THE MECHANICS OF DRAWING POLYGONAL TUBE FROM

ROUND ON A CYLINDRICAL PLUG

by

MARANGA wa MURIUKI

Submitted in fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF ASTON IN BIRMINGHAM

OCTOBER 1981

Supervisor:

Professor D.H. Sansome

THE MECHANICS OF DRAWING POLYGONAL TUBE FROM

ROUND ON A CYLINDRICAL PLUG

Maranga wa Muriuki

Year: 1981

Submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

SUMMARY

Economic factors such as the expense of raw materials, labour and power, are compelling manufacturers of polygonal section rod and tube to seek new production routes. One such method generating considerable industrial interest is the drawing of any regular polygonal tube from round stock on a cylindrical plug in a single pass. Although much work has been done on the drawing of round tube, no theoretical or experimental work has been done on the drawing of a polygonal tube directly from round stock on a cylindrical plug. This project studies this process experimentally and establishes a general theoretical solution based on the principle of least work of deformation.

The theoretical and experimental investigations shewed the practicability of the drawing process. The design of the die profile, i.e. the curves of the interpenetration between the undrawn circular workpiece and the drawn polygonal tube, with the bore remaining circular, was found to be critical. A gradual transformation of the external surface of the round stock to the final section with minimum energy dissipation was found to be essential.

A semi-analytical method, which was developed to determine the mean coefficient of friction in the drawing process, produced values which were comparable with those from the direct measurement using the split rotating die.

Upper and lower bound solutions were developed to predict the maximum and the minimum values of the draw force. The upper bound value over-estimates the actual load to effect the process; the lower bound on the other hand is an under-estimate. A computer programme was written to enumerate the results for a variety of drawing parameters including, for example, the mean coefficient of friction and the geometry of the deformation zone. The theoretical results compared well with the experimental data.

Key Words:

Tube drawing Polygonal drawing Energy method Upper bound Friction determination

CONTENTS

											Page
SUMMARY											
EDONELOD	TEOE										
FRONTISP	IECE										
CONTENTS	• ••			••		••	••	••	••		ii
PLATES						••		••			viii
NOTATION	·					••					ix
CHAPTER	1 GE	ENERAL	INTRODU	CTION							1
CHAPTER	2 RE	EVIEW O	F THE L	ITERA	TURE						
2.1	Introd	duction									4
2 2	Equili	brium		h in	drawi	nø					6
2.2	2 2 1	Avie	ummotri	a har	drow	ing				•••	6
	2.2.1.	Aric	ymme tri	c bar	uraw	urina	••		••	•••	7
	4.4.4	AXIS	ymme cr1	.e tub	e ura	wing	•••	••	••	•••	'
2.3	Upper	bound :	solutio	n	•••		••	••	••	••	9
	2.3.1	Plane	e (shee	t) dr	awing	-	••			••	12
	2.3.2	Axis	ymmetri	c bar	solu	tion					12
	2.3.3	Draw	ing of	secti	on ro	ds					14
	2.3.4	Tube	drawin	g						•••	15
2.4	Visiop	plastic	ity			••			••		15
2.5	Finite	e elemen	nt anal	ysis	in pl	astic	defo	ormati	on		
	2.5.1	Intr	oductio	on							20
	2.5.2	Deri	vation	of el	astic	stif	fness	matr	rix		22
	2.5.3	Deri	vation	of pl	astic	stif	fness	matr	rix		23
2.6	Detern	minatio	n of th	le mea	n pre	ssure	and	coeff	licier	t	
	of fri	iction									
	2.6.1	Die	rotatio	on met	hod						24
	2.6.2	Spli	t die m	nethod	L						25
	2.6.3	Spli	t rotat	ing d	ie						25
	2.6.4	Esti	nation	of re	dunda	nt wo	rk				27

Page

CHAPTER 3 THEORY: THE MECHANICS OF DRAWING POLYGONAL

TUBE FROM ROUND ON A CYLINDRICAL PLUG

3.1	Introduction	••	28
3.2	Upper bound solution		29
	3.2.1 Deformation pattern		30
	3.2.2 Velocity field		32
	3.2.3 Strain rates		37
	3.2.4 Internal power of deformation		39
	3.2.5 Power loss in shearing the material at		
	the inlet and exit shear surfaces	•••	45
	3.2.6 Power loss in friction between the		
	tool-workpiece interfaces		48
	3.2.7 Apparent strain method		49
	3.2.7.1 The mean equivalent strain	•••	54
	3.2.7.2 The work hardening factor	••	56
	3.2.7.3 Evaluation of I_1 and I_2	•••	57
3.3	Lower bound solution		59
	3.3.1 Deformation pattern		59
	3.3.2 Derivation of the lower bound solution		60
3.4	Computer programme	•••	64
CHAPTER	4 THE DERIVATION OF PROCESS PARAMETERS IN THE		
	DRAWING OF POLYGONAL TUBE FROM ROUND STOCK	ON	
	A CYLINDRICAL PLUG		
4.1	Introduction		75
4.2	The mean coefficient of friction and the mean		
	pressure		
	4.2.1 Determination of the mean coefficient o	f	
	friction and the mean die pressure from		
	the estimated redundant work		
	4.2.1.1 Theoretical analysis	•••	76
	4.2.1.2 Derivation of the mean coeffic	ient	
	of friction and the mean die		
	pressure		79

	4.2.2	Determina	tion of the	mean coe	fficent	t		
		of fricti	on and the m	nean die	pressu	re		
		by split	rotating die	e method				
		4.2.2.1	Introduction	ı				82
		4.2.2.2	The general	derivati	on of t	the me	an	
			coefficient	of frict	ion and	d the	mean	
			pressure fro	om the me	asurabl	le for	ces	83
4.3	Dies for	r drawing	polygonal to	ubes from	n round	stock		
	on a cy	lindrical	plug					87
	4.3.1	Deforming	g shapes of p	polygonal	tube o	drawir	ıg	
		die						
		4.3.1.1	Pyramidical	plane sh	nape die	e		
			(shape A)					88
		4.3.1.2	Elliptical	plane sur	rface d	ie		
			(shape B)		••			89
		4.3.1.3	Triangular	plane sur	rface d	ie		
			(shape C)					89
		4.3.1.4	Inverted pa	rabolic s	surface	die		
			(shape D)					89
	4.3.2	Dies used	d in the pol	ygonal tu	ube dra	wing		
		experiment	nts					
		4.3.2.1	Introductio	n	•••	••		90
		4.3.2.2	Die manufac	ture	••	••	••	91
4.4	Materia	l of round	d stock used	in the	tests			
	4.4.1	Selection	n of tubing					91
	4.4.2	The stre	ss-strain re	lationsh	ip of t	he		
		tube mate	erial					94
4.5	Plugs							94
4.6	Lubrica	nts						97
OUADTER	E TNO		TON					
CHAPIER	5 115	IRUMENIAI	ION					
5.1	Introdu	ction				••		98
√ 5.2	The for	ce/torque	transducer	at the t	ag hold	er	••	100
5.3	The plu	g force t	ransducer		••	••		100
5.4	The axi	al force	transducer -	the rin	g type			100

Page

Page

5.5	The cup	load cell	- the	force	/torg	ue tr	ansdu	lcer		103
5.6	Draw spe	eed measure	ment				••	••	••	103
5.7	Rotation	nal speed m	easur	ement						105
CHAPTER	6 EXP	ERIMENTAL P	ROCED	URE		••				107
CHAPTER	7 RES	ULTS								109
CHAPTER	8 DIS	CUSSION OF	RESUL	TS						
8.1	Introdu	ction								128
8.2	Theoret	ical result	s							
	8.2.1	Introducti	on							129
	8.2.2	Upper boun	d							129
	8.2.3	Lower boun	d							131
	8.2.4	Limitation	ofa	chieva	able 1	reduct	tion			
		of area								132
	8.2.5	Mean press	ure	••						133
8.3	Experim	ental resul	ts							
	8.3.1	Introducti	on							134
	8.3.2	Draw force	•							135
	8.3.3	Die geomet	ry							140
		8.3.3.1	The sh	ape or	f the	defo	rmatio	on		
		2	zone							140
		8.3.3.1	The op	timal	tube	draw	ing d:	ies		146
	8.3.4	Evaluation	n of t	he mea	an coe	effic	ient d	of		
		friction								151
	8.3.5	Evaluation	n of t	he mea	an pro	essure	e		••	152
8.4	Other o	bservation								153
CHAPTER	9 CON	CLUSIONS								156
CHAPTER	10 SU	GGESTIONS 1	FOR FU	RTHER	WORK					159
REFEREN	CES									163
ACKNOWL	EDGEMENT	s								173
APPENDI	x									

A-1 Geometrical relations for the input tube and the required polygonal tube maintaining the same bore A1

A-2	Preliminary selection of tubes	A3
A-3	Stock of tubes used in the experiments	A10
A-4	Theoretical results	A14
A-5	Experimental results	
	A-5.1 Drawing of poylgonal tube from round on a	
	cylindrical plug	A52
	A-5.2 Tension tests of the drawn tubes	A59
	A-5.3 Determination of the mean coefficient of	
	friction and pressure using the split	
	rotating die	A66
	A-5.4 Determination of the mean coefficient of	
	friction and pressure from the estimated	
	redundant work and application of apparent	
	strain method	A67
A-6	Specifications for the equipment and	
	instrumentation	A69
A-7	Calibration curves	A73
A-8	Deformation pattern for the upper bound solution	
	of drawing polygonal tubes from round stock on	
	a cylindrical plug	A78
A-9	Lower bound - numerical integration	A98
A-10	Parameters for the design of dies for drawing of	
	polygonal tubes from round on a cylindrical plug	A103
A-11	Dies used in the experiments	A112
A-12	Split rotating die	A114
A-13	Main computer programme	A119
A-14	Axisymmetric tube drawing solutions corresponding	
	to the polygonal tube drawing	A141
A-15	Computer sub-programmes to calculate the mean	
	coefficient of friction in polygonal tube drawing	
	using equations $(4, 10)$ and $(4, 19)$	A143

A-16	Hydraulic drawbench: Assembly and design of	
	equipment A	148
A-17	Mechanical drawings of parts for the 'Sheffield'	
	drawbench assembly and other tube drawing	
	accessories A	155
A-18	Reduction in draw force with die rotation A	170

Translation of the summary in Kikuyu

PLATES

FRONTISPIECE 'Brookes' hydraulic drawbench

- 6.1 Instrumentation
- 8.1 Conventional or industrial dies and sectional bar drawing dies used in the tube drawing experiments
- 8.2 The shapes of the deformation zone of the conventional pyramidical die formed by radiused surfaces and the elliptical/conical surface die (elliptical shape 'B') for the drawing of a polygonal section directly from round stock
- 8.3 Square section drawing dies (shape 'B')
- 8.4 Hexagonal (6WB) and octagonal (8WB) elliptical tube drawing dies
- 8.5 Square tube drawing
- 8.6 Hexagonal tube drawing
- 8.7 Octagonal and decagonal tube drawing
- 8.8 Cross-section of tubes drawn through the square dies
- 8.9 Tube sections drawn directly from round stock on a cylindrical plug through the hexagonal, octagonal, decagonal and round dies displayed in Plates 8.1 and 8.4
- 8.10 Hexagonal die tips
- 8.11 Square die tips
- A-12.1 A cross-section through the split rotating die rig
- A-12.2 The split rotating die drive system
- A-12.3 Tube drawn through the square die tips
- A-16.1 'Sheffield' hydraulic drawbench

NOTATION

D _b	Diameter of the inlet circular section
Da	Diameter of circle circumscribing the required polygonal tube
H _a , A/C	Diagonal length of the drawing die equal to the diameter of the circle circumscribing the polygon
L	Die length measured along the draw axis (die height)
Ns	Number of sides of the drawn polygon tube
A/F	Across flat length of the polygonal tube
t _b	Inlet tube wall thickness
$d_p (=2r_p)$	Plug diameter equal to the bore of the input stock
A _b	Cross-sectional area at entry
Aa	Cross-sectional area at exit
A _r	Ratio of cross-sectional area at entry to that at the exit
red, 'r'	Reduction of area
ta	Maximum tube wall thickness along the major diagonal of the drawn tube
к	Factor $(0 \le \kappa \le \frac{1}{2})$ expressing tube wall thickness at the diagonals in terms of H _a , i.e. $t_a = \kappa H_a$
D _e	Diameter of an equivalent circular section on a cylindrical plug at the exit
a _e	The equivalent die semi-angle; it is the semi-angle of a conical die corresponding to the polygonal tube drawing die on a cylindrical plug, for the same reduction of area and the same die length
ac	Die semi-angle of the conical surface in a polygonal
-	

- ix -

section drawing die

as	Die semi-angle of the flat surface in a polygonal section drawing die
λ _c	Angle subtended by the conical surface of a symmetric section at the draw axis
λ _s	Angle subtended by the flat surface of a symmetric section at the draw axis
β	Included angle of a symmetric section of the die (= $\lambda_c + \lambda_s$)
ο. θ. Φ	General spherical co-ordinates
ρ	Radial distance from the virtual apex to the centroid of the assumed shape element at the inlet section
θ	Inclination of the radius to the tube axis
ψ	The relative angular deflexion of an element measured in the ρ - θ plane
η	The relative lateral displacement of the assumed shape element at the outlet section referred to the inlet
	Velocities in $\rho,\ \theta,$ and φ directions respectively
u _m , μ	The mean coefficient of friction at the die/tube and the plug/tube interfaces
p _m , p	Mean pressure at the die/tube and the plug/tube interfaces
σ _{za}	Mean draw stress
k	Mean yield stress in shear
Y _m	Mean yield stress in tension
(σ_{f})	Flow stress of the material
W	Work done per unit volume of the material
σο	Stress at unit strain
VOL	Volumetric rate
J*	Actual externally supplied power
v	Volume of the deforming material
ε _{ij}	Strain rate

- x -

τ _s	Shear stress at the sliding surfaces
$ \Delta \mathbf{v} $	Velocity discontinuities at the sliding surfaces
s _r	Surface of velocity discontinuities
T _i	Pre-determined body tractions
s _t	Surface area subjected to pre-determined body tractions
s _v	Surface of prescribed velocity
vi	Velocity at entry and exit surfaces having pre-determined body tractions
^u i	Discrete displacement function
^î j	Unit outward normal

σ _{ij}	Stress tensor component
ō	Generalised stress or $\sqrt{\frac{3}{2}} \left\{ \sigma'_{ij} \sigma'_{j} \right\}^{\frac{1}{2}}$
ē	Generalised strain or $\sqrt{\frac{2}{3}} \left\{ \varepsilon_{ij} \varepsilon_{ij} \right\}^{\frac{1}{2}}$

t	Factor $(-1 \leq t \leq 1)$	selected to optimize the inlet
	and the exit shear	surfaces by minimisation of the
	plastic work done	
N	Number of hyperbolic	curves banding the exit section

M Number of sectors into which the inlet section is divided

General subscripts

a	exit parameter
b	entry parameter
p, 2	plug surface
d, 1	die surface
c	conical
s	flat or straight
m	mean
^δ ij	Kronecker delta
ν	Poisson's ratio

CHAPTER 1

GENERAL INTRODUCTION

I. GENERAL INTRODUCTION

The drawing of polygonal tube directly from round stock on a cylindrical plug is of great value to industry. For instance, in the making of nuts such a process would bring significant savings in the cost of raw material, tooling, power and labour, and possibly impart improved mechanical properties to the metal.

An investigation of the mechanics of drawing polygonal tube from round on a cylindrical plug would provide information on the forces on the tools and an insight into the flow of the deforming metal. Such a study would lead to an optimal selection of tool profile, unveil the possibility of drawing defects and the limitations to the application of the process. An understanding of the mechanics of deformation also would lead to an efficient utilisation of material resources and drawbenches. A rigorous investigation requires that a wide range of experimental data be collected, explained theoretically, thus providing a valuable guide to the problems encountered in industry.

Many theories of axisymmetric tube drawing have been published but there is no known attempt to establish the theory on the drawing of a polygonal tube from round on a cylindrical plug. The project undertakes this subject to study the process experimentally and establish a theoretical solution.

Recently Kariyawasam (1) has investigated the drawing of a regular polygonal tube from round tube on a corresponding polygonal plug. His work followed that of an earlier research on the drawing of regular polygonal bars from round stock by Basily (2). The problems in both cases were solved numerically.

An interesting feature of the work in the theses of Basily,

- 1 -

Kariyawasam and in this thesis is the geometry of the deformation zone through which a workpiece of entirely circular cross-section transforms wholly or partly to a polygonal section in a single pass. A gradual transformation of the round stock to the final section is critical. In addition the deforming passage must affect the ease of manufacture, the associated drawing defects and the quality of the final product and also the power to effect the process with optimum efficiency. Therefore, the die has a complex shape.

Basily investigated die shapes formed by combining conical and plane surfaces having different inclinations to the axis. They were the pyramidical plane surfaces, elliptical plane/conical surfaces, triangular plane/conical surfaces and the inverted parabolic/conical surfaces. Since close pass tube drawing can be compared with the drawing of a solid section in which the central section is arrested, thereby introducing an undeformable frictional interface, similar die deforming shapes were investigated for tubing.

A review of drawing theories has been presented to form the basis of the approach finally adopted. Mathematical solutions similar to those of axisymmetric drawing are extremely difficult to derive for polygonal tube drawing; the flow pattern is too complicated. In this thesis two numerical solutions were established for the drawing of a regular polygonal tube from round tube on a cylindrical plug. Close pass draw was assumed. The first is based on equilibrium of forces and predicts the lower bound. The second solution was obtained from a velocity field that minimizes the energy required for the process and incorporates an apparent strain method which includes Coulomb friction. The two loads bound the actual force to effect the deformation for the given drawing parameters. The details of the derivation are given in Chapter 3. The details of the velocity fields and the computer programmes are discussed in Appendices A-8 and A-13.

- 2 -

To fulfil the objective of the experimental part, two hydraulic drawbenches were initially to be used. The author helped to instal and carry out the necessary modifications to one of the drawbenches. However, owing to the economic conditions the bench was abandoned eventually but since the work took a substantial fraction of the period intended for research, the details of the installation, design and assembly are included in Appendices A-16 and A-17. Equipment which was designed to measure the parameters included (i) the load cells at the die, tag and the plug ends and (ii) the device for measuring the draw speeds.

Detailed mechanical drawings are given in the appendix A-17.

Dies for the drawing of regular polygonal tube from round stock on a cylindrical plug are discussed in Chapter 4 and in the Appendix A-10

The mean coefficient of friction was determined by an instrumented rotating die. The analysis, in addition, required the measurement of the following parameters:-

- (i) the draw force
- (ii) the thrust force at the die
- (iii) the draw speed
 - (iv) the plug force
 - (v) the rotational speed and
 - (vi) the rotational torque

The analyses of the equipment and the circuit diagrams to measure the above parameters are given in Chapter 5 and Appendix A-16. The calibration of the instrumentations is given in the Appendix A-7. CHAPTER 2

REVIEW OF THE LITERATURE

2.1 INTRODUCTION

Drawing of metal is believed to have been used first by the Ancient Egyptians to draw ornamental wires. They cut strips from hammered metal sheets, lubricated them with animal fat and pulled them through a die, which had been made by abraiding a hole in a pebble, to produce a circular section (3). Today, the technique is widely used in industry to draw wire, rod, strip, tube, bi-metal tube, section, etc.

Cold drawing is a metal forming process which gives a close dimensional control, improves the degree of surface finish and may also introduce desirable effects on the mechanical properties of the metal. The strength of the drawn product limits the amount of deformawhich can be achieved in any single stage. Thus any modification to improve the drawing process must reduce the tensile stress within the drawn product, enabling greater reductions per pass to be achieved. There is continued research in metal working establishments to improve methods to manufacture a product. A vast amount of literature on both the theoretical and experimental aspects of drawing processes has been published. The fundamental factors covered in the drawing theories include the mechanical properties of the work material, the geometry of the deforming passage and the friction at the tool-workpiece interface.

The analysis of plastic flow of metal has received attention by a number of investigators. In particular, solutions of axisymmetric drawing have been produced by Davis and Dokos (4), Sachs and Hoffman (5), Siebel (6), Maclellan (7), Wistriech (8), Yang (9), Johnson and Sowerby (10), and Zimmerman and Avitzur (11) and Hill and Tupper (12). The plane strain theories have been discussed by Siebel (13), Hill (14), Green and Hill (15), and Green (16).

- 4 -

In practice, non-circular sections such as polygonal rods and tubes, channels, angles, etc., are commonly drawn. In such cases the flow is generally asymmetric and hence the analysis is complicated by comparison with the analyses for plane-strain deformation and the circular sections with axial symmetry. The symmetric drawing of polygonal rods, i.e. the cross-section of the billet and the product are geometrically similar. has been studied, theoretically only by Prakash and Juneja (17), and Prakash and Khan (18). The drawing of regular polygonal bar from round stock has been investigated theoretically and experimentally by Basily (2). An experimental and theoretical investigation on the drawing of polygonal tube from round stock on a corresponding polygonal plug has been reported by Kariyawasam (1). There is no known literature on the drawing of regular polygonal tube from round stock on a cylindrical plug in spite of the value of this shape of tube which finds uses in engineering and as raw material for nut manufacture. Therefore, this thesis undertakes this investigation.

Metal working theories can be grouped broadly under:-

- (i) equilibrium approach
- (ii) slip line field solution
- (iii) upper bound solution
 - (iv) energy approach when the total work is decomposed into homogeneous, redundant and friction components
 - (v) visioplasticity and
 - (vi) finite element method.

However, a comprehensive review is only presented for the equilibrium and the upper bound approaches which form the basis of the methods used to obtain the solutions for the drawing of a polygonal tube from round on a cylindrical plug in Chapter 3. The application of the visioplasticity and the finite element techniques to metal working are discussed

- 5 -

briefly in sections 2.4 and 2.5. In addition, experimental methods to determine the mean coefficient of friction and the mean pressure are reviewed in section 2.6.

2.2 EQUILIBRIUM APPROACH IN DRAWING

The method is based on the equilibrium of forces, without paying attention to the internal flow restrictions. The loads determined are sometimes in agreement with practical values for some processes. The theory, nevertheless, must be applied with caution because under some circumstances the load is seriously under-estimated. The error arises when the external constraint causes appreciable internal distortion of the workpiece beyond that strictly necessary for the shape change.

2.2.1 Axisymmetric bar drawing

In 1927 Sachs (19), proposed a theory which proved the most important among the early theories on wire drawing. He assumed that plane cross-sections of the workpiece remained plane as they passed through the die, the stress distribution on such planes was uniform, the die surface was one of the principal planes, the yield stress was constant, Coulomb friction applied and the friction at the die-workpiece interface did not affect the stress distribution. By considering the equilibrium of longitudinal forces together with Tresca's yield criterion, he derived the following expression for the drawing stress:-

$$\sigma_{za} = Y_{m} \left(\frac{1 + \tilde{B}}{\tilde{B}} \right) \left[1 - \left(\frac{A_{a}}{A_{b}} \right)^{B} \right]$$
(2.1)

where, $\tilde{B} = \mu \cot \alpha$

 A_b , and A_a are the cross-sectional areas at the inlet and exit respectively.

Later, other investigators such as Körber and Eichenger (20), Davis and Dokos (4), and Lunt and Maclellan (21) refined and improved on this theory. In particular, Davis and Dokos extended the solution to the case where the material work-hardens linearly. However, Atkins and Caddell (22) have shown, using the power law, that for practical range of parameters the error is about 8% when the mean yield stress is used instead of taking into account the strain-hardening relationship in the governing force-balance differential equations prior to the integration. They have also given a method for incorporating an empirically determined redundant work factor into the above equation. Siebel (6), added a factor $2/30Y_m$ to the above equation to account for redundant work. Johnson and Rowe (23), have given a general expression to account for redundant work in drawing of cylindrical stock.

Comprehensive reviews of the work of other investigators have been published by Wistriech (8,24) and Maclellan (7).

2.2.2. Axisymmetric tube drawing

The drawing of tubes is based on three fundamental metal working processes, viz. sinking, plug and mandrel drawing. In the sinking process the tube is drawn without any internal support in the bore with a resultant decrease in tube diameter, with ideally no change in wall thickness. In the fixed plug and the mandrel drawing processes, the major deformation is the reduction of the wall thickness.

The mandrel drawing process similar to plug drawing, but the difference between the processes lies in the fact that the mandrel moves with respect to both the tube and the die. Because of this the mechanics of the process are greatly altered by virtue of the fact that part of the drawing load is transmitted through the material. Sachs, Lubahn and Tracy (25), derived an equation for the drawing of thin-walled tubing with a moving mandrel to yield the draw stress:-

- 7 -

$$\sigma_{za} = Y_{m} \left(\frac{1 + B^{*}}{B^{*}} \right) \left[1 - \left(\frac{h_{a}}{h_{b}} \right)^{B^{*}} \right]$$

where, B* = $\frac{\mu_1 - \mu_2}{\tan \alpha_1 - \tan \alpha_2}$

 $\mu_1,\ \mu_2$ are the coefficients of friction at the die/ and the mandrel/tube interfaces respectively

 α_1, α_2 are the semi-angles of the dies and the mandrel respectively

 ${\bf h}_{\rm b},~{\bf h}_{\rm a}$ are the initial and final tube thicknesses respectively. The solution was based on the following assumptions:-

normal stress acting on a transverse section is distributed uniformly over the cross-section; the normal pressures on the die and the mandrel are equal; the axial stress and the normal pressure are the principal stresses. The developed relation thus becomes less exact at large tool angles, and especially if the difference between the two angles is large. Sachs and Espey (26) later published their experimental work on tube drawing with a moving mandrel.

In the case of plug drawing, the direction of the friction forces between the plug and the tube is the same as that between the tube and the die. The solution is the same as for the mandrel drawing except that the parameter B* changes to

$$B^* = \frac{\mu_1 + \mu_2}{\tan \alpha_1 - \tan \alpha_2}$$

In 1946, Sachs and Baldwin (27) derived a solution to the sinking of thin walled tubing:-

$$\sigma_{za} = Y_{m}' \left(\frac{1+\tilde{B}}{\tilde{B}}\right) \left[1 - \left(\frac{D_{a}}{D_{b}}\right)^{\tilde{B}}\right]$$
(2.3)

where, $\tilde{B} = \mu \cot \alpha$

- 8 -

 D_b , D_a are the mean diameters at the inlet and the exit respectively $Y_m' = mY_m$, is the modified mean yield stress from the von Mises yield criterion applied to the complex state of stress occurring

in tube sinking. The average value of m = 1.1. The solution was based on the following assumptions:a shear stress produced by frictional force exists on the interface between the die and the tube; transverse sections are free from shear stresses; the normal stress acting on the transverse sections is uniformly distributed over the cross-section and is a principal stress; the wall thickness of the tube is small in comparison to the tube diameter; the wall thickness of the tube remains constant throughout the process; and the radial pressure on the die is small in comparison with the principal longitudinal and circumferential stresses.

Swift (28) and Chung and Swift (29) have put forward a theory which predicts the sinking loads, wall thicknesses and length increments.

All these theories proposed by Sachs and his collaborators were basically for stress determination and include friction and no redundant effect. In all cases, the stress distribution across the tube wall was assumed to remain constant which only applied to thin-walled tubing. A more general method of accounting for the effect of redundancy was proposed by Blazynski and Cole (30, 31) in their investigations of the sinking, mandrel and fixed plug drawing processes. The semi-empirical method is a modification of Hill and Tupper's concept of the equivalent total mean stress.

2.3 UPPER BOUND SOLUTION

In 1951 Prager and Hodge (32) derived the formulae for bounding loads for a rigid - perfectly plastic material. These were deduced

- 9 -

from work principles published by Hill (14).

The upper bound theorem for rigid-perfectly plastic solid states that among all admissible strain rate solutions the actual one, which is also statically admissible, minimizes the power to effect the given forming process. Drucker (33) extended the theorem to include the velocity discontinuities. With the additional usual assumptions that the material obeys von Mises yield criterion and the flow follows the Levy-Mises stress/strain relationship the complete upper bound expression becomes:-

$$J^{*} = 2k \int_{V} \sqrt{\dot{\varepsilon}_{ij} \dot{\varepsilon}_{ij}} dV + \int_{S_{T}} \tau |\Delta v| dS - \int_{S_{+}} T_{i} v_{i} dS \quad (2.4)$$

The lower bound theorem states that among all statically admissible stress field σ_{ij} , the actual one minimizes the expression,

$$I = \int_{S_{u}} \sigma_{ij} v_{i} \hat{n}_{j} dS \qquad (2.5)$$

A statically admissible field is that one which satisfies the equilibrium equation and does not violate the yield criterion. Several admissible stress fields can be assumed aiming at getting the maximum value of power, I. As the power calculated becomes larger, it is presumed that the stress field associated with it is closer to the actual stress field. That the equilibrium solution which is in terms of a stress distribution is not kinematically admissible is readily apparent, unless the actual stress field has been used. The equilibrium methods discussed in section (2.2) are lower bound solutions. The solutions fail to take account of redundant deformation. For example, in drawing the error is proportionally significant for small reductions and large die angles.

Different kinematically admissible velocity fields can be assumed to determine the minimum value of J^* . For lower values of J^* , it is presumed that the velocity field that led to it is approaching an

- 10 -

actual velocity field.

The great advantage that kinematically admissible solutions have is that they do consider the modes in which it is possible for metal to flow, and hence more likely to give the correct results to metal working problems. In addition to predicting the loads (e.g. extrusion or drawing force), the understanding has led to the optimisation of the process. The defects such as redundant deformation, central fracture and other defects, bulge formation, rough and eccentric flow, bar shaving, dead zone formation, etc., have been predicted. The elimination of some of these defects has been possible by proper choice of variables in the respective processes. As an example, Avitzur (34, 35) has applied the study to the central bursting defects in extrusion and wire drawing.

Incorporating friction in the upper bound integral (2.4), poses a problem. Coulomb friction could be allowed, when $\tau = \mu p$ or the tangential stress at any point is proportional to the pressure p, between the die and the workpiece. However, the pressure p is usually unknown. An indirect method i.e. the apparent strain method has been used to incorporate friction in case of Coulomb friction (2). An alternative to this is to assume a constant shear stress $\tau = mk$, where $0 \le m \le 1$. The factor m takes a constant value for a given die and material under constant surface and temperature conditions. It is taken to be independent of velocity, also it does suffer from the disadvantage that the shear stress at the tools, rarely bears a constant relationship to the yield stress in shear of the workpiece.

The upper bound solution concerns the movement of the material through the deforming tool. The problem, therefore, is how to deduce such admissible velocity fields which conform to external boundaries without violating the continuity criterion. In the early development,

- 11 -

the deforming zone was sub-divided into rigid regions and a pattern of internal velocity discontinuities was found that was compatible with imposed velocity boundaries and which gave as low an energy dissipation as possible.

2.3.1 Plane (sheet) drawing

Hill (36) first illustrated the upper bound technique applied to plane-strain by a simple approximation to the slip-line analyses for wedge shaped dies.

Johnson and Mellor (37) have reviewed the application of the theorem to plane strain problems. In his original work Johnson (38) assumed that the basic deformation zone was built up of triangular elements similar to those deduced by slip-line solution. However, the material was considered rigid both inside and outside these triangles and the energy was dissipated along these discontinuities and the boundaries only.

Kudo (39) developed the concept of unit deforming regions. The workpiece is divided into suitable rectangular regions and each of these is then sub-divided into rigid triangles. The minimum energy dissipated along the discontinuities and the boundaries is calculated for a unit region algebraically or by scale drawing for various unit dimensions and frictional conditions. The optimal geometry for each sub-unit is thus determined for the deforming zone.

2.3.2 Axisymmetric bar solution

The solutions of plane strain conditions can be adapted to axial symmetry by supposing that the diagrams represent diametral sections of the workpiece. In 1959 Alexander (40) when commenting on the plane strain upper bound solutions of Johnson (38), extended the method to represent the case of axial symmetry. He retained the velocity field proposed by Johnson but the deforming zone in this case is a single annular region which appears triangular in the plane of symmetry. Deformation was considered by shearing at the boundaries in addition to the homogeneous deformation within the deforming zones.

In 1960 Kudo (41) extended his previous solution of plane strain to axisymmetric problems where the unit rectangular regions were cylindrical. These were again sub-divided into sections which were triangular in the plane of symmetry. He considered the energy expended by deforming the material within the individual zones, as well as by shearing at the discontinuities and the boundaries.

Kobayashi (42) in 1963 proposed the replacement of Kudo's rectangular units by curved surfaces of velocity discontinuities. However, the difference between his solution and Kudo's was too small for critical comparison.

In 1965 Halling and Mitchell (43), extended Johnson's upper bound method by considering additional power dissipated in circumferential straining within the plastic zone. They extended this solution to incorporate work-hardening characteristics of the material.

Kobayashi and Thomsen (44) proposed a solution similar to the above by considering the velocity field to be composed of a variable number of separate triangles and assumed a constant value for the slope of the entry discontinuity. The solution was thus dependent on the initial choice of the slope.

Thomsen et al (45) have extensively reviewed the earlier work of Kudo in their book. Adie and Alexander (46) have proposed graphical

- 13 -

methods for obtaining kinematically admissible velocity fields for axisymmetric problems in which solid billets are used. This is an extension of the usefulness and applicability of Halling and Mitchell's approach.

An important contribution to the upper bound solution is the introduction of the spherical velocity field for the application to problems of axial symmetric workpieces. Kinematically admissible velocity fields are developed with suitable spherical surfaces of velocity discontinuity, dictated by the geometric boundaries such as in simple wire drawing, or found by minimising the total energy dissipation (11). Avitzur (47, 48) derived an upper bound solution in which he considered the deforming zone to be bounded by spherical shear surfaces with their centres at the virtual apex of the die. The flow through the die was thus expressed by_A^{α} kinematically admissible velocity field. The distinctive part of Avitzur's work is that he expresses the power of internal deformation as the homogeneous component multiplied by a factor greater than unity to account for the relative shearing of the material in the deforming zone. A large selection of problems has been detailed in his book (49).

2.3.3 Drawing of section rods

Juneja and Prakash (17) in 1975 obtained an upper bound solution for the symmetric drawing of polygonal sections, i.e. the original and the final cross-sections are geometrically similar. They assumed that the zone of plastic deformation is enclosed by two cylindrical surfaces of velocity discontinuity at entry and exit to the pyramidical portion of the die. In their solution they concluded that the draw load for the symmetric drawing of section rod is higher than that of the corresponding axisymmetric drawing. This draw load decreases rapidly to that of the axisymmetric solution by Avitzur (47), as the number of sides of the section increases. Prakash and Khan (18) in 1979

- 14 -

extended the problem to generalize the shape of the zone of plastic deformation and optimised the geometric factor denoting the shear surfaces to obtain the lowest upper bound value of the working stress.

Basily (2, 50) derived a numerical upper bound solution for the drawing of regular polygonal bars from round stock in a single pass. The material flows through the die where an initially circular crosssection deforms gradually to the required polygonal section at the exit. The velocity field was derived from a deformation pattern, constructed by conformal mapping with optimised inlet and exit shear surfaces.

2.3.4 Tube drawing

In 1965, Avitzur (51) extended his wire drawing upper bound method of spherical velocity field to tube sinking through a conical die and tube expansion over a conical mandrel.

A general upper bound solution has been constructed for axisymmetric contained plastic flow that occurs in processes like drawing and extrusion of tubes and wires by Prakash and Juneja (52). They assumed plane velocity discontinuities at the entry and exit to the die. As particular examples, the solutions were applied to plastic flow through conical dies with plug or mandrel.

2.4 VISIOPLASTICITY

2.4.1 Introduction

Visioplasticity is a semi-analytical technique based on the examination of a velocity field developed incrementally within the deforming body. This method of deriving the instantaneous motion of the particles making up the body was developed by Thomsen et al (54, 55, 56) and is analogous to photo-elastic techniques for analysing

- 15 -

stresses in elastic problems. The study obtains detailed analysis of the distribution of stress, strain and strain rates of the forming process using experimental flow data together with plastic stressstrain relationships.

The metal flow is observed by sectioning the billet on a meridian plane or a plane containing the major deformation. The surfaces are ground flat and polished on both sides of the cut; a regular pattern of square (or circular) grid is imprinted on one face by either mechanical or photographic means. The two halves are re-assembled and the distortion of the grid is observed with a microscope or an enlarged photograph after each incremental deforming step has been given to the billet. The displacement and hence the velocity of each element are thus determinable.

The instantaneous velocity at each point can be resolved into the components u and v in the axial and radial directions respectively (see fig. 2.1). A series of graphs showing the variation of u and v with the position co-ordinates are plotted (i.e. u versus z, v versus r, u versus r and v versus z). The slope of the appropriate velocity/position curve gives the strain rate at a particular point.

$$\dot{\varepsilon}_{\mathbf{r}} = \frac{\delta \mathbf{v}}{\delta \mathbf{r}}; \quad \dot{\varepsilon}_{\mathbf{z}} = \frac{\delta \mathbf{u}}{\delta \mathbf{z}}; \text{ and } \dot{\gamma}_{\mathbf{zr}} = \frac{\delta \mathbf{u}}{\delta \mathbf{r}} + \frac{\delta \mathbf{v}}{\delta \mathbf{z}}$$
 (2.6)

By the use of von Mises flow rules together with the force equilibrium of the element, the stress components are derived from the computed strain rates. It is apparent that the numerous calculations, graphical differentiations and integrations involved are laborious and time consuming. An extensive computer facility is therefore desirable. Also, to obtain reliable differentials it is necessary to smoothen the experimental data in both the axial and radial directions (57).

- 16 -

Fig. 2.1 A sketch showing the directions of the instantaneous velocity vectors deduced from the distortion of an etched grid (axial lines) for a billet subjected to 75% reduction of area.

An alternative method of analysing the resulting distorted grid is to fit a flow function Φ to the data (58, 59, 60). Φ is represented as some function of r and z having a number of adjustable parameters. For example, in Fig. 2.1, the value of the function Φ_j , which is constant along the flow line j, can be obtained from the initial conditions outside the deformation zone, i.e.

$$\Phi_{j} = \pi R_{j}^{2} \left| U_{b} \right|$$

$$(2.7)$$

Where,

 U_b is the ram speed (in case of extrusion or $U_b = U_a (1 - r)$ in drawing) and $(U_a = velocity of extrudate)$ R_j is the radius of the flow line before deformation starts.

The flow function $\Phi = \Phi_j$ is expressed as a function of r and z from the co-ordinates of the observed points along the flow line, i.e.

$$\phi = \sum_{n=1}^{m} A_n r^n \qquad (2.8)$$

At each station (i.e. z = constant) the approximate polynomial (of order m) describes the variation of Φ with r. The changes in the polynomial coefficients (A_n) downstream from one station to the next describes the variation of Φ with z. A numerical routine is devised to select these coefficients in such a way as to give the best fit with the measured data.

