CDMA multiuser detection, neural networks,
and statistical mechanics

Toshiyuki Tanaka

Department of Electronics and Information Engineering, Tokyo Metropolitan University

Tokyo, Japan,

Neural Computing Research Group, Aston University

Birmingham, United Kingdom.

e-mail: tanaka@eei.metro-u.ac.jp

Abstract

A novel approach, based on statistical mechanics,
to analyzing typical performance of optimum code-
division multiple-access (CDMA) multiuser detec-
tors is reviewed. A “black box” view of the basic
CDMA channel is introduced, based on which the
CDMA multiuser detection problem is regarded as
a “learning-from-examples” problem of the “binary
linear perceptron” in the neural network literature.
Adopting Bayes framework, analysis of the perfor-
mance of the optimum CDMA multiuser detectors
is reduced to evaluation of the average of the cu-
mulant generating function of a relevant posterior
distribution. The evaluation of the average cumu-
lant generating function is done, based on formal
analogy with a similar calculation appearing in the
spin glass theory in statistical mechanics, by mak-
ing use of the replica method, a method developed
in the spin glass theory.

1 CDMA channel model and
neural networks

The basic K-user fully-synchronous direct-sequence
CDMA channel with additive white Gaussian noise
under perfect power control is considered (Fig. 1;
see also [1]). Without loss of generality one can
focus on any information bit interval and let z; €
{-1,1}, k = 1,..., K, be the information bit for
user k in that interval. The spreading code se-
quence of user k during the information bit interval
is denoted by {si,...,sl}, where N is the spread-
ing factor. The received signal at ¢-th chip interval
(t=1,...,N) is given by

K
t t t
Yy = E SpTE + U,
k=1

(1)

where v! ~ N(0,0?) denotes realization of channel
noise at ¢t-th chip interval. In the CDMA detection
problem, one has to estimate information bits zy
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Figure 1: Basic CDMA channel

from received signal y = (y',...,y"), by making
use of the knowledge about the spreading codes S =
(sL).

An interesting observation is that the CDMA
detection problem can be regarded as a problem
in the framework of statistical learning theory.
This is done by taking a “black box” view of the
basic CDMA channel, as depicted in Fig. 2, in
which the received signal y is regarded as the out-
put of the black box, the spreading codes s =
(s1,...,8K) as the inputs, and the information bits
x = (z1,...,2k) as the parameters. The parame-
ters of the black box are binary, and assumed un-
known to the learner. The learner is supposed to
estimate the hidden parameter values x of the black
box from N input-output pairs T = {(s',y!)|t =
1,...,N}. T is called the training set. This set-
ting is called the “learning from examples” in the
context of statistical learning theory.

In general, the learner in a learning-from-
examples problem assumes a particular parametric
model to describe possible input-output relation-
ship. One of the basic model is called the percep-
tron [2], which is one of the standard models in
the field of neural networks. The input-output re-
lationship of the perceptron is generally expressed
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Figure 2: A “black box” view of basic CDMA chan-
nel

as

K
y=1f (Z a:ksk> + v, (2)
k=1
where v represents noise. Various choices are pos-
sible for the transfer function f: The original pro-
posal of the perceptron uses a threshold function
for f, whereas a common choice in more recent
neural network literature is the sigmoid function
f(z) = tanhz. Comparison of Egs. (1) and (2)
immediately reveals that the basic CDMA channel
model is a special case of the perceptron, in which
parameters are binary and f(z) = z (“binary lin-
ear perceptron”). This means that one can indeed
regard the CDMA detection problem as a problem
of perceptron learning, in which the binary linear
perceptron is assumed. Implication of this obser-
vation is in fact far more than a mere analogy. For
example, there is a significant amount of theoretical
research on the perceptron learning (see, e.g., [3]),
so that it has now become possible to make use of
it for the analysis of the CDMA detection problem.

