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SUMMARY
This thesis is in three major parts.

In Part I the mathematics of the Weibull distributicn are
extensively explained and the validity of the Weibull model
is demonstrated; of particular interest is the possibility of
carrying out truncated tests with or without suspensions with
a high degree of confidence.

In Part II, the investigation to prove such validity is
part of the original experimental work carried out by the au-
thor and is an important contribution to, and confirmation of,
the knowledge of the subject treated. Of particular interest
is the demonstration of the sensitivity and discriminating
powers of the Weibull analysis in revealing two or more fail-
ures distributions. Results are given and discussed.

In Part III the author deals with the extremely interesting
topic of Reliability Prediction and explains in detail the
original Computer Programme he has perfected to predict acc~-
urately and almost immediately characteristic life, mean life,
reliability, failure raie, etc., by analysing but a few data.
Such speed and accuracy are a major contribution to the advance=-
ment of knowledge on this subject, and are vitally important
to all manufacturers and buyers interested in reliability.

A copy of the Computer Programme on disc or cagssette can be
obtained from the author on application.

Evaluation, prediction, reliability, failure, life.
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FOREWORD

It is recognised that, to achieve the highest degree of
reliability in a component or assembly, its specification
must be clearly defined in respect of its dimensional and
material parameters and there must be a statement of its ex-
pected performance when ftested under controlled conditions of
lecad, speed, temperature and vibration.

What is not readily recognised is the need to accurately
determine and define the degree of variability that exists
within any specification, or indeed within any set of statistics.

The Weibull analytical method described and illustrated in
this thesis is a proven procedure for obtaining this picture
of variability and hence an understanding of the limitations
of the specification and the penalties of working outside these
limitations.

Many people in indusiry are still not fully aware that the
intelligent application, preferably using computers, of these
recently developed but well-proven reliability theories can
bring appreciable reduction in the costs of defects and failures,
improvements in operational reliability and utilisation, and
reduction in repair time and maintenance costs.

Those who are aware of these applications sometimes find
difficulty in choosing the most appropriate reliability tech-
nique to meet a given situation. Others tend to avoid an
analytical approach because they expect to find difficulty
with the mathematics or lack specific examples of applications

1o practical problems.
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Increasingly, reliability is becoming recognised as a
vital factor to be dealt with in a quantitative manner when
tendering, in feasibility studies, and during development, pro-
duction, operations and maintenance. Reliability as a separata
function and a formal discipline as quality, is a relatively
new development. However, it has always been a consideration,
although most specifically by name.

Reliability when expressed in a qualitative manner is
meaningless and when quoted quantitatively can be misleading
unless interpreted correctly. Often it is simple fo specify,
difficult to achieve, harder still to predict and very expen=-
sive to demonsirate.

Specification = Reliability may be specified in terms of
the probability of successful completion of a mission within
the design performance envelope.

Prediction - Simple formulas have been developed into which
a preponderance of empirical constants have been injected to
enable one to arrive at a fairly plausible solution. In cer-
tain cases one is hampered still further by the paucity of rel=-
jability data (the empirical constants).

Achievement - The prescribed reliability may have to be
achieved in a severe environment with complex hybrid equipment
in which the failure of any single component may well cause
failure of the whole. It may have to be brought about, too,
where no human corrective action is possible and when "early

life™ failures may predominate.
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Demonstration - Demonstration of reliability is required
during Research and Development with a fair degree of engineer—-
ing confidence on "one-shot" devices such as guided weapons,
which have limited monitoring services during the mission,
are without recovery after the mission, and may yield a total
mission time of only a few minutes in an entire development
firing programme of a few score rounds. Financial consider-
ations preclude the demonstration of reliability with a high
degree of statistical confidence on pilot or production runs,
and the lower confidence level arrived at is to a large extent
due to the limitations imposed by the restricted nature of ;v-
aluation trials rather than a reflection on the time reliability
of the system.

Importance of Reliability Engineering - Reliability is thus
not an easy matter to deal with. It is, however, becoming re-
cognised as one of the most important single characteristics of
many complex hybrid systems and has to be dealt with as suche.

It may take precedence in a weapon system, for example over re-
quirements such as the resistance of the guidance system to
interference and counter measures, strike effectiveness in terms
of the accuracy of the missile, and killing capacity of the war—
head.

The intrinsic reliability of any equipment is a function of
both quality of design and quality of conformance to design.

By quality is meant "fitness for purpose", and by reliability
"continuing fiiness for purpose". In aircraft, fitness for pur-

pose may be related to two distinct cases: ground and flight.

=15



Taking aircraft equipment or an aircraft systenm,
probability of success could be specified for:=-
a) Period tests while in stock at depots

b) Field tests on installation

¢) Check-out prior to take-off

d) Flight.

-16=
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PART I - EVALUATION OF THE VALIDITY OF THE WEIBULL DISTRIBUTION
1 = INTRODUCTICN

Reliability is generally defined as "the mathematical pro-
bability that a product will operate, without failure, under
prescribed operating and environmental conditions, for a
specified period of time (i.e. hours, cycles, miles, etc.)".

To arrive at a mathematical expression for reliability,
certain theoretical functions may be combined with the known
laws of probability and applied to the collected data.

Data analysis consists, in the main, of grouping together
(in alphabetical groups, numerical ranks, or in some other
order) the variables under consideration, and of examining the
groups to see whether there are any significant relationships,
simple or systematic, corresponding to the observed output.

It may be possible to describe these relationships with a few
symbols, but this is normally done by constructing some form

of histogram or plotting a graph or curve. Data from tests

or measurements can be plotted to show the fregquency distri-
bution against a selected independent variable such as weight,
length, stress, cycles or time. If we can establish and des=-
cribe these relationships, a study of the histogram or graph
thus produced will usually give some indication of the distri-
bution of the parent population from which the sample was drawn:
it may show for example how many times each value of the variable
is likely to occur; we may find that we have an exponential
distribution, or the familiar normal distribution, or something
else. If the distribution curve were known, then we could de-
fine mathematically the product reliability, quality or con-
formity and we can say that the analysis has added to the meaning

and usefulness of the original data.
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However, to arrive at a distribution type by this method
entails the collection and plotting of a considerable number
of data, in other words a fairly large sample size has o be
drawn and, in the case of life testing, a lot of time and money
is required.

Thus, in our society of high speed computers and automation,
simplified statistical metheds for the manual or computer=
assisted solution of amalytical problems still bring relief to
overburdened engineers and statisticians.

Among the various statistical probability density functions
used in reliability studies, the Weibull distribution is assum-
ing increased prominence. In 1950 Wallodi Weibull(1), a
Swedish professor engaged initially in the study of fatigue
characteristics, arrived at a very useful statistical model
whereby certain distribution types could be represented by a
straight line law. Thus only a small number of results wers
required in order to locate this line, and from it useful con-
clusions could be drawn.

Whilst investigating this analysis ¥r. A. Plait(®® 3, an
American engineer, devised a method of presenting this very
useful distribution by plotting the data in a Weibull line on
specially constructed graph paper, now known as "Weibull Pro-
bability Paperm". A few simple measurements then directly pro=-
vide the shape and position parameters of the distribution
curve. The scales on the Weibull Probability Paper are laid
out to display the three parameters that define the distri-
bution: the slope 3 , the characteristic life N, and the

starting point of the curve, or minimum life to.
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Direct measurements on the paper can be made to defermine
the reliability of a producte.

Since that time further wOrk(4) on this subject has been
carried out so as to reduce and simplify the preocedure in-
volved with extracting the relevant information from this
graphical presentation.

When we are carrying out an experiment and we find that
the failure rate is not constant, the Weibull model could be

used in appropriate circumstances. (See Ch. 6).



In Part I of this thesis the author deals mainly with the
mechanics of the Weibull Distribution. Thus, Chapters 2 and
3 give the history, analytical expressions, properties, graph-
ical constructions, and applications of the Weibull Distribution.
In Chapter 4 the author offers theoretically accurate and approx-
imate formulae for calculating the Median Ranks. These formulae
are used as sub-routines in the Computer Programme of Chapter 10.
The User can select at will the accurate but slow method, or the
approximate but instantaneous method. This is an important con-
tribution, since the User is now free from the need to consult
Tables and to plot laboriously his data: all he has to do is to
select either routine to obtain his data, nicely tabulated and
plotted, and the relative extrapolations.

In Part IT the author describes his experimental research to
prove beyond doubt the validity of the Weibull Distribution
when applied to life testing, and demonstrates its high capacity
to discriminate between different failure modes. This is ex~
tremely important, in order to detect the influence of various
parameters (in our case, slightly different welding speeds and
different plates from Fhe same steel). The results of this
origingl investigation, carried out at the University of Aston,
are reported in Chapter 7 and discussed in Chapter 8, which
also gives ideas for further uses and applications of the
Weibull Distribution.

Part III is dedicated to the problem of Reliability Pre~
diction, which is the main purpose of this thesis and the

major contribution by the author to enable private individuals
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or Companies to use the Welbull Distribution without any
knowledge of the distribution itself or of computers. Chapter
10 describes in outline the Computer Programme which is an in-
tegral part of this thesis. All the user has to do is to load
the programme (which comes in disc or cassette form) into his
computer and follow the simple directions which appear on the
screen. The programme is fully interactive: it offers choices
of accurate but slow or approximate but fast routines, requests
data, checks errors, calculates the best fitting line to the
data, corrects curved plots, and offers the choice of a visual
display or a print-out. Very few data are required (usually
five or six) to give a reasonable accuracy, and all types of
tests (completed or truncated, with or without suspensions)
can be accommodated. Thus a life testing programme can be
interrupted short, to give an idea of the projected life
(B=-10, B20, ..., mean, characteristic life) and of other par-
ameters, and informs on whether more than one mode of failure
is present. All this within little more than the time needed
to enter the few data required. One can see immediately, there-
fore, the immense advantage of using this programme for anyone
interested in life testing, such as buyers or manufaciurers of
equipment, stores, Armed Forces, railways, truck and aircraft
companies, etc.

In this thesis, special attention is given to carefully
conducted experiments and to industrial experience gained in

using the technique considered. The application of this
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analytical technique to product reliability problems can

provide better information for making decisions. This
sirategy is essential to efficient operation amd may enhance
a Company's competitive position and business opportunities.’

Some times, in fact, it is difficult to take decisions.

The common reason seems to be that people do not like to risk
the criticism which might follow a wrong decision. They feel
that if an impending decision can be deferred, the need for
making the decision will vanish. Also, if a decision can be
delayed long enough, many feel, the appropriate information
to make a proof decision will ultimately materialise. But
these attitudes are unproductive.

The modern work environment is fast-paced and high=-pressured.
The rate of technological discovery and innovation, the pol=-
itical and economic pressures for continued business growth,
and rising economic and social aspirations, all combine in re-
quiring earlier decisions at each step of the research, dev-

elopment and production cycles. This faster pace results in

less available time, and so research is accelerated, fewer
experiments are conducted, and fewer pre-production models are
built. These measures, in turn, yield less information and data
from which to derive decisions.

Due to the large overall environmental pressure, decigions
must be correct, or nearly so, as soon as possible. This

stringent goal requires effective, fast and practical methods
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of feedback of the resulting conclusions and decisions. A
method of computer-assisted graphical analysis, based on
Weibull probability plots, which is presented in this thesis,
meets these requirements. The relationship of probability
analysis to research, development and production is shown

in the flow chart of Fig. 1-1 on page 24.

The mathematics describing the Weibull reliability equation
and the method of construction of the special probability
paper are presented in this thesis for the benefit of those
wishing to obtain proof of the statistical model. However,
this section may be immediately passed over without fear of
being unable to understand and employ this distribution model
to advantage. Some may even prefer to refer directly to the
computer programme which, on entering the life data, provides
immediately all information required and produces Weibull and

failure plots, both on the screen and on a print-out.
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2 = MATHEMATICAL MODEL
The Weibull system of analysis is based on a mathematical
model known as the Weibull equation.

2.1 = Derivation of the reliability equation

S N-F F
RBN. N =|1-N
where: R = Reliability

N Number tested

S = Survivors

F = Failures.
Taking the derivative with respect to time of R = 1 = % :
.d_g.d_(\]_z)-_lg.g._n.@
dt dt N N dt ’ 4t dt

Dividing by S to obtain the failure rate per unit still being

tested:
147 _NGR__1&® 147 _
Sat " "sat”""Hat - Fovgg A = A

where A is termed the instantaneous failure rate, or the

hazard rate.

@ -

l Q:-k'
R dt '’

d

CYTIN

Substituting: A = -

<t

Separating the variables: %E = = A dt.
Integrating between to and t;, and remembering that when

to =0, R=1 and when t = ti’ R = Rti s

LT
%R;- - Adt. Integrating:
+
“0

%
i
laR, =- A at !
i ] t,
Yo = /?\ dt
B e % . (2.1=1)
i

If ?\ is constant, then

= tiﬁ\at o A(s-t)
g = e = e
i

R = the exponential reliability

expression . (2-1)



2.2 = The Weibull distribution
In 1951 Weibull(1) suggested that the simplest empirical
expression representing a great variety of actual data could

be obtained by writing eq.(2.1-1) in the following manner:

" (t-to 2
R, =e T ) (2.2-1)
t

where ( -y]t°) i e i)\dt

and to = the starting point of the distribution

1N = the characteristic life

p = the slope (or the underlying type of distribution).,
This is the Weibull model.

It is readily seen that the Weibull distribution may be
expressed in any of the following forms:
(5

R(t) = e N . (t-t )F
F(t) =1=-R(t) =1-=68 1 (Weibull equation)

B t=t \ p -1
1 'l
where R(t) = the cumulative probability of survival, or

-

fraction surviving, or reliability
F(%) = the cumulative probability of failure (area
under the distributiorn from t, to t), or
fraction failing
(t) = the instantaneous failure rate
t = the random variable (time, cycles, stress, size,
etc., to failure)

to = origin of the distribution.
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Multiplying R and F by 100 converts the fraction surviving
or failing to the percent reliability or unreliability.

The probability density function £(t) is equal to E%%EL :

the ordinate of the frequency distribution:
/t=t
0

ap(t) B (t=t) ot B it
dt 7 1F 5

Note that the constants to' 1 and P appearing in the

B

i P

——

£(t) =

Weibull expression can each be given a physical interpretation
as discussed in Section 6=12 on page 95, Section 6=17 on page 166
and Section 6-18 on page 167 .

It has since been found that by the appropriate choice of
values for the three parameters to’ ? and Vl the Weibull equa~-
tion can be used to represent a wide variety of distributions,
including many actual failure distributions and both the prac-
tically important random and Normal distributions. Indeed,
since failures tend to occur right from the moment the parts
are put into operations, the minimum life parameter to is
usually zero, leaving only the shape parameter ;5 and the
characteristic life 1 to be estimated. Consequently, the
Weibull model has been widely used in statistical reliability.

Although experience has since shown that the Weibull model
can be used for the vast majority of failure patterns, it is
essential to note that it is an empirical function and may not
be able to represent some particular distributions encountered
in practice. Its importance lies in its simplicity and wide

adaptability.



2.3 = Properties of the Weibull distribution

For j = 3.4, the Weibull distribution approximates a
Normal distribution.

Skewness

In the Weibull distribution, the skewness is given by:

Te D =3 T+ D) T B+ 2730 3

3/2
1:(1+ %) I %4y %) ]

A Normal distribution has a skewness of zero and,as ﬁ = 3,4

for a normally distributed Weibull distribution,if one substi-
tn;l:es this value of ﬁ in the above formula, one will see that
the top line will come to zero.

Values of the skewness for different values of 15 are shown

here below:

p Skewness
0.5 6.619
1.0 2.000
2.0 0.626
3.0 0.454
345 ~0.026
4.0 -0.062
5.0 -0.333
6.0 =0.905

10.0 =1.000
20.0 -2.000




2.4 = Construction of the Weibull Probability Paper

From the Weibull model: % . to &
HHTE '( 1 )
and, letting %t = O; ¥ (_t_;_)g
. {
N R=e
(%)
and 2o

R
Taking logarithms:

ln-}-a(%)s , Since ln e = 1.

R
Taking logarithms again:
1 t
111 111 § = ﬁ-ln(,l—) = Polnt - ﬁ.ln V‘-
This is of the form: y = mex + n (Straight Line Law), where
y=1n ln-;' H
x=1n t ;

m = B (slope)
and n = - B lnvl (intercept).
The ordinate of the probability paper is constructed from

lnln%or.

sinceR-‘l-F,frcmlnlanlF.

(Remember that Reliability (R) plus Unreliability (F) equals 1).



2.5 = Graphical presentation of the Weibull Analysis

As stated in the introduction, the Weibull model gives
means of expressing certain types of distributions as a
straight line. Hence, if this line were to be presented
graphically in some way, then the complications involved in
analysing these distributions could be greatly reduced.

By taking logs of the basic Weibull model twice, the
following expression is obtained:

In 1n & = B Ia(t-t)) - B 1y
which is in the fomm
Yy = m.x + n (the straight line law).

Thus in order to present the Weibull distributions graph-
ically it would be necessary to use graph paper which adopted
a double log scale on one axis (the "y" axis or ordinate) and
a single log scale on the other axis (the "x" axis or abscissa).
This in fact is what Weibull Probability Paper does and, since
the scales are non-linear, by merely repositioning a straight
line on this paper the type of distribution represented may
be radically altered.

Each line plotted on this paper may be considered as having
three variables (as in the mathematical model) which may affect
the distribution represented in different ways. Firstly, the
slope ( P ) which determines the shape of the distribution;
secondly, the characteristic life ( n ) which determines the
"gpread” of the distribution; and, thirdly, the value of to
for this line, which determines the starting point of the

distribution.
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Fig. 2=1 on page 32 shows the relationship between dis-
tribution types and slope. The distribution types, ranging
from exponential to highly skewed to the left, carry slope
values from 0.5 to 5. A perfectly exponential distribution
has a slope of 1, whilst a slope of 3.44 approximates to a
Normal distribution.

Fig. 2-2 on page 33 shows the variations of the frequency
distribution when N varies.

Fig. 2-=3 on page 34 shows how the distribution is displaced
along the horizontal axis when to varies.

The great advantage of using the Weibull analysis in graph-
ical form is that a measure of a component's reliability may

be obtained quickly and easily, with few samples.
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Fig. 2.1. Variations of the distribution for different values of the
slope ﬁ.
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3 = APPLICATIONS OF THE WEIBULL ANALYSIS

The Weibull distribution function, equation 2.2-1 on page 26
can be applied to very widely differing fields and, in many
cases, with quite satisfactory results.(17)

The statistical analysis of inspection data and test in=-
formation can provide useful and quantitative information
about a product. The analysis is particularly useful in ev-
aluating product reliability, conformity to specification, or
in comparing alternative materials, designs and fabrication
procedures. The Weibull analysis is one statistical method
of analysing data. It provides a graphical solution of stat-
istical problems with a minimum of time and effort.

Before going on to describe the Weibull distribution, its
graphical construction, usage and application to Reliability
Engineering, the writer would like to point out the wide
applicability of this distribution and the fact that it need
not be confined to reliability alone. Professor Weibull has
applied the distribution to a variety of problems. Lore
recently others have made extensive use of the function in the
study of inspection functions, stock control, and manpower
Planning. Many more applications could derive some benefit
from this technique. To this end, examples dealing with non-
reliability functions are presented in the final part of this
thesis.

This thesis contains a discussion of the industrial appli-
cations of the Weibull model. It presents specific examples

of situations where the Weibull technique is applicable. It



offers a thorough computer programme that permits the elabor-
ation of the few data required and produces and predicts all
parameters and results that it is possible to extract from
the Weibull model.

3.1 = Applications to Reliability Engineering

Since it is obviously more desirable to detect items with
poor reliability before they reach the customer, emphasis is
placed on the investigation of rig data, with graphical pre-
sentation of resultis.

When considering reliability testing, it must be remembered
that the most convenient method of obtaining a measure of an
item's reliability is to record and analyse its unreliability,
i.e. its failures.

For example, consider the following approximately Normal
distribution of failures of some items, against the number of
hours of test time.

Y. 8
f(t)

: . | >
L LS

40 60 80 100 Life (hours)

Ql

Fig. 3‘-1 .
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This diagram represents the total population and it is
shown clearly that 6% of this population would not reach a
required 40 hours in service; in other words, the item has
a reliability of only O.94. But how can we discover this, by
sample testing?

Prior to the introduction of the Weibull analysis it was
necessary to test a great many samples in order to establish
a pict;re of this distribution, to find the mean, median, meode,
etc., and hence to obtain a measure of reliability at the given
life. Such a method is lengthy, tiresome and often complicated,
and hence some engineers opted for a simple proof test on a
limited sample size. This involved testing a sample of items
to failure and observing for any which did not meet the minimum
life requirements. The usefulness of this type of test is
debatable particularly when the item considered is a new one.
Consider the following figures obtained using elementary pro=-
bability theory. If one sample item is taken from the pop-
ulation and life tested, the probability of it failing before
40 hours is only 6%. Also, if seven samples were life tested,
the probability of having one or more failures below 40 hours
is st11l P(x31) = 1 = B(x =0) = 1 = (1).(0.94)7 = 1 = 0.648477594
or only about 35%. Thus again a large number of items would
need to be tested in order to be confident of discovering the
6% of all items failing before 40 hours, i.e. in order to obtain
a measure of the reliability of the items.

As an example, conaiﬁer a light switch intended for use on
motorcars by a car firm, and passed to their Reliability Depart-

ment for assessment. It is specified that the switch shall have

S



a minimum 1ife of 50,000 cycles and a reliability level of

0.98. Since reliability plus unreliability must equal unity,

F=1=-R=1=0,98 = 0,02

or, by multiplying by 100, the failure level must not exceed 2%.

Seven switches are tested and the cycles to failure recorded.

1st failure
2nd failure
3rd failure
4th failure
5th failure
6th failure

Tth failure

It is apparent that each of the seven switches tested ex-
ceeded the minimum life requirement.
could constitute an immediate pass;
accept this switch would be totally wrong, as we shall see.

Although the minimum life requirements appears to be met, what

72,000
115,000
150,000
180,000
210,000
285,000

320,000

of the specified reliability level?

By plotting these failure ages on Weibull Probability Paper
it is observed that the resulting line falls to the left of
the specified acceptance mark, see Fig. 3-2 on page 40 , and
that at a minimum life requirement of 50,000 cycles a failure
level of some 5% can be expected.
bution for this line is as shown by a continuous line in
Fig. 3=3 on page 41 , and it can be seen from this and the

Weibull line that the switch does not meet the specification

and must be rejected.

cycles
cycles
cycles
cycles
cycles
cycles

cycles

To many engineers this

however, any decision to

The corresponding distri-

(4)



Following the rejection of this switch, a re-design was
called for and tests on the re-designed switches were carried

out. The recorded failure ages were as follows:

1st failure 65,000 cycles
2nd failure 75,000 cycles
3rd failure 81,000 cycles
4th failure 88,000 cycles
5th failure 95,000 cycles
6th failure 100,000 cycles
7th failure 110,000 cycles

By plotting these resulis we see that this time the line
passes exactly through the acceptance mark, see Fig. 3=2 on
page 40. The frequency distribution for this line is shown by
a dotted line in Fig. 3-3 on page 41. Thus these switches may
now be accepted.

It is worth noting in this instance that the average "life
to failure" of the second set of results is considerably lower
than that for the first set ard yet, unlike the original switch,
the re-designed swiich was accepted. This is because the second
distribution was of a form giving less scatter to the results,
thus containing the majority of the failures in a narrower band
than in the first distribution.

