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As a background to a comprehensive discussion on recent
work in neural modelling, the thesis provides a brief biological back-
ground description of some of the components of Natural Neural Systems.
The review of the work of earlier neural modellers concentrates on the
work of the last fifteen years, with the exception of a few earlier, classic,
papers. The research work performed for this thesis employs an
Experimental System evolved to test the ability of a digital, discrete-time
model of a neural net to process patterns of signals, provided as input.
The aim of the Experiments was to find the type of networks that can
perform useful pulse processing functions. The Experimental work is
divided into two sections, the first analysing non-adaptive nets and the
second analysing networks which use Hebb-type algorithms to alter the
strength of interconnections between cells.

The first section describes and displays activity of many
neural nets. Different inputs are applied to the net and the effects noted.
The study is extended by employing Spectral Analysis techniques. The
effect of many parameters on frequency of firing of the net are examined
including, for example, the decay rates used in the cells and the frequency
of the input signal.

The second section simulates adaptive nets and examined
the relationship between input signals and the final activity of the adapted
net. It also employs Spectral Analysis and a specially defined form of
display, the Cell Firing Histogram which provides information on how
the circuits are being altered by the algorithm. A simple mechanism,
for recognising signal patterns, is proposed that employs several of the
properties discovered using the Cell Firing Histogram.
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CHAPTER I

Introduction

This chapter seeks to provide a biological background to the
models constructed. It is not meant to be a definitive thesis on the
subject as the total volume of material available would make a
treatise in itself. The chapter should provide a sample of the numerous
theories proposed for the mechanisms of brain function. These theories
provided inspiration for the many models to be described in the next
chapter,

The first section describes some of these general theories
and the observations which prompted them, the second section deals in

more detail with the neuron and impulse transmission.

Preliminary remarks

Comparative neuroanatomy indicated that the mantle of cells
that covers almost all of the brains of higher mammals, the cerebral
cortex, should shed some clue as to the mechanism behind intellectual
behaviour. Staining of cells in slices of brain tissue (eg Lorenté de NG. 1943)
and their subsequent transfer to drawings indicated how complex the
interconnections could be, although only a fraction of the cell bodies and
their fibres were shown up by this method. Various layers could be made
out, defined by the different types and density of cells within them. The
relative thicknesses of these layers varied from region to region over the
brain. Lorenté de NG suggested the idea of linked chains of neurons providing
reverberatory circuits. Scholl (1956) produced a detailed analysis of the
cortex and a quantitative description of the cell population. For example
he gave the thickness of the cortex as varying between 1600y and 28004
(F: micron), and agreed with the estimate from previous workers of 9 x 109

neurons in the human brain., The density of cells showed no correllation with
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intelligence as, for example, the mouse was ten times more densely
populated than Man, Scholl went on to indicate that the probability of two
cells interacting varied exponentially with the distance apart. He was the
first to propose investigations '"based on the concept of probability and
discussed in a statistical language''.

Another eminent worker in the field of neuropsychology was
Lashley (1953), In an enormous number of cruel and crude experiments
on live animals he showed that their ability to perform and learn tasks, after
part of their brain had been removed, was impaired such that the rate of
formation of some habits was related to the extent of the injury. Unlike
a digital computer then, the memory involved is presumably distributed
throughout the brain and not located in a specific place. Lashley suggested
that '"'the nervous unit of organisation in behaviour is not the reflex arc, but
the mechanism, whatever be its nature, by which a reaction to a ratio of
excitations is brought about''. These experiments have been queried in
their direct relevance to the human brain, but the principle of slow
degradation of function is supported in the evidence from human brain damage,
with the important exception of the speech area. This '"new' functional
development in the brain may be equivalent to a highly complex task requiring
the correct retention of many ''subtasks''. Lashley found that complex tasks
were the first lost, He went on to suggest that ''the dendrites and cell body
may be locally modified in such a manner that the cell responds differentially,
at least in the timing of its firing, according to the pattern of combination of
axon feet through which excitation is received'.

These and other theories led to controversy over the nature of
interconnections between cells. The lack of recognition of particular circuits
in the stained slides and the inability to locate specific functions tended to
suggest that the interconnections need only be specified "statistically', that
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is every fibre junction did not need to be positioned exactly. The vast
problem of coding any such specific information in a deoxyribonucleic acid
(DNA) molecule also appears to preclude such a method. The lack of
repeatability of experiments involving intra-cortical stimulation of both
animal subjects and humans during surgery, where the function elicited
varied between stimulations, also supports the arguments against a "hard-
wired'' model.

In more recent studies however, specific circuits have been
located in the cerebellum, described by Calvert (1972) and Hubert and
Wiesel (1961) demonstrated the existence of columns of behaviourally
complex cells in the visual cortex of cat., These cells were 'tuned’ to
a particular orientation of the object in the field of view. These findings
and the sensitivity of the speech area to damage tend to suggest the
existence of specialised circuits within the brain.

The attempts to investigate brain function and the theoretical
models tend to reflect the progress of this controversy. Adaption to
stimulus was sought at the single cell level by Eccles (1953) and via the
gross electrode electroencephalogram (E. E. G.) readings. The signal to
noise ratio of E. E.G.'s was so low that repeti‘tive stimulation and averaging
techniques of analysis were employed to improve this. Adaption was
demonstrated at both levels for instance by the fatiguing of a cell and the
'anticipation' of a repetitive signal in an evoked response (for example
see John (1967)). At which level memory can be said to be represented is
also discussed by John,

The unit or organisation within the brain has been postulated to be
of various sizes and shapes. Current ideas favour a compromise between
the two points of view, typified by the work of Harth et al (see Chapter 2)

where cell assemblies are defined specifically "in the large' and randomly
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"in the small". The mechanism for learning is generally considered to
involve synaptic facilitation, that is the effectiveness a synapse has in
firing a neuron, but the nature of this facilitation is still undecided.

(eg Hebb 1949, Milner 1957, Brindley 1969, Marr 1970).

The code that neural signals employ is totally unknown but often
assumed to be related to frequency of firing. That threshold devices (as
neurons are) would seem to be suited to analysing patterns of incoming pulses
in both space (spatio-) and time (temporal) is one of the reasons for the

experimental approach of this thesis,

The Neuron

The neuron (see Fig. 1) is a specialized cell, of variable shape
and size, fo.und in the nervous system. Like other cells, each nerve cell has
a nucleus and surrounding cytoplasm. Its outer surfaces consist of numerous
fine branches called dendrites, which receive pulses from other cells and
generally one long output fibre, the axon. Near the end of the axon it
divides into branches which terminate in junction points termed synapses
that come into close proximity with other dendrites and cell bodies. The
cell membrane separates, in its resting state, two solutions of different
ionic concentrations of Sodium, Potassium and Chlorine. The diagram
(Fig. 2a) shows the relative concentrations and the resulting potential differ-
ence across the membrane. Normally K+ and Cl ions pass relatively freely
across this membrane (see Fig. 2b) butby a combination of a metabolic
pump that forces Na+ ions out of the cell and K+ ions into it and the
membrane's impermeability to Nat ions coming into the cell, the different
concentrations are maintained, This situation can be temporarily reversed
by the action of synapses contiguous to the cell body or the cell's dendritic
surface by altering the cell membrane's permeability to Na' ions in the
vicinity of the synapse. This causes local depolarisation of the cell,which
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on reaching a threshold value,resulls in a spike being generated and

passed down the axon. The spike is very sharp as the sudden influx of

Na+ ions causes even greater permeability through the channels of Fig. 2b
and an explosive change occurs. This rapid change in the potential across
the cell reaches an equilibrium value and the inward flux of NajL ions slows
down and also a compensatory outward flux of K+ ions curtails this imbalance
to the extent of a final slight hyperpolarisation. This behaviour gave rise to
the term 'all-or-none' spike discharge. Following a spike discharge the
status quo is restored by the metabolic pumps mentioned earlier and
possibly the interaction with specialized supportive glia cells which occur
in even greater number than neurons, Further functions of the glia have
been suggested by Galambos(1961). Firing rates of neurons vary between
types but are surprisingly high, for example motor neurons: 200 spikes

per second and certain Renshaw inter-neuron cells: 1600 spikes per second.
Fig. 3 shows various types of cell and some aspects of the structural
design of the cerebral cortex (from Colonnier M, L. 1966). The recovery
time of a neuron (the absolute refractory period during which it cannot

re-fire) is generally around half a millisecond.

The Synapse

The synapse (see Fig. 4a) does not make contact with the dendrite
or cell body (termed the post-synaptic membrane) but is separated by a
small gap, the synaptic cleft, of uniform size 20 millimicrons. It is into this
gap that the synapse, on stimulation by a pulse Ifrom its parent cell,releases a
certain quantum of transmitter substance held within small vesicles in the
synapse body. This transmitter substance acetycholine (ACh) either reaches
the postsynaptic membrane and opens the Na.+ channels of Fig. 2b or is
turned into acetic acid and choline by an enzyme acetycholinerase (AChE),
which resides on the post synaptic membrane surface. The acetic acid and
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choline can penetrate the presynaptic membrane into the synapse and be
reformed into ACh held in quanta in vesicles, The cycle represents a
sophisticated control system in itself, the quantity of AC hE and the
recombining acetycholine transferase determining a synapse's effectiveness
and state of fatigue.

This relatively simple direct action of synapse to dendrite has
been queried by, for example, Shepherd (1972) who suggests direct
interaction is possible between synapses layered on top of each other and
between dendrites without the intermediate synapse. Also synapses of an
inhibitory nature containing a different type of vesicle have the opposite

effect of the excitatory ones described.

Conduction of the Nerve Impulse

The nerve fibre has a very low conductance but by employing
the same mechanism of opening the Na' gates, this time by local depolaris-
ation alone, the pulse can be regenerated in a manner analogous to the
voltage boosters employed in long distance electrical cables. The diagram
(Fig, 5a) illustrates how the cable effect of the fibre only has to transmit the
depolarisation a minute distance ahead and the process then repeats itself,
The outflow of K' ions in the wake of this impulse restores the resting
potential. The very small change in ionic concentration implied can be
rectified by the metabolic pump mechanism over a longer time interval.
Thi's method due to the ionic exchange involved is relatively slow (5 - 20
metres/second for a crab axon) but can be overcome for certain fibres by
myelination. This is the coating of the fibre in a thick insulation that is
interrupted at intervals. Only at these intervals (see Fig. 5b) can a
current flow take place and the impulse hops from node to node without any
interaction from the fibre in between. The hopping of the impulse, called
saltatory transmission, and the enormous reduction in the electrical capacity
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between the axis cylinder and its surround,make the system very efficient

and speeds of, for example, 100 metres per second have been recorded.

This brief resumé€ can be complemented with reference to

Eccles 1965, 1973; Katz 1966; Ramdn y Cajal 1952; Colonnier M. L. 1966,
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CHAPTER II

Review of Neural Net Research

Introduction

This chapter is mainly concerned with work of a fairly recent
nature, an approach made necessary by the volume of material available,
although mention is made of some early classical papers. The reader
who is interested in all the earlier work on brain modelling, including

neural net simulations, should consult Harmon (1966).

The first paper that could be described to be dealing with
neural nets was that of McCulloch and Fitts(1943), This paper analysed the
behaviour of simple logical elements arranged in networks. The elements
themselves had constant thresholds (ie. no refractory periods ) and the
connections between them were fixed. The authors suggested that despite
learning variations any network subsequently formed could be replaced
by an equivalent net and the laws of mathematical logic would still apply
to analyse them. This implied a strict determinism which prompted

biologists to point out the vast simplications that such an approach was

making.

In a theoretical discussion on neural networks that appeared in a
paper by Cragg and Temperly (1953) the analogy was suggested of a magnetic
field affecting an array of small compasses. As the field changed in
strength so the movement of the needles would reflect 'domains of equal
excitation' spreading over the array. They predicted that there would occur
during growth, a critical stage when the interconnections were of such a
density that this 'cooperative behaviour! would begin. The sudden change
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observed in the form of young children's E E.G.'s as they reach a certain
age could be explained by this and the movement of the domains hypothesised
could be reflected in the detection of changes of potential over a global
rather than local area. The study is interesting as a tool for imagining
large scale networks of elements, but it does not allow for the individual
differences in interconnection between elements which are currently

believed to have a significant effect.

Another theoretical suggestion came from A M. Uttley in 1954
in which he argued that due to the dense interconnections between neurons a
classification system would automatically be set up. This would arise when
neural firing was considered as indicators of every possible combination of
active input fibres and with suitable delays involved, the networks could
recognise all temporal patterns of these combinations as well. He constructed
a small machine to demonstrate this. In a real network, however, I believe
the unusual event would be swamped by the activity of its constituent sub-
events and with some spontaneous firing as well the delicate wiring analogy

would not function correctly.

In the same year, the first of the contributions of Farley and
Clark (1954) appeared. This was the first to employ a digital computer to
simulate a network. The elements employed were designed after the McCulloch
and Pitts neuron, but refractory periods were added. When an element fired
it simultaneously excited other elements in the net by means of a connection
matrix originally created by selection from a specific probability distribution.
The elements had thresholds associated with them which decayed exponentially.

The excitation also decayed exponentially. The operation of the net
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was simulated by calculating the activity at discrete moments in time.

The purpose of the work was to see if such a system was capable

of self-organisation in that it would adapt to produce a desired response.
The performance is reminiscent of linear classifiers such as the Perceptron
where the task is inherent in the manner of modification of the individual

synapse values and therefore could not be considered a random net.

A classic study by Rochester (1956) used digital simulations of
neural nets to test the psychological theories of Hebb (1949) and Milner (1957).
In a similar discrete time simulation to Farley and Clark's they modelled
a net of 64 elements. They included a fatigue characteristic in their
elements which reduced the firing rates of frequently firing cells. At
first they felt that a model of short term memory was being displayed by a
succession of net states which were typical of the input signal. However,
they found that the slightest change in firing patterns, for a different signal,
soon produced vastly different behaviour in the net. They modified their
net to accommodate 512 neurons but, due to the restrictions of their machine's
capacity, had to deal with the frequency of firing of elements rather than
using the detailed knowledge of the individual states. This study suggested
that, with adaption, cell assemblies did form near the input site, but there
was little exchange of "information' between them and they remained separate
entities. They finally proposed to introduce, on the suggestion of Milner,
inhibitory connections and that these were subject to a greater decay of their
impulses, which would allow activity to swap in dominance between one assembly
and another in the manner of a flip-flop. The study serves to illustrate how
difficult it is to guess the global properties of a network of elements whose

individual behaviour is nevertheless well defined,
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R. L. Beurle (1956) discussed the properties of a network or
medium of excitatory cells. He suggested that due to their refractory
properties waves of activity would spread across the medium. The
propagation of the activity would be dependent on the values of the cell's
thresholds and density of connections and could either die out or saturate
the medium. For critical values waveforms could pass along the net.

By a form of feed-forward mechanism a facilitatory response at the
wavefront could support this spread by providing subthreshold excitation
there. Similarly a damping mechanism due to prefiring at the wavefront
could control the threshold levels within the critical limits. He postulated
that when a wave did attenuate to a single cell it could effectively trigger a
selective motor response and thereby act as a classification mechanism,
selecting between patterns of active cells. He extended these suggestions,
together with a conditioned reflex mode of action 'inherent in the nature

of the medium!' to propose a mechanism capable of regenerating sequences
of waveforms previously experienced. An additional requirement was the need
for a '"discriminator of satisfactory situation'. By trial and error initially
and subsequent recall of events using this mechanism, an organism could
""discover the most probable results of a contemplated action'. This paper,
twenty years later, is a most persuasive and interesting work. It marked
the beginning of a series of papers, by many authors, that attempted to
extract mechanisms by treating a net mathemat;i.cally, without simulation,
The only criticism can be from experience of simulating models and seeing
the well-ordered waveforms so crucial to these proposals, broken up by
internal and spontaneous firing. The use of the attenuated signals firing
only one element would be very hard to extract in the background of the noise

usually present,
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In the first in a series of papers by either himself or related

groups, Ca;ianiello (1961) published a paper on a proposed theory of

thought processes, based on a series of equations which described

the activity of a neural net and its adaption. He considered networks

of elements at discrete intervals T , the synaptic delay, which combined

the speed of propagation between neurons with the delay at the synapse.

He described the net's behaviour by two sets of equations, Neuronic and
Mnemonic equations, which represent the activity of the net and its

adaption characteristics respectively. He justified splitting the two
processes by an Adiabatic Learning Hypothesis which states that the

changes to the network's structure is a much longer process than the

firing sequence of the elements and can therefore be considered independently.
This is an artificial simplification of the ideal situation where the coefficients
of the Neuronic Equations would be taken as slow functions of time. Further
approximations were that pulses arriving at a synapse are extinguished

even if they do not contribute to a firing of the post-synaptic cell and the
threshold of a cell is constant. However, included within this formulation
was the ability for a pulse to have a delayed effect on the post-synaptic cell,
but in his analysis this was considered to be of negligible effect. Also he
suggested the possibility of interaction between cells and axons in a more
direct fashion than via a synapse. The Mnemonic Equations determined that the
coupling co-efficient between cells increased in .value only if that pathway was
active in the time instant before the post-synaptic cell fired. The coefficient
could not exceed a maximum value and decays slowly at values below this,
Caianiello tried to relate his equations directly to psychological phenomena
such as thought-processes, punishment and reward, learning and generalis-

ation. He argued that the small changes induced by the Mnemonic Equations,
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the possibility of external activity control by threshold manipulation and

random connections would all contribute to a stable system. He also
argued that the net would exhibit Self-Organisation by 'convergence in time
to a more efficient operation', Much of this paper was hypothesis with no
actual simulation, presumably as a groundwork for later work, but he did
suggest the consideration of network activity (size N) as trajectories
within an N-dimensional configuration space such that a reverberation
would be represented by a closed polygon. This description was subsequently
used by many authors. In 1971 a paper appeared (Burattini and Liesis 1971)
that extended this idea. They simulated elements similar to Caianiello's
but included temporal summation of signals which decayed exponentially
with time and had absolute refractory periods of length T > € ., Rather
than rely solely on the activity level alone for analysis they introduced
variables which gave some indication of the similarity between any two
states of the net. This was extended to produce a measure of the similarity
between any two particular reverberations within the net, The mean and
standard deviation of all possible values of this last coefficient were also
calculated and plotted., These methods of analysis showed how the net
approached reverberatory states and that the ;Dverall activity was acutely
sensitive to changes in the elements' threshold values which apart from
the absolute refractory period were kept constant during an experiment.

An attempt was made to demonstrate adaption to an input signal using these
measures despite the absence of the type of adaption i nplied by the
Mnemonic Equations. The most recent papers of Caianiello (1975,1976)
attempt to extend the model to consider more latent responses between
cells by allowing the effects of inter-cell communication to be calculated
from a wider range of previous time increments, By considering couplets

of neurons the authors attempt to demonstrate that Caianiello's original



approximation of considering only the activity one time instant in the past

was a fair one.

An example of a different approach was the work of Taylor (1964)
where the emphasis lay in specifying exactly the connections between
elements according to features extracted from observations of cortical
organisation. He suggested a FPerceptron-like model which involved
feedback to produce a maximum amplitude filter of the output and
'pleasure and pain' teaching terminals. In his computer simulation various
inputs were applied to the model and the connection weights between input
fibres and threshold elements were modified when the outputs were correct
and those elements were active, in a trial and error fashion. The model
showed successive improvement until all patterns were recognised
correctly, Some sets of patterns were unable to be separated in a similar
way to the linear separation problems of Perceptron work., The paper serves
as an illustration of the approach of testing by computer simulation a
particular biological theory on cortical organisation and producing inferences

from the results.

