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As a background to a comprehensive discussion on recent 

work in neural modelling, the thesis provides a brief biological back- 

ground description of some of the components of Natural Neural Systems, 

The review of the work of earlier neural modellers concentrates on the 

work of the last fifteen years, with the exception of a few earlier, classic, 
papers. The research work performed for this thesis employs an 

Experimental System evolved to test the ability of a digital, discrete-time 

model of a neural net to process patterns of signals, provided as input. 

The aim of the Experiments was to find the type of networks that can 

perform useful pulse processing functions. The Experimental work is 

divided into two sections, the first analysing non-adaptive nets and the 

second analysing networks which use Hebb-type algorithms to alter the 
strength of interconnections between cells. 

The first section describes and displays activity of many 

neural nets. Different inputs are applied to the net and the effects noted. 

The study is extended by employing Spectral Analysis techniques. The 

effect of many parameters on frequency of firing of the net are examined 

including, for example, the decay rates used in the cells and the frequency 

of the input signal. 

The second section simulates adaptive nets and examined 

the relationship between input signals and the final activity of the adapted 

net, It also employs Spectral Analysis and a specially defined form of 
display, the Cell Firing Histogram which provides information on how 

the circuits are being altered by the algorithm. A simple mechanism, 

for recognising signal patterns, is proposed that employs several of the 

properties discovered using the Cell Firing Histogram. 
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CHAPTER I 

Introduction 

This chapter seeks to provide a biological background to the 

models constructed, It is not meant to be a definitive thesis on the 

subject as the total volume of material available would make a 

treatise in itself. The chapter should provide a sample of the numerous 

theories proposed for the mechanisms of brain function. These theories 

provided inspiration for the many models to be described in the next 

chapter. 

The first section describes some of these general theories 

and the observations which prompted them, the second section deals in 

more detail with the neuron and impulse transmission. 

Preliminary remarks 

Comparative neuroanatomy indicated that the mantle of cells 

that covers almost all of the brains of higher mammals, the cerebral 

cortex, should shed some clue as to the mechanism behind intellectual 

behaviour. Staining of cells in slices of brain tissue (eg Lorenté de No. 1943) 

and their subsequent transfer to drawings indicated how complex the 

interconnections could be, although only a fraction of the cell bodies and 

their fibres were shown up by this method. Various layers could be made 

out, defined by the different types and density of cells within them. The 

relative thicknesses of these layers varied from region to region over the 

brain. Lorenté de No suggested the idea of linked chains of neurons providing 

reverberatory circuits, Scholl (1956) produced a detailed analysis of the 

cortex and a quantitative description of the cell population. For example 

he gave the thickness of the cortex as varying between 16004 and 28004 

(we micron), and agreed with the estimate from previous workers of 9 x 10? 

neurons in the human brain. The density of cells showed no correllation with 
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intelligence as, for example, the mouse was ten times more densely 

populated than Man. Scholl went on to indicate that the probability of two 

cells interacting varied exponentially with the distance apart. He was the 

first to propose investigations ''based on the concept of probability and 

discussed in a statistical language". 

Another eminent worker in the field of neuropsychology was 

Lashley (1953), In an enormous number of cruel and crude experiments 

on live animals he showed that their ability to perform and learn tasks, after 

part of their brain had been removed, was impaired such that the rate of 

formation of some habits was related to the extent of the injury. Unlike 

a digital computer then, the memory involved is presumably distributed 

throughout the brain and not located in a specific place. Lashley suggested 

that "the nervous unit of organisation in behaviour is not the reflex arc, but 

the mechanism, whatever be its nature, by which a reaction to a ratio of 

excitations is brought about". These experiments have been queried in 

their direct relevance to the human brain, but the principle of slow 

degradation of function is supported in the evidence from human brain damage, 

with the important exception of the speech area. This 'new'' functional 

development in the brain may be equivalent to a highly complex task requiring 

the correct retention of many ''subtasks'', Lashley found that complex tasks 

were the first lost. He went on to suggest that "the dendrites and cell body 

may be locally modified in such a manner that the cell responds differentially, 

at least in the timing of its firing, according to ‘the pattern of combination of 

axon feet through which excitation is received". 

These and other theories led to controversy over the nature of 

interconnections between cells. The lack of recognition of particular circuits 

in the stained slides and the inability to locate specific functions tended to 

suggest that the interconnections need only be specified "statistically", that 
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is every fibre junction did not need to be positioned exactly. The vast 

problem of coding any such specific information in a deoxyribonucleic acid 

(DNA) molecule also appears to preclude such a method, The lack of 

repeatability of experiments involving intra-cortical stimulation of both 

animal subjects and humans during surgery, where the function elicited 

varied between stimulations, also supports the arguments against a "hard- 

wired" model. 

In more recent studies however, specific circuits have been 

located in the cerebellum, described by Calvert (1972) and Hubert and 

Wiesel (1961) demonstrated the existence of columns of behaviourally 

complex cells in the visual cortex of cat. These cells were 'tuned! to 

a particular orientation of the object in the field of view. These findings 

and the sensitivity of the speech area to damage tend to suggest the 

existence of specialised circuits within the brain. 

The attempts to investigate brain function and the theoretical 

models tend to reflect the progress of this controversy. Adaption to 

stimulus was sought at the single cell level by Eccles (1953) and via the 

gross electrode electroencephalogram (E.E.G.) readings. The signal to 

noise ratio of E.E.G.'s was so low that i epentive stimulation and averaging 

techniques of analysis were employed to improve this. Adaption was 

demonstrated at both levels for instance by the fatiguing of a cell and the 

‘anticipation' of a repetitive signal in an evoked response (for example 

see John (1967)), At which level memory can be said to be represented is 

also discussed by John. 

The unit or organisation within the brain has been postulated to be 

of various sizes and shapes. Current ideas favour a compromise between 

the two points of view, typified by the work of Harth et al (see Chapter 2) 

where cell assemblies are defined specifically "in the large'' and randomly 
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"in the small'', The mechanism for learning is generally considered to 

involve synaptic facilitation, that is the effectiveness a synapse has in 

firing a neuron, but the nature of this facilitation is still undecided. 

(eg Hebb 1949, Milner 1957, Brindley 1969, Marr 1970), 

The code that neural signals employ is totally unknown but often 

assumed to be related to frequency of firing, That threshold devices (as 

neurons are) would seem to be suited to analysing patterns of incoming pulses 

in both space (spatio-) and time (temporal) is one of the reasons for the 

experimental approach of this thesis. 

The Neuron 

The neuron (see Fig, 1) is a specialized cell, of variable shape 

and size, found in the nervous system. Like other cells, each nerve cell has 

a nucleus and surrounding cytoplasm. Its outer surfaces consist of numerous 

fine branches called dendrites, which receive pulses from other cells and 

generally one long output fibre, the axon, Near the end of the axon it 

divides into branches which terminate in junction points termed synapses 

that ee into close proximity with other dendrites and cell bodies. The 

cell membrane separates, in its resting state, two solutions of different 

ionic concentrations of Sodium, Potassium and Chlorine. The diagram 

(Fig. 2a) shows the relative concentrations and the resulting potential differ- 

ence across the membrane. Normally Kt and Cl ions pass relatively freely 

across this membrane (see Fig. 2b) butby a combination of a metabolic 

pump that forces Na* ions out of the cell and Kt ions into it and the 

membrane's impermeability to Nat ions coming into the cell, the different 

concentrations are maintained. This situation can be temporarily reversed 

by the action of synapses contiguous to the cell body or the cell's dendritic 

surface by altering the cell membrane's permeability to Na* ions in the 

vicinity of the synapse. This causes local depolarisation of the cell,which 
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Macromolecular organisation of surface membrane. The basic structure 

is a bimolecular leaflet of phospholid molecules that is stabilised by 

structural proteins. A transmembrane channel is also shown.



on reaching a threshold value,results in a spike being generated and 

passed down the axon, The spike is very sharp as the sudden influx of 

Na ions causes even greater permeability through the channels of Fig. 2b 

and an explosive change occurs. This rapid change in the potential across 

the cell reaches an equilibrium value and the inward flux of Na* ions slows 

down and also a compensatory outward flux of ru ions curtails this imbalance 

to the extent of a final slight hyperpolarisation. This behaviour gave rise to 

the term 'all-or-none' spike discharge. Following a spike discharge the 

status quo is restored by the metabolic pumps mentioned earlier and 

possibly the interaction with specialized supportive glia cells which occur 

in even greater number than neurons, Further functions of the glia have 

been suggested by Galambos(196l), Firing rates of neurons vary between 

types but are surprisingly high, for example motor neurons: 200 spikes 

per second and certain Renshaw inter-neuron cells: 1600 spikes per second. 

Fig. 3 shows various types of cell and some aspects of the structural 

design of the cerebral cortex (from Colonnier M, L, 1966). The recovery 

time of a neuron (the absolute refractory period during which it cannot 

re-fire) is generally around half a millisecond. 

The Synapse 

The synapse (see Fig. 4a) does not make contact with the dendrite 

or cell body (termed the post-synaptic membrane) but is separated by a 

small gap, the synaptic cleft, of uniform size 20 millimicrons, It is into this 

gap that the synapse, on stimulation by a pulse from its parent cell,releases a 

certain quantum of transmitter substance held within small vesicles in the 

synapse body. This transmitter substance acetycholine (ACh) either reaches 

the postsynaptic membrane and opens the Na* channels of Fig. 2b or is 

turned into acetic acid and choline by an enzyme acetycholinerase (AChE), 

which resides on the post synaptic membrane surface. The acetic acid and 
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Freehand drawing summarising some of the types of neurons and aspects 

of the structural design of the cortex. 

(from M.I.Colonnier , 1966 and Cajal ,1952)
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choline can penetrate the presynaptic membrane into the synapse and be 

reformed into ACh held in quanta in vesicles. The cycle represents a 

sophisticated control system in itself, the quantity of AChE and the 

recombining acetycholine transferase determining a synapse's effectiveness 

and state of fatigue. 

This relatively simple direct action of synapse to dendrite has 

been queried by, for example, Shepherd (1972) who suggests direct 

interaction is possible between synapses layered on top of each other and 

between dendrites without the intermediate synapse. Also synapses of an 

inhibitory nature containing a different type of vesicle have the opposite 

effect of the excitatory ones described. 

Conduction of the Nerve Impulse 

The nerve fibre has a very low conductance but by employing 

the same mechanism of opening the Nat gates, this time by local depolaris- 

ation alone, the pulse can be regenerated in a manner analogous to the 

voltage boosters employed in long distance electrical cables. The diagram 

(Fig. 5a) illustrates how the cable effect of the fibre only has to transmit the 

depolarisation a minute distance ahead and the process then repeats itself. 

The outflow of K* ions in the wake of this impulse restores the resting 

potential. The very small change in ionic concentration implied can be 

rectified by the metabolic pump mechanism over a longer time interval. 

This method due to the ionic exchange involved is relatively slow (5 - 20 

metres/second for a crab axon) but can be overcome for certain fibres by 

myelination. This is the coating of the fibre in a thick insulation that is 

interrupted at intervals, Only at these intervals (see Fig. 5b) cana 

current flow take place and the impulse hops from node to node without any 

interaction from the fibre in between. The hopping of the impulse, called 

saltatory transmission, and the enormous reduction in the electrical capacity 
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between the axis cylinder and its surround,make the system very efficient 

and speeds of, for example, 100 metres per second have been recorded. 

This brief resumé can be complemented with reference to 

Eccles 1965, 1973; Katz 1966; Ramén y Cajal 1952; Colonnier M. L. 1966. 

0.5mm 
is an ES yy ga aS 

Myelinated Fives / « internode nea , 

ee Ba LH LLDDYLLLLLLIL 
  

  

    

WLTLIFREIDILL ILL I LI ZL LLL 

Diagrammatic representation of current flow 
  

  

  

0.5mm 
M i i a lyelinated Fibre aatevncda 

ab node node 

Real Scale 

Figure 5b 

Myelination 
  

sp



CHAPTER II 

Review of Neural Net Research 

Introduction 

This chapter is mainly concerned with work of a fairly recent 

nature, an approach made necessary by the volume of material available, 

although mention is made of some early classical papers. The reader 

who is interested in all the earlier work on brain modelling, including 

neural net simulations, should consult Harmon (1966). 

The first paper that could be described to be dealing with 

neural nets was that of McCulloch and Pitts(1943), This paper analysed the 

behaviour of simple logical elements arranged in networks. The elements 

themselves had constant thresholds (ie. no refractory periods ) and the 

connections between them were fixed. The authors suggested that despite 

learning variations any network subsequently formed could be replaced 

by an equivalent net and the laws of mathematical logic would still apply 

to analyse them. This implied a strict determinism which prompted 

biologists to point out the vast simplications that such an approach was 

making. 

In a theoretical discussion on neural networks that appeared ina 

paper by Cragg and Temperly (1953) the analogy was suggested of a magnetic 

field affecting an array of small compasses. As the field changed in 

strength so the movement of the needles would reflect 'domains of equal 

excitation’ spreading over the array. They predicted that there would occur 

during growth, a critical stage when the interconnections were of sucha 

density that this 'cooperative behaviour! would begin. The sudden change 
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observed in the form of young children's E E.G,'s as they reach a certain 

age could be explained by this and the movement of the domains hypothesised 

could be reflected in the detection of changes of potential over a global 

rather than local area. The study is interesting as a tool for imagining 

large scale networks of elements, but it does not allow for the individual 

differences in interconnection between elements which are currently 

believed to have a significant effect. 

Another theoretical suggestion came from A.M. Uttley in 1954 

in which he argued that due to the dense interconnections between neurons a 

classification system would automatically be set up. This would arise when 

neural firing was considered as indicators of every possible combination of 

active input fibres and with suitable delays involved, the networks could 

recognise all temporal patterns of these combinations as well. He constructed 

a small machine to demonstrate this. In a real network, however, I believe 

the unusual event would be swamped by the activity of its constituent sub- 

events and with some spontaneous firing as well the delicate wiring analogy 

would not function correctly. 

In the same year, the first of the contributions of Farley and 

Clark (1954) appeared. This was the first to employ a digital computer to 

simulate a network. The elements employed were designed after the McCulloch 

and Pitts neuron, but refractory periods were added. When an element fired 

it simultaneously excited other elements in the net by means of a connection 

matrix originally created by selection from a specific probability distribution. 

The elements had thresholds associated with them which decayed exponentially. 

The excitation also decayed exponentially. The operation of the net 
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was simulated by calculating the activity at discrete moments in time. 

The purpose of the work was to see if such a system was capable 

of self-organisation in that it would adapt to produce a desired response. 

The performance is reminiscent of linear classifiers such as the Perceptron 

where the task is inherent in the manner of modification of the individual 

synapse values and therefore could not be considered a random net. 

A classic study by Rochester (1956) used digital simulations of 

neural nets to test the psychological theories of Hebb (1949) and Milner (1957). 

In a similar discrete time simulation to Farley and Clark's they modelled 

a net of 64 elements, They included a fatigue characteristic in their 

elements which reduced the firing rates of frequently firing cells. At 

first they felt that a model of short term memory was being displayed by a 

succession of net states which were typical of the input signal. However, 

they found that the slightest change in firing patterns, for a different signal, 

soon produced vastly different behaviour in the net. They modified their 

net to accommodate 512 neurons but, due to the restrictions of their machine's 

capacity, had to deal with the frequency of firing of elements rather than 

using the detailed knowledge of the individual states. This study suggested 

that, with adaption, cell assemblies did form near the input site, but there 

was little exchange of "information" between them and they remained separate 

entities. They finally proposed to introduce, on the suggestion of Milner, 

inhibitory connections and that these were subject to a greater decay of their 

impulses, which would allow activity to swap in dominance between one assembly 

and another in the manner of a flip-flop. The study serves to illustrate how 

difficult it is to guess the global properties of a network of elements whose 

individual behaviour is nevertheless well defined. 
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R. L, Beurle (1956) discussed the properties of a network or 

medium of excitatory cells. He suggested that due to their refractory 

properties waves of activity would spread across the medium. The 

propagation of the activity would be dependent on the values of the cell's 

thresholds and density of connections and could either die out or saturate 

the medium. For critical values waveforms could pass along the net. 

By a form of feed-forward mechanism a facilitatory response at the 

wavefront could support this spread by providing subthreshold excitation 

there. Similarly a damping mechanism due to prefiring at the wavefront 

could control the threshold levels within the critical limits. He postulated 

that when a wave did attenuate to a single cell it could effectively trigger a 

selective motor response and thereby act as a classification mechanism, 

selecting between patterns of active cells. He extended these suggestions, 

together with a conditioned reflex mode of action 'inherent in the nature 

of the medium! to propose a mechanism capable of regenerating sequences 

of waveforms previously experienced, An additional requirement was the need 

for a "discriminator of satisfactory situation", By trial and error initially 

and subsequent recall of events using this mechanism, an organism could 

"discover the most probable results of a contemplated action", This paper, 

twenty years later, is a most persuasive and interesting work. It marked 

the beginning of a series of papers, by many authors, that attempted to 

extract mechanisms by treating a net mathematically, without simulation. 

The only criticism can be from experience of simulating models and seeing 

the well-ordered waveforms so crucial to these proposals, broken up by 

internal and spontaneous firing. The use of the attenuated signals firing 

only one element would be very hard to extract in the background of the noise 

usually present. 
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In the first in a series of papers by either himself or related 

groups, Caianiello (1961) published a paper on a proposed theory of 

thought processes, based ona series of equations which described 

the activity of a neural net and its adaption. He considered networks 

of elements at discrete intervals t , the synaptic delay, which combined 

the speed of propagation between neurons with the delay at the synapse, 

He described the net's behaviour by two sets of equations, Neuronic and 

Mnemonic equations, which represent the activity of the net and its 

adaption characteristics respectively. He justified splitting the two 

processes by an Adiabatic Learning Hypothesis which states that the 

changes to the network's structure is a much longer process than the 

firing sequence of the elements and can therefore be considered independently. 

This is an artificial simplification of the ideal situation where the coefficients 

of the Neuronic Equations would be taken as slow functions of time. Further 

approximations were that pulses arriving at a synapse are extinguished 

even if they do not contribute to a firing of the post-synaptic cell and the 

threshold of a cell is constant. However, included within this formulation 

was the ability for a pulse to have a delayed effect on the post-synaptic cell, 

but in his analysis this was considered to be of negligible effect. Also he 

suggested the possibility of interaction between cells and axons in a more 

direct fashion than via a synapse. The Mnemonic Equations determined that the 

coupling co-efficient between cells increased in value only if that pathway was 

active in the time instant before the post-synaptic cell fired. The coefficient 

could not exceed a maximum value and decays slowly at values below this. 

Caianiello tried to relate his equations directly to psychological phenomena 

such as thought-processes, punishment and reward, learning and generalis- 

ation, He argued that the small changes induced by the Mnemonic Equations,



the possibility of external activity control by threshold manipulation and 

random connections would all contribute to a stable system, He also 

argued that the net would exhibit Self-Organisation by 'convergence in time 

to a more efficient operation’, Much of this paper was hypothesis with no 

actual simulation, presumably as a groundwork for later work, but he did 

suggest the consideration of network activity (size N) as trajectories 

within an N-dimensional configuration space such that a reverberation 

would be represented by a closed polygon. This description was subsequently 

used by many authors, In 1971 a paper appeared (Burattini and Liesis 1971) 

that extended this idea. They simulated elements similar to Caianiello's 

but included temporal summation of signals which decayed exponentially 

with time and had absolute refractory periods of length T >< . Rather 

than rely soletyon the activity level alone for analysis they introduced 

variables which gave some indication of the similarity between any two 

states of the net. This was extended to produce a measure of the similarity 

between any two particular reverberations within the net. The mean and 

standard deviation of all possible values of this last coefficient were also 

calculated and plotted. These methods of analysis showed how the net 

approached reverberatory states and that the rer at activity was acutely 

sensitive to changes in the elements! threshold values which apart from 

the absolute refractory period were kept constant during an experiment. 