It can be seen from the foregoing that each Weibull line
represents a unique distribution and a very real danger exists
of accepting unreliable components unless the scatter of this

distribution is taken into account.
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3.2 = Application to industry

The Weibull anaglysis is widely used in industry and it has a
variety of interesting applications.
3.2=a = Time-to=failure distributions

Many industries use the Weibull analysis to estimate the fre-
quency distribution of failures in components or assemblies, sp-
alling or galling of various parts, etc.
3.2=b - B-10 1life

Some indusiries are interested not only in the time=to=fail-
ure distribution, but also in the percent which failed at a given
time. The time by which 10% have failed is called the 10% rated
life or B-10 life. In Fig. 3-2 on page 40 this is shown as the
10% level of fraction failing. Referring to the data in Fig.3=2
on page 40, the B-10 life is estimated at 72,000 cycles for the
original switch and at 65,000 cycles for the modified switch.
3.2=¢c = Differences in B-10 life

We have considered so far only one application of the Weibull
analysis: estimating the frequency distribution. However, the
Weibull approach can also be used to determine if a difference
in B-10 life exists between (i) standard material and new or mod-
ified material, (ii) standard and new or modified designs, (iii)
different vendors producing the same material, and (iv) materials
used by different customers or subjected to different uses.
3e2=d = Analytical determination of rated life

By definition, B-=1 is the time (t-to) corresponding to a Med=-

ian Rank F(t-to) = 0,01, From y = a + b.x, we have
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x =< ; 2 - lp.ln(1£1-F) == | and, since x = 1n(t-t°)
ln.ln(1/1=-0.01) = a
b
B=1 = (t-to) =eX = o when F = 0.01
Similarly: 1n.in(1/1-0.10) - a
b
B=10 = @ when F = 0,10
ln.1n(1/1-0.20) = a
b
b
B=50 = @ when P = 0,50

and so on.
3+2=e = Failure distributions with variables other than time on
the abscissa

The Weibull technique can be used for a great number of types
of distribution analyses. Variation in manufacturing processes
is inevitable. Whether one is trying to control the dimension
of a part or any other quality characteristic of a manufactured
product, it is certain that the results will vary.

The reliability of operating devices such as switches, valves,
cylinders, etc., is best described in terms of the number of cy-

cles performed to failure, and in this case the Weibull plot will
(4)

Consider a Quality Conirol problem of part size where a given

show cycles on the abscissa (see Fig. 3-4 A on page 45).

minimum per cent are expected to be within tolerance. A Weibull
plot of a sample of part sizes would describe the distribution
of sizes (see Fig. 3-4B on page 45)(4) and could be used to det=-
ermine whether the manufacturing process was operating as well

as expected.



In many industries, like the aircraft industry, normal life
testing could take too long; for example, turbine blades might
not fail for many thousands of hours under normal running con-
ditions. In order to avoid excessively long testing times, test-
ing can be accelerated by increasing the percent stress (Fig.
3-4C on page 45)(4) or the percent stress-time (Fig. 3-4D on
page 45)(4). In Fig. 3-4C on page 45 we are accelerating the de-
tection of failure modes by gradually and continuously increasing
the applied stress and determining the resultant failure distri-

bution. Fig. 3-4D on page 45(4)

incorporates the factor of time
as well as that of stress increase. Such a procedure, aided by
the Weibull distribution analysis, can accelerate the evaluation
of safety margins of individual modes of failure.
3.2=f - The separation of itwo or more distributions

The test failure points from two or more distributions, us-
ually will not plot on Weibull probability paper as a straight
line. In bearing tests, for example, ball and inner race failures
could occur. Each failure mode has its own distinct failure dis-
tribution and a special analysis is required to separate the diff-

erent failure modes. An example of this type of analysis is seen

in Section 6.9 and 6.16 on pages 90 and 149 respectively.
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4 - MEDIAN RANKS

When plotting failure ages it is necessary to assign to each
failure a failure rank. The first failure in a group of tested
units will have a definite percentage of the total population
failing before it. If this exact percentage is known, then this
number is the true rank of the first failure.

Consider 5 imaginary units taken from a population of 5, i.e.
the total population is tested to failure. Suppose the imagin-
ary failure ages are:

4,800; 23,000; 13,000; 67,000; 39,000.
Assigning failure ranks and arranging the failures in ascend=-

ing order, we have:

Order number Failure age Failure rank

1 4,800 0.2
2 13,000 0.4
3 23,000 0.6
4 39,000 0.8
5 67,000 1.0

Order No. 1 failed at 4,800 cycles and represents a 20% pop-
ulation failure rate; order No. 2 failed at 13,000 cycles and
represents a 40% population failure ratej.....; order No. 5 failed
at 67,000 cycles and, being the final failure, represents 100% or
total population failure.

Now, while the above is true when, and only when total pop=-
ulation failure is observed, it is not true when only sample fail=-

ure is observed. Normally, one does not know the true rank.
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Consider the 5 units tested as being but a small sample of a
larger population. In this case it is incorrect to say that the
first order number represents 20% of the total population, as it
is highly probable that some failure, within the population as a
whole, will have occurred prior to this observed sample failure.
Similarly, the f£ifth cannot be said to represent 100% or total
population failure, since it is highly probable that some items
within the parent population will survive this observed sample
failure.

To cater for such contingencies, one can use the "mean rank"
or one can use an estimate that will be too high half the time
and too low the other half of the time: the "median rank". These
"median ranks" are simply statistical estimates of the failure
rank, being such that negative errors are cancelled out by posi-
tive errors. While both estimates are statistically unbiassed,
the mean rank will give more pessimistic results at low values of
fraction failing (and more optimistic at high values) than will
the median rank.

An advantage of using mean ranks is that they are easier to

calculate, being given by:

Mean Rank = & i+ 3
o
where i = failure order number
Ho- sample size, i.e. the total number of tested units in
the group.

When the sample is small, it is important to use a correction
factor to relate the fraction of the sample which has failed at
any given moment, to the fraction of the population which would
have failed at the same moment. Various methods have been used,

but it is now generally agreed that the Median Rank offers the

most unbiassed prediction.
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Also, the practitioners who have the Tables available generally
prefer the consistency of using a uniform probability basis for
confidence limits *) as well as for the plotting of the points
for the Weibull line:

Ranks

5%
50% = ledian Ranks

95%

Median Ranks F are determined from the binomial expansion:
(R+F)2= [(1-F)+F %20, 50=( 1-F)n+nF(1-F)n-1+5é9:123‘2(1-F)n-2+
Bﬁn:%)(n'z)p3(1 e RO

To determine the first median rank in a sample size of 10,we
take the first term of the binomial expansion to the power of 10
and solve for F: 0.50=(1-F)"

1n(0.50)=101n(1-F)
1n(1-7)a2(0:50) = 0.6931471806

- 0.06931471806
~0.06931471806

{=F = e = 0.9330329916
F=1=0.9331329916 = 0.066967008 or 6.7%.

In general, to find the ith median rank, we expand the bi-
nomial to the power of n to i terms and equate this to 0.50, and
then solve for P. However, solving this for more than i=1 is
rather difficult.

Phe following formula by A. Bernard is easy to use and gives
good approximation:

Po.50 * i-'-g-’-% , wWith 1<41<n

where n = number of parts on life test, or sample size

i = number of failures so far, or failure order numbere.
(*) See Section 6=1S=-a on Page .Z..
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Then, the best estimate of the percentage of the population

. 1i=0.3
failed so far is Sy i 100%.
Thus, if we put 10 parts on life test, when the first failure
occurs, we predict that }%gézz—- « 100 = 6.73 per cent of the pop=-

ulation has failed.

The two methods differ in the third decimal place when i=1 and
n=10., Median ranks for sample sizes of one through fifty have be-
en calculated from the binomial and are listed in Appendix A on
pages 222 to 225 inclusive.

It will be seen in Chapter 10 on page 216 that the computer pro=-
gramme suggested calcuiates the median ranks and thus dispenses
with the need for consulting Appendix A on page 222 .

Going back to the case on page 46, with the sample of 5 as
tested it can be seen that:

Failure order number 1 occurred at 4,800 cycles and i=1
(first failure order) while N = 5 (sample size.

The Median Rank for this failure being:

%E%*% = 0.1296 or 12.96% of the population.

Continuing in this manner for the full sample of 5 the results

will appear as follows:

Rank Order Number Failure Age Median Rank
1 4,800 0.1296
2 13,000 043147
3 23,000 0.5000
4 39,000 06853
5 67,000 0.8706



It will be noted that the first order number failure repre-
sents 12.96% of the population and the last represents 87.06%.
The first being as distant from 0% failure as the last is from
100%, while the third is equidistant between the two.

Having assigned Median Ranks it is now possible to consiruct
the Weibull Plot.

Using Weibull Probability Paper proceed as follows:

Failure age is represented on the x-axis, and the percentage of
the population failed, or Median Ranks on the y=-axis.

For the first rank order number plot 4,800 on the x-axis ag-
ainst 12.96 on the y=-axis.

Por the second rank order number plot 13,000 on the x-axis
against 31.47 on the y-axis.

Continue until all five points are plotted.

If by inspection it appears that the points fall along a
straight line then a line may be immediately fitted. In some
instances a straight line may not be apparent, in this case a
special technique, mentioned later will have to be employed.

A plot of the above results is shown in Fig. 4-1 on page 51 .
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5 = EXAMPLES IN PLOTTING

The following examples serve to demonstirate the method of ob-
taining the Weibull line for a particular set of sample failures
and the type of information which may be obtained from this line.
It also indicates the speed at which a plot may be produced when
Median Rank tables are available. Using the computer programme
discussed in Chapter 10 on page 214, the results would be nearly
immediate.

5«1 = Completed tests without suspensions.

A completed test of magnitude N occurs when it is decided to
test a sample of N items and all N items are tested fto failure.
The failure index Ho = N is the number of failures of the mode
under study. The times, or cycles, to failure are plotted against
the Median Ranks for a sample size N.

Example - The following data were obtained from BL Technology.

A new switch was proposed for production introduction. The
Reliability Department, in order to arrive at an assessment, took
10 of these switches at random and carried out tests-to-failure.
The results were as follows:

Cycles to Failure
12,800
34,500
52,000
82,500
102,000
145,000
180,000
222,000
300,000

490,000
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PROCEDURE

1) Pailure times are ranked in ascending order, as above.

2) Median Ranks are assigned using tables if available, or the

3)

4)

general formula if not,

Order No. Cycles to Failure x 10"%  Median Ranks
1 1.28 6.6
2 3.45 16.2
3 5.20 25.8
4 8.25 35.5
5 10.20 45.1
6 14.50 54.8
1 18.00 64.4
8 22.20 T4.1
9 30.00 83.7

10 49.00 93.3

Using Weibull Probability Paper, cycles to failure are plotted
on the x-axis against Median Ranks on the y-axis.

Should the plotted points approximate to a straight line then

a line may be immediately drawn through these points. This is

the Weibull Line. In some instances it may be necessary to

_ £it the "best line" by means of the "Method of Least~Squares",

- see section 6.13 on page 103.

Where it is obvious that a straight line does not fit the
plotted points, or where a dichotomous plot is in evidence, it
becomes necessary to apply special techniques which will be

explained later. (See section 6.9 on page 90).



5) The slope of the Weibull Line is determined by projecting a
line perpendicular to the Weibull Line passing through the
"Estimator” point at the top left-hand corner of the paper.

The slope is read off the "FJ“ scale where it is cut by the
projected line. For the definition and the analytical cal-
culation of the slope, or shape parameter ﬁ:, see section 6,18
on page 167.

Similarly a value may be read off where the perpendicular line
to the Estimator point cuts the pﬁ scale. This wvalue gives

the point on the "y" axis from which a line projected hori-
zontally, to the Weibull Line and then vertically to the "x"
axis gives the percentile mean in hours, cycles etc. For the
definition and analytical calculation of the mean life p, see
section 6.19 on page 169.

The Characteristic Life, the point at which 63.2% of the pop-
ulation will have failed, is read from the x-axis_immediatoly
below the point where the Weibull Line cuts the horizontal
Estimator Line. (Marked at 63.2% of the y-axis). For the def-
inition and analytical calculation of the characteristic life

q , 8ee section 6.17 on page 166.

It should be noted here that the values for Mean Life and
Characteristic Life are the same for this example. This occurs
when the line slope is 1.

The Weibull Line which has been produced,Fig. 5-1 on page 55 ,
mey now be considered as giving an estimate of the failure lev-

el at any given failure age.
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5.2 = Truncated tests without suspensions

This type of test obtains when it is decided to test a sample
of N items, but the test is terminated when No items (Nogg N is
called the failure index) are tested to failure. (N =- No) items
survive. The times, or cycles, to failure of the Ho items are
plotted against the Median Ranks calculated for a sample size N.

Example

The Reliability Department placed twelve components simultan-
eously on life test under conditions simulating those of actual
use. The test was terminated after the failure of the first eight
components. The times to failure of the eight components were:
92, 143, 186, 225, 295, 330 and 365 hours.

Procedure
1) The N, failure items are ranked in ascending order.

2) Using tables or the general formula, the first N, Median Ranks

are assigned to the No ifems, calculated for a sample size N.

Order No. Time to failure Median Ranks (in %)

(hours)
1 92 546
2 143 13.5
3 186 21.6
4 225 29.7
9 260 37.8
6 295 45.9
7 330 54.0
8 365 62.1
9
10
1
12
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3) Using Weibull Probability Paper, the times to failure are
plotted on the X-axis against Median Ranks on the Y-axis. See
Figs 5=2 on page 57 .

5¢3 = Incomplete tests (tests with suspensions)

Suspensions are missing data in a life study programme. These
missing data come from items which were prematurely removed from
test, that is, before completion of that test, for any of a var-
iety of reasons. Rig failures, failure modes different from the
mode under investigation, accidents to items, curtailment or with-
drawal of some of the items on test (others failing later), result
in suspended data.

The test in which one or more items are withdrawn from test
before they fail is called an incomplete test. The failure index
Ho is less than the magnitude N in incomplete tests. Note that
this is not the same as stopping a test after the first Ho items
have failed in the same mode, there being no suspensions, and
N°4£.N. This is the truncated test discussed in Chapter 5.2 on
page 56.

An incomplete test of magnitude N has suspensions and must be
treated in a special manper. Suspensions cannot be considered
failure data and at the same time they cannot be ignored. Each
suspension has a chance to fail after the time of removal and be-
fore the end of the test. Moreover, the suspended item has succ=-
essfully run up to the time of removal from test.

A way of handling incomplete test data (that is, data contain -
ing suspensions) is to assign to each observed failure of a given
mode its correct rank order number. Remember, in the Previous ex-

amples, in Chapter 5.1 on page 52 and in Chapter 5.2 on page 56,



the data were ranked in ascending order and were assigned rank
order numbers 1, 2, 3,.....,N°. Then the Median Ranks were
looked up inAppendix A on page 222, corresponding to those order
numbers for a sample size of N. Median Ranks (or confidence
limits) for an incomplete test cannot be assigned until first an
order number is assigned to each failure in that failure mode.

In general, the rank order numbers of failures following the
first suspension will no longer be integers, but because of the
suspended item or items, they will be fractional values. The
following example illustrates the reason for fractional values.

Consider the previous test, in Chapter 4 on page 46, as being
incomplete, the following results being obtained:

Failed at 4,800 cycles
Suspended at 13,000 cycles
Failed at 23,000 cycles
Suspended at 39,000 cycles
Failed at 67,000 cycles
5¢3=a = Interpolation of new rank order numbers

The order number 1 is assigned to the first failure since no
suspension preceded it. With the secornd failure however it is
not possible to assign an order number of 2 since the suspension
preceding it may well, had it not been removed from test, have
failed before 23,000 cycles. Similarly an order number of 3 can~-
not be assigned since the suspended item might well have survived
beyond 23,000 cycles. The second failure therefore will require

an assigned order number somewhere between 2 and 3.



Derived from considering every possible rank position of the
guspended items, the general formula used to calculate a new in=-
crement of such rank order numbers is given by:

(N + 1) = (previous rank order number)

*

1+ (number of items beyond present suspended items)
Referring to our example of five test items, the result was an
incomplete test of magnitude N = 5 and a failure index No = 3.
Failure No. 1 has a rank order number of 1since no suspensions
occurred before it. For failure No. 2 we must calculate a new

rank order amount to be added:

(5 +1) -1
1 + 3 = 1.25

Therefore failure No. 2 has a rank order number 1 + 1.25 = 2.25.

The new increment for failure No. 3 is

(5 + 1) = 2,25
14+ 1 = 1.875

Thus, failure No. 3 has a rank order number equal to

2.25 + 1.875 = 4o12§

From these results, the tabulation of the five items will be:

Cycles to failure or suspension Order Number

4,800 failed 1
13,000 removed from ftest -
23,000 failed g iy kbl =l o vee
1+ 3
39,000 removed from test -
67,000 failed 2.254%@5- 2.25+1.875=4.125

-60=



A check may be carried out as follows:

The last order number doubled minus the previous order number
must equal the number undergecing test plus 1.

Thus (4.125 x 2) = 2.25 = 5 + 1

84250 = 2.25 = 6

6 = 6 Check .

Alternatively, the last increment calculation added toc the last
rank order number should equal N + 1. In this case,

1.875 + 4.125 = 6 = 5 + 1 Check.

Median ranks and confidence limits can now be determined by
referring to the column corresponding to a sample size of five in
each table and interpolating between the integer rank order numb-
ers.
5¢3=b = Interpolation of new Median Ranks

Median Ranks may now be assigned to each rank order number in
accordance with the previously mentioned procedure.

Method I

If a table of Median Ranks is available such as Appendix A on
page 222 , new median ranks can be calculated by referring to the
column corresponding to a éample gize of N and interpolating be-
tween the integer rank order numbers as shown for item No. 2.25

in Pig. 5-3 on page 62.
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Method II

Obviously, without interpolation, which is undesirable, it is
not possible to use the standard Median Rank Tables for order num=-
bers which are not integers. However, the Median Ranks can also
be calculated using the simple formula by A. Bernard mentioned in
Chapter 4 on page 48:

i=-0.3 1<i<N
N + 0.4

where 1 = rank order number
N = number in sample .

Thus, rank order number 4.125 gives:

4.125 = 0.3 _ 3.825 _ L o
5 + 0.4 5.4 0.7083 = 70 23 /o

Thus, the full set of results is as follows:

Cycles Rank Order No. liedian Ranks (%)
Method I Method II
4,800 failed 1 12.900 12.96
13,000 suspended - -
23,000 failed 2.25 35.975 36.11
39,000 suspended - -
67,000 failed 4.125 704900 70.83
Method III

This method consists of determining the Median Ranks directly
from the binomial expansion:
(R+m)¥ = [(1-7)eF [T = 0050 « Y(1-DND(1-m" (D 1-mTE
as mentioned in Chapter 4 on page 48. This method, however, is
rather difficult and is used only when a computer is available.

See Chapter 10 on page 216,
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Notice that fthere are small differences between the three meth-
ods. Method III is the most accurate. The plot of these results
gives Fig. 5-4 on page 65.

The plotted points as shown in this figure may then be treated
as a normal Weibull plot and a line fitted by the usual methods.
In the case of this example only three failures occurred giving
only three plotted points thus making it less obvious as to where
the straight line should be fitted. This reduces the confidence
we may have in the resulting line and for this reason it is nec-
essary to aim for at least seven plotted points, which give a rea-

sonable level of confidence, by making the line more representat-

ive of the plotted data.
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PART II - EXPERIMENTAL PROOF
6 - PRELIMINARY INVESTIGATION, CARRIED OUT AT ASTON, TO TEST THE
DISCRIMINATING POWERS OF THE WEIBULL ANALYSIS.
6.1 - Fatigue Testing of butt-welded joints
6.1.1 - Hystorical note
There has not been yet any work done on the application of the
Weibull analysis to welded joints, but there is one particular ex-

ample, set up by Weibull in his paper(1)

, which shows how the Wei-
bull analysis can be applied to fatigue life results. This par-
ticular example is on the fatigue life of an ST=37 steel. The ob=
served values are taken from Mtiller-Stock (15). The frequency
curve in figure 6-1 gives no impression of a complex distribution
(two failure mode distributions) which, on the other hand, may
easily be seen when using plottings in figure 6=2. The parameters
are: Component No. 1: to = 4.032, ﬁ: = 5.956; Component No. 2:
to = 4,.,484. P = 1.215. Table 1 shows the close agreement between

the observed and the calculated values.
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Table 1 - Fatigue Life of ST-37
(Rotating-beam test at : 32 kg/mmz)

N Expected values Observed
103 2, n, n, - :alues
1+2

1 17-5 4-6 -~ 4.6 4.6
2 22-5 47-4 e d 47-4 47-4
3 275 125.1 - 12541 125.1
4 32.5 161.2 8.1 169.3 169.2
o 37.5 164.9 28.0 192.9 192.7
6 42.5 | 165.0 41.9 206.9 207.3
7 47.5 | 165.0 51.0 216.0 215.9
8 52.5 | 165.0 57.0 222.2 222.2
9 657.5 | 165.0 61.0 226.0 225.9
10 62.5 | 165.0 63.7 228.7 228.7
11 67.5 165.0 65.6 230.6 230.5
12 T72.5 | 165.0 66.9 231.9 231.9
13 77.5 | 165.0 67.9 232.9 232.9
15 87.5 | 165.0 69.1 234.1 233.9
16 92.5 165.0 70.0 235.0 235.0
80

60 / !
2 |
T | |
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

xlO6 cycles

Fig. 6=1 Frequency curve of fatigue life of ST-37 steel

(Number of specimens versus number of stress cycles)
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The real causes of this splitting up in two components may be
found by examining the frequency curve of the yield strength of
the same material, figure 6~3 on page 69. It is easy to see that
the material, probably not being killed, is composed of two diff-
erent kinds. If it is supposed that all the specimens with a
yield strength of less than 25 kg/mm2 belong to Component No. 1,
we obtain 14 specimens out of 20, meking 70%. Exactly the same
proportion has been found by the statistical analysis, as %%§=70%.

The reason why this partition is so easily seen in figure 6-3
on page 69 and not at all in figure 6-1 on page 67 depends, of

course, upon the much larger scatter in fatigue life than in yield

strength.
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D

Fig. 6=3 Frequency curve of yield strength of ST=37 steel
(Number of specimens versus yield strength in kg/mmz)
Although the Weibull distribution function has many practical
applications in many fields, it is not always valid, and it is
the purpose of this project to examine the espplicability of the
Weibull distribution function to the fatigue results of welded
joints.
6e1.2 = Fatigue of welded joints
In order to determine the mean life and the reliability of a
certain welded joint subjected to repeated loading, fatigue tests
are carried out on a number of welded specimens to determine the
time to failure. It is, therefore, of importance to have an

understanding of the factors which influence the fatigue life of

a welded joint.
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Fatigue failure consists of the formation of a crack or cracks
under the action of varying loads. If fatigue cracks do occur
they are invariably initiated at stress concentrations. Since
all joints are inevitably points of stress concentration, it is
axiomatic that fatigue failures are likely to occur at joints and
that the behaviour of a welded structure subjected to repeated
loading will depend, to a very large extent, on detailed joint de-
gign.

The type of weld that is used in this investigation is a trans-
verse butt weld in steel.
6e1+3=-Factors influencing the fatigue strength of transverse buit

welds

The transverse butt weld used as a means of joining together
two plates, produces the least disturbance to siress flow and wou-
1d therefore be expected to exhibit relatively good fatigue stren-
gth. In the absence of weld defects and with the weld reinforce-
ment left in the as welded condition, the major stress concentra-
tion occurs at the weld toe and it is from here that fatigue fail=-
ure invariably occurs.

The expectation of good fatigue strength has often been ful=-
filled, but the fatigue strength of transverse butt welds can
still vary between wide limits. In recent years it has become
apparent that the weld shape is the overriding factor in deter-
mining the fatigue strength of sound transverse butt joints, and
the influence of many of the other factors is determined by their
effects on the shape at the weld toe. Newman and Gurney(S) test~-

ed several types of butt welds, made by both manuasl and automatic

<O



welding, and obtained a wide range of fatigue strengths, which
varied from 100.4 Nmm™ 2 (6.5 tons/in®) to 177 Num > (11.5 tons/
sq. in) at 2 x 106 cycles under pulsating tension loading. (See
Chapter 6.1.4 on page 78 for the definition of fatigue terms).