Once it has been established that the function is reasonably accurate the velocity components are evaluated at each point,

$$\dot{\varepsilon}_{\mathbf{r}} = \frac{\delta \mathbf{v}}{\delta \mathbf{r}} = \frac{1}{2\pi \mathbf{r}} \left(\frac{1}{\mathbf{r}} \frac{\delta \Phi}{\delta \mathbf{z}} - \frac{\delta^2 \Phi}{\delta \mathbf{r} \delta \mathbf{z}} \right)$$

$$\dot{\varepsilon}_{\mathbf{z}} = \frac{\delta \mathbf{u}}{\delta \mathbf{z}} = \frac{1}{2\pi \mathbf{r}} \frac{\delta^2 \Phi}{\delta \mathbf{r} \delta \mathbf{z}}$$

$$\dot{\varepsilon}_{\theta} = \frac{\mathbf{v}}{\mathbf{r}} = -\left(\dot{\varepsilon}_{\mathbf{r}} + \dot{\varepsilon}_{\mathbf{z}}\right) = -\frac{1}{2\pi \mathbf{r}} \cdot \frac{1}{\mathbf{r}} \frac{\delta \Phi}{\delta \mathbf{z}}$$

$$\dot{\gamma}_{\mathbf{rz}} = \frac{\delta \mathbf{u}}{\delta \mathbf{r}} + \frac{\delta \mathbf{v}}{\delta \mathbf{z}} = -\frac{1}{2\pi \mathbf{r}} \left(\frac{1}{\mathbf{r}} \frac{\delta \Phi}{\delta \mathbf{r}} - \frac{\delta^2 \Phi}{\delta \mathbf{r}^2} + \frac{\delta^2 \Phi}{\delta \mathbf{z}^2} \right)$$

$$\dot{\gamma}_{\mathbf{r}\theta} = \dot{\gamma}_{\mathbf{z}\theta} = 0$$

$$(2.9)$$

The corresponding stress components are obtained by considering the equilibrium equation and von Mises flow rules:

$$\sigma_{z}(\mathbf{r}, \mathbf{z}) = \int_{z}^{a} \left[\frac{\delta}{\delta \mathbf{r}} \left(\frac{\gamma_{\mathbf{r}z}}{2\lambda} \right) + \frac{\gamma_{\mathbf{r}z}}{2\mathbf{r}\lambda} \right] dz + \sqrt{r}$$

$$\int_{\mathbf{r}_{0}} \left[\frac{\delta}{\delta \mathbf{r}} \left(\frac{\varepsilon_{\mathbf{z}} - \varepsilon_{\mathbf{r}}}{\lambda} \right) - \frac{\delta}{\delta z} \left(\frac{\gamma_{\mathbf{r}z}}{2\lambda} \right) - \frac{\varepsilon_{\mathbf{r}} - \varepsilon_{\theta}}{\mathbf{r}\lambda} \right] \left| \begin{array}{c} d\mathbf{r} \\ z = a \end{array} \right|$$

(2.10)

$$\sigma_{\mathbf{r}}(\mathbf{r}, \mathbf{z}) = \sigma_{\mathbf{z}} + \frac{2}{3} \,\overline{\sigma} \left(\frac{\varepsilon_{\mathbf{r}} - \varepsilon_{\mathbf{z}}}{\frac{\varepsilon}{\varepsilon}} \right)$$
$$\sigma_{\theta}(\mathbf{r}, \mathbf{z}) = \sigma_{\mathbf{z}} + \frac{2}{3} \,\overline{\sigma} \, \left(\frac{\varepsilon_{\theta} - \varepsilon_{\mathbf{z}}}{\frac{\varepsilon}{\varepsilon}} \right)$$
$$\tau_{\mathbf{rz}} = \frac{1}{3} \,\overline{\sigma} \, \left(\frac{\gamma_{\mathbf{rz}}}{\frac{\varepsilon}{\varepsilon}} \right)$$

 $+ \sigma_{z}(r_{o}, a)$

where,

 $\sigma_{z}(r_{o}^{},a)$ is the axial stress at a reference point

$\frac{1}{\varepsilon} = \left\langle \frac{2}{3} \dot{\varepsilon}_{ij} \dot{\varepsilon}_{ij} \right\rangle^{\frac{1}{2}}$ and	(a)	(2.11)
$\bar{\sigma} = \left\{ \frac{3}{2} \sigma'_{ij} \sigma'_{ij} \right\}^{\frac{1}{2}}$	(b)	
$\dot{\lambda} = \frac{3}{2} \left(\frac{\dot{\overline{\epsilon}}}{\overline{\sigma}} \right)$	(c)	

The visioplasticity method provides information of the plastic flow process during the forming process and is a valuable tool for determining the distribution of strain rates and stress directly from experiments and plastic flow laws. The solution therefore is exact. However, the limitation is the laborious experimental work which must be performed first. The technique has only been applied effectively to axisymmetric bar and tubular extrusions and plane strain extrusion in most of the articles already referenced in this section. The method can be used in other metal forming processes for detailed investigations and checking the simpler predictive techniques such as upper bounds and approximate slip line fields.

2.5 FINITE ELEMENT ANALYSIS IN PLASTIC DEFORMATION

2.5.1 Introduction

In some cases of drawing, fracture of the product occurs at the die exit where the effect of elastic deformation is not negligible. The elastic spring-back after deformation at the throat could have important effects on the residual stress distribution. However, the conventional methods such as slip lines and upper bounds are not sufficient in such mixed elastic-plastic problems. The finite element technique is applied appropriately in such situations where elastic and plastic deformations are accounted for in separate régimes and the transition between them (using the governing criterion of yielding such as von Mises criterion, $\frac{1}{2} \sigma'_{ij} \sigma'_{ij} = k^2$).

The finite element method was developed extensively as a concept in structural mechanics when a loaded part was thought of as a system built up of numerous tiny connected structures of elements (61, 62). These elements can be put together in any configuration to simulate exceedingly complex shapes and boundary conditions. The application has recently extended to metalworking processes (63, 64, 65, 66, 67) to solve problems with irregular shaped boundaries and elastic-plastic conditions. In addition, the technique finds application in non-steady flow processes and is readily programmable to include realistic material properties such as strain hardening. However, even a relatively simple problem requires computer facilities.

The method can be summarised conveniently in the following steps:-

- (i) The deforming material is divided into a number of finite elements
- (ii) The elastic stiffness matrix [k^e] or the plastic stiffness matrix [k^p] is derived for a typical element
- (iii) The nodal forces and the displacement must be compatible with those of its neighbours. Therefore, the stiffness matrices [k^e] and [k^p] are assembled to form the 'global' stiffness matrix of the whole body. This overall matrix [K] relates the nodal load increment {dL} to the nodal displacement {dU}, i.e.

 $\{dL\} = [K]\{dU\}$ (2.12)

(iv) The solution of the resulting set of simultaneous equations is accomplished using a high speed computer. From the known nodal forces and the consequential displacements, the detailed distribution of stress and strain is developed.
The use of elastic-plastic method enables a complete stress analysis to be developed revealing the extent of the plastic zone. K. Iwata et al (67) applied the finite element technique to hydrostatic extrusion process using triangular elements for plane strain problem and ring elements for the axisymmetric case. Hydrostatic extrusion is characterised by the boundary condition that the radial support of the billet is given by the hydrostatic pressure. Their analysis revealed the existence of tensile stress zone on the surface of the extruded part behind the exit. The hydrostatically extruded product is known to fracture at the die exit, where the effect of the elastic deformation cannot be ignored (68).

The next two sections outline briefly the derivation of the elastic and plastic stiffness matrices.

2.5.2 Derivation of the elastic stiffness matrix [k^e]

For an elastic state of isotropic material the strain-stress relationship using Hooke's law is given in tensor notation as,

$$\varepsilon_{ij} = \frac{\sigma'_{ij}}{2G} + \delta_{ij} (1 - 2\nu) \frac{\sigma_{ii}}{3E}$$
(2.13)

Where, E is the Young's modulus of elasticity

G is the modulus of rigidity δ_{ij} is the Kronecker's delta ν is the Poisson's ratio

Inverting equation (2.13) gives

$$\sigma_{ij} = 2G \left(\tilde{\varepsilon}_{ij} + \delta_{ij} \frac{\nu}{1 - 2\nu} \varepsilon_{ii} \right)$$
 (2.14)

which in matrix form becomes,

$$\{\sigma\} = 2(1 + \nu) \ G[D^{e}]\{\epsilon\}$$
 (2.15)

 $[D^{e}]$ is known as the elastic stress-strain matrix, i.e. relates the elastic stress $\{\sigma\}$ to the elastic strain $\{\epsilon\}$.

The stiffness matrix $[k^{e}]$ for the elastic element is given by $[k^{e}] = \int_{V} [B]^{T} [D^{e}] [B] dV$ (2.16)

where the matrix [B] expresses the strain vector $\{\epsilon\}$ in terms of the nodal displacement $\{U\}_{\alpha}^{e}$, i.e.

$$\{\varepsilon\} = [B]\{U\}^{e}$$
(2.17)

2.5.3 Derivation of the plastic stiffness matrix [k^p]

For the yielded element the plastic stress-strain matrix $[D^{p}]$ takes the place of the elastic stress-strain matrix $[D^{e}]$ obtained in the last section. The method is based on inverting the complete Prandtl-Reuss equations of plasticity (14) in conjunction with von Mises yield criterion. The derivation is presented in detail in ref. (64); however, the important equations are reproduced below.

The Prandtl-Reuss equations for the deviatoric strain increment $d\epsilon_{ii}$ during continued loading are:

$$d\varepsilon'_{ij} = \sigma'_{ij} d\lambda + \frac{d\sigma'_{ij}}{2G}$$
(2.18)

where

 $d\lambda = \frac{3}{2} \frac{\overline{d\varepsilon}^{p}}{\overline{\varepsilon}} = \frac{3}{2} \frac{\overline{d\sigma}}{\overline{\sigma}H}, \qquad (2.19)$

and $\bar{\sigma} = \left(\frac{3}{2}\sigma'_{ij}\sigma'_{ij}\right)^{\frac{1}{2}}$ (2.20)

$$\overline{d\varepsilon^{p}} = \left(\frac{2}{3} d\varepsilon^{p}_{ij} d\varepsilon^{p}_{ij}\right)^{\frac{1}{2}}$$
(2.21)

H' =
$$\frac{d\bar{\sigma}}{d\epsilon^p}$$
 (= the slope of the graph of $\bar{\sigma}$ versus $\int d\epsilon^p$) (2.22)

The von Mises yield criterion is given by

$$\sigma'_{ij}\sigma'_{ij} = \frac{2}{3}\bar{\sigma}^2$$
 (2.23)

By inverting equation (2.18), the total stress increment $d\sigma_{ij}$ is obtained,

$$d\sigma_{ij} = 2G \left(d\varepsilon_{ij} + \frac{v}{1-2v} \delta_{ij} d\varepsilon_{ii} - \sigma_{ij}' \frac{\sigma_{kl} d\sigma_{kl}}{S} \right)$$
(2.24)

where
$$S = \frac{2}{3} \overline{\sigma}^2 \left(1 + \frac{H'}{2G} \right)$$
 and $\sigma'_{kl} d\varepsilon_{kl} = \sigma'_{ij} d\varepsilon_{ij}$ (2.25)

Equation (2.24) can be expressed in matrix form or

$$[d\sigma] = 2(1 + v)G[D^{P}]\{d\varepsilon\}$$
(2.26)

where [D^P] is the plastic stress-strain matrix.

[

Similarly, the stiffness matrix for the plastic element is given by, /

$$k^{p}] = \int_{V} [B]^{T} [D^{p}] [B] dV \qquad (2.27)$$

2.6 Determination of the mean pressure and the coefficient of friction
2.6.1 Die rotation method

When an axisymmetric die is continuously rotated about the axis while drawing, the measurement of the torque and the reduction in the drawing load can be used to determine the mean coefficient of friction.

Linicus and Sachs (69) evaluated the mean coefficient of friction in wire drawing from the measured reduction in draw load. Nishihara et al (70) are reported to have successfully evaluated the mean coefficient of friction for wire drawing through curved profile dies by the measurement of both the torque and the reduction in the draw load.

Sansome and Rothman (71) proposed a theory to explain the reduction

in load when the die is rotated. They also brought to light the difference between the mean coefficient of friction determined from the measurement of the rotating torque and from the reduction in the drawing force. The method is illustrated briefly in Appendix A-18.

2.6.2 Split die method

For drawing round wire or bar the die may be split into two halves along its axis and the pieces clamped together. The die separating force necessary to hold them together is measured concurrently with the drawing force (see Fig. 2.2). The method was proposed by Maclellan (7) to determine the mean coefficient of friction and the mean die pressure in wire drawing. He reports (72) that his results were unsuccessful because the lubricant penetrated between the two halves and gave rise to additional hydrostatic pressure of unknown magnitude. Wistreich (24) successfully improved on this method. The two halves of the die were pressed with a known force which was progressively reduced till they just started to separate; at which point the holding force was taken equal to the splitting force. Yang (9) reports that he has used the method satisfactorily. However, it is a bit laborious.

Lancaster and Rowe (73) used the plug technique in which two strips, separated by a flat bar were drawn simultaneously. This eliminated the dependence of the mean coefficient of friction on the die angle.

One drawback to the technique is that it cannot be used for a continuous process. There is also a possibility of the formation of fins when the die halves are not in contact.

2.6.3 Split rotating die

In polygonal bar or tube drawing it is not possible to rotate the die over the surface of the workpiece. The method reported in (2) was developed by Basily and Sansome to determine the mean coefficient of friction and the mean pressure in the drawing of polygonal bars from

- 25 -

Using the above diagrams and the equilibrium of forces the following equations are derived:

$$P = (A_b - A_a)(1 + \mu \cot \alpha)q_m$$
 (2.28)

$$S = \frac{1}{\pi} (A_{b} - A_{a}) (\cot \alpha - \mu)q_{m}$$
 (2.29)

From equations (2.28) and (2.29),

$$\mu = \tan \left(\frac{P}{\pi S} - \alpha\right)$$

(2.30)

and

$$q_{m} = \frac{\pi S}{(A_{b} - A_{a})(\cot \alpha - \mu)}$$

round stock. Fingered die tips enclosed in the deforming metal while their external surfaces formed a surface around which a conical die rotated. This technique, adopted to determine the same parameters in the tube drawing process, is described in details in Chapter 4 and Appendix A-12.

2.6.4 Estimation of redundant work

The mean coefficient of friction is determined indirectly from the experiments and theoretical analysis. The accuracy of the results is therefore dependent on the theory. The following method is based on the energy approach, where the total work done consists of three components:-

$$W = W_{h} + W_{r} + W_{f} \tag{2.31}$$

W is the total work done per unit volume of the metal or the draw stress, W_h is the homogeneous work, W_r is the redundant work and W_f is the component to overcome friction on the tool-workpiece interface. The measurement of either W_r or W_f leads directly to the other, provided their interdependence is disregarded.

The redundant work can be determined by superimposing the stressstrain curve of the drawn metal onto the master curve of the undrawn metal. The area under the master stress-strain curve swept by the curve of the drawn material when shifted to line up with it, gives the redundant work (74, 75). To avoid likely graphical errors inherent in curve fitting, Basily and Sansome (76) expressed the master stress-strain curve of the undrawn metal mathematically. The redundant work was deduced analytically from the drawing parameters. The method relied on the application of the apparent strain (77) and the measured flow stress of the drawn bar. The method is described in detail in Chapter 4. CHAPTER 3

THEORY : THE MECHANICS OF DRAWING POLYGONAL TUBE DIRECTLY FROM ROUND ON A CYLINDRICAL PLUG

3.1 INTRODUCTION

The chapter develops the upper and the lower loads for the drawing of regular polygonal tube from round on a cylindrical plug. The derivations are confined to close pass drawing.

The object is to calculate the lower bound load, too low a load to deform the metal and also an upper bound which is certainly too high a load. As pointed out in Chapter 1, the deforming passage of the die is complex and therefore in both cases numerical integration will be used to obtain the solutions for any given drawing parameters. The actual load lies between the two limits; therefore the skill of application lies in choosing the deformation pattern for the upper bound solution which makes the difference between the two bounding loads as small as possible. The prediction of the bounding loads is of value in industry when planning and scheduling the work on draw benches. The method adopted facilitates the investigation of the effect of drawing on the deformation of the drawing process for both the forces involved and the deformation occurring within the material.

The upper bound solution is obtained by equating the external rates of doing work to the internal rate of doing work in a deformation mode satisfying the displacement boundary conditions. The development of the velocity pattern for the upper bound solution is described in section 3.2.2. Coulomb friction was incorporated in the upper bound expression by an apparent strain method presented in section 3.2.7.

The lower bound solution described in section 3.3 is based on the equilibrium of forces and Tresca's yield criterion. The solution is derived for the elliptical plane/conical surface die shape shown in Fig. 4.1 on page 77. The computer programme presented in section 3.4 provides the results for both the upper and lower bound solutions for the drawing of polygonal tubes from round on a cylindrical plug, and also for the corresponding axisymmetric tube drawing for the purpose of comparison.

3.2 Upper bound solution for the drawing of polygonal tube from round on a cylindrical plug

In the upper bound solution the minimum energy required to deform the metal is calculated. The material is assumed to shear as it crosses the shear surfaces at the inlet and outlet regions of the deforming zone. Further relative shearing of the material elements in the deforming zone is considered in addition to the homogeneous deformation. The friction between the deforming metal and the tools is accounted for using Coulomb's relationship.

If a velocity field is assumed and the deforming material obeys von Mises yield criterion and the Levy-Mises flow rule, the upper bound solution, discussed in Chapter 2.3, indicates that the actual strain rate field $\dot{\varepsilon}_{ii}$ is the one that minimizes the expression,

$$J^{*} = \sqrt{\frac{2}{3}} Y_{m} \int_{V} \sqrt{\varepsilon_{ij}} \varepsilon_{ij} dV + \int_{\Gamma} \tau |\Delta v| dS - \int_{S_{t}} T_{i} v_{i} dS (3.1)$$

The first term on the right represents the power to deform the material in the deformation zone, the second term calculates the rate of energy dissipation over the surfaces of velocity discontinuity including the tools/tube interfaces, and the last term covers the power to the predetermined body tractions such as the back tension in wire drawing and front tension in extrusion.

The die passage through which an entirely circular tube transforms

to a regular polygonal tube with the bore unchanged, has a complex shape (e.g. Fig. 3.1). The associated flow is irregular and therefore a velocity field is derived from a conformally mapped deformation pattern. The circular section of the undrawn tube at entry is divided into triangular elements. As the tube is drawn through the deformation passage, the elements are assumed to be entirely transformed into triangular elements at the die exit plane. A constant reduction of area is maintained at each plane between the entry and the exit. A velocity pattern is thereby obtained and the value of J*, the power to effect the process, is minimized for the given set of drawing parameters.

3.2.1 Deformation pattern for the drawing of a regular polygonal tube from round on a cylindrical plug

The method developed for obtaining the deformation pattern is based on conformally mapping each element in the inlet plane to the corresponding element at the exit plane. See Fig. 3.2.

At the exit plane (Fig. 3.2(a)), the cross-sectional area of the polygonal tube is banded by (N-2) hyperbolae, in each of which the focal distance a_i is adjusted to suit the asymptotes and such that the hyperbola corresponding to the outer surface is almost coincident with the flat surface of the polygonal tube. The innermost curve remains circular corresponding to the surface of the plug. The area between consecutive curves is calculated. Making the assumption of a constant reduction of area, the corresponding cross-sectional area at the inlet plane is determined and hence the radii bounding it. (See Fig. 3.2(b)).

The banded area at the inlet cross section of the tube is divided into (M-1) equal sectors. Each sector, say A B C D, is further

- 30 -

divided into two triangles, the large triangle ADC and the small triangle ACB. The area of each triangle can be determined and, from the known co-ordinates of the vertices, the centroid is located.

Assuming a constant reduction of area of the large triangle ADC on the inlet plane, the corresponding area of the large triangle A'D'C' on the exit plane can be determined. At the exit plane, let this triangle be defined by the co-ordinates (X_1, Y_1) , (X_2, Y_2) and (X_3, Y_3) (or $(X_a, Y_a)_{i,j}$, $(X_a, Y_a)_{i+1,j}$ and $(X_a, Y_a)_{i+1,j+1}$) of which (X_3, Y_3) lies on the hyperbola i + 1. By starting with known vertices (1) and (2) or (X_1, Y_1) and (X_2, Y_2) , the third unknown vertex can be found by solving the equation of the triangle in which (X_1, Y_1) , (X_2, Y_2) and the area are known and the third point satisfies the hyperbola i + 1. Having determined the third vertex (X_3, Y_3) (or $(X_a, Y_a)_{i+1, j+1}$) the point is then substituted for (X_2, Y_2) of the next triangle A'C'B', and the third point for this new triangle can be found in a similar manner. The procedure continues until the whole exit section is mapped into triangles. The centroids of the large and small triangles can now be located. The details of the mapping are given in the Appendices A-8.1, A-8.2 and A-8.3.

3.2.2 Velocity Field

Before meeting the die, a particle of the metal can be assumed to travel parallel to the tube axis and towards the die entry. Within the die the velocity of the particle is expressed 3-dimensionally by the spherical system of co-ordinates, $U = U(U_{\rho}, U_{\theta}, U_{\phi})$ and changes as the deformation proceeds. At the exit plane the deformed particle again travels parallel to the tube axis without deformation. A boundary exists which separates the undeformed metal from the zone where relative deformation occurs. The material shears at this surface and changes direction. A similar distortion exists at the

Fig. 3.2. Determination of the deformation pattern by conformal mapping of the elemental areas

- 33 -

exit, except that the streamlines pass through the boundary from the deformation zone into a region subject to an elastic distortion only.

There is generally no means for determining the shape or exact position of these boundaries. The surfaces normally assumed, are plane, spherical or conical (78). However, since the deformation mode of the problem is complex, a streamline on entry to the deformation zone is assumed to shear at a surface inclined at an angle t θ to the draw axis. The position of the particle is defined on the spherical surface ($\rho_{\rm b}$, θ , ϕ) (see Fig. 3.3). The parameter t, where $-1 \leq t \leq 1$, is used to optimise the shear surface by minimising the shear work. Similarly, a general pyramidical shear surface is defined at the exit of the deformation zone and the parameter t is used to optimise the geometry of the surface.

An 'entry' plane (X_b, Y_b) may be defined as the plane normal to the die axis through the point where the outermost tube elements $(r = R_b)$ first contact the die and start to deform. Similarly, the 'exit' plane (X_a, Y_a) may be said to be the plane normal to the draw axis through the point where the outermost material starts to flow parallel to the draw axis and deformation ceases.

Once a shear surface has been defined, a plane parallel to the 'exit' or 'entry' planes and passing through the centroid of the particle on the respective shear surfaces can be drawn. Such planes are denoted by (X_a', Y_a') and (X_b', Y_b') for the exit and inlet shear surfaces respectively. By joining the centroids of the corresponding triangular elements, the drawn vector defines the path travelled by the element and also the direction of flow.

- 34 -

Fig. 3.3 Flow path of an elemental particle through the die for drawing polygonal tube from round stock on a cylindrical plug.

The values of the angular deflections η and ψ and the length of the flow path of a particle in the deformation zone Z_t , are calculated by the method shown in Appendices A-8.4 and A-8.5, and Fig. A-8.6 on page A93.

From the calculated angles and the flow path, the velocity field \ldots \ldots $U(U_{\Omega}, U_{\Omega}, U_{\Omega}, U_{\dot{\Omega}})$ is established and therefore the strain rates.

If U_b is the velocity of an element before shear and $U = U(U_p, U_{\theta}, U_{\theta}, U_{\phi})$ is the velocity immediately after shear, then for continuity of flow of the material, the component of velocity normal to the shear surface must be the same on each side, i.e. $U_b \cos t\theta = U \cos \eta \cos \psi \cos (1-t)\theta$

or
$$U = U_b \cdot \frac{\cot \theta}{\cos \eta \, \cos \psi \, \cos (1-t) \theta}$$
 (3.2)

Assuming a linear convergence of the die passage with an equivalent die semi-cone angle α_{e} , then the virtual apex is the centre of the spherical system of co-ordinates ρ , θ , ϕ . (The equivalent semi-cone angle is discussed in Appendix A-10.) The cross-sectional area of the material at any radius ρ is given by,

$$A = \pi(\rho \sin \alpha_{p})^{2} - A_{p}$$
(3.3)

For a linear convergent die passage the velocity of an element at any radius ρ is given by:-

$$\dot{\mathbf{U}} = \mathbf{U}_{\mathbf{b}} \cdot \left(\frac{\pi(\rho_{\mathbf{b}}\sin\alpha_{\mathbf{e}})^2 - A_{\mathbf{p}}}{\pi(\rho\sin\alpha_{\mathbf{e}})^2 - A_{\mathbf{p}}}\right) \cdot \frac{\cot\theta}{\cos\eta \, \cos\psi \, \cos(1-t)\theta}$$
(3.4)

$$= U_{b} \cdot \left(\frac{\rho_{b}}{\rho'}\right)^{2} \frac{\cot \theta}{\cosh \cos \psi \cos(1-t)\theta}$$

where,

$$\rho_{b}'^{2} = \rho_{b}^{2} - \frac{A_{p}}{\pi \sin^{2} \alpha_{e}}$$

$$\rho'^{2} = \rho^{2} - \frac{A_{p}}{\pi \sin^{2} \alpha_{e}}$$
(3.5)

The velocity U can be resolved into three components, namely $U_{\rm p}$, . . . $U_{\rm h}$ and $U_{\rm h}$. From the geometry of Fig. 3.3 and Fig. A-8.7 (on page A96).

(3.6)

$$\mathbf{U}_{\rho} = \mathbf{U}_{\mathbf{b}} \left(\frac{\rho_{\mathbf{b}}'}{\rho}\right)^{2} \frac{\cot\theta}{\cos(1-t)\theta}$$

 $U_{\theta} = U \cos \eta \sin \psi$

$$= U_{b} \cdot \left(\frac{\rho_{b}}{\rho'}\right)^{2} \frac{\cos t\theta}{\cos(1-t)\theta} \cdot \tan \psi$$

$$U_{\phi} = U \sin \eta$$

$$= U_{b} \left(\frac{\rho_{b}'}{\rho'}\right)^{2} \frac{\cos t\theta \cdot \tan \eta}{\cos(1-t)\theta \cdot \cos \psi}$$

3.2.3 Strain rates

Using the general spherical polar co-ordinates (ρ , θ , ϕ) and the velocity components U_{ρ} , U_{θ} , and U_{ϕ} in the directions of ρ , θ and ϕ respectively, the strain rates are:-

$$\varepsilon_{\rho} = \frac{\delta U_{\rho}}{\delta \rho}$$

 $\dot{\varepsilon}_{\theta} = \frac{\dot{u}_{\rho}}{\rho} + \frac{1}{\rho} \cdot \frac{\dot{\delta u}_{\theta}}{\delta \theta}$

$$\dot{\varepsilon}_{\phi} = \frac{\dot{u}_{\rho}}{\rho} + \frac{1}{\rho \sin \theta} \cdot \frac{\dot{\delta u}_{\theta}}{\delta \phi} + \cot \theta \cdot \frac{\dot{u}_{\theta}}{\rho}$$

$$\dot{\gamma}_{\rho\theta} = \frac{\dot{\delta u}_{\theta}}{\delta \rho} - \frac{\dot{u}_{\theta}}{\rho} + \frac{1}{\rho} \cdot \frac{\dot{\delta u}_{\rho}}{\delta \theta}$$

$$\dot{\gamma}_{\theta\phi} = \frac{1}{\rho} \cdot \frac{\dot{\delta u}_{\theta}}{\delta \theta} - \frac{\dot{u}_{\theta}}{\rho} \cdot \cot \theta + \frac{1}{\rho \sin \theta} \cdot \frac{\dot{\delta u}_{\theta}}{\delta \phi}$$

$$\dot{\gamma}_{\phi\rho} = \frac{1}{\rho \sin \theta} \cdot \frac{\dot{\delta u}_{\rho}}{\delta \phi} + \frac{\dot{\delta u}_{\phi}}{\delta \rho} - \frac{\dot{u}_{\phi}}{\rho}$$

$$(3.7)$$

The above equations are applied to the derived velocity expressions (equation 3.6) to yield the strain rates for the deformation pattern:-

$$\dot{\varepsilon}_{\rho} = \frac{U_{b}}{\rho} \cdot \left(\frac{\rho_{b}}{\rho'}\right)^{2} \frac{\cot\theta}{\cos(1-t)\theta} - 2\left(\frac{\rho}{\rho'}\right)^{2}$$
(3.8a)

$$\dot{\varepsilon}_{\theta} = -\frac{1}{\rho} U_{b} \left(\frac{\rho_{b}'}{\rho'}\right)^{2} \frac{\cot\theta}{\cos(1-t)\theta} \left\{ 1 + \tan\psi (-t \tan\theta + (3.8b)) \right\}$$

 $\left|\frac{1}{\cos\psi} + (1-t)\tan t\theta\right|$

$$E_{\phi} = -\frac{U_{b}}{\rho} \left(\frac{\rho_{b}}{\rho'}\right)^{2} \frac{\cos t\theta}{\cos(1-t)\theta} \cdot \left\{1 + \frac{r_{a}}{\rho_{b} - \rho_{E}}\right\}$$
(3.8c)

$$\frac{\cos(\phi - \phi_{A})}{\cos\psi \sin\theta \cos\theta} + \frac{\tan\psi}{\tan\theta} \bigg\}$$

where

$$r_a = \sqrt{\frac{X_a^2 + Y_a^2}{a}}$$

$$\phi_{A} = \tan^{-1}\left(\frac{x_{a}}{Y_{a}}\right)$$

$$\rho_{\rm E} = \rho_{\rm b} - Z_{\rm s} \sec\theta$$

and Z_s is given by equation A-8.31 on page A89.

$$\begin{aligned} \hat{\varepsilon}_{\rho\theta} &= -\frac{U_{b}}{\rho} \left(\frac{\rho_{b}}{\rho'}\right)^{2} \frac{\cot\theta}{\cos(1-t)\theta} \left\{-\tan\psi \left(2\left(\frac{\rho}{\rho}\right)^{2}+1\right)\right. \\ &\left.-\tan\theta+(1-t)\tan(1-t)\theta\right\} \end{aligned}$$
(3.8d)

$$\hat{\epsilon}_{\theta\phi} = -\frac{U_{b}}{\rho} \left(\frac{\rho_{b}}{\rho'}\right)^{2} \frac{\cot\theta}{\cos(1-t)\theta} \cdot \frac{\tan\eta}{\cos\psi} \left\{-t \tan\theta + (3.8e)\right\}$$

$$\tan\psi + \tan\theta + (1-t) \tan(1-t)\theta - \frac{1}{\tan\theta}$$

$$\dot{\varepsilon}_{\phi\rho} = \frac{U_{b}}{\rho} \left(\frac{\rho_{b}}{\rho'}\right)^{2} \frac{\cot\theta}{\cos(1-t)\theta} \cdot \frac{\tan\eta}{\cos\psi} \left\{ 2 \left(\frac{\rho}{\rho'}\right)^{2} + 1 \right\}$$
(3.8f)

3.2.4. Internal power of deformation

The following assumptions are made when deriving the rate of work to deform the metal in the zone between the defined inlet and exit shear surfaces:-

(i) The material obeys von Mises yield criterion,

$$\sigma'_{ij}\sigma'_{jj} - 2k^2 = 0$$
 (3.9)

where

$$\sigma'_{ij} = \sigma_{ij} - \frac{1}{3} \sigma_{kk} \delta_{ij} \qquad (3.10)$$

(ii) The flow follows Levy-Mises stress-strain relationship, $\dot{\varepsilon}'_{ij} = d\lambda \sigma'_{ij}$ (3.11) where $d\lambda$ is a positive constant of proportionality.

- (iii) The material is non work-hardening, i.e. the yield stress of the material remains constant as the metal deforms.
 - (iv) The incompressibility condition is satisfied, i.e. $\varepsilon_{ii} = 0$ (3.12)
 - (v) The elastic components of strain are ignored.

The rate of work required to deform material of elemental volume dV is given by

$$dW_{I} = \sigma_{ij} \varepsilon_{ij} dV$$
(3.13)

. . Power required to deform material of volume V,

$$\dot{W}_{I} = \begin{pmatrix} \dot{\sigma}_{ij} \dot{\varepsilon}_{ij} dV \\ \psi \end{pmatrix} \qquad (3.14)$$

Multiplying each side of Levy-Mises flow rule (3.11) by $\dot{\epsilon}_{ij}$ gives,

$$\varepsilon_{ij} \varepsilon_{ij} = d\lambda \sigma_{ij} \dot{\varepsilon}_{ij}$$
 (3.15)

and by σ'_{ij} gives,

$$\sigma'_{ij} \varepsilon_{ij} = d\lambda \sigma'_{ij} \sigma'_{ij} \qquad (3.16)$$

But from von Mises equation (3.9),

1

$$\sigma'_{ij}\sigma'_{ij} = 2k^2,$$

. . equation (3.16) becomes

$$\sigma_{ij} \varepsilon_{ij} = d\lambda 2k^2 \qquad (3.17)$$

From the definition of σ'_{ij} and equation (3.12), the L.H.S. of

equation (3.17) gives,

$$\sigma'_{ij} \dot{\varepsilon}_{ij} = (\sigma_{ij} - \frac{1}{3} \sigma_{kk} \delta_{ij}) \dot{\varepsilon}_{ij}$$
$$= \sigma_{ij} \dot{\varepsilon}_{ij} - \frac{1}{3} \sigma_{kk} \varepsilon_{ii}$$
$$= \sigma_{ij} \dot{\varepsilon}_{ij}$$
(3.18)
$$= \sigma_{ij} \dot{\varepsilon}_{ij}$$

Equations (3.17) and (3.15) yield

Using (3.19) and (3.18) in equation (3.17) gives the relationship

$$\sigma'_{ij} \varepsilon_{ij} = \sigma_{ij} \varepsilon_{ij} = \sqrt{2k} \sqrt{\varepsilon_{ij} \varepsilon_{ij}}$$
 (3.20)

Substituting for $\sigma_{ij} \approx_{ij}$ in equation (3.14), and the total power

$$\dot{W}_{I} = \sqrt{2} \int_{V} k \sqrt{\dot{\varepsilon}_{ij}} \dot{\varepsilon}_{ij} dV \qquad (3.21)$$

For constant k

$$V_{I} = \sqrt{2}k \int_{V} \sqrt{\varepsilon_{ij} \varepsilon_{ij}} dV$$
 (3.22)

Using a mean yield stress (Y_m) for a strain hardening material (22), for von Mises condition,

 $k = \frac{Y_{m}}{\sqrt{3}}$

$$\dot{W}_{I} = \sqrt{\frac{2}{3}} Y_{m} \int_{V} \sqrt{\dot{\varepsilon}_{ij}} \dot{\varepsilon}_{ij} dV$$
 (3.23)

- 41 -

Substituting for strain rates defined in equations (3.7) and (3.8),

$$\dot{\varepsilon}_{ij} \dot{\varepsilon}_{ij} = \dot{\varepsilon}_{1}^{2} + \dot{\varepsilon}_{2}^{2} + \dot{\varepsilon}_{j}^{2} + 2(\dot{\varepsilon}_{12}^{2} + \dot{\varepsilon}_{23}^{2} + \dot{\varepsilon}_{31}^{2})$$

$$= \dot{\varepsilon}_{\rho}^{2} + \dot{\varepsilon}_{\theta}^{2} + \dot{\varepsilon}_{\phi}^{2} + 2\left\{\left(\frac{\dot{\gamma}_{\rho\theta}}{2}\right)^{2} + \left(\frac{\dot{\gamma}_{\theta\phi}}{2}\right)^{2} + \left(\frac{\dot{\gamma}_{\phi\rho}}{2}\right)^{2}\right\}$$

$$= \dot{\varepsilon}_{\rho}^{2} + \dot{\varepsilon}_{\theta}^{2} + \dot{\varepsilon}_{\phi}^{2} + \frac{1}{2}\left\{\dot{\gamma}_{\rho\theta}^{2} + \dot{\gamma}_{\theta\phi}^{2} + \dot{\gamma}_{\phi\rho}^{2}\right\}$$

$$(3.24)$$

. . the expression for the internal power of deformation becomes,

$$\dot{W}_{I} = \frac{Y_{m}}{\sqrt{3}} \int_{V} \sqrt{2(\varepsilon_{\rho}^{2} + \varepsilon_{\theta}^{2} + \varepsilon_{\phi}^{2}) + (\gamma_{\rho\theta}^{2} + \gamma_{\theta\phi}^{2} + \gamma_{\phi\rho}^{2})} dV$$
$$= \frac{Y_{m}}{\sqrt{3}} \int_{V} \frac{U_{b}}{\rho} \left(\frac{\rho_{b}'}{\rho'}\right)^{2} \frac{\cos t\theta}{\cos (1-t)\theta} \sqrt{K} dV \qquad (3.25)$$

where:

K

$$x = \left\{ 2 \left[4 \left(\frac{\rho}{\rho}, \right)^{4} + \left\{ 1 + \tan \psi \right] - t \tan \theta + \frac{1}{2} + \left(1 - t \right) \tan (1 - t) \theta \right] \right\}^{2} + \left\{ 1 + \frac{r_{a}}{\rho_{b} - \rho_{\epsilon}} \right\}^{2} + \left\{ 1 + \frac{r_{a}}{\rho_{b} - \rho_{\epsilon}} + \frac{1}{2} + \frac{r_{a}}{\rho_{b} - \rho_{\epsilon}} \right\}^{2} + \left\{ 1 + \frac{r_{a}}{\rho_{b} - \rho_{\epsilon}} + \frac{1}{2} + \frac{r_{a}}{\rho_{b} - \rho_{\epsilon}} \right\}^{2} + \left\{ 1 + \frac{r_{a}}{\rho_{b} - \rho_{\epsilon}} + \frac{1}{2} + \frac{1}$$

$$\frac{\cos\left(\phi - \phi_{A}\right)}{\cos\psi\,\cos\theta\,\sin\theta} + \frac{\tan\psi}{\tan\theta} \Big\}^{2} \Big] + \left[\left\{ - \tan\psi\left[2\left(\frac{\rho}{\rho'}\right)^{2} + 1\right] - \right\} \right] \Big] + \left[\left\{ - \tan\psi\left[2\left(\frac{\rho}{\rho'}\right)^{2} + 1\right] - \right\} \right] \Big] + \left[\left\{ - \tan\psi\left[2\left(\frac{\rho}{\rho'}\right)^{2} + 1\right] - \right\} \right] \Big] \Big] + \left[\left\{ - \tan\psi\left[2\left(\frac{\rho}{\rho'}\right)^{2} + 1\right] - \right\} \right] \Big] + \left[\left\{ - \tan\psi\left[2\left(\frac{\rho}{\rho'}\right)^{2} + 1\right] - \right\} \right] \Big] + \left[\left\{ - \tan\psi\left[2\left(\frac{\rho}{\rho'}\right)^{2} + 1\right] - \right] \right\} \right] + \left[\left\{ - \tan\psi\left[2\left(\frac{\rho}{\rho'}\right)^{2} + 1\right] - \right] \right] + \left[\left\{ - \tan\psi\left[2\left(\frac{\rho}{\rho'}\right)^{2} + 1\right] - \left[\left\{ - \tan\psi\left[2\left(\frac{\rho}{\rho'}\right)^{2} + 1\right] - \left[\left(\frac{\rho}{\rho'}\right)^{2} + 1\right] \right] \right] \right] + \left[\left\{ - \tan\psi\left[2\left(\frac{\rho}{\rho'}\right)^{2} + 1\right] - \left[\left(\frac{\rho}{\rho'}\right)^{2} + 1\right] - \left[\left(\frac{\rho}{\rho'}\right)^{2} + 1\right] \right] + \left[\left(\frac{\rho}{\rho'}\right)^{2} + 1\right] + \left(\frac{\rho}{\rho'}\right)^{2} + \left(\frac{\rho}{\rho'}\right)^{2} + \left(\frac{\rho}{\rho'}\right)^{2} + 1\right] + \left[\left(\frac{\rho}{\rho'}\right)^{2} + 1\right] + \left(\frac{\rho}{\rho'}\right)^{2} + \left(\frac{\rho}{\rho'}\right)^{2} + \left(\frac{\rho}{\rho'}\right)^{2} + 1\right] + \left(\frac{\rho}{\rho'}\right)^{2} + \left(\frac$$

t tant
$$\theta$$
 + (1-t)tan(1-t) θ $\Big\}^2$ + $\Big\{\frac{tan\eta}{cos\psi}\Big[$ - t tant θ

$$+ \tan \psi + \tan \theta + (1-t) \tan (1-t) \theta - \frac{1}{\tan \theta} \bigg] \bigg\}^{2} + \bigg\{ \frac{\tan \eta}{\cos \psi} \bigg[2 \bigg(\frac{\rho}{\rho}, \bigg)^{2} + 1 \bigg] \bigg\}^{2} \bigg\}$$
(3.26)

The elemental spherical volume $dV = \rho^2 \sin\theta \, d\rho \, d\theta \, d\phi$ (3.27)

$$\therefore \quad \dot{W}_{I} = \frac{Y_{m}}{\sqrt{3}} \int_{\theta=\theta_{1}}^{\alpha_{e}} \int_{\phi=0}^{2\pi} \int_{\rho_{a}}^{\rho_{b}} \frac{U_{b}}{\rho} \left(\frac{\rho_{b}}{\rho}\right)^{2} \frac{\cot\theta}{\cos(1-t)\theta} \cdot \sqrt{K} \rho^{2} \sin\theta \, d\rho d\theta d\phi$$

$$=\frac{Y_{m}}{\sqrt{3}} \cdot U_{b} \cdot \rho_{b}'^{2} \int_{\theta=\theta_{1}}^{\alpha_{e}} \int_{\phi=0}^{2\pi} \left[\int_{\rho_{a}}^{\rho_{b}} \int_{\phi=0}^{\gamma_{e}} \sqrt{K} d\rho \right] \frac{\cos t\theta \cdot \sin \theta}{\cos (1-t)\theta} \cdot d\theta d\phi$$

The elemental spherical surface area at entry, $dA_b = \rho_b^2 \sin\theta \ d\theta \ d\phi$ (3.29)

Equation (3.28) can then be re-arranged to give:-

 $\dot{W}_{I} = \frac{Y_{m}}{\sqrt{3}} \cdot U_{b} \rho_{b}'^{2} \int_{\theta=\theta_{1}}^{\alpha_{e}} \int_{\phi=0}^{2\pi} \left[\int_{\rho_{a}}^{\rho_{b}} \sqrt{K} d\rho \right] \frac{\cos t\theta}{\cos (1-t)\theta} \cdot \frac{\rho_{b}^{2}}{\rho_{b}^{2}} \sin \theta d\theta d\phi$

$$=\frac{Y_{m}}{\sqrt{3}} \cdot U_{b} \cdot \left(\frac{\rho_{b}}{\rho_{b}}\right)^{2} \left(\int_{\theta=\theta_{1}}^{\alpha_{e}} \int_{\phi=0}^{2\pi} \left[\int_{\rho_{a}}^{\rho_{b}} \sqrt{K} d\rho\right] \frac{\cos t\theta}{\cos (1-t)\theta} \cdot dA_{b}$$

- 43 -

But from equation (3.5),

$$\rho_{b}'^{2} = \rho_{b}^{2} - \frac{A_{p}}{\pi \sin^{2} \alpha}$$

$$\cdot \cdot \cdot \left(\frac{\rho_{\mathbf{b}'}}{\rho_{\mathbf{b}}}\right)^2 = \frac{A_{\mathbf{b}}}{\pi \rho_{\mathbf{b}}^2 \sin^2 \alpha_{\mathbf{e}}} = \frac{A_{\mathbf{b}}}{\pi R_{\mathbf{b}}^2}$$

then equation (3.30) becomes

$$\dot{\mathbf{w}}_{\mathbf{I}} = \frac{\mathbf{Y}_{\mathbf{m}}}{\sqrt{3}} \cdot \mathbf{U}_{\mathbf{b}} \cdot \frac{\mathbf{A}_{\mathbf{b}}}{\pi \mathbf{R}_{\mathbf{b}}^{2}} \int_{\boldsymbol{\theta}=\boldsymbol{\theta}_{1}}^{\boldsymbol{\alpha}_{\mathbf{e}}} \int_{\boldsymbol{\phi}=0}^{2\pi} \int_{\boldsymbol{\rho}_{\mathbf{a}}}^{\boldsymbol{\rho}_{\mathbf{b}}} \int_{\boldsymbol{\rho}_{\mathbf{a}}}^{\boldsymbol{\rho}_{\mathbf{b}}} \frac{\mathbf{\rho}}{\mathbf{\rho}^{\prime 2}} \sqrt{\mathbf{K}} \, d\boldsymbol{\rho} \quad \frac{\cos t\boldsymbol{\theta}}{\cos (1-t)\boldsymbol{\theta}} \, d\mathbf{A}_{\mathbf{b}}$$

$$(2.21)$$

(3.31)

=
$$Y_{\rm m} \cdot U_{\rm b} \cdot A_{\rm b} \cdot f(s)$$
 (3.32)

where,

$$f(s) = \frac{1}{\pi \sqrt{3}R_{b}^{2}} \int_{\theta_{1}}^{\alpha_{e}} \int_{\phi=0}^{2\pi} \left[\int_{\rho_{a}}^{\rho_{b}} \frac{\rho}{\rho^{\prime 2}} \sqrt{K} d\rho \right] \frac{\cos t\theta}{\cos (1-t)\theta} \cdot dA_{b}$$

(3.33)

f(s) is evaluated numerically by dividing the inlet section into $N_s \propto (M - 1) \propto (N - 2)$ elemental areas which are themselves subdivided into large and small triangles, i.e. :-

$$f(s) = \frac{N_{s}}{\pi \sqrt{3}R_{b}^{2}} \left\{ \begin{array}{c} N-2 & M-1 \\ N \neq \infty & \sum_{i=1}^{N} \sum_{j=1}^{M-1} \left[\left(\int_{\rho_{a}}^{\rho_{b}} \sqrt{K} & d\rho \right] \frac{\cos t\theta}{\cos (1-t)\theta} \cdot dA_{b} \right] \right\}$$

3.2.5 Power loss in shearing the material at the inlet and exit shear surfaces.

The internal power W_I derived in the last section, is required to overcome the homogenous deformation and the necessary relative shearing within the material itself during its progress through the die deforming passage. Power is also required to compensate for the losses due to the shearing of the material on both the inlet and exit shear surfaces.