An attempt was made to demonstrate adaption to an input signal using these 

measures despite the absence of the type of adaption implied by the 

Mnemonic Equations. The most recent papers of Caianiello (1975, 1976) 

attempt to extend the model to consider more latent responses between 

cells by allowing the effects of inter-cell communication to be calculated 

from a wider range of previous time increments, By considering couplets 

of neurons the authors attempt to demonstrate that Caianiello's original



approximation of considering only the activity one time instant in the past 

was a fair one, 

An example of a different approach was the work of Taylor (1964) 

where the emphasis lay in specifying exactly the connections between 

elements according to features extracted from observations of cortical 

organisation. He suggested a Perceptron-like model which involved 

feedback to produce a maximum amplitude filter of the output and 

‘pleasure and pain' teaching terminals. In his computer simulation various 

inputs were applied to the model and the connection weights between input 

fibres and threshold elements were modified when the outputs were correct 

and those elements were active, in a trial and error fashion. The model 

showed successive improvement until all patterns were recognised 

correctly. Some sets of patterns were unable to be separated in a similar 

way to the linear separation problems of Perceptronwork. The paper serves 

as an illustration of the approach of testing by computer simulation a 

particular biological theory on cortical organisation and producing inferences 

from the results, 

In 1964 (Perkel 1964, 1976) D,H. Perkel published a paper describing 

a new method of simulating neural networks, His intention was to provide a 

model that could be used as a direct comparison to a biological experiment 

by writing analysis programs that would be able to use the data from 

either source. To overcome the usual problems of discrete simulation 

and thereby "avoid the conditional probability problems" that he suggested 

these entailed, he designed an 'interesting event! type of simulation. 

Employing initially the simulation language SIMSCRIPT his net functioned by



building up 'epoch lists’ of future events such as the predicted arrival 

of a pulse at a cell or the end of a cell's refractory period. By 

examining these lists and finding the next ‘interesting time’ specified, 

the simulation proceeded in time jumps from event to event. At each of 

these points the network state was altered as appropriate for the 

incident and further additions were made to the epoch lists. When a 

cell fired the firing interval was recorded in the same format as the 

biological experiments produced. He used this method to investigate 

the possibilities of detecting functional interaction between cells as 

indicated by cross-correlation techniques. He applied this analysis to 

a known model and could therefore illustrate what the correlations would 

imply when used on real systems. A second investigation examined the role 

of spontaneously firing cells in networks functioning as pacemakers, and the 

results were confirmed by comparison with intracellular recordings from 

a sea-slug (Aplysia californica), The simulation had considerable flexibility 

in that all parameters such as refractory periods, conduction time along 

a fibre and decay constants could be drawn from different statistical 

distributions, The synapses and cells were considered as wells of 

transmitter substances which would be depleted on use and consequently 

the cells would exhibit fatigue effects. The spontaneous firing of a cell 

was modelled by allowing the threshold of a cell to decay quicker than 

its membrane potential and hence an independent re-firing of the cell 

would take place without external inputs from other cells. Perkel suggested 

various shortcomings of his model, for example the restriction of summation 

at a cell to the axon hillock and instantaneous post-synaptic potentials 

rather than graded responses as observed in the physiology. These 

‘shortcomings’ have never been modelled by anyone else. Gerstein (1972) 

used Perkel's model to test a method of analysing the temporal relationships 
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between spike trains of individual neurons, He presented a joint 

peristumulus time (PST) scatter diagram which was formed from the 

various intervals between stimulating either two or three cells and their 

subsequent firing. By defining the connections between neurons and 

displaying the resulting scatter diagrams he was able to illustrate how 

this technique could indicate the underlying connectivity between cells. 

For three cells a stereoscopic pair of 3-D graphs was produced. The 

method appeared to fall down when interneurons were involved rather 

than direct interaction, Wood (1973) used a similar method to model a 

small net of two or three neurons that might be the controlling mechanism 

of a locust's wing. 

A form of network involving different basic elements was 

proposed by Aleksander (1967, 1968, 1970, 1974). His units were 

Stored Logic Adaptive Microcircuits of 8 bits (SLAM-8s), These were 

adaptive logic circuits which were capable of performing all the logic 

functions between its sets of N input terminals and M output terminals, 
N 

2") 
of them. They had "'teach-terminals' built in to specify which a 

functions were required. The purpose of this unit was to overcome the 

limitations of linear separability with Perceptrons. Networks of 

SLAM-8s incorporating feedback and random connections between input and 

units were applied to pattern recognition tasks such as recognising spectra. 

The SLAM-8s were produced in microcircuit form and in one machine combined 

ina set of 12. This study remains one of the few that actually does anything 

and serves to illustrate that by rigorously sticking to certain details of the 

neuron, interesting machines may be overlooked. 
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One of the most promising approaches was introduced in 1967 

by Harth (Harth and Edgar 1967, Harth et al 1970). The basic idea in 

these papers was to consider neural nets on both a microscopic and 

macroscopic level. In the earlier paper, the connectivity matrix was 

defined differently in certain areas to allow a general mode of connection 

to be specified between groups of neurons, whilst retaining randomness 

on the local level, This approach reflected the current uncertainty as 

to the degree of randomness of interconnection in real neural systems. 

Their model employed a neuron which had a fixed threshold and fired on 

receiving excitation, sufficient to exceed this threshold, from those 

elements which fired in the previous time instant, The quantity of 

excitation that passed from one neuron to another was defined in the 

connectivity matrix. This matrix was modified to simulate synaptic 

reinforcement by a scheme based on the coincidence of pre- and 

post-synaptic firing. Such a net was shown to have certain association 

abilities, such as the classical conditioned reflex, by examining the 

changes made to the connectivity matrix after an experiment. In the 

second paper the emphasis was shifted from the adaptive behaviour to 

consider the activity levels in more detail. They reproduced graphs of 

activity curves and defined various modes in a similar manner to Smith 

and Davidson (1962), They included computer simulation runs of actual 

nets as an indication of the deviations from the statistically predicted 

behaviour and these deviations were found to be quite small. They also 

included activity level graphs of netlets (their term for those groups of 

elements with similar interconnectivity) which received steady input in 

preparation for the study of large nets of netlets interacting with each 

other. This particular approach yielded a hysteresis effect. This was 
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found by plotting the steady state values of activity of a netlet against the 

strength of the afferent input. It was found that the steady-state activity 

had two main levels and the netlet would be in either of these two 

regions depending on whether the input was increasing or decreasing. 

x 

    
: | 

Steady— | 

State 

Activity | 
Level | | 

° ort ee — 
o 
s Cat Afferent Input J— 

Figure 1 

Hysteresis loop generated by slow changes in @,the fraction of afferent fibres. 

Irreversible changes are shown as dotted lines. 

This was suggested as being analogous to the Barkhausen effect in 

ferromagnetism which is the basis of some ces core memories, 

Some experiments were also performed on pairs of netlets interacting and 

it was demonstrated that either higher or no activity results in both 

nets to the same degree in a very short time (15 time units). One of the 

authors, Anninos (1970), of the companion paper to this last paper, had 

dealt with the mathematical analysis and derivation of the equations used. 
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He subsequently extended the idea of the hysteresis phenomenon as a memory 

mechanism by investigating the settings of the parameters that destroyed 

the hysteresis loop (Anninos 1972), He based his paper on the 

assumption that the adding of inhibition to the net as an input was 

equivalent to the noisy effect of different inputs being presented to the 

net, He showed that the hysteresis loop disappeared with increasing 

inhibitory input and suggested this was a model for forgetting. In his 

next paper Anninos (1972a) investigated the cycling phenomena, in the 

graph of firing levels, he noted in the computer simulated models. These 

are distinct from the statistical models which dealt solely with activity 

levels as he now felt ".. that not only the total number of neurons firing 

at any moment was significant but also which particular elements were 

firing". These models, like Harth's first paper, dealt with the microstates 

of a netlet employing a state vector indicating the firing patterns at one 

instant. Anninos examined the cycling of his models under various conditions 

of parameter settings. As with all simulations of this type there is a limit 

to the number of states any one net can be in and as the activity of an 

element depends only on that in the previous instant, the nets soon 

achieved cyclic behaviour of small period, He related the period of 

cycling to the level of inhibition. As the level of inhibition increased the 

time taken to the onset of cycling increased, almost exponentially as the 

net approached a ratio of 1 excitatory to 1 inhibitory element. He concluded 

also that "the period of oscillation is a sensitive function of the magnitude 

of the external input"! but ".... on the other hand the statistical parameters 

of the net play an important role in establishing the cycling activity....". He 

also noted that the exact original microstructure of the net was unimportant 

between nets whose global parameters were the same. In other words the 

"seed" to the pseudo-random number routine he used to generate a netlet's 
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connectivity matrix did not affect the cyclic activity, Anninos criticized 

Andersen's (Andersen 1966) work as he could only see"... rhythms in the 

autocorrelation function graphs and the cycles in the raw data were not 

visible on inspection". He later (Anninos 1972b) concentrated on what he 

defined as the latencies of response of a net, the delay before cyclic 

activity, and tried to demonstrate a similarity between these and evoked 

responses noted in averaging analysis of the E.E.G. The statistical 

model was called the "neuron gas model". By considering only the 

activity level, any coherence effect of the connection weights, which 

were 'frozen' to take one value each throughout the experiment, was 

ignored as the calculations effectively re-randomised the connections 

at each time instant. Wong (1973) provided further evidence for the 

validity of this approach by considering K- order netlets. He defined 

these as netlets whose behaviour was determined by activity in K previous 

time instants. He proposed a formalism and a description of the 

resultant activity in a K-dimensional activity graph analogous to the 

‘|-dimensional! version of the previous workers. He demonstrated 

this with a three-dimensional graph which dienes ae a recursion surface 

to show the stability of a second order netlet. Wong also suggested employing 

the method ofa A-phase plane to describe second order nets in the manner 

taken in classical mechanics to describe a coordinate-momentum pair. 

He showed his computer simulations of K-order nets were approximated 

by the neuron gas model and that such a system could now cater for 

synaptic delays, summation times, absolute and relative refractory periods. 
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An example of an approach which committed itself to one aspect 

of neural networks in an attempt to reduce the data involved to manageable 

proportions was the work of Amari S. (1970, 1971, 1972, 1974). He argued 

that the fact there was considerable redundancy in the brain, shown, 

amongst other things, by its recovery from damage, suggested the 

microstate of a network was not the most important parameter, for, if 

it was, the behaviour of each individual element would be critical to its 

correct functioning. He suggested that the activity level would be a 

convenient and useful parameter to study. This enabled the description 

of the network to be made in statistical terms, ignoring the actual behaviour 

of individual elements. Amari proposed defining neural nets as groups of 

Random Threshold Element Networks (RATEN) and analysing their activity 

levels and subsequently their effect on each other, when interconnected. 

His analysis of the stability of RATEN's suggested three modes: - 

1. Monostable:; only one stable activity level. 

2, Monostable-bistable; either one or two levels. 

3, Monostable-astable; either one level or oscillatory. 

The effective weight (W) was defined as a function of the total 

weight vector for the RATEN and proved to be one of the factors which 

determined which of the three modes @ RATEN exhibited. A hysteresis 

effect was demonstrated for a RATEN and an attempt was made to analyse 

interconnected RATEN's. An oscillator and an association ability was 

claimed although not built. A second parameter, H, a function of the 

settings of threshold values, was also found to be a factor determining the 

mode of stability. Amari also suggested treating nets in terms of the 

dynamics of distance between microstates and provided a few theorems 

based on these. 
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An extension of this work was that of Yoshizawa (1974) 

who extended Amari's analysis to include refractory periods. He 

produced predictions on the regions of the H-W graph that produced 

stability which were different from Amari's. He also implemented 

a fatigue factor which he concluded was necessary for reverberations of 

long period to be produced. 

Taylor (1972) and Martin (1973) published an account of 

various mathematical analyses of neural nets in continuous time with 

spontaneous firing in cells. The nets had various topological structures, 

line toroid or "doughnut"! (no edges). He concluded that non-homogenous nets 

(non-random connections) and doughnut nets were beyond mathematical 

analysis. Oscillations or steady state activity was predicted for other 

forms. He suggested that in spatially homogeneous nets with spontaneous 

firings, any signal put into them would be lost in the noise of the net's 

activity. An attempt was made to relate the final "chaos state'' to the 

input. He admitted that he could not conceive of a method to 'readout! 

from such a system but pointed out that a net of only 100 neurons had upwards 

of 1039 final states and therefore capable of considerable information storage 

and redundancy. 

The same year produced various attempts at network simulation, 

some involving learning techniques, an example being that of J.A. Anderson 

(Anderson 1972), Using matrix algebra methods he analysed a system with 

synaptic modification proportional to the product (obtained from the dot 

product of the state vectors) of post and pre-synaptic activity. By defining 

a measure of the memory of a net as the ratio of the output due to the 
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signal input to the output due to noise,he concluded that an interactive 

memory works better as it gets larger and more richly connected. 

Wilson (Wilson & Cowan 1972) treated nets as subpopulations 

of inhibitory and excitatory cells interacting. They employed a coarse 

quantisation of time as they considered that there is no information 

carrying capacity in fixed high frequency responses. They predicted 

multiple hysteresis effects and limit cycle activity which disappeared 

if the input was too high or low. 

Kuijpers (Kuijpers and Smith 1972) provided an interesting 

example of treating a net as a self-organising system. They proposed 

that nets could be taught to recognise patterns by producing a particular 

reverberation for each one. Their nets were similar to Caianiello's 

and their elements consequently had only two states which considerably reduces 

the number of possible reverberations. They considered in particular 

two-state reverberations and employed the method to separate 80 patterns 

into four classes using a 36 element net. More than four classes were less 

successful, 

Sedykh (1972) simulated a neuron medium in a continuous mode 

and suggested that learning was not a modification of synaptic weights to 

produce a specific response but an orientation effect on the direction 

of propagation of the wave through the net, for example to a motor area. 

The number of interconnections between cells was proportional to the distance 

separating them and he employed spectral analysis techniques in the analysis. 
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A network which employed synaptic adaption was described 

by Von der Malsburg (1973). The effect each cell had on its 

neighbours was defined by one number which represented the total 

effect of all possible synaptic connections between the cells concerned. 

Various other assumptions were made to simplify the analysis, such as 

linear summation of excitation or inhibition at a cell, and its subsequent 

linear decay, and the size of the post synaptic potential being the total 

input minus the threshold value. This replaces the all-or-none output 

of fixed size by an output with no intrinsic upper limitation, as is imposed 

by an absolute refractory period, for example. The interconnections were 

defined depending on the nature of pre- and post synaptic cells. All types 

of interconnection were dependent on distance with the probability of 

connection from inhibitory to excitatory decaying more slowly than the 

other cases. The cells were arranged in two hexagonal layers, the 

inhibitory cells being in the lower layer. The activity of the net was 

described by a series of non-linear differential equations, each equation 

defining the change in a cell's excitatory state (i.e. the output) with time. 

These are similar to Martin(1973). As there are no mathematical 

ways to solve these equations, approximation methods were programmed 

ona computer. One of the techniques was to consider only steady state 

solutions, The net programmed had four modes of connections, The 

connections between Excitatory (E) cells and Inhibitory (I) cells were 

defined by three constant weights and the variable connections between 

a 19 element retina and each of the E cells (i.e. 19 x 169 fibres) were held 

ina matrix. The experiments proceeded by finding, sometimes by trial and 

error methods, the steady state solutions for various weight settings of the 

net and after this performing synaptic adaption on the retinal matrix. The 
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method of adaption was to increase a particular fibre stength if there was 

a coincidence of activity in that fibre and the cortical cell it affects, by 

an amount proportional to both the fibre signal and cell signal, All 

other fibres impinging on that cell have their weights re-normalised to 

ensure a constant total weight value to a particular cell. This prevents 

instability. A set of nine stimuli was applied to the retina and the synaptic 

manipulations performed after each presentation, As more learning steps 

were performed the E cells tended to fire in clusters. By drawing 

a diagram indicating for each E cell the median of the orientations of the 

stimuli it responded to for various steps of learning, it was demonstrated 

that areas of cells responded to similar orientations. They concluded that 

"organization of orientation specific units is brought about by a learning 

strategy rather than genetic determination". They also indicated 

generalisation abilities and resistance to noisy input by calculations of 

entropy values at successive learning stages. 

A Neuronal Circuit Modelling Program (NCMP) was described 

by Knox (1973, 1974). It was capable of simulating up to ten neurons, forty 

axons, ten interneurons, ten relay neurons and a pulse generator and 

a random stimulator arranged in a way specified by the "user". The user 

could also specify which type of output was required from a set designed 

to produce the same form of output as biological experiments. The simul- 

ation was quoted as having a two-to-one ratio of time course to a real system 

for a single neuron simulation. The activity of the elements was calculated 

using the compartment model approach of Rall (1964). This system was 

employed in an investigation of the information produced by a cross- 

correlation function between cells. 
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Wigstrtm (1974) produced a mathematical model of a network with 

learning on the same basis of coincidence of pre-synaptic and post- 

synaptic firing. He noted that the largest initial component grew at the expense 

of the others and postulated a 'domination principle’ to explain the lack of 

confusion in thought processes. 

Macgregor (1974) produced rhythmic oscillations in a net of 

100 identical neurons and related this to the refractory period of his 

elements. He concluded that tightly connected nets could be used for 

spreading activity and loosely connected nets for following periodic 

input as tightly connected nets fired in clusters and"... fired at their 

own internally determined rhythmic period and did not faithfully follow 

applied periodic input". 

Another synaptic modification method was proposed by 

Fukushima (1975). Employing Brindley synapses, as defined by Marr (1970), 

he modified their weights if there was a coincidence between post and 

pre-synaptic firing andif the post - synapticcell was firing more than its 

neighbours. He suggested this would enhance individuality between synapses 

and prevent them growing to the same value. A multi-layered Perceptron 

type model was built along these lines but required preprocessing for 

successful pattern recognition. 
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Two approaches employing information theory in the analysis 

were those of Tsukada (1975) and Uttley (1976). Tsukada's work involved 

simulating the excitatory post synaptic potentials (EPSP) of a single cell 

and calculating I, the mutual information per symbol pair for various 

sizes of EPSP, He found two maxima, one for small values of EPSP 

and one for large. Related sequences of input gave different values from 

unrelated sequences. Uttley criticized Von der Malsburg's (1973) method 

of synaptic weight normalisation saying it would fail to work for small 

fluctuations from normalisation, as might be expected in a noisy 

system, and eventually the output would bear no relation to the input. 