As a quantitative measure of reinforcement shape the (obtuse) an-
gle v between the plate surface and the tangent to the reinforce-
ment at its point of contact with the plate surface was used, see

figure 6-4.

R ey

Figure 6-4 Reinforcement angle

Examination of the specimens revealed that this "reinforcement
angle™ varied along the length of a weld - particularly.in manually
welded joints = but that failure usually originated at the point
of minimum angle. A few specimens of each test series were sel=-
ected from those which gave fatigue test results, lying close to
the relevant S=N curve. These were sectioned at the point of
erack initiation and the angle measured with the aid of a projec=
tion microscope. The measured angles were plotted against the fat-
igue strength at 2 x 106 cycles of the particular test series from

which the specimen originated, as shown in figure 6=5 on page T2.
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For the manually welded series the scatter was about 150. but
for the automatic welds it was somewhat less, but it can be seen
that all the experimental points lie within a scatter band which
can conveniently be located at its upper end by the strengths of
plain plate with and without millscale. These results were con=
firmed by tests performed in the welding institute(s) which show

that the fatigue strength of transverse butt welds at 2 x 105

cycles under pulsating tension can be anywhere between 100.4 N~ 2
(6.5 tof.s.1.) and 177 Nma~2 (11.5 t.f.s.i.). The marked changes
in the fatigue strength were produced by variations in the shape
of the weld profile. All the welds were free from any internal
defect and would normally be considered good quality welds. Under
fatigue lo;ding conditions the term "quality" must also refer to
the shape of the excess weld metal. It can be seen from the res-
ults in Table 2 on page that the lower fatigue strengths are
associated with welds having a poor shape, in that there is a very
sudden change of section at the junction between parent plate and
weld metal ( {} small). Those welds having the minimum of excess
metal and a smooth transition at the weld toe, ( v high), give
the higher fatigue strengths.

Another way in which the effect of reinforcement shape can be
expressed is related to its influence on the life of specimens
tested at a given stress level. This was the approach of Fall et
al(T), who graded the variocus specimens visually and found an
approximately linear relationship between the grading and log en-
durance. Unfortunately such qualitative grading methods invite
criticism and are of no assistance in helping to define the crit-
ical features of reinforcement shape, although it shows that a
definition of "good™ and "bad" shape may be possible by visual

inspection.



Table 2

Type of transverse butt joint

Fatigue strength (f )

at 2 x 106 cycles

0.5 in thick single-V butt weld,

manual electrode

11.5 tonf/in®

(178 H/mmz)

0.5 in thick, close square butt
weld, manual deep=-penetration

electrodes

7 tonf/inz

(108.5 N/mm)

1.25 in thick, single-V butt weld,|9.5 tonf/in®
manual electrodes (147 N/m?)
0.5 in thick, close square butt 6.5 tonf/in2

weld, submerged-arc

(100.8 N/mmz)

0.5 in thick, close square butt

weld, submerged-arc

7 tonf/in2

(108.5 N/mm>)

0.5 in thick, double-V butt weld,

submerged-arc

11 tonf/in®

(170.5 N/mm?)

1.25 in thick, double=V butt weld,

submerged-arc

10 tonf/inz

(115 N/m®)




It would seem reasonable to attribute the influence on fat-
igue strength of many other factors, such as plate preparation,
welding conditions, welding process and type of electrode to
their effect on the shape of the weld toe. Evidence confirming
this viewpoint as the cause of the reported poor fatigue perform-
ance of automatic welds compared with manual welds, is supplied by
Newman and Gurney(S) in their investigation mentioned previously.
In two series of tests on submerged arc welds in 12.7 mm (0.5 in)
thick mild steel, fatigue strengths of 100.4 Nm~2 (6.5 tfsi) and
108.1 N’:m:l"'2 (7.0 t2si) at 2 x 106 cycles were obtained under pul=-
sating tension loading. However, in tests on automatically welded
joints with the reinforcement removed the fatigue strength was
found, as with manual joints, to be the same as that of the parent
material. The low fatigue strength of the automatic welds in the
as welded condition cannot, therefore, be attributed to any ad-
verse metallurgical factor as this would also have made itself
apparent in the tests on machined welds. The possibility that res=-
idual stresses were the dominating influence was eliminated by
testing the welds in the stress relieved condition. Two further
series were also welded by the submerged arc process, but with the
welding conditions adjusted to give an improved reinforcement sha-
pe. These were tested and resulted in fatigue strengths of 169.9
Nmm-z (11.0 tfsi) and 154.4 Hmm_2 (10,0 tfsi) at 2 x 106 cycles.

Residual stresses have little effect on fatigue strength when
the applied stress cycle is wholly tensile. Severai investigat-
ions have been carried out in which the fatigue strength of "as-
welded” and "stress-relieved" specimens have been compared under

Pulsating tension loads. Under such conditions, with axially



loaded transverse buttwelds, the maximum increases in strength
at 2 x 106 cycles that have been obtained are about 17% for welds
with the reinforcement machined flush(a), and 123% for welds with
the reinforcement unmachined(g). However, for both types, it .has
frequently been found that stress relieving had no effect at all
on fatigue behaviour!'®r 11» 5)  4ri1e intermediate, and therefore
obviously small, strength increases have also been recorded(12‘ 9{
Finally, the possible effect of variations in the static stren-
gth of the parent materials must be accounted for. Due to the
critical dependence of the fatigue strength of transverse butt
welds on the shape of the weld profile, fatigue test results on
these welds do not provide a particularly consistent set of data
for defining the effect of static strength of the parent material.
Gurney(13) summarised the resulis relating to manual steel butt
welds subjected to 2 x 106 cycles of pulsating tension loading,
figure 6~7 on page 77. It can be deduced from this graph that the
fatigue strength under these conditions is independent of static
strength.

Thus any variations in the static strength of the Proposed steel

would be insignificant.
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6.14 = Fatigue-Testing Notation
The terms used in fatigue testing to describe the applied

stress cycle can be defined as:

Minimum stress in the cycle fmin
Maximum stress in the cycle - 4
max
Stress ratio R = fmin
max

Tensile stresses are considered positive, and compressive
stresses are negative.
Fig. 6-8 shows the type of stress cycle used in fatigue

testing in this project. See Chapter 6.6 on page 83.
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Fig. 6-8 Pulsating tension



6.2 - Objectives and Experimental Approach

The objective of one particular project was to apply the
Weibull analysis to welded joints in order_to determine their
mean life, characteristic life, failure rate at any time %, and
reliability.

The approach adopted was to fatigue test a number of welded
specimens, at a given stress level, until failure. The stress
cycle chosen for this purpose was pulsating tension , in which
the stress varied between zero and maximum.

min. stress in the cycle fmin

max. stress in the cycle e 0).
max

The Weibull analysis was then applied to the failure test data,
which consisted of the time to failure of each specimen.

Two sets of specimens were made using two different welding
speeds, while all the remaining welding variables were held
constant. Varying the welding speed should change the weld pro=-
file. Therefore, it would be expected to have two different fat-
igue lives, and hence, two different Weibull distributions with
different mean lives, characteristic lives, failure rates and
reliabilities.

6.3 = Testing equipment and specimen design

The fatigue testing equipment available for this project wes
an "Amsler Vibrophore" high frequency magnetic resonance fatigue
machine fitted with a 99.6 kN (10 tonf) dynamometer. Based on the
limitations on loading and the maximum dimensions of a plain sheet
of material which could be accommodated in the grips of the fat-
igue machine, test pieces with the dimensions shown in figure 6-9
were used. Figure 6-10 shows the specimen used, which were manu-

factured in the Welding Laboratory of the P.T. & P.M. Department.
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It is important to mention that the reason for adopting the
above specimen shape was not to ensure that failure would occur
in the weld, since under fatigue loading fracture would certainly
initiate from the weld and not from anywhere else, even if the
specimen was rectangular. The main reason was that, in order to
prevent the specimen slipping in the grips of the machine at high
testing loads, the parts of the specimen that were located inside

the grips should be wide enough to allow good gripping.
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6.4 - Material

The specimens were made of mild steel, because this material
is readily available and easy to weld. The material used was in
the form of Bright Drawn Mild Steel (BDMS) plates 9.525mm (3/8")
thick. The specimens were obtained from two plates as above,
3.6576 m (12 £t.) long and 101.6 mm (4 in.) wide, which had been
cut into strips approximately 550 mm (21 5/8 in) long and 101.6 mm
(4 in.) wide.

6.5 = Welding operations

A constant reinforcement angle was required on the specimens,
and it was therefore necessary to automate the welding process.
The welding was carried out using the Submerged Arc Welding pro=-
cess employing 1/8 in. diameter mild steel consumable electrode
(No. 1 Unionmelt), and Unionmelt flux grade 50. Both the welding
wire and flux were obtained from the Brifish Oxygen Company Ltd.
The Unionmelt No. 1 wire is suitable for either single~ or multi-
pass welding. It is used for making butt and fillet welds, where
maximum ductility is required. The weld metal has a tensile stren-
gth of 434 to 465 N/mn® (28 to 30 tons/sq. in.). It is used in
conjunction with 50 grade Unicnmelt powder. This combination
meets the mechanical requirement of BS 639: 1952.

Unionmelt powder grade 50 is very suitable for high speed, high
quality welds in thin gauge steel, but also gives excellent re-
sults on heavier section requiring up to 1100 amp welding curr-
ent. It is particularly satisfactory on surfaces which have been
ineffectively cleaned and which have excessive amounts of mill

scale, dirt and rust.
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6.6 = Specimens preparation

Two plates, 550 mm long x 101.6 mm wide, were butt welded fto-
gether along the 550 mm edge, with no edge preparation (square
putt weld). Each plate was cleaned with an industrial solvent.
The plates were placed in intimate contact and three tack welds
were made at the centre and ends of the joint line. Also, two
pieces of steel, a run-in, and a run-off, were tack welded to
both ends of the plates. The plates were then welded from one
side. Time was allowed for the plate to cool before commencing
welding on the reverse side. four plates were thus welded. For

the first two plates, the welding conditions were taken from the

American Welding Handbook(14), and were as follows:
vThickneas 18t side 2nd side
t (backing pass) (finishing pass)
Current|Voltage|Speed| Elec~|Current|Volt. | Speed| Elec—|
amp volt. mm trode|amp volt, {mm trod
per dia. per dia.
min min
9.5 mm 425 33 711 3175|475 35 711 3.175
(3/8 in.) (28 |mm. mm.
in/ (1/8 (28 |(1/8
min) ino) i.n/ in. )
min)
Finishing
pass :
“HTHHH“wL /

—_—
-‘-"”‘L-..._

Backing pass

Table 3. Two-pass butt welds.
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From those two plates, ten specimens were cut, at right angles
to the weld and numbered from 1B to 10B. Specimens were then
machined to the final dimensions. Becesuse sufficient material was
not available, specimens 8B, 9B and 10B were sectioned from a

300 x 200 mm welded plate, instead of a 550 x 200 mm plate

Difection of welding

Rgn—in > Run-off
piece piece
(T : ] T I N
] | I ; | !
1 | |
| ]
: | | ' ' :
) i | | |
1 T — $ i
|k' : ! : : 2
: 1 i : | !
I I I !
: | I ! ! :
r | | | I |
: 1 | | 1 Ly

1 2 3 4 e e
Specimen Number

Fig. 6=11 Sectioning of butt welded plates

For the second two plates, the welding speed was changed,
while keeping all the remaining welding variables constant.
The welding speed was taken from recommendations made by the
British Oxygen Company Ltd. The welding conditions were as

follows:

-84~



Table 4. Two=-Pass butt welds

Thick:neas! 1st side 2nd side |
% (backing pass) (£inishing pass) \
1

Current VoltagJ Speed |Elec~-|Current VoltageiSpeed Elec=
amp Volts | mm trode|amp Volts |mm trode|

per |dia. 1per dia.
min. imin. |
9.5 mm 425 33 508 3.175 |475 35 508 |3.175
(3/8 in) (20 mm (20 |(mm |
in/  |(1/8 in/ |(1/8
rﬂn) in.) Fin) in.)i

Ten specimens were cut from the above two plates and numbered
from 1C to 10C.

Before fatigue testing, all the specimen edges were finished
by hand to a radius of approximately 2 mm. Some of the specimens
were radiographed to make sure that there were no weld defects.
No weld defects were detected.

6.7 - Fatigue testing

It was found that the alignment of the specimen in the grips
of the Amsler was important, as any misalignment would now allow
the machine to resonate properly. A vernier depth gauge placed
against the sides of tie grips was therefore used in positioning
the specimen. Care was also taken to ensure the bolts clamping
the specimen were tightened equally. This avoided the possibility
of the specimen slipping in the grips during testing. Initial
trials with the welded specimens gave the testing frequency of
233 ¢/S (HZ). Due to the large mass of the gripping heads, the
dynamometer correction at high frequencies becomes large. That is
why it is recommended to operate at frequencies between 150 and
200 HZ. The testing frequency was lowered by the use of weights
attached to the top section of the Amsler. The testing frequency

was thus lowered to 175 HZ (C/S).
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Important features of this type of fatigue machine are the cut
out relays which operate if the applied loads either exceed or
fall below the pre-set values. Apart from guarding against poss-
ible fluctuations in the power supply, these relays can also Tepre-
gsent a failure criterion. When a fatigue crack is produced the
damping characteristics of the specimen are altered so that more
energy is required to keep it resonating at the same frequency and
stress level. Since the power requirements needed to allow the
machine to fatigue test a sound specimen (i.e. uncracked) at a
determined stress level have been preset, the presence of a fatigue
crack decreases the stress on a specimen due to the greater energy
requirement.

This causes the cut out relays to operate. Because the relays
were sensitive to change and came into operation quickly, the
machine stopped before the crack had propagated through the speci-
men completely. The operation of the relays was taken as the
"fajilure point" of the specimens. Each specimen was tested until
failure. At failure, the total number of applied load cycles was
given by means of synchronised dials and counters mounted on the

control unit.
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N e T T

Fig. 6=12 The welded specimen located in the grips of the Amsler
Vibrophere. The weights used to lower the testing
frequency can be seen above the specimen.
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6.8 = Results

The results obtained from the fatigue tests are summarised in

Table 5.

Order | Cycles=-to=- 'Welding speed |Median ‘Failure Remarks 1
No. failure | mm/sec Rank* | mode {

x 105 ! ]

1 446 11.85 (28"/min)| 3.4 B Toe crack |

2 5,32 8.5 (20"/min)| 8.2 & Toe crack

3 5.39 8.5 (20"/min)| 13.1 c Toe crack

4 5.84 8.5 (20"/min)| 18.0 (o} Toe crack

5 6.16 8.5 (20"/min)|22.9 C Toe crack

6 6.68 8.5 (20"/min)|27.8 '+ Toe crack

7 6.77 8.5 (20"/min)| 32.7 c Toe crack

8 7.91 8.5 (20"/min)| 37.7 C Toe crack

) 10.15 8.5 (20"/min)| 42.6 c Toe crack

10 10.53 11.85 (28"/min)| 47.5 B Toe crack

11 11.78 11.85 (28"/min)|52.4 B Toe crack

12 11.94 8.5 (20"/min)|{57.3 ¢ Toe crack

13 12.13 11.85 (28"/min)| 62.2 B Toe crack

14 13.65 11.85 (28"/min)|67.2 B Toe crack

15 15.10 8.5 (20"/min)|72.1 c Toe crack

16 15.51 11.85 (28"/min)|77.0 B Toe crack

17 18.03 11.85 (28"/min)|81.9 B Toe crack

18 18.08 11.85 (28" /min)|86.8 B Toe crack

19 18.96 11.85 (28"/min)|91.7 B Toe crack

20 18.98 11.85 (28"/min)|96.5 B Toe crack
Table 5. PFatigue life results for transverse butt welds in mild

-

steel (Pulsating pulling stress loading, A e 0,

2
fm. 200 N/m .

* Median Ranks were obtained from Appendix A on page

#%* See section 6.6 on page 83

A Weibull plot of these twenty data points is shown in Fig.

6=13 on

page 89.

Obviously, the data did not describe a straight line on Weibull

Probability Paper.

the different failure modes.

A special analysis was necessary to separate
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6.9 = Analysis of two or more failure distributions - Separation
of C failures.

If the plotted data form two straight lines having either diff-
erent slopes or different characteristic lives, they are said to
form a dichotomous plot and infer that a specification change has
affected the units behaviour. In this case a re-inspection of the
sample units must be made and the pre-modification and post-modi-
fication units identified. These two groups may then be re-ploti-
ed, with new Median Ranks, and analysed separately as two individ-
ual samples from iwo parent populations. The same procedure must
be used when a dichotomous plot is given by a sample containing
the products of two different manufactures.

In the case where two distinct failure modes exist a more
lengthy analysis of the data is necessary for reasons which will
become apparent.

Plotting failure data which contain two or more different modes
of failure (e.g. components welded at different welding speeds)
will not normally result in a straight (touo) or smoothly curved
(tO#O) Weibull line, yet with a special analysis we should be able
to separate the failure distributions.

Consider the data in Table 5 on page 88. A Weibull plot of
these twenty data is shown in fig. 6-13 on page 89. Obviously,the
data do not describe a straight line on Weibull probability paper,
and therefore a special analysis is necessary to separate the fail-
ure modes.

It may be noted at this stage that the actual readings from
this dichotomous plot are meaningless since omne mode of failure
affects the other by "stealing" Median Rank numbers from it. The

correct way of handling these data is to:
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1. Identify the failure mode for each component, by technical

inspection.

2. Separate the data by failure modes (B or C).

3. Replot the data for each mode by treating failures of the

other mode as suspended items.

When replotting the data for C failures, B failures are con=-
sidered suspensions (not failures). On the other hand, C failures
are considered suspensions when plotting B failures (see Chapter
6.16 on page 149 ).

6.10 - Interpolation of new rank order numbers

If the first four results in Table 5 on page 88 are considered,
then to separate the C failures the four results can be written as:

1. Suspension (B failure)

2. Failure at 5.32 x 10° cycles

3. Failure at 5.39 x 105 cycles

4, Failure at 5.84 x 105 cycles

The order number of the first failure is in doubt. It is not
correct to assign a rank order number of 1 because the suspended
item might have failed before 5.32 x 105 cycles. Neither it is
possible to assign a mean order number of 2 to the first failure
since the suspension could have lasted longer than 5.32 x 105 cy-
cles (time of failure of a suspension is considered to be unknown).
However, it is known that the first failure should be assigned a
mean order number beiween 1 and 2.

Referring to our case and using the method discussed in Chapter
5.3-a on page 59, the results of separation of the C failures for

the 20 items are as shown in Table 6 on page 92 .

S



Table 6.

Calculation of new rank orders

Item Failure |Cycles to failures |New Rank Order Number of
mode x 105 failure

1 4.6 Suspension -

2 |e¢ 5.32 Failure 0+ 22 . 1,05

3 c 539 Failure 1.05+g%f%ggi = 2.10

4 |c 5.84 Pailure 2.10452212 & 5,15

5 C 6.16 Failure 3.15+2%f%é12 = 4,20

g e 6.68 Failure 420422022 2 5,25

g 6.77 Failure 5.25+212222 = 6.30

8 |c 7.91 Failure 6.30+3%§%§29 = 7.35

9 |ec 10.15 Failure 735451222 = 8.40

10 10.53 Suspension -

11 11.78 Suspension -

12 c 11.94 Failure 8.40+g%ig;ig = 9.66

13 12.13 Suspension ~

14 13.65 Suspension -

157 dic 15.10 Failure 9.66+21-2:58 = 11,28

16 15.51 Suspension -

17 18,03 Suspension -

18 18.08 Suspension -

19 18.96 Suspension -

20 18.98 Suspension ~




6.11 = Determination of new iedian Ranks

After calculating the new rank order numbers, new Median Ranks

can be determined using one of the methods discussed in Chapter

5.3=-b on page 61, for the actual sample size N = 20.

The results can be seen in Table 7 on page 93 .

New Rank

Order No. | Cycles to New Median Rank %
0ld |New Failure Order No.
t x 107
24t 1. | 532 1,05  |{8:222:0001.09=D) 5 43,64
3 |2 | 539 2,10  |{12:1=8:2)(2-1=2) ¢ 5.5.69
A 3 5.84 3.15 (18-13-12%3.15-3)713.1_13.83
5 | 4 | 6.16 4.20 22:9=13)74:2024), 18=18.98
6 |5 | 6.68 5.25 27.822:9)(3222=5)+ 95922412
7 |6 |6 6.30  |{32:1=21:8)(8:2:0), 57 gupg.27
8 Jipt 17,01 7.35  |AILeT=32:1(7-321), 35 7.34.45
9 |8 [10.15 g.g0  |{42:6=0T-1)(8:428) 57.7.39.66
12 |9 [11.94 9.66  |{47-5=42.8)(9:8029),45.6-45.83
15 |10 [15.10 11,28 |{31e3=22:40(11:28211) 55 4=53.77
Table 7+ Separation of C Failures with uncorrected value of to.

These results are also displayed on Weibull paper in Fig.6-14

on page 94 .
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6.12 = Correction of a Curved Plot (correction for tO#O) e

Some times, the plotted data forms a smooth curve, concave to
the left or right on the Weibull paper.

To appreciate the reason for this curvature it is necessary
to study the diagrams of number failed against life at failure
i.e. the failure distribution diagrams.

In the case of a curve concave to the left some failures have
occurred before the start of the life test, e.g. components which
have physically deteriorated since manufacture such as to prevent
satisfactory operation and thus creating a failure level at zero
life as shown in Fig. 6-15 b) on pagze 96 .

If the curve is concave to the right no failures would be ex-
perienced until a certain test life is reached at which point a
distribution pattern will commence. A good example of this type
of failure would be that due to work hardening, which by its very
nature would require a certain amount of test time to develop the
conditions for failure, Fig. 6-16 b) on page 96.

The correction procedure intended to bring the plotted data into
a straight line may be termed "Curvature Correction". This correc-
tion method applies equally well to curves concave to the left or
right, as shown in Fig. 6-15 on page 96 and in Fig.6-16 on page 96
but is restricted to lines with a single curve, since a curve with
the form of an "S bend" would suggest a more complicated distribu=-
tion which could not be described by the Weibull analysis. See
fig. 6-13 on page 89.

Basgically this correction merely changes the scale of the x=-
axis by a constant amount (to) hence repositioning and straight-
ening the line.

¥ Sce ﬁppenc’{x F on peage_ 256 5.
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The constant to is a locating constant defining the starting
point or origin of the distribution.

When to does not equal zero, the distribution of failures will
not lie on a straight line. When to is less than zero the curve
will be concave to the left, as illustrated in fig. 6-15 on page
96 ; when to is greater than zero, the curve will be concavs to
the right, as illustrated in fig. 6=16 on page 96 .

To eliminate this curvature, a correction factor must be added
to or subtracted from the abscissa. This correction factor is to
and can be estimated wither graphically or analytically.

6.12-a = Graphical determination of the minimum life to

a) The data are plotted on Weibull paper and the "best curve"
is fitted to these points.

b) Two parallel horizontal lines are drawn through the ex—
treme failure points and a third horizontal line midway between
the two, its position being determined with a linear scale, not
using the y-axis scale). Alternatively, select an arbitrary point
roughly in the middle of the curve. Two other points, both dis-
tant d on a linear scale in the Y direction, are selected and ref-
erenced subscript 1, 2 and 3 as illustrated in fig. 6-17 on page

98 .
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Fig. 6=17 Estimation of to

¢) Three vertical lines are drawn through the points where the
horizontal lines intersect with the curve. These values on the x=-
axis may be identified as T, T2 and T3.

d) Since:

Y, = Y1 =Y., =X

2 3 25
it follows from the linear equation of the Weibull line

Y = ﬁhx + C, that

or
- "I A ha | " i b .“ I -
Iln (t2 - to) - 1n (t1 - to) = n (ts to) 1n (t2 to)
giving
2
(t2 - to) = (t3 - to) x (t1 - to)
or
SR T e RSl R
2¢c o 31 1% 3% G L
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Solving for to gives:

2
s SR St (Fae todty i 0 )
o t, -2t + ¢ 2
3 2 1 (t3 t2) - (tz - t1)

e) to is used with its own algebraic signe. Alternatively, one
could consider the magnitude of to and ignore its gign.

