
Capture and Storage of Respiratory Test Data

by

Cheah Ui Poh

" as partial requirement for the degree of

Master of Philosophy

at

The Department of Production Technology and Production Management,

The University of Aston in Birmingham

on

May 1982

Declaration

Unless specifically described, the work described in this thesis
has not been done in collaboration. This work has not been
submitted for any other academic award at this or any other

educational establishment.

Capture and Storage of Respiratory Test Data

Cheah Ui Poh Master of Philosophy, 1982

Summary

This thesis is concerned with the online collection and storage of
respiratory data. Initially, a feasibility study was done to see
if it was possible to use a 'microcanputer' to perform the data
collection at the required speeds. The advantages of using a
'‘microcomputer' are two-fold. First, the system would be portable
in that it can be taken to the patient rather than vice-versa.
Second, it would be easier to use a dedicated microcomputer rather
than rescheduling a time-sharing minicomputer to perform the data

collection.

-On completion of the feasibility study, it was found that there
was a vast amount of data to be stored. It was calculated that a
20 megabyte disk could only store the results of 35 days of
testing! An attempt was made to reduce the amount of data in such
a way that it could be reproduced in its entirety when required.

Since the data was unavailable during the data reduction exercise,
it was typed in manually. However, as this was both time
consuming and error prone, an automatic process was sought. This
involved linking the 'microcomputer' to the minicomputer and
transferring the data directly.

Finally, an information management system was designed so that
data with certain characteristics could be reproduced when it was

required.

Keywords : analog to digital conversion, curve fitting, data
transmission, information management systems

LIST OF CONTENTS

Summary

List of Contents

List of Figures

List of Acronyms

CHAPTER 1: Introduction

eg i

Tred

P35

1.4

The Current State of Affairs

The Requirements

Fulfilling the Requirements

eS, ol.

1.3.2

Automatic Monitoring

The Data Bank

The Approach

CHAPTER 2: Capturing the Data

2.1 Introduction

2.2 Hardware Requirements

Ze2e1

DeLee

2e285

2.2.4

Types of Computer

The Dedicated Small Computer

Operation of an Analog to Digital Converter

The Analog to Digital Converter

id

13

253)

2.4

25

2.6

237

System Testing: Theory and Practice

55 The Accuracy

2.3.2 The Speed of the System

The Software Interface

2.4.1 Initial Testing the ADC

2.4.2 Sampling Techniques

2.4.3 The Clock

2.4.4 Evaluation of the Delay Time

2.4.5 Altering the Circuitry

General Software

2.5.1 Calibration of Channels

2.5.2 Displaying the Results

2.5.2.1 As provided by the Program

2.5.2.2 Other Forms of Output

2.5.3 Saving the Results

Conclusion

Further Work

2.7.1 Linking the PET to the PLFBTE

2.7.2 Controlling the PLFBTE amd experiments

14

14

16

19

20

2x

ag

24

25

25

26

26

28

28

30

30

SL

CHAPTER 3: Data Reduction 32

3.1 Why Reduce the Data 32

3.2 The Model 33

3.2.1 What is a Snooth Curve 34

3.3 Curve Fitting 36

3.3.1 Curve Fitting Noms 36

3.3.2 Basic Curve Fitting Techniques af

3.3.2.1 Polynomial Curve Fitting aT

3.3.2.2 Splines 39

3.3.2.3 Parametric Techniques 40

3.3.3 Fitting the Pressure Concentration Curve Al

3.3.3.1 Curve Classification 41

3.3.3.2 Curve Segmentation 42

3.3.3.3 Curve Segmentation and Classification 44

3.3.3.4 Axial Transposition 45

3.3.3.5 Mathematical Transformations 45

3.3.4 Fitting an All Points Curve 47

3.4 Testing 48

3.4.1 The Implementation Computer 48

3.4.2 Algorithm Testing 48

3.4.3 Testing on Simulated Data 50

3.5 Further Work Bi

CHAPTER 4: Transferring the Data

4.1 Why Transfer the Data

4.2 Methods of Transferring Data

4.3 Communications Ports

4.3.1 The GPIB am.its Protocol

4.3.2 The RS-232

4.3.3 The Current Loop

4.3.4 The Interface Exchange

4.4 Transmftting the Data

4.4.1 The Message Length

4.4.2 The Message Format

4.4.2.1 Integer Data

4.4.2.2 Floating Point Numbers

4.4.3 Transmission Codes

4.4.4 Separators and Terminators

4.4.5 Error Checking

4.4.6 The Job Control Language Protocol

4.5 Programming the System

425.1. Timing

4.5.2 Commlink

4.6 Conclusion

52

52

52

54

54

58

ao

59

60

60

61

62

63

64

65

66

67

67

68

69

69

CHAPTER 5: Storage and Retrieval of Data

5.1 Introduction

5.2

Sos,

5.1.1 The Information Retrieval Systems Available

5.1.1.1 Rapport

5.1é1.2 <MUMPS

5.1.1.3 Other Information Retrieval Systems

Descriptive Tools

5.2.1 Terminology

5.2.2 Data Structures in Algol 68

5.2.3 Syntax Diagrams

The Data Bank

5.3.1 Maintenance of the Data Bank

5.3.1.1 The Insert Operation

5.3.1.2 The Update Operation

5.3.1.3 The Delete Operation

5.3.2 The Retrieve Operation

5.3.3 Searching on the Primary Key

5.3.3.1 Indexed Sequential Access Method

5.3.3.2 Key Transformations

5 Si50Gh coerees

5.3.3.4 Selection of the Retrieval Technique

5.3.4 Retrievals on Secondary Keys

5.3.4.1 Record Search

§.3.4462 Attribute Search

5.3.4.3 Choice of Search Technique

tS

71

71

72

a2

73

73

73

74

76

78

78

78

79

79

79

80

81

82

83

86

87

88

88

89

5.4

oe)

5.6

Eve

Interacting with the Program

5.4.1 Methods of Interaction

5.4.2 Choice of Interacting Method

5.4.2.1 Design of the Query Language

5.4.2.2 De Morgan's Laws

5.4.2.3 Processing a Query

5.4.3 The Editor

5.4.3.1 Types of Editor

5.4.3.2 Requirements of the Editor

File Design

5.5.1 File Design for the Data Bank

5.5.1.1 Primary Key File

5.51.2. “Source Details: File

5.5.1.3 Test Results File

5.5.1.4 The Data Bank

5.5.2 Design of the Descriptor File

Implementation of the Information Retrieval System

Discussion

CHAPTER 6: Conclusion

Appendix 1: ADC Programs and Output

1.1

2

lee

1.4

Assembler Program for Data Capture

BASIC Driver

Sample Graphical Output

Sample Tabular Output

91,

91

93

94

98

99

100

101

102

102

103

103

104

107

107

109

110

lll

112

114

115

The

130

24

Appendix 2: Basic Curve Fitting Routines

2.1

Ze

Least Squares Fit by Orthogonal Polynanials

Chebyschev Curve Fit

Appendix 3: Hybrid Curve Fitting

aed

3.3

3.4

325

Segmentation

Results of Segmentation

Mathematical Transformation

Results of Mathematical Transformation

Test Data

Appendix 4: Communications

4.1

4.2

433

4.4

4.5

Procedure for copying Commlink

Commpack

Data Transmitter

Format Converter

Data Receiver

ise

133

137

140

141

144

145

148

149

150

150

Si

154

155

15/

Appendix 5: The B-Tree Algorithm

5.1 Program

5.2 Tree Walk

5.3 Sequential Dump of Pages

Appendix 6: Simple Implementation of the Query Language

6.1 Program

6.2 Data

6.3 A sample query

References

Acknowledgements

159

160

167

168

169

170

Ltd

178

179

LIST OF FIGURES

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

2a:

2c:

3a:

3b:

3c:

s

4a:

4b:

5a:

5b:

5e$

5e:

Bas

5h:

5i:

Block diagram illustrating the flow of

information fran the Lung Function Unit to the

Digital Computer via transducers

Waveforms that can be obtained fram a Signal

Generator

A method of showing the relationships between

four variables in two dimensional space

Graph showing the regional separations on the

Pressure Concentration Curve

Approximating a curve to a series of straight

lines

A curve with transposed axes

Tllustrating the problems in curve

reproduction when axial transposition is used

Star configuration

Daisy Chain configuration

Tree Terminology

Diagrammatic Representation of REF INT a

Syntax Diagram of a mode in Algol 68

A B-tree

Syntax diagrams for the Query Language

Storage of Attributes in a file

Storage of Attributes using linked pages

17

27

43

43

46

46

57

57

74

76

76

85

93

105

105

Enhancement of Figure 5f to include a directory 106

The overall structure of the databank 108

List of Acronyms

3D

ANSI

APC

ASCII

CGITE

Clu

DAV

DCC

DEH

DEC

EIA

ge

GPIB

gt

HC

HPIB

Digital Design and Development Limited

Analog to Digital Converter

American National Standards Institute

All Points Curve

American Standard Code for Information Interchange

Commodore Business Machines

International Consultative Committee for Telephone amd

Telegraph [the letters are jumbled because it is a

French abbreviation]

Clinical Investigation Unit, Dudley Road Hospital,

Birmingham

Connecticut Microcomputers

Data Valid

Data Collection Computer

Data Collection Equipment

Digital Equipment Corporation

Data General Corporation

Data Transmission Equipment

Electronic Industries Association

Equal to

Greater than or equal to

General Purpose Interface Bus

Greater than

Host Computer

Hewlett-Packard Interface Bus

IEEE

IEC

ior

IRC

ISAM

ISF

JCL

le

LRU

Te

MUMPS

NDAC

ne

nl

PLFBTE

Institute of Electronic and Electrical Engineers

iartonsl Electro-technical Commission

Infix Notation

Inclusive OR

Information Retrieval Computer

Indexed Sequential Access Method

Indexed Sequential File

Job Control Language

Computer Kilo = 1024 (21)

Metric Kilo = 1000

Less than or equal to

Least Recently Used

Less than

Menu System

Massachusettes General Hospital Utility

Programming System

Not Data Accepted

Not equal to

Not greater than

Not less than

Not Ready For Data

Operating System

Pressure-Concentration Curve

Personal Electronic Transactor

Primary Key File

Pulmonary Lung Function Breath Test Equipment

Polish Notation

Multi-

PUP

OL

RPN

SD

SDF

XOr

Parallel User Port

Query Language

Reverse Polish Notation

Significant Digits

Source Details File

Test Results File

Visual Display Unit

Exclusive OR

CHAPTER 1: INTRODUCTION

I have a dream ...

- Dr Martin Luther King

1.1 The Current State of Affairs

There are, at present, several types of respiratory lung function

testing apparatus on the market. Although some are more expensive

and more sophisticated than others, they all use the same

techniques for measuring the various coefficients. Most of them

place a large emphasis on the operators for the interpretation of

their results.

With some equipment, the operators are expected to translate the

multitude of results generated to something understood by the

physicians [Hancox [1980]]. These results are normally obtained

by taking values off a graph produced by a plotter. Measuring

plotter output is tedious and often prone to error. It also

causes problems in storage and thus is always discarded after the

relavant measurements have been taken. There is also the problem

of knowing what tests to perform.

Sometimes, the 'discarded' graphs are collected by research

workers so that they can prove or disprove hypotheses

emphirically. Sometimes they are used for statistics. It

normally takes a very long time to collect the required data; for

instance, in a typical three year Ph.D., ome year could be spent

collecting the data.

Fron the patient's point of view, these tests are a chore and

often difficult to perform. Some patients just cannot perform the

test and some insist that they cannot do it. Since the machines

are generally built to suit adults, it may be difficult to use for

children. They require smaller mouthpieces am are frequently

apprehensive of the 'fearsome looking' equipment.

1.2 The Requirements

It is quite obvious that the operators' jobs would be simplified

if they could spend more time with the patients while the

equipment monitored itself. It would also help if there was some

way of telling the operator the tests which should be performed

given the results of the previous test.

On the research side, the information could be automatically

accumulated for further reference [ie data bank]. This would best

be kept in its raw form ard processed as amd when it it required.

It could be kept in a processed form but it should be possible to

obtain the raw data from this processed form lest a different form

of processing is required.

By marrying the above requirements, the monitoring equipment could

be directly connected to a data bank, thereby reducing errors

inherent in manual transcription.

1.3 Fulfilling the Requirements

1.3.1 Automatic Monitoring

An approach that could be used for automatic monitoring of the

equipment would be to connect it directly to a computer. The

computer could be programmed to monitor amd collect data fram the

equipment. When such information had been verified to be correct,

it could ke transferred to the data bank.

1.3.2 The Data Bank

There are several techniques for building a data bank. Avison

[1981] has identified three common techniques used in scientific

work:

- Data Collection

- Entity Relationship

- Data Abstraction

Briefly, in the Data Collection Technique, all _the information

which is deemed useful is accumulated. The information is then

structured as required.

In the Fntity-Relationship technique proposed by Chen [1977], the

entities ['things'] of interest are first identified. The

relationships are then formed between these entities, amd the

attributes are identified. Once this has been done, the formats

can be designed.

The Data Abstraction Technique developed by Smith and Smith [1977]

See the data model as an abstraction of the real world. All

potential users of the model are surveyed to determine their

information needs. These requirements are then aggregated ard

generalised [that is, common information needs are grouped

together], to build an information structure for each user. The

information structures are then integrated to form an overall

structure.

The technique which will be used is a mixture of the first two

described. The requirements of future users of the system are

unknown but relationships can be set up amongst the data

collected. This, however, will not be a well defined collection;

any form of data which may be useful will be collected.

1.4 The Approach

The solutions to the problems will be attempted in the following

phases:

- Identification and partial implementation of a method of

collecting information fran the Pulmonary Lung Function

Breath Test Equipment using a computer.

- Identification and solution of problems in the previous

phase until the data is in such a state that it can ke

stored easily.

- Design of a data bank and suite of programs which will

extract information which users will require.

End of Chapter

CHAPTER. 2: CAPTURING THE DATA

Anything can be made to work if you fiddle with

it long enough - Wyszkowski's Second Law

2.1 Introduction

The objective of this 'sub-project' is to assess the feasibility

of using a microcomputer [term explained in section 2.2.1] for

the automatic collection of data from Pulmonary Lung Function

Breath Test Equimpment [PLFBTE]. A method which is often used for

automatic data collection is the linkage of the PLFBTE to an

Analog to Digital Converter [ADC]. In this chapter, the hardware

requirements, software interfacing and testing of such a system

will be examined.

LUNG FUNCTION UNIT

 MICROMANOMETER

GAS ANALYZER

 VOLTAGE AMPLIFIERS
 j } q

ANALOG TO DIGITAL CONVERTER

j

DIGITAL COMPUTER

VISUAL ,

DISPLAY UNIT

MASS HARDCOPY

STORAGE DEVICE

Figure 2a: Block Diagram illustrating the flow of
information from the Lung Function Unit
to the Digital Computer via transducers.

2.2 Hardware requirements

The hardware requirements are listed as follows:

a dedicated small computer

a printer with possibly a graphics option

a facility for reasonable mass storage or communications

an analog to digital converter which is compatible with

the computer and has suitable sampling characteristics

Figure 2a illustrates the flow of information fran the PLFBTE to

the computer.

2.2.1 Types of Computers

A computer is basically a collection of logic devices. Electronic

computers were originally divided into two classes: mainframes amd

minicomputers. The mainframes were capable of handling a number

of jobs concurrently whilst the minicomputers where only capable

of handling one job at a time. Advances in electronics brought

about the microcomputer, originally defined as a variety of logic

devices implemented on a single chip. The term 'microprocessor'

was originally coined to reflect the limited functions of logic

devices as compared with a microcomputer.

With the introduction of multi-tasking minicomputers amd further

advances in electronics, the above definitions have been obscured.

The term microcomputer has almost lost its original meaning. Two

reasons can be attributed to this:

- An increasing number of microcomputers are single chip

implementations of existing minicomputers

- Some manufacturers build their own computers Out: 4of

microcomputers and microprocessors [or support chips].

These machines are capable of handling programs like the

old minicomputers but for some odd reason [like sales

strategy] are called microcomputers!

Thus, a computer is now called a mainframe, a minicamputer, a

midicomputer, a super-mini or a microcomputer simply because that

is what the manufacturer has decided to call it. It bears nic seal

relation to the ability or speed of the machine. In the text that

follows, it will be assumed that a microcomputer is cheaper than a

minicomputer, which in turn is cheaper than a mainframe.

2.2.2 The Dedicated Small Computer

Since the system is to be operated 'on-line', the computer must be

able to devote its full attention to the data collection. As a

result, it has to be either a single user machine or a machine

where it is possible to switch fran a single to a multi user

context and vice-versa. Since the data collection’ computer [DCC]

must be a single user machine, the most economical choice would be

a microcomputer. There are, however, a very wide range of such

machines to choose from amd they come in all shapes and sizes. TO

make life easier, some criteria were drawn up:

- The machine should be portable in that it can be mounted

on a trolley along with the PLFBTE amd moved around.

- The internal processor [microcanputer?] should be fairly

popular; if there is a hardware fault, at least some

spares will be available. There is also the advantage of

‘off the shelf' software and hardware if it is required.

- The machine should have a facility for analog to digital

conversion.

The popular processors around at that time were Zilog's 280 ard

MOS Technology's MCS 6502. Since the author was more familiar

with Motorola's MC 6802, an elder cousin of the 6502, it was

decided that a 6502 based machine would be used. There were very

few 6502 based machines which were fully assembled; most of them

came in kit form. Of the machines which were fully assembled,

only two machines satisfied all of the above conditions: the Apple

II and the Commodore PET.

saa

It is often debated in 'Home Computer' magazines as to which is

the better of the two. The Apple is a better machine internally;

it is more flexible, well designed, has better documentation but

has a very flimsy frame. The disk drives, display unit etc are

all separate units amd are connected by means of the Apple's 'S-

100 Bus' [IEEE-696 Standard]. It does have the added advantage of

high resolution colour graphics.

Until lately, the PET has had poor documentation riddled with

errors. It is a better machine in terms of robustness amd editing

facilities. The PET has a built in display unit amd communicates

via the GPIB Port [see Chapter 4], its Parallel User Port amd two

Cassette Ports. When machines are almost equal, the deciding

factor is often the price. Since the PET was cheaper overall,

especially when floppy disk storage was also considered, it was

favoured.

2.2.3 Operation of an Analog to Digital Converter

An ADC basically converts an analog voltage to a set of binary

digits. There are various techniques used in ADC's, which include

successive approximation, duual slope, ramp integration and

others. Each technique compares the input voltage with a voltage

generated by the ADC until the two are equal.

ie Ae

Successive approximation '‘hunts' by binary search until the

correct level is reached, while slope techniques use a ramp amd a

comparator. When the appropriate level is reached, the binary

value used to generate the voltage may then be read from the ADC.

Often, to avoid the 'droop' or rapid change problems encountered

when an analog to digital conversion time is long canpared with

the rate of change of the signal, a ‘sample amd hold' mechnaism is

required to prevent changes occuring (which may be greater than

+0.5 least significant bit) during the conversion time.

Of the ADCs available for the PET, the range produced by CMC was

chosen and these have the following facilities:

- successive approximation

- 16 input channels

- 8 bit resolution

- input voltages of 0 to 5.12 volts

- conversion time of 100 microseconds

- absolte maximum error of 0.73%

~» 335

2.2.4 The Analog to Digital Converter

The ADC chosen was the AIM161: an 8-bit, 16 channel ADC

manufactured by Connecticut Microcomputers [CMC]. The reasons for

\

the choice follow:

_ At that time, there were only two ADCs available for the

PET: one by CMC amd another by Digital Design am

Development [3D]. The one by 3D had exactly the same

features as the one by CMC but it cost twice as much!

The AIM161 did not have to be connected directly to the

GPIB and so did not require any form of handshaking.

The conversion time was about 100 microseconds. This

implies that the number of samples per secomd could be

upwards of 10k. Since 500 samples per second was more than

adequate, there would be no problems as far as settling

time etc. were concerned.

There were no 12 bit ADCs for the PET in the market at

that time and a lot of time would be wasted if one had to

be constructed and debugged. Moreover, it was uncertain

whether this idea would work or not so the less money

spent the better.

a

2.3 System Testing: Theory and Practice

Before any systems software can be written, the procedures for

checking it should be programmed. In Analog to Digital

Conversion, there are two basic entities that have to be tested:

- the accuracy of the system

- the speed of the system

2.3.1 The Accuracy

The technique for checking out the accuracy of the ADC is simple.

Since the relationship between the input voltage and the output

value is linear, linear interpolationcan be used. If an input

voltage of IV volts is applied then

(Ov - 0,)/(Q, - 0,) = (IV - 1,)/(, - 1)

where O = output value

I = input voltage

h = maximum [high] value

1 = minimum [low] value

ey ai

For the AIM 161, this expression reduces to

(OV - 0)/(255 - 0) = (IV - 0)/(5.10 - 0)

OV iy #2255 fe5<2D

Ov Iv * 50ul

Since the output value must be an integer,

ov = int(IvV * 50) +1

Thus, for an input value of 3 volts,

OV int(3 * 50) +1

ul 149: or 157 soe 150

In practice, this can be done by connecting the ADC to either a

“refercnce vol Cage celf or a voltage calibrator.

2.3.2 The Speed of the System

The theory behind the evaluation of the sampling rate of the

system is fairly simple:

- count the number of samples, ns, obtained in a known

period of time, dt [in seconds]

- divide ns by dt to obtain the frequency [in hertz]

In practice, this can be done with the aid of a Signal Generator

[SG] or an oscillator. Most SGs provide the wave forms shown in

Figure 2b [though the saw-tooth is quite rare].

The waveform which should be used is one which clearly shows the

positions where a cycle starts and ends [since one cycle is a

known period of time]. By observation, any waveform could be

used; but if the system is to be automatic, then either the square

wave or the saw-tooth should be used since the termination of a

cycle on both these waveforms is distinct fram the voltage change.

Due to the rarity of the saw-tooth waveform on SGs, the evaluation

of the sampling frequency with the aid of a square wave.

_ ee

Saw Tooth

Square Wave -

 eo Go
Sinusoidal

Figure 2b: Waveforms available on Oscillators and

Signal Generators

ee

On the square wave, the change in voltage is distinct after half a

cycle. Using the notation described,

spe ns / at

Thus, if the SG is set to generate a square wave in 200

millisecond cycles and 368 samples are obtained in half a cycle,

dt = 200E-3 / 2

= 100E-3 seconds

sf = 368 / 100E-3

= 3680 Hz

36 ee

224 The Software Interface

2.4.1 Initial Testing of the ADC

The ADC was tested using the test programs supplied by CMC. The

first program sampled each channel in turn with nothing connected to

the ports. These gave wild readings between 80 and 255. The second

program was similar but this time a 3 volt battery was connected.

These gave readings between 149 and 151 which indicated that the ADC

was working.

A short program was then written in Basic to test the speed of the

software. The program was executed for a minute amd the number of

samples obtained was then divided by 60. The result was quite

depressing: only 5 readings per secord!

The above program was then re-written in Assembler. In a short test

of one minute, the PET stopped working! The reason for this was

obvious; if CMC's claim of a conversion time of 100 microseconds

could be assumed and another 100 microseconds could be assumed for

the housekeeping software, it would take 200 microseconds for each

sample. This implied that in one minute 300k samples would le

obtained. Since the data was stored, the program was overwriting

itself, hence the reason for the crash!

= 00

Two problems arose:

- How the samples would be taken

- How the program would 'know' when it ought to sample

2.4.2 Sampling Techniques

Nyquist's Theorem dictates that to preserve an analog signal

completely, the sampling rate should be twice as fast as the sample

frequency present in the signal. In practice, sampling rates are

more than twice this rate. The problem is how a set of samples

should be taken. The data can be sampled in one of three ways:

- at even intervals

- alternately with reference to a clock pulse on one channel

- in bursts

To sample at even intervals, an external clock has to be connected

to the PET at some point other than the ADC. Using the secon

method, the clock is connected to one of the channels of the AD.

Both these techniques will require interpolation or extrapolation of

the data at the end of the sampling period so that the samples look

as if they were taken at the same point in time.

OO

Sampling in bursts will also require a clock of some sorts” “It can

be used if the conversion time is negligible compared to the time

interval between samples. It has the advantage in that the data

need not be interpolated or extrapolated.

2.4.3 The Clock

There are two internal and one external clocks on the PET. ‘The

internal clocks work at 16.6 milliseconds and 26.7 microseconds

wade the external one works at 20 nanosecond intervals. It is not

safe to use either of the internal clocks as they can be unknowingly

locked out by software.

The external clock sends pulses to the internal clock software and

other chips on the PET. ‘To use it would require detailed knowledge

of PET hardware: information which Commodore was not willing to part

with. Additional hardware could be included to give the clock pulse

but this was undesirable as routines would have to be written to

specially poll a line for the pulse.

On re-examination the resources available, it was found that the

6502 on the PET used the external clock with pulses of one

microsecond for its cycle time. This meant that if interrupts are

supressed, the cycle time would be exactly one microsecond.

a tee

2.4.4 Evaluation of the Delay Time

The following piece of code was written as a delay between sampling

periods:

Total Cycles
3 LDX N : number of times to loop

N*¥2 WAIT DEX 3 decrement counter
(N-1) *24+1 BNE WAIT : loop if X not zero

4 EOC LDA USRPRT ; in case ADC not ready
a BH. ECC e wait ti11 end of. conv.

Assuming the second loop is only executed once, the length of this

delay would be 13+(N-1)*5 microseconds. In order to obtain a delay

of 200 microseconds,

13% (N= <2) 5. 200

N 38 approx.

