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SUMMARY 

This thesis is in three major parts. 

In Part I the mathematics of the Weibull distribution are 

extensively explained and the validity of the Weibull model 

is demonstrated; of particular interest is the possibility of 

carrying out truncated tests with or without suspensions with 

a high degree of confidence. 

In Part II, the investigation to prove such validity is 

part of the original experimental work carried out by the au- 

thor and is an important contribution to, and confirmation of, 

the knowledge of the subject treated. Of particular interest 

is the demonstration of the sensitivity and discriminating 

powers of the Weibull analysis in revealing two or more fail- 

ures distributions. Results are given and discussed. 

In Part III the author deals with the extremely interesting 

topic of Reliability Prediction and explains in detail the 

original Computer Programme he has perfected to predict acc- 

urately and almost immediately characteristic life, mean life, 

reliability, failure rate, etc., by analysing but a few data. 

Such speed and accuracy are a major contribution to the advance- 

ment of knowledge on this subject, and are vitally important 

to all manufacturers and buyers interested in reliability. 

A copy of the Computer Programme on disc or cassette can be 

obtained from the author on application. 

Evaluation, prediction, reliability, failure, life.
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FOREWORD 

It is recognised that, to achieve the highest degree of 

reliability in a component or assembly, its specification 

must be clearly defined in respect of its dimensional and 

material parameters and there must be a statement of its ex- 

pected performance when tested under controlled conditions of 

load, speed, temperature and vibration. 

What is not readily recognised is the need to accurately 

determine and define the degree of variability that exists 

within any specification, or indeed within any set of statistics. 

The Weibull analytical method described and illustrated in 

this thesis is a proven procedure for obtaining this picture 

of variability and hence an understanding of the limitations 

of the specification and the penalties of working outside these 

limitations. 

Many people in industry are still not fully aware that the 

intelligent application, preferably using computers, of these 

recently developed but well-proven reliability theories can 

bring appreciable reduction in the costs of defects and failures, 

improvements in operational reliability and utilisation, and 

reduction in repair time and maintenance costs. 

Those who are aware of these applications sometimes find 

difficulty in choosing the most appropriate reliability tech- 

nique to meet a given situation. Others tend to avoid an 

analytical approach because they expect to find difficulty 

with the mathematics or lack specific examples of applications 

to practical problems. 
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Increasingly, reliability is becoming recognised as a 

vital factor to be dealt with in a quantitative manner when 

tendering, in feasibility studies, and during development, pro- 

duction, operations and maintenance. Reliability as a separate 

function and a formal discipline as quality, is a relatively 

new development. However, it has always been a consideration, 

although most specifically by name. 

Reliability when expressed in a qualitative manner is 

meaningless and when quoted quantitatively can be misleading 

unless interpreted correctly. Often it is simple to specify, 

difficult to achieve, harder still to predict and very expen- 

sive to demonstrate. 

Specification - Reliability may be specified in terms of 

the probability of successful completion of a mission within 

the design performance envelope. 

Prediction - Simple formulas have been developed into which 

a preponderance of empirical constants have been injected to 

enable one to arrive at a fairly plausible solution. In cer- 

tain cases one is hampered still further by the paucity of rel- 

dability data (the empirical constants). 

Achievement - The prescribed reliability may have to be 

achieved in a severe environment with complex hybrid equipment 

in which the failure of any single component may well cause 

failure of the whole. It may have to be brought about, too, 

where no human corrective action is possible and when "early 

life" failures may predominate. 
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Demonstration - Demonstration of reliability is required 

during Research and Development with a fair degree of engineer 

ing confidence on "one-shot" devices such as guided weapons, 

which have limited monitoring services during the mission, 

are without recovery after the mission, and may yield a total 

mission time of only a few minutes in an entire development 

firing programme of a few score rounds. Financial consider- 

ations preclude the demonstration of reliability with a high 

degree of statistical confidence on pilot or production runs, 

and the lower confidence level arrived at is to a large extent 

due to the limitations imposed by the restricted nature of v= 

aluation trials rather than a reflection on the time reliability 

of the system. 

Importance of Reliability Engineering - Reliability is thus 

not an easy matter to deal with. It is, however, becoming re- 

cognised as one of the most important single characteristics of 

many complex hybrid systems and has to be dealt with as such. 

It may take precedence in a weapon system, for example over re- 

quirements such as the resistance of the guidance system to 

interference and counter measures, strike effectiveness in terms 

of the accuracy of the missile, and killing capacity of the war- 

head. 

The intrinsic reliability of any equipment is a function of 

both quality of design and quality of conformance to design. 

By quality is meant "fitness for purpose", and by reliability 

"continuing fitness for purpose". In aircraft, fitness for pur= 

pose may be related to two distinct cases: ground and flight. 

tie



faking aircraft equipment or an aircraft system, minimun 

probability of success could be specified for:- 

a) Period tests while in stock at depots 

b) Field tests on installation 

c) Check-out prior to take-off 

a) Flight. 
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PART I - EVALUATION OF THE VALIDITY OF THE WEIBULL DISTRIBUTION 

1 = INTRODUCTION 

Reliability is generally defined as "the mathematical pro- 

bability that a product will operate, without failure, under 

prescribed operating and environmental conditions, for a 

specified period of time (i.e. hours, cycles, miles, etc.)". 

fo arrive at a mathematical expression for reliability, 

certain theoretical functions may be combined with the known 

laws of probability and applied to the collected data. 

Data analysis consists, in the main, of grouping together 

(in alphabetical groups, numerical ranks, or in some other 

order) the variables under consideration, and of examining the 

groups to see whether there are any significant relationships, 

simple or systematic, corresponding to the observed output. 

It may be possible to describe these relationships with a few 

symbols, but this is normally done by constructing some form 

of histogram or plotting a graph or curve. Data from tests 

or measurements can be plotted to show the frequency distri- 

bution against a selected independent variable such as weight, 

length, stress, cycles or time. If we can establish and des- 

cribe these relationships, a study of the histogram or graph 

thus produced will usually give some indication of the distri- 

bution of the parent population from which the sample was drawn: 

it may show for example how many times each value of the variable 

is likely to occur; we may find that we have an exponential 

distribution, or the familiar normal distribution, or something 

else. If the distribution curve were known, then we could de- 

fine mathematically the product reliability, quality or con- 

formity and we can say that the analysis has added to the meaning 

and usefulness of the original data. 
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However, to arrive at a distribution type by this method 

entails the collection and plotting of a considerable number 

of data, in other words a fairly large sample size has to be 

drawn and, in the case of life testing, a lot of time and money 

is required. 

Thus, in our society of high speed computers and automation, 

simplified statistical methods for the manual or computer- 

assisted solution of analytical problems still bring relief to 

overburdened engineers and statisticians. 

Among the various statistical probability density functions 

used in reliability studies, the Weibull distribution is assum- 

ing increased prominence. In 1950 Wallodi Weibulr''), a 

Swedish professor engaged initially in the study of fatigue 

characteristics, arrived at a very useful statistical model 

whereby certain distribution types could be represented by a 

straight line law. Thus only a small number of results were 

required in order to locate this line, and from it useful con- 

clusions could be drawn. 

Whilst investigating this analysis Mr. A. Plait’2? 3), on 

American engineer, devised a method of presenting this very 

useful distribution by plotting the data in a Weibull line on 

specially constructed graph paper, now known as "Weibull Pro- 

bability Paper". A few simple measurements then directly pro- 

vide the shape and position parameters of the distribution 

curves The scales on the Weibull Probability Paper are laid 

out to display the three parameters that define the distri- 

bution: the slope B » the characteristic life ns and the 

starting point of the curve, or minimum life to.



Direct measurements on the paper can be made to determine 

the reliability of a product. 

Since that time further work‘*) on this subject has been 

carried out so as to reduce and simplify the procedure in- 

volved with extracting the relevant information from this 

graphical presentation. 

When we are carrying out an experiment and we find that 

the failure rate is not constant, the Weibull model could be 

used in appropriate circumstances. (See Ch. 6). 
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In Part I of this thesis the author deals mainly with the 

mechanics of the Weibull Distribution. Thus, Chapters 2 and 

3 give the history, analytical expressions, properties, graph- 

ical constructions, and applications of the Weibull Distribution. 

In Chapter 4 the author offers theoretically accurate and approx- 

imate formulae for calculating the Median Ranks. These formulae 

are used as sub-routines in the Computer Programme of Chapter 10. 

The User can select at will the accurate but slow method, or the 

approximate but instantaneous method. This is an important con- 

tribution, since the User is now free from the need to consult 

fables and to plot laboriously his data: all he has to do is to 

select either routine to obtain his data, nicely tabulated and 

Plotted, and the relative extrapolations. 

In Part II the author describes his experimental research to 

prove beyond doubt the validity of the Weibull Distribution 

when applied to life testing, and demonstrates its high capacity 

to discriminate between different failure modes. This is ex- 

tremely important, in order to detect the influence of various 

Parameters (in our case, slightly different welding speeds and 

different plates from the same steel). The results of this 

original investigation, carried out at the University of Aston, 

are reported in Chapter 7 and discussed in Chapter 8, which 

also gives ideas for further uses and applications of the 

Weibull Distribution. 

Part III is dedicated to the problem of Reliability Pre- 

diction, which is the main purpose of this thesis and the 

major contribution by the author to enable private individuals 
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or Companies to use the Weibull Distribution without any 

knowledge of the distribution itself or of computers. Chapter 

10 describes in outline the Computer Programme which is an in- 

tegral part of this thesis. All the user has to do is to load 

the programme (which comes in disc or cassette form) into his 

computer and follow the simple directions which appear on the 

screen. The programme is fully interactive: it offers choices 

of accurate but slow or approximate but fast routines, requests 

data, checks errors, calculates the best fitting line to the 

data, corrects curved plots, and offers the choice of a visual 

display or a print-out. Very few data are required (usually 

five or six) to give a reasonable accuracy, and all types of 

tests (completed or truncated, with or without suspensions) 

can be accommodated. Thus a life testing programme can be 

interrupted short, to give an idea of the projected life 

(B-10, B20, ..., mean, characteristic life) and of other par- 

ameters, and informs on whether more than one mode of failure 

is present. All this within little more than the time needed 

to enter the few data required. One can see immediately, there- 

fore, the immense advantage of using this programme for anyone 

interested in life testing, such as buyers or manufacturers of 

equipment, stores, Armed Forces, railways, truck and aircraft 

companies, etc. 

In this thesis, special attention is given to carefully 

conducted experiments and to industrial experience gained in 

using the technique considered. The application of this 
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analytical technique to product reliability problems can 

provide better information for making decisions. This 

strategy is essential to efficient operation amd may enhance 

a Company's competitive position and business opportunities.’ 

Sometimes, in fact, it is difficult to take decisions. 

The common reason seems to be that people do not like to risk 

the criticism which might follow a wrong decision. They feel 

that if an impending decision can be deferred, the need for 

making the decision will vanish. Also, if a decision can be 

delayed long enough, many feel, the appropriate information 

to make a proof decision will ultimately materialise. But 

these attitudes are unproductive. 

The modern work environment is fast-paced and high-pressured. 

The rate of technological discovery and innovation, the pol- 

itical and economic pressures for continued business growth, 

and rising economic and social aspirations, all combine in re- 

quiring earlier decisions at each step of the research, dev- 

elopment and production cycles. This faster pace results in 

less available time, and so research is accelerated, fewer 

experiments are conducted, and fewer pre-production models are 

built. These measures, in turn, yield less information and data 

from which to derive decisions. 

Due to the large overall environmental pressure, decisions 

must be correct, or nearly so, as soon as possible. This 

stringent goal requires effective, fast and practical methods 
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of feedback of the resulting conclusions and decisions. A 

method of computer-assisted graphical analysis, based on 

Weibull probability plots, which is presented in this thesis, 

meets these requirements. The relationship of probability 

analysis to research, development and production is shown 

in the flow chart of Fig. 1-1 on page 24. 

The mathematics describing the Weibull reliability equation 

and the method of construction of the special probability 

paper are presented in this thesis for the benefit of those 

wishing to obtain proof of the statistical model. However, 

this section may be immediately passed over without fear of 

being unable to understand and employ this distribution model 

to advantage. Some may even prefer to refer directly to the 

computer programme which, on entering the life data, provides 

immediately all information required and produces Weibull and 

failure plots, both on the screen and on a print-out. 

-23-
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2 - MATHEMATICAL MODEL 

The Weibull system of analysis is based on a mathematical 

model known as the Weibull equation. 

2.1 = Derivation of the reliability equation 

Ss N-F Rea=s 
N N 

where: R = Reliability 

  

ee 
= cae, 

N = Number tested 

S = Survivors 

F = Failures. 

Taking the derivative with respect to time of R=1 = z : 

Ghee, Eye ci dke eh, ce 
at at N Ndt’ at at * 

Dividing by S to obtain the failure rate per unit still being 

tested: 

ig Xa 1, now 2 SE. 2(t) = A Sat | 4g ata a ® at S at 
where A is termed the instantaneous failure rate, or the 

hazard rate. 

oR ,1a_l_ Dd, 1 Substituting: A=--i2;,i¢ 

w
i
 

+ 

Separating the variables: & =-A dt. 

Integrating between t, and ty, and remembering that when 

R=R, 3 t= 0, R = 1 and when ¢ = ¢. 
. i 

4? 

2 
= rv dt. Integrating: 

  

t i 
Ink, =- A at 

i ' t; 
i) = "YX at 

R, =e t, . (2-1-1) 
i 

Ts; r is constant, then 

= “yas mG ec) 
+ =e “° =e 

f 
R. = the exponential reliability 

expression . (2.1) 
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2.2 = The Weibull distribution 

In 1951 weiburr‘") suggested that the simplest empirical 

expression representing a great variety of actual data could 

be obtained by writing eq.(2.1-1) in the following manner: 

im (Ss B 
R, =e 7 ) (2.2-1) 

t 

where E ae t, has 

and ce = the starting point of the distribution 

  

) = the characteristic life 

B = the slope (or the underlying type of distribution).. 

This is the Weibull model. 

It is readily seen that the Weibull distribution may be 

expressed in any of the following forms: 

- (af R(t) =e 7 oe 

F(t) = 1-R(t)s 1-6 1 (Weibull equation) 

B t-t,\ B= 1 
Mt) ==. (=) 

1 4 
where R(t) = the cumulative probability of survival, or 
Ne 

fraction surviving, or reliability 

F(t) = the cumulative probability of failure (area 

under the distribution from t, to t), or 

fraction failing 

(+) = the instantaneous failure rate 

+ = the random variable (time, cycles, stress, size, 

etc., to failure) 

ty = origin of the distribution. 
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Multiplying R and F by 100 converts the fraction surviving 

or failing to the percent reliability or unreliability. 

The probability density function f(t) is equal to eel 2 

the ordinate of the frequency distribution: 
B ene, 

-1 n 
-(t-t,) Bp -e 

f(t) = aF(t) _ B 2 . 
dt 4 B 

Note that the constants to ¥ and p appearing in the 

6 
  

—
 

Weibull expression can each be given a physical interpretation 

as discussed in Section 6-12 on page 95, Section 6-17 on page 166 

and Section 6-18 on page 167. 

It has since been found that by the appropriate choice of 

values for the three parameters to Pp and 4 the Weibull equa- 

tion can be used to represent a wide variety of distributions, 

including many actual failure distributions and both the prac- 

tically important random and Normal distributions. Indeed, 

since failures tend to occur right from the moment the parts 

are put into operations, the minimum life parameter 5 is 

usually zero, leaving only the shape parameter P and the 

characteristic life 1 to be estimated. Consequently, the 

Weibull model has been widely used in statistical reliability. 

Although experience has since shown that the Weibull model 

can be used for the vast majority of failure patterns, it is 

essential to note that it is an empirical function and may not 

be able to represent some particular distributions encountered 

in practice. Its importance lies in its simplicity and wide 

adaptability.



2.3 - Properties of the Weibull distribution 

For B = 3.4, the Weibull distribution approximates a 

Normal distribution. 

Skewness 

In the Weibull distribution, the skewness is given by: 

T+ 2) - 3 Toe B Toe B + 2Pw D 
3/2 

fone 2) -T% 4 b | 

A Normal distribution has a skewness of zero and,as B = 394 

  

for a normally distributed Weibull distribution, if one substi- 

eaten this value of B in the above formula, one will see that 

the top line will come to zero. 

Values of the skewness for different values of P are shown 

here below: 

  

B Skewness 

0.5 6.619 

1.0 2.000 

2.0 0.626 

3.0 0.454 

3.5 ~0.026 

4.0 -0.062 

5-0 0.333 

6.0 0.905 

10.0 -1.000 

20.0 -2.000   
~28-



2.4 = Construction of the Weibull Probability Paper 

From the Weibull model: ae 
alr 

ie “f 1 
and, letting t. = 0; ° - Gir 

Ree 

ty 
2 and 2 e 1 

Taking logarithms: 

inZ = (4)? » since me =l1. 
7 

Taking logarithms again: 

aL t 
ning? 5327) = felnt - Bln 4: 

This is of the form: y = m.x + n (Straight Line Law), where 

a 
yeining:; 

x=int; 

m =f (slope) 

andn=- 8 iny (intercept). 

The ordinate of the probability paper is constructed from 

in nt or, 

since R=1- fF, fron In Ine. 

(Remember that Reliability (R) plus Unreliability (F) equals 1).



2.5 - Graphical presentation of the Weibull Analysis 

As stated in the introduction, the Weibull model gives 

means of expressing certain types of distributions as a 

straight line. Hence, if this line were to be presented 

graphically in some way, then the complications involved in 

analysing these distributions could be greatly reduced. 

By taking logs of the basic Weibull model twice, the 

following expression is obtained: 

mind«5 1n(t-t,) - B ny 

which is in the form 

y=m.x+n (the straight line law). 

Thus in order to present the Weibull distributions graph- 

ically it would be necessary to use graph paper which adopted 

a double log scale on one axis (the "y" axis or ordinate) and 

a single log scale on the other axis (the "x" axis or abscissa). 

This in fact is what Weibull Probability Paper does and, since 

the scales are non-linear, by merely repositioning a straight 

line on this paper the type of distribution represented may 

be radically altered. 

Each line plotted on this paper may be considered as having 

three variables (as in the mathematical model) which may affect 

the distribution represented in different ways. Firstly, the 

slope ( ® ) which determines the shape of the distribution; 

secondly, the characteristic life ( 4 ) which determines the 

"spread" of the distribution; and, thirdly, the value of 3, 

for this line, which determines the starting point of the 

distribution. 
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Fig. 2-1 on page 32 shows the relationship between dis- 

tribution types and slope. The distribution types, ranging 

from exponential to highly skewed to the left, carry slope 

values from 0.5 to 5. A perfectly exponential distribution 

has a slope of 1, whilst a slope of 3.44 approximates to a 

Normal distribution. 

Fig. 2-2 on page 33 shows the variations of the frequency 

distribution when varies. 

Fig. 2-3 on page 34 shows how the distribution is displaced 

along the horizontal axis when + varies. 

The great advantage of using the Weibull analysis in graph- 

ical form is that a measure of a component's reliability may 

be obtained quickly and easily, with few samples. 
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Fig. 2:1. Variations of the distribution for different values of the 
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3 = APPLICATIONS OF THE WEIBULL ANALYSIS 

The Weibull distribution function, equation 2.2-1 on page 26 

can be applied to very widely differing fields and, in many 

cases, with quite satisfactory reatitas 10 

The statistical analysis of inspection data and test in=- 

formation can provide useful and quantitative information 

about a product. The analysis is particularly useful in ev- 

aluating product reliability, conformity to specification, or 

in comparing alternative materials, designs and fabrication 

procedures. The Weibull analysis is one statistical method 

of analysing data. It provides a graphical solution of stat= 

istical problems with a minimum of time and effort. 

Before going on to describe the Weibull distribution, its 

graphical construction, usage and application to Reliability 

Engineering, the writer would like to point out the wide 

applicability of this distribution and the fact that it need 

not be confined to reliability alone. Professor Weibull has 

applied the distribution to a variety of problems. More 

recently others have made extensive use of the function in the 

study of inspection functions, stock control, and manpower 

Planning. Many more applications could derive some benefit 

from this technique. To this end, examples dealing with non- 

reliability functions are presented in the final part of this 

thesis. 

This thesis contains a discussion of the industrial appli- 

cations of the Weibull model. It presents specific examples 

of situations where the Weibull technique is applicable. It 
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offers a thorough computer programme that permits the elabor- 

ation of the few data required and produces and predicts all 

parameters and results that it is possible to extract from 

the Weibull model. 

3.1 = Applications to Reliability Engineering 

Since it is obviously more desirable to detect items with 

poor reliability before they reach the customer, emphasis is 

placed on the investigation of rig data, with graphical pre- 

sentation of results. 

When considering reliability testing, it must be remembered 

that the most convenient method of obtaining a measure of an 

item's reliability is to record and analyse its unreliability, 

i.e. its failures. 

For example, consider the following approximately Normal 

distribution of failures of some items, against the number of 

hours of test time. 

f(t) 

| 
d 40 60 80 100 Life (hours) 

Fig. 3-1. 
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This diagram represents the total population and it is 

shown clearly that 6% of this population would not reach a 

required 40 hours in service; in other words, the item has 

a reliability of only 0.94. But how can we discover this, by 

sample testing? 

Prior to the introduction of the Weibull analysis it was 

necessary to test a great many samples in order to establish 

a miecice of this distribution, to find the mean, median, mode, 

etc., and hence to obtain a measure of reliability at the given 

life. Such a method is lengthy, tiresome and often complicated, 

and hence some engineers opted for a simple proof test on a 

limited sample size. This involved testing a sample of items 

to failure and observing for any which did not meet the minimum 

life requirements. The usefulness of this type of test is 

debatable particularly when the item considered is a new one. 

Consider the following figures obtained using elementary pro- 

bability theory. If one sample item is taken from the pop- 

ulation and life tested, the probability of it failing before 

40 hours is only 6%. Also, if seven samples were life tested, 

the probability of having one or more failures below 40 hours 

is still P(x>1) = 1 - P(x =0) = 1- (2).(0.94)" = 1 = 0.648477594 
or only about 35%. Thus again a large number of items would 

need to be tested in order to be confident of discovering the 

6% of all items failing before 40 hours, i.e. in order to obtain 

a@ measure of the reliability of the items. 

As an example, consider a light switch intended for use on 

motorcars by a car firm, and passed to their Reliability Depart- 

ment for assessment. It is specified that the switch shall have 

-37-



a minimum life of 50,000 cycles and a reliability level of 

0.98. Since reliability plus unreliability must equal unity, 

F=21-R=#1 = 0.98 = 0.02 

or, by multiplying by 100, the failure level must not exceed 2%. 

Seven switches are tested and the cycles to failure recorded. 

1st failure 

2nd failure 

3rd failure 

4th failure 

5th failure 

6th failure 

7th failure 

It is apparent that each of the seven switches tested ex- 

ceeded the minimum life requirement. 

could constitute an immediate pass; 

accept this switch would be totally wrong, as we shall see. 

Although the minimum life requirements appears to be met, what 

72,000 

115,000 

150,000 

180,000 

210,000 

285,000 

320,000 

of the specified reliability level? 

By plotting these failure ages on Weibull Probability Paper 

it is observed that the resulting line falls to the left of 

the specified acceptance mark, see Pig. 3-2 on page 40 , and 

that at a minimum life requirement of 50,000 cycles a failure 

level of some 5% can be expected. 

bution for this line is as shown by a continuous line in 

Fig. 3-3 om page 41 , and it can be seen from this and the 

Weibull line that the switch does not meet the specification 

and must be rejected. 

cycles 

cycles 

cycles 

cycles 

cycles 

cycles 

cycles 

To many engineers this 

however, any decision to 

The corresponding distri- 

(4)



Following the rejection of this switch, a re-design was 

called for and tests on the re-designed switches were carried 

out. The recorded failure ages were as follows: 

1st failure 65,000 cycles 

2nd failure 75,000 cycles 

3rd failure 81,000 cycles 

4th failure 88,000 cycles 

5th failure 95,000 cycles 

6th failure 100,000 cycles 

7th failure 110,000 cycles 

By plotting these results we see that this time the line 

Passes exactly through the acceptance mark, see Fig. 3-2 on 

page 40. The frequency distribution for this line is shown by 

a dotted line in Fig. 3-3 om page 41. Thus these switches may 

now be accepted. 

It is worth noting in this instance that the average "life 

to failure" of the second set of results is considerably lower 

than that for the first set and yet, unlike the original switch, 

the re-designed switch was accepted. This is because the second 

distribution was of a form giving less scatter to the results, 

thus containing the majority of the failures in a narrower band 

than in the first distribution. 

It can be seen from the foregoing that each Weibull line 

represents a unique distribution and a very real danger exists 

of accepting unreliable components unless the scatter of this 

distribution is taken into account.
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3.2 = Application to industry 

The Weibull analysis is widely used in industry and it has a 

variety of interesting applications. 

3.2-a - Time-to-failure distributions 

Many industries use the Weibull analysis to estimate the fre- 

quency distribution of failures in components or assemblies, sp- 

alling or galling of various parts, etc. 

3-2-b - B-10 life 

Some industries are interested not only in the time-to-?fail- 

ure distribution, but also in the percent which failed at a given 

time. The time by which 10% have failed is called the 10% rated 

life or B-10 life. In Fig. 3-2 on page 40 this is shown as the 

10% level of fraction failing. Referring to the data in Fig.3-2 

on page 40, the B-10 life is estimated at 72,000 cycles for the 

original switch and at 65,000 cycles for the modified switch. 

3.2=-c - Differences in B-10 life 

We have considered so far only one application of the Weibull 

analysis: estimating the frequency distribution. However, the 

Weibull approach can also be used to determine if a difference 

in B-10 life exists between (i) standard material and new or mod- 

ified material, (ii) standard and new or modified designs, (iii) 

different vendors producing the same material, and (iv) materials 

used by different customers or subjected to different uses. 

3.2-d - Analytical determination of rated life 

By definition, B-1 is the time (t-%,) corresponding to a Med= 

ian Rank F(t-t,) = 0.01. From y = a + bex, we have 
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peo. » and, since x = 1n(t-t,) 

ln.in(1/1-0.01) - 8 
bd 

B-1 = (t-t,) = et = 6 when F = 0.01 

Similarly: in.in(1/1-0.10) - a 
bd 

B=-10 =e when F = 0.10 
in.in(1/1-0.20) - a 

b 

B-20 = © 4n.1n(1/1-0,50) - 9 “hem F = 9-20 
bd 

B=-50 =e when P = 0.50 

and so on. 

