

with the syntactic structure of compiler languages but the facilities

and operations of a simplified assembly language, have failed to gain

acceptance. When portability is an objective, therefore, the use of a

high~level language becomass mandatory. This may be

1) a systems programming language,

2) a modified applications language to suit
systems programming, Or

3) an existing applications language.

The two most important requirements are availability — and

i < i i Y < rusulting
i i 1 N C i ey are the ,‘.flCle.\c Of ;f » >
5ul tabl‘l.lty. Ouhul’,' ,OHSld ,latlons

PPN Z i and program
object code support for the language, ease of learning, and prog
2 7 -

maintainabilicy [17, 29, g7,

6.1.1) Systems Programming Languages

Languages that have been
programming were naturally the first

choice, because of their

particular orientation to the function.

Languages 1like PL/360 [29] and STAB-1 [20], however, were
excluded from consideration because of their dedication to a
particular architecture (in their case, the IBM/360 and DEC PDP-11
respectively) and lack of portability. Languages 1like Bliss [100],

designed with a particular architecture in mind but following a

Q

machine-independant philosophy, were also a2xcluded. Although Bliss has
been implemented on several computers, including an IBM/360 [77], to
write compilers and operating systems, it is nevertheless considerad a

low-level and limited language [8, 992].

. . e 1 i les - .
Taken into coasideration were languages like PASCAL (22], BCPL

. . . . ~ F I i ~onsidered b
[73], and their derivatives. PASCAL, for example, 1is considered by

some to be the best language for systems programming [94]. Concurrent

PASCAL [61], built for portability, has enabled SOLO to be implemented

3

thus ' a2 syste
with less than 4% of it in assembly language, thus making the syste

jot
(4]
0]
i

i C the thar hand has been
highly portable [69]. BCPL, on the O ,

: ~nre 1l1e 3t
successfully on the 056 and TRIPOS operating systems, while its

d Thotl espactively.
derivatives C and Eh have been used on UNIX and Thotn respe Y

80

Howaver, none of thoge 1
10O01E O c8e a ; o - P .
S Nguages was available at the time, and

it was decided to concentrate - .
I te on a more accessible language.

6.1.2) Modified Languages

These are the languages that have been derived from an otherwise
suitable “parent" applications language to meet the requirements of
systems programming. Modifications to the parent language take the

dditions, deletions, and possibly minor syntactic changes.

il
O
2]
=
o}
~h
o

Several modified languages wevre considered, because of their

applicability, and are therefore discussed briefly balow.
Nevertheless, they also had to be rejected since they were

unavailable.

Some of the languages in this group are listed in Figure 6.1,

o

LRLTRAN, for example, has been used on the FLOE operating system for

the CDC 7600 and the FROST operating system for the CDC 6600

oo

i i achi ~odi in either case. P35440 has
computers, with very little macalne coding

been used on the AEG TELEFUNKEN software, while CHILI has been used on

the CHI operating system.

w
—

Figure 6.1 : Modified Languages for
Systems Programming

Language Parent

LRLTRAN [26] FORTRAN
LITTLE [84) "
EXT.FORTRAN [7] n
EXT.ALGOL [76] ALGOLAD
ESPOL "
DC~ALGOL "
P3440 [78] B
XPL [68] PL/I
PL/S "
SABRE PL/I "
PL/C "
ISPL [4] "
CHILI [53)] "
SYSL [87] b
ALGOLS8~R [41)] ALGOLAS

FORTRAN is a good parent language because of its widespread

availability and support, the closeness of its constructs to machine

language for an efficient implementation, and 1its ability for
compilation directly into machine code [7, 847 . Block structured
languages, on the other hand, are preferable as parent languages

because of their superior syntax, powerful control stru

varying data types. For

ALGOLA0 and PL/I the reader is referred to Bargeron [8],

and Sammet [76].

6.1.3) Existing Applications Languages

In general, the managerial suitability of these

82

ctures,

and

further information on the derivatives of

Sammet [(77],

languages

is

overshadowed by thei L TR S .
1 by ¥ technical shortcomings. FORTRAN, for example, is

the most widely used language, in spite of the incompatibilities that
exist between implementations [70, 75]. It has been used by the NASA

Electronics Centre, ERC, to write several operating systems for their

HONEYWELL 516 and 332 computers [76, 807 . However, its lack of
facilities for hardware access, bit and byte handling, strings, etc.
make the language essentially unsuitable for systems programming.

Library subroutines to overcome thess deficiencies vary so much in

vocabulary that portability suffers as a result [36].

PL/I, on the other hand, with its object code modularity, bit and
pointer declarations, interrupt handling and memory management, 1is
~

highly suited to systems programming [8, 76]. It has been used for the

MULTICS operating system [23], as well as all the control software for

b
[0}

the General Motors Company on their IBM 360/370 computers. PL/I
unsuitable for use on microcomputers, however, because of its large
compilers, inefficient object code, and the assumption of an

P

environment that causes implementation problems [42, 93].

CORALA6 (henceforward referred to as CORAL) 1is a notable
exception. Designed for real-time minicomputer applications, its
facilities are highly suitable for systems programming. Furthermore,
this language optimally Fulfilled the selection criteria, and was

therefore chosen to implement PORTOS.

6.1.4) CORAL As A Systems Programming Language

CORAL 1is a standardized language, the official gdefinition of
“ pe=) 3 .

33

which is iven in 2 "Blua :
grve the "Blus Book" [97]. 7Tt is a machine-indepandent

kernel language with extensions towards the host system. Its compiler
s widely supported on numerous computers, including microprocessors,
some of which are listed in Appendix D [2, 49]. Portable compilers
have also come into existence [85]. CORAL is supported by several user

and manufs e 1 -0 ens cont i . s
anufacturer groups to ensure continusd availability.

Basad on ALGOLA) with ideas from FORTRAN and JOVIAL, the familiar
syntax and semantics of CORAL make it a very easy language to learn.
Being a block-structured language, it lends itself to top-down design
and structured programmings. It 1is particularly well-suited to

modularity, which aids software development and maintenance.

CORAL has facilities for memory access, address manipulation, bit
and byte handling, in-line assembly coding, macros, and inter-segment
communication. The built-in macro processor of CORAL provides for a
limited but very useful form of extensibility [11, 15, 63]. It greatly
enhances the portability of source programs because
machine-dependencies can be coded as macro calls and then extended
towards any hardware by appropriately altering their definitions [18,
9071 .

CORAL is a simple language with a small and efficient <compiler.

. . .) - - 3 1%
(non-scientific) programs nave shown that the

W

Studies of sampl

resulting object code from a CORAL compilation is, on average, about

25-30% longer than the equivalent assembly program. Webb, howaver,

states that this figure may be as high as 40% [93].

o)
S

In order t inimize :
er to minimize the size of the language and its compiler,

P S e -
machine-dependent features such

as input-output, file access,
interrupts, memory management, etc. are not included in the language.
s - : 3y .

CORAL thus requires a set of library procedures in order to run on the

e

host system.

CORAL has been used as the implementation language for the MASCOT

operating system on the Marconi Myriad computer [94].

6.2) Host Computers

Availability was a decisive factor in s=2lecting not only the
implementation language but also the host computers. Two reguirements
had to be satisfied for a successful implementation. The computer had
to have the same configuration as the target specified 1in Section

latter reguirement arose

W

2.1.3 and it had to support CORAL. Thi
bacause PORTOS does not have its own compiler yet and is, therefore,

dependent on external availability.

The first requirement was easily satisfied by the microcomputer

systems available at the time. The second requlrement, howaver,

presented problems. None of the computers supported CORAL and efforts

to locate suitable cross-complilers were unsuccessful.

Faced with this situation, two minicomputer systems, a Texas

990/10 and a PRIME 300, were chosen as a compromise. They both

£ 1 & 2 et configuration, were to become
resembled very closely the actual targ g ,

85

I SOt e o~ - . .
supporters of CORAL, and were readily available. Given below are brief

descriptions age . .
P s of theses computers. For more detailed information the

readery 1 o c Ny g o ;
reader is referred to the relevant system manuals (“Model 990 Computer

»

Assembly Programmer's Guide" ISBN 0-904047-17-2 for the Texas 990/10,

and "PRIME 300 System Reference Manual" for the PRIME 300).

6.2.1) TI 990/10 Computer System

The host Texas Instruments TI 990/10 is a byte addressing
computer system. It has a 16-bit word length and a memory capacity of
32K words. The system has a standard-ASCII user terminal, with several
speclial-purpose keys, and a hard-copy system terminal. The mass

storage device is one 1.5 million-word disk drive.

The memory organization of the TI 990/10 is gilven in Appendix

E-I. The architecture has three hardware registers: the program
counter (PC), the workspace pointer (WP), and the status ragister
(ST). A workspace is any 16-word area of user memory. When the

starting address of this block of memory is placed ia the WP register,

contents become the workspace regilsters 0 through 15. These

1ts

oqi - be & eneral-purpose arithmetic registers, address
registers may b2 useaq as g jo p

registers, or index registers.

The TI 990/10 computer uses vectored mode interrupt processing,

i i iori vels. Two memory words are reserved for
with either 8 or 16 priority levels y

cach interrupt level Wwhen an interrupt occurs, the contents of the
cac 2rL sV e

first word are placed in the WP register and the contents of the
s

] € evious values of WP and PC are
¢ ~d in the PC. The previous
second word are placed

saved 1n the Workspac ogi .
Space Registers 13 and 14 of the new workspace

raspectively. Thi £ e
P Y 5 Torm of ansfer of control is called a "context

switch".

& tre ara . N
Data transfers to and from either terminal are achieved through

the Communications Register Unit (CRU). The selection of different

:) 1 peit 1 by - —~ .
terminals is made on the basis of the address at which sach terminal

b
[0

attached to the CRU. This is called the "CRU Base Address", and it

b
]

contalnad in Workspace Register 12 of the current workspace. Having
made the device selection, the programmer may then use any of the

following instructions to perform the required function:

Figure 6.2 : TI 990/10 I-0 Instructions

Instruction Function

LDCR load communications
register (output)

STCR store communications
register (input)

SBO set bit to 1
SBZ set bit to 90
TB test bit

- a1 i s¢ irect Mer
The data transfers to and from the disk unit use Direc Memory

Access (DMA) channels called the TILINE. The disk controller has a sat

of registers, located in high memory, which are initialized wunder

program control with the values relevant to the intended transfer. The
ES A il .

i . iiiovad to access and obay the contents of its
controller is then initiated to access a 3%

registers. The memory access instructions are used to communicate with
e ers. memor -

the disk controller.

87

The hardware boot
e ! are bootstr : .
4P program is initiated from the front

control ane f the . .
panel of the computer. The input device for the bootstra

loade s z - ; :
loader is the cassette unit, of which there are two mounted on the

system terminal. When initiateqd, the microcode program reads an

executable binary module from cassette unit C51, places it in memory

starting at location hexadecimal A0, and passes the control to it. The

2 L

i~ q - . .
program that is read from cassette is entirely at the discretion of

the programmer.

{

The assembler can produce either absolute or relocatable object
code. The output from the consolidator (or LINK EDITOR) is relocatable
binary in ASCII format, with the load information supplied by various

tags within the module.

6.2.2) PRIME 300 Computer System

The host PRIME 300 is a word addressing computer system. It has a
16-bit word length and a memory capacity of 32K words. All terminals,

user and system, are standard ASCII, with no special keys. The system

. z < 1 ATy L=y - +
had one hard-copy character printer. The mass storage devices ware two

1.5 million-word disk drives, on2 fixed and one removable.

The memory organization of the PRIME 300 is given in Appendix

E-T1. The locations 0 to octal 37 make up the "High-Speed Register

i i dw: registers as the accunulator
File", which contains such hardware g ,

- ' sin memory is organized into groups of 512
program counter, etc. The maln me y

aging. he CPU is capable
words each, called "sectors”, for paging. The CPU is capable of

©

: i S: C 2d r relativ
) .) CEE sddressing modes: sectored (S) or relat
operating in two different addres g9

a8

3
i
i
{
}

(R}, either of which can ba selected under program control. Interrupt

processing can be vectored or non-vectored, the sszlection of which can

again be made under program control, Interrupts may be enabled or

disabled individually or in groups.

The control of peripherals and the transfer of data are achieved

using the following instructions: ‘

Figure 6.3 : PRIME 300 I-O Instructions

Instruction Function
INA read character

into A register

OTA write character
from A register

oCcP output control pulse

SKS skip if satisfied
Each device has a wunique "device code" (or address) for
< Il = [

lC1L."thlf.lCL1‘ tion PJfPOS’C}S. Delec tion 1s Hla(.ie dep'\.’)“dl“g on th\—)S‘_ Jdldk:‘b,
wnicn app=dr S < g Al \-hw / ~ > = 28 lL,
= a thv argum nts Of I O instru tion IOK 2Xxample

i ¢ f octsa and the disk controller
*he user terminal has a device code of octal 4 and

octal 21.

When initiated from the control panel, the hardware bootstrap
Nhe i

3 -~ d t'hg ol +tents ()f seCtox 0 on dis () into ocation CLc
pI ()g 2 a >4 ontc S k _.’ catl octa
re S <

770 d begins execution from location octal 1000. The binary program
, an exe

i i ti e y = 2
h i i rrom Lhe ’Aisk in thlS mannexr 1s SN th
W 1iC 1s reac > L e 1Y l t

discretion of the programmer.

39

Thz assembler a .
et ler produces code to execute in R-mode. Any location in

sector zero or within the
= range P-239 to P+255, relative to the

program countce 3 c o F .
prog er P, may be referenced directly. The locations outside

rthagea 13 3 c Ty i
thes limits, Thowever, can only be referenced indirectly via sactor

& ° o 4+ £ . ~ . .
zero. The output of the consolidator is absolute binary in octal, with

the load information given at the baginning of each module

6.3) Implementation Subset

Time and manpower constraints have already placed restrictions on
the specification of PIL. The details of its software development
commands have had to be left largely undefined. The chosen host
computers place further restrictions on PIL. The MOVE command, for

example, would becoms redundant when there 1is one disk drive to

In other words, only a subset of PIL could be implemented
meaningfully at this stage. The objective would be to demonstrate the

usability of PIL, and give the user a "preview” of the overall

language.

1 i St t [Ye}s discretion
While it was possible to subset PIL at Dper onal disc ,

ing of PORTOS could not be taken much further than

197}
o
o
»
]
ot
of

however, the

the single-disk configurations

orientating the system towards

available at the time. It was found that the bulk of the system had to

. . t ex very limited subset of PIL
be implemented in order to support even a very

: ted e sa
commands. This is because different commands are supported by the same
[lo e - ~

0]

5 c 4 individually exercises th
4 imitive and each commana
managers and primitlives,

various

[
o))

acilities of the karnel.,

i

t was decided, therefore, to implement PORTOS adhering closely

to the original specifications, and then create as many command

handler programs as possible above it, given the prevailing time and
manpower constraints. It was also decided to treat those parameters
that would be superfluous for this implementation as dummy variables.

The system would then suffer the least disruption when it was

subsequantly implemented on a target configuration.

CHAPTER 7 : THE EARLY EXPERIMENTS

7.1) Foundations of PORTOS

The first programming e

Hh

forts were made on the Universitv'

<

ICL-1904S mainframe computer, under the control of GEORGE 3 operating

SVS ' 3 Yoo P
system. This decision was taken because the only CORAL compiler

. - . e bt
avalilable at the time was on this machine [44]. The objectives were,

firstly, to become familiar with the CORAL language and its
capabilities, and secondly, to learn the concept of systems

programming and gain implementation experience.

ot
o
(v

It was also realized, however, that any program written on
ICL-1904S could be transferred to the host minicomputer and wused as

part of +the actual implementation. This course of action would not

only help to save time, but also provide valuable experience 1in
software transportation. Consequently, the coding of PORTOS was

initiated on the ICL-1904S and care was taken from the beginning to

write portable programs.

Modularity was adopted as the basic implementation methodology,

not least because modularized programs are casier to write, debug, and

test Firstly it enabled the localization of operations and
Zol e oo 7 g

. . Ficatior
depzndencies in source programs, 1n the knowledge that modifications

would be necessary after +heir eventual transfer. Secondly, since not
Ul [\ 2o —-

all the programs written on the ICL-1904S would be transferved,

modularity enabled the separation of long- and short-term programs

Jithout disruptive side-effects. Thirdly, it enabled the long-term
wlt 1) > SldeTms

92

programs to reflect the modular o+
r st

ructure of PORTOS design.

In the followir . - :
¢ Oollowlng presentation, all programs written on the

ICL~19¢ A art @ s
045 as part of PORTOS will be called system routines (or simply

routines) .

7.2) PORTOS On The ICL~-1904S

It was decided to start the implementation of PORTOS with the
low=-level managers and their primitives. The objective was to use them
as the "building blocks" with which to construct and test the higher

levels of the system. Confidence in low-level operations was essential

in order to develop reliable software.

The diskette and memory managers were chosaen to initiate the
coding. These managers, while not machine-dependent themselves,
neverthaless exercised first-hand control over the hardware. The first

step, tharefore, was to write a suite of CORAL programs to simulate

w

ths respective hardware features of the host computer, using the same

abstraction as employed by each manager.

o+
j=p
v
i
©
=
®
<
o]
o}
ot

i { i = ti the simulators
Following the implementation of the simu ,

th

. s g it ccess them. Finall a set o
management routines ware written to acc C Yo

ot

(0]

N : + = utine o
validation programs to test the oparation of theses routines wer

written, again in CORAL. On the ICL-1904S, PORTOS thus consisted of
W ten, : AL, T

three sets of programse.

93

7.2.1) Implementation Methodology

The simul: :
simulators were written as procedures. Any routine wishing to

- Sess 5 AY W Y 2
access 2 hardware feature had to call the relevant simulator, and pass
o 7 A 1

to it the required paramete : 3
q barameters in the same order that was envisaged to

oWl s © ¥ S 11 £ g 3

exist on the host computer. These simulators were expected to be
s =3 Ie g i e I~ 3

replaced subsaquently by machine~dependent assembly programs to
perform ths same operations, but without changing their software

interface2 to the rest of PORTOS.

The system routines themselves were also written as procedures.
The objective was to call them in the same manner as they would be
called in the actual implementation. Furthermore, developed as "black

boxes" thase2 routines would ba unawars of the changes in the

M

anvironmnent. In other words, the effect of their calling either a

simulator or an actual assembly program would be the same. Similarly,
it would become irrelevant whether it was a validator program oxr an

actual system routine that reqguired their services.

The wvalidators, on +the other hand, were written as master

: . ine and i 3 int
segments in order to consolidate the routines and simulators into

. +he it} 2 simula
exccutable programs. Their sole purpose, together with the simulators,

£ AT D IR
wis to ensure the correct executlion Oz PORTOS routlnes,

o

i i d iption of the rograms tha
Given below is a more detailed descrip-ion o prog a

: i i nce the inal
were developed with an evaluation of their influence on the final
W e Qv e 20,

system.

94

7.2,2) Simulator Programs

The first hardware : .
t hardware feature to be simulated was a disk unit and

its controller, wusing a one-dj : .
g ne~dimensional integer array. The array was

- Yy 3 e y e m - : N .
arbitrarily split up into groups of 32 elements each, to represent the
~ 4 < 2t 2

~ o~ ~ g .
sectors to or from which Adata could be transferred. For this

experimant a tota f -
D p al of forty sectors were catered for (another

arbitrary numbear).

The disk controller was simulated by a procedure to access this

array. The calling routine had to specify the sector number, the

10}
}—J
3
<
0]
f—
<
(]
fof]

op2ration required (read or write), and the memory addres
The actual calculations to access the correct group of elements were

confined to this procedure and hidden from the caller.

The main memory, taken to be a single contiguous block, was
simulated using another one-dimensional integer array. Word-addressing

was assumed as the access mechanism, with no provision for dedicated

locations or hardware protection.

. Con 1 . .
The array representing the disk was local to its simulator,

becauss no other voutine had or needed access to it. The mamory array,

-] - 3 iable 1in the common
o1 the other hand, was declared as 4 global var C

. < L Ffe t cedures. The memory manager
arca because it was shared by different proces y d

) L. - s . A
needed access to it in order to maintain its free partitions list and
L A =

{ 1 its da t ars.
the disk controller accessed it to perform its data transfers

1 terminal was the only other hardware feature that was
The user cRaUBRLE

procedures for input-output were us2d to

simulated. GEORGE 3 library

95

Irive the termin: s el
c © erminal. The simulator only transiated the PORTOS requests
1 , eque

into the form required by the . .
9 Y these procedures and vice versa.

Interru WeTe . .
pts were not included in the simulation exercise for two

the hardware already being simulated was sufficient
to meet the implementation

requirements at this stage. Secondly,

‘ P S P : .
befora the point where Interrupts would have entered the picture was

Aaeha . .
reached, the compiler on the Texas 990/10 became available and the
development was continued on this minicomputer. There

ere was no need for

simulation then because the actual interrupts themselves were used.

=
[0
~
o
+
=y
L
o3

The first routines to bs written isk management

routines, built around the Disk Status Array. CORAL does not have bit
arrays. The Disk Status Array was therefore declared as an integer

rray, each element representing one track and the bits within each
element representing the sectors on that track. Eight sectors were

taken to constitute one track, which is a common configuration.

i i isk in t acks and sect
This representation of the disk, in terms of tracks and s ors,

. P = oy . T
is closer to the actual configuration found on real computers.
Lo O < ~ N

i i i i ci abstract in itself so that the
Nevertheless, it is still sufficiently ab

. vy = ol 3 oy =)
logical portability of the manager 1is not damaged. Given th

it was a convenient compromise to

[t

therefore,

limitations of CORAL,

make between the abstraction adopted by PORTOS and the hardware.

. . .
Ea “F-YORME as ng()“]d 3\1 witl a 1t 1in its /:OIr(_"\DPO‘L_Al g a}"}"ﬁy
. - +h h
Ch 5..,Ct0r W R L 1

left., ; \
eft In other words, the rightmost bit

4~ > '
next bit to the left represented sector 1,

and so on. The index value L
tue of the element within the array indicated

the : & v £ M - . .
the track number., The conversion to and from the logical sector

addressing employed by PORTOS was coded into the routines as

appropriate.

Bit manipulation is a standard feature of CORAL. The availability
of such operators as MASK (And), UNION (Inclusive or), and DIFFER (Not

equivalent) meant that the routines could be written exclusively in

Standard CORAL, thus offering high physical portability.

Next to be written were the memory management routinss. Their
coding demonstrated the power of another CORAL feature, tha anonymous
reference facility, without which the implementation would have
required the use of assembly instructions. This construct offers the
programmer the same power as the host assembly language to handle

absolute addresses and their contents.

PORTOS3, implements a word-addressable virtual

[
~
v

CORAL, 1

ADDR is a pointer to a fres partition in

N

computer. If, fo example,

i he ize and [ADDR+1] coantains its
memory, then [ADDR] contalns the size [

i artition a2 expression
pointer to the naxt partition. Tha exp

ADDR := [ADDR+1]

an the free partitions list. As a rasult,

is the link necessary to 5€

i anagement presented no
th ing of the memory array and its management b
“he accessin e
. arTe de highl portable in
bl i the routines themsalves Were made ghly
problems ang e

97

Standard CORAL.

After the disk 1 me MANagene .
sk and memory management routines were completed, the

developmeant ¢ t i z initi
development of the file manager was initiated. Th2 routines to
manipulate directory entries were written and tested, to perform such

functions as the creation, retrieval, and deletion of file raference

Software development on the ICL~1904S was terminated at this

stage, with the arrival cf the CORAL compiler on ths TI 990/10.

7.2.4) Validator Programs
Each routins that was to become a permanent part of PORTOS had a
corresponding validator program. Their function was to test the

routines for correct execution under all possible conditions.