In 1964 (Perkel 1964, 1976) D. H. Perkel published a paper describing
a new method of simulating neural networks. His intention was to provide a
model that could be used as a direct comparison to a biological experiment
by writing analysis programs that would be able to use the data from
either source. To overcome the usual problems of discrete simulation
and thereby ""avoid the conditional probability problems' that he suggested
these entailed, he designed an 'interesting event' type of simulation,

Employing initially the simulation language SIMSCRIPT his net functioned by



building up 'epoch lists? of future events such as the predicted arrival

of a pulse at a cell or the end of a cell's refractory period. By

examining these lists and finding the next 'interesting time' specified,

the simulation proceeded in time jumps from event to event. At each of
these points the network state was altered as appropriate for the

incident and further additions were made to the epoch lists. When a

cell fired the firing interval was recorded in the same format as the
biological experiments produced. He used this method to investigate

the possibilities of detecting functional interaction between cells as
indicated by cross-correlation techniques. He applied this analysis to

a known model and could therefore illustrate what the correlations would
imply when used on real systems. A second investigation examined the role
of spontaneously firing cells in networks functioning as pacemakers, and the
results were confirmed by comparison with intracellular recordings from

a sea-slug (Aplysia californica). The simulation had considerable flexibility
in that all parameters such as refractory periods, conduction time along

a fibre and decay constants could be drawn from different statistical
distributions. The synapses and cells were considered as wells of
transmitter substances which would be depleted on use and consequently

the cells would exhibit fatigue effects. The spontaneous firing of a cell

was modelled by allowing the threshold of a cell to decay quicker than

its membrane potential and hence an independent re-firing of the cell

would take place without external inputs from other cells. Perkel suggested
various shortcomings of his model, for example the restriction of summation
at -a. cell to the axon hillock and instantaneous post-synaptic potentials
rather than graded responses as observed in the physiology. These
'shortcomings! have never been modelled by anyone else. Gerstein (1972)

used Perkel's model to test a method of analysing the temporal relationships
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between spike trains of individual neurons. He presented a joint
peristumulus time (PST) scatter diagram which was formed from the
various intervals between stimulating either two or three cells and their
subsequent firing, By defining the connections between neurons and
displaying the resulting scatter diagrams he was able to illustrate how
this technique could indicate the underlying connectivity between cells.
For three cells a stereoscopic pair of 3-D graphs was produced. The
method appeared to fall down when interneurons were involved rather

than direct interaction. Wood (1973) used a similar method to model a
small net of two or three neurons that might be the controlling mechanism

of a locust’s wing,

A form of network involving different basic elements was
proposed by Aleksander (1967, 1968, 1970, 1974). His units were
Stored Logic Adaptive Microcircuits of 8 bits (SLAM-8s). These were
adaptive logic circuits which were capable of performing all the logic
functions between its sets of N input terminals and M output terminals,

N
2”)
of them. They had ''teach-terminals'" built in to specify which

?.M(
functions were required. The purpose of this unit was to overcome the
limitations of linear separability with Perceptrons. Networks of

SLAM-8s incorporating feedback and random connections between input and
units were applied to pattern recognition tasks such as recognising spectra.
The SLAM-8s were produced in microcircuit form and in one machine combined
in a set of 12. This study remains one of the few that actually does anything

and serves to illustrate that by rigorously sticking to certain details of the

neuron, interesting machines may be overlooked.
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One of the most promising approaches was introduced in 1967
by Harth (Harth and Edgar 1967, Harth et al 1970). The basic idea in
these papers was to consider neural nets on both a microscopic and
macroscopic level. In the earlier paper, the connectivity matrix was
defined differently in certain areas to allow a general mode of connection
to be specified between groups of neurons, whilst retaining randomness
on the local level. This approach reflected the current uncertainty as
to the degree of randomness of interconnection in real neural systems.
Their model employed a neuron which had a fixed threshold and fired on
receiving excitation, sufficient to exceed this threshold, from those
elements which fired in the previous time instant, The quantity of
excitation that passed from one neuron to another was defined in the
connectivity matrix. This matrix was modified to simulate synaptic
reinforcement by a scheme based on the coincidence of pre- and
post-synaptic firing. Such a net was shown to have certain association
abilities, such as the classical conditioned reflex, by examining the
changes made to the connectivity matrix after an experiment. In the
second paper the emphasis was shifted from the adaptive behaviour to
consider the activity levels in more detail. They reproduced graphs of
activity curves and defined various modes in a similar manner to Smith
and Davidson (1962). They included computer simulation runs of actual
nets as an indication of the deviations from the .sta.tistically predicted
behaviour and these deviations were found to be quite small. They also
included activity level graphs of netlets (their term for those groups of
elements with similar interconnectivity) which received steady input in
preparation for the study of large nets of netlets interacting with each

other. This particular approach yielded a hysteresis effect. This was
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found by plotting the steady state values of activity of a netlet against the
strength of the afferent input. It was found that the steady-state activity
had two main levels and the netlet would be in either of these two

regions depending on whether the input was increasing or decreasing.

Kss

Steady- l

State

Activity l

Level
e T

= KS— -

o
= Tt Afferent Input T

Figure 1
Hysteresis loop generated by slow changes in @, the fraction of afferent fibres.

Irreversible changes are shown as dotted lines.

This was suggested as being analogous to the Barkhausen effect in
ferromagnetism which is the basis of some computer core memories.
Some experiments were also performed on pairs of netlets interacting and
it was demonstrated that either higher or no activity results in both

nets to the same degree in a very short time (15 time units). One of the
authors, Anninos (1970), of the companion paper to this last paper, had

dealt with the mathematical analysis and derivation of the equations used.
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He subsequently extended the idea of the hysteresis phenomenon as a memory
mechanism by investigating the settings of the parameters that destroyed
the hysteresis loop (Anninos 1972), He based his paper on the

assumption that the adding of inhibition to the net as an input was

equivalent to the noisy effect of different inputs being presented to the

net. He showed that the hysteresis loop disappeared with increasing
inhibitory input and suggested this was a model for forgetting. In his

next paper Anninos (1972a) investigated the cycling phenomena, in the

graph of firing levels, he noted in the computer simulated models. These
are distinct from the statistical models which dealt solely with activity
levels as he now felt .. that not only the total number of neurons firing

at any moment was significant but also which particular elements were
firing'". These models, like Harth's first paper, dealt with the microstates
of a netlet employing a state vector indicating the firing patterns at one
instant. Anninos examined the cycling of his models under various conditions
of parameter settings. As with all simulations of this type there is a limit
to the number of states any one net can be in and as the activity of an
element depends only on that in the previous instant, the nets soon

achieved cyclic behaviour of small period. He related the period of

cycling to the level of inhibition. As the level of inhibition increased the
time taken to the onset of cycling increased, almost exponentially as the

net approached a ratio of 1 excitatory to 1 inhibitory element. He concluded
also that '"the period of oscillation is a sensitivé function of the magnitude

of the external input'" but ''.... on the other hand the statistical parameters
of the net play an important role in establishing the cycling activity....'", He
also noted that the exact original microstructure of the net was unimportant
between nets whose global parameters were the same. In other words the

'"seed'" to the pseudo-random number routine he used to generate a netlet's
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connectivity matrix did not affect the cyclic activity, Anninos criticized
Andersen's (Andersen 1966) work as he could only see ''... rhythms in the
autocorrelation function graphs and the cycles in the raw data were not
visible on inspection'. He later (Anninos 1972b) concentrated on what he
defined as the latencies of response of a net, the delay before cyclic
activity, and tried to demonstrate a similarity between these and evoked
responses noted in averaging analysis of the E. E. G. The statistical
model was called the ''neuron gas model'". By considering only the
activity level, any coherence effect of the connection weights, which

were 'frozen' to take one value each throughout the experiment, was
ignored as the calculations effectively re-randomised the connections

at each time instant. Wong (1973) provided further evidence for the
validity of this approach by considering K- order netlets. He defined
these as netlets whose behaviour was determined by activity in K previous
time instants. He proposed a formalism and a description of the
resultant activity in a K-dimensional activity graph analogous to the
'1-dimensional’! version of the previous workers. He demonstrated

this with a three-dimensional graph which disi)layed a recursion surface
to show the stability of a second order netlet. Wong also suggested employing
the method of a A -phase plane to describe second order nets in the manner
taken in classical mechanics to describe a coordinate-momentum pair.

He showed his computer simulations of K-order nets were approximated
by the neuron gas model and that such a system could now cater for

synaptic delays, summation times, absolute and relative refractory periods.
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An example of an approach which committed itself to one aspect
of neural networks in an attempt to reduce the data involved to manageable
proportions was the work of Amari S. (1970, 1971, 1972, 1974). He argued
that the fact there was considerable redundancy in the brain, shown,
amongst other things, by its recovery from damage, suggested the
microstate of a network was not the most important parameter, for, if
it was, the behaviour of each individual element would be critical to its
correct functioning. He suggested that the activity level would be a
convenient and useful parameter to study. This enabled the description
of the network to be made in statistical terms, ignoring the actual behaviour
of individual elements. Amari proposed defining neural nets as groups of
Random Threshold Element Networks (RATEN) and analysing their activity
levels and subsequently their effect on each other, when interconnected.

His analysis of the stability of RATEN's suggested three modes: -

1. Monostable: only one stable activity level,
2, Monostable-bistable: either one or two levels.

3. Monostable-astable: either one level or oscillatory.

The effective weight (W) was defined as a function of the total
weight vector for the RATEN and proved to be one of the factors which
determined which of the three modes @ RATEN exhibited. A hysteresis
effect was demonstrated for a RATEN and an attempt was made to analyse
interconnected RATEN's. An oscillator and an association ability was
claimed although not built. A second parameter, H, a function of the
settings of threshold values, was also found to be a factor determining the
mode of stability. Amari also suggested treating nets in terms of the

dynamics of distance between microstates and provided a few theorems

based on these.
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An extension of this work was that of Yoshizawa (1974)
who extended Amari's analysis to include refractory periods. He
produced predictions on the regions of the H-W graph that produced
stability which were different from Amari's. He also implemented
a fatigue factor which he concluded was necessary for reverberations of

long period to be produced.

Taylor (1972) and Martin (1973) published an account of
various mathematical analyses of neural nets in continuous time with
spontaneous firing in cells. The nets had various topological structures,
line toroid or "doughnut' (no edges). He concluded that non-homogenous nets
(non-random connections) and doughnut nets were beyond mathematical
analysis. Oscillations or steady state activity was predicted for other
forms. He suggested that in spatially homogeneous nets with spontaneous
firings, any signal put into them would be lost in the noise of the net's
activity. An attempt was made to relate the final '""chaos state'' to the
input. He admitted that he could not corxceive: of a method to 'readout!’
from such a system but pointed out that a net of only 100 neurons had upwards
of 1030 final states and therefore capable of considerable information storage

and redundancy.

The same year produced various attempts at network simulation,
some involving learning techniques, an example being that of J. A. Anderson
(Anderson 1972). Using matrix algebra methods he analysed a system with
synaptic modification proportional to the product (obtained from the dot
product of the state vectors) of post and pre-synaptic activity. By defining

a measure of the memory of a net as the ratio of the output due to the
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signal input to the output due to noise,he concluded that an interactive

memory works better as it gets larger and more richly connected.

Wilson (Wilson & Cowan 1972) treated nets as subpopulations
of inhibitory and excitatory cells interacting. They employed a coarse
quantisation of time as they considered that there is no information
carrying capacity in fixed high frequency responses. They predicted
multiple hysteresis effects and limit cycle activity which disappeared

if the input was too high or low.

Kuijpers (Kuijpers and Smith 1972) provided an interesting
example of treating a.net as a self-organising system. They proposed
that nets could be taught to recognise patterns by producing a particular
reverberation for each one. Their nets were similar to Caianiello's
and their elements consequently had only two states which considerably reduces
the number of possible reverberations. They considered in particular
two-state reverberations and employed the method to separate 80 patterns
into four classes using a 36 element net. More than four classes were less

successful,

Sedykh (1972) simulated a neuron medium in a continuous mode
and suggested that learning was not a modification of synaptic weights to
produce a specific response but an orientation effect on the direction
of propagation of the wave through the net, for example to a motor area .
The number of interconnections between cells was proportional to the distance

separating them and he employed spectral analysis techniques in the analysis.
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A network which employed synaptic adaption was described
by Von der Malsburg (1973). The effect each cell had on its
neighbours was defined by one number which represented the total
effect of all possible synaptic connections between the cells concerned,
Various other assumptions were made to simplify the analysis, such as
linear summation of excitation or inhibition at a cell, and its subsequent
linear decay, and the size of the post synaptic potential being the total
input minus the threshold value. This replaces the all-or-none output
of fixed size by an output with no intrinsic upper limitation, as is imposed
by an absolute refractory period, for example. The interconnections were
defined depending on the nature of pre- and post synaptic cells. All types
of interconnection were dependent on distance with the probability of
connection from inhibitory to excitatory decaying more slowly than the
other cases. The cells were arranged in two hexagonal layers, the
inhibitory cells being in the lower layer. The activity of the net was
described by a series of non-linear differential equations, each equation
defining the change in a cell's excitatory state (i, e. the output) with time.
These are similar to Martin(1973). As there are no mathematical
ways to solve these equations, approximation methods were programmed
on a computer. One of the techniques was to consider only steady state
solutions. The net programmed had four modes of connections. The
connections between Excitatory (E) cells and Inhibitory (I) cells were
defined by three constant weights and the variable connections between
a 19 element retina and each of the E cells (i.e. 19 x 169 fibres) were held
in a matrix. The experiments proceeded by finding, sometimes by trial and
error methods, the steady state solutions for various weight settings of the

net and after this performing synaptic adaption on the retinal matrix. The
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method of adaption was to increase a particular fibre stength if there was
a coincidence of activity in that fibre and the cortical cell it affects, by

an amount proportional to both the fibre signal and cell signal. All

other fibres impinging on that cell have their weights re-normalised to
ensure a constant total weight value to a particular cell. This prevents
instability. A set of nine stimuli was applied to the retina and the synaptic
manipulations performed after each presentation. As more learning steps
were performed the E cells tended to fire in clusters. By drawing

a diagram indicating for each E cell the median of the orientations of the
stimuli it responded to for various steps of learning, it was demonstrated
that areas of cells responded to similar orientations. They concluded that
""organization of orientation specific units is brought about by a learning
strategy rather than genetic determination'. They also indicated
generalisation abilities and resistance to noisy input by calculations of

entropy values at successive learning stages.

A Neuronal Circuit Modelling Prog:'cam (NCMP) was described
by Knox (1973, 1974). It was capable of simulating up to ten neurons, forty
axons, ten interneurons, ten relay neurons and a pulse generator and
a random stimulator arranged in a way specified by the ""user'. The user
could also specify which type of output was required from a set designed
to produce the same form of output as biologicﬁl experiments. The simul-
ation was quoted as having a two-to-one ratio of time course to a real system
for a single neuron simulation. The activity of the elements was calculated
using the compartment model approach of Rall (1964). This system was
employed in an investigation of the information produced by a cross-

correlation function between cells.
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Wigstr8m (1974) produced a mathematical model of a network with
learning on the same basis of coincidence of pre-synaptic and post-
synaptic firing. He noted that the largest initial component grew at the expense
of the others and postulated a 'domination principle' to explain the lack of

confusion in thought processes.

Macgregor (1974) produced rhythmic oscillations in a net of
100 identical neurons and related this to the refractory period of his
elements. He concluded that tightly connected nets could be used for
spreading activity and loosely connected nets for following periodic
input as tightly connected nets fired in clusters and ". .. fired at their
own internally determined rhythmic period and did not faithfully follow

applied periodic input'.

Another synaptic modification method was proposed by
Fukushima (1975). Employing Brindley synapses, as defined by Marr (1970),
he modified their weights if there was a coincidence between post and
pre-synaptic firing and if the post- synapticcell was firing more than its
neighbours. He suggested this would enhance individuality between synapses
and prevent them growing to the same value. A multi-layered Perceptron
type model was built along these lines but required preprocessing for

successful pattern recognition.
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Two approaches employing information theory in the analysis
were those of Tsukada (1975) and Uttley (1976). Tsukada's work involved
simulating the excitatory post synaptic potentials (EPSP) of a single cell
and calculating I, the mutual information per symbol pair for various
sizes of EPSP. He found two maxima, one for small values of EPSP
and one for large. Related sequences of input gave different values from
unrelated sequences. Uttley criticized Von der Malsburg's (1973) method
of synaptic weight normalisation saying it would fail to work for small
fluctuations from normalisation, as might be expected in a noisy
system, and eventually the output would bear no relation to the input.

By examining the form of typical learning curves of psychology, which
indicated that adaption should be a two-phase process of gradual
reinforcement followed by gradual non-reinforcement, he derived a
synaptic modification algorithm which included a third component to the
normal two, which was a fixed inhibitory synapse. This maintained the
stability of the total synaptic weight as after a period of time, when the
inhibitory signal was absent, the conduction strength of a fibre would
decay back to its original value. The exact form he postulated as an
example of this approach was that the synaptic conductivity of a

pathway i, Ki' should be a function of the log of the mutual information
calculated between the output signal and the signal on the fibre‘ A
mechanism, called an informon, was proposed that performed the
desired manipulations of % for a particular set of fibres. A hierarchical
arrangement of 210 informons with 8400 simultaneously variable pathways
was shown to be completely stable and capable of recognising handprinted

numerals, with the help of a feature extracting preprocessor.
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CHAPTER III

The Experimental System

Introduction

Chapter 2 gave an indication of the variety of approaches to
neural modelling that have been attempted in the past. These attempts can
be broadly classified as either based on probability theory or not. The
'statistical nets' of the former category, reduced the vast complexities
involved by sacrificing the knowledge of exactly when each element fired,
describing the network activity by activity level only. This meant they
could study nets of a non-trivial size and they were often used in conjjunction _
with physiological experiments. However they consistently failed to
produce any clue as to the method of signal processing in the brain other
than demonstrating types of conditioned reflex behaviour on a gross level
rather than the single unit level of the 'hard-wired theory' school. The
'non-statistical' nets were often dismissed by biologists as irrelevant
to their studies and many workers abandoned any idea of biological
comparison, pursuing the search for interesting machines (e.g Perceptron,
Adaline, Slam-8's). These computing machines are described by
Harmon (1967).

Whilst the computing power available has increased explosively
since the early researches were carried out, it is felt that there is unlikely
to be any major contribution from digitally simﬁla.ting neural nets in order
to test biological theories on the functioning of the brain. The current trend
in physiology of identifying more areas of the cortex with typical patterns
of connectivity tends to throw considerable doubt on the statistical description
as a helpful model. Also, until the advanced development of, for example,

parallel processing machines or array processors, the task of simulating
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these circuits is intractable.

The approach of this thesis is therefore to simulate, at a low
level, the action of small networks of neurons with a view to finding
machines capable of processing information encoded in terms of pulses.
No relevance to natural systems is claimed and attempts are made only
to abstract those features from biological systems that appear promising
for such an aim.

To save space and reduce ambiguity, a policy is now adopted
whereby terms such as neuron and synapse will refer only to the models
thereof. When the biological equivalent is meant this will be explicitly

described,

Description of the Experimental System

The simulation is a digital, discrete time approach, each
neuron's state, at any time instant, being calculated from its state in the
previous time instant. The state of each neuron is held in a disk file, the
Neuron Information File (NIF). The interconnections are defined by a
connection algorithm and the effect each synapse has on a cell, the synaptic
weight, is recor ded in another disk file, the Connection List. A great many
parameters define each net and the system as a whole is designed to test the
effect specified signals have on it. To achieve this an "Experiment'' is
performed which consists of four stages, Net Generation, Signal Definition,

Net Evaluation and Further Analysis (optional).

Generation of the Net (Stage 1)

In this phase a neural net is interactively defined. The options
on the parameters possible in the latest version of the System are
listed below. These are described using Capital Letters to help explain

the shorthand employed on Experimental listings and source code.
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Net Size: three dimensional, those used were 5 x 5 x 5 and 10 x 10 x 5,

Threshold Range: this is the value used to generate the thresholds for each
cell. It can either represent the upper limit of a rectangular distribution

of values that the thresholds are selected from or the actual value the
threshold takes. The actual mode used in generating is defined by the
Threshold Type. The Threshold Seed is the number used by the pseudo-
random number generator to start producing the threshold values in the first

mode described. It has no meaning in the second mode.

Threshold Decay Range, Type and Seed: the threshold decay is the percentage
reduction of the threshold value over 1 simulated time unit. The values
generated are produced in a similar manner to the previous parameter group,

as are the next three groups.

Excitation Decay Range, Type and Seed; this is the percentage decay of a
cell's subthreshold stimuli over 1 time unit., (When a cell fires, all

stimuli received the previous unit are extinguished.)

The Connection Range, Type and Seed and maximum Number of Connection s:
the maximum number of connections defines how many synapses originate
from a cell. Also, the Connection Range defines the value of the weights

of each synapse. The actual number of connections decided for each cell

is a preliminary step in the algorithm for generating weight values.