The numbers in the pieces arithmetic which follow will be rounded

since it is not possible to account for fractions of a cycle. A

delay time of 200 microseconds would theoretically imply a sampling

frequency of 5 kHz. Unfortunately, a sampling frequency of 3.68 kHz

was obtained. The discrepency between the theoretical amd the

actual result was obvious: the code which handled the rest of the

‘conversation' between the ADC and the PET had been excluded fran

the calculations.

Peeae

This discrepency was put right by the following piece of arithmetic:

cr +(N-1)*5 1000 / 3.68

Since N = 38, CT 1000 / 3.68 — (38 - 1) * 5

Cr 87 appx.

The general equation for evaluating N would therefore be

DELAY = 87 + (N- 1) * 5

Therefore N = (DELAY - 87) /5+1

The delay of 200 microseconds could be effected by

Z " (200° = 87) ./ 5.4 1

= 24

With this modification, the sampling frequency was approximately 5

KHZ.

se

2.4.5 Altering the Circuitry

Although the AIM161 did not require the GPIB handshake, it used some

lines fran the GPIB port. The ADC kit, as it came fram the factory

was wired so that the signal to start strobing came fran a pin of

the GPIB port. If the PET had other devices attached to its GPIB

port, they could activate [for instance, the printer could start

printing gibberish without being '‘asked' to]. These unwanted

actions could be avoided by altering the printed circuit boards.

The prints on the circuit board indicated the following:

A = pin D of the PET GPIB port

w " pin M of the PET User port

QO ul line to stop strobing

The manual said that the foil line between A and C should be cut and

a jumper should be soldered between A and B. This would sem the

signals from the PUP to the GPIB! The jumper should have been

soldered between B and C, not between A amd B as the manual

suagested. Unfortunately, this was not realized until very much

later and a lot of time was wasted in attempting to debug fully

*

working programs. So much for Cahn's Axiom !

When all else fails read the instructions.

3 Jae

2.5 General Software

2.5.1 Calibration of Channels

Before any data can be captured, the channels have to be

calibrated. The procedure is fairly simple; the operator provides

two known quantities while the computer. records’ their

corresponding voltages. Since the relationship between the input

quantity and its corresponding input voltage is linear, linear

interpolation may be used to evaluate the actual value which any

other input voltage represented. This would imply

(Oe ie AeVOn” Jee

where 0 is the actual quantity, V its corresponding voltage, h the

high value and 1 the low value. This derives

Of Se MVE © Vie Gar Qn) Livy ey)

If. $= i ~ 7) / (Veoo=V,)

then 0; = 0, + (V; -V,) *S

The values of Or vy and S will be recorded when saving the

results of the conversion so that the results can be converted

into their actual quantities when the analysis is performed.

Ge 5 me

2.5.2 Displaying the Results

2.5.2.1 As provided by the Program

The display is given in two forms; these are user selectable

- in X-Y graphs

- in tables

The operator is allowed to select the axes on the X-Y graphs. Due

to the limited graphics capabilities of the PET, the graphs

produced are coarse line printer or screen graphs. This should be

adequate since the graphs were provided to show the relationships

between the input channels. They are useful for detecting air

leaks and other such disasters.

For quantitave analysis, the program provides the operator with

user selectable columns for tabular output. Up to eight columns

are allowed on the printer. If a hardcopy is not required then

only four columns are allowed because of the 40 column restriction

of the PET's screen. The operator is also given the choice of the

amount of output required. For instance, every fifth sample could

be selected.

Se

THE FOUR VARIABLES ARE ASSIGNED AS SHOWN, AND THE POSITION/SHAPE

OF THE ELLIPSE IS DETERMINED BY P1/P2, WITH ITS POSITION BY P3/P4.

Figure 2c: A method of showing the relationships

between four variables in two dimensions.

4 nae

2.5.2.2 Other Forms of Output

Since the PET has limited graphics capabilities, the types of

output it can produce are restricted. If a camputer with high

resolution graphics facilities [eg Sharp MZ80B] were used, then

some other techniques of displaying the data could be implemented.

Figure 2c shows a technique of mapping four parameters into two

dimensional space. This is similar to a technique to Best [1980]

for recording the quantities of various compounds in urea.

2.5.3 Saving the Results

Once the data had been captured, it had to be transferred to a

less volatile medium, namely diskettes. n the PET, it is stored

as an integer array so it could be transferred in its character

format for integers, the machine format of bytes or as fully

converted floating point numbers. The least space consuming

format was the machine format. This, however, meant that the data

used for interpolation also had to be stored. For consistency,

the internal format was used.

a Di

For each channel, the order in which the data was stored is given

as follows:

Lower value of quantity [0]

Lower corresponding voltage [V}]

Higher value of quantity [O.]

Higher corresponding voltage [Vv]

time period

number of points

integer array for that channel

2.6 Conclusion

Since a sampling rate of only 250 Hz [Hancox [1980]] is required

and a sampling rate of up to 5 kHz could be obtained, it can ke

concluded that it is feasible to use a 'microcomputer' to aquire

data from the PLFBTE and store it temporarily. Some extensions to

the project will be highlighted in Section 2.7.

a

2.7 Further Work

There are two areas in which further work could be done:

- Linking the PET to the PLFBTE

- Getting the PET to control the PLFBTE

2.7.1 .Linking the PET to the PLFBTE

The following steps would have to be taken to link the PET to the

PLFRTE:

- Selection of suitable transducers to convert the output

values of the PLFBTE to volts [eg a micromanometer could

be used as a pressure transducer].

- Selection of suitable voltage amplifiers to bring the

output voltage of the transducer to the range required by

the ADC.

- Alteration of certain sections of the program so that it

"knows' when it ought to start recording the data. At the

moment, recording starts as soon as the ‘space hbar' is

depressed.

SAG

2.7.2 Controlling the PLFBTE and experiments

Using a Digital to Analog converter or the Parallel User Port, the

PET could be used to contrl the 'Midhurst Valve' and the incoming

gases. This would be useful for the operators in that they could

spend more time with the patient rather than dividing it between

the patient and the equipment.

Work is currently being done at the CIU on controlling the order

in which experiments are executed [Hancox [1980]]. This could be

integrated with automatic data collection when it is camnplete.

End of Chapter

or)

CHAPTER 3: DATA REDUCTION

When working toward the solution of a problem, it always

helps if you know the answer - Rule of Accuracy

3.1 Why reduce the Data

‘Normally there will be four inputs to the ADC. Let the sampling

period be one millisecond. The sampling rate per channel will be

250 Hz [1/4E-3]. If the data is recorded over a typical 4 second

period, there will be approximately 4K [4s*4*250Hz] samples.

Assume that each sample uses two bytes of storage. The number of

tests that can be stored on a 20 megabyte disk will te

approximately 2.5K [20M/(4K*2)]. If the daily number of tests

carried out at the Clinical Investigation Unit [CIU] is between 25

and 50, it would mean that the 20 megabyte disk could, at most,

hold the results of about 50 days of testing!

The above is based on the assumption that there is nothing else on

the disk. Typically some 30% of the disk will contain user

programs; this implies that the figure will be down fram 50 to 35

days! Obviously this is not a practical solution.

oe aD ske

An alternative approach would be to 'model' the data amd to store

the parameters of that eae Using this solution, even if the

model had 32 parameters [4 bytes per parameter would be typical of

most machines], the number of tests that could be stored on a 20

megabyte disk would be approximately 40K [20M/(32*4*4)]. At the

current rate, this implies that the 20 megabyte disk could hold

the results for about 2 years of tests [assuming the 30% reduction

in available storage].

3.2 The Model

The model used will be purely ‘aesthetic’, that is, it may not

have any significance as far as the actual data is concerned: it

will just reproduce the data as closely as possible. Fram a non-

mathematicians point of view, this is quite a task.

A simple model would ke a function which would fit the curve.

This is normally defined as some linear combination of a set of

basis functions, viz

y(x) = Cy +P(0,x) +c, -p(1,x)+ oles +c, -p(n-x)

where C5 is the jth coefficient and p(j,x) is the jth basis

function.

a. 39

Typical examples of basis functions are

pix) = x

BC X)-* aint page 7 [Chebyschev Series]

p(j,x) = exp(n.j.x)

n
p(4,x) = k,+k,.xtk xe+ pes tk,+x

Oe) 2

For convenience, the term 'curve' on its own refers to the real

data. The term ‘fitted curve' refers to the model.

3.2.1 What is a Qnooth Curve?

When attempting to fit a curve, the question that is normally

asked is "What type of fit is required?". This question is often

met with perplexity, if not frustration: a common reply is "A

Smooth Curve". This logically leads to the follow up question

"What do you mean by 'smooth'?". The retort to that question

usually involves a lot of verbiage, which falls short of answering

the question. A typical curve is shown in Figure 3b, am is

sigmoidal in shape.

oo

The truth of the matter is that the term ‘smooth’ can have

different meanings for different people:

- The curve could be purely aesthetic, that is, it looks

smooth but has no analytical meaning as far as formulation

is concerned.

- The curve could be smooth in that its derivatives are

continuous [Spline Fit].

- The curve could be statistically smooth

- The curve could pass through all the points

The input signal will be considered before answering this rather

ambiguous question. In any input signal fran the 'real world',

there normally exists some form of noise. In fact, there are two

types of noise: background noise am foreground noise. The

background noise is caused by the ADC when it attempts to digitize

an analog signal: similar to rationalizing an irrational number.

The foreground noise is caused by various physiological factors,

for example cardiogenic oscillations.

The current trends are towards eliminating all forms of noise. A

smooth curve could therefore be defined by a Spline or Statistical

Fit. However, later research may require the foreground noise as

well as the general shape of the curve. The definition could then

change to an ‘all points curve' [APC]. Since the consensus may

not regard an APC as a ‘'smooth' curve, the statistical fit will

henceforth be used as the definition of a 'smooth' curve.

ee

3.3 Curve Fitting

3.3.1 Curve Fitting Norms

A statistical fit is normally defined by one of the following:

- Minimization of the sum of the absolute errors

- Minimization of the sum of the squares of the errors

[Least Squares]

- Minimization of the maximum absolute error [Minimax]

The term ‘error' is the difference between the actual curve am

the fitted curve at the same abcissa. Of the above, the first

method is seldom used. Of the remaining techniques, the minimax

norm is often preferred but it can go wrong if there is a lot of

noise in the data. This problem arises when an attempt is made to

fit the noise rather than the actual curve.

Unlike the minimax norm, the least squares norm attempts to reduce

the sum of the squares of the errors. It is therefore less

dependant upon individual errors. On the whole, the least squares

norm is normally used as it is easier to program and will 'behave'

when there is a lot of noise.

“36%

3.3.2 Basic Curve Fitting Techniques

There are many curve fitting techniques available. Most of these

techniques are based on, or hybrids of, the following:

- Plynomial Curve Fit

- Splines

- Parametric Techniques

3.3.2.1 Polynomial Curve Fitting

As the name implies, the method fits a polynanial to a curve.

This polynomial is normally a linear formula of some basis

function [examples given in Section 3.2].

Most of the polynomial techniques available are based either on

the least squares norm or the minimax norm. A common basis

function for the least squares norm is b(n,;x) = xy which

results in the polynomial

p(x) =a +a exatea x? + tate
0 le De ay n°

where ay to ay are the solution of a set of simultaneous

linear equations formed from the data. However, this method fails

for large values of n [greater than 5] or for large amounts of

data. This failure is due to a problem inherent in digital

Pa:y ge

computers: ill-conditioning. Fortunately, Forsythe [1957] derived

a solution using orthogonal polynomials as.basis functions. These

are polynomials which have similar properties [ie orthogonal].

They eliminate the problem of ill conditioning amd give a more

accurate result when used on a digital computer. The curve fit

using orthogonal polynomials given in Appendix 2.1 is a Fortran IV

translation of an Algol 60 routine due to MacKinney [1960] with

the modifications suggested by MacMillan [1961] ard Makinson

[1967]].

Minimax techniques are often mentioned in literature but the

algorithm is seldan given. The technique which is often quoted

is the Chebyschev curve fit. It uses Chebyschev polynanials as

basis functions:

cos(n.z)p(n,x)

il bascos (z) {x in the range -1 to +1]

Using the trigonometric identity

cos((n+l).z) + cos((n-1).z) = 2.cos(z).cos(n.z)

the relation

p(n+1,x)+p(n-1,x) = 2.x.p(n,x)

p(nt1,x) = 2.x.p(n,x) - p(n-1,x)

pees

may be derived. If the data is transformed in the range -l tol,

[the range for which Chebyschev polynanials work] the curves can

be fitted in a manner similar to that used for orthogonal

polynomials but using the minimax norm. The Chebyschev curve fit

given in Appendix 2.2 is a Fortran translation of an Algol 60

program due to Boothroyd [1967].

3.3.2.2 Splines

A spline is defined by Rogers and Adams [1976] as

"a piecewise polynomial of degree K with continuity of

derivatives of order K-l at the cammon joints between

segments"

Most of the spline fitting techniques available use successive

pairs of points as segments. This is a fairly good technique for

graphical displays and for fitting APCs.

A derivative of the spline technique is the 'Local Axis

Technique'. It uses a transformation to bring the co-ordinates of

the curve nearer to the origin before fitting the curve.

i ae

Another derivative of the spline technique is B-splines. It uses

polygons constructed from the points to. shape the curve. The

curve does not necessarily pass through any of the vertices of the

polygon.

3.3.2.3 Parametric Techniques

This technique redefines the co-ordinates of the array in terms of

an thie variable [or parameter]. For instance, the circle

(thi? 46. (yk)? ext

could be redefined as

xX = r.cos(Z)+th y = r.sin(z)+k

~: 40 =

A parametric technique which is commonly used is Bezier curves due

to Bezier [1972] of Renault. It is useful for showing trends but

is not very useful as far as data reproduction is concerned.

- Curve Classification

- Curve Segmentation

- Segmentation and Classification

-. Axial Transposition

- Mathematical Transformations

3.3.3 Fitting the Pressure Concentration Curve

3.3.3.1 Curve Classification

The method is based on the idea that there are standard PCCs, and

that if all curves are scaled to the same size, their shapes may

be matched against these POCs. This idea was abandoned since

there was insufficient data with which to form a standard PCC.

i £3

3.3.3.2 Curve Segmentation

The PCC, as it stands can be roughly divided into four regions

[Figure 3a]. Unfortunately, the operative word here is 'roughly'.

The actual position that separates any two consecutive regions is

not clearly defined. Inthe literature it is often defined as the

position where the rate of change of the gradient is significant.

This definition is unrealistic as it assumes that there is no

noise in the curve.

A similar idea was tried by Payne [1970] for a general curve

fitting package; the difference being that the curve was just

divided into equal sections. They had no physical meaning. The

only requirements were that these sections had to fit a function

and that the derivatives at the overlapping points had to be the

same.

A similar technique was attempted without checking the

derivatives. Instead, the mean of the overlapping sections was

used reproduction. Using this technique, a 5% error was obtained

in a statistical test on the reproduced curve [see Appendix 3.1

and 3.2].

ae

C
o
n
c
e
n
t
r
a
t
i
o
n

R
e
g
i
o
n

1

R
e
g
i
o
n

3

 a
1

a
i
a
n
i
n
n
t
i
o
m
n
i
a
n
m
n
i
e
e
n

R
e
g
i
o
n

4

Pressure

Figure 3a: Regional Separations on the PCC

C
o
n
c
e
n
t
r
a
t
i
o
n

Pressure

Figure 3b: Approximating a curve to a series of

straight lines

nw ha

3.3.3.3 Curve Segmentation and Classification

Most curves can be approximated to a series of straight lines;

this can be easily proven by examining a graph plotter output

under a magnifying glass. If the PCC is divided into a series of

small blocks, then each block can be approximated to a straight

line [see Fig 3b]. Any straight line can be classified given its

gradient and its intercept with the vertical axis. If the

intercept is always at the origin, then the only identifying

feature its gradient.

If the blocks are of fixed size on the horizontal axis, the only

two variants are the vertical location of the origin amd the

gradient of the line. This idea might have worked if the ADC data

had been available.

The major problem encountered was whether to have a standard block

size or a standard number of blocks. If a standard block size was

chosen, then the longer curves would be reproduced more accurately

than the short ones. The converse is true if the number of blocks

is fixed. Since a compromise could not be reached amd data was

not available in sufficient detail, this method was abandoned.

= 44a es

3.3.3.4 Axial Transposition

This is a fairly common technique of curve fitting. The curve is

fitted to x=q(y) instead of y=p(x). When the PCC is transposed,

it looks like a quintic with two points of inflexion.

Unfortunately, the fitted function will not always model the curve

correctly as can be seen in Figure 3c.

Another problem with axial transposition was that it would be a

time consuming task to reproduce the data. The raw data is read

as Concentration in terms of Pressure. reproduction, this will

be Pressure in terms of Concentration. A lot of interpolation

would have to be done in order to obtain the data as Concentration

in terms of Pressure.

3.3.3.5 Mathematical Transformations

This technique was discovered by accident while the author was

indulging in one of his pastimes: helping other programmers with

their problems. It was found that a quality control formula fran

Wild [1971], of the form

y = (2) = 1/(2" - 1)

[where z=x/(l1-x) and x is in the range 0.0 to 0.2] approximated to

the PCC.

85. =

P
r
e
s
s
u
r
e

P
r
e
s
s
u
r
e

Concentration

Figure 3c: A curve with transposed axes

Concentration

Figure 3d: This curve is a reproduction of the one in

Figure 3c when Axial Transposition is used.

The ‘kink’ at the top end is missing.

ose

Further experiments showed that by applying the transformation

w = y*x/(2*max(x)-x)

where max(x) is the maximum value of the abcissa, w fitted to a

quintic. Since the data was only available in small quantities,

it was not possible to test this method fully. However, with

about 60 points, it was fairly successful [5% error on a Chi-

squared test, see Appendices 3.3 and 3.4].

3.3.4 Fitting an All Points Curve

So far, all the techniques described perform a fit for a smooth

curve. Due to the nature of the available data, fitting an APC

was not possible. If it were possible to get the data sampled at

a fairly high rate, the following steps would have been taken to

fit the AFC:

- Fit the data to a smooth curve

- (Obtain the noise signal by subtracting the smooth curve

from the data

- Fit a function to the noise

It is possible the the function will be periodic.

ig. Mele

3.4 Testing

3.4.1 The Implementation Computer

The question which arose before any curve fitting was performed

was "On which computer should the fitting be done?". It could be

performed on either the Information Retrieval Camnputer [IRC] or

the Data Capture Computer [DCC].

If it is done on the DCC, there will be less data to transmit.

Curve fitting is a time consuming task so this process could take

Tetcer on the DCC than on the IRC. Another problem is that the

precision of the calculations on both the camputers could te

different [the curve has to be reproduced on the IRC]. For the

sake of accuracy of reproduction, it was decided that the curve

fit be done on the IRC.

3.4.2 Algorithm Testing

The algorithms were tested on a Data General Nova 3/12 running on

the Diskette Operating System [DOS] The computer had 64 Kb core

of which 20 Kb was used by DOS. The secondary storage was

relatively small: only 600 Kb on flexible diskettes. For now,

this computer will be called the source camputer; the object

computer being the final implementation computer which the CIU has

yet to obtain. The algorithms were written in Data General's

ae

esoteric version of Fortran IV. These will have to be modified

considerably even if they are transferred to a computer which uses

Fortran 77.

The curve was reproduced from the polynamials delivered by each

algorithm and a Chi-squared test was performed. Initially the

basic algoirthms were tested on known curves [eg y=sin(x),

y=exp(x), y=x?-5x+2 etc]. When these tests gave satisfactory

results, they were tested on the PCC. The hybrid algorithms were

only tested on the PCC. There was no need to test them on known

curves as they were specifically written for the PCC.

Fran these tests, it was discovered that the reproduction was more

accurate if the data was scaled down to the range +2 to -2 rather

than 0 to 255. When the process was repeated in double precision

arithmetic, a more accurate result was achieved.

Occassionally, during reproduction, large errors appeared in

Region 2 [see Figure 3a] of the curve. It was observed that these

curves had long 'tails'. Shifting the origin to the position

where the curve started rising reduced this error significantly.

man =

3.4.3 Testing on Simulated Data

The algorithms described so far were tested on data read fram pen

recorder outputs supplied by the CIU. This is equivalent to

taking every 20th point from the ADC output. The questions which

arose were

- Would the algorithms work if they had been tested on a

larger volume of data

- Why ‘was the ADC output not simulated: it could have been

compared against the pen recorder outputs for accuracy of

reproduction.

A definite answer cannot be given to the first question as no

tests were performed. What is known is that the Nova 3/12 would

not be able to handle them as there would not have been sufficient

memory. This could have been easily solved by shifting the array

into secondary storage. However, this would have resulted in a

lot of wasted work since secondary storage routines are often

unique to manufacturers. It could be a problem programming the

equivalent of one manufacturer's routines on other manufacturers'

machines. It is hoped that the object computer will have enough

workspace to avoid the problem of having to use secondary storage.

= 50:

As for the second question, the same volume of data could have

been simulated euifa nigference tables. The problem was

simulating the exact nature of the data. It would not have been

feasible to reproduce the pen recorder outputs since the amount of

noise generated by the momentum of the pen recorder might not have

been equivalent to the noise generated when converting the analog

signals to digital signals.

3.5 Further Work

Further work could be done, not on curve fitting but on curve

recognition. This would have to be done on the PET. It arises

from the fact that an untrained operator would try every single

breath test available whereas a trained operator would only try a

few as a logical follow up to those attempted previously. The

problem would be to cram the trained operators' experience into

the logic of a program to aid the untrained operators. This work

is currently being attempted at the CIU.

A lot of work could also be done on fitting an APC when the data

is available. This is yet an unexpolored area amd it would help

if some expeditions were carried out in it.

End of Chapter

Shia

CHAPTER 4: TRANSFERRING THE DATA

Whenever you set out to do something , something else
must be done first - Sixth Corollary to Murphy's Law

4.1 Why transfer the data

In Chapter 2, the data was captured fram an ADC by the PET amd in

Chapter 3, this data was reduced in size by the Nova 3/12. The

‘question is how the data got fran the PET to the Nova 3/12.

Since the data was read from pen recorder outputs, it did not

actually come fram the PET, but that was only a simulation of what

the PET would have given. The point is, that the data will

eventually have to come fram the PET. In this chapter, the

methods of transferring the data fram the PET to another canputer

will be discussed.

4.2 Methods of Transferring Data

Data can be transferred between computers in various ways:

- Manual Transcription

- Compatible Peripherals

- Direct Linking

a's

Manual transcription involves obtaining a printout fran one

machine and ety transcribing the data to another. Although

this technique is outdated, it is still used by British Telecan

for telephone bills. This method.is extremely error prone amd

time consuming, especially when there are approximately 4K numbers

on each curve.

The method of common peripherals uses a media which is common to

both machines, eg paper tape. The data could ke recoded on the

paper tape by one machine amd read by another: that is, if the

formats used by both the machines are the same.

Direct Linking involves the use of one machine as a terminal of

the other. The advantage is that one need not worry aout

compatibility of peripherals. Another advantage is that the

software can be easily modified if the host computer is charged;

no new hardware need be purchased since all the larger camputers

nowadays follow the same communications standards.

Of the three, direct linking is the cheapest since it requires no

additional stationery and very little manual intervention. It is

the least error prone and therefore the most secure of the three

methods.

a

4.3 Communications Ports

In order to use one computer as a terminal of another, something

must first be known about the communications facilities available

on both these machines.

On most mainframes and minicomputers, the method of communication

with the data entry terminals is normally either the EIA RS-232 or

the Current Loop Standard.

On the PET, there are two communications ports: the GPIB Port amd

the Parallel User Port [PUP]. Both these ports can be interfaced

with the RS-232 using an interface exchange. The difference is

that the GPIB interface exchange can be bought ‘off the shelf'

whereas the PUP interface exchange will have to ke specially

built. The GPIB was more attractive as there was no point in re-

inventing the wheel. As a result, the GPIB port was selected as

the communications port for the PET.

4.3.1 The GPIB and its Protocol

GPIB is the abbreviation for General Purpose Interface Bus. It is

an international standard which has been developed so that

programmable instruments made by different manufacturers, but all

following this standard, can communicate easily with one another.

oth

The GPIB is also known by several other names:

- HPIB [Hewlett Packard Interface Bus]

- ANSI MC 1.1 [American National Standards Institute,

Standard MC 1.1]

- IEC Bus [International Electro-technical Commission

Standard 625-1]

- IFEE-488-1978 [Institute of Electrical amd Electronic

Engineers Standard 488-1978 Digital

Interface for Programmable Instrumentation]

The interface was originally developed by Hewlett Packard [hence

HPIB] and later adopted by the IEEE, ANSI amd the IEC. The title

GPIB was given by Tektronix. ‘The main reason for calling this bus

the GPIB rather than the IEEE-488 bus [which the PET manual uses]

is that it is a shorter abbreviation.