The simulation axercises were run interactively, and it was the

responsibility of the validator programs to maintain communication

6]

with the author. The input was in the form of commands relevant to the

operation of the routine being tested. One command at a time was

: < J 3 = = 1+
accepted. After checking the wvalidity of each command and its

1 + tins allex o process thi
arguments, if any, the appropriate routline was called to process this

. ot ! e g D@ 3 K t'.?d '11'1-’3 the au'”hor wa
input. Upon completion, tne results were evaluat: and b IAS

ittt t 1splc £ & aag
informed of the outcome, either by the display of a message or

printing of a table, as appropriate.

The input from the author, in effect, simulated the demands that

93

would be made on the i
o ar . . . : N
particular primitive operation during normal

execution. It was his task to

issu2 the commands in a similarly

unpredictable manner.

Input-output was achieved using the library procedures provided
by the resident CORAL library. The terminal simulators written for
this purpose ware not used, because the development of the PORTOS
input-output routines was postponed in favour of using thes resident
procedures. This approach was adopted in order to hasten the testing

of the routines.

7.3) Transfer To The TI 920/10

When it was time to move to the TI 9%0/10, only the system

routines were transferred. The simulators and the validators, being

special-purpose programs that had no use outside their pre-definad

environments, were abandoned. One exception to this rule was the
validator of the file management routines, which was the most

comprehansive of all the validators. It was transferred to the TI

990/10 as part of the system and developed further to become the PIL

decoder.

Two actors crucial to the physical transferability of programs

ibilit 2 tr 2dia a e character s2t of tha
are compatibility of the transfer media and th s

lata being transferred [91]. The routines developad on the ICL-19045

¢
4

ware transported to the TI 990/10 on paper-tape, which was the only

compatible medium between the two computers. The data transferred were

\SCT] source listings The character set of CORAL being wall-suited to
ALCL 5 rce - ° e

99

[t

[&]

pa

e

— ey A P ~ - o . . R
tape representation, and owing to the availability of the

necessary handler software on both computers, the transfer was easily

achieved.

The routines developed on the ICL-1904S have remained basically
the same throughout their subsequent employment, first during the
implementation of the rest of PORTOS and later during execution. Their
success 1in coping with the demands made on them was taken zs a

favourable reflection on the developmant methodology.

100

CHAPTER 8 : PORTOS IMPLEMENTATION AND PORTARILITY

8.1) PORTOS on the TI 990/10

L

Following tha transfer from ths ICL-1904S, the development of

PORTOS was completed, and the first implementation realised, on this
computer. The first step was to replace the simulators with assembly
lunguage programs, to support the system on this particular
architecture. In other words, the hardware interface on which PORTOS

had to 2xist was defined.

The next step was to re-compile and implement the transferred
routines. They were subsequently used to develop and implement the
rest of PORTOS. Certain modifications had to be made in their source
code before compilation, in order to conform to the requirements of

the new compiler and its environment. These modifications did not

affect the algorithm of the routines or their internal details.
Next to Dbe implemented was the input-output manager. AS
~ommunication with the computer was agaln necessary in order to debug

.)) - .) s N o .
and test the routines being developed, it was decided to use the

PORTOS input-output routines themselves. It would have been wasteful

- sir imple i i Z he usin
and pointless to postpone thelr implementation any Further, by using

the compiler-supplied procedures.

The file manager Was implemented next, followed by the PIL

interface using the routines already implemented. When PORTOS was
- L Latbty

101

eventually ready 1 ¢
ave y ready for independent execution, the CPU and task managers

were implemented i T e .
¥ e d, in close conjunction with the system format on disk

and in aemory. The implementation was completed by the actual creation

- = . - 3 el ~ N ;o
of the system disk, from which PORTOS could then take over
.. [D S L oe

The current implementation of PORTOS on tha TI 999/10 consists of
54 individually compileable segments. It was realized in approximately
2350 lines of source code and 200 assembly language instructions. On
disk, PORTOS occupied 134 sectors. Its implementation details are

presented in the following section, together with 1its transfer

8,2) Transfer of PORTOS to the PRIME 300

PORTOS was transferred from the TI 990/10 to the PRIME 300 in

order to test and confiym its portability. The transfer medium was

again paper-tape, on which the source listings of each individual

segment (or program) was punched separately by the TI 990/10 handler

software.

The PRIME 300, however, did not provide the necessary software

for its paper-tape reader.. A program had to be written for this

purposs, 1n FORTRAN and PRIME assembly language. FORTRAN was used in

order to take advantage of its library procedures for file access. The

i +the ~tape reader.
assembly language was used to drive tne paper—-tape reader

This program, called READP, the source listing of which is

in AppS i) ssigned to read one segment at a time
presanted 1n Appendix M, wWas designse g

3! d COore 1t in the f.Lle rerere ad l)y . 1eNTtor. It was not
S Lf [§ 3048
N Tne lmplel ! ¢

oy or 1 xt. = r P
written intentionally for being portable, but it can be used on other

A . L =
computers 1f its file access and assembly instructions are suitably

modified.

8.2.1) Source Code Modifications :

The essence of the implementation procedure is to compile PORTOS
on the host computer, and create its system support disk. The next
step was, therefore, to make theses ssgments conform to their new

environment.

The implementation has four levels of machine-dependence inherent
in its source code. They are, firstly, the machine-dependent segments
£hat have to be re-written in the host assembly language; secondly,
the machine-orientated ssgments that have to be suitably modified;
thirdly, tha “parameters" that describe the host computer to PORTOS;

and lastly, the compiler requirements.

8,2.1.1) Machine-dependent Segments

. . NP 1
the peripheral drivers, interrupt handlers, and all other
he pe t]

: i upe Some implementors
assembly language routines belong to this group pl

t + are short or straightforward
consider as portable those programs that 5 g

. : N icl 86]. The author prefers to
enough to be re-written easily and guickly [86] P

¢call this "algorithm portability", and regards such programs as being

‘nterfa utinas were thare e
non-portable These hardware interface routines W ’ t fore,

103

re—-written in o DRTMR .
& e the PRIME 300 asseambly language. Their source listings

are presented in Appendix K.

i

8.2.1.2) Machine-orientated Segments

Machine-orientated segments are those that are algorithmic in
nature, and hence written in CORAL, but still reflect some
characteristic of the host computer. The task manager and loadsr, for
example, both contain typical examples of this kind of dependency.
Thelr source code has to be modified to fit the particular

environment.

The task manager, 1in response to the software interrupts, has to
preserve tha state of the interrupted program. To do 350, depanding on
the hardware registers that need to be saved, 1t has to maintain
tables of varying length and entries. Hence, the source code has to ba
altered to reflect the architecture. The system loader contains
similar dependencies, because the conventions usaed by the current
hosts of PORTOS are different. So much so, that the loader had to be
re-written almost completely after the transfer.

iy + - o - e 3 7 3 3 (-3—' ¥ C =] .
Owing to modularity, however, the required modifications could be

made easily and quickly, without the rest of PORTOS becoming aware of

thaese changes.

104

8.2.1.3) Segment Parameterization

The parameteri i f POR
p erization of PORTOS segments is achieved using the

macro facility of CORAL . N,
: ’ thus localizing all such dependencies to

Vo oy AnFinm + - Fi] oatt . 4
macro definition files". The implementation has four such Ffiles:

PARAMS, CHARS, LINKS, and DBASE. They are presented in Appendix G. It
i3 necessary to modify only the contents of these Ffiles and not

individual s=gments.

The PARAMS file, for example, contains such parameters as the
number of tracks on disk, the sector size, the boundaries of the user
mamory, etc. The CHARS file contains the ASCII control characters,

such as carriage return, line £

D

(L

d, and del, that are used during

+
-y
D

oxd
[9p]
@]
-
L

input~output. Although character set 1s standardized,

ot
o
(1

conventions regarding the use of parity bit differ. PORTOS being
dependent on different host compilers, it is essential to make the
system fully compatible with the host compiling system.

The LINKS file contains the definitions for task communication

[

linkage mechanism. The coding of task activation requasts is exactly

the same in appearance 4as 4 procedure call, which it is, in effect.

What to the programmer 1is & normal call, however, has to be converted

into a software interrupt, with the correct executlon parameters. The

contents of the LINKS file provides this information to the compiler.

The actual linkage definitions, being PORTOS-dependent but

need not‘ be modified. The software interrupt

machine-independent,

definition itself, however, which is also contained in this file, must

be modified accordingly.

105

The D3ASE file contains the definition of the memory-resident
: L —Yresiaer

data a e o { a .
data re of PORTOS, required by any routine wishing to access it.

his definiti X :
This definition, however, like the LINKS file, need not be modified

atr - &) ~
after every transfer, except to relocate the data area, if necessary.

8.2.1.4) Compiler Reguirements

Although CORAL is a standardized language, differences were found
to exist between implementations. These differences can be divided

into three groups: internal, external, and additions.

The internal differences affect keywords, strings, and
communicator declarations. External differences influence the program
format and compiler directives. Additions, although powzrful, damaged
source portability because support for those facilities 1is not
guaranteed. Byte arrays and records, for example, which are examples
of "BLANDFORD Extensions®, were not available on the PRIME 300. A

comparison of the CORAL keywords on different systems is presented in

Appendix F.

N IS Yy~ o~
Keywords were sffected, firstly, Dby abbreviations, such as PROC

for PROCEDURE, and secondly, Dby those additions that either reflect

some characteristic of the machine, such as HEX, or enhance

GE instead of ">=". Strings were affected by

readability, such as
three factors: internal representation, the syntax of control
LS LA -

characters within strings, and the acceptability of the ASCII space as

a printable character.

106

Are introduced into PORTOS segments

el Ay : . .
declaration. This communicator accepts

-ho raelevant fllename as paramotssw ..
th ant filename as parameter. Since the syntax of the Ffilename

el ~AanfFayyr s T aeyi S e P
na conform to the requirsments of the host op2rating systam, all
such declarations to be suitubly Thos sxtornal

format of source segments, and the mannerx

in which compiler directives could be issued.
3.2.2) Compilation and Disk Creation
Tha naxt step is to compile and consolidate these modified

s3]
9]

tho

binary

(o
o]
[
O
l1o]
[
b
5
(o
5
&
e
3
o]
[
@]
te}
~
&
=
9}
-
=}
or
O
©
b
()
Q
r
%)
o
!
W

3

isk. This process

{

The last step is the creation of the system
atting the disk as shown in Figure 8.1, and writing to

1led

)

binary modules previously created. A CORAL program

- . ' o= LI 1 oy + = & m Fhi
BUTLD which is .ented in Appendix L, was written to perform this
. iy Vi L ot "

function.

Figure 8.1

.

PORTOS Disk Sector Allocation

0 BOOTS Bootstrap Program

1 STATUS Disk Status Array

2 UDIR User Disk Directory

3 SDIR System Disk Directory

4 e s e Start of General Storage

Although a single disk was wused for system support, 1t was
decided to have separate system and user directories for two reasons.
Firstly, to preserve the logic of the PIL virtual computer, by
maintaining the logical separation of thess conceptually different

entities. Secondly, to protect PORTOS from direct user accessibility,

T

as it was originally intended. Whan the system is implemented on the

e

crarget configuration, there will be one directory per diskette, and

the general storage area will start from sector 3.

The algorithm for disk creation is as follows. Initially, the

disk is assumed to be empty and the Disk Status Array initialized

accordingly Ths two directories are also initialized to nil. The
— a4 ° il N

& = t = i ef (3 i ey to ‘Qibk,
'()1 > -ne ea f@ 1 e osSt SySl:‘Ml an W
L ulf‘_i are L‘f]v"l rt_,ad frO'. n ri <] ils

: - 3 ~vyo b P P + v
1llocating sectors as neaded. An entry 1S made in system directory fo
C dadu [a fibat

i 3 —contained disk at the end of the
¢ as rain a self contained
2ach module, so as to obta
process.
were written to dis! is given in

Tha order in which the modules

Figure 3.2 below.

108

Figure 8.2 : Order of Residency on Disk

Module
Number Module Name Function

B Boots Bootstrap Program
0 Task Manager Task

1 Allocate "

2 Frea u

3 Insaert "

4 Give Sector "

5 Raleas2 Sector "

6 Exit "

7 Load "

8 Diskop "

9 Get Record "

10 Put Record "

11 Shutdown Io b

12 Fetch Time "

13 Handy Interrupt Handlex

(Illegal instruction)
14 Timeyr Interrupt Handler
(Rzal-time clock)

15 Dcoder PCL decoder

16 Xer PRL decoder

17 Copy Command Handler
18 Create N "

19 Dalete " "
20 Files " !
21 Help " b

2 Intime " "
23 List " "
24 Lock " "
25 Print " "
26 Rename " "
27 Space " "
28 Time " !
29 Unlock " "
30 PShlpf ASCII file for HELP Command
31 P$fhan " " :
32 PEsdev " : .
33 P$ingr)
34 P$syst

T 2 i 1S 3 1
t i : e must be written to disk 1in ha
The tasks and interrupt handlers 3t

i 2ason. Each task has a unique
order shown for the following reason
o 2 7 -

i Lctivating routines recognize it.
identification number, by which the actl g

= e e i tivate he tasks according to
ve simply activates t
The task manager, howevel, p

unaware of the individual number of

their order in its vector table,

109

an one. The boc - -)
1y & Dbootstrap program, which is responsible for setting up

this table, is also unaware

of their identification numbers. It

installs the tasks one after the other as they appear on the disk and,

assuminge that t} . . o
as g tney are 1in order, initializes the vector table

VNololo s s bl P - e . .))
accordingly. Hence, if their identification nunbers do not agree with

the order in which the . .
-2y are 1lnstalled, unpredictable results would

SNSus 1 a : .
ensu2 during execution. The other modules of the system, however, may

be in any order.

8.3) A Comparison of ths Two Implementations

Quantitative details related to the existing implementations of

PORTOS are presented in Figure 8.3 below.

Figure 8.3 : Implementation Figures

TI 990/10 PRIME 300
Segments 54 54
CORAL Source 2360 2350
Assembly Code 200 940
Sectors on Disk 134 31
Memory Size 3400 2172

(Code and data)

The resulting efficiency of the PRIME 300 implemaentation, both on

i] at i 2d averal Ffactors. Firstl the
disk and in memory, can be attributed to szve v,

isti 00 and i achine instructior
architectural characteristlcs of PRIME 300 and its machine instruction

. i i Ha T
set pT'OVid“ for more compact binary programs, comp‘ired with thz= TI

. ~ de eneration technigues wused by
990,/10. Secondly, different code gener q v

as of opinion regarding which features

compiler writers and differenc

. S FE A~ v asage [95 qg]
ienct] ay also affect memory usage , 931 .
to implement more efficienctly may

110

Disk usage is greatly influenced by the Ffact that PORTOS is

dependent o - -
lep I on the host system software for the creation of its binary

modules and the rs o . i .)
moad ; tne resulting differences in binary module format as

roduced DY k o Y o . - .)
produ by the host linkers. The TI 990/10 link program produces

relocatable binary modules in ASCII representation, with tags to
provide loading information. The PRIME 300, on the other hand,

produces absolute memory image format which can be loaded without

interpretation.

The PRIME 300 implementation was also faster in sxecution than
the TI 990/10 implementation, due partly to its smaller program size
and partly to its faster machine code. 1In the single-user environment
of PORTOS, however, such differences are negligible and have no

apparent effect on the overall performance.

3.4) Portability of the System

PORTOS has been transferred to and implemented on the PRIME 300

&)

.. < ¥ e BRtde ces - o=y :;_e i
with much less effort than would have been necessary to re-writ t

completely. The resulting portability can be calculated from the

following formula:

p=(1-R)* 100%

whexr R is the ratio of the transfer effort to the re-writing effort.

Tt ter the difference that exists beatween the two efforts, the
he grea . e ==

higher the portability.

The easiest way to calculate R is to relate it to the amount of

assembly programming that was required. The total number of assembly

instructions in the current implementation on the PRIME 300 is 385483.

Of th

]

se, approximately 940 had to be hand-coded, and the rest were

generated by the compiler.

Applying the above criterion to these figures, R is found to be
0.109, yielding a portability of 89.1%. Howaver, a number of other
factors wmust also be taken into consideration in order to obtain a
more realistic figure. Any transfer effort 1is a function of the
architectural differences between the two computers involved in the
exercise, the familiarity of the implementor with the host hardware,
the compatibility of the transfer media, the amount of additional
software that has to be written, and the availability of the relevant

up-to~date manuals and documents.

Their contribution to the portability effort was estimated to be

about 10% thus giving PORTOS an overall portability of 79.1%. A

Oy

3ifficult to evaluate because of the inherently

. £ fhoege factors as w=ll as their
abstract nature of some of these ac .

, .) ;
interactions with each other.

8.4.1) Relative and Absolute portability

2 YT i > 3 S 2t ‘bu‘[-ed to the Dyb (3 as ar :3b~,o uts
5 C € not attrl SN as
T}’lb abk e flgllr\, < N

1 ore taken into account in order to astimate P
value. The factors that were

112

wReYre ver much de ¢ i ; .
Y cependent on the interacting properties of the donor

He rYooo e R .
and the recelver computers., Obviously they would be affected, and

therefore yield a different value, if the transfer were to take place

between two mora-compatible or less-compatible computers. Hence, the
portability figure calculated above is the "relative portability" [69]
of PORTOS, when transferred from a Texas 390/10 to a PRIME 30)3. The
“absolute portability" of the system can be obtained, only after it

has besn transferred to a number of computers with different

properties, using the following formula:

Absolute P = (P[1] + P[2] + ... +P[n])/n

where "n" is the number of transfers. P[1] is 72.1% for PORTOS.

CHAPTER 9 : DISCUSSION AND CONCLUSIONS

9.1) Implementation Restrictions

PIL has not been exposed to the criticisms of usars yet, owing to
the restrictions imposed on its specifications and the resulting
implementation. A commercially wviable and practically useful

implementation 1is needed before its suitability and acceptability can
be objectively assessed by the intended user population. Within the

existing boundaries, however, the exercise has been successful in the

sense that the same "friendly" interface has been made available with

comparatively little effort on two diffevent computers.

From the user's point of visw, the only difference between the
two implemesntations is the actual startup operation, which is dictated
by the host hardware. On the TI 990/10, the bootstrap program must be
containad on magnetic cassette, whereas on the PRIME 300 it is
contained in sector 0 on disk.

This mandatory use of the cassstte contradicts thes PORTOS
objective of being self-contained on disk, but on the other hand, it

lementor freadom from restrictions on program siz2. The

m

offers the imp

TI 990/10 bootstrap program was written in CORAL. On the PRIME 309,

. ; L se-writt i assembl a age becaus=
the same algorithm had to be re-written 1n ass mbly language becaus=2,

jificati i 2 CORA gram was foun
after ths necessary modifications to it, the CORAL program was ound

to be too big to fit into one sector.

Al +ha 17 3 Sy 1 . : o .
From the implementor's point of view, however, there are other

ore itica on T ~ N B 5 .
more critical restrictions placed by the implementation on, firstly,

ne ~+abil it . e et
the portability of the primitives, and secondly, he subset

Q

rientation.

9.,1.1) Portability of the Primitives

hEter the system was transferred to the PRIME 300 and the

1

implementation attempted, it was discovered that ths existing

-
o}
ot

primitives ware t really suitable for sectored-addressing machines.

Sectoring works as follows: all high-memory addresses and any location

that is outside the address range P-239 to P+256, where P 1s the
current valus of the program counter, can only be referenced

Code produced by the host compilers and the assembler

,_‘
o
(o))
}_l
[
L
(@]
(T
H
k<

schnieve this indirection via sector zaro. Its memory locations octal

dedicated to these cross-sactor links and are used by

N
(en]
j)
Ia
O
~J
~J
~J
oY
s
(D
hda

all executing programs, where necessarye.

When a program that cross-references a sector in this manner 1s

e st s] i
loaded into memory, it initializes those locations in sector zero that

it uses destroying their previous contents. Re-loading automatically
, des

. creside
re—initializes the same locations. Howsaver, if a memory-resident

5¢ 5 cati nd its contents were destroyed
program were to use any such location a y

: the W< zxecution would be lost
by another program, then naturally the flow of execution w ul t

1 Aictable.
and the outcome would be anpredictable

o ad wi {5 problem of corruption. The
The PORTOS tasks were faced with this [1 oc o

. nad bee vided with the option to produce code that
host compiler had been prov

115

p

Y
I

i

duced these cro

5—-sec

]

tor references. That option was used during the

1 11 1 - o -
compilation of the tasks, but the corrections were found to be still

1y EFY e + - = B . .
insufficient. Therefore, an additional level of indirection had to be

o - 1 - ~
into the assembly code of the tasks so as to avoid

cross—sactor references altogether and make theam totally
S

Naturally, this is a short-term solution to the problem. There is
no na22d to change the system design, but the tasks need to Dbe
re-written to take segmenting into account at the source level.
Sectoring was not provided for during the original coding and
implementation, because the author was not aware of the problems. The
Texas 990/10 assembler produces code that caters for such indirections

from within the same binary module, without referring to any external

f

S

dedicared locations. The necsssary alterations will be made as soon

time allows.

.}

In the meantime, however, the successful outcome of this exercise

o

has demonstrated the power and the value of consistent assembly code

AN
3 I 213 4 . . P mecomh] e
production by the compiler. This ability to work at the assembler

S A e o Y
has also meant that segment~addressing macnlnes wWere not

G i 1t B 1« have & : oY
excluided from the PORTOS domain, which would have been rather

s H - 3 =~ T o ,44(1»«
hamperings Nevaerthaless, it is a polnt against the 1mmoediate
portability of the system, and therefors a long-term solution 1s

drtaba C ne :

116

9,1.2) Subset Orientation

T R 23 y = N

The current implementation of PORTOS is orientated towards
5 1 v 3ial o~ : . .
single-disk configurations with 8 sectors per track. Implementation on
: I3 FF - ‘ N e 2
a different configuration would naturally require modifications to the

source code. Owing to the modularity and parameterization of the code,

however, thesz modifications would be slight and highly localized.

PORTOS is already parameterized to recognize different disk
drives. In the current single-disk implementation, they are treated as
duamies and are ignored. In the multi-disk implementation, they would
take actual parameters and be used by the disk driver program, which
would have to be re-written or modified as appropriate, to access tha

thz relevant disk.

In order to implement PORTOS on a disk configuration that has
other than 3 sactors per track, it would be nscessary either to

re-configure the disk controller or modify the disk manager and other

The hardware configuration ~f the TI 990/10 disk unit, for

; ; - igl ack & 4 sec s per track. The
example, is 203 cylinders pev disk pack and 24 sectors per trac

disk controller, however, ig capable of logically altering its tracks

- ~ 3 27 o I's o
to accommodate any format, from 1 record per track to 24 records per

av s

i ice lock ata and may correspond to ona2
track. A vecord 1is 2 logical block of da Y P

or more physical seCtorsS.

i C ; ' £ nort PORTOS therefo
Bafore the disx could be built to supporc TO3, ¢

1 o3 X C H this reqguiremoent
onty e a t e re matted to conform to th req smoent .
disk cont roller had to be re for

117

: pecial progra alled w - . .
A special program called FORMAT, which is prasanted in Appendix N, was

Cben in O . - . ‘
written in CORAL to perform this operation. FORMAT must be run before

the BUILD i | 3
l +LD program, in order to prevent erroneous results during disk

joi)
o]
0
0]
n
n
.

The FORMAT program is totally machine-orientated to this

et e LA E A - - . .
particular kind of disk controller, with no portability in mind. I

!
T
u:

transfer to other computers, although possible, would be pointless. On
the PRIME 300, the raconfiguration of the disk controller was not

regquired, as it already had 38 sectors per track.

9.2) Implementation on Atypical Configurations

The current implementations of PORTOS, supported by a single-disk
unit, have proved that atypical configurations are not excluded from
its domain, in spite of the original guidelines. It would be possible,
therefore, to implement PORTOS on multi-disk unit configurations also.