The rate of working in crossing a shear boundary of the elemental surface area dA is given by:-

$$dW_{R} = k U* dA_{s}$$

(3.35)

where,

U* is the velocity discontinuity along the surface and k is the yield stress of the material in shear equal to $\frac{Y}{m}$ by von Mises yield criterion.

An elemental particle just before shear at entry travels parallel to the draw axis with a velocity U_b but after shearing, its velocity is defined by $U(U_p, U_\theta, U_\phi)$. Therefore, in order for the particle to change direction the work material has been subjected to a velocity discontinuity U* tangential to the shear boundary. The resultant velocity of the tangential components on both sides of the shear surface gives the velocity discontinuity,

$$\begin{array}{l} \cdot\\ \mathbf{U}_{\mathbf{rb}} = \mathbf{U}_{\mathbf{b}} \left\{ \left[\frac{\cos t\theta}{\cos (1-t)\theta} \cdot \frac{t \mathrm{an} \theta}{\cos \psi} \right]^{2} + \left[-\sin t\theta + \cos t\theta \tan (1-t)\theta \right]^{2} \right\}^{\frac{1}{2}} \end{array}$$

$$\begin{array}{l} \cos t\theta \tan \psi + \cos t\theta \tan (1-t)\theta \end{array} \right]^{2} \left\}^{\frac{1}{2}} \qquad (3.36) \end{array}$$

A similar situation occurs at the exit shear boundary when the velocity of the particle just before shear is $U(U_{\rho}, U_{\theta}, U_{\phi})$, but after shear the particle travels parallel to the tube axis with the velocity U_{a} . The resultant tangential velocity,

$$\dot{U}_{ra} = \dot{U}_{rb} \cdot \left(\frac{\rho_{b}'}{\rho_{a}'}\right)$$
(3.37)

The details of the derivation of the velocity discontinuities are given in the appendix A-8.6.

The rate of work dissipation at the entry shear surface,

$$\dot{W}_{R_{b}} = \int_{A_{b}} k \cdot \dot{U}_{rb} \cdot dA_{s}$$
$$= \int_{A_{b}} k \cdot \dot{U}_{rb} \cdot \frac{dA_{b}}{\cos t\theta}$$

(3.38)

The rate of work dissipation at the exit shear surface,

$$\dot{W}_{R_{a}} = \int_{A_{a}} k \cdot U_{ra} \cdot dA_{s} \qquad (3.39)$$

An equivalent conical die passage has been assumed; consequently

$$\frac{dA_{b}}{dA_{a}} = \left(\frac{\rho b'}{\rho_{a}'}\right)^{2} \text{ and}$$

$$\frac{dA_{b}}{dA_{a}} = \left(\frac{\rho b'}{\rho_{a}'}\right)^{2} \cdot U_{rb}$$

$$\therefore \dot{W}_{R_{a}} = \int_{A_{b}} k \cdot \left(\frac{\rho_{b}'}{\rho_{a}'}\right)^{2} \cdot \dot{U}_{rb} \cdot \left(\frac{\rho_{a}'}{\rho_{b}'}\right)^{2} \cdot \frac{dA_{b}}{\cos t\theta}$$

$$= \int_{A_{b}} k \cdot \dot{U}_{rb} \cdot \frac{dA_{b}}{\cos t\theta}$$

$$(3.40)$$

The total power to shear the material at the inlet and exit boundaries is,

$$\dot{\mathbf{w}}_{\mathbf{R}} = \dot{\mathbf{w}}_{\mathbf{R}_{\mathbf{b}}} + \dot{\mathbf{w}}_{\mathbf{R}_{\mathbf{a}}}$$

$$= 2 \int_{\mathbf{A}_{\mathbf{b}}} \dot{\mathbf{k}} \cdot \dot{\mathbf{U}}_{\mathbf{rb}} \cdot \frac{d\mathbf{A}_{\mathbf{b}}}{\cos t\theta}$$

$$= \frac{2}{\sqrt{3}} \mathbf{y}_{\mathbf{m}} \cdot \mathbf{U}_{\mathbf{b}} \int_{\mathbf{A}_{\mathbf{b}}} \left(\frac{\dot{\mathbf{U}}_{\mathbf{rb}}}{\mathbf{U}_{\mathbf{b}}} \right) \cdot \frac{d\mathbf{A}_{\mathbf{b}}}{\cos t\theta}$$
(3.41)

$$= \frac{2}{\sqrt{3}} Y_{m} \cdot U_{b} \cdot A_{b}^{R}(s)$$
 (3.42)

where,

$$R(s) = \frac{1}{A_{b}} \int_{A_{b}} \left\{ \left[\frac{\cos t\theta}{\cos (1-t)\theta} \cdot \frac{tan\eta}{\cos \psi} \right]^{2} + \left[-\sin t\theta + b \right] \right\}$$

$$\cos t\theta \ tan\psi + \cos t\theta \ tan(1-t)\theta$$

$$\frac{2}{b} \cdot \frac{dA_b}{\cos t\theta}$$

(3.43)

$$= \frac{\underset{A_{b}}{N}}{\underset{M \to \infty}{N}} \sum_{\substack{n \to \infty \\ i=1}}^{N-2} \sum_{j=1}^{M-1} \left\{ \left[\frac{\cot \theta}{\cot (1-t) \theta} \cdot \frac{tan \eta}{\cos \psi} \right]^{2} + \right] \right\}$$

$$-\sin t\theta + \cos t\theta \tan \psi + \cos t\theta \tan (1-t)\theta \bigg]^{2} \bigg\}^{\frac{1}{2}} \cdot \frac{dA_{b}}{\cos t\theta}$$

(3.44)

Since t is an arbitary parameter, values of -1 < t < 1 will be used to select the value that gives the minimum R(s). Hence the optimum shear surface for the given draw conditions.

3.2.6 Power loss in friction between the tool/workpiece interface

Friction occurs as the tube slides between the die and the plug. This implies that additional power is required to overcome the friction losses.

In the case of Coulomb friction, a mean coefficient of friction μ is usually assumed for the given relative sliding surfaces. The rate of work loss is given by:-

$$\dot{W}_{F} = \int \mu p U_{s} dA_{s} + \int \mu p U_{s} dA_{s}$$
(3.45)
$$A_{s_{1}} \qquad A_{s_{2}}$$

where, the first term on the right calculates the loss at the die/tube interface and the second term refers to the loss at the plug/tube interface.

In the above equation the mean die pressure and the mean plug pressure are unknown. It is usual to assume a mean value of pressure equal to that of the frictionless case. However, to overcome this difficulty W_F can be obtained indirectly by the apparent strain method (77). The method, presented in the next section, enables the calculation of the draw load, in case of Coulomb friction without obtaining the distribution of the pressure at the tube/tool interfaces.

3.2.7 Apparent strain method

This is an energy method, where the total work is divided into plastic and surface friction energy.

Friction produces shear stresses and strains at the workpiece interface and these have two principal effects on the work done. Energy is dissipated at the interface simply as a result of relative motion. If the shear stress at the surface is significant compared with the yield stress of the material, additional internal distortion results within the deformation zone. Both of these effects increase the work done.

The total work done per unit volume of the material is equated to an area under the equivalent stress-strain curve (see Fig. 3.5). The strains $\tilde{\epsilon}_a$ and $\tilde{\epsilon}_m$ corresponding to the total work and plastic work per unit volume are known as the apparent and the mean equivalent strains, respectively.

From the definition, work done per unit volume,

$$W = \begin{pmatrix} \varepsilon_{a} \\ \overline{\sigma} d\overline{\varepsilon} = \overline{Y}_{m} \cdot \overline{\varepsilon}_{a} \\ 0 \end{pmatrix}$$
(3.46)

Assuming that the presence of friction at the die/tube and plug/ tube interfaces has neglegible effect on the plastic work, which is likely to be the case in cold drawing, then

- 49 -

$$\bar{\varepsilon}_{a} = \bar{\varepsilon}_{m} + \bar{\varepsilon}_{f}$$
(3.47)

Fig. 3.4 Stress and the deformation pattern in the drawing of polygonal tube from round stock on a cylindrical plug for the apparent strain analysis.

Fig. 3.5 The equivalent stress-strain diagram showing the terms used in the apparent strain analysis.

In a drawing process with no back-pull, the total work done per unit volume is equal to the draw stress,

i.e.
$$W = \sigma_{za}$$
 (3.48)

It is assumed that a mean coefficient of friction (μ_m) and the mean pressure (p_m) occur at both the die/tube and plug/tube sliding surfaces. In the following derivations the subscripts c_1 , s_1 and s_2 denote conical, straight die and plug surfaces respectively.

From Fig. 3.4 for steady draw, the equilibrium of horizontal forces gives,

$$\sigma_{za} \cdot A_{a} = p_{m} \left\{ \sum (u_{m} \cos \alpha_{s} + \sin \alpha_{s}) dA_{s_{1}} + \sum (u_{m} \cos \alpha_{c} + \sin \alpha_{c}) dA_{c_{1}} + \sum \mu_{m} dA_{s_{2}} \right\}$$

$$(3.49)$$

From equations (3.48) and (3.46),

$$\bar{\bar{e}}_{a} = \frac{\sigma_{za}}{\bar{\bar{Y}}_{m}}$$
(3.50)

Substituting for σ_{22} in (3.50) gives,

$$\bar{\varepsilon}_{a} = \frac{\sigma_{za}}{\bar{y}_{m}} = \frac{p_{m}}{\bar{y}_{m}} \cdot \frac{1}{A_{a}} \left\{ \sum \left(\mu_{m} \cos \alpha_{s} + \sin \alpha_{s} \right) dA_{s_{1}} + \right. \\ \left. \sum \left(\mu_{m} \cos \alpha_{c} + \sin \alpha_{c} \right) dA_{c_{1}} + \sum \mu_{m} dA_{s_{2}} \right\}$$

or
$$\tilde{\epsilon}_{a} = \frac{p_{m}}{\bar{Y}_{m}} \cdot I_{1}$$
 (3.51)

where
$$I_1 = \frac{1}{A_a} \left\{ \sum (u_m \cos \alpha_s + \sin \alpha_s) dA_{s_1} + \sum (\mu_m \cos \alpha_c + \sin \alpha_c) dA_c + \sum \mu_m dA_{s_2} \right\}$$

$$(3.52)$$

From the definition of friction strain $\bar{\epsilon}_f$, work done against friction per unit volume of the material,

$$W_{f} = (Y_{m})_{f} \cdot \tilde{\varepsilon}_{f}$$
(3.53)

Also the friction work can be determined by the energy dissipated as the material slides between the die and the plug surfaces. Using U, U, $_{c_1}^{v}$, $_{1}^{v}$ and U for the respective surface velocities:-

$$\dot{V}OL \times W_{f} = \mu_{m} \cdot p_{m} \cdot U_{b} \left\{ \sum \left(\frac{U_{s_{1}}}{U_{b}} \right) dA_{s_{1}} + \sum \left(\frac{U_{c_{1}}}{U_{b}} \right) dA_{c_{1}} + \sum \left(\frac{U_{s_{2}}}{U_{b}} \right) dA_{s_{2}} \right\}$$

$$(3.54)$$

Substituting for W_f in the above equation,

$$\begin{array}{l} \text{VOL x } (\mathbf{Y}_{m})_{\mathbf{f}} \cdot \bar{\varepsilon}_{\mathbf{f}} = \mu_{m} \cdot \mathbf{p}_{m} \cdot \mathbf{U}_{b} \left\{ \sum \left(\frac{\mathbf{U}_{\mathbf{s}_{1}}}{\mathbf{U}_{b}} \right) \, \mathbf{dA}_{\mathbf{s}_{1}} + \right. \\ & \left. \sum \left(\frac{\mathbf{U}_{\mathbf{c}_{1}}}{\mathbf{U}_{b}} \right) \, \mathbf{dA}_{\mathbf{c}_{1}} + \sum \left(\frac{\mathbf{U}_{\mathbf{s}_{2}}}{\mathbf{U}_{b}} \right) \, \mathbf{dA}_{\mathbf{s}_{2}} \right\} \\ & \left. \cdot \cdot \bar{\varepsilon}_{\mathbf{f}} = \frac{\mathbf{p}_{m}}{\left(\mathbf{Y}_{m} \right)_{\mathbf{f}}} \cdot \frac{\mu_{m} \cdot \mathbf{U}_{b}}{\mathbf{VOL}} \quad \left\{ \sum \left(\frac{\mathbf{U}_{\mathbf{s}_{1}}}{\mathbf{U}_{b}} \right) \, \mathbf{dA}_{\mathbf{s}_{1}} + \right. \\ & \left. \sum \left(\frac{\mathbf{U}_{\mathbf{c}_{1}}}{\mathbf{U}_{b}} \right) \, \mathbf{dA}_{\mathbf{c}_{1}} + \sum \left(\frac{\mathbf{U}_{\mathbf{s}_{2}}}{\mathbf{U}_{b}} \right) \, \mathbf{dA}_{\mathbf{s}_{2}} \right\} \end{array}$$

or
$$\bar{\varepsilon}_{f} = \frac{p_{m}}{(Y_{m})_{f}} \cdot I_{2}$$

where
$$I_2 = \frac{\mu_m U_b}{VOL} \left\{ \sum \left(\frac{U_{s_1}}{U_b} \right) dA_{s_1} + \sum \left(\frac{U_{c_1}}{U_b} \right) dA_{c_1} + \sum \left(\frac{U_{s_2}}{U_b} \right) dA_{s_2} \right\}$$
 (3.56)

Dividing equation (3.51) by (3.55) yields

$$\frac{\overline{\epsilon}_{a}}{\overline{\epsilon}_{f}} = \frac{(\underline{Y}_{m})_{f}}{\overline{Y}_{m}} \cdot \frac{I_{1}}{I_{2}} = \frac{1}{B} \cdot \frac{I_{1}}{I_{2}}$$
where, $B = \frac{\overline{Y}_{m}}{(\underline{Y}_{m})_{f}}$
(3.57)
$$\cdot \overline{\epsilon}_{f} = B \cdot \frac{I_{2}}{I_{1}} \cdot \overline{\epsilon}_{a} = \Psi \cdot \overline{\epsilon}_{a}$$
(3.58)
where, $\Psi = B \cdot \frac{I_{2}}{I_{1}}$
(3.59)

By substituting the value of $\bar{\epsilon}_{\rm f}$ in equation (3.47) gives:-

$$\bar{\varepsilon}_{a} = \bar{\varepsilon}_{m} + \Psi \bar{\varepsilon}_{a}$$

or $\bar{\varepsilon}_{a} = \frac{\bar{\varepsilon}_{m}}{(1 - \Psi)}$ (3.60)

(3.55)

From equations (3.51) and (3.60),

$$p_{m} = \bar{Y}_{m} \cdot \frac{\bar{\varepsilon}_{a}}{I_{1}}$$

$$= \bar{Y}_{m} \cdot \frac{\bar{\varepsilon}_{m}}{I_{1}(1 - \Psi)}$$

$$\sigma_{za} = \bar{Y}_{m} \cdot \bar{\varepsilon}_{a} = Y_{m} \cdot \frac{\bar{\varepsilon}_{m}}{(1 - \Psi)}$$
(3.61)
(3.61)
(3.62)

Therefore, if the value of $\tilde{\varepsilon}_{m}$ is known, the draw stress (3.62) and the mean pressure (3.61) can be calculated from the geometry of the deforming passage together with the velocity distribution and mean coefficient of friction (I₁ and I₂) and the work hardening factor (B). $\tilde{\varepsilon}_{m}$ can be derived from the total plastic work as shown in the next section.

3.2.7.1 The mean equivalent strain $\bar{\varepsilon}_{m}$

2

If the metal undergoing deformation obeys von Mises yield criterion and Levy-Mises flow rules, the plastic work done per unit volume can be expressed as

$$I_{p} = \int_{0}^{m} \bar{\sigma} d\bar{\epsilon}$$
(3.63)

where,

$$\bar{\sigma} = \sqrt{\frac{3}{2}} \left\{ \sigma'_{ij} \sigma'_{ij} \right\}^{\frac{1}{2}}$$
(3.64)

$$d\bar{\varepsilon} = d\bar{\varepsilon}^{p} = \sqrt{\frac{2}{3}} \left\{ d\varepsilon^{p}_{ij} \quad d\varepsilon^{p}_{ij} \right\}^{\frac{1}{2}}$$
(3.65)

The mean equivalent strain is defined as the strain which bounds an area under the equivalent stress-strain diagram (Fig. 3.5) equal to the total plastic work done per unit volume of the material.

i.e.
$$W_{p} = \int_{0}^{\overline{\varepsilon}_{m}} \overline{\sigma} \, d\overline{\varepsilon} = Y_{m} \cdot \overline{\varepsilon}_{m}$$
 (3.66)

The plastic work (W_p) can be considered to consist of the internal work of deformation (W_i) and the redundant work (W_r) of shearing the material at the assumed surfaces of discontinuities at both the inlet and the outlet boundaries.

i.e.
$$W_{p} = W_{i} + W_{r}$$
 (3.67)

or in terms of power,

$$W_{\rm p} \times \rm VOL = W_{\rm I} + W_{\rm R}$$
(3.68)

From equations (3.32) and (3.42),

$$W_{I} = Y_{m} \cdot U_{b} \cdot A_{b} \cdot f(s)$$

and $\tilde{W}_{R} = 2 \cdot \frac{Y_{m}}{\sqrt{3}} \cdot U_{b} \cdot A_{b}R(s)$

. . equation (3.66) becomes

$$(Y_m \cdot \overline{\varepsilon}_m) \cdot VOL = Y_m \cdot U_b \cdot A_b \cdot f(s) +$$

$$\frac{2}{\sqrt{3}}$$
 · Y_m · U_b · A_b. R(s)

$$\therefore \quad \overline{\varepsilon}_{m} = \frac{1}{\text{VOL}} \left\{ \frac{Y_{m}}{Y_{m}} \cdot U_{b} \cdot A_{b} \cdot f(s) + \frac{2}{\sqrt{3}} \cdot \frac{Y_{m}}{Y_{m}} \cdot U_{b} \cdot A_{b} \cdot R(s) \right\}$$
(3.69)

The values of f(s) and R(s) are evaluated by the use of a computer and hence the value of the mean equivalent strain.

3.2.7.2 The work hardening factor B

The work hardening factor B (equation 3.57) is the ratio of the mean flow stress over the whole strain range $(0 \ v \ \overline{\epsilon}_a)$ to the mean flow stress over the strain range $\overline{\epsilon}_m \ v \ \overline{\epsilon}_a$. Therefore the value depends not only on the material characteristic but also on the process and the friction.

For a process where work done against friction or the coefficient of friction u is small, the strain range $\bar{\varepsilon}_m \sim \bar{\varepsilon}_a$ is also small. In another instance the material is fully work-hardened. The mean flow stress over this range can be approximated therefore as,

$$(Y_{m}) = \overline{\sigma}_{\overline{\varepsilon} = \overline{\varepsilon}_{a}}$$
 (3.70)

By definition,

$$\bar{\mathbf{Y}}_{\mathbf{m}} \cdot \bar{\mathbf{\varepsilon}}_{\mathbf{a}} = \begin{pmatrix} \mathbf{a} \\ \mathbf{f}(\bar{\mathbf{\varepsilon}}) \ d\bar{\mathbf{\varepsilon}} \\ \mathbf{f}(\bar{\mathbf{\varepsilon}) \ d\bar{\mathbf{\varepsilon}$$

,ē
If the equivalent stress-strain curve of the material follows the power law or

$$f(\bar{\varepsilon}) = \sigma = \sigma_0 \bar{\varepsilon}^n$$
, (3.73)

then equation (3.72) gives

$$B = \frac{1}{1 + n}$$
(3.74)

3.2.7.3 Evaluation of I₁ and I₂

From equations (3.52) and (3.56),

$$I_{1} = \frac{1}{A_{a}} \left\{ \sum \left(\mu_{m} \cos \alpha_{s} + \sin \alpha_{s} \right) dA_{s_{1}} + \sum \left(\mu_{m} \cos \alpha_{c} + \sin \alpha_{c} \right) dA_{c_{1}} + \sum \mu_{m} dA_{s_{2}} \right\}$$
$$I_{2} = \mu_{m} \cdot \frac{U_{b}}{VOL} \left\{ \sum \left(\frac{U_{s_{1}}}{U_{b}} \right) dA_{s_{1}} + \sum \left(\frac{U_{c_{1}}}{U_{b}} \right) dA_{c_{1}} + \sum \left(\frac{U_{c_{1}}}{U_{b}} \right) dA_{c_{1}} + \sum \left(\frac{U_{c_{1}}}{U_{b}} \right) dA_{c_{1}} \right\}$$

 I_1 and I_2 are found by integration over the whole sliding surface areas of the deforming tube.

However, to determine I_2 the area and the velocity of every element on the relative sliding surface between the workpiece and the tools are required. The deforming die has a complex shape and therefore to determine the velocity at each point is a problem by

- 57 -

itself. The longitudinal velocity increases towards the die exit as well as circumferentially and the flow, especially at the intersection of the conical and the plane surfaces, is too complicated. An approximate method is therefore used to determine I_2 . A mean sliding velocity is calculated from an idealised equivalent conical die (see appendix A-10).

If \overline{U}_{s_1} is the mean sliding velocity at the die surface, $\overline{U}_{s_1} = \frac{\int_{A_s}^{UdA_s}}{\int_{A_s}^{dA_s}}$ (3.75)

For a convergent die passage and the continuity of flow,

$$U = \left(\frac{\rho_{b}}{\rho'}\right)^{2} U_{b} \cos \alpha_{e} \qquad (3.76)$$

and $dA_s = \rho \sin \alpha_e \cdot 2\pi d\rho$

$$\tilde{U}_{s_{1}} = \frac{\int_{\rho} U_{b} \left(\frac{\rho_{b}'}{\rho'}\right)^{2} \cdot \rho \sin \alpha_{e} \cdot 2 \pi \cdot d\rho \cos \alpha_{e}}{\int_{\rho} \rho \sin \alpha_{e} \cdot 2\pi \cdot d\rho}$$

$$= \frac{U_{b} \cdot (\rho_{b}' \sin \alpha_{e})^{2} \cdot \pi \cdot \ln \left(\frac{A_{b}}{A_{a}}\right) \cos \alpha_{e}}{\pi \sin^{2} \alpha_{e} (\rho_{b}^{2} - \rho_{a}^{2})}$$

$$= U_{b} \cdot \frac{\ln A_{r} \cos \alpha_{e}}{(1 - \frac{1}{A_{r}})_{r}}$$
(3.77)

For the tube/plug interface the mean velocity,

$$\overline{U}_{s_{2}} = \frac{U_{b} + U_{a}}{2}$$

$$= \frac{U_{b}}{2} (1 + A_{r})$$
(3.78)

3.3 The lower bound solution for the drawing of regular polygonal tube from round on a cylindrical plug.

The upper bound solution depends on the assumed velocity pattern in the deforming metal and is an over-estimate of the load required to effect the process. A lower bound solution which ignores the effects of redundant work is thus necessary; the actual load lies within the two limits.

By considering the equilibrium of forces of an elemental slug together with Tresca's yield criterion, the resulting stress expression is integrated numerically using a computer; also, the programme computes the mean pressure. The development of the computer programme is discussed in appendix A-9.

3.3.1 Deformation pattern of the lower bound solution

The four basic shapes of the die deforming zone are the pyramidical plane surface, the elliptical plane/conical surface, triangular plane/conical surface and the inverted parabolic/conical surface. These die shapes are shown in Fig. 4.1 on page 77.

However, the lower bound solution is developed only for the elliptical plane/conical surface die. The die has a gradual transition

see reference 81, page 171

from round and the surface equation is readily derived. The deforming passage is made from a cone of semi-angle ' α_c ' cut by 'N_s' planes equal to the number of sides of the polygonal tube required. Each of these planes is equally spaced around the tube axis and inclined at an angle ' α_s '. The construction of this die shape is given in details in Chapter 4, section 4.3.

3.3.2 Derivation of the lower bound solution

Fig. 3.6 shows a round tube deforming through the elliptical plane/conical surface die and on a cylindrical plug to produce a polygonal tube. The following geometrical relationships are derived:

(i) general parameters for the die

 $\rho = \frac{\pi}{N_s}$

$$A_r = \frac{A_b}{A_a}$$

 $R_{b} = \frac{D_{b}}{2}$

$$\alpha_{c} = \tan^{-1} \left(\frac{D_{b} - H_{a}}{2L} \right)$$
$$\alpha_{s} = \tan^{-1} \left(\frac{D_{b} - H_{a}}{2L} \right)$$

$$L = \frac{D_b}{\tan \alpha_e} \left(1 - \frac{1}{(D_b/D_e)}\right)$$

where
$$\frac{D}{e} = \sqrt{\frac{A_a + A_p}{\pi}}$$

Fig. 3.6 Stress and deformation pattern for the lower bound solution for the drawing of polygonal tube from round stock on a cylindrical plug.

$$e = \frac{\cos\alpha}{\cos\alpha}$$

$$a = \frac{D_b}{2} \frac{\cos \alpha_c}{\sin (\alpha_c + \alpha_s)}$$

$$b = \frac{b}{2} \cdot \frac{1}{\sin(\alpha_c + \alpha_s)} \cdot \sqrt{\cos^2 \alpha_c - \cos^2 \alpha_s}$$

iii) At any section Z,

$$R = R_{b} - Z \tan \alpha_{c}$$

$$R_{s} = R \cos \lambda_{s}$$

$$\sin \lambda_{s} = \frac{y}{R} = b \sqrt{\frac{2aZ \cos \alpha_{s} - Z^{2}}{a \cos \alpha_{s}(R_{b} - Z \tan \alpha_{c})}}$$

$$\beta = \lambda_{c} + \lambda_{s}$$

$$A = \frac{1}{2} (R_{b} - Z \tan \alpha_{c})^{2} (\cos \lambda_{s} \sin \lambda_{s} + \lambda_{c}) - \frac{1}{2}\beta \cdot R_{p}^{2}$$

For an element between Z and Z + dZ,

flat surface area $dA_s = y \frac{dZ}{\cos \alpha_s}$

conical surface area
$$dA_{c_1} = R \cdot \lambda_c \cdot \frac{dZ}{\cos\alpha_c}$$

2

tube/plug surface area $dA_s = \beta \cdot R_p \cdot dZ$

$$\frac{dA}{dZ} = -R \left\{ (\cos\lambda_s \sin\lambda_s + \lambda_c) \tan\alpha_c + \frac{b}{a} \cdot \frac{\sin^2\lambda_s}{\cos^2\lambda_s} \right\}$$

$$\frac{1}{R} \left(\frac{R (a \cos \alpha_s - Z)}{(2aZ \cos \alpha_s - Z^2)^{\frac{1}{2}}} + \tan \alpha_c \left\{ 2aZ \cos \alpha_s - Z^2 \right\}^{\frac{1}{2}} \right) \right\}$$

Resolving forces in the Z direction and for the equilibrium of the element $\sum F_z = 0$, $(\sigma_z + d\sigma_z) (A + dA) - \sigma_z \cdot A - p_1 (dA_{s_1} \sin \alpha_s + dA_{c_1} \sin \alpha_c) - \mu_1 p_1 (dA_{s_1} \cos \alpha_s + dA_{c_1} \cos \alpha_c) - \mu_2 p_2 dA_{s_2} = 0$

i.e.

$$Ad\sigma_{z} + d\sigma_{z} dA = -\sigma_{z} dA + p_{1} \left\{ (\sin\alpha_{s} + \mu_{1} \cos\alpha_{s}) dA_{s_{1}} + (3.79) \right\}$$

$$(\sin\alpha_{c} + \mu_{1} \cos\alpha_{c}) dA_{c_{1}} + \mu_{2} p_{2} dA_{s_{2}}$$

The following assumptions are made:-

- (i) a mean pressure p at both the die/tube and plug/tube interfaces,
- (ii) a mean coefficient of friction μ_{m} at both the die/tube and plug/tube interfaces,
- (iii) the horizontal stress σ_z and the mean normal pressure p are the principal stresses and
- (iv) a mean yield stress Y.

Applying Tresca's yield criterion,

 $\sigma_{z} + p = Y$ or $p = Y - \sigma_{z}$

(3.80)

. equation (3.79) becomes,

$$d\sigma_{z} (A + dA) = -\sigma_{z} dA + (Y - \sigma_{z}) \left\{ (\sin\alpha_{s} + \mu \cos\alpha_{s}) dA_{s} + (\sin\alpha_{c} + \mu \cos\alpha_{c}) dA_{c} + \mu dA_{s} \right\}$$

$$(\sin\alpha_{c} + \mu \cos\alpha_{c}) dA_{c} + \mu dA_{s} \left\}$$

$$(3.81)$$

After simplifying and dividing through by Y, equation (3.81) yields,

$$d \left(\frac{\sigma_{z}}{Y}\right) = \frac{1}{(A + dA)} \left\{ - \left(\frac{\sigma_{z}}{Y}\right) dA + \left[1 - \left(\frac{\sigma_{z}}{Y}\right)\right] \right[(\sin\alpha_{s} + \mu_{m} \cos\alpha_{s}) dA_{s_{1}} + (\sin\alpha_{c} + \mu_{m} \cos\alpha_{c}) dA_{c_{1}} + \mu_{m} dA_{s_{2}} \right] \right\}$$

$$(3.82)$$

A computer programme was developed to solve equation (3.82) numerically. The value of the mean pressure was obtained from equation (3.80).

The development of the numerical integration is presented in the appendix A-9. The detailed computer programme is given in the appendix A-13.

3.4 The computer programme

The flow chart for the computer programme shown in Fig. 3.7 consists of:-

the input statement; three major 'do' loops; the four sub-programmes; and the print-out statements of the results. The input consists mainly of the incoming and outgoing stock dimensions, the stress-strain properties of the material and the drawing velocity.

The three major 'do' loops generate the number of sides of the required polygon (1), the equivalent die semi-angle (2) and the mean coefficient of friction (3(a,b,c)).

The four sub-programmes are:-

- (i) the development of the deformation pattern and hence the velocity field,
- (ii) the upper bound solution for the polygoral tube drawing,
- (iii) the lower bound solution for the polygonal tube drawing, and
- (iv) the upper and the lower bound solutions for the corresponding axisymmetric tube drawing on a cylindrical plug.

The main parts of the upper bound solution for the drawing of regular polygonal tubes from round stock are:-

- (a) the optimisation of the entry and exit shear surfaces,
- (b) the calculation of the mean equivalent strain,
- (c) the calculation of the apparent strain factors I_1 and I_2 given by equations (3.52) and (3.56) respectively,
- (d) the calculation of the power loss at the workpiecetool interface, and
- (e) finally, the tabulation of the mean draw stress and the mean die pressure.

- 6.5 -

The equations for the upper and the lower bound solutions for the axisymmetric tube drawing on a cylindrical plug are reproduced in Appendix A-14.

The complete programme is presented in Appendix A-13 and Table 3.1 on page 73, shows the layout of the computer print-out. The solutions to the upper and the lower bound for the drawing of polygonal tubes from a range of input tubing are tabulated in Appendix A-4.

Sampled graphical output of the mapped entry and exit tubular sections are shown in Fig. 3.8, 3.9, 3.10 and 3.11. The centroids of the large triangles at entry for j = constant (shown in Fig. 3.2(b) on page 33 and the nomenclature as defined in the Appendix A-8.2 on page A81), are joined by straight lines. The areas encompassed by the circular arcs on entry map into areas bordered by hyperbolic curves at the exit.

Fig. 3.7 The flow chart for the computer programme for the drawing of polygonal tube from round stock on a cylindrical plug

Fig. 3.8 Deformation pattern of the symmetric section of the square tube for the reduction in area of 48.45%

Fig. 3.9 Deformation pattern of the symmetric section of the hexagonal tube for the reduction in area of 37.16%

.