The GPIB allows the transfer of digital data among up to 15

devices connected together either by a star interconnect or.party

line bus [see Figures 4a and 4b]. The total length of the

interconnecting cables must not be more than 20 metres. The data

is transferred in parallel format [bit parallel, byte serial] in

an asynchronous fashion. The speed of each transaction on the bus

is set by the slowest device participating in that transaction.

The maximum data rate allowed by the standard on any signal line

is one million bits per second.

bn

Three types of devices can exist on the GPIB: talkers

[transmitters], listeners [receivers] and controllers. In a PET

system, the PET is the only controller on the bus.

The GPIB works on a 'three wire hamdshake' [protocol] using the

following control lines:-

- NRFD Not Ready For Data

- NDAC Not Data Accepted

- DAV’ [Pata Valid

The protocol works as follows:

- The transmitter waits until all the listeners it wishes to

talk to have released NRFD.

- The talker then places the data onto the data bus amd

activates DAV. This tells each listener to capture the

data byte presently on the bus.

- NDAC is held low by each listener until it captures the

data byte. When all listeners have read the data, NDAC

goes inactive telling the talker to take the byte off the

data bus.

56 =

<— INTERFACE

<— COMPUTER

<— DEVICE

Figure 4a: Star Configuration

COMPUTER : DEVICE

1

INTERFACE

Figure 4b: Daisy Chain Configuration. The GPIB
can be used in a star, daisy chain or
permutations of both configurations with
up to 15 devices.

- 57 -

4.3.2 The RS-232

The full name of the RS-232 is the Electronic Industries

Association [EIA] Standard RS-232: Interface between Data Terminal

Equipment [DTE] and Data Communications Equipment [DCE]. It is

also known as_ the International Telephone and Telegraph

Consultative Committee [CCITT] Standard V.24.

It is a convention for data transmission over short distances. It

was Originally designed to interface terminals to telephone

modems, but is now widely used for the interconnection of

computers and peripherals of all sorts.

The RS-232 uses a 25 pin connector, with the plug tied to the DIE

and the socket to the DCE. The transfer of data is accamnplished

by sending the data in serial form [one bit at a time] over a

single wire. There are two general transmission techniques:

synchronous and asynchronous.

Synchronous data transmission requires a clock to mark the start

of each data bit interval. There are also special bit

synchronization patterns which may be used to allow the receiver

to locate the first bit of the message. The disadvantage of

synchronous transmission is that the data must be contiguous.

nt! SO

With asynchronous transmission, a clock signal is not transmitted

with the data and the chararacters need not ke contiguous. This

is made possible by adding synchronizing start am stop elements

to each character. Asynchronous transmission is usually used for

DIE.

4.3.3 The Current Loop

The Current Loop is also known as the CCITT V.28 Standard. It is

not as common as the RS-232. The difference between the Current

‘Loop and the RS-232 is in its operation. Both the standards use

the same 25-pin connector. The advantage of using either the

Current Loop or the RS-232 is that no handshake is required.

4.3.4 The Interface Exchange

Two interface exchanges were tested on the system. One was the

IEEE-488 to RS-232-C Bidirectional Serial Interface by Gnall

Systems Engineering [SSE] and the other, the TNW-3000 by TNW

Corporation. They are both similar except that the TNW interface

will accept two input/output channels while the SSE interface will

only accept one input and one output channel. Both these

interface exchanges can be configured for Current Loop operation

if required. The TNW-3000 is part of another project which had

been postponed due to lack of staff.

bg.

4.4 Transmitting the Data

There are several items to consider before the data can te

transmitted; these are given as follows:

- The message length

- Transmission Codes

- The message format

- Separators and Teriminators

- Error checking

- Job Control Language Protocol

4.4.1 The Message Length

Normally, when an operator wishes to semi a message to a host

computer [HC] via a VDU, the operator will type ‘in a line followed

by a line terminator [eg return]. In most systems, there is a

maxmimum length for this message. For instance, it is 2000 on the

ICL, 132 on the Nova 3 etc. The problem is to select a message

length which will be acceptable to most machines.

These messages have to be read by the HC using either its 'input'

command or a program [some computers do not have an '‘input'

command]. If it is a program, the same problem arises: different

implementations of different programming languages will accept

different message lengths.

pa te

The easiest way out of this is to use the smallest terminal width

of a common DIE. This would be the Teletype 33 with a terminal

width of 72 characters.

4.4.2 The Message Format

The data, as it is held in the PET diskettes, is in byte format.

Since the data bus [GPIB] is only 8 bits wide, the data will have

to be transferred one byte at a time. The problem is to establish

a format so that the PET 'knows' what to transmit and the H

"knows' what is coming in. The captured data could be converted

into floating point before transmission but that would result ina

loss of precision. As a result, two types of data have to be

considered:

— Integer, Data

- Floating Point Data

mG vo

4.4.2.1 Integer Data

A solution would be to transmit the data in the format used

internally by the HC but there are problems:

- Some of the bit patterns may have a predefined meaning to

the Operating System [OS] used by the HC. For example,

007 could be used to sound the buzzer.

- The OS may require the parity bit for error checking; in

which case only 7 bits of data may be transmitted.

- Some computers use sequences of characters to terminate

files. If the data transmitted happens to contain this

terminating sequence, the input could be terminated

prematurely.

Consider the program which will have to read this data. The

easiest format to read would be decimal. Unfortunately, it is

relatively difficult to convert a number to decimal if it is

stored in binary. It would be easier to convert the number to

base 4, octal [base 8] or hexadecimal [base 16]. the receiving

end, hexadecimal would be extremely awkward to convert but octal

and base 4 do not present any problems.

mg =

The problem now is whether the data should be sent in octal, base

4 or binary. Since octal numbers can be represented in the least

number of bytes, it is the most feasible of the three. The digits

will have to ke translated into the required transmission code

before they are transmitted.

A 12-bit number can be represented in 4 octal digits. This would

mean that up to 18 [72/4] numbers can ke packed into a line.

Unfortunately, some programming languages required separators. ‘To

be safe, two spaces will be used. This brings the width of the

number up to 6 characters amd the number of numbers per line down

to 12 [72/6].

4.4.2.2 Floating Point Numbers

Unlike the integer data, the floating point data is not so easy to

transmit. It would not be a good idea to transmit it in octal as

there are a variety of formats for floating point octal numbers.

An easy way out would be to use the STR$ function in PET Basic and

convert the number to decimal before tranmmission. It was

mentioned eariler that this might have resulted in a loss of

precision but that is only in the calculations.

oy =

The data input by the operators would not normally contain more

than five significant digits [SD]. ‘The precision of the PET is 10

SD whilst that on most 16-bit minicompters is 7 SD [14 SD if

double precision is used]. Since the precision of both the

machines involved is greater than that of the data, there will not

be any significant loss in precision.

The only problem with the data is that it might be difficult to

read [from a program on the HK]. Some languages have an

unformatted 'read' instruction. Others like FORTRAN IV have a 'G

format' which will take in both fixed and floating point numbers

in a formatted form. Problems would arise if languages like COBOL

and RPG were used since a parser would have to be written to

evaluate the acutal value of the number.

4.4.3 Transmission Codes

When two computers pass streams of bits between each other, some

coding convention will be required so that the data received may

be interpreted. This can be done by breaking the stream of bits

into packages [commonly known as bytes or characters].

These packages will always contain a fixed number of bits and some

bit patterns will have a predefined meaning [eg 100 could mean End

of Transmission]. The problem is that the predefined meanings

used by different computers could be different.

a he

As it stands, the PET uses a code unique to its range of machines.

Most other machines use the International Standards Organization

[ISO] Alphabet No. 5. This standard is often called the American

Standard Code for Information Interchange [ASCII]. It was

introduced by the ISO and ANSI in an attempt to forstall an

impending proliferation of codes ami has been fairly successful.

There are two solutions to this problem of incompatibility:

- Use the HC to translate the code transmitted by the PET

- Use “the PET to translate the code before transmission

Of the two, the latter is easier since the PET character set is

larger than ASCII and the PET, as an independent canputer can work

at a faster rate than the HC. ‘To conclude, the PET will ke used

to convert the data to ASCII before transmission.

4.4.4 Separators and Terminators

Whenever data is transmitted, it is possible that more than one

set that is one complete curve will be sent. A separator will be

required to separate one set fram the other. Although there is a

standard ASCII character for this, it may have a predefined

meaning to the OS. An octal number cannot be used since 0000

through 7777 are all used. However, there is no rule that says

that the separator has to be an octal number; it could be 'END' or

some other decimal number which cannot be converted into octal

at Oe

[eg 9999]. Since the data on the HC can be read as decimal

numbers, invalid octal numbers could be used as separators.

The 'end of data' marker is not really necessary as most computer

languages have some way of detecting ‘end of file’. However, if

there is no such facility, another invalid octal number [say 8888]

could be used.

4.4.5 Error checking

Most systems have a method of checking their data. Same use

parity bits while others use special techniques such as checksums

and cyclic redundancy checks. However, these special techniques

are seldan performed during manual data entry.

Since the hardware already caters for parity and the more

sophisticated forms of testing will not be used, there is no need

to restructure the data for error checking. The error rate will

be similar to that of an operator at a remote terminal and this is

relatively low.

aS «

4.4.6 The Job Control Language Protocol

The protocol for most JCLs is vaguely similar. It consists of a

command followed by a command terminator [normally return]. The

format and contents of the commard may vary fram system to system.

They could be either left as part of the interfacing software or

provided as a parameter to the system.

4.5 Programming the system

The system can be programmed in one of three ways depending on

what is available on the HC:

- The PET could emulate an operator typing in an '‘input'

command and manually entering the data into a file. The

data can then be translated into the format required by

the HC in a separate program.

- A program could be written on the HC to put the data into

a file. This is similar to the above method except that a

program is used insead of the ‘input' command.

- A program could be written on the HC to read the data fran

the PET and to convert it before entering it into the

file.

hh

The first method is useful if an ‘input' commam exists in the job

control language of the HC. The latter methods depend on the

speed of the processor. The method which uses two programs would

be better for a slower processor whilst the method which uses

concurrent programs would be better for a faster processor. All

three methods have been implemented.

4.5.1 Timing

In a test run written in Basic on the PET, an attempt was made to

connect the PET as a terminal of the Nova 3. The problem with

using Basic was its speed. The program was too slow to accept any

messages which had been sent to it am too quick in sending its

own messages! This meant that the program had to be written in

assembler.

There was a choice of either writing the whole GPIB protocol as

described in Section 4.3.1 or using the PET's’ input/output

routines. The former would give better control over the timing

whilst the latter would be easier to write. Fortunately, a

package existed for such a purpose. It was part of the postponed

TNW-3000 project and did not have to be bought separately.

- 6o

4.5.2 Commlink

The package which was used to handle the protocols was Cammlink,

supplied by Taylor-Wilson Systems [1980]. It provided a range of

commands which configured the PET as a terminal. The problem with

Commlink was that it was supplied on a diskette which had been

protected by Commodore against piracy. As a result, the research

was hindered by the availability of this diskette.

This problem was quite easily solved by loading Cammlink into core

and saving the core image. Since Commlink used an extended

SieSunictton set, it was obvious that the PET's scanner [the CHRGET

routine in Commodore's terminology] had been altered. This was

also copied and a program was written to load both these core

images into their appropriate places. The loader is given in

Appendix 4. So much for Commodore's software protection!

4.6 Conclusion

In conclusion, this section of the project has been a very

worthwhile excercise in communications. It shows the importance

of communications standards in industry and the versatility of

general purpose tools.

End of Chapter

- 69 +

CHAPTER 5: STORAGE AND RETRIEVAL OF DATA

Any given program will expand to fill all available

memory - Fifth Law of Computer Programming

5.1 Introduction

In this chapter, when the word ‘information’ is used, it means

‘the data collected from the ADC in reproduced form and some facts

about its source [eg age, sex, diseases etc]. The main concern of

this chapter is the collection of information in the computer's

memory and its subsequent retrieval.

5.1.1 The Information Retrieval Systems Available

There were only two information retrieval systems available with

no additional cost to the project. These were Rapport by [ogica

Ltd. and MUMPS (acronym for Massachusetts General Hospital Utility

Multi-Programming System).

so 8 al

5.1.1.1 Rapport

Rapport [Logica [1979a,1979b,1979c]] is a package which can ke

interfaced with Cobol, Fortran amd Coral, thus providing some

flexibility as far as the machine was concerned. However, its

query facilities were limited in that the only boolean operation

allowed was AND. This is not a problem as any boolean expression

can be easily manipulated [using De Morgan's Laws [see Section

5.4.2.2]] to give the same meaning.

The main problem is that the data would have to be restructured

into Codd's Third Normal Form which is rather awkward as it would

not handle repetitive types. All the retrieval permutations had

to be known before the system was set up. This would have been

adequate for the operators who carried out the breath tests but it

would have been a drawback for the researchers.

531. ste? MUMPS

Since MUMPS [Digital Equipment Corporation [1976a,1976b]] is now

supported by ANSI, it is available on quite a few machines. It is

very much better than Rapport in that it will do ANDs ard ORs.

The problem with MUMPS is that it is a language in its own right

and therefore cannot be interfaced with other languages. As a

result, the data transferred into a file in Chapter 4 may have to

be manipulated so as to get MUMPS to accept it.

<1 &

MUMPS is an interpretive language amd is geared for efficient

retrievals. It would not te efficient to use it for heavy

arithmetic such as curve reproduction/fitting.

Another problem was that the version of MUMPS available could only

accept a record size of 132 characters. This was inadequate as

the parameters for the curve alone would use that amount of space .

It was only available on a bureaux basis which meant that whoever

used it had to follow the times of the bureaux. It would ke

expensive to use such a system for research work.

5.1.1.3 Other Information Retrieval Systems

The other information retrieval systems available are unique to

manufacturers. Some of them can be interfaced with programming

languages. The problem is that the idiosyncracies of these

systems could hinder the development and portability of the

project. It would therefore be better if a system was designed

for storage and retrieval of the data.

eh

5.2 The Descriptive Tools

5.2.1 Terminology

Before going on, some of the terminology used will be explained.

Each subject [patient] is associated with a set of data. This set

of data is called a 'record'. Each record has either a special

set of items or a special iteit which can be used as a unique

identification. These special items are known as the primary

keys.

A collection of records is a ‘table’ or a 'file'. The term table

is used to indicate a small file while a file is used to indicate

a large table. Normally files are stored externally while tables

are stored in core. A large file or group of files is called a

"databank' or a 'datapool'. The word 'database' is sometimes used

but it will be avoided as it has a range of meanings. The

information referred to in Section 5.1 will be stored in a data

bank.

Some 'tree' terminology will be used later in this chapter. This

terminology is explained in Figure 5a.

eet

A
B
o
f
o
u
r
w
u
a
l

a
a
d
l

7
e
G

a
J
N
b
I
T
y

H
O
N
V
H
E

A
V
M
-
I
L
I
N
W

H
O
I
N
V
H
E

A
V
M

O
M
L

(3Q0N
TvNIWHaL)

|
a
e

||||

H
1
d
3
0

(A00N
“VNIAH3L-NON)

|
300N

LHOTSH

(
S
Q
0
N

3
S
V
a
)

L
O
O
H
—
>

-

5.2.2 Data Structures in Algol 68

Algol 68 was chosen for defining data structures because it is one

of the few computer languages in which a data structure is not

called a 'record'. If Pascal, Ada or Edison had been used, the

appearance of the keyword 'record' would have been quite

confusing. The use of level numbers as in Cobol am PL/1 just

hinders description.

Algol 68 has been used extensively by Pagan [1976,1979,1981] for

describing the semantics of programming languages. In this

section, some of the tokens used in the later sections will ke

described. A data structure is defined by

MODE structure name = STRUCT(structural descriptor)

The token STRUCT may be left out if there is only one item in the

structural description. The structural descriptor is a set of

structure names. Arrays in Algol 68 are described by brackets [],

thus [1:20] INT x is an array of 20 integers, the array name being

x. The word REF means that the entity is used as a pointer. This

is illustrated in Figure 5b.

7a

-9L-

"e9[obry
uruvorzevelTIapFOOW&40wesbelIgxe2UAS-9GauUNbry

HOLdIHISa0
(AVHNLONYLS <1)<19nHIS<—

 SuiditvosuWetlonkisfneeeSOK

"2INTJIYfOvOTReZUaSAUdayITZewWweUbEeIg-qGaINBIY

Bite

Sometimes a mode can be defined as one of a series of types. This

is symbolized by the word UNION. For instance, if an entity can

be either a STRING or an INTeger, then it may be defined as

MODE ENTITY = UNION(STRING, INT)

5.2.3 Syntax Diagrams

In Algol 68; the order in which the structural descriptors appear

is not important. Since the order is important in the syntax of

most languages, Algol 68 cannot be used for syntactic description.

Instead, a system of describing syntax using diagrams due to Wirth

[1976] will be used. The syntax is described in the direction of

the arrows [see Figure 5c].

The syntax could have been described in Backus Naur Form [De

Morgan et al [1976]] but this would have introduced problems of

ambiguity of grammars et cetra. Such problems are not in the best

interests of this report.

a7 =

5.3 The Data Bank

5.3.1 Maintenance of the Data Bank

Most data banks can be maintained with the aid of the following

operations :

- Insert

- Update

- Delete

These operations all require yet another operation: retrieve.

This is the most important operation as it is used not only in the

above but also as an operation in its own right.

5.3.1.1 The Insert Operation

This operation involves the addition of new data in order to keep

the file up to date. It is normally implemented as a search for a

space in which the record may be inserted followed by the actual

insertion of the record. If the record has to be put in a

specific place to ease the searching, other records may have to ke

shifted to accomodate this insertion.

“1S 4

5.3.1.2 The Update Operation

This operation is used when data within an existing record has to

be modified. The record stored in the file will contain some

information from the previous record and possibly some new

information.

5.3.1.3 The Delete Operation

When data is no longer required in a file, it can be deleted.

Although this operation is not normally required for a cumulative

data bank, it is useful for removing bogus records which are often

inserted during demonstration runs.

5.3.2 The Retrieve Operation

In order to use any data stored in the data bank, the record must

first be read by the processor. To read a record efficiently, its

contents must be located quickly. Records may be retrieved in one

of two ways:

- Using the primary key only

- Using permutations of secondary keys

ai ee

A secondary key is an item which is not part of the primary key.

Itmay be used se retrieval : but unlike the primary key, it need

not be unique. When a retrieval is performed on the primary key,

only one record will be expected since the primary key is unique.

A retrieval based on secondary keys could produce more than one

record. If at least one record was found after the search, it

would be 'successful'; conversely, if no records were found, it

would be '‘unsuccessful'.

5.3.3 Searching on the Primary Key

There are several ways of searching on primary keys. Some are

better for retrievals while others are better for insertions and

deletions. Some techniques are the converse. Fortunately, there

are some techniques which strike a canpromise between file

maintenance and record retrieval.

The idea behind these techniques is to locate the required record

with the minimum number of disk accesses [since the time required

to access a disk block is often very much greater than that

required to manipulate it]. The methods of file searching that

will be discussed are

- Indexed Sequential Access Method [ISAM]

- Key Transformations

— (B-trees

aE) fae

5.3.3.1 Indexed Sequential Access Method

The ISAM of data organization allows the data to ke processed

either directly or sequentially [unlike sequential organization

which only allows sequential access]. It uses a file call called

an Indexed Sequential File [ISF]. The ISF has three areas:

- An index

- A sequential file

- An overflow area

‘The index is a collection of sorted primary keys am pointers.

Each pointer corresponds to a primary key and points to the

remainder of that record stored in the sequential file. The index

is often organized into ranges [for example, 1000 to 2000, HOW to

HUG] called sub-indices. These indices help to speed up the

search.

The sequential file contains the secondary keys amd other non key

information. The overflow area is used when the space in any sub-

index is exhausted [the ICL solution] or when the whole index gets

filled up [the IBM solution]. It is basically a temporary fixture

to avoid file reorganization. However, when the overflow area

gets filled up, the file has to be reorganized.

a ee

5.3.3.2 Key Transformations

This is a relatively old idea which first appeared in the early

1950's. In most search techniques, lists, tables or trees are

scanned for matching primary keys. When the primary key is found,

the next item that will be accessed is a pointer to the remainder

of the record. The idea behind key transformations or hashing is

to use a transformation function to canpute the value of that

pointer, given its primary key.

Theoretically, only one memory access would be required to obtain

the record. Unfortunately, it is not easy to find such a

function. Knuth's [1968] mathematical treatise shows that the

chances of finding a function which will uniquely map 31 keys to a

table of 41 records is one in a million! As a result, the

probability of a function computing the same value for different

keys is very high. Such duplication of values is technically

called a 'collision'.

iO

Fortunately, there are several techniques for handling collisions:

linear probing, quadratic probing, chained lists etc. There is no

"‘best' general method of handling a collision. The use of a key

transformation has several disadvantages:

- It is extremely data dependant.

- Its performance is affected by the size of the hash table;

a larger table gives better performance.

- The size of the table needs to remain fixed: this could

delay the introduction of new hardware as the size of the

table may have to be altered to take advantage of this

addition. Normally the hash table has to be reorganized.

- The records cannot te accessed sequentially wnless the

transformations specially cater for this.

- Some collision handling techniques will not work if keys

are deleted.

- 83 -

5632363 B-trees

A B-tree is basically a balanced multi-way tree. It was

introduced by Bayer and McCreight [then of Boeing Corporation] in

1970. With a B-tree it is possible to search am to update a

large file with 'guaranteed' efficiency: even in the worst case.

Knuth's description of a B-tree of order n is given below:

- Every node can have up to n+l branches

- Every node, except the root and leaves, has more than n/2

branches

- A root has at least 2 branches [unless it is a leaf]

- All leaves appear on the same level and carry no

information

A non-leaf node with k branches will contain k-1 keys

A more detailed description of the B-tree is given by Caner

[1979]. The main difference between Comer's description and

Knuth's description is that Comer's B-tree of order n has 2nt+l

branches. A diagram of a B-tree is given in Figure 5d.

RE

"
9
9
U
7
-
G

Y
(PG

aUuNbEy

u
M

s
n

N
N

H
L

V
i

N
S

o
s

d
d

S
H

S
J

dsj

g
a

4
0

N
O

W
I

A
V

W
V

W

O
V

W
n

N
d

W
I

O04

V
9

- 85 -

Using a B-tree has some advantages:

Records can be accessed in relatively few disk accesses.

Say, the contents of a node can be stored in one block.

This implies that only one access will ke required for

each node. Therefore only four disk accesses will be

required to pick out one record from 11110 in a B-tree of

order 10!

Fach node has its keys in sorted order. This implies that

the ‘records may be accessed sequentially.

The tree is always 'balanced', that is, the depth of each

subtree is always the same. This guarantees a minimal

time to access each record.

It automatically reorganizes itself.

Incidentally, the B in B+tree has no definite meaning. Many

references refer to it as a 'Bayer-tree' although it could stand

for balanced, bushy, broad or Boeing! An AVL tree (balanced

binary tree) is a B-tree of order 1 whilst a 2-3 tree is a B-tree

of order 2.

6+

5.3.3.4 Selection of retrieval technique

When searching for a record based on a primary key, one of the

following possibilities can arise:

- the primary key is known

- part to the primary key is known but the operator is

uncertain about the rest of it

- the primary key is known but the operator is too lazy to

type all of it in!

If the primary key is known then any technique may be used. The

latter two are basically the same but they imply that a sequential

search is required so hash functions may not be used.

Since ISFs need occassional manual reorganization while B-trees

reorganize themselves automatically, it is more convenient to use

B-trees. To cater for half entered primary keys, wild characters

and coded strings [eg an for centimetres] could be introduced into

the system.

~=

5.3.4 Retrievals on Secondary Keys

When retrieving on secondary keys, a search is made for all the

records which have certain attributes. The specification of the

records required is known as a qery. Queries are usually

restricted to the following types:

- A simple query which gives a specific value of a specific

attribute; eg sex eq male.

- A threshold query which gives a limit to the values of a

specific attribute; eg age gt 50

- A Boolean query which consists of the previous query types

combined with Boolean operations;

eg sex eq female and age lt 20

There are several methods of performing queries efficiently (eg

combinatorial hashing, clustering etc). Unfortunately, these

methods will only work if the distribution characteristics of the

attributes are known. There is also a possibility that some

records satisfying the query will be left out. Such a fault could

result in a multitude of bogus theories, especially if this data

bank is used as a data source. There are, however, two simple and

straightforward solutions to this problem:

- Record Search

- Attribute Search

- 88 -

Both these methods use a basic search technique known as_ the

sequential search. Although they are not as efficient as

clustering and the like, distribution characteristics need not be

known.

5.3.4.1 Record Search

In a record search, the file is organized into records viz

Record 1 Brandy Napolean 40%

Record 2 Brandy Rouget 40%

Record 3 Whisky Glenfiddich 40%

Record 4 Liquor Benedictine 38%

Record 5 Whisky Bells 41%

When a query is processed, each full record is read in turn ard

Matched against it, the operative word here being 'full'. A lot

of time is often wasted in reading the whole record, most of which

is not required for the query.

~ Tee

5.3.4.2 Attribute Search

This is the technique used in the programming language APL.

Instead of keeping the keys or attribues of a record together,

each attribute is kept separately viz

Attribute 1: Brandy, Brandy, Whisky, Liquor

Attribute 2: Napolean, Rouget, Glenfiddich, Benedictine

Attribute 3: 40%, 40%, 40%, 38%

When a query is made, only the attributes which are required are

accessed. This speeds up the search process considerably.