The disk drives would then be numbered from zero to some upper limit

dependent on their numbers.

PTL has remained anaffected by support from a single disk. On the

i) i i i S eCcaSss? to i = th=2 disk
multi-disk configuration, it would become nec=2sSsSary ssu 5

v j = e Film oference. ive
name as a parameter, together with the relevant file reference. Driv

0 would again be sYSTEM and drive 1 rhe default drive USER1. The othear

drives would then be

i] Sffacted.
PIL, however, would still remain unaffected

SrEeACTTE e

onenrerEr Rt

9.3) cflections on CORALGS

5 - S d ’ - .)
The decision to use CORAL as the implemantation language was not

regretted at any time cither during the development or the subsequent
transportation. PORTOS owes its portability to thes modular structure

of 1ts design, which, it must be admitted, was influsnced by the

facilities of CORAL for modular programming.

CORAL is a simple language that leaves the programmery TO
formulate the explicit specification of a number of operations for

which other languages provide constructs, such as CASE and strin

WQ

handling. It is a temptation, therefore, to list the facilities that

ons would like to seze incorporated inte the languagz. On the other

hand, PL/I has demonstrated the dangers of creating a language with

1

L . e . e e
too many constructs in it. Simplicity 1s on= of the big advantages oOf

CORAL, which the author feels should be preserved, and the temptation

h

acilities has therefore been resisted.

C) e
Tt is nevertheless felt that some of the existing features of the

language could @ enhanced in order to facilitate efficient
< = — E - =

i S : <Y &mmai is very much a string
programming. For example, systems programming is very 3

nandling ﬂpolication, and strings are best stored one charvacter per
e 4L) 1+ 4 1 <. A .

) 3 : if the 'LITERAL' construct
byte. It would, rherefore, be very useful if the 'LITERAL

aracter i i E ment. In other words if an
could take twO characters 1in 1ts argux ,

. . it anu the Std*ements Of thg
integer variable X contalns the string "AB .,

kind

YIFY X = 'LITERAL' (AB) 'THEN' ¢ oo OF

pe—

would ba helpful. Secondly, a loop construct of the fornm

"WHILE' condition 'DOY

Flhe TEROR! I he . . -
ne 'FOR', would be a valuable enhancemsnt. It would frez the

programmay from having to create dunmy loop variables for thosa cases
where exit from the loop is determined by an independent condition.
Thirdly, the entries of a 'TABLE' declaration start from 0. It would
bz helpful if the baginning could be sclected to be either 0 or 1. The
use of tables was rejected in favour of arrays in many cases during

coding, because of this limitation. Finally, byte arrays should bacome

a part of the standard language.

9.4) Future Developments

The next stage is to be the expansion of tha current PORTOS
subset, to incorporate the missing software development facilities,
and its implementation on the target configuration. Work is in

progress to transfer the system to a DEC PDP-11/03 [43].

APPEN

121

DICES

Appendix A

<command>ss=<command s

<command nama>::=any sequence of

Space Or comma or pe:

<parameter list>::=<parameter>!
 <parameter><parame

<parameter>::=any sequence of c
space Or comma

<command terminator>

<command separator>:

{parameter saparator>:;¢€bmma

pppendix B

<prompt> :

<messages

<message

2> i =<prompt> L <messa

PORTOS Respoﬁse,Laﬁgﬁg

terminator>;:;carriage\\

Command

CoprY

CREATE ¢file>[,E=ceof>]
DELETE <Eile>

LOCK

PRINT £i UMBER [, TIPLE print contents of file
. P r obeying options

RENAME

LIST

UNLOCK

Cominand
<languiage>

DEBUG

EDIT

LINK

RUN

cont.,

Parameters

oot e G

<source>
[P=<options>]

<file>

<file>

<file>

ITI) Inguiry Comménds

Command Parametérs\\
FILES
HELP Non

SPACE

TIME

C\‘ ;

V)

INDISK

None

¢file> !* <source>,<targe

ntents of diskette
g the options

move contents of either
_or whole diskette (*)

CTL Modular One (RSRE)
(SDL)
(SDL)
(CAP)
(sSbL)

DEC . PDR-9
PDR 10
PDR 11
PDP 15
System
System

CORALGS Compilers Ru

10
20

Ferrvanti ARGUS
ARGUS
ARGUS

FMT 600B

GEC 2050
4070
4080
4082
Q20ATC
520C

Myriad

T

Myriad IT
Myriad- IIT

IBM360/37

CIL System 90 (Albatros Ltd) -

0

(SbL)
(SDL)
400 (RSRE)
500 (RBRE)
700 (Ferranti)

Ferranti FMIGOOE (Ferranti)

Interdata

5/16
6/16
7/16
8/16
7/32
8/32

(Interdata)

(Interdata)
(Interdata) -

(Interdata)
(Interdat
(Interdata)

(Ferranti)
FMI 600D (Ferranti) PRIME :
(GEC) ' ” .
(GEC)
(GEC)
(GEC)
(CAP)
(CAR)
Elliott 900

OVA (Lancaster U)
] riQnal/EngoLab)

6 (Smiths Ltd)
8/1 (smitbs Ltd)

nppendix B

I) Memory

003C
0040

007¢C
00890

F7EE
800

FBEF
FCOO

FFIA
FFEFC

FFEE

Appendix E cont.

I1) Memory Organiéétion Qf§ }"

Octal Address \vont nts

e e et e s o, e o o

000000 Index Regis
0 A Register
02 B Register

03
04
05
05 Visible
07 Progrenm
10 ‘
i
12
13 -
14 \Y Rag;ster’ Save for Con! ar &7DMA
15 M Register S ave for Con*rol anel & DMA
16 Mlc ocode Scra*ch L00a+1on ‘
7 :
20
37
40 /
57 -
50 Power F31l/ nuervupt & Pime
61 Real-Time Clock Tnc*ement: “
52 Restri ted _Execution Vlo;
63 Standard Lntcrrupt
64 Page Fault: Addre
65 Supervisor varl 1
56 Uulmplenentpd Ins
67 Memory Data Parlby Dr or: :
70 ~ Machine Check: CPU De tected Erwor
T VM1551ng Module- No. Memory“at Location
72 Illegal Instructlon Inter rupt
73 Page Writ Vlola*lon .
T4 Floating Po*ﬂt 0 ae) hptlo’”” -
75 Pro‘pdula StaPk Undgr ’ . -
76 -
100 -
101 . :
177
200 2
777

1000 _ Start of Genefalfﬂemogy;grea,

Appendix F

POV VA HP Y L

Keyword
ABSOLUTE
AND

ANON
ANSWER
ARRAY
BEGIN
BIT.
BITS
BYTE
CODE
COMMENT
COMMON
CORAL
DEFINE
DELETE
DIFFER
DO
DUMPON
ELSE

END
ENTRY

£O
ERRORLIST
EXTERNAL
FIELD
PINISH
FIXED
FLOATING
FOR .

GE

GOTO

GT

HEX

IF
INFINITY
INTEGER
IS

LABEL

LE
LIBRARY
LIST
LITERAL
LOCATION

*
*
*
,*\

*\
*

Appendix o F cont.

Keyword Off_‘LClal
LONG
LOWER

LT

MOD

NE

NOLIST
OCTAL

OF

OR
OVERFLOW
OVERLAY
PRESET
PROCEDURE
PROGRAM
RECORD
RECURSIVE
SEGMENT
SEMICOMPTLED
SENDTO
SLA

SLC

SLL
SPECIAL
SRA

SRC

SRL,

STEP
SWITCH
TABLE
THEN
TRACE
UNION
UNSTIGNED
UNTIL
UPPER
VALUE
WHILE
WITH
WORK

Appendix G

PORTOS

1

T) Macro Definit

'COMMENT! FILE: DBASE
PORTOS MEMORY-RESTID
'ABSOLUTE'! ('INTEGER! HEAD
' 'INTEGER' .LAIL / DCT’&L; /

AL (30003), :
(30004) [1:12): (pREK)
0020) [1:12]; (VECTIOR)
1(30034) (1121, (ThmiE)
 (PARAMETERS)

' INTEGER' ' ARRAY'
' INTEGER' ' ARRAY’
' TNTEGER' PAR1
' TNTEGER' PAR2
' INTEGER'! PAR3
‘ INTEGER' PAR
' INTEGER! PAR
' INTEGER' PAR6
' INTEGER' PAR7
' INTEGER' PARS
' INTEGER' TELm
| INTEGER' TEL?
' INTEGER' TEL3
' INTEGER! TEL4 -
‘INTEGBR"ARRAY"DATE/'OVTAL (30104)*[1 4]: (DATE INDICATOR)
' INPEGER' HOURS /'OCTAL'(30110); (TIME OF DAY)

\ JINTFGPR'?MINS /*OCTAL'(?O111), \
' INTEGER' SECS /'OCTAL'(30112)

}13)" '\TH“ REGINNING OF)

’ (PARAM, POINTER)

4@000) 16, 51

(Tl\BLE LLEMEN'VS)

/! 0CTA

3

IDERTINE! TASK AREA "'OCTAL’\J
CABSOLUTE'! (! INTEGER' PPTR /‘OFTAL”)
‘TABLE! 10 mABL” /ioc
[CHANNEL NT?GFR
SECTOR
Uwcwrow
WORD
BYTE
BUFFER

132

' COMMENT ! FILE: PARAMS
PORTOS EXECUTION
'DEFINE' SBS
'DEFINE' SBSM]
'DEFINE' SDISK
'DEFINE! UDISK
'DEFINE' TOP TRACK
'DERTNE' MAXMOD
' DEFINE)
'DEFINE' UMSIZE ''HEX!(2FCO)
'DEFINE' STR DCODER ''HEX'(C4C3),
'DEFINE! STR XER "'HEX'(DS

P T T MEMORY,

START ADDRESS)
‘ _WORDS)

appendlix G cont.

' COMMENT FILE: CHARS

'DERINE!

'DEFTNE!

'DERINE!
'DEBRINE!
IDERINE!

IDERINE!
'DERINE!

'DEEINE

!'DEFINE'

'DEFINE'

"‘DEFINE'
"DEFINE'
'DEFINE’

1

'"DERINE!

TOP BYTE(P) "!'BITS

CR
LE
BS
SP
KILL
DEL

BEL

NVITATION 90 TYPE)
\FTER ERASE LINE)

CTAL! (1202

BOT BYTE(P) "'B

IV) Macro Definition File LINKS

' COMMENT? FILE: LINKS -
PORTOS TASK COMMUNIC

‘DEFINE' SUPERVISOR CA

11 COPE! 'BEGIN

‘DERINE! ACTIVATE
UINM :

UDART:=AXZ:
ACTIVATE(1);

BXZ:=PAR2 "
'DEFINE“FREE(Q B

'DEFINE'

'HDERINE!

ACTEVATE(E)

END! 5

‘DEFINE' LOAD(BXZ,BXZ)
"PART:=BXZ;

ACTIVATE(7) “:

'DEFINE' D

. DAR3DXZ:
ACTIVATE(S8)

'DEFINE'

QHUTDOWN Io,
b ACTIVATE(11)
\pERINE' FETCH TIME(RAXZ) . e
- YPAR]:="LOCATION' (AKZ{TI), :

i

AchVATE<17) i

IDEEINE'

135

Appendix

10

11
12
13
14
15

16

38
29
40
41
a2
43
a4
45
46
a7
48
49
50

PIL Interface Source Listings

"CORAL' ,
'"PROGRAM' PTI, TNTERE
"LIBRARY' (DBASE);
‘LIBRARY' (CHARS);:
"LIBRARY' (LINKS);
IBRARY'! (PARAMS);
"DEFINE! VI "'YATUE''IN
'DEFINE’! LI “'TOCATION''T
‘EXTERNAL' (! PROCEDURE
 PROCEDURE'

~ !PROCEDURE® E

\"PROCEDUR“’
_ 'DROCEDURE'
RIETE' VI: 'DELETE!
EGMENT' PCL DECODER
So

' INTEGER! RESULT,
'ijEub R! Doﬂ

!N
TN
1N I’}':I

0 'DoY

1 IF" B [PTR] Sp
PPHEN ! I\SWER/‘
‘OISR IF ! [PmR]

» U-\HE'J' ' "’\!

m -—P‘I‘R*‘T
lF‘ND' :
LANSWER! 2

Ul g1 oo
RGN CURE S QN

Urouloon
[cO RS R C) R]

62

64
65
(515]

93
04
35
96
97
98
99

100

101
102
103

104

105

106

H cont,

YEND! ;

‘INTFGER"DROCEDURE‘
VBEGIN'

“PROCEDURE’ MOVE Ph
"BEGIN' ’

£

POR! I'”@:«'

YEND! -

F\D«fw’°‘
‘TE' BIPTR] = CR
'THEN' P BEGIN' -
MOVE PAR;
ANSWER'
' END!
'ELﬁn"Ir‘

:ET5EIEBPGXN’
BOT BYT@(P“A“F[1) :=B[PTR]
Se=0; T =J+1
END'

-

Appendix H cont.

108 : 'AN“WER'
109 YEND':

111 LOCK:=0: NPAR:=0

112 'ROR! 1.0 T4
3 CHANNEL [T

114 ENTRY : = LOCAS
5

o .
124 . ‘THEN‘ DISP“é (ﬂf

’CHAQ 0 LF);

‘EL?T\' LR
\ ‘THEN’TKmY"T
LR BTPTP] = 8P

it

El\! t: KB;;' I\] h
‘ QESULT&

TEND’
154 'END!
165 ¢ 'END.
156 'FINLQH‘

B cont,

1 "CORAL!

2 '"PROGRAM' PlL INTE Fxcz

1 'LIBRARY' (DBASE);

4 ‘LIBRARY' (LINKS):

5 'LIBRARY' (CHARS); .

6 "EXTERNAL'('PROCEDURE ALUR! ' INTEGER');
7 ‘PKO“EDUR“ 'VALUE''INFEGER'))i
8 'SEGMENT' PRL _
9 'BEGIN!

10 TINTEG

11

12 "PROCEDURE'! PUT

13 'BEGIN!

14 ' INTEGER! T,

15

16 ENTRY := 'LOCATION' (Tera):

17 'POR! I:0, 141 WHILEL <5

18 ‘REeTN! .
19 LIRL [&NTRY+11
20 TPHENY T -

21 ELS ”"J”GIN‘
22
23

24
25 LEND!
26 'END';

27

28 EC := PARS;
29 PAR7 := EC;

30 ‘IR RBC = 1

31 'THEN' ! BEGI

32 PUT

33 DISPLAY

i nENEaY

g: ,ELSE,,ii? re -2 . MISSING™)
36 \{ELSP"IF* EC = 3

37 ’ :mHmN"BEGIN‘

383

39

40

41

42
4
44 ,
45 -
a8 :ELSE, :;ﬂ ; dEN }1¢:5PtLZ‘aY(Q;’f}3ROGR&M TOO BIG")
o .QEZ;.xIFx e TTHEN' DISPLAY(D,"LOAD ERROR™)
ii IELSE!U'TE! BC - 8 ’

; s g EN *BF‘PTN’ &

50 DISPLAY ro,anyg Wy, PUT NAME;

21 DISPLAY(Oz' 200 LONG")

5% 'END!
2 ‘ELSE! IIF! EC = 9

o4 *THFﬂ“BPPIW

;? PUT NAME:

0]

139

Appaendix H cont.

SlSPLAY(O,

Ul W

[eX RN ®al
PO =D AD W0

-G Y Oy Oy v
~J O O W

~ ~3 O
O D0

'ELSE"IF" -
UPHEN! DISI
'13’ EC = 111‘

DO e

(o8]

_ 'ELSE!

RTOS DEV=1.0 (4.5.79) NOW RUNNII
IN DOUBT, TYPE HELB!) :

~d s N N
:J.OY Ui

€L

'ELSE!

Q00 ~d
e}

oo REee)
AR e]

AME;

[eolii¢e}

T LX)
~d VAN A LW

:TEEN”B”GTN‘
DISPLAY (,””HANNQ "y,

PUT NAME;

_DISPLAY(0,” NOT OPEN")
'END!

4

DISPLAY(0,"I0 TABLE FULL")

WD W
o)

W W

DIDPLAY(O TLLEGAL TO ON'");
PUT NAME
YEND !

109
102

103 ‘END'
104) FINIGH!

140

Y

Aj)u""ld‘ M CONT.

'CORAL!

; \,

2 'PROGRAM' DI,

3 'LIBRARY' (DB

4 'LIBRARY' (CH

5 CLIBRARY' (LT

6 YLIRRARY' (Pp

7 'DEFINE' TA "' INTE
2 DEFITNE! VI Yiyga

9 'EXTERNAL! (!

1
11 'DELETE! TA; :
12 "SEGMENT! CORY COM
1

3 'BEGIN'

14 ' TNTEGER'! ' ARR ‘

15 tITNTEGER' ' ARRAY' TO[1
16 . 'INTEGER''ARRAY' OUALIFIE
17 J5

183

19

20 GET PARAM/QO)

21 'TF! FROM[1]=BLANK

22 LPHENS BXTT(2

23 ET PARAMIQUALIL

24 'TF! QUALIFIE

25 LTHEN' OUS

26 COPY PILE(EFRON

27 EXIT(0)

29 'END'

to
R}
5]
k=
j

%
=
mn
T

1 “CORAL'

2 !PROGRAM! PIL TNTERFACE

3. 'LIBRARY' (DBASE\f'

4 !'LIBRARY' (LHARS .

5 ‘LIBRARY' (LINKS);

6 T'LIBRARY' (PARAMS):

7 'DEFINE' IA "!INTEGER''ARRAY'

8 'DEFINE' LI "'LOCATION''IN

3 'EXTERNAL' ('PROCEDURE

10 { PROCEDURE

11 ' PROCEDUR

12 ' PROCEDURE

13 ' PROCEDURE

14 ' PROCEDUR

15 ' PROCEDURE! WE ;

16 “DELETE! IA; 'DELETE' VI-W‘Bﬁ B

17. 'SEGMENT' CREATE COMMAND HKNDH;

18 'BEGIN' *

19

20
27

22 ! INTEGE

23 ' INTEGER' ' ARR@Y'

24 ' TNTEGER! NEW EOF

25

26

27

28 :

20 ! QJALIEIER_ﬂ,,/i,W. /
30 UPHEN' ! BEGIN' - ’ =
31 FOF COM[1] ;,BYmE(¢UALI TER[2]), (GET NEW
¥) EOF cOM(2] ’

33 IEND! ; .

24 OPFM*” FNAME, UDISK, 2, RESULT)

35 i RE@ULW > 0 'THEN' ERROR(ENAME,

16 : Kgx-;; WRITE CHAR(0,LF); '

37 \ ona&“LoLx —Q 'WHILE! KEY=0 !DO

18 | !BEeINt . ,

39 WRITE CHAR(O,1TT); (PROMPT gQR TINPUT) o
A 0 READ RECORD(0,B,80, RrJQUL'P) ,~ WRITE CX%R,(O; SLE)
21 /TPt B[1]=EOF COM[1] rz]—ECF coniel
12 ToHEN!IBEGINY , -

43 /‘LOSC‘/(S:)] i 1 :

44 WRITE CHAR =

45

46

47

29 mNiRin)

49 END!

50: !'EINISH!

142

S N

(S}

[e)

[N
W N - O

22
23

H cont.

'EORATY
'PROGREM' P
FLIBRARY!
'TIBRARY !
YIIBRARY!

T

PARAMS) ;
FINE! IR 9'INTEGE
"DEFINE! VI "iyarpge
"DEFINE! LT Yl'T0OCAT
'EXTERNAL! (' PROCEDI
LDROCE
'DEIETE! 1A: 'DREIRIE
SEGMENT! DELETE COM
TBARETIN! -
'INTEGER! ' ARRAY!

vl
el
5
iks] ool
<
i G

LI
TDE

5

TEND!
'RINTEH’

o

Appendi

(Y

S5 Ul WY

~J 5

183
19
20
21
22
23
24

Nz

L2
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

44
A5

#

=~
S

5

e
=~

48
49
50
51
52
53
54
55
55

H cont.
FCORALY

*PROGRAM! PII, rmmﬁﬁﬁa
LIBRARY' (DBASE);
LIBRARY' (CHRRS):
LIBRARY! (LINKS):
LIBRARY! (PARAMS)
DERTINE! VT 9 IyRyip!
EXTERNAL' o

'DELETEL VI
TSEGMENT! B
' BEGIN!

"INTEGER' ADDR, ““Tgyg
INTEGER! ' ARRAY' ID[1:3]
INTEGER' ' ARRAY' C ;
TNTEGER!
' INTEGER' |
INTEGER'
INTEGER! DE
INTEGER! SY ST

lE\;[D! -
ALLOCAT R (S @, L
DISKOP(1, DGVLVH,\
ID[T]\=TADDR] 1D(2
VTR

‘EUD'
'EISF"BFUIN'

DISPLAY(”B,

troR! 1.
IREGIN!
WRITE CHAR(
WRITE CHAR(CN*BO
‘END(o

vppt Cc=1
‘THEN"BEGlN‘

‘WRITE CHAR(1, 'LITERAL'(.))
DER[2]));

57
58

oYy Oy G
oo O A0

h

[o)
w

(@3
N

oo o
N S NEENS S W)

N

20

Go: U2
N O

xX
O Ut W

@ X

w0

95
97
98
99
109
104
102
103
104
105
106
107
108
109
110
111
112

WRITE
 WRITE
WRITE CHAR(1

WRITEN(1,C

DISPLAY(

\.HAR(1 - BO’T‘

ITERAL (1))
1 LIERALI(:)).

DISPuAY(CW
DTSPLAY(C\,"L
: ‘-F’ND! -
IND:= 02 REY := 05 COUNm
'FOR! FNTIY‘—ADDQ+49n’ J,
'REGTN! .

'TR! [ENTRY]
'THEN' KEY
'ELSE !

,UYMIT*,Q 'pO’!

TE’[PNTRY*I])

' BEGIN
DISPLAY(CN Llens3L Y

£ TL

‘ELSF, DIQ LA Y(o, YES)i
_‘JEIT(-“T‘H(BVICE, [ENTRY+6] Y5

121
- P LNQCN STZE, S5, 1):
'E,DIbELAX(CH,”l“LS3‘”)
 mNpl
e

'END’ 7 _ -
‘lf‘ IthO ‘THEN' DISE
DTSPLAY(CN "‘QLL" ‘
FREE(SBS, ADD

AANONE** ") ;

Appendix H cont.

113 . EXIT(0)
114 END'
115 LFINISH! \Q

[SN RO BN SN UV SR

R S G S S S s
D N U D W N e O D

Xe]

N
fl

[y

i

NSRRI NC I R AR A V)
0 ~d DY U1 Wi

WD W NN

34
35
3%
37

38

> W
[@INY]

E IR I N N T
STO W W N D ;AW N2

52
53
54
55

56

H cont

' CORAL! .
'"PROGRAM'! PII, xNTE”
'LIBRARY' (DBASE);
*LIBRARY' (LINKS):
"LIBRARY' (CHARS):
PLIBRARY ™ ((PERAMS) -

DEFINE® VI
DEWTNE‘ LI

RYTERNE

“IYALU
tirocar
(! PROCED
‘DRULED R
‘DRO“E

RRAY !,

‘PROCEDURA
VI; 'DELETE'

HELP COMMAND HAND

'INTEGER‘
VINTEGER!

'ARRAY" . \ . o
‘ARR&Y* 150244) ,'OCTAL' (144314),
,LOCDAL (127303
'OCTAL’ (143310),
' OeTAL (1273235
_1OCTAL (151704,
CTAL! (127323) ;

"INTEGER' ' ARRAY!