By examining the form of typical learning curves of psychology, which 

indicated that adaption should be a two-phase process of gradual 

reinforcement followed by gradual non-reinforcement, he derived a 

synaptic modification algorithm which included a third component to the 

normal two, which was a fixed inhibitory synapse. This maintained the 

stability of the total synaptic weight as after a period of time, when the 

inhibitory signal was absent, the conduction strength of a fibre would 

decay back to its original value. The exact form he postulated as an 

example of this approach was that the synaptic conductivity of a 

pathway i, %i, should be a function of the log of the mutual information 

calculated between the output signal and the signal on the fibre. A 

mechanism, called an informon, was proposed that performed the 

desired manipulations of x for a particular set of fibres. A hierarchical 

arrangement of 210 informons with 8400 simultaneously variable pathways 

was shown to be completely stable and capable of recognising handprinted 

numerals, with the help of a feature extracting preprocessor. 
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CHAPTER III 

The Experimental System 

Introduction 

Chapter 2 gave an indication of the variety of approaches to 

neural modelling that have been attempted in the past. These attempts can 

be broadly classified as either based on probability theory or not, The 

"statistical nets' of the former category, reduced the vast complexities 

involved by sacrificing the knowledge of exactly when each element fired, 

describing the network activity by activity level only. This meant they 

could study nets of a non-trivial size and they were often used in conjunction : 

with physiological experiments. However they consistently failed to 

produce any clue as to the method of signal processing in the brain other 

than demonstrating types of conditioned reflex behaviour on a gross level 

rather than the single unit level of the 'hard-wired theory! school. The 

‘non-statistical' nets were often dismissed by biologists as irrelevant 

to their studies and many workers abandoned any idea of biological 

comparison, pursuing the search for interesting machines (e.g Perceptron, 

Adaline, Slam-8's). These computing machines are described by 

Harmon (1967). 

Whilst the computing power available has increased explosively 

since the early researches were carried out, it is felt that there is unlikely 

to be any major contribution from digitally simulating neural nets in order 

to test biological theories on the functioning of the brain. The current trend 

in physiology of identifying more areas of the cortex with typical patterns 

of connectivity tends to throw considerable doubt on the statistical description 

as a helpful model. Also, until the advanced development of, for example, 

parallel processing machines or array processors, the task of simulating 
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these circuits is intractable. 

The approach of this thesis is therefore to simulate, at a low 

level, the action of small networks of neurons with a view to finding 

machines capable of processing information encoded in terms of pulses. 

No relevance to natural systems is claimed and attempts are made only 

to abstract those features from biological systems that appear promising 

for such an aim. 

To save space and reduce ambiguity, a policy is now adopted 

whereby terms such as neuron and synapse will refer only to the models 

thereof. When the biological equivalent is meant this will be explicitly 

described. 

Description of the Experimental System 

The simulation is a digital, discrete time approach, each 

neuron's state, at any time instant, being calculated from its state in the 

previous time instant. The state of each neuron is held in a disk file, the 

Neuron Information File (NIF). The interconnections are defined by a 

connection algorithm and the effect each synapse has ona cell, the synaptic 

weight, is recorded in another disk file, thé Connection List. A great many 

parameters define each net and the system as a whole is designed to test the 

effect specified signals have on it. To achieve this an ''Experiment' is 

performed which consists of four stages, Net Generation, Signal Definition, 

Net Evaluation and Further Analysis (optional). . 

Generation of the Net (Stage 1) 

In this phase a neural net is interactively defined. The options 

on the parameters possible in the latest version of the System are 

listed below. These are described using Capital Letters to help explain 

the shorthand employed on Experimental listings and source code. 
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Net Size: three dimensional, those used were 5x 5x5 and 10x 10x 5, 

Threshold Range: this is the value used to generate the thresholds for each 

cell, It can either represent the upper limit of a rectangular distribution 

of values that the thresholds are selected from or the actual value the 

threshold takes. The actual mode used in generating is defined by the 

Threshold Type. The Threshold Seed is the number used by the pseudo- 

random number generator to start producing the threshold values in the first 

mode described. It has no meaning in the second mode. 

Threshold Decay Range, Type and Seed: the threshold decay is the percentage 

reduction of the threshold value over 1 simulated time unit. The values 

generated are produced in a similar manner to the previous parameter group, 

as are the next three groups. 

Excitation Decay Range, Type and Seed; this is the percentage decay ofa 

cell's subthreshold stimuli over 1 time unit. (When a cell fires, all 

stimuli received the previous unit are extinguished. ) 

The Connection Range, Type and Seed and maximum Number of Connections: 

the maximum number of connections defines how many synapses originate 

froma cell, Also, the Connection Range defines the value of the weights 

of each synapse. The actual number of connections decided for each cell 

is a preliminary step in the algorithm for generating weight values. 

The Inhibitory to Excitatory cell Ratio: this is used in the weight generating 

algorithm to decide the ratio of cells with excitatory synapses to those 

with inhibitory ones, All synapses from the same cell are the same type. 
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The number defining which connection algorithm to employ and the 

seed it uses; 

The maximum value for a synapse in an adaptive net; 

The values defining how to designate the elements which can refire 

spontaneously, 

The length of the simulation, 

The latest system allows multiple experiments to be performed in one 

run and the last parameters define the networks involved. 

Signal Definition (Stage 2) 

This phase is achieved with an interactive program which enables 

the following parameters to be specified: 

The number of signal inputs: 

The centre positions; the first slice of the three dimensional net is 

defined as the input slice and the co-ordinates of the input site specify 

the position within this slice that the signal will be applied to. 

The signal type: this defines the signal generation algorithm employed. 

(These will be described later). 

The signal spread and radius of spread: instead of applying the signal to a 

single element it can be spread, in various ways (to be described) to surround- 

ing cells in the input slice, within a given radius. 
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For early experiments on adaption, (see Chapter 4) output elements 

in the final slice can also be defined and the techniques of matching input 

and output signals are specified. 

The number and identity of those elements whose individual history is to 

be traced throughout the run and subsequently displayed. 

The maximum lag for the Spectral Analysis routines (see Appendix A). 

The interval between the trailing edge and the next leading edge of a periodic 

input signal (that is, the length of the 'off' state). 

The length of the 'on' state. 

The delay of the signal: this is the length of time from the start of the 

simulation that the signal begins. 

The learning factor; this is the percentage by ‘which the synapse weight 

is changed in the Hebb-type adaption algorithm, described later under 

"Support Routines". 

The value of any constant signals employed. 

Net Evaluation (Stage 3) 

At this stage the defined net is run. Various 'in flight! 

analyses are possible, such as a display of the cells firing on the line 

printer, a dump of'the Neuron Information File (NIF) and a display 
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of those connection weights changed in the previous time instant. These 

are all controlled by control panel switches (See Fig. 1). The run may 

also be terminated from the switches. A description of the main routine 

appears in the Program Description. At the end of the run, graphs of 

the totals over the whole net of the remanent excitation, threshold levels 

and number of cells firing are displayed. In later runs this data could 

be analysed employing Spectral Analysis, when Autocorrelation and 

Power Density Functions are displayed. For certain individual elements, 

specified in the second phase, the raw data alone is displayed. During 

the run the raw data is written to disk where it can be accessed at 

the end of the run, as described, or during the fourth stage of the 

experiment, 

Threshold Trace 

graph 

Ninfo Wt. Analysis Inhibit Raw 

dump Dump data graphs 

Firing 

Continuation Pabtern 
Indivs 

  

PI PPEPRRR PRP RP RR 
  

Multiple Inhibit Spontaneous 
run Learn Elements 

allowed 

Excitation T/type Terminate 
graph o/p run 

ee inhibit Trace 
Firing 

graph 

Figure 1 

Control Panel Switches on the Prime 300 
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Further Analysis (Stage 4 

The final phase may be repeated to perform Spectral Analysis 

on specified subsets of the original data. It is also at this stage that a list 

of the major connections can be printed out and the special form of 

analysis for the adaptive nets of Chapter 5, the Cell Firing Histogram, can 

be calculated, 

The Computer System Description 

Figures 2-5 are system flowcharts for the latest system. It is 

capable of running up to twenty experiments unattended, writing the results 

to disk. A run of twenty nets takes 30 hours. The fourth stage for each 

experiment was performed subsequently. This mode of working was 

adopted fairly late in the thesis to overcome the unreliability of the 

hardware used. 

The information input in Stage 1 of the experiment is stored ina 

Parameter File (IP), one block (e.g. a disk sector on Prime 300) per net. 

This file is subsequently updated in Stage 2 so that it contains all the 

information necessary to generate and run the network concerned. These 

files are archived to a separate area of disk and can be recalled at will to 

provide the basis of a new network or enable a re-run to take place. In 

the Multiple Run mode the generation program produces the NIF and 

connection weight file for each net and stores them in the areas referred to as 

the SU files (e.g. SU2, SU3, etc.). 

The first net to be run does not need to be stored in this way 

and is held in the corresponding disk files used in the actual running, 

Subsequent runs copy the initial settings from the SU files before starting. 

The SPON file is the list of neurons having spontaneous firing characteristics. 
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The FILIST file is used in the first stage to hold a table that accesses 

this file. In Stage 3 however, this file holds the number of the cells which 

fired in the previous time instant. 

Stage 3 runs all the nets and produces an Archive File 

(ARC1, ARC2, ....) for each net that holds all the information the Analysis 

‘routines require in later stages. The file GRAF is used as an 

intermediate storage to generate the line-printer graphs. The FET file 

holds a record of the firing patterns at each time slice. The running of 

the net can be controlled by the sense switches which can, for instance, 

enable the printing of the line-printer graphs (see Fig 1). Stage 4 currently 

consists of two sub-phases, the first being the selective use of the graph 

plotting and Spectral Analysis routines, to analyse specific subsets of 

the raw data. The second, in a similar mode of use, employs the cell firing 

histogram for the final experiments of Chapter 5. 

This System represents the current situation, The Multi-Run 

capability was produced for the later experiments of Chapter 5. There are 

approximately 80 FORTRAN and 20 Assembly code routines making up the 

four Stages. On the Prime 300 the Stage 3 routines occupy 32K and a run of 

1000 time units takes, typically, 90 minutes, 

Program Description 

Main Simulation Subroutine 

To describe in great detail every routine would take vast space 

and contribute little to the understanding of the simulation techniques. 

However, a brief mention of some routines, particularly the main 

subroutine, NET, should explain the basic ideas employed. A listing of this 

routine and the main program is held in Appendix B, A flowchart of the 

main routine is in Fig, 6, The following description should be read in 

conjunction with this diagram, 
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The basic routine that performs one time slice of 

neural activity is the subroutine NET. There are two stages in the 

calculation of the activity flow, the Affect Stage and the Effect Stage. 

The Affect stage updates the neuron information file (NIF) (See Fig. 7) by 

changing the excitation levels of those cells connected to the elements 

which fired in the previous time instant, as defined by the Firing List 

File. The effect stage then checks affected elements only to see if 

they will now fire by comparing their excitation level with the current 

value of their threshold, The result is a new Firing List file, held 

on disk, The routine then returns to the controlling program (Ell, see 

Appendix B) which will continue to call it for the rest of the simulation, 

Figure 7 Neuron Information File 
  

6 bits 10 bits 

  

Threshold decay |Threshold resting value 

  

  Excitation decay |Threshold current value 

Neuron 1 4   

Excitation current value 

  

Time 

  

Threshold decay |Threshold resting value 

  

Excitation decay |Threshold current value     Neuron 2 , 
Excitation current value 

  

Time         
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The technique employed throughout the routine attempts to 

minimize all disk transfers. At the program design stage, by roughly 

simulating the simulation, optimum buffer sizes and file design were 

laid down. The routine uses all the information in a particular disk record 

when it is in core, before accessing the next block. 

In the Affect Stage the input to the net is received in 

an intermediate buffer which corresponds to the first slice or array of the three 

dimensional net. The main routine will have previously called a particular 

signal generation routine which supplies the signal value into this array. 

This information is used to update the relevant sections in the NIF. 

The Firing List file is now used in conjunction with the Connection weight 

file (see Fig. 8) to decide which elements are affected and by how much. 

Siesta bit O- inhibitory 

  

  

  

  

  

  

  

  

  

ra Time neuron last fired 
weight value 1 

File of up to 20 weights 
21 words, 

eof 

One disk sector 

441 last record 

unused 19 words         
Figure 8 Connection weight file 
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The actual connections are determined each iteration by a modified pseudo- 

random number generating routine. 

The Effect Stage, as well as compliling a new Firing List File from 

the changes already made to the NIF, examines the spontaneous elements to 

see if their thresholds have decayed to the resting threshold and therefore 

refire as well, As an element fires, its threshold is set to a maximum and 

its excitation extinguished. 

By only examining those elements affected in the first stage, 

considerable reductions in accesses to the NIF are achieved in the Effect 

Stage and make longer simulations of larger nets possible. 

Support Routines 

The routines are described in approximately the order they are 

used in the Experiments. They are briefly described if the techniques 

employed are felt to be useful to subsequent researchers or important 

to the understanding of the simulation as a whole. There are many routines 

which are straightforward and are only mentioned to aid those examining 

the source listings. Before the simulations began many programs were 

written to help design the Experimental System, These are mentioned 

first, Finally the Assembly Language routine s are described and a mention 

is made of the routines written for other machines, 

Preliminary Routines 

Several random number generating routines were examined that 

produce integers from a rectangular distribution over the possible range 

allowed on the Prime 300 (0-32767), These were tested by plotting 

histograms derived from the streams of numbers generated. They were 

also tested for speed using interrupt timer programs. The routine chosen 

is called RAN2A and can be defined by the algorithm RAND ~ (RAND 237) 

mod, 32749, This takes approximately b4ysecs. As the basic simulation 
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was being designed, calculations using buffer sizes and disk access speeds 

were performed to try and find the highest speed of simulation. The results 

suggested a good method would be to read and write the NIF in cylinder mode, 

that is 16 sectors at a time and the other main files in sector mode. 

Although the additional routines and disk files added later involved far 

greater overheads than the original calculations allowed for, the efficient 

design of the actual network simulation meant it was practically possible 

to add on complicated analysis procedures and still have a reasonable 

experimental time. Many routines were written to debug the program as 

no facilities except a Trace and Patch routine were supplied with the 

computer. The assigning of almost all variables in the simulation to a small - 

part of the Blank Common Area meant a dump of the corresponding section 

of core provided a post-mortem dump in the event of a crash. Using these 

routines, comparisons with hand simulation could take place. A hand 

simulation of three time units of the original simple net of 5 x 5 x 5 elements 

took over eight hours to complete, even with the help of a pocket calculator. 

A Multiple Run of 30 hours on the Prime 300 would therefore take at least 

20 man years to hand check. 

Generation Support Routines 

The main generation program, GEN, takes the information typed 

in at the terminal, under control of sense switches for each group, and 

updates the IP file. It finally writes a list of the new parameters onto the 

line-printer. The routines which generate the first three parameters of the 

cell are all similar, as described earlier, either producing the same value 

for each cell or selecting from a distribution. The routines that give a single 

value, that of the range parameter setting, are TGEN9, TDGEN9 and 

EDGEN9 for thresholds, threshold decays and excitation decays respectively. 

The routines which select from a distribution all work the same way in that 
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they call the random number routine RAN2A, with the given seed (this 

value is altered in the process) and the number produced is converted 

from the range 0-32767 to 1 to the range previously provided. These 

routines are TGEN1, TDGEN1, EDGEN1. The synaptic weight values 

are generated (GEN9) in a slightly more complicated way. The connection 

weight seed is given as the parameter in the first call of RAN2A. The 

result is used, in conjunction with the parameters describing the 

inhibitory to excitatory ratio, to determine what type the current cell is. 

Next, the number of synapses each cell has is calculated by a further 

call to RAN2A and a range conversion performed to satisfy the parameter 

NCON (The maximum pocrectons per cell), This step is omitted in 

GEN9C which generates only the maximum number of connections for each 

cell. Then, using the parameter CONRAN, that specifies the upper value for 

the weights, further calls to RAN2A produce the initial synaptic values. 

(These are only changed in the Hebb-type experiments of Chapter 5). The 

spontaneous cell generator GSPON1 produces a list of those cells with the 

characteristic of refiring when their threshold decays tothe resting value. 

This routine also employs SORT, which produces an ordered list for writing 

to the disk file SPON, 

It was decided as a policy throughout the simulation to provide 

separate routines to interface with the assembly level routines to ease any 

transfer to different computers. The routines employed in this way are INTH, 

INTD, INED, RESET and PUTEON. 

Evaluation Support Routines 

The Learning and Servo mechanisms employed in the early 

experiments of Chapter 4 will be described first as they were used relatively 

briefly, The Adaption algorithm, HEBB, did not appear until Chapter 5, 
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The original Learning mechanism was implemented within the Evaluation 

Routine itself. The basic idea was to reward high firing rates within a 

specified output area. In the subroutine NET, an area in core was set to 

represent the pattern of firing within the output area in the current time 

slice. Subroutine MATCHS subsequently examined this area and produced a 

score of the total of the elements not firing. The Learning algorithm used this 

value to determine the strength of the reward, a low value producing the 

maximum reward. This value was entered in a table (LEARN) of maximum 

size 50, the newest entry replacing the oldest, the algorithm being entered 

every time slice. The effective size of the table could be specified as a 

parameter, the Learning Range. Any reward not applied before this limit 

was lost. The learning value was used within the subroutine NET, in the 

Affect Stage, when calculating the weight values for each synapse. 

Before putting the weights, which were held on disk, into an array (IWT), 

they were altered by the percentage value (generally between 10 and -10) 

held in the Learning Table. The value used was the entry corresponding 

to the time the 'father' cell last fired. These new weight values would be 

written back to disk at a later stage. 

The Servo was a number between -50 and +50. The 

actual score calculated every time unit depended on the level of activity of 

the net,being high for low activity and vice-versa, In the early versions 

of the Evaluation Routine this score was entered in a table (ISERVO) which had 

a fixed effective length of 50. The Servo was applied in two routines EXCITE 

and UPDATE, EXCITE takes the afferent input to the net and changes the 

excitation levels of the elements that each input corresponds to. It 

initially extracts the excitation level of the cell receiving the input from the 

NIF and decays its value using the Excitation Decay rate. It then uses the 
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Servo value as a percentage and alters the decayed excitation by this 

amount. In other words it amplifies the excitation that is present at the 

current time. This value is then added to the value of the afferent 

input and the NIF is updated. The routine UPDATE does the same thing 

but takes its afferent excitation input from other cells. The aims were to 

reward particular connections with the Learning Schema and thereby 

reinforce pathways that raised the firing level of the output area and, using 

the Servo mechanism, to globally control the level of firing. 

The afferent input to the net is provided by two sets 

of routines, the signal generators and the signal spreaders. As described 

earlier, certain elements are designated input elements and the signal is 

applied to these. It is also applied to certain of its neighbours, determined 

by the signal spreader routine. The signal generators GN1S1G to GN8S1G 

provide a level of excitation for a given simulation time. GN1S1G provides a 

constant signal, the value being that set in Stage 2 (the constant signal value). 

GN2S1G provides a pattern changing every 50 time units (50, 0, 20, 0) and 

GN3S1G provides a sinewave. The remainder are for use with the split run 

type of experiment, described in Chapter 4, aie re for example an on/off signal 

is provided for the first 500 time units and a constant signal the reafter. 

GN5S1G, GN6SIG and GN8SIG also employ a delay before the signal train 

starts and a variable 'on' signal length. In all the periodic signals, the 

period, delay and length of the 'on' signal have been defined in Stage 2. 

Whatever the signal is, it is spread around the input centre 

with the radius defined as a parameter. The method of spreading is to excite 

six additional points, in the input slice, on the main axes and diagonals 
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through the input centre. Two typical patterns are shown in Figures 

9 and 10, the latter having two adjacent input centres. 
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Figure 10 -taken from Experiment F12 

The routines GEN, GEN1 and GENC define two methods of 

interconnection of cells, Random and Local Bias. GEN generates random 

connections by calling RAN2A and reducing the range to be from 1 to the total 

number of cells inthe net. The Local Bias method is more complicated. 