Another advantage of such a structure is that new attributes can

be added to the system without any complications. The main

disadvantage of such a system is that several blocks have to ke

read when a 'full' record is required.

5.3.4.3 Choice of Search Technique

A decision has to be made as to whether a quick search or the

speed at which a '‘'full' record is displayed is more important.

Most queries will only require parts of records: not the whole

record. Normally, the time spent comparing records which do not

satisfy the query is very much greater that the time taken to

access several blocks of data.

However, if the record has several attributes, then the time taken

to access several blocks of data can still be considerable. To

get the best of both worlds, a hybrid technique can te used.

Instead of keeping each attribute separately, some attributes

could be grouped together. This would increase the search time

marginally but it would decrease the access time considerably.

5.4 Interacting with the Program

5.4.1 . Methods of Interaction

There are two standard methods of interacting with a program:

- Using a Menu System [MS]

- Using a Command or Query Language [QL]

PKS ae

A QQ provides the basic building blocks with which the user can

build up whatever is required. This. approach is normally

preferred but, as with all other languages, it is initially more

difficult for the user.

A MS is one that provides a list of options. The user can then

select as many options as required; very much like selecting

dishes from a menu in a restaurant.

Most MSs attempt to provide the user with every conceivable

option. Unfortunately, this implies that an extremely large menu

‘could result and that it might not provide options which are

required. An alternative MS could provide the user with QOL

facilities but this could be extremely clumsy to use.

The choice of interacting method lies in the application: not in

the merits of the method. If the user is not likely to require

More than two operations at any given time, a MS should be used.

On the other hand, if more than two operations are required, a OL

should be used.

~ O95

5.4.2 Choice of Interacting Method

There are two groups of operations that can be performed on the

data bank

- Maintenance

- Retrievals

As a rule, the maintenance operations should only ke performed

with the use of the primary key only. This will avoid the problem

of duplicate primary keys. Since these are single operations, a

MS should be used for mainentance.

In retrievals, the data bank will not ke altered in any way so

either a OL or an MS may be used. This is based on the assumption

that most queries will be small. There is a possibility of a

large query but it is just a bad excuse to introduce a QL into the

system.

Imagine a researcher sitting in front of a VDU. Unlike the

operators, this researcher does not use the system very often and

makes logic errors like typing IOR instead of XOR. If the search

does not give the researcher the records which are required, the

whole query will have to be re-entered.

a9

With a MS, the researcher will have to go through screens of menus

all over again in the order in which the. query should have been

evaluated. Such a system could get rather ‘unfriendly'. With a

OL, the researcher is given a notation with which to record the

query. This aids remembering the query. The computer can help by

displaying the original query in the QL. Using a Q@ would

therefore solve some problems for the researcher. In conclusion,

a OL should be used for retrievals.

5.4.2.1 Design of the Query Language

One of the reasons for using a OL is flexibility. It should allow

the user to configure any required query. Its notation is

normally based on one or more of the following:

- Infix Notation [INL .eg:5. 4

- Prefix/Polish Notation imal. eg 25 4

- Postfix/Reverse Polish Notation [RPN] eg 5 4 *

The differences lie in the location of the operator [eg *] ard the

operands [eg 5]. Since Infix Notation is always taught in schools,

it is the preferred notation. Polish Notation [so called after

the country of origin of J. Lukasiewicz, the originator] is

normally used with unary operators and functions [eg tan, cos, log

etc]. Its other common use is in artificial intelligence

languages.

i OR

RPN should be well known to computer scientists am owners of

Hewlett-Packard calculators. It is also used in canputer

languages like POP2 and FORTH.

Both PN and REN are less error prone but they are difficult to

introduce to first time users. IN is easy to use for simple

expressions. However, one tends to get lost in parentheses when

it comes to complex expressions, for example,

((((age gt 5) amd (age lt 10)) or (name eq bloggs) xor

((age eq 20) and (name eq other))) [xor means exclusive or]

Instead of using parentheses, level numbers could be used [an idea

from COBOL]. For legibility, each expression will be written on a

separate line amd indented.

4 age gt 5

3 and

4 age lt 10

2 ior

3 name eq bloggs

1 xor

3 age eq 20

2 ard

3 name eg other

=: Oo. ae

This, however, is not so easy to read; moreover, the level of

nesting must be determined before the first item is typed. The

same problem arises with RPN, but with PN, the level can be easily

evaluated. The simple expressions, that is, those with one

operator only, will be left in IN.

Ls ee

2 30,

3 ard

pe age gt 5

a-age It 710

3 name eq bloggs

2 amd

3 age eg 20

3 name eq other

The syntax of the query language is described in Figure 5e.

- 96 -

QUERY

> LINE teee

ieee NEWLINE

LINE

» LOGICAL OPERATOR

+____»NAME ————» REL. OPR————-» VALUE—————_»

. denotes ‘End of Query’

AEL OPR

 >» / - ~

LOGICAL OPERATOR

» AND

-— > ——»

 Le < ——_¥__+

7 means ‘NOT’

 » IOR

 » XOR
q
 >

IOR means Inclusive OR
XOR means Exclusive OR

Figure 5e: Syntax diagrams for the Query Language.

nS ap

5.4.2.2 De Morgan's Laws

These are laws for simplifying boolean operations. They are

especially for rephrasing expressions using operators which are

present only in the OL. There are two basic laws:

- (not a) ard (not b) not (a: or: b)

- (not a) or (not b) not(a ard b)

Take for instance, an attribute a in the range 10..15,

gq = not((a ge 10) and (a le 15))

using ng to represent not greater and nl to represent not less,

1Q

i} not((a nl 10) and (a ng 15))

not(a nl 10) or not(a ng 15)

(not not (a 1t 10)) or (not not (a gt 15))

(a 1t 10) or (a gt 15)

which can be translated into the QOL as

L:. 3a

R28, Lew

2-08. G15

a 99 =

5.4.2.3 Processing the Query

Processing an expression in PN requires the maintenance of two

stacks; one to keep track of the operands am another to keep

track of the operators. With RPN, however, only only one stack is

required. REN also happens to be PN in reverse which is quite

convenient for parsing.

The IN used in simple queries can be easily converted to REN when

analyzing the syntax of the input but it not necessary as binary

operators can be processed fairly easily. Having fixed the method

“OE processing, an algorithm can be formulated. This is given in

Appendix 6.

oe ae

5.4.3 The Editor

As with any practical system, the user is seldom satisfied with

the first attempt. Perhaps a line was left out or an IM should

have been used instead of an AND. As always there is more than

one solution:

- let the user re-type the query

- Provide a facility for the user to edit the query

The first solution is easier for the implementor: no extra coding

is required. However, the psychological unfriendliness of the

system grows with the length of time taken to formulate the query;

especially if it is a long query amd the user is a ‘one finger

typist’.

The second solution could be a headache for the’ implementor but it

is only done once: during the implementation. This approach is

difficult for the user initially as two languages have to be

learnt, but in time this will prove friendlier than the first

approach.

Since this is a feasibility study and user acceptance is

important, the second solution is the better of the two.

100+

5.4.3.1 Types of the Editor

There are three common types of editors:

- Screen Editor

- Line Editor

- Text Editor

A screen editor is normally used with ‘intelligent' terminals.

These are normally cursor addressable VDUs. The difference

between a Line Editor and a Text Editor is that in a Line Editor,

edits may not be performed on lines preceding the current line

within the same edit.

Of the three, a line editor is the easiest to design. The program

given in Appendix 6 uses such an editor. The final implementation

is not restricted to this choice.

= 10k

5.4.3.2 Requirements of the Editor

A query is basically a very small data bank. This implies that

the only transactions required will be

- Retrieve

- Update

- Insert

- Delete

It will also require a command to indicate the termination of an

edit.

5.5 File Design

There is no fixed method of designing files. The common unorthodox

methods which are used are the formation of hierarchies amd the

re-arrangement of shapes and lines until something solid arises!

The data amd file structures were designed using both these

techniques starting with the requirements of the basic system. In

the description which follows, some line drawing will be done amd

some descriptions will be given in Algol 68. The two basic files

which are required are

- The Data bank

- The Descriptor File

a 12 =

5.5.1 File Design for the Data bank

Each record has three conceptual parts:

MODE RECORD = STRUCT(PRIMARY key,

DETAILS source details,

TEST test results)

Each of these parts can be stored in separate files since their

structures dre different. Thus there will be three files:

- Primary Key File [PKF]

- Source Detail File [SDF]

- Test Results File [TRF]

5.5.1.1 The Primary Key File

The primary keys can be stored in the B-tree since they are unique

and will only be 'consulted' when unique records are required.

Each key could also hold a pointer to the position of the

remaining details in the SDF. The structure of the PKF is given

as follows:

MODE BTREE = STRUCT([0:order]REF BTREE branch,

{l:order] GROUP g),

GROUP = STRUCT(PRIMARY key, INT source details)

- 103 -

5.5.1.2 Source Details File

Throughout the design, it has been assumed that the data bank is

cumulative, that is, none of the records will be deleted. Since

the secondary keys [or source details] have to te stored

separately, the structure shown in Figure 5f can ke adopted.

Unfortunately, such a structure would restrict the number of

records in the file. Reorganization would be inevitable if this

number was exceeded.

Fortunately, this is not the only structure that can be adopted.

Instead of presetting the space in a file, the file can be divided

into blocks or pages [as they are called in jargonese]. Each page

will contain a set of attributes [as described in Section 5.3.4.3]

and will be linked to the next page containing the same set of

attributes. Thus the file could be viewed as a series of linked

pages [Figure 5g].

These pages need not be stored in order; page p need not contain

attribute set (p mod (n+l)). They could be stored in any order

but the computer would have to 'know' where each attribute

started. This would be an advantage if a new set of attributes is

added. The final structure is shown in Figure 5h.

- 104 -

A
t
t
r

G
r
o
u
p

14

A
t
t
r

G
r
o
u
p

2

A
t
t
r

G
r
o
u
p

3

A
t
t
r

G
r
o
u
p

N

N
o
n
-
k
e
y
s

Figure 5f: Storage of Attribute Groups separately in a

file. The space and number of records must

be preset.

 a

e ea L} oe

A
t
t
r

G
r
o
u
p

14

A
t
t
r
.
G
r
o
u
p

2

A
t
t
r

G
r
o
u
p

4

A
t
t
r

G
r
o
u
p

14

A
t
t
r

G
r
o
u
p

3

A
t
t
r

G
r
o
u
p

2

A
t
t
r

G
r
o
u
p

14

A
t
t
r

G
r
o
u
p

3

F
r
e
e

F
r
e
e

F
r
e
e

F
r
e
e

Figure 59: Storage of Attribute Groups separately using

linked pages. The advantage is that the space

does not have to be preset. The disadvantage is

that the system does not ‘know’ where each

Attribute Group starts.

oJ

DIRECTORY SOURCE DETAILS

Attr Group 14

Attr Group 2

Attr Group 3

Figure 5h: Enhancement of Figure 5g. The directory
Shows where each page starts. Although the space

will have to be preset for the directory, it will

not cause as many problems as presetting for the
number of records.

- 106 =

5.5.1.3 Test Results File

The test results present a similar problem to the source details.

The number of tests would have to be fixed. This restricts the

number of tests and wastes a lot of space by keeping it for future

tests. This problem may be overcome by using links. The links

can be stored as one of the attributes of the source details. The

test results could be stored in the same way as the source

details.

5.5.1.4 The Data Bank

Since B-trees also use pages [fone node per page], the whole data

bank can be stored as either one file or three files. This option

is left open to the implementor. The final result is given in

Figure 5i.

- 107 -

P
R
I
M
A
R
Y

K
E
Y

S
O
U
R
C
E

D
E
T
A
I
L
S

D
I
R
E
C
T
O
R
Y

T
E
S
T

R
E
S
U
L
T
S

F
I
L
E

(
B
-
T
R
E
E
)

F
i
t
e

=
A

A
t
t
r

G
r
o
u
p

1

—
A
t
t
r

G
r
o
u
p

2

A

J
T
e
s
t

R
e
s
u
l
t
s

= 108

 F
i
g
u
r
e

5
i
:

C
o
m
b
i
n
e
d
F
i
l
e

S
t
r
u
c
t
u
r
e

o
f

t
h
e
D
a
t
a
B
a
n
k

5.5.2 Design of the Descriptor File

The main aim of the descriptor file is to avoid the problem of

having to recompile the program when a new attribute is added to

the system. Each record has the same basic structure:

MODE RECORD = STRUCT(STRING attribute, TYPE t,

INT no of elements, KEYTYPE k),

TYPE = UNION (INT, REAL, CODEDSTRING, STRING),

KEYTYPE = UNION (PRIMARY, SECONDARY, NONKEY)

A CODEDSTRING is a set of strings with short forms. For instance,

in a Chemical data bank, Mn could be used for manganese, Cl for

chlorine, Na for sodium etc. A CODEDSTRING can be defined as

MODE CODEDSTRING = []STRUCT(STRING short form, long form)

By using CODEDSTRINGs, many typing errors can be avoided.

- ioe

5.6 Implementation of the Information Retrieval System

Parts of the Information Retrieval System [IRS] were implemented

on a PET in Basic. In the implementation, a variant of B-trees

suggested by Martin [described by Knuth [1969b] but no references

given] was used. The B-trees did not have to be of any specific

order. Instead, each node was just left half full of data [which

was variable in size]. The insertion am splitting mechanism

still works even though the exact ar of keys per node depends

on the cumulative sizes of those keys.

A paging technique , based on the Least Recently Used [LRU] page

replacement algorithm, was used for the search techniques. This

method basically uses a fixed set of common buffers to contain

pages of data read fram the disk. When a page is required, a

search is made for the next free buffer. If there are no free

buffers then a search is made for the LRU buffer. This buffer is

written to the disk and is set as the next free buffer. The

required page is then read into this next free buffer. Using such

a pool of common buffers has been found to be more efficient than

using single buffers.

om ea or

5.7 Discussion

In Section 5.6, it was mentioned that only parts of the system had

been implemented on the PET. The main reason for this was to

prove that the algorithms worked. They could have been developed

on the Nova which was used for curve fitting but the program

development would have been hindered due to the slow camnpilation

speeds and 'unfriendly' error messges of the Nova. Moreover, many

of the major routines would have to be rewritten for the object

machine unless it was a Nova. These include all the character

handling routines, the file handling routines am the

implementation of the B-tree.

Further work could include checking both the syntax amd validity

of the queries. For instance,

age gt 5 and age lt 5

is not a valid query.

End of Chapter

«iL

CHAPTER 6: CONCLUSION

It is better to have a horrible erming than to
have horrors without end - Matsch's Law

It can be seen from the conclusions of Chapters 2, 3 am 5 that

_the whole project is by no means complete. In Chapter 2 [Data

Capture], it was shown that the idea of using a ‘microcomputer’

for data collection was feasible. The extensions have already

been mentioned and it is hoped that they will be implemented.

One of the problems envisaged during the data capture was the

storage of the vast quantity of data. This led to a sub-project

on Data Reduction [Chapter 3]. Even though the work is incamplete

in this area, it identified the problems associated with data

reduction. The identification of these problems could be useful

to anyone wishing to pursue this area of research.

~ had

Although the Transfer of Data fran the Data Capture Camputer to

the Data Reduction Computer [DRC] was manual, it would eventually

have to be automated. This led to a sub-project on Data

Transmission [Chapter 4]. It was by far the most successful of

the sub-projects attempted. It was also the most useful as it was

used to transmit the programs from the DRC to the Word Processor

for reproduction in the Appendices.

The Data Storage and Retrieval sub-project [Chapter 5] was the

collection point of the whole system. The reduced data, along

with other relavant information could ke held and retrieved fran

this system. The design of the system was interesting though only

some sections were implemented due to the lack of a suitable

machine. It showed the importance of choosing the correct machine

to perform the task.

In conclusion, the whole project was a useful exercise in

exploring the different areas in which machines could be used to

make life easier for everyone. It showed the usefulness of

general purpose tools and ‘off the shelf' software for research

work. Perhaps one day we will see the full Pulmonary Lung

Function Breath Test Data Collection and Storage Equipment

packaged in a box and available ‘off the shelf' to any hospital!

End of Chapter

or LS

APPENDIX 1: ADC Programs and Output

The program listed in this Appendix was used to aquire data fran
the AIM 161 Analog to Digital Converter using a CBM 3032. For
reasons of speed, one of the modules was written in Assembler.
This is given in Appendix 1.1. The Basic driver is given in
Appendix 1.2 and a sample of the printed output fram a sinusoidal

input is given in Appendices 1.3 and 1.4.

Note: Since the ‘less than' and ‘greater than' symbols were not

avalilable on the printer, alphabetic replacements have been used.

These are given as follows:

Tt less than
gt greater than
ne not equal to
ge greater than or equal to
le less than or equal to

In places where the substitution of these symbols leads to

confusion, the actual wheel representations will be used. These

-are given as follows:

4 less than
3 greater than
S hash symbol

This note applies to all the appendices.

~71ld=

Appendix 1.1: Assembler Program for Data Capture

-opt lis,nog,err
put "@0:adc
put "@l:adc

: written: 25/02/80, cup
; updated: 27/03/80, cup

: purpose: analog to digital data aquisition via

: a anc aim 161 16-channel, 8 bit adc

*=": 826

+; parameters of calling program

chanls = 251. : number of channels

list = 634 : list of channels
sampls = 252 ; number of samples
t = 2 ; delay time

; addresses for communications

cb2 = 59468
ieee = 59426
usrprt = 59471

: local variables/constants
ptr = 254
area = S55EE : recording area
sslo = %11011111 ; start strobing off
sshi = %00100000 s start strobing on

: initialize
sei
cld
inc sampls+l
lda eSff ; put recording address in ptr

ldx £$55 ; high byte

sta ptr
stx ptrt+l
lda £€sshi ; stop strobing

ora cb2
asta Gp2

nexsam = *
ldy chanls ; get ready to receive data

nextch = *
lda list-1,y ; select channel number

sta ieee
lda £sslo +: start strobing

and cb2
sta cb2
lda £$40 ; tell adc to flag eoc
ora ieee

sta ieee

i's Oe

wait —

nexblk

ldx t

dex

bne wait

lda usrprt
bpl eoc
lda £sshi
ora chb2
sta cb2
lda usrprt
sta (ptr),y
dey
bne nextch
dec sampls
bne nexblk
dec sampls+l
bne nexblk
cli
rts
=

CLE
lda chanls
ade ptr
sta ptr

bcc nexsam
inc ptr+l
jmp nexsam
end

=
e

=
e

N
e

N
O

=
e

wait for t*5+87 microseconds

check for eoc just in case
wait is too short
put converted data in user port

read converted data

emd of run?

move pointer to next block

-. 116 -

Appendix 1.2: Basic Driver

10000 REM===,
10010 REM AUTHOR : CUP
10020 REM DATE WRITTEN: 01/02/80

10030 REM INSTALLATION: DEPT PIM ,ASTON UNIVERSITY ,BIRMINGHAM

10040 REM C.1I.UNIT,DUDLEY ROAD HOSPITAL ,BIRMINGHAM

10080 PRINT "[scr.clr] [rvs.on]Data Aquisition fram an ADC"

10090 PRINT TAB(9)"[rvs.on]Last Update: 02/04/80"

10100 ===VARIABLES & CONSTANTS

10101 AX%=0:
AY%=0:
AS=wi

10102 .BSat se

10103;- Cs=cr 3
C=0:

CA=0:
CB=59468:
CH=0:

CV=826:
CTS= we

10104 D0:

DC=0:

DE=0:

Dv=4
10107 GP=32256
10108 H=100:

HC=0:

HI=0:

HR=1E38
10109 I=0:

IE=59426
10110 J=0
10111 K=0
10112 L=0:

LI=0:

LO=0:

LR=-1E38
10113 MCS="mM/c code"
10114 N=0:

NA=0:
- NC=0

10116 PS=""3
PR=0:
PT=32512

10119 Ss="":
SM=50:
SK=0:

SP=30208:
SR=22016:
Ss=100

10120 T=0:
TB=0:

TT=0

- 117 -

10121
10124 -
10125

10200
10202
10203
10214
10218
10219
10221

10300
10319

10400

10410

10420

10430

10440
10450

11000

11100

11110
11120

11130

11140

11200
11210

11220

11230

UP=59471
XC=0
YC=0

===ARRAYS
DIM BA(16) ,BV(16)
DIM CHS$(6),CN(17) ,CL(17)

DIM NMS(17)
DIM RV(17)
DIM SC(17)
DIM UNS$(17)

REM===FUNCTIONS
DEF FNS(V)=BA(CH)+SC(CH) * (V-BV(CH))

REM===MAIN PROGRAM

REM--INITIALIZE
GOSUB 11000:

REM-——-CALIBRATE
GOSUB 13000:

REM-—DISPLAY MENU
GOSUB 12000:
ON N GOSUB 13000,14000,15000,16000,17000,18000
GoTo 10430

REM===INITIALIZE

REM—LOWER CASE
POKE 59468,14:

REM—SET MEMORY BOUNDS

NE=INT(SR/256)-1:
POKE 49,N:

POKE 51,N:

POKE 53,N

PRINT "[cur.dwn]Have the machine code routines been

loaded"; :
GOSUB 33000
IF SS$="y" THEN 11300

REM--LOAD M/C CODE PROCS
PRINT "({cur.dwn]Are you loading from tape";:

GOSUB 33000
D=1:
DC=0:
IF SS="y" THEN 11250
D=8:

DC=2:
PRINT "[cur.dwn] Drive number"; :

LO=0:
HI=1:
GOSUB 30000:

alin &

11240
11250

11260

11270

11300
11310
11320
11330
11340
11350
11360
11390

11400
11410

11500

11600
11610

32999

12000
12010

12100

12tee.