'AR]

INTEGER'

"INTEGER' ’gf LOCTAT! (144716),
DCTAL! (127323) ¢
“INTEGER' EPAL (151731),

"PROCEDURE!
'BEGIN'
UINTEGER' T:

LIST HELPFILE('

PEN(3, FNAME, S
‘TFR! ERR <> 0
PFOR! T:=0
IBEGIN'
READ REC

1 T’F-‘

END!
CLOSE(3)
VENDY

'BEGIN
LIsST HBLPk
KbY . ""0 it
TPOR! LOCK: _0
IpEGIN!
DISPLA

| GROUP DO YOU REQUIREZ ");

~J

fo2 NN V) IRV
O D0

D Y DY
SO U WD DD s

N

16) TR

NS IR RSN IR P e) B O]
(SIS NS SN G P00

76

H cont,

i VORI
1
D
¥ ';:\Lﬂ'ﬁ £
PEND!
"END!;
EXTT(0)

"END'
'FINISH!

READ RECQ;D.‘
1 IF :

T‘I{"

pﬁRﬂQIRM.V L)

DELETE ®DITIC
K INTIME IIs57le
PRINT RENAME
UNLOCKICLL Y)

DIBPL

PLAY(
DLSPLKY(O
\DISPL%Y(

WO WD b w =

PRGN SR
W - O

[OGN
[ColNec IR B) BN =)

NN o
W = O

WOl ow bR N o YW
s

[ES I N N & BN B v RN AR S

a5}
0

=z

48
49
590
51

52

53
54

1. AR
(o2

n
B

H conts,

' CORAT .
"PROGRAM' PIL INTERFACE

'LIBRARY.Y (DBASE).

"LIBRARY' (CHARS):

'LIBRARY Y {LINKS) &

‘DEFINE' VI “!VALUE'' INTE

'DEFINE! LT Y'TOCATION

"EXTERNAL! (! PROCEDUR

' PROCEDURE

' PROCEDUR

' DROCEDUE

‘ITNTEGER' ']

| PROCEDURE

'DELETE! VI 'DFLme‘ TA‘:;DEL;

'SEGHMENT Y TP IME COMMAND ﬁANDEER;

'BEGIN 2
'INTEGER' I, LOCK, KEY;

' INTEGER' ! ARRAY' CALENDAR

"INTEGER''ARRAY' B [1:10

U INTEGER! ! ARRAY!' Y,

ROCEDURE' WHICH

"*@c,AL%(147717) 'O“TAL‘(142503),

Aﬁ‘(141249),'OCTAL (151240),
1), (OCTAL (;54640),; '(147240)
’f'oanL (143640),’O”TAL (150240);
1OCTAL" (153240),‘OCTAL (141640);

‘FOR' If=1;1+1 *WHILD}u
IBEGIN'
!1"' CRLENDAR[2]
HEN"XNSWER'f
lEI\ED! ..
CANSHER! 1
CENDS

' pROCEDURE'! BAD INPU
" BEGIN!
DISPLAY(O, ”CANNOT/
WRITEN(D,0BJECT, 2,0):
DISPLAY(0D " TRY AGAIN

RENDI .

1.0CK: "O:\,\'\ .

DISPLAY(O;”‘CL‘ N1 Lo

'FOR‘ K}‘:‘Y Q !WHELE‘
'nEGIN!
DISPLAY(0,
tTR’ KEYO0 'th“<f*’

. KEY:=RERDN(D);

Kop&n&ih i cont.

~3

THEN''BEGIN!

CALENDAR{1] :=XEY
LOCK: =1

Ul
W

.

60 PEND!

61 "ELSE’ BAD INPUT(CALENDAR

62 TENDY

53 LOCK:=0;

51 "FOR' XEY:=0 'WHILE' LOCK=0 'DO°

55 " BEGIN'

56 DISPLAY(0,"MONTH {1ST 3 LETTERS)? ");

57 READ RECORD{0,B,10,KEY); WRITE CHAR(O,LF);

6 TOP BYTE(CALENDAR{2]):=B[1]; BOT ﬂYTE(“**EﬁDAE[21>‘=B(2§?

a9 TOP BYTE(CALENDAR[3I]):=3[3]; BOT BYTE(CALENDAR[3]):=5P;
a -

C
WHICH MONTI;

-3~
X5 N

[

"

2~

[ey]

o2

|

<O

7 "THEN' LOCK := 1

77 'ELSE' 'BEGIN'

74 DISPLAY(0,"CANNOT BE ");

75 "FOR' I:=2,3 'DO'

76 'BEGIN'

77 WRITE CHAR(D,TOP BYTE(CALENDAR[III);
73 WRITE CHAR(O,BOT BYTE(CALENDAR[IT))
E "END';

20 DISPLAY(D," TRY AGATINICLL!™)

31 ‘END’

92 CEND';

33 OCK:=0;

24 VPOR! KEY:=0 'WHILE' LOCK=0 'DO

35 1BEGIN'

25 DISPLAY(0,"151!YEAR (LAST 2 DIGITS)? "y, KEY:=READN(0);
37 CrF' KEY >= 80 'AND' KEY < 109

33 CpHEN ' ' BEGIN'

39 CALENDAR[4] :=KEY;

OCK:=1
i \YD|

[NOJKe)
— O
t“

92 TELSE' 34 INPUT (CALENDAR[4])
E PEND'
21 LOCK:=0; L
- - - et TO0K=0 D

95 fEOR' KEY:=0 'WHILZ LOCK 8

o 5
i BEGI 2 TEY .= ADN{ .
57 DISPLAY(0," 1S9 HOURS (1-23)2 "); KEY:=READN(D);

» Ny § v s A
23 fTpt KEY>=0 TAND KEYL24
an VHEN' 'BEGINS

ALENDAR[S] : =KEY; LOCK:=1

100 t“\ ‘
101 END

102 £

103 "END';
1041 LOCK:=0; ~g=0 DO
105 ‘pOR' KEY:=0 'WHILE' LOCK=0 DY

2 I AN NS T .

T

“ 'RBEG oy . S . =READN y .
‘IO“) X i I "7'»)1\‘.}‘1“83 (f}-%()) N) KEY. RLJ.XD..\({) Ji

by>=() tAND! KEY<HI

,::‘"‘BELJ[\]'
N xRy; LoCK:=1

107 DI

N9 'LIF

109 s P
oBRLENDAR [5]:=Kb

. TEND'

1:1 'ELSE' BAD TNPUT (KEY

ont .

<

e

113

114

.

117

o

o o=

L

[
Vv o= O W o~

wJ

[SA S RSN

-

S0 SN
KON

N s O

(SR SIS TE N T NI YO O B o
[« JEECo TRy ¢ RN RRN0) BRE) E RS

[US I OV RNV I\

[s]

[US IR US IR B S BV}
NS TS) U2 ERSEN U B S

[Nolanes]

i

>

P

SUCN

U D
Wty = O D2

i

[S2 RNV R
P

'CORAL!

"PROGRA

"DEFIN
'DEFIN
'EXTE

Sy

ok

E!

RNAL' (!

PIL IWTERFACE
IA "' INTEGER
LI "'LOCATION':®
PROCEDURE
'PRUCFDURE’
PROCEDURE'

'PROCEDURE'
PROCEDURE'

'PROCEDURE’

ARRAY'™;
INTEGER'
JTQDLxY(Vi,VI);

GET PARAM(IA);
ERROR(IA,VI);
WRITEN(VI,VI,VI,VI);
WRITE RECORD(VI,IR,VI);
OPEN(VI,IA,VI,VI,LI);

'D“FINE‘ VI "'VALUE''INTEGER'";

)

"PROCEDURE' CLOSE(VI);
"PROCEDURE' READ RECORD(VI,IA,VI,LI));

"DELETE' IA; 'DELETE' VI; 'DELETE' LI;
'LTBRARY' (DBASE);
"LIBRARY' (CHARS);
"LIBRARY' (LINK3);
"LIBRARY' (PARAMS);
'SEGMENT ' LIST COMMAND HANDLER
'rEGIx'

INTEGER' LOCK, KEY, RESULT, LNUM, NUMBER := 9,0,0,0,0;
VINTEGER' MU STR := 'OCTAL'(147225);
CINTEGER' *ARRAY' B{1:80];

*INTEGER' 'ARRAY' FNAME[1:5];
PINTEGER' ' ARRAY' QUALIFIER[1:5];
GET PARMM(FNAME);
"TF' PNAME[1]=BLANK 'THEN' EXIT(2);
GET PARAM(QUALIFIER);
‘TP’ QUALIFIER[1] = NU STR 'THEN' NUMBER: =1;
OPEN (3, FNAME, UDISK, 1, RESULT)
CIE! Rﬁmgrm ¢> 0 'THEN' ERROR(FRAME,RESULT);
DISPLAY(0,"!CLI");
'FOR' LOCK:=0 'WHILE' KEY=0 'DO’
'BEGTN'
READ RECORD(3, B, 80, RESULT) ;
vTE! RESULT = 0
o pHEN ' BEGIN'
'IF' NUMBER =
CpHEN' TBEGIN'
LNUM :=LNUM*+1;
WRITEN(O, LNUM, 5, 1);
plSPLAY(O," ")
TENDT;
QRITE RECORD(9,8,80)
"END'
'ELS;"BLGIN‘
KEY:=1
‘END’
"END';
CLOSE(3);
o1 TSPLAY (0, "*EOE"'CLL“')'
EXIT(0)
"END'
CRINTSH'

[S]

appanidix H cont.

—

CORAL'
PROGRAM" P

~N

IL INTERFACE
3 'LIBRARY' (DRBASE);
4 'LIBRARY' (LINKS);
5 'LIBRARY' (CHARS);
6 'LIBRARY' (PARAMS);
7 'DEFINE' IA "'INTEGER''ARRAY'";
8 'DEFINE' VI "'VALUE''INTEGER'":
9 'EXTERNAL' ('PROCEDURE' CHANGE PROTECT(IA,VTI);
19 "PROCEDURZ' GET PARRM(IA)):
11 'DELETE' IA; 'DELETE' VI;
12 'SECMENT' LOCKX COMMAND HANDLER
13 'BEGIN'
14 'INTEGER''ARRAY' FN 5] ;
15
16 GET PARAM(FNAME);
17 TIF' FNAME[1]=BLANK
19 PTHEN' BXIT (2); (PARAMETER MISSING)
19 CHANGE PROTECT(FNAME, 1); (LOCK FILE)

20 EXIT(0)
21 PEMD!
22 FEINTSHS

153

1

DI N 2 NN GV R

20

D WD

)

el - o> A
(W2 2 =

J
~d o

—

DA
P

[SO IO A 0]
D 3O A

[US RGN IR UV I SV
N = O D

L
o]

[US IO
o

w)
-~ Oy

WL W
[SORVN]

I e
DU s W Y = D

FENFEN
s IEN

[Sg ey
- O P

JioUl u
VS]

[SANR U]
(o]

[l
N

cont.

! COY {AT

'PROGRAM' PTIT,

INTERFACE

:gii;if: f? ::igz“zzi;i?fiﬁY‘”; ‘DEFINE' VI "'VALUE''INTEGER'";
5k LT OCATION' " INTEGER'";
'EXTERNAL' ('PROCEDURE' DISPLAY(VI,VI);
'PROCEDURE' GET PARAM\I?)
"PROCEDURE' ERROR(IA,VI)
"PROCEDURE' WRITEN(VI VI,VI,VI);
"PROCEDURE' OPEN(VI,IA,VI,VI,LI);
'"PROCEDURE' CLOSE(VI);
"PROCEDURE' READ RECORD(VI,TA,VI,LT):
"PROCEDURE‘ WRITE RECORD(VI,IA,VI);
"PROCEDURE' WRITE CHAR(VI,VI));
‘DELRIE' IA; ‘DELETE' VI; 'DELETE' LT;
"LIBRARY' (D3ASE);
"LTBRARY' (CHARS);
"LIBRARY' (LINKS);
"LIDRS (PARAMS);
TSEGMENT' PRINT COMMAND HANDLER
'BEGEN‘
"INTEGER' KEY, I, NLINE, RESULT;
’INWTGER"ARRAY' 2[1:80];
"INTEGER'"ARRAY' FNAME[1:5];
'INTEGER' 'ARRAY' QUALIFIER[1:57;
"INTEGER' 'ARRAY' CALENDER[1:7];
'INTEGER' NUMEER, TITLE := 0, 0;
VINTEGER' NU 3TR:='OCTAL' (147325);
PINTEGER' TI STR:='OCTAL'(152311);
GET PARAM(FNAME);
'IF' FRAME[1]=BLANK 'TIEN' EXIT(2);
OPEN(3, FNAME, UDISK, 1, RESULT);
“TP' RESULT > 0 'THEN' ERROR(FNAME,RESULT);
tPOR' I:=1,2 'DO!
"BEGIN'
GET PARAM(QUALIFIER);
118" QUATLIFIER[1]=NU STR
CTHEN' NUMBER:=1
yeLSE' TIPS QUALIFIER[1]I=TI S5TR
"PHEN' TITLE:=1
TEND';
TRt TTTLE=]
¢-‘TuE”“B“GIN'
STSPLAY (1, LISTING OF FILE @ ")j
‘pOR' 1:=1,I+1 'WHILE' I<=4 'DO!
"BEGIN'
WRITE CHAR(?Y,TOP
YRITE CHAR(1,B07T
"END';
FETCH TIME{CALENDER); N
- L oN M)
DL\P“‘{(1L“ eRR(11,2,0); WRITE CHAR(1T, "LITERAL'(.));
WRITEN(1,CALENDER[1] =/ 007 7)
WRITE CHAR(1,TOP BYTE CALENDER([2]))
o uap(1. 80T BYTE(CALENDER[2])):
WRITE CHAR{ T, 0V “ ey ﬂr‘R[’l])\.
WRITE CHAR(1,T0P BYTE(CALENBERLSS ST
WRITE PHAR(1/‘LWTEFAL ()3

1,2,0);

7

SR{4

o

LENDT

i

A

PR

LAY (1,"

~

cont.

u)

m

A

[al
1)

=

A

[Sa NI RNta}

b

RAL' (1))

L

mrp

n

RITE ZHAR(1,'LT

[y

\

’

,0)

4

ER[6],2

7

Z

PEND! ;

e

e

=2
)

eh]

o2

0

7

")

(‘LL!H)

-

k1

N "t
\Y {1,

7

Lk

'END'

o
SP

-

DI

AY{1,"*ECOF

1

pwi

+

SP

s

-

D(3,

RESULT
D

REC(

READ
1 ‘F 1

L
o~

'END'

7

ND'

<
14

t

w N

-
O WO DU

Y

pey
B A

3

oo o
[N S

H cont
ATAT T
CORAL

PROGRAM
LIBRARY'

)
LIBRARY' (LINKS);
LIBRARY' (CHARS);

LIBRARY'
v—* '\TT\I

TERNAL

(PARAMS) ;
IR TUINTEGER® Y
{ "PROCEDURE®

RE
i e~
PROCE

DURE'

)
13

TA -
LA

RENAME

DO
SO
=R

4
[=3)]

(
{
7 A
”RUA[W
'THEN' EXI
RENAME FILE(F
EXIT(0)

-
IA

(@)

Q‘\”",
RENAME

GET PAR

‘OR' TO!

(1]

=3LANK
(PARAM.MISS

ING)

Appandlix

RS TIE NG QY

L

27

5
2

)
O

3

W W W W
e

[I

~d

W oW
NORN OS]

P>
[}

-
—

hE
i

=Y
[N

S

~J Y U

¥

PN SN
.

GG U
G B Wi = O DU

D

H cont.

e}
<
)

A ' PIL T\]T ERFA

ACE
'LIBRARY' (DBASE); X
'LIBRARY' (E’nR AMBY
"LIBRARY' (CHARS);
'LIBRARY ' (LINXS);

DETINE' VI ""U‘LU““I? TEGER'™;

PEXTERNALS Px(OCi‘DTTRE‘ DISPLAY(VI,VI);
'DROCLD GET PARAM('INTEGER' "ARRAY');
‘PRO FD!JN* WRITE CHAR(VI,VI);
'PROCEDURE® WRITEN(VI,VI,VL,VI));

'DELETEY VI;

'SEGMENT' SPACE COMMAND HANDLER

-
=
e
i
d
)]

ADDR, I, J, X, SECTOR CTOUNT;

"INTEGER' 'ARRAY' ID [1:3];

+ o ¥ = ~ ~ - ‘
INTEGER' 'ARRAY' SECTORS [0:7] := 1,2,4,3,15,32,64,125;
*TNTEGER' CN, DEVICE:=0,1;

'INTEGER' 'ARRAY' QUALIFIER[1:5];

CINTEGER' PR STR:='OCTAL'(150322);

"INTEGER' SY STR:='OCTAL'(151731);

; (FETCH

K 7
2CT n
'FOR' T:=ADDR+4,I+1 'WHILE' I <= ADDR+4+TOP TRACK 'DO!
'BEGIN'
tTEt (I > 0
PPHEN T T BEGINY
ifropf J .:D !STEP: 1I ;UN,ETT ¥ 7 Y Dﬁ,'
'3EGINT
¥ .= [I] '"HMA3SK' SEOTORS [T ;
t1pt ¥ = SECTORS (71
tpyEN! SECTOR CZOUD T .= SECTOR COUNT
TEND?
'END’
TEND'
FREE(SBS5, ADDR); e .
. = SPACE ON DISK : ")
DISPLAY(CN,"!C,L!F‘REL, SPAC '
I+1 PWHRILE' I<= 3 'DO

tFOR' I:=1,
'BEGIN'
WRITE ¢
WRITE CHAR(
YEND' D,TLSPLAY(CN,"!CLI

WRITEN(CN, SECTOR COUNT, 5, 1):

DISPLAY (CN, « gECTORS OUT oF

CHAR(CN, TOP BYTE(ID[X1)):
CN, BOT BYTE(ID[TI]))
I!)

")

+

W)

1

- =

A

¢
o]

r~
t

FULL*") ;

T
LS

D

INEIRL]
N

ISPLAY(C

DI

¥

1

PTHEN

o
)

el
CH,

CPLAY(

DI

faat
C

wy

END?

N

—t
e

-

&

(g}
0

hppendix H cont,

N

"PROGRAM' PIL INTERFACE
3 'LIBRARY' (DBASE);
4 'LIBRARY' (CHARS);
5 CLIBRARY' (LINKS);
S 'DEPINE' VI “"'VALUE''INTEGER'";
7 'DEFINE' IA “UINT

EGER' "ARRAY' ™
i

3 'EXTERNALY ('PROCEDURRE' DISPLAV(VI

4 VL)

9 '"PROCEDURE' WRITE CHAR{VI,VI):

10 "PROCEDURE' WRITEN(VI,VI,VI,VI));:

11 'SEGMENT' TIME COMMAND HANDLER

12 'BEGIN'

13 "INTEGER' DOT := 'LITERAL'(.);

14 PINTEGER' COLON := 'LITERAL'(:);

15 TINTEGER''ARRAY' CALENDER [1:71;

16

17 FETCH TIME(CALENDER);

18

8! DISPLAY(0,"!CL! "y

20 WRITEH(OQ, CALENDER[1],2,0); (DAY)
21 WRITE CHAR(O,DOT);
272

23 WRITE CHAR(D,TOP BYTE(CALENDER([2])); (MONTH)
24 WRITE CHAR(0,BOT BYTE(CALENDER[2]));

25 WRITE CHAR(D,TOP BYTE(CALENDER[3]));

26 YRITE CHAR{Q,DOT);

27
29 WRITEN(0,CALENDER[4],2,0); (YEAR)
29 DISPLAY(O," ")

30

31 WRITEN(0,CALENDER[5],2,0); (HOURS)
32 WRITE CHAR(D,COLON);

i o TR[6 ; (MINUTES)
34 WRITEN (D, CALENDER([6],2,0);

35 WRITE CHAR(0, COLON];

~

2; RTTEN(0,CALENDER[7],2,0); {SECOND3)
19 DISPLAY (0, ICLLI");

39 EXIT{0)

40 TEND'

41 'FINISH'

i

A,VIL)
)

PROTECT(L
RAM{IA)

i

&
h
A

GET P

¢

e
o

R'VARRAY 'Y

)

REA
GE

{

9
L

NTE

PIL
(DBASE);
TA "'

N

0y

VRY!
TLIBRARY!

RALT
BR

™
T

'LIBRARY'

tCO
'PROGRAM!

L

q
3

2

7z
-
(6]
[£a]

P

ING)

)

5

Pl
e Re]

MIS

ETER

i

(UNLOCK FILI

ARAM

/

{
\

\NK
0);

XIT(2);

7

5]

o

T(FNAME,

1=
E)

~
o

o

v

k;

PROTE

'THEN!
HANGE

1

14
15
16
17
13
19

—~

[an)

=
4

[£3]

Appendix

XN w2

33
34

PORTOS Kernal Tasks Source

' CORAL'
'PROGRAM' KERNEL
'LIBRARY' (DBASE);
'SEGMENT' TASK MANAGER
'BEGIN'
'INTEGER' DAD, INDEX, R;

INDEX := TNUM;
'IF' INDEX > 0
'THEN' 'BEGIN'

Listings

'COMMENT' ACTIVATE TASK "TNUM";
FATHER [INDEX]) := ACTIVE; (SAVE ACTIVE TASK)

ACTIVE := INDEX;
R := [["OCTAL'(65)1]);
RETURN [ACTIVE] := R;
R := VECTOR [ACTIVE];
'CODE' 'BEGIN'

‘ JMP "R, *
'END'

'END'

'ELSE' 'BEGIN'

~e

(SAVE PC)

(ENTRY POINT OF TASK "TNUM™)

' COMMENT' RE~-ACTICATE THE ORIGINATOR
OF THE ACTIVE TASK;
DAD := FATHER [ACTIVE];

FATHER [ACTIVE] := 0;
R := RETURN [ACTIVE];

ACTIVE := DAD; (RESTORE CPU STATE)

'CODE' 'BEGIN'
- JMP “R7,* ;
'"END’
"END'

'"END'
'*FINISH'

161

-

Appendix I

cont.

' CORAL'

'PROGRAM' KERNEL
'LIBRARY' (DBASE);
"LIBRARY' (LINKS);

'BEGIN'
'INTEGER' S; (SCANNER)

43 'END'

1
2
3
4
5 'SEGMENT' ALLOCATE PRIMITIVE
6
7
8

' INTEGER' P; (P
'COMMENT' **
'"DEFINE' DEMAND

'DEFINE' BASE
'DEFINE' PARAM

REVIOUS)

ALLOCATE MEMORY **;
"PAR1";
"PAR2";
"PAR4";

"IF' HEAD = 0 'OR' DEMAND > [TAIL] 'OR' DEMAND < 10
'*THEN' BASE:=-1 'COMMENT' REQUEST DENIED;

'ELSE''BEGIN
P := H

'FOR'
'B

]

EAD;
S := HEAD, [S+1] 'WHILE' P <>0 ‘DO’
EGIN'

'IF' DEMAND <= [S]

1]
TEND':;
ACTIVATE(O)

44 'FINISH'

'"THEN' ' BEGIN'

BASE := S;

'IF' P = HEAD
*THEN' HEAD := [S+1]
'ELSE' [P+1]1:=[S+1];

'IF' HEAD=0 'THEN' TAIL := J;

'IF' DEMAND < [S]
*THEN' *BEGIN'

[S+DEMAND] : =[S} -DEMAND;
S := S + DEMAND;
PARAM := S;
ACTIVATE(3)
'END';

P :=0

*END’

'ELSE'
P := S
END'

Appendix

I cont.,

'CORAL'

'PROGRAM' KERNEL
'LIBRARY' (DBASE);
'LIBRARY' (LINKS);
'SEGMENT' FREE PRIMITIVE

'BEGIN'
'INTEGER' I, S, P, TOP, UL;
'DEFINE' AMOUNT "“PAR1Y;
'DEFINE' ADDR "PAR2";
'DEFINE' PARAM "PAR4"Y;
I :=20;

'IF' HEAD = 0
'THEN' 'BEGIN'

HEAD := ADDR; TAIL := ADDR;
[HEAD] := AMOUNT; ([HEAD+1] := 0
'END'

'ELSE' 'BEGIN'
TOP := ADDR + AMOUNT;
'*FOR' S := HEAD, [S+1] 'WHILE' S <> 0 ‘DO’
'BEGIN'
UL := S + [S]:
'IF' ADDR = UL 'OR' TOP = S
'"PHEN' ' BEGIN'
I :=1;
AMOUNT := AMOUNT + [S];
'IF' HEAD = TAIL
'"THEN' 'BEGIN'

HEAD := 9;
TAIL := 0
'END'
'ELSE''IF' S = HEAD
VPHEN' HEAD := [S+1]

'ELSE' 'BEGIN'
[P+1]:=[S+1];

YIF' [P+1] = 0
'THEN' TAIL
'END';
'TF' ADDR = UL 'THEN' ADDR := S
'END';
'"JF' I =0 'THEN' P := S
'EISE' I := 0
'END';
[ADDR] := AMOUNT;
PARAM := ADDR;
ACTIVATE(3):
'"END';
ACTIVATE(O)
'"END'
*FINISH'

163

.