The Inhibitory to Excitatory cell Ratio: this is used in the weight generating
algorithm to decide the ratio of cells with excitatory synapses to those

with inhibitory ones. All synapses from the same cell are the same type.
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The number defining which connection algorithm to employ and the
seed it uses:

The maximum value for a synapse in an adaptive net;

The values defining how to designate the elements which can refire

spontaneously,

The length of the simulation,

The latest system allows multiple experiments to be performed in one

run and the last parameters define the networks involved.

Signal Definition (Stage 2)

This phase is achieved with an interactive program which enables

the following parameters to be specified:

The number of signal inputs:

The centre positions: the first slice of the three dimensional net is
defined as the input slice and the co-ordinates of the input site specify

the position within this slice that the signal will be applied to.

The signal type: this defines the signal generation algorithm employed.

(These will be described later).

The signal spread and radius of spread: instead of applying the signal to a
single element it can be spread, in various ways (to be described) to surround-

ing cells in the input slice, within a given radius.
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For early experiments on adaption, (see Chapter 4) output elements
in the final slice can also be defined and the techniques of matching input

and output signals are specified.

The number and identity of those elements whose individual history is to

be traced throughout the run and subsequently displayed.
The maximum lag for the Spectral Analysis routines (see Appendix A).

The interval between the trailing edge and the next leading edge of a periodic

input signal (that is, the length of the 'off' state).
The length of the 'on' state.

The delay of the signal: this is the length of time from the start of the

simulation that the signal begins.

The learning factor: this is the percentage by ‘which the synapse weight
is changed in the Hebb-type adaption algorithm, described later under
"Support Routines"'.

The value of any constant signals employed.

Net Evaluation (Stage 3)

At this stage the defined net is run. Various 'in flight'
analyses are possible, such as a display of the cells firing on the line

printer, a dump of the Neuron Information File (NIF) and a display
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of those connection weights changed in the previous time instant, These
are all controlled by control panel switches (See Fig. 1). The run may
also be terminated from the switches. A description of the main routine
appears in the Program Description. At the end of the run, graphs of
the totals over the whole net of the remanent excitation, threshold levels
and number of cells firing are displayed. In later runs this data could

be analysed employing Spectral Analysis, when Autocorrelation and
Power Density Functions are displayed. For certain individual elements,
specified in the second phase, the raw data alone is displayed. During
the run the raw data is written to disk where it can be accessed at

the end of the run, as described, or during the fourth stage of the

experiment,
Threshold Trace
graph
Ninfo Wt. Analysis Inhibit Raw
dump Dump data graphs
Firing
Continuation Pattern

Indivs

|
PRPRIRIRLPPP PR DA

Multiple Inhibit Spontaneous
run Learn Elements
allowed
Excitation T/type Terminate
graph o/p run
i inhibit Trace

Firing
graph

Figure 1

Control Panel Switches on the Prime 300
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Further Analysis (Stage 4)

The final phase may be repeated to perform Spectral Analysis
on specified subsets of the original data. It is also at this stage that a list
of the major connections can be printed out and the special form of
analysis for the adaptive nets of Chapter 5, the Cell Firing Histogram, can

be calculated,.

The Computer System Description

Figures 2-5 are system flowcharts for the latest system. Itis
capable of running up to twenty experiments unattended, writing the results
to disk. A run of twenty nets takes 30 hours. The fourth stage for each
experiment was performed subsequently. This mode of working was
adopted fairly late in the thesis to overcome the unreliability of the
hardware used.

The information input in Stage 1 of the experiment is stored in a
Parameter File (IP), one block (e.g. a disk sector on Prime 300) per net.
This file is subsequently updated in Stage 2 so that it contains all the
information necessary to generate and run the network concerned. These
files are archived to a separate area of disk and can be recalled at will to
provide the basis of a new network or enable a re-run to take place. In
the Multiple Run mode the generation program produces the NIF and
connection weight file for each net and stores them in the areas referred to as
the SU files (e. g. SU2, SU3, etc.).

The first net to be run does not need to be stored in this way
and is held in the corresponding disk files used in the actual running.
Subsequent runs copy the initial settings from the SU files before starting.

The SPON f{ile is the list of neurons having spontaneous firing characteristics.
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The FILIST file is used in the first stage to hold a table that accesses
this file. In Stage 3 however, this file holds the number of the cells which
fired in the previous time instant.

Stage 3 runs all the nets and produces an Archive File
(ARC1, ARC2, ....) for each net that holds all the information the Analysis
routines require in later stages. The file GRAF is used as an
intermediate storage .to generate the line-printer graphs., The FET file
holds a record of the firing patterns at each time slice. The running of
the net can be controlled by the sense switches which can, for instance,
enable the printing of the line-printer graphs (see Fig 1). Stage 4 currently
consists of two sub-phases, the first being the selective use of the graph
plotting and Spectral Analysis routine s, to analyse specific subsets of
the raw data. The second, in a similar mode of use, employs the cell firing
histogram for the final experiments of Chapter 5.

This System represents the current situation. The Multi-Run
capability was produced for the later experiments of Chapter 5. There are
approximately 80 FORTRAN and 20 Assembly code routines making up the
four Stages. On the Prime 300 the Stage 3 routines occupy 32K and a run of

1000 time units takes, typically, 90 minutes,

Program Description

Main Simulation Subroutine

To describe in great detail every routine would take vast space
and contribute little to the understanding of the simulation techniques.
However, a brief mention of some routines, particularly the main
subroutine, NET, should explain the basic ideas employed., A listing of this
routine and the main program is held in Appendix B. A flowchart of the
main routine is in Fig. 6. The following description should be read in

conjunction with this diagram,
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Figure 6
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Figure 6 cont.
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Figure 6 cont.
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The basic routine that performs one time slice of
neural activity is the subroutine NET. There are two stages in the
calculation of the activity flow, the Affect Stage and the Effect Stage.

The Affect stage updates the neuron information file (NIF) (See Fig. 7) by
changing the excitation levels of those cells connected to the elements
which fired in the previous time instant, as defined by the Firing List
File, The effect stage then checks affected elements only to see if

they will now fire by comparing their excitation level with the current
value of their threshold, The result is a new Firing List file, held

on disk, The routine then returns to the controlling program (El1l, see

Appendix B) which will continue to call it for the rest of the simulation.

Figure 7 Neuron Information File

6 bits 10 bits

Threshold decay |Threshold resting value

Excitation decay |[Threshold current value

Neuron 1 ¢

Excitation current value

Time

Threshold decay |[Threshold resting value

Excitation decay |Threshold current value

Neuron 2 J
Excitation current value

Time
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The technique employed throughout the routine attempts to
minimize all disk transfers. At the program design stage, by roughly
simulating the simulation, optimum buffer sizes and file design were
laid down. The routine uses ;all the information in a particular disk record

when it is in core, before accessing the next block.

In the Affect Stage the input to the net is received in
an intermediate buffer which corresponds to the first slice or array of the three
dimensional net. The main routine will have previously called a particular
signal generation routine which supplies the signal value into this array.
This information is used to update the relevant sections in the NIF.
The Firing List file is now used in conjunction with the Connection weight

file (see Fig. 8) to decide which elements are affected and by how much.

/Nature bit O0- inhibitory

B Time neuron last fired

welght value 1

File of up to 20 weights
21 wordsd

eol

One disk sector

441 last record

unused 19 words

Figure 8 Connection weight file
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The actual connections are determined each iteration by a modified pseudo-
random number generating routine,

The Effect Stage, as well as compliling a new Firing List File from
the changes already made to the NIF, examines the spontaneous elements to
see if their thresholds have decayed to the resting threshold and therefore
refire as well. As an element fires, its threshold is set to a maximum and
its excitation extinguished.

By only examining those elements affected in the first stage,
considerable reductions in accesses to the NIF are achieved in the Effect

Stage and make longer simulations of larger nets possible.

Support Routines

The routines are described in approximately the order they are
used in the Experiments. They are briefly described if the techniques
employed are felt to be useful to subsequent researchers or important
to the understanding of the simulation as a whole. There are many routines
which are straightforward and are only mentioned to aid those examining
the source listings. Before the simulations began many programs were
written to help design the Experimental System. These are mentioned
first, Finally the Assembly Language routire s are described and a mention

is made of the routines written for other machines.

Preliminary Routines

Several random number generating routines were examined that
produce integers from a rectangular distribution over the possible range
allowed on the Prime 300 (0-32767). These were tested by plotting
histograms derived from the streams of numbers generated. They were
also tested for speed using interrupt timer programs. The routine chosen

is called RAN2A and can be defined by the algorithm RAND - (RAND4237)
mod. 32749. This takes approximately 64/44 secs. As the basic simulation
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was being designed, calculations using buffer sizes and disk access speeds
were performed to try and find the highest speed of simulation. The results
suggested a good method would be to read and write the NIF in cylinder mode,
that is 16 sectors at a time and the other main files in sector mode.

Although the additional routines and disk files added later involved far
greater overheads than the original calculations allowed for, the efficient
design of the actual network simulation meant it was practically possible

to add on complicated analysis procedures and still have a reasonable
experimental time. Many routines were written to debug the program as

no facilities except a Trace and Patch routine were supplied with the
computer. The assigning of almost all variables in the simulation to a small -
part of the Blank Common Area meant a dump of the corresponding section

of core provided a post-mortem dump in the event of a crash. Using these
routines, comparisons with hand simulation could take place. A hand
simulation of three time units of the original simple net of 5 x 5 x 5 elements
took over eight hours to complete, even with the help of a pocket calculator,
A Multiple Run of 30 hours on the Prime 300 would therefore take at least

20 man years to hand check.

Generation Support Routines

The main generation program, GEN, takes the information typed
in at the terminal, under control of sense switches for each group, and
updates the IP file. It finally writes a list of the new parameters onto the
line-printer. The routines which generate the first three parameters of the
cell are all similar, as described earlier, either producing the same value
for each cell or selecting from a distribution. The routines that give a single
value, that of the range parameter setting, are TGEN9, TDGEN9 and
EDGEN9 for thresholds, threshold decays and excitation decays respectively.

The routines which select from a distribution all work the same way in that
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they call the random number routine RAN2A, with the given seed (this
value is altered in the process) and the number produced is converted
from the range 0-32767 to 1 to the range previously provided. These
routines are TGEN1, TDGEN1, EDGENI1. The synaptic weight values
are generated (GENY) in a slightly more complicated way. The connection
weight seed is given as the parameter in the first call of RAN2A, The
result is used, in conjunction with the parameters describing the
inhibitory to excitatory ratio, to determine what type the current cell is.
Next, the number of synapses each cell has is calculated by a further
call to RANZ2A and a range conversion performed to satisfy the parameter
NCON (The maximum c;onnections per cell). This step is omitted in
GEN9C which generates only the maximum number of connections for each
cell. Then, using the parameter CONRAN, that specifies the upper value for
the weights, further calls to RAN2A produce the initial synaptic values.
(These are only changed in the Hebb-type experiments of Chapter 5). The
spontaneous cell generator GSPON1 produces a list of those cells with the
characteristic of refiring when their threshold decays to the resting value.
This routine also employs SORT, which produces an ordered list for writing
to the disk file SPON,

It was decided as a policy throughout the simulation to provide
separate routines to interface with the assembly level routines to ease any
transfer to different computers. The routines employed in this way are INTH,

INTD, INED, RESET and PUTEON.

Evaluation Support Routines

The Learning and Servo mechanisms employed in the early
experiments of Chapter 4 will be described first as they were used relatively

briefly, The Adaption algorithm, HEBB, did not appear until Chapter 5.
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The original Learning mechanism was implemented within the Evaluation
Routine itself. The basic idea was to reward high firing rates within a
specified output area. In the subroutine NET, an area in core was set to
represent the pattern of firing within the output area in the current time
slice. Subroutine MATCHS subsequently examined this area and produced a
score of the total of the elements not firing. The Learning algorithm used this
value to determine the strength of the reward, a low value producing the
maximum reward. This value was entered in a table (LEARN) of maximum
size 50, the newest entry replacing the oldest, the algorithm being entered
every time slice. The effective size of the table could be specified as a
parameter, the Learnir;g Range. Any reward not applied before this limit
was lost. The learning value was used within the subroutine NET, in the
Affect Stage, when calculating the weight values for each synapse.

Before putting the weights, which were held on disk, into an array (IWT),
they were altered by the percentage value (generally between 10 and -10)
held in the Learning Table. The value used was the entry corresponding
to the time the 'father' cell last fired. These new weight values would be

written back to disk at a later stage.

The Servo was a number between -50 and +50, The
actual score calculated every time unit depended on the level of activity of
the net,being high for low activity and vice-versa. In the early versions
of the Evaluation Routine this score was entered in a table (ISERVO) which had
a fixed effective length of 50. The Servo was applied in two routines EXCITE
and UPDATE, EXCITE takes the afferent input to the net and changes the .
excitation levels of the elements that each input corresponds to. It
initially extracts the excitation level of the cell receiving the input from the

NIF and decays its value using the Excitation Decay rate. It then uses the
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Servo value as a percentage and alters the decayed excitation by this
amount. In other words it amplifies the excitation that is present at the
current time. This value is then added to the value of the afferent

input and the NIF is updated. The routine UPDATE does the same thing
but takes its afferent excitation input from other cells. The aims were to
reward particular connections with the Learning Schema and thereby
reinforce pathways that raised the firing level of the output area and, using

the Servo mechanism, to globally control the level of firing.

The afferent input to the net is provided by two sets
of routines, the signal generators and the signal spreaders. As described
earlier, certain elements are designated input elements and the signal is
applied to these. It is also applied to certain of its neighbours, determined
by the signal spreader routine. The signal generators GN1S1G to GN8S1G
provide a level of excitation for a given simulation time. GNI1S1G provides a
constant signal, the value being that set in Stage 2 (the constant signal value).
GN2S1G provides a pattern changing every 50 time units (50, 0, 20, 0) and
GN3S1G provides a sinewave. The remainder are for use with the split run
type of experiment, described in Chapter 4, whe re for example an on/off signal
is provided for the first 500 time units and a constant signal the reafter.
GN5S1G, GN6SIG and GN8SIG also employ a delay before the signal train
starts and a variable 'on' signal length. In all the periodic signals, the

period, delay and length of the 'on' signal have been defined in Stage 2.

Whatever the signal is, it is spread around the input centre
with the radius defined as a parameter. The method of spreading is to excite

six additional points, in the input slice, on the main axes and diagonals
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through the input centre. Two typical patterns are shown in Figures

9 and 10, the latter having two adjacent input centres.
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Figure 10 -taken from Experiment F12

The routines GEN, GENI1 and GENC define two methods of
interconnection of cells, Random and Local Bias. GEN generates random
connections by calling RAN2A and reducing the range to be from 1 to the total
number of cells in the net. The Local Bias met-hod is more complicated.

It involves the setting up of a table, by calling GENC in the Evaluation
Routine (E11) before starting the net. This table sets out all possible
displacements from a cell situated at the centre of a 2 x 2 x 2 cube to every

possible connection on the surface of the cube. The distances between the
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cell and its connections is therefore 1 or 2. GENI chooses between the
two subsets so defined, with a proportional bias to the shorter distance.

The routine then selects within the selected subset and obtains a three
dimensional displacement to be added to the original cell'é own co-ordinates.
GEN1 then checks that the proposed connection lies within the net and, if

so, enters the value in the connection array. Various modifications to

this were later added at this stage to enable toroidal or semi-toroidal nets
to be simulated. Both routines ensure the same unique set of connections
are generated every time, for a particular cell, by multiplying the connect-

ion seed by the cell number before the first call of RANZA.

During the running of the program the internal state of each
cell can be printed out on the line-printer, using NINLP, and a diagram
of the net indicating the firing cells can be printed out using PATTRN.
Also the synaptic weights that were changed in the previous time slice can
be displayed, using WIDUMP, to give an indication of the changes taking
place in adaptive nets. These three options are controlled from the sense
switches (see Figure 1). Various routines are used to store and retrieve
data in the disk files of Figure 5: GRAFIN, INDIV, GRIND, ADFIL, SAVTIM,
TRANSF, ARCHIV, NIBSEK, THEXL, FILEV. The routines providing all
decay functions are DCAYTH, DCAYEX, DECAY 1 and DECAY 2 which employ
the rounding routine ROUND. QFIR examines the NIF data in the Effect
Stage of the simulation to see if a cell is going to fire. Similarly SPNFIR
examines any unfired cells nominated as spontaneous to see if their special
conditions for firing are satisfied.

The final major routine used within the actual simulation is

the adaptive algorithm HEBB, employed in the experiments of Chapter 5.
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The purpose behind the design is discussed in Chapter 5. The idea is to
modify the synaptic weights, as with the previous algorithm, but

dependent on conditions local to each fibre rather than the global

conditions used before. The value of a synaptic weight is increased if

there was a coincidence of pre and post-synaptic activity. In other words
the condition is satisfied if a particular fibre was active and the next time
slice the receiving cell fired. If this condition was not satisfied the weight
value decays. Various forms of this idea were implemented but in all cases
the routine determines whether the reinforcement condition was satisfied

by first examining, as the last operation of the Effect Stage, the Connection
Weight List file. In the Affect Stage, if a certain element had fired in the
previous time instant and its connections were therefore active, the Wei.ght
informa tion used to update the NIF file would have been accessed. Each
element's Connection Weight List contains a record of the last time used
(see Fig. 8) and this is updated, if used, in the Affect Stage. The routine
HEBB therefore accesses this variable and can tell which elements had been
on the Firing List the previous instant. If the subsequent afferent connections
from these previously firing elements are on the current Firing List then the
reinfor cement condition is satisfied. This is de‘termined with the aid of
FILMAT. The actual altering of the weights is performed within HEBB.
Several parameters can be specified in Stage 2 of the Experiment which
define, for instance, the reward as a percentage and the maximum synapse

weight allowed.

After the run is finished a routine RESULZ2 is called which,
dependent on sense switch settings (see Fig. 1), displays graphs of the data
produced and calls the Spectral Analysis routines. All these Analysis
routines employ a suite of programs for displaying graphs on the line-

printer. There are five versions of these routines that produce either graphs
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that occupy a single sheet of line-printer paper or spread over several.
A variety of scales are used, integer, real and logarithmic in certain
combinations. A version that produces several data sets on one graph
is employed to display the Cell Firing Histogram (to be described).
RESULZ can also call a routine called AFPROF which produces the
Affect Profile for the run. This is a histogram of times since cells
last fired and gives an indication of how many cells are affected each

time slice.

The two back-up programs, BU and BU2 call a different form
of RESULZ and the Cell Firing Histogram routine FEATUR, respectively.
BU provides the facility for accessing subsets of the raw data and does so
by either listing and plotting graphs or calling the Spectral Analysis routine
SPEC3. Finally it can call LINK, a routine that lists the major connections
left in the net after an Adaptive Run of Chapter 5. The options are once
again controlled by the sense switches. The routine SPEC3 takes the raw
data, normalises it (displaying the mean and standard deviation) and produces
autocorrelation data, raw power density data and smoothed power density
data. These data are listed and also plotted on the line-printer. As this
program was coded from a textbook, and not basically my own work , it is
only briefly discussed, together with some underlying mathematics, in

Appendix A.

BU2 also analyses subsets of data, but this time the data written
onto disk by the routine FEATUR during the running of the program. This is
a coded form, in eight wordé-per time unit, of the firing pattern of a 5x5x5
net, This was used in Chapter 5 to analyse, in more detail, patterns of cell
firings. BU2 uses the routine F1 to extract the data from disk and unpack it

and then produces a series of histograms that show the number of times each
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cell had fired at various stages of the run, All the histograms are displayed
on one graph to show changing rates of cell firing. The rea sons for doing

this form of analysis appear in Chapter 5.

The Assembly Language routines written for the Prime are
basically to provide the bit manipulation facilities FORTRAN does not supply.
However, it also became clear that the Prime Disk File System provided
only serial access mode and therefore new disk drivers had to be written
to implement random access file organisation. These routines were written
and tested using the interrupt routines written to test the speed of the pseudo-
random number generators. The random number routine RAN2A was also

written in Assembler.

When the CDC 7600 at Manchester and the 1904S at Aston
(see next section) were used all the above Assembly routines had to be
changed. The system was originally designed with the idea of localising
any such changes in a group of routines, such as these, to maintain the

portability that might be vital if one ma chine irretrievably broke down.

Machines Used

All of the experiments reported in.Chapters 4 and 5 were
performed on the Prime 300 mini computer. The System was tried on the
CDC 7600 at Manchester and the ICL 1904S at the Computer Centre at
Aston, but both were impractical. The ICL 1904 S was incapable of running
a set of more than two networks in the Multi-Run mode without being
interrupted by operators or hardware failure, and had a turn-round of
24 hours. The CDC 7600 had an even longer turn-round and the workload

from other Aston users made access difficult., The CDC machine did provide
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a solution to an intractable error on the Prime when the equivalent code

failed even to compile.