If the original curve was concave to the lef{ then to is added
to all values on the x-axis.

If the curve was concave.to the right, then to is subtracted
from all values on the x-axis.

f) The data are replotted using (t - to) ags the independent
variable. If the data follow the Weibull distribution, the points
will lie on a straight line.

From fig. 6-14 on page 94, t, = 5.72 x 10° and:

(15.10=5.72) (5.72-5.32 9.38x0.40
(15+10=5.72)=(5.72=5.32) 9.38-0.40

= (5.72 - 3128107 = (5.72 - 0.42)10° = 5.30 x 10°

5

102= (5.72- -)x10° =

to - 5072 -

Our data for the C failure are now displayed in Table 8 on

page 99 and in fig. 6-18 on page 100.

Order No. | (t-%,) Rank Order No. Median Ranks
x 107 cycles %

1 0.02 1.05 3.64

2 0.09 2.10 8.69

3 0.54 3.15 13.835
4 0.86 4.20 18.980
5 1.38 5425 24.125
6 1.47 6.30 29.270
7 2.61 T35 34.450
8 4.85 8.40 39.660
9 6.64 9.66 45.834
10 9.80 11.78 53.772

Table 8. C failures with corrected values of (t-to)

5

(to = 5.3 x 10 cycles)
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6.12=b = Analytical determination of the minimum life to

Let the curved Weibull plot be represented by a second-degree
equation of the form:

vy = ax2 + bx + d ., eq. 6=2

For every particular point (xi ’ yi) the vertical distance from
such point to the Weibull plot is

di o (ax2 + bx + d).

The constants a, b and d should be determined so that the ver—-
tical distances are as small as possible. Since each of the di
cannot be minimised individually, it is best to minimise the sum

of their squares . In other words, a, b and 4 should be chosen

80 as to minimise the function

= g ne.r 2 2
D=> di Z‘_yi—(axiq-bxi-i-d)

i=l i=1
where n is the number of points.

The function D is & minimum when

=

2 2
--2zxi (yi-a.xi -bxi-d)-o

SIS
U

2
b--zzxi (yi-ui -bxi-d)-o

%--2 (yi-uiz-bxi-d)-ﬁ

These three requisites produce the simultaneous equations:
RS VERST VR
Eixi ¥y a x, + b L~ o+ d x;
= 3 2
inyi ain + bei + dei
z ¥y -ainzi-bei-l-dn

The values of a, b and d are given by:
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The ordinates of the first and last point on the Weibull plot

are given by.

1
-}m1
; 1
I, " ln 1n =

1 - MR
n

¥, =dn ln .

The midway point will have the coordinate
Ve + 7,
2

Im =

and on a linear scale.
e Tim
e

This value is substituted for y in eq. 6.11=2 on page 101
which, with the substitution 4 - m = ¢ becomes

axz + by + ¢ =0

The roots of this equation are:
-b+'\l‘b2-4ac
m _—— -

A 2a
p= b= Vo - dac
2a

One of these values is discarded as being obviously wrong and
the other one gives the required value of tz.

The value of to is then calculated using eq. 6-1 on
page 99 , its value is added or subtracted to the life values t,
and the data are replotted as (t* to) as already discussed in
Chapter 6.12-2 on page 97 . This is the method used in the com=-
puter programme discussed in Chapter 10.
6.13 - Best fitting line

It has been found from experience, from representative rig
testing, that most part failure data can be interpreted as a Wei=

bull distribution, and appear as a set of points on a reasonably

straight line. Indeed, since failures tend to occur right from
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the moment the parts are put into operation, the minimum life
parameter to is usually zero, leaving only the shape parameter ﬁ:
and the characteristic life q to be estimated.

Once the points are plotted, we must determine the positiop of
the best fitting straight line. (If the data should be non-linear,
this indicates a non-zero value of the minimum life parameter to.
The value of to must first be estimated, and then subtracted from
each time t to failure in turm. Replotting (t-to) almost always
yields a straight line, as seen in Chapter 6.12 on page 100).
6.13-a = Drawing the best fitting line by eye

In most cases, a straight line may be fitted by eye.

As an example, ten parts were subjected to life test, and the

following results were obtained:

Failure No. |Age at Failure |Median Ranks, %
(hours)
1 500 6.6
2 1200 16.2
3 1650 25.8
4 2050 35.5
5 2650 45.1
6 3250 54.8
7 3750 64.4
8 4500 T4.1
9 4950 83.7
10 7300 93.3
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These data are plotted, and a straight line is drawn by eye,
in £fig. 6=19 on page 106 . It will be seen that the data form a
reasonably good straight line, only the first point A being app-
arently somewhat adrift. Taking account of the scales, however,
reveals that this conclusion is over hasty. Since the actual time
of each failure has been observed, suppose it is assumed that all
errors in the data are attributable to our estimation of the cum-
ulative percentage of the population which has failed. It is seen
that, to comply with our line, the first failure ghould have occu=
rred at 4.7 per cent instead of 6.6, so that its "error" in this
sense is 1.§ per cent. However, after around 50 per cent have fai=-
led, owing to the contraction of the scale, the same displacement
in millimeters would indicate an error of about 13 per cent. Hence,
in fitting a line by eye, more importance must be attached to dis-
crepancies in mid-life than to those early om. From this it foll=-
ows that a life test should not be truncated too soon, particularly
if the Weibull line is to be extrapolated to the left, in order to
estimate the age at which some high value of reliability occurs.
There must be enough data to determine the slope > of the line
(see Chapter 6.18 on page 167) with acceptable accuracy.

Reliability engineers usually draw the best-fit line by eye,
gsince its position tends to be fairly obvious. (The cramping of
the y axis scale in middle life, and the x axis scale in later
life, tends to mask any discrepancies!).

However, in certain cases, the plotted data tend to form a
straight line but significant scatter is apparent. In such cases,
any attempt to fit a straight line "by eye" would be basically in-
correct or would give such poor accuracy as to render the exercise

useless.
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6.13=b = Drawing the best-fitting line by the method of least
squares

If the points should be so scattered that the position of the
straight line is not easy to determine, it is necessary to fiﬁd
out what has gone wrong (see section 6.14 on page 120), and
whether the data are worthy of being fitted by a more sophisti-
cated method, If it is decided that they are, then regression
analysis, suitably modified, is indicated.

If n paired observations (x, y) are available, for which it is
reasonable to assume a linear relation between x and y and if it
is required to determine the line (that is, the equation of the
line) which in some sense provides the "best fit", then one way
of doing that is to apply the method of least squares.

The equation of a straight line which is required to fit %o the
set of data which appears in fig. 6-18 on page 100 is

Y= a+ bx eq. 6=3
where a and b are constants, which have to be determined in order
to get the best fitting line.

Of the infinite number of lines that could be drawn, which one
fits the data best? Before this question would be answered satis~
factorily, some criterion must be agreed upon by which to judge
the suitability of any line that could be chosen. The most gen=-
erally adopted criterion is based upon minimising the sum of the
squares of the distances from the line to the data points. This
may sound formidable but, as it will be seen, it is not so diffi-
cult.

The distance from the line to each point must now be defined.
The minimum distance is, of course, along a line normal to the
line y = a + bx that it is required to find. In many cases this

is the value to be used. In this case the input (time, cycles,
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etc.) is known quite precisely. It can be safely assumed that
any deviation from linearity occurs because of variation of the
quantity on the y-axis (median rank). Since x is known much
better than y, it is reasonable to choose to minimise the ver;
tical distance from the point to the line. For a particular
data point (xi, yi) for instance, the vertical distance is given
by

8, =¥, - (a + bxi)

The constants a and b should be determined so that the estim=-
ated vertical distances are as small as possible. Since each of
the ai cannot be minimised individually, their sum %;:i should be
made as close as possible to zero. However, since this sum can
be made equal to zero by many choices of totally unsuitable stra-
ight lines for which the positive and negative errors cancel out,
it is much better instead to minimise the sum of the squares of
the vertical distances s,. In other words, a and b should be

i
chosen so as to minimise the function

et :

S =2s°= [ vy = (a8 + bx;) ]
i=1 i=1

where N is the number of points since a and b are the constants

to be determined, the function S is minimum when

N .~
;sag— Z yi-(a.-i-bxi)]z-o eq. 6
. & a1 -

and

—

—%—%.-?ﬁ % yi—(a+bx1):[2=0 eq. 6

i=1 L
These two requisites produce the simultaneous equations:

§:Y1 ¥ aNo * €2%1
R N 2
Z_xiyi = t}:xi + bEZFi

where N is the sample size and x5 and y; are the co-ordinates of

the plotted data. Solving for a and b gives:
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To obtain a least squared line on Weibull probability paper the
following procedure may be observed.
6¢13=b=I- Method I

Regression analysis cannot be used in its normal form, because
of the non-linear Weibull scales. One suggestion is that the
points should be traced onto ordinary equal-division graph paper,
the best-fit line determined in terms of the linear scale, and
that this should then be traced back onto the Weibull paper. The
test data are plotted on Weibull paper with the appropriate liedian
Ranks. Each plotted point is then transposed onto a piece of lin-
ear graph paper placed over the Weibull paper. Axes are then dra-
wn on this linear paper and any convenient scales given to these
axes. The X (horizontal) and Y (vertical) scale readings for each
point are then noted and tabulated along with their corresponding
X2 and X.Y values. Finally the X, Y, 12 and X.Y columns are sum-
mated to give values which may be substituted into the above sim-
ultaneous equations.

The following example using six sample failures demonstrates

the layout of a_least squares calculation (see fig. 6.20 on page

110).
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Order Number ILife (hrs.) Median Ranks

1 75 10.9

2 80 26.4

3 123 42.1
N =6

4 130 57 .8

5 149 13D

6 200 89.0

Transposed from Weibull paper to linear paper with arbitrary

scales gives:

X Y x* XY
30.1 42.3 906.0 1273.2
31.2 50 973.4 1560
37.4 55.2  1398.8 2064.5
38.4 59.3 1474.6 2277.1
40.3 63 1624..0 2538.9
44.6 67.6 1989.2 3015.0

2. Xn222.0 2.Y=33T.4 2.X2=8366.02 2.XY=12728.7
Thus:
ZI = ur# BZI gives 337.5 = 6A + 222Becccccss(1)
D XY = A2X + BIXZ  12728.7 = 2224 + B366Beserss.(2)
Now (1) X 37 gives 12487.5 = 222A + 8214Beccccccsscs(3)
12728.7 + 222A + B366B seeeeeses(4)
and (4) - (3) gives 241.2 = 152 B

241.2
therefore B = ea 1.61 »

SubstitutingBin (1) A = 22[:2= 3978 _ =281 . - 337,

Hence Y = =3.37 + 1.61 X.
Thus a best fit line is constructed on the linear graph paper and

transposed back onto the Weibull paper.
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The objection to this is that the same importance is given to
points which have the same linear displacement from the mean line,
regardless of where they occur on the Weibull scale.
6+13=b=II - Method II

The objection to Method I can be overcome with the following
method, which disperses with the need to transpose the data from
Weibull paper %o linear paper and allows to find directly on the
Weibull paper two points which, when joined, will give the best
fitting line.

In section 2.2 on page 26 it was shown that the Weibull equa-

tion can be written in the form: _(t-to \P

S ¥

Perform the manipulations which are the basis of Weibull

R(t) =1 - F(t) = e

probability paper. Invert both sides and take natural logar-
ithms twice. B B
t-to) . (t-t%))

Then: = 1n |1 = F(t)] '(-v[_ "Tf'—?""'

and ln -111[1-F(t):l} -P .ln(t-to)-ﬁ.ln V] A
This gives:

In In [m]-ﬁln (t=tg) = pln n -

This can be expressed as the standard equation to a straight line,

Yy = a + bex

wherey=ln{-1nl_1-F(t)] ‘lnl‘n-‘ilF_(t)

x=1n (t - to)
a= -f) .1ln 1 (this is constant) eq. 6=8
D = P (also constant) . eq. 6-9
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On Weibull graph paper, the scales are ingeniously devised to
include the functions which are on the right-hand sides of the
above equations. Hence reliability data almost always plot as a
straight line. However, there is no reason why the data them-
selves should not be converted, so that they will plot as a stra-
ight line on ordinary graph paper. This method will be illustrat-
ed using the example in section 6.13-a on page 104, where it has
already been determined that to = Q.

First convert the data as above. The figures thus obtained are

shown in Table 9 on page 113.

: x=1n(t) F(t) y=1n 1n ('T“'%T?T)

500 6.21 0.067 2.67
1200 7.09 0.163 1.72
1650 7.41 0.260 1,20
2050 7.63 04356 0.82
2650 7.88 0.452 0.51
3250 8.09 0.548 0.23
3750 8.23 0.644 +0.03
4500 8.41 0.740 +0.30
4950 8.51 - | 0.837 +0.59
7300 8.90 0.933 +0.99
Table 9.

If x and y are now plotted on ordinary graph paper, fig. 6=21
is obtained, showing that a siraight line has been achieved.
(Pig. 6=21 is included here for clarity; it is not necessary to

plot it in order to find the equation of the besgt-fit straight
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line)., Next, these data are used in the usual way, to find the
regression of y on x. (It is assumed that all errors in the data
arise from errors in estimation of the cumulative percentage of
the population failed. The other regression line can of course
be deduced if required).

This gives:

b = 1.42
A
+1 //
5, 3 ” ‘)//gw’ T 8] xal(t)
o~ -1 4
o g |
-~ .‘E: _2 /
|
o /
< | i
~ '-3 ” T
S 7 |
5 | i |
-4 1
Fis. 6-21

These results must be converted back to the Weibull para-
meters.
From eq. 6-9 :
P =01 =1.42,
and from eq. 6-8 :

a= ;5 1n (q 3 e
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Therefore

2 11,62
h(ﬂ)";’mﬂB.ZO.

Therefore n = 3658 hours .
Hence, the predicted Weibull equation is:

(eriy 1082
R(t) = ¢ '3658 .

Comparing this with the constants deduced from the scales of

the Weibull graph paper, gives the following results.

Weibull paper | Regression line
2 1453 1.42
n 3650 3658

Bearing in mind that a line fitted by eye usually lies between
the two regression lines, it will be seen that the agreement is
quite good.
6+13=c -~ The correlation coefficient

The product moment correlation coefficient produces an exact
measurement of the correlation between the variables. Its cal=-
culation was a laborious arithmetic process until the advent of
the modern calculators which produce it at the touch of a button.

The correlation coefficient is given by the following expression:

S
7 aZI__

xy Sx y
Z‘i’i i 2% 2V
n n
.E:x - E:xi .
n
S, = ﬂv/:Ejyi - zzjyi ?
J n

n

where:
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6e13=d - Application

The data should appear as a straight line on Weibull prob-
ability paper. A visual inspection of the new Weibull plot for
the C failures, fig. 6=-18 on page 100, shows that this is the case,
and it is therefore possible to proceed with the analysis.

The next step is to fit the best straight line through the
graph obtained from Table 8 on page 99. This can be done "by
eye" or by the more favourable methods of least squares. Method
II will be applied to determine the equation of the Weibull line
and the two points that will allow to draw the best fitting line.

Consider, as an example, the results taken from'Table 8 on page
99 , from which Table 10 on page 118 can be constructed. From

equations 6-6 and 6-7 on page 109 :

_ 33.968209 x (-13.79619) - O, 331916 x 15.827753 _
2 zzTg'E'33:§Eé§69'£367333f§733
L - 68.6 18 - 02 67 = — &1 !-90:2:2& - 1 396
339.68209 - 0.1110122 339.57107 =

10 x 15.327753 = 0.3331916 (=13.79619)_
10 x 33.968209 - 0,33319162

L 158.27753 + 4.5967746 _ 162.8743 _ o ,79q
339.68209 - 0,1110166 ~ 339.57107

Therefore the equation of the best fitting line is:

D =

y = - 1.395,649,613 + 0.479,686,094,1 x

and A= 0.479,686,049,1

The best fitting line can then be drawn by joining with a strai-
ght line two paired values of X and ¥ie For example, when
(t=t) = 0.01x10°, x; =ln(t-t_)=-4.605,170,186,

¥q = =1.39560 5+0.4796472 x, = -3.6044575 and therefore

]
y1

F(t-t,)=1-1/e% =0.026835; when (t-to)-9x105, x,=2.197224577,

y,=-0.341707884 and P(t-t )=0.5086289525. This is dome in fig.

6-22 on page 119 .

-116=



The correlation coefficient is:

M LW e I
= :

N N
T2 [z o (Zr]
\LN 'j\ N }\/N _(N /)

P
Xy

15.8277 _ 0.3331916 (—13.7961891}
5 10 10 10
7
33.968209 (0.3331916)2 27.70007272 (—13.7961891}2
10 5 10 10 i 10

©.9929490254.
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6«14 = Dealing with spurious data(18)

When only a few data are available, care must be taken to ex-
tract as much information as possible from them. Points should
not be discarded too readily. It is often possible to determine
what probably occurred and hence why one or more points are out
of position. Occasionally it is possible to show that a point is
almost certainly spurious.

When the sample size is very small, spurious points present a
real problem. For example, if a sample of 5 is considered, each
point represents 20 per cent of our data. If two points are diff=-
erent from the other three, how is it known that the two are spur-
ious and the three correct? It might be the other way round! Ex-
perience has led to be very wary about rejecting data which do not
appear to fit some preconceived notion. The following examples
illustrate this.

6.14-a - Glass manufacture

Fig. 6=23 shows a study which was made on the life of two
moulds in a glass-processing factory. The production routine was
to run one mould until its surface became unacceptable. It was
then replaced by the other, and the rejected mould refurbished for
further use. In this case a reasonable number of data were avail-
able, and two approximately Normal distributions, with means at
M, = 15.0 and M

1 2
mould-surface deterioration was a straightforward wear-out sit-

= 20.8 h, resulted. We therefore concluded that

uation. Mould 2, however, consistently gave a longer production
run than H1, and this presented the factory with an engineering
problem to find out why, so that in future all moulds could be ma-

de like HE'
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In three places, the observed data were not to this pattern.
Points A and B were easily explained, operator errors had caused
premature damage to the mould surface, but C needed more thought.
Notice how these failures occur. .

a) They are over four standard deviations from the mean of
mould 1, to which they purport to belong, and, for a Normal fre-
quency distribution, the probability of an observation's being
four or more standard deviations from mean is 0.0003.

b) All three failures at C due to mould 1 have exactly the
same value of 25 h. Since the probability of three failures at

10, the possibility that

25 h or more is (0.0003)° = 0.27 x 10°
they belong to the main distribution can be discounted. There

must be some large source of variation, coniravening the condit-
ions for a Normal distribution. The obvious possibility is that

there is one very careful operator, who achieves, with mould 1,

the sort of production runs that are observed for mould 2.



Suppose, however, that there was such an operator. His work
would in principle form a third distribution curve, centred about
his own mean run length. The probability of three runs with ex-
actly 25 h, with no other neighbouring run length observed, is so
small we discounted it. It did not fit the pattern of manning,
anyway. Here it seems almost certain that these three observations
originated from the bane of all reliability engineers, incorrect
data. The possibility that these readings really refer to mould 2
is unlikely, because there is nothing significant missing from the
H2 data, either at that point or in total. Wherever these points
should be, it seems quite certain that they were not three runs of
exactly 25 h as reported.
6+14=b - Car components

This was a.study of the number of operations a car component
could withstand before failure. The Weibull plot for a sample of
10 is shown in fig. 6-24 on page 123. We can distinguish two str—
aight sections AB and CD, from which it would appear that some dra-
matic change in mode and mechanism of failure took place where
these sections intersect just below 50,000 cycles. However, con=-

sider the raw data which were as in Table 11.

Failure No. Number of Operations
1 3805
2 4612
3 14560
4 15108
5 29950
6 45506
(' 48575
8 50000
9 50000
10 50000
Table 11.
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Now, over the period of the test, components can fail at any
number of operations from 1 up to 50,000 or so. The probability
that they would fail at a round number like 40,000 or 50,000 is
(depending upon the shape of the failure probability density fun-
ction) broadly the same as that they would fail at any other par-
ticular number. The average probability is 1 in 50,000, and the
probability that three would fail together is 8 x 10-15, which is
so small it can be discounted. Reference back to the company re=-
vealed, as we suspected, that so-called "failures™ numbers 8, 9 and
10, were not really failures at all. They merely survived when
the test was truncated at 50,000 operations. Hence line AB of fig.
6=24 is correct; CD is spurious and must be deleted.

Fig. 6-25 shows the results of a life test on another car com=-
ponent. Here seven points form a reasonable straight line, and
the problem is to interpret points A, B and C. Notice that these
are not additional failures, since the line itself has three poi-
nts missing in this region. (Had they been additional failures,
the line would have displaced itself upwards, as indicated by MO,
and then continued at about the same slope, as 0D). Next, con=-
sider the size of the gap, which is roughly from 9,700 to 21,000
operations. Since one operation took approximately 4 s, this gap
represents about 12.5 clock hours, which would be consistent with
the test having been left unatiended overnight. Further inquiries
showed that this was indeed what happened. Failures, A, B and C
were not observed to occur at these times, they were merely dis-
covered in a failed condition next morning. Their exact moment of

failure was not known.
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6.14=c - Flyover arm

Fig. 6-26 shows the results of a small life test on 10 flyover
arms. At first sight the pattern is similar to fig. 6=24, and ag-
ain the problem is to establish the true track of the Weibull line.
In this case there seemed to be no evidence to suggest that the ob=-
served data were incorrect, nor was there any sign of a dramatic
change in the mode of failure in the vicinity of the 5th point. Yet
apparently two quite different Weibull lines could be drawn, depend-
ing upon whether we believed the first five points and discarded
the other two (line AB), or believed the last four points and dis-
carded the first three (line CD). About three points in the region
of the intersection of AB and CD could be regarded as belonging to
either line, as we pleased! Because it predicted superior reliab-
ility, there was a natural desire to conclude that CD was correct.

Consider the data, however, which are given in Table 12.

Failure Number Number of operations at failure

147
402
633

2374

3159

1M

7 3412

Truncation 6500 with three arms
surviving

L= AT B WY I A

Table 12.
We found the key to the problem in the truncation data. Be=-
cause the test had been run on to 6,500 operations, the next fai-

lure could not occur until after that. Since it would have been the
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eighth failure in 10, it would, using Bernard, be plotted at 74.0
cumulative per cent of population failed. Hence it must lie on
line MN, somewhere to the right of M, and in the worst case would
be almost on top of it. But M is almost on line AB produced. It
is a long way from CD produced, and, the longer the 8th failure
took to occur, the further away it would be. Reluctantly we con-
cluded that line AB was correct and CD spurious.

In this case it was possible to test our theory, because the
three surviving items could be returned fo life test, without any
great risk that the interruption would affect results. We were

right, since the remaining failures occurred as follows.

Failure No. Number of operations at failure

8 6985
9 9554

The 10th item survived 10,000 operations, when the test was

again truncated.
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6.14=d -~ The assumption of a constant failure rate
From time to ftime there has been discussion about the wvalidity
of the practice, especially in electronics, of assuming a constant
failure rate. In the strict statistical sense, this implies that
the probability of failure is rigidly constant, and in no way ine-
fluenced by the age of the items. This in turn suggests that the
mode and mechanism of failure are exactly the same every time.
Experience shows that this isunlikely to be strictly correct.
It is true that Weibull ﬁ values around unity are often observed,
although the best-fit ﬁE may have a value of 1.1 or 1.2. The mech-
anism of failure, too, is seldom rigidly constant, a#ﬁ gsometimes
the mode varies as well. Having as far as possible eliminated all
assignable causes of failure, we are often left with a loose scat=-
ter of miscellaneous failures which, particularly if data are
scarce, we can only interpret as roughly constant with time. Us-
ually there is no great risk in this, so long as the limitations
of the data and of our analysis of them are bornme in mind. An ass-

umed constant failure rate does make reliability prediction much

easier.