3-2-e - Failure distributions with variables other than time on 

the abscissa 

The Weibull technique can be used for a great number of types 

of distribution analyses. Variation in manufacturing processes 

is inevitable. Whether one is trying to control the dimension 

of a part or any other quality characteristic of a manufactured 

product, it is certain that the results will vary. 

The reliability of operating devices such as switches, valves, 

cylinders, etc., is best described in terms of the number of cy- 

cles performed to failure, and in this case the Weibull plot will 

show cycles on the abscissa (see Fig. 3-4 A on page 45).64) 

Consider a Quality Control problem of part size where a given 

minimum per cent are expected to be within tolerance. A Weibull 

plot of a sample of part sizes would describe the distribution 

(4) and could be used to det- of sizes (see Fig. 3-4B on page 45 

ermine whether the manufacturing process was operating as well 

as expected. 
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In many industries, like the aircraft industry, normal life 

testing could take too long; for example, turbine blades might 

not fail for many thousands of hours under normal running con- 

ditions. In order to avoid excessively long testing times, test- 

ing can be accelerated by increasing the percent stress (Fig. 

3-4C on page 45) 64) or the percent stress-time (Fig. 3-4D on 

page 45) 64), In Fig. 3-4C on page 45 we are accelerating the de- 

tection of failure modes by gradually and continuously increasing 

the applied stress and determining the resultant failure distri- 

bution. Fig. 3-4D on page 45°) incorporates the factor of time 

as well as that of stress increase. Such a procedure, aided by 

the Weibull distribution analysis, can accelerate the evaluation 

of safety margins of individual modes of failure. 

3.2-f - The separation of two or more distributions 

The test failure points from two or more distributions, us- 

ually will not plot on Weibull probability paper as a straight 

line. In bearing tests, for example, ball and inner race failures 

could occur. Each failure mode has its own distinct failure dis- 

tribution and a special analysis is required to separate the diff- 

erent failure modes. An example of this type of analysis is seen 

in Section 6.9 and 6.16 on pages 90 and 149 respectively. 
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4 - MEDIAN RANKS 

When plotting failure ages it is necessary to assign to each 

failure a failure rank. The first failure in a group of tested 

units will have a definite percentage of the total population 

failing before it. If this exact percentage is known, then this 

number is the true rank of the first failure. 

Consider 5 imaginary units taken from a population of 5, i.e. 

the total population is tested to failure. Suppose the imagin- 

ary failure ages are: 

4,800; 23,000; 13,000; 67,000; 39,000. 

Assigning failure ranks and arranging the failures in ascend=- 

ing order, we have: 

Order number Failure age Failure rank 

1 4,800 0.2 

2 13,000 0.4 

3 23,000 0.6 

4 39,000 0.8 

5 67,000 1.0 

Order No. 1 failed at 4,800 cycles and represents a 20% pop- 

ulation failure rate; order No. 2 failed at 13,000 cycles and 

represents a 40% population failure rate;.....; order No. 5 failed 

at 67,000 cycles and, being the final failure, represents 100% or 

total population failure. 

Now, while the above is true when, and only when total pop= 

ulation failure is observed, it is not true when only sample fail- 

ure is observed. Normally, one does not know the true rank. 
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Consider the 5 units tested as being but a small sample of a 

larger population. In this case it is incorrect to say that the 

first order number represents 20% of the total population, as it 

is highly probable that some failure, within the population as a 

whole, will have occurred prior to this observed sample failure. 

Similarly, the fifth cannot be said to represent 100% or total 

population failure, since it is highly probable that some items 

within the parent population will survive this observed sample 

failure. 

To cater for such contingencies, one can use the "mean rank" 

or one can use an estimate that will be too high half the time 

and too low the other half of the time: the "median rank". These 

"median ranks" are simply statistical estimates of the failure 

rank, being such that negative errors are cancelled out by posi- 

tive errors. While both estimates are statistically unbiassed, 

the mean rank will give more pessimistic results at low values of 

fraction failing (and more optimistic at high values) than will 

the median rank. 

An advantage of using mean ranks is that they are easier to 

calculate, being given by: 

i 
XN +1 
  Mean Rank = 

where i = failure order number 

N= sample size, i.e. the total number of tested units in 

the group. 

When the sample is small, it is important to use a correction 

factor to relate the fraction of the sample which has failed at 

any given moment, to the fraction of the population which would 

have failed at the same moment. Various methods have been used, 

put it is now generally agreed that the Median Rank offers the 

most unbiassed prediction. 
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Also, the practitioners who have the Tables available generally 

prefer the consistency of using a uniform probability basis for 

confidence limits (*) as well as for the plotting of the points 

for the Weibull line: 

Ranks 

5% 

50% = Median Ranks 

95% 

Median Ranks F are determined from the binomial expansion: 

(aR) Be [(1-7)+P] 220.50=(1-7) nk (1-F) 9! +BQnrtdp2 (yp) 2% 

Bag) (B22) 93 (4-5) 3 tecceces 

fo determine the first median rank in a sample size of 10,we 

take the first term of the binomial expansion to the power of 10 

and solve for F: 0.50=(1-F)™ 

1n(0.50)=101n(1-F) 

1n( 1-7) e26293 250) _=_0- Bassi eti20eie 

j-F = eo Peis 

= 0.06931471806 

= 029330329916 

F = 1 = 0.9331329916 = 0.066967008 or 6.7%. 

In general, to find the ith median rank, we expand the bi- 

nomial to the power of n to i terms and equate this to 0.50, and 

then solve for F. However, solving this for more than i=1 is 

rather difficult. 

The following formula by A. Bernard is easy to use and gives 

good approximation: 

Fo.50 * £353 ,withi<icn 

where n = number of parts on life test, or sample size 

i = number of failures so far, or failure order number. 

(*) See Section 6-15-a on Page ici.



Then, the best estimate of the percentage of the population 

failed so far is aoh33 100%. +004 ° 

Thus, if we put 10 parts on life test, when the first failure 

occurs, we predict that ie + 100 = 6.73 per cent of the pop= 

ulation has failed. 

The two methods differ in the third decimal place when i=1 and 

nei0. Median ranks for sample sizes of one through fifty have be- 

en calculated from the binomial and are listed in Appendix A on 

pages 222 to 225 inclusive. 

It will be seen in Chapter 10 on page 216 that the computer pro- 

gramme suggested eaTOuintes the median ranks and thus dispenses 

with the need for consulting Appendix A on page 222 . 

Going back to the case on page 46, with the sample of 5 as 

tested it can be seen that: 

Failure order number 1 occurred at 4,800 cycles and i=1 

(first failure order) while N = 5 (sample size. 

The Median Rank for this failure being: 

Bee = 0.1296 or 12.96% of the population. 

Continuing in this manner for the full sample of 5 the results 

will appear as follows: 

Rank Order Number Failure Age Median Rank 

ag 4,800 0.1296 

2 13,000 0.3147 

3 23,000 0.5000 

4 39,000 0.6853 

5 67,000 0.8706 
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It will be noted that the first order number failure repre- 

senta 12.96% of the population and the last represents 87.06%. 

The first being as distant from 0% failure as the last is from 

100%, while the third is equidistant between the two. 

Having assigned Median Ranks it is now possible to construct 

the Weibull Plot. 

Using Weibull Probability Paper proceed as follows: 

Failure age is represented on the x-axis, and the percentage of 

the population failed, or Median Ranks on the y-axis. 

For the first rank order number plot 4,800 on the x-axis ag- 

ainst 12.96 on the y-axis. 

For the second rank order number plot 13,000 on the x~axis 

against 31.47 on the y-axis. 

Continue until all five points are plotted. 

If by inspection it appears that the points fall along a 

straight line then a line may be immediately fitted. In some 

instances a straight line may not be apparent, in this case a 

special technique, mentioned later will have to be employed. 

A plot of the above results is shown in Fig. 4-1 on page 51. 
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5 = EXAMPLES IN PLOTTING 

The following examples serve to demonstrate the method of ob- 

taining the Weibull line for a particular set of sample failures 

and the type of information which may be obtained from this line. 

It also indicates the speed at which a plot may be produced when 

Median Rank tables are available. Using the computer programme 

discussed in Chapter 10 on page 214, the results would be nearly 

immediate. 

5.1 - Completed tests without suspensions. 

A completed test of magnitude N occurs when it is decided to 

test a sample of N items and all N items are tested to failure. 

The failure index NX, = N is the number of failures of the mode 

under study. The times, or cycles, to failure are plotted against 

the Median Ranks for a sample size N. 

Example - The following data were obtained from BL Technology. 

A new switch was proposed for production introduction. The 

Reliability Department, in order to arrive at an assessment, took 

10 of these switches at random and carried out tests-to-failure. 

The results were as follows: 

Cycles to Failure 

12,800 

34,500 

52,000 

82,500 

102,000 

145,000 

180,000 

222,000 

300,000 

490,000 

-52-



PROCEDURE 

1) 

2) 

3) 

4) 

Failure times are ranked in ascending order, as above. 

Median Ranks are assigned using tables if available, or the 

general formule if not, 

  

Order No. Cycles to Failure x 107* Median Ranks 

1 1.28 6.6 

2 3.45 1662 

3 5.20 25.8 

4 8.25 35.5 

5 10.20 4501 

6 14.50 54.8 

7 18.00 64.4 

8 22.20 141 

9 30.00 83.7 

10 49.00 93.3 

Using Weibull Probability Paper, cycles to failure are plotted 

on the x-axis against Median Ranks on the y-axis. 

Should the plotted points approximate to a straight line then 

a line may be immediately drawn through these points. This is 

the Weibull Line. In some instances it may be necessary to 

fit the "best line" by means of the "Method of Least-Squares", 

see section 6.13 on page 103. 

Where it is obvious that a straight line does not fit the 

plotted points, or where a dichotomous plot is in evidence, it 

becomes necessary to apply special techniques which will be 

explained later. (See section 6.9 on page 90). 
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5) The slope of the Weibull Line is determined by projecting a 

line perpendicular to the Weibull Line passing through the 

"Estimator" point at the top left-hand corner of the paper. 

The slope is read off the fel scale where it is cut by the 

projected line. For the definition and the analytical cal- 

culation of the slope, or shape parameter Pp » see section 6.18 

on page 167. 

Similarly a value may be read off where the perpendicular line 

to the Estimator point cuts the Px scale. This value gives 

the point on the "y" axis from which a line projected hori- 

zontally, to the Weibull Line and then vertically to the "x" 

axis gives the percentile mean in hours, cycles etc. For the 

definition and analytical calculation of the mean life p, see 

section 6.19 on page 169+ 

The Characteristic Life, the point at which 63.2% of the pop- 

ulation will have failed, is read from the x-axis immediately 

below the point where the Weibull Line cuts the horizontal 

Estimator Line. (Marked at 63.2% of the y-axis). For the def- 

inition and analytical calculation of the characteristic life 

yi » See section 6.17 on page 166. 

It should be noted here that the values for Mean Life and 

Characteristic Life are the same for this example. This occurs 

when the line slope is 1. 

The Weibull Line which has been produced ,Fig. 5-1 on page 55 , 

may now be considered as giving an estimate of the failure lev- 

el at any given failure age. 
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5.2 - Truncated tests without suspensions 

This type of test obtains when it is decided to test a sample 

of N items, but the test is terminated when Ny items (ig< N is 

called the failure index) are tested to failure. (N - N,) items 

survive. The times, or cycles, to failure of the Ny items are 

Plotted against the Median Ranks calculated for a sample size N. 

Example 

The Reliability Department placed twelve components simultan- 

eously on life test under conditions simulating those of actual 

use. The test was terminated after the failure of the first eight 

components. The times to failure of the eight components were: 

92, 143, 186, 225, 295, 330 and 365 hours. 

Procedure 

1) The X, failure items are ranked in ascending order. 

2) Using tables or the general formula, the first Ny Median Ranks 

are assigned to the N, items, calculated for a sample size N. 

Order No. Time to failure Median Ranks (in %) 
  

(hours) 
1 92 5.6 

2 143 1365 

3 186 21.6 

4 225 2967 

5 260 37.8 

6 eoD 45-9 

it, 330 54.0 

8 365 62.1 

9 

10 

11 

12 
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3) Using Weibull Probability Paper, the times to failure are 

plotted on the X-axis against Median Ranks on the Y-axis. See 

Fige 5-2 on page 57 » 

5e3 - Incomplete tests (tests with suspensions) 

Suspensions are missing data in a life study programme. These 

missing data come from items which were prematurely removed from 

test, that is, before completion of that test, for any of a var=- 

iety of reasons. Rig failures, failure modes different from the 

mode under investigation, accidents to items, curtailment or with- 

drawal of some of the items on test (others failing later), result 

in suspended data. 

The test in which one or more items are withdrawn from test 

before they fail is called an incomplete test. The failure index 

Ny is less than the magnitude N in incomplete tests. Note that 

this is not the same as stopping a test after the first Ny items 

have failed in the same mode, there being no suspensions, and 

W< N. This is the truncated test discussed in Chapter 5.2 on 

page 56. 

An incomplete test of magnitude N has suspensions and must be 

treated in a special manner. Suspensions cannot be considered 

failure data and at the same time they cannot be ignored. Each 

suspension has a chance to fail after the time of removal and be- 

fore the end of the test. Moreover, the suspended item has succ- 

essfully run up to the time of removal from test. 

A way of handling incomplete test data (that is, data contain - 

ing suspensions) is to assign to each observed failure of a given 

mode its correct rank order number. Remember, in the previous ex- 

amples, in Chapter 5.1 on page 52 and in Chapter 5.2 on page 56, 
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the data were ranked in ascending order and were assigned rank 

order numbers 1, 2, 3, +0se0,Nye Then the Median Ranks were 

looked up inAppendix Aon page 222, corresponding to those order 

mumbers for a sample size of N. Median Ranks (or confidence 

limits) for an incomplete test cannot be assigned until first an 

order number is assigned to each failure in that failure mode. 

In general, the rank order numbers of failures following the 

first suspension will no longer be integers, but because of the 

suspended item or items, they will be fractional values. The 

following example illustrates the reason for fractional values. 

Consider the previous test, in Chapter 4 on page 46, as being 

incomplete, the following results being obtained: 

Failed at 4,800 cycles 

Suspended at 13,000 cycles 

Failed at 23,000 cycles 

Suspended at 39,000 cycles 

Failed at 67,000 cycles 

5-3-a - Interpolation of new rank order numbers 

The order number 1 is assigned to the first failure since no 

suspension preceded it. With the second failure however it is 

not possible to assign an order number of 2 since the suspension 

preceding it may well, had it not been removed from test, have 

failed before 23,000 cycles. Similarly an order number of 3 can 

not be assigned since the suspended item might well have survived 

beyond 23,000 cycles. The second failure therefore will require 

an assigned order number somewhere between 2 and 3. 
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Derived from considering every possible rank position of the 

suspended items, the general formula used to calculate a new in- 

crement of such rank order numbers is given by: 

(N_+ 1) - (previous rank order number) 

1+ (number of items beyond present suspended items) 

Referring to our example of five test items, the result was an 

incomplete test of magnitude N = 5 and a failure index Ny = 3. 

Failure No. 1 has a rank order number of 1since no suspensions 

occurred before it. For failure No. 2 we must calculate a new 

rank order amount to be added: 

Geet ea eae 
1+3 

Therefore failure No. 2 has a rank order number 1 + 1425 = 2.25. 

The new increment for failure No. 3 is 

(5+ 1) = 2.25 1.875 . 
1+1 

Thus, failure No. 3 has a rank order number equal to 

225 + 1.875 = 4.125 

From these results, the tabulation of the five items will be: 

Cycles to failure or suspension Order Number 

4,800 failed 1 

13,000 removed from test = 

23,000 failed 1+ tat . 2.25 

39,000 removed from test - 

67,000 failed 2.2543tU=2:25. 2,2541.875=4.125 
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A check may be carried out as follows: 

The last order number doubled minus the previous order number 

must equal the number undergoing test plus 1. 

Thus (4.125 x 2) - 2.25 = 5+ 1 

8.250 - 2.25 = 6 

6 = 6 Check . 

Alternatively, the last increment calculation added to the last 

rank order number should equal N+ 1. In this case, 

1.875 + 4.125 = 6 = 5 + 1 Check. 

Median ranks and confidence limits can now be determined by 

referring to the column corresponding to a sample size of five in 

each table and interpolating between the integer rank order numb- 

ers. 

5-3-b - Interpolation of new Median Ranks 

Median Ranks may now be assigned to each rank order number in 

accordance with the previously mentioned procedure. 

Method I 

If a table of Median Ranks is available such as Appendix A on 

page 222, new median ranks can be calculated by referring to the 

column corresponding to a sample size of N and interpolating be- 

tween the integer rank order numbers as shown for item No. 2.25 

in Fig. 5-3 on page 62. 
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Method IT 

Obviously, without interpolation, which is undesirable, it is 

not possible to use the standard Median Rank Tables for order num- 

bers which are not integers. However, the Median Ranks can also 

pe calculated using the simple formule by A. Bernard mentioned in 

Chapter 4 on page 48: 

320.3 1<i<n 
N+ 0.4 

where i = rank order number 

N = number in sample . 

Thus, rank order number 4.125 gives: 

hisgh aes seas "ee 
5 + O04 So? = 0.7083 = 70-33 % 

Thus, the full set of results is as follows: 

  

  

  

            

Cycles Rank Order No. Median Ranks (%) 

Method I Method II 

4,800 failed 1 12.900 12.96 

13,000 suspended - - 

23,000 failed 2025 35.975 36.17 

39,000 suspended - - 

67,000 failed 4.125 70.900 10.83 a 

Method III 
  

This method consists of determining the Median Ranks directly 

from the binomial expansion: 

(aez)™ = [Cropper ]¥ = 0.50 = (S)-EeC 1-7) (1-2)... 
as mentioned in Chapter 4 on page 48. This method, however, is 

rather difficult and is used only when a computer is available. 

See Chapter 10 on page 216, 
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Notice that there are small differences between the three meth- 

odse Method III is the most accurate. The plot of these results 

gives Fig. 5-4 on page 65. 

The plotted points as shown in this figure may then be treated 

as a normal Weibull plot and a line fitted by the usual methods. 

In the case of this example only three failures occurred giving 

only three plotted points thus making it less obvious as to where 

the straight line should be fitted. This reduces the confidence 

we may have in the resulting line and for this reason it is nec- 

essary to aim for at least seven plotted points, which give a rea- 

sonable level of confidence, by making the line more representat- 

ive of the plotted data. 
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PART II - EXPERIMENTAL PROOF 

6 = PRELIMINARY INVESTIGATION, CARRIED OUT AT ASTON, TO TEST THE 

DISCRIMINATING POWERS OF THE WEIBULL ANALYSIS. 

6.1 = Fatigue Testing of butt-welded joints 

6.1.1 = Hystorical note 

There has not been yet any work done on the application of the 

Weibull analysis to welded joints, but there is one particular ex- 

ample, set up by Weibull in his papers!) » Which shows how the Wei- 

bull analysis can be applied to fatigue life results. This par- 

ticular example is on the fatigue life of an ST-37 steel. The ob= 

served values are taken from Mttller-Stock Oy) The frequency 

curve in figure 6-1 gives no impression of a complex distribution 

(two failure mode distributions) which, on the other hand, may 

easily be seen when using plottings in figure 6-2. The parameters 

are: Component No. 1: +, = 4.032, P = 5.956; Component No. 2: 

Mr = 4.484. Bp = 1.215. Table 1 shows the close agreement between 

the observed and the calculated values. 
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Table 1 - Fatigue Life of Sf-37 

(Rotating-beam test at * 32 kg/mm?) 

  

        

  

  

      
  

                

Ny Expected values Observed 

4020 ot BS M142 Meee 
142 

I 17.5 4.6 - 4.6 4.6 

2) 2255 4704 - 4704 47-4 

3) 27.5 12541 - 12561 12541 

4 3265 | 161.2 8.1 169.3 169.2 

5 37.5 164.9 28.0 192.9 192.7 

6 42.5 165.0 41.9 206.9 207.3 

T 47.5 165.0 51.0 216.0 215.9 

8 52.5 165.0 57.0 22202 222.2 

9 57.5 | 165.0 61.0 226.0 225.9 

10 62.5 165.0 63-7 228.7 228.7 

11 67.5 165.0 65.6 230.6 230.5 

12 72.5 165.0 66.9 231.9 231.9 

13 77-5 | 165.0 67.9 232.9 232-9 

14 82.5 165.0 68.6 233.6 233-5 

15 87.5 | 165.0 69.1 234.1 233-9 

16 92.5 165.0 70.0 235.0 235.0 

80 

60 ; t + 

eels. | 
20 1 | | 

L oe I i 

° 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

x10° cycles 

Fig. 6-1 Frequency curve of fatigue life of ST-37 steel 

(Number of specimens versus number of stress cycles) 
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Compon: 

= 4.032 = 108 = §.9 £5 032, 0800 , # = 5.956 

  

Component 2 
t, = 4.484, 4 = 30500, p= 1.215 

Fig. 6-2 Fatigue life of ST-37 steel 

The real causes of this splitting up in two components may be 

found by examining the frequency curve of the yield strength of 

the same material, figure 6-3 on page 69. It is easy to see that 

the material, probably not being killed, is composed of two diff- 

erent kinds. If it is supposed that all the specimens with a 

yield strength of less than 25 e/a belong to Component No. 1, 

we obtain 14 specimens out of 20, making 70%. Exactly the same 

proportion has been found by the statistical analysis, as $3 «108. 

The reason why this partition is so easily seen in figure 6-3 

on page 69 and not at all in figure 6-1 on page 67 depends, of 

course, upon the much larger scatter in fatigue life than in yield 

strength. 
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Fig. 6-3 Frequency curve of yield strength of ST=37 steel 

(Number of specimens versus yield strength in kg/mm) 

Although the Weibull distribution function has many practical 

applications in many fields, it is not always valid, and it is 

the purpose of this project to examine the applicability of the 

Weibull distribution function to the fatigue results of welded 

joints. 

6.1.2 = Fatigue of welded joints 

In order to determine the mean life and the reliability of a 

certain welded joint subjected to repeated loading, fatigue tests 

are carried out on a number of welded specimens to determine the 

time to failure. It is, therefore, of importance to have an 

understanding of the factors which influence the fatigue life of 

a welded joint. 
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Fatigue failure consists of the formation of a crack or cracks 

under the action of varying loads. If fatigue cracks do occur 

they are invariably initiated at stress concentrations. Since 

all joints are inevitably points of stress concentration, it is 

axiomatic that fatigue failures are likely to occur at joints and 

that the behaviour of a welded structure subjected to repeated 

loading will depend, to a very large extent, on detailed joint de- 

sign. 

The type of weld that is used in this investigation is a trans- 

verse butt weld in steel. 

6.1.3-Factors influencing the fatigue strength of transverse butt 

welds 

The transverse butt weld used as a means of joining together 

two plates, produces the least disturbance to stress flow and wou- 

ld therefore be expected to exhibit relatively good fatigue stren- 

gth. In the absence of weld defects and with the weld reinforce- 

ment left in the as welded condition, the major stress concentra~ 

tion occurs at the weld toe and it is from here that fatigue fail- 

ure invariably occurs. 

The expectation of good fatigue strength has often been ful- 

filled, but the fatigue strength of transverse butt welds can 

still vary between wide limits. In recent years it has become 

apparent that the weld shape is the overriding factor in deter- 

mining the fatigue strength of sound transverse butt joints, and 

the influence of many of the other factors is determined by their 

(5) 
effects on the shape at the weld toe. Newman and Gurney test- 

ed several types of butt welds, made by both manual and automatic 
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welding, and obtained a wide range of fatigue strengths, which 

varied from 100.4 Nmm™* (6.5 tons/in®) to 177 Nmm™* (11.5 tons/ 

sqe in) at 2x 10° cycles under pulsating tension loading. (See 

Chapter 6.1.4 on page 78 for the definition of fatigue terms). 

As a quantitative measure of reinforcement shape the (obtuse) an- 

gle 9 between the plate surface and the tangent to the reinforce- 

ment at its point of contact with the plate surface was used, see 

figure 6-4. 

Li 
  

      

Figure 6-4 Reinforcement angle 

Examination of the specimens revealed that this "reinforcement 

angle" varied along the length of a weld - particularly dn manually 

welded joints - but that failure usually originated at the point 

of minimum angle. A few specimens of each test series were sel- 

ected from those which gave fatigue test results, lying close to 

the relevant S-N curve. These were sectioned at the point of 

crack initiation and the angle measured with the aid of a projec- 

tion microscope. The measured angles were plotted against the fat- 

igue strength at 2 x 10° cycles of the particular test series from 

which the specimen originated, as shown in figure 6-5 on page 72. 
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For the manually welded series the scatter was about 15°; but 

for the automatic welds it was somewhat less, but it can be seen 

that all the experimental points lie within a scatter band which 

can conveniently be located at its upper end by the strengths of 

plain plate with and without millscale. These results were con- 

(6) which show 

that the fatigue strength of transverse butt welds at 2 x 10° 

firmed by tests performed in the welding institute 

cycles under pulsating tension can be anywhere between 100.4 Nmm7* 

(6.5 t.f.s.i.) and 177 ium? (11.5 t-f-s.i.). The marked changes 

in the fatigue strength were produced by variations in the shape 

of the weld profile. All the welds were free from any internal 

defect and would normally be considered good quality welds. Under 

fatigue Teading conditions the term "quality" must also refer to 

the shape of the excess weld metal. It can be seen from the res- 

ults in Table 2 on page that the lower fatigue strengths are 

associated with welds having a poor shape, in that there is a very 

sudden change of section at the junction between parent plate and 

weld metal ( v small). Those welds having the minimum of excess 

metal and a smooth transition at the weld toe, ( v high), give 

the higher fatigue strengths. 

Another way in which the effect of reinforcement shape can be 

expressed is related to its influence on the life of specimens 

tested at a given stress level. This was the approach of Fall et 

a (7) 
» who graded the various specimens visually and found an 

approximately linear relationship between the grading and log en- 

durance. Unfortunately such qualitative grading methods invite 

eriticism and are of no assistance in helping to define the crit- 

ical features of reinforcement shape, although it shows that a 

definition of "good" and "bad" shape may be possible by visual 

inspection. 
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fable 2 

  

Type of transverse butt joint Fatigue strength (f. ) 

at2x 10° cycles 

  

0.5 in thick single-V butt weld, 

manual electrode 

11.5 tont/in® 

(178 N/mm?) 
  