12999

13000
13010
13015
13020
13030

OPEN 1,8,15,"i"+CHRS(48+N)
MCS=CHRS (48+N) +":"+MCS+",s,r"

OPEN 2,D,DC,MCS:
GOSUB 36000
INPUT £2,L,C:

IF L gt 0 THEN
POKE L,C:

GOTO 11260

CLOSE 2:

IF D=8 THEN

CLOSE 1

REM--—MAIN MENU

DATA "Calibration and Selection of Channels"

DATA "Data Aquisition"
DATA "Tabulation of Aquired Data"
DATA "Graphs of Aquired Data"
DATA "Dump of Aquired Data"
DATA "Exit from System"
FOR I=1 TO 6:

READ CHS(I):
NEXT I

REM--OTHER STRINGS

NMS (16)="Time":
UNS (16)="millisecs"
FOR =] TO 5:

BS=BS+BS :

NEXT I:

BS=LEFTS (BS+4BS, 38)

REM—-CHECK IF ADC IS CONNECTED

PRINT "[cur.dwn]Is the ADC connected";:
GOSUB 33000:
NA= (Ss="n")

RETURN

===MAIN MENU

PRINT "[scr.clr]"TAB(12)"[rvs.on]Main Menu
[rvs.off] [4cur .dwn]"
FOR I=1 TO 6:

PRINT " [cur .dwn] [rvs.on] "CHR$(1I+48)"[rvs.off] "CHS(I):
NEXT I

PRINT "[2cur.dwn] Option";:
LO=1:

HI=6:

GOSUB 30000
RETURN

REM===CALIBRATION

PRINT "[scr.clr]"TAB(15)" [rvs.on]Calibration [2cur .dwn] "
REM—DISPLAY CHANNELS IN USE

FOR I=0 TO 15
SS=RIGHTS (STRS(I) ,2):
IF I 1t 10 THEN

SS=RIGHTS (S$,1)

“ia

13040

13050

13060
13070

13080
13100

13110
13120
13130
13140

13150

.13160

13170

13190
13200

13210

13220

13230

13240
13250

13260

13270
13280

IF NMS(I)="" THEN
PRINT " "2SS3

IF NM$(I) ne "" THEN .
PRINT" ‘Irvs.on]."-SS*" [rvs. off] “s

NEXT I

PRINT

REM—OBTAIN INFO ABOUT CHANNEL TO BE USED/DELETED

PRINT " [cur .dwn]Channel"; :
LO=0:
HI=15:
GOSUB 30000:
CH=N

IF NMS(CH)="" THEN 13200
PRINT "[cur.dwn]This channel has already been taken"
PRINT "for [rvs.on]"NMS$(CH)"[rvs.off]."
PRINT "[cur.dwn]Do you wish to clear it";:
GOSUB 33000
IF SS="y" THEN

NMS(CH)="" :

GOTO 13800
PRINT "[cur.up]Do you wish to change it";:
GOSUB 33000:
IF SS="n" THEN 13800
PRINT "[4cur.up] "BS:
PRINT BS:

PRINT " [cur .dwn] "BS" [Scur.up] "
PRINT "(cur .dwn] "BS" [5cur.up]"
PRINT " [cur .dwn] Title"; :
LO=1:

HI=16:
GOSUB 34000:
NMS (CH) =S$
PRINT "[cur.dwn]Units";:
LO=1:

HI=16:

GOSUB 34000:

UNS (CH)=S$
PRINT "(cur .dwn] Lower calibration value"; :
LO=LR

HI=HR

GOSUB 30000:
BA(CH)=N

GOSUB 38000:
BV(CH)=N

PRINT "[scr.home] [13cur.dwn]Higher calibration value";
LO=LR:
HI=HR:

GOSUB 30000:
HC=N

GOSUB 38000

RFM—FIND THE SCALE
SC (CH) =(HC-BA(CH))/(N-BV(CH))

= 120 =

13800
13810

13820
13830

13840

13845
13850
13860

13900

13999

14000
14010

14020

14025
14030

14040
14045

14050

14060

14070

14075
14080
14090

14100
14110

14200

14210

REM—DISPLAY CHANNELS

PRINT "[scr.clr] [cur .dwn] [rvs.on]Channels in use [cur.dwn]":

NC=0
FOR I=0 TO 15

IF NMS(I) ne "" THEN

PRINT I;TAB(4);NM$(I)"("UNS(I)")":
NC=NC+1

NEXT I

REM—DECIDE WHETHER TO TERMINATE OR TO CONTINUE

IF NC ne O THEN 13900
PRINT "(scr.clr] [llcur.dwn] [rvs.on]"TAB(11)"No channels in

use":
GOSUB 59000:
GOTO 13000
PRINT "[scr.home] [2lcur.dwn]Anymore"; :

GOSUB 33000:
IF S$="y" THEN 13000
RETURN

M===CONVERSION

PRINT "[scr.clr] "TAB(15)" [rvs.on]Conversion":
IF NC=0 THEN 50000
NC=ABS (NC)

REM—OBTAIN DETAILS ABOUT THE SAMPLING RATE

LO=NC*0.2:
HI=NC:

PRINT "[2cur.dwn] Period in between samples for the"
PRINT "same channel in milliseconds"
PRINT "(between"LO" and"HI")";:

GOSUB 30000:
SS=

LO=2:

HI=INT(8192/NC):
PRINT "[2cur.dwn]Number of Samples (less than "HI")";
GOSUB 30000:
SM=N

DE=INT((SS*1E3/NC-87)*0.2)+1:
N=SS:

SS=((DE-1) *5+87)*NC*1E-3
IF N=SS THEN 14100
PRINT "The actual period in betewen samples"
PRINT "for the same channel will be"SS

REM--SET UP FOR CONVERSION

POKE 251,NC:
POKE 2,DE:

POKE 252,SM AND 255:
POKE 253, INT(SM/256)

REM—SET THE CHANNELS
CA=634:
FOR I=0 TO 15

* 121 =

14220

14230
14300

14310

14400

14410
14420

14430
14440

14450
14460

14500
14510
14600
14999

15000
15010
15020
15030
15040

15045
15050
15060

15070

15080
15100
15110

15120
15200
15300

15310
i315

IF NMS(I) ne "" THEN

POKE CA,I:

CA=CA+1
NEXT I
GOSUB 35000:
IF NOT NA THEN

SYS (CV)
IF NC=1 THEN 14600

REM—INTERPOLATE SO THAT ALL THE READINGS APPEAR TO BE

REM-——-TAKEN AT THE SAME TIME

CA=SR:

T=NC-2

FOR I=l TO SM

PR=CA:

CA=CA+NC:

D=NC
FOR J=T TO O STEP -1l

D=D-1:

N=PEEK(PR+J):

N=N+INT (((PEEK(CA+J) -N)/NC) *D) :

POKE PR+J,N

NEXT J
NEXT I

NC=-NC
RETURN

REM===TABULAR OUTPUT

PRINT "[{scr.clr]"TAB(12);"[rvs.on] Tabular Output"

IF NC=0 THEN 50000
IF NC gt 0 THEN 51000
NC=-NC:
LI=-1:
PRINT " [2cur .dwn]":
NMS(17)="End of Table”

REM-——DISPLAY CHANNELS IN USE

FOR I=0 TO 17
IF NMS(I) ne "" THEN

PRINT I;TAB(4)NMS(I):
LI=LI+1:

RV(I)=LI

NEXT I

REM—OBTAIN THE CONTENTS OF EACH COLUMN

FOR I=l1 TO 5

PS="Column"+STRS$ (TI):
GOSUB 37000
IF N=17 THEN 15300

NEXT I

CA=SR:

TB=I-1
IF TB=0 THEN 15600
OPEN 1,DV,1:

om 122 =

15317
15320

15.330
15340

15345
15350
15360

15370

15380
15390

15400
15410
15420
15500

15600
15999

16000
16010
16020
16030

16100
16110

16120
16130 ©

16140

16145
16150

TT=0

REM--PRINT THE HEADING
AS=we :

FOR I=1 TO TB:

AS=AS+RIGHTS (BS+NMS (CN(I)),15):

NEXT Is

SYS (PT):

PRINT £1,A$
FOR I=l1 TO SM

SS= ne

REM—PRINT THE CONVERTED RESULTS
FOR J=l TO TB

CH=CN(J) :

IF CH=16 THEN
SS=SS+RIGHTS (BS+STRS (TT) , 15)

IF CH ne 16 THEN
S$=S$+RIGHTS (BS+STRS (FNS (PEEK(CA+CL(J)))),15)

NEXT J
TT=TT+SS:

CA=CA+NC :

PRINT £1,SS
NEXT I
PRINT £1,CHRS(12)
CLOSE 1
IF Dv=3 THEN

GOSUB 35000
NC=-NC
RETURN

REM===GRAPHICAL OUTPUT

PRINT "[scr.clr] "TAB(12)" [rvs.on] Graphical Output"
IF NC=0 THEN 50000

IF NC gt O THEN 52000

REM—DISPLAY THE CHANNELS

NC=-NC:

LI=-1:

PRINT "[2cur.dwn] ":
NMS (17)="Return to Main Menu"
FOR I=0 TO 17

IF NMS(I) ne "" THEN

PRINT I;TAB(4);NMS(I):
LI=LI+1:

RV(I)=LI

NEXT I

REM--OBTAIN X AND Y AXES

I=l1:
PS="X-Axis":
GOSUB 37000:
AX%=CL(TI):

XC=N:

IF N=17 THEN 16800

oe Les oe

16160

16300
16310

16400

16410

-16420
16430

16440

16445
16450
16455

16456

16460

16470

16525
16530

16540
16550

16555

16560
16570

I=2:

- p§="y-aAxis":
GOSUB 37000:
AY%=CL(I):

YC=N:

IF N=17 THEN 16800

REM—INITIALIZE 'PLOTTER'

OPEN 1,DV,1:

FOR I=1 TO 6:

PRINT £1:

NEXT I

REM--'DRAW' GRAPH

REM——-ADDR OF AS

CH=YC:

CA=SR:

TT=SS*SM:
N=TT/8:
I=PEEK(42)+PEEK(43)*256+14:
FOR CA=SP TO SP+2047 STEP 64

POKE I+2,64:
POKE I+3,CA AND 255:
POKE I+4, INT(CA/256)

S$=LEFTS (B$,15):
T=(CA-SP)/64

REM—INSERI SCALE VALUES

IF LEFTS(AS,1) ne "+" THEN 16460
IF CH ne 16 THEN

SS=RIGHTS (BS+STRS (FNS (248~-T*8)) ,15)

IF CH=16 THEN

TIT=TT-N:

SS=RIGHTS (BS+STRS (TT) , 15)
SS=SS+4AS :
PRINT £1,S$

NEXT CA

REM—-SCALE VALUES ON X AXIS

CH=XC:
SSae " :

N=SS*SM/4:
TT=0
FOR CA=0 TO 256 STEP 64

IF CH ne 16 THEN

SS=SS+RIGHTS (BS+STRS (FNS(CA)) ,16)

IF CH=16 THEN
SS=SS+RIGHTS (BS+STRS (TT) ,16):
TI=TI+N

NEXT CA
PRINT £1,SS:

FOR I=1 TO 5:

PRINT £1:

NEXT

- 124 -

16600
16610

16620

16630

16640
16700

16800
16999

17000
17010
17020
17030
17040
17050

17070
17080
17090
17100

17110

17120

17140

17200
17210

REM—-TITLE
AS=LEFTS (BS ,16)+"X-axis = "+NMS(XC)+"("+UNS(XC)+")"s
SYS (PT):
PRINT £1,A$

AS=LEFTS(BS,16)+"Y-axis = "+NMS(YC)+"("+UNS(YC)+")":

SYS (PT):
PRINT £1,AS

PRINT £1:

AS=LEFTS(BS,16)+CTS:
SYS (PI):
PRINT £1,AS$

PRINT £1,CHRS$(12)
CLOSE iis

IF DV=3 THEN

GOSUB 35000
NC=-NC
RETURN

===SAVE RESULTS

PRINT "[scr.clr]"TAB(9)"[rvs.on]Dump Converted Results"

IF NC=0 THEN 50000
IF NC gt 0 THEN 53000
NC=ABS (NC)

PRINT "[2cur.dwn]Devices Available":
PRINT "(176)"

PRINT "[rvs.on]l[(rvs.off] Tape Drive"
PRINT "[rvs.on]2[rvs.off] Disk Drive 0"
PRINT "{rvs.on]3[rvs.off] Disk Drive 1"
PRINT "[cur.dwn] Device to be used";:

LO=1:

HI=3:

GOSUB 30000

PRINT " [cur .dwn] Filename"; :
LO=1:

HI=16:

GOSUB 34000:

FS=S$
D=4;

Dc=1:

IF N gt 1 THEN
D=8:

DC=2:

FS="@"+CHRS (46+N)+":"+FS:
OPEN 1,8,15

OPEN 2,D,DC,F$

REM—QUANTITIES
PRINT £2,CTS;CRS;NC;CRS;SM;CRS;SS;CRS;

~The =

17300
£1310:
17320
17330

17340

17400
17420
17430
17440
17460
17470
17480
17490

17510
17999

18000
18010
18999

30000
30005
30010
30020
30030

30040
30050
THEN

30060
30100

30110

30120

31000
31010

REM—-NAMES & UNITS

=0
FOR I=0 TO 15

IF NMS(I) ne "" THEN

J=J+1:

PRINT £2,NM$ (I) ;CRS;UNS(I) CRS; :
CN(J)=I

NEXT IT

REM—RAW RESULTS

FOR I=l1 TO
FOR J=1 TO NC

PRINT £2,Z2$;CHRS (PEEK(CA+J));

NEXT J
CA=CA+NC

NEXT I

GLOSE: 2

IF D=8 THEN
CLOSE 1

NC=—NC

RETURN

REM===EXIT FROM SYSTEM

PRINT "[scr.clr] [10cur .dwn] "TAB(18)" [rvs.on] bye [10cur .dwn] "
END

REM===GET A NUMBER
PRINT "2 ";
ss=""

GOSUB 31000
IF C=20 THEN

GOSUB 32000:
GOTO 30020

IF C=13 AND SS ne "" THEN 30100
IF (C$ ge "0" AND C$ le "9") OR CS$="." OR C$="—" OR CS="e"

S$=SS+CS$:
PRINT C$;

GTO 30020
N=VAL(SS):
IF N ge LO AND N le HI THEN

PRINT " Te

RETURN

FOR L=l TO LEN(SS):

DRENT WY [Zour Ltt} [curTet 3:
NEXT L

GOTO 30010

REM===GET A CHARACTER
GET CS:
IF CS ne "" THEN 31100

- 126 -

31020

31030

31040

31050
31100
31999

32000
32010

32020
32030
32999

33000
33005
33010
33020

33030
33040

33100
33110

33120
33130
33999

34000
34010
34020
34030
34040

34050
34060

34070

34080
34100

PRINT "*[cur.lft]";:

FOR K=1 TO H:

NEXT K

GET CS:
IF CS ne "" THEN 31100

PRINT "+[cur.lft]";:
FOR K=l1 TO H:

NEXT K

GOTO 31000

C=ASC (C$)
RETURN

REM===DELETE A CHARACTER

L=LEN(S$):
IF L=0 THEN

RETURN

PRINT © (2¢ur..ieel [cum Tf£t).s2
SS=LEFTS (S$,L-1)
RETURN

REM===GET Y OR N
PRINT "? me

GOSUB 31000

TH CS="NE OR" CS="Y0" THEN

CS=CHRS (ASC(CS$)-128)
IF CS ne "y" AND C$ ne "n" THEN 33010
PRINT CS;:
SS=C$
GOSUB 31000

IF C=20 THEN

PRINT) [(2oumsitt) [cur Lit] "+:
GOTO 33010

IF C ne 13 THEN 33100
PRINT noon

RETURN

===GET STRING
PRINT ie Mie

ss=""

GOSUB 31000
IF C=20 THEN

GOSUB 32000:

GOTO 34030
IF C=13 THEN 34100

IF (C ge 32 AND C le 95) OR (C ge 192 AND C le 222) THEN

S$=S$+C$:
PRINT CS;

IF C=34 THEN

PRINT CS" [cur .l£t). [cur 1&t] “>
GOTO 34030
L=LEN(SS):

IF L ge LO AND L le HI THEN
PRINT " ae

RETURN

- 127 -

34110

34120

35000
35010

35020

35030
35999

36000
36010

36020
36030

36040
36050
36060
36999

37000
37010
37020

37030

37040
37100

37110
37120

37130
37140
37200
37210

37220

38000
38010

IF L ne 0 THEN
FOR L=l TO LEN(SS):

PRINT “4 [2curslft) elcur. LEE} ss
NEXT L

GOTO 34020

REM===WAIT

PRINT "[scr.home] [23cur.dwn] [rvs.on]Strike any key when

ready[rvs.off]"

GET C$:
IF C$="" THEN 35020
PRINT "[cur.up] "BS

RETURN

REM===CHECK DISK ERRORS
IF DC ne 2 THEN

RETURN
INPUT £1,ER,EMS,T,S
IF ER=0 THEN

RETURN
PRINT "Disk error:"EMS$
CLOSE 1
GOSUB 35000
RETURN

REM===GET A CHANNEL

PRINT "[scr home] [20cur .dwn] "P$" [9cur .lft] ">:

LO=0:

HI=17:

GOSUB 30000
IF N=17 THEN

RETURN

IF NMS(N)=""" THEN 37200
CL(I)=RV(N):
CN(I)=N

REM—-HILITE CHANNEL

PRINT "[scr.home] [2cur.dwn]":

FOR J=1 TO RV(N)+1:
PRINT :

NEXT J

PRINT "[rvs.on] "N" [rvs.off] "TAB(4)NMS (T)

RETURN

PRINT " [cur .dwn] [rvs.on]No such option"

FOR K=1 TO 2000:
NEXT K

PRINT "[cur.up] "LEFTS(BS$,31):

GOTO 37000

REM===CALIBRATE THE INPUT

IF NA THEN

PRINT "Mean Input Voltage";:

LO=0:

HI=255:

GOSUB 30000:

~ 126 =

38020

38060

38100
38110
38120
38130
38140
38150

38160
38170

38180
38190

38200

38999

50000
50010
50020

51000

52000

53000

59000
59010

59020

RETURN

REM--NO OF SAMPLES

SM=256:
GOSUB 35000:
N=0

REM--FIND THE MEAN

FOR I=1 TO SM

POKE CB, 238
POKE IE,CH

POKE CB, 206
J=PEEK(IE):

POKE IE,J CR 64

PORE CB,238

N=N+PEEK(UP) :

PRINT " [cur .up] "PEEK(UP)

NEXT I

N=N/SM:
PRINT "[cur.up]Mean value is"N
FOR I=1 TO 100:
NEXT’ Is

PRINT "[cur.up] "LEFTS (BS , 39)

RETURN

REM===ERROR MESSAGES

PRINT TAB(8)"([2cur.dwn] You have not selected or"
PRINT TAB(6)"calibrated any channels yet":

GOTO 59000
PRINT TAB(6)"[2cur.dwn]There is nothing to tabulate":

GOTO 59000
PRINT TAB(8)"[2cur.dwn]There is nothing to plot":
GOTO 59000
PRINT TAB(8)"([2cur.dwn]There is nothing to dump"

REM===HOLD ERROR MESSAGE
FOR I=1 TO 1500:

NEXT I
RETURN

go

Appendix 1.3 Sample Graphical Output

The output given here is the result of a later program which had
been substantially modified to give outputs on disk am tape
instead of the printer or screen. The results have had a lor
journey; having been transferred first fram the CBM 3040 disk unit
at Dudley Road to a CBM C50 cassette unit, then fran a CBM C50 to
the 400K Compu/Think disk unit at Aston and finally fram the 400K
Compu/Think to a CBM 8050 Disk Unit fram where it was loaded on to

the word processor to be output in this appendix.

1 + + + + +
! ! ! ! !

1 Pa RK RE ! !

1 Kk* ! kkk ! 1

5 p——— ee+ + sk +
: eet ! Ne !
Le het ! ey !
pix ! ! 1 !

0 4+—-*——}-----4---—-+--*#—+
1 ! ! eos of

one set ! Leet
Vea al ! Lee !

-.5 +——*—4 + Kat
! *k ! kk 1

1 [xxx 1 KKK! !

1 1 Kk KK ! 1

-l + + + + +

000 064 128 192 256

X axis: Oscillator()
Y axis: Signal Generator()

e530) ©

Appendix 1.4 Sample Tabular Output

These are the results which were stored with the graph given in
Appendix 1.3. The heading given at the beginning of each column

is restricted to 15 characters, hence the truncated 'Signal

Generator'.

Osciallator Signal Generato

128 «7734375
152 «7421875
176 -65625
196 53125
Zan of0
223 ~1875
227 0
226 -. 1953125
218 —.3828125
205 -.5390625
186 -.6640625
164 edo
140 ~.78125
115 -.7734375
91 -.7109375
69 -.609375
50 -.4609375
at -. 2890625
29 -.1015625
28 -09375
32 «28125
43 -453125
59 -6015625
19 °703125
103 - 765625

End of Appendix

= 131 =

APPENDIX 2

The programs given in this appendix may ke used for curve fitting
in general. Two basis functions are used:

- Chebyschev Polynomials
- Orthogonal Polynomials

The method which uses Chebyschev polynomials is based on the
Minimax norm whilst the method of Orthogonal polynomials is based
on the Least Squares norm. Both these programs are Fortran
translations of Algol 60 programs. They utilize some of the
special features provided by Data General; for instance, PARAMETER
statements. If they are to be transferred to any other machine
other than a Data General, it is advisable to rewrite them in
Fortran 77 or Fortran 8X [when X3J3 decide to release it!]

=(132:6

Appendix 2.1
B
O
@
O
1
@
O
r
a
0
O
Q
0
7
O
0
A
Q
0
0
0
0
0
0
.
0
9

100

Written: 21/01/81, CUP

Chebyschev Curve Fit (Modified) [J. Boothroyd]
Algorithm 318, CACM 10:12, 801-803, 1967

Evaluates in COEF(0..ORDROD) the coefficients of an ORDR(D

polynomial such that the maximum error is minimum over the

sample points (NUMPTS .GI. ORDROD+1)

The X values must form a strict monotonic sequence.

With finite precision arithmetic, this procedure will not

always terminate after a finite number of steps. Roundoff

errors may cause looping of the chosen reference sets. This

ill-fated condition is detected by checking that the

reference deviation is always raise monotonically. exit,

the absolute value of COEF(ORDPL1) yields the final

reference deviations. Negative COEF(ORDPL1) indicates that

the procedure has been terminated following the detection of

cycling.

COMPILER DOUBLE PRECISION
PARAMETER MAXORD = 10, MAXOR1 = 11

SUBROUTINE CURFIT(XMIN,XMAX,Y,START,LSTPT,COEF,ORDPLI1)

INTEGER LSTPT, ORDPL1, START
REAL COEF(0:ORDPL1), XMIN, XMAX, Y

INTEGER I, Il, IMAX, J, Jl, K, NUMPTIS, ORDROD

INTEGER REF(0:MAXOR1), REFI, REFJ

REAL ABSHI, COEFI, COEFI1, DENOM, H, HMAX, HI, HIMAX

REAL NEXTHI, PREVH, POSN, POSDIF, REFHI, REFHI1

REAL REFX(0:MAXOR1), REFH(0:MAXOR1), STEP, XJ

EXTERNAL OBTAIN, RESET

NUMPTS = LSTPT - START + 1
PREVH = 0.0
-ORDROD = ORDPL1 - 1
STEP = (XMAX - XMIN) / FLOAT(NUMPTS)

Index vector for initial reference set

REF(0) = START

REF(ORDPL1) = LSTPT

POSDIF = FLOAT(NUMPTS - 1) / FLOAT(ORDPL1)

DO 100 1 = 7 CRDROD, 1.
REF(I) = INT(FPOSN)
POSN = FPOSN + POSDIF

CONTINUE

me L83

. “Start of iterative loop
110 CONTINUE

H = -1.0
Cc

c Select ORDRQD+2 reference pairs amd set alternating
c deviation vector

DO 120 I = 0, ORDPLI, 1
REFI = REF(I)
REFX(I) XMIN + FLOAT(REFI - START) * STEP

COEF(I) Y(REFT)
H = -H
REFH(I)

120 CONTINUE

H

S Compute ORDPL1 leading dividend differences
DO 140 J = 0, ORDRO, 1

Il = ORDPL1

“COEFI1 = COEF(I1)
REFHI] = REFH(I1)

I = ORDROD

-130 CONTINUE
DENOM = REFX(I1) - REFX(I - J)

= COEF(I)

REFH(TI)

(COEFI1 - COEFI) / DENOM
(REFHI1 - REFHI) / DENOM

REFHI

COFF(I1)
REFH(I1)
Il =I
COEFI1 = COEFI

REFHI1 = REFHI
I=I-1l
IF (I .GE. J) GOO 130

140 CONTINUE

€ Equate the ORDPL1th difference to zero to determine H

H = -— COEF(ORDPL1) / REFH(ORDPL1)

With H known, combine the function and deviation

differences
DO 150 I =.0, GRDPLI, 1

COEF(I) - COEF(I) + REFH(I) * #H

150 CONTINUE

O
.
A
-
Q

c Polynomial coefficients
J = ORDRM® - 1

160 CONTINUE
XJ = REFX(J)
I=J

COEFI = COEF(I)

Ke= Je 1

DO 170 I1 = K, ORDRO, 1
COEFI1 = COEF(I1)

COEF(I) = COEFI - XJ * COEF(I1)

COEFI = COEFI1

ts, Tt

#134 'e

170
O
R
O

180

190

. 200

210

220
230
240

A
L
A
M
.
@

250

CONTINUE

J=J=-1
IF (J .GE. 0) GW 160

Terminate if the reference deviation is not

increasing monotonically
HMAX = ABS(H)

IF (HMAX .GI. PREVH) GOTO 180

COEF(ORDPL1) = —HMAX

RETURN

CONTINUE

Find the index, IMAX amd the value HIMAX of the largest

absolute error for all the sample points

PREVH = HMAX

COEF(ORDPL1) = HMAX

IMAX = REF(0)
HIMAX = H

J=0
REFJ = REF(J)

POs 240 T= START? ISTPT,, 1

X = XMIN + FLOAT(I - START) * STEP

Th Gl .FOeRERO) GOIO.210

HI = COEF(ORDROD)

K = ORDR® - 1
CONTINUE

HI = HI * X + COEF(K)
K=K-1
IF 4 K.3GE. 0°) GOWO«190

HI = HI — Y(TI)
ABSHI = ABS(HI)
IF (ABSHI .LE. HMAX) GOTO 200 |

HMAX = ABSHI
HIMAX = HI
IMAX = I

CONTINUE
GOTO 230

CONTINUE
IF (J .GT. ORDPL1) GOTO 220

J =u #1
REFJ = REF(J)

CONTINUE
CONTINUE

CONTINUE

If the maximum error occurs at a non-reference point,

exchange this point with the nearest reference point

having the same sign ard repeat
IF (IMAX .EO. REF(0)) RETURN

DO 250 I = 0, GRDPL, Ll

IF (IMAX .LT. REF(I)) GOTO 260

CONTINUE

I = ORDPL1

135

260

290

300

310

320

330

340

Swap
CONTINUE

NEXTHI = SIGN(H, 0.5 - FLOAT(MOD(I, 2)))

IF (HIMAX * NEXTHI .LT. 0) GOTO 290

REF(I) = IMAX

GOTO 340
CONTINUE

IF (IMAX .GE. REF(0)) GOTO 310
J1 = ORDPL1

J = ORDROD
CONTINUE

REF(J1) = REF(J)
Jl=d
J=Jrl
IF (J .GE. 0) GTO 300

REF(O) = IMAX
GOTO 340

CONTINUE
IF (IMAX .LE. REF(ORDPL1)) GOTO 330

J=0
Do .320 Ji

REF (J)
J=J1

CONTINUE
REF(ORDPL1) = IMAX
GOTO 340

CONTINUE
REF(I - 1) = IMAX

1, ORDPL1, 1
REF(J1)

CONTINUE
GoTo 110

END

+ 2p

Appendix 2.2
G
e
a
A
A
O
A
0
0
N
O
A
M
N
A
N
M
N
A
N
N
A
N
A
A
N

100

Written: 03/06/81, CUP

Performs a Least Squares Fit. COEF(0..ORDROD) are the
coefficients of the 'best' polynanial approximation of
degree ORDROD or less as programmed by the method of
orthogonal polynomials described by G.E. Forsythe in Journal
SIAM 5:2, 1957 (with minor alterations).

The calculations are performed in the range -2 to 2; XMIN
and XMAX will be scaled accordingly before ard after the
curve fitting routine.

This subroutine was developed fram the programs 'Least
Squares Fit by Orthogonal Polynanials' and 'Polynanial
Transformer’ due to MacKinney, CACM 3, 604 after
implementing the remarks made by MacMillan, CAM 4, 544 amd
Makinson, CACM 10, 293.