Approximately 200 experiments were carried out on the
Prime 300 in dedicated user mode over a period of approximately 16
months. The machine became extremely unreliable in the last six months
having an up time of approximately one day in five. A great deal of that
time was wasted tracking intermittent errors which invalidated much of
the work. This meant all the runs of Chapter 5 had tobe run twice and

compared.
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CHARTER IV

Network Activity

Introduction

This Chapter is divided into two main sections. The first
section deals with preliminary experiments which attempt to find
interesting areas that can be investigated, in greater depth, in the
attempt to locate machines capable of signal processing. This section
is described in detail, not because of the relative importance of the
results but to indicate both the type of data produced in these simulations
and the most basic properties of the nets modelled. The second section
of experiments, employing spectral analysis techniques, presents the
important results, but only describing in detail the facets of the experi-
ment that supply evidence for an oblserved property.

All the parameters defining each experiment are listed in Table 1,
which can be found at the end of the chapter. The first section describes
experiment groups A, B and D and the second section uses the results
of groups D, E and F.

The cell numbering of the networks- used is from 1 to the total
number of cells used, with the dimensions varying quickest in the order

column, row, slice.

Group A Experiments

Net Number 1 was generated with the parameters given
in Figure 1. This is a reproduction of how they appear on an experiment

listing,
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NET NUMBER 1

SIZE: M=5 N=5 Z=5

THRESHOLD: RANGE=10 TYPE=1 SEED=4

THRESHOLD DECAY: RANGE=4 DISTN TYPE=1 SEED=2
EXCITATION DECAY: RANGE=4 DISTN TYPE=1 SEED=11
SYNAPSE WEIGHTS: RANGE=125 DISTN TYPE=1 SEED=65
MAX NO OF WTS = 5

IERATIO I TOE:1 TO ]

SPONTANEOUS NEURONS: NUMBER=5 DISTN TYPE=1 SEED=2

FIGURE 1

The details of signal input are found in Table 1 under
Experiment Al. The purpose of this group was to find the type of
activity certain parameter values produced. Five spontaneous elemen.ts
were generated and the signal input area is illustrated in Fig. 2 by the
square of four firing elements in the pattern of firing diagram. The
input signal value was 50, the units being the same as those of the
excitation and threshold data. The subsequent activity (see Fig.2) was
very low, dying out, for the first time, by time unit 6. The spontaneous
elements had fired immediately as the initial net state was such that the
resting and current threshold values were equal and therefore satisfied
the special criterion for refiring. The simulation was run for 51 time units.
Figs. 3-5 illustrate the three basic types of raw data that the simulation
produces. As the activity is so low, the effect of the input on the
excitation graph is clear, the high values being extinguished when there
is a burst of firing. Normally, with nets of later experiments, this effect
is not so noticeable as the remanent excitation values do not accumulate.
Similarly with the threshold graph, the refractoriness of the net can be
seen. Initially with a relatively high burst of firing the net becomes highly
refractory, the total threshold value reaching a maximum. As this value
is decayed (the threshold decays all being 4%) a few elements refire and

the threshold graph shows a peak again. As the level of activity is so low,

=00 =



Figure 2

- * L]

Initial

TIME SLICE 2

-

SLICE 3

.

.

*

activity of Experiment Al

2o 28 R



2500 A

Remaneng.
Excitation
1500

1000

500

Figure 3

=500 =

Experiment Al - Excitation Graph

300 L

Threshold
Total

200 +

- 100 +

20

Figure 4

30

40

+

50

Time

Experiment Al- Threshold Graph

Firing
Level

40 4

30

20l

10 41

10

Figure 5

20

30

Experiment Al - Firing Graph

40

50

Time

~-bhZ-

Y

Time



however, a general downward trend is observed until near the end of

the experiment. The second experiment, A2, omitted any spontaneous
elements (by sense switch control) and the activity was slightly lower.
The third experiment, A3, made an attempt to increase these firing
levels by changing the ratio of inhibitory to excitatory elements from

1:1 to 1:5. It also included spontaneous elements again. It had been
noticeable in the previous two experiments, from the dumps of the
Neuron Information File (NIF), that many elements had negative
excitation totals which, even with a very low threshold, made it
impossible for them to fire. The result of the changes was quite marked
and the first four time units (or "time slices') of activity is displayed

in Fig. 6 and the raw data graphs in Figs. 7-9. Activity is maintained
until time unit 11, indicating that this is still a highly damped net.
Experiment A4 omitted spontaneous elements and, as in Experiment A2,
the difference was slight, the maximum firing level being slightly less
as the five spontaneous elements were not present to fire in the first time

slice.

Group B Experiments

The previous nets had decays that were too small for any
maintained activity and so both excitation and threshold decays were
increased from 4% to 20%. This group of experiments was to test the
Servo and Learning Schemes (described in Chapter 3) and briefly examine

their effect on the activity levels.

The first experiment, as it was a new net, was run with
neither facility to provide a comparison with later runs. The effect of the
increased decay is immediately obvious from the Excitation, Threshold and

Firing data graphs (see Figs. 10-12). The activity only dies out immediately
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after the main peak of activity and a wavelike fluctuation around a mean
level of 8 (elements firing per time unit) is noticeable. The threshold
graph emphasizes the wavelike behaviour as the changes produced in the
data displayed when an element fires are not as relatively large in the
threshold graph as they are in the firing level diagrams. The threshold
graph is reminiscent of the threshold graph produced by Farley (1960).

The Excitation graph shows lower values and this is because the remanent
excitation is extinguished with higher firing rates. Examination of the
NIF during the run showed that, whilst most cells were different in state,
there were groups of elements that had similar states and this may explain
the tendency towards synchronized activity in the firing data. Experiment
B2 introduced the early form of Global Learning, here termed Reward.

As described in Chapter 3 the Reward is calculated to be directly
proportional to the firing level of a specified output area. This area was
defined as elements 119, 120, 124 and 125 only. (i.e. a square of 4 elements
in the bottom right-hand corner of the final slice). The Reward was printed
out on the experimental listing and never increased above zero. The
possible Rewards were (-10, -5, 0, 5, 10). Despite the increased firing
rates the refractory nature of the cells meant that the continued firing

of the output area was unlikely. Consequently the synapse weights were
generally reduced. The effect of this is not particularly noticeable until
after time unit 50 (see Fig. 13) when the activity is different, but at a

similar level,

The next experiment, B3, employed the servo mechanism
described in Chapter 3. As the activity was always below half the number
of elements in the net, which would correspond to the 'zero' value of the

Servo, the Servo was always attempting to amplify the activity. The changes
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caused by the servo are noticeable very soon (see Fig. 14) but
there is only a slight suggestion of an increase in the mean level of
activity, towards the end of the run. Experiment B4 employed both
mechanisms and different activity again occurred but with similar

general form as Experiment B3,

Conclusions

1, As previous authors have found (e.g. Farley (1955,1960),
Anninos (1967, 1972)) extremely complicated behaviour arises from these
networks which can change with the slightest change in parameter values.
2. The data needs to be considered on a global level by

for example graphical displays, that show overall patterns of behaviour.

Group D Experiments

The previous small group of experiments had very short
simulation times and it was felt larger nets could be simulated without
any difficulty. They could show if the lack of smooth waveforms in the
firing data was a function of the small net size and low activity level.
A net of 500 elements was therefore generated (10 x 10 x 5). Apart
from the increase in size, the net was similar to those used in the Group
B experiments as the individual cell parameters were the same (see
Table 1). The input area was again a square of four elements in the bottom
right-hand corner of the first slice and the output area was the corresponding
square in the fifth slice. Experiment D1 was run twice, once for 69 time
units and then, when the system was enhanced, for 200 time units. The
Firing Level is displayed in Fig. 15. Both Reward and Servo functions

were enabled. The firing was extinguished after the initial surge, as
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with the previous experiments. However the activity also died out

towards the end of the run. Either the spontaneous elements or the

input restarts the net. The waveforms appear much smoother,
particularly late in the run with a period of near 20, as in Group B.

Also there appeared, by examining the NIF, many elements with similar
states. One factor which is noticeable and is at variance with Anninos
(1972) is the lack of cycling. Whereas later firing waves were similar

in form, none duplicated another. The reason for this is that these nets,
compared with those of Anninos, have far more possible states as each
cell has many threshold and excitation levels. Throughout every
subsequent experiment cycling does not occur with the exception of some
experiments late in Chapter 5 whose interconnections have been drastically
reduced by the learning algorithm HEBB, which made the net effectively
much smaller. The mean level of firing was approximately 25 with a
maximum of 71 (14.5% total). By examining the state of the NIF during

the run it appeared 122 elements never fired, but the vast majority had
fired 'recently'. This means either the non-firing cells had received

no connection or were affected only by inhibitgry synapses. In Experiment
D2 the servo was omitted but only slight changes were noticeable in the graph
of the firing data. The servo, therefore, could not have affected the level
of firing in the previous run as it had failed to alter the mean level of
activity from that of this experiment, despite its value being nearly

always at the maximum, The experiment did iliustrate that the waveforms,
as they were similar to those in Experiment D1, do not depend on a particular
sequence of firing elements and must therefore be a function of the net

parameters themselves,
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In Experiment D3 a new net was generated, with elements
the same as those in Experiments D1 and D2 with the exception that the
threshold decays were all made 50%. The increase in the threshold decay
made the refractory periods much smaller and the waveforms of the
firing activity changed considerably (see Fig. 16), having a period of
9 or 10. The remanent excitation data was very low and often only the
inhibitory wells of excitation remained. These persist longer as they
can only be extinguished by decay or receipt of excitatory pulses from
other cells. If the cells never receive positive pulses the inhibition
tends to accumulate despite the decays. These wells are the main reason
many cells never fire (123 out of 500). There was an initial downward
trend in the firing data which seemed to disappear towards the end of the

run,

In Experiment D4 another new net was generated with the maximum
number of connections emanating from one cell being raised from five to ten.
As a consequence of the manner of determining individual weight values
(see Chapter 3), this altered the synaptic values too. The excitation level
graph was much higher due to the surplus of éositive pulses now possible.
The maximum firing level was now 198 and an initial decay was still
evident. This was due to the fact that the learning algorithm was
producing an overall decay of weight values as discussed before. The
firing level of the output area was still on an average less than 50%. An
interesting feature (see Fig. 17) was the dip in values of the excitation
graph before its main peak as all the positive pulses were extinguished
and only the inhibitory (negative) pulses remained to be counted. The
ma ssive number of cells firing subsequently produced a large spike of

remanent excitation due to the net's refractory state.
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All cells now fired at some stage in the run. The next experiment, D5,
increased the number of possible connections from a cell to 15. Very little
difference in overall activity was noted. (Fig. 18). This may be because
the additional afferent excitation each cell receives is insufficient to cause
it to refire earlier than before. A cell may be fhought of as existing in

one of several threshold states, each state being defined by the threshold
level. If one assumes that the cells are firing at fairly regular intervals,
as the cooperative argument of similar cell states would tend to imply,
then a particular cell may fire at either one threshold state or the one

'next' to it, To be forced to fire at a higher rate, then, the cell must
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fire at a higher threshold state and therefore be receiving proportionately
more excitation. As the decays involved are percentage decays, the
steps involved imply that the required increase in excitation is also

a percentage increase, which becomes very large with high firing rates.

Experiment D6 generated a similar net but with a different seed
to the pseudo random generating algorithm producing the connections.
Despite every connection now being changed the overall behaviour
was similar (see Fig. 19). Whilst the Firing graph is different, the
only noticeable change in general pattern occurred in the last 25 time
units, when a series of oscillations of increasing amplitude appeared.

It would appear, therefore, that the general pattern of firing is
independent of which cell is connected to which. This agrees with
similar findings of Anninos (1967). To try and isolate the cause of the
gradual decay in activity the servo and learning were now inhibited in
Experiment D7. The gradual decay disappeared and a highly stable form
of activity resulted (see Fig. 20). This agrees with the argument
proposed after Experiment D4. Experiment D8 repeated D7 but
inhibited the servo mechanism and Experiment D9 omitted the learning

mechanism. The Firing data is displayed in Figs. 21 and 22,

Intermediate Conclusions

%o From Figs. 20 to 22 it is clear that the servo (in
its current design) is having a minimal effect. -Subsequent experiments
indicate that nets with regular or continuous input are stable anyway
and so the use of the servo mechanism is abandoned. The results of
Experiments D7-9 were later confirmed by Experiments D22-24, see

Table 1.

b=



200

Firing
Level

100

Figure 19

Experiment

D6

20

-

40

60

-

e

120

140

160

-

200

Time



200
Firing

Level

100

200
Firing

Level

100

Figure 20 Experiment D7

20 40 60 80 100
Time
+ + - $ $ i : + o

200

Time



]
200 { Figure 21 Experiment D8
Firing
Level
100 4 § : i Mg P eiie. o L
0 o + + + t + t + =
20 40 60 80 100
Time
A
200 |
Firing
Level |
100 | : s
0 } t 4 + } t t } a
120 140 160 180 200

Time

iphele



Figure 22 Experiment D9
200 +
Firing

Level ¢ :

100 |

)
oT

-+

80 . 100
Time
]
200N
Firing
Level [ ® TR T g S a e B o 1 ¥ — B M L R s B | et
100 | Y
0 + + + — + t + t +
120 140 160

200

Time

-B0-



2, The Reward Scheme is only reducing the level of
activity because of the low probability that more than half the output
area is firing at any one time.

3, The stability of the nets was a little surprising as
previous workers (eg Accardi 1972; Allanson 1956; Amari 1972)
emphasized the instability of nets. Their nets however did not receive
constant or regular input and it is this and the spontaneous elements that
restart the net or keep it going. Harth (1967), for example, dealt with
nets receiving constant input but his elements had refractory periods
of only 1 time unit and therefore a greater likelihood of firing. He
considered his nets to be damped and as the nets considered here have
longer refractory periods, these nets may be described as highly

damped also.

The final set of experiments within this group examined
the effects of inputs of certain patterns on the net as a whole and on individ-
ual elements within it. In order to classify signals it was considered that
the net, of necessity, must exhibit changed behaviour when the input
changes.

The first Experiment, DIl regenerated the net used in Experiment D7 and

applied an input as follows: -

Time Input
1-50 50
51-100 10
101-150 0
151-200 500

The Excitation level graph changed from that of D7 at time 51 but a

brief increase was noted despite the lowering of the input signal. This

et =



apparent anomaly was probably caused by the non-firing of some
inhibitory cells. Subsequently the activity is different but the general
mode of the activity remained the same (see Fig 23). The only discernible
difference was in the reduction in amplitude of the oscillations and so nothing
in the general behaviour could signify the type of input being presented.

In Experiment D12 the threshold decay was reduced to 30% to slow down
the rate of firing and involve longer effective refractory periods. (An
effective refractory period is the actual quiescent time of a cell for those
cells thatregularly fire before the threshold has decayed to the resting
value.) This would mean the net had more possible 'microstates!,

to use the terminology of Anninos (1967). The total behaviour of the net
was insensitive to the input signal changes, but examination of three
individual cells showed one which displayed changes of activity when

the input changed (see Fig. 24).

A net with denser interconnections (20 per cell) was generated
and a new seed employed. Certain cells in this run, Experiment D13, did
show sensitivity to the input but this was not visible on the global data.
Experiments D14 and D15 used maximum synapse weights of 80 and 40
respectively and Experiment D16 dispensed with spontaneous elements,
but again few effects of input signal changes were discernible. An
additional input centre, with a radius of spread of two, was added which
increased the total number of input cells to 13 in Experiment D17. At the
three points in the simulation at which the input signal changes, different
modes of activity were noticeable ( see Fig.25). The individual cells
examined at the same points did not show any corresponding changes.
In Experiment D18 two different input centres were used involving 6

elements. The Firing level data showed less changes in the amplitude
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(amplitude modulation) at the signal changes and also showed amplitude
changes when the input was not changing. It began to appear as if the
amplitude modulations were not primarily caused by the input signal.

Experiment D19 employed a new signal:

Time Signal
1-100 50
101-200 0

Variations in the firing activity occurred but they seemed to be
unrelated to the signal changes. The lack of correlation between firing
level amplitude modulations and input signal changes was also noticeable
in Experiment D20 which used the input centres of Experiment D13, A
third input pattern was presented to the network of Experiment D17 in

the Experiment D10;

Time Signal
1-10 50
11-100 0
101-110 50
110-200 0

The net 'dies’ at time unit 149 (see Fig. 26). It appears that the net needed
the input to 'turn the corner? in the deepening troughs of firing level

and eventually activity extinguished.

Conclusions of Experiments D11-D18

j The effect of the input signals was not clear. It
first appeared that the inputs were causing amplitude modulation of the
firing data waveforms but later runs indicated that this was independent
of input changes.

2. It would appear that while directly stimulated elements
can show signs of afferent stimulation this ' information’ is not transmitted

to the rest of the net because of the internal noise of background firing.

-86-



Figure 26

Experiment D10

200 + Activity Graph
Firing
Level 4 i
100 .
0 : e AL . - " } -
20 40 60 80 100
Time
}
200 1
Firing
Level | :
100 ¢ ¥
2 120 140 160 180 200

Time

-87-



3. Future experiments may need higher input levels
to cause an effect to be widespread within the net.

4, As the activity of the networks are so complicated,
it is necessary to examine the global data and generally ignore the
individual behaviour. This means that subtle changes that inputs
may induce in a net are not visible to the eye in the raw data graphs.
What is needed is a method of data reduction that quantifies the data
for comparison. Spectral Analysis is proposed as a technique that
provides a suitable quantitative analysis based on frequency. The

Spectral Analysis Program is discussed in Appendix A.

The remainder of the Chapter, therefore, examines

networks using this technique.

Experiments Involving Spectral Analysis

As mentioned in the introduction to this Chapter, the
method of description changes at this point. The aim now is to provide the
evidence for the various properties noticed during the simulations and to
omit a considerable amount of detail that is not so relevant.

The code numbers of the experiments were allocated when a run
was completed and documented in the laboratory book used. However due
to occasional failure of the machine necessitating reruns, consecutive
numbering does not therefore imply a logical relationship between the
runs, Also, certain experiments are candidates for providing evidence
for more than one type of property and so the following method of description
is adopted: A property discovered for these simulated nets will be

described and examples of that property either illustrated in detail or
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listed for comparison. Several examples of sets of Related Experiments
(see below) which illustrate the property will be given and the code
numbers of the runs given in this form: ( [a,b,c], |d,e,f], (g, h) )
where the code numbers in the [ ] brackets correspond to 'directly
Related Experiments' whose parameters only differ in one way, that of
the property under discussion,

The frequencies mentioned in connection with Spectral
Analysis are usually considered in terms of their corresponding

period values as the input signals are defined this way.

Natural Frequency of Networks determined by Decay Constants.

As a prelude to this discussion the effect of varying
the amount of input to a net is demonstrated by experiment sets
(|F11, Flla], [D16, D17], {F18, F19], (F8, F9]). In the previous
section of experiments runs D16 and D17 were identical except that D17
had an extra input, centred around element (5,5,1). The spreading of
inputs to adjacent elements that is employed in these nets implied an
increase in input elements of from 4 to 13. By visually inspecting the
graphs (the Spectral techniques not being implemented until Group E experi-
ments) it was found that the number of cycles displayed was the same
for each run. (21.5 in 200 time units). The mean firing level of
Experiment D16 was lower but the amplitude of the waves higher than in
Experiment D17, A similar change was made-to Experiments F'18 and F'19.
This time the number of inputs was almost doubled from 16 to 31 input
elements and the Firing data's Smoothed Power Density Function (FSPDF)

for each experiment is displayed in Figures 27 and 28, The mean firing
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level for the higher input run (F19) was slightly raised (17.57 to 18. 33)
but the standard deviation was less (7.6 to 6.3). Experiments F11 and
Flla (see Table 1) yielded the Firing data Smoothed Power Density
Function (FSPDF) of Figures 29 and 30. Experiments F8 and F9
produced the FSPDF graphs of Figures 31 and 32. This data confirmed
the supposition that the frequency of the net was unaltered, whilst the

amplitude and mean level changed.