0.5 in thick, close square butt 

weld, manual deep-penetration 

electrodes 

7 tonf/in@ 

(108.5 N/mm”) 

  

  

1.25 in thick, single-V butt weld,|9.5 tonf/in@ 

manual electrodes (147 N/mm?) 

0.5 in thick, close square butt 6.5 ton?/in* 

weld, submerged-arc (100.8 N/mm?) 

  

0.5 in thick, close square butt 

weld, submerged-arc 

7 tonf/in® 

(108.5 N/mm?) 

  

0.5 in thick, double-V butt weld, 

submerged-arc 

11 tont/in® 

(170.5 N/mm?) 
    1.25 in thick, double-V butt weld, 

submerged-arc   10 tont/ in? 

(115 N/mm?) 
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It would seem reasonable to attribute the influence on fat- 

igue strength of many other factors, such as plate preparation, 

welding conditions, welding process and type of electrode to 

their effect on the shape of the weld toe. Evidence confirming 

this viewpoint as the cause of the reported poor fatigue perform- 

ance of automatic welds compared with manual welds, is supplied by 

Newman and curney‘?) in their investigation mentioned previously. 

In two series of tests on submerged arc welds in 12.7 mm (0.5 in) 

thick mild steel, fatigue strengths of 100.4 na7® (6.5 tfsi) and 

108.1 Nom * (7.0 tfai) at 2 x 10° cycles were obtained under pul- 

sating tension loading. However, in tests on automatically welded 

joints with the reinforcement removed the fatigue strength was 

found, as with manual joints, to be the same as that of the parent 

material. The low fatigue strength of the automatic welds in the 

as welded condition cannot, therefore, be attributed to any ad- 

verse metallurgical factor as this would also have made itself 

apparent in the tests on machined welds. The possibility that res- 

idual stresses were the dominating influence was eliminated by 

testing the welds in the stress relieved condition. Two further 

series were also welded by the submerged arc process, but with the 

welding conditions adjusted to give an improved reinforcement sha- 

pe. These were tested and resulted in fatigue strengths of 169.9 

em" (11.0 tfsi) and 154.4 Nom7* (10.0 tfsi) at 2x 10° cycles. 

Residual stresses have little effect on fatigue strength when 

the applied stress cycle is wholly tensile. Severs investigat- 

ions have been carried out in which the fatigue strength of "as- 

welded" and "stress-relieved" specimens have been compared under 

Pulsating tension loads. Under such conditions, with axially 
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loaded transverse buttwelds, the maximum increases in strength 

at 2 =< 10° cycles that have been obtained are about 17% for welds 

with the reinforcement machined flusn'®) , and 123% for welds with 

the reinforcement anmaghined 2/5 However, for both types, it.has 

frequently been found that stress relieving had no effect at all 

on fatigue Behaviour’ |°r M5 5) while intermediate, and therefore 

obviously small, strength increases have also been recorded!’ 9), 

Finally, the possible effect of variations in the static stren- 

gth of the parent mterials must be accounted for. Due to the 

critical dependence of the fatigue strength of transverse butt 

welds on the shape of the weld profile, fatigue test results on 

these welds do not provide a particularly consistent set of data 

for defining the effect of static strength of the parent material. 

Gurney ‘13) summarised the results relating to manual steel butt 

welds subjected to 2 x 10° cycles of pulsating tension loading, 

figure 6-7 on page 77- It can be deduced from this graph that the 

fatigue strength under these conditions is independent of static 

strength. 

Thus any variations in the static strength of the Proposed steel 

would be insignificant. 
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6.1.4 - Fatigue-Testing Notation 

The terms used in fatigue testing to describe the applied 

stress cycle can be defined as: 

Minimum stress in the cycle fin 

Maximum stress in the cycle £ 
max » 

Stress ratio R= = 
max 

Tensile stresses are considered positive, and compressive 

stresses are negative. 

Fig. 6-8 shows the type of stress cycle used in fatigue 

testing in this project. See Chapter 6.6 on page 83. 

  

Fig. 6-8 Pulsating tension 
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6.2 - Objectives and Experimental Approach 

The objective of one particular project was to apply the 

Weibull analysis to welded joints in order to determine their 

mean life, characteristic life, failure rate at any time t, and 

reliability. 

The approach adopted was to fatigue test a number of welded 

specimens, at a given stress level, until failure. The stress 

cycle chosen for this purpose was pulsating tension , in which 

the stress varied between zero and maximum. 

min. stress in the cycle fain 
eae ee 

max. stress in the cycle f. 0). 
max 

The Weibull analysis was then applied to the failure test data, 

which consisted of the time to failure of each specimen. 

Two sets of specimens were made using two different welding 

speeds, while all the remaining welding variables were held 

constant. Varying the welding speed should change the weld pro=- 

file. Therefore, it would be expected to have two different fat- 

igue lives, and hence, two different Weibull distributions with 

different mean lives, characteristic lives, failure rates and 

reliabilities. 

6.3 - Testing equipment and specimen design 

The fatigue testing equipment available for this project was 

an "Amsler Vibrophore" high frequency magnetic resonance fatigue 

machine fitted with a 99.6 kN (10 tonf) dynamometer. Based on the 

limitations on loading and the maximum dimensions of a plain sheet 

of material which could be accommodated in the grips of the fat- 

igue machine, test pieces with the dimensions shown in figure 6-9 

were used. Figure 6-10 shows the specimen used, which were manu- 

factured in the Welding Laboratory of the P.T. & P.M. Department. 
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Fig. 6-9 Dimensions of test pieces used 

It is important to mention that the reason for adopting the 

above specimen shape was not to ensure that failure would occur 

in the weld, since under fatigue loading fracture would certainly 

initiate from the weld and not from anywhere else, even if the 

specimen was rectangular. The main reason was that, in order to 

prevent the specimen slipping in the grips of the machine at high 

testing loads, the parts of the specimen that were located inside 

the grips should be wide enough to allow good gripping. 
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6.4 - Material 

The specimens were made of mild steel, because this material 

is readily available and easy to weld. The material used was in 

the form of Bright Drawn Mild Steel (BDMS) plates 9.525mm (3/8") 

thick. The specimens were obtained from two plates as above, 

3.6576 m (12 ft.) long and 101.6 mm (4 in.) wide, which had been 

cut into strips approximately 550 mm (21 5/8 in) long and 101.6 m 

(4 in.) wide. 

6.5 = Welding operations 

A constant reinforcement angle was required on the specimens, 

and it was therefore necessary to automate the welding process. 

The welding was carried out using the Submerged Arc Welding pro- 

cess employing 1/8 in. diameter mild steel consumable electrode 

(No. 1 Unionmelt), and Unionmelt flux grade 50. Both the welding 

wire and flux were obtained fram the British Oxygen Company Ltd. 

The Unionmelt No. 1 wire is suitable for either single- or multi- 

pass welding. It is used for making butt and fillet welds, where 

maximum ductility is required. The weld metal has a tensile stren- 

gth of 434 to 465 N/mm (28 to 30 tons/sq. in.). It is used in 

conjunction with 50 grade Unionmelt powder. This combination 

meets the mechanical requirement of BS 639: 1952. 

Unionmelt powder grade 50 is very suitable for high speed, high 

quality welds in thin gauge steel, but also gives excellent re- 

sults on heavier section requiring up to 1100 amp welding curr- 

ent. It is particularly satisfactory on surfaces which have been 

ineffectively cleaned and which have excessive amounts of mill 

scale, dirt and rust. 
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6.6 = Specimens preparation 

Two plates, 550 mm long x 101.6 mm wide, were butt welded to- 

gether along the 550 mm edge, with no edge preparation (square 

putt weld). Each plate was cleaned with an industrial solvent. 

The plates were placed in intimate contact and three tack welds 

were made at the centre and ends of the joint line. Also, two 

pieces of steel, a run-in, and a run-off, were tack welded to 

poth ends of the plates. The plates were then welded from one 

side. Time was allowed for the plate to cool before commencing 

welding on the reverse side. fous Plates were thus welded. For 

the first two plates, the welding conditions were taken from the 

(14) 
American Welding Handboo! » and were as follows: 

  

  

  

Thickness 1st side 2nd side 
t (backing pass) (finishing pass) 

Current | Voltage| Speed| Elec-| Current] Volt. | Speed| Elec- 
amp volt. mm trode|amp volt. |mm trodd 

per dia. per dia. 

min min 

9.5 mm 425 33 7110 -|3.175}475 35 711° {36175 
(3/8 in.) (28 |mm. mm. 

inf |(1/8 (28 |(1/8 
min) |in.) in/ |in.) 

min)                       
Finishing 
pass era 

    

Backing pass 

Table 3. Two-pass butt welds. 
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From those two plates, ten specimens were cut, at right angles 

to the weld and numbered from 1B to 10B. Specimens were then 

machined to the final dimensions. Because sufficient material was 

not available, specimens 8B, 9B and 10B were sectioned from a 

300 x 200 mm welded plate, instead of a 550 x 200 mm plate 

Direction of welding 

  

  

  

  

Run-in pe Run-off 

piece piece 
v . T T T 7 

' ‘ i ‘ i 1 

i 1 1 | ' ‘ 

' ‘ : , | 1 
' ( ' | i i 

ct + : I 4 
; ' 1 ; | i 

I ' ' i 
: ' 1 ' ' i 
' \ ' ! \ \ 
L L i 1 _)     
  

1 2 3 4 eB shes er 
Specimen Number 

Fig. 6-11 Sectioning of butt welded plates 

For the second two plates, the welding speed was changed, 

while keeping all the remaining welding variables constant. 

The welding speed was taken from recommendations made by the 

British Oxygen Company Ltd. The welding conditions were as 

follows: 
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Table 4. Two-Pass butt welds 

  

  

  
  

  

thickness 1st side and side | 
. (backing pass) (finishing pass) | 

\ 

Current |Voltage Speed Blec-| current \Voltage speed Elec-| 
amp Volts | mm trode|amp Volts {mm ‘trode 

per |dia. \per dia. | 
min. (min. 

! | \ 

9.5 mn 425 33 508 32175 |475 35 508 |32175) 
(3/8 in) (20 mm (20 |mm | 

in/ (1/8 inf |(1/8 
min) in.) fe) in.) |           

  

  
  

Ten specimens were cut from the above two plates and numbered 

from 1C to 10C. 

Before fatigue testing, all the specimen edges were finished 

by hand to a radius of approximately 2 mm. Some of the specimens 

were radiographed to make sure that there were no weld defects. 

No weld defects were detected. 

6.7 - Fatigue testing 

It was found that the alignment of the specimen in the grips 

of the Amsler was important, as any misalignment would now allow 

the machine to resonate properly. A vernier depth gauge placed 

against the sides of thie grips was therefore used in positioning 

the specimen. Care was also taken to ensure the bolts clamping 

the specimen were tightened equally. This avoided the possibility 

of the specimen slipping in the grips during testing. Initial 

trials with the welded specimens gave the testing frequency of 

233 C/S (HZ). Due to the large mass of the gripping heads, the 

dynamometer correction at high frequencies becomes large. That is 

why it is recommended to operate at frequencies between 150 and 

200 HZ. The testing frequency was lowered by the use of weights 

attached to the top section of the Amsler. The testing frequency 

was thus lowered to 175 HZ (C/S). 
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Important features of this type of fatigue machine are the cut 

out relays which operate if the applied loads either exceed or 

fall below the pre-set values. Apart from guarding against poss= 

ible fluctuations in the power supply, these relays can also repre~ 

sent a failure criterion. When a fatigue crack is produced the 

damping characteristics of the specimen are altered so that more 

energy is required to keep it resonating at the same frequency and 

stress level. Since the power requirements needed to allow the 

machine to fatigue test a sound specimen (i.e. umcracked) at a 

determined stress level have been preset, the presence of a fatigue 

crack decreases the stress on a specimen due to the greater energy 

requirement. 

This causes the cut out relays to operate. Because the relays 

were sensitive to change and came into operation quickly, the 

machine stopped before the crack had propagated through the speci- 

men completely. The operation of the relays was taken as the 

“failure point" of the specimens. Each specimen was tested until 

failure. At failure, the total number of applied load cycles was 

given by means of synchronised dials and counters mounted on the 

control unit. 
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Pig. 6-12 The welded specimen located in the grips of the Amsler 

Vibrophore. The weights used to lower the testing 
frequency can be seen above the specimen. 
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6.8 - Results 

The results obtained from the fatigue tests are summarised in 

  

  

              
  

fable 5. 

Order | Cycles-to- | Welding speed | Median Failure | Remarks | 
No. failure | mm/sec Rank* | mode i 

x 109 | | 

1 406 11.85 (28"/min)} 3.4 B Toe crack | 

2 5.32 8.5 (20"/min)} 8.2 c Toe crack 

3 5.39 8.5 (20"/min)| 13.1 c Toe crack 

4 5.84 8.5 (20"/min)| 18.0 c foe crack 

5 6.16 8.5 (20"/min)| 22.9 c Toe crack 

6 6.68 8.5 (20"/min)| 27.8 c Toe crack 

7 6.77 8.5 (20"/min)| 32.7 Cc Toe crack 

8 7.91 8.5 (20"/min)| 37.7 Cc foe crack 

9 10.15 8.5 (20"/min)] 42.6 c Toe crack 

10 10.53 11.85 (28"/min)|47.5 |B Toe crack 

11 11.78 11.85 (28"/min)|52.4 B Toe crack 

12 11.94 8.5 (20"/min)| 57.3 Cc Toe crack 

13 12.13 11.85 (28"/min)| 62.2 B Toe crack 

14 13265 11.85 (28"/min) | 67.2 B Toe crack 

15 15.10 8.5 (20"/min)|72.1 c Toe crack 

16 15.51 11.85 (28"/min)|77.0 B foe crack 

17 18.03 11.85 (28"/min)|81.9 B Toe crack 

18 18.08 11.85 (28"/min)| 86.8 B Toe crack 

19 18.96 11.85 (28"/min)|91.7 B Toe crack 

| 20 18.98 11.85 (28"/min)|96.5 B Toe crack 

Table 5. Fatigue life results for transverse butt welds in mild 
+ 

steel (Pulsating pulling stress loading, ~ 20, 
max 

fagy = 200 N/mm”. 

* Median Ranks were obtained from Appendix A on 

** See section 6.6 on page 83 

page 

A Weibull plot of these twenty data points is shown in Fig. 

6-13 on page 89. 

Obviously, the data did not describe a straight line on Weibull 

Probability Paper. 

the different failure modes. 
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Fig. 6-13. Weibull plot of all data points. 
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6.9 = Analysis of two or more failure distributions - Separation 

of C failures. 

If the plotted data form two straight lines having either diff- 

erent slopes or different characteristic lives, they are said to 

form a dichotomous plot and infer that a specification change has 

affected the units behaviour. In this case a re-inspection of the 

sample units must be made and the pre-modification and post-modi- 

fication units identified. These two groups may then be re-plott- 

ed, with new Median Ranks, and analysed separately as two individ- 

ual samples from two parent populations. The same procedure must 

be used when a dichotomous plot is given by a sample containing 

the products of two different manufactures. 

In the case where two distinct failure modes exist a more 

lengthy analysis of the data is necessary for reasons which will 

become apparent. 

Plotting failure data which contain two or more different modes 

of failure (e.g. components welded at different welding speeds) 

will not normally result in a straight (4,0) or smoothly curved 

(+, 40) Weibull line, yet with a special analysis we should be able 

to separate the failure distributions. 

Consider the data in Table 5 on page 8&8 A Weibull plot of 

these twenty data is shown in fig. 6-13 on page 89. Obviously, the 

data do not describe a straight line on Weibull probability paper, 

and therefore a special analysis is necessary to separate the fail- 

ure modes. 

It may be noted at this stage that the actual readings from 

this dichotomous plot are meaningless since one mode of failure 

affects the other by "stealing" Median Rank numbers from it. The 

correct way of handling these data is to: 
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1. Identify the failure mode for each component, by technical 

inspection. 

2. Separate the data by failure modes (B or 0). 

3. Replot the data for each mode by treating failures of the 

other mode as suspended items. 

When replotting the data for C failures, B failures are con- 

sidered suspensions (not failures). On the other hand, C failures 

are considered suspensions when plotting B failures (see Chapter 

6.16 on page 149). 

6.10 = Interpolation of new rank order numbers 

If the first four results in Table 5 on page 88 are considered, 

then to separate the C failures the four results can be written as: 

1. Suspension (B failure) 

2. Failure at 5.32 x 10° cycles 

3. Failure at 5.39 x 10? cycles 

4. Failure at 5.84 x 107 cycles 

The order number of the first failure is in doubt. It is not 

correct to assign a rank order number of 1 because the suspended 

item might have failed before 5.32 x 10? eycles. Neither it is 

Possible to assign a mean order number of 2 to the first failure 

since the suspension could have lasted longer than 5.32 x 10? cy= 

cles (time of failure of a suspension is considered to be unknown). 

However, it is known that the first failure should be assigned a 

mean order number between 1 and 2. 

Referring to our case and using the method discussed in Chapter 

5.3-a on page 59, the results of separation of the C failures for 

the 20 items are as shown in Table 6 on page 92 . 
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Table 6. Calculation of new rank orders 

  

  

  

Item | Pailure |Cycles to failures |New Rank Order Number of 
mode x 109 failure 

1 4.6 Suspension - 

2 |e 5.32 Failure 0 + 28 = 1.05 

Bun |ec 5.39 Failure 1.052121: 5 2.10 

cee |cc 5.84 Failure 2e1orAtabel® 6 3.15 

5 |e 6.16 Failure 3.15+21= 3212 = 4.20 

6 =-("c 6.68 Failure 4.2083 4:2 5.25 

7 a\"e 6.77 Failure 5-25+2123622 = 6.30 

8 |c 7.91 Failure 63042136220 - 7.55 

9 Ie 10.15 Failure 7.35212 = 8.40 

10 10.53 Suspension - 

1 11.78 Suspension - 

12 |¢ 11.94 Failure 8.404284 . 9.66 

13 12.13 Suspension - 

14 13.65 Suspension - 

15 Ic 15.10 Failure 9-66+21=3-88 . 11,28 

16 15.51 Suspension - 

AT 18.03 Suspension - 

18 18.08 Suspension - 

19 18.96 Suspension - 

20 18.98 Suspension -           
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6.11 = Determination of new Median Ranks 

After calculating the new rank order numbers, new Median Ranks 

can be determined using one of the methods discussed in Chapter 

5.3-b on page 61, for the actual sample size N = 20. 

The results can be seen in Table 7 on page 93 . 

  

  

            

Order No. | Cycles to | New Rank | New Median Rank % 
ola |New aa Order No. 

2 {1 | 532 1.05 | Be2a 2240981) 5 4564 

3 |2 | 5.39 2.10 (43.1-8-2)(2.1°2). 5 208.69 

413 | 5-64 3.15 (1821321151529), 43,1013.83 

5 14 6.16 4.20 £2 =) 220-4), 18218.98 

6 |5 | 6.68 5.25 21282232915 225-9) 99. 9024.12 

7 \6 | 6.77 6.30 | L22s7=27.8) 623-8), 97 9009.27 

3 7 | 7.31 7635 | (07a 22-11 35-1), 59 7034.45 

9 |8 10.15 Beso | 42-6237-7) (8-4-8), 57.7239,66 

12 |9  |11.94 9.66 £47.5742.6)(9 266-9), 42.6045.83 

15 |10  |15.10 11.28 (5123-5224) .28219) 159, 4053.77 

Table 7. Separation of C Failures with uncorrected value of to 

These results are also displayed on Weibull paper in Fig.6-14 

on page 94. 
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6.12 - Correction of a Curved Plot (correction for +40) - 

Sometimes, the plotted data forms a smooth curve, concave to 

the left or right on the Weibull paper. 

fo appreciate the reason for this curvature it is necessary 

to study the diagrams of number failed against life at failure 

i.e. the failure distribution diagrams. 

In the case of a curve concave to the left some failures have 

occurred before the start of the life test, e.g. components which 

have physically deteriorated since manufacture such as to prevent 

satisfactory operation and thus creating a failure level at zero 

life as shown in Fig. 6-15 b) on page 96. 

If the curve is concave to the right no failures would be ex- 

perienced until a certain test life is reached at which point a 

distribution pattern will commence. A good example of this type 

of failure would be that due to work hardening, which by its very 

nature would require a certain amount of test time to develop the 

conditions for failure, Fig. 6-16 b) on page 96. 

The correction procedure intended to bring the plotted data into 

a straight line may be termed "Curvature Correction". This correc- 

tion method applies equally well to curves concave to the left or 

right, as shown in Fig. 6-15 on page 96 and in Fig.6-16 on page 96 

but is restricted to lines with a single curve, since a curve with 

the form of an "S bend" would suggest a more complicated distribu- 

tion which could not be described by the Weibull analysis. See 

fig. 6-13 on page 89. 

Basically this correction merely changes the scale of the x- 

axis by a constant amount (4) hence repositioning and straight- 

ening the line. 

¥* See Appendix Essa page e366 a. 
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The constant tS is a locating constant defining the starting 

point or origin of the distribution. 

When = does not equal zero, the distribution of failures will 

not lie on a straight line. When +5 is less than zero the curve 

will be concave to the left, as illustrated in fig. 6-15 on page 

96 ; when 5 is greater than zero, the curve will be concave to 

the right, as illustrated in fig. 6-16 on page 96 . 

To eliminate this curvature, a correction factor must be added 

to or subtracted from the abscissa. This correction factor is ie 

and can be estimated wither graphically or analytically. 

6.12-a = Graphical determination of the minimum life t 

a) The data are plotted on Weibull paper and the "best curve" 

is fitted to these points. 

b) Two parallel horizontal lines are drawn through the ex- 

treme failure points and a third horizontal line midway between 

the two, its position being determined with a linear scale, not 

using the y-axis scale). Alternatively, select an arbitrary point 

roughly in the middle of the curve. Two other points, both dis- 

tant d on a linear scale in the Y direction, are selected and ref- 

erenced subscript 1, 2 and 3 as illustrated in fig. 6-17 on page 

98. 
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Fig. 6-17 Estimation of t 

c) Three vertical lines are drawn through the points where the 

horizontal lines intersect with the curve. These values on the x- 

axis may be identified as 11, T2 and 13. 

d) Since: 

vane Le = vats, 
2 a 3 20° 

it follows from the linear equation of the Weibull line 

Yo px + C, that 

%,-%,+%,-, 

or 

5 Tr Ty a. bes 1 a n (t, = %,) = i (4, ete) i= n (+, t,) ln (t, t)) 

giving 

2 (t. > ty)” = (t, - #,) x (t, - *,) 

or 

Bocce 2eatetere alte = to sitet 4 41 20 0 34 1°o 310 ‘ome 
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Solving for * gives: 

2 

sui ee seduoant Eee SRL (Sonex (ead) 
° t, - 2t, + +t Cae 

3: 2 1 (t, = cP) - G, - t4) 

e) BA is used with its own algebraic signe Alternatively,: one 

could consider the magnitude of ee and ignore its sign. 

If the original curve was concave to the left then es is added 

to all values on the x-axis. 

If the curve was concave ‘to the right, then t, is subtracted 

from all values on the x-axis. 

f£) The data are replotted using (t - t) as the independent 

variable. If the data follow the Weibull distribution, the points 

will lie on a straight line. 

From fig. 6-14 on page 94, t, = 5-72 x 10° and: 
(15.10-5.72) (5.72=5. 5. 9238x0.40 

tym 5072 ~ BASES Poa ae gs apxt07™ (5-72-BSSER SAR) x10" = 

= (5.72 - 3°122)107 = (5.72 = 0.42)107 = 5.30 x 10° 

Our data for the C failure are now displayed in Table 8 on 

page 99 and in fig. 6-18 on page 100. 

  

  

Order No. | (t-+,) Rank Order No. Median Ranks 

x 10? cycles 4 

1 0.02 1.05 3464 

2 0.09 2.10 8.69 

3 0.54 3615 13.835 

4 0.86 4.20 18.980 

5 1.38 5.25 24.125 

6 1.47 6.30 29.270 

ie 2.61 7.35 34-450 

8 4.85 8.40 39.660 

9 6.64 9.66 45.834 

10 9.80 11.78 53-772           
  

Table 8. C failures with corrected values of (t-t,) 

5 (A, = 5.3 x 10° cycles) 

“99



°, 
[
s
e
r
o
x
o
 

gOTXe'sS 
= 

a] 

G   oix       6
6
.
 

t 
a
g
 

S
t
        

OLXE’S 
LY 

4 
9yF) 

w
o
w
y
u
 

g
O
T
X
B
 

SHY] 
ein onmeroemug 

8r°o 
edeus 

OT 
[N    

orx 
v
i
e
s
 

   £ 

  

(74-4) 
JO 

SONTBA 
pezZOIIAOD 

Y
I
M
 

SauNTTBS 
9 

“BI-9 
“BTA 

seqToho 
ut 

* 
auntivs 

tv 
39v 

€ 

sequins 

weg 
wonownsg 

O
T
X
 

L 

    
aUNTIV4 “LN3D Yad 3ALLVINWND 

sovoumnes te 

-100-



6.12=b - Analytical determination of the minimum life a5 

Let the curved Weibull plot be represented by a second-degree 

equation of the form: 

y= axr’+ brea. eq. 6-2 

For every particular point (x, ; y,) the vertical distance from 

such point to the Weibull plot is 

4a, ey (ax? + bx + a). 

The constants a, b and d should be determined so that the ver~ 

tical distances are as small as possible. Since each of the a, 

cannot be minimised individually, it is best to minimise the sum 

of their squares . In other words, a, b and d should be chosen 

so as to minimise the function 

2 2 7 2 2 
D=> di Ce eee) 

ist ist 

where n is the number of points. 

The function D is a minimum when 

2k 2 2 --2) (y5 > ax - bx, - d) = 0 

Be-2y% (y, - ax,” - bx, - a) = 0 

--5 (y, - ax,° - vx, - 4) = 0 

These three requisites produce the simultaneous equations: 

2 4 3 2 
>, vy = ay + b> x + ay x, 

3 2 
Da, TAD ted a + ay xy 
a vy eax? + vy x, + dn 

The values of a, b and d are given by: 
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The ordinates of the first and last point on the Weibull plot 

are given by. 

. i 
ge aR 
y, 2 lnln —t_- 

1- wR 
n 

The midway point will have the coordinate 

34 * 9n 

2 
Jn ™ 
  

and on a linear scale. 

oe 

e Ym 
e 

This value is substituted for y in eq. 6.11-2 on page 101 

which, with the substitution d - m = c becomes 

ax* +by+c=0 

The roots of this equation are: 
[ 2 

ne b+Vb = 4ac _ 

2 a. 

p= =b - v2 - 4a a 

2a 

One of these values is discarded as being obviously wrong and 

the other one gives the required value of toe 

The value of + is then calculated using eq. 6-1 on 

page 99 , its value is added or subtracted to the life values t+, 

and the data are replotted as (++ t,) as already discussed in 

Chapter 6.12-a on page 97 . This is the method used in the com 

puter programme discussed in Chapter 10. 