There is another danger inherent in using published failure-
rate data, and this comes from the fact that our use conditions may
be quite different from those under which the failure data were
prepared. Anyone who doubts this should calculate the overall fai=-
lure rate of any piece of equipment in which he or she is interes-
ted, using data from two or more sources. One prediction may ex=-
ceed another by a ratio of more than two to one. If we are concer—
ned only with comparing two alternative designs, this may not
matter, but, if we need an absolute prediction of the failure rate,

it is very serious.
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6.14-e = Guidelines for predicting the reliability of parts from
small samples
From the above it has been possible to draw up a set of guide-
lines which, although of general use, are particularly valuable
when it is only possible to life-test a small sample.

1. Use median ranks (i.e. Bernard's formula) to estimate the cum=-
ulative percentage of the population failed.

2. DBeware of rejecting apparently spurious points, when they re-
present a significant part of the available data. (Rejecting
two "inconvenient" points out of, say, seven probably amounts
to forcing the data to fit preconceived ideas!).

Consider:

a) Is there evidence that the failure mode might have been
different when the spurious failure occurred?

b) If points appear on the Weibull or other plot where we
did not expect them, look to see whether they are also missing
from a position where we did expect them. If so, are there va-
1lid reasons why they have turned up in the "wrong" place?

c) Are there sound statistical or other reasons why the data
concerned must be spurious? For example, did the tester admit
to an error, or the test rig fail? Be careful, however, about
accepting doubtful reasons, because we may be merely forcing
the data to fit preconceived notions.

d) When a test is truncated, the earliest time and percentage
at which the next failure can occur should be inserted on the
Weibull plot, as M in fig. 6-26. The correct line will pass
below this point (or, in the limit, through it), but, on the

available data, it cannot pass above it.
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6.15 = Slope, estimates and confidence intervals

Before explaining the method of obtaining "confidence limits"
for a Weibull analysis of test data, it is necessary to present a
definition of confidence in general terms, and to discuss thq var-
ious aspects which affect it.

In all statistics, when an analysis is carried out and some
result obtained, it is necessary to qualify this result by sta=-
ting how sure we are that the result is a true one, i.e. how con=-
fident we are.

Several factors may affect the level of confidence given to a
result, depending upon the type of analysis carried out and the
type of result required. Thus each statistical exercise must be
studied to establish the types of errors which may occur and their
cause.

In the case of Weibull analysis of random sample testing, for
instance, we may make the following statements for this type of
analysis. PFirstly that the data obtained from a sample test is
accurate for that particular sample. (This must be true since
providing test conditions are correct, the recorded failure ages
cannot be disputed). Secondly that manipulation of this test data
may be considered accurate and in accordance with established the-
ory. However, that the test data, although accurate, may not in
itself be truly representative of the parent population from which
it was drawn.

Nothing has been said about the use of confidence limits.

These are valuable with small samples, if only to deflate any ex-
cessive personal confidence we may have in our results! The cri-
tical factor is usually the slope of the Weibull line denoted by ﬁ

because, the sample being small, it will probably be necessary to
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extrapolate the line back to shorter working-life times and high-
er reliability. This magnifies any error in prediction arising
from incorrect estimation of the slope, as fig. 6-27 illustrates.
Here we have redrawn the Weibull line shown in fig. 6-=19, anq
added confidence limits at a 90 per cent level of confidence. On
the basis of the 10 observations available to us, WW represents
the best estimate of the position of the true Weibull line. How=
ever, our sample was small, and if we were able to test another set
of 10 items, it is unlikely that exactly the same prediction would
result., We should then have another "best estimate", and so on for
every repeat. Now the confidence limits mark the boundaries of
the area within which we can be 90 per cent certain that the true
Weibull line lies. We hope that the true line is not too differ-
ent from our prediction, but we cannot be sure. Thus lines AB and
CD show two extreme possibilities which still lie just within the
confidence limits. Suppose the required working life for these
items is 200 h. Our Weibull line WW predicts a reliability 6f
(100 = 1.2) = 98.8 per cent, whereas AB predicts (100 = 7.2)=92.8
per cent, and CD something better than (100 = 0.1) = 99.9 per cent.
Hence anywhere within the range 92.8 to 99.9 per cent could turn
out to be correct. Indeed there is a 10 per cent risk that the
true value is outside the confidence limits altogether!

Just how representative a sample may be considered to be, is
dependent upon certain theories of probability, stemming frop the
sample size. A sample of ten units could be used to estimate the
failure distribution but, actually, two points determine the para-

meters of the failure distribution if to is set equal to zero.
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With a small sample, sampling error is larger than with a large
sample. Thus, if a sample size is large, the probability of it
being representative is high, and therefore a high level of con=-
fidence may be given to the results drawn from a statistical_
analysis.

In the Weibull analysis it has been shown that Median Ranks are
employed %o relate a sample of items to the parent population and
that these Median Ranks allow positive errors to balance out with
negative errors. Hence it is a question of selecting a median
point, or balance point, in the estimate and thus the line which
results on Weibull Probability Paper may be considered as a 50%
confidence line.

At first sight this does not seem very encouraging but it can
be showﬁ that superimposing lines known as confidence limits, as
shown in fig. 6-28 on page 134 effectively "widens" the 50% line to
cover a larger area and hence increases our confidence level sig=

nificantly.

7/

F(t)

Y

a) Small number tested b) Large number tested

Fig. 6=28 = Slope estimates and confidence intervals
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The dashed lines of the funnel-shaped curves in fig. 6-28 on
page 134 show the relative error associated with smaller and larger
sample sizes. The true Weibull line can be expected to be any-
where between the dashed lines. In statistical terms, the dashed
lines are referred to as confidence bands. Since the estimates of
the slope, position and curvature of the fitted line do vary from
sample to sample, some statement describing the degree of precision
should be made. Confidence bands provide a method of describing
this precision. The width of the confidence band is determined by
(1) sample size, (2) the fitted Weibull slope, (3) selected con-
fidence level and selected reliability level.

Confidence intervals are measurements of the precision when es-
timating a statistic. A ninety per cent confidence interval ar-
ound an observed statistic is that proportion of such intervals
which in the long run will contain the true value of the statis-
tice. In the case of the 3-parameter Weibull distribution, a rig-
orous determination of such confidence boundaries would involve
taking into account simultaneously the effects of the separate
sampling errors of estimating P » V] » and to.

The 5% and 95% ranks are often used to estimate the atafisti—
cal error associated with the slope FS, the characteristic life
q , the B10 etc., life, and the minimum life to‘

Thus 12 e canfidence bends showm in £is. 6-28%n pege 134
are taken as being those for 95% confidence, then the space be=
tween these bands, known as the "confidence interval", would con=-
tain 95% of the Weibull lines produced, if the total population
was tested as a series of samples. In other words we are 95% sure
that the true Weibull line for the entire population lies some=-

where within the confidence interval.
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The width of this interval is affected by several factors,
which may be summarised as follows; the selected confidence and
reliability levels; the fitted Weibull slope; the sample size
tested.

The first two factors usually tend to be preselected and hence
are difficult to vary. However, the sample size may be increased
easily (depending on economic considerations) and thus the confi-
dence interval narrowed as much as desired. This is demonstrated
well in fig. 6=28 a) and b) where two samples of different size
would have been drawn from the same parent population and would
have been fitted with confidence bands of the same level.

It can be shown that confidence bands may be very useful in
reducing test time and cost since they may be used in circumstances
which would normally require 100% testing to ensure the required
quality and reliability was obtained.

For instance, suppose that emission control regulations call
for certein standards to be achieved on all cars to be sold in a
certain market. Assume that the requirements are as follows: It
is necessary to show that we are 95% confident that 90% of vehicles
will emit no more than 2% CO during a certain test.

Normally it would be necessary to perform a 100% check on the
vehicles and hence to find the exact figure which exceeds 2% CO.
This method is obviously lengthy and expensive and in this case
can be shown to be unnecessary.

The method of approach when using confidence bands is firstly
to select a random sample of vehicles from the total population
and to test them under the required conditions. This test inform-
ation is then arranged such that it may be presented on Weibull

Probability Paper, in this particular case the % CO is plofted on
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the x-axis and the Median Ranks for cumulative % population on

the y-axis. By plotting the test data on these scales, the median,
(or 50% confident) Weibull line is obtained as shown in fig. 6=29
on page 138, The area enclosed by less than 90% population and
more than 2% CO, may be called the restricted area and represents
two of the limits called for in the specification. Thus at this
stage, since the Weibull line is well outside the restricted area,
it is possible to be 50% confident that 90% of vehicles emit less
than 2% CO.

In order to obtain the required confidence, the 95% confidence
bands can now be fitted by the method explained later, and these
bands can be studied in relation to the restricted area. If, as
in fig. 6-29 on page 138, the 95% confidence interval does not en-
ter the restricted area them it is possible to be 95% confident
that over 90% of all vehicles emit less than 2% CO.

In the case where the confidence bands do enter the restricted
area then two possibilities exist. Firstly, that the vehicles are
not capable of meeting the requirements; hence a modification to
the emission control equipment would be necessary. Secondly, that
the sample of vehicles taken was not large enough to give suffic-
iently narrow confidence bands; hence further samples should be
taken and the analysis repeated on the increased sample size. A
quick check to establish which possibility exists, after the first
set of samples, is to note whether or not the 50% confidence Wei=-
bull line enters the restricted area. If so, the first pessibility
could be accepted without fitting any confidence bands.

There are two commonly used methods for determining confidence
intervals. One method uses the binomial distribution which fixes
the observed failure time and places a(1 - & ) interval about the

median rank value associated with each ti on the Weibull line.
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However, this method has a serious drawback in applied statistics.
The lower confidence interval does not extend far enough to bound
the estimated failure time for the first failure.

Engineering people are usually interested in a confidence ;n-
terval for the time associated with the first failure. A method
for establishing this interval was developed by lir. Leonard
Johnson of the General Motors Research Laboratories in 1959. His
method employs the transformed binomial distribution rather than
fixing the observed failure time to bound the high and low fail-
ure times for each failure. The procedure works well and gives
useful answers. In addition, the accuracy of the results has been
confirmed by a Monte Carlo computer simulation study. The compu-
ter study was performed by Mr. Lloyd Schlitzer of Pratt and Whit-
ney Aircraft in 1966. His study showed that Johnson's method gives
more conservative results. A comparison of confidence bands ob=

tained by these methods is shown in fig. 6=30 on page 140.
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6.15=-a = Fitting Confidence Bands (L. Johnson)

The method devised by Mr. Leonard Johnson of obtaining confi-
dence bands is considered the most useful since unlike other me=
thods, it is capable of giving the confidence interval for the
time associated with the first failure. Although it is based on
the rather lengtihy theory of binomial expansion for each failure
point, it may be reduced to a simple graphical construction by
the use of standard ranking tables for the level of confidence re-
quired. These tables exist for most commonly used confidence
levels, (e.g. 90%, 95% and 98%) but tables may be produced, by a
simple computer programme, for any confidence level.

Johnson's procedure for fitting confidence bands to a Weibull
line may be summarised as follows:

1 - Denote by (1 - A ) the required confidence level, where

is the risk of accepting an invalid statistic.

2 = Calculate the upper and lower confidence limits thus:

(1 - %) is the upper confidence limit and % is the lower con=-

fidence limit. Therefore a 90% confidence interval gives

A = 0.10; the upper Limit is (1 -"*1%) = 0.95 or 95%, and

the lower limit is Q;lg = 0,05 or 5%%. The confidence interval

lies between these two limits.

3 = Determine the 5% and 95% ranks for all failure points.

To find the ith five per cent or ninety five per cent ranks,
expand the binomial ;
@B 1B (D - PR1-BT e QRO 2 () iy
to 1 terms, equate it to 0.95 or to 0.05, and then solve for F.
Repeat for each of the q,failures in a sample of N. Notice that

i can have a fractional value if there are suspensions, whereas
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this formula can be used only for integer i 's. Thus inter-
polation may be necessary. This binomial expansion is calculated
by the computer programmes described in Chapter 10 on page 214 .
Alternatively, obtain the 5% and 95% ranks from the standard
Appendices B and C on pages 226 and 230 respectively, for the
particular sample size of N used and for integer values of i.
The correct values of the 5% and 95% ranks can then be determined
by interpolating linearly for the new fractional rank order num-
bers as we did for the median ranks (see Table 7 on page 93 ).
These interpolated values of the 5% and 95% ranks are shown in

Table 13 on page 143 .
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6.15=a=I = Analytical determination of confidence limits
4 - ti(0.0S), the lower confidence limit for the i=-th fail=-
ure, is determined by solving the following Weibull equat~-

ion for ti(0.0S) :

[ti(0.0B):l

F,(0.05)=1 = ¢ "L T —J , which gives:
1 1/8

ti(0¢05)8q n&-Fi (0.05)] .

5 = ti(0.95), the upper confidence limit for the i-th fail=-

ure, is similarly determined:

1 Ve
ti(0.95) 'V} nl}Tr%)} .
6 - The failure times %, associated with the 5% and 95% ranks
are calculated for all i failures (i=1, 2,...,n).
7 = A horizontal line is drawn through each failure plotted
on the Weibull probabilitfy paper.
8 = The failure times associated with the 5% and 95% ranks

are plotted for each t, on the respective horizontal line det-

i
ermined from step 7.
The results are summarised in Table 14 on page 145. Comparing

the graphical solution in fig. 6=31 on page 147with the results

obtained analytically, we see the answers are the same.
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6.15=a=I1 = Graphical determination of the confidence limits

Horizontal lines are drawn through each of the plotted poi-
nts on the Weibull line.

Using the values obtained for the particular sample size N
used, employing one of the methods explained in section 6.15-a on
page 141, the first rank value for the lower confidence limit (5%
in our case) is taken and projected horizontally from the y-axis
to intersect the Weibull line. From this intersection point a
vertical line is projected upwards until the horizontal line (med=-
ian rank) for the first failure is reached. This intersection
gives the first point on the lower confidence band.

Now the first rank value for the upper confidence limit (5%
in our case) is taken and projected horizontally from the y-axis
to intersect the Weibull line. From this intersection point a
vertical line is projected downwards until the horizontal line
(median rank) for the first failure is reached. This intersection
gives the first point on the upper confidence band.

This procedure is repeated with a second rank from Table 13
on page 143 and with the horizontal line through the second failure,
obtaining a second point on the lower confidence band and a second
point on the upper confidence band. By doing this for the full
number in the sample, two series of points are obtained through
which the lower and upper confidence bands may be drawn.

The graphical determination of the confidence limits is ex-
plained in fig. 6=31 on page 147 for the second failure of Table 14

on page 145.
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2 | 0,05 Rank | Median Rank | 0.95 Rank

e -

Rank order (t-to)x10
number

241 0.09 2.04 8.69 22.26

Weibull line

2.04 p=———>——

v

1
001 0.01 (8
0 lTime, (t-—to)xlo5 :

Q2

Fig. 6=31 Confidence Band Detemination

The same procedure is applied to all failure points on the
Weibull line. Two lines are drawn, one through the lower limit
points and one through the upper limit points. These two lines
define the lower and upper confidence intervals.

For 90% confidence and a sample size of 20, the 5% and 95%
confidence limits thus obtained graphically are very similar to
those given by Table 14 on page 145 and the location of the poi-
nts for both 5% and 95% confidence bands, is demonstrated in fig.

6=-32 on page 148.
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6.16 - Separation of the B failures

The procedures described in section 6.9 on page 90 were re-
peated for the B failures:

The resulta are shown in Table 15 on page 150 and in fig.

6=33 on page 151.
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Fig. 6=33 on page 151 shows that the data do not describe
either a straight or a smooth curve. This indicates more than
one different mode of failures. Knowing that two types of plates
were used, which we shall call 1B and 2B. The 1B failures are
summarised in Tables 16 and 17 on pages 152 and 155 respectively

and are shown in figures 6-34 and 6-35 on pages 153 and 157

respectively.

0l1d |New |Cycles |New Rank Order New Median Rank

Order | Order | to Number

No. No. failure (n=20)

tx105
10 2 10-53 1+(%;0—:':-)=2.66? (1301"8.2)0.66671"8.2-
11.4668

19 3 18.96 2.667+(2°+11:§‘66 =| (42.6=37.7)0.778+

8-778 37-7'41 05112
8.?+(391%%§§¥1=14.

Table 16 - Separation of 1B failures, with uncorrected value of

t .
o
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From fig. 6-34 on page 153 , t2=10.785x105 cycles and:

t0’10'785‘(1s.96-10.785)-(10.785-4.60710'785'8.175EL6.185’

=10.785-22:202312.10,785-25. 408229=~14.623229x10° cycles.

The 1B failures with corrected wvalue of to are shown in Table 18

on page 156 and are displayed in fig. 6=35 on page 157.
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The 2B failures are summarised in the following.Tables 19
and 21 on pages 159 and 163 respectively, and are shown in

figures 6-36 and 6~37 on pages 161 and 165 respectively.
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tx105 F { x=1nt y=1lnln T%F
11.78 | 0.0776 | 13.97932864 -2.516071549
12.13 | 0.1815 | 14.00860719 -1.608029494
13.65 | 0.2854 | 14.12666499 =-1.090547893
15.51 | 0.4079 | 14.25441044 -0.646111432
18.03 | 0.5289 | 14.4049625 -0.284108607
18.08 | 0.6510 | 14.40773182 0.051342482
18.98 |0.8332 | 14.45631126 0.582751671
99.63801684 -5.510774822

a = =72.85066521

b = 5.062765174 r = 0.957665262

Por t = 11 x 107; x = 13.91082074 ¥ = atbx = =2.423446426

F = 0.084802768

For £t 20 x 10

5

x = 14.50865774

F = 0.839276874

Table 20.

Best fitting line from Table 19
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5

From fig. 6= 36 on page 161, t_, = 12.8 x 10” cycles and:

2
(18.03-12.80)x(12.80-11.78) 5.25%1.02 _
t, = 12.80-(75.53-12.80)-(12.80-11.78)~ 1 2+80 4.23
= 12.80 = 1.2659574 = 11.534 x 10° cycles.

The 2B failures with corrected wvalue of 1:0 are shown in

Table 21 on page 163 and in fig. 6-37 on page 165,
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617 = The characteristic life, or 63.2 percentile,
6.17=-a = Definition

The characteristic life N is & scaling constant, stretching
the distribution along the time axis. Also, when (t-to) is equal
to 'l y» the reliability is given by:

R(%) = e-(1) = 3-1

= 0.3678794412 .

The constant r-l therefore represents the time, measured from
tO-O, by which 63.21206% of the population can be expected to
fail, whatever value is assigned to F> « For this reason it is
often referred to as the "Characteristic Life".
6.17=b = Analytical calculation

By definition, vl is the time (t-to) corresponding to a Median
Rank F (%=t )=0.6321205588. Since 1-F(t-t_) =0.3678794412=¢ ",
we have that y=lnln T:-F—%rt:';c’—)]ﬂlnh(:j =1lnlin(e)=1n 1=0.
Therefore, from y = a+bx, x-ln{t-to) = - % and =(1:-1:o)=-e
For the 1B mode of failure (see page 155)

Vl -e-a/haja.(27)x105 cycles .
For the 2B mode of failure (see page 164)

Vl =e-—a/b
For the C mode of failure (gae page 116)

-&/b 10296 5
V| =e =e 54796 18.36 x 107¢cycles.,

=6.63132x1 05 cycles ,

6.17=-c = Graphical determination

The value of the characteristic life vl , and its 90%00:1—
fidence interval can be estimated graphically. The estimate of
the characteristic life vl is that life corresponding to the in-
tersection of the line fitted to the data and of the dashed line

labelled " rt estimator”.
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FPor the 1B mode of failure, fig. 6=35 on page 157

Vl = 381:‘105 cycles ,
For the 2B mode of failure, fig. 6-37 on page 165

q = 6.6x105 cycles . .
For the C mode of failure, fig. 6-32 on page 148

q = 18.4x10° cycles .
6.18 - The Weibull slope, or shape parameter ﬁ;
6.18-a = Definition

The Weibull slope f5 is a shaping constant which primarily

controls the shape of the curve. The failure density distri-
bution and the failure rate are shown plotted against time in
fig. 6-38 on page 168 for various values of f5. Por P < 1
the curves take on the shape associated with early life failures.
For f5= 1 the Weibull distribution reduces exactly to the expon-
ential distribution (Z(t)=constant) and can thus represent ran-
dom failures. For /5> 1 the curve takes on the form associated
with wear out of the various types; in particular, with F5-3.44,
the Weibull distribution becomes an approximately normal distri-

bution.
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Fig. 6=38 Effect of ﬁ on failure density and failure rate

for to = 0 and 1= 1.0 in the Weibull distribution .
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6.18=b = Graphical determination

The shape parameter ﬁ:can be estimated graphically from the
plot on Weibull paper in the following manner.

After a best-fitting line is drawn in, a draughtsman's set
square is used to construct a line which is both perpendicular to
the fitted line and passes through the Estimation Point at the top
left hand corner of the paper. The estimate of ﬁ is read at the
intersection of this line and the scale labelled P .

For the 1B mode of failure, fig. 6=35 on page 157, J%=- 4.84
For the 2B mode of failure, fig. 6=37 on page 165, P= 0.76
For the C mode of failure, fig. 6=22 on page 119, F- 0.48 .
6.18=c = Analytical calculation

The slope parameter 5 can be calculated mare accurately from
equation 6=7 on page 109. We have;

For the 1B failures (see page 155), [>=4.92
For the 2B failures (see page 164), J5--(:‘.76
For the C failures (see page 116), )3:-0.48
6419 = The mean life i

6.19=a - Definition

Mean life is the arithmetic average of the lifetimes of all
items considered. A "lifetime"™ may consist of time between mal-
functions, time between repairs, time to removal of tubes or other
parts, or any other desired interval of observation.

Mean life values have meaning only in relation to type of fre—
quency distribution assumed by the data. For example, if a con=
stant rate of malfunction is present in the system, the times be=

tween malfunctions will be exponentially distributed, and the
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mean life will occur at the point where there is a 36.78794%
per cent probability of survival. However, if the times between
malfunctions are normally distributed, the rate of malfunctions
will increase with time and the mean life will occur at the point
where there is a 50 per cent probability of survival.
6+19=b = Calculation
6+19=b=i = Mathematical calculation

The mean of the Weibull distribution having the parameters q

and F) may be calculated by evaluating the integral:

< -] - .'.t. B o< o | _(E)ﬁ
M= t. _ﬁstﬁ .o ) dt= t.f— (-3%‘3 i P
o " 0

Making the change of variable u = ('-:.El)Js , we get:

M= »{7:. 1Pen ™ g,
S 1

Recognising the integral asT(1 + ﬁ)' namely, as a value of the
gamma function which can be determined from mathematical tables,
we find that the mean time to failure for the Weibull model is:
}/|=v]I'(1 +}1g),
which can be calculated using the Table in Appendix D on page

234.
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For the 1B mode of failure we have:

0.9190

0.9180

0.9170
:k——______x\
0.9160 —F .
B
—— RPN

Y

0.9150 ¢

0.91817=-0.91558 - 0.91558
.20 = 121 1.2033112-1.21

¥=0.91558+0,00259x0,0033884 = 0.9164576
0,01

and = 39.57:1057"(1+1 )-38:105I"(1.20661157)-
4.84
5

= 337:105!0-9154576 = 34.825389 x 10” cycles.
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For the 2B mode of failure we have:

0.89600 -
T I
E 2 -\\“ i
0.8952126¢+% —|— = — — — —1\.\ |
&+ _.
0.89500 P |
! |
0.89464 ! :
|
|
|
0.89400 —L !
1.31 1.3157895 1.32

0082600-018256& i - 008

0.00136 x 0.0042105

0.01 = 0.8952126

y = 0.89464 +
and M= 6.63x10° T (1 + F=rg)=6.6x10"x 5 T o) =

= 8.6842105 x10° T (1.3157895) =

5

- 8.6842105 x 10° x 0.8952126 = 7.7742149 x 10° cycles
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For the C mode of failure we have:

|

.960000 <
.95973 g

/
//

.959000 -+

. 9583067 [« —
.958000 +

OO0 O 0O
/.

|

|

|

I/
>
/

LT T

0.857000 T

o

.956000 T

0.95546
0.954000

L
o

f

1.08

0.25272 - 0¢2§E46 t Y =- 0.95546

y = 0.95546 + 2:00421x00006067 _ ¢, 9583067

51 (14] e T
and P=18.36x10"T (1455 75)=18.8x10"x5—= [ (575)=

= 39.166667 x 107 (2.0833333)=

=39.166667x10° T (1+1.0833333)=39.166667x10°x1.0833333x
(1.0833333)=

=42.430556x1 05x0.9583067=40 +661485x1 0503'0.193 .
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6.19=¢ = Graphical determination of f4

The mean lifeir can also be estimated graphically from the
Weibull plot.After a "best fitting" line is drawn in, a draughts-
man's set square is used to construct a line which is both perpen=-
dicular to the best fitting line and passes through the Estimation
point at the top left hand corner of the paper. The estimate of Pﬂ’
the percentile of the mean, is read at the intersection of this
line and the scale labelled Pﬂ' Mark Pﬁ on the ordinate scale, and
draw a horizontal line to intersect the best=fitting line. From
the intersection, draw the vertical to the abscissa scale to find

M- See figures 6-35, 6-37 and 6-22 on pages 157 , 165 and 119

respectively.
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7 = RESULTS
T+«1 = The best estimate of the actual mean life t

Since the plots in figures 6-35, 6=-37 and 6-22 on pages 157 ,
165 and 119 respectively have been obtained starting from a time
to’ the best estimate of the mean life t is ? = ()4 + to).