To examine the effect of decay rates on frequency,
various sets of experiments were run that varied the decays for the
same input signal: ( [E2, E5, E6, E7, E8, E9, E10, F14], (F4, F5) ,
(F6, F11}, (El11, F1f, (F2, El, F10] ). The first set of experiments
all supplied an input of period 10 to the nets. The decay rates were
varied independently é.s can be seen from Table 1 and in the case of
Experiments E7, E8 and E10, one of the decays was generated by picking
from a distribution (type 2) with the maximum value set by the range.
For instance, Experiment E7 has threshold decays set randomly within
the range 1 to 60% and the seed to the pseudo random number generator
is 10. The Smoothed PDF graphs are displayed in Figures 33 to 41.
Figure 33 is the Power Density Function of the Excitation data from
Experiment E2, [At this stage the system only produced the PDF graph
for this data.] It is therefore compared with the same PDF graph for
E5 (Fig. 34). In Fig. 33 it can be seen that the power is centred on a
frequency of 0.1 with an even area each side of the main peak. This
central frequency corresponds to a period of 10. The PDF in Fig. 34
shows a wider spread of frequencies with none dominating. This wider
spread is probably due to the two types of decay rate being used there

being, therefore, two different 'sources of frequency’. The PDF of
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the firing data (Fig. 35) indicates a higher frequency. This is usually

the case as the remanent excitation graph is influenced more directly

by afferent excitation whilst to affect the firing graph, the input has to
cause a significant change in firing activity. The frequencies are still
widespread but a peak corresponding to a period of 5 is now apparent,
Figure 36 shows a much more defined peak, typical of nets with equal
decay rates, centering around a frequency corresponding to a period

of 6. The peak is not sharp and the raw data indicated low amplitude,
broken waves, Figure 37, from Experiment E7, shows once again a
different graph with a main peak corresponding to a period of 10 and a
subpeak at period 6. In this experiment the threshold decay rates

are defined by a range which may explain the wide spread of frequencies.
Figure 38 is similar, with a lower peak as the excitation decays are
defined by a range. Experiment E9 with fairly low decays gives rise

to a wide spectral band centred around a period of 7 but being similar

in shape (see Fig. 39) to that of run E6. Experiment E10 (see Figure 40)
defined the decays to be equal but in the maximum possible range 1 to 63%.
This produced a wide spread of frequencies with a peak at a period of 10,
perhaps indicating the input's increased influence on this net. Figure 41 of
Experiment F14 had equal decays, all of 40% and a frequency band

corresponding to periods 15 to 5 resulted.

The second set to illustrate the effect of decay constants is
[F4, F5] the FSPDF of each run being displayed in Figs 42 and 43, The
change of decay rates from F4 to F5 of 20 to 30% has caused a shift of
frequency from period range 14 to 20 to range 12 to 10, The remaining
three sets are not 'strictly related! as the total input differed slightly

between runs (see Table 1) but due to the findings of the initial section,
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that total input does not affect frequency in these ranges, they are
included as well. The FSPDF data is displayed in Figures 42 and 29.
The shift in frequency, caused by altering the decay rates from

30% to 40%, correspond to period range (10-11) (for 30%) and 7 (for 40%).
Set 4 |E1l, F1] have FSPDF as in Figures 45 and 46. The change in
position of the peaks indicates a main component at period 20 for F1 and
13,3 for E11. Also the spread of frequency components is greater in
Experiment E11, indicating a greater mixture of frequencies. Run E11
had both excitation and threshold decays as two different ranges. The
median value for decays would be 31% whereas the decay for F1 was
20%, The next set (FZ, F10) have FSPDF shown in Figures 47 and 48.
These indicate a shift of frequencies, typified by the main component,
corresponding to periods of 18 for F2 (with decays of 20%)to from 8 to 9
for F10 (with decays of 40%). As a summary of the above observations
Fig. 49 shows approximately the relationship between decay values and
the periodic values of the main component of those nets with equal decay
rates. The data was taken from the following experiments: [FZ, F8, F10,
F20, F28, F29, F23). The second half of the following split run type of

experiment (to be described later) confirmed these values: |[F21, F24, F26,

o |8

Conclusions

32 In all the sets mentioned the frequency of the firing data
changed when the decay rates of the individual cells was changed.

2, In the case of nets with excitation and threshold
decays all set to the same value, it can be seen that the frequency of the

net is proportional to the decay rates. The changes are more pronounced
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at the lower frequencies. (i.e. <. 1)
5 In the case of nets with mixed decays, either different
single values for excitation and threshold or both defined by ranges,

the frequency of the net is more widespread.

The Effect of Different Connection Algorithms

Several connection algorithms (described in Chapter 3) were
tested and their effect on the Spectral Graphs is examined in Experiments

([E10, E11], [F28, F31, F32, F33]).

Experiment E10 employed the random algorithm
GEN which generates connections to every position within the net with
equal probability, Experiment E11 uses a local bias algorithm that
generates connections with a probability diminishing with distance from
the cell . In both cases no special effects occur at the edges, the
loutward connections! being lost. This is altered in the second set of
experiments. Examples of connections from one cell with 10 connections in
both modes are given in Figures 50 and 51. The difference between the
spectral graphs can be seen in Figs 40 and 45 and is quite marked, as if
the network of E11 had longer refractory periods. Experiment E10
yielded periodic components of 11 to 6 with the main peaks' range as
7-8. Experiment E1ll's equivalent ranges were 16 to 7 with a main peak
between 11 and 16. This lowering of frequengy may be explained by the
increased probability of a connection in the local bias algorithm landing
in a refractory pool. By definition of the algorithm, the cells nearby
will have been most affected by other cells. Supporting this theory is
the difference in the mean level of activity (E10:55, E11:45), the random

algorithm being the higher.
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Toroidal connections overflow every boundary (edge).

Certain elements often receive more than one connection.

Further algorithms were tested in the second set of related

experiments. Experiment FF28 used a local bias algorithm and gave a
spectra as in Fig. 52. The next related run used a circular net which
allowed connections to pass from slice 1 to slice 5, like a strip of paper
joined at its ends. At first the activity could be seen to spread around
both ways from the edge of the net and meet in the middle but after

this it was difficult to see refractory troughs forming in the haze

of activity. The difference in the FSPDF was an increase in the

period 4 component but an inherent frequency at the period of the

'circle diameter? (i.e.5), was not observed (see Fig. 53). Experiment

F32 reduced the overflow of connections to one direction only but the
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spectral graph showed little change, Finally in Experiment F33

a completely toroidal net was generated where connections overflowed

in the manner employed in Experiment F32, but in all three planes.

This represents therefore a fictitious net, with no edges. Such a 'blob'
might behave like a net extracted from a larger net where the overlapping
connections actually pass into the surrounding cells and an equal

number return. The resulting FSPDF (see Fig. 54) had a new

component at a lower period, 5. The difference is small however and
may only reflect the increased activity due to the higher number of

connections (previous overlaps being lost).

Conclusions

Changing the number of connections inherently by a
major alteration to the connection mode produced more frequency shift
than a particular pattern of connectivity within the same mode. This
was also noted throughout the thesis in other experiments, not directly
related to the above runs but differing in parameter values found to be
relatively insignilicant in altering frequency. It also agrees with

Anninos (1972) in this respect.

The effect of Net Size

Only two net sizes were simulated, the 5 x 5 x 5 and
10 x 10 x 5. The effect of changing the net size is illustrated with
experiment pairs ( [F10, F20], (F11, F16}, (F12, F17], [F13, F1§] ). The
FSPDF graphs are illustrated in Figs. 48, 55, 29, 56, 57, 58, 59 and 27
respectively. If the main peaks are compared one set ('25‘13, Fl&] provide

noticeable differences. There has been a shift to a slightly lower period
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of activity (7-8 in F18 instead of 9 as in F13). Also Experiment F20,
whilst producing a similar range of periodic components (7-9) (see
Fig. 48) to that of Experiment FF10 (periods 7.5 to 9) the graph had a
slightly different shape suggesting an absence of components between
7.5 and 8.0, This may be an artifact of the increased number of points

plotted and detail shown by employing a maximum lag of 100,

Conclusions

The range of frequencies of a net is largely unchanged

when switching between the two sizes of net simulated.

The Effect of Signals on a Network

After showing that the natural frequency of a net is
largely dependent on the decay rates of the threshold and excitation,
the effect of input signals on that '""natural frequency' is examined.

Two sets of experiments are used to illustrate the effects: ([F10, F11,
F12, F13, F14, F15), (F16, F17, F18, F20]), the first graph being
the 500 element net and the second the 125 element net. Both have
decays of 40% as can be seen from Table 1. One would expect a

'natural frequency’ of near 8 (see Fig. 49).

The 10 x 10 x 5 net

The net under constant input has a frequency illustrated
by its FSPDF shown in Fig. 48. The net was then subject to inputs of
periods 6, 7, 8, 9 and 10 and the FSPDF's resulting are shown in
Figs. 60, 57, 29, 59 and 41 respectively, By comparing Figs. 48 and 60
it can be seen that the natural frequency component has been reduced to

a 'bump' and the new major component corresponds to the input period
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of 6. Experiment F12 (period 7) also has the input's period as the
main peak. The two components of the PDF have merged into one
which encompasses the period range 6 to 8. The next experiment

has the input period at the natural frequency of the net (see Fig. 29).
The two main peaks are periods 7.5 and 8. 0. Next, an input of 9 is
applied to the net(F13) and Figure 59 displays the FSPDF and it can

be seen that the input component has passed through the natural
frequency band and begun to emerge on the other side. The input
frequency is the main component but a significant component at the
natural frequency still remains. Finally an input of 10 is applied

to the net in Experiment F14 and the FSPDF of Figure 41 results,

The input component is now indistinct and the highest value of the main
group of components corresponds to the natural frequency. A component
at period 5 becomes visible and may represent a small inversion in

the larger waves noticeable in the raw data.

The 5x 5 x 5 net

This net was subject to inputs of period 7, 8 and 9.
Experiment F17 produced an FSPDF for a period of 7 and is illustrated
in Fig. 58. This can be compared with Fig. 55 (F20) which used a
constant input and displays the natural frequency. The periodic input
produced a reduction in natural frequency apd an increased input
component. The large area under the graph indicates a fairly wide
range of underlying frequencies (periods 6 to 9). Next, a signal of
period 8 was applied in Experiment F16 (see Fig. 56) and the major

component now corresponds to that period. The range under the spike
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is from periods 7 to 9. Finally an input of period 9 was applied
(F18) and a wide range of frequencies resulted with no outstanding
peak (see Fig. 27), the largest value (corresponding to the input

frequency ) being only slightly larger than its neighbours.

Conclusions

The natural frequency of the net was not eradicated
by the input signals but is often not the main component frequency
of the resultant activity. It would appear that the input signal is
added onto the underlying activity of the net and does not 'drive! the

net at its own frequency.

Resonance

In the previous section a series of runs tested the
effect of inputs of varying periodicity and during these runs an input
period was made equal to the previously observed natural frequency
(Experiment F11). The resultant spectral curve showed two adjacent
peaks (see Fig.29). The interval is 7.4¢p<8.11 where p is the period
length. The net would appear to be operating at very nearly one
frequency. A second example is given by the set of experiments
([F1, F2, F3, F4, F7]). This net has decays of 20% and this would
suggest a natural frequency in the range 16._18 (see Figs. 47 and 31).
Several inputs were applied to the net. Experiment F1 (see Fig. 46)
supplied an input of period 10 and the FSPDF shows a clear input
component. Experiment F4 (see Fig. 42) uses an input period of 14

and the FSPDF of Fig. 47 shows there is a shift to a higher frequency
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and the period 14 component is enlarged. Experiment F7 (see Fig. 62)
uses an input of 17 and the FSPDF shows a twin peak corresponding

to the period interval 19<p<16. However in Experiment F3 only

one spike in the FSPDF (see Fig. 61) is visible, having used an input
of 18. This is the sharpest spike in the signal inputs noted so far
(corresponding to the interval 19¢<p¢18) and implies the net is

running at one frequency.

In both cases, F3 and F11, the nets appear to be
oscillating at one frequency and therefore could be resonating. If
resonance was occurring then there should be a significant difference,
from their related experiments, in the standard deviation calculated
for these runs. Table 2 shows the figures involved. The figures
reveal that the two largest values for set 1 are in fact for the 2 input
frequencies closest to the natural frequency. In the second set however
this is not the case, the largest value being that of F12 with an input
of 7. As mentioned before the FSPDF indicated a mixture of

frequencies from 7 to 10,

Conclusions

Despite the occurrence of single, sharp spikes in
some FSPDF data this did not involve resonance as examination of
the standard deviation score illustrated. Resonance phenomena imply
larger amplitude fluctuations which would increase the standard deviation
score dramatically. On examining the raw data, it became clear that
for the smoothest waves (e.g. F3 or E11) the input was coinciding
with the middle of a trough and synchronizing with the net's

emergence from refractoriness, However this situation was very
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easily disturbed, by internal firing and the input became out of phase

with the waveforms and this interrupted the smooth waveforms.

Persistence

If resonance had been established in the previous
section, then different sets of nets with the same internal decay
constants could be used to recognise incoming signals by resonating
at the receipt of a signal at the correct frequency. However the
activity was largely determined by the decay constants and the input
frequency could only be determined using Spectral Analysis. This
section therefore examines if the additional components in the spectral
graphs, due to the periodic input signals, persisted for any length of
time after the signal had changed to a constant one. The experiments
are called 'split runs' as they had two signals input to them, one
in the first half of the runs and one in the second half. The first
is periodic, the second constant. Using the Back Up program BU
spectral analysis was applied to either set independently. The set
of experiments were ( [F21), [F23-F26), [F27], [F28-F30]).

The first experiment, F21, was a 5 x 5 x 5 net with 40% decays.

In this run an input of period 7 was applied for the first half of the
run. Figure 64 shows the first and second half spectra superi mposed.
A shift to the lower frequencies is noticeable and the component
corresponding to the periodic input is reduced. A new net of 60%
decays was generated to achieve a lower natural frequency. Several
inputs were applied and their FSPDFs are displayed in Figs. 65-68,
corresponding to inputs signals of 1, 7, 5, 3. As can be seen no
signal dominated, the firing rates of the cells being high. No record

of an input frequency is apparent and this result was also confirmed
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with runs F28, F29, F30,

Conclusions

Persistence of the effect of an input signal did
not occur. The second half of the runs bore no record of the

activity in the first half,
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Excitation

Expt. [Net | S5ize Threshold Threshold Synapse Max. No. |I.E. Connection|Spontaneous Set Up | Conn.
Code No. Range/Type | Decay Decay Weights of Ratio |Multiple [Neurons Number | Option
Seed Range/Type |Range/Type | Range/Typd Weights Number/Type
Seed Seed Seed Seed
Al A2 1| 5x5x5| 10/1/4 4/1/2 4/1/11 125/1/65 5 izl 237 5/1/2 1 Random
A3, A4 2 1:5
B1,B2, | 3 20/1/9 20/1/9
B3,B4
D1,D2 4 | 10x10x5 20/1/20 20/1/5
D3 5 50/1/12 20/1/11
D4 6 10
D5 7 15
D6,D7, 8 125/1/101
D8,D9
D11 3a
D12 9 30/1/10
D13 10 125/1/65 20
D14 11 80/1/65 321
D15,D16| 12 40/1/65
p17,D10), 5
D18,D19!,
D20
D22 20/1/20 20/1/20 125/1/65
D23 13 20/1/65
D24 15 115/1/65
Table 1 part 1, page 1 = Parameter details for Experiments in Chapter 4
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Expt. Net |Size Threshold |[Threshold |Excitation | Synapse Max. No.|I.E. Connection |Spontan. [Set Up |Conn.
Code No. Range/Type |Decay Decay Weights of |Ratio | Multiple |Neurons [Number [Option
Seed Range /Type |Range /Type | Range/Type [Weights Number/
Seed Seed Seed Type/Seed
E1-E4 14 |10x10x5 | 10/1/4 30/1/10 20/1/20 40/1/65 5 1:5 237 5/1/2 5 Random
E5 13% 50/1/2
E6 14% 50/1/2
E7 15% 60/2/10 40/1/20
E8 16 40/2/20
E9 17 100/2/4 40/1/2 20/1/2
E10 18 200/2/4 63/2/7 63/2/27
Ell 19 33 Local Bias
F1-F4, 19% 40/1/4 20/1/2 20/1/2
F7-F9
F5,F6 20 30/1/2 30/1/2
F10-F15 21 40/1/2 40/1/2
Fl16-F21 | 22 5x5%5 40/1/4 40/1/4
F23-F27| 23 60/1/2 60/1/2
F28-F30| 24 50/1/2 50/1/2
F31 2-way
doughnut
F32 l1-way dt.
F33 Toroid
F34 60/2/2 60/2/5
Table 1 part 1, page 2 - Parameter details.
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Expt. [Max. Learn |Servo| Run |[No. of | Positions| Types |Radius |Max | Period |Learn |Signal|Duration|Signal| Total
Code Synapse Length | Inputs of Lag of Factor| on of off Input
Weight Spread Mdm:n Value |Signal Value (per 100)
ignal
Al-A4 = - = 51 1 5951 1. 2 = 1 = 50 1 0 5000x4
B1,B2 N,Y 72
B3 N Y
B4 b 4 ¥
D1,D2 Y,N [69,78 10410, 1
P3P see text 200
Dl 2- N N pattern
D16 a
D17 2 5.5 1 5000x13
10,10,1
D10 pattern
b
D18 .11/ pattern
10,10,1 a
D19 pattern
D20 5,5,1/
D22- T 5 ¢ 10,10,1
D24 10,10,1 1
El N N 2 TS i 20
10,10,1
E2 3 10 100 1000x13
E3 7y 1400x13
E4 e 3 5 1400x38
4,5,1
E5-E10 45,1/ 1 10
10,10,1
Table 1 part 2, page 1 - Parameter details of Chapter IV Experiments
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Expt. | Max. Learn | Servo| Run No. of | Positions | Types| Radius |Max | Period | Learn |Signal | Duration | Signal | Total
Code Synapse Length Inputs of |Lag of Factor| on of dmwmm Input
Weight Spread Input Value | Signal per 100
E1l - N N 400 2 4,5,1/ 3 1 20 10 - 100 1 0 1000x13
10,10,1
F1 1000 5 91 1000x71
F2 1 50 5000x71
F3 18 100 10 1540x71
F4,F5 14 1630x71
F6 8 2170x71
F7 17 1540x71
F8 500 1 50 m 30 3000x71
F9 40 4000x71
F10 20 2000x71
Fl1, 8 139 9 2330x71
Flla 95 1932x71
Fl2 280 28 7 91 8 1962x71
F13 450 45 9 100 10 1990x71
F14 500 50 10 LY
E1S 6 2026x71
Fl6 320 1 33,1 3 1,typ2|32 8 95 9 1932x16
F17 500 2 50 7 91 8 1962x16
F18 9 1990x16
F19 2 3,3,1/2,3,1 1990x31

Table 1 , part 2, page 2

Paramater details of Chapter IV Experiments
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Expt. | Max. Learn |Servo| Run No. of | Positions |Types | Radius|Max |Period | Learn | Signal |Duration|Signal | Total
Code Synapse Length | Inputs of Lag of Factor on of off Input
Weight Spread Input Value [Signal |Value per 100
F20 - N N | 1000 2 33,012,511 3 2 100 | 1 - 20 1 0 2000x31
F21, 3,4 7/1 91/20 9 1962x31/
F24 split 2000x31
F23, 1 20 2000x31
F28,
F31
F25 5/1 91/20 2270x31/
2000x31
F26 3/1
F27 7/1 300/20 9 4974x31/
2000x%31
F29 10/1 200/20 10 2900x31/
2000x31
F30 8/1 3280x31/
2000x31
F32- 1 20 2000x31
F34

Table 1 , part 2 , page 3

= Parameter Details of Chapter Experiments
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fXpaTLment ERECRIES Spike Input Mean Standard
Code and Net Periods (in order . f{ring |Deviation
Figure No. of of size) FEtiod
No. Level
FSPDF graph
Fl 46 19 22 t0'15,10 10 31V1 390
F2 47 19 17 to 19 = 35.8 320
F3 61 19 17 to 19 18 3159 410
F4 42 19 14, 17 to 19 14 3145 380
F5 43 20 12 to 11 14 48,5 260
F6 44 20 1250 "Lt 8 8 49.1 290
i 62 19 17.3 to 19, LT 31.2 410
17.3 to 15.8
F10 48 21 8 to 10 = 70.6 200
Fl1 29 21 8 8 69.6 200
F12 57 21 7 to 10 7 68.5 230
F13 59 21 el 9 69.1 210
Fl4 41 21 10,8,5 10 69.2 190
F15 60 21 5 'to &, 8§ to 11 6 69.6 210

Table 2 (Fig 63)

Table giving the standard deviations for

Experiments at or near Resonance conditions.
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CHAPTER V

Adaptive Nets

Introduction

The results of Chapter 4 indicated that networks,
as simulated in these experiments, do not have an inherent memory
capability, as the effect a signal has on a net is swiftly lost when the
signal is removed. When the signal is present there is no simple
means of identifying it by, for example, recognising a unique
feature of the resultant activity. It was felt, therefore, that the
nets must be made adaptive and then, perhaps, the resulting changes
would produce different behaviour, in the form of activity, to be

able to distinguish between input signals.