6.13 - Best fitting line 

It has been found from experience, from representative rig 

testing, that most part failure data can be interpreted as a Wel- 

bull distribution, and appear as a set of points on a reasonably 

straight line. Indeed, since failures tend to occur right from 
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the moment the parts are put into operation, the minimum life 

parameter i is usually zero, leaving only the shape parameter Pp 

and the characteristic life 4 to be estimated. 

Once the points are plotted, we must determine the position of 

the best fitting straight line. (If the data should be non-linear, 

this indicates a non-zero value of the minimum life parameter toe 

The value of v must first be estimated, and then subtracted from 

each time t to failure in turn. Replotting (t-t,) almost always 

yields a straight line, as seen in Chapter 6.12 on page 100). 

6.13-a - Drawing the best fitting line by eye 

In most cases, a straight line may be fitted by eye. 

As an example, ten parts were subjected to life test, and the 

following results were obtained: 

  

  

Failure No. |Age at Failure |Median Ranks, % 
(hours) 

1 500 6.6 

2 1200 16.2 

3 1650 25.8 

4 2050 35.5 

5 2650 4501 

6 3250 54.8 

rf 3750 64.4 

8 4500 T4e1 

3 4950 83.7 

10 7300 93.3           
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These data are plotted, and a straight line is drawn by eye, 

in fig. 6-19 on page 106. It will be seen that the data forma 

reasonably good straight line, only the first point A being app- 

arently somewhat adrift. Taking account of the scales, however, 

reveals that this conclusion is over hasty. Since the actual time 

of each failure has been observed, suppose it is assumed that all 

errors in the data are attributable to our estimation of the cum- 

ulative percentage of the population which has failed. It is seen 

that, to comply with our line, the first failure should have occu= 

rred at 4.7 per cent instead of 6.6, so that its "error" in this 

sense is 1.9 per cent. However, after around 50 per cent have fai- 

led, owing to the contraction of the scale, the same displacement 

in millimeters would indicate an error of about 13 per cent. Hence, 

in fitting a line by eye, more importance must be attached to dis- 

crepancies in mid-life than to those early on. From this it foll- 

ows that a life test should not be truncated too soon, particularly 

if the Weibull line is to be extrapolated to the left, in order to 

estimate the age at which some high value of reliability occurs. 

There must be enough data to determine the slope p of the line 

(see Chapter 6.18 on page 167) with acceptable accuracy. 

Reliability engineers usually draw the best-fit line by eye, 

since its position tends to be fairly obvious. (The cramping of 

the y axis scale in middle life, and the x axis scale in later 

life, tends to mask any discrepancies!). 

However, in certain cases, the plotted data tend to forma 

straight line but significant scatter is apparent. In such cases, 

any attempt to fit a straight line "by eye" would be basically in- 

correct or would give such poor accuracy as to render the exercise 

useless. 
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6.13-b - Drawing the best-fitting line by the method of least 

squares 

If the points should be so scattered that the position of the 

straight line is not easy to determine, it is necessary to find 

out what has gone wrong (see section 6.14 on page 120), and 

whether the data are worthy of being fitted by a more sophisti- 

cated method. If it is decided that they are, then regression 

analysis, suitably modified, is indicated. 

If n paired observations (x, y) are available, for which it is 

reasonable to assume a linear relation between x and y and if it 

is required to determine the line (that is, the equation of the 

line) which in some sense provides the "best fit", then one way 

of doing that is to apply the method of least squares. 

The equation of a straight line which is required to fit to the 

set of data which appears in fig. 6-18 on page 100 is 

yua+ bx eq. 6=3 

where a and b are constants, which have to be determined in order 

to get the best fitting line. 

Of the infinite number of lines that could be drawn, which one 

fits the data best? Before this question would be answered satis 

factorily, some criterion must be agreed upon by which to judge 

the suitability of any line that could be chosen. The most gen- 

erally adopted criterion is based upon minimising the sum of the 

squares of the distances from the line to the data points. This 

may sound formidable but, as it will be seen, it is not so diffi- 

cult. 

The distance from the line to each point must now be defined. 

The minimum distance is, of course, along a line normal to the 

line y = a + bx that it is required to find. Im many cases this 

is the value to be used. In this case the input (time, cycles, 
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etc.) is known quite precisely. It can be safely assumed that 

any deviation from linearity occurs because of variation of the 

quantity on the y-axis (median rank). Since x is mown much 

better than y, it is reasonable to choose to minimise the ver 

tical distance from the point to the line. For a particular 

data point (x,5 v4) for instance, the vertical distance is given 

by 

Sm yy = (a+ bx,) 

The constants a and b should be determined so that the estim- 

ated vertical distances are as small as possible. Since each of 

the 55 cannot be minimised individually, their sum ce, should be 

made as close as possible to zero. However, since this sum can 

be made equal to zero by many choices of totally unsuitable stra- 

ight lines for which the positive and negative errors cancel out, 

it is much better instead to minimise the sum of the squares of 

the vertical distances s,. In other words, a and b should be 
i 

chosen so as to minimise the function 

a 2 ES Zi 

where N is the number of points since a and b are the constants 

to be determined, the function S is minimum when 
5 N 

Seis = ¥, - (a + bx,) 2.0 eq. 6 
Va da 

isl 

and 

33.20 F [ay army | 2e0 eq. 6 

These two requisites produce the simultaneous equations: 

Days, + a 
Ee Ne ie 
Yaa = ay 4 + vy 

where N is the sample size and xy and ¥, are the co-ordinates of 

the plotted data. Solving for a and b gives: 
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yy £ DEA 

dea al? ea = Laat i 

  

ss —— 
eqe 6-6 

Zeet NiSx - ( ) 

| Ds ye : 2 

| Nn yy | 25 
noes Zenl  Say, De 3, eq. 6-7 N > 

» x Dx? 

To obtain a least squared line on Weibull probability paper the 

Wye? = (ha)? 

  

following procedure may be observed. 

6213=b-I- Method I 

Regression analysis cannot be used in its normal form, because 

of the non-linear Weibull scales. One suggestion is that the 

points should be traced onto ordinary equal-division graph paper, 

the best-fit line determined in terms of the linear scale, and 

that this should then be traced back onto the Weibull paper. The 

test data are plotted on Weibull paper with the appropriate Median 

Ranks. Each plotted point is then transposed onto a piece of lin- 

ear graph paper placed over the Weibull paper. Axes are then dra- 

wn on this linear paper and any convenient scales given to these 

axes. The X (horizontal) and Y (vertical) scale readings for each 

point are then noted and tabulated along with their corresponding 

x? and X.Y values. Finally the x, Y, x? and X.Y columns are sum- 

mated to give values which may be substituted into the above sim- 

ultaneous equations. 

The following example using six sample failures demonstrates 

the layout of a least squares calculation (see fig. 6.20 on page 

110). 
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Qrder Number Life (hrs.) Median Ranks 

1 1D: 10.9 

2 80 2664 

3 123 42.1 
N= 6 

4 130 57.8 

5 149 7365 

6 200 89.0 

Transposed from Weibull paper to linear paper with arbitrary 

scales gives: 

x x re x 

30.1 42.3 906.0 1273.2 

31.2 50 97364 1560 

3764 55.2 1398.8 2064.5 

38.4 59.3 1474.6 2277.1 

40.3 63 1624.0 2538.9 

44.6 67.6 1989.2 3015.0 

.xH222.0 L¥933764 LoX728366.02 LuX¥=12728.7 

Thus: 

2.Y = AN + B2LX gives 337-5 = 6h + 222Be..02.00(1) 

Dury = ales alQx? — 12726.7 = 2224 + 8366B...6444(2) 

Now (1) X 37 gives 12487.5 = 222A + 8214Be..e0++000(3) 

12728.7 + 222A + 8366B ......260(4) 

and (4) - (3) gives 241.2 = 152 B 

241.2 
therefore B = 152 

SubstitutingBin (1) A = ee = a2 wer 3 637. 

  = 1.61. 

Hence Y = -3.37 + 1.61 X. 

Thus a best fit line is constructed on the linear graph paper and 

transposed back onto the Weibull paper. 
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The objection to this is that the same importance is given to 

points which have the same linear displacement from the mean line, 

regardless of where they occur on the Weibull scale. 

6.13-b-II - Method II 

The objection to Method I can be overcome with the following 

method, which disperses with the need to transpose the data from 

Weibull paper to linear paper and allows to find directly on the 

Weibull paper two points which, when joined, will give the best 

fitting line. 

In section 2.2 on page 26 it was shown that the Weibull equa- 

  

tion can be written in the form: = P 

fax 

Perform the manipulations which are the basis of Weibull 

R(t) =1-F(t) =e 

probability paper. Invert both sides and take natural logar- 

ithms twice. 
< B c ‘ay eee! 

Then: - In |1 - 72) | (2 He 

anata {2 [: - cs] =P in (t-+,)-f-ln y . 

This gives: 

an an [Tray] = P28 (t-t,) - Pin n . 

This can be expressed as the standard equation to a straight line, 

yruart dex 

mere yea {an [1-200] a date Shorey 

x=ln(t - t,) 

as ae sin y (this is constant) eq. 6-8 

>= p (also constant) . eqe 6-9 
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On Weibull graph paper, the scales are ingeniously devised to 

include the functions which are on the right-hand sides of the 

above equations. Hence reliability data almost always plot as a 

straight line. However, there is no reason why the data them- 

selves should not be converted, so that they will plot as a stra- 

ight line on ordinary graph paper. This method will be illustrat- 

ed using the example in section 6.13-a on page 104, where it has 

already been determined that | = 0. 

First convert the data as above. The figures thus obtained are 

shown in Table 9 on page 113. 

  

  

          
  

t x=1n(t) F(t) y=in ln (a—tey) 

500 6.21 0.067 2.67 

1200 7.09 0.163 1.72 

1650 7.41 0.260 1.20 

2050 7.63 0.356 0.82 

2650 7.88 0.452 0.51 

3250 8.09 0.548 0.23 

3750 8.23 0.644 +0.03 

4500 8.41 0.740 +0230 

4950 8.51 0.837 +0.59 

7300 8.90 0.933 +0.99 

Table 9. 

If x and y are now plotted on ordinary graph paper, fig. 6=21 

is obtained, showing that a straight line has been achieved. 

(Fig. 6-21 is included here for clarity; it is not necessary to 

plot it in order to find the equation of the best-fit straight 
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line). Next, these data are used in the usual way, to find the 

regression of y on x. (It is assumed that all errors in the data 

arise from errors in estimation of the cumulative percentage of 

the population failed. The other regression line can of course 

be deduced if required). 

This gives: 

b= 1.42 

a= -11.62 

  +1 ee 

Clea 7 Be oy xa1(ty 
  

    

  1 
1-

F(
t)

 

  

    
    

y
=
1
n
1
n
(
 

  

  
Pig. 6-21 

These results must be converted back to the Weibull para- 

meters. 

From eq. 6-9 : 

p sb= 1.42, 

and from eq. 6<8 : 

a= APin(y). 
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Therefore 

a _ 11.62 
ln ™) = - 67 qeap 7 8-20.   

Therefore v= 3658 hours . 

Hence, the predicted Weibull equation is: 

(ty 1042 
R(t) =e ‘3658 ‘ 

Comparing this with the constants deduced from the scales of 

the Weibull graph paper, gives the following results. 

  

Weibull paper | Regression line 
  

p 1.53 1.42 

n 3650 3658 
  

          
Bearing in mind that a line fitted by eye usually lies between 

the two regression lines, it will be seen that the agreement is 

quite good. 

6.13-c - The correlation coefficient 

The product moment correlation coefficient produces an exact 

measurement of the correlation between the variables. Its cal- 

culation was a laborious arithmetic process until the advent of 

the modern calculators which produce it at the touch of a button. 

The correlation coefficient is given by the following expression: 
Ss. 

n es 
ww” 8, 3) 

xy 2 

s = 5/2 - ya : 
n n 

a, 9/24 - ne 
n n 
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6.13-a - Application 

The data should appear as a straight line on Weibull prob- 

ability paper. A visual inspection of the new Weibull plot for 

the C failures, fig. 6-18 on page 100, shows that this is the case, 

and it is therefore possible to proceed with the analysis. 

The next step is to fit the best straight line through the 

graph obtained from Table 8 on page 99. This can be done "by 

eye" or by the more favourable methods of least squares. Method 

II will be applied to determine the equation of the Weibull line 

and the two points that will allow to draw the best fitting line. 

Consider, as an example, the results taken from Table 8 on page 

99 , from which Table 10 on page 118 can be constructed. From 

equations 6-6 and 6-7 on page 109 : 

sa 33968209 x (-13-79619) = O- 3331916 X _15-827753 _ 
10 x 332968209 - 0.333191 

= 7 468-63187 - 3.273674} = =-473-90554 _ _ 4,396 
339-68209 = 0.11101 33957107 

10_x 15.327753 ~ 0.3331916 (-13.79619)_ 
10 x 33.968209 - 0,3331916" 

_ 1538-27753 + 45967746 _ 162-8743 _ 9.4797 
33968209 = 0-1110166 — 339-57107 —* 

Therefore the equation of the best fitting line is: 

b= 

y = - 1.395,649,613 + 0.479,686,094,1 x 

and = 0.479,686,049,1 « 

The best fitting lime can then be drawn by joining with a strai- 

ght line two paired values of xy and vie For example, when 

(#-t,) = 0.01210, x, =1n(t-t,)=-4.605,170, 186, 

¥4 = 71-39560 5+0.4796472 x, = -3.6044575 and therefore 
1 

yl 

F(t=t,)=1-1/e° =0,026835; when (4-t,)=9x107, x)=24197224577, 

Yo=—0- 341707884 and P(¢-t,)=0. 5086289525. This is done in fig. 

6=22 on page 119+ 
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The correlation coefficient is: 

Dae ars 
N io en 

  

        z 
xy      

    

      

Seo 2 2 2 
Ze ax ve vi ra on 

N t N N TASN: 

15.8277 _ 0.3331916 /-13.7961891 oe a 
10 10 10 ) 

[ 
33.968209 _ (0.3331916) 2 /27.70007272 

10 a 10 \ 10 

@.9929490254, 
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6.14 - Dealing with spurious data’ '®) 

When only a few data are available, care must be taken to ex= 

tract as much information as possible from them. Points should 

not be discarded too readily. It is often possible to determine 

what probably occurred and hence why one or more points are out 

of position. Occasionally it is possible to show that a point is 

almost certainly spurious. 

When the sample size is very small, spurious points present a 

real problem. For example, if a sample of 5 is considered, each 

point represents 20 per cent of our data. If two points are diff- 

erent from the other three, how is it known that the two are spur- 

ious and the three correct? It might be the other way round! Ex- 

perience has led to be very wary about rejecting data which do not 

appear to fit some preconceived notion. The following examples 

illustrate this. 

6.14-a - Glass manufacture 

Fig. 6-23 shows a study which was made on the life of two 

moulds in a glass-processing factory. The production routine was 

to run one mould until its surface became unacceptable. It was 

then replaced by the other, and the rejected mould refurbished for 

further use. In this case a reasonable number of data were avail- 

able, and two approximately Normal distributions, with means at 

M, = 15.0 and My = 20.8 h, resulted. We therefore concluded that 

mould-surface deterioration was a straightforward wear-out sit- 

uation. Mould 2, however, consistently gave a longer production 

run than My, and this presented the factory with an engineering 

problem to find out why, so that in future all moulds could be ma- 

de like Moe 
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Fig. 6-23 

In three places, the observed data were not to this pattern. 

Points A and B were easily explained, operator errors had caused 

premature damage to the mould surface, but C needed more thought. 

Notice how these failures occur. 

a) ‘They are over four standard deviations from the mean of 

mould 1, to which they purport to belong, and, for a Normal fre- 

quency distribution, the probability of an observation's being 

four or more standard deviations from mean is 0.0003. 

pb) All three failures at C due to mould 1 have exactly the 

same value of 25 h. Since the probability of three failures at 

25 h or more is (0.0003)? = 0.27 x 107'° » the possibility that 

they belong to the main distribution can be discounted. There 

must be some large source of variation, contravening the condit— 

ions for a Normal distribution. The obvious possibility is that 

there is one very careful operator, who achieves, with mould 1, 

the sort of production runs that are observed for mould 2. 
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Suppose, however, that there was such an operator. His work 

would in principle form a third distribution curve, centred about 

his own mean run length. The probability of three runs with ex- 

actly 25 h, with no other neighbouring run length observed, is so 

small we discounted it. It did not fit the pattern of Manning, 

anyway. Here it seems almost certain that these three observations 

originated from the bane of all reliability engineers, incorrect 

data. The possibility that these readings really refer to mould 2 

is unlikely, because there is nothing significant missing from the 

My data, either at that point or in total. Wherever these points 

should be, it seems quite certain that they were not three runs of 

exactly 25 h as reported. 

6.14={b - Car components 

This was ea tniy) of the number of operations a car component 

could withstand before failure. The Weibull plot for a sample of 

10 is shown in fig. 6-24 on page 123. We can distinguish two str- 

aight sections AB and CD, from which it would appear that some dra- 

matic change in mode and mechanism of failure took place where 

these sections intersect just below 50,000 cycles. However, con~ 

sider the raw data which were as in Table 11. 

  

Failure No. Number of Operations 

1 3805 

4612 

14560 

15108 

29950 

45506 

48575 

50000 

50000 

50000 

  

  o
W
 

M
O
N
 

D
U
 
F
W
D
 

=     
  

Table 11. 
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Now, over the period of the test, components can fail at any 

number of operations from 1 up to 50,000 or so. The probability 

that they would fail at a round number like 40,000 or 50,000 is 

(depending upon the shape of the failure probability density fun= 

ction) broadly the same as that they would fail at any other par= 

ticular number. The average probability is 1 in 50,000, and the 

probability that three would fail together is 8 x 40715 » which is 

so small it can be discounted. Reference back to the company re- 

vealed, as we suspected, that so-called "failures" numbers 8, 9 and 

10, were not really failures at all. They merely survived when 

the test was truncated at 50,000 operations. Hence line AB of fig. 

6=24 is correct; CD is spurious and must be deleted. 

Fig. 6-25 shows the results of a life test on another car com= 

ponent. Here seven points form a reasonable straight line, and 

the problem is to interpret points A, B and C. Notice that these 

are not additional failures, since the line itself has three poi- 

nts missing in this region. (Had they been additional failures, 

the line would have displaced itself upwards, as indicated by MO, 

and then continued at about the same slope, as OD). Next, con- 

sider the size of the gap, which is roughly from 9,700 to 21,000 

operations. Since one operation took approximately 4 s, this gap 

represents about 12.5 clock hours, which would be consistent with 

the test having been left unattended overnight. Further inquiries 

showed that this was indeed what happened. Failures, A, B and C 

were not observed to occur at these times, they were merely dis- 

covered in a failed condition next morning. Their exact moment of 

failure was not known. 
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6.14-c - Flyover arm 

Fig. 6-26 shows the results of a small life test on 10 flyover 

arms. At first sight the pattern is similar to fig. 6-24, and ag- 

ain the problem is to establish the true track of the Weibull line. 

In this case there seemed to be no evidence to suggest that the ob= 

served data were incorrect, nor was there any sign of a dramatic 

change in the mode of failure in the vicinity of the 5th point. Yet 

apparently two quite different Weibull lines could be drawn, depend- 

ing upon whether we believed the first five points and discarded 

the other two (line AB), or believed the last four points and dis- 

carded the first three (line CD). About three points in the region 

of the intersection of AB and CD could be regarded as belonging to 

either line, as we pleased! Because it predicted superior reliab- 

ility, there was a natural desire to conclude that CD was correct. 

Consider the data, however, which are given in Table 12. 

  

Failure Number Number of operations at failure 
  

147 
402 
633 

2374 
3159 
3171 

7 3412 

Truncation 6500 with three arms 
surviving 

A
u
n
 

fF 
W
N
n
 
=
 

      
  

Table 12. 

We found the key to the problem in the truncation data. Be- 

cause the test had been run on to 6,500 operations, the next fai- 

lure could not occur until after that. Since it would have been the 
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eighth failure in 10, it would, using Bernard, be plotted at 74.0 

cumulative per cent of population failed. Hence it must lie on 

line MN, somewhere to the right of M, and in the worst case would 

be almost on top of it. But M is almost on line AB produced. It 

is a long way from CD produced, and, the longer the 8th failure 

took to occur, the further away it would be. Reluctantly we con- 

cluded that line AB was correct and CD spurious. 

In this case it was possible to test our theory, because the 

three surviving items could be returned to life test, without any 

great risk that the interruption would affect results. We were 

right, since the remaining failures occurred as follows. 

  

Failure No. Number of operations at failure 
  

8 6985 

9 9554         

The 10th item survived 10,000 operations, when the test was 

again truncated. 
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6.14-d = The assumption of a constant failure rate 

From time to time there has been discussion about the validity 

of the practice, especially in electronics, of assuming a constant 

failure rate. In the strict statistical sense, this implies that 

the probability of failure is rigidly constant, and in no way in- 

fluenced by the age of the items. This in turn suggests that the 

mode and mechanism of failure are exactly the same every time. 

Experience shows that thisisunlikely to be strictly correct. 

It is true that Weibull B values around unity are often observed, 

although the best-fit p may have a value of 1.1 or 1.2. The mech= 

anism of failure, too, is seldom rigidly constant, A sometimes 

the mode varies as well. Having as far as possible eliminated all 

assignable causes of failure, we are often left with a loose scat- 

ter of miscellaneous failures which, particularly if data are 

scarce, we can only interpret as roughly constant with time. Us- 

ually there is no great risk in this, so long as the limitations 

of the data and of our analysis of them are borne in mind. An ass- 

umed constant failure rate does make reliability prediction much 

easier. 

There is another danger inherent in using published failure- 

rate data, and this comes from the fact that our use conditions may 

be quite different from those under which the failure data were 

prepared. Anyone who doubts this should calculate the overall fai- 

lure rate of any piece of equipment in which he or she is interes- 

ted, using data from two or more sources. One prediction may ex- 

ceed another by a ratio of more than two to one. If we are concer—- 

ned only with comparing two alternative designs, this may not 

matter, but, if we need an absolute prediction of the failure rate, 

it is very serious. 
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6.14-e - Guidelines for predicting the reliability of parts from 

small samples 

From the above it has been possible to draw up a set of guide- 

lines which, although of general use, are particularly valuable 

when it is only possible to life-test a small sample. 

1. Use median ranks (i.e. Bernard's formula) to estimate the cum- 

ulative percentage of the population failed. 

2. Beware of rejecting apparently spurious points, when they re- 

present a significant part of the available data. (Rejecting 

two "inconvenient" points out of, say, seven probably amounts 

to forcing the data to fit preconceived ideas!). 

Consider: 

a) Is there evidence that the failure mode might have been 

different when the spurious failure occurred? 

b) If points appear on the Weibull or other plot where we 

did not expect them, look to see whether they are also missing 

from a position where we did expect them. If so, are there va- 

lid reasons why they have turned up in the "wrong" place? 

c) Are there sound statistical or other reasons why the data 

concerned must be spurious? For example, did the tester admit 

to an error, or the test rig fail? Be careful, however, about 

accepting doubtful reasons, because we may be merely forcing 

the data to fit preconceived notions. 

da) When a test is truncated, the earliest time and percentage 

at which the next failure can occur should be inserted on the 

Weibull plot, as M in fig. 6-26. The correct line will pass 

below this point (or, in the limit, through it), but, on the 

available data, it cannot pass above it. 
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6.15 = Slope, estimates and confidence intervals 

Before explaining the method of obtaining "confidence limits" 

for a Weibull analysis of test data, it is necessary to present a 

definition of confidence in general terms, and to discuss the var= 

ious aspects which affect it. 

In all statistics, when an analysis is carried out and some 

result obtained, it is necessary to qualify this result by sta- 

ting how sure we are that the result is a true one, i.e. how con= 

fident we are. 

Several factors may affect the level of confidence given to a 

result, depending upon the type of analysis carried out and the 

type of result required. Thus each statistical exercise must be 

studied to establish the types of errors which may occur and their 

cause. 

In the case of Weibull analysis of random sample testing, for 

instance, we may make the following statements for this type of 

analysis. Firstly that the data obtained from a sample test is 

accurate for that particular sample. (This must be true since 

providing test conditions are correct, the recorded failure ages 

cannot be disputed). Secondly that manipulation of this test data 

may be considered accurate and in accordance with established the- 

ory. However, that the test data, although accurate, may not in 

itself be truly representative of the parent population from which 

it was drawn. 

Nothing has been said about the use of confidence limits. 

These are valuable with small samples, if only to deflate any ex- 

cessive personal confidence we may have in our results! The cri- 

tical factor is usually the slope of the Weibull line denoted by p 

because, the sample being small, it will probably be necessary to 
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extrapolate the line back to shorter working-life times and high- 

er reliability. This magnifies any error in prediction arising 

from incorrect estimation of the slope, as fig. 6-27 illustrates. 

Here we have redrawn the Weibull line shown in fig. 6-19, and 

added confidence limits at a 90 per cent level of confidence. On 

the basis of the 10 observations available to us, WW represents 

the best estimate of the position of the true Weibull line. How 

ever, our sample was small, and if we were able to test another set 

of 10 items, it is unlikely that exactly the same prediction would 

result. We should then have another "best estimate", and so on for 

every repeat. Now the confidence limits mark the boundaries of 

the area within which we can be 90 per cent certain that the true 

Weibull line lies. We hope that the true line is not too differ- 

ent from our prediction, but we cannot be sure. Thus lines AB and 

CD show two extreme possibilities which still lie just within the 

confidence limits. Suppose the required working life for these 

items is 200 h. Our Weibull line WW predicts a reliability of 

(100 - 1.2) = 98.8 per cent, whereas AB predicts (100 - 7.2)=92.8 

per cent, and CD something better than (100 = 0.1) = 99.9 per cent. 

Hence anywhere within the range 92.8 to 99.9 per cent could turn 

out to be correct. Indeed there is a 10 per cent risk that the 

true value is outside the confidence limits altogether! 