It involves the setting up of a table, by calling GENC in the Evaluation 

Routine (E11) before starting the net. This table sets out all possible 

displacements from a cell situated at the centre of a 2 x 2 x 2 cube to every 

possible connection on the surface of the cube. The distances between the 
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cell and its connections is therefore 1 or /2, GEN1 chooses between the 

two subsets so defined, with a proportional bias to the shorter distance. 

The routine then selects within the selected subset and obtains a three 

dimensional displacement to be added to the original cell's own co-ordinates. 

GEN] then checks that the proposed connection lies within the net and, if 

so, enters the value in the connection array. Various modifications to 

this were later added at this stage to enable toroidal or semi-toroidal nets 

to be simulated. Both routines ensure the same unique set of connections 

are generated every time, for a particular cell, by multiplying the connect- 

ion seed by the cell number before the first call of RAN2A. 

During the running of the program the internal state of each 

cell can be printed out on the line-printer, using NINLP, and a diagram 

of the net indicating the firing cells can be printed out using PATTRN. 

Also the synaptic weights that were changed in the previous time slice can 

be displayed, using WTDUMP, to give an indication of the changes taking 

place in adaptive nets. These three options are controlled from the sense 

switches (see Figure 1). Various routines are used to store and retrieve 

data in the disk files of Figure 5: GRAFIN, INDIV, GRIND, ADFIL, SAVTIM, 

TRANSF, ARCHIV, NIBSEK, THEXL, FILEV. The routines providing all 

decay functions are DCAYTH, DCAYEX, DECAY 1 and DECAY 2 which employ 

the rounding routine ROUND. QFIR examines the NIF data in the Effect 

Stage of the simulation to see if a cell is going to fire. Similarly SPNFIR 

examines any unfired cells nominated as spontaneous to see if their special 

conditions for firing are satisfied. 

The final major routine used within the actual simulation is 

the adaptive algorithm HEBB, employed in the experiments of Chapter 5. 
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The purpose behind the design is discussed in Chapter 5. The idea is to 

modify the synaptic weights, as with the previous algorithm, but 

dependent on conditions local to each fibre rather than the global 

conditions used before. The value of a synaptic weight is increased if 

there was a coincidence of pre and post-synaptic activity, In other words 

the condition is satisfied if a particular fibre was active and the next time 

slice the receiving cell fired. If this condition was not satisfied the weight 

value decays. Various forms of this idea were implemented but in all cases 

the routine determines whether the reinforcement condition was satisfied 

by first examining, as the last operation of the Effect Stage, the Connection 

Weight List file. In the Affect Stage, if a certain element had fired in the 

previous time instant and its connections were therefore active, the weight 

inform tion used to update the NIF file would have been accessed. Each 

element's Connection Weight List contains a record of the last time used 

(see Fig. 8) and this is updated, if used, in the Affect Stage. The routine 

HEBB therefore accesses this variable and can tell which elements had been 

on the Firing List the previous instant. If the subsequent afferent connections 

from these previously firing elements are on the current Firing List then the 

reinforcement condition is satisfied. This is determined with the aid of 

FILMAT. The actual altering of the weights is performed within HEBB. 

Several parameters can be specified in Stage 2 of the Experiment which 

define, for instance, the reward as a percentage and the maximum synapse 

weight allowed. 

After the run is finished a routine RESULZ2 is called which, 

dependent on sense switch settings (see Fig. 1), displays graphs of the data 

produced and calls the Spectral Analysis routines. All these Analysis 

routines employ a suite of programs for displaying graphs on the line- 

printer. There are five versions of these routines that produce either graphs 
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that occupy a single sheet of line-printer paper or spread over several. 

A variety of scales are used, integer, real and logarithmic in certain 

combinations. A version that produces several data sets on one graph 

is employed to display the Cell Firing Histogram (to be described). 

RESULZ can also call a routine called AFPROF which produces the 

Affect Profile for the run. This is a histogram of times since cells 

last fired and gives an indication of how many cells are affected each 

time slice. 

The two back-up programs, BU and BU2 call a different form 

of RESUL2 and the Cell Firing Histogram routine FEATUR, respectively. 

BU provides the facility for accessing subsets of the raw data and does so 

by either listing and plotting graphs or calling the Spectral Analysis routine 

SPEC3. Finally it can call LINK, a routine that lists the major connections 

left in the net after an Adaptive Run of Chapter 5. The options are once 

again controlled by the sense switches. The routine SPEC3 takes the raw 

data, normalises it (displaying the mean and standard deviation) and produces 

autocorrelation data, raw power density data and smoothed power density 

data. These data are listed and also plotted on the line-printer. As this 

program was coded from a textbook, and not basically my own work , it is 

only briefly discussed, together with some underlying mathematics, in 

Appendix A. 

BU2 also analyses subsets of data, but this time the data written 

onto disk by the routine FEATUR during the running of the program. This is 

a coded form, in eight words:per time unit, of the firing pattern of a 5x5x5 

net. This was used in Chapter 5 to analyse, in more detail, patterns of cell 

firings. BU2 uses the routine F1 to extract the data from disk and unpack it 

and then produces a series of histograms that show the number of times each 
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cell had fired at various stages of the run, All the histograms are displayed 

on one graph to show changing rates of cell firing. The reasons for doing 

this form of analysis appear in Chapter 5, 

The Assembly Language routines written for the Prime are 

basically to provide the bit manipulation facilities FORTRAN does not supply. 

However, it also became clear that the Prime Disk File System provided 

only serial access mode and therefore new disk drivers had to be written 

to implement random access file organisation. These routines were written 

and tested using the interrupt routines written to test the speed of the pseudo- 

random number generators, The random number routine RAN2A was also 

written in Assembler. 

When the CDC 7600 at Manchester and the 1904S at Aston 

(see next section) were used all the above Assembly routines had to be 

changed. The system was originally designed with the idea of localising 

any such changes in a group of routines, such as these, to maintain the 

portability that might be vital if one machine irretrievably broke down. 

Machines Used 

All of the experiments reported in Chapters 4 and 5 were 

performed on the Prime 300 mini computer. The System was tried on the 

CDC 7600 at Manchester and the ICL 1904S at the Computer Centre at 

Aston, but both were impractical. The ICL 1904S was incapable of running 

a set of more than two networks in the Multi-Run mode without being 

interrupted by operators or hardware failure, and had a turn-round of 

24hours, The CDC 7600 had an even longer turn-round and the workload 

from other Aston users made access difficult. The CDC machine did provide 

557



a solution to an intractable error on the Prime when the equivalent code 

failed even to compile. 

Approximately 200 experiments were carried out on the 

Prime 300 in dedicated user mode over a period of approximately 16 

months, The machine became extremely unreliable in the last six months 

having an up time of approximately one day in five. A great deal of that 

time was wasted tracking intermittent errors which invalidated much of 

the work. This meant all the runs of Chapter 5 had tobe run twice and 

compared. 
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CHAPTER IV 

Network Activity 

Introduction 

This Chapter is divided into two main sections. The first 

section deals with preliminary experiments which attempt to find 

interesting areas that can be investigated, in greater depth, in the 

attempt to locate machines capable of signal processing. This section 

is described in detail, not because of the relative importance of the 

results but to indicate both the type of data produced in these simulations 

and the most basic properties of the nets modelled. The second section 

of experiments, employing spectral analysis techniques, presents the 

important results, but only describing in detail the facets of the experi- 

ment that supply evidence for an observed property. 

All the parameters defining each experiment are listed in Table 1, 

which can be found at the end of the chapter. The first section describes 

experiment groups A, B and D and the second section uses the results 

of groups D, E and F. 

The cell numbering of the Reteece used is from 1 to the total 

number of cells used, with the dimensions varying quickest in the order 

column, row, slice. 

Group A Experiments 

Net Number 1 was generated with the parameters given 

in Figure 1. This is a reproduction of how they appear on an experiment 

listing. 
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NET NUMBER 1 
SIZE: M=5 N=5 Z=5 

THRESHOLD: RANGE=10 TYPE=1 SEED=4 

THRESHOLD DECAY: RANGE=4 DISTN TYPE=1 SEED=2 

EXCITATION DECAY: RANGE=4 DISTN TYPE=1 SEED=11 

SYNAPSE WEIGHTS: RANGE=125 DISTN TYPE=1 SEED=65 

MAX NO OF WTS = 5 

IE RATIOT TOE: 1 TO 1 

SPONTANEOUS NEURONS: NUMBER=5 DISTN TYPE=1 SEED=2 

FIGURE 1 

The details of signal input are found in Table 1 under 

Experiment Al. The purpose of this group was to find the type of 

activity certain parameter values produced. Five spontaneous Clements 

were generated and the signal input area is illustrated in Fig. 2 by the 

square of four firing elements in the pattern of firing diagram. The 

input signal value was 50, the units being the same as those of the 

excitation and threshold data. The subsequent activity (see Fig. 2) was 

very low, dying out, for the first time, by time unit 6. The spontaneous 

elements had fired immediately as the initial net state was such that the 

resting and current threshold values were equal and therefore satisfied 

the special criterion for refiring. The simulation was run for 51 time units. 

Figs. 3-5 illustrate the three basic types of raw data that the simulation 

produces. As the activity is so low, the effect of the input on the 

excitation graph is clear, the high values being extinguished when there 

is a burst of firing. Normally, with nets of later experiments, this effect 

is not so noticeable as the remanent excitation values do not accumulate. 

Similarly with the threshold graph, the refractoriness of the net can be 

seen. Initially with a relatively high burst of firing the net becomes highly 

refractory, the total threshold value reaching a maximum. As this value 

is decayed (the threshold decays all being 4%) a few elements refire and 

the threshold graph shows a peak again. As the level of activity is so low, 
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however, a general downward trend is observed until near the end of 

the experiment. The second experiment, A2, omitted any spontaneous 

elements (by sense switch control) and the activity was slightly lower. 

The third experiment, A3, made an attempt to increase these firing 

levels by changing the ratio of inhibitory to excitatory elements from 

1:1 to 1:5. It also included spontaneous elements again, It had been 

noticeable in the previous two experiments, from the dumps of the 

Neuron Information File (NIF), that many elements had negative 

excitation totals which, even with a very low threshold, made it 

impossible for them to fire. The result of the changes was quite marked 

and the first four time units (or "time slices") of activity is displayed 

in Fig. 6 and the raw data graphs in Figs. 7-9. Activity is maintained 

until time unit 11, indicating that this is still a highly damped net. 

Experiment A4 omitted spontaneous elements and, as in Experiment A2, 

the difference was slight, the maximum firing level being slightly less 

as the five spontaneous elements were not present to fire in the first time 

slice. 

Group B Experiments 

The previous nets had decays that were too small for any 

maintained activity and so both excitation and threshold decays were 

increased from 4% to 20%. This group of experiments was to test the 

Servo and Learning Schemes (described in Chapter 3) and briefly examine 

their effect on the activity levels. 

The first experiment, as it was a new net, was run with 

neither facility to provide a comparison with later runs. The effect of the 

increased decay is immediately obvious from the Excitation, Threshold and 

Firing data graphs (see Figs. 10-12). The activity only dies out immediately 
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after the main peak of activity and a wavelike fluctuation around a mean 

level of 8 (elements firing per time unit) is noticeable. The threshold 

graph emphasizes the wavelike behaviour as the changes produced in the 

data displayed when an element fires are not as relatively large in the 

threshold graph as they are in the firing level diagrams. The threshold 

graph is reminiscent of the threshold graph produced by Farley (1960). 

The Excitation graph shows lower values and this is because the remanent 

excitation is extinguished with higher firing rates. Examination of the 

NIF during the run showed that, whilst most cells were different in state, 

there were groups of elements that had similar states and this may explain 

the tendency towards synchronized activity in the firing data. Experiment 

B2 introduced the early form of Global Learning, here termed Reward. 

As described in Chapter 3 the Reward is calculated to be directly 

proportional to the firing level of a specified output area. This area was 

defined as elements 119, 120, 124 and 125 only. (i.e. a square of 4 elements 

in the bottom right-hand corner of the final slice), The Reward was printed 

out on the experimental listing and never increased above zero. The 

possible Rewards were (-10, -5, 0, 5, 10). Despite the increased firing 

rates the refractory nature of the cells meant that the continued firing 

of the output area was unlikely. Consequently the synapse weights were 

generally reduced. The effect of this is not particularly noticeable until 

after time unit 50 (see Fig. 13) when the activity is different, but at a 

similar level. 

The next experiment, B3, employed the servo mechanism 

described in Chapter 3. As the activity was always below half the number 

of elements in the net, which would correspond to the 'zero! value of the 

Servo, the Servo was always attempting to amplify the activity. The changes 
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caused by the servo are noticeable very soon (see Fig. 14) but 

there is only a slight suggestion of an increase in the mean level of 

activity, towards the end of the run. Experiment B4 employed both 

mechanisms and different activity again occurred but with similar 

general form as Experiment B3, 

Conclusions 

1, As previous authors have found (e.g. Farley (1955,1960), 

Anninos (1967, 1972)) extremely complicated behaviour arises from these 

networks which can change with the slightest change in parameter values. 

2. The data needs to be considered on a global level by 

for example graphical displays, that show overall patterns of behaviour. 

Group D Experiments 

The previous small group of experiments had very short 

simulation times and it was felt larger nets could be simulated without 

any difficulty. They could show if the lack of smooth waveforms in the 

firing data was a function of the small net size and low activity level. 

A net of 500 elements was therefore generated (10x 10x 5). Apart 

from the increase in size, the net was similar to those used in the Group 

B experiments as the individual cell parameters were the same (see 

Table 1), The input area was again a square of four elements in the bottom 

right-hand corner of the first slice and the output area was the corresponding 

square in the fifth slice. Experiment D1 was run twice, once for 69 time 

units and then, when the system was enhanced, for 200 time units. The 

Firing Level is displayed in Fig.15. Both Reward and Servo functions 

were enabled. The firing was extinguished after the initial surge, as 
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with the previous experiments. However the activity also died out 

towards the end of the run. Either the spontaneous elements or the 

input restarts the net. The waveforms appear much smoother, 

particularly late in the run with a period of near 20, as in Group B. 

Also there appeared, by examining the NIF, many elements with similar 

states. One factor which is noticeable and is at variance with Anninos 

(1972) is the lack of cycling. Whereas later firing waves were similar 

in form, none duplicated another. The reason for this is that these nets, 

compared with those of Anninos, have far more possible states as each 

cell has many threshold and excitation levels. Throughout every 

subsequent experiment cycling does not occur with the exception of some 

experiments late in Chapter 5 whose interconnections have been drastically 

reduced by the learning algorithm HEBB, which made the net effectively 

much smaller, The mean level of firing was approximately 25 witha 

maximum of 71 (14.5% total). By examining the state of the NIF during 

the run it appeared 122 elements never fired, but the vast majority had 

fired 'recently'. This means either the non-firing cells had received 

no connection or were affected only by inhibitory synapses. In Experiment 

D2 the servo was omitted but only slight changes were noticeable in the graph 

of the firing data. The servo, therefore, could not have affected the level 

of firing in the previous run as it had failed to alter the mean level of 

activity from that of this experiment, despite its value being nearly 

always at the maximum, The experiment did illustrate that the waveforms, 

as they were similar to those in Experiment D1, do not depend on a particular 

sequence of firing elements and must therefore be a function of the net 

parameters themselves. 

aw



In Experiment D3 a new net was generated, with elements 

the same as those in Experiments D1 and D2 with the exception that the 

threshold decays were all made 50%. The increase in the threshold decay 

made the refractory periods much smaller and the waveforms of the 

firing activity changed considerably (see Fig. 16), having a period of 

9 or 10. The remanent excitation data was very low and often only the 

inhibitory wells of excitation remained. These persist longer as they 

can only be extinguished by decay or receipt of excitatory pulses from 

other cells. If the cells never receive positive pulses the inhibition 

tends to accumulate despite the decays. These wells are the main reason 

many cells never fire (123 out of 500). There was an initial downward 

trend in the firing data which seemed to disappear towards the end of the 

run, 

In Experiment D4 another new net was generated with the maximum 

number of connections emanating from one cell being raised from five to ten. 

As a consequence of the manner of determining individual weight values 

(see Chapter 3), this altered the synaptic values too. The excitation level 

graph was much higher due to the surplus of positive pulses now possible, 

The maximum firing level was now 198 and an initial decay was still 

evident. This was due to the fact that the learning algorithm was 

producing an overall decay of weight values as discussed before. The 

firing level of the output area was still on an average less than 50%. An 

interesting feature (see Fig. 17) was the dip in values of the excitation 

graph before its main peak as all the positive pulses were extinguished 

and only the inhibitory (negative) pulses remained to be counted. The 

massive number of cells firing subsequently produced a large spike of 

remanent excitation due to the net's refractory state. 
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Figure 17 - Excitation graph showing initial dip in values. 

All cells now fired at some stage in the run. The next experiment, D5, 

increased the number of possible connections from a cell to 15. Very little 

difference in overall activity was noted. (Fig. 18). This may be because 

the additional afferent excitation each cell receives is insufficient to cause 

it to refire earlier than before. A cell may be thought of as existing in 

one of several threshold states, each state being defined by the threshold 

level. If one assumes that the cells are firing at fairly regular intervals, 

as the cooperative argument of similar cell states would tend to imply, 

then a particular cell may fire at either one threshold state or the one 

‘next! to it. To be forced to fire at a higher rate, then, the cell must 
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fire at a higher threshold state and therefore be receiving proportionately 

more excitation. As the decays involved are percentage decays, the 

steps involved imply that the required increase in excitation is also 

a percentage increase, which becomes very large with high firing rates. 

Experiment D6 generated a similar net but with a different seed 

to the pseudo random generating algorithm producing the connections. 

Despite every connection now being changed the overall behaviour 

was similar (see Fig. 19), Whilst the Firing graph is different, the 

only noticeable change in general pattern occurred in the last 25 time 

units, when a series of oscillations of increasing amplitude appeared. 

It would appear, therefore, that the general pattern of firing is 

independent of which cell is connected to which. This agrees with 

similar findings of Anninos (1967). To try and isolate the cause of the 

gradual decay in activity the servo and learning were now inhibited in 

Experiment D7. The gradual decay disappeared and a highly stable form 

of activity resulted (see Fig. 20). This agrees with the argument 

proposed after Experiment D4. Experiment D8 repeated D7 but 

inhibited the servo mechanism and Experiment D9 omitted the learning 

mechanism. The Firing data is displayed in Figs. 21 and 22, 

Intermediate Conclusions 

oe From Figs. 20 to 22 it is clear that the servo (in 

its current design) is having a minimal effect. Subsequent experiments 

indicate that nets with regular or continuous input are stable anyway 

and so the use of the servo mechanism is abandoned. The results of 

Experiments D7-9 were later confirmed by Experiments D22-24, see 

Table 1. 
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2. The Reward Scheme is only reducing the level of 

activity because of the low probability that more than half the output 

area is firing at any one time. 

Sy The stability of the nets was a little surprising as 

previous workers (eg Accardi 1972; Allanson 1956; Amari 1972) 

emphasized the instability of nets. Their nets however did not receive 

constant or regular input and it is this and the spontaneous elements that 

restart the net or keep it going. Harth (1967), for example, dealt with 

nets receiving constant input but his elements had refractory periods 

of only 1 time unit and therefore a greater likelihood of firing. He 

considered his nets to be damped and as the nets considered here have 

longer refractory periods, these nets may be described as highly 

damped also. 