COMPILER DOUBLE PRECISION
PARAMETER MXORD = 10, MXPTS = 500

SUBROUTINE CURFIT(XMIN,XMAX,Y,START,LSTPT,COEF,ORDPL1)
INTEGER LSTPI, ORDPL1, START
REAL COEF(0:ORDPL1), Y(1:LSTPT)

INTEGER DEG, LSTORD, NUMPIS, ORD, ORDP1, ORDR@®, POLYNO, FT

LOGICAL SWX
REAL CONST, DUMMY, SCALE, SORSOC, SORSOP, SUMOTH

REAL X, XINC, XINCSQ, XZER
REAL ALPHA(O0:MXORD), BETA(0:MXORD), CFORCR(0:MXORD)
REAL CFORPV(-1:MXORD), CFORPY(0:MXORD), CONPWR(0:MXORD)
REAL CRORVL(1:MXPTS), PVORVL(1:MXPTS), SCLFAC(0:MXORD)
REAL SMOTH2(0:MXORD), SUMSQ(0:MXORD)

Initialization
ORDROD = ORDPL1 - 1
SWX = .TRUE.

BETA(0) = 0.0
CFORPV(-1)
CFORPV(0)

CFORCR(0)
XINCSO 0.0
SUMOTH 0.0
NUMPTS LSTPT - START + 1

SORSOC FLOAT(NUMPTS)

0%

0.
1 O

o
O
o

DO 100 PT START, LSTPT
XINCSO XINCSO + Y(PT) ** 2
CRORVL(PT) = 1.0
PVORVL(PT) = 0.0
SUMOTH = SUMOTH + Y(PT)

CONTINUE

- 137 -

110

120

200

C
Q
O

SUMSQ(0) =-SUMOTH / SORSOC
CFORPY(0) = SUMSQ(0)
XINCSO = XINCSO - SUMSO(0) * SUMOTH
SMOTH2(0) = XINCSQ / FLOAT(NUMPTS - 1)

Transformation of the abcissa
SCALE = 4.0 / (XMAX - XMIN)

XINC 4.0 / FLOAT(NUMPTS)

XZER (XMAX + XMIN) *°0.5

Main computation loop
LSTORD = ORDROD - 1

DO 300 ORD = O, LSTORD, 1
ORDP1 = ORD + 1
DUMMY = 0.0

Compute the alpha term
XVAL = -2.0

DO: 110; Pr = START, LSTPLE, <1

DUMMY = DUMMY + XVAL * CORVL(PT) ** 2

XVAL = XVAL + XINC
CONTINUE
ALPHA(ORDP1) = DUMMY / SORSOC

SORSOP = SORSOC
SORSOC 0.0
SUMOTH 0.0i

n
e

Compute the beta term

XVAL = -2.0
DO 120 PT = START, LSTPT, 1

DUMMY = BETA(ORD) * PVORVL(PT)

PVORVL(PT) = CRORVL(PT)

CRORVL(PT) = (XVAL-ALPHA(ORDP1) *CRORVL(PT) -DUMMY

SORSOC = SORSOC + CRORVL(PT) ** 2
SUMOTH = SUMOTH + Y(PT) * CRORVL(PT)
XVAL = XVAL + XINC

CONTINUE
BETA(ORDP1) = SORSOC / SORSOP

SUMSQ(ORDP1) = SUMOTH / SORSOC
XINCSO = XINCSO - SUMSQ(ORDP1) * SUMOTH

SMOTH2(ORDP1) = XINCSQ / FLOAT(NUMPTS - ORD - 1)

IF (SWX) GOTO 200

Higher power will not improve fit
CFORPY(ORDP1) = 0.0
GOTO 290

CONTINUE

IF (SMOTH2(ORDP1) .LT. SMOTH2(ORD)) GOTO 210

Termination of loop when higher power will not
improve fit
SWX = .FALSE.
CFORPY(ORDP1) = 0.0

138. =

GOTO 280
210°. CONTINUE

Cc
C Evaluate the polynanial coefficients

DO 220 DEG = 0, ORD, 1
DUMMY = CFORPV(DEG) * BETA(ORD)
CFORPV(DEG) = CFORCR(DEG)

CFORCR(DEG) = CFORPV(DEG - 1) - ALPHA(ORDP1) *

an CFORCR(DEG) - DUMMY

CFORPY(DEG) = CFORPY(DEG) + SUMSQ(ORDP1) *

+ CFORCR(DEG)

220 CONTINUE
CFORPY(ORDP1) = SUMSO(ORDP1)
CFORCR(ORDP1) = 1.0
CFORPV(ORDP1) = 0.0

280 CONTINUE
290 CONTINUE
300 CONTINUE

Transformation of the polynanial
The coefficients of the polynomial in (SCALE*X + CONST) have

been evaluated. This transformation evaluates the
coefficients of X.
CONST = -XZER * SCALE

CONPWR(0) = 1.0
SCLFAC(0) = 1.0
COEF(0) = CFORPY(0)

DO 310 ORD = 1, ORDRO®
SCLFAC(ORD) = 1.0

CONPWR(ORD) = CONST * CONPWR(ORD - 1)

COFF(0) = COEF(0) + CFORPY(ORD) * CONPWR(ORD)

310 CONTINUE

a
a
a
a
a
O
A

DO 330 ORD = 1, ORDROD, 1
SCLFAC(0) = SCLFAC(0) * SCALE
COEF(ORD) = CFORPY(ORD) * SCLFAC(0)
POLYNO = 1
DO 320 DEG = ORDP1, ORDROD, 1

SCLFAC (POLYNO) = SCALE . SCLFAC(POLYNO) +

SCLFAC(POLYNO - 1)
COEF(ORD) = COEF(ORD) + CFORPY(DEG) * SCLFAC(POLYNO)*

+ CONPWR(POLYNO)
POLYNO = POLYNO + 1

320 CONTINUE
330 CONTINUE

RETURN
END

End of Appendix

- 139,=

APPENDIX 3: HYBRID CURVE FITTING

The programs given in this appendix were used to fit the Pressure-
Concentration curve. Two programs are given:

- Curve Fitting by Segmentation
- Curve Fitting by Transformation

Both these methods were written in Data General Fortran. The
comments on this version of Fortran in Appendix 2 should be noted.
The modularity of these programs could have been improved if it
had been possible to automatically recompile all the segments
quickly; however, with a Nova running on flexible diskettes, this
is not the case.

- 140 =

Appendix 3.1: Segmentation
0
.
0
0
7
0
)
:
@

Written: 26/03/81, CUP

Test Driver for

COMPILER DOUBLE PRECISION

PARAMETER MXPTS

INTEGER BLOCK, DEG, DEGFDM,
INTEGER NUMPIS, ORD, OTFILE,

CF, CHISOR, COEF,
MXDIFF, MX2, RHALT,

REAL
REAL
REAL
REAL
REAL

= 100, MAXORD =

XVAL, Yr, YVAL
CF(1:7,0:MXORD1), COEF(0:MXORD1), Y(MXPTS)

VOLTGE (MXPTS)

EXTERNAL CURFIT
F(I) = FLOAT(VOLTGE(I))

Open Data File
CALL OPEN(20, 'CFRAW.DI', 1, ERROR)

IF (ERROR .EO. 1) GOTO 100
TYPE 'Error in opening CFRAW.DIr -

CALL EXIT
CONTINUE

Output File; 10 for TTO, 12 for LPT

OTFILE = 10
WRITE(OTFILE, 440)

Main Loop
CONTINUE

Get Test Data
The following is DG's form of an unformatted read

READ BINARY(20, END = 500)

Fit the curve in blocks

NUMPIS,
(VOLTGE(I), I = 1, NUMPTS),

(DUMMY, I = 1, 10,

RSTEP = FLOAT(NUMPTS)
RSTRT = 1.0 — STEP
RHALT = RSTEP
DO 260 BLOCK = 1, 7, 1

Copy the block

1)

/ 8.0

RSTRT = RSTRT + STEP
RHALT = RHALT + STEP
STRT = INT(RSTRT)

HALT =
DO 220 PT = STRI, HALT, 1

Y(PT) = F(PT)

=" Lae

°
’

e
’

YY
,

Fitting by Segmentation

9, MXORD1 = 10

DUMMY, ERROR, MFALT, I

Pr,
DIFF,
RSTEP, RSTRI, SUMDIF

STRI, VOLTGE
F, FIDFAC, FVAL

', ERROR

Number of Points
The Data

A remark

MINO(NUMPTS, INT(RHALT))

220

240
260

280

300

320

340
360

380

CONTINUE

CALL CURFIT(FLOAT(STRT), FLOAT(HALT), Y,
STRT, HALT, COEF, MXORD1)

Store the coefficients
DO 240 ORD = 0, MXORD1

CF(BLOCK,ORD) = COEF(ORD)

CONTINUE

CONTINUE

Reproduce the curve
DO 280 PT = 1, NUMPTIS

Y(PT) = 0.0
CONTINUE

RSTRT 1.0 — RSTEP
RHALT RSTEP
DO 360 BLOCK #1, 7yil

Set up parameters
RSTRT = RSTRI + RSTEP
RHALT = RHALT + RSTEP
STRT = INT(RSTRT)
HALT = MINO(NUMPTS, INT(RHALT))
DO 300 CRD = 0, MXORD1

COEF(ORD) = CF(BLOCK,ORD)
CONTINUE

Evaluate the points
DO 340 PL = STRT, HALT, 1

XVAL = FLOAT(PT)

YVAL = COEF(MXORD1)

DO 320 ORD = 1, MXORD1

YVAL = YVAL * XVAL + COERF(MXORD1 - ORD)

CONTINUE

Y(PT) = Y(PT) + YVAL
CONTINUE

CONTINUE

Sort out the overlapping segments
STRT = INT(1.0 + RSTEP)

HALT = INT(RHALT — RSTEP)

DO 380 PI = STRT, HALT, 1

Y(PT) = AINT(AMAX1(0.0,AMIN1(Y(PT)*0.5,255.0)))
CONTINUE

- 142 -

400

420
-440

500

Evaluate Statistics
MXDIFF = 0.0
SUMDIF = 0.0

CHISOR = 0.0
DO 400 Pr = 1, NUMPTS, 1

XVAL = FLOAT(PT)
YVAL = Y(PT)
FVAL = F(PT)
DIFF = ABS(YVAL — FVAL)
SUMDIF = SUMDIF + DIFF
MXDIFF = AMAX1(MXDIFF, DIFF)

IF (FVAL .GT. 0.0)
= CHISOR = CHISOR + (DIFF * DIFF) / FVAL

CONTINUE
DIFF = SUMDIF / FLOAT(NUMPTS + 1)
DEGFDM = NUMPTS - 1

The results

WRITE(OTFILE, 420) NUMPTS, MXDIFF, DIFF, DEGFDM, CHISOR

PONTO 3X) 92, F1S.5, F1S.5,-17, PIS)
FORMAT(1X, 'NUMPTS MAX POS DIF AVG BS DIF DEG FDM',

= , CHI SQUARE' /)
GOTO 200

End of File
CONTINUE
CALL EXIT
END

~ 143 -

Appendix 3.2: Results of Segmentation

The last column in the above table gives the approximate value of
the chi-squared distribution at 99.5%. The odd results in the
second row are due to the large fluctuations in Region 1 of the
graph.

NUMPTS MAX POS DIF AVG POS DIF DEG FDM CHI SQUARE Chi-Square

52 18 .00000 2.68110 53 22.16677 28.7451
26 226 .00000 33.79407 25 714.77909 10.5197
5! 8.00000 2.63512 58 24.56095 32.5170
76 14.00000 2.76990 77 23 .74200 47 £2236
68 14.00000 2.40454 69 18.41089 40.9530

- 144 -

Appendix 3.3: Mathematical Transformation

Cc
Cc Written: 26/03/81, CUP

Cc
Cc Test Driver for Fitting by Mathematical Transformation
C

COMPILER DOUBLE PRECISION

PARAMETER MXPTS = 100, MAXORD = 9, MXORD1 = 10

Cc
INTEGER DEG, DEGFDM, DUMMY, ERROR, I

INTEGER NUMPTS, ORD, OTFILE, START, VOLTGE

REAL CHISOR, COEF, DIFF, F, FIDFAC, FVAL

REAL MXDIFF, MX2, SUMDIF, XVAL, XY; YVAL

DIMENSION COEF(0:MXORD1), Y(MXPTS), VOLTGE(MXPTS)

Cc

EXTERNAL CURFIT

F(I), = FLOAT(VOLTGE(I))

C
GC Open Data File

CALL OPEN(20, 'CFRAW.Dr', 1, ERROR)

IF (ERR .EO. 1) GOI 100
TYPE 'Error in opening CFRAW.DI - ', ERROR

CALL EXIT

100 CONTINUE
Cc
‘ Output File; 10 for TTO, 12 for LPT

OTFILE = 10

WRITE(OTFILE, 440)

FIDFAC = 2.0 ; The fiddle factor

Cc
Cc Main Loop
200 CONTINUE

CG
¢ Get Test Data.

c The following is DG's form of an unformatted read

statement
READ BINARY(20, END = 500)

~ NUMPTS, ; Number of Points
- (VOLTGE(I), I = 1, NUMPTIS),; The Data

- rey, Toe 1; a, 1) ; A remark

C
€ Find the starting position

DO 205 START = 1, NUMPTS
IF (VOLTGE(START) .GI. 10) GOTO 210

205 CONTINUE
Cc
os Hopefully there will be an exit fran the
Cc loop before numpts is reached

210 CONTINUE
START = MAXO(START - 3, 1)

- 145 =

C.. Transform Data
MX2 = FIDFAC * FLOAT(NUMPTS - START +1)

DO 240 Pr = START, NUMPTS, 1
XVAL = FLOAT(I)

FVAL = F(I)

Y(I) = FVAL * XVAL / (MX2 - XVAL)
240 CONTINUE

Cc

c Fit the test data
CALI. CURFITG FLOAT (. START’). FLOAT (“NUMPTS "),° Y,

- START, NUMPTS, COEF, MXORD1)

c

Cc Evaluate Statistics
MXDIFF = 0.0

SUMDIF = 0.0
CHISOR = 0.0
DO 300 Pr = START, NUMPTS, 1

XVAL = FLOAT(PT)

YVAL = COEF(MXORD)

C

C Evaluate the Polynomial
DO 260 ORD = 1, MXORD, 1

YVAL = YVAL * XVAL + COEF(MXORD - ORD)

260 CONTINUE
c
GC Reverse Transformation

YVAL = AINT(YVAL * (MX2 - XVAL) / XVAL)

G

Cc Correct result if it is out of range
IF (YVAL .LT. 0.0) YVAL = 0.0

IF (YVAL .GI. 255.0) YVAL = 255.0.
Y(PT) = YVAL

.
Cc Evaluate the differences

FVAL = F(PT)

DIFF = ABS(YVAL - FVAL)

SUMDIF = SUMDIF + DIFF)

IF (FVAL .GT. 0.0) CHISOR = CHISOR + (DIFF * DIFF)

/ FVAL

300 CONTINUE

Cc
Gc Evaluate the differences in Region 1

FVAL = F(START)

DO 400 PT = 1, START
XVAL = FLOAT(I)

Y(I) = YVAL

FVAL = F(I)

DIFF = ABS(YVAL - FVAL)

SUMDIF = SUMDIF + DIFF)

IF (FVAL .GT. 0.0) CHISOR = CHISOR + (DIFF * DIFF)

/ FVAL

300 CONTINUE

DIFF = SUMDIF / FLOAT(NUMPTS + 1)
DEGFDM = NUMPTS - 1

- 146 =

¢ The results

WRITE(OTFILE, 420) NUMPTS, MXDIFF, DIFF, DEGFDM, CHISOR

420 FORMAT(3X, 12, F15.5, F13.5, I7, F13.5)

440 FORMAT(1X, 'NUMPTS MAX POS DIF AVG FPO DIF DEG FDM',

- 8! CHI SQUARE' /)
GOTO 200

c
Cc End of File
500 CONTINUE

CALL CLOSE(20)

CALL EXIT
END

- 147 -

Appendix 3.4: Results of Curve Fitting by Transformation

The last column in the above table gives the approximate value of
the chi-squared distribution at 99.5%.

reasons for the large differences in the goodness of fit for the
first three sets of data.

The author cannot find any

It could be that the transformation

works better for a larger number of points (eg 365) or it could be
just pure luck that there was a good curve fit in the fourth and
fifth sets of data.

NUMPTS MAX POS DIF AVG POS DIF DEG FDM CHI SQUARE

§2
26
a6
76
68

15.00000
31.00000
31.00000
18 .00000
12.00000

6.84906 53
11.96296 25
7.20690 58
4.58442 ta
4.59420 69

- 148 -

232.25162
54.84466

174.95897
42.17616
40.68316

Chi-Square

28.7451
10.5197
32.5170
47.2236
40.9530

Appendix 3.5: Test Data

The test data is in its formatted form for readability; it would

normally be in the internal unformatted form. It has been scaled
up to the range 0 to 255 which is the form in which the PET would
send it.

52
Be Ue Meee tke: Bee DO. Ae eR

33. 42. 68. 935106. 128...140. 153.164. 369.
274... 179.. 183... 183. 169. 194. .396. 200. 203... 204.
205 «200 «. #10 ves lls Bik Aas « Bene weds. ane
20 e 250% Ble 232a, Baka 2Oks) 2306 SAO eeoen. BOOS
243652385

Kink in Region 3 & 4
26

20; aa ae ae ee Be eel 29, 596
P00 Fa. 1200 4.360 6259. gual eaie..221. 226. 226.

. 226. 230, 231, 234.. 234. 238.
Short batch of data
ay

Se eee Mea ee ee eee Uy ah .
Oo Sete See ae oes” ceaeOLD. 22.

93° BB ee tes. OE. ING. 155; 126: 158. TAs.
357... 159%. 170. 182% 182. 184. 190..:393.-193. 204.
204. 220,7+206. 206; 207. 2195 216.°216. 218. 219.
a2 e Gane 20s MAS) b2n8 Zode. Bale

Wavy 3rd & 4th region
76

Oe ss Devs Os ae, a 0. Boe
Oe 0. pr Re 7. Ages eee OO. artes O88

700/102. 11S, 127.132, 138. 146. 1605 287. 168.
308..22684: 177s 4170. 175. 175. 16le. 175.188. 182.
186. 186. 188. 186. 196. 191. 193. 194. 196. 196.
201. 197. 203. 199. 199. 204. 206. 204. 203. 210.
ZU) e 245: 230,20res 2065* 2g 212. 212 212,: 218;
19, 2194.29 219. 223. Zza5

Long Region 1
68

Oa Ge eget Oe iad ee: BY de Saas ees
39. She Oe. B3s. BSy tie, 222. 128e 126. 145.

15/7. G61. 161, 164. 168. 168. 172. 174. 174. 175.
181. 179. 180. 183. 184. 187. 183. 187. 188. 189.
189. 191. 191. 198. 196. 192, 196.: 198.195. 191.
194. 192. 198. 195. 191.°194. 196. 198. 200. 204.
206. 204. 202. 200. 199. 198. 197.

Long Region 3

End of Appendix

- 149 -

APPENDIX 4: DATA COMMUNICATIONS

Appendix 4.1: Procedure for copying COMMLINK

The program given here [COMMPACK] can be used for both copying and
loading COMMLINK [Taylor Wilson [1980]]. In order tO copy
COMMLINK ,

- Form a binary version of COMMPACK
- Load COMMLINK from the Master Disk

- Load COMMPACK

- Type 'SYS 1422'
- Save COMMPACK

COMMPACK now contains COMMLINK concatenated below it. To load

COMMLINK into memory,

- Load COMMPACK

=? Type’ RON’
- Type in the password [this will not be disclosed: it is

left as a programming exercise to the reader; after all,

the listing is given]

After loading, any programs which use COMMLINK may be executed.

a. 150;

Appendix 4.2: COMMLINK Copier

put "@0:commpack.src"”
put "@1l:commpack.src"

written: 08/07/81, cup
updated: 08/07/81, cup

purpose: copy/load commlink

=
e

s
e

w
e

S
e

N
e

S
e

N
e

t
e

S
e

*= 1025
input: =". 133
rem = 143
clrscr = 147 ; clear screen char
print..= 153
Giz = 156
sys = 158
plus: Gu=. «170
eq =. 278
Teft.2= 200

; the basic loader
ewor link1,10000

byt rem,'==communications link',0
Pinkie

ewor link2,10020
ebyt rem,' written: 08/07/81, cup',0

Link2?.2=:*
ewor link3,10040
-byt rem,' updated: 08/07/81, cup',0

dink3 =,*
ewor link4,10100
wove clic, Sas"
-byt input,'"password";s$:'
ebyt print,'"',clrscr ,0

link4 =*
.wor link5,10120
sbyt 's$',eq,left,'(sS+" "12)',0

link5 = *
ewor link6,10140
byt sys,'1320',0

link6 =*
ewor link7,63998
byt rem,’ openl,8,15,"sO0:cammunicator":'
e-byt 'save"O:communicator",8:'
ebyt ‘verify**" 87,0

*link7 =
wor link8,63999
ebyt rem,' openl,8,15,"sl:communicator":'
byt 'save"l:communicator",8:'
ebyt ‘verify"*",8* ,0

link8 = *
ewor 0,0

=
e

si ATe

=
e

s
e

strptr

varptr
newadr
topmem
chrget
kbdix
oldptr
newptr

kbdbuf

comstr

ready
cold

* il

declarations

1320
17
42
aS
53
112
158
238
240
623
$7200
Sb3ff
Sfffc

s
e

w
e

s
e

S
e

N
e

N
e

~
e

s
e

N
e

N
e

string pointer
start of variables

new address
top of memory
system's lexical analyzer
keyboard index

keyboard buffer
start of commlink
warm start

cold start

'

; check the password
eSkilaee

incy

passwd

ldy
lda
sta

iny
lda
sta
ldy
tya
sta
ae

iny

cpy
beq
lda
eor
eor
sta
tya
adc

£3
(varptr) ,y
strptr

(varptr),y
strptr+1
eSff

temp

£12
load :
(varptr) ,y
£Sff
temp

temp

temp
cmp passwd ,y
beq incy

=
e

=
e

=
e

pointer to password

check password

no of chars in password

-dby $36fb ,$38£5,$3d£9 ,$45a2 ,$8663 ,$c724

load

newscn

Td

ldx
%

lda
sta

dex
bpl
lda
ldx

sta

stx

sta
stx
lda

£02

newchr ,X

chrget ,x

newscn
¢£zcomstr
£kcomstr
newadr

newadr+1
topmem
topmem+1
£kcomsto

=
e

’

overwrite chrget

set up load address

storage position

= 1ST

ldx
sta

_ stx
jsr
ldx

stx

cpynew = *
lda

sta

dex
bne

jmp

£2comsto
oldptr
oldptr+1

copy
£6 ; clobber keyboard buffer with 'new'

kbdix ;

kbdbuf-1,x

cpynew

ready

memory.
evers = *

lda

lax.

sta

stx

lda

ldx

sta

stx

jsr
lda
ldx

sta

stx

rts

P
y

s
e

N
e

w
e

N
e

N
e

copy commlink from $7200 to bottom of program
and reset the end of program. this routine
should be entered when copying commlink fran

£3comsto ; storage position
£zcomsto
newadr

newadr+1

£hcomstr; new location
£ecomstr
oldptr
oldptr+1

copy
£4endprg ; mark new end of program
£3endprg
varptr
varptr+l

=
e

s
e

*

ldx

copyl =
lda

sta

iny
bne

inc
inc
dex

bne
rts

copy 14 blocks from [oldptr] to [newptr]

£14 : number of blocks to be copied

ldy £0
*

(oldptr) ry

(newptr) ,y

copy]
oldptr+1 ; next block
newptr+1

copyl

temp *=*+1]
newchr jmp $7601

temp location
new top of chrget=

e
N
e

newbyt .byt 'new',$0d,$07,clrscr
comsto *=*+Se00 ; copy of cammlink starts here

endprg = *
end

= {§3 5

Appendix 4.3: Data Transmitter

This appendix and appendices 4.4 amd 4.5 give a simplified version

of the data transmitter. It does not transmit floating point

numbers. The main reason for this is that the receiving end (ie

the Nova) did not have any form of free formatted read. ‘To write

a parser for the various formats of floating point numbers which

the PET could generate is quite a task, especially in Fortran and

would defeat the purpose of the exercise which was to check that

the hardware and software interfaces were working.