Just how representative a sample may be considered to be, is 

dependent upon certain theories of probability, stemming from the 

sample size. A sample of ten units could be used to estimate the 

failure distribution but, actually, two points determine the para- 

meters of the failure distribution if e5 is set equal to zero. 
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With a small sample, sampling error is larger than with a large 

sample. Thus, if a sample size is large, the probability of it 

being representative is high, and therefore a high level of con=- 

fidence may be given to the results drawn from a statistical , 

analysis. 

In the Weibull analysis it has been shown that Median Ranks are 

employed to relate a sample of items to the parent population and 

that these Median Ranks allow positive errors to balance out with 

negative errors. Hence it is a question of selecting a median 

point, or balance point, in the estimate and thus the line which 

results on Weibull Probability Paper may be considered as a 50% 

confidence line. 

At first sight this does not seem very encouraging but it can 

be shown that superimposing lines known as confidence limits, as 

shown in fig. 6-28 on page 134effectively "widens" the 50% line to 

cover a larger area and hence increases our confidence level sig- 

nificantly. 

F(t) 

  

  

a) Small number tested b) Large number tested 

Fig. 6-28 - Slope estimates and confidence intervals 
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The dashed lines of the funnel-shaped curves in fig. 6-28 on 

page 134 show the relative error associated with smaller and larger 

sample sizes. The true Weibull line can be expected to be any~ 

where between the dashed lines. In statistical terms, the dashed 

lines are referred to as confidence bands. Since the estimates of 

the slope, position and curvature of the fitted line do vary from 

sample to sample, some statement describing the degree of precision 

should be made. Confidence bands provide a method of describing 

this precision. The width of the confidence band is determined by 

(1) sample size, (2) the fitted Weibull slope, (3) selected con- 

fidence level and selected reliability level. 

Confidence intervals are measurements of the precision when es- 

timating a statistic. A ninety per cent confidence interval ar- 

ound an observed statistic is that proportion of such intervals 

which in the long run will contain the true value of the statis- 

tic. In the case of the 3-parameter Weibull distribution, a rig- 

orous determination of such confidence boundaries would involve 

taking into account simultaneously the effects of the separate 

sampling errors of estimating p >» and toe 

The 5% and 95% ranks are often used to estimate the statisti- 

cal error associated with the slope p, the characteristic life 

" » the B10 etc., life, and the minimum life toe 

Thus if the confidence bands shown in fig. 6~28°dn page 134 

are taken as being those for 95% confidence, then the space be= 

tween these bands, kmown as the "confidence interval", would con- 

tain 95% of the Weibull lines produced, if the total population 

was tested as a series of samples. In other words we are 95% sure 

that the true Weibull line for the entire population lies some- 

where within the confidence interval. 
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The width of this interval is affected by several factors, 

which may be summarised as follows; the selected confidence and 

reliability levels; the fitted Weibull slope; the sample size 

tested. 

The first two factors usually tend to be preselected and hence 

are difficult to vary. However, the sample size may be increased 

easily (depending on economic considerations) and thus the confi- 

dence interval narrowed as much as desired. This is demonstrated 

well in fig. 6-28 a) and b) where two samples of different size 

would have been drawn from the same parent population and would 

have been fitted with confidence bands of the same level. 

It can be shown that confidence bands may be very useful in 

reducing test time and cost since they may be used in circumstances 

which would normally require 100% testing to ensure the required 

quality and reliability was obtained. 

For instance, suppose that emission control regulations call 

for certein standards to be achieved on all cars to be sold ina 

certain market. Assume that the requirements are as follows: It 

is necessary to show that we are 95% confident that 90% of vehicles 

will emit no more than 2% CO during a certain test. 

Normally it would be necessary to perform a 100% check on the 

vehicles and hence to find the exact figure which exceeds 2% CO. 

This method is obviously lengthy and expensive and in this case 

can be shown to be unnecessary. 

The method of approach when using confidence bands is firstly 

to select a random sample of vehicles from the total population 

and to test them under the required conditions. This test inform 

ation is then arranged such that it may be presented on Weibull 

Probability Paper, in this particular case the % CO is plotted on 
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the x-axis and the Median Ranks for cumulative % population on 

the y-axis. By plotting the test data on these scales, the median, 

(or 50% confident) Weibull line is obtained as shown in fig. 6-29 

on page 138. The area enclosed by less than 90% population and 

more than 2% CO, may be called the restricted area and represents 

two of the limits called for in the specification. Thus at this 

stage, since the Weibull line is well outside the restricted area, 

it is possible to be 50% confident that 90% of vehicles emit less 

than 2% CO. 

In order to obtain the required confidence, the 95% confidence 

bands can now be fitted by the method explained later, and these 

bands can be studied in relation to the restricted area. If, as 

in fig. 6-29 on page 138, the 95% confidence interval does not en- 

ter the restricted area then it is possible to be 95% confident 

that over 90% of all vehicles emit less than 2% CO. 

In the case where the confidence bands do enter the restricted 

area then two possibilities exist. Firstly, that the vehicles are 

not capable of meeting the requirements; hence a modification to 

the emission control equipment would be necessary. Secondly, that 

the sample of vehicles taken was not large enough to give suffic- 

iently narrow confidence bands; hence further samples should be 

taken and the analysis repeated on the increased sample size. A 

quick check to establish which possibility exists, after the first 

set of samples, is to note whether or not the 50% confidence Wei- 

bull line enters the restricted area. If so, the first possibility 

could be accepted without fitting any confidence bands. 

There are two commonly used methods for determining confidence 

intervals. One method uses the binomial distribution which fixes 

the observed failure time and places a(1 - &) interval about the 

median rank value associated with each ea on the Weibull line. 
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However, this method has a serious drawback in applied statistics. 

The lower confidence interval does not extend far enough to bound 

the estimated failure time for the first failure. 

Engineering people are usually interested in a confidence in- 

terval for the time associated with the first failure. A method 

for establishing this interval was developed by Mr. Leonard 

Johnson of the General Motors Research Laboratories in 1959. His 

method employs the transformed binomial distribution rather than 

fixing the observed failure time to bound the high and low fail- 

ure times for each failure. The procedure works well and gives 

useful answers. In addition, the accuracy of the results has been 

confirmed by a Monte Carlo computer simulation study. The compu- 

ter study was performed by Mr. Lloyd Schlitzer of Pratt and Whit- 

ney Aircraft in 1966. His study showed that Johnson's method gives 

more conservative results. A comparison of confidence bands ob= 

tained by these methods is shown in fig. 6-30 on page 140. 
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6.15=a = Fitting Confidence Bands (L. Johnson) 

The method devised by Mr. Leonard Johnson of obtaining confi- 

dence bands is considered the most useful since unlike other me- 

thods, it is capable of giving the confidence interval for the 

time associated with the first failure. Although it is based on 

the rather lengthy theory of binomial expansion for each failure 

point, it may be reduced to a simple graphical construction by 

the use of standard ranking tables for the level of confidence re- 

quired. These tables exist for most commonly used confidence 

levels, (e.g. 90%, 95% and 98%) but tables may be produced, by a 

simple computer programme, for any confidence level. 

Johnson's procedure for fitting confidence bands to a Weibull 

line may be summarised as follows: 

1 = Denote by (1 - A) the required confidence level, where 

is the risk of accepting an invalid statistic. 

2 = Calculate the upper and lower confidence limits thus: 

a 
(1 - %) is the upper confidence limit and > is the lower con- 

< 

fidence limit. Therefore a 90% confidence interval gives 

A = 0.105 the upper limit is (1-22) = 0.95 or 95%, and 

the lower limit is   2548 = 0.05 or 5%. The confidence interval 

lies between these two limits. 

3 = Determine the 5% and 95% ranks for all failure points. 

To find the ith five per cent or ninety five per cent ranks, 

expand the binomial 

(aaF)™ K aaron Pay (ree RP) Rey. get 

to i terms, equate it to 0.95 or to 0.05, and then solve for F. 

Repeat for each of the N failures in a sample of N. Notice that 

i can have a fractional value if there are suspensions, whereas 
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this formula can be used only for integer i's. Thus inter- 

polation may be necessary. This binomial expansion is calculated 

by the computer programmes described in Chapter 10 on page 214 . 

Alternatively, obtain the 5% and 95% ranks from the standard 

Appendices B and C on pages 226 and 230 respectively, for the 

particular sample size of N used and for integer values of i. 

The correct values of the 5% and 95% ranks can then be determined 

by interpolating linearly for the new fractional rank order num- 

bers as we did for the median ranks (see Table 7 on page 93 ). 

These interpolated values of the 5% and 95% ranks are shown in 

Table 13 on page 143 . 
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6.15-a-I - Analytical determination of confidence limits 

4- (0.05), the lower confidence limit for the i-th fail- 

ure, is determined by solving the following Weibull equat- 

ion for +, (0.05) : 

pot 
F,(0.05)=1 -e” » which gives: 

1 1/8 

#i(0:03)= oleae | ; 
i 

5- (0.95), the upper confidence limit for the i-th fail- 

ure, is similarly determined: 

1 Vp 
A cee a feo | 

6 - The failure times t, associated with the 5% and 95% ranks 

are calculated for all i failures (i=1, 2,+-+,n)- 

7 - A horizontal line is drawn through each failure plotted 

on the Weibull probability paper. 

8 = The failure times associated with the 5% and 95% ranks 

are plotted for each t, on the respective horizontal line det- 

ermined from step 7. 

The results are summarised in Table 14 on page 145- Comparing 

the graphical solution in fig. 6-31 on page 147with the results 

obtained analytically, we see the answers are the same. 
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6.15-a-II - Graphical determination of the confidence limits 

Horizontal lines are drawn through each of the plotted poi- 

nts on the Weibull line. 

Using the values obtained for the particular sample size N 

used, employing one of the methods explained in section 6.15=a on 

page 141, the first rank value for the lower confidence limit (5% 

in our case) is taken and projected horizontally from the y-axis 

to intersect the Weibull line. From this intersection point a 

vertical line is projected upwards until the horizontal line (med- 

ian rank) for the first failure is reached. This intersection 

gives the first point on the lower confidence band. 

Now the first rank value for the upper confidence limit (5% 

in our case) is taken and projected horizontally from the y-axis 

to intersect the Weibull line. From this intersection point a 

vertical line is projected downwards until the horizontal line 

(median rank) for the first failure is reached. This intersection 

gives the first point on the upper confidence band. 

This procedure is repeated with a second rank from Table 13 

on page 143and with the horizontal line through the second failure, 

obtaining a second point on the lower confidence band and a second 

point on the upper confidence band. By doing this for the full 

number in the sample, two series of points are obtained through 

which the lower and upper confidence bands may be drawn. 

The graphical determination of the confidence limits is ex- 

plained in fig. 6-31 on page 147 for the second failure of Table 14 

on page 145. 

-146-



  

Rank order (t=) x10° 
number 

0.05 Rank | Median Rank | 0.95 Rank 

  

201 0.09 2.04 8.69 22.26             

20F 

  

1 1 

0 F001 0/01 v 
8 time, (tt, )x10° i 

Fig. 6-31 Confidence Band Detemination 

The same procedure is applied to all failure points on the 

Weibull line. Two lines are drawn, one through the lower limit 

points and one through the upper limit points. These two lines 

define the lower and upper confidence intervals. 

For 90% confidence and a sample size of 20, the 5% and 95% 

confidence limits thus obtained graphically are very similar to 

those given by Table 14 on page 145 and the location of the poi-~ 

nts for both 5% and 95% confidence bands, is demonstrated in fig. 

6-32 on page 148. 
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6.16 - Separation of the B failures 

The procedures described in section 6.9 on page 90 were re- 

peated for the B failures: 

The results are show in Table 15 on page 150 and in fig. 

6-33 on page 151. 
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Sample Size 
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Minimum Lite 

 



Fig. 6-33 on page 151 shows that the data do not describe 

either a straight or a smooth curve. 

one different mode of failures. 

This 

were used, which we shall call 1B and 2B. 

indicates more than 

Knowing that two types of plates 

The 1B failures are 

summirised in Tables 16 and 17 on pages 152 and 155 respectively 

and are shown in figures 6-34 and 6-35 on pages 153 and 157 

  

  

  

  

  

    

respectively. 

Ola New Cycles | New Rank Order New Median Rank 
Order | Order | to Number 
No. No. failure! (n=20) 

+x109 

1 1 4.60 1 304 

ho 2 10.53 | 1+(20))_2. 667 13-1-8.2)0.66674+8.2s 
11.4668 

hg 3 18.96 | 2.667+(20t1)=2:667.) (42.6-37.7)0. 778+ 
8.778 37 -7=41.5112 

8.74 ( 2041-827 =14.8             

Table 16 - Separation of 1B failures, with uncorrected value of 

t. 
° 
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=10.785x10" cycles and: 

8.175x6.185_ 
8.175-6.185 

From fig. 6-34 on page 153, ty 

(18.96-10.785)(10.785~4.60) 
¥,=10-785-(76.96-10.785)=(10.785-4.60) 0° (© 

=10.785-202282315..19,785-25.408229=-14.623229x10" cycles. 1-99 

The 1B failures with corrected value of ee are shown in Table 18 

on page 156 and are displayed in fig. 6-35 on page 157. 
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The 2B failures are summarised in the following.Tables 19 

and 21 on pages 159 and 163 respectively, and are shown in 

figures 6-36 and 6-37 on pages 161 and 165 respectively. 
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txi0? | F xelnt | y=tnin <4 
  

11.78 | 0.0776 | 13.97932864 -2.516071549 

12.13 | 0.1815 | 14.00860719 ~1.608029494 

13.65 | 0.2854 | 14.12666499 -1.090547893 

15651 | 0.4079 | 1425441044 -0.646111432 

18.03 | 0.5289 | 14.4049625 -0.284108607 

18.08 |0.6510 | 14.40773182 02051342482 

18.98 | 0.8332 | 14.45631126 0.582751671 

9963801684 =5-510774822           

a@ = -72.85066521 b = 5.062765174 r= 0.957665262 

For t = 11x 10°; xX = 13.91082074 y = atbx = -2.423446426 

F = 0.084802768 

For t 20 x 10° x = 14.50865774 y = 0.603261918 

F = 0.839276874 

Table 20. 

Best fitting line from Table 19 
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From fig. 6-36 on page 161, t, = 12.8 10? cycles and: 

(18.03-12.80)x(12.80-11.78) 3:25x1.02 _ 
Bo 3 12-80~(78°03-12.80)=(12.80-11.78)7 "o> 4.23 

= 12.80 = 1.2659574 = 11.534 x 10? cycles. 

The 2B failures with corrected value of WA are shown in 

Table 21 on page 163 and in fig. 6-37 on page 165. 
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6.17 = The characteristic life, or 63.2 percentile, 

6.17-a - Definition 

The characteristic life n is a scaling constant, stretching 

the distribution along the time axis. Also, when (t-t,) is equal 

to » the reliability is given by: 

RUee ch it acem! = 0.3678794412 . 

The constant n therefore represents the time, measured from 

t,=0, by which 63.21206% of the population can be expected to 

fail, whatever value is assigned to Pp - For this reason it is 

often referred to as the "Characteristic Life". 

6.17-b = Analytical calculation 

By definition, rl is the time (t-t,) corresponding to a Median 

Rank F (t-t,)=0.6321205588. Since 1-F(t-t,) =0.3678794412=0', 

we have that y=lnln Torey ats (Gy) stataodaae 1=0. 

Therefore, from y = a+bx, xin(t-t,) s- = and =(t-t,)=079/? 

For the 1B mode of failure (see page 155) 

fl we72/P238.(27)x10° cycles . 

For the 2B mode of failure (see page 164) 

5 
” ne7?/?26.631 32x10" cycles, 

For the C mode of failure (see page 116) 

" nen’ ae Le = 18.36 x 10° cycles é 

6.17-c - Graphical determination 

The value of the characteristic life 0 ,» and its 90% con- 

fidence interval can be estimated graphically. The estimate of 

the characteristic life ui is that life corresponding to the in- 

tersection of the line fitted to the data and of the dashed line 

labelled " 4 estimator". 
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For the 1B mode of failure, fig. 6-35 on page 157 

i = 368x107 cycles , 

For the 2B mode of failure, fig. 6-37 on page 165 

i = 6.6x10° cycles. . 

For the C mode of failure, fig. 6-32 on page 148 

mi = 18.4x10> cycles , 

6.18 - The Weibull slope, or shape parameter p 

6.18-a - Definition 

The Weibull slope p is a shaping constant which primarily 

controls the shape of the curve. The failure density distri- 

bution and the failure rate are shown plotted against time in 

fig. 6-38 on page 168 for various values of p- For —B <1 

the curves take on the shape associated with early life failures. 

For pe 1 the Weibull distribution reduces exactly to the expon- 

ential distribution (Z(t)=constant) and can thus represent ran- 

dom failures. For p>1 the curve takes on the form associated 

with wear out of the various types; in particular, with B=3-44, 

the Weibull distribution becomes an approximately normal distri- 

bution. 
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Fig. 6-38 Effect of B on failure density and failure rate 

for t = 0 and alg 1.0 in the Weibull distribution . 
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6.18=b - Graphical determination 

The shape parameter P can be estimated graphically from the 

plot on Weibull paper in the following manner. 

After a best-fitting line is drawn in, a draughtsman's set 

square is used to construct a line which is both perpendicular to 

the fitted line and passes through the Estimation Point at the top 

left hand corner of the paper. The estimate of p is read at the 

intersection of this line and the scale labelled B . 

For the 1B mode of failure, fig. 6-35 on page 157, pe 4.84 

For the 2B mode of failure, fig. 6-37 on page 165, p= 0.76 

For the C mode of failure, fig. 6-22 on page 119, fa 0.48 . 

6.18=c = Analytical calculation 

The slope parameter / can be calculated mareaccurately from 

equation 6-7 on page 109. We have; 

For the 1B failures (see page 155), Pp =4-92 

For the 2B failures (see page 164), P=0-76 

For the C failures (see page 116), 20-48 

6.19 - The mean life ih 

6.19-a - Definition 

Mean life is the arithmetic average of the lifetimes of all 

items considered. A "lifetime" may consist of time between mal- 

functions, time between repairs, time to removal of tubes or other 

parts, or any other desired interval of observation. 

Mean life values have meaning only in relation to type of fre- 

quency distribution assumed by the data. For example, if a con= 

stant rate of malfunction is present in the system, the times be- 

tween malfunctions will be exponentially distributed, and the 
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mean life will occur at the point where there is a 36.78794% 

per cent probability of survival. However, if the times between 

malfunctions are normally distributed, the rate of malfunctions 

will increase with time and the mean life will occur at the point 

where there is a 50 per cent probability of survival. 

6.19=b = Calculation 

6.19-b-i - Mathematical calculation 

The mean of the Weibull distribution having the parameters 1 

and p may be calculated by evaluating the integral: 

oy “1 = £ B eo | ~(2)F 

K = te. cine or) @ edt= +e a e B at. 

° H 2 

Making the change of variable u = Gr » we get: 

pe tf Ieee” lan 

Recognising the integral asT(1 + p: namely, as a value of the 

gamma function which can be determined from mathematical tables, 

we find that the mean time to failure for the Weibull model is: 

1 
Hp =” Ti+ B» 

which can be calculated using the Table in Appendix D on page 

234. 
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For the 1B mode of failure we have: 

  0.9190 

  0.9180 

0.9170 

ba----b--\ 
0.9160 1 a 

J 

  

          Eres 1.20 12h 

0.91817-0.91558 _ y = 9591938 
1.20 - 1.21 ~ 1.2066116-1.21 

y=0.91558+0.00259x0.0033884 = 0.9164576 
0.01 

and i= 38.27x10°7"(141__)=38x10°/" (1.20661157)= 
4.84 5 = 38x10°x0.9164576 = 34.825389 x 10° cycles. 
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For the 2B mode of failure we have: 

  

  

  

    

0.89600 ~@- 

| 
| 

a | 

0 B52 126 | ae | 
0.89500 + | 

! | 
0.89464 t 

| 

| 

' 

eat 0.8 : ane 131 1.3157895 1.32   

0.89600-0.89464 | y = 0.89464 
1631 = 1.32 1.3157895=1.32 

y = 0.89464 + 2200136 x 020042105 _ , 8952126 

5 1 54 1 and H= 6.63x107T (1 + dr7g)=6-6x10°x Sag Thee) = 

= 8.6842105 x10°7 (1.3157895) = 

= 8.6842105 x 10° x 0.8952126 = 77742149 x 10° cycles 
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For the C mode of failure we have: 

| + 260000 
-95973   

Va
 

-959000 47 

+ 9583067 bx — 
-958000 + ©

o
O
 oO

 
0C

O 

vo 

| | 1 Y 
7 / 

S
M
e
 

ol
e 

7 
0.957000 + 

0.956000 T 

0.95546 
0.954000 

    
    b ° o » 

0.95973 = 0.95546 _ y = 0.95546 
1.08 = 1.09 1.0833333=1.09 

¥ = 0495546 + 220042729-0066667 _ 4, 9583067 

and pint8.36210°T (145475) =18.8210° 45 Tis) 
= 392166667 x 102 (2.0833333)= 

=39.166667x10° T (1+1.0833333)=39.166667x10°x1 .0833333x 
(1.0833333)= 

=42.430556x1 0°x0. 9583067=40.661485x1 O° cycles : 
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6.19=c = Graphical determination of p 

The mean life p can also be estimated graphically from the 

Weibull plot.After a "best fitting" line is drawn in, a draughts- 

man's set square is used to construct a line which is both perpen- 

dicular to the best fitting line and passes through the Estimation 

point at the top left hand corner of the paper. The estimate of Pas 

the percentile of the mean, is read at the intersection of this 

line and the scale labelled Puc Mark Py on the ordinate scale, and 

draw a horizontal line to intersect the best-fitting line. From 

the intersection, draw the vertical to the abscissa scale to find 

A. See figures 6-35, 6-37 and 6-22 on pages 157 , 165 and 119 

respectively. 
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7 - RESULTS 

7.1 - The best estimate of the actual mean life ¢ 

Since the plots in figures 6-35, 6-37 and 6-22 on pages 157 , 

165 and 119 respectively have been obtained starting from a time 

tos the best estimate of the mean life + is ¢ = CH + t)- 

Thus 

na 
For the 1B mode of failure $=(34.825+(-14.62))x10°= 

20 »205x10° cycles 

For the 2B mode of failure 4a( 7.774411.53)x10°=19.304x107 cycles 

For the C mode of failure =(40.661+5.30)x10=45.961x10" cycles. 

7.2 - The goodness of fit of the Weibull Distribution as applied 

to the results of tests on welded specimens 

It has been mentioned that if the test data follow the Weibull 

distribution, the points will lie on a straight line. Some scat- 

ter will exist, and the best straight line can be drawn in, either 

"by eye" or more accurately using the method of least squares. 

If a straight line is not obtained (even after considering that 

t # 0, or the possibility of two or more failure modes), the da- 

ta cannot be represented by a Weibull distribution. 

It is clearly seen in figures 6-35, 6-37 and 6-22 on pages 

157, 165 and 119 respectively, that the test data follow nicely 

a straight line. Obviously some scatter exists which is normal 

but, to be sure, a test for the validity of the assumption of the 

Weibull distribution will have to be carried out on the failure 

data. 

The validity of many statistical techniques used in the calcul- 

ation, analysis, or prediction of reliability depends on the dis- 

tribution of the failure times. Many techniques are based on 
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specific assumptions about the probability distribution and 

are often sensitive to departures from the assumed distribution. 

That is, if the actual distribution differs from that assumed, 

these methods sometimes yield seriously wrong results. There- 

fore,in order to determine whether or not certain techniques are 

applicable to a particular situation, some judgement must be made 

as to the underlying probability distribution of the failure 

times. One technique only will be considered here and that is 

The Kolmogorov-Smirnov or "D-test" for goodness of fit. This is 

one of many tests designed for the purpose of testing whether or 

not the assumptions made about distributions of failure times are 

reasonable. The "D-test" is suitable for very small samples 

where other tests do not apply. It must be remembered that this 

test is used only with continuous distributions. 

It is based on the maximum absolute difference D between the 

values of the cumulative distribution of a random sample of size 

n and a specified theoretical distribution. To determine whether 

this difference is larger than can reasonably be expected, we look 

up the critical value of D on page 236 ., If the difference, D, 

is too large, the chance that the observations actually come 

from @ population with the specified distribution is very small. 

This is evidence that the specified distribution is not the corr 

ect one. 

As the maximum absolute difference or error, D, between the 

values of the actual cumulative distribution of data points and 

the Weibull distribution is less than the critical value of D 

listed in Appendix E on page 236 it is not unreasonable to assume 
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that the Weibull distribution is correct for this kind of test 

data. 

The reason for applying the "D-test", and not any other 

test, for goodness of fit, is that it is more efficient for 

small samples, which is the case in this project. 

  

  

  

Failure mode | D | Deo e1o aleRemarie 

1B 0 0.264 DeDomitical 

2B 0.83-0.66=0.17 0.264 D<Dopitical 

c 0.29-0225=0.04 0.264 DCD pitical     
  

Table 23. The Kolmogorov-Smirnov or "d-test" for goodness of 

fit. D is the maximum absolute difference or error 

between the values of the cumulative distribution of 

data points and the Weibull distribution (D is meas- 

ured from figures 6-32, 6-35 and 6-37 on pages 148, 

157 and 165 respectively. 

*D, is the critical value of D for n = 20 
0.1 

and A= 0.1. See Appendix E on page 235. 

7.3 - The sensitivity of the Weibull analysis 

From the start of the project, it was intended to test the 

sensitivity of the Weibull analysis to changes in the welding 

procedure used, by varying one welding parameter and examining 

the effect on the Weibull distribution of the failure data. If 

the analysis is sensitive, it should detect that change by having 

two Weibull distributions with different mean lives, characteris- 

tic lives, reliabilities and failure rates. 
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The welding speed was changed between two sets of specimens, 

Band C, each consisting of 10 specimens. The Weibull analysis 

indicated, successfully, as shown in fig. 6-13 on page 89, that 

there is more than one failure mode. The data were separated in- 

to two families, Band C. Applying the Weibull analysis on fami- 

ly ¢ resulted in a straight line, fig. 6-32 on page 148. But 

when it came to family B, the analysis showed two more failure 

modes, 1B and 2B, instead of one. Reexamination of the welding 

procedure used provided the answer to what caused the extra mode 

of failure. It was found that the two sub-families 1B and 2B 

were sectioned from two different welded plated with different 

sizes as shown in fig. 7-1 on page 178 
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Fig. 7-1 Sectioning of butt welded plates 
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At first, it was thought that the difference in plate sizes 

would not have any effect on the fatigue life (and hence the fai- 

lure mode) since fatigue testing was carried out under pulsating 

tension loads, but apparently it did have an effect. The differ- 

ence in size caused a difference in residual stresses and that 

can explain the change in the failure mode between the two sets of 

specimens 1B and 2B. 