Fig. 3.11 Deformation pattern of the symmetric section of the decagonal tube for the reduction in area of 37.73%

TABLE 3.1 The format of the computer output for the drawing

of hexagonal tube directly from round stock of outer diameter 1 $\frac{1}{16}$ in by $\frac{1}{4}$ in gauge for a reduction in area of 37.16 %

(a) Equivalent die semi-angle

 $'\alpha_e' = 7^\circ$

229 SEMI-DIE ANGLE = 7 DEGREES 230 DIE ALIGAT = 0.0235 INCHES

115			UPPER BOUND S	OLUTION FOR	OLTSONAL DRAW	LNG				
236	PARAMETER	T SHEAR	FACTOR R(S)							
2.58	0,120	2	. 348942							
2.7.2	0 220	1	942522							
10.	0.100		674770							
240	0.000		.330377							
241	0.400	- 1	. 139042							
242	0.500	0	.764234							
743	0.600	0	-532495							
	0.000		531900							
2.44	0.700									
245	0.800		.7044 24							
246	0.900	1	.012386							
247	1.000	1	.383204							
2.00										
250	OPTIMAL	T = 0.700	AND MINIP	un a(s) =	0.531900					
253	THE VALUE	DF F'(5)	. 57.527114							
256	INTERNAL	WORK STRAIN	. 0.564826							
259	THE NEAN	EQUIVALENT	STRAIN =	0.675311						
261	THE HOMOS	S. EGUIVALEN	T STRAIN =	0.464555						
2 5 4	COEFFICIENT	APPARENT	TIELO STRESS			EAN DIE-PRES		BRAW/TIELD	MEAN-PRESS/TIE	LD
265	OF FRICTION	STRAIN	(TONF/SQ IN)	(TONF) (TONFISE INJ	CTONFISG INJ	(A-POWER)	314233		
34.2	0.000	0.075311	37.1951	10.0728	25.1182	42.4793	10.256	0.67531	1.14207	
201	0.000	7 7791.01	18 1114	+ 11-9824	29.8802	40.2389	12.200	C_8C334	1.04703	
630	U.u.u		20 10/0	11 -/ 57	34 0244	33 0680	13 891	0_91482	0.96659	
247	0.043	0.303972	74-29+0	13-0432	34.04.00	74 0741	15 177	1.01748	0.49763	
270	0.050	0.938112	40.1438	15.1019	37 .03 44	20-02-1		1 00241	0 83785	
271	0.080	1.002378	40.7659	10.3866	40.8629	34.1557	10.000	1.07001	0.00103	
222	0.100	1.058419	41.2357	17.5267	43.7059	32.4315	17.845	1.17504	0./8554	
				LUTION OF SET	TION DRAWING					
614										
270				DRAW STRESS	DIE PRESSUR	E PLUG PRES	SURE DRAW/YI	ELD DIE P/T	LELD PLUG P/YIE	LD
517	CORFFEETERS	12000 3100	/70863	TONE ISS IN	CTONE/SO IN	(TONF/SO	IN) STRESS R	ATIO STRES	SS STRESS	
624	OF FRICILUM	CIGNE /SW	as clowes	11 0170	27 7876	27 450	5 0.469	68 0.8144	55016.0 9	
2.51	000	34.1018	6.4230	10.0170		34 082	0 557	90 0.769	2 0.76501	
242	0.020	34.101/	7.6295	19.0254	20-2433	20.000	0.331	16 0 727	77 0 72252	
221	0.043	34.1016	5.5859	21.6698	24.8183	24.0.19	3 0.033	•3 U-/6/		
271	6 64 5	16 1010	9-6208	23.9912	23.4928	23.294	3 0.703	52 0.000	40 0.00300	
	u		10 / 7 - 2	24 0741	22 2607	22.045	2 0.763	19 0.652	77 0.04045	
312	0.181	34.101	10.4308	17 5070	21 1142	20 444	4 0.315	41 0.419	17 0.61241	
200	0.100	34.101	11.1510	27.5070						
					STOLF SOLUTING					
290	LOWER	AND UPPER	BOUND SOCUTION	13 FOR #41319						
201	THE HORD	G	NT STRAIN	1.464555						
301	THE REAL	INSANT ENGL	AL FUT STRATE	. 0 107642						
2.74	THE REDU	MUMMI SAULY	ALCAI SIKAIN	0.10/312						
295	THE MEAN	EQUIVALENT	STRAIN	* 0.572067						
A States										
257				UPPER BOUND	SOLUTION		1	LOWER BO	UND SOLUTION	1
201					BELN ATE-PART	-		TELA STREET A	PAW/YIELD PARCE	111
675	COSPE OF 1	TELS JINESS	DRAW FUNCE	DRAW STRESS	HEAR 010-P4 63	a APPARENT P	Torre start	Tour / 10 10 10		
500	FRICTION	TONF/SQ IN)	(TONF)	(TONF/QS IN)	(TONF/SQ IN)	STRAIN S	TRESS RATIO	(TONF/SQ IN)	STRESS -STRE	32
1.0.1	0.100	15 79.00	4.2105	20.4743	34 . 6255	0.572067	0.96746	34.1018	0-3650 0-6	344
1	0	14 0101	9 7420	14 1668	12 7001	0.458434	0.484.95	34.1014	9-1569 0.5	431
2.46	0	10.9/7/			36.1773	0.7710000		14 1011	0 5171 0 6	427
2:3	040	37.0901	11-1224	27.7330	31-0298	0.131385	0.01001	14.1018	0.070	021
3.4	0.000	18.6272	15-2049	30.5967	29.3720	0-14-941	0.10034	34.1018	0.00/ 0.3	101
305	0.280	39.2259	13.3570	33.3079	27 . 6409	0.849132	0.70976	34.1018	0.6698 0.3	342
354	0.100	19.7201	14.2863	35.6253	26.4354	0.396774	0.06544	34.1018	0.7242 0.2	758

(b) Equivalent die semi-angle

```
'a<sub>e</sub>' = 8°
```

149 SEMI-JIE ANGLE = & DEGREES 150 DIE MLIGHT = 0.5447 INCHUS

154			· UPPER BOUND	SCLUTION FOR	POLTGONAL DRA				
156	PARAMETER	T SHEAR	FACTOR R(S)						
150	0.100		2-035796						
124	0.200		2.220902						
1:0	0.300		1.758706						
161	0.400		1 102741						
1	0.500		1.302703						
	0.300		0.0/3331						
102	0.000		0.007953						
124	0.710	k.	0.007396						
1:5	0.800		0.805672						
145	0.900		1.158330						
157	1.000		1 583750						
			1.3827.30						
170	GPTIMAL	T = 0.70	-		0-007396				
173	THE VALUE	OF F'(S)	= 57.52719	6					
176 177	RECUNDANT	STRAIN	0.126299	•					
179	THE MEAN	EQUIVALENT	STRAIN .	0.688195					
1*1	T-E HOROG	. COUTVALE	T STRAIN .	0.464555					
185	OF FRICTION	STRAIN	TIELD STRESS (TONF/SG IN)	DRAW FORCE (TONF)	DRAW STRESS P (TONF/SO IN)	CTONFISE IN)	DRAW POWER (H-POWER)	STRESS	MEAN-PRESS/TIELD STRESS RATIO
107	0.000	0.468195	37.3586	10-1101	25 2100	11 (101	10		
158	0.020	C.780443	38-1654	12 0385	10 0200		10.478	0.68520	1.16386
1:9	0.043	0.000120	10 1.11	11 5701	11 2102		12.237	0.30356	1.07876
150	0.050	0.000411	10 0501		33.0370	34-2203	13.317	0.90581	1.00527
191	0.640	3 307510	•0.0373	14.43.34	37.2404	37.7015	15.205	0.99684	0.94114
	0.030	4.774a10	+0-0202	10.1539	40.2826	35.9691	10.448	1.07327	0-48671
146	0.100	1.045000	41.1024	17.2506	43.0174	34-3568	17.564	1 15147	0 23444
									0.03400
176		THE L	OWER BOUND SI	CLUTION OF SE	TION DRAWING .				
100									
1 2 2	COEFFICIENT	TITCS SING	SS DRAW LOAD	O DRAW STRESS	DIE PRESSURE	PLUG PRESSUR	E DRAW/YIEL	SIFIG SIG	LO PLUG PATELO
2.30	OF FRICTION	CTONF/SQ 1	N) (TONF)	(TONF/SQ IN)	(TONF/SQ IN)	(TONF/SQ IN)	STRESS RATE	O STRESS	etaree
231	0.000	34.1013	5.4230	16.0170	27.7790	27.4505	0 44948	0 41/40	
2 02	0.320	34.1018	7-4854	18-0001	24 4292	24 3707	0.40700	0.01434	0.31082
203	0.643	14 . 1018	8 1718	31 0114	16 11/6	20.2/73	0-34/3/	0.77501	0.77061
204	0	31 1.742	0.3940	21-0350	23.1043	24-9955	0.01679	0.73792	0.73296
2.15	0 040	34.1010	4.2023	23.1470	23.4788	23.7924	0.67876	0,70315	0.69769
3.0.5	0.000	34-1010	10-0380	25.0315	22.3667	22.6650	0.73402	0.67054	0.66663
610	0.100	34.1018	10.7111	26.7100	21.8232	21.6078	0.78324	0.63994	0.63363
210	LOWER	AND UPPER B	OUND SOLUTION						
2.13	Tak worker								
2 14	THE NUMBER	EUULVALEN	I STRAIN # (1.404355					
- 14	THE REDUNC	PANT EQUIVA	LENT STRAIN	* 0.119364					
215	THE MEAN	BUIVALENT	STRAIN	. 0.543919					
			1990 (C. 1990)						
217									
3 1 .		a service and the	2245. 22240	UPPER BOUND	SOLUTION		1	LOVER BOUN	SCLUTION I
2	COEFF 3F 111	LD STRESS	DRAW FORCE	ORAW STRESS	MEAN DIE-PRESS	APPARENT PRES	STYLELD YTEL	D STRESS DRA	WITTELS PRESSINT
219	FRICTION (TO	NF/SG [N]	(TONF)	TONFIGS IN)	CTONE/SO THE	STRAIN STOC	S BATIO /TOP	Elto THI	TACKS _ CALSS/ 11
			TA ACTUDITY -			STRAIN SIKE	AATLO CTON	FISH THE S	THESS -STRESS
221	0.000	15 0.07	1 1200	30 0054					
222	6 30	33.7011	0.4205	20.4441	35.5115	0.583919 0	.98751 3	4.1018	0.3656 0.6344
		37.0201	9.4322	24.5183	33.8903	0.002189 0	.91531	4.1018	0
263	0.040	37.8710	11.0832	27.6380	32.3019	0.729794 0	**205	4 1018	0.13340
424	0.040	11.5003	12.1970	30.4154	10.7920	0 789774	30011		0.2179 0.4221
225	0.180	29.1149	13,1934	12.9000	20 1770	2 1/00/74		uis	0-3822 0-4178
226	0.103	19.0222	14 0891	16 1174	27.3//0	0.440081 0	./5066 3	4.1018	0.6395 0.3665
1222	100000		14-0071	33.1330	20.0002	0.886715 0	.70819 3	4.1018	0.4907 0.3093

CHAPTER 4

THE DERIVATION OF PROCESS PARAMETERS IN THE DRAWING OF POLYGONAL TUBE DIRECTLY FROM ROUND STOCK ON A CYLINDRICAL PLUG

4.1. INTRODUCTION

The method adopted for the experimental part of the project had two main objectives:

- A laboratory investigation of the relationship between the deformation occurring when drawing polygonal tube and the following parameters:
 - (i) the draw force
 - (ii) the plug force
 - (iii) the mean die pressure and the mean plug pressure
 - (iv) the mean coefficient of friction
 - (v) the mean equivalent strain and
 - (vi) the reduction of area.
- To optimize the drawing process for industrial applications based on the study of the inter-relationship of the following parameters:
 - (i) the shape of the deformation zone
 - (ii) the mean equivalent die semi-angle
 - (iii) the mean coefficient of friction and
 - (iv) the reduction of area achievable.

To fulfil the first objective, the draw force and the plug force were measured by two load cells at the tag holder and the rear of the drawbench respectively. In addition, another load cell was installed to measure the thrust at the die. The design of the load cells are presented in Appendices A-16 and A-17.

The mean coefficient of friction and the mean pressure were determined by two methods. In one method the values were established indirectly by estimating the redundant work occurring in the process and applying the apparent strain method of analysis; in the other method the values were determined directly and continuously by an instrumented split rotating die rig. The details of the two methods are given in section 4.2.

In the drawing of polygonal tube from round stock on a cylindrical plug, the geometry of the deforming zone through which an entirely circular section transforms partly to a polygonal tube in a single pass forms the core of the problem. A gradual transformation of the round stock to the final section with minimal energy dissipation is critical. The second objective was concerned, therefore, with the investigations of different die deforming profiles to give the required shape of the tube. In this thesis, four different die deforming shapes, shown in figure 4.1, were used. To establish the optimum die profile, draw tests were carried out on the different die passages, maintaining the same speed and the lubricant. The experimental work showed that the die profile exhibiting the least amount of work done also produced a polygonal tube with sharp corners and better surface finish. Dies of the same profile but different semi-angles were used in further tests and the resulting loads compared, to establish the optimum equivalent die semi-angle. An extensive discussion on the design of the dies for the drawing of polygonal sections directly from round stock is given in section 4.3.

The selection of the drawing tube material, the design of the corresponding plugs and the selection of the drawing lubricant are presented in detail in sections 4.4, 4.5 and 4.6 respectively.

4.2. THE MEAN COEFFICIENT OF FRICTION AND THE MEAN DIE PRESSURE

4.2.1. Determination of the mean coefficient of friction and the mean die pressure from the estimated redundant work

- 76 -

(a) Pyramidical shape die

11

(b) Elliptical plane surface die

(c) Triangular plane surface die

- (d) Inverted parabolic plane surface die
- Fig. 4.1 Isometric drawing of the general features of the four basic shapes of the die deforming zone for the direct drawing of polygonal (square) tube from round.

4.2.1.1. Theoretical analysis

As already discussed in section 3.2.7, and shown in figure 3.5, the total work W, expended in a particular deformation can be regarded as a sum of three components:

$$W = W_{h} + W_{r} + W_{f}$$
(4.1)

where:

- W_h represents the work component due to homogeneous plastic deformation,
- W the component due to redundant deformation, i.e. the internal distortion inessential to the change of shape and
- W is the component due to friction at the tool/workpiece f interface.

 W_h is derived simply from the stress-strain curve with the equivalent strain corresponding to the reduction of area. W, the total work per unit volume of the metal is given by the draw stress and the only two unknowns are W_r and W_f . However, W_r and W_f are not entirely separable because the flow constraint will be influenced by the friction at the tool surface; so W_r will depend upon the coefficient of friction. But in cold drawing there is negligible interaction between redundant work and friction and therefore, the measurement of either W_r or W_f leads to the derivation of the other.

If stress-strain tests on the undrawn material are performed and the resulting true stress-strain curve compared with that for the drawn material, the curve for the drawn metal rises above that of the undrawn material. So when the curve for the drawn metal is translated in the direction of the increasing strain until the two

- 78 -

curves fit, the amount by which the curve has moved may be taken to represent the redundant strain and the redundant work W_r , is calculated from the displaced area under the curve of the undrawn metal (74, 75). This graphical method of fitting the two curves is subject to error if the metal does not work-harden rapidly. Consequently, to overcome this weakness in the technique, the master stress-strain curve is expressed mathematically and the mean redundant strain and the redundant work in the drawing process are deduced analytically. The semi-analytical method adopted in this investigation was developed by Basily and Sansome (76) to determine the same parameters in the drawing of polygonal rod from round.

4.2.1.2. Derivation of the mean coefficient of friction and the mean die pressure.

If the stress-strain curve of the undrawn metal fits the exponential law, $\sigma = \sigma_0 \varepsilon^n$, then the energy components can be expressed thus:

$$W_{h} = \int_{0}^{\varepsilon_{h}} \sigma d\varepsilon = \frac{\sigma_{o} \varepsilon_{h}^{n+1}}{(n+1)}$$
(a)

$$W_{r} = \int_{\varepsilon_{h}}^{\varepsilon_{m}} \sigma d\varepsilon = \frac{\sigma_{o}}{n+1} \left\{ \varepsilon_{m}^{n+1} - \varepsilon_{h}^{n+1} \right\}$$
 (b) (4.2)

$$W_{f} = \int_{\varepsilon_{m}}^{\varepsilon_{a}} \sigma d\varepsilon = W - \frac{\sigma_{o}}{n+1} \varepsilon_{m}^{n+1}$$
(c)

where ε_h , ε_m and ε_a are the homogeneous, the mean equivalent and the apparent strain respectively.

The homogeneous strain,
$$\varepsilon_{h} = \ln\left(\frac{1}{1-r}\right)$$
 (4.3)

The mean equivalent strain ε_m is the actual strain occurring in the material after drawing taking into account the homogeneous and the redundant work during the drawing operation. This strain corresponds to the flow stress of the drawn metal given by:

$$\varepsilon_{\rm m} = \left(\frac{\sigma_{\rm f}}{\sigma_{\rm o}}\right)^{\frac{1}{\rm n}} \tag{4.4}$$

The flow stress is obtained from the tension tests conducted on the drawn metal.

The apparent strain ε_a , is an imaginary equivalent strain which bounds an area under the stress-strain diagram equal to the total work done per unit volume of the metal, i.e.

$$\varepsilon_{a} = \left\{ \left(\frac{W}{\sigma_{o}} \right) (n+1) \right\}^{\frac{1}{(n+1)}}$$
(4.5)

Substituting values of ε_h , ε_m and ε_a in the equations (4.2), the energy components become thus:

$$W_{h} = \frac{\sigma_{o}}{n+1} \left\{ \ln \left(\frac{1}{1-r} \right) \right\}^{n+1}$$
(a)

$$W_{r} = \frac{\sigma_{o}}{n+1} \left\{ \begin{pmatrix} \frac{\sigma_{f}}{\sigma_{o}} \end{pmatrix}^{n+1} & - \left[\ln \left(\frac{1}{1-r} \right) \right]^{n+1} \right\}$$
 (b) (4.6)

$$W_{f} = W - \frac{\sigma_{o}}{n+1} \left(\frac{\sigma_{f}}{\sigma_{o}}\right)$$
(c)

It is assumed that Coulomb friction obtains in cold drawing and it is postulated that a mean coefficient of friction and a mean

- 80 -

pressure occur at both the die/tube and the plug/tube sliding surfaces. By considering the equilibrium of the horizontal forces of the whole deforming zone (figure 3.4), the work done per unit volume is given by:

$$W = \frac{1}{A_{a}} \cdot p_{m} \left\{ \sum (\mu_{m} \cos \alpha_{s} + \sin \alpha_{s}) dA_{s_{1}} + \sum (\mu_{m} \cos \alpha_{c} + \sin \alpha_{c}) dA_{c} + \sum \mu_{m} dA_{s_{2}} \right\}$$
(4.7)

Similarly, the frictional work per unit volume can be obtained,

$$W_{f} = \widetilde{\mu}_{m} \cdot v_{m} \cdot U_{b} \left\{ \sum \left(\frac{U_{\bar{s}_{1}}}{U_{b}} \right) dA_{s_{1}} + \sum \left(\frac{U_{s_{c}}}{U_{b}} \right) dA_{c} + \sum \left(\frac{U_{s_{2}}}{U_{b}} \right) dA_{s_{2}} \right\} \frac{1}{VOL}$$

$$(4.8)$$

Dividing equation (4.7) by equation (4.8) to eliminate p_m gives:

$$\frac{W}{W_{f}} = \frac{1}{A_{a}} \left\{ \sum (\mu_{m} \cos\alpha_{s} + \sin\alpha_{s}) dA_{s_{1}} + \sum (\mu_{m} \cos\alpha_{c} + \frac{\sin\alpha_{c}) dA_{c} + \sum \mu_{m} dA_{s_{2}}}{\mu_{m} \cdot U_{b} \left\{ \sum \left(\frac{Us_{1}}{U_{b}} \right) dA_{s_{1}} + \sum \left(\frac{Us_{c}}{U_{b}} \right) dA_{c} + \sum \left(\frac{Us_{2}}{U_{b}} \right) dA_{s_{2}} \right\} - \sum \left(\frac{Us_{2}}{U_{b}} \right) dA_{s_{2}} \right\}$$

$$(4.9)$$

The above equation simplifies to yield:

$$\mu_{\rm m} = \frac{W_{\rm f}}{A_{\rm a}} \sum (\sin\alpha_{\rm s} dA_{\rm s_{1}} + \sin\alpha_{\rm c} dA_{\rm c}) - \frac{W_{\rm b}}{W \cdot U_{\rm b}} \left\{ \sum \left[\left(\frac{U_{\rm s_{1}}}{U_{\rm b}} \right) dA_{\rm s_{1}} + \left(\frac{U_{\rm c}}{U_{\rm b}} \right) dA_{\rm c} + \left(\frac{U_{\rm s_{2}}}{U_{\rm b}} \right) dA_{\rm s_{2}} \right] \right\} \cdot \frac{1}{VOL} - \frac{W_{\rm f}}{A_{\rm a}} \left\{ \sum \left(\cos\alpha_{\rm s} dA_{\rm s_{1}} + \cos\alpha_{\rm c} dA_{\rm c} + dA_{\rm s_{2}} \right) \right\}$$
(4.10)

The mean die pressure is calculated from either equation (4.7) or (4.8).

4.2.2. Determination of the mean coefficient of friction and the mean die pressure by the split rotating die method

4.2.2.1. Introduction

The direct measurement of the mean coefficient of friction and the mean die pressure for the drawing of polygonal tube from round on a cylindfi cal plug was made using the split rotating die rig (see Plates: A-12.1, A-12.2 and 8.11) designed by Basily and Sansome (2). A brief description of the general features is given in the Appendix A-12.

The most unusual feature of the split rotating die rig is the die inserts. The inserts, equal to the number of faces in the polygonal section required, enclose a convergent die passage while their exterior surfaces form a conical surface around which a conical die rotates. A set of six such die tips designed to form a pyramidical die passage is shown in Plate 8.10 and on page All7. The flexibility of the rotating die rig allows for the investigations of different polygonal sections, equivalent die semi-angles and the input stock with a range of outside diameters.

The forces on both the die insert (Q) and the conical die (R)

were continuously measured by load cells installed in the rig. The mean coefficient of friction and the mean die pressure were derived from the two measured forces.

4.2.2.2. The general derivation of the mean coefficient of

friction and the mean pressure from the measurable forces

The reason for rotating the conical die relative to the die inserts is to rotate the friction vector between the conical die and the die inserts through 90° relative to the draw axis, i.e. the component of the friction force between the conical die and the die inserts along the axis of the tube vanishes. The general principle of the rotating die is illustrated in figure 4.2.

By considering the equilibrium of the forces in the direction of the tube axis, the mean coefficient of friction and the mean die pressure are determined. Resolving forces in the Z and X directions of the exploded diagram, figure 4.2 (b):

(iv) PLUG

 $\sum F_{z} = 0, - F_{p} + F_{34} = 0$ For Coulomb friction, $F_{34} = \mu_{34} N_{34}$... $F_{p} = \mu_{34} N_{34}$

(iii) TUBE

$$\sum F_{z} = 0,$$

$$P - F_{34} - F_{23} \cos \alpha_{s} - N_{23} \sin \alpha_{s} = 0$$
where, $F_{23} = \mu_{23}N_{23}$

$$\therefore P - \mu_{34}N_{34} - (\mu_{23} \cos \alpha_{s} + \sin \alpha_{s}) N_{23} = 0$$
(4.12)

(4.11)

Q

(a)

(11)

Fig. 4.2 The general principles of the split rotating die for the direct determination of the mean coefficient of friction.

$$\sum F_{x} = 0,$$

$$N_{34} - N_{23} \cos \alpha_{s} + F_{23} \sin \alpha_{s} = 0$$
or:
$$N_{34} - N_{23} \cos \alpha_{s} + \mu_{23} N_{23} \sin \alpha_{s} = 0$$

$$\therefore N_{34} - (\cos \alpha_{s} - \mu_{23} \sin \alpha_{s}) N_{23} = 0$$
(4.13)

(ii) DIE TIPS

$$\sum F_{z} = 0$$

- Q + F_{23} cos\alpha_{s} + N_{23} sin\alpha_{s} - N_{12} sin\alpha_{d} = 0
or:
- Q + (\mu_{23} cos\alpha_{s} + sin\alpha_{s}) N_{23} - N_{12} sin\alpha_{d} = 0 (4.14)
$$\sum F_{y} = 0,$$

N₂₃(cos\alpha_{s} - \mu_{23} sin\alpha_{s}) - N_{12} cos\alpha_{d} = 0 (4.15)

From figure 4.2(a), the equilibrium of forces in the horizontal direction gives:

$$P - Q - R - F_{p} = 0 (4.16)$$

Equations (4.11), (4.12), (4.13), (4.14) and (4.15) were solved simultaneously to yield:

$$\frac{P}{Q} (\mu_{23} \cos \alpha_{s} + \sin \alpha_{s} - \tan \alpha_{d} (\cos \alpha_{s} - \mu_{23} \sin \alpha_{s}))$$
$$= \mu_{34} (\cos \alpha_{s} - \mu_{23} \sin \alpha_{s}) - (\mu_{23} \cos \alpha_{s} + \sin \alpha_{s})$$
(4.17)

Assuming $\mu_{12} = \mu_{23} = \mu_{34} = \mu$, equation (4.17) reduces to:

$$\mu^{2} + \frac{P}{Q} \left(\frac{1}{\tan \alpha_{s}} + \tan \alpha_{d} \right) \mu + \frac{P}{Q} \left(1 - \frac{\tan \alpha_{d}}{\tan \alpha_{s}} \right) + 1 = 0$$
(4.18)

The solution of the quadratic equation yields

$$\mu = -b \pm \sqrt{b^2 - 4ac}$$
(4.19)

where: a = 1

$$b = \frac{P}{Q} \left(\frac{1}{\tan \alpha_{s}} + \tan \alpha_{d} \right)$$

$$c = \frac{P}{Q} \left(1 - \frac{\tan \alpha_{d}}{\tan \alpha_{s}} \right)$$

$$(4.20)$$

)

and
$$\frac{P}{Q} = 1 + \frac{R}{Q} + \frac{F}{Q}$$
 (4.21)

The mean pressure:

$$p_{\rm m} = \frac{N_3}{A_{\rm s}}$$
$$= \frac{P}{(1-\mu^2)\sin\alpha_{\rm s}} \frac{1}{A_{\rm s}}$$
(4.22)

where:
$$A_{g} = \text{tube-die tips contact area}$$

= $N_{g} \cdot \frac{R_{b}^{2}}{4} \cdot \frac{1}{\sin \alpha_{g}} \left\{ -\sin 2\theta_{1} + 2\left(\frac{\pi}{2} - \theta_{1}\right) \right\}$ (4.23)

for
$$\theta_1 = \sin^{-1} \left\{ 1 - \left(\frac{L}{R_b}\right) + \tan \alpha_s \right\}$$
 (4.24)

Using figures 4.2b(i), the applied torque (T_a) is given by:

$$T_{a} = \bar{r} \mu \frac{P}{\cos \alpha_{d}} \left\{ \frac{1}{1 - \frac{\mu + \tan \alpha_{s}}{1 - \mu \tan \alpha_{d}}} \right\}$$
(4.25)

where \bar{r} is the mean radius of the conical die.

The specifications of the split rotating dies used in the investigations are:

(4.26)

(4.27)

(a) for the square die tips

$$\alpha_{d} = 8.1^{\circ}$$
$$\alpha_{s} = 5.7^{\circ}$$
$$\bar{r} = 0.755$$

(b) for the hexagonal die tips

in

$$\alpha_{d} = 8.1^{\circ}$$
$$\alpha_{s} = 6.7^{\circ}$$
$$\bar{r} = 0.755 \text{ in}$$

4.3. DIES FOR DRAWING POLYGONAL TUBES FROM ROUND STOCK ON A CYLINDRICAL PLUG

In order to establish the effectiveness of the theoretical work, dies for the drawing of polygonal tube directly from round stock on a cylindrical plug were designed. It was shown in the bar drawing work (2), when a circular workpiece transformed to a polygonal section in a single pass, that the factor having the greatest effect on the draw forces was the shape of the deformation zone. The solid bar represents the limiting condition of a tube, the relative wall thickness being $t_b/D_b = 0.5$. Thus it asserts that in the process of tube drawing where a circular cross-section deforms through a single die to a polygonal tube with the bore remaining unchanged, the factor having the greatest influence on the die design is the geometry of the deforming zone. Another factor that minimises the draw force for the combination of the drawing lubricant and the reduction of area achieved, is the optimum die angle. However, for the direct drawing die the conventional term semicone angle is inapplicable, since the actual die semi-angle changes from a minimum at the diagonals of the die to a maximum at the mid sides of the section. Additionally, the semi-angles are dependent on the shape of the die deforming passage. The term equivalent semi-angle, ' α_e ' has been defined as the semi-angle of a conical die for the axisymmetric tube drawing which produces the same reduction of area as the polygonal tube drawing die, the die lengths being equal and the bore remaining unchanged in both cases. This definition facilitates the comparison of the polygonal tube drawing with the same number of sides and of different number of sides as well. Since close pass drawing is assumed, the definition applies to the drawing of solid sections from round too. Details of the equivalent die semi-angle are discussed in Appendix A-10.

4.3.1 Deforming shapes of the polygonal tube drawing die

The transformation of a circular tube at the entry plane of the die to a polygonal tube at the exit on a cylindrical plug, can take various forms during its progress through the deformation passage. The four basic shapes, illustrated in figure 4.1, take into account the method of manufacture, industrial interest and the applicability of the theoretical analyses to the die geometry.

4.3.1.1 Pyramidical plane shape die (Shape A)

The shape of the deformation zone of this die, which is drawing comparable with section to section used in industry and shown in figure 4.1(a), is generated from the number of planes which is equal to the number of sides of the polygonal tube. These planes form a truncated pyramid having sides inclined equally to the tube axis. The angle of the inclination of each plane to

- 88 -

the tube axis depends on the outer diameter of the tube for a given die length and the equivalent semi-angle ' α_2 '.

4.3.1.2 Elliptical plane surface die (Shape B)

The shape of the deforming zone of this die, Fig. 4.1(b) is generated from a number of inclined planes which is equal to the number of sides of the polygonal tube required. Each of these planes cut the cone in an ellipse. In this way the deformation zone will be formed from the elliptical planes and the remaining portions of the main cone surface. The inclination of each plane to the tube axis depends on the die length for the given tube outer diameter and the equivalent semi-angle.

4.3.1.3 Triangular plane surface die (Shape C)

The shape of the deforming zone, Fig. 4.1(c), is generated by combining N_s number of asymmetric cones around the tube axis. The apex of each cone is placed at the corner of the polygonal tube required in such a way that the cones have a common base approximating to a circle in the plane normal to the tube axis. (The diameter of the approximate circles corresponds to that of the incoming tube.) The remaining gap between successive cones will take the shape of triangular plane. The angle of inclination of these planes and the geometrical parameters of the cones depend on the die length for a given tube outer diameter and the equivalent semi-angle.

4.3.1.4. Inverted parabolic plane surface die (Shape D)

The shape of the deforming zone, Fig. 4.1(d), is generated from the axial intersection of a conical surface with a prism which forms the required polygon. Each plane surface of the polygonal tube intersects the main cone in a parabola. The main cone angle depends on the die length for a given tube outer diameter and the equivalent

- 89 -

semi-angle.

4.3.2 Dies used in the polygonal tube drawing experiments

4.3.2.1 Introduction

The die deforming shapes A and D, illustrated in figure 4.1, allow different inlet diameters to be drawn while maintaining their deforming pattern but with increasing inlet diameters the equivalent die semi-angle will increase. The deforming die passages B and C are fixed for a given outside diameter tubing. So, if a larger outside diameter tube is drawn through the die, i.e. larger than that for which the die was designed, a new combined mode of deformation occurs.

The dies with the four basic shapes were used in the preliminary drawing tests to establish the optimum profile. This set of dies originally was designed for polygonal bar drawing from round stock (2) and is summarized in Table A-11 on page All3.

The die passages B and C are designed to provide a gradual transition in shape from the round section at the die entry to the final shape of the polygon at the exit. In addition to exhibiting a relatively lower drawing force, the resulting drawn tube had sharper corners compared with the shapes A and D.

The optimal deforming profile, the elliptical shape B, was selected for the new set of dies in the investigation of the polygonal tube drawing from round on a cylindrical plug. From the established theory, an optimal equivalent die semi-angle of 8[°] was arrived at for the range of tubing available for the experiments. The shapes of section tubes investigated were the square, the hexagon, the octagon and the decagon. The design parameters and the mechanical drawings of these dies are given in Appendix A-10.

4.3.2.2. Die manufacture

Tungsten carbide is an excellent die material because of its resistance to wear, its ability to maintain a high polish and its reluctance to pick-up; it also reduces the variation in friction to a minimum for most workpiece metals. Normally, in the laboratory by comparison with the industry, relatively few tubes are drawn for experimental purposes and therefore, the use of tungsten carbide is rarely warranted. Tool steel (ARNE) is readily available, is less expensive, and it is cheaper to machine to the different die shapes compared with tungsten carbide.

A die insert of alloy steel was shrink fitted into a bolster of EN24. The three dies (mechanical drawings shown in Appendix A-10.2) were manufactured by Aston Services Ltd.

4.4. MATERIAL OF ROUND STOCK USED IN THE TESTS

4.4.1 Selection of the tubing

Mild steel was selected as the appropriate material for the tubes. The choice is in line with the previous research on the mechanics of drawing polygonal bars from round and the drawing of polygonal tube from round on the corresponding polygonal plug. Therefore, for comparisons to be drawn, mild steel was again selected as the experimental metal.

Mild steel has excellent workability, a relatively low work hardening rate and is widely used since it is relatively inexpensive. Another factor is that if expensive low strength non-ferrous material had been selected, large diameter tube would have been necessary to operate the drawbench under reasonable loads. High strength nonferrous material has the drawback of not being able to withstand large strains, i.e. large reductions of area.
The constituent elements of the mild steel for the tubing are given in Appendix A-3.1.

In selecting the sizes of the tubes for the experimental investigations, the geometrical dimensions of the outgoing stock were fixed. The major diagonal of the polygonal tube H_a , was fixed at 1 inch and close pass drawing was used in the calculations. Using the geometrical relations of the cross-sections at the entry and the exit to the die given in Appendix A-1, the reduction of area can be expressed thus:

$$'r' = 1 - \frac{1/(t_b/H_a)^2 \left(\text{SPARAM} - \frac{\pi}{2} (1-2\kappa)^2 \right)}{\pi \left(\frac{1}{t_b}/D_b \right) - 1}$$
(4.28)

SPARAM is the geometrical factor for the outgoing polygonal section,

N cos β .sin $\beta/4$

H is the diagonal length of the polygon and

 κ is a factor expressing the maximum wall thickness in terms of

the diagonal length.

A range of tubes in commercial catalogues was selected and a table of the gauge (t_b) against the outside diameter (D_b) was drawn for each polygonal section showing the reduction of area. Other information readily available was the cross-section area of the tube, the internal diameter, the thickness of the wall along the diagonal of the drawn section, and the ratio of the gauge to the outside diameter (t_b/D_b) . See Appendix A-2.

To minimise the number of tube sizes in the tests, graphs of the number of sides of the polygon (N_s) versus the reduction of area were drawn. A family of t_b/D_b curves for a fixed outside diameter of 1 in, 1 1/16 in, 1 1/8 in, 1 3/16 in and 1 1/4 in are shown in Appendix $(p \ A8)$ A-2. The tensile yield stress eventually limits the reduction of area

- 92 -

per pass. In practice it is not usual to draw tubes with over 50% reduction of area. Therefore, this criterion was used to reduce the number of tube sizes required. It was noted that in order to draw square sections at a reasonably low reduction of area, thick walled tubing would be required. However, for economic reasons, only those sizes readily in stock were used in the experiments (Table A-3.1 on page A10). Consequently, to obtain feasible reductions of area for some sections, for example the square and the hexagon, some amount of sink was anticipated.

One batch of tubes for the preliminary tests was obtained from 'Lebas Tube Ltd'. The seamless tubes specifically ordered for drawing experiments were cold drawn, pickled and limed before delivery. The tubes were cut into lengths of $4\frac{1}{2}$ feet and labelled.

The second batch of tubes, mainly from 'British and General Tube Co.Ltd.' was delivered as drawn, cut into short lengths of $2\frac{1}{2}$ to 3 ft, labelled and separate arrangements made for annealing and swaging.

One set of tubes for the drawing of square sections was swaged to a 0.69 in diameter for a length of 8 in; the other batch used for the drawing of hexagonal, octagonal, decagonal and round sections were push-pointed to a 0.85 in diameter for a length of 8 in. The swaging of the thin walled tubes was carried out on the Denison testing machine; a die specially designed for this purpose is shown on page Al67. 4.4.2 The stress-strain relationship of the tube material

The power law $\sigma = \sigma_0 \varepsilon^n$, expressing the true stress-strain relation of the tubular material (79, 80) can be re-written: $\ln(\sigma) = \ln(\sigma_0) + n \ln(\varepsilon)$ (4.29)

From the tension tests, if the graph of $\ln(\sigma)$ vs $\ln(\varepsilon)$ is plotted and the initial 5% plastic strain disregarded as nonrepresentative, a reasonably straight line is obtained. The slope of the line gives the strain hardening exponent 'n' which is numerically equal to the plastic instability strain; the value of ' σ_{o} ' is obtained by extrapolating the same line to intersect the stress axis at unit strain.

The uniaxial stress-strain tests were carried out on full sections of the tube. The tubular specimens, plugged at the ends, were gripped between the jaws of the Denison testing machine. The Baldwin extensometer was used together with the Denison chart servomechanism for the plotting of a load-elongation diagram. The true stress-strain curve of the mild steel for the tubing, reproduced from equation (4.29), is shown in figure 4.3. These curves are extrapolated from strain values of 0.1.

4.5 Plugs

Close pass occurs when there is no sink on to the plug. Thus the plug must fit the bore prior to drawing. However, in practice it is difficult to obtain a close fit between the tube and the plug. A reduction in the outer diameter following sinking will produce a condition of close pass in the deforming zone of the tool.

From the table of selected tubes, a set of nine plugs was designed for the nominal diameters of 3/4 in, 11/16 in, 5/8 in, 9/16 in, 1/2 in, 7/16 in, 3/8 in, 5/16 in and 1/4 in. The nominal

- 94 -

- 95 -

diameters were ground to a 0.005 in to 0.010 in clearance.

As a first attempt, plugs of nominal diameters 1/2 in, 9/16 in, 5/8 in, 11/16 in, and 3/4 in were manufactured from Sverker 3. This is a high carbon chromium alloy tool steel with tungsten, recommended for applications demanding maximum wear resistance, and hence little variation of the coefficient of friction. The plugs were heat treated to 64 RC, ground and lapped in the Departmental workshop. The lengths of the plugs were such that their positions in the die could be adjusted to protrude by 1/8 in at the exit plane and not less than 1/8 in at the entry for the range of tube sizes under investigation. The 1/2 in diameter plug was made exceptionally longer to satisfy the above conditions when drawing with the split rotating die. A silver steel sleeve was soldered onto the end of a 3/8 in diameter high speed steel rod to hold the plugs. The plugs with 3/8 in clearance bore slid through the bar from the opposite end. The plug backstop and the plugs are shown in Appendix A-17, page A168. This plug bar arrangement failed to draw the higher reductions of area; the plug force was higher than expected and at the loads the plug bar material, high speed steel is notch sensitive.

As a result of this experience, all the plugs were manufactured integral with the bars and were ground to size (see Appendix A-17, page A169). The plug ends were heat treated to the appropriate hardness to resist wear and attain high compressive strength. The special plug backstop designed to withstand about 5 tonf, facilitated the adjustment of the plug position in the die.

4.6 LUBRICANTS

The lubricant to be used in tube drawing is expected to meet favourably the following conditions:

must generally separate the surfaces; must provide low coefficient of friction; must generally be non-corrosive and non-toxic; must not breakdown at the stress and the localised temperatures; must generally be readily removed; and must not be abrasive.

The drawing oil. TD50, which is widely used in industry in arduous conditions had been used successfully in the investigations of drawing polygonal sections from round bar, and has therefore been this adopted for tube drawing. The effectiveness of soap and oil 717 as Λ lubricants in the drawing of polygonal sections directly from round stock had been extensively reported (2). INSTRUMENTATION

CHAPTER 5

5.1 INTRODUCTION

The following quantities were measured on the "Brookes" bench:

(i) the draw force

(ii) the plug force

(iii) the draw speed

(iv) the axial thrust on the rotating conical die

(v) the drag force on the die inserts and

(vi) the rotational speed of the conical die.

been The following quantities were to have measured on the "Sheffield" drawbench[†]:

(i) the draw force

(ii) the plug force

(iii) the draw speed and

(vi) the axial thrust on the die.

Some of the above quantities were not directly involved in the calculations of the results for the direct drawing of polygonal tubes from round stock. However, to be able to compare results, it was important to keep these quantities fixed throughout the experiments. For example, in the split rotating die experiment, the rotational speed of the conical die had no direct effect on the balance of forces in the axial direction, but the frictional force changed at different speeds;

+ Footnote

The load and draw speed transducers on the two benches were similar; however, the instruments on the "Sheffield" rig were not calibrated and the entire experimental work was performed on the operating 'Brookes' Drawbench (see Appendix A-16). the generated heat affected the viscosity of the lubricant. Therefore, by keeping the record of the rotational speed the general effect could be estimated.

Although it was envisaged that the measurement of the different drawing parameters would be made essentially under steady conditions, the data recording was continuous. An ultra-violet beam recorder with d.c. transducers was used, and continuously screened cables avoided the cross-coupling effect. The ten-turn wirewound resistors with good temperature stability provided smooth variation and ensured accurate control of the null balance.

The bridge circuit of each transducer consisted of a set of metal foil strain gauges from the same batch. However, owing to the built-in inequality on resistance or the tolerance, a

trimming resistance was generally essential for the initial bridge balance.

A high degree of repeatability and accuracy is required in measuring drawing parameters in order that a reliable comparison of experimental and theoretical solutions can be made. The testing machines used in the calibration of the load transducers had been maintained according to B.S. 1610: 1964 ('load verification of testing machines') and B.S. 5781: 1979 ('specification for measurement and calibration systems').

The load cell at the tag holder and the cup load cell of the split rotating die rig had foil gauges for the measurement of torques in addition to the axial loads. However, calibration of the torque transducer was not carried out in each case.

The calibration curves of the load transducers are given in Appendix A-7.

- 99 -

5.2 THE FORCE/TORQUE TRANSDUCER AT THE TAG HOLDER

The combined load cell of the rod type installed on the bench measured the draw force and the rotational torque on the tag when determining the mean coefficient of friction using the split rotating die rig. The bridge circuit for the transducer is given in Figure 5.1.

Calibration of the load cell under the direct tensile load was done on a 50 tonf range of the "Denison" testing hydraulic machine. Special adaptors, shown on pages Al61, Al62 and Al63, were required. Readings were taken for both the increasing and decreasing load. The calibration curve is shown in Figure A-7.1.

5.3 THE PLUG FORCE TRANSDUCER

The bridge circuit for the transducer is shown in Figure 5.2. The output signal of the torque bridge passed through a 'SGA 300 KAP' amplifier. This type of amplifier with zero setting device provided a bridge supply voltage which was virtually independent of the source. In addition the device had potentiometers for zero, span and bridge supply voltage adjustments.

The load transducer was calibrated under the compressive force on the "Denison" hydraulic testing machine for both an increasing and a decreasing load. The calibration curve is given in Figure A-7.2.

5.4 THE AXIAL FORCE TRANSDUCER - THE RING TYPE

The die load cell, described in Section A-16.3.2.1.3 and the load cell for the measurement of the axial thrust on the conical die of the split rotating die rig (described in Appendix A-12), were formed from a continuous ring which strained in terms of bending and torsion when subjected to an axial thrust.

- 100 -

torque bridge

force bridge

Fig. 5.1 Circuit diagram of the tag load transducers.

Fig. 5.2 Circuit diagram of the plug load transducer.

Fig. 5.3 Strain gauge arrangement and the circuit diagrams of the ring load cell in the split rotating die rig.

The bending stress and the strain distribution were derived in Ref (2).

The active strain gauges were bonded in positions of maximum bending moment derived from the stress analysis. Dummy gauges were bonded also on both the outside and the inside surfaces of the ring in positions of zero bending moment. The dummy gauges compensated for both the temperature and the residual bending strains. The arrangement of the gauges as shown in Figure 5.3, compensated for the offset loading.