2 Multiuser detection and sta-
tistical mechanics

After having introduced the viewpoint from the
statistical learning theory, it is useful to consider
the multiuser detection problem within the Bayes
framework. The channel model postulated by the
learner defines a conditional distribution p(y|S, ).
Assuming a particular prior p(x) for &, one obtains
the posterior distribution of & conditioned on the
training set T' = (S, y), as

p(y|S, z)p(x)
p(z|T) = p(zly, S) = (
> P(Y!S, x)p(z)
To construct the optimum multiuser detector, we
need a loss function L. If we are given the pos-
terior distribution p(x|T") and a loss function L,

o
=

we can construct the optimum multiuser detector
which minimizes the expected loss.

Since the optimum multiuser detector is defined
on the basis of the posterior distribution, its per-
formance can be analyzed by investigating the pos-
terior distribution p(x|T"). Instead of investigating
the posterior distribution directly, we can analyze
the cumulant generating function

¢(h; T) = log(e ®)a. (4)
This is because the cumulant generating function
preserves all the information about the original dis-
tribution. In Eq. (4), (-)» denotes averaging over
the posterior distribution, so that the result is a
function of the training set 7.

Since the cumulant generating function, and the
performance as well, depends on the training set
T, it is usual, in the statistical learning literature,
to consider random training sets and averaging of
the performance over their randomness. In the con-
text of CDMA multiuser detection, the averaging
over the output y corresponds to that over channel
noise, and the averaging over the input S to the
random spreading assumption.

Now one has to evaluate the average of the cu-
mulant generating function over the training set 7"

Er[¢(h;T)] = Er [log(e"™)]. (5)

However, the existence of the logarithm inside the
expectation over T in general makes its evalua-
tion difficult. It is often intractable for larger-sized
problems. The same difficulty also exists in the
spin glass theory in statistical mechanics, where
one has to consider macroscopic properties (mag-
netization etc.) of large systems (in fact, the size
of systems considered is typically infinite — ther-
modynamic limit) with some randomness in them
(“spin glasses”). Researchers of spin glass have de-
veloped the replica method, which enables us to deal
with averages of the form like Eq. (5). It makes use
of the following identity relation:

timy 2 tog Ba[((e 7))
Er[({e"®)a)" log(eh®)a]
Er[((em=)s)"]

Er[log(e"®)a].

= lim

n—0

(6)

This reduces the evaluation of Er [log(e"®),] to
that of ET[((eh'““'>m)n]. The next step is to evalu-
ate the latter only for positive integers n. In gen-
eral this evaluation is still difficult. In many cases,
however, the evaluation becomes possible if one is
allowed to take the large-system limit (K — oo in
our case). The final step is to take the formal limit
n — 0 of the result obtained so far. The crucial
assumption here is that the formal limit n — 0



of the result for positive integers n is assumed to
be valid. Justification of the general procedure in-
volved in typical application of the replica method
is still missing in mathematically rigorous sense,
but it has been applied successfully to many com-
plex problems across various fields and has yielded
reasonable results (For details see, e.g., [4]).

Recently, the replica method has been applied to
the analysis of the CDMA multiuser detectors [5,
6, 7, 8 9]. The main result is summarized in the
following proposition:

Proposition 1 Assume the basic CDMA channel
and the random spreading, in which st is mean 0
and variance 1/N. Let K, N — oo while the load
B = K/N remains finite. Let 02 and o be the true
channel noise level and its postulate by the detector.
Then the bit-error rate Py of the optimum CDMA
multiuser detector is given by

E
P=Q(—),
=o(75)
where E and F are to be determined by solving the
following saddle-point equations for {m,q, E, F'}:

(7)

(8)
(9)

m=/tanh(ﬁz+E) Dz
q= /tanh2(ﬁz+E) Dz

__ 8B

- 1+ B(1-g) (10)

B 671B2 . —9m
F_—[1+B(1—q)]2(30 +1-2m+gq). (11)

Here, Dz = e_ZZ/de/\/QW is the Gaussian mea-
sure, Q(z) = fzoo Dz the error function, B = 3/0?,
and By = (3/03.

See [8] for the derivation of the result and technical
details involved in the derivation. Note that this
is the result for the equal-power case: extension
to the unequal-power case is discussed by Guo and
Verdu [9].