According to a literature survey for transverse butt welds and 

under pulsating tension loads, residual stresses can be expected 

to have little effect on the fatigue strength (or fatigue life). 

There is contradicting evidence to that latter statement, because 

while some investigators had recorded increases in fatigue stre- 

ngth at 2x 10° cycles of about 123% for welds with the reinforce- 

(9) ment unmachined 

(10) 

as a result of stress relieving, others like 

Ross » Newman and Barney 2 found that stress relieving had no 

effect on the fatigue strength of transverse butt welds. However, 

in our case, there was a change in the fatigue life, recorded as 

a difference in mean life, as a result of differences in residual 

stresses. It is very difficult to reach conclusions without 

carrying out more experiments to investigate the effect of res- 

idual stresses on the fatigue life of welded specimens, which is 

outside the scope of this project. 

However, one thing is certain, which is, that the Weibull an- 

alysis is very sensitive even to very small changes in the welding 

Procedure used in producing the specimens. The difference between 

the three sets of specimens, C, 1B and 2B, came out as three diff- 

erent Weibull distributions, with different mean lives, character- 

istic lives, reliabilities and failure rates. 

—tio=



It is important to notice that it is not possible to com=- 

pare the results of the two sets of specimens, C and 1B, since 

they differ in more than one variable (welding speed and welded 

plate sizes from which the specimens were sectioned). Hence, 

only the results of the two sets of specimens C and 2B will be 

compared with each other to see what effect changing the welding 

speed had on the Weibull distribution of both sets. 

7-4 - Comparison between the different modes of failure 

The three modes of failure 1B, 2B and C are compared in 

Table 24 on page 180. 

  

Failure | 13 | 2B ¢ 

  

  

mode 

t, _|-14.62x107 11.53x10? 5.3x10° 
minedite cycles cycles cycles 

parameter 

ni 38x10 cycles 6.6x10° cycles 18.8x10° cycles 
90% con=| 6 pons 5 1.05 hours 3 hours 

fidence | 34x10: 42x10" | 3.4 5 12 5.6 e 47 
interval cycles x10“ cycles x10°cycles 
  

7 =) +t, 23.38x10° cycles 18.13x10° cycles 24.1x10° cycles 
  

  

      
P 4.84 0.76 0.48 

Mean 34.8°x10° cycles 7.17'x10° cycles 40.66x10° cycles 
penne 1 (5.53 hrs) (1.23 hrs) (6.46 hrs) 
=4T (145) 

30% cok-|31x107 .38.5x | 4x10? 13210 | 139x107 100x109 
fidence 10° cycles cycles cycles 
interval 

Mean 20.18x10° cycles 19.304x10° cycles 45.961x10°cycles 
value of 
t 

$=(mean |(3.2 brs) (3.06 hrs) (7.3 hrs) 
life)+t,         
Table 24. Comparison between the different modes of failure 
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Te4-a - Mean life 

Mean life has been defined as the arithmetic average of the 

lifetimes of all items considered. The "lifetime" here, con- 

sists of the time to failure of each specimen tested. As there 

are three different Weibull distributions for the three sets of 

specimens 1B, 2B and C, we can expect to have three different 

mean lives. From Table 24 on page 180, it can be seen that the 

mean life t of set 1B is 3.2 hours, while for set 2B it is 3.06 

hours. This slight change agrees with the fact that the two sets 

only differed in residual stresses, all other welding parameters 

being equal (welding, current, voltage, speed), and as previously 

discussed the change in residual stresses can be expected to have 

little effect on the fatigue life (and hence on the mean life). 

The second main thing to notice in Table 24 on page 180 is the 

marked change in the mean life q between the two sets of specimens 

2B and C due to difference in welding speed. The effect of weld- 

ing speed on the fatigue life will be discussed later in section 

7.5 on page 191, but at this stage it is sufficient to say that 

changing the welding speed affected the weld profile, and that ex- 

plains the marked change in the mean life (or the fatigue life). 

It is of importance to mention that, when mean life values, 

with no other information, are given as representative of compon- 

ent reliability, this is sometimes misinterpreted by the unitiated 

to mean that the component will operate failure-free for a period 

of time equal to the mean life. The fallacy of this conclusion 

is evident by examining fig. 7-2 on page 183, in which it is ob- 
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vious that at the mean life of each set of specimens 

2 5 5 
(¢ =20.16x10 for 1B, 19.304x10° for 2B and 45.96 x10° for C), 

52% of the 1B specimens, 32.2% of the 2B specimens and 23.5% of 

C specimens could be expected to operate failure-free. This is 

borne out by the following calculations: 

For the 1B specimens: 

5 5] 4.84 4.84 

Be r(eaea - [225 Silinis | -0.9157895 -0.6532673 
R(t)=e 1 =e eorxa 2 =e =e = 

= 025203429. 

For the 2B specimens: 

51 0-76 0.76 
= [(sasapsctts2)0 | 161778788 4 4304954 

R(t)=e eoos ae ze oe =0.3222282, 

For the C specimens: 0.48 0.48 
~[asaas.gu0"| 2.162766 -1.4481201 

5 
epee HENS ze ee =0.2350117 , 
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failure. 

-183= 

 



7-4-b - Reliability 

Once the three Weibull parameters p> » and We are determined, 

the reliability can be regarded as a function of time, as could 

be seen from the equation of reliability: 

R(t) = on {= A 
1 

Thus in specifying a component reliability, it is meaningless 

just to state the reliability figure, but the time at which it 

eccurs must also be specified. 

In fig. 7-3 on page 185, which shows the failure density dis- 

tribution f(t), the welded specimens from sets 2B and C, can- 

not fail between time 0 and to hence we can say that the reliabil- 

ity is 100% before 11.53 x 10° cycles for set 2B and before 

5.3 10° cycles for set C. But since (t,) has a negative value 

for set 1B, which means that failure can start before testing com- 

mences, the reliability does not reach 100%, as could be seen from 

fig. 7-2 on page 183. This negative value of .. can occur in 

some products like car batteries which can fail before they are 

installed. One can only suggest that the reason for the negative 

value of ty in our case, was the presence of too much residual 

stress. But again this is not certain and further investigation 

needs to be carried out on this mtter. 

From fig. 7-2 on page 183, the reliability generally decreases 

with time. At first, set C has the lowest reliability of all 

three sets, but at longer durations its reliability has the high- 

est value. Normally, when we are comparing different components 

to see which is more reliable, reliability is calculated at a spe- 

cific time. So, at 10 x 10° the reliability of each set of spec- 
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imens ae ~ doet62) gs s2as7i9 

Ryp(10x10 )se =e =0.8848193= 88.48% 

papa -0.25°°48 -9.5140569 
Ra (10x10° )se 18.8 =e =e =0.5980644=59.8% 

Thus we can see that set 2B is the most reliable in all sets 

for short durations (up to 15 x 10° cycles). At longer durat- 

ions (above 10 x 10° cycles) the reliability of all sets 1B, 2B 

and C becomes low for any practical uses. 

The fact that the mean life must be interpreted in relation- 

ship to the form of the distribution (and hence the reliability) 

on which it is based, is emphasised by considering the two sets 

5 
of specimens 1B and 2B. The reliability at 20 x 10° cycles for 

the two sets may be determined from fig. 7-2 on page 183 as 

follows: 4.84 
(20414262) 

2025288372 ~ 52.88% 

~ PO) 712087542 

§ ~ (202523) °74798472_9, see6se1 
Ro(20x10?)=e 18.8 =e =0.4111907 or 41.12% 

5 Ryp (20x10 =e 

5 BR, (20x10 jee =x 29.86% 

Thus, it is seen that the probability of non-failure for 

20 x 10° eycles is significantly higher for set 1B than it is for 

set 2B, although the mean life of set 1B is slightly higher than 

that of set 2B. 
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7-4-c - Failure rate 

A failure rate that is typical for many manufactured items is 

shown in fig. 7-4. 

  

Failure 
rate 

Z(t) 

: | 

! oa 
Baely { Chance failures ! een out 
failures \ | failures 

| | 
| | 1 

° Time 

Fig. 7-4 Typical failure-rate curve 

The curve is conveniently divided into three parts. The first 

part is characterised by a failure rate which decreases rapidly 

with time and represents the period of early failures, during 

| which poorly manufactured items are weeded out. It is common in 

the electronics industry to "burn in" components prior to actual 

use in order to eliminate any early failures). 

The second part, which is often characterised by a constant 

failure rate, is normally regarded as the period of useful life 

during which only chance or random failures occur. 
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The third part is characterised by a failure rate which in- 

creases rapidly with time and represents the period of wear-out 

failures during which components fail primarily because they are 

worn out. 

Note that the same general failure rate curve is typical of 

human mortality, where the first part represents infant mortality 

and the third part corresponds to old-age mortality. 

In fig. 7-5 on page 189, since Bis less than one for the two 

sets of specimens 2B and C, the failure-rate curves take on the 

shape associated with early life failures. One conclusion can be 

drawn out by examining the two different failure-rate curves of 

sets 2B and C; decreasing the welding speed will decrease the 

failure-rate. 

For set 1B, since Bis more than one, the failure rate curve 

takes on the shape associated with wear out failures. This change 

in the failure pattern from set 2B can, again, be attributed to 

the presence of large residual stresses in the specimens. 
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Fig. 7-5. Failure rate distribution for the various modes of failure. 
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7-5 - Effect of varying the welding speed 

It is known, from the literature on the subject, that the weld 

shape, and in particular, the reinforcement angle + between the 

plate surface and the tangent to the reinforcement at its point 

of contact with the plate surface, is the overriding factor in 

determining the fatigue strength of transverse butt joints. It 

has been found that the fatigue crack propagates from the weld toe 

at the point of minimum angle. Thus, it would seem reasonable to 

attribute the influence on fatigue strength (or fatigue life) of 

many other factors, such as plate preparation, welding conditions, 

welding process and type of electrode to their effect on the shape 

of the weld toe. 

With any combination of welding current and voltage, the effe- 

cts of changing the welding speed conform to a general pattern as 

follows: 

If the welding speed is decreased: 1) power or heat input per 

length of weld is increased; 2) more welding wire is applied per 

unit length of weld, and 3) consequently, there is more weld re- 

inforcement. 

    

            
  

  

Fig. 7-7 Effect of varying the welding speed on weld shape 

-191—-



Increasing the weld reinforcement leads to a wider weld bead 

(w increases) as shown in fig. 7-7 on page 191. If the weld 

bead height (h) remains constant, then it can be said that de- 

creasing the welding speed will result in a better weld profile. 

By that it is meant that the reinforcement angle + will be in- 

creased, leading to a better fatigue life. But if h increases, 

the reinforcement angle + can increase or decrease or remain 

constant, depending on the amount of increase in h. 

Reinforcement angle measurements showed that for all specimens, 

fatigue cracks were initiated at the point of minimum angle, and 

that they were on the same side of the welded specimen (the spec- 

imens were welded by a two-pass weld, one from each side). 

For set 2B, the average reinforcement angle at the point of 

crack initiation was 139.65°, while for set C it was 143.4°. This 

indicates that the fatigue life of set C should be higher than 

that of set 2B. 

The fact that the reinforcement angle for set C is higher than 

that of set 2B, was assessed by comparing the two weld bead widths 

and heights. Results showed that, decreasing the welding speed 

led to a noticeable increase in bead width, and only a slight in- 

crease in weld bead height. This can mean that the reinforcement 

angle increases as the welding speed is decreased in our case. 

From the above discussion, the application of the Weibull analy- 

sis to the fatigue results of the welded specimens 2B and C, sho= 

uld indicate that the mean life of set C is higher than that of 

set 2B. 

From Table 24 on page 180, the Weibull analysis gives a mean 

life t of 7.3 hours for set C, while for set 2B it gives a mean 

“aA 
life t of 3.06 hours, which agrees with the practical results. 
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It can be concluded that decreasing the welding speed will 

improve the fatigue life of the welded joint. As for the rel- 

liability of the joint, it will increase as a result of decreas- 

ing the welding speed, but only at long durations (above 15 x 10? 

cycles) as shown in fig.7-2 on page 183. 

  

  

  

  

  

Failure mode 2B c 

Average reinforcement 139° 143.4° 

angle O* 

Average weld bead 2 mm 2.37 mm 

height (h) 

Average weld bead 13.23 mm 16.22 mm 
width (w) 

h/w 0.151 0.146         
  

* Fis the average reinforcement angle at the point of crack 

initiation. 

Table 25. Comparison between the weld profiles of the two 

sets of specimens 2B and C. 
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7.6 - Conclusions 

1. 

2. 

The Weibull analysis can be applied successfully to the 

results of fatigue tests on welded joints. 

The sensitivity of the Weibull analysis is so high that not 

only does it detect the variation in the welding speed, but 

also the difference in residual stresses resulting from a 

change in the welded plate size. 

The analysis shows that, decreasing the welding speed, in- 

creases the mean life of the transversely butt welded spec= 

imen. 

Also, the reliability, at long durations, increased as a 

result of decreasing the welding speed. 
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8 -— DISCUSSION 

8.1 - Special techniques for reducing testing time 

Three methods exist whereby testing time may be reduced. 

1) Running simultaneously more specimens than we intend to fail 

eventually. 

2) Sudden death testing. 

3) Sequential analysis. 

8.1-a - Running simultaneously more specimens than we intend to 

fail eventually 

Should we require 8 failures it would result in a considerable 

time saving to test 16 items until 8 failures had occurred. In 

fact the time required to fail 8 items out of 16 is only 26% of 

the time required to fail 8 out of 8 (for a Weibull slope of 1). 

In this instance we have plotted the lowest 8 from 16 as opposed 

to all 8 from 8. 

Note: The Median Ranks for these failures must be taken from the 

first 8 of those assigned to a sample size of 16. Generally 

for a Weibull slope b the time required to fail r out of n 

as opposed to n out of n is given by: 

1/ 
log | 1- fe - 0.30685 = 0.3863 & } t 

log (262315) 
r 

  

This is particularly true for values of n greater than 20. 

For values of n less than 20 a more exact formula is used. 

log | {1 - [1 more (= (c2 CUES) )} a2 

log (0.69315 
= 
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8.1-b = Sudden death testing 

The following example is presented as an illustration of the 

use of Sudden Death Testing. 

100 units are taken for reliability examination. These are 

divided randomly into 10 sets of 10, and each set tested until 

the first failure in each set is observed. (Note: All 10 items 

in each set must be tested simultaneously). 

The test on each set will be terminated immediately the first 

failure in the set under test is observed. Thus, at the end of 

the test of all 10 sets, 10 failure values, one for each set, will 

be in evidence. These 10 failure values are arranged in ascending 

order and plotted in the usual manner on Weibull Probability Paper. 

The resulting line will be the best estimate of what is termed the 

"B6.6 Life", 6.6 being the lowest Median Rank for a test set of 

10 items. 

To relate these 10 B6.6 Life failures to the population as a 

whole it is necessary to determine the "Median Life" of the 10. 

This is obtained by reading the failure life at the 50% point. 

A vertical line is now dropped from the Median point to the 6.6% 

line and a line parallel to the B6.6 Life line, is drawn through 

this point. This second line, to the right of the first, des- 

cribes the distribution for the population as a whole. See fig. 

8-1. ‘ 

The estimate obtained in this manner is equally as good as 

the estimate that would be obtained by testing 100 units singly, 

at the same time the testing time required is reduced consider— 

ably. 
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In general, fraction reduction in test time can be evaluated 

from the following formula: 

  

{ 1/d 
n(n =i fT (1+ 1/b), | (r= 1+ 1n 2) log 2 

(r + 1/b) s. ln 2 log _rese 
69315 

Where b = Weibull slope 

r = Number of sets 

s = Number in set 

T = camma function. 

For a Weibull Slope of 1 the time required to carry out a 

"Sudden Death" test on the 100 units mentioned would be only 

19.44% of the time required to fail all 100 units singly. 

Further if all 10 sets an run simultaneously the test time 

would be further reduced to 5.37% only of the time required to 

fail 100 singly. 

Now if the sets can run simultaneously the following formula 

is used to calculate the fraction test time reduction. 

1/o 
log MR . 
  

s log M a 

where M R, is the Median Rank for the 1st value inn = rs speci- 

mens and M RL is the Median Rank for the 1st value in r specimens. 

8.1-c = Sequential analysis 

Sequential analysis provides a method of assessing the effect- 

iveness of a modification or change of specification of an exist- 

ing item. It is best applied where the item being tested is an 

expensive one or where test facilities are limited. 
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It has been shown that according to Weibull any standard dis-— 

tribution may be described by three independent variables, a slope 

parameter B a scaling parameter n » and a location parameter to 

For convenience in sequential analysis it is assumed that only 

one of these variables change when a modification is carried out 

and that this variable is the scaling parameter, also known as 

"Characteristic Life", (life to fail 63.2% of the population). 

Thus the slope is assumed the same before and after the modifica- 

tion and the Weibull line is assumed to pass through the origin, 

(4, = 0). 

The basic concept of this analysis is to test, in sequence 

sample items incorporating the modification and to compare the 

results, after each test, with knowm neonate on about the unmodi- 

fied item. This means of comparison, which will be explained 

later, enables us to make one of three decisions, with a speci- 

fied level of confidence. 

These decisions are: 

a) The modification gives a greater characteristic life. 

b) The modification does not give a greater characteristic life. 

c¢) There is insufficient evidence for either a) or b) hence a 

further test is required. 

To illustrate the method employed in arriving at one of these 

decisions, take the following example: 

Let us say that a gearbox mainshaft is known to have a Weibull 

slope of 2 and a characteristic life of 30 hours. This character- 

istic life nH) is thought to be inadequate and as a consequence 

shot peening is proposed in the hopes of increasing the value of 

4 to something above 45 hours. Hence if 50 hours is a more rea- 

sonable estimate of the shot peening shaft characteristic life 
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than 30 hours, then the true value must be above 45 hours. In 

this case the three decisions may be written as: 

a) The new material gives ue = 60 hours (slope=2). 

b) The new material gives Ml = 30 hours (slope=2). 

c) Neither a) nor b), hence a further test. 

Before a decision may be made we must set confidence levels 

such that the risk of making the wrong decision is small and 

specified. 

There are two risks involved: 

First, the probability of accepting 60 hours when 30 hours is 

the true figure. (Denote this probability as cd ). 

Second,the probability of accepting 30 hours when 60 hours is 

the true figure. (Denote this probability as p). 

For this example let us make A= p = 0.05, which means that 

we want to be wrong no more than 5 times in any 100 decisions. 

Thus we are 95% confident of any decision either for 30 hours or 

60 hours. 

To discover if he = 60 hours is a more reasonable estimate 

of characteristic life than ‘11 = 30 hours. 

Decision a) nearer na than hI 

Decision b) qi nearer hl than he ‘. 

Several tests carried out as required. 
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FIRS® TEST xo 70 hours 

b b 
For decision a) x4 - Ne ae my+ a 

b 

Mei 

(1-8) 
Coe) 

2 602 70 ae 2x1xin2+1n ( 1=-9,08) 
2204 0.05 

4900 > 1200 » (2 x 0.6931 + 2.9445) 

4900 > 5196 wa-------- untrue, therefore reject decision B)is 

b b 
For decision b) x4 <a 2 be ny + inl( B ) 

F ( 1-4 ) yt 

4900 < 1200 + 2 x 0.6931 + (3.054 

4900 <_=2022 = s- w= 2 === === untrue, therefore reject decision b). 

Accept decision c). 

SECOND TEST Xp = 40 hours 

For decision a) 70° + 40% > 1200 (2 x 2 x 0.6931 + 2.9445) 

6500 > 6860 =------ --- untrue, therefore reject decision a). 

For decision b) 70° + - < 1200 (2 x 2 x 0.6931 +(-3.0549) 

6500 < -339 ---------- untrue therefore reject decision b). 

Accept decision c). 

THIRD TEST ays 59 hours 

For decision a) 70° + 40° + 46% > 1200(2x3x0.6931 + 2.9445) 

8616 > 8523.7 -:   _ TRUE, therefore accept decision a). 

Note: When a decision is arrived at it does not mean that this 

gives the characteristic life of the modified item, but merely 

that is is nearer the true value than the other decision. Hence 

in the above example should decision a) be arrived at, we may be 

95% confident that the characteristic life of the new material is 

nearer 60 hours than 30 hours, i.e. above 45 hours. 
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8.2 - Summary of requirements for Weibull analysis 

8.2-a - Essential requirenents 

1) To ensure that the components in the sample under consid- 

eration are to specification, or are at least typical of the par- 

ent population. 

2) To specify initially the mode of failure to be considered 

such that confusion or inaccuracy are not introduced due to fail- 

ure for other reasons. 

3) To study the component so that a degree of failure is dec- 

ided upon, i.e. to decide at which point in a component's deter- 

ioration is it considered to have failed. 

4) To test a number of components such that at least seven 

have failed due to the mode of failure under consideration. It 

has been found from experience that seven plotted points on Wei- 

bull Probability Paper is adequate to; fit a good line; to give 

a reasonable level of confidence and to hold the test cost down 

to the minimum which will give meaningful results. 

5) fo analyse these failures according to the Weibull method 

and to construct the straight line representation of the failure 

distribution. 

8.2-b - Preference requirements 

1) To obtain results which do not include suspended items 

thus reducing the calculations necessary to produce the Weibull 

plot. 

2) To fit confidence bands to all Weibull plots so as to ob- 

tain a measure of confidence, whether requested or not. 

3) When time reduction methods are employed, to obtain some 

measure of the saving, by using the given formulae. 
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8.3 - Reliability prediction from service information 

It is generally agreed that reliability prediction is essen- 

tial if customer hostility and warranty cost are to be kept toa 

mininun. 

Representative rig testing may be considered the ideal method 

of obtaining and maintaining reliability levels since it is usu- 

ally quick, cheap in terms of component cost and may be repeated 

at will. However there are exceptions, for which rig testing 

would prove impractical, either due to the type of test necess— 

ary or due to the subsequent analysis of the test results. Such 

exceptions are as follows: 

When the considered items are in short supply or are very 

expensive. 

When the item is incorporated in a large assembly and cannot 

be tested individually, thus making the analysis of the results 

lengthy and complicated. 

When the rig test cannot be accelerated, thus making the coll- 

ection of results a long process and creating a large time lag 

for repeated spot checks from production. 

When it is found difficult to exactly simulete conditions ex- 

perienced in service thus somewhat invalidating any rig tests 

which may be attempted. 

In cases such as these or where a comparison is required with 

existing rig tests it is possible to implement a prediction system 

based on customer complaint or warranty returns from service. 

Before any prediction can be made, it is necessary to know the 

number of failures and the number of non-failures occurring at 

any one time in service or in any particular mileage band. It is 

this determination of non-failures that offers the most resistance 
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to the implementation of an effective system. However in the 

system proposed it is possible to determine not only the number 

of failures but also the number of non-failures. 

Given that a computer suitably programmed and containing de~ 

tails of all warranty and production information is available it 

is possible to carry out a full performance analysis on any com- 

ponent in a very short space of time. 

From the warranty claim form submitted by the repairing agent 

it should be possible to identify the chassis/unit number, the 

mileage at failure, the complaint item, the complaint and the date 

of repair. Similarly, production information should be available 

for each vehicle produced giving chassis/unit numbers, date of 

build etc. Obviously all this information will be stored within 

the computer memory banks. 

The programme needs to be such that for any one component per- 

formance call up the computer will: 

a) Sort by month of production all complaints received - this 

is achieved by identifying the unit date of build already 

on record. 

b) Sort each failure into time-in-service bands e.g. 1.MIS 

2.MIS etc. achieved by comparing the repair date with the 

build date. 

c) Arrange the month-in-service complaints into assigned 

mileage bands. 

d) Identify the total number of complaints in each band. 

e) Construct population mileage distribution charts for each 

month in service - these can be constructed from warranty 

mileages and time-in-service information already stored. 
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f£) Identify the number of non-failures in each mileage band 

for each month-in-service - obtained by multiplying the 

monthly production total by the percentage population with- 

in the mileage bands at the month-in-service point. 

g) Using the last failure mileage in each band for each month 

in service and applying the "suspended set" technique for 

the number of non-failures in each band for each month in 

service, complete the Weibull plot. 

h) From the plot provide the predicted failure levels at the 

end of the warranty period or any other time if required, 

give the minimum and mean life, the characteristic life, 

the distribution shape (slope) the Bio Boo etc. life with 

various confidence intervals. 

Such a system will enable rapid assessment of any component in 

service, give a rapid feed back of. modification action, enable com- 

parison of test schedule severity to be measured, predict the com- 

plaint level at any point in time and consequently the warranty 

cost likely to be incurred. By comparing the performance of each 

month of production, problem cause can be readily identified, a 

peak of one month alone without any design change having occurred 

would indicate operator/machine fall down. 
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8.4 - Further uses of and aids to Weibull analysis 

It has been shown earlier in this thesis that the Weibull an- 

alysis may be applied specifically to reliability and that use of 

the special Probability Paper allows us to present clearly and 

simply the characteristics of most modes of failure. 

In the following section certain systems are suggested concern- 

ing supplier liability and service stores information which using 

the basic Weibull graphical presentation would help to reduce the 

time lag between the introduction of an item with poor reliabil- 

ity, the discovery of this situation and the necessary corrective 

action. 

Since the Weibull analysis is based on a mathematical model 

involving three independent variables, it can be seen that non- 

reliability functions may be dealt with by simply assigning the 

relevant parameters in the problem to the variables in the math- 

ematical model. 

The following brief examples are intended to demonstrate this 

point and to emphasise the broad scope to which the Weibull graph- 

ical presentation may be adopted. 

8.4-a - Inspection functions (43) 

By applying the Weibull graphical technique to relatively 

small samples, accurate assessments of production capabilities may 

be obtained. 

Quick answers may be given to such questions as: 

How much scrap is produced from a particular operation during 

production? 

What proportion of this scrap lies above and below the toler- 

ance band? 

What effect does a particular production modification have on 

this scrap level? 
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What would be the most effective type of modification? 

Fig. 8-3 shows a plot of 30 sample measurements of a partic- 

ular characteristic, during an operation, and demonstrates how 

narrow is the confidence band which may be achieved for a sample 

of this size. It is obvious what sort of information may be ob- 

tained from such a plot. 

8.4-b - Manpower planning 

It is always useful, when dealing with large numbers of per- 

sonnel, to be prepared for any significant movement of manpower 

internal or external to an organisation. In many cases the dis- 

tributions thrown-up by this type of movement may be described by 

means of the Weibull analysis. 