The load cell was calibrated under the direct compressive force on the "Denison" testing machine. Readings were taken for both an increasing and a decreasing load. The calibration curve for the transducer is given in Figure A-7.3.

5.5 THE CUP LOAD CELL - THE FORCE/TORQUE TRANSDUCER

The cup load cell of the split rotating die rig was designed to measure the drag force on the die inserts and the rotational torque (see Appendix A-12). The bridge circuits for this combined force/ torque transducer are shown in Figure 5.4.

The calibration of the axial force bridge was carried out under the compressive load on the "Denison" testing machine.

5.6 DRAW SPEED MEASUREMENT

The control valve on the "Brookes" drawbench was calibrated coarsely and for a more accurate speed check, a manual speed calibration was found to be adequate, since the draw load is not critically dependent on the draw speed. Two marks were made on the drawbench at a known distance apart. The time taken to travel this

(a) Torque bridge

- (b) Axial force bridge
- Fig. 5.4 Circuit diagram of the cup load cell of split rotating die rig.

distance was measured using a stop-watch. The mean speed was calculated and checked against the dial value on the control valve.

5.7 ROTATIONAL SPEED MEASUREMENT

The speed of the conical die installed in the split rotating die rig was measured through the tachogenerator arrangement shown in Figure 5.5. The drive of the tachogenerator was provided by the output shaft of the variable speed driving unit while the drive for the conical die was provided by the reduction gear unit (see Plate A-12.2).

The calibration of the rotational speed transducer was carried out on the drawbench. The speed of the output shaft of the gear reduction unit was derived using a stop-watch and a circular plate rotating together with the shaft. The dial reading of the variable speed belt drive was noted and the corresponding deflexion of the galvanometer of the tachogenerator circuit was recorded on the U-V chart. A reproducible deflexion-speed curve was obtained as shown in Figure A-7.5.

Figure 5.5. Rotational speed transducer

CHAPTER 6

EXPERIMENTAL PROCEDURE

6. EXPERIMENTAL PROCEDURE

Before the start of the experiments the instruments were allowed to warm up for about one hour. The supply voltage was set at the appropriate value of 6.5 or 9.5 volts and checked periodically against a digital voltmeter. The bridge circuits were balanced.

The tubing was examined visually; the external and the internal surfaces were cleaned with 'Inhibisol' to remove the grease and any abrasive particles. The tubular specimen was allowed to dry, inclined at an angle, and some of the lubricant TD 50 poured into the bore. To ensure effective lubrication, the tube was rotated continuously when applying the oil. The outside of the tube was brushed with oil so as to leave an excess coat of the lubricant at the die entry.

The plug bar length was adjusted such that the plug end just protruded by about 1/16 inch beyond the throat when the die was in position. The tagged end of the drawing tube was gripped by the wedge-shaped jaw of the dog assembly before inserting the plug.

The drawn tube was allowed to cool, examined for defects, measured and labelled. The information recorded immediately after each drawing test included the specification of the die, the input stock dimensions, the plug size, the reduction of area, the draw speed, the date and the number of the test, brief notes on the quality of the drawn product in the light of the conditions of the die and the plug, etc. The records proved invaluable later in the project for reference and identification of the product.

The drawn tube was sawn into lengths appropriate for tensile tests to determine the mean flow stress. The tensile tests were carried out on the polygonal tube sections gripped between the jaws of the 'Denison' hydraulic testing machine. Short lengths of mild steel bars machined to the size of the tube bore plugged the ends of the test specimen.

In some tests, in order to investigate the transition zone from round to the polygonal tube, the drawing was stopped leaving about six inches of the tube undrawn. Most of the drawn tube was sawn off leaving a length of about four inches. The abrasive edge was filed off and the piece cleaned. Before retracting it from the die, the lubricant was applied generously to the drawn tube to reduce the die wear and facilitate extraction. Finally, the plug was knocked out of the tube.

In the measurement of the mean coefficient of friction and the mean die pressure using the split rotating die, the tubing was prepared as described in paragraph 2. The conical die and the die tips were cleaned, dried and lubricated using the same oil as that in the other tests. As in the previous tests, the position of the plug with respect to the die exit plane was adjusted to project by about 1/16 inch.

The tube was drawn for a short length before the rotary drive was switched on while the drawing continued. Different rotor speeds could be set by drawing and stopping at intervals of one foot. Before the end of the undrawn tube was reached, the rotary drive was switched off and the drawing stopped. The die inserts were easily removed from the casing of the rotating rig. CHAPTER 7

RESULTS

g. 7.1 Variation of the mean draw stress with the die semi-angle and coefficient of friction for the upper and lower bound solutions in the drawing of square tube directly from round.

109

Fig. 7.2 Variation of the mean draw stress with the die semi-angle and the reduction of area for the upper and lower bound solutions in the drawing of square tube directly from round.

Fig. 7.3 Comparison between the experimental and theoretical draw stress from the upper and lower bound solutions in the drawing of square tube directly from round stock. Fig. 7.4 Variation of the mean pressure with reduction of area and coefficient of friction for the upper and lower bound solutions in the drawing of square tube directly from round stock.

1 110 1

Fig. 7.6 Comparison between the measured draw stress and the values predicted by the upper bound theory for drawing of square tube directly from round stock on a cylindrical plug.

- 111

- 112

1

Fig. 7.10 Variation of the mean draw stress with the die semi-angle and the reduction of area for the upper and lower bound solutions in the drawing of <u>hexagonal</u> tube directly from round.

- 113 .

Fig. 7.9

Variation of the mean draw stress with the die

semi-angle and coefficient of friction for the

upper and lower bound solutions in the drawing

of hexagonal tube directly from round.

Fig. 7.11 Comparison between the experimental and theoretical draw stress from the upper and lower bound solutions in the drawing of hexagonal tube driectly from round stock. Fig. 7.12 Variation of the mean pressure with reduction of area and coefficient of friction for the upper and lower bound solutions in the drawing of <u>hexagonal</u> tube directly from round stock.

114 -

115

- Comparison between the measured draw stress and Fig. 7.14 the values predicted by the upper bound theory for drawing of hexagonal tube directly from round stock on a cylindrical plug.

- 116 -

Fig. 7.17 Variation of the mean draw stress with the die semi-angle and coefficient of friction for the upper and lower bound solutions in the drawing of octagonal tube directly from round.

1

117

Fig. 7.18 Variation of the mean draw stress with the die semi-angle and the reduction of area for the upper and lower bound solutions in the drawing of octagonal tube directly from round.

24

Fig. 7.19 Comparison between the experimental and theoretical draw stress from the upper and lower bound solutions in the drawing of octagonal tube directly from round stock.

Fig. 7.20 Variation of the mean pressure with reduction of area and coefficient of friction for the upper and lower bound solutions in the drawing of octagonal tube directly from round stock.

118 - - -

1

1

1

Fig. 7.21 Variation of apparent strain and the equivalent strain components with reduction of area in the drawing of octagonal tube directly from round stock on a cylindrical plug.

Reduction of area (%)

Fig. 7.22 Comparison between the measured draw stress and the values predicted by the upper bound theory for drawing of octagonal tube directly from round stock on a cylindrical plug.

Fig. 7.25 Variation of the mean draw stress with the die semi-angle and coefficient of friction for the upper and lower bound solutions in the drawing of decagonal tube directly from round.

1

121

1

Fig. 7.26 Variation of the mean draw stress with the die semi-angle and the reduction of area for the upper and lower bound solutions in the drawing of <u>decagonal</u> tube directly from round.

- Fig. 7.27 Comparison between the experimental and theoretical draw stress from the upper and lower bound solutions in the drawing of <u>decagonal</u> tube directly from round stock.
- Fig. 7.28 Variation of the mean pressure with reduction of area and coefficient of friction for the upper and lower bound solutions in the drawing of <u>decagonal</u> tube directly from round stock.

Fig. 7.30 Comparison between the measured draw stress and the values predicted by the upper bound theory for drawing of <u>decagonal</u> tube directly from round stock on a cylindrical plug.

g. 7.31 Variation of the mean draw stress with the die semi-angle and coefficient of friction for the upper and lower bound solutions in the drawing of round tube directly from round.

1

124

1

.g. 7.32 Variation of the mean draw stress with the die semi-angle and the reduction of area for the upper and lower bound solutions in the drawing of round tube directly from round.

7.33 Comparison between the experimental and theoretical draw stress from the upper and lower bound solutions in the drawing of round tube directly from round stock.

125

g. 7.34 Variation of the mean pressure with reduction of area and coefficient of friction for the upper and lower bound solutions in the drawing of <u>round</u> tube directly from round stock.

Fig. 7.35 Variation of apparent strain and the equivalent strain components with reduction of area in the drawing of <u>round</u> tube directly from round stock on a cylindrical plug.

126

Fig. 7.36 Comparison between the measured draw stress and the values predicted by the upper bound theory for drawing of <u>round</u> tube directly from round stock on a cylindrical plug.

 -	 No. of Concession, Name	and the second s	
	4		
		1.1	

Reduction of area (%)

Fig. 7.37 Mean draw stress versus the reduction of area for the drawing of square, hexagonal, octagonal, decagonal and round tube directly from round on a cylindrical plug.

127 -

1

CHAPTER 8

DISCUSSION OF RESULTS

8.1 INTRODUCTION

The results of the investigation of drawing polygonal tube from round stock on a cylindrical plug are discussed under three main headings, namely:

(i) theoretical results

(ii) experimental results, and

(iii) other observations.

The theoretical account deals with the effect of the following parameters on the drawing processes:

draw force

mean pressure

mean coefficient of friction

limitation of achievable reduction of area, and

equivalent die semi-angle.

Further, the upper bound solution facilitated the design of an optimal tube drawing die to give a superior drawn section and dissipate the least amount of work in the forming process.

The experimental part of the project provided data to establish the accuracy and reliability of the adopted theoretical method of analysis. In addition, this section of the project evaluated the drawing process as a basis for industrial application. It was pointed out in Chapters 3 and 4 that the transformation of a round tube in a single die to form a polygonal section with the bore remaining circular can take various shapes. Preliminary tests were carried out on the available section rod drawing dies (see Table A-11.1 on page A113) to select a geometrical die passage which produced a polygonal tube with sharp corners whilst dissipating the least amount of energy to effect the deformation. On the basis of the theoretical analysis, dies of this optimal profile were manufactured for the tube drawing

- 128 -

processes.

The last section of the Chapter discusses formation of pick up, tensile failure and effects of excessive deviation from the close pass drawing on the quality of the output section.

8.2. THEORETICAL RESULTS

8.2.1 Introduction

The theoretical analysis of drawing a regular polygonal tube directly from round with the bore remaining the same resulted in expressions which were solved numerically using a computer. The two solutions, the lower and the upper bound, predict the draw loads to within reasonable limits of the experimental values. Further, the optimisation of the die design using the developed upper bound solution was achieved satisfactorily.

8.2.2 Upper bound

The upper bound solution was obtained from a velocity field that minimizes the energy to effect the deformation and incorporates an apparent strain method to include Coulomb friction. The velocity pattern was developed by conformal mapping of triangular elements from entry plane to the positions at the exit plane. Therefore, the solution accounts for the mode of deformation.

Figures 7.1, 7.9, 7.17, 7.25 and 7.31 show the variation of the total draw stress against the equivalent die semi-angle ' α_e ' e predicted by the upper bound solution and the lower bound solution. As expected the value of the draw stress from the upper bound is higher compared with that from the lower bound solution. The lower bound solution neglects the redundant work whilst the upper bound solution accounts for the work of shear at both the entry and exit to the deformation zone together with the relative shearing within the

metal.

The results of the upper and the lower bound solutions for a given area reduction were plotted for a range of mean coefficients of friction. Each of the curves for the upper bound solution exhibits a minimum value of the draw load. This is explained by the variation in magnitude of the redundant and frictional work components with the die semi-angle. The friction work increases with decreasing die semiangle due to the larger contact area on the shallower die; on the other hand increasing the die semi-angle to reduce the contact area increases the redundant work. As seen in the same diagrams (e.g. Figure 7.1), the optimum equivalent die semi-angle increases with increasing value of the mean coefficient of friction. It is apparent that increasing the mean coefficient of friction causes a higher total draw stress. This higher total draw stress produced by the increase in friction may be minimized by reducing the contact length of the die, i.e. increasing the die semi-angle.

Figures 7.5, 7.13, 7.21, 7.29 and 7.35 show that the redundant strain decreases and the frictional strain component increases with the increase in reduction of area for a given value of the mean coefficient of friction. For a given tube outer diameter increasing the bore size increases the plug-tube contact area which increases the friction component. The redundant work decreases with increase in reduction of area because of the shallower depth of shear planes at the exit and entry to the deformation zone. Although the upper bound solution gives overall results which approximate quite closely to the experimental values, it should be treated with caution when analysing the individual components since these will change quantitatively with the selected velocity field. However, this statement should not render the variation of the strain components with reduction of area ineffective.

- 130 -

Figures 7.2, 7.10, 7.18, 7.26 and 7.32 show the variation of the optimal die semi-angle with the reduction of area for a mean coefficient of friction, $\mu = 0.06$. In close pass drawing a change in reduction of area is brought about by altering the bore size or the die size or both for a given tubing outer diameter. In this thesis, the diagonal length of the section dies was standardized at 1 inch; therefore, changes of area reductions were achieved by changing the bore size for any given tube stock. Hence an increase in reduction of area causes a larger plug contact area which increases friction. In order to balance the increase in friction it is generally expected that the contact length of the die-tube interface would be reduced, i.e. an increase in the die semi-angle. However, this increase in the die semi-angle is distinctively evident at high reductions of area where the increased frictional strain component is markedly high. Also in the case of square section where the outer diameter of the input stock equals the diagonal length of the die and the work of shear is proportionally high, the change in the die semi-angle with increased reduction of area is fairly slight (see Figure 7.2).

8.2.3 Lower bound

The lower bound analysis was based on the equilibrium of forces of an elemental slug of the material undergoing plastic deformation; it led to the formulation of the differential equation (3.82) involving the stress system produced and the physical configuration. The method does not however, take into account, an increase in the drawing stress produced by the onset of redundant shearing and as a result it underestimates the magnitude of the draw forces especially at large equivalent die semi-angles where the redundant work is at its greatest. The draw load obtained by the integration of the basic differential equation (3.82) can be shown, for the case of $N_{in}^{in} = \infty$, to comprise

- 131 -

approximately of a constant term and a second term which incorporates the mean coefficient of friction and the die semi-angle. The latter originates from the integration of the frictional force at the toolworkpiece interfaces and apparently decreases with die semi-angle (i.e. shorter contact lengths). The former term represents the homogeneous component which is virtually a constant for a given reduction of area. (At low values of die semi-angles the lower bound solutions exceed the upper bound values and it is realized that this is inadmissible.) Although the lower bound analysis over-simplifies the mechanics

of the process by ignoring the effect of the pattern of flow, the analysis involved is usually straightforward and forms an important conjugate in the upper bound analysis. In general, as shown in Figures 7.3, 7.11, 7.19, 7.27 and 7.33, the draw stress of the lower bound solution rises rapidly at higher reductions of area where the friction component has the greatest effect.

8.2.4 Limitation of achievable reduction of area

The upper limit of the possible reduction of area can be read directly from the upper bound solution of drawing a polygonal tube from round on a cylindrical plug, since the draw stress cannot exceed the mean yield stress of the drawn metal.

Unlike the situation of axisymmetric drawing on a cylindrical plug (i.e. close pass drawing), there is a minimum reduction of area, for a given tube outer diameter, in the direct drawing of section tube. In the polygonal tube drawing on a plug, the material cannot expand laterally (to fill up the corners) and therefore the diagonal of the drawn tube is smaller than or at its greatest equal to the outer diameter of the input stock. This is illustrated below thus: In case of polygonal tube drawing from a stock of outer diameter

$$D_a = H_a$$
,
Area at entry, $A_b = \frac{\pi}{4} H_a^2 - A_p$

(8.1)

Area at exit,
$$A_a = \frac{H_a}{\sqrt{2}} = \frac{H_a}{\sqrt{2}} - A_p$$

$$= \frac{H_a^2}{2} - A_p \qquad (8.2)$$
$$= \frac{H_a^2}{2} - A_p$$

Therefore, reduction of area 'r'=1 $-\frac{2}{\frac{\pi}{4}H_a^2} - A_p$ (8.3)

Using a solid bar as a limiting case of a tube then $A_p = 0$, and the minimum allowable reduction of area for the 'tubing' becomes:

'r' = 36.34%

The limiting reductions of area, based on geometry, for other sections are given in Figure A-2.1 together with a family of curves for a range of t_b/D_b , where the outer diameter of the input stock equals the diagonal length of the section die.

8.2.5 Mean pressure

t

Figures 7.4, 7.12, 7.20, 7.28 and 7.34 show the variation of the mean die pressure with the reduction of area for a range of mean coefficients of friction. The die pressure predicted by either the upper or the lower bound solution decreases with increase in reduction of area and the value of the mean coefficient of friction for a given draw section. The variation of the mean pressure with friction can be illustrated by considering the Tresca's yield criterion which expresses the pressure at exit to the die in terms of the draw stress and the mean yield stress, i.e:

$$\sigma_{za} + p = Y_{m} \tag{8.4}$$

For a given reduction of area, the draw stress σ_{za} is always greater at higher values of coefficient of friction because of the larger friction component. For example:

Please see page 155a for a continuation of the discussion.

- 133 -

$$\sigma_{za} \rightarrow \sigma_{za} \mu=0.02$$
 (8.5)

Using equation (8.4), the above relation becomes:

$$Y_{m} - p > Y_{m} - p = 0.03 = 0.02$$
 (8.6)

But Y_{m} is a constant for the same reduction of area: the above inequality becomes:

$$p_{\mu=0.03} - p_{\mu=0.02}$$

or:

$$1=0.03 < p_{11}=0.02$$
 (8.7)

8.3 EXPERIMENTAL RESULTS

p

8.3.1 Introduction

The main objective of the experimental part of the project was to correlate the theoretical predictions with the actual data. The performance of different geometrical shapes of draw dies including those employed in conventional industrial processes (see Plates 8.1 and 8.2) was evaluated in order to find a die profile to produce a successful draw with minimum draw force. Using this ideal geometrical shape, further three dies for the hexagon, octagon and the square were manufactured for tube drawing to establish the reliability of the predictions from the theory.

The other parameter affecting the draw load and the mean pressure is the mean coefficient of friction which was determined experimentally using the split rotating die rig. The semi-analytical method, developed in Chapter 4 to determine the mean coefficient of friction from the estimated redundant work in the drawing process and the application of the apparent strain analysis, produced results which compared well with the directly measured values. However, the values

- 134 -

of the mean die pressure were lower than those predicted by either the upper or the lower bound solutions.

8.3.2 Draw force

The theoretical and experimental results are tabulated in Appendices A-4 and A-5. A sample of the theoretical data is compared with that obtained from experiments in Table 8.1. The upper bound overestimates the experimental values by an average of 11.34%, 9.64% and 8.65% for the hexagonal, octagonal and decagonal tubes respectively. Figures 7.6, 7.14, 7.22, 7.30 and 7.36 show a more general comparison of the measured and calculated values of the mean draw stress for the various polygonal sections and a range of reductions of area.

The theory was developed for a close pass drawing. However, in practice a small amount of sink is unavoidable in the early stages of the draw (in this thesis the range of tubes available to give the desired range of reductions of area was limited especially for the square and the hexagon); and to counteract the effect of the proportion of sink present in different reductions of area, the draw load was expressed as a ratio of the mean yield stress of the drawn metal. This technique also has a slight advantage of minimizing the influence of the initial yield stress of the undrawn tube on the results. The geometrical shape of the deformation zone changes for some die shapes when tubing outer diameter is different from that used in the design; this is associated with increased level of redundancy.

The experimental and theoretical draw loads are plotted together in Figures 7.3, 7.11, 7.19, 7.27 and 7.33. As shown in these figures the upper bound tends to give a better estimation of the total draw loads at high reductions of area. In close pass drawing, low reductions of area were obtained from thick-walled tubing where the stock outer diameter approaches that of the diagonal length of the

Tube o.d.(in)	Test number	Tube section	Die	Equivalent die semi-	Reduction of area**	Mean draw Ø _{za} (tonf	stress in)	$\frac{(\sigma)_{\text{theo}}^{-(\sigma)}_{\text{act}}}{(\sigma)} \times 100$
gauge (in)				angle (a _e degrees)	(%)	Theoretical (σ) theo	Experimental	(%)
1 1/8 x 1	107	hexagon	6WB	8	41.75	<u>41.9386</u> {1.0222}	37.5856†	11.34
1 1/8 x 3/16	078	octagon	8WB	8	51.95	44.7000 {1.0781}	38.5130 {0.9475}	16.00 {13.88}
1 1/8 x 3/16	072	octagon	8PB	7	51.95	44.8384 {1.0808}	41.4832 {0.9351}	8.09 {15.58}
1 1/8 x ‡	012*	octagon	8PB	7	41.75	<u>36,4959</u> {0,9145}	34.8106 {0.8230}	4.84 {16.00}
1 1/8 x 3/16	066	decagon	10QB	7	46.95	40.1880 {0.9889}	36.4340 {0.8694}	10.34 {13.74}
1 1/8 x ¹ / ₄	016*	decagon	10QB	7	37.73	34.4829 {0.8734}	32.2413 {0.8143}	6.95 {7.27}
1 1/8 x 3/16	062	round	∞RA	7	37.78	32.6882 {0.8363}	25.8447 {0.6641}	26,50 {25,92}

 Table 8.1
 Comparison between the measured and calculated draw loads in the drawing of polygonal tubes directly from round stock on a cylindrical plug

{ } denotes the stress expressed as a ratio of the yield stress and the corresponding % over-estimate of the actual value

* test number with asterisk denotes first batch of tubes (Appendix A-3.2)

** reduction of area in the actual experiment is slightly lower

the tag broke and the load is therefore an instantaneous value

-136

section die. As shown in Figures 7.5, 7.13, 7.21, 7.29 and 7.35, the relative shearing of the metal in the deformation zone and at the entry and exit shear surfaces contributed considerably to the total work at low reductions of area. It is thought that an improved velocity pattern would be needed by finer triangular network during conformal mapping. However, this would be accomplished at the expense of increased computer time (the time for 282 elemental triangles was 1500 m.u).

The reliability of the experimental results is indubitable since they were obtained with reliable instruments calibrated under the standard methods together with standard material heat treated purposely for the experiments. Any major discrepancy would therefore be attributed to the theoretical analysis. The upper and the lower bound solutions were built up on several assumptions to simplify the complex analytical expressions in the application of the energy method and in incorporating the apparent strain method to include Coulomb friction. In the analysis, an equivalent circular mode on the external surfaces was introduced which is not the true shape of the deformation zone. However, the shape factors f(s) and R(s) (equations 3.34 and 3.44) accounted for the actual shape of the output section tube in the case of the internal work of deformation and the redundant work at the entry and exit shear surfaces respectively. The friction work factor I, (equation 3.56) required the integration of the elemental surface velocities which was beyond the scope of the research. Another assumption that was used in both solutions is the close pass drawing, whereas in practice there is always some amount of draft.

As was expected the experimental data are enveloped by the upper and the lower bound solutions and thus indicates the reliability of two solutions developed for predicting the draw loads. It was brought

- 137 -

out in the last paragraph that the main weakness in the developed upper bound solution is that it does not embody the actual identity of the shape of the deformation zone. However, the overall agreement of the theoretical and experimental values proves the validity of the adopted theory in the analysis of polygonal tube drawing directly from round stock on a cylindrical plug.

The total draw force versus the reduction of area for different shapes of section tubes is shown in Figure 7.37. For a given reduction of area, the square section exhibits the highest draw stress followed by the hexagonal tube. However, as the number of sides of the drawn section increases (i.e. the octagon, decagon and round) the observed trend is not consistent over the entire range of area reductions. It does not generally follow that for a given reduction of area, the section with the fewer number of sides experiences a draw stress higher than that of the following section with higher number of sides or vice versa. The non-consistent pattern could be explained by the variation of the redundant work and frictional work components with reduction of area for the different shapes of tubes. By changing the tubing outer diameter, plug size or both, it is possible to draw a tube section of sides N (i+2) with a reduction of area equal to that of a section with less number of sizes N_c(i). In the situation where the bore size is kept constant, the reduction of area can be varied by changing the outer diameter of the input tube and the method becomes analogous to that of the solid bar drawing (ref (2)). Table 8.2 gives the areas of the die-stock interfaces for a series of stock outer diameters calculated for an elliptical plane surface die. It shows that for a given reduction of area, the die-workpiece contact surface of a section N_c(i) is less than that for the corresponding section with higher number of sides N_c(i+2). In case of a solid section it would be argued that increased

- 138 -

Table 8.2	Comparison	n of	areas of	the	elliptic	cal	die-workpiece
	interface	for	the diffe	rent	shapes	of	sections
	under the	same	e reductio	n of	farea		

Reduction of	N _S (i) section	N _S (i+2) section
area (%)	(Stock o.d.(in))	(Corresponding stock o.d. (in))
	{die-workpiece surface area (in^2) }	{die-workpiece surface area (in ²)}
	square	hexagon
36.34	(1)	(1.1397)
	{2.5069}	{3.1190}
	square	hexagon
43.61	(1 1/16)	(1.2110)
	{3.3832}	{4.2201}
	hexagon	octagon
17.30	(1)	(1.0434)
	{1.1503}	{1.2331}
	octagon	decagon
9.97	(1)	(1.0193)
California de la	{0.6547}	{0.6743}
	octagon	decagon
20.25	(1 1/16)	(1.0830)
	{1.4955}	{1.5436}
	decagon	round
26.09	(1 1/8)	(1.1632)
	{2.1451}	{2.2752}
	decagon	round
17.13	(1 1/16)	(1.0985)
	{1.2582}	{1.3321}

friction work for the section with $N_s(i+2)$ sides would outweigh the higher redundant work at low reductions of area for a section with $N_s(i)$ sides. In this particular thesis, the reductions of area were obtained by varying the outer diameter of the tube, the plug diameter or both. The amount of redundant work and the friction work components will vary with different t_b/D_b of the input stock even though the same reduction of area is involved in the particular section.

8.3.3 Die geometry

As discussed in section 4.3, die geometry is the factor having the greatest effect on the successful drawing of the polygonal tube directly from round stock. The geometry embodies the shape of the deformation zone and the equivalent die semi-angle. The effect of the latter on the drawing process is discussed together with dies designed for tube drawing.

8.3.3.1 The shape of the deformation zone

The section rod dies used in the tests are shown in Plates 8.1 and 8.2. The details of their design from the point of view of the profile, material and the nomenclature are presented in Appendix A-11. The three additional dies manufactured for tube drawing are also displayed in Plates 8.3 and 8.4. Plate 8.3 includes two square section dies which burst during the drawing process.[†]

A sample of the output sectional tubes from different dies are presented in Plates 8.5 to 8.9. The absolute values of the draw

The tube drawing die 4WB burst into bits during its first draw and the failure was attributed to the misalignment of the bolster and the pellet axes when shrink-fitting.
The section rod drawing die 4JB disintegrated into four parts when experimenting with a steel solid bar of a relatively higher yield stress than that expected to be used with the die. loads for the square, hexagonal and octagonal dies are compared in Tables 8.3, 8.4 and 8.5 respectively. A further comparison of the performance of these dies is made graphically in Figures 7.7 and 7.8 (square), 7.15 and 7.16 (hexagon) and Figures 7.23 and 7.24 (octagon), and numerically in Tables 8.6 and 8.7 for the hexagonal and octagonal draw.

The drawing of a square tube directly from round on a plug proved to be the severest of all sections; for any given tube size, the material elements suffer the greatest lateral displacement as they flow through the deformation zone. A further problem was the high reductions of area involved; the feasible reductions of area were The available thick walled tubing (size 1 in o.d. x 1 in over 40%. gauge) for the square gave reductions of area of 48.45% for the close pass draw. Whenever excessive amounts of sink were introduced to obtain feasible reductions, various problems were experienced. The corner sharpness of the drawn polygon was inferior. ++ The pre-sunk bore might not form back to round, which was especially noticeable when the outer diameter of input stock was nearer or equal to the diagonal length of the section die. Where the diameter of the tubing was greater than the diagonal of the section die, the increased level of sinking which was intimately associated with increased redundant work caused the tube breakage at the throat to the die.

To use a very thick walled tube to obtain lower permissible reductions of area (i.e. almost a solid bar) would introduce a further problem commonly found in fixed plug drawing, i.e. chatter. The

^{††} Corner sharpness may be defined as of that section which completely filled the drawing die. However, some roundness of the output section was inevitable in most cases when the number of sides equals 4 or 6 and the word 'sharpness' was coined for comparative purpose.

ze	lia-	in) x (ni	ir (in)	ameter	on of	Draw load (tonf) (Plug force (tonf))					Draw st (Mean y {Draw s	ress, _{dza} ield stre tress/mean	(tonf in ss, Y _m (ton n yield st	-2) nf in -2)) tress}
Tube si	outer d	meter (gauge (Interna diamete	Plug di (in)	Reducti area %	Test No (for referen	Die 4HA	Die 4KD	Die 4MC	Die 4GB	Die 4HA	Die 4KD	Die 4MC	Die 4GB
		-				- ; -	-	-	-	10.0968	-	-	-	32.2619
1	x	3/16	0.625	0.488	34.61	- ; 103				(1.5093)				(35.1218)
														{0,9186}
						126;125	10,4032	8.5968	8.7097	9.4355	31.8623	26.3296	26.6754	28.8984
1	x	7/32	0.5625	0.470	39.19	124.102	(01.8056)	(1.0833)	(1.3796)	(0.9722)	(35.5142)	(26.8306)	(31.6713)	(29.9333)
						124,102					{0.8972}	{0.9813}	{0.8423}	{0.9654}
				1.18		130;129	11.2903	9.4355	9.2097	9.6772	35.8133	29.9297	29.2134	30.6971
1	x	7/32	0.5625	0.485	41.28	128.139	(1.4815)	(1.3889†)	(1.2685)	(1.3426)	(35.4651)	- 11	(31.5646	(29.6035)
						120,130					{1.0098]		{0.9255}	{1.0369}
	III.ee					100 -	12.2581	-	11.7742	11.1290	37.5432	-	36.0612+	35.5672+
1	x	4	0.490	0.470	45.29	132;	(1.9599)		(2.2222†)	(0.8333+)	35.7736			
1						131,104					{1.0495]			
						100 -	12.1371	-	-	-	38.7813	-	-	-
	_	1	0 100	0 170	17 50	133; -	(1.7940)				(38.5334)			
1	x	4	0.490	0.470	47.50	-;-					{1.0064]			

Table 8.3 Comparison of the measured draw and plug forces from the different square drawing dies

† short length of drawn tube broke (or instantaneous loads)

Die	Shape	Remarks	
4HA	Pyramidical (radius)	Industrial with land	
4KD	Inverted parabolic	Section bar drawing	
4MC	Triangular	Section bar drawing	
4GB	Elliptical	Section tube drawing	

- 142

ze i ameter gauge	l r (in)	H	on of	ce)	D (Draw str	raw Force ess Ø _{Za} (t	(tonf) conf in ⁻²))	Mean (Draw st	yield str ress/mean	ress (tonf yield str	in ⁻²) ress)
Tube si outer d (in) x (in)	Interna diamete	Plug diamete (in)	Reducti area (%	Reductic area (%) Test No (for referenc		Die 6AA	Die 6NB	Die 6WB	Die 6BA	Die 6AA	Die 6NB	Die 6WB
1 x 1	0.490	0.485	22.13	136; 135	9.0726 (19.5122)	9.6169	8.1720	7.3064	29.3285	30.0165	29.6414 (0.5932)	29.5976
1 x 7/32	0.5625	0.577	24.41	119;118 084;089	7.7419 (19.0767)	7.8360 (19.3086)	7.3185 (18.0335	6.3710 (15.6986)	29.1403 (0.6547)	29.6398 (0.6514)	29.6219 (0.6088)	29.2124 (0.5374)
1 x 3/16	0.625	0.620	27.37	- ; - 085;090	-	-	8.5484 (24.5931)	8.0376 (23.1237)		-	34.7238 (0.7082)	35.1014 (0.6588)
1 1/16 x 7g (0.177)	0.7085	0.620	29.41	121;120 018;044	8.3266 (23.4330)	7.8226 (22.5050)	7.1048 (20.4401)	6.6734 (19.1981)	32.3915 (0.7395)	30.9460 (0.7272)	31.3922 (0.6511)	-
1.040 x 0.235	0.570	0.557	31.71	- ; ÷ 115;114	-	-	10.2621 (25.2866)	9.1935 (22.6536)	_	-	<u>35.3379</u> (0.7156)	35.4403 (0.6392)
1 1/16 x 8g (0.160)	0.7425	0.682	37.35	- ; - 086;092	_	-	8.7634 (30.8363)	8.0645 (28.3769)			31.4409 (0.9808)	32.1920 (0:8815)
1 1/16 x 7g (0.176)	0.7086	0.682	42.28	032;031 047;059	10.1075 (35.5657)	9.2645 (32.5994)	9.3548 (32.9173	8.8710) (31.2476	-	-	-	-

Table 8.4 Comparison of the draw loads from the different hexagonal drawing dies

† short length of drawn tube broke (or instantaneous loads)

Die	Shape	Remarks
6BA	Pyramidical (straight)	Industrial die with land
6AA	Pyramidical (radius)	Industrial die with land
6NB	Elliptical	Section bar drawing
6WB	Elliptical	Section tube drawing

- 143 -

size dia- (in) ge(in)	nal ter(in)	ter	tion ea (%)	No ence)	$ \begin{array}{c c} & & & \\ \hline & & \\ 0 & $							
Tube outer meter x gau	Inter diame	Plug diame (in)	Reduc of ar	Test (for refer	Die 8SD	Die 8PB	Die 8WB	Die 8SD	Die 8PB	Die 8WB		
$1 \times \frac{1}{4}$	0.490	0.485	12.48	- ,068 073	-	4.2200 (8.0786	4.8387 (9.2631)	-	25.5203 (0.3166)	26.3611 (0.3514)		
1 x 7/32	0.5625	0.557	13.68	116; 069 074	8.5484 (18.4455)	3.9314 8.4831)	4.2338 (9.1356)	33.6891 (0.7154)	24.0575 (0.3526)	26.0606 (0.3506)		
1 x 3/16	0.625	0.620	15.34	- ; 070 075	-	4.7581 (11.7425)	5.1613 (12.7376)	-	30.8370 (0.3808)	32.1543 (0.3961)		
1.040 x 0.235	0.570	0.557	22.02	117; 112 113	<u>11,1693</u> (24,1009)	6.8952 (14.8782)	6,9355 (14,9652)	26,2930 (0,7015)	32.4826 (0.4580(33.2793 (0.4497)		
1 1/16 x 7g(0.177)	0.7085	0.682	30.58	053; 082 081	10.2419 (29.9645)	6.1021 (17.4733)	6.6935 (19.5829	-	32.9337 (0.5420)	30.6807 (0.6383)		
1 1/8 x 3/16	0.750	0.682	38.10	- ; 071 076	-	11.2500 (32.9137)	9.8790 (28.9026)	-	40.6743	39.0518 (0.7401)		
1 1/16 x 8g (0.160)	0.748	0.745	40.22	- ; 079 077	-	7.7218 (28.4733)	7.1371 (26.3173)	-	35.1844 (0.8093)	32.8293 (0.8016)		
1 1/8 x 3/16	0.750	0.745	50.89	- ; 072 078	-	11.2500 (41.4832)	10.4516 (38.5391)	-	44.4484 (0.9333)	40.6752 (0.9475)		
1 1/8 x 8g (0.160)**	0.805	0.745		055; 028	12.9032	11.2097	-	-	39.1239 (1.0565)	-		
1 1/16 x** 10g(0.128)	0.806	0.74 <mark>0</mark>	26.28	054; 010	9.3548 (34.4948)	6.5726 (23.7256)	-	-	36.7613 (0.6454)	-		

Table 8.5 Comparison of the measured draw loads from the different octagonal drawing dies

†Short length of drawn stock (or instantaneous loads); ** first batch of tubes

Die	Shape	Remarks
8SD	Inverted parabolic	Section bar drawing
8PB	Elliptical	Section bar drawing
8WB	Elliptical	Section tube drawing

144 -

1

resulting thinner plug bar might suffer from severe elastic extension and relaxation during the draw and thereby causing a variation in the draw load.

The persistent breakage of tube due to high reductions of area involved coupled with the physical limitations mentioned above for the square tube drawing, were major drawbacks in establishing a conclusive mode of the die passage. Despite these problems, the elliptical plane surface square die 4GB produced a series of tubes (see Plates 8.5 and 8.8) with relatively 'sharper' corners than those of other geometrical shapes. The measured draw loads were in some cases slightly higher than those recorded from either the inverted parabolic or the triangular plane surface dies (see Table 8.3).

The industrial pyramidical die (4HA) successfully drew tubes with reductions of area of 47.56%. The die passage formed by radiused surfaces has a variable mean equivalent die semi-angle and is complicated and tedious to analyse. Unlike other plane surface/ conical surface dies, it is harder to machine and therefore, too expensive for research work. The corner 'sharpness' of the tube drawn through the industrial die was, however, inferior to that of the triangular die for the same reduction of area.

In general, the other polygonal sections showed the elliptical plane surface to be the optimal profile (see Plates 8.6, 8.7 and 8.9). It produced better cornered sections whilst dissipating the least amount of energy under the same draw conditions. The shape of the deformation zone of this die provides a gradual change in shape and a simultaneous reduction of area; it has a further advantage of being easily machined. The inverted parabolic die (8SD) produced the highest draw load for the octagonal set of dies. Also this die profile 'D' (conventional die for hydrostatic extrusion of section rods) produced the most distorted section tube (see 4KD in Plate 8.5). These characteristics were due to the sudden change in shape through which the material had to undergo and consequently increased redundant work.

The straight pyramidical die shape 'A' (conventional die for symmetric drawing of section rods) was unsuccessful in producing a square tube due to the tensile failure (4DA in Plate 8.5). The hexagonal dies 6AA and 6BA produced section tubes with relatively inferior corners to those exhibited by the draw dies formed by the elliptical plane surfaces. Furthermore, the loads were higher than those of the elliptical plane surface dies for the same reduction of area.

The triangular die (4MC) produced tubes with corner 'sharpness' comparable with those from the elliptical plane surface die (4GB). 8.3.3.2 The optimal tube drawing dies

> (The effect of the die semi-angle on the draw loads and the quality of the drawn tube)

Having selected the optimal shape of the deformation zone, the other important factor was the optimum die semi-angle ' α_{e} '. The effect of this parameter was assessed by designing dies as predicted by the upper bound theory for drawing polygonal tubes directly from round stock; their performances were compared with those of the available section rod drawing dies of the same geometrical shape (i.e. elliptical plane surface). The square (4JB), the hexagonal (6NB) and the octagonal (8PB) solid section drawing dies were designed for an equivalent angle of 7^o (it is shown in Appendix A-10

- 146 -

that the definition of the equivalent die semi-angle for a solid section drawing die is equally applicable to the tube drawing case when the bore of the stock remains unchanged).

It was shown in section 8.2.2 during the discussion of the upper bound solution that for a given tube size and a mean coefficient of friction, the graph of the total draw load against the equivalent die semi-angle has a minimum point. Therefore, for a curve corresponding to a mean coefficient of friction obtained experimentally or otherwise, the optimum die semi-angle can be interpolated. The die semi-angle corresponding to the mean coefficient of friction of $\mu = 0.06$ for the square, hexagonal and octagonal curves give an optimal die semi-angle of 8[°] for different reductions of area for each particular polygon. The same equivalent die semi-angle was maintained so as to be able to compare results from different draw sections. The outer diameter of the input stock used in the design of the solid section dies for the individual polygon was retained.

The square die 4JB (see Plate 8.3) was not available during the final tests with the last batch of tubes which was specially heat treated for tube drawing experiments. The die designed for the square draw (4GB) did not perform as expected and one major aspect contributing to this failure is the lack of thick-walled tubes to give low and feasible reductions of area.