The method of adaption was based on the modification
algorithm of Hebb (1949), which rewards coincidence of pre- and
postsynaptic activity by increasing the synaptic weight values and,
conversely, decaying them for non-coincidence. The changing of
synaptic weight values was shown, in Chapter 4, to have a significant
effect on the resultant activity, although. not to the same degree as
changing the decay rates had. However, altering the interconnections
between cells rather than the properties of the cells themselves
implies greater flexibility, as the number of potential sites for

modification is so much larger.

The Hebbian type of algorithm was chosen in preference to
a global form of Reward (e.g. as was used briefly in Chapter 4) as

it was felt that any processing performed by the latter type was
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inherent within the algorithm. The local type of adaption this
Chapter's algorithm uses can be thought of as a property of

the cell fibres and therefore 'automatic! in function, The first
few experiments test out the various forms of the algorithm, the
details of which are illustrated for explanation, The implementation
of the basic algorithm (HEBB) has been described in Chapter 3.
T his Chapter is divided into three sections, the first dealing with
the effect of various algorithms, the second with the spectral
analysis of the nets and the third using the new form of analysis,
the Cell Firing Histogram. All the Experiments' important
parameters are listed in Table 1 which can be found at the end of

the Chapter.

Testing the Algorithm

Whilst the basic method of adaption is always the
same the parameters governing the rate of reward are altered
to find the most promising algorithm. Much of this early work is
similar to, but independent of, the theoretical discussion in Uttley

(1976).

Figures 1 to 6 indicate the various percentage changes in
synapse weight, in Reward and Punish Mode, that are used in this
group of experiments. Method 1 (Fig. 1) was to apply a 5% increase
in value in the Reward case and 0.1% redﬁction in the Punish case.
As the Punish Criterion was more likely to be satisfied, in a low
activity net, the change in this case was less. However, due to the
very low Punish reduction percentage employed, this Mode had no

effect., At the end of the run (Experiment TL3) most of the synapses!
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weights had veen vastly increased and many were on the maximum

value of 512. This obviously provided no discrimination,

Method 2 (Fig. 2) produced more stable behaviour, in Experiment

TL4, but a trend of activity was indicated by large values in the
lowest! fre quency cell of the Firing data Smoothed Power Density
Function (FSPDF). This method had a simple Reward increase of

2 synaptic weight units, rather than a percentage. Method 3 (Fig. 3)
produced a larger trend, which was visible in the raw data, as a
gradual increase in the mean level of activity, of Experiment TLS5.

The values of the Punish factor were smaller (see Fig. 3) for a
particular firing level than in Method 2 and therefore had less of an
effect in reducing the synapse weights and consequently the activity
level. Method 4 (Fig.4) produced, in Experiment TL13, an
indiscriminate increase in synapse weights with, for a randomly
chosen element, 47% of the weights having reached the maximum value.
Method 5 (Fig. 5) involved increasing the Punish factor with the result
that 18% of the final synapse weights were at the maximum value.
(Experiment TL14). An attempt was made to reduce the difference
between the maximum and minimum values of the final synapse weights
to prevent certain pathways becoming totally dominant. This,
hopefully, would increase the number of possible final connection states
of an adapted net. Method 6, therefore, employs a maximum synapse
weight of 100. Most weights became zer;) and the few that remained,
approximately 10%, were at the maximum. For a system that could
be retrained on new signals, the minimum value must be capable of

being 'resurrected’ to any level. Two methods to achieve this were
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employed, the first involved adding various rounding terms to the
calculations to prevent terms going to zero and the second used

a higher adaption percentage to make significant changes to the
small values. The general scheme of Reward and Punish Percent-
ages is illustrated in Figure 6. .This general scheme was employed,
with a few modifications, in the later runs, and the final weights
typically indicated many small non-zero values, a few maximal

and fewer still in the middle range. This was considered satisfactory.

During the running of Experiments TL2-TL23 to test
various algorithms, their global effects on the net were also
examined. As in the previous Chapter Spectral Analysis was
employed and features such as Persistence of input signal were
looked for. The adaption changed the frequencies of firing in some
cases, but a dominant frequency, after adaption, usually bore no

relation to the input frequency.

By their nature, the algorithms tend to emphasize
certain pathways at the expense of others and it was hoped that
circuits would be formed of reinforced fibres and hence contribute
a significant frequency component of their own. It was further
hoped that these frequencies might be different for different inputs.
An example of the final major pathways, typical of that produced
with these algorithms is shown in Fig. 7 taken from Experiment

TLBI.

The elements in the first slice number 1 to 25. In this
Experiment all cells bar 10 and 20 receive periodic input of 6., It

can clearly be seen that as the cells in the first slice generally fire
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Figure 7

from Experiment TLB1

(At the end of run)
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together, they do not form strong links between each other,

For reinforcements to take place the two cells involved must fire
one after the other. This is far more likely in the centre of the
net where the rhythmic effect of the input is soon lost in the
background firing (as discussed in the previous chapter). The
main links from the input cells are to the fifth slice to which they
are directly joined. There are no return links from this area as
the first slice will then be in a refractory state and unable to fire
"in sequence''. Long chains are rare but one involving medium
and strong connections is (4, 120, 115, 57, 107). There are 3
chains of length 5 and 7 length 4. No circular paths can be seen.
There are other connections, not shownon the diagram, of low
synapse weight and so cells that appear to be isolated may not be.
There may in fact be loops, formed from the visible chains plus
several "small" synapses. A strong link has a synapse weight of

over 80 and a medium link has one of over 30 (excitation units).

Conclusions of the Initial Group of Experiments

Despite quite drastic synaptic changes, frequencies
typical of the input are not noticeable at a global level. The major
pathways formed made no complete circuits which may explain this.
The threshold and excitation decays (all 60%) were such that elements
would tend to fire every four or five units of time and return links to
the input elements would be expected to have been built up. However,
the algorithm may be too harsh by only allowing reinforcement if
the post-synaptic activity occurred one time unit after the pre-
synaptic activity, Despite this, final synaptic weights were different
for different inputs indicating a certain amount of discrimination
had been recorded.
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To attempt to maintain the stability of the nets and retain
high activity levels the relatively common occurrence of inhibitory
reinforcement will be prevented. Fromthis point on, only excitatory

synapses are modified.

Frequency Analysis of Adaptive Nets using Spectral Analysis

For this and subsequent sections, the approach of
Chapter 4 is re-adopted of providing groups of strictly related
experiments to illustrate a particular property. The experiments
in this Chapter are all variations of the 'split-run' type in which a
periodic signal is applied to the net for the first half of the experiment,
whilst the net is allowed to adapt. In the second half the input is changed
to a constant signal and the adaption is inhibited. In this way any remanent
frequency that is not part of the net's natural rhythm must be due to the

signal in the first half of the experiment.

The Effect of the Maximum Synapse Weight and the Rate of Adaption on
Frequency

Several runs using different values for the Maximum
Synapse Weight (MSYN) and the Adaption Rate (FACTOR) were performed
([TLB20, 21, 22, 24, 25, 26], (TLB23, 27, 30]). The first set
varied MSYN. Examining the raw data it became clear that the net
was virtually cycling, as very regular types of waveforms were being
produced. They were never exactly the same., but one of the closest,
in this thesis, to the type of repetitive activity noticed in Anninos'
nets (1972). In the second half of the run the waveform changed as
the input signal became constant but was still cyclic. This continued
throughout the run. The patterns of the waveforms produced in this

type of run often contained sequences of 'sub-waves' which although
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perhaps being different in shape were picked up as the same component
in the Spectral Analysis. The FSPDF does show only small components
as contributing to the power but, by examining the raw data, the length
of the main cycle was seen to be around 24 units. A section of the
waveforms for Experiment TLB21 is displayed in Figure 8 (showing

two consecutive points at the same level beginning at time units

957, 981) and the FSPDF in Fig. 9. The nets, by elimination of the
majority of pathways, have become 'simple nets', with a reduced number
of states. All the FSPDF produced by these experiments were very
similar, indicating only the high frequency sub-components of the main
cycles produced, but the pattern of these cycles in the raw data was
always very different. The major connections for Experiment TLB21,
which are typical of the set, are displayed in Figure 10. The connections
formed in this set did not differ very much, particularly in the input slice,
but the connections showing the greatest change, in the centre of the net,
often , when connected to the same elements, had different strength of
connection to those elements . The raw data indicated that changes
were taking place quite abruptly in the firing rates, by an upturn in the
level of activity. Figure 11 is a plot of the Maximum Synapse Weight and
Rate of Reward (FACTOR) against the time of the first occurrence of a
major change in the firing rate. Assuming that this is an equivalent

state between simulations, the effect of the rate of reward in speeding

up the adaption to reach an almost final state of connection path can be

seen, The effect of MSYN is not a simple linear relationship (see Fig. 11).

A medium value, for the Maximum Synapse Weight, of
50 was chosen for Experiments TLB34 onwards. This means that the

difference between the largest and smallest synapses is not too great.
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The choice of the rate of Adaption was taken to be 20%, to achieve
the quickest alterations in weight value and thus increase the net's
sensitivity to small changes in input. From the graph it can be seen

that major changes will have occurred within the first 50 time units,

The Effect of Decay Rates on the Formation of Cycling

This section employs Experiments ([TLB31, 32, 33]) to
investigate how cycling is affected by the natural frequency of the net.
The runs of Experiments TLB9-12 had decays of 60% and several
exhibited cycling of period 24. Experiment TLB31 with 50% decays
exhibited cycling, in the second half of the run, of cycle length 40.
TLB32, with 40% decays, exhibited cycling in the first half of the run
when the periodic input of 6 was stimulating the net but in the second
half patterns of activity could be seen that were similar but they did
not repeat exactly. This also happened in Experiment TLB33 with
30% decays. No exactly repeating sequence of firing levels could be

seen over the entire length of the second half of these last two Experi-

ments.

Conclusions

It would appear that, as the decays increase and the
number of states an element can be in decreases, so the likelihood
of cycling increases also. The nets with slower decays therefore can be
compared using Spectral Analysis techniques ‘as these would not be

adversely affected by cycling.

The Effect of Signal Input on Frequency and Form of Activity

The Experiment group testing the effect of signals on the

net is ([TLB9-12), [TLB13, TLB14], [TLB15-17], [TLB35-39],
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[TLB40-43], [TLB46-49], {TLB35], [TLB36, 43, 46], [TLB37, 42, 47],

[rLB38, 41, 48], [TLB39, 40,49)) named Sets 1 to 11 respectively.

The first Set employs the local bias connection algorithm
GENI1, and applies signals of period 6, 5, 7, 8, respectively.
TLB9, with a periodic value of 6, achieves cycling after the input changes
to constant and repeats every 24 time units. As usual, this confuses the
spectral routines which display large low frequency components, which
usually suggest a trend and a few components arising from sub-cycles
within the main cycle. The activity of the last 50 time units is displayed
in Figure 12. Experiment TLB10 of periodic input 5, produces a
cycle of 24 again with clear subcycles of length 3 and 4, which were
picked up by the spectral analysis. The final 50 time units is displayed
in Figure 13. TLBI11, of period 7, does not achieve cycling but
TLB12 does with a period 12 (see Fig. 14). The sub-components of
7 and 5 are picked out by the FSPDF. The next two sets employ the
random algorithm GEN. Set 2 uses periodic input values of 8 and 7
respectively. TLBI13 produces, from an input period of 8, cycling of
period 24 which was made up of subcycles 2 and 6, see Figure 15.
TLB14, with a period of 7, did not produce cycling but a mixture of
low frequencies, 4, 3 and 2. Set 3 used a net with 45% decays and
input periodic values of 7, 8 and 5. They did not produce perfect
cycling although there were similar patterns being produced which
became broken up into new patterns. An example is the final activity

levels of TLB15 with an approximate cycle of 21 (see Fig. 16).

In the next experiments the signal is more complex and
is defined by two parameters X and Y. These have been defined in

Chapter 3 and are the length of the 'off' signal and the length of the
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'on' signal. They are both varied, in turn, in the remaining Sets

(see Table 1). The nets used had 40% decays, Maximum Synapse Weight
of 50 and a Rate of Adaption of 20%. From the section on effects of
decays on cycling it would appear that nets with this rate of decay

are less likely to have fixed cycles as there are more states each

cell can be in, so the FSPDF should be more useful. The first
Experiment of Set 4 used an X value of 6 and a Y value of 2. The
resulting spectra is shown in Figure 17. The Y value for subsequent
experiments in this set was increased by one and the resultant spectra
are reproduced in Figures 18-21. As can be seen, the spectra vary
considerably for these very slight changes. This was true for all the
remaining Sets and brief descriptions of all the main components of the

spectra are given in Figure 22.

Conclusions

The very slightest change in an input signal produces
vastly different final activity in the nets after adaption. For nets of
short refractory period perfectly cyclic activity is often produced, the

pattern of which is unique for each input signal.

Clearly, from the exceptions to the exact cycling shown in
Experiment TLB11 for example, from Set 1, the factors determining
whether exactly repetitive signals are produced is complex. As the
conditions for reward in the HEBB algorithm are so precise it may
be that, with certain signals, these conditions are not satisfied often
enough for major connections to form and subsequently ""dominate'
the activity flow. Nevertheless, in the non-cyclic cases, similar

shapes of the activity graph were seen to repeat and indicated some
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Set | Expt. Code Figure Brief description of Main Components of FSPDF produced
) TLB4O Components at 6 ,9,10,3 ; Small at 2;
TLB41 2 6 , 3 5 2 larger;
TLB42 L4 6 , 5 increased, 3 reduced, 2 missing;
TLB43 i 8, 9 , 6 reduced , 5 up;
6 TLB46 4 7, 6 , sub-peak at 4;
TLB47 - 6 to 12 without 9, sub-peak at 10
TLB48 Wider spread, 3 peaks : 5,7,8
TLB49 Large spike at 6 ,5; Base of spike at 10-5, sub—peak at 3;
7 TLB35 17 Main peak at 6 , sub—peaks 8, 9;
8 TLB36 18 Components at 9,8,7, minor peak at 6,4, mEmww trend value (very low frequency)
TLB43 Very similar with increase at 5;
TLB46 Sharper spike, components at 7,6
9 TLB37 19 10,9,8 , sub-peak at 6 ;
TLB42 Lower period spikes 6,6.5, sub-peaks at 5 and 3;
TLB47 Components at W , spread around 10 ,lowest periods now absent;
10 TLB38 20 Component at 6 with slight spread but not to next periods,slight peaks:10,4,2;
TLB41 Very similar but 3 larger and 10 reduced;
TLB48 Vast change : 8,9,5 and very wide spread;
I § TLB39 21 Components at 6, sub-peaks at 5,8,3;
TLB4O Similar but component at 3 increased;
TLB49 Components at 8,9,10,6 and 3 reduced;

Figure 22 Brief description of FSPDF from Experiment Sets 5-11

Components are described in terms of period with the
main spike's period underlined.
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reinforced pathways were having a considerable effect. It was as if

the net had produced a coded version of its own for each signal.

The problem remains, however, of detecting these signals produced,
but the net now has this record permanently in its "wiring". The third
main section of this Chapter deals with the analysis produced employing

the Cell Firing Histogram.

The Cell Firing Histogram (CFH)

In previous sections it was often necessary to re-examine
the raw data to see the effects of various signals. As a result of adaption,
many pathways had been virtually eliminated and there arose the
possibility of activity passing along a relatively small set of ""preferred
pathways'' and that these pathways were different for different inputs.
In other words specific sequences of firing cells may be produced
depending on the input value the '"naive' net was ''trained on'". The
adaption algorithm rewards successive firings between cells and chains
have been shown to be forming (see Figs. 7, 10) which would make
specific firing sequences tend to repeat. The volume of data, however,
describing every pathway is vast and so a éonsiderable amount of
data reduction is necessary before printing the data on a lineprinter.

It was argued that, if "preferred pathways' had been reinforced at the
expense of others, then the firing rates of the cells on the preferred
pathway would be higher than those on the less used ones. So a
necessary condition for similar firing sequences to take place is that
certain cells should be shown to fire at higher rates than others. Also,
if those sequences were different for different signals then the graph

of the firing rates of each cell should be different as well. The Cell
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Firing Histogram displays the number of times each cell has fired.
The actual display used superimposes several histograms, calculat-
ing the data at equal intervals of time throughout the simulation.

This was done to try to obtain a visual picture of changes in cell
firing rate, which would be represented by the widening or narrowing
of the gap (if any) between successive component histograms. The
Cell Firing Histogram is defined as the display of a set of histograms
taken at specified intervals. The method of calculation is described
in Chapter 3. The Back Up program, BU2, displays a CFH for
several intervals of the simulation and using different values of the
increment between each successive histogram. For the sake of clarity,
only a subset of the data displayed on the lineprinter is reproduced in

this chapter.

The Effect of the Maximum Synapse Weight and the Adaption Rate on
the CFH

It was decided to examine the effects the Adaption
parameters had on the CFH produced. If certain settings of parameters
produced CFH graphs whose individual cell values differed considerably,
then this would make recognition of signals easy to achieve, by testing
certain cell's firing rates. Two sets of Experiments were performed
which varied the Maximum Synapse Weight (MSYN) and the Learning
Rate: ( [TLB20-22, TLB24-26, TLB29), [TLB27, 30} ). Set 1 had an

Adaption Rate (FACTOR) of 10%.

Considering the Experiments in order of increasing MSYN,
the Maximum Synapse Weight, (see Table 1) it became clear that as
MSYN increased, so the level of activity of the elements in the slices

that did not receive external afferent excitation, increased very sharply.
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The CFH for the maximum and minimum values of MSYN are

displayed in Figures 23 and 24. The input area slice tended to

remain constant, with a few of its elements matching 'background’
cells for firing rate. The top value of MSYN (150) meant that certain
cells fired continuously. This must mean the synapse weights are

so large that certain elements are always receiving more than 1023
units of excitation (the maximum threshold value). Only 7 connections
at this maximum weight would be needed for this to occur. The
advantage of this value for MSYN is that there is considerable difference
between the cell's firing rates which, if different for different inputs,
make input identification easier. This net had decay rates of 60%

so the firing rate and therefore the likelihood of reinforcement is going
to be high anyway. The Second Set examines the effect of varying the
Adaption Rate percentage, FACTOR. It uses MSYN value of 100.
Considering these runs in order of increasing FACTOR value the effect
is even more dramatic (see Figs. 25 and 26) than by varying MSYN,
The experiment using the final value of FACTOR (Experiment TLB28)
had to be aborted as so many weights were at the maximum that the
whole net was almost saturated with activity. The simulation, which
works fastest with low activity, became intolerably slow. Clearly this

rate of activity was not going to discriminate between different signals.

Conclusions

Despite the variability of individual cell response when the
Maximum Synapse Weight was very large, it was felt that such a net's
discriminatory ability would be small as most of the synapse weights
would be the same. Consequently, subsequent experiments, bearing in

mind the natural frequency of the nets concerned, used low MSYN values
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and high FACTOR values which did not cause saturation of the net.

The Effect of Different Signals on the Cell Firing Histogram

The experime;nts in this group are ( [TLB9-12],
[TLB15-17), |TLB34-39]), [TLB40-43], [TLB46-49], [TLB36,43,40],
[TLB37, 42,47), |[TLB38, 41,487, [TLB39, 40,49]) where Sets 1 to 5

examine the effects of varying the X parameter in the signal definition
and Sets 6-9 examine the effect of varying Y. If the effect of an

input on the net was to make certain cells fire more than others, then
these cells could act as indicators of particular input patterns. To
examine the effect a signal had on a net, the CFH of the second half

of the experiment was examined. With every change of signal the CFH
changed, as displayed, for example, by the CFH of time units 501-600
for experiments TLB34-39 (see Figs. 27-32). The CFH of the remaining
Sets differed as well, supporting the view that different preferred
circuits were being formed for even the smallest change in input.