Thus

N
For the 1B mode of failure t=(34.825+(-14.62))x10°=
20.205x10” cycles

A -
For the 2B mode of failure t=( 7.774+11.53):105-19.304x105

cycles
For the C mode of failure %=(4O.661+5.30)x105=45.961:105 cycles.
T«2 = The goodness of fit of the Weibull Distribution as applied
to the results of tests on welded specimens

It has been mentioned that if the test data follow the Weibull
distribution, the points will lie on a straight line. Some scat-
ter will exist, and the best straight line can be drawn in, either
"by eye" or more accurately using the method of least squares.
If a straight line is not obtained (even after comsidering that
to # 0, or the possibility of two or more failure modes), the da-
ta cannot be represented by a Weibull distribution.

It is clearly seen in figures 6-35, 6=37 and 6-22 on pages
157, 165 and 119 respectively, that the test data follow nicely
a straight line. Obviously some scatter exists which is normal
but, to be sure, a test for the validity of the assumpiion of the
Weibull distribution will have to be carried out on the failure
data.

The validity of many statistical techniques used in the calcul-

ation, analysis, or prediction of reliability depends on the dis-

tribution of the failure times. Many techniques are based on
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specific assumptions about the probability distribution and

are often sensitive to departures from the assumed distribution.
That is, if the actual distribution differs from that assumed,
these methods sometimes yield seriously wrong results. There-
fore,in order to determine whether or not certain techniques are
applicable to a particular situation, some judgement must be made
as to the underlying probability distribution of the failure
times. One technique only will be considered here and that is
The Kolmogorov-Smirmov or "D-test" for goodness of £it. This is
one of many tests designed for the purpose of testing whether or
not the assumptions made about distributions of failure times are
reasonable. The "D-test" is suitable for very small samples
where other tests do not apply. It must be remembered that this
test is used only with continuous distributions.

It is based on the maximum absolute difference D between the
values of the cumulative distribution of a random sample of size
n and a specified theoretical distribution. To determine whether
this difference is larger than can reasonably be expected, we look
up the critical value of D on page 236 , If the difference, D,
is too large, the chance that the observations actually come
from a population with the specified distribution is very small.
This is evidence that the specified distribution is not the corr—
ect one.

As the maximum absolute difference or error, D, between the
values of the actual cumulative distribution of data points and
the Weibull distribution is less than the critical value of D

listed in Appendix E on page 236 it is not unreasonable to assume
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that the Weibull distribution is correct for this kind of test
data.

The reason for applying the "D-test", and not any other
test, for goodness of fit, is that it is more efficient for_

small samples, which is the case in this project.

Pailure mode | D ! D¥5.10 | Remarks
1B 0 0.264 | DCDopstical
2B 0.83-0.66=0,17 | 0.264 DD ritical
c 0.29-0.25=0.04 0.264 D<:Dcritical

Table 23. The Kolmogorov=-Smirmov or "d-test" for goodness of
fit. D is the maximum absolute difference or error
between the values of the cumulative distribution of
data points and the Weibull distribution (D is meas-
ured from figures 6-32, 6=35 and 6-37 on pages 148,
157 and 165 respectively.

*1}'0.1 is the critical value of D for n = 20

and A = 0.1. See Appendix E on page 235 .
Te3 = The sensitivity of the Weibull analysis

From the start of the project, it was intended to test the

sensitivity of the Weibull analysis to changes in the welding
procedure used, by varying one welding parameter and examining
the effect on the Weibull distribution of the failure data. If
the analysis is sensitive, it should detect that change by having

two Weibull distributions with different mean lives, characteris=-

tic lives, reliabilities and failure rates.
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The welding speed was changed between two sets of specimens,
B and C, each consisting of 10 specimens. The Weibull analysis
indicated, successfully, as shown in fig. 6=13 on page 89, that
there is more than one failure mode. The data were separated in=-
to two families, B and C. Applying the Weibull analysis on fami-
ly C resulted in a straight line, fig. 6-32 on page 148. But
when it came to family B, the analysis showed two more failure
modes, 1B and 2B, instead of one. Re-examination of the welding
procedure used provided the answer to what caused the extra mode
of failure. It was found that the two sub-families 1B and 2B

were sectioned from two different welded plates with different

sizes as shown in fig. 7-1 on page 178.

i

[} B { G Lo T I l 1 T
1 : | | i | : ! | :
i ! |
! ' [ ' i i : | l ' [ |
1 1 I | 1 | | | 1
| | | 1 | 1 ! | | ]
O! -L l . | 1 l | ! !_ |
OTF : = F = == =
S 1R T ek LT I L RN
' e T : = g Y
|
e o ity Sl Sy e g T g ST Bl LY
: 1 ] ! _ | l : : | : i
300 550
Set 1B \ Set 2B

Fig. T=1 Sectioning of butt welded plates
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At first, it was thought that the difference in plate sizes
would not have any effect on the fatigue life (and hence the fai=-
lure mode) since fatigue testing was carried out under pulsating
tension loads, but apparently it did have an effect. The differ—-
ence in size caused a difference in residual stresses and that
can explain the change in the failure mode between the two sets of
specimens 1B and 2B.

According to a literature survey for transverse butt welds and
under pulsating tension loads, residual stresses can be expected
to have little effect on the fatigue strength (or fatigue life).
There is contradicting evidence to that latter statement, because
while some investigators had recorded increases in fatigue stre-
ngth at 2 x 106 cycles of about 12%% for welds with the reinforce-

(9)

ment unmachined
(10)

as a result of stress relieving, others like
Ross y, Newman and Gurney(B) found that stress relieving had no
effect on the fatigue strength of transverse butt welds. However,
in our case, there was a change in the fatigue life, recorded as

a difference in mean life, as a result of differences in residual
stresses. It is very difficult to reach conclusions without
carrying out more experiments to investigate the effect of res-
idual stresses on the fatigue life of welded specimens, which is
outside the scope of this project.

However, one thing is certain, which is, that the Weibull an-
alysis is very sensitive even to very small changes in the welding
Procedure used in producing the specimens. The difference between
the three sets of specimens, C, 1B and 2B, came out as three diff-

erent Weibull distributions, with different mean lives, character-

istic lives, reliabilities and failure rates.
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It is important to notice that it is not possible to com=

pare the results of the two sets of specimens, C and 1B, since

they differ in more than one variable (welding speed and welded

plate sizes from which the specimens were sectioned).

Hence,

only the results of the two sets of specimens C and 2B will be

compared with each other to see what effect changing the welding

speed had on the Weibull distribution of both sets.

7.4 = Comparison between the different modes of failure

The three modes of failure 1B, 2B and C are compared in

Table 24 on page 180,

Pailure | 1B | 28 c
mode
% -14.62x10° 11.53x10° 5.3x10°
inil4i%s cycles cycles cycles
parameter
| 38x1oscycles 6.6;105cycles 18.81105cycles
90% con=-| 6 hogrs 5 1.05 hours 3 hours
fidence |34x10 42x10 3.4 5 12 5.6 5 47
interval cycles x107cycles x10”¢cycles

Fa

n -V\+to 23.38:105cycles 18.13:105cyclea 24.1:105cycles
= 4.84 0.76 0.48
e .5 4 _..5 5
Mean 34.,87x107cycles | 7.77 x10"cycles | 40.66x10"cycles
va%pe 1 (5.53 hrs) (1.23 hrs) (6.46 hrs)
=1T (1+3)

1'50% cone | 31x10% 538.5% 4x10°  13x10° | 13x10°  100x10°
fidence 107 cycles cycles cycles
interval
Mean 20.18:105cyclea 19.304:105cycles 45.961:1050ycles
value of
t
@;(mean (3.2 hrs) (3.06 hrs) (7.3 hrs)
life)+t

o
Table 24. Comparison between the different modes of failure
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Te4=a = Mean life

Mean life has been defined as the arithmetic average of the
lifetimes of all items considered. The "lifetime" here, con=-
sists of the time to failure of each specimen tested. As there
are three different Weibull distributions for the three sets of
specimens 1B, 2B and C, we can expect to have three different
mean lives. From Table 24 on page 180, it can be seen that the
mean life % of set 1B is 3.2 hours, while for set 2B it is 3.06
hours. This slight change agrees with the fact that the two sets
only differed in residual stresses, all other welding parameters
being equal (welding, current, voltage, speed), and as previously
discussed the change in residual stresses can be expected to have
little effect on the fatigue life (and hence on the mean life).

The second main thing to notice in Table 24 on page 180 is the
marked change in the mean 1ife‘? between the two sets of specimens
2B and C due to difference in welding speed. The effect of weld-
ing speed on the fatigue life will be discussed later in section
7.5 on page 191, but at this stage it is sufficient to say that
changing the welding speed affected the weld profile, and that ex-
plains the marked change in the mean life (or the fatigue life)e

It is of importance to mention that, when mean life values,
with no other infommation, are given as representative of compon-
ent reliability, this is sometimes misinterpreted by the unitiated
to mean that the component will operate failure-free for a period
of time equal to the mean life. The fallacy of ‘this conclusion

is evident by examining fig. 7-2 on page 183, in which it is ob~
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vious that at the mean life of each set of specimens

5 2 5

(Q?-20.18x10 for 1B, 19.304x10” for 2B and 45.96 x10° for C),
52% of the 1B specimens, 32.2% of the 2B specimens and 23.5% of
C specimens could be expected to operate failure-free. This is
borne out by the following calculations:

For the 1B specimens:

- : 57 484 4.84
. {i:fﬂ _1?0.18+14- 2%110 J -0.9157895 =0.6532673
1 38 x 10

=8 =8 = =
= 0.5203429 .

R(t)=e

For the 2B specimens:

S 0-76 0076
- [(19.304-11;53)10 ] =1.1778788 4 1324954
6.6 x 10

R(t)=e =6 =e =0,3222282,

For the C specimens: . 0.48 0.48
-[(45.9615.3)10 J -2.162766 -1.4481201

5
R(t)=e 18.8x10 . e =0.2350117 |
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T7.4=b = Reliability
Once the three Weibull parameters P, | and to are determined,
the reliability can be regarded as a function of time, as could

be seen from the equation of reliability:
R(t) = expl '(:t—o)ﬁl 3
1

Thus in specifying a component reliability, it is meaningless
just to state the reliability figure, but the time at which it
occurs must also be specified.

In fig. 7=3 on page 185, which shows the failure demsity dis-
tribution £(t), the welded specimens from sets 2B and C, can-
not fail between time O and to’ hence we can say that the reliabil-
ity is 100% before 11.53 x 105 cycles for set 2B and before
el X 105 cycles for set C. But since (to) has a negative value
for set 1B, which means that failure can start before testing com=-
mences, the reliability does not reach 100%, as could be seen from
fig. 7=2 on page 183. This negative value of to can occur in
some products like car batteries which can fail before they are
installed. One can only suggest that the reason for the negative
value of to in our case, was the presence of too much residual
stress. Bul again this is not certain and further investigation
needs to be carried out on this matter.

From fig. 7=2 on page 183, the reliability generally decreases
with time. At first, set C has the lowest reliability of all
three sets, but at longer durations its reliability has the high-
est value. Nommally, when we are comparing different components
to see which is more reliable, reliability is calculated at a spe=-

cific time. So, at 10 x 105 the reliability of each set of spec-
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imens is: 4.84
(A0+14.62) "7 1553719

R1B(10x105)-e 38 =6 =0.8848193= 88.48%
5
R..(10x107)=100%
2B 5 -(10-20 !)0.48 "0-250.48 -0.5140569
RC (10x107 )=e 18.8 =g =e =0.5980644=59.8%
Thus we can see that set 2B is the most reliable in all sets
for short durations (up to 15 x 105 cycles). At longer durat=-

5 cycles) the reliability of all sets 1B, 2B

ions (above 10 x 10
and C becomes low for any practical uses.

The fact that the mean life must be interpreted in relation-
ship to the form of the distribution (and hence the reliability)
on which it is based, is emphasised by considering the two sets

5

of specimens 1B and 2B. The reliability at 20 x 10” cycles for

follows: 4.84
g _(2o+14.62, %
R, (20x107)=e 36 ¥ =0.5288372 ~ 52.88%
0.
-,20-11.53 2
323(20x105)-e o gng o8 1.2087542 _ 29.86%
0.4796472
R.(20x10°)=e -(2?3 5) =e Saancoel =0.4111907 or 41.12%
c - L] L 3

Thus, it is seen that the probability of non-failure for
20 x 105 cycles is significantly higher for set 1B than it is for
set 2B, although the mean life of set 1B is slightly higher than

that of set 2B.

-186-



Ted4=c = Failure rate
A failure rate that is typical for many manufactured items is

shown in fig. 7-4.

A
Failure
rate
Z(t)
' I
i | )
Ea?ly | Chance failures t Wea; ont
failures I | failures
I |
] | 2
0 Time

Fig. 7=-4 Typical failure-rate curve

The curve is conveniently divided into three parts. The first
part is characterised by a failure rate which d?creases rapidly
with time and represents the period of early failures, during
which poorly manufactured items are weeded out. It is common in
the electronics industry to "burn in"™ components prior to actual
use in order to eliminate any early failures).

The second part, which is often characterised by a constant
failure rate, is normally regarded as the period of useful life

during which only chance or random failures occur.
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The third part is characterised by a failure rate which in=-
creases rapidly with time and represents the period of wear-out
failures during which components fail primarily because they are
worn out.

Note that the same general failure rate curve is typical of
human mortality, where the first part represents infant mortality
and the third part corresponds to old-age mortality.

In fig. 7-5 on page 189, since ﬁ.is less than one for the two
sets of specimens 2B and C, the failure-rate curves take on the
shape associated with early life failures. One conclusion can be
drawn out by examining the two different failure-rate curves of
sets 2B and C; decreasing the welding speed will decrease the
failure-rate.

For set 1B, since F,is more than one, the failure rate curve
takes on the shape associated with wear out failures. This change
in the failure pattern from set 2B can, again, be attributed to

the presence of large residual stresses in the specimens.
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T«5 = Effect of varying the welding speed

It is known, from the literature on the subject, that the weld
shape, and in particular, the reinforcement angle {} between the
plate surface and the tangent to the reinforcement at its point
of contact with the plate surface, is the overriding factor in
determining the fatigue strength of transverse butt joints. It
has been found that the fatigue crack propagates from the weld toe
at the point of minimum angle. Thus, it would seem reasonable to
attribute the influence on fatigue strength (or fatigue life) of
many other factors, such as plate preparation, welding conditions,
welding process and type of electrode to their effect on the shape
of the weld toe.

With any combination of welding current and voltage, the effe-
cts of changing the welding speed conform to a general pattern as
follows:

If the welding speed is decreased: 1) power or heat input per
length of weld is increased; 2) more welding wire is applied per
unit length of weld, and 3) consequently, there is more weld re-

inforcement.

Fig. 7-7 Effect of varying the welding speed on weld shape
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Increasing the weld reinforcement leads to a wider weld bead
(w increases) as shown in fig. 7-7 on page 191 . If the weld
bead height (h) remains constant, then it can be said that de-
creasing the welding speed will result in a better weld progile.
By that it is meant that the reinforcement angle {} will be in=-
creased, leading to a better fatigue life. But if h increases,
the reinforcement angle {} can increase or decrease or remain
constant, depending on the amount of increase in h.

Reinforcement angle measurements showed that for all specimens,
fatigue cracks were initiated at the point of minimum angle, and
that they were on the same side of the welded specimen (the spec-
imens were welded by a two-pass weld, one from each side).

For set 2B, the average reinforcement angle at the point of
crack initiation was 139.65°, while for set C it was 143.4°. This
indicates that the fatigue life of set C should be higher than
that of set 2B.

The fact that the reinforcement angle for set C is higher than
that of set 2B, was assessed by comparing the two weld bead widths
and heights. Results showed that, decreasing the welding speed
led to a noticeable increase in bead width, and only a slight in-
crease in weld bead height. This can mean that the reinforcement
angle increases as the welding speed is decreased in our case.

From the above discussion, the application of the Weibull analy-
sis to the fatigue results of the welded specimens 2B and C, sho=-
uld indicate that the mean life of set C is higher than that of
set 2B.

From Table 24 on page 180, the Weibull analysis gives a mean

life of 7.3 hours for set C, while for set 2B it gives a mean

A
t
A
life t of 3.06 hours, which agrees with the practical results.
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It can be concluded that decreasing the welding speed will
improve the fatigue life of the welded joint. As for the rel-
iability of the joint, it will increase as a result of decreas-
ing the welding speed, but only at long durations (above 15 x ‘[05

cycles) as shown in fig.7-2 on page 183.

Failure mode 2B C
Average reinforcement 1390 143.4°
angle O*

Average weld bead 2 mm 2,37 mm
height (h)

Average weld bead 13.23 mm 16.22 mm
width (w)

h/w 0.151 0.146

» 0 is the average reinforcement angle at the point of crack
initiation.
Table 25. Comparison between the weld profiles of the two

sets of specimens 2B and C.
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7.6 = Conclusions

1'

24

The Weibull analysis can be applied successfully to the
results of fatigue tests on welded joints.

The sensitivity of the Weibull analysis is so high that not
only does it detect the variation in the welding speed, but
also the difference in residual stresses resulting from a
change in the welded plate size.

The analysis shows that, decreasing the welding speed, in-
creases the mean life of the itransversely butt welded spec-
imen.

Also, the reliability, at long durations, increased as a

result of decreasing the welding speed.
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8 - DISCUSSION
8.1 = Special techniques for reducing testing time
Three methods exist whereby testing time may be reduced.
1) Running simultanecusly more specimens than we intend to fail
eventually.
2) Sudden death testing.
3) Sequential analysis.
8«1=a = Running simultaneously more specimens than we intend to
fail eventually
Should we require 8 failures it would result in a considerable
time saving to test 16 items until 8 failures had occurred. In
fact the time required to fail 8 items out of 16 is only 26% of
the time required to fail 8 out of 8 (for a Weibull slope of 1).
In this instance we have plotted the lowest 8 from 16 as opposed
to all 8 from 8.
Note: The Median Ranks for these failures must be taken from the
first 8 of those assigned to a sample size of 16. Generally
for a Weibull slope b the time required to fail r out of n

as opposed to n out of n is given by:

1/b
Tog | 1= {r - 0.30685 = 0.3863 (-E-})} ;11-

T

Thig is particularly true for values of n greater than 20.

For values of n less than 20 a more exact formula is used.

log {1 - [1 12 AN, Eﬁg ((2 Sl 1]} 1%

r
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8.1=b = Sudden death testing

The following example is presented as an illustration of the
use of Sudden Death Testing.

100 units are taken for reliability examination. These are
divided randomly into 10 sets of 10, and each set tested until
the first failure in each set is observed. (Note: All 10 items
in each set must be tested simultaneously).

The test on each set will be terminated immediately the first
failure in the set under test is observed. Thus, at the end of
the test of all 10 sets, 10 failure values, one for each set, will
be in evidence. These 10 failure values are arranged in ascending
order and plotted in the usual manner on Weibull Probability Papen
The resulting line will be the best estimate of what is termed the
"B6.6 Life", 6.6 being the lowest Median Rank for a test set of
10 items.

To relate these 10 B6.6 Life failures to the population as a
whole it is necessary to determine the "Median Life" of the 10.
This is obtained by reading the failure life at the 50% point.

A vertical line is now dropped from the Median point to the 6.6%
line and a line parallel to the B6.6 Life line, is drawn through
this point. This second line, to the right of the first, des-
crives the distribution for the population as a whole. See fig.
8=1. ‘

The estimate obtained in this manner is equally as good as
the estimate that would be obtained by testing 100 units singly,
at the same time the testing time required is reduced consider—

ably.
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In general, fraction reduction in test time can be evaluated

from the following formula:

1/b
I‘(I‘*1)!r—(1+1/b)' (r -1+ 1n2) log 2
(r + 1/b) 8. 1n 2 log 1.8,
-69315
Where b = Weibull slope
r = Number of sets

Number in set

S
T = Gamma function.

For a Weibull Slope of 1 the time required to carry out a
"Sudden Death" test on the 100 units mentioned would be only
19.44% of the time required to fail all 100 units singly.

Further if all 10 sets ;ere run simultaneously the test time
would be further reduced to 5.37% only of the time required to
fail 100 singly.

Now if the sets can run simultaneously the following formula
is used to calculate the fraction test time reduction.

1/b
log M R

s log M Rr

where M Rn is the Median Rank for the 1st value in n = rs speci-
mens and M Rr is the Median Rank for the 18t value in r specimens.
8.1=¢c = Sequential analysis

Sequential analysis provides a method of assessing the effect-
iveness of a modification or change of specification of an exist-
ing item. It is best applied where the item being tested is an

expensive one or where test facilities are limited.
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It has been shown that according to Weibull any standard dis-
tribution may be described by three independent variables, a slope
parameter'P, a scaling parameter q , and a location parameter to.
For convenience in sequential analysis it is assumed that only
one of these variables change when a modification is carried out
and that this variable is the scaling parameter, also known as
"Characteristic Life", (life to fail 63.2% of the population).
Thus the slope is assumed the same before and after the modifica=
tion and the Weibull line is assumed to pass through the origin,
(to = 0).

The basic concept of this enalysis is to test, in sequence
sample items incorporating the modification and to compare the
results, after each test, with known infonmatioﬁ about the unmodi-
fied item. This means of camparison, which will be explained
later, enables us to make one of three decisions, with a speci-
fied level of confidence.

These decisions are:

a) The modification gives a greater characteristic life.

b) The modification does not give a greater characteristic life.

c¢) There is insufficient evidence for either a) or b) hence a
further test is required.

To illustrate the method employed in arriving at one of these
decisions, take the following example:

Let us say that a gearbox mainshaft is known to have a Weibull
slope of 2 and a characteristic life of 30 hours. This character-
istic life (?l) is thought to be inadequate and as a consequence
shot peening is proposed in the hopes of increasing the value of
Y] to something above 45 hours. Hence if 50 hours is a more rea-

sonable estimate of the shot peening shaft characteristic life
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than 30 hours,than the true value must be above 45 hours. In
this case the three decisions may be written as:

a) The new material gives 12 = 60 hours (slope=2).

b) The new material gives 11 = 30 hours (slope=2).