Il

Appendix I cont.

1 'CORAL'

2 'PROGRAM' KERNEL

3 'LIBRARY' (DBASE);

4 'LIBRARY' (LINKS);

5 'SEGMENT' INSERT PRIMITIVE
6 'BEGIN'

7

8

' COMMENT' ** INSERT MEMORY BLOCK IN LIST **;
9 'COMMENT' THE TASK ASSUMES THAT THE LENGTH OF

10 PARTITION TO BE INSERTED INTO THE FREE
1 LIST IS GIVEN IN THE FIRST WORD;

13 'INTEGER' S; (SCANNER : POINTING TO CURRENT PARTITION)
14 '"INTEGER' P; (PREVIOUS : POINTING TO PREVIOUS PARTITION)

16 '‘DEFINE' ADDR "PAR4";

18 'IF' HEAD = 0
19 '"THEN' 'BEGIN'
20 HEAD := ADDR;
21 [ADDR+1] := 0;
22 TAIL := ADDR
23 'END’
24 '"ELSE''IF' [ADDR] <= [HEAD]
25 'THEN' 'BEGIN'
26 [ADDR+1} := HEAD;
27 HEAD := ADDR
28 'END'
29 '"ELSE''IF' [ADDR] >= [TAIL]
30 *THEN' 'BEGIN'
31 [TAIL+1] := ADDR;
32 [ADDR+1] := 0;
33 TAIL := ADDR
34 'END'
35 '"ELSE' 'BEGIN'
36 S := HEAD; |
37 P := HEAD;
38 YVFOR'! S:=[S+1] 'WHILE' S<>0 ‘DO
'BEGIN'
‘IF! [ADDR]<=[S]
'THEN' 'BEGIN’
[P+1] := ADDR;
[ADDR+1] := S
'END'
'ELSE’
P := S

'END'
"END';
49 ACTIVATE(0)

51 ‘END'
52 'FINISH'

164

appendix I cont.

1 ‘*'CORAL’

2 'PROGRAM' KERNEL

3 'LIBRARY' (DBASE);

4 ‘'LIBRARY' (PARAMS);

5 'LIBRARY' (CHARS);

6 'SEGMENT' GIVE SECTOR PRIMITIVE
7

8

'BEGIN'
'INTEGER' ADDR, I, TN, SN;
9 "INTEGER' 'ARRAY' SECTORS[0:7} := 1, 2, 4, 8, 16, 32, 64, 128;
10 'LIBRARY' (LINKS);

12 'INTEGER''PROCEDURE' FIND FREE SECTOR('VALUE''INTEGER' TRACK);

13 'BEGIN'

14 'INTEGER' I, RECORD;

15 'FOR' RECORD:=1, RECORD*2 'WHILE' RECORD<=128 'DO’
16 'BEGIN'

17 *IF' ([TRACK) 'MASK' BOT BYTE(RECORD))=BOT BYTE (RECORD)
18 '"THEN' 'BEGIN'

19 [TRACK] :=[TRACK] 'DIFFER' BOT BYTE(RECORD);
20 '‘FOR' T:=0,I+1 'WHILE' I<=7 'DO'

21 'IF' SECTORS[I] = BOT BYTE(RECORD)
22 "THEN' 'ANSWER' I

23 "END'

24 'END';

25 ' ANSWER' -1

26 'END';

27

28 SN := -1; (ASSUME DISC IS FULL)

29 ALLOCATE (SBS, ADDR);

30 DISKOP(1, UDISK, 1, ADDR);

31 'FOR' I:=ADDR+4,I+1 'WHILE' I<= ADDR+TOP TRACK 'DO’
32 'BEGIN'

33 '"IF' [I) > O

34 *THEN' 'BEGIN'

35 TN := I-ADDR-4; (FOUND TRACK)

36 SN := FIND FREE SECTOR(I);

37 I := ADDR+500 |
38 'END'

39 'END';

40 'IF' SN < 0 'THEN' TN:=0; (DISC FULL)

41 DISKOP(2, UDISK, 1, ADDR) ;

42 FREE(SBS, ADDR):

43 PAR1 := TN*8 + SN;

44 ACTIVATE(O)

45

46 ‘'END'

47 'FINISH'

165

Appendix I cont.,

1 'CORAL'

2 'PROGRAM' KERNEL

3 'LIBRARY' (DBASE);

4 'LIBRARY' (PARAMS);

5 'SEGMENT' RELEASE SECTOR PRIMITIVE
6

7

8

"BEGIN'
'INTEGER' ADDR, TN, SN;
'INTEGER' 'ARRAY' SECTORS{0:7) := 1, 2, 4, 8, 16, 32, 64, 128;
9 'LIBRARY' (LINKS);
10
11 SN := PAR1;
12 TN := SN/8;
13 SN := SN - (TN*8);
14 ALLOCATE (SBS, ADDR);
15 DISKOP(1, UDISK, 1, ADDR); (DISC STATUS)
16 TN := TN + ADDR +4; (INDEX TO CORRECT ENTRY)
17 [TN] := [TN] 'UNION' SECTORS(SN}; (UPDATE)
18 DISKOP(2, UDISK, 1, ADDR);
19 FREE (SBS, ADDR);
20 ACTIVATE (0)
21
22 ‘'END'

23 'FINISH'

166

Appendix

I cont.

' CORAL'
'PROGRAM' KERNEL
‘LIBRARY' (DBASE);
'LIBRARY' (LINKS);
'LIBRARY' (PARAMS);
'SEGMENT' EXIT PRIMITIVE
'BEGIN'

'DEFINE' STR DCODER

"'HEX'(C4C3),'HEX' (CFC4),'HEX'(C5D2),'HEX' (AEC2)";
'DEFINE' STR XER

"1HEX' (D8C5), 'HEX' (D2AE),'HEX' (C2A0),'HEX' (AOAO)";

'INTEGER' ADDR, SN;

'"INTEGER' 'ARRAY' DCODER {1:4] := STR DCODER;
'"INTEGER' 'ARRAY' XER [1:4] := STR XER;
'COMMENT' ** SYSTEM STARTUP & RECOVERY **;

' DPROCEDURE' FIND ENTRY('INTEGER''ARRAY' NAME) ;

'BEGIN'
'INTEGER' ENTRY, LOCK;
LOCK := 0;
'FOR' ENTRY:=ADDR+4, ENTRY+7 'WHILE' LOCK=0 'DO'
'BEGIN®
'TF' [ENTRY] = 'LITERAL' (*)
"THEN' LOCK := 1
'ELSE''IF' [ENTRY+1]=NAME[1] 'AND’ [ENTRY+2]=NAME[2]
[ENTRY+3]=NAME[3] ' AND' [ENTRY+4]=NAME[4]
*THEN''BEGIN'
SN := [ENTRY+6];
LOCK := 1
'END'
'END'
'END';
*IF' PAR8 > O 'AND' PAR8 <> 111
*THEN' 'BEGIN'
SHUTDOWN IO
YEND';
ACTIVE := 0;

RESET MEMORY;

ALLOCATE(SBS, ADDR) ;

DISKOP(1, SDISK, 3, ADDR); (READ PORTOS)

*IF' PAR8=0 *THEN' FIND ENTRY (DCODER)
‘ELSE' FIND ENTRY (XER);

FREE(SBS, ADDR);
LOAD(SDISK, SN)

'END'
'*FINISH'

167

'AND'

appendix I cont.

- —— -

1 'CORAL'

2 'PROGRAM' KERNEL

3 'LIBRARY' (DBASE);

4 'LIBRARY' (LINKS);

5 'LIBRARY' (PARAMS);

6 'SEGMENT' LOAD PRIMITIVE
7 'BEGIN'

8

'INTEGER' ADDR, I, KEY, ILA, SIZE, SN, PC, WA;

9

10 'DEFINE*' EOF ™“'OCTAL'(177771)";

1

12 SN := PAR1;

13 ALLOCATE(SBS, ADDR});

14 DISKOP(1,SDISK, SN,ADDR);

15 SIZE := [ADDR+5]-'OCTAL'{(1000); (SIZE IN WORDS)
16 RESET MEMORY; ALLOCATE(SIZE, ILA);

17 ALLOCATE(SBS, ADDR); DISKOP(1,SDISK, SN,ADDR);
18 ILA := [ADDR+4]; PC := [ADDR+61] ;

19 WA := ILA; I := ADDR+13; KEY := 0;

20 '"FOR' SIZE := 0 'WHILE' XEY =0 ‘DO’

21 'BEGIN'

22 '*IF' [I]=EOF

23 '"THEN' KEY:=1

24 'ELSE' ' BEGIN'

25 (wal := [I);

26 WA := WA + 1;

27 I :=1+ 1;

28 '"IF' I >= ADDR+SBS

29 "THEN' ' BEGIN'

30 SN := [ADDR+1];

31 DISKOP(1, SDISK, SN, ADDR) ;
32 I := ADDR+4

33 "END'

34 'END'

35 'END';

36 FREE(SBS, ADDR); i
37 "CODE' ' BEGIN'

38 - gmMp TPCT,* i

39 'END'’

40

41 'END’

42 'FINISH'

168

Appendix I cont.

1 'CORAL'
2 'PROGRAM' KERNEL
3 'LIBRARY' (DBASE);
4 'LIBRARY' (CHARS);
5 C'LIBRARY' (LINKS);
6 'EXTERNAL' ('PROCEDURE' PUTCHAR('VALUE''INTEGER');
7 'PROCEDURE' MESSAGE('VALUE''INTEGER');
8 'INTEGER' 'PROCEDURE' GETCHAR);
9 'SEGMENT' GET RECORD PRIMITIVE
10 'BEGIN'
1 '"INTEGER' DATA, I, N, PTR;
12
13 ' COMMENT' ** READ RECORD FROM TERMINAL *¥*;
14
15 PTR:=PAR1;
16 N:=PAR2;
17 PUTCHAR(BEL);
18 'FOR' I:=1,I+1 'WHILE' I<=N 'DO’
19 'BEGIN'
20 DATA : =GETCHAR;
21 'IF' DATA=DEL
22 'THEN' *BEGIN'
23 MESSAGE(" *CANCEL*!CL!");
24 PUTCHAR(ERL); PUTCHAR(BEL);
25 PTR:=PAR1; I1:=0
26 'END'
27 'ELSE''IF' DATA=KILL
28 *THEN' ' BEGIN'
29 I:=1I-1;
30 ‘ITF* I < 0 ‘THEN' I:=0;
31 PTR:=PTR-1;
32 'IF' PTR < PAR1 'THEN' PTR:=PAR1
13 'END'
34 'ELSE' 'BEGIN'
35 [PTR] : =DATA;
36 '*IF' DATA=CR
37 'THEN' I:=N |
13 'ELSE' PTR:=PTR+1
39 'END'
40 'YEND';
a1 ACTIVATE(O)
42
43 ‘END'

44 'FINISH'

169

Appendix I cont.

1 'CORAL®

2 'PROGRAM' KERNEL

3 'LIBRARY' (DBASE);

4 'LIBRARY' (CHARS);

5 'LIBRARY' (LINKS);

6 'EXTERNAL' ('PROCEDURE' PUTCHAR('VALUE''INTEGER'));
7

8

9

'SEGMENT' PUT RECORD PRIMITIVE

'BEGIN'

'INTEGER' DATA, I, N, PTR;
10
11 PTR:=PAR1; (BUFFER ADDR)
12 N:=PAR2; (NO.OF WORDS)
13 'FOR' I:=1,I+1 'WHILE' I<=N 'DO’
14 'BEGIN'
15 DATA:=[PTR};
16 PUTCHAR(DATA) ;
17 'IF' DATA=CR
18 '"THEN' 'BEGIN'
19 PUTCHAR(LF) ;
20 I:=N
21 'END'
22 'ELSE' PTR:=PTR+1
23 'END';
24 ACTIVATE(O)
25 'END'

26 'FINISH'

170

Appendix

O O OV W=

WLJUJLJNNNNNNNNNN—A—I—I—I_n_n—b—A—b—b
wm—-o\om\!mmbwm_-o\ooo\lmm.bwm—-o

I cont.

'CORAL'

'PROGRAM' KERNEL

'LIBRARY' (DBASE);

'LIBRARY' (LINKS);

‘LIBRARY' (PARAMS);

'LIBRARY' (CHARS);

' SEGMENT' SHUTDOWN IO PRIMITIVE

*BEGIN'
'INTEGER' FILEND := 'OCTAL'(147777);
'INTEGER' ACC, I;

'FOR' I:=0,I+1 'WHILE' I<=4 'DO’
'BEGIN'
'IF' CHANNEL([I] >= 0
"THEN' 'BEGIN'
CHANNEL(I]:=-1;
*IF' FUNCTION[I] = 2
*THEN' ' BEGIN'
ACC := BUFFER[I] + WORD[I];
'IF' BYTE[I] = 1
"THEN' ‘BEGIN'

BOT BYTE(WORDI[I]) := 0;
ACC := ACC + 1
*END';
[ACC] := FILEND;
DISKOP(Z,UDISK,SECTOR[I],BUFFER[I])
‘END';
FREE(SBS, BUFFER[I])
'END’
'END';
ACTIVATE(O)
'END'
'FINISH'

171

Appendix I cont.

1 ' CORAL'

2 'PROGRAM' KERNEL

3 'LIBRARY' (DBASE);

4 'LIBRARY' (LINKS);

5 ‘'SEGMENT' FETCH TIME PRIMITIVE
6 'BEGIN’

7 *INTEGER' PTR;

8

9

PTR:=PAR1;
10 [PTR] :=DATE[1]; PTR:=PTR+1; (DAY)
11 {PTR] :=DATE{2]); PTR:=PTR+1; (MONTH)
12 [PTR] :=DATE([3]; PTR:=PTR+1;
13 {PTR] :=DATE{4]); PTR:=PTR+1; (YEAR)
14 {PTR] :=HOURS; PTR:=PTR+1;
15 [PTR] :=MINS; PTR:=PTR+1;
16 [PTR] :=SECS;
17 ACTIVATE(0)
18 'END'

19 'FINISH'

172

pppendix J

PORTOS Kernel Routines Source Listings

1 'CORAL'

2 'PROGRAM' KERNEL

3 'LIBRARY' (DBASE);

4 ‘LIBRARY' (CHARS);

5 'LIBRARY' (LINKS);

6 ‘LIBRARY' (PARAMS);

7 'DEFINE' IA "'INTEGER''ARRAY'"; 'DEFINE' VI "'VALUE''INTEGER'";
8 'DEFINE' LI “'LOCATION''INTEGER'";

9 'EXTERNAL' ('PROCEDURE' FETCH ENTRY(IA,VI,LI,LI,LI);

10 'PROCEDURE' COPY FILE(IA,IA,VI);

11 'PROCEDURE' DELETE FILE(IA,VI):

12 *PROCEDURE' ERROR(IA,VI);

13 ' PROCEDURE' MAKE ENTRY (IA,VI,VI,VI,LI));

14 'DELETE' IA; ‘DELETE' VI; 'DELETE' LI:

15 'SEGMENT' COPY FILE PRIMITIVE

16 'BEGIN'

17 * INTEGER' ADDR, KEY, XSN, SN, LOCK, S, TYPE,PROT;

19 'PROCEDURE' COPY FILE('INTEGER' 'ARRAY' FROM,TO;'VALUE"INTEGER' oUST);
20 'BEGIN'

21 FETCH ENTRY(FROM, UDISK, SN, TYPE, PROT);

22 *IF' SN < 0

23 'THEN' ERROR(FROM,3) 'COMMENT' SOURCE NOT FOUND ;

24 'ELSE' 'BEGIN’

25 FETCH ENTRY(TO, UDISK, XSN, TYPE, PROT):]
26 "IF' XSN >= 0]
27 'THEN' 'BEGIN'

28 "IF' OUST = 0

29 'PHEN' ERROR(TO,4) 'COMMENT' TARGET NOT UNIO
30 'ELSE' 'BEGIN'

31 DELETE FILE(TO,UDISK);

32 MAKE ENTRY (TO,UDISK,TYPE,0,XSN)

33 'END'

34 'END'

35 "END';

36 LOCK:=07

37 ALLOCATE (SBS, ADDR);

38 'FOR' KEY:=0 'WHILE' LOCK=0 'DO’

39 ' BEGIN'

40 DISKOP(1, UDISK, SN, ADDR); (READ FILE)

41 'IF' [ADDR+1]=0

42 ' THEN' ' BEGIN'

43 DISKOP(2, UDISK, XSN, ADDR) ;

44 LOCK:=1

45 *END’

46 'ELSE' 'BEGIN'

47 gN:=[ADDR+1]:

48 GIVE SECTOR(UDISK,S):

49 [ADDR+1] :=S; .

50 DISKOP(2, UDISK, XSN, ADDR) ;

173

Appendix

51
52
53
54
55
56
57

J cont.
XSN:=S
'END'
'END';
FREE(SBS, ADDR)
'END';
‘END!
‘FINISH®

174

Appendix

38

40
41

J cont.

' CORAL®

*PROGRAM' KERNEL
'LIBRARY' (DBASE);
'LIBRARY' (LINKS);
'LIBRARY' (CHARS);
'LIBRARY' (PARAMS);

'DEFINE' IA "'INTEGER''ARRAY'"; 'DEFINE' VI “'VALUE''INTEGER'";
'EXTERNAL' ('PROCEDURE' CHANGE PROTECT(IA,VI);
'PROCEDURE' ERROR(IA,VI));
'DELETE' IA; 'DELE TE' VI;
'SEGMENT' CHANGE PROTECT PRIMITIVE
'BEGIN'

'PROCEDURE' CHANGE PROTECT('INTEGER''ARRAY' NAME;
'"VALUE''INTEGER' PROTKEY);
'BEGIN'
' INTEGER' ENTRY, KEY, ADDR, RESULT;

KEY:=90; RESULT:=3; (ASSUME ENTRY NOT FOUNI }
ALLOCATE(SBS, ADDR);
DISKOP(1, UDISK, 2, ADDR);
'"FOR' ENTRY:=ADDR+4, ENTRY+7 'WHILE' KEY=0 'DO’
'BEGIN'
'IF' [ENTRY] = 'LITERAL'(*)
*THEN' KEY := 1
"ELSE''IF' [ENTRY+1]=NAME[1] 'AND' [ENTRY+2]=NAME[2]
[ENTRY+3]=NAME[3] YAND' [ENTRY+4]}=NAME[4]
'"THEN' ' BEGIN'
BOT BYTE([ENTRY]) :=PROTKEY;
DISKOP(2, UDISK, 2, ADDR);
RESULT := 0;
KEY := 1
'"END'
'END';
FREE(SBS, ADDR);
'IF' RESULT > 0
'THEN' ERROR(NAME,RESULT)

‘END';

'END’
'FINISH'

175

Appendix

J cont.

' CORAL'
'PROGRAM' KERNEL
'LIBRARY' (DBASE);
"LIBRARY' (CHARS);
'LIBRARY' (LINKS);
'LIBRARY' (PARAMS);
'DEFINE' IA "'INTEGER''ARRAY'";
'DEFINE' VI "'VALUE''INTEGER'";
*DEFINE' LI "'LOCATION''INTEGER'";
'EXTERNAL' ('PROCEDURE' DELETE FILE(IA,VI);
'PROCEDURE' KILL ENTRY(IA,VI,LI));
'DELETE' IA; 'DELETE' LI; 'DELETE' VI;
'SEGMENT' DELETE FILE PRIMITIVE
'BEGIN'
'INTEGER' ADDR, SN;

' PROCEDURE' DELETE FILE('INTEGER''ARRAY' NBAME;
'"VALUE' ' INTEGER' DEVICE);
'BEGIN'
'INTEGER' I, KEY;

KILL ENTRY(NAME,DEVICE,SN);
ALLOCATE (SBS, ADDR);
KEY := 0;
'FOR' .=1 '"WHILE' KEY = 0 'DO*
'BEGIN'
DISKOP(1,DEVICE,SN,ADDR); (1ST REC.OF FILE)
RELEASE SECTOR(DEVICE, SN);
'"IF' [ADDR+1] = 0

"PHEN' KEY := 1
"ELSE' SN := [ADDR+1]
'END';
FREE(SBS, ADDR)
‘END';
'END'
'FINISH'

176

']
t]

Appendix J cont.

1 'CORAL'

2 'PROGRAM' KERNEL

3 'LIBRARY' (DBASE);

4 'LIBRARY' (LINKS);

5 'LIBRARY' (CHARS);

6 'LIBRARY' (PARAMS);

7 ‘'DEFINE' IA "'INTEGER''ARRAY'"; 'DEFINE' VI "ryALUE' ' INTEGER'";
8 'DEFINE' LI "'LOCATION''INTEGER'";

9 'EXTERNAL' ('PROCEDURE' RENAME FILE(IA,IA);

10 'PROCEDURE' ERROR(IA,VI);

11 'PROCEDURE' FETCH ENTRY(IA,VI,LI,LI,LI))i
12 'DELETE' IA; 'DELETE' VI; 'DELETE' LI;

13 ‘'SEGMENT' RENAME FILE PRIMITIVE

14 'BEGIN'

15

16 'PROCEDURE' RENAME FILE('INTEGER''ARRAY' FROM,TO);

17 'BEGIN'

18 ' INTEGER' ENTRY, LOCK, TYPE, PROT, SN, ADDR, RESULT;

19

20 FETCH ENTRY(TO, UDISK, SN, TYPE, PROT);

21 '"IF' SN >= 0

22 'oHEN' ERROR(TO, 4) 'COMMENT' TARGET NOT UNIQUE;

23 'ELSE' 'BEGIN'

24 ALLOCATE(SBS, ADDR);

25 DISKOP(1,UDISK,2,ADDR);

26 LOCK := 0; RESULT := 3; (ASSUME SOURCE NOT FOUND)
27 'FOR' ENTRY:=ADDR+4,ENTRY+7 'WHILE' LOCK=0 *DO!
28 *BEGIN'

29 'IF' [ENTRY] = 'LITERAL'(*)

30 'THEN' LOCK := 1

31 'ELSE''IF' [ENTRY+1]=FROM[1]‘AND'[ENTRY+2]=FROM[2]
32 {ENTRY+3]=FROM[3]'AND'[ENTRY+4]=FROM[4]
33 'THEN' ' BEGIN'

34 [ENTRY+1] := TO[1];

35 [ENTRY+2] := TO[2]};

36 (ENTRY+3] := TO([3]:

37 [ENTRY+4] := TO[4]);

38 RESULT := 0; (OK)

39 DISKOP(2,UDISK,2,ADDR);
40 LOCK := 1

a1 'END’

42 "END';

43 FREE (SBS, ADDR)

44 'END';

45 "IF' RESULT > 0

46 ' PHEN' ERROR(FROM, RESULT)

47 'END';

48 'END'

49 ‘'FINISH’

177

Appendix

38
39
40
41
4?2
43
44
45
46
47
48
49
50
51
52
53
54
55
56

J cont.