The results of the hexagonal dies 6NB and 6WB are compared in Table 8.6. In general, the optimal tube drawing die (6WB) showed a marked improvement of 5% to 13% reduction in draw stress for area reductions ranging from 22.13% to 42.28%. The drawn tubes are displayed in Plates 8.6 and 8.9 and they indicate clearly an improvement in the surface finish and the corner 'sharpness' (the hexagonal die 6NB made from tool steel had been used in the previous

- 147 -

Table	8.6	The effect	of the	e equivalent	die	semi-angle	on	the	draw	loads	for	the	hexagonal	die	of	elliptical	profile.
-------	-----	------------	--------	--------------	-----	------------	----	-----	------	-------	-----	-----	-----------	-----	----	------------	----------

Fube size buter diameter (in) x gauge (in)	internal liameter (in)	Plug diameter (in)	Reduction of area (%)	fest number (for reference	Draw ford (Draw str (tonf in Die 6NB	ce (tonf) ress, σ -2)) za Die 6WB	Mean yield Y _m , (tonf Draw stres Die 6NB	d stress in-2) ss/Ym) Die 6WB	$\frac{(\sigma_{za})_{NB} - (\sigma_{za})_{WB}}{(\sigma_{za})_{NB}} \times 100$	$\frac{\begin{pmatrix} \sigma_{za} \\ \gamma_{m} \end{pmatrix}_{NB} - \begin{pmatrix} \sigma_{za} \\ \gamma_{m} \end{pmatrix}_{WB}}{\begin{pmatrix} \sigma_{za} \\ \gamma_{m} \end{pmatrix}_{NB}}$ $\frac{\chi}{100}$
	H G G		- HA W	T	8.1720	7.3064	29.6414	29.5976	10.59	
1 x 1	0.490	0.485	22.13	083;088	(17.5835)	157211,	(0.5932)	(0.5312)		10.45
					7.3185	6.3710	29.6219	29.2124	12.95	
1 x 7/32	0.5625	0.557	24.41	084;089	(18.0335)	(15.6986)	(0.6088)	(0.5374)		11.73
1 - 2/16	0 625	0 620	97 97	084.000	8.5484	8.0376	34.7238	35.1015	05.97	and the second
1 X 3/10	0.025	0.020	21.51	084,050	(24.5931)	(23.1237)	(0.7082)	(0.6588)		6.98
1 1/16 x 7	0 7005	0 000	00.13	010.011	7.1048	6.6734	31.3922	-	06.07	
(0.177)	0.7085	0.620	29.41	018;044	(20.4401)	(19.1981)	(0.6511)			-
1.040x	0 5 70		01 71	115,114	10,2621	9.1935	35.3379	35.4403	10.41	
0.235	0.570	0.557	31.71	115;114	(25.2866)	(22.6536)	(0.7156	(0.6392)		10.68
1 1/16x8g	0 7495	0 692	27 35	086.002	8.7634	8.0645	31.4409	32.1920	07.97	
(0.160)	0.7425	0.082	51.55	080,092	(30.8363	(28.3769)	(0.9808)	(0.8815)		10.12
1 1/16x7g	0.7085	Q.682	42.28	047;059	9.3548	8.8710	-	-	05.07	
(0.176)		2			(32.9173)	(31.2476)				-

- 148 -

5

Die	ae	Design stock (o.d. (in)	Remarks
6NB	7	1.125	Section bar drawing die (tool steel)
6WB	8	1.125	Section tube drawing die (tool steel)

research work of rod and tube drawing and suffered from persistent formation of pickup). The dimensions of the drawn product across flats (A/F) and across corners (A/C)^{\dagger} agreed fairly well, and therefore apart from the severe pickup on the section rod drawing die the improvement was attributed confidently to the change in the die semi-angle.

The results of the elliptical plane dies 8PB and 8WB are shown in Table 8.7. The optimal tube drawing die showed a remarkable improvement in the draw loads especially at high reductions of area. However, at low reductions of area (where generally the outer diameter of the input stock is less than the die design input stock), the results were reversed. The trend could be explained as follows: For a given tube size, the shallower die 8PB has increased frictional surface; increasing the die angle (8WB) reduces the friction surface but has the effect of increased redundant component. It was shown in section 8.2.2. that at low reductions of area, the redundant work component predominates and therefore in general the shallower die (8PB) is better for drawing tubes at low reductions of area than the tube drawing die (8WB).

An improvement of the draw loads of 7% to 12% was recorded for the tube drawing die. Plates 8.7 and 8.9 also show an improvement in the surface finish and the corner 'sharpness'. When the drawn products were compared dimensionally, ++ the tubes from the section rod drawing

+	Mean	A/C	(in)	6WB	:	1.000	6NB	:	1.000
		A/F	(in)	6WB	:	0.870	6NB	:	0.870
++	Mean	A/C	(in)	8WB	:	1.000	8PB	:	1.006
		A/F	(in)	8WB	:	0.930	8PB	:	0.950

- 149 -

ize gauge 11 er (in) ameter		ameter	ton of	ference	Draw force (tonf) (Draw stress,0 (tonf in_))		Mean yield stress Y _m , (tonf in ⁻²) (Draw stress/Y _m)		$\frac{(\sigma_{za})_{PB} - (\sigma_{za})_{WB}}{(\sigma_{za})_{PB}}$	$\left(\frac{\sigma_{za}}{\gamma_{m}}\right)_{PB} - \left(\frac{\sigma_{za}}{\gamma_{m}}\right)_{WB}$ x100
Tube si outer c (in) x (in)	Interna diamete	Plug di (in)	Reducti area (%	Test No (for re	Die 8PB	Die 8WB	Die 8PB	Die 8WB	x 100 %	$\left(\frac{\sigma_{za}}{\gamma_{m}}\right)_{PB}$
1 x ł	0.490	0.485	12.48	068:073	4.2200	4.8387	25.5203	26.3611	{14.66}	
				,	(8.0786)	(9.2631)	(0.3166)	(0.3514)		{10.99}
1 + 7/22	0 5625	0 557	12 60	069.074	3.9314	4.2338	24.0575	26.0606	{07.69}	
1 x 1/34	0.3025	0.557	13.00	009;074	(8.4831)	(9.1356)	(0.3526)	(0.3506)		00.57.
					4.7581	5.1613	30.8370	32.1543	{08.47}	
1 x 3/16	0.625	0.620	15.34	070;075	(11.7425)	(12.7376)	(0.3808)	(0.3961)		{04.02}
1.040 x	0 570	0 557	00 00	110,110	6.8952	6.9355	32.4826	33.2793	{00.58}	
0.235	0.570	0.557	22.02	112;113	(14.8782	(14.9652)	(0.4580)	(0.4497)		01.81
1 1/16 x 7g	0 5005	0.000	00 50	0.00 0.01	6,1021	6.6935	32.9337	30.6807	{11.37}	
(0.177)	0.7085	0.682	30.58	082;081	(17.4733)	(19.5829)	(0.5421)	(0.6383)		{17.74}
1.1/8 x					11.2500	9.8790	40.6743	39.0518	12.19	
3/16	0.750	0.682	38.10	071;076	(32.9137)	(28.9026)	(0.8092)	(0.7401)		08.54
1 1/16 x	0 749	0 745	10 22	070.077	7.7218	7.1371	35.1844	32.8293	07.52	
8g	0.140	0.145	10.22	015,011	(28.4733)	(26.3173)	(0.8093)	(0.8016)		00.95
1 1/8 x					11.2500	10.4516	44.4484	40.6752	07.10	
3/16	0.750	0.745	50.89	072;078	(41.4832)	(38.5391)	(0.9333)	(0.9475)		{01.52}

Table 8.7The effect of the equivalent die semi-angle on the draw loads for the octagonal die of
elliptical profile

{ } deontes (%) increase of draw load over the section bar drawing die

Die a o e		Design stock o.d. (in)	Remarks			
8PB	7	1.125	Bar drawing die (tool steel)			
8WB	8	1.125	Tube drawing die (tool steel)			

- 150

1

die 8PB were found to be slightly larger. If this could not be attributed to the springback after drawing, then reductions of area from the section rod die were slightly lower than indicated. This adds a further credit to the tube drawing die.

In general the improvement of the draw loads and the surface finish for the hexagonal and octagonal tube drawing dies could be claimed, in turn, to be due to the differences in the equivalent die semi-angles.

8.3.4 Evaluation of the mean coefficient of friction

The mean coefficient of friction as pointed out in Chapter 4 was determined using two methods, namely direct measurement and semianalytically.

8.3.4.1 Direct measurement

The mean coefficient of friction from the square split die from repetitive tests was 0.042 (see Table A-5.3). One of the die tips designed for the hexagonal drawing with the rotating rig broke during the first attempt (see Plate 8.10). The results were therefore limited to the square section where only two reductions were accomplished with a fair amount of sink.

The failure of the hexagonal die tips was possibly due to faulty heat treatment as has also been demonstrated in Ref. 2 (see Plate 8.11). There was no time to verify this claim but possible improvements are suggested in Chapter 10.

8.3.4.2 Semi-analytical method

A sample of the experimental results is displayed in Tables A-5.4.1 and A-5.4.2. The values of the mean coefficients of friction in the drawing of various polygonal tubes compare reasonably with

- 151 -

those reported elsewhere (2). The results of the square section compare fairly with the directly measured value of 0.042.

8.3.5 Evaluation of the mean pressure

The mean die pressure was determined by the two methods, i.e. the split rotating die method and the semi-analytical technique as discussed in Chapter 4.

The values of the mean pressure from the split rotating die method are presented in Table A-5.3.1. The two feasible reductions of area produced consistent values of the mean pressures evaluated using equation 4.22.

Tables A-5.4.1 and A-5.4.2 give a sample of the mean pressure values obtained by the semi-analytical method. The values were dependent on the successful integration of the die-tube and tubeplug elemental velocities over the entire deformation zone given by I_1 and I_2 (or equations 3.52 and 3.56); an equivalent mode was used to estimate the mean velocity at the tool-workpiece surface. However, the values of the mean pressures obtained were lower than those of the upper and the lower bound solutions. For example, using test No. 021:

Section : hexagonal

Die : 6NB ($\alpha_e = 7^\circ$) Tube size : 1 in x 3/16 in Reduction of area: 28.39% Theoretical mean pressure: 27.223 tonf in⁻² Semi-analytical mean pressure: 11.893 tonf in⁻²

. deviation of the upper bound solution from the value obtained semi-analytically:

$$= \frac{27.223 - 11.893}{11.893} = 129\%$$

Further work is suggested in Chapter 10 to obtain the velocity distribution at the tool-workpiece interfaces which would facilitate the numerical integration of the friction factor I_2 .

8.4 Other observations

In general, the process of drawing a polygonal tube from round on a cylindrical plug has been accomplished successfully. However, there are some practical aspects that deserve attention, namely the formation of pickup, the tensile failure, the rounding of corners and the bore not forming circular whenever a high proportion of sink is present.

The pickup on the internal wall of the tube was not readily evident except when asperities welded onto the plug. This form of defect was noticed especially when drawing with the square dies using smaller diameter plugs.

Occasionally pickup was evident on the dies; the dies intended for research were made from tool steel which is prone to pickup after a number of drawing tests and, especially so, when heavy reductions are involved. Pickup on the dies or plugs could have been due to the breakdown of lubricant under high pressure in some parts of the deformation zone or could easily have been caused by small scale (or the swarf from swaged tag) which scour away the protective surface film, leaving bare metal. If two such surfaces come into contact under the working pressure they tend to weld together resulting in fragments of the workpiece being torn away by the subsequent shearing and left firmly adhered to the tool. The act of shearing exposes more nascent surface which usually projects through the surrounding lubricant film so that pickup becomes cummulatively worse. In general, the tensile fracture occurred when drawing with high reductions of area and was in fact a characteristic of the square tube tests. Another form of tensile failure that was noticed occasionally and when dealing with heavy reductions of area was the breakage of the drawn tube whenever drawing had been interrupted by intermittent stoppages. This could have been caused by either the breakdown of the hydrodynamic lubrication or the presence of residual stresses.

Under certain conditions of drawing a thick lubricant film separating the workpiece and the die can be established by the viscous force acting on the fluid; the breakdown of the film may cause metal to metal contact which results in high friction at the resumption of the draw. The hydrodynamic lubrication is favoured by a small angle between the workpiece and the die (thus forming the wedging action) and the relative high speeds. The tests in the laboratory were conducted at a relatively low speed of 5ft min⁻¹ but the geometry of the die passage may have created the conditions for hydrodynamic lubrication to be possible to some degree. An elliptical die is a combination of the plane surfaces and conical faces with a smaller conical angle.

On the other hand, there may be a variation in the pattern of residual stresses during the drawing operation and at the intermediate stoppages. The latter causes the tube to be gripped tighter with consequential increase in friction at the resumption of the drawing operation.

The corners of the drawn section were not as sharp as expected and especially when the results were compared with those of the solid sections in Ref. (2). Although close pass drawing was assumed, in practice there is always some amount of sink. The proportion of sink is often more significant at low reductions of area and when the

- 154 -

number of sides of the polygonal tube approaches that of the square. If the diameter of the input tubing is equal to that of the diagonal length of the drawing die, the drawn tube is then not likely to fill up the corners of the section die. Wherever there is sinking, the preformed bore takes the shape of the section die (see Plate 8.6, test 093) and on contact with a circular plug reshapes to round. Obviously redundancy is associated with the level of sink present in a given pass and the consequential increase in draw load is likely to cause the breakage of the tube. Furthermore, if the proportion of sink is high there may not be enough material to fill up the corners back to circular on contact with the plug. These problems were encountered greatly in the square drawing. (continued from page 133 'mean pressure')

The theoretical pressure ratio curves of the upper bound analysis exhibit values greater than unity at low reductions of area (e.g. Fig. 7.34, page 125). By extrapolation when the reduction of area tends to zero the value of the mean pressure ratio rises to infinity, which is inadmissible. The theoretical reason for the rise in the mean pressure ratio curve follows from equation (3.61), page 54:

$$\frac{\mathbf{p}_{m}}{\bar{\mathbf{y}}_{m}} = \frac{\bar{\varepsilon}_{m}}{\mathbf{I}_{1}(1-\Psi)}$$

When $\mu = 0.0$, $\Psi = 0$ (Ψ is zero, given by equation (3.59) because $I_2 = 0$ (equation (3.56)).

$$\frac{p_{m}}{\bar{Y}_{m}} = \frac{\bar{\varepsilon}_{m}}{\bar{I}_{1}}$$

. .

If, for example the axisymmetric case is considered (Appendix A-14, page A141),

$$A_{1} = \frac{A_{b} - A_{a}}{A_{a}}$$
 (equation A-14.2, page A141)

. When red = 5%,
$$\frac{p_m}{\bar{y}_m} = 19\bar{\varepsilon}_m$$

or when red = 0%, $\frac{p_m}{\bar{Y}_m} = \infty$ (extreme case) \bar{Y}_m The foregoing example shows that the validity of the results evaluated from equation (3.61) breaks down as the reduction of area decreases to low values. This may be explained by the fact that at low reductions of area the plastic relationship assembled in the upper bound theory is no longer applicable and the size of the deformation zone is such that elastic distortions can no longer be ignored. Because of this consideration it is thought inadvisable to plot mean pressure ratios greater than 1.2. Wistreich (24) has plotted values of pressure ratios (experimental-theoretical) greater than 1.2 and Basily (2) obtained theoretical pressure ratios up to 1.4.

CONVENTIONAL DESIGN DIE

NEW DESIGN DIE

PLATE 8.2 The shapes of the deformation zone of the conventional pyramidical die formed by radiused surfaces and the elliptical/conical surface die (elliptical shape 'B') for the drawing of a polygonal section directly from round stock

PLATE 8.3. Square section drawing dies (shape 'B')

(i) 4WB: Tube drawing die that burst during its first draw due to misalignment of the pellet and the bolster axes during shrink-fitting
(ii) 4JE: Section bar drawing die which disintegrated into bits when attempting to draw a steel bar with a yield stress of about 45 tonf in⁻²
(iii) 4GB: Tube drawing die

PLATE 8.4 Hexagonal (6WB) and octagonal (8WB) elliptical tube drawing dies

- The photograph shows: (i) tubes drawn through differen
 - (i) tubes drawn through different dies(ii) transition zone exhibited by various die
 - profiles, and
 - (iii) mode of tensile fracture
 - (iv) the comparison of the surface finish, corner 'sharpness' and the bore roundness when the condition of drawing is the same

- (ii) effect of equivalent die semi-angle on product
- under same drawing conditions, and
- (iv) transition zone when there is an excessive amount of sink (test 093)

			2	P
o.d. x gauge 1 ×	1/4	1×'	7/32	1 × 3/16
int.dia 0·4	+90	0.5	62	0.625
4GB	1			0
plug dia		0.470	0.485	0-488
red (%)		39.19	41.28	34.61
4MC				
plug dia		0.470	0.485	
red (%)	1	39.19	41.28	
4KD				
plug dia	-	0.470		
red (%)	(111)	39.19		
4НА				
olug dia 0.470	0.485	0.470	0.485	
red (%) 45.29	47.56	39.19	41.28	
4JB			6	
olug dia 0.470			0.495	
red (%) 45.29			43.44	

PLATE 3.8 Cross-section of tubes drawn through the square dies

o.d.	10000	1			1 1/16		1 .	1/8
1				n	0			
gauge	0.255	0.219	0.187	0.160	0.176	0.219	0.187	0.250
int dia	0.490	0.562	0.625	0745	0.708	0.625	0750	0.625
6WB	0	0	9		0	0	0	
plug dia	0.485	0.557	0.620	0.682	0.682	0.620	0.620	60.722
red (%)	22.13	24.41	27.37	37.35	42.28	40.05	37.06	
6NB	91	9	0		Q			
6BA					6	~		
plug dia	0.485	0.557	1	1	0.620			
red (%)	22.13	24.41			29.41		1	1136
6AA		0		-				
8WB					0		0	
plug dia	0.485	0.557	0.620	0.745	0.682	0.620	0.745	0.620
red (%)	12.48	13.68	15.34	40.22	30.58	30.12	50.89	40.33
8PB			\bigcirc	\bigcirc	Q			O
8 SD					S			
10QB	0	6	0	01	O	0	0	0
plug dia	0485	0.557	0.620	0745	0.682	0.020	0.745	0.6Z0
red (%)	07.85	08.54	09.56	3413	24.97	25.35	45.89	37.02
α RA	-			0	0		0	0
plug dia				0745	0.002		0.745	0.620
red (%)			1	2256	14.68		36.72	29.64

PLATES 8.9 Tube secions drawn directly from round stock on a cylindrical plug through the hexagonal, octagonal, decagonal and round dies displayed in Plates 3.1 & 8.4

PLATE 3.10 Hexagonal die tips

- (i) enclosing a pyramidical passage and
 - (ii) showing the breakage of one of the fingers was accelerated possibly by the rough swaged tag

CHAPTER 9

CONCLUSIONS

9. CONCLUSIONS

An extensive investigation of the mechanics of drawing polygonal tube from round stock on a cylindrical plug has been accomplished successfully both theoretically and experimentally to enable the following conclusions to be drawn:

- The theoretical and experimental analyses have shown the feasibility of drawing regular polygonal tubes from round stock on a cylindrical plug in a single pass.
- Generally there is good agreement between the theoretical and experimental values.

The lower bound solution and the upper bound solution bracket the experimental value to within close limits. For a given draw condition, the derived upper bound solution predicts a higher value of draw stress due to the account taken for redundant work whilst the simpler lower bound under-estimates the draw stress as it neglects the redundant effect.

- 3. A comparison of the performance of the various geometrical shapes of section dies used in other industrial application and in the drawing of a section bar directly from round showed the optimum geometrical profile to be elliptical. This die shape produced polygonal tubes with the sharpest corners whilst dissipating the least amount of energy. Consequently, a set of elliptical shaped dies was designed for the investigations of the polygonal tube drawing process.
- 4. Unlike the axisymmetric tube drawing problem, the shape of the die deforming passage forms an integral part of the analysis of the drawing of polygonal tube directly from round stock on a cylindrical plug.

- 156 -

- 5. Drawing of a square tube proved to be the severest of all polygonal sections. In addition to the limitations imposed by high reductions of area, the material suffers the greatest lateral displacement as the external surface of the workpiece transforms from round to a square with the bore remaining circular.
- 6. The optimisation of the equivalent die semi-angle as predicted by the upper bound solution produced satisfactory results. The optimal section dies designed for tubing showed notable performance over those for drawing polygonal bars directly from round stock. A reduction in the draw load was observed together with a distinct improvement on the corner sharpness of the sections when using hexagonal and octagonal rod- and tube-drawing dies. However, similar conclusive results cannot be claimed for the square sections due to high reductions of area encountered. The level of sink in the tubes drawn through the two square dies vitiated the conditions of drawing; the tubes so drawn were from different casts (the rod drawing die had burst before the final tests).
- 7. The semi-analytical method, which was developed to determine the mean coefficient of friction from the estimated redundant work and the apparent strain method, produced results which compared well with those from the direct measurement using the split rotating die. Although the experimental data available were only by the square die tips, the semi-analytical technique can be generalised to hold true in determining the mean coefficient of friction for other polygonal sections.
- 8. The understanding of the drawing process from the experimental and theoretical investigations is undoubtedly of practical value to manufacturers of nut blanks who would make substantial savings in raw material and capital investment in some stations of the production line. The developed theory and the accompanying

computer program form a useful guide when producing draw schedules and in the design of draw tools and the selection of the drawbench for the required dimensional series of the input-output stock. CHAPTER 10

SUGGESTIONS FOR FURTHER WORK

10. SUGGESTIONS FOR FURTHER WORK

On the basis of the present study of mechanics of drawing regular polygonal tube directly from round stock on a cylindrical plug, further work is suggested as follows:-

1. Irregular polygonal tube drawing

The derived theoretical solution could be generalised to account for drawing of irregular polygonal sections directly from round stock. In this class are the rectangular sections where, for a given input tube, the effect of changing the breadth to length ratio of the drawn section on the process loads would be of great interest.

 Circular tube drawing from round on a polygonal plug in a single pass

In this case the forming die is conical but the plug takes one of the shapes already discussed for polygonal tube drawing dies (see Section 4.3). The study of the process (where the bore changes directly from round to a polygon whilst the external surface remains circular) requires the definition of an equivalent conical angle " α_e " for the plug and the conventional conical angle " α'' " for the die. The combination of the two angles and the shape of plug would constitute the major factors to be investigated for optimal drawing that gives the least work of deformation and a superior quality of the drawn section.

3. Polygonal tube drawing with back-pull

In the axisymmetric case, drawing with back-pull reduces the rate of die wear which is related to lower levels of die pressure (Blazynski (2), Chapter 6). This effect could be investigated in the drawing of polygonal tube with back-pull. For example, the input stock could be passed through an axially symmetric drawing die prior to the polygonal die. The study could include the determination of the proportion of draw loads and the estimation of the die pressures acting on the two dies.

The problem could be extended to the case where backtension is provided by a polygonal die (i.e. polygonal tube drawing in tandem). Where the draw stress becomes exceedingly high (e.g. in square drawing) to offset the advantages of back-tension, it is suggested to use an input stock which had been drawn through a corresponding polygonal die in a separate operation (i.e. polygonal tube drawing in sequence).

4. Use of ultrasonic vibrations in polygonal tube drawing When drawing with square and hexagonal sections high reductions of area were involved which resulted occasionally in tube breakage. Ultrasonic vibrations of the tools plastically deforming metals have the effect of reducing process loads and consequently greater reductions of area can be attained (Ref. (3)). Therefore, to overcome the problem of drawing at high reductions of area, it is suggested to investigate the effect of ultrasonic vibrations in the polygonal tube drawing process by vibrating the die radially or the plug axially. The vibrations also reduce

- 160 -

the coefficient of friction and thereby increase the tool life.

- 5. Evaluation of residual stresses in polygonal tube drawing In polygonal tube drawing directly from round stock, the material deforms non-uniformly and residual stresses are bound to occur. To evaluate the level of disparity it is suggested that a metallurgical study of, say, the grain distortion across the drawn section be carried out.
- 6. Visioplasticity in polygonal tube drawing

When applying the apparent strain analysis, expressions with surface velocities were simplified by introducing a mean velocity of an equivalent circular mode of the external configuration of the deformation zone. An improvement on the solution is suggested by obtaining the surface velocity distribution using visioplastic techniques. Further study using the methods is proposed; splitting the specimen through two planes of symmetry (i.e. across flats and across diagonals) will give further insight to the flow of metal and redundant deformation.

7. Inserts of the split rotating die

High reductions of area limited the range of tests when determining the mean coefficient of friction using the split rotating die for the square section. One of the hexagonal fingered die tips designed to fit the existing conical die, failed during the first draw. Even though the failure could have been due to heat treatment, the cross-section of the insert at the tip was fairly thin. When designing hexagonal, octagonal and decagonal inserts it is suggested to use fewer number of splits and also increase the depth of the metal at the exit section.

8. Drawbenches (Appendix A-16)

'Sheffield' drawbench has been designed specifically for tube drawing; it is a stiffer bench than the 'Brookes' drawbench which is suitable for drawing solid bars. Since in polygonal tube drawing high reductions of area are encountered, a slight bending moment on the drawn tube which acts on the tag increases the stress to the point where the tube breaks. It is suggested that comparative studies be carried out on the drawing of tubes using the two drawbenches.

REFERENCES

- KARIYAWASAM, V.P. The mechanics of drawing polygonal tube from round on a plug. Ph.D. thesis (1980) University of Aston in Birmingham.
- 2. BASILY, B.B. The mechanics of drawing polygonal section rod from round bar. Ph.D. thesis (1976) University of Aston in Birmingham.
- SANSOME, D.H. People, pence and plasticity. Inaugural lecture, University of Aston (4th March 1975).
- DAVIS, E.A. & The theory of wire drawing. J. Appl. Mech.
 DOKOS, S.J. 1944, vol. 11, A-193 to A-198.
- 5. HOFFMAN, O. & An introduction to the theory of plasticity SACHS, G. for engineers. Mcgraw-Hill Press, New York

(1953). Chapters 15, 16 and 17.

- SIEBEL, E. Stahl u Eisen (Iron and Steel), 1947, vol. 66 - 67, pp. 171 - 180.
- MACLELLAN, G.D.S. Critical survey of wire industry. J. Iron Steel Inst. 1948, vol. 158, pp. 347 - 356.
- WISTRIECH, J.G. The fundamentals of wire drawing. Met. Rev. 1958, vol. 3 (10), pp. 97 - 142.
- YANG, C.T. On the mechanics of wire drawing. Trans.
 ASME, series B, 1961, vol. 83 pp. 523 530.
- JOHNSON, W. & Wire drawing: A survey of theories. Wire SOWERBY, R. Industry, 1969, vol. 36, pp. 137 144 and 249 256.

- 11. ZIMMERMAN, Z. Metal flow through converging dies a
 & AVITZUR, B. lower upper bound approach using generalised boundaries of the plastic zone. Trans. ASME, series B (Feb. 1970), vol. 92, pp. 119-129.
- 12. HILL, R. & New theory of plastic deformation in wire TUPPER, S.J. drawing. J. Iron Steel Inst. (1948), vol. 159, pp. 353-359.
- 13. SIEBEL, E. Application to shaping processes of Henky's laws of equilibrium. J. Iron and Steel Inst. (1947), vol. 155, pp. 526-534.
- HILL, R. Mathematical theory of plasticity. Clarence Press (1950).
- 15. GREEN, A.P. & Calculations on influence of friction and HILL, R. die geometry in sheet drawing. J. Mech. Phys.
- GREEN, A.P. Plane theories of drawing. Proc. Inst.
 Mech. Engrs. (1960), vol. 174 (31), pp. 847-864.

Solids (1952), vol. 1. pp. 31-36.

JUNEJA, B.L. & An analysis for drawing and extrusion of
 PRAKASH, R. polygonal sections. Int. J. MTDR (1975),

vol. 15, pp. 1-30.

- PRAKASH, R. & An analysis of plastic flow through polygonal KHAN, Q.M. converging dies with generalised boundaries of zone of plastic deformation. Int. J. MTDR (1979), vol. 19, pp. 1-19.
- SACHS, G. Z. ang. math. mech. (1927), vol. 7, pp. 235-236.
 KÖRBER, F. & Mitt. K.-W. I. Eisenf. (1940), vol. 22 (5), EICHENGER, A. pp. 57-79.

- 21. LUNT, R.W. & An extension of wire drawing, with special MACLELLAN, G.D.S. reference to the contributions of K.B. Lewis, J. Inst. Met. (1946), vol. 72, pp. 65-96.
- 22. ATKINS, A.G. & The incorporation of work hardening and
 CADDELL, R.M. redundant work in rod drawing analyses.
 Int. J. Mech. Sci. (1968), vol. 10, pp. 15-28.
- 23. JOHNSON, R.W. & Redundant work in drawing cylindrical stock.
 ROWE, G.W.
 J. Inst. Met. (1968), vol. 96, pp. 97-105.
- 24. WISTRIECH, J.G. Investigation of the mechanics of wire drawing. Proc. Inst. Mech. Engrs. (1955), vol. 169, pp. 654-665.
- 25. SACHS, G., Drawing thin-walled tubing with a moving LUBAHN, J.D. & mandrel through a single stationary die.
 TRACY, D.P. J. Appl. Mech. (Dec. 1944), vol. 11, pp. A-199 to A-210.
- 26. ESPEY, G. & Experimentation on tube drawing with a moving SACHS, G.
 Mandrel. Trans. ASME & J. Appl. Mech. (vol. 14), 1947, vol. 69, pp. A-81 to A-87.
- 27. SACHS, G. & Stress analysis of tube sinking. Trans. ASME
 BALDWIN, W.M. (1946), vol. 68, pp. 655-662.
- 28. SWIFT, H.W. Stresses and strains in tube drawing. Phil. Mag. series 7 (Sept. 1949), vol. 40 (308), pp. 883-902.
- 29. CHUNG, S.Y. & A theory of tube sinking. J. Iron Steel Inst.
 SWIFT, H.W. (1952), vol. 170, pp. 29-36.

- 165 -

- BLAZYNSKI, T.Z. & An investigation of the plug drawing. Proc.
 COLE, I.M. Inst. Mech. Engrs. (1960), vol. 174, pp. 797-812.
- 31. BLAZYNSKI, T.Z. & An investigation of the sinking and mandrel
 COLE, I.M. drawing processes. Proc. Inst. Mech. Engrs.
 (1963-64), vol. 198 (part 1, No. 33), pp. 894-906
- 32. PRAGER, W. & Theory of perfectly plastic solids. Wiley, 1951.
 HODGE, P.G. Chapter 8.
- 33. DRUCKER, D.C. & Coulomb friction, plasticity and limit loads.
 PROVIDENCE, R.L. J. Appl. Mech. (Mar. 1954), vol. 21, pp. 71-74.
- 34. AVITZUR, B. An analysis of central bursting defects in extrusion and wire drawing. Trans. ASME series B (1968), vol. 90, pp. 79-91.
- 35. ZIMMERMAN, Z. & An analysis of the effect of strain hardening AVITZUR, B. on central bursting defects in drawing and extrusion. Trans. series B (1970), vol. 92, pp. 135-145.
- 36. HILL, R. On the state of stress in a plastic-rigid body at the yield point. Phil. Mag. (1951), vol. 42, pp. 868-
- JOHNSON, W. & Engineering plasticity. Van Nostrand, 1975.
 MELLOR, P.B. Chapter 13.
- 38. JOHNSON, W. Estimation of upper bound loads for extrusion and coining operations. Proc. Inst. Mech. Engrs. (1959), vol. 173, pp. 61-72.
- 39. KUDO, H. An upper bound approach to plane-strain forging and extrusion - I. Int. J. Mech. Sci. (1960), vol. 1, pp. 57-83.

- 40. ALEXANDER, J.M. Proc. Inst. Mech. Engrs. (1959), vol. 173, pp. 85-91.
- 41. KUDO, H. Some analytical and experimental studies of axisymmetric cold forging and extrusion I.
 Int. J. Mech. Sci. (1960), vol. 2, pp. 102 -127.
- 42. KOBAYASHI, S. Upper bound solutions of axisymmetric forming problems - II. ASME WA-81, Winter Annual Meeting, Nov. 1963, paper No. 63.
- HALLING, J. & An upper bound solution for axisymmetric
 MITCHELL, L.A. extrusion. Int. J. Mech. Sci. (1965), vol. 7,
 pp. 277-295.
- 44. KOBAYASHI, S. & Upper bound and lower bound solutions to
 THOMSEN, E.G. axisymmetric compression and extrusion problems.
 Int. J. Mech. Sci. (1965), vol. 7, pp. 127-143.
- 45. THOMSEN, E.G., Mechanics of plastic deformation in metal YANG, C.T. & processing. MacMillan Press, 1965. KOBAYASHI, S.
- 46. ADIE, J.G. & A graphical method of obtaining hodographs
 ALEXANDER, J.M. for upper bound solution to axisymmetric
 problems. Int. J. Mech. Sci. (1967), vol. 9,

pp. 349-357.

- 47. AVITZUR, B. Analysis of wire drawing and extrusion through conical dies of large cone angle. Trans. ASME series B (1964), vol. 86, pp. 305-316.
- 48. AVITZUR, B. Analysis of wire drawing and extrusion through conical dies of small cone angle. Trans. ASME series B (1963), vol. 85, pp. 89-96.

- 49. AVITZUR, B. Metal forming: processes and analysis. Magraw-Hill Book Company, New York, 1968. Some theoretical considerations for the 50. BASILY, B.B. & direct drawing of section rod from round. SANSOME, D.H. Int. J. Mech. Sci. (1976), vol. 18, pp.201-208. 51. AVITZUR, B. Tube sinking and expanding. Trans. ASME series B (1965), vol. 87, pp. 71-79. 52. PRAKASH, R. & A general solution to axisymmetric contained JUNEJA, B.L. plastic flow processes. Proc. Brit. Conf. Engg. Prod., I.I.T. Delhi (Dec. 1976), pp. C-93 to C-107.
- 53. THOMSEN, E.G. & Experimental stress determination within a LAPSEY, J.T. metal during plastic flow. Proc. Soc. Exp. Stress Analysis (1952), vol. XI (No.2), pp. 59-68.
- 54. FRISCH, J. & Experimental study of metal extrusion at THOMSEN, E.G. various strain rates. Trans. ASME (1954), vol. 76, pp. 599-606.
- 55. THOMSEN, E.G. A new approach to metal forming problems -Experimental stress analysis for a tubular extrusion. Trans. ASME (1955), vol. 77, pp. 515-522.

56. SHABAIK, A.H. & Computer application to visioplasticity method. THOMSEN, E.G. Trans. ASME series B (May 1967), vol. 89, pp. 339-349.

- 168 -

- 57. MEDRANO, R.E. & Visioplasticity techniques in axisymmetric
 GILLIS, P.P. extrusion. J. Strain Analysis (1972), vol.7,
 pp. 170-177.
- 58. SHABAIK, A.H. & A theoretical method for the analysis of THOMSEN, E.G. metalworking problems. Trans. ASME series B (1968), vol. 90, pp. 343-352.
- 59. METHA, H.S., Analysis of tube extrusion. Trans. ASME
 SHABAIK, A.H. & series B (1970), vol. 92, pp. 403-411.
 KOBAYASHI, S.
- 60. ZIENKIEWICZ, O.C. Finite element method in engineering science. McGraw-Hill Co., London 1971.
- 61. PAULSEN, C.W. Finite element analysis. Machine Design (1971), vol. 43 (3 parts): Sept. 30 (No.24) pp. 46-52, Oct. 14 (No. 25) pp. 146-150, Oct. 28 (No. 26) pp. 90-94.
- MARCAL, P.V. & Elastic-plastic analysis of two dimensional KING, I.P.
 Stress systems by the finite element method. Int. J. Mech. Sci. (1967), vol. 9, pp. 143-155.
- G3. YAMADA, Y. Plastic stress strain matrix and its applica-YOSHIMURA, N. & tion for the solution of elastic-plastic
 SAKURAI, T. problems by finite element method. Int. J. Mech. Sci. (1968), vol. 10, pp. 343-354.
- 64. LEE, C.H. & Elastoplastic flat punch identation by the KOBAYASHI, S. finite element method. Int. J. Mech. Sci. (1970), vol. 12, pp. 349-370.

65. ZIENKIEWICZ, O.C. & GODBOLE, P.N.

Flow of plastic and visco-plastic solids with special reference to extrusion and forming processes. Int. J. Num. Meth. Engng. (1974), vol. 8, pp. 3-16.

- 66. HARTLEY, P., Friction in finite element analyses of metal-STURGESS, C.E.N. & forming processes. Int. J. Mech. Sci. (1979), ROWE, G.W. vol. 21, pp. 301-311.
- 67. IWATA, K., Analysis of hydrostatic extrusion by the
 OSAKADA, K. & finite element method. Trans. ASME series B
 FUJINO, S. (1972), vol. 94, pp. 697-703.
- 68. FIORENTINO, R.J., Hydrostatic extrusion of billet materials -RICHARDSON, B.D. & Role of die design and residual stress
 SABROFF, A.M. distribution. Metal Forming (1969), vol. 36 (no. 9), pp. 243-252.
- 69. LINICUS, W. & Mitt. Dt. Mater. Anst. 'Spanlose formug der SACHS, G. metalle', 1931, vol. 16, pp. 36-67.
- NISHIHARA, T., Tech. Rep. Eng. Inst. Kyoto University (1955),
 KAKUZEN, M. & vol. 5, Rep. No.22, 75.
- 71. ROTHMAN, D. & An investigation of rod drawing with die SANSOME, D.H. rotation. Int. J. MTDR (1970), vol. 10, pp. 179-192.
- 72. MACLELLAN, G.D.S. Some friction effects in wire drawing. J.Inst. Met. (1952-53), vol. 81, pp. 1-13.
- 73. LANCASTER, P.R. & (ii) Comparison of theoretical and experimen-ROWE, G.W.
 tal drawing stresses and the evaluation of the coefficient of friction. Proc. Inst. Mech.
 Engrs. (1963-64), vol. 178 (part 1, No.2), pp. 69-89.

- 170 -

- 74. TROZERA, T.A. On non-homogeneous work for wire drawing. Trans. ASM (1964), vol. 57, pp.309-323.
- 75. ATKINS, A.G. &The influence of redundant work when drawing
CADDELL, R.M.CADDELL, R.M.rods through conical dies.Trans. ASME

series B (1968) vol. 90, pp. 411-418.

- 76 BASILY, B.B. & 17th Int. MTDR Conf. (Sept. 1976) SANSOME, D.H.
- 77. THOMPSON, P.J. & Apparent strain method for analysis of SANSOME, D.H. steady-state metal-working operations. Metals Technology (Nov. 1976), vol. pp. 497-502.
- 78. PUGH, H.LI.D Redundant work and friction in the hydrostatic extrusion of pure aluminium and aluminium alloy. J. Mech.Eng.Sci. (1964), vol. 6 (No. 4), pp. 362-370.
- 79. VOCE, E. The relationship between stress and strain for homogeneous deformation. J.Inst. Metals (1948), vol. 74, pp. 537-562.

80. ERASMUS, L.A. Mechanical properties: significance of tensile test results. Metallurgia & Metal Forming

81. CADDELL, R. M. et al

(1975), vol. 42, pp. 94–97. International Journal of Mechanical Engineering Education (1980), vol. 8.

BIBLIOGRAPHY

1. ROWE, G.W. Principles of industrial metalworking

processes. Edward Arnold, 1977.

2. BLAZYNSKI, T.Z.

Metal forming: Tool profiles and flow. MacMillan Press Ltd., 1976.

- FORD, H. & Advanced Mechanics of Materials. Ellis
 ALEXANDER, J.M. Harwood, 1977.
- JOHNSON, W. & Engineering plasticity. Van Nostrand MELLOR, P.B. Reinhold, 1978.

ACKNOWLEDGEMENTS

I am grateful to the Commonwealth Scholarship Commission for the grant to study at the University of Aston in Birmingham, and to the University of Nairobi (Kenya) for the study leave. I owe special thanks to Professor D.H. Sansome for the continued interest, support and discussion during the research and the preparation of the manuscript. I am heavily indebted to Mr. G.M. Jones, Mr. S. Twamley and the technical staff of the Production Engineering machine shop and the Communication Media Unit. I also extend my appreciation to Mrs. J. Neale and Mrs. E.A. Copeland for their effort and patience in typing the thesis.