¢) Neither a) nor b), hence a further test.

Before a decision may be made we must set confidence levels
such that the risk of making the wrong decision is small and
specified.

There are two risks involved:

First,the probability of accepting 60 hours when 30 hours is
the true figure. (Denote this probability as A ).

Second,the probability of accepting 30 hours when 60 hours is
the true figure. (Denote this probability as B)e

For this example let us make oA = J% = 0.05, which means that
we want to be wrong no more than 5 times in any 100 decisions.
Thus we are 95% confident of any decision either for 30 hours or
60 hours.

To discover if qz = 60 hours is a more reasonable estimate
of characteristic life than '|1 = 30 hours.

Decision'a) N nearer Plz than 11

Decision b) I’l nearer l‘l1 than l"(2 x

Several tests carried out as required.



FIRST TEST X, = 70 hours

b b
For decision a) X, ;> ig 0 Ln)ﬁ—ln
b

Y=

2 60°
70 =— 2x1x1n2+ 1n (1-0.05)
2 -1 0.05

4900 > 1200 , (2 x 0.6931 + 2.9445)

4900 ;> 5196 ————————— untrue, therefore reject decision a).
b b
For decision b) x, < 2 B ln>/ e B )
7@_1 ( 1= )

4900 < 1200 - [ 2 x 0.6931 + (-3.0549)J

4900 < =2022  mmececa—a- untrue,therefore reject decision b).
Accept decision c¢).

SECOND TEST X, = 40 hours

For decision a) 702 + 402 ;> 1200 (2 x 2 x 0.6931 + 2.9445)

6500 :> 6860 —————— --- unirue,therefore reject decision a)e

For decision b) 702 + 402 <: 1200 (2 x 2 x 0.6931 +(=3.0549)

6500 <: =339 -======-== untrue therefore reject decision b).
Accept decision c).

THIRD TEST Xy = 59 hours

For decision a) 702 + 40% + 46% > 1200(2x3x0.6931 + 2.9445)

8616 .>> 8523.7 =--------- TRUE,therefore accept decision a)e.

Note: When a decision is arrived at it does not mean that this

gives the characteristic life of the modified item, but merely

that is is nearer the true value than the other decision. Hence

in the above example should decision a) be arrived at, we may be

95% confident that the characteristic life of the new material is

nearer 60 hours than 30 hours, i.e. above 45 hours.



8.2 = Summary of requirements for Weibull analysis
8.2-a - Essential requirements

1) To ensure that the components in the sample under consid-
eration are to specification, or are at least typical of the par-
ent population.

2) To specify initially the mode of failure to be considered
such that confusion or inaccuracy are not introduced due to fail-
ure for other reasons.

3) To study the component so that a degree of failure is dec-
ided upon, i.e. to decide at which point in a component's deter-
ioration is it considered to have failed.

4) To test a number of components such that at least seven
have failed due to the mode of failure under consideration. It
has been found from experience that seven plotted points on Wei-
bull Probability Paper is adequate to; fit a good line; to give
a reasonable level of confidence and to hold the test cost down
to the minimum which will give meaningful results.

5) To analyse these failures according to the Weibull method
and to construct the straight line representation of the failure
distribution.

8.2-b - Preference requirements

1) To obtain results which do not include suspended items

thus reducing the calculations necessary to produce the Weibull

plot.
2) To fit confidence bands to all Weibull plots so as to ob-

tain a measure of confidence, whether requested or not.
3) When time reduction methods are employed, to obtain some

measure of the saving, by using the given formulae.
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8.3 = Reliability prediction from service information

It is generally agreed that reliability prediction is essen-
tial if customer hostility and warranty cost are to be kept to a
minimum.

Representative rig testing may be considered the ideal method
of obtaining and maintaining reliability levels since it is usu-
ally quick, cheap in terms of component cost and may be repeated
at will. However there are exceptions, for which rig testing
would prove impractical, either due to the type of test necess-
ary or due to the subsequent analysis of the test results. Such
exceptions are as follows:

When the considered items are in short supply or are very
expensive.

When the item is incorporated in a large assembly and cannot
be tested individually, thus making the analysis of the results
lengthy and complicated.

When the rig test camnot be accelerated, thus making the coll-
ection of results a long process and creating a large time lag
for repeated spot checks from production.

When it is found difficult to exactly simulate conditions ex-
perienced in service thus somewhat invalidating any rig tests
which may be attempted.

In cases such as these or where a comparison is required with
existing rig tests it is possible to implement a prediction system
based on customer complaint or warranty returns from service.

Before any prediction can be made, it is necessary to know the
number of failures and the number of non-failures occurring at
any one time in service or in any particular mileage band. It is

this determination of non-failures that offers the most resistance

=20 3=



to the implementation of an effective system. However in the
system proposed it is possible to determine not only the number
of failures but also the number of non-failures.

Given that a computer suitably programmed and containing ﬁe-
tails of all warranty and production information is available it
is possible to carry out a full performance analysis on any com-
ponent in a very short space of time.

From the warranty claim form submitted by the repairing agent
it should be possible to identify the chassis/unit number, the
mileage at failure, the complaint item, the complaint and the date
of repair. Similarly, production information should be available
for each vehicle produced giving chassis/unit numbers, date of
build etec. Obviously all this information will be stored within
the computer memory banks.

The programme needs to be such that for any one component per-
formance call up the computer will:

a) Sort by month of production all complaints received - this
is achieved by identifying the unit date of build already
on record.

b) Sort each failure into time-in-service bands e.g. 1.MIS
2.MIS etc. achieved by comparing the repair date with the
build date.

¢) Arrange the month-in-service complaints into assigned
mileage bands.

d) Identify the total number of complaints in each band.

e) Construct population mileage distribution charts for each
month in service - these can be constructed from warranty

mileages and time-in-service information already stored.
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f) Identify the number of non-failures in each mileage band
for each month=-in-service = obtained by multiplying the
monthly production total by the percentage population with-
in the mileage bands at the month-in-service point.

g) Using the last failure mileage in each band for each month
in service and applying the "suspended set" technigue for
the number of non-failures in each band for each month in
service, complete the Weibull plot.

h) From the plot provide the predicted failure levels at the
end of the warranty period or any other time if required,
give the minimum and mean life, the characteristic life,

the distribution shape (slope) the B etc. life with

10 250
various confidence intervals.

Such a system will enable rapid assessment of any component in
service, give a rapid feed back of modification action, enable com-
parison of test schedule severity to be measured, predict the com=-
plaint level at any point in time and consequently the warranty
cost likely to be incurred. By comparing the performance of each
month of production, problem cause can be readily identified, a

peak of one month alone without any design change having occurred

would indicate operator/machine fall down.
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8.4 = Further uses of and aids to Weibull analysis

It has been shown earlier in this thesis that the Weibull an-
alysis may be applied specifically to reliability and that use of
the special Probability Paper allows us to present clearly and
simply the characteristics of most modes of failure.

In the following section certain systems are suggested concern=-
ing supplier liability and service stores information wnhich using
the basic Weibull graphical presentation would help to reduce the
time lag between the introduction of an item with poor reliabil-
ity, the discovery of this situation and the necessary corrective
action.

Since the Weibull analysis is based on a mathematical model
involving three independent variables, it can be seen that non-
reliability functions may be dealt with by simply assigning the
relevant parameters in the problem to the variables in the math-
ematical model.

The following brief examples are intended to demonstrate this
point and to emphasise the broad scope to which the Weibull graph-
ical presentation may be adopted.
8.4=a - Inspection functions (19)

By applying the Weibull graphical technique to relatively
small samples, accurate assessments of production capabilities may
be obtained.

Quick answers may be given to such gquestions as:

How much scrap is produced from a particular operation during

production?

What proportion of this scrap lies above and below the toler—

ance band?

What effect does a particular production modification have on

this scrap level?
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What would be the most effective type of modification?

Fig. 8=3 shows a plot of 30 sample measurements of a partic-
ular characteristic, during an operation, and demonstrates how
narrow is the confidence band which may be achieved for a sample
of this size. It is obvious what sort of information may be ob=-
tained from such a plot.
8.4=b = llanpower planning

It is always useful, when dealing with large numbers of per-
sonnel, to be prepared for any significant movement of manpower
internal or external to an organisation. In many cases the dis-
tributions thrown-up by this type of movement may be described by
means of the Weibull analysis.

Thus predictions may be made well ahead of the fact and com=-
pensatory action taken.

If for example it is required to know how many of a certain
number of personnel, recently employed in an organisation will
have left after say 50 weeks, then it would be a simple matter to
predict this from the information given in the first few weeks.

A table would be drawn up, similar to the one following, and a
plot made of length of service in two weekly bands against the

percentage with terminated service in these periods.

Length of Service % Terminated Service
Up to 2 weeks 1.0
Up to 4 weeks 1.8
Up to 6 weeks 3.7
Up to 8 weeks 4.9
Up to 10 weeks 6.4
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Hence predictions could be made with reasonable confidence if
it is assumed that the distribution of personnel movement is a
single one and that other aspects such as seasonal changes may
be ignored or compensated for.
8.4=¢ - Stores planning

In order to predict how many days after ordering it is taking
for delivery to be made several random sample observations could
be made. From this information, when plotted, it would be poss-
ible to predict; what percentage of orders would have been del-
ivered after 40 days; how long would it take for 90% of orders
to be delivered, etc.

The random observations would be put in a tabular form as

follows:
Time to delivery (days) |% Probability of Delivery
23 10.9
37 26.4
42 42.1
48 57.8
56 73.5
61 89.0

N.B. The percentage probability of deliver& values are taken
direct from the lMedian Rank values for this sample size.

8.5 = Purther aids to quality and reliability functions
8.5=-a = Reliability assurance

As a means of establishing and maintaining the level of rel-
iability on a particular bought-out component it may be propo- -
sed that suppliers actually state a reliability level on their
component detail drawing. This could be confirmed by a "Rel=-

iability Assurance Certificate™ presented by the supplier to the
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customer which would state a specific value of life (cycles,
hours etc.) accompanied by a reliability level at this life.

Requirements could be specified as to the suppliers method of
assessing the reliability level, i.e. Weibull should be used, and
hence spot checks could be made by a customer either as routine
or when the components reliability fell into doubt. This of
course would mean that the suppliers could be held responsible
for maintaining not only quality but also reliability levels.

It could be said that reliability assurance would ensure that
the original design of the component was satisfactory, and qual-
ity assurance would ensure that production components were man-
ufactured according to this design. However once the design was
accepted and production well established these two functions wou-
1d work hand in hand.

Thus a Reliability Assurance Certificate would provide the
customers Reliability Departments with a solid basis on which to
place their expectations from their suppliers.

8.5-b = Reliability - Stores relationship

As demonstrated earlier in this report the gleaning of relevant
information from warranty return claims proves to be quite diff-
icult unless a comprehensive information feed-back system is em=-
ployed.

One means of by-passing the necessity for this type of feed-
back could be to study the day-to-day stock turnover in the stores
which supply the replacement parts to service. Thus, since any
failure epidemic occurring in service would be reflected almost
immediately by the output from these stores, a rapid early warn-
ing system could be implemented based on information concerning

this output.
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Care would be required to ensure that a true picture was
given by this information. For example not all items replaced
in service are ultimately found to be defect, therefore it would
be necessary to deduct the number returned undefective, from the
total issued by the stores. This would give a figure for the
number of items failed as opposed to those merely returned.

A further lag due to the storage capacity of the distributors
who replace the failed items.

The reliability service stores relationship could also work
the opposite way since it would be possible for the results of a
reliability analysis to be related to the total population, thus
giving a prediction of parts usage and an indication of the nec-

essary stores capacity to any given item.
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PART III - RELIABILITY PREDICTION
9 - GUIDELINES FOR PREDICTING THE RELIABILITY OF PRODUCTS
FROM SMALL SAMPLES

It is now possible to draw up a set of guidelines which,.
although of general use, are particularly valuable when it is
only possible to life-test a small sample.

1) Use median ranks to estimate the cumulative percentage
of the population failed.

According to accuracy requirements and time available, in-
struct the computer to use either the exact but slow formula,
or Bernard's formula, which is extremely fast but approximate.
For small smaples (up to 6 or 7), the first method is preferable.

2) Beware of rejecting apparently spurious points, when they
represent a significant part of the available data. (Rejecting
two "inconvenient" points out of, say, seven probably amounts to

forcing the data to fit preconceived ideas!).
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10 = COMPUTER PROGRAMME
10.1 = Generalities

The computer programme has been written in BASIC for a
Commodore PET computer 4032 and has been recorded on a standard
tape cassette and on a "Minidisk".

The programme is suitable for truncated or completed tests,
with or without suspensions, for the analysis of up to 50 items.
The data can be either typed-in directly, in any order, or
can be recorded (again in any order) in a special portion of the

programme.

The data and all input instructions, as well as the inter-
mediate and final results, are displayed on the screen; if a
printer is available, the final results can be plotted and tabul-
ated on paper.

10.2 = Characteristics of the programme
I - Loading

The programme is loaded using either cassette or disc.
II - Print Heading 540-620

As soon as the command RUN is given, first the screen is
cleared of all previous information and then the following words
appear on the screen: "THIS PROGRAMME IS SUITABLE FOR TRUNCATED
OR COMPLETED TESTS, WITH OR WITHOUT SUSPENSIONS, OF PR COMPONENTS.
I IS THE NUMBER AT WHICH THE TEST IS TRUNCATED;

MR IS THE MEDIAN RANK
R IS THE RELIABILITY
L IS THE FAILURE RATE

A ARE THE LIFE DATA".
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III - Data Input 630-1010

Pre~-recorded data can now be read by typing RE, or data can
be input after typing IN. In the latter case, the following in=-
structions appear on the screen: "GIVE 1st VALUE OF A (ENTER THE
LIFE, FOLLOWED BY A COMMA AND THEN BY AN F FOR A FAILURE OR AN S
FOR A SUSPENSION. TO END, ENTER 99999,)". The operator now en-
ters the first datum available and presses the return key. The
computer now instructs: M"GIVE 2nd VALUE OF A ETC.". The opera=-
tor enters second datum and presses the return key. This process
is repeated until all data are entered, when the operator should
enter the rogue value "99999," to get the programme going. Notice
that the data can be entered in any order whatsoever, since the
computer is programmed to rearrange all the data in order of in-
creasing value.
IV - Data Sorting

The data are now sorted in increasing order.
V = Tabulation of Data

Item numbers, life data and failure mode are now tabulated on
the screen in the correct order of increasing values.
VI - Alterations to Data

The data must now be checked and, if any mistakes were made,
alterations can be typed in. The corrected data are again sorted
in increasing order and displayed on the screen.
VII - Input No. of Items to be tested

The following words now appear on the screen;
"WHAT IS THE NUMBER PR OF ITEMS TO BE TESTED?"

The operator must now input the number PR,
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VIII - New Rank Orders 1340-1470

If there are any suspensions, the computer calculates the New
Rank Order.
Tabulation 1480-1580

The computer then tabulates four columns of data: the item
pumber from 1 to I, the life data A, the failure mode (F or S),
and the New Rank Order for all items from 1 to I. If there are
no suspensions, the New Rank Order is the same as the itfem number.
IX - Choice of formula for calculating the liedian Ranks

F 1590-1710

The computer now asks: "IF YOU WISH TO CALCULATE THE MEDIAN
RANKS F(K) USING THE ACCURATE BUT VERY SLOW BINOMIAL FORMUIA,
TYPE B1. IF YOU WISH TO USE THE APPROXIMATE BUT VERY FAST
BERNARD'S FORMULA, TYPE BE".
X - Median Ranks

As soon as the operator types in the required choice, the
computer calculates and displays the normal Median Ranks F(K) for
all the PR items, assuming there are no suspensions.
XI - New Median Ranks 2070-2250

The computer calculates the New Median Ranks, assuming there
are some suspensions, and displays four columns of data: The it-
em numbers, the life data, the new rank order and the new median
ranks for those items only which are failures, ignoring suspensi-
ons.
XII - Various Calculations 2260-2480

The computer calculates X=ln A, ) x, Cumulative reliability

R=1-MR, failure rate L=(-1n(1-MR))/A, y=1nla(1/(1-iR)), > ¥,

sz s ny, andZ y2 .
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XIII - Tabulation 3400-3470

The computer now tabulates life data A, new Xedian Ranks IR,
X=1n A, and ¥ = lnln gme.
XIV = Weibull plot

The computer displays a Weibull plot of X against Y.
XV-Correction for t # 0(4970-5700)

The following words now appear on the screen: "IS THE
WEIBULL PLOT A STRAIGHT LINE? TYPE YES OR NO".

If the points are approximately on a straight line, the oper=
ator types YES and the programme continues.See Section 10.2-XVI.

If the points are not on a straight line, the operator types
NO. The computer calculates and displays: YM and its correspon-
ding value M2; the equation of the best fitting curve; and the

roots AX

of the equation of the best fitting curve.
The computer now requests: "GIVE SUITABLE VALUE OF AX CORRe

ESPONDING TO M2",
Remembering that a correct value of AX must be comprised be-

tween the smallest and the largest of the life data, the operator
can easily discard the unsuitable value of AX and input the suit-
able value, corresponding to tz.

The computer then calculates and displays to.

The following words now appear on the screen: "IS WEIBULL
PLOT CONCAVE TO THE RIGHT OR TO THE LEFT?" The operator must
type RIGHT or LEFT as need be. The computer then adds or sub-
tracts to' as required, from all the original life data, and goes
back to stage 10.2-VIII.

XVI - Display type of test
One of the following headings is displayed, as required:

Either:

-217=



TRUNCATED TEST WITHOUT SUSPENSIONS OF 1 OUT OF PR ITHEMS
or:

COMPLETED TEST WITHOUT SUSPENSIONS OF PR ITEMS

or:

TRUNCATED TEST WITH SUSPENSIONS QF 1 OUT OF PR ITELS
or:

COMPLETED TEST WITH SUSPENSIONS OF PR ITEHIS

XVII - Tabulate A, MR, R, L.

Immediately under the heading, the computer now tabulates the
life data t, the New Median Ranks MR, the reliability R and the
failure rate L. -

XVIII - Calculate M, N, CL, RC

The computer calculates the intercept M and the slope N of
the best fitting line: Y = M + NX, the characteristic life CL
and the Regression Coefficient RC.

XIX - Calculate / and f‘

The computer calculates the gamma function G and the mean
life }4 = CL x G.

XX - Final display

The computer now displays heading (as at section 10.2-XVI),
tabulates A, X, MR, Y, R and L, and displays M, N, shape para-
meter, correlation coefficient, characteristic life, mean life,
B1 life, B10 life, B20 life, B50 life, YM, M2, AX, AO, PR, I.
XXI - Weibull plot

On depressing any one key, the computer now displays the Wei=-
bull plot of y=Ilnln T:%T?T on the ordinate against x=1n ¥ on

the abscissa.
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XXII - Linear plot

On depressing any one key the computer now displays the plot
of the median ranks P(t) on the ordinate against the life data %
on the abscissa.

XXIITI - Failure rate plot

On depressing any one key, the computer displays the ploi of
the failure life I on the ordinate against the life data t on
the abscissa.

XXIV - Print-out

The following words now appear on the screen:

"DO YOU REQUIRE A PRINT OUT?
PLEASE ANSWER YES OR NO".

If the operator types NO, the programme ends. If the opera=-
tor types YES, and if a printer is available,a printout is pro-
duced showing all items described in 10.2-XX to XXIII inclusive,
and the programme ends.

A number of print-outs are collected in a special pocket at
the end of this thesis. Some are based on imaginary data, and
some on actual tests discussed in the previous Chapter. These
print-outs are accompanied by tables and Weibull plots, obtained
in the traditional manner, for comparison purposes and ito show
the large amount of labour and time that the computer programme

can save.
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11 = GENERAL CONCLUSIONS

Weibull probability plotting as a computer-assisted graph-
ical method for data analysis is simple, fast and flexible. It
is simple because it requires only a few easy operations that
are easily learned: a) Enter the data in the computer pro=
gramme, in any order; b) Analyse plots produced; c¢) If necess-
ary, remove or shift spurious data (see Chapter 9); d) If plot
is curved, ask computer to calculate to and to re-enter the data
as (t-to); e) Use answers in computer's print-out to take nec-
essary decisions. It is fast because: a) Erroneous data are id=-
entified by specific shape patterns in the plots; b) On linear
plots, the Weibull parameter values are obtained directly by a
visual observation of the computer's print-out. It is flexible
because: a) One picture is worth ten thousand words; b) The
probability points, or percentiles, corresponding to many values

of the variable of interest, may be determined (visually).
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12 = RECOMMENDATIONS FOR FUTURE WORK

The Author thinks that the most valid improvement to the
Computer Programme would be the addition of routines for cal=-
culating the 5% and 95° Ranks, and for plotting the confidence
limits. The subject has been dealt with, analytically and

graphically, in section 6. .
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APPENDIX A

f

W 0 94 0 U =W =

-
o

RANK
ORDER

1

O O =N O U & W

N = b ol wd b b ed b b b
O OV O~ U & W N = O

1

50.0 29.2

11
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3
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4
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84.0

5
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68.6
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RANK
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9 0.9 0.4 2040 195 119.1 18.7 18.3 17:9 175 172
10 23.3 22.8 22.3 21.8 21.3 20,8 20.4 20.0 19.5 19.2
1 25.8 25.2 24.6 24.0 23.5 23.0 22.5 22.0 21.6 21.1
12 28.2 275 2649 2643 25.T 25:1 24:6 24.1 23.6 23.1
13 30,6 29.9 29.2 2845 279 27«3 26.7 26¢2 25.6 25.1
14 33.00 32.2 31.5 .8  30.1 2934 28.8 2B.2 27.T 271
15 38l 3.6 33.8 330 32.3 . 3.6 30,9 .3 29.7 29.1
16 37.9 37.0 36e1 35¢3 34.5 33.8 33.1 32¢4 31.7 31.1
§ 9 403 39.3 38¢4 37.5 36.7 359 35.2 344 33.T7 331
19 45.1 44.0 43.0 42.1 41.1 40.2 39.4 38.6 37.8 37.0
20 47.5 46.4 45.3 44.3 43.3 42.4 41.5 40.6 39.8 39.0
21 50s0 48.8 47.6 46.6 45.5 44.6 43.6 42.7 41.8 41.0
22 52.4 51¢1 50,0 48.8 47.7 46.7 45.7 44.8 43.9 43.0

23 54,8 53.5 52.3 51,1 50.0 48.9 47.8 46.8 45.9 45.0
24 57«2 55.9 54.6 53.3 52.2 51.0 50.0 48.9 4T7.9 47.0
25 59.6 58.2 56.9 55.6 54.4 53.2 52.1 51.0 50.0 49.0
26 62.0 60.6 59.2 5T7.8 56.6 55.3 54.2 53.1 52.0 50.9
27 64.5 62.9 61.5 60.1 58.8 57.5 56.3 55.1 54.0 52.9
28 66.9 65.3 63.8 62.4 61.0 59.7 58.4 57.2 56.0 54.9
29 69.3 67.7 66¢1 64.6 63.2 61.8 60.5 59.3 58.1 56.9
30 T1.7 TO.0 68.4 66.9 65.4 64.0 62.6 61.3 60.1 58.9
31 T4e1 T2.4 TO.T 69.1 67.6 66.1 64.7 63.4 62.1 60.9
32 76.6 T4.8 T3.0 T1.4 69.8 68.3 66,9 65.5 64.1 62.9
33 79:0 TTel T15.3 7T3:.6 T2.0 T0.5 69.0 67.5 66.2 64.8
34 B1e4 T9¢5 TT6 T5.9 T4.2 T2.6 T1.1 69.6 68.2 66.8
35 83.8 81.8 T9.9 T8e1 T6.4 T4.8 T3.2 T1.T T0.2 68.8