One has to solve the saddle-point equations nu-
merically to obtain the quantitative figures for the
bit-error rate P,. Figure 3 shows the result for a
case in which the system is heavily loaded (8 =
1.4). An interesting characteristics found in this
result is that the bit-error rate P, exhibits anoma-
lous dependence on the signal-to-noise ratio Ej/Np.

In order to obtain interpretation of such results,
it is again worthwhile to make use of the analogy
with statistical mechanics: This is essentially the
same phenomenon as what is observed in ferromag-
netic materials: Magnetization curve of the Curie-
Weiss model, a basic model of ferromagnet, is also
S-shaped below the Curie temperature (i.e., in the
ferromagnetic phase), as shown in Fig. 4. In that
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Figure 3: Bit-error rate of optimum multiuser

detectors for the load f = 1.4. Detectors:
Jointly-optimum (upper thick curve, S-shaped),
Individually-optimum (lower thick curve), Single-
user matched-filter (thin dashed curve). Single-user
case is shown as thin solid curve. A vertical dashed
line shows the thermodynamic transition for the
jointly-optimum detector.

case, the thermal equilibrium distribution of micro-
scopic configurations can be decomposed into more
than one connected components in the configura-
tion space, and the ergodicity of the system is bro-
ken, which causes the coexistence of multiple solu-
tions. Each of the (stable) solutions correspond to
one ergodic component of the thermal equilibrium
distribution. When more than one solutions coex-
ist, the thermodynamically relevant one is given by
the one with minimum free energy, and that solu-
tion is called the globally stable state. Other solu-
tions giving local minima of the free energy is called
metastable states. The thermodynamically “true”
magnetization value is discontinuous at the ther-
modynamic transition point. Metastable states are
also important in understanding the properties of
the model. In particular, it explains the hysteresis
phenomenon: Abrupt reversal of the magnetization
occurs at the spinodal point, where a metastable
state disappears.

We can obtain the interpretation of the result
with the S-shaped performance curves based on the
analogy: The S-shape of the performance curve
allows the detector to have more than one values
for the bit-error rate, which reflects the decompo-
sition of the posterior distribution to multiple con-
nected components. In that case, the “true” value
in the information-theoretic sense is given by the
globally stable state, and is discontinuous at the
thermodynamic transition point, which is shown in
Fig. 3 as a vertical dashed line. Solutions other
than the information-theoretically correct one (i.e.,
metastable states) are also important in under-
standing the system’s properties, since they may
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Figure 4: An example of magnetization curve for
the Curie-Weiss model. Thick curves: globally sta-
ble state, thin curves: metastable states, dashed
curve: unstable state.

affect the detector’s behavior, thereby limiting its
performance in a practical sense. Even if the glob-
ally stable state has a near-optimum performance,
it may be computationally infeasible for any detec-
tor to find it, because any computationally feasible
implementation of the optimum multiuser detector
would easily get trapped in a metastable state when
it exists. We can therefore predict that such de-
tectors would exhibit discontinuity in the perfor-
mance, just as the ‘waterfalling’ observed in the
turbo decoding, around the spinodal point, not at
the thermodynamic transition point.

3 Summary and outlook

Following interdisciplinary links between the
CDMA detection problem and neural networks,
and between neural networks and statistical me-
chanics, novel results and views have been obtained
to the CDMA multiuser detection problem.

The significance of the statistical mechanical ap-
proach would be that it is also applicable to prob-
lems in various fields, which share the basic struc-
ture of Bayes framework and intrinsic randomness.
One of such problems actively studied is that of
the low-density parity-check codes (see [4] and ref-
erences therein). We believe that the statistical me-
chanical approach will become more important in
the field of information theory.

Another important aspect we would like to men-
tion is that the replica method still lacks rigorous
mathematical justification. The situation could be
compared to that for the delta function when it was
first invented. We expect that a number of success-
ful applications of the replica method to problems
of various fields will stimulate studies for its math-
ematical justification. Such studies will have sig-
nificant impact across wide range of research areas,

not only on statistical mechanics, but also proba-
bility theory and information theory, to mention a
few.
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