The cells in the first slice had higher levels as they were receiving
constant input and therefore fired more frequently. Only in a few

cases did cells from other slices fire at a noticeably higher rate than
their neighbours and then they tended to do so for several inputs. This
may be because of an unusually strong connection path, perhaps caused
by two connections being generated to the same cell or one cell receiving

pulses from more than one input element.

Conclusions

Whilst different preferred circuits have probably been
formed for small input changes, detecting them is still difficult.

The 'readout' problem is that it is difficult to tell which pattern has
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presented itself, as very few individual cells fire at a greater rate
than their neighbours and consequently the information, these high
firing cells contain, is limited. Perhaps different values of MSYN
and FACTOR would improve this situation. The input elements

fire at a higher rate than the rest of the cells so an attempt was made
to try and see if it was possible to control this effect by an association

property.

Conditioned Reflex Behaviour

The idea was to provide the net with two inputs in the

fir st half of the run and then remove one of them in the second half.

The two inputs were applied to two different areas of the first
slice of the net. The input that was on continuously, the permanent
input, was applied to the top two rows of cells in the input slice and the
input which was removed at the halfway stage of the run, the temporary
input, was applied to the bottom two rows of cells. This was simply
to keep those cells in the same area, contiguously displayed on the
Cell Firing Histogram. As a result of the Bigher levels of input the
two areas receive in the first half there should be a greater chance of
the Conditions of Reward to occur. If, as a result, there are links
built up to these areas, then even when one of the areas receives no
more external excitation, the reinforced pathways to it should raise
its activity level above those cells in the other slices. Two groups were
run: ([TLB55, 56, 57], [TLB68, 69 70, 71, 58, 59)) . The first
experiment of Set 1 did not produce any associations as the firing levels
of the input sites were not appreciably larger, in the first half, than

the other elements in the net as the input level was so low (20 units
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every time unit, see Table 1). The next experiment used two

identical periodic signals in the first half and in the second half

the 'permanent signal' became constant. The reason the permanent
signal becomes constant is that the second half of the permanent

signal could be thought of as an 'enquiry' signal, stimulating the net for a
record of what it had just adapted to. If the net showed any retention of
the temporary signal in terms of frequency of subsequent behaviour

or special type of patter‘n of activity, then it would be misleading, in
the investigation of this, to be supplying the net with just that frequency
all through the Experiment. Again no association took place. The
third experiment yielded a '"'disassociation', that is the "temporary"
input area had lower firing levels than the surrounding elements. This
is probably because the temporary input area either fired exactly with
the permanent one or just before it and was therefore highly refractory
when the permanent input area fired. Hence the conditions for
reinforcement of connections between the areas was rare. Also,

as the local bias algorithm was employed, nearby cells will have been
triggered by either input and the pulses returning from them will also
reach the temporary input site when it is refractory. The decay of
connections that are not reinforced means the temporary area will soon
receive very little excitation and when the source of its input is removed

in the second half, its firing rate will be lower than its neighbours.

The second Set of experiments did provide some
associations, however. It was felt that the constant input signal of

TLB55 was too low and so various other values were tried (see Table 1).
Experiment TLB68 provided a constant input of 30 units

-146-



of excitation each time unit but again this did not make the input

areas fire sufficiently quickly. An input level of 50 units of excitation,
in Experiment TLB58, did provide an association, in that two cells

of the temporary input area fired at rates greater than those in the
other four slices, but less than those in the permanent area. An

input level of 60 units of excitation provided an association of 5 elements
(out of ten possible in the temporary input area) in Experiment TLB69.
Their subsequent firing levels were the same as the permanent input
area. There were also three other cells in the net which now fired at
the same rate, situated in the fourth and fifth slice, The CFH of the
last half of the experiment is shown in Figure 33. Increasing the input
further to 90 (Experiment TLB70) brought the number of associations
down to 3 and two others fired at a slightly less rate but more than the
rest of the net. (see Fig.34). Increasing the input to a level of 100
excitation units per time slice brought the associations down to 1 and
increasing the level to 120 (Experiment TLLB71) means no associations
formed at all. In fact, three disassociations formed. The increasing
of the input may have forced the exactly synchronous firing of the two
areas, which from the discussions concerning the first set of the grou;':,
meant the satisfying of the adaption criterion increasingly unlikely. As

a result certain cells had their afferent connections '""decayed away''.

The Effect of Delaying the Signal on the Formation of Associations

To test further the sensitivity of association forming,
a periodic input was applied to the net as the temporary input incorpor-
ating a delay. The delay was varied to see how it affected the

associations built up, The group of Experiments is denoted by
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([TLB72-76] ). The input signal had X, Y values of 6, 1. (see Table 1).

Two runs, using delays on the signals of 3 and 5, produced
associations (Experiments TLB 73 and 75). The remainder all produced
disassociations, the most exagge rated case involving a delay of 4.
(Experiment TLB 74). The resulting CFH of these last three runs are

displayed in Figures 35 to 37,

Conclusions

It would seemtherefore, that the associative ability of
a net is highly sensitive to the relative temporal occurrence of the
pair of signals. If the cells of the temporary input area do not fire
in the time unit following the instant the permanent input cells fire,
then those cells are likely to be inhibited when the temporary input is
switched off. Perhaps more 'generous' conditions for Reward would
reduce this sensitivity, Nevertheless, this association or disassociation
does seem to provide a mechanism for matching signals, as those signals
not satisfying the Reward criteria cause strong inhibition in the area in

which they were 'compared’,
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Expt.|Net|Decays |Type| Conn.| MSYN |FACTOR [Adapt [X Input | Comment

Code | No. Mode Me thod Type

w2 |25 60 2 |Loecalf SI2} 1/0.1| 1 8 1

TL3 5/0.1

TL4 2/5

TL5 3

TL6 4 3

TL7 3 J=Learn

TL8 Full Learn

TL9 4 No Learning

TL10 6 }— Learn

TL11 4

TL12 5

TL13 200 20/1q 4 b

TL14 20/29 5 Initial Weight

TL16 | 26 100 Ringe k0

TL17 Rounding Term °

TL18 5

TL19 -

TL20 10/10

TL21 3 Toroidal

TL22 3% Reflecting

TL23 Toroid,init.
syn. wt, = 10

TLB1 | 28 6 6 Modify Excit

TLB2 5

TLB3 = No Adaption

TLB4 5 No Adaption

TLBS - Split Run

TLB7 | 29% 2 Random Conns

TLB8 | 30 1 6 No Adaption

TLB9 Adaption

TLB1O )

TLB11 7

TLB12 8 Table 1 , page 1

TLB13 ik

TLB14 7

TLB15| 31 45

TLB15 8

TLB17

TLB18 29 60 2 6 1

TLB19| 30 1 2 150 3

TLB21 105

ST B2




Expt.
Code

Net
No.

Decays

Type

Conn.
Mode

MSYN

FACTOR

Adapt
Method

Input
Type

Comment

TLB22
TLB23
TLB24
TLB25
TLB26
TLB27
TLB28
TLB29
TLB30
TLB31
TLB32
TLB33
TLB34
TLB35
TLB36
TLB37
TLB38
TLB39
TLB40O
TLB41
TLB42
TLB43
TLB44G
TLB45
TLB46
TLB47
TLB48
TLB49
TLB50
TLB51
TLB52
TLB53
TLB54

TLB55
TLB56

TLB57
TLB58
TLB59
TLB60

30

48

67
68
69
70
71

73
74

75
76
77
78

60

50
40
30

40

95
100
125

75

85

100

90
100,

50

10/10
15
10

20
10

10

20

6

o S = S o Y = - SR - B

K L & oo B W

OOy it B W

1/6
4/7
5900
1/6

1/7

ICSIG=20

ICSIG=50
ICSIG=100
ICSIG=20

Table 1,page?
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Expt. |[Net |Decays |Type |Conn. |[MSYN [FACTOR|Adapt Input | Comment
Code |[No. Mode Method Type
TLB65 |83 | 40 1 2 50 20 6 L7 ICSIG=50
TLB68 |86 ' 1/6 ICSIG=30
TLB69 |87 ICSIG=60
TLB70 (88 ICSIG=90
TLB71 |89 ICSIG=120
TLB72 |94 17 ICSIG=50
delay=1
TLB73 |95 delay=2
TLB74 |96 delay=3
TLB75 |97 delay=4
TLB76 |98 delay=5

Table 1 , page 3
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CHAPTER VI

General Conclusions and Further Directions

Introduction

This Chapter collects together the main findings of the
Experiments and indicates the areas that appear the most promising
for further work. The Conclusions, naturally, only refer to the models

of neural networks simulated in this thesis.

List of Conclusions

1. Highly complex behaviour was obt ained from simple
component units. This was obvious from the first simulation and
indicates how difficult it is to predict behaviour without some form of
modelling.

2, The type of net simulated with decays of 20-60% and

rich interconnections of 5-20 efferent fibres per cell, produces
activity which is highly damped and yet, with a constant input,
generally stable and oscillatory.

3. The frequency of the activity o.f the Net is directly
proportional to the decay rates of the cells in the net. The frequency
resulting was named the Natural Frequency.

4, If cells have different threshold and excitation decays then
there is a mixture of frequencies of activity with neither dominating.
5. If the mode of conne ction is changed (e. g. local bias to
random) then the frequency of activity is altered, but the same number

of different connections in the same mode has no effect on frequency.
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6. Changing from the larger to the smaller net size
simulated, can have a slight effect on the frequencies observed.
This may be due to a relative increase in edge effects inherent

in a smaller net.

7. Periodic input signals to a non-adaptive net do not
eradicate the natural frequency of the net, by driving the net at the
input frequency.

8. Resonance effects were not observed in these highly
damped nets.

9. Non-adaptive nets lose the effect of an input signal
very quickly after the signal is removed.

10. The frequency of activity of an adapted net is not
related to the frequency of the signal input in a useful way.

3. Cycling in nets' activity levels is only likely in those
nets whose cells have a high decay rate and therefore a limited
number of states. Consequently, cycling, resulting from adaption,
is also only likely in nets with relatively few microstates before
adaption.

12, The final activity of an adapted net is highly sensitive
to changes in input signal pattern and, therefore, is a unique record
of the signal it adapted to.

13, It is likely that different pathways have been formed for
each input, which implies that by 'listening' t;:) a subset of the adapted
net, the signal produced is likely to be different for different inputs as

well,

14, An Associative ability of the net was demonstrated.
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15, This ability is extremely sensitive temporally,
producing inhibited, or disassociated, areas of the net for conditions

not satisfying the conditions for reward.

The aim of this project was to look for interesting
machines in the digital models of neural networks. It was hoped to find

machines inherently capable of pulse processing functions.

The Adaptive Nets of Chapter 5 satisfied this search.
The Non Adaptive nets did not. The area of possible models this
Experimental System provides is very large and there was a danger of
picking entirely the wrong set of parameters. Indeed, there may still be
areas untouched by this project that may yield even more useful
machines. However, the Hebbian type algorithm simulated does offer
a most promising area to search further. The Key conclusions are 12-15,
These conclusions, in combination, provide a possible mechanism for
recognising signal patterns. Consider three areas of a net, netlets
1, 2 and 3 of Figure 1. Two signals are required to be matched and
they may occur at different times. Their p.attern is recorded in netlets
1 and 3. These netlets are made of identical cells and use the same
connection_ mode. After adaption, the final signals pass into netlet two,
one signal at one end and one at the other (analogous to the permanent and
temporary areas of the Association Experiments). This third area is now
adapted and the final level of activity of either area indicates their
temporal similarity. This machine therefore employs a memory
mechanism and a signal processing mechanism. This idea could be
extended to compare unknown signals with standard signals, provided

by sets of non-adaptive netlets each having different decay rates.
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Signal 1 Signal 2

e &

Netlet 1 Netlet 2 Netlet 3
—p —
effdrent efferent
conijections cornectious
Figure 1 Comparison of Signals

by final activity
level of adapted Netlet 3

Further Directions

As a result of all the Experiments a possible mechanism
for pulse processing has been demonstrated. However, as indicated
in the texts of Chapters 4 and 5 there are many areas that could

fruitfully be explored in greater detail. A suggested list is:

) & Variations in the Hebbian algorithm to change the
conditions necessary for reward, to see if associations can be created
more easily and what effect this has on the types of signal 'recognised’.
2. Further analysis on how the associations form, to help
the design of adaptive algorithms to solve a required class of problem.
3, Hardware analogues of adaptive nets, perhaps using

groups of similar adaptive netlets as building blocks to a larger system.,
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4, In the search involved in 2, new methods of analysing
the formation of underlying connection patterns would be very useful.
For examples 3-D displays of the Connection Weight Matrix or the
Cell Firing Histogram to illustrate how preferred pathways form.,
These might provide useful techniques for analysing Natural Neural

Nets.

To summarise, with apologies to Sir John Eccles,

the task of understanding Neural Nets stagger their own imagination!
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AFPENDIX A

Spectral Analysis

Introduction

The study of cyclical components in time series
analysis is performed using autocorrelation and spectral analysis.
As the raw data in this study is from a digital computer simulation,
then it is strictly deterministic, unlike a time series which deals with
random data fluctuating about a mean value. However, it provides
a technique to achieve the data reduction required to analyse the
various waveforms produced. The purpose was only to get an
indication of the changes in frequency components between different
nets. The program to perform the autocorrelation and spectral analysis
was taken from "Mathematical Methods for Digital Computers' (1960,
ed.A. Ralston and H.S. Wilf, Wiley & Sons, London). This appendix
provides a brief description of the program plus the formulae the program

implements.

Method

The Spectral Analysis routine, SPEC3, outputs the
autocorrelation function r(p), calculated in two similar ways and the
autocovariance function W (p). W(p) is also displayed graphically.
In the course of the calculations the raw datalis normalised and printed
out together with the mean and standard deviation. The data is
normalised by first subtracting the mean from each item and then

dividing by the standard deviation. The normalisation means the

-Al -



z X, X,
formula for the autocorrelation, r(p) = ——;l—%m , i=1toN-p (1)
X,
&

(where x, is the raw data, p is the lag and N is the total number of
data items) can be employed. This is an alternative to the usual form

1

(N-p) ¥ 3, - (Ex)(Tx, )

r(p) (2)

2 2 2 7
S0P D 6x)° / -pT 6l )k, )

which was also used as a check.

The autocovariance function, W(p), was calculated using

N-p

e N o s T (3)
N-p i=1

Finally the Raw Estimate of the spectral density or Power Density

Function is given by

M-1
L(p) = W()+2 X W(q) Cos gpx + W(M) Cos pTt (4)
q=1 M

Where the W(q) are calculated by (3) and M is the maximum lag.
The Smoothed Power Density Function is calculated using
U(p) = 0.23 L(p-1) + 0.54 L(p) + 0.23 L(p + 1) (5)

Where L-l 25 Ll and LM+1 = LM—l

The Raw Spectra and Smoothed Spectra are output graphically and the
Smoothed Spectra output again using a logarithmic scale as Jenkins
and Watts (1968) suggest, so that the '"variation in the spectrum can be

accommodated!',

The frequency corresponding to each lag (p) value

p

2mat

resulting is f = where m is maximum lag, and At is the time

increment between each data item. (see Blackman and Tukey, 1959).
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Using this, an experiment's length could be determined to isolate a
particular frequency if one uses the recommendation from Blackman
and Tukey that M<0.1 N. Certain experiments were run to ensure that
the rounded values of a particular period fell within one cell of the
histogram displayed. This meant the effect could be compared to all
other frequency components. This mode of use was employed briefly,

the general method being to use a run of 1000 and a maximum lag of 50.
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APPENDIX B

HACHCRRCH AR AR RO K
¥ NET SUBROUTINE X
PR AR A AR O RO K

SUBRDUTINE NET

INTEGER COUNT, FTR, EQFLAG, CUNIT, WTINDX, WTIM, TEASE,
XEEWaRD, FDEV, FIELOK, BLOKNG, FIDBAS, FILFTR, TINDEXY, CONEAS, FILCN
AT, ABELOCK, CONFTR, TNDEX, TIM, WETGHAT. TEF, REWARD, OMHETR, SLRONT, UTT
X TOF, BOTTOM, HOWM, CONLET( 468 ), DEFLAG, Z,
AFILISTC 468 ), THIET, OFMNELK, S, SPNFTR, INFC46, 46), QFTR
2 BENOFT, SEF, FLENTH i

DIMENSTON NEAVC 2 ), NNWUC 2 )

COMMON  THFCSEA ), NIEC 7340 )/6/T8FFPTRC L4 ), TRCSE ), LEARNC 5@ ),
XISERVOC 5@ ), TOEUFF( 1ABG ), ITEFONC 1688 )/D/TUTC 20 ), TCONNS( 28)

EQUIVALENCE CIFC4), THIST ) (IFC4232), NIDEAS ), CIFC423 ), NEAVC 1)),
XCIFPCA25 0, NNWVC L D), CIFC 427 3 NLENTH ), CIF(A28 ), NEBUFSZ ) ( IFC429 ),
XOFNELK )Y, CIFCA36 ), NUNMIT ), CIFCAZEL ) CUNTT ), CIFC432), CONEAS ),
XCIFCA34 ), CONFTR ), CTRCL 30 NWV 3, C TR 20, NN DL CIFCA37 ), FILFTR )

Xo CIFCA38 ), FIDEAS ), CIFCE ), LEF ), ( IFC409 ), NTYFE ), ¢ TEC 488 ), PTR)
Ko CIRCS ), FDREV ), CIFCA421 ), NIND, C ZORUFFC L ), CONLSTCL )),

XCIDBEUFFC 461 3 FILISTCL ) CIFC419 ), TIM ), CIFCA13), LEVEL )

X, CIFC39@), NOFL ), ( TFC 391 ), MNL ), € IFC 389 ), CSEED )

X, CIFCER7 ), COUNT ), € TRC 386 ), EOFLAG ), C IF( 3RS ), AELOLK )

Xo CIFC3849 ), WTINDX 2, C IFC 383 3 WTIM I, ( IFC 382 ), TEASBE )

Xy CIFC 381 ), BLOKNG ), C TFCI80 ), TINDEX ), (IF(379), FILCNT )

Xo CIFC 378 ), INDEX ), CIFCEZ7 ), WETEBHT 3, C IF( 376 ), REWARD )

Xo CTIFCEZS ) CNFTR ), CIFC374), BLKONT 3, CIFC373 ), UTTM)

Xo CIFCEZ2 0, TOF ), CIFC37L ), BOTTOM ), ( IFC 378 ), HOWM )

Xo CIFC3869 ), 8 ), CIPC368), DEFLAG ), { IFC 367 ), LF)

X, CIFC 366 ), IRF ), CINF(L, 1), IOBUFFCL 30, C IFC 392 ), FIBLOK)

XoCTIRPCL ), M), CIFC2), N CIFC3 ), Z ) CIFCT ), SEF)

X, CIFC15@ ), NINFO Y, (IFC151 ), IELOK » CIFC1S2), IFEBLOK)
Ky CIFCLEE ), NUM D, CTFC LS9 ), NFTR D), CIFPCLES ), NELOCK )

X CIFC156 ), IND, CIFC 157 3, NCONT ), € TFC 158 ), NDELOK )

X, CIFCL1HY ), ININFO ), CTFCLED ), NCNFTR Y CIFCLEL ), OFTR)
XoCIFC162), IFLAB ), CIFC163), 1 0, CIFC 164 ), NINDEX)

Xo CIPCA2@), FLEMTH ), ¢ IFC 220 ), GENIFT )

START OF FROGRSM

MINFO=1
EOFLAG=E
DEFLAE=E
INIHNFOs=NIDEASH NINFO-1 )XLé

READ EBLOCK NINFQ OF NEURON INFD
CALL ROYLCNEAVC 1), NEAVC 2 ), ININEO)