Finally I wish to thank my wife Wanjiku and daughter Wanjugu, who tolerated 'energies', 'upper bounds', 'polygonal drawing', 'friction' and other things over the period of research. APPENDIX

A-1 <u>Geometrical relations for the input tube and the required</u> polygonal tube maintaining the same bore

(a) Input tube section

$$A_{b} = \pi t_{b}^{2} \left(\frac{1}{t_{b}/D_{b}} - 1 \right)$$
$$A_{p} = \frac{\pi}{4} d_{p}^{2}$$

(b) Output polygonal tube section

 $t_{a} = \kappa H_{a}, \text{ where } 0 < \kappa < \frac{1}{2}$ and $\kappa = \frac{1}{2}(1 - d_{p}/H_{a})H_{a}$ $A_{a} = H_{a}^{2}(SPAPAM - \frac{\pi}{4}(1 - 2\kappa)^{2})$ SPAPAM = Nscos ϕ .sin $\phi/4$ $\phi = \beta$ = included angle of the symmetric section (= $\frac{\pi}{N_{s}}$)

(c) Equivalent output section for axisymmetric drawing

 $D_{e} = 2R_{e} = \sqrt{(A_{a} + A_{p}) 4/\pi}$ Reduction of area, 'r' = 1 - A_{a}/A_{b}

No. of sides (Ns)	Section name	β(=π/Ns rad) (degrees)	SPARAM	A/F (H _a = 1 in)		
3	triangular	60	0.3248	0.7500**		
4	square	45	0.5000	0.7071		
5	5 pentagon		0.5944	0.8090		
6	hexagon	30	0.6495	0.8660		
7	heptagon	25.71	0.6840	0.9010		
8	octagon	22.5	0.7071	0.9239		
9	nonagon	20	0.7231	0.9397		
10	decagon	18	0.7347	0.9510		
11	unidecagon	16.36	0.7434	0.9595		
12	duodecagon	15	0.7500	0.9659		
/)	/	1		
	\rangle	\rangle	\rangle	\rangle		
1		1				
æ	circular	0	0.7854	1.0000		

** the altitude of triangular section

A-2 PRELIMINARY SELECTION OF TUBES

6

TABLE No. A-2,1 Drawing square tube from round on a cylindrical plug

INPUT			INP	UT TUBE	OUTER	DI AME TE	R (Db i	n)	
GAUGE (thin)		1	1 1/16	1 1/8	1 3/16	1 1/4	1 1/16	1 3/8	1 1/16
	$t_{\rm b}/D_{\rm b}$	0.0625	0.0588	0.0555	0.0526	0.0500	0.0476	0.0454	0.0435
	$1/A_{\rm b}$	5.432	5.091	4.7882	4.524	4.289	4.073	3.875	3.706
1/16	i.db	0.872	0.9345	0.997	1.0595	1.122	1.1875	1.25	1.3125
10	к	0.064	0.033	0.0015	-	-	-	-	-
	'r'	-	-	-	-	-	-	-	
	tb/Db	0.1250	0.1176	0.1110	0.1052	0.100	0.095	0.091	0.0869
	1/A _b	2.9103	2.715	2.5462	2.3951	2.2635	2.1385	2.0394	1.9388
1/8	i.db	0.744	0.8065	0.869	0.9315	0.994	1.0625	1.125	1.1875
	к	0.128	0.097	0.0655	0.0342	-	-	-	-
	'r'	0.8139	-	-	-	-	-	-	
	tb/Db	0.1875	0.1765	0.1667	0.1579	0.150	0.1428	0.1364	0.1304
3	1/Ab	2.0894	1.9406	1.8113	1.6977	1.5978	1.5083	1.430	1.3577
16	i.dh	0.625	0.6875	0.750	0.8125	0.875	0.9375	1.00	1.0625
Balas	K	0.1875	0.1562	0.125	0.094	0.0625	0.312	-	-
	'r'	0.5963	0.7500	0.8946	-	-	- 1905	-	0.1739
1 Same	t _b /D _b	0.25	0.2353	0.2222	0.2105	1.0720	1 1005	1 1216	1 0721
1,	1/A	1.6976	1.5671	1.4549	1.3579	1.2/32	0 8125	0.875	0.9375
4	1.ab	0.50	0.3623	0.025	0.0015	0.75	0.0120	0.010	0.0010
	ĸ	0.25	0.2187	0.1875	0.1562	0.125	0.094	0.0625	0.0312
	'r'	0.4845	0.6058	0.7188	0.8251	0.9259	0 2381	0 2273	0.2174
	tb/Db	0.3125	0.2941	0.2110	0.2001	1.0005	1 0100	0.0599	0.0055
5	1/Ab	1.4816	1.3580	1.2538	1.1637	1.0865	0 6875	0.9500	0.9033
16	1.a	0.375	0.4373	0.30	0.3023	0.025	0.0010	0.10	0.0075
1.20.00	K	0.3125	0.2812	0.25	0.2187	0.1875	0.1562	0.125	0.0875
	'r'	0.4228	0.5252	0.0193	0.2159	0.7901	0.2857	0 2727	0 2609
	t _b /b	0.375	0.3529	0.3333	0.3138	0.30	0.2007	0.2121	0.2000
3	1/Ab	1.3581	1.2344	1.1316	1.0448	0.9701	0.9054	0.8487	0.7990
8	i.d _b	0.25	0.3125	0.375	0.4375	0.50	0.5625	0.625	0.0875
	K	0.375	0.3437	0.3125	0.2812	0.25	0.2187	0.1875	0.1562
-	'r'	0.3876	0.4775	0.5591	0.6347	0.7245	0.7724	0.8360	0.8972
	t D	0.4375	0.4118	0.3889	0.3684	0.35	0.3333	0.3182	0.3043
7,	1/Ab	1.2934	1.1643	1.0583	0.9670	0.8955	0.8314	0.7761	0.7274
16	1.dy	0.125	0.1875	0.25	0.3125	0.375	0.4375	0.50	0.5675
	K	0.4375	0.4062	0.375	0.3437	0.3125	0.3812	0.25	0.2187
	T'T'	0.3692	0.4500	0.5228	0.5709	0.0311	0.7033	0.7045	0.0171
1/2	Cb/Db	-	0.4706	0.4444	0.4210	0.400	0.3809	0.3636	0.3478
	1/Ab		1.1318	1.0184	0.9258	0,8488	0.7834	0.7274	0.6790
	1.db		0.0625	0.125	0.1875	0.25	0.3125	0.3125	0.2812
	-		0.100	0. 2000	0. 1002	0.0170	0.0004	0 7166	0 7696
	r		0.4376	0.5033	0.5626	0.6173	10.0084	10.7106	0.7020
	th/Db							1	
5,	1 d.		1						
8	- The						1		
1									1
	I.r.					1		1	

- A3 -

TABLE No. A-2.2

Drawing hexagonal tube from round on a cylindrical plug

INPUT		INPUT TUBE OUTER DIAMETER (Db in)							
GAUGE (t _b in)	-	1	1 1/16	1 1/8	1 3/16	1 1/4	1 1/16	1 3/8	1 1/16
	t _b /D _b	0.0625	0.0588	0.0555	0.0526	0.0500	0.0476	0.0454	0.0435
	1/Ah	5.432	5.091	4.7882	4.524	4.289	4.073	3.875	3.706
1/16	i.db	0.872	0.9345	0.997	1.0595	1.122	1.1875	1.25	1.3125
10	к	0.064	0.033	0.0015	-	-	-	-	-
	'r'	0.7159	-	-	-	-	-	-	
	tb/Db	0.1250	0.1176	0.1110	0.1052	0.100	0.095	0.091	0.0869
	1/A _h	2.9103	2.715	2.5462	2.3951	2.2635	2.1385	2.0394	1.9388
1/0	i.db	0.744	0.8065	0.869	0.9315	0.994	1.0625	1.125	1.1875
	к	0.128	0.097	0.0655	0.0342	-	-	-	-
	'r'	0.3749	0.6218	0.8564	-	-	-	-	-
	tb/Db	0.1875	0.1765	0.1667	0.1579	0.150	0.1428	0.1364	0.1304
3	1/Ab	2.0894	1.9406	1.8113	1.6977	1.5978	1.5083	1.430	1.3577
16	i.d _b	0.625	0.6875	0.750	0.8125	0.875	0.9375	1.00	1.0625
	ĸ	0.1875	0.1562	0.125	0.094	0.0625	0.312	-	-
	'r'	0.2840	0.4601	0.6237	0.7764	0.9230		-	-
	t _b /D _b	0.25	0.2353	0.2222	0.2105	0.20	0.1905	0.1818	0.1739
1	1/A	1.6976	1.5671	1.4549	1.3579	1.2732	1.1985	1.1316	1.0721
1/4	i.d_b	0.50	0.5625	0.625	0.6875	0.75	0.8125	0.875	0.9375
	ĸ	0.25	0.2187	0.1875	0.1562	0.125	0.094	0.0625	0.0312
	'r'	0.2306	0.3717	0.5014	0.6222	0.7355	0.8421	-	-
Angel	t _b /D _b	0.3125	0.2941	0.2778	0.2631	0.25	0.2381	0.2273	0.2174
5	1/Ab	1.4816	1.3580	1.2538	1.1637	1.0865	1.0186	0.9588	0.9055
46	i.d _h	0.375	0.4375	0.50	0.5625	0.625	0.6875	0.75	0.8125
	к	0.3125	0.2812	0.25	0.2187	0.1875	0.1562	0.125	0.0875
	'r'	0.2013	0.3222	0.4318	0.5334	0.6276	0.8009	0.8807	-
	t _b /D _b	0.375	0.3529	0.3333	0.3158	0.30	0.2857	0.2727	0.2609
	1/Ab	1.3581	1.2344	1.1316	1.0448	0.9701	0.9054	0.8487	0.7990
3/8	i.db	0.25	0.3125	0.375	0.4375	0.50	0.5625	0.625	0.6875
0	к	0.375	0.3437	0.3125	0.2812	0.25	0.2187	0.1875	0.1562
	'r'	0.1846	0.2929	0.3899	0.4785	0.5889	0.6370	0.7091	0.7777
	t,/D	0.4375	0.4118	0.3889	0.3684	0.35	0.3333	0.3182	0.3043
7	1/Ap	1.2934	1.1643	1.0583	0.9670	0.8955	0.8314	0.7761	0.7274
10	i.d.	0.125	0.1875	0.25	0.3125	0.375	0.4375	0.50	0.5675
10	ĸ	0.4375	0.4062	0.375	0.3437	0.3125	0.3812	0.25	0.2187
	'r'	0.1758	0.2759	0.3646	0.4461	0.5172	0.5850	0.6483	0.7083
Contract Print	t _b /Db	-	0.4706	0.4444	0.4210	0.400	0.3809	0.3636	0.3478
1	1/Ab	-	1.1318	1.0184	0.9258	0.8488	0.7834	0.7274	0.6790
1	i.db	-	0.0625	0.125	0.1875	0.25	0.3125	0.375	0.4375
2	к	-	0.4687	0.4375	0.4062	0.375	0.3437	0.3125	0.2812
	'r'	-	0.2684	0.3510	0.4242	0.4904	0.5512	0.6078	0.6611
	tb/Db			The second is					
5	1/Ab								
1	i.db								
8	к								
	'r'								

- A4 -
TABLE No. A-2.3 Drawing octagonal tube from round on a cylindrical plug

INPUT			INI	PUT TUBE	OUTER	DIAMETE	R (Db i	n)	
GAUGE (thin)		1	1 1/16	1 1/8	1 3/16	1 1/4	1 1/16	1 3/8	1 7/16
	$t_{\rm b}/D_{\rm b}$	0.0625	0.0588	0.0555	0.0526	0.0500	0.0476	0.0454	0.0435
	1/Ab	5.432	5.091	4.7882	4.524	4.289	4.073	3.875	3.706
1/16	i.db	0.872	0.9345	0.997	1.0595	1.122	1.1875	1.25	1.3125
10	к	0.064	0.033	0.0015	-	-	-	-	-
	'r'	0.4030	0.8880	-	-	-	-	-	-
	tb/Db	0.1250	0.1176	0.1110	0.1052	0.100	0.095	0.091	0.0869
	1/A _b	2.9103	2.715	2.5462	2.3951	2.2635	2.1385	2.0394	1.9388
1/0	i.db	0.744	0.8065	0.869	0.9315	0.994	1.0625	1.125	1.1875
•	к	0.128	0.097	0.0655	0.0342	-	-	-	-
	'r'	0.2072	0.4654	0.7097	0.9396	-	-	-	-
	tb/Db	0.1875	0.1765	0.1667	0.1579	0.150	0.1428	0.1364	0.1304
3	1/Ab	2.0894	1.9406	1.8113	1.6977	1.5978	1.5083	1.430	1.3577
16	i.d _b	0.625	0.6875	0.750	0.8125	0.875	0.9375	1.00	1.0625
	ĸ	0.1875	0.1562	0,125	0.094	0.0625	0.312	-	-
	'r'	0.1636	0.3483	0.5195	0.6786	0.8310	-	-	-
	t _b /D _b	0.25	0.2353	0.2222	0.2105	0.20	0.1905	0.1818	0.1739
1	1/A_	1.6976	1.5671	1.4549	1.3579	1.2732	1.1985	1.1316	1.0721
1/4	i.d_b	0.50	0.5625	0.625	0.6875	0.75	0.8125	0.875	0.9375
	к	0.25	0.2187	0.1875	0.1562	0.125	0.094	0.0625	0.0312
	'r'	0.1329	0.2815	0.4176	0.5440	0.6622	0.7731	-	-
	t _b /D _b	0.3125	0.2941	0.2778	0.2631	0.25	0.2381	0.2273	0.2174
5	1/Ab	1.4816	1.3580	1.2538	1.1637	1.0865	1.0186	0.9588	0.9055
46	i.d _h	0.375	0.4375	0.50	0.5625	0.625	0.6875	0.75	0.8125
10	ĸ	0.3125	0.2812	0.25	0.2187	0.1875	0.1562	0.125	0.0875
	'r'	0.1159	0.2440	0.3596	0.4664	0.5651	0.6579	0.7456	0.8285
	$t_{\rm h}/D_{\rm h}$	0.375	0.3529	0.3333	0.3158	0.30	0.2857	0.2727	0.2609
	1/A _b	1.3581	1.2344	1.1316	1.0448	0.9701	0.9054	0.8487	0.7990
3/0	i.d _b	0.25	0.3125	0.375	0.4375	0.50	0.5625	0.625	0.6875
0	к	0.375	0.3437	0.3125	0.2812	0.25	0.2187	0.1875	0.1562
	'r'	0.1064	0.2218	0.3245	0.4184	0.5365	0.5859	0.6603	0.7317
	t,/D	0.4375	0.4118	0.3889	0.3684	0.35	0.3333	0.3182	0.3043
7	1/An	1.2934	1.1643	1.0583	0.9670	0.8955	0.8314	0.7761	0.7274
1	i.d.	0.125	0.1875	0.25	0.3125	0.375	0.4375	0.50	0,5675
16	ĸ	0.4375	0.4062	0.375	0.3437	0.3125	0.3812	0.25	0.2187
	'r'	0.1013	0.2088	0.3036	0.3904	0,4656	0.5371	0.6036	0.6665
Series-Uk	t _b /D _b	-	0.4706	0.4444	0.4210	0.400	0.3809	0.3636	0.3478
1	1/Ab	1	1.1318	1.0184	0.9258	0.8488	0.7834	0.7274	0.6790
17	i.db	-	0.0625	0.125	0.1875	0.25	0.3125	0.375	0.4375
2	к	-	0.4687	0.4375	0.4062	0.375	0.3437	0.3125	0.2812
	'r'	-	0.2032	0.2924	0.3709	0.4415	0.5061	0.5660	0.6220
- Viteration	tp/Db				15				
5	1/Ab								
1 1	i.db					14 101			
8	ĸ								
	'r'								

- A5 -

TABLE No. A-2.4 Drawing decagonal tube from round on a cylindrical plug

INPUT			INF	UT TUBE	OUTER	DI AME TE	R (Db i	.n)	
GAUGE (tbin)		1	1 1/16	1 ¹ / ₈	1 3/16	1 1/4	1 1/16	1 3/8	1 7/16
	$t_{\rm b}/D_{\rm b}$	0.0625	0.0588	0.0555	0.0526	0.0500	0.0476	0.0454	0.0435
1	1/Ab	5.432	5.091	4.7882	4.524	4.289	4.073	3.875	3.706
1/16	i.db	0.872	0.9345	0.997	1.0595	1.122	1.1875	1.25	1.3125
	к	0.064	0.033	0.0015	-	-	-	-	-
	'r'	0.2529	0.7473	-	-	-	-	-	
	tb/Db	0.1250	0.1176	0.1110	0.1052	0.100	0.095	0.091	0.0869
	1/A _b	2.9103	2.715	2.5462	2.3951	2.2635	2.1385	2.0394	1.9388
1/8	i.db	0.744	0.8065	0.869	0.9315	0.994	1.0625	1.125	1.1875
	к	0.128	0.097	0.0655	0.0342	-	-	-	-
	'r'	0.1268	0.3904	0.6394	0.8744	-	-	-	-
	tb/Db	0.1875	0.1765	0.1667	0.1579	0.150	0.1428	0.1364	0.1304
3	1/Ab	2.0894	1.9406	1.8113	1.6977	1.5978	1.5083	1.430	1.3577
16	i.dh	0.625	0.6875	0.750	0.8125	0.875	0.9375	1.00	1.0625
	K	0.1875	0.1562	0.125	0.094	0.0625	0.312	-	-
	'r'	0.1059	0.2947	0.4694	0.6313	0.7868	-	-	-
	t _b /D _b	0.25	0.2353	0.2222	0.2105	0.20	0.1905	0.1818	0.1739
1	1/4	1.6976	1.5671	1.4549	1.3579	1.2732	1.1985	1.1316	1.0721
14	i.d.	0.50	0.5625	0.625	0.6875	0.75	0.8125	0.875	0.9375
	ĸ	0.25	0.2187	0.1875	0.1562	0.125	0.094	0.0625	0.0312
	'r'	0.0860	0.2382	0.3774	0.5065	0.6270	0.7400	-	-
1.2.0.4	t _b /D _b	0.3125	0.2941	0.2778	0.2631	0.25	0.2381	0.2273	0.2174
5	1/Ab	1.4816	1.3580	1.2538	1.1637	1.0865	1.0186	0.9588	0.9055
16	i.d.	0.375	0.4375	0.50	0.5625	0.625	0.6875	0.75	0.8125
	ĸ	0.3125	0.2812	0.25	0.2187	0.1875	0.1562	0.125	0.0875
	'r'	0.0750	0.2065	0.3249	0,4343	0.5351	0.6298	0.7191	0.8036
	t _b /D _b	0.375	0.3529	0.3333	0.3158	0.30	0.2857	0.2727	0.2609
3	1/Ab	1.3581	1.2344	1.1316	1.0448	0.9701	0.9054	0.8487	0.7990
1/8	i.d _b	0.25	0.3125	0.375	0.4375	0.50	0.5625	0.625	0.6875
1.6.2.2	ĸ	0.375	0.3437	0.3125	0.2812	0.25	0.2187	0.1875	0.1562
	'r'	0.0688	0.1877	0.2935	0.3895	0.5116	0.5598	0.6368	0.7096
	t,/D	0.4375	0.4118	0.3889	0.3684	0.35	0.3333	0.3182	0.3043
7,	1/Ab	1.2934	1.1643	1.0583	0.9670	0.8955	0.8314	0.7761	0.7274
16	i.d.	0.125	0.1875	0.25	0.3125	0.375	0.4375	0.50	0.5675
1	ĸ	0.4375	0.4062	0.375	0.3437	0.3125	0.3812	0.25	0.2187
-	'r'	0.0656	0.1767	0.2744	0.3637	0.4409	0.5142	0.5821	0.6464
	tb/Db	-	0.4706	0.4444	0.4210	0.400	0.3809	0.3636	0.3478
1	1/Ab	-	1.1318	1.0184	0.9258	0.8488	0.7834	0.7274	0.6790
2	i.db	-	0.0625	0.125	0.1875	0.25	0.3125	0.375	0.4375
-	к	-	0.4687	0.4375	0.4062	0.375	0.3437	0.3125	0.2812
	'r'	-	0.1719	0.2643	0.3453	0.4180	0.4845	0.5459	0.6032
	th/Db								
5	1/Ab								
1	i.db								
8	к								
an Caral	'r'								

TABLE No. A-2.5 Drawing round tube from round on a cylindrical plug

INPUT			INF	UT TUBE	OUTER	DI AME TE	R (Db i	.n)	
GAUGE (toin)		1	1 1/16	1 1/8	1 3/16	1 1/4	1 1/16	1 3/8	1 ⁷ / ₁₆
	t_{b}/D_{b}	0.0625	0.0588	0.0555	0.0526	0.0500	0.0476	0.0454	0.0435
	1/Ab	5.432	5.091	4.7882	4.524	4.289	4.073	3.875	3.706
1/16	i.db	0.872	0.9345	0.997	1.0595	1.122	1.1875	1.25	1.3125
10	к	0.064	0.033	0.0015	-	-	-	-	-
	'r'	-	0.4965	0.9973	-		-	-	-
returne t	tb/Db	0.1250	0.1176	0.1110	0.1052	0.100	0.095	0.091	0.0869
	1/A _b	2.9103	2.715	2.5462	2.3951	2.2635	2.1385	2.0394	1.9388
1/0	i.db	0.744	0.8065	0.869	0.9315	0.994	1.0625	1.125	1.1875
•	к	0.128	0.097	0.0655	0.0342	-	-	-	-
	'r'	-	0.2566	0.5139	0.7582	-	-	-	-
- salite	tb/Db	0.1875	0.1765	0.1667	0.1579	0.150	0.1428	0.1364	0.1304
1.	1/Ab	2.0894	1.9406	1.8113	1.6977	1.5978	1.5083	1.430	1.3577
1 46	i.dh	0.625	0.6875	0.750	0.8125	0.875	0.9375	1.00	1.0625
10	к	0.1875	0.1562	0.125	0.094	0.0625	0.312	-	-
	'r'	-	0.1991	0.3802	0.5481	0.7081	-	-	_
	t _h /D _h	0.25	0.2353	0.2222	0.2105	0.20	0.1905	0.1818	0.1739
	1/A_	1.6976	1.5671	1.4549	1.3579	1.2732	1.1985	1.1316	1.0721
1/	i.d.	0.50	0.5625	0.625	0.6875	0.75	0.8125	0.875	0.9375
4	K	0.25	0.2187	0.1875	0.1562	0.125	0.094	0.0625	0.0312
	'r'	-	0.1610	0.3072	0.4396	0.5643	0.6810	_	-
	t,/D	0.3125	0.2941	0.2778	0.2631	0.25	0.2381	0.2273	0.2174
Here and	1/45	1.4816	1.3580	1.2538	1.1637	1.0865	1.0186	0.9588	0.9055
5	i.d.	0.375	0.4375	0.50	0.5625	0.625	0.6875	0.75	0.8125
16		0 3125	0 2812	0.25	0 2187	0 1875	0.1562	0.125	0.0875
	'r'	-	0.1396	0.2631	0.3769	0.4815	0.5796	0.6719	0.7560
	t. /D.	0.375	0.3529	0.3333	0.3158	0.30	0.2857	0.2727	0.2609
	1/A.	1.3581	1.2344	1,1316	1.0448	0.9701	0.9054	0.8487	0.7990
3,	i.d.	0.25	0.3125	0.375	0.4375	0.50	0.5625	0.625	0.6875
18		0 375	0 3437	0 3125	0 2812	0.25	0 2187	0 1875	0.1562
	'r'	-	0.1269	0.2378	0.3380	0.4669	0.5152	0.5950	0.6702
	t /D	0.4375	0.4118	0.3889	0.3684	0.35	0.3333	0.3182	0.3043
-	1/4	1 2034	1 1643	1 0583	0 9670	0 8955	0 8314	0 7761	0 7274
1'1	i d	0 125	0 1875	0.25	0 3125	0 375	0 4375	0.50	0.5675
16		0 4375	0 4062	0 375	0 3437	0 3125	0 3812	0.25	0.2187
	1'+'	-	0.1193	0.2222	0.3160	0.3968	0.4732	0.5438	0.6105
	t. /Da	-	0 4706	0 4444	0 4210	0 400	0.3809	0.3636	0.3478
	1/42		1 1318	1 0184	0 0258	0 8488	0 7834	0 7274	0 6790
1/	i du	-	0.0625	0.125	0.1875	0.25	0.3125	0.375	0.4375
2	K	-	0.4687	0.4375	0.4062	0.375	0.3437	0.3125	0.2812
	1.1	-	0.1162	0.2141	0 2997	0.3762	0.4459	0.5100	0.5700
	t. m		1 102		1	1.0102		1	1
	1/4	1			1	1			
5,	i.d.	1				1			
8	K	1				1			
	1							1	1
	1 .								

diagonal 1 in).

A8 1

Fig. A-2.3 Reduction of area versus the number of sides for different t_b/D input stock tubing from consideration of geometry (exit die diagonal 1 in).

.g. A-2.4 Reduction of area versus the number of sides for different t_b/D_b input stock tubing from the consideration of geometry (exit die diagonal 1 in).

.

A-3 STOCK OF TUBES USED IN THE EXPERIMENTS

	-	TUBE S	SPI	ECII	FIC	CATIO	N		NOMINA	L PLUG	DIAME	TER (d	ln in)	
				Non	nir	nal	int	1						
	S/	Code	1.	b. d		(in).	dia	3,	7,	1	9,	5,	11,	3,
	No	couc	x	gau	ige	e(in)	(in)	8	16	2	16	'8	16	4
	1	a176	Γ	1	x	7g	0.648	14.49	23.25	33.35	44.80	57.59	-	-
	2	a187		1	x	3/16	0.625	18.60	26.94	36.55	47.45	59.63	-	_
be	3	a219		1	x	7/32	0.562	27.44	34.87	43.44	53.16	-	-	-
Tu	4	a250		1	x	1/4	0.50	33.87	40.64	48.45	-	_	-	_
Le	7	b219	1	1/1	16	x 7/32	0.624	32.82	39.69	47.63	56.63	- N		-
ua	12	a150		1	x	.150	0.70	-	12.70	24.19	37.21	51.76	-	-
Sq	13	a120		1	x	.120	0.760	-	-	8.47	24.19	41.76	-	-
										19189				
			1		-									
-	5	h120	1	1/1	16	- 10	0 806					0 00	25 05	11 72
2	6	b160	1	1/-	16	X 10	0 742	-			11 61	0.00	20.90	54 21
oe	7	b219	1	1/1	16	x 7/32	0.624	7 03	13 91	21 84	30 84	40 90	-	-
Tul	0	100	-	1 /1	20		0.001	1.00	10.01	21.01	17 22	20.25	40 00	57 10
-	- 0	C160	1	1/0	<u> </u>	x og	0.805	2 20	0.61	17 04	27 20	29.35	42.03	57.18
ona	9	<u>c187</u>	1	1/0	0 1	x 5/10	0.750	2.39	9.01	17.94	21.39	57.94	49.01	02.39
ago	10	c250	1	1/1	6 1	x 1/4	0.625	21.56	27.36	34.06	41.65	50.13	-	-
exa	11	DITT	1	1/1	.0.	x .17	0.708	-	-	-	18.56	30.40	43.48	-
H		- meren	+	-	-	and the								
-			-											
	5	b128	1	1/:	16	x 10g	0.806	-	-	-	-	-	10.62	29.39
e	6	b160	1	1/	16	x 8g	0.742	-	-	-	-	11.76	25.96	41.51
qn	7	6219	1	1/.	16	x 1/32	0.624	-	3.98	11.91	20.91	30.96	-	-
1	8	c160	1	1/8	8 2	x 8g	0.805	-	-	-	5.45	17.47	30.75	45.30
na	9	c187	1	1/8	8 2	<u>c 3/16</u>	0.750	-	-	7.51	16.95	27.51	39.18	51.95
80	10	c250	1	1/8	8 2	x 1/4	0.625	13.18	18.98	25.68	33.27	41.75	-	-
cta	11	b177	1	1/1	6	x .177	0.708	-	-	-	6.86	18.70	31.78	-
ŏ		-	-											
				-	-									
	5	b128	1	1/	16	x 10g	0.806	-	-	-	-	-	3.26	22.04
0	6	b160	1	1/	16	x 8g	0.742	-	-	-	-	5.67	19.87	35.42
qn	7	b219	1	1/	16	x 7/32	0.624	-	-	-	16.14	26.20	-	-
F	8	c160	1	1/3	8	x 8g	0.805	-	-	-	-	11.78	25.06	39.61
lal	9	c187	1	11	3	x 3/16	0.750	-	-	2.51	11.95	22.50	34.17	46.95
goi	10	c250	1	1/1	8 :	x 1/4	0.625	9.16	14.96	21.66	29.25	37.73	-	-
ca	11	b177	1	41	.6	x .177	0.708	-	-	-	1.25	13.09	25.63	-
De														
	5	b128	1	1/	16	x 10g	0.806	-	-	-	-	-	-	8.56
e	6	b160	1	1/	16	x 8g	0.742	-	-		-	-	8.70	24.26
Lub	7	b219	1	1/	16	x 7/32	0.624	-	-	-	7.41	17.46	-	-
1	8	c160	1	1/1	8 :	x 8g	0.805	-	-	-	-	1.33	14.61	29.16
la	9	c187	1	1/1	8 x	3/16	0.750	-	-	-	2.78	13.33	25.00	37.78
.cu	10	c250	1	1/1	8 x	: 1/4	0.625	1.79	7.59	14.29	21.87	30.36	-	-
Cil	11	b177	1	1/	16	x .177	0.708	-	-	-	-	-	15.88	-
	-		T				1	1						
			1											

TABLE No. A-3.1 Reductions of areas (%) for the stock of tubes in the drawing of polygonal tubes from round

A-3.1. Quontavac analyses on the tube material

(1) Stock from Lebas Tube Ltd

(a) Batch A

Element	С	S	Si	Р	Mn	Ni	Cr	Мо	Co	Cu	Sn
%	0.11	0.038 0	0.13	0.021	0.43	0.25	0.12	0.04	0.03	0.19	0.016

(b) Batch B

Element	С	S	Si P	Mn	Ni Cr	Mo	Co	Cu	Sn
%	0.12	0.045	0.13 0.0	20 0.56	0.09 0.11	5 0.03	N/D	0.24	0.05

(2)* Stock from Lebas Tube Ltd and British and General Tube Co Ltd

(c) Batch C (Lebas Tube Ltd)

The analysis was similar to Batch A above.

(d) Batch D (British and General Tube Ltd)

The results of the chemical analysis were not available.

* This second stock of tubing was received as drawn and the heat treatment carried out under a separate arrangement.

A-3.2. Test reference (labelling)

Tube o.d. x gauge	Code		Serial Num	ber	
(in x in)		lst set	of tubing	2nd set o	of tubing
(In x In)		BATCH A	BATCH B	BATCH C	BATCH D
1 x 7g	a176	1			
1 x 3/16	a187	2			14
1 x 7/32	a219	3		15	
1 x 1/4	a250	4			16
1 1/16 x 10g	a128	5			
1 1/16 x 8g	b160	6			17
1 1/16 x 7g	b177		11		
1 1/16 x 7/32	b219	7			
1 1/8 x 8g	c160	8			
1 1/18 x 3/16	c187	9	-address River		19
1 1/18 x 1/4	c250	10			
1.040 x 0.235	b ²³⁵				20
1 3/16 x 1/4	d250				20+

Code: 1st letter refers to tube o.d. (in)

a : 1; b : 1 1/16; c : 1 1/8; d : 1 3/16

The three digits denote the gauge size as a multiple of 1/1000 in. e.g. a219 represents 1 in o.d. x 0.219 in (or simply 1 x 7/32).

Whenever the tube from Batch A was annealed under the arrangement for heat treating the 2nd set of tubing, this was denoted by superscript h added to the 1st letter.

e.g. b^{h} 219:11/16 x 7/32 tubing from Batch A annealed together with the 2nd stock of tubes.

Examples

(i) For quick reference and easy identification of the drawn sections, the tubes were labelled as shown in the example below:

8PB c187 12 /27.03.81 /51.95% Test 072 19 - tubing from Batch D - test number to the date - nominal reduction of area - date of the test; day, month and year - nominal plug diameter as a multiple of 1/16 in[†] - input stock size; 1 1/8 in o.d. x 3/16 in gauge - octagonal elliptical die (section bar drawing die)

⁺ Nominal plug diameters were expressed as multiples of 1/16 in, except the following plugs:

> 0.485 (31/64 in) denoted by 7** (or 7**/16) 0.470 (15/32 in) denoted by 7* (or 7*/16) 0.488 denoted by 8 (or 8/16)

(ii) Test reference in Appendix A-5

For the example above, the format of the tube (test) reference has been re-expressed as:

19 / c187 12 /03-81 - month and year the test was done - nominal plug size: 3/4 in diameter - input tube o.d. x gauge: 1 1/8 in x 3/16 in - 2nd set of tubing, Batch D

The test number, the die designate and the reduction of area appear in separate columns.

A-4 THEORETICAL RESULTS:

Upper and lower bound solutions for the drawing tube of polygonal from round on a cylindrical plug $^{\wedge}$

TABLE No. A-4.1.1 The upper and the lower bound solutions for the drawing of square tube from round on a cylindrical plug.

Reduction of area : 38.76%

Input tube size : 1.0000 in o.d. x 0.3750 in gauge

	29	of	-		τ	JPPER BC	UN D			LO	WER BOU	ND
die	e	f.	-	Draw	Mean	Mean die	Mean	Mean	Mean die	Mean	Mean	Mean die
ī	160	bet		force	draw	pressure	yield	draw	pressure	yield	draw	pressure
ale	P-	5	ION		stress		stress	stress/	/yield	stress	stress/	/yield
ui v	E	UPa	ic t	P	U72	Dm	Ϋ́m	yield	stress	Ym	yield	stress
Eq	Se	ž	7	tonf	tonf in-2	tonf in-2	tonf in-2	stress		tonf in-2	stress	
		0.	00	09.873	21.896	22.229	36.245	0.6041	0.6133	34.532	0.4985	0.8240
		0.	02	13.202	30.831	17.436	38.659	0.8506	0.4811		0.7377	0.6946
	2	0.	04	16.345	36.273	14.217	39.861	1.0008	0.3922		0.8971	0.5910
	2	0.	06	17.999	39.918	11.971	40.586	1.1013	0.3303		1.0013	0.5076
		0	08	19.176	42.527	10.327	41.073	1.1733	0.2849		1.0677	0.4400
		0.	10	20.059	44.485	09:077	41.423	1.2273	0.2504		1.1085	0.3848
		0	00	10.479	23.240	23.667	36.654	0.6340	0.6457	34.532	0.4985	0.8239
	N.Do	0.	02	12.907	28.626	20.861	38.122	0,7810	0.5691		0.6299	0.7556
	1	0.	04	14.751	32.714	18.562	39.093	0.8925	0.5064		0.7375	0.6946
	4	0.	06	16.194	35.915	16.683	39.786	0.9798	0.4552		0.8253	0.6400
		0.	08	17.353	38.484	15.134	40.308	1.0499	0.4129		0.8968	0.5910
		0.	10	18.303	40.591	13.838	40.714	1.1074	p.3775		0.9545	0.5471
Г		0.	.00	11.064	24.538	25.118	37.031	0.6626	p. 6783	34.532	0.4985	0.8237
		0	02	12.852	28.503	23.068	38.091	0.7697	p.6229		0.5888	0.7774
	1	0.	04	14.329	31.779	21.267	38.880	0.8582	D. 5743		0.6679	0.7344
	0	0	06	15.568	34.525	19.696	39.492	0.9323	p.5319		0.7371	0.6945
	6	0	.08	16.620	36.859	18.323	39.981	0.9953	0.4948		0.7976	0.6575
		0	. 10	17.524	38.865	17.119	40.382	1.0495	D.4623		0.8503	0.6230
Γ		0	.00	11.349	25.170	25.852	87,209	0.6764	þ. 6948	34.532	0.4985	0.8236
		0	.02	12.941	28.701	24.027	88.141	p.7713	p.6457		0.5765	0.7839
	7	0	.04	14.290	31.693	22.391	88.860	p.8517	þ.6018		0.6422	0.7463
	1	0	. 06	15.446	34.257	20.935	89.434	0.9206	p.5626		0.7083	0.7112
		0	. 08	16.447	36.476	19.640	89.903	p.9803	p.5278		0.7638	0.6783
		0	. 10	17.321	38.414	18.485	40.294	1.0324	p. 4968		0.8131	0.6473
		0	. 00	11.6303	25.793	26.594	87.381	p.6900	p.7114	34.532	0.4985	0.8234
		0	. 02	13.071	28.988	24.939	88.212	D.7755	b.6672		0.5671	0.7884
	0	0	.04	14.316	31.749	23.434	\$8.873	0.8493	b. 6269		0.6298	0.7553
	0	0	. 06	15.401	34.155	22.074	89.412	p.9137	p.5905		0.6845	0.7240
1		0	.08	16.354	36.262	20.847	39.860	þ.9702	0.5577		0.7365	0.6944
L		0	. 10	17.197	38.140	19.739	40.239	1.0203	0.5280		0.7826	0.6664
		0	.00	12.183	27.019	28.114	\$7.709	D.7165	0.7455	34.532	0.4985	0.8231
1		0	. 02	13.405	29.729	26.700	38.394	D.7884	p. 7080		0.5537	0.7950
1	0	0	.04	14.490	32.136	25.387	\$8.962	0.8522	0.6732		0.6048	0.7681
	0	0	.06	15.460	34.287	24.175	39.440	p.9092	0.6411		0.6520	0.7424
		0	. 08	16.331	36.218	23.059	39.849	p.9604	0.6115		0.6956	0.7178
		0	.10	17.117	37.961	22.032	40.204	1.0067	0.5864		0.7358	0.6943

TABLE No. A- 4.1.1. (continued)

1

The upper and the lower bound solutions for the drawing of square tube from round on a cylindrical plug. a cylindrical plug.

Input tube size : Reduction of area : 38.76%

1.000 in o.d. x0.3750 in gauge

0 4	-	Т			UPPER B	BOUND			LO	WER BOU	ND
a A	•	zt.	100	Mean	Mean die	Mean	Mean	Mean die	Mean	Mean	Mean die
t d	eff		force	draw	nressure	vield	draw	pressure	yield	draw	pressure
en	00	CO	OICE	strass		stress	stress	/yield	stress	stress	/yield
val i-a	C	Ē	D	G	n	Ÿ.	/vield	stress	Y	/yield	stress
unp	Jea	L	toof	toof in 2	tonf in-2	tonf in-2	stress		tonf in ⁻²	stress	
<u> </u>	-	00	12 733	28,238	29.710	38.024	0.7426	0.7813	34.532	0.4985	0.8227
-	0.	00	13.804	30.614	28.454	38.607	0.8056	D.7483	-	0.5446	0.7992
	0.	02	14 774	32 965	27.273	39,104	0.8617	0.7173	1	0.5878	0.7766
112	0.	04	15 655	34 719	26,168	39.533	0.9131	0.6882		0.6283	0.7549
	0.	00	16 459	36.502	25.136	39.908	0.9600	p.6610		0.6662	0.7339
	0.	10	17,195	38.135	24.172	40.238	1.0029	D.6357	1	0.7017	0.7137
	10.	00	13,298	29.492	31.431	38.337	0.7693	D.8199	34.532	0.4985	0.8222
	0.	00	14 260	31 626	30,285	38.845	0.8250	0.7900		0.5380	0.8021
	0.	02	15 142	33 584	29 197	39,287	0.8760	D.7616	10000	0.5754	0.7826
114	0.	04	15.956	35.386	28.168	39.675	0.9230	p.7348	1	0.6107	0.7638
	10.	00	16.706	37.049	27.198	40.020	0.9664	p.7094	1	0.6442	0.7455
	0.	10	17.400	38.589	26.283	40.328	1.0066	0.6856		0.6758	0.7278
-	0.	10	13 858	30.734	33,232	38,636	0.7955	b.8601	34.532	0.4985	0.8216
	0.	00	14 736	32,681	32.165	39.085	0.8459	D.8325		0.5330	0.8041
	0.	04	14.700	04.007	21 146	20 183	h 8926	0.8062	1	0.5658	3 0.7870
116	0.	04	16 307	34.387	30,176	39.838	0.9360	D.7810		0.597]	0.7704
1	0.	.00	17 011	37 727	29 253	40,157	0.9765	D.7572	1	0.6269	0.7543
	0.	.08	17.660	20 195	28 377	10 445	1.0142	0.7345	1	0.6554	4 0.7386
-	0	. 10	14.471	32.093	35.259	38.952	0.8239	p.9052	34.53	2 0.4985	5 0.8210
	0	. 00	15,285	33.899	34.247	39.356	0.8703	p.8792		0.5290	0.8055
	0	.02	10.200	05.500	22.276	20 717	h 9136	0.8543	1	0.558	2 0.7903
118	0	.04	16.046	35.580	32 346	40.044	0.9542	0.8304	1	0.586	3 0.7755
1.	P	. 06	17 422	7 39 640	31 457	40.340	0.9922	0.8076	1	0.613	1 0.7610
	0	.08	18.055	5 40.041	30.607	40.610	1.0280	p.7858	1	0.638	8 0.7470
-	-6	. 10	16 20	1 26 202	10 161	30 946	D. 9056	1.0154	34.53	2 0.498	5 0.8204
	5	.00	17 140	38 032	39.411	40.218	0.9545	b.9891		0.525	8 0.8064
	F	. 02	17 92	1 39 752	38.399	40.554	0.9976	5 D.9637		0.552	1 0.7928
120) 6	.04	10 655	- 41 373	37 426	40,861	1.0383	3 0.9392		0.577	4 0.7794
-	P	.06	10.00	5 41.372	36.491	41.141	1.0767	7 0.9158	3	0.601	7 0.7664
	P	.08	10 00	5 MA 34F	3 35.593	3 41.399	1.1129	D.8933	3	0.625	2 0.7536
-	-0	. 10	19.99	0 44.040	100.000			-	1	1	1000
	- 6	.00							1		
	E	.0.			1				1		College -
12	2 E	.04	*						1		
-	- P	.06	5						1	-	
	P	. 01	3							40	
	p	1.10			_	_	_			_	-

TABLE No. A- 4.1.2 The upper and the lower bound solutions for the drawing of square tube from round on a cylindrical plug.