The final set of experiments within this group examined 

the effects of inputs of certain patterns on the net as a whole and on individ- 

ual elements within it. In order to classify signals it was considered that 

the net, of necessity, must exhibit changed behaviour when the input 

changes. 

The first Experiment, Dll regenerated the net used in Experiment D7 and 

applied an input as follows: - 

Time Input 

1-50 50 

51-100 10 
101-150 0 

151-200 500 

The Excitation level graph changed from that of D7 at time 51 but a 

brief increase was noted despite the lowering of the input signal. This 
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apparent anomaly was probably caused by the non-firing of some 

inhibitory cells. Subsequently the activity is different but the general 

mode of the activity remained the same (see Fig 23). The only discernible 

difference was in the reduction in amplitude of the oscillations and so nothing 

in the general behaviour could signify the type of input being presented. 

In Experiment D12 the threshold decay was reduced to 30% to slow down 

the rate of firing and involve longer effective refractory periods. (An 

effective refractory period is the actual quiescent time of a cell for those 

cells that regularly fire before the threshold has decayed to the resting 

value.) This would mean the net had more possible 'microstates', 

to use the terminology of Anninos (1967), The total behaviour of the net 

was insensitive to the input signal changes, but examination of three 

individual cells showed one which displayed changes of activity when 

the input changed (see Fig. 24). 

A net with denser interconnections (20 per cell) was generated 

and a new seed employed. Certain cells in this run, Experiment D13, did 

show sensitivity to the input but this was not visible on the global data. 

Experiments D14 and D15 used maximum synapse weights of 80 and 40 

respectively and Experiment D16 dispensed with spontaneous elements, 

but again few effects of input signal changes were discernible. An 

additional input centre, with a radius of spread of two, was added which 

increased the total number of input cells to 13 in Experiment D17. At the 

three points in the simulation at which the input signal changes, different 

modes of activity were noticeable ( see Fig. 25). The individual cells 

examined at the same points did not show any corresponding changes. 

InExperiment D18 two different input centres were used involving 6 

elements. The Firing level data showed less changes in the amplitude 
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(amplitude modulation) at the signal changes and also showed amplitude 

changes when the input was not changing. It began to appear as if the 

amplitude modulations were not primarily caused by the input signal, 

Experiment D19 employed a new signal: 

Time Signal 

1-100 50 

101-200 0 

Variations in the firing activity occurred but they seemed to be 

unrelated to the signal changes. The lack of correlation between firing 

level amplitude modulations and input signal changes was also noticeable 

in Experiment D20 which used the input centres of Experiment D13, A 

third input pattern was presented to the network of Experiment D17 in 

the Experiment D10; 

Time Signal 

1-10 50 

11-100 0 

101-110 50 

110-200 0 

The net 'dies' at time unit 149 (see Fig. 26). It appears that the net needed 

the input to 'turn the corner’ in the deepening troughs of firing level 

and eventually activity extinguished. 

Conclusions of Experiments D11-D18 

i The effect of the input signals was not clear. It 

first appeared that the inputs were causing amplitude modulation of the 

firing data waveforms but later runs indicated that this was independent 

of input changes. 

2. It would appear that while directly stimulated elements 

can show signs of afferent stimulation this ' information!’ is not transmitted 

to the rest of the net because of the internal noise of background firing. 
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Sis Future experiments may need higher input levels 

to cause an effect to be widespread within the net. 

a: As the activity of the networks are so complicated, 

it is necessary to examine the global data and generally ignore the 

individual behaviour. This means that subtle changes that inputs 

may induce in a net are not visible to the eye in the raw data graphs. 

What is needed is a method of data reduction that quantifies the data 

for comparison. Spectral Analysis is proposed as a technique that 

provides a suitable quantitative analysis based on frequency. The 

Spectral Analysis Program is discussed in Appendix A. 

The remainder of the Chapter, therefore, examines 

networks using this technique. 

Experiments Involving Spectral Analysis 

As mentioned in the introduction to this Chapter, the 

method of description changes at this point. The aim now is to provide the 

evidence for the various properties noticed during the simulations and to 

omit a considerable amount of detail that is not so relevant. 

The code numbers of the experiments were allocated when a run 

was completed and documented in the laboratory book used. However due 

to occasional failure of the machine necessitating reruns, consecutive 

numbering does not therefore imply a logical relationship between the 

runs, Also, certain experiments are candidates for providing evidence 

for more than one type of property and so the following method of description 

is adopted: A property discovered for these simulated nets will be 

described and examples of that property either illustrated in detail or 
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listed for comparison. Several examples of sets of Related Experiments 

(see below) which illustrate the property will be given and the code 

numbers of the runs given in this form: ( [a,b,c], ld,e,f.], [g,h) ) 

where the code numbers in the [ ] brackets correspond to ‘directly 

Related Experiments! whose parameters only differ in one way, that of 

the property under discussion, 

The frequencies mentioned in connection with Spectral 

Analysis are usually considered in terms of their corresponding 

period values as the input signals are defined this way. 

Natural Frequency of Networks determined by Decay Constants. 

As a prelude to this discussion the effect of varying 

the amount of input to a net is demonstrated by experiment sets 

([F1l, Filla], (D16, D17], (F18, F19|, (F8, F9]). In the previous 

section of experiments runs D16 and D17 were identical except that D17 

had an extra input, centred around element (5,5,1). The spreading of 

inputs to adjacent elements that is employed in these nets implied an 

increase in input elements of from 4 to 13. By visually inspecting the 

graphs (the Spectral techniques not being implemented until Group E experi- 

ments) it was found that the number of cycles displayed was the same 

for each run, (21.5 in 200 time units), The mean firing level of 

Experiment D16 was lower but the amplitude of the waves higher than in 

Experiment D17, A similar change was made to Experiments F18 and F19. 

This time the number of inputs was almost doubled from 16 to 31 input 

elements and the Firing data's Smoothed Power Density Function (FSPDF) 

for each experiment is displayed in Figures 27 and 28. The mean firing 
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level for the higher input run (F19) was slightly raised (17.57 to 18. 33) 

but the standard deviation was less (7.6 to 6.3). Experiments F1l and 

Flla (see Table 1) yielded the Firing data Smoothed Power Density 

Function (FSPDF) of Figures 29 and 30. Experiments F8 and F9 

produced the FSPDF graphs of Figures 31 and 32. This data confirmed 

the supposition that the frequency of the net was unaltered, whilst the 

amplitude and mean level changed. 

To examine the effect of decay rates on frequency, 

various sets of experiments were run that varied the decays for the 

same input signal: ( [B2, E5, E6, E7, E8, E9, E10, F14], (F4, F5), 

(F6, Fll) , (E11, Flj, (F2, El, F10)). The first set of experiments 

all supplied an input of period 10 to the nets. The decay rates were 

varied independently as can be seen from Table 1 and in the case of 

Experiments E7, E8 and E10, one of the decays was generated by picking 

from a distribution (type 2) with the maximum value set by the range. 

For instance, Experiment E7 has threshold decays set randomly within 

the range 1 to 60% and the seed to the pseudo random number generator 

is 10. The Smoothed PDF graphs are displayed in Figures 33 to 41. 

Figure 33 is the Power Density Function of the Excitation data from 

Experiment E2. [At this stage the system only produced the PDF graph 

for this data.] It is therefore compared with the same PDF graph for 

E5 (Fig. 34). In Fig. 33 it can be seen that the power is centred ona 

frequency of 0,1 with an even area each side of the main peak, This 

central frequency corresponds to a period of 10, The PDF in Fig. 34 

shows a wider spread of frequencies with none dominating. This wider 

spread is probably due to the two types of decay rate being used there 

being, therefore, two different 'sources of frequency’, The PDF of 
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the firing data (Fig. 35) indicates a higher frequency. This is usually 

the case as the remanent excitation graph is influenced more directly 

by afferent excitation whilst to affect the firing graph, the input has to 

cause a significant change in firing activity. The frequencies are still 

widespread but a peak corresponding to a period of 5 is now apparent, 

Figure 36 shows a much more defined peak, typical of nets with equal 

decay rates, centering around a frequency corresponding to a period 

of 6. The peak is not sharp and the raw data indicated low amplitude, 

broken waves, Figure 37, from Experiment E7, shows once again a 

different graph with a main peak corresponding to a period of 10 anda 

subpeak at period 6. In this experiment the threshold decay rates 

are defined by a range which may explain the wide spread of frequencies. 

Figure 38 is similar, with a lower peak as the excitation decays are 

defined by a range. Experiment E9 with fairly low decays gives rise 

to a wide spectral band centred around a period of 7 but being similar 

in shape (see Fig. 39) to that of run E6. Experiment E10 (see Figure 40) 

defined the decays to be equal but in the maximum possible range 1 to 63%. 

This produced a wide spread of frequencies with a peak at a period of 10, 

perhaps indicating the input's increased influence on this net. Figure 41 of 

Experiment F14 had equal decays, all of 40% and a frequency band 

corresponding to periods 15 to 5 resulted. 

The second set to illustrate the effect of decay constants is 

[F4, F5] the FSPDF of each run being displayed in Figs 42 and 43, The 

change of decay rates from F4 to F5 of 20 to 30% has caused a shift of 

frequency from period range 14 to 20 to range 12 to 10. The remaining 

three sets are not 'strictly related! as the total input differed slightly 

between runs (see Table 1) but due to the findings of the initial section, 
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that total input does not affect frequency in these ranges, they are 

included as well. The FSPDF data is displayed in Figures 42 and 29. 

The shift in frequency, caused by altering the decay rates from 

30% to 40%, correspond to period range (10-11) (for 30%) and 7 (for 40%). 

Set 4 [E1l, Flj have FSPDF as in Figures 45 and 46. The change in 

position of the peaks indicates a main component at period 20 for Fl and 

13.3 for Ell, Also the spread of frequency components is greater in 

Experiment Ell, indicating a greater mixture of frequencies. Run E11 

had both excitation and threshold decays as two different ranges. The 

median value for decays would be 31% whereas the decay for Fl was 

20%, The next set (F2, F10] have FSPDF shown in Figures 47 and 48. 

These indicate a shift of frequencies, typified by the main component, 

corresponding to periods of 18 for F2 (with decays of 20%)to from 8 to 9 

for F10 (with decays of 40%). As a summary of the above observations 

Fig. 49 shows approximately the relationship between decay values and 

the periodic values of the main component of those nets with equal decay 

rates. The data was taken from the following experiments: [F2, F8, F10, 

F20, F28, F29, F23)} . The second half of the following split run type of 

experiment (to be described later) confirmed these values: [F21, F24, F26, 

F27). 

Conclusions 

1. In all the sets mentioned thé frequency of the firing data 

changed when the decay rates of the individual cells was changed. 

2. In the case of nets with excitation and threshold 

decays all set to the same value, it can be seen that the frequency of the 

net is proportional to the decay rates. The changes are more pronounced 
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at the lower frequencies. (i.e. ¢.1) 

3. In the case of nets with mixed decays, either different 

single values for excitation and threshold or both defined by ranges, 

the frequency of the net is more widespread. 

The Effect of Different Connection Algorithms 

Several connection algorithms (described in Chapter 3) were 

tested and their effect on the Spectral Graphs is examined in Experiments 

( (210, B11], [F28, £31, F32, 733), 

Experiment E10 employed the random algorithm 

GEN which generates connections to every position within the net with 

equal probability. Experiment E11 uses a local bias algorithm that 

generates connections with a probability diminishing with distance from 

the cell . In both cases no special effects occur at the edges, the 

‘outward connections!’ being lost. This is altered in the second set of 

experiments. Examples of connections from one cell with 10 connections in 

both modes are given in Figures 50 and 51. The difference between the 

spectral graphs can be seen in Figs 40 and 45 and is quite marked, as if 

the network of E11 had longer refractory periods. Experiment E10 

yielded periodic components of 11 to 6 with the main peaks' range as 

7-8. Experiment Ell's equivalent ranges were 16 to 7 with a main peak 

between 11 and 16. This lowering of frequency may be explained by the 

increased probability of a connection in the local bias algorithm landing 

ina refractory pool. By definition of the algorithm, the cells nearby 

will have been most affected by other cells. Supporting this theory is 

the difference in the mean level of activity (E10:55, E11:45), the random 

algorithm being the higher. 
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Figure 50 Example of Random Mode Connections 
  

  

Input Source signal centre at (1,1,1) 

Figure 51 Example of Local Bias Algorithm 

© Connections from 5,5,3 

x is a 1,1,1 (Toroidal) 

  

Toroidal connections overflow every boundary (edge). 

Certain elements often receive more than one connection. 

Further algorithms were tested ‘in the second set of related 

experiments. Experiment F28 used a local bias algorithm and gave a 

spectra as in Fig.52. The next related run used a circular net which 

allowed connections to pass from slice 1 to slice 5, like a strip of paper 

joined at its ends. At first the activity could be seen to spread around 

both ways from the edge of the net and meet in the middle but after 

this it was difficult to see refractory troughs forming in the haze 

of activity. The difference in the FSPDF was an increase in the 

period 4 component but an inherent frequency at the period of the 

‘circle diameter’ (i.e.5), was not observed (see Fig. 53). Experiment 

F32 reduced the overflow of connections to one direction only but the
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spectral graph showed little change. Finally in Experiment F33 

a completely toroidal net was generated where connections overflowed 

in the manner employed in Experiment F32, but in all three planes. 

This represents therefore a fictitious net, with no edges. Such a 'blob! 

might behave like a net extracted from a larger net where the overlapping 

connections actually pass into the surrounding cells and an equal 

number return, The resulting FSPDF (see Fig. 54) had a new 

component at a lower period, 5. The difference is small however and 

may only reflect the increased activity due to the higher number of 

connections (previous overlaps being lost). 

Conclusions 

Changing the number of connections inherently by a 

major alteration to the connection mode produced more frequency shift 

than a particular pattern of connectivity within the same mode. This 

was also noted throughout the thesis in other experiments, not directly 

related to the above runs but differing in parameter values found to be 

relatively insignificant in altering frequency. It also agrees with 

Anninos (1972) in this respect. 

The effect of Net Size 

Only two net sizes were simulated, the 5 x 5 x 5 and 

10x 10x5. The effect of changing the net size is illustrated with 

experiment pairs ({F10, F20], (F1l, F16\, (F12, F17], [F13, F169] ). The 

FSPDF graphs are illustrated in Figs. 48, 55, 29, 56, 57, 58, 59 and 27 

respectively. If the main peaks are compared one set {F13, F18} provide 

noticeable differences. There has been a shift to a slightly lower period 
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of activity (7-8 in F18 instead of 9 as in F13), Also Experiment F20, 

whilst producing a similar range of periodic components (7-9) (see 

Fig. 48) to that of Experiment F10 (periods 7.5 to 9) the graph had a 

slightly different shape suggesting an absence of components between 

7.5 and 8.0, This may be an artifact of the increased number of points 

plotted and detail shown by employing a maximum lag of 100. 

Conclusions 

The range of frequencies of a net is largely unchanged 

when switching between the two sizes of net simulated. 

The Effect of Signals on a Network 

After showing that the natural frequency of a net is 

largely dependent on the decay rates of the threshold and excitation, 

the effect of input signals on that "natural frequency" is examined. 

Two sets of experiments are used to illustrate the effects: ([F10, Fll, 

F12, F13, F14, F15\, (F16, F17, F18, F20]), the first graph being 

the 500 element net and the second the 125 element net. Both have 

decays of 40% as can be seen from Table 1. One would expect a 

"natural frequency! of near 8 (see Fig. 49). 

The 10 x 10 x 5 net 

The net under constant input has a frequency illustrated 

by its FSPDF shown in Fig.48. The net ce then subject to inputs of 

periods 6, 7, 8, 9 and 10 and the FSPDF's resulting are shown in 

Figs. 60, 57, 29, 59 and 41 respectively. By comparing Figs. 48 and 60 

it can be seen that the natural frequency component has been reduced to 

a 'bump! and the new major component corresponds to the input period 
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of 6. Experiment F12 (period 7) also has the input's period as the 

main peak, The two components of the PDF have merged into one 

which encompasses the period range 6 to 8. The next experiment 

has the input period at the natural frequency of the net (see Fig. 29). 

The two main peaks are periods 7.5 and 8.0. Next, an input of 9 is 

applied to the net(F13) and Figure 59 displays the FSPDF and it can 

be seen that the input component has passed through the natural 

frequency band and begun to emerge on the other side. The input 

frequency is the main component but a significant component at the 

natural frequency still remains. Finally an input of 10 is applied 

to the net in Experiment F14 and the FSPDF of Figure 41 results, 

The input component is now indistinct and the highest value of the main 

group of components corresponds to the natural frequency. A component 

at period 5 becomes visible and may represent a small inversion in 

the larger waves noticeable in the raw data. 

The 5x 5 x 5 net 

This net was subject to inputs of period 7, 8 and 9, 

Experiment F17 produced an FSPDF for a period of 7 and is illustrated 

in Fig. 58. This can be compared with Fig. 55 (F20) which used a 

constant input and displays the natural frequency. The periodic input 

produced a reduction in natural frequency and an increased input 

component. The large area under the graph indicates a fairly wide 

range of underlying frequencies (periods 6 to 9). Next, a signal of 

period 8 was applied in Experiment F16 (see Fig. 56) and the major 

component now corresponds to that period. The range under the spike 
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is from periods 7 to 9, Finally an input of period 9 was applied 

(F18) and a wide range of frequencies resulted with no outstanding 

peak (see Fig. 27), the largest value (corresponding to the input 

frequency ) being only slightly larger than its neighbours. 

Conclusions 

The natural frequency of the net was not eradicated 

by the input signals but is often not the main component frequency 

of the resultant activity. It would appear that the input signal is 

added onto the underlying activity of the net and does not 'drive! the 

net at its own frequency. 

Resonance 

In the previous section a series of runs tested the 

effect of inputs of varying periodicity and during these runs an input 

period was made equal to the previously observed natural frequency 

(Experiment F1l). The resultant spectral curve showed two adjacent 

peaks (see Fig. 29). The interval is 7.4<p<8.11 where p is the period 

length. The net would appear to be operating at very nearly one 

frequency. A second example is given by the set of experiments 

(1, F2, F3, F4, F7]). This net has decays of 20% and this would 

suggest a natural frequency in the range 16-18 (see Figs. 47 and 31), 

Several inputs were applied to the net. Experiment F1 (see Fig. 46) 

supplied an input of period 10 and the FSPDF shows a clear input 

component, Experiment F4 (see Fig. 42) uses an input period of 14 

and the FSPDF of Fig. 47 shows there is a shift to a higher frequency 
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and the period 14 component is enlarged. Experiment F7 (see Fig. 62) 

uses an input of 17 and the FSPDF shows a twin peak corresponding 

to the period interval 19<p<16. However in Experiment F3 only 

one spike in the FSPDF (see Fig. 61) is visible, having used an input 

of 18. This is the sharpest spike in the signal inputs noted so far 

(corresponding to the interval 19<p<18) and implies the net is 

running at one frequency. 

In both cases, F3 and F1l, the nets appear to be 

oscillating at one frequency and therefore could be resonating. If 

resonance was occurring then there should be a significant difference, 

from their related experiments, in the standard deviation calculated 

for these runs. Table 2 shows the figures involved. The figures 

reveal that the two largest values for set 1 are in fact for the 2 input 

frequencies closest to the natural frequency. In the second set however 

this is not the case, the largest value being that of F12 with an input 

of 7. As mentioned before the FSPDF indicated a mixture of 

frequencies from 7 to 10. 