Thus predictions may be made well ahead of the fact and com= 

pensatory action taken. 

If for example it is required to know how many of a certain 

number of personnel, recently employed in an organisation will 

have left after say 50 weeks, then it would be a simple matter to 

predict this from the information given in the first few weeks. 

A table would be drawn up, similar to the one following, and a 

plot made of length of service in two weekly bands against the 

percentage with terminated service in these periods. 

  

  

  

Length of Service % Terminated Service 

Up to 2 weeks 1.0 

Up to 4 weeks 1.8 

Up to 6 weeks 3.7 

Up to 8 weeks 4.9 

Up to 10 weeks 664      
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Hence predictions could be made with reasonable confidence if 

it is assumed that the distribution of personnel movement is a 

single one and that other aspects such as seasonal changes may 

be ignored or compensated for. 

8.4-c - Stores planning 

In order to predict how many days after ordering it is taking 

for delivery to be mde several random sample observations could 

be made. From this information, when plotted, it would be poss- 

ible to predict; what percentage of orders would have been del- 

ivered after 40 days; how long would it take for 90% of orders 

to be delivered, etc. 

The random observations would be put in a tabular form as 

  

  

follows: 

Time to delivery (days) |% Probability of Delivery 

23 10.9 

aT 26.4 

42 42.1 

48 57-8 

56 7305 

61 89.0       
  

N.B. The percentage probability of delivery values are taken 

direct from the Median Rank values for this sample size. 

8.5 - Further aids to quality and reliability functions 

8.5-a - Reliability assurance 

As a means of establishing and maintaining the level of rel- 

iability on a particular bought-out component it may be propo- 

sed that suppliers actually state a reliability level on their 

component detail drawing. This could be confirmed by a "Rel- 

iability Assurance Certificate” presented by the supplier to the 
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customer which would state a specific value of life (cycles, 

hours etc.) accompanied by a reliability level at this life. 

Requirements could be specified as to the suppliers method of 

assessing the reliability level, i.e. Weibull should be used, and 

hence spot checks could be made by a customer either as routine 

or when the components reliability fell into doubt. This of 

course would mean that the suppliers could be held responsible 

for maintaining not only quality but also reliability levels. 

It could be said that reliability assurance would ensure that 

the original design of the component was satisfactory, and qual- 

ity assurance would ensure that production components were man- 

ufactured according to this design. However once the design was 

accepted and production well established these two functions wou- 

1d work hand in hand. 

Thus a Reliability Assurance Certificate would provide the 

customers Reliability Departments with a solid basis on which to 

place their expectations from their suppliers. 

8.5-b - Reliability - Stores relationship 

As demonstrated earlier in this report the gleaning of relevant 

information from warranty return claims proves to be quite diff- 

icult unless a comprehensive information feed-back system is em- 

ployed. 

One means of by-passing the necessity for this type of feed- 

back could be to study the day-to-day stock turnover in the stores 

which supply the replacement parts to service. Thus, since any 

failure epidemic occurring in service would be reflected almost 

immediately by the output from these stores, a rapid early warn- 

ing system could be implemented based on. information concerning 

this output. 
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Care would be required to ensure that a true picture was 

given by this information. For example not all items replaced 

in service are ultimately found to be defect, therefore it would 

be necessary to deduct the number returned undefective, from the 

total issued by the stores. This would give a figure for the 

number of items failed as opposed to those merely returned. 

A further lag due to the storage capacity of the distributors 

who replace the failed items. 

The reliability service stores relationship could also work 

the opposite way since it would be possible for the results ofa 

reliability analysis to be related to the total population, thus 

giving a prediction of parts usage and an indication of the nec- 

essary stores capacity to any given item. 
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PART III - RELIABILITY PREDICTION 

9 - GUIDELINES FOR PREDICTING THE RELIABILITY OF PRODUCTS 

FROM SMALL SAMPLES 

It is now possible to draw up a set of guidelines which, ) 

although of general use, are particularly valuable when it is 

only possible to life-test a small sample. 

1) Use median ranks to estimate the cumulative percentage 

of the population failed. 

According to accuracy requirements and time available, in- 

struct the computer to use either the exact but slow formula, 

or Bernard's formula, which is extremely fast but approximate. 

For small smaples (up to 6 or 7), the first method is preferable. 

2) Beware of rejecting apparently spurious points, when they 

represent a significant part of the available date. (Rejecting 

two "inconvenient" points out of, say, seven probably amounts to 

forcing the data to fit preconceived ideas!). 
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10 = COMPUTER PROGRAMME 

10.1 = Generalities 

The computer programme has been written in BASIC fora 

Commodore PET computer 4032 and has been recorded on a standard 

tape cassette and on a "Minidisk". 

The programme is suitable for truncated or completed tests, 

with or without suspensions, for the analysis of up to 50 items. 

The data can be either typed-in directly, in any order, or 

can be recorded (again in any order) in a special portion of the 

programme. 

The data and all input instructions, as well as the inter- 

mediate and final results, are displayed on the screen; ifa 

printer is available, the final results can be plotted and tabul- 

ated on paper. 

10.2 - Characteristics of the programme 

I = Loading 

The programme is loaded using either cassette or disc. 

II - Print Heading 540-620 

As soon as the command RUN is given, first the screen is 

cleared of all previous information and then the following words 

appear on the screen: "THIS PROGRAMME IS SUITABLE FOR TRUNCATED 

OR COMPLETED TESTS, WITH OR WITHOUT SUSPENSIONS, OF PR COMPONENTS. 

I IS THE NUMBER AT WHICH THE TEST IS TRUNCATED; 

MR IS THE MEDIAN RANK 

R IS THE RELIABILITY 

L IS THE FAILURE RATE 

A ARE THE LIFE DATA". 
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III - Data Input 630-1010 

Pre-recorded data can now be read by typing RE, or data can 

be input after typing IN. In the latter case, the following in- 

structions appear on the screen: "GIVE 1st VALUE OF A (ENTER THE 

LIFE, FOLLOWED BY A COMMA AND THEN BY AN F FOR A FAILURE OR AN S 

FOR A SUSPENSION. TO END, ENTER 99999,)". The operator now en- 

ters the first datum available and presses the return key. The 

computer now instructs: "GIVE 2nd VALUE OF A ETC.". The opera- 

tor enters second datum and presses the return key. This process 

is repeated until all data are entered, when the operator should 

enter the rogue value "99999," to get the programme going. Notice 

that the data can be entered in any order whatsoever, since the 

computer is programmed to rearrange all the data in order of in- 

creasing value. 

IV - Data Sorting 

The data are now sorted in increasing order. 

V - Tabulation of Data 

Item numbers, life data and failure mode are now tabulated on 

the screen in the correct order of increasing values. 

VI - Alterations to Data 

The data must now be checked and, if any mistakes were made, 

alterations can be typed in. The corrected data are again sorted 

in increasing order and displayed on the screen. 

VII = Input No. of Items to be tested 

The following words now appear on the screen; 

"WHAT IS THE NUMBER PR OF ITH{S TO BE TESTED?" 

The operator must now input the number PR. 
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VIII - New Rank Orders 1340-1470 

If there are any suspensions, the computer calculates the New 

Rank Order. 

Tabulation 1480-1580 

The computer then tabulates four columns of data: the item 

number from 1 to I, the life data A, the failure mode (F or §), 

and the New Rank Order for all items from 1 to I. If there are 

no suspensions, the New Rank Order is the same as the item number. 

IX = Choice of’ formula for calculating the Median Ranks 

F 1590-1710 

The computer now asks: “IF YOU WISH TO CALCULATE THE MEDIAN 

RANKS F(K) USING THE ACCURATE BUT VERY SLOW BINOMIAL FORMULA, 

TYPE B1. IF YOU WISH TO USE THE APPROXIMATE BUT VERY FAST 

BERNARD'S FORMULA, TYPE BE". 

X - Median Ranks 

As soon as the operator types in the required choice, the 

computer calculates and displays the normal Median Ranks F(K) for 

all the PR items, assuming there are no suspensions. 

XI - New Median Ranks 2070-2250 

The computer calculates the New Median Ranks, assuming there 

are some suspensions, and displays four columns of data: The it- 

em numbers, the life data, the new rank order and the new median 

ranks for those items only which are failures, ignoring suspensi- 

ons. 

XII - Various Calculations 2260-2480 

The computer calculates X=ln A, Dx Cumulative reliability 

Re1-MR, failure rate L=(-1n(1-MR))/A, y=lnIn(1/(1-™R)), > Y, 

Dee >a and > ye 
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XIII - Tabulation 3400-3470 

The computer now tabulates life data A, new Median Ranks MR, 

X=ln A, and ¥ = Inin =—_ 

XIV - Weibull plot 

The computer displays a Weibull plot of X against Y. 

XV-Correction for t, # 0(4970-5700) 

The following words now appear on the screen: "IS THE 

WEIBULL PLOT A STRAIGHT LINE? ‘TYPE YES OR NO". 

If the points are approximately on a straight line, the oper= 

ator types YES and the programme continues.See Section 10.2-XVI. 

If the points are not on a straight line, the operator types 

NO. The computer calculates and displays: YM and its correspon- 

ding value M2; the equation of the best fitting curve; and the 

roots “= of the equation of the best fitting curve. 

The computer now requests: "GIVE SUITABLE VALUE OF AX CORR= 

ESPONDING TO M2", 

Remembering that a correct value of AX must be comprised be- 

tween the smallest and the largest of the life data, the operator 

can easily discard the unsuitable value of AX and input the suit- 

able value, corresponding to to. 

The computer then calculates and displays t. 

The following words now appear on the screen: "IS WEIBULL 

PLOT CONCAVE TO THE RIGHT OR TO THE LEFT?" The operator must 

type RIGHT or LEFT as need be. The computer then adds or sub- 

tracts oes as required, from all the original life data, and goes 

back to stage 10.2-VIII. 

XVI - Display type of test 

One of the following headings is displayed, as required: 

Either: 
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TRUNCATED TEST WITHOUT SUSPENSIONS OF 1 OUT OF PR ITEIS 

or: 

COMPLETED TEST WITHOUT SUSPENSIONS OF PR ITHIS 

or: 

TRUNCATED TEST WITH SUSPENSIONS OF 1 OUT OF PR ITEMS 

or: 

COMPLETED TEST WITH SUSPENSIONS OF PR ITHIS 

XVII - Tabulate A, MR, R, L. 

Immediately under the heading, the computer now tabulates the 

life data t, the New Median Ranks MR, the reliability R and the 

failure rate L. ; 

XVIII - Calculate M, N, CL, RC 

The computer calculates the intercept M and the slope N of 

the best fitting line: Y = M+ NX, the characteristic life CL 

and the Regression Coefficient RC. 

XIX - Calculate [ and yp 

The computer calculates the gamma function G and the mean 

life A = CL x G 

XX - Final display 

The computer now displays heading (as at section 10.2-XVI), 

tabulates A, X, MR, Y, R and L, and displays M, N, shape para- 

meter, correlation coefficient, characteristic life, mean life, 

B1 life, B10 life, B20 life, B50 life, YM, M2, AK, AO, PR, I. 

EXI - Weibull plot 

On depressing any one key, the computer now displays the Wei- 

pull plot of y=inin TaD on the ordinate against x=ln + on 

the abscissa. 
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XXII - Linear plot 

On depressing any one key the computer now displays the plot 

of the median ranks F(t) on the ordinate against the life data t 

on the abscissa. 

XXIII - Failure rate plot 

On depressing any one key, the computer displays the plot of 

the failure life L on the ordinate against the life data t on 

the abscissa. 

XXIV - Print-out 

The following words now appear on the screen: 

"DO YOU REQUIRE A PRINT OUT? 

PLEASE ANSWER YES OR NO". 

If the operator types NO, the programme ends. If the opera- 

tor types YES, and if a printer is available,a printout is pro- 

duced showing all items described in 10.2-xXX to XXIII inclusive, 

and the programme ends. 

A number of print-outs are collected in a special pocket at 

the end of this thesis. Some are based on imaginary data, and 

some on actual tests discussed in the previous Chapter. These 

print-outs are accompanied by tables and Weibull plots, obtained 

in the traditional manner, for comparison purposes and to show 

the large amount of labour and time that the computer programme 

Can save. 
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11 = GENERAL CONCLUSIONS 

Weibull probability plotting as a computer-assisted graph- 

ical method for data analysis is simple, fast and flexible. It 

is simple because it requires only a few easy operations that 

are easily learned: a) Enter the data in the computer pro= 

gramme, in any order; b) Analyse plots produced; c) If necess- 

ary, remove or shift spurious data (see Chapter 9); d) If plot 

is curved, ask computer to calculate re and to re-enter the data 

as (t-t5)5 e) Use answers in computer's print-out to take nec- 

essary decisions. It is fast because: a) Erroneous data are id- 

entified by specific shape patterns in the plots; b) On linear 

plots, the Weibull parameter values are obtained directly by a 

visual observation of the computer's print-out. It is flexible 

because: a) One picture is worth ten thousand words; b) The 

probability points, or percentiles, corresponding to many values 

of the variable of interest, may be determined (visually). 
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12 - RECOMMENDATIONS FOR FUTURE WORK 

The Author thinks that the most valid improvement to the 

Computer Programme would be the addition of routines for cal- 

culating the 5% and 95° Ranks, and for plotting the confidence 

limits. The subject has been dealt with, analytically and 

graphically, in section 6. . 
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MOA
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D
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ORDER 

o
I
 
n
u
e
w
 

w 

1 
12 

1B 
14 
15 
16 
17 
18 

19 
20 

q 

5.0 

1 

0.4 

3-3 

7.8 

13.5 

19.9 

2761 

3469 

43.5 

52.9 

63.5 

76.1 

2 

2.5 

22.3 

12 

0.4 

3.0 

Tel 

12.2 

18.1 

24.5 

3165 

39.0 

47-2 

5661 

66.1 

77-9 

FIVE PERCENT RANKS 

SAMPLE SIZE 

3 

1.6 

13.5 

36.8 

4 

1.2 

967 

24.8 

47.2 

5 

1.0 

7.8 

18.9 

3462 

54-9 

0.8 

6.2 

15.3 

2761 

41.8 

60.6 

FIVE PERCENT RANKS 

SAMPLE SIZE 

13 

0.3 

2.8 

6.6 

11.2 

16.5 

22.3 

28.7 

3504 

42.7 

50.5 

58.9 

68.8 

7964 

14 
0.3 
2.6 
6.1 

10.4 

15.2 
20.6 
26.3 
32.5 
39.0 
45.9 
5304 
61.4 
10.3 
80.7 
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15 

0.3 

204 

5.6 

9.6 

1461 

19.0 

24.3 

29-9 

3569 

4202 

48.9 

56.0 

63.6 

72.0 

81.8 

16 

0.3 

202 

503 

9.0 

1322 

17.7 

22.6 

27.8 

333 

3901 

45-1 

51.5 

58.3 

65.6 

736 

82.9 

0.7 

5-3 

12.8 

22.5 

3461 

47.9 

6541 

AT 

0.3 

201 

4.9 

8.4 

12.3 

16.6 

21.1 

26.0 

31.0 

36-4 

41.9 

47-8 

53-9 

60.4 

67.3 

74.9 

83.8 

0.6 

4.6 

11.1 

19.2 

28.9 

40.0 

5269 

68.7 

18 

0.2 

2.0 

467 

7.9 

11.6 

15.6 

19.8 

24.3 

2941 

34.0 

39-2 

44.9 

50.2 

56.1 

62.3 

68.9 

76.2 

84.6 

0.5 
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9.7 

16.8 

2561 

3444 

45.0 

57.0 

71.6 

19 

0.2 

1.9 

4.4 

725 

10.9 

14.7 

18.7 

22.9 

27.3 

32.0 

36.8 

41.8 

47.0 

5264 

58.0 

64.0 

1064 

17-3 
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0.5 
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8.7 
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3943 

49.3 

60.5 
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0.2 
1.6 

3.8 
6.4 
9.4 

12.6 
15.9 
19.5 
23.2 
27.1 
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39.5 
43.9 
48.4 
5301 
58.0 
63.0 
68.4 
74.0 
80.1 
87.2 

FIVE PERCENT RANKS 

SAMPLE SIZE 

23 
0.2 

1.5 

3.6 

601 
8.9 

12.0 

15.2 

18.6 

22.1 

25.8 
29.6 
3365 
37.5 
41.6 
45.9 
50.3 
54.9 
59.6 
64.5 
69.6 
75.0 
80.9 

87.7 

24 
0.2 

Te5 

304 
5.9 
8.5 

1164 

14.5 
Aer, 
2161 

24.6 
28.2 
31.9 

35-7 
39.6 
43.7 
47.8 
52.1 
56.5 
61.0 
65.8 
70.7 
76.0 
81.7 
88.2 

25 

0.2 

164 

343 

5.6 

8.2 

11.0 

13.9 

17.0 

20.2 

2365 

26.9 

30.5 

3461 

37-8 

41.6 

45.6 

49.6 

53-7 

58.0 

62.4 

67.0 

71.8 

76.8 

82.3 

88.7 

-227- 

26 
0.1 
13 
3.2 

5.4 
7.8 

10.5 
13.3 
16.3 
19.3 
22.5 
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89.4 
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30.0 

33-8 
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71.1 
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9.0 
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30.8 

33-8 

36-9 

40.1 

43-3 
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50.0 
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25-9 

28.7 

31.5 
34-4 
3763 
40.3 
43-3 
46.4 
49.5 
52.7 
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59.3 
62.8 
66.3 
69.9 
73.6 
17.5 
81.6 
86.0 

91.0 

FIVE PERCENT RANKS 
SAMPLE SIZE 

33 

0.1 

1.0 

265 

4.2 

661 

8.2 

10.4 

12.6 

15-0 

17.4 

19-9 

22.5 

2541 

27-7 

30.4 

33-2 

36.0 

38.9 

41.8 

44.8 

47-8 

50.9 

54.0 

57-2 

60.4 

63.8 

67.2 

70.7 

74.3 

7861 

82.1 

86.4 

91.3 

34 
0.1 
1.0 
2.4 
4.1 
5.9 
7.9 

10.0 

12.2 

14.5 
16.9 
19.3 
21.7 
24.3 
26.8 
29.5 
32.1 
34.8 
37.6 
40.4 
4303 
46.2 
49.1 
52.1 
5542 
58.3 
61.5 
64.7 
68.1 
1.5 
75.0 
78-7 
82.6 

86.7 
91.5 
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35 

O01 

1.0 

2-3 

3.9 

5.8 

7.7 

967 

11.9 

14.1 

16.3 

18.7 

2161 

23-5 

26.0 

28.5 

31.1 

33-7 
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41.9 

44-7 
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56.3 
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46.0 
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37 

0.1 
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2-2 
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7.3 

9.2 

11.2 

13-3 

1544 

17.6 

19.8 

2261 

24-5 

26.9 

29.3 

31.7 
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41.9 
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50.0 
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80.3 

83.9 

87.8 

92.2 
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3.6 
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8.9 

10.9 

12.9 
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23.8 
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33-2 

35-7 

38.2 

40.7 

43-3 

45.9 
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51.2 
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2301 
25.4 
27-6 
30.0 
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34.7 
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42.0 
44.5 
4701 
49.6 
52.3 
54.9 
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60.3 
63.1. 

66.0 

68.9 

71.8 

T4.9 

78.0 

81.3 

84.7 

88.4 

92.6 

40 

0.1 

0.8 

2.0 

364 

5.0 

6.7 

8.5 

10.3 

12-2 

1462 

16.2 

18.3 

2004 

22.5 

24.7 

26.9 

2961 

3164 

33-7 

3661 

38-4 

40.8 

43.3 

45-7 

48.2 

50.8 

53-3 

5549 

58.6 

61.2 

64.0 

66.7 

69.6 

72.5 

T5404 

78.5 

81.7 

85.0 

88.6 

92.7
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FIVE PERCENT RANKS 
SAMPLE SIZE 

RANK 
ORDER 41 42 43 44 45 46 47 48 49 50 

1 On leeOndy » (Onlees Osteo WO.tnOate Os time OstumsO die Ost 
2 0.8) 0.8 Ore) O06 0.7 90.7 . Os7 O67 21087. O67 
3 DOs) 1.9 elsel ea l<Gr MteOurls7 Vel) alaOus ‘eG 
4 Soe S03 See elm wa.0 | a 3s0) UID.o). 2.8c 2B 2.7, 
5 40.9 468 4.6 4.5 464 4.3 4.2 4.1 4.1 4.0 
6 Gop Ose 6662 Goll cu5.9u nto. Com aosy ©, Seb coeds 503 
z BrOuied.ONE76S STs Gio) a sSun Teo eatc0 Ged. Gor 
8 AsO, 95) - 966, 9.3) oOe12'8.9 68.7) Bs5r 88.3 2.8.2 
9 1109 11.6 941.3. 11.1 4058 10.6 10.3 10.1 9.9 9:7 

10 WasGeise> Gel) 12s6uioes) lose8 12.0. 116790915 site 
1 15.8 15.4 15.0 14.6 24.3 14.0 13-7 1304 13.1 12.8 
12 97.8) V7.3). 1669) 16e5 1661 1567) 1564 2151 1407" 1464 
13 19.8 19.3 18.9 18.4 18.0 17.5 17.2 16.8 16.4 16.1 
14 21.9 21.4 20.8 20.3 19.8 19.4 18.9 18.5 18.1 17.7 
15 24.0 23.4 22.8 2213: 21.7 21.2 20.8 2063 19.9 19.4 
16 26.2 25-5 2409 2403 2367 23.1 22.6 2201 21.6 21.2 
17 28.4 27.6 26.9 26.3 25.6 25.0 24.5 23.9 23.4 22.9 
18 30.6 29.8 29.0 28.3 27.6 27.0 26.4 25.8 25.2 24.7 
19 32.8 32.0 3162 3004 29.6 28.9 28.3 27.6 27.0 26.5 
20 35.1 3402 33.3 32-5 31.7 30.9 30.2 29.5 28.9 28.3 

21 3704 3604 3565 34.6 33.7 32.9 32.2 31.5 30.8 30.1 
22 39.7 38.7 37-7 3607 35.8 35.0 34.2 33-4 32.6 31.9 
23 42.1 41.0 39.9 38-9 37.9 37.0 36.2 35.3 34.5 33-8 
24 44.5 43.3 42.2 41.1 40.1 39.1 38.2 37.3 36.5 35-7 
25 46.9 45.6 44.4 43.3 42.2 41.2 40.2 39.3 38.4 37.6 
26 49.3 48.0 46.7 45.5 4424 43.3 42.3 41.3 40.4 39.5 
27 51.8 50.4 49.1 47.8 46.6 45.5 42.4 41.4 
28 54.3 52.8 51-4 50.1 48.8 47.6 46.5 45.4 44.4 43.4 

29 56.9 55.3 53-8 52.4 51.1 49.8 48.6 47.5 46.4 45.3 

30 59.5 57.8 56.2 54.8 53-4 52.0 50.8 49.6 48.4 47.3 
31 62.1 60.3 58.7 57.1 55.7 54.3 52.9 51.7 50.5 49.3 

32 64.8 62.9 61.2 59.5 58.0 56.5 55.1 53.8 52.6 51.4 
33 67.5 65.5 63-7 62.0 60.4 58.8 57-4 5620 54.7 53-4 
34 70.3 68.2 66.3 64.5 62-7 61.1 59.6 58.2 56.8 55-5 
35 7301 7069 68.9 67.0 65.2 63.5 61.9 60.4 58.9 57.6° 
36 76.0 73s7 7125 69.5 67.6 65.9 64.2 62.6 61.1 59.7 

iY 79.0 76.5 74.3 7221 70.2 68.3 66.5 64.9 63.3 61.8 
38 82.1 79.5 77.0 74.8 7207 70.8 68.9 67.2 65.5 64.0 
Bo 85.4 82.5 7969 7765 7523 7303 71.3 69.5 67-8 66.2 

+ - . + > Bw . w 

40 88.9 85-7 82.9 80.3 78.0 75-8 73-8 7149 70.1 68.4 
41 92.9 89.1 86.0 83.3 80.8 78.4 76.3 74.3 72.4 70.6 
42 93.1 89-4 86.8 83.6 81.1 78.9 76.8 74.8 72.9 
43 93.2 89.6 86.6 83.9 81465 7963 77-2 75.3 

44 93.4 89.8 86.9 84.3 81.9 79.7 77.6 

45 93.5 90.0 87.2 84.6 82.2 80.1 

46 93.6 90.3 87.4 84.9 82.6 

47 93.8 90.4 87.7 985-2 

48 93.9 90.6 87.9 

49 94.0 90.8 

90 
94.1 

-229=
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1 

95.0 

1 

23.8 

36.4 

47.0 

56.4 

65.0 

72.8 

80.0 

86.4 

92.1 

96.6 

99.5 

2 

77.6 

97-4 

12 

22.0 

33.8 

43.8 

52.7 

60.9 

68.4 

1564 

81.8 

87.7 

92.8 

96.9 

9965 

NINETY FIVE PERCENT RANKS 

3 

6361 

86.4 

98.3 

NINETY FIVE 

SAMPLE 

13 

20.5 

31.6 

41.0 

4904 

5722 

64.5 

71.2 

77.6 

83.4 

88.7 

93-3 

97-1 

99.6 

4 

52.7 

7561 

90.2 

98.7 

14 
19.2 

29.6 

38.5 
46.5 
54.0 
60.9 
67.4 
73.6 
79.3 
84.7 
89.5 
93.8 
97.4 
99.6 

SAMPLE SIZE 

5 

45.0 

65.7 

81.0 

92.3 

98.9 

6 

39-3 

58.1 

72.8 

84.6 

93-7 

99-1 

i 

34.8 

52.0 

65.8 

77.4 

87.1 

94.6 

99-2 

PERCENT RANKS 

SIZE 

15 

18.1 

27.9 

36.3 

43.9 

51.0 

5767 

64.0 

70.0 

75.6 

80.9 

85.8 

90.3 

94.3 

97-5 

99.6 
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16 
17.0 
26.3 

34.3 
41.6 
48.4 
54.8 
60.8 
66.6 

72.1 
17.3 
82.2 
86.7 

90.9 
94.6 
97.7 
99.6 

16.1 

25.0 

32.6 

39.5 

46.0 

52.1 

58.0 

63.5 

68.9 

73-9 

78.8 

83.3 

87.6 

91.5 

95.0 

97.8 

99.6 

8 

31.2 

47.0 

5969 

TAs0) 