' CORAL'

"PROGRAM' KERNEL
'"LIBRARY' (DBASE);
'LIBRARY' (LINKS);
"LIBRARY' (CHARS);
"LIBRARY' (PARAMS);

'DEFINE' IA "'INTEGER''ARRAY'"; 'DEFINE' VI “'VALUE' ' INTEGER'";

‘DEFINE' LI "'LOCATION''INTEGER'";
*EXTERNAL' ('PROCEDURE' MAKE ENTRY(IA,VI,VI,VI,LI));
‘DELETE' IA; 'DELETE' VI;

'*SEGMENT' MAKE ENTRY PRIMITIVE

'BEGIN'

'PROCEDURE' MAKE ENTRY('INTEGER''ARRAY' NAME;
'VALUE' 'INTEGER' DEVICE, TYPE,
'"LOCATION' 'INTEGER' SECT);
'BEGIN’
'INTEGER' ADDR, ENT, KEY, SN;

KEY := 0;
ALLOCATE (SBS, ADDR);
'*IF' DEVICE=SDISK
'*THEN' 'BEGIN'
DISKOP(1,SDISK,3,ADDR)
'END’
'"ELSE' 'BEGIN'
DISKOP(1,UDISK,2,ADDR)
'END';
GIVE SECTOR(DEVICE, SN);
SECT:=SN;
'FOR' ENT :=ADDR+4 , ENT+7 'WHILE' XKEY = 0 'DO'
'BEGIN'

PROTECT;

‘IF! [ENT]='LITERAL'(#) 'OR? [ENT]='LITERAL'(*)

'THEN' 'BEGIN'

KEY := 1; (TERMINATE SEARCH)
'IF! [ENT]='LITERAL'(*)'THEN'[ENT+7]:='LITERAL'(*);
TOP BYTE([ENT]) := TYPE;

BOT BYTE([ENT]) := PROTECT;
[ENT+1] := NAME[1];

[ENT+2]} := NAME([2];

[ENT+3] := NAME[3];

[ENT+4] := NAME([4];

[ENT+5] := 0:;

[ENT+6] = SN

|ENDI

'END';
'IF' DEVICE=SDISK
' THEN ' ' BEGIN'
DISKOP(Z,SDISK,B,ADDR)
"END'
"ELSE' 'BEGIN'
DISKOP(Z,UDISK,Z,ADDR)
"END';
FREE (SBS, ADDR)
"END';

178

Appendix J cont.

57 'END'
58 'FINISH'

Appendix

J cont.

' CORAL'

'PROGRAM' KERNEL

'LIBRARY' (DBASE);

'LIBRARY' (LINKS);

'"LIBRARY' (CHARS);

'LIBRARY' (PARAMS);

'DEFINE' IA "'INTEGER''ARRAY'"; 'DEFINE' VI "'VALUE''INTEGER'";
‘DEFINE' LI "'LOCATION''INTEGER'";

'EXTERNAL' ('PROCEDURE' FETCH ENTRY(IA,VI,LI,LI,LI))3
'DELETE' IA; 'DELETE' VI; 'DELETE' LI;

' SEGMENT' FETCH ENTRY PRIMITIVE

'*BEGIN'

'PROCEDURE' FETCH ENTRY('INTEGER''ARRAY' NAME;
'"VALUE' 'INTEGER' DEVICE;

'LOCATION''INTEGER' SN, TYPE, PROTKEY) ;
'BEGIN'

' INTEGER' ADDR, ENTRY, LOCK;

ALLOCATE(SBS, ADDR);
'IF' DEVICE=SDISK
'"THEN''BEGIN'
DISKOP(1,SDISK,3,ADDR)
'END’
'ELSE' 'BEGIN'
DISKOP(1,UDISK,2,ADDR)

'END';
LOCK := 0; SN := -1; (ASSUME ENTRY NOT FOUND)
'FOR' ENTRY:=ADDR+4,ENTRY+7 '*WHILE' LOCK=0 'DO'
'BEGIN'
'IF' [ENTRY] = ‘LITERAL' (*)
'THEN' LOCK := 1

'ELSE' ' IF' [ENTRY+1]=NAME[1] 'AND' [ENTRY+2]=NAME([2]
[ENTRY+3]=NAME[3] '*AND' [ENTRY+4]=NAME([4]
" THEN' 'BEGIN'
SN := [ENTRY+6];
TYPE := TOP BYTE([ENTRY]);

PROTKEY := BOT BYTE([ENTRY]);
LOCK := 1
'END'
'END';
FREE (SBS, ADDR)

YEND';

'END'

{FINISH'

180

'AND'

Appendix

J cont.

'CORAL'

'PROGRAM' KERNEL

'LIBRARY' (DBASE);

'LIBRARY' (CHARS);

'LIBRARY' (LINKS);

'LIBRARY' (PARAMS);

'DEFINE' IA "'INTEGER''ARRAY'";

'DEFINE' VI "'VALUE''INTEGER'";

'DEFINE' LI "'LOCATION''INTEGER'";

'EXTERNAL' (*'PROCEDURE' KILL ENTRY(IA,VI,LI);
'PROCEDURE' ERROR(IA,VI));

'‘DELETE' IA; 'DELETE' VI; 'DELETE' LI;

'SEGMENT' KILL ENTRY PRIMITIVE

'BEGIN'

' PROCEDURE' KILL ENTRY('INTEGER''ARRAY' NAME;
'"VALUE''INTEGER' DEVICE;
'LOCATION''INTEGER' SN);
'BEGIN'
' INTEGER' ADDR, ENTRY, LOCK, RESULT;

LOCK:=0; RESULT:=3; (ASSUME ENTRY NOT FOUND)
ALLOCATE (SBS, ADDR);

DISKOP(1, DEVICE, 2, ADDR);

'FOR' ENTRY:=ADDR+4,ENTRY+7 'WHILE' LOCK=0 'DO’

'BEGIN'
'TF' [ENTRY] = 'LITERAL' (*)
'THEN' LOCK := 1

'ELSE' 'BEGIN'
'IF! [ENTRY+1]=NAME[1] 'AND’ [ENTRY+2]=NAME[2]
[ENTRY+3]=NAME([3] 'AND' [ENTRY+4] =NAME [4]
*THEN' 'BEGIN'
'IF' BOT BYTE([ENTRY]) = 1
'THEN' 'BEGIN'
RESULT:=9;
LOCK:=1
'END'
‘ELSE' 'BEGIN'
SN := [ENTRY+6];
[ENTRY]:='LITERAL'(#);
[ENTRY+1] :=0;
DISKOP(2,DEVICE,2,ADDR);

RESULT:=0;
LOCK := 1
IENDI

'"END'
'END’
'END';
FREE(SBS, ADDR) ¢
tIF!' RESULT > 0
*THEN' ERROR(NAME, RESULT)
'END';
YEND'
'"FPINISH'

181

'AND'

Appendix

J cont.

' CORAL'
"PROGRAM' KERNEL
'LIBRARY' (CHARS);

'DEFINE' VI "'VALUE''INTEGER'"; 'DEFINE' IA "1 INTEGER' 'ARRAY'";
'EXTERNAL' ('PROCEDURE' NEW SUFFIX(IA,IA,VI));
'DELETE' IA; 'DELETE' VI;
'SEGMENT' NEW SUFFIX PRIMITIVE
'BEGIN'
'INTEGER' DOT:="LITERAL'(.);
'INTEGER' ' ARRAY' DUMMY[1:4];

'PROCEDURE' NEW SUFFIX('INTEGER''ARRAY' OLDN, NEWN; '"VALUE' ' INTEGER'

'BEGIN'
'INTEGER' I;
'‘FOR' I:=1,I+1 'WHILE' I<=4 'DO’
'BEGIN'
DUMMY [I] :=OLDN([I];
NEWN[I] :=BLANK
'END';
tFOR' I:=1,I+1 '"WHILE' I<K=4 ‘DO!
'BEGIN'
'IF' TOP BYTE(DUMMY[I])=DOT 'OR'
TOP BYTE(DUMMY([I])=SP
'THEN' 'BEGIN'
'*IF' SUFFIX > O
'THEN''BEGIN'
TOP BYTE(NEWN([I]):=DOT;
BOT BYTE(NEWN[I]):=SUFFIX;
'END';
I:=10
'END"
'ELSE' *BEGIN'
TOP BYTE(NEWN[I]):=TOP BYTE(DUMMY [I]);
'IF' BOT BYTE(DUMMY[I])=DOT 'OR'
BOT BYTE(DUMMY{I])=SP
' PHEN' ' BEGIN'
"IF' SUFFIX > O
' THEN' *BEGIN'
BOT BYTE(NEWN[I]):=DOT;
TOP BYTE(NEWN[I+1]):=SUFFIX;
'END';
I1:=10
'END’
'ELSE"BEGIN'
BOT BYTE(NEWN({I]):=BOT BYTE(DUMMY [I])
'"END’
'"END'
'END'
*END';
'END'
‘FINISH'

182

SUF1

Appendix

26
27
28

J cont.

'CORAL'

'PROGRAM' KERNEL

'LIBRARY' (CHARS);

'DEFINE' IA "'INTEGER''ARRAY'";

'EXTERNAL' ('INTEGER''PROCEDURE' WHAT SUFFIX(IA));
'DELETE' IA;

'SEGMENT' WHAT SUFFIX PRIMITIVE
'BEGIN'

' INTEGER' ' PROCEDURE' WHAT SUFFIX('INTEGER''ARRAY' NAME);
'BEGIN'

'INTEGER' I;

'"FOR' I:=1,I+1 'WHILE' I<=4 'DO'
'BEGIN'
'*IF' TOP BYTE(NAME[I])=SP
"THEN' 'ANSWER' SP
"ELSE' 'IF' TOP BYTE(NAME[I])='LITERAL'(.)
"THEN' ' ANSWER' BOT BYTE(NAME([I])
'ELSE''IF' BOT BYTE(NAME[I])=SP
"THEN' 'ANSWER' SP
'*ELSE''IF' BOT BYTE(NAME[I])="LITERAL'(.)
"THEN' ' ANSWER' TOP BYTE(NAME[I+1])

'END';
' ANSWER' SP
VEND';
*END’
'FINISH’

183

Appendix

J cont.

"CORAL'
'PROGRAM' KERNEL
'"LIBRARY' (DBASE);
'LIBRARY' (LINKS);
'"LIBRARY' (CHARS);
'LIBRARY' (PARAMS);
'"DEFINE' VI "'VALUE''INTEGER'"; 'DEFINE' IA "'INTEGER''ARRAY'";
'DEFINE' LI “'LOCATION''INTEGER'"; '
"EXTERNAL' ('PROCEDURE' CLOSE(VI);
' ' PROCEDURE' OPEN(VI,IA,VI,VI,LI);
INTEGER' ' PROCEDURE' SEEK IO ENTRY;
' INTEGER' ' PROCEDURE' LOOKUP(VI);
'PROCEDURE' FETCH ENTRY(IA,VI,LI,LI,LI);
'PROCEDURE' MAKE ENTRY(IA,VI,VI,VI,LI));
'DELETE' VI; 'DELETE' IA; 'DELETE' LI;
'SEGMENT' OPEN CLOSE PRIMITIVES
"BEGIN'
' INTEGER' FILEND := 'OCTAL'(147777);

' PROCEDURE' OPEN('VALUE''INTEGER' CN; ' INTEGER' 'ARRAY' FNAME;
'VALUE' ' INTEGER' DEVICE;
'"VALUE' ' INTEGER' OPER; 'LOCATION''INTEGER' RESULT) ;
'BEGIN'
' TNTEGER' ADDR, I, SN, TYPE, PROT;

I :=LOOKUP(CN);
‘IF' I >= 0 'THEN' EXIT(22); (CN ALREADY OPEN)
I:=SEEK IO ENTRY;

‘IFY I < 0 '"THEN' EXIT(24); (IO TABLE FULL)
RESULT:=0;
FETCH ENTRY(FNAME, DEVICE, SN, TYPE, PROT);
*IF' SN < 0
" THEN' 'BEGIN'
'IF' OPER=1

'THEN' 'BEGIN'
TEL1:=FNAME[1]:
TEL2:=FNAME [2];
TEL3:=FNAME[31];
TEL4:=FNAME [4];
RESULT:=3; (FILE NOT FOUND)
'"END*
'ELSE"BEGIN'
MAKE ENTRY (FNAME, DEVICE, 0, O, SN)
*END'
'END’
'ELSE"BEGIN'
'IF' OPER = 2
' THEN' RESULT:=4; (NAME NOT UNIQUE)
'END';
ALLOCATE(SBS, ADDR);
CHANNEL[I]:=CN7
SECTOR[I]:=SN?
FUNCTION[I]:=OPER?
WORD[I]:=4; BYTE (1] :=0;

BUFFER[I]:=ADDR;
tIF' OPER = 1 'AND’ RESULT = 0

184

appendix J cont.

57 'THEN' 'BEGIN'

58 DISKOP(1, DEVICE, SN, ADDR);
59 'END'

60 'END';

61

62 'PROCEDURE' CLOSE('VALUE''INTEGER' CN);

63 'BEGIN'

64 'INTEGER' ACC, I;

65

66 I:=LOOK UP(CN);

67 'IF' I < 0 'THEN' EXIT(23); (CN NOT OPEN)
68 '"IF' FUNCTION[I] = 2

69 'THEN' 'BEGIN'

70 ACC := BUFFER[I] + WORD[I];

71 'IF' BYTE[I] = 1

72 'THEN' 'BEGIN'

73 BOT BYTE(WORD{I]) := 0;
74 ACC := ACC + 1

75 'END';

76 [ACC] := FILEND;

77 [BUFFER([I]] := 0;

78 [BUFFER[I]+1] := 0;

79 DISKOP(2,UDISK,SECTOR(I],BUFFER[I])
80 *END';

81 CHANNEL[I]:=-1;

82 FREE(SBS, BUFFER[I]):

83 BUFFER([I] :=0

84 'END';

85

86 'END'

87 ‘'FINISH'

185

Appendix J cont.,

1 'CORAL'’

2 '"PROGRAM' KERNEL

3 'LIBRARY' (DBASE);

4 'LIBRARY' (LINKS);

5 'LIBRARY' (CHARS);

6 'DEFINE' VI “'VALUE''INTEGER'"; 'DEFINE' IA "'INTEGER''ARRAY'";
7 'DEFINE' LI "'LOCATION''INTEGER'";

8 'EXTERNAL' ('PROCEDURE' READ RECORD(VI,IA,VI,LI);
9 '"INTEGER' 'PROCEDURE' READ CHAR(VI)):

10 'DELETE' VI; 'DELETE' IA; 'DELETE' LI;

11 ' SEGMENT' READ RECORD PRIMITIVE

12 'BEGIN'

13 '"INTEGER' FILEND:='OCTAL'(147777);

14

15 'PROCEDURE' READ RECORD('VALUE''INTEGER' CN;

16 'VALUE''INTEGER' LIMIT;
17 'LOCATION' *INTEGER' RESULT);
18 'BEGIN'

19 'INTEGER' I, DATA;

20
21 '‘IF* CN = 0

22 '"THEN' 'BEGIN'
23 RESULT:=0;

24 GET RECORD(B,LIMIT)
25 'END'
26 'ELSE' 'BEGIN'
27 'FOR' I:=1,I+1 '"WHILE' I<=LIMIT 'DO!
28 'BEGIN'

29 DATA:=READ CHAR(CN);

30 "IF' DATA = FILEND

31 *THEN' 'BEGIN'

32 :=LIMIT;

33 RESULT := 1

34 'END'

35 'ELSE' 'BEGIN'

36 RESULT := 0;

37 t1F' DATA=LF

38 '*THEN' DATA:=CR;
39 B[I] := DATA;

40 '1F* DATA = CR

41 ‘PHEN' I:=LIMIT
42 *END'
43 '*END'
44 'END'

45 'END';

46 'END'
47 *FINISH'

186

' INTEGER' ' ARRAY'

Appendix J cont.

1 'CORAL'

2 'PROGRAM' KERNEL

3 'LIBRARY' (DBASE);

4 'LIBRARY' (LINKS);

5 'LIBRARY' (CHARS);

6 'DEFINE' VI "'VALUE''INTEGER'"; 'DEFINE' IA "'INTEGER''ARRAY'";
7 'EXTERNAL' ('PROCEDURE' WRITE RECORD(VI,IA,VI);

8 ' INTEGER' ' PROCEDURE' WRITE CHAR(VI,VI));

9 'DELETE' VI; 'DELETE' IA;

10 'SEGMENT' WRITE RECORD PRIMITIVE
11 'BEGIN'

13 'PROCEDURE' WRITE RECORD('VALUE''INTEGER' CN; ' INTEGER' 'ARRAY' B;
14 '"VALUE''INTEGER' LIMIT);

15 ‘'BEGIN'

16 'INTEGER' I;

18 'IF' CN < 2

19 *THEN'® 'BEGIN'

20 PUT RECORD{B,LIMIT)

21 '*END'

22 '"ELSE' 'BEGIN'

23 ‘FOR' I:=1,I+1 '"WHILE' I<=LIMIT ‘DO’
24 '‘BEGIN'

25 WRITE CHAR(CN, B[Il):
26 'TF!' B[I] = CR

27 *THEN' I:=LIMIT
28 ‘END’

29 'END'

30 ‘END';

31 'END'’

32 'FINISH'

187

Appendix

J cont.

' CORAL'

'PROGRAM' KERNEL

'LIBRARY' (DBASE);

'LIBRARY' (LINKS);

'LIBRARY' (PARAMS);

'LIBRARY' (CHARS);

'DEFINE' VI "'VALUE''INTEGER'";

'EXTERNAL' (' INTEGER' ' PROCEDURE' READ CHAR(VI);
' INTEGER' 'PROCEDURE' GET CHAR;
*INTEGER' 'PROCEDURE' LOOKUP(VI));

1

'DELETE' VI;
'SEGMENT' READ CHAR PRIMITIVE
'BEGIN'

' INTEGER' FILEND:='OCTAL'(147777);

' INTEGER"' ' PROCEDURE' READ CHAR('VALUE' ' INTEGER' CN);
'BEGIN'
'INTEGER' ACC, DATA, I, SN;

'IF' CN = 0
‘THEN' DATA:=GET CHAR
'ELSE' "BEGIN'
I :=LOOKUP(CN); DATA:=0;
'TF' I <0
'THEN' EXIT(23): 'COMMENT' CN NOT OPEN;
ACC:=BUFFER([I] + WORD[I]:;
'IF' [ACC]=FILEND ' THEN' ' ANSWER' FILEND;
'IF' BYTE[I]=0
' THEN' ' BEGIN'
DATA :=TOP BYTE([ACC]);
BYTE[I] :=1
*END'
‘ELSE"' 'BEGIN'
DATA :=BOT BYTE([ACC]);
BYTE[I]:=0;
WORD[I]:=WORD[I]+1;
'IF! WORD[I] > SBSM1
'THEN"BEGIN'
SN:=[BUFFER[I]+1];
DISKOP(1,UDISK,SN,BUFFER[I]);
SECTOR[I] :=SN;
WORD[1] :=4; BYTE[I] :=0

*END'
'"END’
"END';
' ANSWER' DATA
'END';
'END'
'"FINISH'

188

Appendix J cont.

1 'CORAL'

2 'PROGRAM' KERNEL

3 'LIBRARY' (DBASE);

4 ‘'LIBRARY' (LINKS);

5 'LIBRARY' (PARAMS);

6 'LIBRARY' (CHARS);

7 'DEFINE' VI "'VALUE''INTEGER'";

8 'EXTERNAL' ('PROCEDURE' WRITE CHAR(VI,VI);
9 *PROCEDURE' PUT CHAR(VI);

10 * INTEGER' ' PROCEDURE' LOOKUP(VI));
11 'DELETE' VI;

12 'SEGMENT' WRITE CHAR PRIMITIVE

13 'BEGIN’

14 *INTEGER' I, XSN;

15 ' INTEGER' FILEND:='OCTAL'(147777);

17 'PROCEDURE' WRITE CHAR('VALUE' ' INTEGER' CN, DATA);
18 'BEGIN'
19 ' INTEGER' ACC;

21 "IF' CN < 2

22 "THEN' PUT CHAR(DATA)

23 'ELSE' 'BEGIN'

24 T :=LOOKUP(CN);

25 'IF*' T <0

26 '*THEN' EXIT(23); 'COMMENT' CN NOT OPEN;

27 ACC:=BUFFER[I] + WORD[I]:;

28 '1F' DATA = FILEND

29 'THEN' [ACC] := FILEND

30 'ELSE' 'BEGIN'

31 'IF' BYTE[I]=0

32 'THEN' *BEGIN'

33 TOP BYTE([ACC]):=DATA;

34 BYTE([I]:=1

35 'END’

36 'ELSE' 'BEGIN'

BOT BYTE([ACC]) :=DATA;

BYTE([I):=0;

WORD [I) :=WORD[I]}+1;

'IF' WORD[I] > SBSM1

'THEN' 'BEGIN'

GIVE SECTOR(UDISK, XSN);
[BUFFER[I]+1]:=XSN;
DISKOP(2,UDISK,

a4 SECTOR[I) ,BUFFER([I]);

SECTOR(I] :=XSN;

46 WORD[I]:=4; BYTE[I]:=0

47 'END'

'END'
*END’
52 'END';
53 'END'
54 ‘FINISH'

189

Appendix J cont.

1 'CORAL'

2 ‘'PROGRAM' KERNEL

3 'LIBRARY' (DBASE);

4 'LIBRARY' (LINKS);

5 'LIBRARY' (CHARS);

6 ‘LIBRARY' (PARAMS);

7 'EXTERNAL' ('INTEGER''PROCEDURE' SEEK IO ENTRY);
8 "SEGMENT' SEEK IO ENTRY PRIMITIVE
9

'BEGIN'
10
1 ' INTEGER' 'PROCEDURE' SEEK IO ENTRY;
12 'BEGIN'
13 'INTEGER' I;
14
15 'FOR' I:=0,I+1 'WHILE' I<=4 'DO‘
16 'IF' CHANNEL{I]=-1 'THEN' 'ANSWER' I;
17 'ANSWER' -1
18 'END';
19
20 'END'

21 *FINISH'

190

appendix J cont.

1 'CORAL’

2 'PROGRAM' KERNEL

3 'LIBRARY' (DBASE);

4 'EXTERNAL'('INTEGER''PROCEDURE' LOOKUP('VALUE''INTEGER'));
5 'SEGMENT' LOOKUP PRIMITIVE

6 'BEGIN'

7

8

9

*INTEGER' 'PROCEDURE' LOOK UP('VALUE''INTEGER' CN);

'BEGIN'
10 *INTEGER' I;
1 'FOR' I:= 0,I+1 '"WHILE' I<=4 'DO’
12 '"IF' CHANNEL[I}=CN 'THEN''ANSWER' I;
13 *ANSWER' -1
14 'END';
15
16 'END'

17 ‘FINISH'

191

J cont.

'*CORAL'

'PROGRAM' KERNEL
'LIBRARY' (DBASE);
*LIBRARY' (LINKS);

‘DEFINE' VI "'VALUE''INTEGER'";
'EXTERNAL' ('PROCEDURE' ERROR(IA,VI));
*DELETE' VI; 'DELETE' IA;

' SEGMENT' ERROR PRIMITIVE

'"BEGIN'

'PROCEDURE' ERROR('INTEGER''ARRAY' PARAM;
'BEGIN'

TEL1:=PARAM[1];

TELZ :=PARAM([2];

TEL3:=PARAM([3];

TEL4:=PARAM[4];

EXIT(CODE)
'END';
'END'
"FINISH'

192

'"DEFINE' IA "'INTEGER''ARRAY'";

'VALUE' ' INTEGER'

Appendix J cont.