Conclusions 

Despite the occurrence of single, sharp spikes in 

some FSPDF data this did not involve resonance as examination of 

the standard deviation score illustrated. Resonance phenomena imply 

larger amplitude fluctuations which would increase the standard deviation 

score dramatically. On examining the raw data, it became clear that 

for the smoothest waves (e.g. F3 or E11) the input was coinciding 

with the middle of a trough and synchronizing with the net's 

emergence from refractoriness, However this situation was very 
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easily disturbed, by internal firing and the input became out of phase 

with the waveforms and this interrupted the smooth waveforms. 

Persistence 

If resonance had been established in the previous 

section, then different sets of nets with the same internal decay 

constants could be used to recognise incoming signals by resonating 

at the receipt of a signal at the correct frequency. However the 

activity was largely determined by the decay constants and the input 

frequency could only be determined using Spectral Analysis. This 

section therefore examines if the additional components in the spectral 

graphs, due to the periodic input signals, persisted for any length of 

time after the signal had changed to a constant one. The experiments 

are called 'split runs! as they had two signals input to them, one 

in the first half of the runs and one in the second half. The first 

is periodic, the second constant. Using the Back Up program BU 

spectral analysis was applied to either set independently, The set 

of experiments were ( [F21], [F23-F26], [F27], [F28-F30] ). 

The first experiment, F21, was a 5x5 x 5 net with 40% decays. 

In this run an input of period 7 was applied for the first half of the 

run. Figure 64 shows the first and second half spectra superimposed. 

A shift to the lower frequencies is noticeable and the component 

corresponding to the periodic input is reduced. A new net of 60% 

decays was generated to achieve a lower natural frequency. Several 

inputs were applied and their FSPDFs are displayed in Figs. 65-68, 

corresponding to inputs signals of 1, 7, 5, 3. As can be seen no 

signal dominated, the firing rates of the cells being high. No record 

of an input frequency is apparent and this result was also confirmed 

-108-



    
  

        
  

    
  

    

20°77 
U(E) a Figure 61 Experiment F3 

5 FSPDF 

5 Lag 100 

1 

0.4 ‘ 

TM (ae | 0.1 | | (ut tu | iL ; | L LI 
0 O.1 0.2 0.3 0.4 0.5 £ 

Frequency 

20 

U(£) 1o Figure 62 Experiment F7 

5 FSPDF 

Lag 100 
2 

1 

4 

{ull dk 2 UT it tle ah pc Ger 
Ov 0.2 0.3 0.4 0.5 £ 

‘ Frequency 

U(f) 20+ 

iol vee Figure 64 Experiment F21 

5 oa Combined FSPDF of lst and 
y ++ 2% 

+ 2nd. half of the Run 
2+ *y 

1 ee Re et 
x x, Aas 

4 7 tht ‘is +t a 
+ é x 

cd + *y si! ere F 
atte XXX HK a 

+1 T T T T Ki 

0 O.1 0.2 0.3 0.4 0.5 f 
Frequency 

U(£) | . 
20 Figure 65 Experiment F23 

Input iod 1 eas 
TO eo cee FSPDF (2nd. half) 

Ber Lag 50 

2 

1 

0.4 

| | ll | uit * TU | | | Hl Lae 
0 O.1 0.2 0.3 0.4 0.5 £ 

Frequency 

-109-



U(£) 20 

                
  

           
  

  

  

  

LOST? roput pericd 7) Figure 66 Experiment F24 

5 FSPDF Lag 50 

2 (2nd. half of run) 

1 

0.4 

th tll an eae 2 } 
0.1 0.2 5 f 

Frequency 

ute) ay 29 Figure 67 Experiment F25 

10 (Input period 5) FSPDF Lag 50 

. (2nd. half of run) 
2 

it 

0.4 

0.2 | | | 

o.1 Lewd | | 
0 OL G.2 0.3 0.5 £ 

Frequency 

UE) 5g 
Figure 68 Experiment F26 

I iod 3 ee eee 
Toy en Cipp ue periad £5) FSPDF Lag 50 

5 (2nd. half of run) 

2 

ts 

0.4 

il ULL 14 lll Lol LL . 7 Al } 
- 0.4 £ 0 0.2 0.3 

-110- 

Frequency



with runs F28, F29, F30. 

Conclusions 

Persistence of the effect of an input signal did 

not occur. The second half of the runs bore no record of the 

activity in the first half, 
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CHAPTER V 

Adaptive Nets 

Introduction 

The results of Chapter 4 indicated that networks, 

as simulated in these experiments, do not have an inherent memory 

capability, as the effect a signal has on a net is swiftly lost when the 

signal is removed. When the signal is present there is no simple 

means of identifying it by, for example, recognising a unique 

feature of the resultant activity. It was felt, therefore, that the 

nets must be made adaptive and then, perhaps, the resulting changes 

would produce different behaviour, in the form of activity, to be 

able to distinguish between input signals. 

The method of adaption was based on the modification 

algorithm of Hebb (1949), which rewards coincidence of pre- and 

postsynaptic activity by increasing the synaptic weight values and, 

conversely, decaying them for non-coincidence. The changing of 

synaptic weight values was shown, in Chapter 4, to have a significant 

effect on the resultant activity, although not to the same degree as 

changing the decay rates had. However, altering the interconnections 

between cells rather than the properties of the cells themselves 

implies greater flexibility, as the number of potential sites for 

modification is so much larger. 

The Hebbian type of algorithm was chosen in preference to 

a global form of Reward (e.g. as was used briefly in Chapter 4) as 

it was felt that any processing performed by the latter type was 
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inherent within the algorithm. The local type of adaption this 

Chapter's algorithm uses can be thought of as a property of 

the cell fibres and therefore 'automatic! in function, The first 

few experiments test out the various forms of the algorithm, the 

details of which are illustrated for explanation, The implementation 

of the basic algorithm (HEBB) has been described in Chapter 3. 

This Chapter is divided into three sections, the first dealing with 

the effect of various algorithms, the second with the spectral 

analysis of the nets and the third using the new form of analysis, 

the Cell Firing Histogram. All the Experiments! important 

parameters are listed in Table 1 which can be found at the end of 

the Chapter. 

Testing the Algorithm 

Whilst the basic method of adaption is always the 

same the parameters governing the rate of reward are altered 

to find the most promising algorithm. Much of this early work is 

similar to, but independent of, the theoretical discussion in Uttley 

(1976). 

Figures 1 to 6 indicate the various percentage changes in 

synapse weight, in Reward and Punish Mode, that are used in this 

group of experiments. Method 1 (Fig. 1) was to apply a 5% increase 

in value in the Reward case and 0.1% Peace on in the Punish case. 

As the Punish Criterion was more likely to be satisfied, in a low 

activity net, the change in this case was less. However, due to the 

very low Punish reduction percentage employed, this Mode had no 

effect. At the end of the run (Experiment TL3) most of the synapses! 
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weights had veen vastly increased and many were on the maximum 

value of 512, This obviously provided no discrimination, 

Method 2 (Fig. 2) produced more stable behaviour, in Experiment 

TL4, but a trend of activity was indicated by large values in the 

‘lowest! fre quency cell of the Firing data Smoothed Power Density 

Function (FSPDF). This method had a simple Reward increase of 

2 synaptic weight units, rather than a percentage. Method 3 (Fig. 3) 

produced a larger trend, which was visible in the raw data, asa 

gradual increase in the mean level of activity, of Experiment TL5. 

The values of the Punish factor were smaller (see Fig. 3) for a 

particular firing level than in Method 2 and therefore had less of an 

effect in reducing the synapse weights and consequently the activity 

level. Method 4 (Fig. 4) produced, in Experiment TL13, an 

indiscriminate increase in synapse weights with, for a randomly 

chosen element, 47% of the weights having reached the maximum value. 

Method 5 (Fig. 5) involved increasing the Punish factor with the result 

that 18% of the final synapse weights were at the maximum value. 

(Experiment TL14). An attempt was made to reduce the difference 

between the maximum and minimum values of the final synapse weights 

to prevent certain pathways becoming totally dominant. This, 

hopefully, would increase the number of possible final connection states 

of an adapted net. Method 6, therefore, employs a maximum synapse 

weight of 100. Most weights became Fe and the few that remained, 

approximately 10%, were at the maximum. For a system that could 

be retrained on new signals, the minimum value must be capable of 

being 'resurrected! to any level. Two methods to achieve this were 
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employed, the first involved adding various rounding terms to the 

calculations to prevent terms going to zero and the second used 

a higher adaption percentage to make significant changes to the 

small values. The general scheme of Reward and Punish Percent- 

ages is illustrated in Figure 6. This general scheme was employed, 

with a few modifications, in the later runs, and the final weights 

typically indicated many small non-zero values, a few maximal 

and fewer still in the middle range. This was considered satisfactory. 

During the running of Experiments TL2-TL23 to test 

various algorithms, their global effects on the net were also 

examined, As in the previous Chapter Spectral Analysis was 

employed and features such as Persistence of input signal were 

looked for, The adaption changed the frequencies of firing in some 

cases, but a dominant frequency, after adaption, usually bore no 

relation to the input frequency. 

By their nature, the algorithms tend to emphasize 

certain pathways at the expense of others and it was hoped that 

circuits would be formed of reinforced fibres and hence contribute 

a significant frequency component of their own, It was further 

hoped that these frequencies might be different for different inputs. 

An example of the final major pathways, typical of that produced 

with these algorithms is shown in Fig.7 taken from Experiment 

TEel, 

The elements in the first slice number 1 to 25, In this 

Experiment all cells bar 10 and 20 receive periodic input of 6. It 

can clearly be seen that as the cells in the first slice generally fire 
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together, they do not form strong links between each other. 

For reinforcements to take place the two cells involved must fire 

one after the other. This is far more likely in the centre of the 

net where the rhythmic effect of the input is soon lost in the 

background firing (as discussed in the previous chapter). The 

main links from the input cells are to the fifth slice to which they 

are directly joined. There are no return links from this area as 

the first slice will then be in a refractory state and unable to fire 

"in sequence". Long chains are rare but one involving medium 

and strong connections is (4, 120, 115, 57, 107). There are 3 

chains of length 5 and 7 length 4. No circular paths can be seen. 

There are other conrections, not shownon the diagram, of low 

synapse weight and so cells that appear to be isolated may not be. 

There may in fact be loops, formed from the visible chains plus 

several "small" synapses. A strong link has a synapse weight of 

over 80 and a medium link has one of over 30 (excitation units). 

Conclusions of the Initial Group of Experiments 

Despite quite drastic synaptic changes, frequencies 

typical of the input are not noticeable at a global level. The major 

pathways formed made no complete circuits which may explain this. 

The threshold and excitation decays (all 60%) were such that elements 

would tend to fire every four or five units of time and return links to 

the input elements would be expected to have been built up. However, 

the algorithm may be too harsh by only allowing reinforcement if 

the post-synaptic activity occurred one time unit after the pre- 

synaptic activity. Despite this, final synaptic weights were different 

for different inputs indicating a certain amount of discrimination 

had been recorded, 
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To attempt to maintain the stability of the nets and retain 

high activity levels the relatively common occurrence of inhibitory 

reinforcement will be prevented. Fromthis point on, only excitatory 

synapses are modified. 

Frequency Analysis of Adaptive Nets using Spectral Analysis 

For this and subsequent sections, the approach of 

Chapter 4 is re-adopted of providing groups of strictly related 

experiments to illustrate a particular property. The experiments 

in this Chapter are all variations of the 'split-run' type in which a 

periodic signal is applied to the net for the first half of the experiment, 

whilst the net is allowed to adapt. In the second half the input is changed 

to a constant signal and the adaption is inhibited. In this way any remanent 

frequency that is not part of the net's natural rhythm must be due to the 

signal in the first half of the experiment. 

The Effect of the Maximum Synapse Weight and the Rate of Adaption on 
Frequency 

Several runs using different values for the Maximum 

Synapse Weight (MSYN) and the Adaption Rate (FACTOR) were performed 

([TLB20, 21, 22, 24, 25, 26], (TLB23, 27, 30]). The first set 

varied MSYN. Examining the raw data it became clear that the net 

was virtually cycling, as very regular types of waveforms were being 

produced, They were never exactly the same, but one of the closest, 

in this thesis, to the type of repetitive activity noticed in Anninos! 

nets (1972). In the second half of the run the waveform changed as 

the input signal became constant but was still cyclic. This continued 

throughout the run, The patterns of the waveforms produced in this 

type of run often contained sequences of 'sub-waves! which although 
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perhaps being different in shape were picked up as the same component 

in the Spectral Analysis. The FSPDF does show only small components 

as contributing to the power but, by examining the raw data, the length 

of the main cycle was seen to be around 24 units. A section of the 

waveforms for Experiment TLB21 is displayed in Figure 8 (showing 

two consecutive points at the same level beginning at time units 

957, 981) and the FSPDF in Fig. 9. The nets, by elimination of the 

majority of pathways, have become 'simple nets', with a reduced number 

of states. All the FSPDF produced by these experiments were very 

similar, indicating only the high frequency sub-components of the main 

cycles produced, but the pattern of these cycles in the raw data was 

always very different. The major connections for Experiment TLB21, 

which are typical of the set, are displayed in Figure 10. The connections 

formed in this set did not differ very much, particularly in the input slice, 

but the connections showing the greatest change, in the centre of the net, 

often , when connected to the same elements, had different strength of 

connection to those elements . The raw data indicated that changes 

were taking place quite abruptly in the firing rates, by an upturn in the 

level of activity. Figure 11 is a plot of the Maximum Synapse Weight and 

Rate of Reward (FACTOR) against the time of the first occurrence of a 

major change in the firing rate. Assuming that this is an equivalent 

state between simulations, the effect of the rate of reward in speeding 

up the adaption to reach an almost final state of connection path can be 

seen. The effect of MSYN is not a simple linear relationship (see Fig. 11). 

A medium value, for the Maximum Synapse Weight, of 

50 was chosen for Experiments TLB34 onwards. This means that the 

difference between the largest and smallest synapses is not too great. 
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No indication of the 24 unit cycle is shown as only 

the sub-frequencies have been recorded. 
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The choice of the rate of Adaption was taken to be 20%, to achieve 

the quickest alterations in weight value and thus increase the net's 

sensitivity to small changes in input. From the graph it can be seen 

that major changes will have occurred within the first 50 time units. 

The Effect of Decay Rates on the Formation of Cycling 

This section employs Experiments ({TLB31, 32, 33]) to 

investigate how cycling is affected by the natural frequency of the net. 

The runs of Experiments TLB9-12 had decays of 60% and several 

exhibited cycling of period 24. Experiment TLB31 with 50% decays 

exhibited cycling, in the second half of the run, of cycle length 40. 

TLB32, with 40% decays, exhibited cycling in the first half of the run 

when the periodic input of 6 was stimulating the net but in the second 

half patterns of activity could be seen that were similar but they did 

not repeat exactly. This also happened in Experiment TLB33 with 

30% decays. No exactly repeating sequence of firing levels could be 

seen over the entire length of the second half of these last two Experi- 

ments. 

Conclusions 

It would appear that, as the decays increase and the 

number of states an element can be in decreases, so the likelihood 

of cycling increases also. The nets with slower decays therefore can be 

compared using Spectral Analysis techniques of these would not be 

adversely affected by cycling. 

The Effect of Signal Input on Frequency and Form of Activity 

The Experiment group testing the effect of signals on the 

net is ({TLB9-12], [[LB13, TLB14], [TLB15-17], (TLB35-39], 
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[PLB40-43], [TLB46-49], (TLB35], [TLB36, 43, 46], (TLB37, 42, 47], 

[TLB38, 41, 48], (TLB39, 40,49]|) named Sets 1 to 11 respectively. 

The first Set employs the local bias connection algorithm 

GEN1I, and applies signals of period 6, 5, 7, 8, respectively. 

TLB9, with a periodic value of 6, achieves cycling after the input changes 

to constant and repeats every 24 time units. As usual, this confuses the 

spectral routines which display large low frequency components, which 

usually suggest a trend and a few components arising from sub-cycles 

within the main cycle. The activity of the last 50 time units is displayed 

in Figure 12, Experiment TLB10 of periodic input 5, produces a 

cycle of 24 again with clear subcycles of length 3 and 4, which were 

picked up by the spectral analysis. The final 50 time units is displayed 

in Figure 13. TLB11, of period 7, does not achieve cycling but 

TLB12 does with a period 12 (see Fig. 14). The sub-components of 

7 and 5 are picked out by the FSPDF. The next two sets employ the 

random algorithm GEN. Set 2 uses periodic input values of 8 and 7 

respectively. TLB13 produces, from an input period of 8, cycling of 

period 24 which was made up of subcycles 2 and 6, see Figure 15. 

TLB14, with a period of 7, did not produce cycling but a mixture of 

low frequencies, 4, 3 and 2. Set 3 used a net with 45% decays and 

input periodic values of 7, 8 and 5. They did not produce perfect 

cycling although there were similar patterns being produced which 

became broken up into new patterns. An example is the final activity 

levels of TLB15 with an approximate cycle of 21 (see Fig. 16). 

In the next experiments the signal is more complex and 

is defined by two parameters X and Y, These have been defined in 

Chapter 3 and are the length of the ‘off! signal and the length of the 
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ton' signal. They are both varied, in turn, in the remaining Sets 

(see Table 1), The nets used had 40% decays, Maximum Synapse Weight 

of 50 and a Rate of Adaption of 20%. From the section on effects of 

decays on cycling it would appear that nets with this rate of decay 

are less likely to have fixed cycles as there are more states each 

cell can be in, so the FSPDF should be more useful. The first 

Experiment of Set 4 used an X value of 6 and a Y value of 2. The 

resulting spectra is shown in Figure 17. The Y value for subsequent 

experiments in this set was increased by one and the resultant spectra 

are reproduced in Figures 18-21. As can be seen, the spectra vary 

considerably for these very slight changes. This was true for all the 

remaining Sets and brief descriptions of all the main components of the 

spectra are given in Figure 22. 

Conclusions 

The very slightest change in an input signal produces 

vastly different final activity in the nets after adaption. For nets of 

short refractory period perfectly cyclic activity is often produced, the 

pattern of which is unique for each input signal. 

Clearly, from the exceptions to the exact cycling shown in 

Experiment TLB11 for example, from Set 1, the factors determining 

whether exactly repetitive signals are produced is complex. As the 

conditions for reward in the HEBB algorithm are so precise it may 

be that, with certain signals, these conditions are not satisfied often 

enough for major connections to form and subsequently "dominate"! 

the activity flow. Nevertheless, in the non-cyclic cases, similar 

shapes of the activity graph were seen to repeat and indicated some 
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reinforced pathways were having a considerable effect. It was as if 

the net had produced a coded version of its own for each signal. 

The problem remains, however, of detecting these signals produced, 

but the net now has this record permanently in its "wiring". The third 

main section of this Chapter deals with the analysis produced employing 

the Cell Firing Histogram. 

The Cell Firing Histogram (CFH 

In previous sections it was often necessary to re-examine 

the raw data to see the effects of various signals. As a result of adaption, 

many pathways had been virtually eliminated and there arose the 

possibility of activity passing along a relatively small set of "preferred 

pathways" and that these pathways were different for different inputs. 

In other words specific sequences of firing cells may be produced 

depending on the input value the "naive" net was "trained on", The 

adaption algorithm rewards successive firings between cells and chains 

have been shown to be forming (see Figs. 7, 10) which would make 

specific firing sequences tend to repeat. The volume of data, however, 

describing every pathway is vast and soa consideratle amount of 

data reduction is necessary before printing the data on a lineprinter. 