10000 ==TEST TRANSFER PROGRAM

10020 REM WRITTEN: 08/07/81, CUP

10040 REM UPDATED: 08/07/81, CUP

10100 CMD I
10120 CMD B,1024*10

1O140% XS=n2°

CRS=CHR$ (13)
10160 CMD F,C=Y,D=22,DI=N,EX=Y ,SE=13,E=3,S=-1,T=5,R=255

10180 REM EXECUTE PROGRAM ON DG

XS="receive"+CHR$(13):

10200 CMD S,xX$

10220 INPUT "[rvs.on] Pet Filename [rvs.off] : ";FL$

10240 INPUT "[rvs.on]Drive Number [rvs.off] : ";DR

10260 DOPEN £2,(FLS),D(DR)
10270 INPUT £2,CTS,NC,SM,SS:

XS=STRS (NC*SM)+CRS:

CMD S,X$

10280 REM—-SKIP OVER NAMES & UNITS

FOR I=l TO N:

INPUT £1,NMS,UNS:

NEX® Te

10300 FOR I=l TO NC*S&M STEP 12

10320 REM--PAD XS TO 72 CHARS
XS="123456789":
FOR J=1 TO 3:

XS=X$+X$:
NEXT J:

10340 SYS 634:
CMD S,XS:
IF ST=0 THEN

NEXT I

10360 DCLOSE £2:
XS="9999"+4CRS:
CMD S,X$

63999 REM SCRATCH"xfer to dg",D0O:DSAVE"xfer to dg" ,D0: VERIFY"*",8

BP Ae ew

Appendix 4.4: Format Converter

opt lis,err,nog

eo
=
e

S
e

N
e

S
e

N
e

N
e

N
O

N
e put "@0:format.src"

put "@l:format.src"

written: 08/07/81, cup

updated: 08/07/81, cup

purpose: convert format of number to octal

£

varbeg
strptr
posn
status
data
setget

get
reset

O
N
W
h

150
17

S££Ec6
Sffed
Shmiere:
= 634

Idy.£2
lda (varbeg),y
sta strptr+l
dey
lda (varbeg) ,y
sta strptr

dey
Ida ef

clear = *
sta (strptr),y
iny
cpy £72
bne clear

lida £0
sta posn

nexnum = *
jsr getbyt
ldx status
beq eof
sta data
jsr getbyt
sta datat+l
ldx £4

ldy posn
iny
iny

nexdig = *
lda £0
asl datat+tl

rol data
rol a
asl datat+l
rol data
rol a

e
e
e
W
l

e
i

s
e

S
e

s
e

t
e

N
e

w
e

N
e

t
O

=
e

=
e

N
e

=
e

=
e

e
’

°
’

start of variables
pointer to beginning of output string
current output position
ieee status
temporary data storage bytes
set input channel
get a byte
reset to default i/o

assume first varb is a string

y is now zero
clear buffer

position in string

get the data
end of file?

hi byte

convert to octal

get the ms digit into a

“155 -

asl data+l

rol data ©
rol a
ora £$30 : add ascii bias
iny
sta (strptr),y
dex

bne nexdig
sty posn
cpy £72
bne nexnum

eof =
rts

get a byte fram channel 2

etbyt = *
Vax £2
jsr setget
jsr get
pha
jsr reset
pla
rts
-end

W
Q

~
e

s
e

s
e

- 156 -

Appendix 4.5: Data Receiver
OO
O
A
)

Q
Q

140

150

160

170

i

Written: June 1981, CUP
Data Receiver for concurrent running with Data Transmitter
on PET

INTEGER LOGDAT(12)°

Open output file
CALL OPEN(20, 'TESTDATA', 3, IERROR)

IF (IERROR .NE. 1) GOTO 100

TYPE ‘Error in opening test data file', IERROR

CALL EXIT

CONTINUE

Main Loop
CONTINUE

Use DG's form of free formatted read fran the terminal

READ(11,120) NUMPTS
FORMAT(I3)
WRITE BINARY(20) NUMPTIS

Get the data

DO 170. LSET = 1, NUMPTS, 12
READE ta., 230). C TOGDARET) (1 = 1edey e
FORMAT(.12 I6)

Convert to binary
DO*as0. I: =. 17 12,1

NUMBER = LOGDAT(TI)

IF (NUMBER .GI. 7777) GOTO 160
NEWVAL = 0

IOCTAL = 1

DO 140 LPOSN = 1, 4, 1
NEWVAL = NEWVAL + MOD(NUMBER, 10) * ICCTAL

NUMBER = NUMBER / 10

ICCTAL = IOCTAL * 8

CONTINUE

LOGDAT(I) = NUMBER

CONTINUE

Assume I is 13 on exit from loop

CONTINUE

IS =").

Write to file
WRITE BINARY(20) (LOGDMAT(J), J = 1, 12, 1)

CONTINUE

End of data or end of file

a 18ee

IF (NUMBER .EQO. 8888) GOTO 110

End of file
CALL FCLOS(20)

CALL EXIT
END

End of Appendix

me BS

APPENDIX 5: THE B-TREE ALGORITHM

The program given here shows how variable length keys may lke

stored in a B-tree. This was a suggestion dve to Martin, quoted

in Knuth [1969b]. It was developed on the CBM 8032 in BASIC.

The program generates pseudo-randan variable length keys and

inserts them into the B-tree. The tree is printed after every 20

insertions in one of two selectable formats:

- In what is known in Jjargonese as a suffix walk. This

displays the keys in sorted order, as they are stored in

the conceptual tree.

- In sequential pages, that is, the order in which they are

stored on disk.

i

Appendix 5.1: B-tree program

10000
10020
10040
10060

10100
10120

10140
10160

10180

10200

10220

10240

10280

10300

10320

20000
20001
20002
20003
20004

20040

20060

20080

REM==B—-TREE MAINTENANCE
REM WRITTEN:
REM UPDATED:
REM PURPOSE:

==DRIVER
REM—INITIALIZE
GOSUB 50000:

15/01/81, CUP
18/01/81, CUP
STORAGE OF VARIABLE LENGTH KEYS IN A B-TREE

REM—INSERT 1000 KEYS; START AT 1000 TO GET LEADING ZEROS

FOR K=1000 TO 1999 STEP 20:

FOR I=K TO K+19

REM--FORM A STRING OF L CHARS

SS=RIGHTS (STRS$(I),3):

L=INT(RND(1)*5)+2:

FOR J=l1 TO L:
SS=CHRS (INT(RND(0)*26)+A)+S$:

NEXT J

REM--INSERT S$ IN B-TREE
PRINT I-1000,SS:
GOSUB 30000:

NEXT I:

REM--WALK THE TREE
GOSUB 40000:
GOSUB 41000:

NEXT K:

REM-~TERMINATE

GOSUB 40000:
GOSUB 41000:
GOSUB 29000:
IF NOT UM THEN

DCLOSE £2
END

REM==GET PAGE PR INTO BUFFER PP
REM GLOBAL
REM LOCAL
REM OWN
REM PARAM

REM--IS. IT

NEXT PP

AL(), LP, PG(), PGS()
2)

LR(), ™
PP, ER

ALREADY IN TABLE?

FOR PP=] TO MP:
IF PR=PG(PP) GOTO 20500:

REM--FLAG PAGE FAULT

POKE 32847,42:

~ 150 >

20100 REM—LOOK FOR LEAST RECENTLY USED PAGE

' PP=l:
20120 FOR P=2 TO MP:

IF IR(P) 1t LR(PP) THEN

Pp=P

20140 NEXT P

20200 REM—-WRITE IF ALTERED
IF AL(PP) THEN

GOSUB 23000:

20300 REM--READ IF IT EXISTS
IF PR le LP THEN

GOSUB 24000:
20400 PG(PP)=PR:

AL(PP)=UU:
POKE 34895,32

20420 ‘TM=TM+1:
LR(PP)=IM:
RETURN

‘20500 REM—UPDATE LRU COUNTER

20520 ‘IM=TM+1:
LR(PP)=TM:
RETURN

21000 REM==GET A NEW PAGE
21001 REM GLOBAL: LP, PR

21002. ‘REM LOCAL :.T
21004 REM PARAM : NP, PN

21020 T=PP: .
PR=LP+1:

GOSUB 20000:
LP=PR:

NP=LP:

PGS$(PP)=ZS$:
PN=PP;:

PP=T:

RETURN

23000 REM==WRITE A RECORD
23001 REM GLOBAL: AL(), BTS$(), ERS, PG(), PGS(), UM
23002 REM LOCAL : RC$
23004 REM PARAM : PP
23020 IF UM THEN

BTS (PG(PP))=PG$(PP):
RETURN

23040 RECORD £2,(PG(PP)):
RC$=PG$(PP) +ERS :
PRINT £2,RC$;:
RETURN

= 62 —

24000
24001
24002
24004
24020

24040

24060

24080

24100

29000
29020

29060
29080

30000

30020

30100

30120

30140

30160

30180

==READ A RECORD

REM GLOBAL: BI$(), ERS, PG(), PGS$(), UM, 2S
REM LOCAL : C$
REM PARAM : PP, PR

IF UM THEN

PGS (PP)=BTS (PR):
RETURN

PGS(PP)="";

RECORD £2,(PR)

GET £2,CS:
IF CS=""" THEN

C$=Z$
IF CS ne CRS THEN

PGS (PP)=PG$(PP)+C$:
GOTO 24060

RETURN

REM==DUMP ALL PAGES
FOR PP=1 TO MP:

IF AL(PP) THEN
GOSUB 23000

NEXT PP
RETURN

REM==SEARCH FOR S$

REM--INITIALIZE

SP=-1:

CN=RT:

PNS=ZS:
ISS=CHR$ (LEN(S$))+S$:
IF RT=0 GOTO 31600:

REM-—GET PAGE
PR=CN:

GOSUB 20000:
CPS=PGS$ (PP):

REM——PERFORM SEQUENTIAL SEARCH WITHIN PAGE

CP=3:

FOR S=l1 TO FNMA(1):

REM—EXTRACT STRING

L=FNMA (CP) :

CSS=MIDS (CP$,CP+1,L) :
IF CS$=SS THEN

PRINT "found":

RETURN

IF CSS lt SS THEN
CP=CP+L+2:

NEXT S

162 =

30200

30220

31000

31040
31200

31220

31240

31260

31280

31300

31400

31500

31520

31540

31560

REM—GO DOWN MIDDLE BRANCH

~ NN=FNMA(CP-1) :
IF NN ne O THEN

SP=SP+1:

S(SP,PA)=CN:

CN=NN:

S(SP,PO)=CP:
GOTO 30100

REM==INSERT S$

REM--ASSUME PP, CP ARE CORRECT
CPS=PGS (PP):

AL(PP)=CH:
PGS (PP) =CHRS (FNMA(1)+1)+MIDS$(CPS$,2,1)

REM--COPY FRONT
IF CP gt 3 THEN

PGS (PP)=PGS(PP)+MID$ (CP$,3,CP-3):

REM—INSERT
PGS (PP)=PG$(PP)+IS$+PNS$:

REM——COPY BACK

IF CP le LEN(CPS$) THEN

PGS (PP) =PG$ (PP) +MIDS$ (CP$,CP):

REM-—OVERFLOW?
IF LEN(PGS(PP)) le PZ THEN

RETURN:

REM--FIND THE SPLITTING POINT

CP=3:

CPS=PGS$ (PP):
S=0:
S=S+1:

PV=CP:

CP=CP+2+FNMA(CP) :
IF CP 1t P2 @TO 31400

REM--EXTRACT THE STRING TO BE PROMOTED
ISS=MIDS$(CP$, PV ,FNMA(PV)+1):

REM-—RE-DO OLD NODE
AL(PP)=CH:
PGS (PP) =CHRS (S—1) +MID$(CP$,2,PV-2):

REM--INSERT NEW NODE

GOSUB 21000:

AL(PN)=CH:
PGS (PN) =CHRS (FNMA(1)—-S) +4IDS (CP$,CP-1) :
PNS=CHRS (NP)

ea

31580 IF SP ge 0 THEN
CN=S(SP,PA):

CP=S(SP,PO):
SP=SP-1:

PR=CN:

GOSUB 20000:
GOTO 31200

31600 REM--TREE GROWING IN HEIGHT: NEW ROOT

GOSUB 21000:

AL(PN)=CH:
31620 PGS(PN)=CHRS(1)+CHRS (RT)+ISS+PNS:

RT=NP:

RETURN

40000 REM==WALK THE TREE

40020 INPUT "Walk Tree";YNS:
IF YNS="n" THEN

RETURN

40040 REM--INITIALIZE

CN=RT:

SP=1:

OPEN 222,DV:

40100 REM--BEGINNING OF A NEW PAGE

CP=3:

40200 REM--CHECK THE BRANCH

PR=CN:

GOSUB 20000:
NN=FNPG(CP-1) :

40220 IF NN gt 0 THEN
SP=SP+1:

S(SP,PA)=CN:

S(SP,PO)=CP:
CN=NN:

GoTo 40100

40300 © REM—-FND OF PAGE?
IF CP gt LEN(PGS(PP)) GOTO 40400:

40320 IF NN ne O OR CP=3 THEN
PRINT £222:
PRINT £222,LEFTS(BS,(SP+1)*5);

40340 L=FNPG(CP):
PRINT £222,MIDS(PGS(PP),CP+1,L);"_";

40360 REM—-MOVE TO NEXT STRING
CP=CP+L+2:
GoTo 40200:

40400 REM--END OF NODE: GET PARENT

~ 164 =

40420 REM—END OF WALK?

= TRESP™(t 0 THEN

PRINT £222:
CLOSE 222:
RETURN:

40440 CN=S(SP,PA):
CP=S(SP,PO):

SP=SP-1:

PR=CN:

GOSUB 20000:
NN=1:

GOTO 40300

41000 REM==SEQUENTIAL DUMP OF PAGES

41020 INPUT "Sequential Dump";YNS:
i IF YNS="n" THEN

RETURN

41030 OPEN 222,DV:
PRINT £222,"sequential dump of pages":
FOR PR=BE TO LP

41040 GOSUB 20000:
CPS=PG$(PP):

CP=3:
PRINT £222,"page";PR;FNMA(2);

41060 FOR S=1 TO FNMA(1):
L=FNMA(CP):

PRINT £222,MIDS$(CP$,CP+1,L);

41080 CP=CP+L+2:
PRINT £222,FNMA(CP-1);" "3:

NEXT S

41100 PRINT £222:
NEXT PR:
CLOSE 222:
RETURN

50000 REM==INITIALIZE

50010 A=ASC("a")

50020. BS="—"s
BE=1

50030 CS=""3
CH=—1:

CP=0:
Cps=" "

50040 DWw=4
50050 ERS=CHRS (255)
50090 I=0:

rIss=" w"

50100 J=0
50120 L=0:

LP=BE-1

50130 MP=6:
DEF FNMA(I)=ASC(MIDS(CP$,I,1))

50140 NN=0:
NP=0

50160 P=0:

165 i

50162
50180

50190

50200

50210

50260

51000
51010
51020
51120
51160

52000
52020

52080
52100

52120

52140

52200

52220

59999
63998
63999

PA=0:

PN=0:
PNS=" " :

PO=1:
PP=0 :

PR=0:
Pv=0:

PZ=80:

P2=INT(PZ/2)
DEF FNPG(1I)=ASC(MIDS(PGS$(PP) ,I,1))
RCS=" ee

RT=0
S=0:
Sss=" ",

SP=0
T=0:

=-65535
UM=0:

UU=0
ZS=CHRS(0)

REM—ARRAYS
DIM AL(MP)
DIM BTS$(255)
DIM LR(MP)
DIM PG(MP) , PGS(MP)

REM--INITIALIZATION

FOR I=1 TO MP:

AL(1I)=UU:
LR(I)=I™: |
PG(I)=0:
PGS(I)=""s

NEXT I

REM—IF THE REPLY TO THE FOLLOWING IS 'Y' THEN THE B-TREE

REM WILL BE STORED ON DISK OTHERWISE IT WILL BE STORED IN

"CORE!

INPUT "[2scr.home] [scr.clr] [cur .dwn]Use Disk";CS:
DM=Co=in.

IF NOT UM THEN

DCLOSE: :

SCRATCH "btree.dt",D1:

DOPEN £2,"btree.dt",L(PZ+1) ,Dl

POKE 224,1

REM—FORM A STRING OF 128 BLANKS

FOR I=1 TO 6:

BS=BS+BS:
NEXT I:

RETURN

REM SCRATCH"btree .ds", D0: DSAVE"btree .ds", D0:VERIFY"*" ,8

REM SCRATCH"btree .ds",D1:DSAVE"btree .ds",D1:VERIFY"*" ,8

* 166 =

Appendix 5.2: Tree-Walk

WALKING THE TREE WITH 100 KEYS

AFMHTZ011 AO048 APO51 ACSY025 AVILO86 AYKO34 BA027
BEWUCO28

BLALO46 BLIKY088 BRJO78 BXMGO15
CGFNVF042

CGGKWBO77 CMYZ037 CSX013 CWBM084 DGNVPO80 DSC057 EEZA022
EHFHLOO1

EKLE039 FOZPO65 EOMO85 EUW003 FHOPA052 FMO89 GGGOORO63
GGHOOB033

GNTO41 GxOJ083 HNOHO97 HZVIM099
ICTUWGO17

IRO75 JEELTOO20 JFQLO47 JPPKO64 JUHKO53
KA000

KCUHIW023 KIO92 KTO26 KU091 LDELALO60
LGBM058

LHDRO76 LKOO9 LPCO38 MFIKNO49 MHLO56 MHTEOS5 MHTOO73
MVv019

NCFI094 NCPV082 NJVDO18 NLO79 NSO72 OD029 OFCRO66
OFFXDE014

OPA043 OVO68 PDKWFO61 PFKO40 PNYOOIO04 ORYO31
02006

REPNVEO10 RRHPWHO71 SCE054 SDXI090 SG098 SKBM050
SOYSI032

TALEYJO70 TBIVWO05 TDCUGHO87 TGO74 TOK096
UILXI016

USFZ2036 VDLILO35 VF062 VNEU0S9 VV067
WKLZUPO12

WV069 XMQJLAO02 XXIFHVO30 XXHOO81 XXSTRM024
YNDVIMO08

YWHO44 YWY021 ZACY007 ZENGSNO93 ZIFBMO95 ZTGG045

- 167 -

Appendix 5.3: Sequential Dump of Pages

The numbers in between the tags are pointers to the pages
containing the branch nodes. The root node is on page 13.

SEQUENTIAL DUMP OF PAGES

PAGE 1 O AFMHTZO11 0 AOC048 0 APO51 0 AQSY025 0 AVILO86 0
AYK034 0 BAO027 0

PAGE 2 O REPNVEO1O 0 RRHPWHO71 0 SCE054 0 SDXI090 0 SG098 0

SKBMO50 0

PAGE 3. 1 BEWUCO28 7 CGFNVF042 17 EHFHLOO] 4 GGHOQB033 9
ICTUWGO17 18

PAGE 4 0 EKLEO39 0 &5O0ZP065 0 EQOM085 0 EUWO003 0 FHOPAOS2 0

FM089 0 GGCOOR063 0

PAGE 5 O KCUHIWO23 0 KI092 0 KTO26 0 KUO091 0 LDELALO60 0

PAGE 6 0 WV069 0 XMQJLAO02 0 XXIFHVO30 0 XXHOO81 0 XXSTRM024 0

PAGE 7 O BLALO46 0 BLIKY088 0 BRJO78 0 BXMGO15 0

PAGE 8 0 NCFI094 0 NCPV082 0 NIVDO18 0 NLO79 0 NSO72 0 M029
0 OEFORO66 0 OFFXDEO14 0

PAGE 9 0 GWT041 0 GxOJ083 0 HNOHO97 0 HZVIMO99 0

PAGE 10 0 TALEYJO70 0 TBTVWO05 0 TDCUGHO87 0 TG074 0 TOKO96 0

PAGE 11 0 LHDRO76 O LKO009 O LPCO38 0 MFIKNO49 0 MHLO56 0
MHTEO55 0 MHTOO73 0

PAGE 12 5 LGBMO58 11 MVO19 8 OFFXDE014 14 2006 2 SQYSIO032 10
UILXI016 16 WKLZUPO12 6 YNDVIMOO8 15

PAGE 13 3 KAOOO 12

PAGE 14 0 OPA043 0 OV068 0 PDKWFO61 0 PFKO40 0 PNYOOION4 0
ORYO31 0

PAGE 15 O YWHO44 0 yYwy021 0 ZACY007 0 ZENGSNO93 0 ZIFBMO95 0

ZTGGO45 0

PAGE 16 0 USFZZ036 0 VDLILO35 0 VF0O62 0 VNPU05S9 0 Vv067 0

PAGE 17 0 CGGKWBO77 0 CMYZ037 0 CSx013 0 OWBM084 0 DGNVPO080 0
DSC057 0 EEZA022 0

PAGE 18 0 IR075 0 JEELTOO20 0 JFOL047 0 JPPKO64 0 JUHKO53 0

End of Appendix

- 168 -

APPENDIX 6: SIMPLE IMPLEMENTATION OF THE QUERY LANGUAGE

The program in Appendix 6.1 uses an Extended Basic system for the

PET currently being developed by R. Narayanan and U.P. Cheah. The

functions used are defined as follows:

This
June

INPUT

POKE

RESTORE

SAVE

This is similar to a normal INPUT function
except that the line, column and various other
parameters may be specified. Although it will
accept seven different formats, only one is used
in this program; that is function 0, the string

input procedure.
Display a piece of text either normally or in
reverse field on a specified line and colum.
Reset the stack amd return to the position of
the last SYSIM[SAVE] command. This function is
extremely useful for aborting after errors
without going through the complicated procedure
of unwinding the stack.
Note’. the return position... for, the .<next
SYSTM [RESTORE] command.

subroutine library should be available for general use by

1982.

169. <

Appendix 6.1: Query Program

10000
10020
10040

10100
10120

10140

10200

10220

10240

20000
20020
20040

20060

20080
20100

20120
20200

20250 —

20300

20350

REM==QUERIES
REM WRITTEN: 19/01/81, CUP

REM UPDATED: 01/03/81, CUP

REM==DRIVER

IF PEEK(53) ne 120 THEN

POKE 53,120:
CLR:

DLOAD "system" , DO

REM--INITIALIZE
GOSUB 50000:

REM--GET QUERY

GOSUB 40000:
IF OP(1) ne 10 THEN

GOSUB 42000:
GOSUB 44000:
GOTO 10200

REM——TERMINATE

END:

REM==COMPUTE QUERY
FOR LO=NL TO 1 STEP -1

IF OP(LO) 1t 7 THEN
RS=RC(F(LOQ)):
LS=TV(LO):
GOTO 20200

REM--LOGICAL OPERATORS

RS=0:

FOR LS=F(LQ) TO TV(LQ)
REM SUBTRACT SINCE TRUE IS -l

RS=RS-R(LI(LS)):
NEXT LS
ON OP(LO) GOTO 20250, 20300, 20350, 20400, 20450, 20500,

20550, 20600,20650

REM--less than

RS=RS 1t LS:

GOTO 20700:

REM—equal to

RS=RS=LS :
GOTO 20700:

REM--greater than
RS=RS gt LS:
GOTO 20700:

- 170 -

20400

20450

20500

20550

20600

20650

20700

21000
21020

22000
22020

23000
23020
23040

23050

23060

23080

REM—not less

RS=RS ge LS:
GOTO 20700:

REM-—-not equal

RS=RS ne LS:
GOTO 20700:

REM—not greater
RS=RS le LS:

GOTO 20700:

REM--AND
RS=RS=(TV(LQ)—-F(LO)+1):
GOTO 20700:

REM—IOR
RS=RS gt 0:
GOTO 20700:

REM--XOR

RS=RS=1:

R(LO)=RS:
NEXT LO:

RETURN

REM==READ A RECORD
FOR F=1 TO NF:

INPUT £2,RC(F):
NEXT F:

RETURN

==PRINT A RECORD
DESHUihe

FOR F=1 TO DNF:
DLS=DLS+RIGHTS (BS+STRS (RC(F)) , FW):

NEXT F

REM==DISPLAY A LINE

IF DL ne PM @TO 23060

DL=0:

SYS IM[POKE,0,23,1,"Hit space bar to continue"]
GET CS:
TE CS ne: = sGoTo: 23050
IF DL=0 THEN

PRINT £3,HES:

PRINT "[scr.clr]";HES

DL=DL+1:

PRINT £3,DLS:

PRINT DLS:
RETURN

-171 -

33000 REM==LEXICAL ANALYZER
33020 REM SEARCH QUS FROM CHARACTER POSITION CP FOR ONE OF THE
33040 REM CHARACTERS IN TMS. ACCUMULATE THE NON SPACE
33060 REM CHARACTERS BETWEEN THE STARTING POSITION AND THE

33080 REM TERMINATING POSITION IN SS
33100 ss="";

L=LEN(QUS) :
LS=LEN(TMS) :
CP=CP-1

33200 CP=CP+l:
IF CP gt L THEN

ERS="Syntax Error":
GOTO 37000

33220 CS=MIDS(QUS,CP,1):
Tr. csa" © Gp 33200

33240 FOR TI=1 TO IS:
IF CS=MID$(TMS,TT,1) THEN

RETURN
33260 NEXT TT:

SS=S$+CS:
GOTO 33200

34000 REM==PARSE QUERY
34020 IF LEFTS(QUS,1)="." THEN

OP(LO)=10:
NL=LO-1:
RETURN

34040 REM INITIALIZE
CUS=CUS+":"s

CP=1:
ERS=""5

34060 REM—LEVEL NO
TMS="abcdefghijklmnoparstuvwxyz":
GOSUB 33000:

34080 IF SS="" THEN
ERS="Level No missing":
GOTO 37000

34100 LN=VAL(SS)

34120 REM--FIELD/LOGICAL OPERATOR
T™S="/=33:":

~ GOSUB 33000:
34140 IF SS="" THEN

ERS="Field missing":
GoTo 37000

34160 IF C$ ne ":" GOTO 34300
34180 FOR OP=7 TO 9
34200 IF S$ ne OPS(OP) THEN

NEXT OP:

ERS="Illegal Logical Operator":

GOTO 37000
34220 GTO 34500

- 172 -

34300
34320

34340

34360
34380

34400

34500

36000
36120

36140

36160

36180

36200

36220

36300
36320

37000
37020
37040

40000
40020
40040
40060

40080

REM—DOES FIELD EXIST?