80.7 

88.8 

95.3 

99.3 

18 

15.3 

23.7 

31.0 

37-6 

43.8 

49.7 

55-4 

60.7 

65.9 

70.8 

75.6 

80.1 

84.3 

88.3 

92.0 

95.2 

97-9 

907 

9 
28.3 
42.9 
54.9 

65.5 

74.8 

83.1 

90.2 
95.8 
99.4 

19 

14.5 

22.6 

29.5 

3549 

41.9 

4765 

52.9 

58.1 

6361 

67.9 

72.6 

TT.0 

81.2 

85.2 

89.0 

92.4 

9565 

98.0 

99.7 

25.8 

39-4 
50.6 

60.6 

69.6 

T7767 

84.9 

91.2 

96.3 

994 

20 

13.9 

21.6 

28.2 

34.3 

40.1 

4505 

50.7 

55.8 

60.6 

65.3 

69.8 

74.1 

78.2 

82.2 

86.0 

89.5 

92.8 

95-7 

98.1 
99-7



APPENDIX C 

RANK 

QRDER 21 
1 13.2 

2 20.6 

3 27.0 
4 32.9 
5 38.4 
6 43.6 
7 48.7 
8 53.5 
9 58.2 

10 62.8 

11 67.1 

12 1.4 
13 7565 
14 1904 
15 83.1 

16 86.7 
17 90.1 
18 93.2 
19 95.9 
20 98.2 

21 99.7 
22 
23 
24 
25 
26 
27 
28 

29 
30 

22 

12.7 

19.8 

25.9 

31.5 

36.9 

41.9 

46.8 

51.5 

56.0 

60.4 

64.7 

68.8 

72.8 

7667 

80.4 

84.0 

87.3 

90.5 

93-5 

96.1 

98.3 

99-7 

NINETY FIVE PERCENT RANKS 

eo 

12.2 

19.0 

24.9 

30.3 

3544 

40.3 

45.0 

49.6 

54.0 

58.3 

62.4 

66.4 

70.3 

74.1 

17-8 

81.3 

84.7 

87.9 

91.0 

93.8 

96.3 

98.4 

9967 

24 
Me 
18.2 
23.9 
29.2 
34.1 

38.9 
43.4 
47.8 
52.1 
56.2 
60.3 
64.2 
68.0 

Tae 
15.3 
78.8 
82.2 

85.4 
88.5 
91.4 
94.0 
96.5 
98.4 
99.7 

SAMPLE SIZE 

25 

11.2 

17.6 

23.1 

28.1 

32.9 

3765 

41.9 

46.2 

50.3 

54.3 

58.3 

62.1 

65.8 

69.4 

73.0 

76.4 

19-7 

82.9 

86.0 

88.9 

91.7 

94.3 

96.6 

98.5 

99.7 

~231- 

26 

10.8 

16.9 

22.2 

Client 

31.8 

36.2 

40.5 

44.6 

48.7 

52.6 

56.4 

60.1 

63.7 

67.3 

70.7 

74.1 

77-4 

80.6 

83.6 

86.6 

89.4 

92.1 

94.5 

96.7 

98.6 

99.8 

27 

10.5 

16.3 

21.5 

26.2 

30.7 

35.0 

39.2 

43.2 

47.1 

50.9 

54.6 

58.2 

61.8 

65.3 

68.6 

W129 

1502 

78.3 

81.3 

84.3 

87.1 

89.8 

92.4 

94.7 

96.9 

98.6 

99.8 

28 

10.1 

15.8 

20.8 

25.4 

29.7 

33-9 

37-9 

41.8 

45.6 

49.3 

52.9 

56.5 

59.9 

63.3 

66.6 

69.9 

73.0 

7661 

7901 

82.0 

84.9 

87.6 

90.2 

92.6 

94.9 

97.0 

98.7 

99.8 

29 

9.8 

15.3 

2061 

24.6 

28.8 

32.8 

36.8 

40.5 

44.2 

4769 

51.4 

54.8 

58.2 

61.5 

64.7 

67.9 

71.0 

74.1 

77.0 

79.9 

82.7 

85.4 

88.0 

90.5 

92.9 

95.1 

9761 

98.7 

99.8 

30 

905 

“14.8 

19.5 

23.8 

27.9 

31.8 

35-7 

39.3 

42.9 

46.5 

49.9 

53-3 

56.6 

59.8 

63.0 

66.1 

69.1 

72.1 

15.0 

17.8 

80.6 

83.3 

8509 

88.5 

90.9 

9361 

95-3 

97.2 

98.8 

99.8



APPENDIX ¢ 

RANK 
QRDER 31 

1 9.2 

2 14.4 

3 18.9 

4 23.1 

5 2761 

6 30.9 

v 34.6 

8 38.2 

S 41.7 

10 45.1 

1 48.5 

12 51.8 

13 55.0 

14 58.2 

15 61.3 

16 64.3 

tT 67.3 

18 1062 

19. 7341 

20 7569 

21 78.6 

22 81.3 

23 83.9 

24 86.4 

25 88.8 

26 91.2 

27 93-4 

28 9504 

29 97.3 

30 98.8 

31 99.8 

32 

33 

34 

35 

36 

37 

38 

2 

40 

32 

8.9 

13.9 

18.3 

22.4 

26.3 

30.0 

33.6 

3741 

40.6 

43.9 

47.2 

50.4 

53-5 

56.6 

59.6 

62.6 

65.5 

68.4 

71.2 

74.0 

76.7 

7903 

81.9 

84.4 

86.9 

89.2 

91.5 

93.6 

95.6 

97-3 

98.8 

99.8 

NINETY FIVE PERCENT RANKS 

33 

8.6 

13.5 

17.8 

21.8 

25.6 

29.2 

32.7 

36.1 

39.5 

42.7 

45-9 

49.0 

52.1 

5561 

58.1 

61.0 

63.9 

66.7 

69.5 

72.2 

74.8 

17.4 

80.0 

82.5 

84.9 

87.3 

89-5 

91.7 

93-8 

95-7 

97.4 

98.9 

99.8 

34 

8.4 

1342 

17.3 

21.2 

24.9 

28.4 

31.8 

3542 

38.4 

41.6 

44.7 

47.8 

50.8 

53-7 

56.6 

5965 

62.3 

65.1 

67.8 

T0.4 

7301 

75-6 

78.2 

80.6 

83.0 

85.64 

87-7 

89.9 

92-0 

94.0 

95-8 

9765 

98.9 

99.8 

-232= 

SAMPLE SIZE 

35 

8.2 

12.8 

16.9 

20.6 

24.2 

27.7 

31.0 

34.3 

3764 

40.5 

43.6 

46.6 

49.5 

52.4 

55-2 

58.0 

60.8 

63.5 

66.2 

68.8 

7164 

73.9 

76.4 

78.8 

81.2 

83.6 

85-8 

88.0 

90.2 

92.2 

9461 

96.0 

97-6 

98.9 

99-8 

36 
7.9 

12.5 
16.4 
20.1 
23.6 
27.0 
30.2 
33-4 
36.5 
39.5 
42.5 
45.4 
48.3 
51.1 
53.9 
56.6 
59.3 
62.0 
64.6 
67.2 
69.7 
J2e2 
74.7 
TT.4 
79.5 
81.8 
84.0 
86.2 
88.4 
90.5 

92.4 
94.3 
96.1 
97.6 
99.0 
99.8 

37 
aT 

12.1 

16.0 
19.6 
23.0 
26.3 

29.5 
32.6 
35.6 
38.6 
41.5 
44.3 
47.1 
49.9 
52.6 
55.3 
58.0 

60.6 
63.1 

65.7 
68.2 
70.6 
73.0 
75.4 
17.8 
80.1 

82.3 

84.5 
86.6 
88.7 

90.7 
92.6 
94.5 
96-2 
97.7 
99.0 
99.8 

38 

75 

11.8 

15.6 

19.1 

22.4 

25.6 

28.8 

31.8 

34.7 

37.6 

40.5 

43.3 

46.0 

48.7 

51.4 

54.0 

56.6 

59.2 

61.7 

64.2 

66.7 

69.1 

7165 

73.8 

76.1 

7864 

80.6 

82.8 

84.9 

87.0 

89.0 

91.0 

92.8 

94.6 

96.3 

97.8 

99.0 

99.8 

39 

7.3 

1165 

15.2 

18.6 

21.9 

25.0 

28.1 

31.0 

3369 

36.8 

39.6 

42.3 

45.0 

47.6 

50.3 

52.8 

55-4 

57.9 

60.4 

62.8 

65.2 

67.6 

69.9 

72.3 

1465 

76.8 

79.0 

81.1 

83.3 

85-3 

87.3 

89.3 

91.2 

93-0 

94.8 

96.4 

97-8 

99.0 

99.8 

40 
+ 7.2 

11.3 

14.9 

18.2 

21.4 

24.5 

27.4 

30.3 

33.2 

35-9 

38.7 

41.3 

44.0 

46.6 

49.1 

51.7 

54.2 

56.6 

59.1 

61.5 

63.8 

66.2 

68.5 

70.8 

73-0 

1502 

TT+4 

7905 

81.6 

83.7 

85-7 

87.7 

89.6 

9144 

93-2 

9469 

96.5 

9769 

9901 

99.8



APPENDIX C 

NINETY FIVE PERCENT RANKS 
SAMPLE SIZE 

RANK 
ORDER 41 42 43 44 45 46 47 48 49 50 

1 T0658) 6.7 665 G64. (603) 86.4) 650.0 529 5-8 
2 1150 10.8) 10.5) 1053, "1051, (9.9 99.7 69.5 99.3 9-4 
Bb 44.5) 14,2 1359 4506 1955 915-0 12.77°12.5 72.2 42.0 
4 17.0) Vide V7.0" 16.6),.16.3 , 1650 .15.6 115.5. 15.0 44.7 
B 2069) 220.4. 12050) 19.60 19.1 16.Bicle.4 60 4767) 1763 
6 23-9 2324 22.9 22.4 21.9 21.5 21.0 20.6 20.2 19.8 

ip 26.8 26.2 25.6 25.1 24.6 24.1 23.6 23.1 22.7 22.3 
8 29.6 29.0 28.4 27.8 27.2 26.6 26.1 25.6 25.1 24.6 
9 32.4 31.7 31.0 30.4 29.7 29.1 28.6 28.0 27.5 27.0 

10 35-1 34.4 33.6 32.9 32.3 31.6 31.0 30.4 29.8 29.3 
14 37-8 37.0 36.2 35.4 34.7 34.0 33.4 32.7 32.1 31.5 
12 4054 39.6 38.7 3729 3762 36.4 35.7 35.0 34.4 33.7 
13 43.0 42.1 41.2 40.4 39.5 38.8 38.0 37.3 36.6 35.9 
14 45.6 44.6 43.7 42.8 41.9 41.1 40.3 39.5 38.8 38.1 
15 48.1 47.1 46.1 45.1 44.2 43.4 42.5 41.7 41.0 40.2 
16 5006 49.5 48.5 4745 46.5 45-6 44.8 43.9 43.1 42.3 
17 53-0 51.9 50.8 49.8 48.8 47.9 47.0 46.1 45.2 44.4 
18 5504 54.3 53-2 52.1 51.1 50.1 49.1 48.2 47.3 46.5 
19 57-8 56.6 55.5 54.4 53.3 52.3 51.3 50.3 49.4 48.5 
20 60.2 58.9 5767 56.6 55.5 54.4 53.4 5204 51.5 50.6 

21 62.5 61.2 60.0 58.8 57.7 56.6 55.5 54.5 53-5 52.6 
22 64.8 63.5 62.2 61.0 59.8 58.7 57.6 56.6 55.5 54.6 
23 67.1 65.7 64.4 63-2 62.0 60.8 59.7 58.6 57.5 56.5 
24 69.3 67.9 66.6 65.3 64.1 62.9 61.7 60.6 59.5 58.5 
25 T1.5 7001 68.8 67.4 66.2 64.9 63.7 62.6 61.5 60.4 
26 7307 72.3 70.9 69.5 68.2 67.0 65.7 64.6 63.4 62.3 
27 75-9 Thed 7300 7106 7003 69-0 67.7 66.5 65.4 64.2 
28 78.0 76.5 75.0 7366 723 71.0 69.7 68.5 67.3 66.1 
29 80.1 78.5 77.1 7506 74.3 72.9 71.6 70.4 69.1 68.0 
30 82.1 80.6 79.1 77-6 76.2 74.9 73.5 72.3 71.0 69.8 

31 84.1 82.6 81.0 79.6 78.2 76.8 754 74.1 72.9 71.6 
32 86.1 84.5 83.0 81.5 80.1 78.7 7723 76.0 7467 7304 
33 88.0 86.4 84.9 83.4 81.9 80.5 79.1 77-8 76.5 75-2 
34 89.9 88.3 86.8 85.3 83.8 82.4 81.0 79.6 78.3 177.0 
35 91.7 90.1 88.6 87.1 85.6 84.2 82.7 81.4 80.0 78.7 
36 93.4 91.9 90.3 88.8 87.4 85.9 84.5 83.1 81.8 80.5 
37 95.0 93.5 92.1 90.6 89.1 87.7 86.2 84.8 83.5 82.2 
38 96.5 95.1 93-7 92.2 90-8 89.3 87.9 86.5 85.2 83.8 
39 97.9 96.6 95-3 93.8 92.4 91.0 89.6 88.2 86.8 85.5 
40 99.1 98.0 96.7 95.4 94.0 92.6 91.2 89.8 88.4 87.1 
41 99.8 99.1 98.0 96.8 95.5 94.1 92.7 9144 90.0 88.7 
42 99-8 99.1 98.1 96.9 95.6 94.2 92.9 91.6 90.2 
43 99.8 99.1 98.1 96-9 95.7 9464 93.0 91.7 
44 99-8 99.2 98.1 97.0 95-8 94.5 93-2 
45 99.8 9942 98.2 97-1 95-3 94.6 
46 99.8 99.2 98.2 97-61 95-9 
47 99.8 99.2 98.3 97.2 
48 99.8 99.2 98.3 
49 99.8 99.2 
50 99.8 
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APPENDIX D 

THE Gama DisTRiBuTion (2°) 
A random variable X is said to be distributed as the Gamma 

Distribution if the density function is given by 

1 Soe 
Talat) po 

where 4 and # are parameters with A> -1 and B> 0. 

Properties: 

Mean =f = B(A +1) 

Variance = Om B* (A 41) 
Standard Deviation =@ = Bal e+t 

Moment Generating Function = m(t) =s(1- Bt) 

f(x) = ; Ox = oo 

=-( A +1) ll poe ee ’ ac 5 

GAMMA FUNCTION* 
Sasa ine 

Values of T(n)= [e x dx; [(nt1) = nf(n) 
° 
  

n Tia) n T(a) n T(a) n T(a) 
  

1.00 1.00000 |) 1.25 | 0.90640 |} 1.50 | 0.88623 | 1.75 | 0.91906 
1.01 0.99433 || 1.26 | 0.90440 || 1.51 0.88659 || 1.76 | 0.92137 
1.02 0.98884 ||1.27 | 0.90250 || 1.52 | 0.88704 || 1.77 | 0.92376 
1.03 0.98355 || 1.28 | 0.90072 || 1.53 | 0.88757 || 1.78 | 0.92623 
1.04 0.97844 || 1.29 | 0.89904 || 1.54 | 0.88818 || 1-79 | 0.92877     
1.06 0.96874 |/1.31 | 0.89600 || 1.56 | 0.88964 | 1.81 | 0.93408 

1.07 0.96415 ||1.32 | 0.89464 || 1.57 | 0.89049 || 1.82 | 0.93685 
1.08 0.95973 ||1-33 | 0.89338 || 1.58 | 0.89142 | 
1.09 0.95546 || 1.34 | 0.89222 || 1.59 | 0.89243 || 1.84 | 0.94261 

| 
| 

1.05 0.297350 ||1.30 | 0.89747 || 1.55 | 0.88887 | 1280 0.93138 

| 
| 1283 | 0.93969 

11.85 | 0.94561 
1.86 | 0.94869 

| 
\ 

1.10 0.95135 |}1-35 | 0.89115 || 1.60 | 0.89352 | 
1.11 0.94739 ||1.36 | 0.89018 |\1.61 | 0.89468 | 
1.12 0.94359 ||1.37 | 0.88931 1.62 | 0.89592 |11.87 | 0.95184 
1.13 0.93993 ||1.38 | 0.88854 ||1.63 | 0.89724 | 1.88 | 0.95507 
1.14 0.93642 |}1.39 | 0.88785 ||1.64 | 0.89864 | 1.89 | 0.95838 

1.90 | 0.96177 
1.91 0.96523 
1.92 | 0.96878 
1.93 | 0.97240 
1.94 | 0.97610 

1.15 0.93304 |11.40 | 0.88726 ||1.65 | 0.90012 

1.16 0.92980 ||1.41 0.88676 ||1.66 | 0.90167 
1.17 0.92670 ||1.42 | 0.88636 ||1.67 | 0.90330 
1.18 0.92373 ||1-43 | 0.88604 |/1.68 | 0.90500 
1.19 0.92088 |11.44 | 0.88580 ||1.69 | 0.90678 

1.20 0.91817 ||1.45 | 0.88565 ||1.70 | 0.90864 1.95 | 0.97988 

1.21 0.91558 ||1.46 | 0.88560 {|1.71 0.91057 ||1.96 | 0.98374 

1.22 0.91311 |/1.47 | 0.88563 |]1.72 | 0.91258 |/1.97 | 0.98768 

1-23 0.91075 ||1.48 | 0.88575 ||1-73 | 0.91466 1.98 | 0.99171 

1.24 0.90852 ||1.49 | 0.88595 {11.74 | 0.91683 11-99 | 0.99581 
2.00 1.00000 

1 

*For large positive values of x, [(x) approximates the asymptotic 

series 

=e-* [= eee tee nye Ot epee ee a eee 
aure x |'* Tax * 2eaxt 51840x 2488320x 

L 
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APPENDIX E 

Non-Parametric Statistics 

CRITICAL VALUES FOR THE KOLMOGOROV-SMIRNOV ONE-SAMPLE STATISTIC 

A sample of size n is drawn from a population with cumulative 

distribution function F(x). Define the empirical distribution 

function B(x) to be the step function. 

B(x) = s for Xay<S 4 <% (441)? 

where k is the number of observations not greater than x. 

Aye eos on) denote the sample values arranged in ascending 

order. Under the null hypothesis that the sample has been drawn 

from ene specified distribution, F, (x) should be fairly close to 

F(x). Define 

D = max F(x) ~ F(x) |. 

For a two-tailed test this table gives critical values of the 

sampling distribution of D under the null hypothesis. Reject the 

hypothetical distribution if D exceeds the tabulated value. Ifn 

is over 35, determine the critical values of D by the divisions in- 

dicated in the table. 

A one-tailed test is provided by the statistic 

+ 
DY = max|F(x) - F(x) | - 
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APPENDIX E 

CRITICAL VALUES FOR THE KOLMOGOROV-SMIRNOV TEST OF GOODNESS OF FIT 

  

  

Sample Significance Level 
Size (n)|0.20 0.15 0.10 0.05 0.01 

1 0.900 | 0.925 0.950 | 0.975 | 0.995 
2 0.684 | 0.726 | 0.776 | 0.842 | 0.929 
a 0.565 | 0.597 | 0.642 | 0.708 | 0.829 
4 0.494 | 0.525 | 0.564 | 0.624 | 0.734 
5 0.446 | 0.474 | 0.510 | 0.563 | 0.669 

6 0.410 | 0.436 | 0.470 } 0.521 | 0.618 
im 0.381 | 0.405 | 0.438 | 0.486 | 0.577 
8 0.358 | 0.381 | 0.411 | 0.457 | 0.543 
9 0.339 | 0.360 | 0.388 | 0.432 | 0.514 

10 0.322 | 0.342 | 0.368 | 0.409 | 0.486 

11 0.307 | 0.326 | 0.352 | 0.391 0.468 

12 0.295 | 0.313 | 0.338 | 0-375 | 0.450 
13 0.284 | 0.302 | 0.325 | 0.361 | 0.433 
14 0.274 | 0.292 | 0.314 | 0.349 | 0.418 
15 0.266 | 0.283 | 0.304 | 0.338 | 0.404 

16 0.258 | 0.274 | 0.295 | 0.328 | 0.391 
17 0.250 | 0.266 | 0.286 | 0.318 | 0.380 
18 0.244 | 0.259 | 0.278 | 0.309 | 0.370 
19 0.237 | 0.252 | 0.272 | 0.301 0.361 

20 0.231 | 0.246 | 0.264 | 0.294 | 0.352 

25 0.21 0.22 0.24 0.264 | 0.32 
30 0.19 0.20 0.22 0.242 | 0.29 
35 0.18 0.19 0.21 0.23 0.27 
40 0.21 0.25 
50 0.19 0.23 

60 0.17 0.21 
70 0.16 0.19 
80 0.15 0.18 
90 0.14 

100 0.14           
  

1 1.14 1.36 207 1.63 
Asymptotic 
Formula: \n V2 aN] eee 

Reject the hypothetical distribution F(x) if Di =max 
exceeds the tabulated value. 
(For A=.01 and .05, asymptotic formulas give values which are 
too high - by 1.5 per cent for n = 80.) 

ak
 

  

  

PAG x)-F(x) 

The significance level represents the risk of accepting an in- 

valid assumption made about distributions of failure times. 
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APPENDIX F — Notes on minimum life parameters to 

FPailure-free time 

The exa 

  

ples given so far all relate to cases where t = 0, i.e, 

there is no failure-free time. Of course this is not necessarily 

the case in reliability work. 

case 1 
If an item has a finite (positive) failure-free time under test, 

e.g. a fatigue test specimen, the failure data will plot as a curve, 

seen convex from above, since the transformation to achieve the 

Weibull scales assumes that the data fit a two-parameter distribution, 

The effect of a finite life is to shift the age of failure to the left, 

Case 2 

It is possible to have an apparent negative value for tor for example 

if the items under test had accumulated unrecorded operating time 

before the start of the test. In this case the curve will appear 

concave from above - The effect of an apparent negative value for as 

is to shift the age of failure to the right. 

Procedure 

Either way, the data are re-plotted, with the value of ce as 

calculated on page 99 subtracted elgebraically from each life value, 

The life parameters estimated from the plot must then have the value 

of added algebraically to give the true life values (see page 175), 

 



  

Discretion must be used in interpreting data that do not plot 

as a straight line, since the cause of the non-linearity may be 

due to the existence of mixed distribution, It is quite likely 

to be due simply to the randomness or the periodicity in the 

s     mple. The failure mechanisms must be studied, and engir 

  

2ering 

judgement must be used, to ensure that the correct interpretations 

are made. It is a common error to assume that, because a straight 

line provides a reasonably good fit to the data, that there is no 

failure-free life. Therefore a value for “ can sometimes be 

estimated from knowledge of the product and its application, 

Alternatively, the time to first failure is often a satsifactory 

estimate of eo In these cases the procedure described above is 

not necessary. Generally, data on several failure modes in a 

system are likely to fit a two-parameter distribution {oe = 0), 

but single wear-out failure modes ( §> 3.43) are more likely to 

have positive values of t,: 
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ze sees) (Atte) 
Transmission 100 8,097 
component 1,333 8,700 

1,454 8,920 

2,838 11,500 

3,107 16,963 

5,346 20,315 

5,544 21,563 

6, 367 24,767 

7,100 25,377 

14,247 27 328 

11,249 

18,482 

18,748 

20,708 

22,541 

24,996 

Target: 0.98 Reliability at 50,000 miles 
Sample size: 26 
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ITEM 2 
SUSPENDED 
(MILES ) 

FAILED 
(MILES ) 

  

Transmission 
component 

(same type as 
with modifications)| 

  

4o 

item y 222 

420 

1,029 

2,392 

2,845 

4,394 

4,453 

5,620 

6,450 

6,767 

10,205 

11,900 

14,165 

18,609 

21,354 

23,072 

42,181     

27,330 

31,314 

345333 

48 ,600 

48,800 

  

Target: 

Batch size: 23 
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ITEM 3 CYCLES TO FAILURE 

  

  

Electrical component 

134,378 

162,547 

163,064 

186,023 

208 , 409 

222,195     
Target: 0.95 Reliability at 25,000 cycles 

with 95% Confidence. 

Batch size 6 
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ITEM 4& CYCLES TO FAILURE 

  

  

Electrical component 

Batch of 7   

98,747 

106,440 

4125538 

128,655 

144,108 

164,197 

214,304 

  

Target: ‘0.95 Reliability at 25,000 cycles 

with 95% Confidence 
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    449 0.810 

  

     

  

200 AGAINST L/ 10000    
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ITEM 5 CYCLES TO FAILURE 

  

Electrical switch 
10,054 

~ 17,860 

37,903 

43,895 

65,058   
  

Target: 0.95 Reliability at 25,000 cycles 

with 95% Confidence 

Batch size 5 
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68,5005 
+ 6865    42875, 

s5058 
    

  

   3, 14249904E—   

MINIMUM LIFE AO= 9 

  

14,528273 N= 1,.5675575 Y=M+N*X, XSLOG(A) ,Pea-t 

  

SHAPE PARAMETER BETA= 1.3672575 

    

CORRELATION COEFFICIENT RC= .98771407 

g 

  

1421.89923 BLO= 7926.61494 B20= 13721.4675 B: 

  

31429. 8544 

CHARACTERISTIC LIFE ETA= 41089, 956 

MEAN LIFE M= 37594.509 

PRE S 

    

WEIBULL F 

  

<*10 AGAINST ¥ 
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Machine | Component | Tool j Week | No of 
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Shay 4.608 
ae ZAG. O 

Si 50 40 

sale be Ase 
a 1S eee 

BATCH] oF so 

          
  

-262- 

 



CU
MU

LA
TI

VE
 

PER
 

CEN
T. 

FA
IL
UR
E 

2 fe. 

on 

on 

© Extimadon Point 

Test 

Date 

x10 

CES Tea a samme 

en 1481 | neroT  Foalane 
4 Oana 

3 z ERE EUPMA eat 

‘ace at rawune in number of components prodied 
-263- 

Sample Size 

Chara 

Mini 

Shape 

istic Lite   

imum Life 

50 

2416 

1338( 

° 

  7 eet 

ogee



TRUNCATED TEST, WITHOST SUSPENSIONS, GF SecuT oF Su ITEMS 

  
 



          

     

  

WEIBULL PLOT : A¥1000 AGAINST MR/10 

    2.150 9 2.960 3. 360. * 

FAILURE RATE : A®10CO AGAINST L/10¢ 
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