It was argued that, if "preferred pathways" had been reinforced at the 

expense of others, then the firing rates of the cells on the preferred 

pathway would be higher than those on the less used ones. Soa 

necessary condition for similar firing sequences to take place is that 

certain cells should be shown to fire at higher rates than others. Also, 

if those sequences were different for different signals then the graph 

of the firing rates of each cell should be different as well. The Cell 

-137-



Firing Histogram displays the number of times each cell has fired. 

The actual display used superimposes several histograms, calculat- 

ing the data at equal intervals of time throughout the simulation. 

This was done to try to obtain a visual picture of changes in cell 

firing rate, which would be represented by the widening or narrowing 

of the gap (if any) between successive component histograms. The 

Cell Firing Histogram is defined as the display of a set of histograms 

taken at specified intervals. The method of calculation is described 

in Chapter 3, The Back Up program, BU2, displays a CFH for 

several intervals of the simulation and using different values of the 

increment between each successive histogram, For the sake of clarity, 

only a subset of the data displayed on the lineprinter is reproduced in 

this chapter. 

The Effect of the Maximum Synapse Weight and the Adaption Rate on 

the CFH 

It was decided to examine the effects the Adaption 

parameters had on the CFH produced. If certain settings of parameters 

produced CFH graphs whose individual cell-values differed considerably, 

then this would make recognition of signals easy to achieve, by testing 

certain cell's firing rates. Two sets of Experiments were performed 

which varied the Maximum Synapse Weight (MSYN) and the Learning 

Rate: ((TLB20-22, TLB24-26, TLB29], [TLB27, 30]). Set 1 had an 

Adaption Rate (FACTOR) of 10%. 

Considering the Experiments in order of increasing MSYN, 

the Maximum Synapse Weight, (see Table 1) it became clear that as 

MSYN increased, so the level of activity of the elements in the slices 

that did not receive external afferent excitation, increased very sharply. 
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The CFH for the maximum and minimum values of MSYN are 

displayed in Figures 23 and 24. The input area slice tended to 

remain constant, with a few of its elements matching 'background! 

cells for firing rate. The top value of MSYN (150) meant that certain 

cells fired continuously. This must mean the synapse weights are 

so large that certain elements are always receiving more than 1023 

units of excitation (the maximum threshold value). Only 7 connections 

at this maximum weight would be needed for this to occur. The 

advantage of this value for MSYN is that there is considerable difference 

between the cell's firing rates which, if different for different inputs, 

make input identification easier. This net had decay rates of 60% 

so the firing rate and therefore the likelihood of reinforcement is going 

to be high anyway. The Second Set examines the effect of varying the 

Adaption Rate percentage, FACTOR. It uses MSYN value of 100. 

Considering these runs in order of increasing FACTOR value the effect 

is even more dramatic (see Figs. 25 and 26) than by varying MSYN. 

The experiment using the final value of FACTOR (Experiment TLB28) 

had to be aborted as so many weights were at the maximum that the 

whole net was almost saturated with activity. The simulation, which 

works fastest with low activity, became intolerably slow. Clearly this 

rate of activity was not going to discriminate between different signals. 

Conclusions 

Despite the variability of individual cell response when the 

Maximum Synapse Weight was very large, it was felt that such a net's 

discriminatory ability would be small as most of the synapse weights 

would be the same. Consequently, subsequent experiments, bearing in 

mind the natural frequency of the nets concerned, used low MSYN values 
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and high FACTOR values which did not cause saturation of the net. 

The Effect of Different Signals on the Cell Firing Histogram 

The experiments in this group are ([TLB9-12], 

[TLB15-17], [TLB34-39], [TLB40-43], [TLB46-49], [TLB36, 43, 40], 

[TLB37, 42,47), [TLB38, 41,48], [TLB39, 40,49]) where Sets 1 to 5 

examine the effects of varying the X parameter in the signal definition 

and Sets 6-9 examine the effect of varying Y. If the effect of an 

input on the net was to make certain cells fire more than others, then 

these cells could act as indicators of particular input patterns. To 

examine the effect a signal had on a net, the CFH of the second half 

of the experiment was examined. With every change of signal the CFH 

changed, as displayed, for example, by the CFH of time units 501-600 

for experiments TLB34-39 (see Figs. 27-32). The CFH of the remaining 

Sets differed as well, supporting the view that different preferred 

circuits were being formed for even the smallest change in input. 

The cells in the first slice had higher levels as they were receiving 

constant input and therefore fired more frequently. Only ina few 

cases did cells from other slices fire at a noticeably higher rate than 

their neighbours and then they tended to do so for several inputs. This 

may be because of an unusually strong connection path, perhaps caused 

by two connections being generated to the same cell or one cell receiving 

pulses from more than one input element. 

Conclusions 

Whilst different preferred circuits have probably been 

formed for small input changes, detecting them is still difficult. 

The 'readout' problem is that it is difficult to tell which pattern has 
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presented itself, as very few individual cells fire at a greater rate 

than their neighbours and consequently the information, these high 

firing cells contain, is limited. Perhaps different values of MSYN 

and FACTOR would improve this situation. The input elements 

fire at a higher rate than the rest of the cells so an attempt was made 

to try and see if it was possible to control this effect by an association 

property. 

Conditioned Reflex Behaviour 

The idea was to provide the net with two inputs in the 

fir st half of the run and then remove one of them in the second half. 

The two inputs were applied to two different areas of the first 

slice of the net. The input that was on continuously, the permanent 

input, was applied to the top two rows of cells in the input slice and the 

input which was removed at the halfway stage of the run, the temporary 

input, was applied to the bottom two rows of cells. This was simply 

to keep those cells in the same area, contiguously displayed on the 

Cell Firing Histogram. As a result of the higher levels of input the 

two areas receive in the first half there should be a greater chance of 

the Conditions of Reward to occur. If, as a result, there are links 

built up to these areas, then even when one of the areas receives no 

more external excitation, the reinforced pathways to it should raise 

its activity level above those cells in the other slices. Two groups were 

run: ((TLB55, 56, 57], [TLB68, 69 70, 71, 58, 59]). The first 

experiment of Set 1 did not produce any associations as the firing levels 

of the input sites were not appreciably larger, in the first half, than 

the other elements in the net as the input level was so low (20 units 
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every time unit, see Table 1). The next experiment used two 

identical periodic signals in the first half and in the second half 

the 'permanent signal' became constant. The reason the permanent 

signal becomes constant is that the second half of the permanent 

signal could be thought of as an 'enquiry' signal, stimulating the net for a 

record of what it had just adapted to. If the net showed any retention of 

the temporary signal in terms of frequency of subsequent behaviour 

or special type of Pattern of activity, then it would be misleading, in 

the investigation of this, to be supplying the net with just that frequency 

all through the Experiment. Again no association took place. The 

third experiment yielded a "disassociation", that is the "temporary" 

input area had lower firing levels than the surrounding elements. This 

is probably because the temporary input area either fired exactly with 

the permanent one or just before it and was therefore highly refractory 

when the permanent input area fired. Hence the conditions for 

reinforcement of connections between the areas was rare. Also, 

as the local bias algorithm was employed, nearby cells will have been 

triggered by either input and the pulses returning from them will also 

reach the temporary input site when it is refractory. The decay of 

connections that are not reinforced means the temporary area will soon 

receive very little excitation and when the source of its input is removed 

in the second half, its firing rate will be lower than its neighbours. 

The second Set of experiments did provide some 

associations, however. It was felt that the constant input signal of 

TLB55 was too low and so various other values were tried (see Table 1). 

Experiment TLB68 provided a constant input of 30 units 

-146-



of excitation each time unit but again this did not make the input 

areas fire sufficiently quickly. An input level of 50 units of excitation, 

in Experiment TLB58, did provide an association, in that two cells 

of the temporary input area fired at rates greater than those in the 

other four slices, but less than those in the permanent area. An 

input level of 60 units of excitation provided an association of 5 elements 

(out of ten possible in the temporary input area) in Experiment TLB69. 

Their subsequent firing levels were the same as the permanent input 

area. There were also three other cells in the net which now fired at 

the same rate, situated in the fourth and fifth slice. The CFH of the 

last half of the experiment is shown in Figure 33. Increasing the input 

further to 90 (Experiment TLB70) brought the number of associations 

down to 3 and two others fired at a slightly less rate but more than the 

rest of the net. (see Fig. 34). Increasing the input to a level of 100 

excitation units per time slice brought the associations down to 1 and 

increasing the level to 120 (Experiment TLB71) means no associations 

formed at all. In fact, three disassociations formed. The increasing 

of the input may have forced the exactly synchronous firing of the two 

areas, which from the discussions concerning the first set of the group, 

meant the satisfying of the adaption criterion increasingly unlikely. As 

a result certain cells had their afferent connections "decayed away". 

The Effect of Delaying the Signal on the Formation of Associations 

To test further the sensitivity of association forming, 

a periodic input was applied to the net as the temporary input incorpor- 

ating a delay. The delay was varied to see how it affected the 

associations built up. The group of Experiments is denoted by
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({TLB72-76] ). The input signal had X, Y values of 6, 1. (see Table 1). 

Two runs, using delays on the signals of 3 and 5, produced 

associations (Experiments TLB 73 and 75). The remainder all produced 

disassociations, the most exaggerated case involving a delay of 4. 

(Experiment TLB 74). The resulting CFH of these last three runs are 

displayed in Figures 35 to 37. 

Conclusions 

It would seemtherefore, that the associative ability of 

a net is highly sensitive to the relative temporal occurrence of the 

pair of signals. If the cells of the temporary input area do not fire 

in the time unit following the instant the permanent input cells fire, 

then those cells are likely to be inhibited when the temporary input is 

switched off. Perhaps more 'generous' conditions for Reward would 

reduce this sensitivity, Nevertheless, this association or disassociation 

does seem to provide a mechanism for matching signals, as those signals 

not satisfying the Reward criteria cause strong inhibition in the area in 

which they were 'compared'. 
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TLB39 

TLB4O 7, 

TLB41 

TLB42 

TLB43 

TLB44 

TLB45 8 

TLB46 

TLB47 

TLB48 

TLB49 

TLB50 |67 

TLB51 168 

TLB52|69 

TLB53|70 

TLB54|71 

TLB55 |73 2|1/6 ICSIG=20 

ITLB56 | 74 4/7 

TLBS7 {75 SH 

TLB58 |76 1/6 ICSIG=50 

TLBS9 |77 ICSIG=100 

TLB60 |78 1 a7 IcSIG=20 
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                          Table 1,page2   
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Expt. |Net |Decays |Type|Conn. |MSYN| FACTOR] Adapt Input | Comment 

Code |No. Mode Method Type 

TLB65 183 40 a 2 50 20 6 T/7 ICSIG=50 

TLBO68 |86 1/6 ICSIG=30 

TLB69 |87 TCS1G=60 

TLB70 |88 ICSIG=90 

TLB71 {89 ICSIG=120 

TLB72 |94 1/7 ICSIG=50 
delay=1 

TLB73 {95 delay=2 

TLB74 |96 delay=3 

TLB75 |97 delay=4 

TLB76 |98 delay=5                         

Table 1 , page 3 
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CHAPTER VI 

General Conclusions and Further Directions 

Introduction 

This Chapter collects together the main findings of the 

Experiments and indicates the areas that appear the most promising 

for further work. The Conclusions, naturally, only refer to the models 

of neural networks simulated in this thesis. 

List of Conclusions 

I. Highly complex behaviour was obtained from simple 

component units. This was obvious from the first simulation and 

indicates how difficult it is to predict behaviour without some form of 

modelling. 

2. The type of net simulated with decays of 20-60% and 

rich interconnections of 5-20 efferent fibres per cell, produces 

activity which is highly damped and yet, with a constant input, 

generally stable and oscillatory. 

op The frequency of the activity of the Net is directly 

proportional to the decay rates of the cells in the net. The frequency 

resulting was named the Natural Frequency. 

4, If cells have different threshold and excitation decays then 

there is a mixture of frequencies of activity with neither dominating. 

bs If the mode of connection is changed (e.g. local bias to 

random) then the frequency of activity is altered, but the same number 

of different connections in the same mode has no effect on frequency. 
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6. Changing from the larger to the smaller net size 

simulated, can have a slight effect on the frequencies observed. 

This may be due to a relative increase in edge effects inherent 

in a smaller net. 

ths Periodic input signals to a non-adaptive net do not 

eradicate the natural frequency of the net, by driving the net at the 

input frequency. 

8. Resonance effects were not observed in these highly 

damped nets. 

9, Non-adaptive nets lose the effect of an input signal 

very quickly after the signal is removed. 

10. The frequency of activity of an adapted net is not 

related to the frequency of the signal input in a useful way. 

dl, Cycling in nets' activity levels is only likely in those 

nets whose cells have a high decay rate and therefore a limited 

number of states. Consequently, cycling, resulting from adaption, 

is also only likely in nets with relatively few microstates before 

adaption. 

12, The final activity of an adapted net is highly sensitive 

to changes in input signal pattern and, therefore, is a unique record 

of the signal it adapted to. 

135 It is likely that different pathways have been formed for 

each input, which implies that by 'listening' to a subset of the adapted 

net, the signal produced is likely to be different for different inputs as 

well, 

14, An Associative ability of the net was demonstrated. 
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Lbs, This ability is extremely sensitive temporally, 

producing inhibited, or disassociated, areas of the net for conditions 

not satisfying the conditions for reward. 

The aim of this project was to look for interesting 

machines in the digital models of neural networks. It was hoped to find 

machines inherently capable of pulse processing functions. 

The Adaptive Nets of Chapter 5 satisfied this search. 

The Non Adaptive nets did not. The area of possible models this 

Experimental System provides is very large and there was a danger of 

picking entirely the wrong set of parameters. Indeed, there may still be 

areas untouched by this project that may yield even more useful 

machines. However, the Hebbian type algorithm simulated does offer 

a most promising area to search further. The Key conclusions are 12-15. 

These conclusions, in combination, provide a possible mechanism for 

recognising signal patterns. Consider three areas of a net, netlets 

1, 2 and 3 of Figure 1. Two signals are required to be matched and 

they may occur at different times. Their pattern is recorded in netlets 

land 3. These netlets are made of identical cells and use the same 

connection mode. After adaption, the final signals pass into netlet two, 

one signal at one end and one at the other (analogous to the permanent and 

temporary areas of the Association Experiments). This third area is now 

adapted and the final level of activity of either area indicates their 

temporal similarity. This machine therefore employs a memory 

mechanism and a signal processing mechanism. This idea could be 

extended to compare unknown signals with standard signals, provided 

by sets of non-adaptive netlets each having different decay rates, 
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Signal 1 Signal 2 

\S J   

  

          

Netlet 1 Netlet 2 Netlet 3 

te ~~ 

effdrent efferent 
confections cohnections 

Figure 1 Comparison of Signals 
——___. by final activity 

level of adapted Netlet 3 

Further Directions 

As a result of all the Experiments a possible mechanism 

for pulse processing has been demonstrated. However, as indicated 

in the texts of Chapters 4 and 5 there are many areas that could 

fruitfully be explored in greater detail, A suggested list is: 

1, Variations in the Hebbian algorithm to change the 

conditions necessary for reward, to see if associations can be created 

more easily and what effect this has on the types of signal 'recognised'. 

2. Further analysis on how the associations form, to help 

the design of adaptive algorithms to solve a required class of problem, 

23 Hardware analogues of adaptive nets, perhaps using 

groups of similar adaptive netlets as building blocks to a larger system. 
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4, In the search involved in 2, new methods of analysing 

the formation of underlying connection patterns would be very useful, 

For examples 3-D displays of the Connection Weight Matrix or the 

Cell Firing Histogram to illustrate how preferred pathways form, 

These might provide useful techniques for analysing Natural Neural 

Nets. 

To summarise, with apologies to Sir John Eccles, 

the task of understanding Neural Nets stagger their own imagination! 
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APPENDIX A 

Spectral Analysis 

Introduction 

The study of cyclical components in time series 

analysis is performed using autocorrelation and spectral analysis. 

As the raw data in this study is from a digital computer simulation, 

then it is strictly deterministic, unlike a time series which deals with 

random data fluctuating about a mean value. However, it provides 

a technique to achieve the data reduction required to analyse the 

various waveforms produced. The purpose was only to get an 

indication of the changes in frequency components between different 

nets. The program to perform the autocorrelation and spectral analysis 

was taken from "Mathematical Methods for Digital Computers" (1960, 

ed.A. Ralston and H.S, Wilf, Wiley & Sons, London). This appendix 

provides a brief description of the program plus the formulae the program 

implements. 

Method 

The Spectral Analysis routine, SPEC3, outputs the 

autocorrelation function r(p), calculated in two similar ways and the 

autocovariance function W(p). W(p) is also displayed graphically. 

In the course of the calculations the raw data is normalised and printed 

out together with the mean and standard deviation. The data is 

normalised by first subtracting the mean from each item and then 

dividing by the standard deviation. The normalisation means the 
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St 
formula for the autocorrelation, r(p) = ae Feet ol tomerpe(1) 

22 
i 

(where x; is the raw data, pis the lag and N is the total number of 

data items) can be employed. This is an alternative to the usual form 

(ep) E xx, 0- Ex ME x,.) 
r(p) = y (2) 

SPIE (,2)- x)? J W-PIE OE IH 
  

2 
x, 
itp 

which was also used as a check. 

The autocovariance function, W(p), was calculated using 

N-p 

W (picig ne ies (3) 
N-p isl 

Finally the Raw Estimate of the spectral density or Power Density 

Function is given by 

M-1 

L(p) = W(o)+ 2 2% W(q) Cos gpx + W(M) Cos pt (4) 
g=l M 

Where the W(q) are calculated by (3) and M is the maximum lag. 

The Smoothed Power Density Function is calculated using 

U(p) = 0.23 L(p-1) + 0.54 L(p) + 0.23 L(p + 1) (5) 

Where ba = Ly and Lyra = Lyjy-1 

The Raw Spectra and Smoothed Spectra are output graphically and the 

Smoothed Spectra output again using a logarithmic scale as Jenkins 

and Watts (1968) suggest, so that the ''variation in the spectrum can be 

accommodated", 

The frequency corresponding to each lag (p) value 

P 

2mat 

  resulting is f= where m is maximum lag, and At is the time 

increment between each data item. (see Blackman and Tukey, 1959). 