36 86.2 84.2 82.3 80.4 T8B.6 7T6.9 75.3 T3.T T2.2 7T0.8
37 88.7 86.6 84.6 82.7 80.8 79.1 TT.4 75.8 T4e3 7T2.8
38 91.1 88.9 86.9 84.9 83.0 81.2 79.5 77.9 T6.3 T4.8
39 93.5 91.3 89.2 87.2 85.2 83.4 81.6 79.9 T8.3 76.8
40 95.9 93.6 91.5 89.4 87.4 85.6 B83.7 82.0 80.4 78.8
41 98.3 96.0 93.8 91.7 89.6 87.7 85.9 84.1 82.4 80.7
42 98.3 96.1 93.9 91.9 89.9 88.0 86.2 84.4 82.7
43 9844 96.2 94.1 92,0 90.1 88.2 86.4 84.7
44 98.4 96.2 94.2 92.2 90.3 88.5 86.7
45 98.4 96.3 94.3 92.4 90.5 88.7
46 98.5 96.4 94.4 92.5 90.7
47 98.5 96.5 94.5 92.7
48 98.5 96.5 94.6
49 98.5 96.6
50 98.6
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60.6
65.3
69.8
74.1
78.2
82.2
86.0
89.5
92.8
95.7

98,1
99.7



APPENDIX C

RANK

ORDER 21
1 13.2
2 20.6
3 27.0
4 32.9
5 38.4
6 43.6
T 48.7
8 5345
9 58.2

10 62.8

11 67.1

12 Tk

13 T5.5

14 T9.4

15 83.1

16 86.7

17 90.1

18 93.2
19 95.9

20 98.2

21 99.7
22

23

24

25

26

27

28

29

30

22

12.7
19.8
25.9
31.5
36.9
41.9
46.8
5145
56.0
60.4
64.7
68.8
T72.8
76.7
80.4
84.0
87.3
90.5
93.5
96.1
98.3
99.7

NINETY FIVE PERCENT RANKS

23

12.2
19.0
24.9
30.3
35.4
40.3
45.0
49.6
54.0
58.3
62.4
66.4
70.3
T4.1
77.8
81.3
84.7
87.9
91.0
93.8
96.3
98.4
99.7

24
11.7
18.2
23.9
29.2
34.1

38.9
43.4
47.8
521

56.2
60.3
64.2
68.0
.
T75.3
78.8
82.2
85.4
88.5
91.4
94.0
96.5
98.4
99.7

SAMPLE SIZE

25
11.2
17.6
23.1
28.1
32.9
37.5
41.9
46.2
503
54.3
5843
62.1
65.8
£9.4
73.0
T76.4
T9.7
82.9
86.0
88.9
91.7
94.3
96.6
98.5
99.7
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26
10.8
16.9
22.2
2l

31.8
36.2
40.5
44.6
48.7
52.6
564
60.1
63.7
67.3
70.7
74.1

T7.4
80.6
83.6
86.6
89.4
92.1
94.5
96.7
98.6
99.8

27

10.5
16.3
21.5
26.2
30.7
35.0
39.2
43.2
47.1
50.9
54.6
58.2
61.8
65.3
68.6
71.9
75.2
78.3
81.3
84.3
87.1
89.8
92.4
94.7
96.9
98.6
99.8

28

10.1
15.8
20.8
25.4
29.7
33.9
37.9
41.8
45.6
49.3
52.9
5645
59.9
63.3
66.6
69.9
730
6.1
791
82.0
84.9
87.6
90.2
92.6
94.9
97.0
98.7
99.8

29
9.8
15.3
20.1
24.6
28.8
32.8
36.8
40.5
44.2
47.9
51.4
54.8
5842
61.5
64.7
67.9
71.0
741
77.0
79.9
82.7
85.4
88.0
90.5
92.9
95.1
971
98.7
99.8

30
95

" 14.8

19.5
23.8
27.9
31.8
35.7
39.3
42.9
46.5
49.9
53.3
56.6
59.8
63.0
66.1
69.1
T2.1
75.0
77.8
80.6
83.3
859
88.5
90.9
93.1
95.3
97.2
98.8
99.8



APPENDIX C

RANK
QEDER 31
1 9.2
2 14.4
3 18.9
4 23.1
5 27.1
6 30.9
7 34.6
8 38.2
9 41.7
10 45.1
11 48.5
12 51.8
13 55.0
14 58.2
15 61.3
16 64.3
17 67.3
18 T0.2
19, 73.1
20 75.9
21 78.6
22 81.3
23 83.9
24 86.4
25 88.8
26 91.2
27 93.4
28 95.4
29 97.3
30 98.8
N 99.8
32
33
34
35
36
37
38
39
40

32
8.9
13.9
18.3
22.4
26.3
30.0
33.6
37.1
40.6
43.9
47.2
50.4
53+5
56.6
59.6
62.6
65.5
68.4
T71.2
74.0
76.7
79.3
81.9
84.4
86.9
89.2
91.5
93.6
95.6
97.3
98.8
99.8

NINETY FIVE PERCENT RANKS

33

8.6
13.5
17.8
21.8
25.6
29.2
32.7
36.1
39.5
42.7
45.9
49.0
52.1
5541
58.1
61.0
63.9
66.7
69.5
72.2
74.8
7.4
80.0
82.5
84.9
87.3
89.5
91.7
93.8
95.7
97.4
98.9
99.8

34
8.4
13.2
17.3
21.2
24.9
28.4
31.8
35.2
38.4
41.6
44.7
47.8
50.8
53.7
56.6
59.5
62.3
65.1
67.8
T70.4
73.1
75.6
78.2
80.6
83.0
85.4
87.7
89.9
92.0
94.0
35.8
97.5
98.9
99.8
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SAMPLE SIZE

35
8.2
12.8
16.9
20.6
24.2
27.7
31.0
34.3
37.4
40.5
43.6
46.6
49.5
52.4
5.2
58.0
60.8
63.5
66.2
68.8
71.4
73.9
76.4
78.8
81.2
83.6
85.8
88.0
90.2
92.2
94.1
96.0
97.6
98.9
99.8

36
7.9
12.5
16.4
20.1
23.6
27.0
30.2
33.4
36.5
39.5
42.5
45.4
48.3
51.1
53.9
56.6
59.3
62.0
64.6
67.2
89.7
72.2
T4.7
7.1
T79.5
81.8
84.0
86.2
88.4
90.5
92.4
94.3
96.1
97.6
99.0
99.8

37

T.7
12.1
16.0
19.6
23.0
26.3
29.5
32.6
35.6
38.6
41.5
44.3
47.1
49.9
52.6
55.3
58.0
60.6
63.1
65.7
68.2
70.6
73.0
75.4
77.8
80.1
82.3
84.5
86.6
88.7
90.7
92.6
94.5
96.2
97.7
9.0
99.8

7.5
11.8
15.6
19.1
22.4
25.6
28.8
31.8
34.7
37.6
40.5
43.3
46.0
48.7
51.4
54.0
56.6
59.2
61.7
64.2
66.7
69.1
71.5
73.8
76.1
78.4
80.6
82.8
84.9
87.0
89.0
91.0
92.8
94.6
96.3
97.8
99.0
99.8

39
T+3
11.5
15.2
18.6
21.9
25.0
28.1
31.0
33.9
36.8
39.6
42.3
45.0
47.6
50.3
52.8
55.4
57.9
60.4
62.8
65.2
67.6
£9.9
T2.3
T4.5
76.8
79.0
81.1
83.3
85.3
8743
89.3
1.2
93.0
94.8
96.4
97.8
99.0
99.8

40

& 7.2

1.3
14.9
18.2
21.4
24.5
27.4
30.3
33.2
35.9
38.7
41.3
44,0
46.6
49.1
51.7
54.2
56.6
59.1
61.5
63.8
66.2
68.5
70.8
73.0
75.2
TT.4
79.5
81.6
83.7
85.7
87.7
89.6
91.4
93.2
94.9
96.5
8T7.9
99.1
99.8
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RANK
ORDER 41
1 7.0
2 11.0
3 14.5
4 17.8
5 20.9
6 23.9
7 26.8
8 29.6
9 32.4
10 35.1
13 37.8
12 40.4
13 43.0
14 45.6
15 48.1
16 50.6
17 53.0
18 55.4
19 57.8
20 60.2
21 62.5
22 64.8
23 67.1
24 69.3
25 71.5
26 13T
27 75.9
28 78.0
29 80.1
30 82.1
31 84.1
32 86.1
33 88.0
34 89.9
39 91.7
36 93.4
37 95.0
39 97.9
40 99.1
41 99.8
42
43
44
45
46
47
48
49
50

4
WO O0oo0MN
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WM NN N = = =
=0

- L] - -
~onEpEprNOOD

34.4
37.0
39.6
42.1
44.6
47.1
49.5
51 .9
54.3
56.6
58.9
61.2
63.5
65.7
67.9
70.1
?2.3
T4.4
7645
78.5
80.6
82.6
84.5
86.4
88.3
90.1
91.9
93.5
95.1
96.6
98.0
99.1
99.8

NINETY FIVE PERCENT RANKS
SAMPLE SIZE

43
6.7
10.5
13.9
17.0
20.0
22.9
25.6
28.4
31.0
33.6
36.2
38.7
41.2
43.7
46.1
48.5
50.8
53.2
55.5
577
60.0
62.2
64.4
66.6
68.8
70.9
73.0
75.0
7.1
79.1
81.0
83.0
84.9
86.8
88.6
90.3
92.1
93.7
95.3
96.7
98.0
99.1
99.8

44

6.5
10.3
13.6
16.6
19.6
22.4
25,1
27.8
30.4
32.9
35.4
37.9
40.4
42.8
45.1
47.5
49.8
52.1
54.4
56.6
58.8
61.0
63.2
65.3
67.4
69.5
T1.6
73.6
75.6

S8

L]

D W \O DO W W\
WO oowvmwmnNn

L -
D= =0H 0N O

45
6.4
10.1
3.3
16.3
19.1
21.9
24.6
2T.2
29.7
3203
34.7
37.2
39.5
41.9
44.2
46.5
48.8
51.1
533
55.5
5TT
59.8
62.0
64,1
66.2
68,2
70.3
T2.3
74.3
76.2
78.2
80.1
81.9
83.8
85.6
87.4
89.1
50.8
92.4
94.0
95.5
96.9
98,1
99.2
99.8
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23.6
26.1
28.6
31.0
33.4
35.7
38.0
40-3
42.5
44.8
47.0
49.1
51.3
53.4
5545
576
59.7
61.7
63.7
65.7
67.7
69.7
71.6
7345
754
T7.3
79.1
81.0
82.7
84.5
86.2
87.9
89.6
91.2
92.7
94.2
95.7
97.0
98.2
99.2
99.8
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22,
25.1
27.5
29.8
32.1
34.4
36.6
38.8
41.0
43.1
45.2
47.3
49.4
51.5
53.5
55.5
575
59.5
61.5
63.4
65.4
67.3
69.1
7100
72.9
T4.7
T76.5
78.3
80.0
81.8
83.5
85.2
86.8
88.4
90.0
91.6
93.0
94.5
95.3
97.1
98.3
99.2
99.8
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0

38.1
40.2
42.3
44.4
46.5
48.5
50.6
52.6
54.6
56.5
58.5
60.4
62.3
64.2
66.1
68.0
69.8
T71.6
T3.4
5.2
77.0
78.7
80.5
82.2
83.8
85.5
87.1
88.7
90.2
91 oT
93.2
94.6
95.9
97.2
98.3
99.2
99.8



APPENDIX D
THE GAMMA DISTRIBUTION (2°)
A random variable X is said to be distributed as the Gamma
Distribution if the density function is given by

x

£(x) = r(;+1)ﬁ°‘*ixe e 0 < x < o
where o« and P are parameters with A > =1 and {57 05
Properties:
Mean =M =L (A +1)
Variance - 0% B2 (A 1)

Standard Deviation = g = B-ﬂ oA +1

Moment Generating Function = mx(t) a (1 = ﬁt)-( A H),

i,
t<:'§
GAMMA FUNCTION*
o AN
Values of r(n)= /e x dx; J(n+1) = nf(n)
o

n 7{n) n T(n) n T(n) n 7(n)
i

1.00 1.00000 |{1.25 | 0.90640 || 1.50 | 0.88623 || 1.75 | 0.91906
1.01 0.99433(/1.26 | 0.90440 |{ 1.51 | 0.88659 || 1.76 | 0.92137
1.02 0.98884 {|1.27 | 0.90250 || 1.52 | 0.88704 || 1.77 | 0.92376
1.03 0.98355|/1.28 | 0.90072 || 1.53 | 0.88757 || 1.78 | 0.92623
1.04 0.97844 ||1.29 | 0.89904 |l 1.54 | 0.88818 || 1.79 | 0.92877

1.05 0.97350([1.30 | 0.89747 |/ 1.55 | 0.88887
1.06 0.96874 || 1.31 | 0.89600 |{1.56 | 0.88964 |
1.07 0.96415 ||1.32 | 0.89464 |/ 1.57 | 0.89049
1.08 0.959731|/1.33 | 0.89338 |/ 1.58 | 0.89142
1.09 0.95546 [[1.34 | 0.89222 |/ 1.59 | 0.89243

1.80 | 0.93138
1.81 0.93408
1.82 | 0.93685
1.83 | 0.93969
1.84 | 0.94261

1.10 0.95135 ||1.35 | 0.89115 |/ 1.60 | 0.89352 |[1.85 | 0.94561
1.11 0.94739 ||1.36 | 0.89018 || 1.61 0.89468 || 1.86 | 0.94869
1.12 0.94359 ||1.37 | 0.88931 1.62 | 0.89592 [ 1.87 | 0.95184
1.13 0.93993 [[{1.38 | 0.88854 ||1.63 | 0.89724 | 1.88 | 0.95507
1.14 0.93642 {|1.39 | 0.88785 ||1.64 | 0.89864 | 1.89 | 0.95838

1.15 0.93304 |[1.40 | 0.88726 1.65 | 0.90012 1.90 | 0.96177
1.16 0.92980 [|1.41 0.88676 1.66 | 0.90167 1.91 0.96523
1.17 0.92670 |{1.42 | 0.88636 ||1.67 | 0.90330 1.92 | 0.96878
1.18 0.92373 ||1.43 | 0.88604 |/1.68 | 0.90500 1.93 | 0.97240
1.19 0.92088 (|{1.44 | 0.88580 ||1.69 | 0.90678 |[1.94 | 0.97610

1.20 0.91817 |[1.45 | 0.88565 1.70 | 0.90864 ||1.95 | 0.97988
1.21 0.91558 |[1.46 | 0.88560 [|1.71 0.91057 1.96 | 0.98374
1.22 0.91311 ||1.47 | 0.88563 [{1.72 |0.91258 [1.97 | 0.98768
1.23 0.91075 (|1.48 | 0.88575 ||1.73 | 0.91466 1.98 | 0.99171
1.24 0.90852 ||1.49 | 0.88595 1.74 |0.91683 1.99 | 0.99581
2.00 | 1.00000

)
#For large positive values of x, T (x) approximates the asymptotic

series
xn e.-x 2_Tr 1 + 1 + 1 b 4 139 - ——L +I.0‘..
x 12x 288x* 51840x? 2488320x %
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APPENDIX E
Non=Parametric Statistics
CRITICAL VALUES FOR THE KOLMOGOROV-SMIRNOV ONE-SAMPLE STATISTIC

A sample of size n is drawn from a population with cunulative
distribution function F(x). Define the empirical distribution
function Fn{x) to be the step function.

Fn(x) = ‘i for x(i)é_. x *{z(iﬂ) .
where k is the number of observations not greater than x.
x(,l)....., x(n) denote the sample values arranged in ascending
order. Under the null hypothesis that the sample has been drawn
from '!:..he specified distribution, Fn(x) should be fairly close to
F(x). Define

D = max Fn(x) - F(x) |.

For a two-tailed test this table gives critical values of the
sampling distribution of D under the null hypothesis. Reject the
hypothetical distribution if D exceeds the tabulated value. If n
is over 35, determine the critical values of D by the divisions in-
dicated in the table.

A one-tailed test is provided by the statistic

-+

D" = max |F (x) - F(x) | .
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APPENDIX E

CRITICAL VALUES FOR THE KOLMOGOROV-SMIRNOV TEST OF GOODNESS OF FIT

Sample Significance Level
Size (ﬂ) 0.20 0.15 0.10 0105 0.01
1 0.900 | 0.925 0.950 | 0.975 0.995
2 0.684 0.726 0.776 | 0.842 0.929
3 0.565 | 0.597 0.642 | 0,708 | 0.829
4 0.494 | 0.525 0.564 | 0.624 | 0.734
5 0.446 0.474 0.510 0.563 0,669
6 0.410 | 0.436 0.470 | 0.521 0.618
T 0.381 0.405 0.438 | 0.486 0.577
8 0,358 | 0.381 0.411 0.457 0.543
9 0.339 | 0.360 0.388 | 0.432 | 0.514
10 0.322 0.342 | 0,368 | 0.409 0.486
11 0.307 | 0.326 0.352 | 0.391 0.468
12 0.295 0.313 | 04338 | 0.375 0.450
13 0.284 | 0.302 | 0.325 | 0.361 0.433
14 0.274 | 0.292 0.314 | 0.349 0.418
15 0.266 | 0.283 0.304 | 0.338 | 0.404
16 0.258 | 0.274 | 0.295 0.328 | 0.391
) V4 0.250 | 0.266 0.286 | 0.318 | 0.380
18 0.244 | 0.259 0.278 | 0.309 0.370
19 0.237 | 0.252 | 0.272 | 0.301 0.361
20 0.231 0.246 | 0.264 | 0.294 0.352
25 0.21 0.22 0.24 0.264 | 0.32
30 0.19 0.20 0.22 0.242 | 0.29
a5 0.18 0.19 0.21 0.23 0.27
40 0.21 0.25
50 0.19 0.23
60 0.17 0.21
T0 0.16 0.19
80 0.15 0.18
90 0.14
100 0.14

1.07 1.14 1.22 1,36 1.63
Asymptotic
Formula: W’ q/ ﬂJﬂ_ q/ n ~/

Reject the hypothetical distribution F(x) if D =max
exceeds the tabulated value.
(FPor A =.01 and .05, asymptotic formulas give values which are
too high - by 1.5 per cent for n = 80.)

Fn(x)-F(x)

The significance level represents the risk of accepting an in-
valid assumption made about distributions of failure times.
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APPENDIX F - Notes on minimum life parameters t

Failurc-free time
The examples given so far all relate to cases where tO =10, cicel
there is no failure—-free time. Of course this is not necessarily

the case in reliability work.

If an item has a finite (positive) failure-free time under test,

e.g. a fatigue test specimen, the failure data will plot as a curve,
seen convex from above, since the transformation to achieve the
Weibull scales assumes that the data fit a two-parameter distribution,

The effect of a finite life is to shifi the age of failure to the left,

Case 2

It is possible to have an apparent negative value for tor for example
if the items under test had accumulated unrecorded operating time
before the start of the test. In this case the curve will appear
concave from above — The effect of an apparent negative value for t

is to shift the age of failure to the right,

Procedure

Either way, the data are re-plotted, with the value of to as
calculated on page 99 subtracted elgebraically from each life value,
The life parameters estimated from the plot must then have the value

of tD added algebraically to give the true life values (see page 175) .




Digcustion

Discretion must be used in interpreting data that do not plot

as a straight line, since the cause of the non-linearity may be
due to the existence of mixed distribution, It is quite likely

to be due simply to the randomness or the periodicity in the
sample. The failure mechanisms must be studied, and engineering
judgement must be used, to ensure that the correct interpretations
are made. It is a common error to assume that, because a straight
line provides a reasonably good fit to the data, that there is no
failure-free life. Therefore a value for to can sometimes be
estimated from knowledge of the product and its application,
Alternatively, the time to first failure is often a satsifactory
estimate of to' In these cases the procedure described above is
not necessary. Generally, data on several failure modes in a
system are likely to fit a two—parameter distributioen (tO =0),
but single wear-out failure modes ( B> 3.43) are more likely to

have positive values of to.
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THE UNIVERSITY OF ASTON IN BIRMINGHAM

RELIABILITY EVAILUATION AND PREDICTION
WITH SPECIAL REFERENCE TO LIFE TESTING
by
L. G. D. Petrucci
Submitted in partial fulfilment of the Degree of Doctor of
Philosophy

1983

Examples of print-outs, obtained with the Computer Programme

described in Chapter 10, accompanied for comparison purposes by

Tables and Weibull plots obtained in the conventional manner.

-240-



iy "(MILES) (MILES)
Transmission 100 8,097
component 1,333 8.700
1,454 8,920
2,838 11,500
3,107 16,963
5,346 20, 315
5,544 21,563
6,367 24,767
7,100 25,377
11,247 274321
11,249
18,482
18,748
20,708
22,541
24,996

Target: 0.98 Reliability at 50,000 miles

Sample size: 26
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ITEM 2

SUSPENDED
(MILES)

FAILED
(MILES)

Transmission
component

(same type as

with modifications)

40
item 1 222

420
1,029
2,392
2,845
4,394
4,453
5,620
6,450
6,767
10,205
11,900
14,165
18,609
21,354
23,872

42,181

27,330
31,314
34,333
48,600
48,800

Target:

Batch size: 23
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ITEM 3

CYCLES TO FAILURE

Electrical component

134,378
162,547
163,064
186,023
208,409

222,195

Target: 0.95 Reliability at 25,000 cycles

with 95% Confidence.

Batch size 6

-249-




Test Number \ Article and Source Itgz g' f::itriml Component S:]“{pl. Size
= ec OgY

Date *Im’!-\ / Shape

O 2w N - 2 n L] "
g JUUCCIEEV e R e ) .\T“' ean  LONITRT776 y‘nrmmm‘uun
s 1 1 3 4 | e u
/ﬁ).J.1.;!.“‘1“..l”.‘l..;.!....l....l...lthJM.mmummh
29
[ | [ {

29 1 : I [ !

i ] 1

=

Hﬁ

-
o
|

1
:
. : i I y .8 -
—— e e e e === = —
g : B :
: 7
50 —1— #
> + + | e e .-
: ’ - : E ; :ﬂ—,‘ : ;
& 1 Y 1 1
y A + -+ 3
L T 1 ¥ 1
| L r i i 1
30 L L 1
: A—ba
S = T
= |3
- t = i
) T 1 F i
3] 1 1 7 i
1 T
. , bk .
10 1
e Fo f
5 I 1 -y + 1§ - =t
1§
g 1
5 ! 7
(X} 5 J
- I 1
F /
3 1 i
1
5 1 I
T
-+ 6
T !L -
— -
R = i i 1B {
= I=T= H T evai
— et - H =
eal; 5 The
5 T § o0 B o § -~
05 | 1 T 1 i
] 1
1 i 1 iR
L
1 T -
0-3 == : i t i
=11 I i
: e e m = EE .
Q-2 ! ‘| 1
»
— 1 :
— 1 1 A
g | 1 1 O I
! 1 { T T
1 T 1 —t
o-1 11 L I 1 1

«{0% 40

AGE AT FAILURE in cycles



m

= S

..............1..."-———_4______:._.?j_—.-l-.-—_..__ o s . s e e

I
£

1 I I i
i | 1 1 1
e e et e e - e s e

-251-

o e e e e

s g sa

1 t t
e e i i - . e e e e e
' ) \ i
I I i 1
1 ' 1
st et e e ey o e e . e e e e
| |
' 1 '
1 |
ek i e e e o 5 . e Y s

o i e - i




-252-



ITEM 4

CYCLES TO FAILURE

Electrical component

Batch of 7

98,747
106, 440
112,538
128,655
144,108
164,197
214,304

Target: '0.95 Reliability at 25,000 cycles

with 95% Confidence
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ITEM 5 CYCLES TO FATILURE

Electrical switch
10,054

17,860
37,903
43,895
65,058

Target: 0.95 Reliability at 25,000 cycles
with 95% Confidence

Batch size 5
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TRUNDATED TEST, WITHOUT SUSPENSIONS, JF 20 OUT OF 3o 1TEME
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