FOR F=1 TO NF:

IF SS ne FLS(F) THEN

NEXT Fs

ERS="Field not found":
GOTO 37000

REM—RELATIONAL OPERATOR

TMS="0123456789":
GOSUB 33000:
FOR OP=1 TO 6

IF S$ ne OP$(OP) THEN
NEXT OP:
ERS="TIllegal Relational Operator":
GOTO 37000

TV(LO)=VAL(MID$ (QUS$,CP)):
F(LO)=F
OP(LQ)=OP:

LN(LO)=LN:
RETURN

==DISPLAY QUERY LINE
DLS=RIGHTS (STRS(100+LQ) ,2):
IF OP(LQ)=0 GOTO 36300
REM END OF QUERY?
IF OP(LO)=10 THEN

DLS=DLS+" .":
GOTO 36300:

REM LEVEL
DLS=DL$+LEFTS (BS , LN(LO) *3)+RIGHTS (STRS(1O0+LN(LO)),2)+" ":
REM FIELD .
IF OP(LO) lt 7 THEN

DLS=DLS+FLS (F(LQ)):
REM OPERATOR
DLS=DL$+0OP$ (OP(LQ)) :
REM VALUE REQUIRED
IF OP(LO) 1t 7 THEN

DLS=DL$+STRS (TV(LO)):
SYS TM[POKE ,0,LO+1,1,DLS]
RETURN

REM==ERROR HANDLER
SYS TM[POKE ,0,1,1,EMS]
SYS TM[RESTORE]

REM==GET A QUERY

IF OP(1)=10 Goro 40100

SYS TM[POKE ,0,23,1,"New Query:"]
SYS TM[INPUT ,23,13,0,QU$,1,1]:

IF GUS ne "y" AND GUS ne "n" GOTO 40060
IF QUS="n" GOTO 41000

- 173 -

40100
40120

40130

40140
40160

40180

40200

40220

41000
41020

41040

41060
41080

41100

41120

41140

42000

42020

42040
42060
42080

42100
42120 -
42140

42160

42180

42200

REM—INPUT THE NEW QUERY
FOR LO=1 TO MO:

SYS TM[SAVE]

SS=RIGHTS (STRS$(LO+100) ,2):
SYS IM[POKE ,1,23,1,S$+":"]
SYS TM[INPUT ,23,5,0,QU$,1,30]
REM PARSE
GOSUB 34000:
IF ERS ne "" GOTO 40140:
REM DISPLAY
GOSUB 36000:
IF OP(LO) ne 10 THEN
NEXT LO:

SYS TM[POKE ,0,23,1,"Query too long"]:

GOTO 40100
NL=LO-1

REM==ALTER QUERY

SYS TM[SAVE]:

SYS TM[POKE ,0,22,1,"Any Alterations:"]
SYS TM[INPUT ,22,18,0,QUS,1,1]:
IF QUS="n" THEN

RETURN

IF QUS re "y" GOTO 41040
SYS TM[POKE ,0,23,1,"Line & Mods otis
SYS TM[INPUT ,23,18,0,QU$,1,32]
LO=VAL(LEFTS(QUS$,2)):
QUS=MIDS (QU$,3):
GOSUB 34000
IF ERS="" THEN

GOSUB 36000
GOTO 41000 —

REM==SET PARAMS FOR LOGICAL OPERATORS

REM—LIST POINTER

LS=0:

FOR LO=NL TO 1 STEP -1l

IF OP(LO) 1t 7 GOTO 42200
REM FROM POSITION

F(LO)=LS+1:
REM LOOK FOR ALL THE LINES WHICH ARE ONE

REM MORE THAN THE CURRENT ONE

LR=LN(LO)+1:

FOR CL=LO+1 TO NL:
IF LN(CL)=LR THEN

LS=LS+1:

LI(LS)=CL

REM STOP WHEN THE LEVEL IS SAME OR LESS

IF LN(CL) gt LN(LO) THEN
NEXT CL:

REM MARK THE 'TO' POSITION

TV(LO)=LS:
NEXT LO:

RETURN

- 174 -

44000 REM==PROCESS QUERY

44020 - REM NUMBER SATISFIED

SA=0:

44040 REM CURRENT DISPLAY LINE

DL=0:

44060 OPEN 2,8,2,"O:query.dt,s,r":
OPEN 3,8,3,"@0:query.rs,s,w"

44100 REM--READ RECORD
GOSUB 21000:
IF ST ne 0 @TO 44200:

44120 REM—IF OK THEN PRINT IT

GOSUB 20000:
IF R(1) THEN

GOSUB 22000:
SA=SA+1:

44140 @rTO 44100
44200 DLS="":

GOSUB 23000

44220 REM—TERMINATING MESSAGE

DLS=STRS (SA):

IF SA=0 THEN
DES=UNOws

44240 DLS=" "+DLS+" record(s) satisfied":

GOSUB 23000
44260 CLOSE 2:

CLOSE 3

44280 RETURN

50000 REM==INITIALIZATION
50020 BSs=" "
5030) 3Cs=""s

CL=0:

CP=0
50040 DF=0:

DL=0:
Dasa. "W :

Dv=0
50050 ERS=""
50060 F<0:

FW=12
50080 HES=""
50120 L=0:

LN=0:

LO=0:

LR=0:

LS=0

50130 MQ=20
50140 NF=6:

NL=0
50150 OP=0
50160 PM=20
50176... qus=""

- 175 -

50180

50190

50200

51000
51060
51120
51150
51180
51200
52000

52020
52040

52060
52080

52100

52120

59999
63998
63999

R=0:

RS=0
ss=" " :

SA=0
T=6*4096:

TT=0:
Ts=""

REM——ARRAYS

DIM F(MQ) ,FLS (NF) ,FL(MQ)
DIM LI(MQ) , LN(MQ)

DIM OP(MQ) ,OP$(10)
DIM R(MQ) ,RC(NF)
DIM TV(MOQ)

FOR I=1 TO 5:
BS=BS+B$:

NEXT I

PRINT "[scr.clr]"
FOR I=1 TO 10:

READ OP$(I):
NEXT I
DATA mina "Rn Tre wie rian an " S. ior" j "yor" 4 ."

FOR I=1 TO NF:
READ FLS(I):

HES=HES+RIGHTS (BS+FLS (I) ,FW) :

NEXT I
DATA "weight" ft age" ; "height" "eyes " "hair" -health"

REM—SET TOP OF SCREEN IN CASE ERROR COMES ALONG

POKE 224,1:
RETURN 3
REM SCRATCH"query" ,D0:DSA "query" ,DO:VERIFY"*" 18

REM SCRATCH"query" ,D1:DSAVE"query" ,D1:VERIFY"*" ,8

- 176 -

Appendix 6.2: Data

weight age height eyes hair health

83 34 202 17 12 4
59 72 199 7 5 x
94 So 161 12 19 6
85 73 265 16 19 2
91 68 267 Lit 2 2
69 24 237 a 17 a
69 65 154 12 4 =
97 23 224 16 13 3
64 ae 242 2 7 3
96 34 215 2 14 4
65 74 171 14 Al. 3
73 66 241 10 14 6
83 43 273 4 1 6
52 59 207 12 5 5
64 40 2a 16 7 4
72 56 238 2 a 4
84 50 242 9 2 6
if) 61 225 x 16 z
63 ax 204 7 14 4
62 70 193 10 9 E
95 3 238 10 1 J
54 47 163 15 3 1
70 34 200 9 >
74 67 192 - 2 2
94 43 252 : ll 4
50 68 241 6 if 6
76 ei, tegee 2 19 6
TL 61 209 = 10 5
78 35 182 14 Be ‘4
73 25 175 9 3 2
70 32 183 3 7 4
80 55 151 19 7 4
87 23 198 14 12 2
88 38 226 3 6 5
13 39 234 19 18 2
53 30 238 6 3 5
54 36 236 13 19 4
63 3 167 3 10 6
70 25 262 18 14 4
79 64 161 16 17 5
91 74 259 3 6 6
84 on 174 19 14 4
90 56 227 13 J 1
80 58 183 ll 4 3
60 68 ine 10 14 4
76 67 233 14 1 3
74 30 218 i 14 2
60 53 190 3 q 6
61 67 217 14 14 Z
56 66 207 = a2 2

- 117 -

Appendix 6.3: Results

The following query was performed on the data in Appendix 6.2:

01 and
02 amd

03 height gt 200
03 height 1t 250

02 age gt 60

The results of the query follow:

weight age height eyes hair health
73 66 241 10 14
79 61 225 7 16
50 68 241 6 17
ye ‘ 61 209 4 10
76 67 233 14 2
61 67 247 14 14

6 record(s) satisfied

End of Appendix

- 178 -

REFERENCES

If you do not understand a particular word in a piece of technical
writing, ignore it: the piece will make perfect sense without it

- Mr Cooper's Law

ACM Association of Computing

CPUCN Commodore PET Users' Club Newsletteril

Alagic S., Kulenovic A., 1981

Relational Database Pascal Interface

Computer Journal 24, 112-117

Alcock D., 1978

Illustrating Basic (A Simple Programming Language)

Cambridge University Press

American National Standards Institute, 1978

Programming Language FORTRAN

ANSI X3.9, New York

Anliker M., 1980

Computer Assisted Image Analysis in Medicine

In: Data Base Techniques for Pictorial Applications

Springer-Verlag, 365-368

— le

Arisawa M., Iuchi M., 1980

Debugging Methods in Recursive Standard Fortran

Software Practice & Experience 10, 29-44

Avison D.E., 1981

Techniques of Data Analysis

Computer Bulletin [September], 9-11

Bacon M.D., Bull -G.M., 1973

Data Transmission

MacDonald & Co (Publishers) Ltd.

Barron D.W., 1968

Recursive Techniques in Programming

MacDonald & Co (Publishers) Ltd.

Barron D.W., 1977

An Introduction to the Study of Programming Languages

Cambridge University Press

Bayer R., McCreight C., 1972

Organization and Maintenance of Large Ordered Indexes

Acta Informatica 1, 173-189

= 200 =

Belady L.A., 1966

A study of replacement algorithms for a Virtual Store

Computer

IBM Systems Journal 5, 78-101

Bell J.R., 1970

The Quadratic Quotient Method: A Hash Code Eliminating

Secondary Clustering

Comm. ACM 13, 107-109

Best P.J., 1980

Personal Communication

Bezier P., 1972

Numerical Control - Mathematics and Applications

J. Wiley & Sons, London

Bird: RoS..,) 2O7/

Notes on Recursion Flimination

Comm. ACM 20, 434-439

Bloch A., 1977

Murphy's Law and other reasons why things go wrong

Price/Stern/Sloan Publishers Inc., Los Angeles

*. IBt =

Boothroyd J., 1967

Chebyschev Curve Fit

Comm. ACM 10, 801-803

Boyer R.S., Moore J.S., 1977

A Fast String Searching Algorithm

Conm. AQM 20, 762-772

Brown P.J., 1972

Re-creation of Source Code from Reverse Polish Form

Software Practice and Experience 2, 275-278

Butterfield J., Middleton D., 1980

Basic 2/Basic 4 ROM Comparison

CPUCN 3:1, 41-46

Butterfield J., Russell J., 1979

New/Old ROM Memory Map

CPUCN 2:3, 10-16

Cadwell J.H., Williams D.E., 1961

Some Orthogonal Methods of Curve and Surface Fitting

Computer Journal 3, 420

=~ 182

Chasen S.H., 1978

Geometric Principles and Procedures for Computer Graphics

Applications

Prentice-Hall, New Jersey

Chatfield C., 1970

Statistics for Technology

Chapman & Hall

Chen P., 1977

The Entity-Relationship Approach to Database Design

Database Management

Clenshaw C.W., 1960

Curve Fitting with a Digital Computer

Computer Journal 2, 170

Colin A.J.T., 1963

Note on coding Reverse Polish Expressions for single address

computers with one accumulator

Computer Journal 6, 57-68

Comer D., 1979

The Ubiquitous B-Tree

Canputing Surveys 11, 121-137

Ab

Commodore Business Machines, 1980

Commodore Assembler Development Package Users’ Manual

Commodore Business Machines, 1980

CBM Dual Drive Floppys, Model 2040, 3040, 4040, 8050

P/N 320899

Commodore Business Machines, 1979

CBM 3032 Professional Computer Users' Manual

P/N 320856-3

Connecticut Microcomputer, 1980

PETSET] Instruction Manual

Cooke J.A., 1979

IEEE Bus Handshake Routine

CPUCN 1:4

Cooper B.E., 1968

Basic Subroutine for the input of numbers, words ard special

characters

Computer Journal 11, 157-168

Cooper J., 1977

The minicomputer in the Laboratory with Examples using the

PDP-11

J. Wiley & Sons, London

- 184 -

Coyle F.T., 1971

The hidden speed of ISAM

Datamation [June], 48-49

Cronin D.E., Brandon J.P., 1972

A High Speed Computer-to-Computer Data Link

Software Practice and Experience 2, 173-186

Data General Corporation, 1977

Text Editor User's Manual

093-000018-09

Data General Corporation, 1978a

Fortran IV User's Manual

093-000053-09

Data General Corporation, 1978b

RDOS/DOS Command Line Interpreter User's Manual

093-000109-01

Day A.C., 1970

Full Table Quadratic Searching for Scatter Storage

Comm. ACM 13, 481

De Morgan R.M., Hill I.D., Wichmann B.A., 1976

Modified Report on the Algorithmic Language Algol 60

Computer Journal 19, 364-379

- 185.-

Denning P.J., 1970

Virtual Memory

Computing Surveys 2, 153-189

Digital Equipment Corporation, 1976a

MUMPS-11 Language Reference Manual

DEC-11-MMLMA-D-D

Digital Equipment Corporation, 1976b

MUMPS-11 Programmer's Guide

DEC-11—MMPGA-D-D

Dowson P.L., 1980

Wordcraft 80 Reference Guide

Commodore Business Machines

<

Earnshaw R.A., 1980

Line Tracking for Incremental Plotters

Computer Journal 23, 46-52

Elmore R.W., Agarwal K.K., 1980

An Information Retrieval System

Byte 5:10, 114-150

- 186 =

Evans J.M., 1979

Solving the Interface Transfer Problem

Practical Computing 2:11, 87-89

Fisher E., Jensen C.W., 1980

PET and the IFEE-488 Bus (GPIB)

McGraw-Hill Inc.

Fisher R.A., Yates F., 1963

Statistical Tables for Biological, Agricultural & Medical

Research

Oliver & Boyd, Sixth Edition

Forsythe G.E., 1957

Generation and use of Orthogonal Polynomials for Data Fitting

with a Digital Computer

Journal SIAM 5:2, 74-88

Galimberti R., Montanari U., 1969

The Perspective Representation of Functions of Two Variables

Gazioglu K., Condemi J., Kaltreider N.L., Yu P.N., 1968

Study of Forced Vital Capacity amd Maximal Expiratory Flow

Volume Curves in Obstructive Lung Diseases

American Review of Respiratory Diseases 98, 857-867

- 187 -

Golub G.H., Wilkinson J.H., 1966

Note on the iterative refinement of Least Squares Solution

Numerische Mathematik 9, 139

Gould I.H., 1971

Communications between Unrelated Computers

Institute of Computer Science, University of London

Hancox A.J., 1980

Personal Communication

Hebditch D.L., 1975

Data Communications: An Introductory Guide

Paul Elek (Scientific Books) Ltd.

Henry D., [undated],

Analog to Digital Conversion - its Principles, Practices and

Pitfalls

Dept. of Anaesthetics, University of Birmingham

Henry D., [undated]

The Use of a PDP 9 Computer as a Data Aquisition Device, to

be used with an FM Magnetic Tape Recorder

Dept. of Anaesthetics, University of Birmingham

=~ ane =

Hoeschele D.F., 1968

Analogue-Digital/Digital-Analogue Conversion Techniques

Wiley, New York

Hopgood F.R.A., 1968

A solution to the table overflow problem for hash tables

Computer Bulletin 11, 297

Horspool R.N., 1980

Practical Fast Searching in Strings

Software Practice and Experience 10, 501-506

Hyatt R.E., Black L.F., 1973

The Flow Volume Curve: A Current Perspective

American Review of Respiratory Diseases 107, 191-199

Ingram R.H., Schilder D.P., 1966

Effect of Gas Compression on Pulmonary Pressure, Flow amd

Volume relationship

Journal of Applied Physiology 21, 1821-1826

James G.2 1976

Revised Methods of Lung Function Testing

Clinical Investigation Unit, Dudley Road Hospital

BABI E>

Johnson L.R., 1961

Indirect Chaining Method of Addressing on Secondary Keys

Kilburn T., Edwards D.B.G., Lanigan M.J., Summer F.H., 1962

One Level Storage System

IRE Trans. on Electronic Comp. 11:2, 233-235

Kirkman J., 1971

What is Good Style for Engineering Writing

Institute of Chemical Engineers, London

Knuth D.E., 1969a

Semi-Numerical Algorithms

In: The Art of Computer Programming

Addison-Wesley.

Knuth D.E., 1969b

Sorting and Searching

In: The Art of Computer Programming

Addison-Wesley

Kubert B., Szabo J., Giulieri S., 1968

The Perspective Representation of Functions of Two Variables

Journal AM 15, 193-204

wt STO

Landan L.I., Hill D.J., Phelan P.D., 1973

Factors determining the shape of Maximum Respiratory Flow

Volume Curves in Childhood Asthma

Australian & New Zealand Journal of Medicine 3, 557-564

Levine S.T., 1973

Instrument Interfacing can be done - but it takes a bit of

doing

Electronic Design 24 [Nov 22]

Lloyd P., 1966

Graph Plotter

Comm. ACM 9, 88

Logica Ltd., 1979a

Rapport: Designing and Using a Database

097900

Logica Ltd., 1979b

Rapport: Interactive Query Language User's Manual

T5790Y

Logica Ltd., 1979c

Rapport: User Manual

U4B019

oS 161<

MacKinney J.G., 1960a

Least Squares Fit by Orthogonal Polynanials

Comm. ACM 3, 604

MacKinney J.G., 1960b

Polynomial Transformer

Comm. ACM 3, 604

MacMillan D.B., 1961

Remarks’ on Least Squares Fit by Orthogonal Polynanials

Comm. ACM 4, 544

Makinson G.J., 1967

Remarks on Least Squares Fit by Orthogonal Polynomials

Caonmm. AM 10, 293

Martin J., 1973

Design of Man Computer Dialogues

Prentice Hall

McConalogue D.J., 1970

A Quasi-intrinsic Scheme for passing a Smooth Curve through a

Discrete Set of Points

Computer Journal 13, 392-396

TaD. on

McIlroy M.D., 1963

A Variant Method of File Searching

Comm. ACM 6, 101

Meerwall E. von, 1976

A flexible, All Purpose Curve Fitting Program

Computer Physics Communications 11, 211-219

Morris R., 1968

Scatter Storage Techniques

Comm. ACM 11, 38-43

MOS Technology Inc., 1976a

MCS 6500 Microcomputer Family Hardware Manual

MOS Technology Inc., 1976b

MCS 6500 Microcomputer Family Programming Manual

Muir D., 1980

PET and the IEEE Bus

CPUCN 3:5, 22-28

Newman N., Lang T., 1976

Documentation for Computer Users

Software Practice and Experience 6, 321-326

ois

Nievergelt J., 1973

Binary Search Trees and File Organization

Computing Surveys 6, 195-207

Open University, 1972

Chebyschev Approximation

Open University Press, M201:27

Pagan F.G., 1976

On Interpreter oriented definitions of programming languages

Computer Journal 19, 151-155

Pagan F.G., 1979

Algol 68 as a metalanguage for denotational semantics

Camputer Journal 22, 63-66

Pagan F.G., 1981

A Style for writing the syntactic portions of camplete

defintions of programming languages

Computer Journal 24, 143-145

Parkhurst R.J., 1968

Program Overlay Techniques

Comm. ACM 11, 119-125

~ 194 =

Payne J.A., 1970

An Automatic Curve Fitting Package

In: Numerical Approximation to Functions and Data

University of London, 98-106

Pearson E.S., Hartley H.O., 1966

Biometrika Tables for Statistics

Third Edition, Cambridge University Press

Powell M.J.D., 1967

On the Maximum Errors of Polynomial Approximations defined by

Interpolation and by Least Squares

Computer Journal 9, 404

Price C.E., 1971

Table Lookup Techniques

Camputing Surveys 3, 49-65

Prowse P., 1980

The Database Approach

Computer Journal 23, 9-12

Quitzow K.H., Klopprogge M.R., 1980

Space Utilization and Access Path Length in B-Tree

Information Systems 5, 7-16

- 395. «

Reingold E.M., 1981

A comment on evaluation of Polish postfix expressions

Computer Journal 24, 288

Ricci D.W., Nelson G.E., 1974

Standard Instrument: Interface Simplifies System Design

Electronics 47:23 [Nov 14], 95-106

Riche P.J. le, 1969

Curve Plotting Procedure

Computer Journal 12, 291

Rogers B., 1980

Fast Fourier Transforms

Practical Computing [Dec], 91-93

Rogers D.F., Adams J.A., 1976

Mathematical Elements for Computer Graphics

McGraw-Hill, New York

Rohl J.S., 1977

Converting a class of recursive procedures into non-recursive

ones

Software Practice and Experience 7, 231-238

=. 196%

Ruckdeschel F., Krinsky J.A., 1981

A Simple Approach to Data Smoothing

Byte 6:3, 262-298

Santoni A., 1977

What's wrong with 488? Not Much, but ...

Electronic Design 24 [Nov 22], 48-51

Schay G., Spruth W.G., 1962

Analysis of a File Addressing Method

Comm. ACM 5, 459-462

Sernadas, A., 1981

SYSTEMATICS: Its syntax and Semantics as a Query Language

Computer Journal 24, 125-129

Sharp J.A., 1980

Data Oriented Program Design

ACM Sigplan Notices, 15:9, 44-57

Small Systems Engineering [undated]

The IEEE-488 to RS-232 Bidirectional Serial Interface Type B

Operating Instructions

Smith UieMe, Smith DCs Pay 1977

Database Abstractions: Aggregation

Comm. ACM 20, 405-413

=° 197 «

Spacek T.R., 1972

A proposal to establish a vitrual. memory via writeable

overlays

Comm. AM 15, 421-462

Steele G.L., 1977

Arithmetic Shifting Considered Harmful

ACM Sigplan Notices 12:11, 61-69

Strong J., et. al., 1958

The problen of programming communications with changing

machines: A proposed solution

Comm. ACM 1:8, 12-18, Comm. ACM 1:9, 9-15

Strutt A.C.R., Hobbs K.W., 1980

Data Input to Commodore PET via a Parallel to Serial

Converter

CPUCN 3:3, 21-23

Tassel D. van, 1978

Program Style, Design, Efficiency, Debugging and Testing

Second Editon, Prentice-Hall

Taylor Wilson Systems Limited, 1980

Commlink

= 96°C

TNW Corporation, 1979

TNW 3000 Serial Interface User's Manual

Wegner P., 1968

Programming Languages, Information Structures am Machine

Organization

McGraw-Hill

White J.W., Ripley G.D., 1977

How Portable are Minicomputer Fortran Programs

Datamation 23 [July], 105-107

Whiteney G., 1969

An Extended BNF for specifying synatx declarations

Spring Joint Computer Conference, 801-802

Wilders, 19771.

Production and Operations Management

Holt Rinehart and Winston Ltd.

Willis -G., Liddiard Lb, 1972

A note on packing and unpacking of bytes

Software Practice and Experience 2, 401-402

Wirth N., 1976

Algorithms + Data Structures = Programs

Prentice-Hall

500 =

‘ACKNOWLEDGEMENTS

Thinly Sliced Cabbage - Cole's Law

Last but not least, this thesis would be incomplete without an

acknowledgement of thanks to the following [in alphabetical order]:

Department of Production Technology and Production Management

and the Computer Centre of Aston University for providing the

computing and graph plotting facilities.

Dr Anthony Hancox of the Clinical Investigation Unit at Dudley

Road Hospital in Birmingham for pen recorder outputs of the

Pressure Concentration Curve amd up-to-date information about

the happenings at the CIU.

Dr Leslie Hazelwood for his marvellous lectures on curve

fitting. ~

The late Ronald Keeble for suggestions on how a mathematician

would attempt to fit the pressure concentration curve.

Eric Langton for hardware assistance and amusing anecdotes.

Trevor Law for the negotiating the loan of his campany's

Daisy-Wheel printer amd for allowing the use of the

Departmental photocopying facilities.
De Robert Loughnane, without whom I never would have ventured

into Biomedical Engineering.
Dr Douglas Love for Commlink ami his interpretation of the

fuzzy sections of the thesis regulations.

Rajendran Narayanan for memorable arguments on information

retrieval and for his help in bypassing the security used by

the word processing system, Dr Fat Crow.
S. Sabaratnam for the loan of his computer for a few weekends.

My supervisor, Dr David Scrimshire for initial guidance, proof

reading, obtaining some of the vital equipment for the

project, and negotiating the use of the Departmental Daisy-

Wheel printer.

N. Williams for the loan of the signal generator, oscillator

and the oscilloscope.

Cheah Ui Poh