=A



Using this, an experiment's length could be determined to isolate a 

particular frequency if one uses the recommendation from Blackman 

and Tukey that M<0.1N. Certain experiments were run to ensure that 

the rounded values of a particular period fell within one cell of the 

histogram displayed. This meant the effect could be compared to all 

other frequency components. This mode of use was employed briefly, 

the general method being to use a run of 1000 and a maximum lag of 50. 
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APPENDIX B 

  

%* NET Su TINE 
ORO III BOK AC OR A 

    

SROUTINE NET 

  

TR, EOFLAG, CUNTT, WhINDX, WIM, TE : 
+ TINDEX, CONEAS, FILCN 
WARD. CME TE RCNT, UTI 

        

  

¢ COUNT, 

    

NPC aS, 44), OF TR 

  

X%, BENOF +, »PLENTH 

DIMENSION NBAVC 2), NNWYC 2) 

Sony TF<¢ Sa@ ys NIE 7368 0/A/TSFPPTRG 14), TRO SG), LEARN SQ), 
ING 1688 /D/TWTC 26 >, ICONNS<( 26) 

    

    

EQUIVALENCE CIFC4), THIST ),¢ IFC 422 ), NIDEAS aD CIPC 42: 
XC TPC 425 0, NNWUC 1). CTF 427 9, NL 
XOPNELK >, (TFC 43@), NUNET ), ¢ TF«¢ 4 
XC TFC 434 ), CONFTR 0, C TRO A 0, NW), ¢ 
X, CIFC 438 >, FIDBAS ), ¢ TEC 8), LE ), ¢ 
%, CIRCS 2, PDEV 2, (IFC 421 9, NIN). ¢ IGRUFFC 1). CONLSTC 19), 
XCTOBUFFC 461), FILISTC 1), ¢IPC419), TIM). (LPC 413), LEVEL > 
x, CIPC39G), NOP, C TFC 391), WNL >, ( IFC 389 9, CSEED >) 
X, CIP 387 ), COUNT >, TPC 386), EOFLAG ), ( TFC 38S ), ABLOCK > 
X, C IFC 384), WINDX ), CIFC 383 >, WIM >, C IF( 382), TEASE > 
XC LIFC ee >, BLOKNO ). CIFC 38Q 3, TINDEX ), ¢ IFC 379), FILCNT ) 

(378 0, INDEX >, ( TF( 377 0, WEIGHT ). ( IF( 376). REWARD ) 
"C375 ), CNPTR , CIPO 374), GLIKCNT >, (IFC 3739, UTIM) 

X, CIFC S72), TOF), CIPC 371 >, BOTTOM ), ¢ TFC 378), HOWM > 
349,30, CIF¢ 368 ), DBFLAG ), ( IFC 347), LP) 
66), IRF), CINFC 1,19, [OBUFFCL >, (IFC 392 >, FIBLOK > 

FOL ),M),CIFC2).N),C TFC 3), Z >, CIFC7 ), SEF ) 
F¢.15@), NINFO), (IFCLIS1 ), ISLOK >, ¢ IFC 152), IFELOK ) 

So). NUM), CIPC1S4 ), NETR). CTPCLSS >, NELOCK > 
FC1S6 0, IN), (TFC 157 >, NCONT 0, ( TFC 158 >, NDELOK ) 
POLS). ININFO >, ¢ TFC 168). NONF TR», (IPC 161), OF TR) 
FC162), IFLAG ), CIFC 163 >, 1 >. CIF 164), NINDEX > 
FC 420), FLENTH ). ¢ TF“ 228), GENGFT > 

3S) NGAVC LD,    

    

    

    

    

CUNTT >, C TFC 4 Co 
2), NN), C TFC 437 2, 
“C4089 ), NTYPE ), (IFC 488 0, PTR) 

      

   

    

A
R
R
 
A
R
R
 
R
A
A
 

  

  

   

K
K
K
 
K
K
M
 
K
K
K
 I 

zt 
I 
- 
in 

w 
o 
c 

START OF FROGRAM 

NINFO= 
EOFL: t 
DEFLAG: 
ININE 

  

   

  

NIDEBAS+CNINFO1 KLG 

  

READ BLOCK NINFQ OF NEURON INFO 

CALL ROYLONBAVC 1), NBAYC 2. ININEO > 
a 

1     

oR



    

     

1 IFCINFC LF, IRF 02,3, 2 ay 

3 

“M1, 1,333 
333 

3345 
3345 
S346 REWARD = 4,17," IN =“, 17) 

OKNO+ CONE AS 1 
Cc 

c READ FIRST BLOCK OF CONLST 
C 

COCONFTR. NW, NA, TELOK, FDEY, Zagag > 
Zs IDBAS+FIELOK=1 

c 
Cc READ FIRST BLOCK OF FILIST 
c R 

CALL RRECCFILE TR, NWY, NM, TFBLOM, SDEY, Saaae > 
FILCNT=1 

c 
Cc COUNT THE NUMSER OF NEURONS IN SUFFER 
c 

Ld IFC FILISTCFILCNT 9, 8,9 
7 FILCNT=FILCNT +1 

TFC FILCONT-FLENTH 011,8,8 
8 COUNT #1. 

PTR=1 
Cc 
Cc HAS THIS ENTRY BEEN USED SEFORE 
Cc 
46 IFCFILISTCFTR IS 12 EDFLAG= 1 

60 TO 66 
c 
c CALCULATE AGLOCK FOR FILISTCETR) 
c 

119 NUM=FILISTCFPTR > 
ABLOCK=( (NUM=2 D/CUNIT +4 

c 
c IS INFO IN CURRENT CONLIST 
Cc 

TFC AGBLOCK-SLOKNO0S@, 13, 5a 
Cc 
C HAVE WE REQUIRED ADIFFERENT &LOCK YET 
Cc 

S58 

Sa. 

S@2 
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HAVE ALL NEURONS IN BUFFER BEEN ACCOUNTED FOR 

n
o
g
 

  

   
      

6a IF¢ COUNT-FILCNT )14,.15,14 
Cc 

c NO REQUIRE ANOTHER CONLST BLOCK 
C 

14 Ne TR, NWY, NM, TELOK, » SGG80 ) 
BLONNO=NGBLOK c : 

Cc SETTINGS FOR FIRST DIFFERENCE 
Cc 

ABLOCK=NAELOK 
PTRENETR 

   OKNO+CONBAS—4 
CALL RRECCCON@ TR, NWY, NN, TELOX, SDEV, 360) 
BO.TO 4g) 

15 IFCEOFLAG~118, 19, 18 
18 0 FIBLOK=FTELOK+1 

60 TO 7 

EXAMINE THE CONLST BLOCK AND MAKE LEARNING CHANGES 

o
n
o
 

13 WTINDX=1. 

NCON 
INDEX=( NUM-CUNIT( ABLOCK=1 0-41 k2441 

  

c 
c ISOLATE NEURON TYPE 
c 

NTYFES@ 
TFCCONLST( INDEX). GE.@.80 TO 131 
CALL GCTIMC CONLSTC INDEX), WTIM) 
NTYPE=1 
GO TO 21 

c 

c HAVE THE WEIGHTS GEEN ALTERED ALREADY 
c 

131 WTIM=CONLST( INDEX ) 
21 IN=INDEX +NCON 

Cc 

Cc EGF TEST (BIT1L) 
Cc 

IFC CONLST¢( IN) 23, 22, 22 
23 NCON=NCON@1 

GO TO 235 
22 IWTCWTINDX d= CONLSTC IN) 

WTINOX=WTINUX+1 

  

TIMCCOMLST¢ INDEX}, TIM) 
NAICNCON, NUM > 
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23 
3a 

33 

19 

NCONT=NCON 
IFC ICONNS( CNFTR ) 3a, 29, 38 

NELOCK=( ( TCONNS( CNF'TR 0-1 )/NUNIT +1 

IS REQUIRED NEURON INFORMATIGN IN CORE 

TFC NBLOCK-NINE GO 291, 31, 291 

NO IF NO MORE FROM CORE GET ANOTHER NINFO &LOCK 

      

  

CO 
WCOYLCNEAUC 1, NBAYC 2), ININFO > 

DELOK 
[ NIDEAS+( NINFO-1 16 
CALL ROYLCMEAUC 1), NEAVC 2), ININFO) 
NDEFLG=@ 
CNETRENCNFETR 

  

CALCULATE INDEX TO INFO AND LUFDATE 

NINDEX=« TCONNS( CNFTR -CNTNe O=1 KNUMTT=1 441 

  

CALL UFDATECNINDEX, CNF TR, NTYPE > 
TCONNS* CNTR =@ 
NCONT=NCONT~1 

  

   

FINISHED THE AFFECT FOR THIS NELWON 

IFC NCONT 28, 33, 28 

MARK USED 

MARK USED 

FILISTO PTR = 
COUNT=COUNT+4 
GO TO az 

EFFECT STAGE 
CLEAN OUTPUT & 

  

UPFER (FILIST AND OF ) 

DO 34 J=441, 1406 
TOBUFFC J =a 
CONTINUE 
BLKCNT=& 

WRITE CURRENT CONLST BLOCK BACK 
TO DISK 

CALL W 
OPTR=6 
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38 

41 
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G
 

36 

o
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44 
45 

451 
452 

  

ISOLATE UPDATE TIME OF C 

  

ENT Ne.URKON 

CALL GTNTIMCNINUGEX, UTIM ) 

  

IF TIME =@ IT MEANS 

IFCUTIM 1262. 36, 362 

HAS IT BEEN AFFECTED 

IF CUTIM-TIM 361, 37, 361 

YES< SO Witt IT FIRE 

TFLAG=a 
CALL GFIRC TFLAG, NINDEX ) 
IFC IFLAG 9363, 343, 341 
CALL ADFIL( NUM, FIELOK ) 

ARE WE DEALING WITH AN GUTFUT SLICE 

TFCNUM-NOFL 0361, 38, 38 
NINDEX=NINDEX+4 
NUM=NUM+ 4 
GO TO 41 

  

ENTER VALUE IN QUTPUT BUFFER 

CALL ADOFCNUM ~ CNOFL-1)> 
GO TO 341 

FINISHED WITH GUFFER OR NOT 

IF (NINDEX-NGUFSZ 42,42, 36 

IS THERE A SFON OF TION 

CALL SSWTCHC 14,8) 

GO TO (44,43), 

ARE THERE ANY SFONS IN THIS ELOCK    NINFO) 045, 43,45 
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HANDLING THE SFONTANEQUS NEURONS 

  

HAS IT ALREADY 
BENN ALT 

   

TFCUTIM TIM 048,49, 49 

   LAG, NINDEX ) 
IFC IFLAG 491,491, 49 
CALL ADFILCNUM, FIELOK ) 

TS IT AN QUTFUT NEURON 

TFONUM-NOF L049, 51, 54 

CALL ADOEC NUM—( NGF1-1 9) 
Tele. 
TFC T-HOWM 46, 46,43 

  

CALL WOYLCNEAYC 1), NBAYC 2), ININFO ) 
NINFO=NINFO+1 

CHOOSE NEXT NINE 

  

LOCK 

TFONINEO, GT, NLENTH ONTNE OF 
ININFO=NIDEAS+( NINFO-1 k16 
BLKCNT#ELKCNT+ 4. 
TFC BLKCNT-NLENTH 153, 54, 54 

CALL RCYLCNEAYC 1), NBAYC 2), ININFO) 
GO TO 35 
FILIST(C PTR =@ 

  

WRITE BACK FINAL FILIST &Lock 

CALL WRECK “TR NWV, NN, TFELON, EDEY, 30308 ) 
Vit E TRL 

Li. SSWTCHCB, I> 
GO TO (841,542),1 
TFCTIM.L=. SQ@ CALL HEEE 
RETURN 
END 
SUBROUTINE SOF ILC NUM, FE 

    

      

K) 

SUBROUTING TO ADD A NeW ELEMENT TO THE DISK FILE FILIST 
   

INTE IST( 468), PTR, PILELK 
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X, PDOEV, FILFTR 

COMMON IFC Sa@ ), NIEC 7246 /A/ISFC 14, IRC SQ), TEZC 148) 
XTOBUFFC 1608), ISFONC 1960 ) 

    

C1, NWY CIRC 2), NN) 
B,P TR) 

LOK, FOEV, Sa@ag > 

RETURN 
END 
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A
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H
 SOO OOO AOKI K 

%* EVALUATION * 
SOOO OOK 

SWITCH DETAILS 

1: CONTINUATION (NO TF AD, FLICK CONTROL ©GN STARTS), 
R OUTFUT GN TTY 

  

   

  

    

NIE 

YSIS DUMP 
STYPE PRINTOUT INHIBIT 

i TRACE 
2: TRACE : 

13: INDEVIDUAL ELEMENTS 
143 SPONTANEOUS EMENTS ¢ NOW 
1S: INHIBIT RAW DATA GRAPHS 
16: TERMINATE NET RUN 

P
R
E
V
 

O
N
 
S
U
 
A
W
 

e
o
 

- 
ee
e 

= 

ay 

3 © Db
 x 

   

  

QVED ) 

  

gies Z,S0¢4, 

     

2a ), ou HM, TIM, SD00 4, 24), HMO, ASO, DIFF, 
BP CLENTH, VOL BAS, SENEAS, SPNFTR 

XTHIST, AS, SIGNAL, F 
X, SPD, SPW, FILIST( 4464), PDEV, S2, OUT, FETELK, FET 
X, SUBAS, AFL, EPL, COMBAS, NETNC 20 ») NETR ) 

     

  

COMMON TP( S@Q), NTEC 7348 ) 
X/SAVE/ TEC 468 ) 
X/CON/ING( 25,3) 
X/GR/GEUF( 23@ ) 
X/D/TWT( 26), ICONNS( 2G) 
X/RUN/TETTOT( 2, 208 >, TFIR( 200), INEX( 5, 28», IQUFIRG 5S, 100) 
X, ISERC 2@@ >, LERC 24@), INL! 3,106), INVELTCS, 208) 
X/A/ ISPPTRO14 ), IRC S@), LEARNC SQ ) 
X, ISERVOC SQ), TOBUFF( 1688), ISFON( 18a@ ) 

  

    

  

OIMENSTON INEXMC S ), NEF TRO 
X, MARK 3000), TEX10 1000 9, 

TJ¢4), INDELM( 5) 
GG >, IEX3¢ 1966) 

    
    

EQUIVALENCE CIFC12.M).C IFC 2),N),C TFC 3), Z),CIFC1@), AS) 
“C110, HM eee A80),(SDC1, 12, IFC ») 

: De I 4), HMO) 
1)),C TFC 464 >, VOL >, (IF¢ 4@7 ) 

"), CIPCS), LEP). ¢ TPC 442 ), NETNQ), 
2, CIRCL NW), ¢ 
» CIFC? ), MNZ),¢ 
438), FID r¢ 

7a, 

      

   
   

       

  

Fed CTR os 

CIPO 414), 
X, CTOBUFFC464 >, ae IST¢ 199,¢ 

XC TFCAIL7 ), 413), ei 
c Xs CLEC (172), TEMAX) 

7), INEXMC1)),C TPC SBS), INDELMC 2) 

    

      
    

  

    

He



o
n
g
 

X, (TPC 344 ), NBL), CIFC 173), INELNG ), (NBE TRO 1), IFC 34G)) 
KX CIICL), FILIST( 19), CTF 195), L TIM) 
x, CIE 18), FETELK >, CIF« 182), FET > 
X, CIPC 218), NARCHE ), CNMRUNG, TPC 2199), C(NETNC 1), TFC 197) 
Ke Clk >, Su oC IF 2, ARC ),¢ TPC 221 0, SUL), CIF( 415), CLENTH 
x CMARKC 1 2, INEXC 1,19), CTEXIC 10, MARKC19),¢ TEX2¢ 1), MARKC 1@@1 ) > 

BCL, MARK 28@1 )) 

   

         

  

     

START 

  

READ DOWN FARAMETER GLOoK 

  

G
O
H
o
O
e
8
o
0
 

OUT=4 
CALL TRAF 

CALL SSWTCHC 1,6) 
bo ee oS 

    

SET UF RELATIVE CONNECTION TABLE 

CALL GENC 
NWV=448 
NN= 1 

FDEVS@ 
WRITE 1,192) 

192 FORMATC’ INPUT FARAME 
193 Reece 

  

S SLOCK ADDRESS ¢ 74) *% ) 

    

NETRCT =i TNC I) 
194 =CONTINUE 

2608 

  

RECOVER INITIAL SET UF OATA 

   
   

EV, 28@26 ) 
te Ne ETLETR, NWY, NN, NT. FDEY, 38800 ) 

2082 CONTINU 

DO 2803 

  

»CLENTH 
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3 

> 
2083 
2681 

  

95 CONTINUE 
JETTOTC 1, 
ETTOT 2, 1         

ALL. SSWTCHC 4, T1) 
GO TOC91,92),11 

22 CALL SSWTCHCS, T4) 
60 TOC91,93),T1 

93 CALL SSWTCH( 6, T1) 
GO TOC91,94),T1 

91 CALL GRAFIN 

c SET A BLOCK TO ZERO FOR TIME 1 

94 DO 1772 

ISFONCT 
1772 CONTINUE 

a 

    

   bo 1=1, 50 
TISERVOC T 
FARING T pss 

oe CONTINUE 
FET=9 
FETGLM=1 

SET UF LONG RUN DISK FI 

   

   
POINTERS 

ZEROISE ALL + FILE SIZ 

o
o
n
0
n
 

  

221 CONTINUE 
CALL SSWTCHC4, 13019) 
CALL SSWTCHCS, TIC2)) 
CALL SSWTCHC 4, 1J03)) 
CALL SSWTCHC 13, 17¢4)) 
DO 222 I=1,3 
EEG 222 

222 

bot
 

ha
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41 
42 

43 

44 

4 

47 

43 
49 

494 

492 
499 

PUT EQF IN 

  

   

  

FILISTCL 
CALL Wh ILPTR, NWY, NN, FIDEAS, PDEV, 39980 ) 

AY Ne TNO 
MATOS /7 

  

    

NUMBER %, 13/7) 

  

CAL. SSWTICH( 3, IS 

GO TOC 298, 2), 1 
CALL NINLF 
Tal 

)    

    

CLEAN TO 

   
00 888 

MER CT 
CONTINUE 

   

GENERATE INFUT SIGNAL. 
BASED ON TYPE 

  

ISb=SbC 1,1) 
GO TO (42,43, 44,45, 46, 47,48), 180 
CALL GNISTIG 

BO TQ 49 

CALL GN2SIG 
60 TO 49 
CALL GBNASTG 
GO TO 49 
CALL GBNSSIG 
GO TO 49 
CALL. GNESIG 

GO TO 49 
CALL BN7SIG 

60 TO 49 
CALL GNESIG 
IST=Sp¢ 3, 1) 
GO TOC 491,492), IST 
CALI. GENSFRC T > 
GO TO 499 
CALL GEN2SFCT > 
ferrt 
TFCI.GT. HM 080 TO S 
TFC AS. EQ. 1060 TO 41 
GO TO 3 
TIM=TIM+1 

CALL SSWTCHC 1, T1 > 
6G TO°S1,52),11 
WRITEC 1, 53 dp 

IRMATCLH . ¢ 

  

    

    

  

16), 14 

<Bil=



  

a
a
n
g
 

1922 

1@1 

a: 

  

CALL SSWTCH( 6,16) 
GO TOC18, 199,16 
CALL FILEV 

  

CArt SSWICH( 7, 17> 
GO TO 24,21), 17    

  

CALL SSWTCHE 9, T9 
6G TOC 396, 397), 19 
CALL WTDUMF 

  

TERMINATE OF TION 

       
LTIM 380 

CALL SSWTCH( 16,5) 
GO TO (11,123,8 
CALL SSWTCH( 14,15) 
GO TOC2,1622),L8 
WRITEC 1, 161 TIM 

FORMATCLH . 13) 
GO TO 2 
ITIm=MOD¢ TIM, 208) 
Ue Im. NE. @ CALL SAVTIM LFCL 

Tie iy 

  

    

SAVE USED FARAMETER 
FOR BACK UF PROG IF LL 

      

OCK INGEICIST Disk: Fr 
FAILS 

  

CALL WRECCPRMPTR, NWY, NN, FIDEAS, PDOEY, 3aaaQ > 
CALL SSWTCH( 2, 15) 
GO TO 2984, 2485), 1S 

S CALL FLICK 

CALL RESULICDIFF ) 
CALL STOF 

  

ISU=SUBAS 

NARCHS=NARCHE 
CALL ARCHIV 
GO TO 2088 
END 

=Rl2-
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