1 'CORAL'

2 'PROGRAM' KERNEL

3 'LIBRARY' (DBASE);

4 'LIBRARY' (CHARS);

5 'LIBRARY' (LINKS);

6 'LIBRARY' (PARAMS);

7 'DEFINE' VI "'VALUE''INTEGER'"; 'DEFINE' IA "'INTEGER''ARRAY'";
8 'DEFINE' LI "'LOCATION''INTEGER'";

9 'EXTERNAL'('PROCEDURE' EXECUTE(IA,VI,LI);

10 ' PROCEDURE' FETCH ENTRY(IA,VI,LI,LI,LI));
11 ‘'DELETE' VI; 'DELETE' IA; 'DELETE' LI;

12 YSEGMENT' EXECUTE PRIMITIVE

13 'BEGIN'

14

15 'PROCEDURE' EXECUTE('INTEGER''ARRAY' NAME; 'WALUE' 'INTEGER' DEVICE;
16 '"LLOCATION' ' INTEGER' RESULT);
17 'BEGIN'

18 ' INTEGER' SN, TYPE, PROT;

19

20 FETCH ENTRY(NAME,DEVICE, SN, TYPE,PROT);

21 *IF' SN < O

22 '*THEN' RESULT:=3

23 '"ELSE''IF' TYPE < 2

24 '*THEN' RESULT:=10

25 'ELSE' 'BEGIN'

26 LOAD(DEVICE, SN)

27 'END’

28 'END';

29 'END'

30 'FINISH'

193

Appendix J cont.

'CORAL'

'PROGRAM' KERNEL
'LIBRARY' (DBASE);
'EXTERNAL' ('PROCEDURE' GET PARAM('INTEGER''ARRAY'));

1
2
3
4 ;
5 'SEGMENT' GET PARAM PRIMITIVE
6 'BEGIN'

7

8

9

'PROCEDURE' GET PARAM('INTEGER''ARRAY' NAME);

'BEGIN'
10 NAME{1] := [PPTR];
11 NAME[2] := [PPTR+1];
12 NAME (3] := [PPTR+2];
13 NAME[4] := [PPTR+3]};
14 NAME([5] := [PPTR+4];
15 PPTR:=PPTR+5
16 YEND';
17
18 'END'

19 'FINISH'

194

appendix J cont.

1 ' CORAL'

2 '"PROGRAM' KERNEL

3 'LIBRARY' (DBASE);

4 'LIBRARY' (LINKS);

5 'LIBRARY' (PARAMS);

6 'DEFINE' VI "'VALUE''INTEGER'";
7 'EXTERNAL' ('INTEGER''PROCEDURE' LENGTH(VI,VI));:
8

9

1

'DELETE' VI;

'SEGMENT' LENGTH PRIMITIVE
10 'BEGIN'

12 'INTEGER''PROCEDURE' LENGTH('VALUE''INTEGER' DEVICE,SN);

13 'BEGIN'

14 '*INTEGER' ADDR, COUNT, KEY, LOCK;
15

16 ALLOCATE (SBS,ADDR) ;

17 COUNT:=0; LOCK:=0;

18 'FOR' KEY:=0 'WHILE' LOCK=0 'DO'
19 'BEGIN’

20 DISKOP(1,DEVICE,SN,ADDR);

21 COUNT : =COUNT+1;

22 '"IF' [ADDR+1]=0

23 'THEN' LOCK:=1

24 '"ELSE' SN:=[ADDR+1]

25 'END';

26 FREE (SBS,ADDR);

27 ' ANSWER' COUNT

28 YEND';

29 'END’

30 'FINISH'

195

appendix K
PO
1 * PROGRAM :
2 *
3 ¥ SEGMENT
A *
5 % HO3T COMPU
5
7% ok
)
K ORG
1\ O RLIXI‘
I ELM
12 DQUTWARD ZX
13 DATA AREA
14 JMP
15 UEAD DATA '
16 TAIL DATA !
17 CTIV DATA !
18 TNUM DATA '

H

N
D
=

DATA

20 AR2 DATHA !
21 PAR3 DATA
22 PAaR4 DATA °
23 PARD !
24 PARS ’
25 PARY !
26 PARR '
27 TEMP 0
28 B1
2 * TNWA XT
ST BN

W W
*
U

32

33 LDA
34 A
35 LDA
36 STA
37 LDA
33 STA
3G %

40 CRL
41 LDA
42 TADB
43 DIV
A4 STR
45 STA
46 IAB
47 STA
45 ST
as *

50 START CRA

RTOS Hardw.

Listings

vra

HARDWARE

-

1%

DISKOP

PRIMITIV

PRIME 300

&

* %

DISK DRIVER PRIMITIVE

L3

3 4

234

TERNAL AND COMMON
31

30000

30001

30002

30003

30050

30051

309052

L AND COMMOW

POINT

*
TDRNA

PART,*
OPER
PARZ2,*

AT
LA

PAR3,*
ADDR

TS

ADJUST Shic

=
n

TOR ~>

TEMP
=53

TRACK

CHPRO +

(o8]

SECTOR
CHPRO +

-

(oal

DUl iy W Y

(G2 BN U, BN G RN VA R CL R

N
O W

-5

5)

[N

PRSI 2O e

O A N
~J O

<3 Y O D

-J o e
W a ODD

-
£

~J
(o2l

93]

~J~d
L ~ D

W0 W
[

<o
[RO =

SOV
W

o
jo

BOT

EXIT

PROT

cont.

€3]
3
oy

5
O
> B

o

w3
B

[Whw)
-3
oe)

ot

S I O
=3 0

o=

-
{

w2
3
]
r3
c
N

Il
s
i
o

CHPRO +

EXIT
=1120000
*42D
PROT
MESS

TNUM,*

PCODE
PARS,*

NO.OF WORDS

READ 3 SEC/TRACK
WRITE 8 SEC/TRACK

RESET (DISC := IDLE)
CHANNEL PROG. ADDR
START (DISC := BUSY)
HALT IF DEVICE INACTIVE

NOT OK
oX

15 DISK PROTECIED

YES
ERROR MESSAGE

NORMAL EXIT

appendix K cont.
107 LDA TASKN
103 STA TNUM,
1n9 SVC
110 *
111 LOORC DATA 0
12 * -
113 *CHANNEL PROGRAM
114 *
115 OPER DATA O
116 TRACK DATA O
117 SECTOR DATA O
118 ADDE DATA O
119 STATUS DATA 0
120 *
121 CHPRO OoCcT 40000
122 ocT 1
123 OCT 30000
124 ocT 0
125 ocT 15000
126 ocT 20

27

1283

129

130

131

132

123 *
134 %
135 DKERM
136 EOM
137 *
138

139 MESS

MLOOP

152
153
154
155
156
157
158
159
160
161
162

5

2]

UG

oCcT 10000
orr 110000
ocT 0

ocT 0

octT O
DATA C'FAL
OCT 223
SUBR MESS
'WT\“_’ * X

CRA

sra 'O
DA DKERM,
CAS EOM
JMp *+2
JMp OK

ICA

OTA va

Jgup *-1
ICA

ora ‘4
gMp *-=1
IRX

JMp MLOOP
1LDA OPER
JgsT OC
LpA TRACK
JsT cT
LDA 3ECTOR
JsT OCT
,DA ADDR
JsT OCT
LDA STATUS

£

1

ERROR EXTT

TRACZK
CHANNE
-WRITE (83 SECT/ TRACK)
mOP / HEAD
TUS WORD

TSTATUS!

=

i

mn
STA

_,iiPp\

o)
2
= IDL

LE

<

e

1

193

ppenldix

Lol

IRy

IS

1215

I

A

LD

oo<FoW
[CaRUARNNS)

—

-1

JMP

od

—

1]

T,

[

o~
Kot

- o

[1]
[
| @)

-
=M

]

[
-

PARA, *
TNUM, *

STA
SvC

x

[Ep}
o~
o

13
2

iy

n

DATA

DAT

wy

i
a8}

W
0

T

FIVE
1

BIAS

P *-1
X
P*

LDX
ADD
M
DR
OTA
OTA
JHP
M

-

J

e
1

B

s

no

FLV
BT

¥

3

0

‘1‘2
204

202

i

— - — — — ™

Appendix K cont
1)
2 * PROGRAM
3 *
4 ¥ SEGMENT
5 *
5 % HO3T
7 *
3 ORG
3 SUBR
10 ILLEG DAC
M LDA
12 STA
13 CRA
14 STA
15 MLOOP LDA
16 CAS
17 Jip
18 JMP
19 ICA
20 oTa
21 JMP
22 ICA
27 OTA
) JMP

WO N
[Co RS e JEESS IERA N G2 B

o8]
—_ (D

Lo
1T W

(RSN

[SL RN

”

w
b
]

[SS VS
©

et ol
- D W

W
e

N

da o D
g D

~3 N

0

NS

U oAt
W = DD

[IR R
T

N

OTA
JMP
LDX
CRA
LLL
ADD
OTA

: HARDWARE INT

1
MLOOP

PARS,*
=6

TNUM, *

i8)!

o
o

RIFAC

PT

HANDLER

RIME 300
GET ADDRES

Ye=0
na 7T

(3]

Py

-
L

ol

(ILLEGA

o

INSTRUCTION)

130003
30057

.

T
AN
ATH

n
DA

i
Dr

DATA
J

e

[

|
AR

\

J

™
P

1L X
57
53

1

e

D

Py

END

o

[

4|
<
(@]

Appondix K cont.

‘] *

2 * PROGRAM HARDWARE INTERFACE

3 *

4 % SBECMENT : INTERRUPT HANDLER (REAL-TIME CLOCX)
5 *

5 * HO3T HARDWARE : PRIME 300

7 *

3 ORG '335616

2 SUBR TIMER

10 o

11 1220 STOP CLOCK
12 TEHMP SAVE & REG.
13 ==50

14 51 RESET COUNTER
15

16 20 START CLOCK
17 SECS, *

18

19 CA3 =60
29 NOP

2 JHMP NEWM

22 STA SECS,*
23 LDL TEMP RESTORE AREG
24 JMP TIMER,™ RETURN
25 NEWHM CRA

25 STA SECS,*
27 LDA MINS,*
28 A1A
20 CrRS =50

30 NOP

37 JMP

32 STA

33 LDA TEM

34 JMP TIMER,* RETURN

35 NEWH CRA

15 ST MING,™*
37 DA HOURS,*

w
0
2]
N
]

35 cas =24
a0 NOP
4 JMPp NIZWD

HOURS, *

LDA TEMP
JMP TTMER,* RETURN

ERN
0 «
=3
3

[N

Son D
RS B

i

&3]

=

v}

9]

5

%

ST HOURS , *
17 STA MINS,*

Q gra SECS, * \ .
i; ;éﬁ TEMP E?SiORE;A REG .
50 JMP TIMER,* EXIT
51 *

52 TEMP pata O

53 HOURS OCT 30110
54 MINS ocT 30111
55 SECS ocC 30112
NG

202

PR 1 I &
hppz;:ﬂvu,x N Conet.

'] *

2 * PROGRAM : HARDWARE INTERFACE

3 k-

4 * SEGMENT : VDU DRIVER (DUTPRUT)

5 *

5 * HOST COMPUTER : PRIME 300

7 *

) REL

3 SUBR PUTCHAR

10 PUTCHAR DAC **
11 OTA '04 OUTPUT CilAR
12 JMp *-1 WAIT UNTIL OXK
13 JMP PUTCHAR,* RETURN

14 EN

Appe ndix K cont.

* PROGRAM : HARDWARE INTERFAC

]

* SEGMENT : VDU DRIVER {INPUT)

Ul w2
%

o HOBT COMPUTER : PRIME 300
7

QO

REL

SUBR GETCHAR
GETCHAR DAC **

INA

-
[G N

—
—
—

004 READ A CHAR
12 JMP %=1 WAIT UNTIL OK
13 CRS ='212 15 IT LF
14 JMP *+2 NO, CARRY ON
15 LDA ='215 YES, REPLACE WITH CR
16 JMP GETCHAR,* RETURN

17 END

2]
&
(®3]

Appgnﬂix K cont.

PROGRAM : HARDWARE T

w DN =

TERFACE

SEGMENT : PRINTER DRIVER

TSN
& % % A X

5 HOST COMPUTER : PRIME 300
3 REL

9 S5UBR GETPRINTER
10 CSETPRINTER DAC **

11 SKS 4

12 JMP -1

13 OoCceP '1704

14 Ok '1204

15 CRA

16 OTA '404

17 LDA CWCORD

183 OTA '104

12 JMp *=1

20 JMP GETPRINTER,*

21 %

22 CWORD OCT 3514

23 *

24 SURBR RELEASEPRINTER
25 RELEASEPRINTER DAC *x

25 S5Ks 4

27 JIMp *-1

23 CRA

29 oTa 104

30 JMP *-1

31 OCcP '1704

32 oCcp T1204

33 JMP RELEASE SPRINTER, *
34

35 NOP

35 JMp *-1

37 END

gpoendix K cont .

PROGRAM HARDWARE INTERFACE

o

W B =
* *

SEGMENT

BOOTSTRAP LOADER

(93]

O

HOST COMPUTER : PRIME 300

~J

* A A *

evosassses BOOTSTRAP LOADER

W oo

*
- READS TASKS FROM SECTOR 4
19 AND PLACES THEM IN 30000
¥
11 INITIATES TASK 6

-
jxe}
5

—
w

*
ool
te
[62]
o
]

HARDWARE MACHINE

-
P
*

15 REL
16 RMC
17 E32R

(48]

=
Z
o

INHIBIT INTERRUPTS

N —
[RRS]
g
s

SMK 120 TSABLE ALL EXT.DEVICES

21 ocP 11204 TTY NORMAL MODE
22*

537 * CLEAR DBASE IN MEMORY

24 XL CRA

25 sTA SLOC,*

26 TRS SLOC

27 LDA SLOC

282 CRS ELOC

29 JMP XB

33 Jup XL

31 JuP XL

32 F

33 sLOC OCT 30000

34 ELOC OCT 30113

35 %

45 * READ TASKS & PLACE IN MEMORY
37k

18 KB LDA FOUR

39 sTA SECTOR

LDA TASKA
sTA ILA

JST INSTALL
DA ILA

sTA ‘65 pC

S S
S W N - O

45 LDA SIZE
1% ADD ILA
47 ATA .
473 sTa ILA ILA:=ILA+SIZE
49 IRS SECTOR SECTOR:=S'CTQR+1
50 CRA
gTa TTX X =0

NTASK J3T INSTALL
LD¥ TTX
LDA ENTRY
STA¥ VECTOR,1

W) -

VECTOR[TTX]::ENTRY

SRS B2 B R CL R O
[GR TN

o)

CRA

57

i
N
9]

CF\OQ\@C\O\Q‘\'\, o Ut
_x)\):;\\)\.bw(\)——anOJ

)
0

N

e

0~
—

i

Jo-3 =
A W

e N B
NORRCC RN ERVARR)|

el
O

95
96
27
a3

0O

1005

102
1073
104
105
106
107
108
109
110
111
112

JMP HTASK

INT J3T INSTRLL

LDA ILA

STh '72

LDA SIZE

=DD ILA

ATA

3TA ILA

IR5 SECTOR
Ox JoT INSTALL

LDAa ILA

STA 53

ocp 11720

OCcp 1520

DA INTERV

sTa ‘61

LDA

STA

LDA

5TA

LDA

STA

LDA

STA

ESTH

ENB

oce ‘20

sve
*
*
+ PROGRAM PARMMET
*
HEAD prTA 30000
TATL ~ DATA 130001
ACTIVE DRTA 130002
TNUM DATA 130003
VECTOR DATA £30004
RETURN DATA 130020
FATHER DATA 130034

PAR1
PAR2
PAR3

PARA

cont.

Iy T
EiN 15
cmp om
[RN A
e T
CAS T
.
JMP I

5
d

DATA
DATA
DATA

DATA

130050

RETURN[TTX] : =0

FATHER[TTX] :

IF TTX > 11
THEN LOAD HANDY

PC

NEXT TASK

FOR TIMER

RESET CLOCX

NN

el e e St

07

SET CLOCK INTERRUPT BIT
SET INTERVAL TO 1 SEC
Pfog::‘] 11
TNUM =6
ENTER STANDARD MODE
ENABLE INTERRUPTS
gTART CLOCK
STARTUP
ERS & VARIABLES

DATA BASE (TASK TABLE)

Appoendix XK cont.

113 PARS DATA '30054
114 PARS A 5
115 PARY

D
D’ 130055
116 PAR3 DI
DA
D

)

)

TA)

TA *300%57)

117 MNAME] A)

119 HMNAME2)
A

119 TASK2

TA 130105
ATA 130106
TA 30113)

A
ey

120 MY DATA 0O TASK TABLE INDEX
121 EA DATA '7005 LOC.GIVING EA OF BIN.MODULZ
122 SA DATA '7004 i TOgSA o i
123 FROM pDATA '7015 ADDR.FROM WHICH TO MOVE
124 ENTRY DATA O
125 EOF DATA 1203
126 ILA DATA O TNITIAL LOAD ADDR
127 WA DATA 0 WORKING ADDR
123 SIX DATA 6
120 SEVEN DATA 7
130 SUPH DATA 111 STARTUP MESSAGE
121 FIVE DATA 5
132 FOUR DATA 4
133 THMAX paTa 11 NO.OF ThSKS-1
134 TCOUNT DATA O
13% SIZ DATA 0
35 XS DATA '7001

137 PC DATA '7006
13¢ BINP1 DATA '7015

139 BINPX DATA '7004
140 ENDR DATA '7000+447 END-OF-SECTOR
141 BIAS DaTA '260
142 1D ocT 300
143 TNTERV DATA =59
144 oMgu ocT 137577
145 ousp ocT 1374
145 *
147 + PROCEDURE INSTAL
143 %
149 gyU3R INSTALL
150 INSTALL DAT **
151 JST DISKOP
152 LDA EA,¥
153 suB SA,* e
154 sThA SIZE SIZE:=EA-S
5 DA TLA
1;2 éga ENTRY ENTRY:=PC (ILA)
157 3TA WA WA :=ILA
153 LDA BINP? e oF BIN.PROG:
159 STA FROM FROM=Z o+
160 XFER LDA FROM ¥
161 CAS EOF
Mp k42 R
lgi jMP TNSTALL,* Iswﬁéi’[fﬁgi]gx*
164 STA WA, * [Whi ;; FROM]
165 IRS WA WA LT
166 IRSG FROM
167 LhA FROM o prOM > 0004417
167 CcAS ENDR 1T PR

Appeondix

o)
)

I B B
B N O

— s a e a an aa

JUTRREN
ST R
~d Oy

NN
SRR I R

-
i

joe]

-

A
20
G w0 D - O WD

RGN
L 0
N

(&)

]
~J 3

O B
oo
O W

PO

{2

s a4
3 VS T O R o]

o

DI IEAC I V]

fe to Do DN
S s oS

K cont.
JHMP NEY"
;é& NEXT THEN READ NEXT SECTOR
T Peaint —
_— ;;P i;\?‘?* ELSE CARRY ON
5TA SN SN ¥TN
JST DIZKOP
LDA BINPX
STA FROM FROM := 7004
JMP XFER
*
* DISC 10 INFORMATION
H DATA O TRACK
ON DA 0 SECTOR
ADDR DATA '7000
SECTOR DATA 0
RWHD DATA O READ-WRITE HEAD
XK DETA 0
27 DATA O
CW DATA 0 CONTROL WORD
CHAM DATA '20 CHANNEL NUMBER
*
* PROCEDIRE DISKOP
*
SUBR DISKOP
DISKOP DAC **
CRL
DA SECTOR
IAD
DIV =8
sTh TN
IAB
sTA SN
*
CRA
sTh STATUS
START LDA =448 10.0F WORD3
TCA
ALL 4
sra ‘20 USE CHANNEL '20

ADDR

sTaA 21
DA TN
sTA CHPRO
DA SN

=3TATU

STA

0cC 11721

LDA =CHPRO

ora '172 1

HLT

NA 11721
*-1

5TATUS

L
+

Q
9

(")

~cHPRO + 9

REGET (DISC == IDLE)
CHANNEL DROG. ADDR
gTART (DISC 7 BUSY)
HaLT IF DEVICE INACTIVE

15 CHANNEL PROG . RUNNING

yEG, WALT
oK, CHECK STATUS

525 CAS ='100000

225 JMP 42 NOT OK

- x T X

; ;Z J¥MP DISKOP,* OK, RETURN
22 j Su]s Hl

55 PRINT ERROR MES
hy

\ R A
ART TRY AGAIN

SN NI
XS]

o
Joen D WD
*

o

o) Do
et
o

()
It
w
w
[@n]

23

2734 DY =5

2715 ora 4

235 S

277 DRY

238 IMP *-3
29 oA ='215

NOPO o
>

(&

Q

3

= >

PN

oo
i
Y U s W N
Q
e
e
* >

RS
N

N
s

*

y

i
i~

§

247 *CHANNEL PROGRAM

2493 %

249 STATUS DATA 0
*

o N
[

[RS R I VA B A B

CHPRO

[N

DUl e W N =
o
(
]

2 RE ACK
2 OCT 50000 USE CHANNEL
)

25 ocT 20 20
“ foad r el
257 Gt 500073 READ 8 3EC/TRACK
See gECTOR / HEAD
259 acT 10000 SECTOR / -
;r:J ocT 110000 INPUT STATUS WORD

Ul L [N
:iq AcT 0 TO LOC. ¢ STATUS'
FADY DL e >
q(; oct 0 HALT CHPRO
< \2 L L ‘ o ‘
262 ocrt 0 DISC = TDLE
202 OCL 9]
253 *
254 END

o
-
—_

PORTOSR 1
POIRKDU ™ A
3 Disk Build Program (PRIME 3090)
1 YCORAL
2 'PROGRZM' BUILD
3 TOOMMON' (TINTEGER' ICHAR;
4 ’

4 PINTEGER' ' ARRAY' MODW [1:3];
""ARRAY' L [1:80]

4
=
]
2]
)
jza]

GER'"ARRAY'"; 'DEFINE' VI "'VALUE''INTEGER'";
‘PROCEDURE' ! ;
10 'PROC?DURE‘ FETCHM
11 ROCEDURE" DISCOP(VI,
12 'PROCEDURE‘ NEW SUFFIX
13 VINTEGER' "PROCEDURE' GET CHAR;

14 'PROCEDURE' WRITEN(VI,VI,VI);
15 'DROCEDURE' SHUTM)

16 'DILETE' IA; 'DELETE' VI;

]
1

17 'GEGMENT' PORTOS DISK BUTLD ON PRIME 373

19 'BRGIN'

19 " INTEGER' P ARRAY' TRACK[0:405];

20 C [NTEGER' ' ARRAY' SECTOR[0:7] == 1, 2, 4, B, 16y 32, 64, 123;
21 CINTEGER''ARRAY' D[0:447]; (DISC BUFFER)

22 { INTEGER''ARRAY' CFIL[0:447]; (CRTALOG BUFFER)
23 { INTEGER' 'RRRAY' ID [1:3] := BLANK, BLANK, SLA
24 ' INTEGER' SOURCEFILE := (OCTAL' (150244);

25 ' INTEGER' TASK COUNT := 15:

25 INTEGER' ADDR, I, J, LOCK, T, SN, XTN, X5N,
27 CFA, MOD COUNT, KEY, WORDS;

29

29

40 'PROCEDURE' INITIALIZE SECTOR;

31 'BEGIN'

32 CINTEGER' K

33 ‘FoR' K:=0 'STEP' 1 (gNTIL' 447 'DO’

24 p (K] := GECTOR HEADZR)

oW
(AR
4 <
. fe—
o
=

1§
—
i
L

w
~J
<!
)

39

- — ng '0O!
. _n T rwyILE' I <= 40 Dt
39 vpoR' I:=0, 11 0 LE CoF)
~ 1 .= YHEX'{(FF);
; TRACK [I1 == B&=22 ~ .
40 co2 "), WRITCH(1,BEL); KEY: =GETCHAR;
; WRI

41 AUTSTR(1, DISK 1D:

42 1:=1; J:=1i LOL1\.=O,) o
3 fpoR' KEY:=0 TWHILE' LOVAE DA
14 'REGIN'

A7 VTHEN' LOCK:T1
A8 'ELSE' ' BEGTN
VTR J=1
Ao CpHEd ' P BEGINY
51

212

cont.