LF=1
TR
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30304 N oon

0

R =

333

3345
3346

48

L1

IFCINPCLF, IRF )2, 3,2

CalL EXCITE

TRF=TRFw+1

IFCIRF-M)L, 1, 333

TRF=1

LFssl Fe g

FIELOK=1

FORMATC(’ REWARD = *, 17,7 IN = 7,1I7)
ELOKNO==1

TELORK =0 OKNO+CONE S5 1

READ FIRST BLOCK OF CONLST

Call REECC CONF TR, NWY, NN, TELOK, #DEY, 20805 )
IFELOMGEF TDRSSF TELOK-1

READ FIRST 8lL.OCK OF FILIST

Cal.L RREC(FILPTR.NNU.NN;IFBLDKJPDEU,3BEBE)
FILONT=1

COUNT THE NUMHER OF NEURONS IN BUFFER
IFCFILISTCFILONT )9, 8,9

FILCNT=FILCNT +1
IFCFILONT~FLENTH)11,8, 8

COUNT=L

FTR==1

HAS THIS ENTRY BEEN USED SEFORE

IFCFILISTCRTRIDS 12  EOFLAG=1
GO TO 48

CALCULATE AELOCK FOR FILIST(FTR)

NUM=FILIST(FTR )
ABLOCK=( ( NUM=1 J/CUNIT )+1

IS INFQD IN CURRENT COMNLIST
IFCABLOCK-ELOKMD )58, 1.3, S50
HAVE WE REQUIRED ADIFFERENT ELOCK YET
IF(DEFLAG-1 S8, 582, Sa)

[ et i

MAELDK=AEL.0CK

DEFLAG==]

PTR=FTR+1
IFCRTR-FLENTH )48, 48, 66
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HAVE. ALL NEURONS IN BUFFER EEFRN ACCOUNTED FOR

A

“é@ IFCCOUNT-FILCNT)LE, 15, 14

E NO REQUIRE AMOTHzR CONLET BLOCK

Llﬂ CALL WRECC CONFTR, NWY, NN, TELOK, FODEY, G660 )
BLGNND*NQE%UK

g SETTINGS FOR FIRST DIFFERENMCE

&

ABL DT K =NAELOK
FTR=NFTR
MUM=FILISTCFTR 2
DEFLAG=@
TELOK=ELOMMNO+ COMNB&SE- 1
CALL RRECCCDNBTR, NWY, NN, TELOK, 2DEVY, 368600 )
B . TO 13 _
15 IFCEOFLAG-1 218, 19, 18
ig FIELOK=FIELOK+1
BO TO 7

C
(& EXAMINE THE CONLET BLOCK ANL Makk LEARNING CHANGES
C

13 WTINDX==1

NCON=1
INDEX=( NURN-CUNTTHC ABLOCK=1 )=1 )k21+1

c

C TSDLATE NEURON TYFRE

c
NTYFE=@
IFCCONLETC INDEX ), BE, @)X80 TO 131
Call BCTIM(COMNLETC INDEX ), WTIM)
NTYFE=1
G0 TO 21

C

cC HAVE THE WEIBHTS EEEN ALTERED ALRE&LY

G

131 WTIM=COMLST( INDEX)
21 IN=TNDEX +NCON
C
& EGE TEST (BIT172
C
IFCCONLETC IND)I23, 22, 22
23 NCOMN=NCON-1
GO TO 235
22 TWTCWTINDX 3=CONLETC IN)
WTINDX=WT I+

HCON=NOON+1
IFCNCON-28 )21, 21, 23
& BENERATE THE CONNECTIONS

£

23T CALL RCTIM(CONLSTCINDEX ), TIM)
Call BENLICNCON, NUM 2
CHFETR=1

“BA=



£.63.03

€343 00

00

8 0 RO 30

SRel wiie

28
38

291
292

S

33

A

34

NCONT=NCON

TF( TCONNSCONFTR ) ) Z@, 29, 30

NELOCK=( ( TOONNSC CNFTR =1 )/NUNIT )+1

I8 REQUIRED NeURON INFORMATION INM CORE

IFCNELOCK-NINF 0291, 21, 291

NO TF NO MORE FROM CORE GET ANOTHER NINFO SLOCK IN

IFCNDEFLE-1 292, 29, 292

NDEL OK=NEL OCK

NDEFL G 1

NCNFTR=CNF TR

CNF TR=CNF TR L

IF( CNPTR-NCON )28, 28, 32

CALL WOYLEMEAVC L), NEAUC 2 ), ININFD )
NI NFO=NDELOK

ININFO=NIDEAS+ NINFO-1 %14

CALL RCYLONEAVC L), NEAVC 2 ), ININFO )
NDEFLE=0

CNFTR=NCNF TR

CALCULATE INLEX TO INFO ANL UrDATE

NINDEX=( TCOMMNSC ONFTR J=( NINF Q=1 DKNUNMTT-1 )K4+1
CALL UFDATEC(NINDEX, CNFTR, NTYFE )

TCONMEL CHETR =@

NTONT =NCONT -1

FINISHED THE AFFECT FOR THIS NELURON
IFCNCONT )28, 33, 28
MAaRK USED

MAaRK USED

FILISTCFTR Js=e-1

COUNT=COUNT+1

60O TO 582

EFFECT STAGE
CLEAN OUTFUT BUFFER (FILIST AND OF)

DO 34 I=441, 14686
TOBUFFL T =@
CONTINUE
ELKOCNT =6

WRITE CURREMT CONLET BLOCK EACK
i S B R 6

CALL WRED( CONFTR, NWY, NN, TELOY, FDEV, 20000 )
OFTR=@
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LEVEL =@
PTR=1
NUMz1,
FIELOK=1
35 NINDEX=1

ISOLATE UFDATE TIME OF CURRENT NeURON

C: 30D

a2 CALL GTMTIMCMINUGEX, UTIM)
IF TIME =@ IT MEANS EOF
IFCUTIM 2362, 3&, 362

HAS IT BEEN AFFECTED

o R iy e e

362 IF (UTIM-TIM)IZ&L, 37, 361

A 1 =

YES, 80 WILL IT FIRE

37 TFL. ARG
Call RFIR( IFLAG, NINDEX )
IFCIFLAGB I3&3, 3463, 341
2463 CALL aDFILONUM, FIBLOK)

C ARE WE DEALINE WITH AN OUTFUT SLICE
IFCNUM-NOFL )36, 38, 38

261 WNINDEX=NINDEX+4
NUM=NUM-+ 1
GO 7O 41

ENTER VALUE IN QUTPUT BUFFER

343 6

za CaLl. AROFCNUM ~ ¢ NOF1-1))
B0 TO 3461

FINISHED WITH BUFFER OR NOT
41 IF (NINDEX~NEUFEZ )42, 42, 36

I8 THERE A& SFON QFTION

i gl 2

& CaLl. SSWTCHC 14, 8)
GO TO (44,43, 5

ARE THERE ANY SFONS IN THIS BLOCK

0006

44 IF (ISFRTRCNINFD))AS, 43, 45
45 TOP=ISFETRCNINFG)
BEOTTOM=IGFETRCNINFO+1 )
IFCEOTTOM )451, 452, 452
451 BOTTOMs:-S0TTOM
452 HOWM=EOTTOM-TOF
T
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C HANDLING THE SPONTAMEDUS MeEURONS

4 & INL=TOF+I-1
UM TEFONC TNL )
NINDEX=NUM-~C NINFO=1 2KNUNIT
NINDEX=( NINDEX~1 »%4+1

H&4S IT ALREADY
EENN ALTERED

30303 03

CALL BTNTIM(NINDEX, UTIM)
IFCUTIM ~TIM)48, 49, 49

48  IFLAG=@
CALL SFNFIRCIFLAG, NINDEX )
IFC IFLAG Y491, 491, 49

491 CALL ADFILCNUM, FIELOK)

R0

IS IT AN OUTFUT NEUROM

IFCNUM-NOF L )42, 51, 51
g1 Catl. ADORNUM-( NOF1-1))
49 T=1+1
IFCD-HOWM )46, 44,43

c

c IF FINISHED WITH SFONS FOR THIS BLOCK WRITE &ACK
c

43 CALL WOYLOMEAVC L), NEAVE 2 ), ININFO)
NINFO=NINFO+1

£

c CHOQSE NEXT MNMINFORLODK

g

TFECNINFQ, BT NLENTH ONINE Q=1
ININFO=NIDEAB+(NINFO~1)X16
ELKCNT=ELKONT+1
IF(BLKCNT-NLENTH )53, 94, 54

93 CaLL RCYLONEAVC L), NEAVCZ ), ININFO)

G0 TO 35
=4 FILIST(FTR )=@
&
C WRITE BACK FINAL FILIST ELOCK
5

ITFELOK=F IDEAS+F TBLOK-1
CAcl WRECCFILFTR, NWV, NN, IFE O, ®DEV, 300800 )
LEVEL=LEVEL+FTR-1
CALL SBUWTCH(E, I)
GO TO (541,542, 1
942 IF(TIM,LE, 5@0)CALL HEBE
941  RETURN
END
SUEBRQUTINE ADFTLONUM, FILELK)

SUBROUTINE TO ADD A& NeW ELEMENT TO THE DISK FILE FILIST

Qo i;

INTEGER FILIST(4&8), FTR, FILBLK, FLEMTH, FIDEAS

..36_.



oot

R}

X, FDEV, FILFTR
COMMON TFCD8@ ), NIE( 73460 )/A/18FC14), IR( 58 ), IEZC 168),
ATDEBUFFC 1668 ), ISFONC 19686 )

EQUIVALENCE ( IOEUFF( 461 ) FILISTC1) ), (IF(A26 ), + LENTH ), C
XIFCA3E ), FIDEBAS ), (IPC437 ), FILFTR ), (IRCL ) NWV L CIR(2), NN)
Xo CIRCE D), FDEV ), ( IFC413), LEVEL ), (IFC488), FTR)

START

FILIGTCRTR J=NUM

FTR=FTR+1

LG ETReBLENTHSE 3002

IFs Ox=FIDEBAS+FILELK-1

CALL WRECCFILETR, NWV, NN, IFELOK, PRDEY, 20606 )
FTR=1

LEVEL=LEW. L +44E

FILEL K=FILBLK+1

RETLIRM

END

e



DS TRy O R0 OO oD OO0 0 00

ACHROR AR AR O OO
* EVALUATION X
TR OO R

SWITCH DETAILS

1: CONTINUATION (NO IF READI, FLICK CONTROL <ON STARTS),
RUN NUMEER OUTFUT ON TTY

21 MULTIFLE RUN

31 LINE FPRINTER DUMF OF NIE

4 EXCITATION GR&FH

S THREEHOLD BRAFH

&1 FIRIMNG ER&FH

i FIRING FATTERN DISFLAY

8: LEARM INHIBIT

@i WEIBHTE ANALYSIS DUMP

18: TELETYFE FRINTOUT INWIEBIT

L1 TRACE

12 TRACE

13 INDIVIDUAL ELEMENTS

14: SFONTANECOUS ELEMENTS (NOW REMOVED)
150 INMIEIT RAW DATA GRAFHS

1& TERMINATE NET RLN

INTEGER Z, 8D(4, 28), AS, MM, TIM, SDOC 4, 28 ), HMD, AS0, DIFF,
XGEF, CLENTH, V0L, LER, FIDEAS, SPNEAS, SPNFTR,
XTHIST. ARC, SUL, 8, FRMPTR, FEMEAS, STENAL, FILFTR
X, 8=D, 8FUW, FILIST(44@ ), FDEV, 82, OUT, FETELK, FET
X, SUEAS, AFL, BEFL, COMNEAS, NETNC 28 ), Ne TR 20 )

COMMONM TECSEA ), MIEC T34 )
XABAVE/ TEC 4468 )
XACON/TINCC 25, 3)
KAGRAGEUFC 236 )
X/D/TWTC 26 ), ICONNS(2@)
X/ARUNAJETTOTC 2, 208 ), IFIRC 2008 ), INEX(S, 200 ), IOUFIR(S, 1008 )
X, ISERCZ2GE ), LERC 200 ), INLEILE(S, 1068 ), INVELT(S, 2686)
X764/ ISFRFTRCO1LEG ), IRO5@), LEARNC S50 )
X, ISERVOCTE ), IQBUFFT 14688 ), ISFONC 1226 )

P2 ZTCA ), INDELMC )

DIMENSION INEXM(S ), NEFTR( S
TEX2( 1808 ), IEX3( 1860 )

Ko MARKC 2800 ), IEXLC 1968 ),

EQUIVALENCE (IF(1HLMLCIP(Z2)N N (I3 N Z)NIF(18), AS8)
Xo CIFCLL ) HM), C(IFC 230 ), AS0 D, (SDC 1, 1), IF(32))

X, CIFCE22 ), NIDEAS ), C(IF( 432 ), CONEAS ), ( IF( 231 ), +M0 )

X, LIFCAE7 ), FILFTR L (IP(252), 8DOC 1, 1)), CIFC484), V0L ), ( IF( 467 )
KoMT ) CIFCE19), TIM), CIFCZ ), SEF ), (IPC8), LEF ), ( IF(442), NETNQ),
XCIRCE 3 PRMFTR 2, CIRC3 1) PRMEAS ), CIRC1 ) NWY I, CIRC2), NN D),
XCIRCE ), FDEV ), CTFC 414 ), STENAL ), CIFC? ), MNZ ), (IR 416 ), MEAN )

X, CIOBUFFC4&81 ), FILIST(1) 2, IFC438), FIDEBAS), (IF( 416 ), SPNEAS)
Xo CTFCAL7 ), SPNFTR DL, CIRCE423), LEVEL ), (IFC 176 ), TEXMAX ),
KCIFCIZD 3, TTHMAX ) C IFCLZ2 5, TFMAX)
Ko CEFCEET )y INEXMC 1 ) ), C IFC3ES ) INDELMC L )
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G DEonTy

f2 L6362

Xo CIFC344 ), NEL ), (TP 173 ), INELND ), (NEFTRC 1), IF( 348))

XoCTJCL L FILISTCL)) CIPCL9S ), LTIM)

X CIRC188), FETEBLK ), CIFC182), FET)

X CIFCELE ), NARTHE ), ( NMRUNS, TFC219) ), (NETNC L), TFC197))

X, CIFC223), BUBAS ) (IF(222), ARC H CIFC221 ), 8UL ), (IF(415), CLENTH |
Xy CMARKC D 2 THNEXCL, 120 CTEXLCL ), MARKC L)), ( TEXZCO 1), MARK( 1881 ))
Xo CIEXZCL ), MGRK( 2801 ))

STAHART
READ DOWN FaRAMETER £L.00K

QUIT=4
Chall. TRAF

CaLL SBWTCH(L, §)
B0 TOCL2, 1.8
1 FRMET R 24907

SET UF RELATIVE CONNECTION TAELE

Call. GENC
NWV=448
[RINE
BOEU=@
WRITEC1,192)
1 FORMATC S INFUT FARAMETER 2L0CK ADDRESSE (T4&) 7 )
123 FUORMAT( L&)
FRME6S=539
Cal, BRECC MRMETR, NWY, NN, SREEAS, PFDEY, 30860 )
MR RELNS =NMELINS
DO 194 I=1, NRRUNS
NETR( T dsnieTHNC T )
194 CONTINUE
ME T T
GO TO 2061
2008 NETIN=NETIM+L
IF(NETIN, BT, NRRUNS XGO TO 2805
TFAR=NTDEAS-] METRONETIM b5 )
CALL RRECO PRMETR, NWY, NN, ITFAR, FOEY, 368066 )
SUEBAS=TSL+ ARCH+SLIL )
NERCHE=NARCHS+( ARC+8UL )

#J

RECOVER INITIAL SET UF DATA

AR L =MNZ R/ NI 1

DO 2863 I=1,AF1

PAT N T DESS D1

NF =5UEBAS+ -1

CALL REECCFILETR, MUY, N, N, FDEY, ZEERE )

DALl WRECCFILFTR, NWW, ARG NT, FDEVY, 38660 )
2002 COMTIMUE

DO 2883 I=1, CLENTH
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74

TELS

2 T 6

NCT=CONEAS+ -1
NCF = BUBAG+AF L+ ~1
CALL RRECCFILFTR, NWY, NN, NCF, FDEY, 36866 )
CALL WRECCFILPTR, NWV, NN, RCT, FDEV, 30060 )
CONTIMUE

NI NF (=0

DO 9% I=i, |AEH
IEX1C I )=
IEXZC T )=@
TEX3( I )=

CONT INUE
JETTOTC 1, 1 )=0
JETTOTC 2, 1 )=@

IF IRC 1 )=6

CALL SSWTCHC4, T1)
B0 TOC91, 92), 11
CALL SSWTCHC S, I1)
BO TOC9L,93), 11
CALL SSWTCHC &, T1)
GO TOC91, 947, 11
CALL BRAFIN

SET A BELOCK TO ZERQ FOR TIME 1

DO 1772 I=1,8
THRONCT )=
CONTINUE
SkF=2

LB =2

DO 22 1I=1,%58
ISERVOC T )=@)
LEARNC T )=@
CONTIMUE
FET=%
FETELK=1

SET UF LONG RUN DISK FILE FOINTERS

ZEROQISE ALL + FILE $IZE

RO 221 I=1.5
NEFTRC T )=

CONTIMUE

CALL S8WTCH(4, TJC(12)
CALL SSWTCH(S, TJ(2))
CALL. SSWTCH( &, IJ(3))
CAlL SSWTCHC 13, IJ(4))
DO 222 [=1,3
IFCIJC T Y N, 160 To 222
MNEL ==L+ 1

MEFTRC T d=pil -1

CONT INUE
IFCIJCA) . NE, 10D TO
NEFTRC 4 pspEL
MEL=MNEL 42K TN LN

ta

et

£
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G BT CEOESENM

223 FILIST(1)=0
CALL WRECIFILFTR, NWY, NN, FIDEAS, FDEY, 36000 )

C RDISFLAY NETHO

208  FORMATC//7 NET NUMBER ‘, 13//7)

192 TIM==L

Catl, SSUWTCHC 3, I8)
0 TOC298,2), I8
298 CALL NINLF
2 T

52
G CLEAN I0 BUFFER
c

DO 288 JI=1, 1688

TORLFEFCT =0
888 CONTIMUE

C
0 BENERATE IMFUT STGMAL
e EASED ON TYRE
C
3 ISD=50C1, 1)

41, GO TO (42,43, 44, 45, 46, 47, 48), 180
42 Cakl. GNLISIG

B TO 49
43 ALl BN2EIE

BO TG 49

a4 CALL GBNASIE
GO TO 4%

45 Call GNSSIE
GO TO 49

44 CALL GBN&STE
G0 TO 49

47 CaALL BN7SIG
B0 T 49

48 CAll. BNBSIE
4% IST=80DC3F, 1)
BO TOCA91, 492), IS8T
4921 CaLl. GENSERCT )
GO TO 49%
492 CaAlL BGEN2SP(I)
9% I=I+1
JECT.BT . HMIED TO S
IF(AS. ER. 160 TO 41

GO TO =
= TIM=TIM+1
CALL S5WTCHCL, T1)
Bl TOCS1.52),11
i WRITECL, SEINETIN, NETR M= TIN )
a3 FORMATCLIH 7 RUN 7, 13,7 NET i e |
o Calll. MET
Cale FEATUR
18 CaLl S2WTCHCA, T4)

CaLl SSWTCH(S, 15)
G0 TO (15, 16), 14

~Bll-



3 CX5

1822
1@l

i i §

B T 15,17 3, 15
Cal.L. BRFTOT

Chll SSEWTCHC &, 146
GO TOCLE, 193, I&
Call FILEV

Call SSWTCH! I, I8)
BO TO (297,296,188
CAaLL NINLF

Cane SSWICHCZ, I7)
GO TOC 28,01 ), I7
CaLl. PATTRN

Call. SSWTCH( S, T9)
BO TOC 394, 3971, 19
Call, WTDUMF

TERMINATE OFTION

ITTM=00C TIM, 268 )
IFCITIM, EQ,B)ICALL BAVTIM
IFCTIM GE.LTIM Y0 TOQ 11
CAalL SBUTCHC 16, 8)

60 TO.C131-,120 8

CALL SBWTCHC 16, LS)

GO TOCZ, 1822). LS
WRITECL, 181)TIM
FORMATCIH , 13)

GO TO 2

ET T TIM, 298 )

IFCITIM NE. B)CALL SAVTIM

SAVE USED PARAMETER BLOCK IN FILIST DISK
FOR BACK UF PROG IF LFP FAILS

= ELE

GALL WRECCFRMPTR, MWWV, NN, FIDEAS, FOEY, 30066 )

CALL SBWTCH( 2, IS)
GO TOC 2004, 2005 ), 18
Catl FLICK

Cal.l. RESULL(DIFF)
CALL STOF

IT5L=8UEAS
MNARCHS=NaRTHE
Call ARCHIWV
GO0 TO 2088
END

~Bl1 2~
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