51 . _— ;

. TOP BYTE(ID[1]):=KEY; J:=2

52 "END! *
53 'ELSE''BEGIN' i
54

‘ BOT BYTE(ID[I]):=XEY; :
-

55 I:=1+1; J:=1

56 TEND!

57 TEND!

59 "END'; OUTSTR{1,"!CLL!");

59 GIVE SECTOR(0); (XBOOT 0)

a0 GIVE SECTOR(0); (STATUS 1)

51 GIVE SECTOR(0); (DIRECTORY 2)

62 GIVE SECTOR(0); (PORTOS 2) w
a3 CLEAR CFIL;

64 LoC |
65

56

57

.,ﬁ)Q

v . . r - ~

29 'FOR' MOD COUNT := 0, MOD COUNT+1 'WHILE' ICHAR=) 'DO

PN N |
A)
=

o

o

=

1 ITIALIZE SECTOR;
2 NEXTM; WORD3:=0;
73 "IF' ICHAR=D
74 CTHEN' 'BEGIN'
iy
75
74)
V J:=
77
73
79

o
e
- O

0

¢

; {PORTCS

SOURCETILE
ENTRY (D, 1)
ENTRY (2, 1)

[SVRVORRVY]
SNV

0
Ut

OFA
DISCOP(Z,},v{n)

TEND '

[SYRIN O]
~3 O

. XEY := 0; B ‘
i sPORY T:=0 CHHILE! KEy=9 'DO
39

99

FETCHM; LOCK:=0; ‘

‘ i1 'WHILE' LOCK=H DO
. ypoRY Io=1, I+ WL

L E ¥

; "BEGIN

~min T L (1TI0NTAT

o FIR! ‘J[I]:'OVT!‘.L (110 7))
o1 ‘FHEN"BEGIN'
oo FoOMMENT? FILEND;

pae] coM -) .
i trpt MOD COUNT <= TASK COUNT
e o t - =t O OTAT ¥ (/)(}Q)
o7 traEN' DT} = 0OCTaL L

s 1
i pHENt DI
o1 "ELSE' DIJ
101 L
122 LOCK:=1; KEY:=1

; fEND'
104 :
105 vgLegt FIFT L2 30
106

107
108 'THEN' LOCK:=1
105 'ELSE' 'BEGIN'

110 D{J}:=L[L};
111 TR ﬁODN[Tl:SOURCEFILE N
112 L{T1}='00TAL' {105400)
1173 PTHENTLOCK =1
114 J:=J+1; WORDS =WORDSH1;
115 IR J > 447

? UPHEN' P BEGIN'

-
-
-3 O

Jo
N
S
o O
bt

11
rSCOP(2, 38, ADDR)

119 e
WRITEN(3N,4,1);
12N)
e SN =XON;
TALIZE SECTOR
13

TSN
ORIV
—_

W

—

UGN
O ra N
>

"END'
'END' |
'END'; |

(91

126 CIF' MODCOUNT = 9
127 "THEN' BEGIN'
123 'FOR'T:=?EI+1’ﬂHILE'E(tiué‘DO'D{I}.:D[l+11;
129 DO : [11; Di1]:=ID[2]; D[2]:=1D([3] |
130 "END'; "
131 DISCOP(2, SN, ADDR) ;

2 WRITEN (SN, 4,1);

TgTR(1," SIZE") ARITEN{WORDS, 5, 1)

[US IR US TN
"l
vy O =
-
¥
[92]

4

e A s
NSO IRV
i

o]

pn

]

o8]

o]

—a

L1 VWHILE' T <= TOP TRACK 'DO!

-
i
Z
=
=3
=
o]
o
o
¢
S o
4]
+ oo
9]
-3
O
3

-
[SS IS
(ORI)

Y'rj
e

<
el

— T

140 D
141 J .= I+
142 TEND'
1173 D
114 D
0
¥

ADDR) ; (pISC STATUS
145 A1 T
146 CODE''D

147 g HLT ;
14¢ TERDT

119 TEND! |
150 FINISH® ?

214

RIME 300)

P

{
\

twara
)ll)

R

',10)

0 20909¢
BULFE

LI
LL

entary sof

ME?

N%

.
€

W
I

en
¥

Nl an
TYPE

i

E
FILE

OWUD
i

~
D,
L

~
A

PORTO!
0

(70 L
DAT:

11

Appoanidix

\
ol

™
L

COWTINU

{

16

[

mM

THS .

v

h

WwITH IO

it

TBLE

Sa
o

0

)y GOTO 59

y GOTO 4
y=SP

-

7

o

0

K
I

L(
) (
)

J)

1
5) (L
1

P ICUAR.EQ.ED

T
1

L

3
CHAR
0

o

30

3U
23
Q
5
(

E
(

T

CHAR.EQ.L

HAR

T+

ALL MOV
IF(J.”T.LOBU
J+1

ot

FORMAT

TE(
L(T)
J=J+1
I
GOTO
WRITE
J

V

el

o
2
45

39
40

37
A1
42
473
41

o8

™\
154

—

i
-
—
i
—
-
—
Pt
—
—
—
—
[Eai
<t
-~
[Eal
€3] -
E- -
i -
o < =
o e~
T a0 O
—~ 0 O
- B R
e T~ S FA
[S I
DW=t
5 5]
Zoowl B
N R
[el X
O
o<
W
N M~ O,
[UaRTaNNTo R FaRNte

END

0

0
il
[N

Supplementary Softwar

e (TI 920 /]C)

1 "CORAL'

2 'PROGRAM' FORMAT

3 lDTw\ﬁ*«YT—\i v Hlx TLUn‘ 'T\]I‘ Z’R“';

4 'EXTERNAL' {'PROCEDURE' MESSAGE(VI);

5 "PROCEDURE' PUT CHAR(VI));

& 'DELETE' VI;

7 'SEGMENT' DISK BUILD

8 "BEGIN'

g "INTEGER' RES, I;
10 "INTEGER' DISC STATUS, COMMAND, FORMAT, CYLINDER,
11 COUNT, ADDRESS, SELECT, CONT STATUS;
12
13 "CODE''BEGIN'
14 T LWPI CSWS 7
15 “ RSET s
16 © LI rR12,0 °;
17 - 580 © “;
18 © sBO 10 “3
102 - SBO 11 “;
20 - SBO 12 °;
21 - 330 13 °;

TEND'; |
ii RES := ‘ng:(2000); (CLEAR 454 WORD? FROM >4000) |
54 ‘FOR' I:=1 'STEP' 1 'UNTIL' 464 ‘DO
25 "BEGIN' e |
25 [ReS] := 0; (CLEAR WOX
1

[xe]
~J
- R
=}
U3
I
&
Ul
+

3

No el
3

()

STTWAR
2 LihAang
) . BEX'(07); I,JFQ:\,-)
30 poP BYTE(CO:MAND) 1yEY' (07); (R
37 EXECUTE;
32 RES = WAIT;
33 v7p' RES = O
: S TN Y
rppEN' P BEGIED ' .
- fport 1:=0,1+1 7 SHILE' I<=202
33 tBEGIN'
- CLEAR; DISPLAY (1)
37 ~YT,IN 'I‘P e = I;
YLLL‘DQ\ : . . SEE")
i’ :gn BVTE(COA%AND):='HE (05); |
0 EXECUTE;
o RES = GAIT;
- r7p' RES = O
) ‘WHEN"BEGIN'
o CLEAR

e TOP

3
h BOT B
” FORMAT:=

(“O”“\?0>:=‘W?X'<01):(wh.
MCW”i1DM=3:(GUﬁWEE)
eyt (03000 O3

4 (,f]_JI_‘DuR P H ‘
/11 /)U\ = {EX (3A0) H (v \,’}
. COuUN: - N

. ’\;JD ESo 7 { X (—:OO ;3

‘ 7 M

Jr) R { M

r
o
o)
€8]
-
H
z
0
=
& e
(9] -1
~— wZ [op]
1 e~ IE e}
- B [o
o B i
[T o B .
& (@] @] —
w o (1= [
£ o O xR -
[| T <A T £ B = S 4
= - <
o~ w7 s
43} 21 f=] £
[SRR [e (RS
=R £ -
) - - [e
[CANN /pN <] zd
>R b 3 A
(] K - -V
W)
o
- -~ e8]
- () \ A\
[y 7 o~
pel 2] e
[) -
o = 0O
[
o R
— -
Ful
o '
o] T
Ty sl
o9}
- —
0z
]
22 e

I I o T Vo B GOl n i sl G B i O ISalEC N U0 B GO a N e Y)
Cow D wn w s wn [CA T SR B e IS B VAIINA RS RNe)

1) APPLE Computer Inc.
79

AR o~ ~5 - ~
DOS Versic 2 scructiona A Rafe n
3 2 on 3. nscructi R
nstructional and Raefercnce Manual”

5]
~—

Briigl W e G.
o ot
Symp.Microprocessors At 4
- rs oA v, .
gy P s At Work Sussex UqlVCfSity 1976 P49

Microprocessor g
CYOProcessoy Pfogfam Developmant Support”

)
—

Baker, X.

a4

\/ Y PP ad el - M1
ticroprocessors and Microsystems 1973 Vj 12 pl7
e N2 pi7
licroprocessors and Soft])

L

’

e
—

ror

Ralzer, R.

M
Comm.o0f ACHM 1973 V16 N2 pil17
" Ny P - . - -
An Overview of the I5PL Comput@r System D";iSigl’l“
5) Barron, D. W. & Jackson, T. R,
SOFTWARE Practice & Experience 1972 V2 pl43
wrha Evolution of Job Control Languages"
g
5) Bannett, J. L.
Ann.Raview of Information Science and Technology 1972 y7 pl15%
nhe User Interface 10 Interactive Systems”
7) pannaeto-Novak, G.
SIGPLAN Notices 19746 V11 N4 p4f
“machine~Independent mxtonded FORTRAN for minicomputers”
3) Bergeron, R. Do =t 21
Advances in Computars 1972 v12 p175 |
"gystoems Programming Languages” |
9) Boies, S Je
1BM Systems Journal 1974 V13 N1 P2
e lvEe aee e mm!
WUser Behaviour on an Interactlve Computay System
10) Brown, P Je
o P - [*§s}
comm.of ACM 1972 V15 N12 p1057
- -~ team o~ fY
"Tevels of Language for portable Softward
11) Brown, P-. Je
) . : e emming 1959 VA N2 7
Annual Review 10 automatlc pProgramming 1959 V5 N2 p3
. 11}
A gurvey of Macro Processors
3row . J.
12) Brown, P. ' . 1074 V4 130 ,

SOFTWARE practice & Exparicnes

Ty I 1t
“Writing goftwarc 1D ALGOL

13) Brown, W.
COMPUTER 1978
nModulay programming

v11 N3 p4o
in PL/M"

S . E.
14) Brunt, Re 7. & Tuffs, D.' e w6 23
SOFTWARE practice & Experience b
ach to control Languages

np User- OrlonLath Appro

[\
N
@O

17)

13)

19)

(3]
-
—

]
3]

23)

iV
N

Campbell-Kelly, M.

Macdonzald & Co. Ltd. 1974

"Introduction to Magros"

Chariton, D. R. et

Comm.of ACHM 1979 V22 N2 p105
"THOTH, A Portable 1~

Clark, B. L. & Horning, J. J.
ACHM STGPLAN-SIGOPS 1973 V8 N9 59
"Raflectlons on

Colzman, S. S.
SOFTWARE Practice & Experience 1974 V4

oThe Mobile Programming System JANUS"

SOFPTWARE Pract

ce & Experience 1972 v2
tphe Implementation of STAB-1"

vy M - "
'personal Computay User Manual

IGPLAN Notices 1976 V11 N4 p9

nesitical Comments 00 PRSCAL"

corbato, F« J.

1 % o
patamation 1959 V15 N5 po3 o
wpr, /I As A Tool FOT system Programmning

coulouris, G- .
nd Microsystems 1979
MiCcroprocaessors and Microsystit s ‘
B e i
wporgonil Computeys in nffices of thi

C ~is, G. Fo

Coulouris, - .
i o i Programimnlng

Annual Review 10 automatic Program g

; +adepoend
wa Machina-Indepent

J g Marting J. L.
2om Implement

Usad in

Dubois, P-
SIGPLAN Symp.on Syst
whe LRLTRAN language

padie, D 0-3359-4387~

g BN
Cahing Co. IDCe 158)
Reston publishing : Opzr&tion”

nMminicomputers Theory
Eason, K- D. - 419 "o
arnal VIV
e al -
Computer Journ oo Computr aar

"Understanding the Nal

229

Y ice & bxperience 1976 ¥V
vgxperiments with the KRONOS Control Lan

ent hssembly Language

ation Languiges 1<
FROST & FLOT Opayatling >Y:

=
e
i
t

an Operating

PS5

¥3 N2 p59

Future"

4
O
m
@
“
=
'
A9}
e
[ve)
D

~

O

Systen”

NoJ
~J
N
<
N
s
WD
le)
W
[N

Referances

29) Editorial
FTWARE Practice & bXparienc:
"PTDgYJJﬂln“ Langua

30) Bversh=23, D. G. &
Computer Journal 197

i ah

V14 ps7
igh Level Languagas

for Low Level Usars"

21) Fletcher, J. G

J s
GPLAN Noticas 1275 V10 N11 pSs
[T N B R S R TP U e : z L i
Should High-Level Languages Be Usad To Write System Software™

o«
~no
~

Fletchear, J.
SIGPLAN Noti

G. at al
ces 1972 V7 N7 p23

" MUY . - 4
on The Appropriate Language for Systems Programming"

33) Frank, G. R.
CREST Portability Conference 1975

5 Portable Opesrating System"

0

34) Frenzal Jr., L. E.
Hoe;ri W@, Sums & Co. Inc. 1978 ISBHN 0-672-214385-5
"G ing Acquaint With Microcomputers”

35) Futuredata 2300 5e
Advanced Microprosses

1

k"‘

2ference f"Lll’lU«:LL”

35) Good, J. & “oon, B. B. M.
SOFTWARE Practics ‘ .
YFORTRAN AS provided by gome Major Manufacturers in 1970

[
~d
~—

Gurski, A
SIGPLAN Notices 1973 March pl18 ' ~ o
"Job Control Languages 1s Maching Orientated Languages

1

A
. J5 D A1
] . v mericnce 1974 Jo piat
cATTWARE PractiC2 Experle i Gt
SOFTHARE ° £ A Poqhnrreni PASCAL Prograd’
. . Concu

29) Hertwesk, Fo R r3. C.Unger 1975 Morth Holland p43
Ba. © [A

n command Languages : > NorEh HOT T
e vO“fL? gquages : Dasign C'nSiiaratlon anad Baslc Concepns
"Command Lanc @s ot
40) Hleett-Puckard HP2099
1976 R
wascess BASIC Manual
A sldsworth, D . oy g7 33
Y i;rrxtRz practice & Experiencs 1977 V1 P
. et i i 168-
" gysten fmplementation in Algol®
! I 76 N9 pSO
42) Hopkins: " ration Ldnguﬂqes 1971 V6 N9 pS

n Imolum“ﬂv»v

‘ gster
STGPLAN Symp.-0on SYS= Systems programming”

vprobhlems of PL/I for 5

43)

a4)

45)

e
yel
—

56)

Hugh Pushman Associat:
1977
“The RMCS CORALGS Compiler
Hunta2vr, J. M. D.
RMACS Computing Scien:
"Manual For Bnhancad
Tsaacson, P. &bt al
COMPUTER 1672 V11

“pPorgonal Computing”

for the PDP-11"

Technical ¥Note 15
S

For ICL 1200

Jackson, K. & Simpson, H. R.

Krayl, #. et al
IFIP Conf.on Command Langu
"portability of JCL Progra

Landy, B.

L Bd. D.
"pevelopmant of a New

303 Symp.on JC

Lang, 5. Re
SERT
"Resident CORALSH Compilertr

Symp.Minicomputers At

Lauasaen, S.
BIT 1973
"Prograf

v13 w3 p322

Listor, A Mo & sayer, P
7 .
& i

QFTWARE practice & kX
"FL“"‘Y nical Monitors

\-order

Lynch, Ww. C. .
. | Is

STIGPLAN conf. ON Reliable

"CcHT Operating gystem

M6aMDDS 3 EXORﬂiSk II/III

13978

"User' s Guid

5

¢

i EXpey
practice & Expel

”CJL - A High—Level

Muann, W C.
AFPTPS 1975

1 “\”1‘{ rph i ng =4

p785
336} Bad

vail
N e

Simpson

Command Languagy

Control of Oparat

" qges
stem IWO“Mﬂﬁt Ltion Language

ience

command

Foxr

.778

Construction, Operation &

~
?gec Ed.C.

O
~J
w

Unger 1

ms"

1974 NCC I3BN 0-85012-112-1 p53
For the IBY System/370"

Work
For

1971 v6 N9 p73

- 3 "
o Programming
Languages - foy Systom Prograd g

1975 p252

Systam

1979 VO P23
L;Ingu‘lgg"

[52]
)
&

3 > Us
—-N3A WL\/ [
The Computer

222

Tost et

North Holland p293

51)

52)
53

N
Ul
~—

v
N
—

N
~J
—

GO

70)

M v e b
Marcotty, M. & Schults, H
SOFTWARE Practice &

Ty o =Y - .
"o mrperience 1974 V4 p79

o
Systems Progr .
rogramming Language MALUS!

AFIPS 1977 V46 p4ang

y - 11 i
A Study in Man-Machine

Miller, L. H

Interaction®

0SS Ravicw 1978 VA1
NIX - A Portable Opera

NORTH STAR DNOS for Hovrizon Micro
SOFT-DOC Revision 2.1 1972
YNORTH STAR

Software Manual”

Neal, Do & wWallentive, V.
SORTUART Practige T e .
SOFTWARE Practice & Experience 197¢ 1
SO trew & p nce 19 3 V3 p341
xperi With Tha Portability of Concurreat Pa SCAL"
V‘WGll, G. B.
BCS Syap.on JCL Ed. D. Simpson 1974 NCC ISBN 0-35012-113-1
171 1

mily of Opsrating Systems Called GED Gm

M, C. et al
QD”TVRRE practice & Experience 1972 v2 pl
1ling to Producs portable Softwarae”

“aAbhstract Machine Mode

Newnan, L. A
proc. Datafair 1973 v2 p353
Ohe UNIQUE Command Languige = portable Job Control”

Nicholls, J. E-.

BCs symp.on JCL Bd. Ds
1

“Job Control in IBM System/360 & 370"

Simpson 1974 NCC ISBN 0-235012-119-1

.
“GxORgE« - A General Purpe

Olivetti PANA0 Por 500l

1977
YReference Manuil”

5 mhkd r J.
IQPLAN Notices
"pL/L qubsats for

971 V6 N5 16

softwa re

Powell, H- B¢ Lonce 1979 V9 p56]

SOFTWARE practice & 19 V9 PO e

i 2 Ooeld in Dy-}bb..
npyansporting and Using The SOLO Of £ing
pPystar, Ae ¢ Duttas A o7 oo .
SOFTWARE practice :nCe

. . 1 POY \,Ab lty
YR rOY Chacking Co

r
mpilcrs anc

3]
™o
ad

73)

74)

76)

-J
0
Z

79)

a0)

21)

83)

Rao, G. V.
Van Nostrand Reinhold Co. 1978

Rayner, D.
SOFTWARE Practice & Experio 1975 V5 p375
"Racent Developments in

IPS 1969 V34 p557
ool

For Compiler Writing and Sytem Programming”
g Y J 3

Richards, M. et al

SOFTWARE Practice & Experience 1979 V2 p513

“TRIPDS - Portable Operating System for Minicomputers™
Sabin, M. A

SOFTWARE Practice & Experience 1976 V& p393
"portability - Some Experiences With FORTRAN"

ages 1971 v6 N2 p1
1

Comm.of ACM 1976 V12 N12 p555
"Roster of

o
i)
O

V9]
=
}S}‘
=
=
-
o}

Q
=
j¥3
o

Q
ot
oY)

u
M
Ui
M
O
[}
—_
Vel
~J

{
~4
W

Sapper, G. R.
i ' 5 PR . RE oo VA W 3
SIGPLAN Symp.on System Implementation Languages 1071 vA N9 p37
3 my 2 3 ~+amh
"p5a40 As A Tool For Implementing A Time-Shaving System

Shearing, B. H.)
BCS Symp.on JCL E4.D. Simpson 1974 NCC ISBN 0O 33012 119 1 p1bd
“30L - As They Are A ight :

) 3 1) T

JL:m—CK, cu=tem Implementation Languages 1971 v6 N2 p20

SIGPLAN Symp.on oystsi plemey : ISR
tati ; ages: One User’ iew

"current Systems Implementation Languages n S i

snow, C. R.
SOFTWARE Practice & EXpPar 1
"an Exercise in the Transport

stephenson, C. J- ‘ '
S 1OW Q7 N4 2
ACM 3IGOPS Operating Systems R2v1lew 1973 V7 N4 p2

. - ~F O manas
"on The Structure and Contyol of lommanss

stoy, J. E. & gtrachay, C.
q

Computaer Journal 1972 V15

"Os6-An Experimental Operd

N2 p117
ting System for a Small Computer”

gtuart, T.) »
SIGPLAN Notices 1976 V11 N4 pléd

" - o 1 wl kS y 1
3 s Sugtod T'¢ Uy uk f\y\l\n,,c
Adl \Ap &,lng Ly g‘.. DY o SIS O DIl Macnini=s

[y
13
FeN

o
Machine-Independent Job Control Languages’

35) System Designers Limited
ptember 1977

LN V‘T‘ab_" ~ ~ ~ .
rtable CORA i ler for ha T

e L Compiler for the Texas 270 DX10 2.2 Computer’
85) Tan=nbaumn, A. S. et

SOFTWARE Practice & Expervience 1978 V3 p6s31

[T . . _— - - N

Guidelines for Software Portability"
37) Terashimza, N.

SIGPLAN Notices 1974 Y9 N12 p35
"SYSL - System Description Language"

Instruments TX9930 Operating Systems

ul
"]
=
D 0
¥
o2
Lﬁ

2372) Tsichritzis, D.
LT by v P s B - .
Software Engilnezring Ed.F.L.Bausr 1973 Springer-vVerlag p374
-

'Project Management”

a0) Waits, W. M.
Computer Journal 1970 V13 N1 p28

"Building A Mobile Programming Sys tem"

z

91) Waite, W. M.

5. M. &

J I 0
AFIPS 1974 va3 p379
"Online User-Computer Interface: Effects of Interface Fle ®ibiliby,ees”
93) Webb, J. T.
NCC Punlications 1978 ISBN n 85012 193 6

"CORALGS Programming”

2lsh, J. E. et al
BTW

SOFTWARE Practice &
"ambigulities and LﬂS?bLfiti@o in PASCAL"

95) Wichman, B. h.
Computer Journal 1972 V15 pS8

it

“pive ALGOL Compllers
96) Wiejerhold, G. C. M.
STIGPLAN SIGOPS In*crf;ce Meeting V8 p14l

2]

wrhe Necd and Techniques to Obliterate Control Language

97) Woodwird, P. M. et al

HMSO 19274 TspN O 11 470221 7
"OFficial pafinition of CORALAH"

93) Wortman, D. B. @t al o
SOFTWARE Practice & Expoerience 1976 V6 pdll
wgix pL/L Compilcrs”

[S]
[SW]
[S]

29)

antation Languages 1971 V6 ND p42

amming Languaga"

"BLISS: A Language For Systems Programmi