Input tube size : 1.000 in o.d. x 0.8125 in gauge Reduction of area : 42.28 %

	29	of	-		U	PPER BO	UN D			LO	WER BOU	ND
die	D a	f.	-1	Draw	Mean	Mean die	Mean	Mean	Mean die	Mean	Mean	Mean die
t	IBC)ef		force	draw	pressure	yield	draw	pressure	yield	draw	pressure
ale	16-	C	UO		stress		stress	stress/	/yield	stress	stress/	/yield
VIL	-i E	UP	t u	P	UT2	Pm	Ym	yield	stress	Ym	yield	stress
Eq	Se	Me	fr	tonf	tenfin-2	tonf in-2	tonf in -2	stress		tonf in-2	stress	
-		0.	00	09.300	23.875	20.808	36.841	0.6481	0.5648	35.459	0.5590	0.8051
		0.	02	12.996	33.368	15.370	39.238	0.9056	0.4172		0.8313	0.6537
	0	0.	04	15.047	38.626	12.094	40.335	1.0484	0.3283		0.9939	0.5883
	2	0.	06	16.345	41.960	09.950	40.969	1.1389	0.2701		1.0894	0.4495
		0	08	17.241	44.258	08.446	41.383	1.2013	0.2293		1.1381	0.3805
		0.	10	17.895	45.938	07.334	41.785	1.2469	0.1991		1.1626	0.3263
-	-	0	00	09.864	25.322	22.137	37.251	0.6798	0.5942	35.459	0.5590	0.8050
		0	.02	12.147	31.182	18.855	38.741	0.8371	0.5061		0.7120	0.7241
	1	0.	.04	13.780	35.374	16.349	39.673	0.9496	0.4389		0.8310	0.6536
	4	0	.06	15.003	38.514	14.405	40.313	1.0339	0.3867		0.9231	0.5921
		0	.08	15.842	40.950	12.863	40.782	1.0993	0.3453		0.9936	0.5383
		0	. 10	16.709	42.894	11.613	41.140	1.1515	0.3118		1.0471	0.4910
Г		0	.00	10.410	26.723	23.482	37.631	0.7101	0.6240	35.459	0.5590	0.8045
		0	. 02	12.107	31.080	21.055	38.717	0.8259	0.5595		0.6650	0.7497
	,	0	.04	13.450	34.527	19.030	39.492	0.7175	0.5057		0.7547	0.6994
1	0	0	.06	14.536	37.316	17.337	40.074	0.9916	0.4607		0.8306	0.6536
		0	.08	15.433	39.617	15.907	40.529	1.0528	0.4227		0.8945	0.6117
		0	. 10	16.185	41.547	14.688	40.893	1.1041	0.3903		0.9482	0.5733
Γ		0	.00	10.676	27.407	24.164	37.811	0.7248	0.6391	35.459	0.5590	0.8046
1		0	. 02	12.192	31.299	21.994	38.762	0.8278	0.5817	1	0.6508	0.7571
	7	0	.04	13.429	34.472	20.137	39.480	0.9117	0.5326		0.7304	0.7132
	1	0	. 06	14.454	37.106	18.546	40.032	0.9814	0.4905	-	0.7994	0.6727
		0	.08	15.319	39.324	17.175	40.472	1.0400	0.4542		0.8591	0.6351
		0	. 10	16.045	41.217	15.985	40.832	1.0901	0.4228		0.9105	0.6003
Γ		0	. 00	10.939	28.081	24.853	37.984	0.7393	0.6543	35.459	0.5590	0.8045
		0	. 02	12.314	31.611	22.880	38.841	0.8322	0.6024		0.6399	0.7627
	0	0	.04	13.462	2 34.558	21.158	39.499	0.9098	0.5570		0.7113	0.7238
	0	0	.06	14.434	1 37.052	19.656	40.021	0.9755	0.5175	-	0.7744	0.6874
		0	.08	15.266	39.189	18.340	40.446	1.0317	0.4828	1	0.8300	0.6535
L		0	.10	15.986	41.038	17.181	40.798	1.0804	0.4523		0.8789	0.0217
1		0	.00	11.453	3 29.401	26.260	38.314	0.7674	0.6854	35.459	0.5590	0.8041
		0	. 02	12.62	3 32.405	24.566	39.023	0.8458	0.6112		0.6242	0.7705
	10	0	.04	1 13.634	4 34.999	23.047	39.593	0.9135	0.6015		0.6834	0.7388
	10	0	.00	14.51	4 37.258	21.686	40.062	0.9724	0.5660		0.7370	0.7088
		0	. 01	3 15.28	7 39.243	20.465	40.456	1.0242	0.5341		0.7854	0.6803
		0).10	15.97	1 40.999	19.367	40.791	1.0701	0.5055	1	0.8223	0.6584

..... (continued)

The upper and the lower bound solutions for the drawing of square tube from round on a cylindrical plug.

Input tube size : 1.0000 in o.d. x 0.3125 in gauge Reduction of area : '42.28 %

0 0	1-	- 1			UPPER E	BOUND	S. S. Lang		LO	WER BOU	ND
a B		2 =	0.00	Maan	Mean die	Mean	Mean	Mean die	Mean	Mean	Mean die
t a	1	-	force	draw	nressure	vield	draw	pressure	yield	draw	pressure
en		0 0	IUICE	strass	p. 2000	stress	stress	/yield	stress	stress	/yield
val i-i		Ē	D	G	n	Ϋ́.	/vield	stress	Y	/yield	stress
inb		fri	tonf	tonf in 2	tonf in-2	tonf in -2	stress		tonf in -2	stress	
	1	00	11.057	20 605	27 721	38 627	0.9747	0.7177	35.459	0.5590	0.8036
-	E		12 985	33, 334	26.213	39.231	0.8630	0.6786		0.6136	0.7756
	H	0.02	12 803	35 664	24.836	39.734	0.9233	0.6430		0.6639	0.7489
112	F	0.04	14 700	37 736	23.581	40,159	0.9770	0.6105		0.7102	0.7233
	E	0.06	15.422	39.590	22.439	40.523	1.0249	0.5808	1	0.7529	0.6989
	He	1.08	16.072	41.257	21.388	40.839	1.0681	0.5537		0.7922	0.6756
	-	0.00	12 460	31 985	29,258	38.927	0.8217	0.7516	35.459	0.5590	0.8031
	E	0.00	12.400	01.000	27 991	39 155	0.8825	0.7162		0.6058	0.7791
	E	0.02	14 212	34.300	26 607	39,904	0.9372	0.6835		0.6549	0.7560
114	- 1	0.04	14.960	38.404	25.430	40.292	0.9865	0.6533		0.6902	0.7338
	E	0.00	15.638	40.145	24.343	40.630	1.0313	0.6254	1	0.7282	0.7124
	H	0.00	16.256	41.731	23.338	40.927	1.0720	0.5995		0.7636	0.6919
	-	0.10	12 074	33 306	30, 909	39,225	0.8491	0.7880	35.459	0.5590	0.8025
	E	0.00	12.9/4	25 471	29 626	39,693	0.9043	0.7553		0.5999	0.7815
1.		0.02	13.010	07.471	100 107	10 000	0 9545	0 7247	1	0.6384	0.7612
116	5	0.04	14.585	37.440	28.42/	40.099	1.0003	0.6962		0.6746	0.7416
		0.00	15.285	10 885	26.266	40.770	1.0423	0.6696		0.7087	0.7227
		0.00	16.517	42.400	25.294	41.050	1.0809	0.6448	1	0.7408	3 0.7044
-	-	0.10	12 12	1 24 495	32 580	39 483	0.8735	0.8236	35.459	0.559	0.8018
		0.00	13.434	1 34.407	31 308	39 904	0.9239	0.7929	T	0.595	2 0.7832
		0.02	14.21	1 38.312	30.171	40.274	0.9703	0.7641	1	0.629	5 0.7651
118	3	0.04	15 59	10.000	29,101	40,602	1.0131	0.7371	1	0.662	1 0.7476
	-	0.00	16.189	9 41.559	28.097	7 40.896	1.0526	0.7116		0.692	9 0.7306
		0.08	16.75	2 43.005	5 27.153	3 41.160	1.0892	0.6877		0.722	2 0.7141
+	-	6.4	13,95	3 35.820	34.356	39.766	0.9007	0.8639	35.45	9 0.559	0 0.8010
		0.0	2 14 67	9 37 68	1 33.19	7 40.148	0.9476	5 0.8348	3	0.591	6 0.7843
		0.0	15.35	0 39.40	5 32.10	2 40.488	0.9909	0.8073	3	0.622	3 0.7681
120	0	0.0	6 15.97	3 41.00	5 31.06	6 40.792	1.031	0.7812	2	0.651	8 0.7523
		0.0	0 16 55	1 12 19	4 30,08	7 41.067	1.0686	5 0.7566	5	0.679	0 0.7369
		6.0	0 17.09	5 43.88	3 29.16	2 41.317	7 1.103	5 0.7333	3	0.706	7 0.7220
-	-	0.1					1				
		0.0	2	-		-					
		6.0		-							
12	2	6.0	-				1		T		
		0.0	0		-						
		0.0	8							-	
-		p.1	0	_		_	-	_	_	_	

TABLE No. A- 4.1.3. The upper and the lower bound solutions for the drawing of square tube from round on a cylindrical plug.

Input tube size : 1.000 in o.d. x 0.2500 in gauge Reduction of area : 48.45 %

	29	of	-1		τ	IPPER BC	UN D			LO	WER BOU	ND
die	2	f.	-1	Draw	Mean	Mean die	Mean	Mean	Mean die	Mean	Mean	Mean die
t	160	let	1	force	draw	pressure	yield	draw	pressure	yield	draw	pressure
ale	P.	5	Ion		stress		stress	stress/	/yield	stress	stress/	/yield
ni v	E	ue:	t u	P	UTA	Pm	Ϋ́m	yield	stress	Ym	yield	stress
Eq	Se	ž	7	tonf	tenfin-2	tonf in-2	tonf in-2	stress		tonf in-2	stress	
-		0.	00	08.406	27.685	18.699	37.883	0.7308	0.4936	37.031	0.6746	0.7704
-		0.	02	11.529	37.968	12.905	40.205	1.0023	0.3407		0.9826	0.5891
	2	0.	.04	13.059	43.128	09.793	41.182	1.1384	0.2585		1.1322	0.4613
	4	0.	.06	14.034	46.220	07.880	41.723	1.2201	0.2080		1.1970	0.3697
		0.	.08	14.659	48.278	06.589	42.066	1.2744	0.1739		1.2178	0.3030
		0.	. 10	15.105	49.747	05.660	42.305	1.3132	0.1494		1.2168	0.2534
		0	00	08.889	29.276	19.835	38.284	0.7647	0.5181	37.031	0.6746	0.7702
		0	.02	10.865	45.784	16.231	39.759	0.9347	0.4240		0.8547	0.6716
	1	0	.04	12.188	40.141	13.685	40.829	1.0485	0.3575		0.9824	0.5890
	4	0	.06	13.134	43.255	11.812	41.205	1.1298	0.3085		1.0714	0.5137
		0	.08	13.843	45.590	10.384	41.615	1.1908	0.2712		1.1320	0.4613
		0	. 10	14.394	47.404	09.260	41.922	1.2382	0.2419		1.1719	0.4118
Γ		0	.00	09.357	30.8179	20.983	38.655	0.7972	0.5429	37.031	0.6746	0.7700
		0	. 02	10.840	35.699	18.291	39.741	0.9235	0.4732		0.8010	0.7023
	1	0	.04	11.956	39.374	16.169	40.482	1.0186	0.4183		0.9019	0.6423
	0	0	.06	12.825	42.236	14.472	41.020	1.0926	0.3744		0.9819	0.5889
		0	.08	13.520	44.526	13.089	41.430	1.1519	0.3386		1.0449	0.5414
L		0	. 10	14.089	46.399	11.943	41.753	1.2003	0.3090		1.0939	0.4991
		0	.00	09.586	31.570	21.570	38.832	0.8130	0.5555	37.031	0.6746	0.7698
		0	.02	10.913	35.941	19.152	39.792	0.9255	0.4932	1	0.7845	0.7114
	7	0	.04	11.949	39.352	17.188	40.477	1.0134	0.4426	1	0.8752	0.6586
	1	0	.06	12.779	42.084	15.572	40.992	1.0838	0.4010		0.9497	0.6110
		0	.08	13.458	44.320	14.226	41.394	1.1413	0.3664		1.0105	0.50/9
L	-	0	.10	14.023	46.184	13.089	41.716	1.1893	0.3371	1	1.0598	0.5288
		0	.00	09.811	32.310	22.160	139.001	0.8284	0.5682	37.031	0.6746	0.7698
		0	. 02	11.017	36.282	19.956	89.863	0.9303	0.5117		0.7717	0.7182
	8	0	.04	11.984	39.469	18.121	40.500	1.0120	0.4646		0.8539	0.6/12
	0	0	.06	12.777	42.080	16.580	40.991	1.0789	0.4251		0.9236	0.0202
		0	0.08	313.438	44.256	15.271	41.383	1.1347	0.3916		0.9813	0.5888
L		0),10	13.997	46.098	14.149	41.702	1.1819	0.3628		1.029	9 0.5527
		0	0.00	10.251	33.759	23.364	89.325	0.8585	0.5942	37.03	0.6746	0.7691
1		10	0.02	211.279	37.145	21.467	40.040	0.9446	0.5459	1	0.753	0.7277
1.	10	10	0.04	112.138	39.974	19.830	40.597	1.0165	0.4682	1	0.882	4 0.6533
		4	0.06	312.005	42.370	10.412	11.045	1.0//4	6.4002		0.002	0.0100
		10	0.08	813.489	44.425	17.174	41.412	1.1297	0.4367	+	0.934	5 0 5887
		10	0.10	0114.030	46.205	10.08/	41.720	1.1/50	p.4091	1	10.300	0.000/

TABLE No. A-441.3 (continued)

The upper and the lower bound solutions for the drawing of square tube from round on a cylindrical plug.

Input tube size : 1.000 in o.d. x0.2500 in gauge Reduction of area : 48.45%

-		+	T			UPPER E	BOUND			LO	WER BOU	ND
e	R	0	-+		H020	Mazo dia	Maan	Mean	Mean die	Mean	Mean	Mean die
P	a	ff		Draw	Mean	near ure	viold	draw	pressure	vield	draw	pressure
ent	bu	00	c	force	WEID	pressure	stross	ctross	/vield	stress	stress	/yield
le	P -	5	tio		stress		511255	Juield	ctracc	Y	/vield	stress
UIV	E	ea	1.	P	Uza	Pm _2	Im2	/yielu	211622	topfin-2	etross	511055
E	S	Σ	f	tonf	tont in 4	tont in "	ront in -	STIESS	0.0010	27 021	0 67/6	0 7686
		0.	00	10.679	35.171	24.608	39.630	0.8875	0.6210	37.031	0.0740	0.7000
		0.	02	11.583	38.147	22.917	40.241	D.9626	0.5783		0.7406	0.7340
	10	0.	04	12.359	40.703	21.424	40.735	1.0271	0.5406		0.8000	0.7014
	12	0.	06	13.032	42.919	20.101	41.144	1.0830	0.5072		0.8527	0.6706
		0.	.08	13.621	44.860	18.924	41.489	1.1320	0.4775		0.8999	0.6416
		0	. 10	14.141	46.572	17.872	41.782	1.1752	0.4510		0.9421	0.0145
F		0	.00	11.101	36.561	25.908	39.920	p.9159	0.6490	37.031	0.6746	0.7679
		6	02	11,913	39.233	24.363	40.454	p.9828	0.6103		0.7313	0.7382
		0	04	12.624	41.574	22.975	40.898	1.0414	0.5755		0.7830	0.7100
1	14	0	.06	13.251	43.641	21.726	41.274	1.0932	0.5442		0.8300	0.6832
		6	08	13.809	45.479	20.598	41.596	1.1392	0.5160		0.8727	0.6577
		0	.10	14 300	17 123	19.577	41.875	1.1804	0.4904		0.9115	0.6334
F		0	00	11.524	37.954	27.282	40.202	p.9441	0.6786	37.031	0.6746	0.7672
1		6	02	12,265	40.392	25.844	40.677	1.0047	0.6428	3	0.7242	0.7412
11		5	.02	12 923	42.560	24.535	41.079	1.0587	0.6103	3	0.7700	0.7164
1	16	6	.04	13.513	44.502	23.342	41.426	1.1069	0.5806	5	0.8121	0.6926
		-	.00	14.043	46.248	22.253	41.727	1.1504	0.553	5	0.8509	0.6699
		F	.00	14.523	47.828	21.256	41.992	1.1897	0.528	7	0.8866	6 0.6481
F		P	. 10	11.894	39.172	28.605	40.442	p.9686	0.707	3 37.03	0.6746	5 0.7664
		P	. 00	10 575	11 112	07 251	10.868	1.0240	0.673	в	0.7186	5 0.7434
		0	.02	13 188	13 431	6.007	41.236	1.0739	0.643	1	0.7596	5 0.7212
	18	P	.04	13.742	45.247	24.863	41.557	1.1190	0.614	8	0.797	70.6999
		P	. 06		10 016	12 000	11 810	1 1601	0.588	7	0.833	10.6794
		0	.08	3 14.240	40.910	02 836	42.091	1.1975	0.564	7	0.866	0 0.6597
+		+	. 10	12.280	40.473	80.059	40.692	0.9946	0.738	7 37.03	10.674	6 0.7655
1		0	.00) 12.200		00 765	41 070	0.0158	0 707	0	0.714	0 0.7448
		t c	0.03	2 12.922	42.55	28.700	h1 417	1.0924	0.677	6	0.751	0 0.7249
	20		0.04	4 13.490	44.452			1.001	0.050		0 785	7 0 7056
1	20	6	0.00	6 14.023	3 46.182	2 26.463	3 41.716	1.1349	0.650	0	0.818	2 0.6870
		K	0.0	8 14.504	47.76	1 04 478	41.902	1.2097	0.601	5	0.848	7 0.6690
1		1).1	0 14.94	49.224	+ 24.4/0	+2.221					
		k	0.0	0						1		-
		F	0.0	2		_						
	2'	7 4	0.0	4								
	24	-	0.0	6		-						
			0.0	8			-	+				
-			0.1	0		-	_			_		-

The upper and the lower bound solutions for the drawing of hexagonal tube from round on a cylindrical plug.

Reduction of area :

Input tube size : 1.0000 in o.d. x 0.3750 in gauge 18.45%

	2	of	-		τ	PPER BO	UN D			LC	WER BOU	IN D
die	e a	f.		Draw	Mean	Mean die	Mean	Mean	Mean die	Mean	Mean	Mean die
t	E	bet		force	draw	pressure	yield	draw	pressure	yield	draw	pressure
ale	P	5	UO		stress		stress	stress/	/yield	stress	stress/	/yield
VID	E	UP	ct	P	U72	Da	Ϋ́m	yield	stress	Ym	yield	stress
Equ	Se	Me	fr	tonf	tenfin-2	tonf in-2	tonf in-2	stress		tonf in-2	stress	
-	-	0.	00	09.530	15.872	47.068	34.114	0.4653	1.3797	28.172	0.2070	0.9221
		0.	02	14.344	23.889	39.508	36.845	0.6484	1.0723		0.3331	0.8584
	2	0.	04	17.579	29.277	33.571	38.284	0.7647	0.8769		0.4414	0.8005
	4	0.	06	19.886	33.120	29.064	39.184	0,8452	0.7417		0.5344	0.7470
		0.	08	21.610	35.990	25.580	39.802	0.9042	0.6427		0.6141	0.6994
		0.	10	22.945	38.214	22.822	40.254	0.9493	0.5670		0.6823	0.6553
		0.	00	10.203	16,993	50,506	34.555	0.4918	1.4616	28.172	0.2070	0.9220
		0.	.02	13.051	21.787	46.270	36.195	0.6005	1.2783		0.2724	0.8895
	1	0.	.04	15.351	25.567	42.391	37.319	0.6851	1.3591		0.3329	0.8584
	4	0.	.06	17.238	28.710	38.983	38.143	0.7527	1.0220		0.3891	0.8288
		0.	.08	18.811	31.329	36.012	38.776	0.8080	0.9289	-	0.4411	b.8005
	NH N	0.	. 10	20.140	33.543	33.488	39.278	0.8540	0.8513		0.4894	0.7735
		0.	.00	10.826	18.031	53.798	34.943	0.5160	1.5396	28.172	0.2070	b.9219
		0	. 02	12.912	21.504	50.761	36.122	0.5953	1.4053		0.2510	0.9001
	1	0	. 04	14.713	24.504	47.850	37.022	0.6619	1.2925		0.2929	0.8789
	0	0	.06	16.280	27.115	45.148	37.735	0.7186	1.1965		0.3327	0.8584
1		0	.08	17.654	29.403	42.672	38.315	0.7674	1 1137		0.3705	0.8385
		0	. 10	18.867	31.423	40.415	38.798	0.8099	1.0417		0.4065	D.8192
Г		0	. 00	11.120	18.520	55.395	35.120	0.5273	1.5773	28.172	0.2070	p.9218
		0	. 02	12.973	21.607	52.707	36.154	0.5976	1.4578		0.2448	p.9031
1	7	0	.04	14.606	24.327	50.103	36.971	0.6580	1.3552		0.2811	b.8849
	1	0	. 06	16.053	26.737	47.648	37.635	0.7104	1.2660		0.3158	p.8671
		0	.08	17.343	28.884	45.362	38.186	0.7564	1.1879		0.3490	0.8498
		0	. 10	18.497	30.807	43.247	38.653	0.7970	1.1189		b. 3808	b.8330
Γ		0	. 00	11.402	8.991	56.962	35.286	0.5381	1.6143	28.172	0.2070	p.9218
		0	. 02	13.076	21.778	54,540	36.208	0.6014	1.5063		b.2402	b.9054
	9	0	.04	14.574	24.273	52.175	36.956	0.6568	1.4118		p.2721	D.8894
	0	0	. 06	15.920	26.514	49,919	37 576	0.7056	1.3285		b.3028	b.8737
		0	.08	17.134	28.536	47.794	38.099	0.7490	1.2545		0.3324	D.8584
L		0	.10	18.233	30.368	45.805	38.549	0.7878	1.1882		p.3609	D.8434
-		0	. 00	11:935	19.877	60.025	35.591	0.5585	1.6865	28.172	p.2070	p.9216
		0	. 02	13.348	22.231	57.977	36.349	0.6116	1.5950		p.2355	p.9085
1		0	.04	14.640	24.383	55.958	36.987	0.6592	1.5129		D.2593	0.8956
	0	0	.06	15.824	26.355	54.005	37.533	0.7022	1.4388	-	p.2842	0.8830
		0	.08	16.913	28.168	52.134	38.006	0.7414	1.3717		p.3084	P. 8706
L	1	0	.10	12.916	29.839	50.421	38.421	0.7766	1.3105	1	b.3319	0.8584

..... (continued)

The upper and the lower bound solutions for the drawing of hexagonal tube from round on a cylindrical plug.

Input tube size : 1.0000 Reduction of area : 18.45%

1.0000 in o.d. x0.3750 in gauge 18.45%

0	-	-	T			UPPER E	BOUND			LO	WER BOU	ND
a t	3	0	=	Drav	Mean	Mean die	Mean	Mean	Mean die	Mean	Mean	Mean die
+ -	e	eft		facro	draw	pressure	vield	draw	pressure	yield	draw	pressure
en	E	CO	5	Unce	ctrace	p. 2000	stress	stress	/yield	stress	stress	/yield
lev	-	5	Ŧ	D	6	0	V I	/viald	stress	Y_	/vield	stress
inb	Ea	lea	E	P	taof in 22	toof in-2	tonf in-2	stress	511255	tonf in-2	stress	
	2	-	-	12 430	20.703	63.025	35.865	0.5772	1.7573	28.172	0.2070	0.9215
	+	0.	00	12.400	20.700	00.020	00.000	0.0000	1 6771		0 2201	0 0105
	1	0.	02	13.662	22.753	61.228	36.508	0.6232	1 6039		0.2506	0.8998
12		0.	04	14.804	24.000	57 709	37.552	0.7037	1.5368		0.2715	0.8892
12	-	0.	06	15.000	20.424	57.705	07.002	0.7007			0.0000	0.707
		0.	08	16.854	28.070	56.027	37.981	0.7390	1.4751		0.2920	0 8685
		0.	10	17.776	29.605	54.407	38.364	0.7717	1.4182		0.3120	0.0005
		0.	00	12.892	21.471	65.979	36.112	0.5946	1.8271	28.172	p.2070	0.9212
		0.	02	13.988	23.296	64.362	36.671	0.6353	1.7551		p.2259	0.9119
11		0.	.04	15.015	25.008	62.756	37.164	0.6729	1.6886	1	0.2443	0.9027
14	+	0.	.06	15.979	26.614	61.178	37.602	0.7078	1.6270		p.2623	p.8936
		0.	.08	16.886	28.123	59.639	37.995	0.7402	1.5697	-	p.2800	D.8846
		0	. 10	17.739	29.544	58.148	38.349	0.7704	1.5162	1	p.2973	p.8757
-		0	.00	13.341	22.224	69.012	36.347	0.6114	1.8987	28.172	p.2070	b.9210
		0	. 02	14.336	23.876	67.528	36.841	0.6481	1.8329		p.2234	p.9128
	,	6	.04	15 273	25 136	66 051	37 283	0.6822	1.7716		h.2395	b.9048
110	5	0	.06	16,140	26.912	64.594	37.681	0.7142	1.7142	T	D.2553	b.8968
		6	0.9	16.998	28.310	63.167	38.042	0.7442	1.6604		p.2708	p. 8889
		6	100	17 702	100 604	61 775	20 271	0 7723	1 6099		h 2860	0 8811
-		6	. 10	12 159	22 114	70 402	36.405	0.6157	1,9338	28.172	0.2070	6.9207
		10	. 00	14.344	23.890	69.052	36.845	0.6484	1.8741	T	0.2215	p.9135
1000		0	.02			00 000	07.044	0 0701	1 0170	1	0 2258	0 9061
11	8	4	.04	15.187	25.294	67.707	37.244	0.0/91	1 7650	1	0.2498	0.8993
	-	P	. 06	15.985	20.030	100.377	57.007	p./001	1.7000	1	1	1
1		0	.08	16.753	3 27.902	65.069	37.939	0.7355	1.7151	1	0.2636	0.8923
-		4	. 10	17.48	29.114	63.789	38.244	0.7613	h 16079	00 172	0 2070	h 0m1
1		0	.00	15.198	3 25.312	80.486	37.249	0.6/94	P 1005	10.1/2	0.2000	0.9140
1		0	.0:	2 10.096	20.807	19.703	57.055	0.7113	1.1003		0.2200	0.0140
12	0	0	.04	1 16.953	3 28.235	5 77.703	38.024	0.7426	2.0435		0.2327	0.90.76
14	v	þ	.00	5 17.773	3 29.601	76.327	38.363	p.7716	1.9896		0.2453	0.9012
		þ	.0	8 18.558	3 30.908	3 74.971	38.677	p.7991	1.9384		0.2577	0.8949
		þ	. 1	0 19.30	32.158	3 73.639	38.967	p.8253	1.8898		0.2699	0.8897
-		b	.0	0				-		-		
		þ	.0	2						_		
1	-	6	0.0	4								
12	2	. 6	0.0	6						-	-	
		5	1.0	8						1		
		F	1	0		1		-		1		
		M										and the second se

TABLE No. A-42.2 The upper and the lower bound solutions for the drawing of hexagonal tube from round on a cylindrical plug.

Input tube size : 1.0000 in o.d. x 0.1875 in gauge Reduction of area : 28.39 %

	29	of	-		τ	IPPER BO	UN D			LO	WER BOU	ND
die	e C	f.	-	Draw	Mean	Mean die	Mean	Mean	Mean die	Mean	Mean	Mean die
t	160	et		force	draw	pressure	yield	draw	pressure	yield	draw	pressure
ale	IP-	CO	UO		stress		stress	stress/	/yield	stress	stress/	/yield
VIL	-in	UP	cti	Р	J72	Da	Ÿ.	vield	stress	Ym	yield	stress
Equ	Se	Me	fri	tonf	tenfin-2	tonf in-2	tonf in-2	stress		tonf in-2	stress	
-	-	0.	00	06.376	18,605	31,001	35,150	0.5293	0.8820	31,586	0.3392	0.8756
		0	02	09.445	27.559	22.107	37.850	0.7281	0.5841		0.5694	0.7547
	~	0	04	11 042	22 219	17 019	20 001	0 9265	0 1266		0 7242	0 6551
	2	0.	06	12 016	35.062	13.806	39.607	0.8852	0.3486		0.8514	0.5727
		0	00	12.672	36.976	11.605	40.005	0.9243	0.2901		0.9338	0.5041
		0.	10	10 144	00.050	10.000	40 001	0.0501	0 0404		0 0011	0 1160
-		10.	10	06.835	19 944	33 316	35 613	0.9521	0.9354	31,586	0.3392	0.8755
		p	00	08.784	25.630	27.826	37.336	0.6865	0.7453	01.000	0.4636	0.8122
		0	04	10,100	20 524	00 750	20 247	0 7700	0 6104		0 5601	0 7547
	4	0	04	11 094	29.534	23.750	39.015	0.7702	0.5294		0.5691	0.7025
		-		11.094	52.571	20.072	35.015	0.0237	0.3234		0.0000	0.7020
		0	.08	11.832	34.523	18.281	39.491	0.8742	0.4629		0.7339	0.6551
-		0	00	12.410	36.210	35 523	39.848	0.5880	0.9862	31,586	0.3392	0.8754
		-		07.233	21.100	33.320	00.010	0.0000	0.0002		0. 10.10	0.0005
		0	. 02	08.727	25.465	31.427	37.291	0.6829	0.8427		0.4242	0.8325
	6	0	. 04	09.854	28.753	28.070	38.154	0.7566	0.7357		0.3003	0.7923
	0	0	.06	10.744	31.351	25.315	38.781	0.8084	0.6528	<u> </u>	0.5688	0.7547
		0	.08	11.464	33.452	23.031	39.257	0.8521	0.5867		0.6299	0.7194
F	_	10	. 10	12.058	35.185	21.112	39.633	0.8878	0.5327	31 586	0.0045	0.8753
		0	.00	07.450	21.703	30.590	30.203	0.0011	1.0100	51.500	0.0002	0.0700
		0	. 02	08.775	25.605	32.926	37.329	0.6859	0.8820		0.4126	0.8384
	7	0	.04	09.821	28.656	29.831	38.130	0.7515	0.7823		0.4/94	0.8035
	1	0	. 06	10.670	31.133	27.223	38.730	0.8038	0.7029	L	0.5402	0.7705
		0	.08	11.372	33.171	25.012	39.197	0.8465	0.6381		0.5955	0.7393
L		0	.10	11.961	34.902	23.120	39.572	0.8820	0.5842	1	0.6458	0.7097
		0	. 00	07.550	22.323	37.653	36.377	0.6137	1.0351	31.586	0.3392	0.8752
		0	. 02	08.848	3 25.819	34.311	37.388	0.6906	0.9117		0.4037	0.8428
	9	0	.04	09.825	28.668	31.431	38.133	0.7518	0.8243		0.4631	0.8120
	0	0	.06	10.63	5 31.032	28.944	38.706	0.8017	0.7481		0.5178	0.7826
		0	.08	11.31	33.022	26.718	39.161	0.8432	0.6848		0.5682	0.7546
L	_	0	.10	11.890	34 710	24 961	39 533	0.8782	0.6314		0.6146	0.7289
		0	.00	08.01	5 23.388	39.732	36.698	0.6373	1.0827	31.586	0.3392	0.8750
		0	. 02	09.038	3 26.37	36.864	37.538	0.7025	0.9821		0.3910	0.8490
1.	10	0	.04	1 09.90	1 28.894	34.316	38.190	0.7567	0.8986		0.4395	0.8240
	10	0	.06	10.64	5 31.061	32.060	38.713	0.8023	0.8281		0.4850	0.8000
1		0	.08	11.28	7 32.933	30.059	39.142	0.8414	0.7680		0.5276	0.7769
L		0	.10	11,84	7 34.568	3 28.280	39.501	0.8751	0.7159		0.5675	0.7546

..... (continued)

The upper and the lower bound solutions for the drawing of hexagonal tube from round on a cylindrical plug.

Input tube size : Reduction of area : 1.0000 in o.d. x0.1875 in gauge 28.39%

B D			+	T			UPPER B	OUND			LO	WER BOU	ND
a b a a	ie	R	•	zt	Draw	Mean	Mean die	Mean	Mean	Mean die	Mean	Mean	Mean die
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	P +	e	eff	1	force	draw	pressure	vield	draw	pressure	yield	draw	pressure
Image: Second	en	bug	0 1	CO	INCE	strass		stress	stress	/yield	stress	stress	/yield
E E E Tonf Tonf <thtonf< th=""> <thtonf< th=""> Tonf</thtonf<></thtonf<>	v al		-	E	D	G	n	Ÿ.	/vield	stress	Ym	/yield	stress
0 0	inb	Ea	lea	E	+oof	tonf in 2	toof in-2	tonf in-2	stress		tonf in-2	stress	
0.0003:380 24.330 24.330 24.330 24.333 0.8324 0.8530 12 0.0410.040 29.295 36.947 38.288 0.7651 0.9650 0.4233 0.8324 0.0610.724 31.291 34.862 38.767 0.8072 0.8993 0.4621 0.8117 0.0811.327 33.052 32.978 39.169 0.8438 0.8420 0.4898 0.7921 0.1011.864 44.617 31.274 39.512 0.8761 0.7915 0.5337 0.7730 0.0008.691 27.713 41.578 37.890 0.7314 1.0973 0.3322 0.8743 0.0209.496 27.713 41.578 37.800 0.7314 1.0973 0.3762 0.8558 0.0410.212 29.796 39.450 38.411 0.7757 1.0270 0.4115 0.8322 0.0811.417 3.314 35.713 39.227 0.8493 0.9104 0.4774 0.8031 0.0811.417 3.314 35.713 39.250 0.8493 0.9104 0.4774 0.8031 0.0811.913 28.45		0	-		00-260	D4 202	41 800	36 990	0 6594	1,1300	31.586	0.3392	0.8747
0.02 0.03 0.04 0.01 1.327 33.052 32.978 39.169 0.8438 0.8420 0.4621 0.8137 0.7730 0.101 11.1864 34.617 31.274 39.512 0.8761 0.7757 1.0270 0.41115 0.8377 0.03762 0.8558 0.04 0.018 81.652 37.500 38.851 0.8430 0.9104 0.4774 0.8031 0.10 11.930 44.811 30.577 39.53 0.8480 0.4972 0.4842 0.8			0.	00	09 259	24.393	39.254	37.709	0.7164	1.0410		0.3824	0.8530
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			0.	02	03.200	-/.010	00120		0 7051	0.0050		0 1223	0 8320
12 0.0610.724 91.91 34.802 30.709 30.8105 0.8320 0.14989 0.7921 0.08 11.327 33.052 32.978 39.152 0.8761 0.7915 0.5337 0.7730 0.00 08.691 25.359 43.893 37.262 0.6806 1.1780 31.586 0.3392 0.8743 0.02 09.498 27.713 41.578 37.890 0.7314 1.0973 0.3762 0.8558 0.04 10.212 9.796 39.450 38.411 0.7757 1.0270 0.4115 0.8371 0.06 10.4113 3.314 35.713 39.227 0.8493 0.9104 0.44774 0.8031 0.10 11.930 4.811 34.075 39.553 0.8801 0.8615 0.5082 0.7863 0.00 9.016 26.307 46.520 37.520 0.7011 1.2273 31.586 0.3392 0.8739 0.02 9.751 28.452 43.905 38.078 0.7472 1.1530 0.3714 0.8571 0.06 11.006	1	2	0.	04	10.040	29.295	36.947	38.288	0.7051	0.9000		0.4621	0.8117
0.0811.327 0.102 0.101 0.102 0.101 0.102 0.101 0.102		2	0.	06	10.724	31.291	34.002	39 169	0.8438	0.8420		0.4989	0.7921
0.1011.884 34.817 31.24 35.312 0.1011 0.102 0.102 0.102 0.102 0.102 0.102 0.102 0.1115 0.1111 0.1111 0.1111 0.1111 0.111 0.1111 0.111 0.111 0.111 0.111 0.111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.111 <td></td> <td></td> <td>0.</td> <td>08</td> <td>11.527</td> <td>DA 617</td> <td>21 274</td> <td>20 512</td> <td>0.8761</td> <td>0 7915</td> <td></td> <td>0.5337</td> <td>0.7730</td>			0.	08	11.527	DA 617	21 274	20 512	0.8761	0 7915		0.5337	0.7730
0.0008.691 25.359 43.893 37.252 0.0806 11.1730 31.300 0.3762 0.8558 14 0.02 0.02 9.498 27.713 41.578 37.890 0.7314 1.0973 0.3762 0.8558 0.06 10.212 9.796 39.450 38.411 0.7757 1.0270 0.4115 0.8377 0.06 10.848 81.652 37.500 38.851 0.8493 0.9104 0.4774 0.8031 0.08 11.417 33.314 35.713 39.257 0.8493 0.9104 0.4774 0.8031 0.01 11.930 34.811 34.075 39.553 0.8801 0.8615 0.5082 0.7863 0.00 9.016 26.307 46.520 37.520 0.7011 1.2273 31.586 0.3392 0.8739 0.02 9.751 28.452 43.905 38.078 0.7472 1.1530 0.3714 0.857 0.04 10.411 30.377 41.914 38.570 0.9759 0.4608 0.8114 0.08 11.546 <t< td=""><td>L</td><td>-</td><td>0.</td><td>10</td><td>11.864</td><td>34.017</td><td>31.274</td><td>39.512</td><td>0.0701</td><td>1 1790</td><td>21 586</td><td>0.3392</td><td>0 8743</td></t<>	L	-	0.	10	11.864	34.017	31.274	39.512	0.0701	1 1790	21 586	0.3392	0 8743
0.0209.498 27.713 41.578 37.890 0.7314 1.0973 0.7302 0.7			0.	00	08.691	25.359	43.893	37.262	0.6806	1.1/00	31.500	0.3392	0.8558
14 0.0410.212 9.796 39.450 38.411 0.77571 1.0270 0.4115 0.8377 0.06 10.848 1.652 37.500 38.851 0.8147 0.9652 0.4452 0.8202 0.08 11.417 33.314 35.713 39.227 0.8493 0.9104 0.4774 0.8031 0.10 11.930 34.811 34.075 39.553 0.8801 0.8615 0.5082 0.7863 0.00 0.90.16 26.307 46.520 37.520 0.7011 1.2273 31.586 0.3392 0.8739 0.02 0.9.751 28.452 43.905 38.078 0.7472 1.1530 0.3714 0.8577 0.04 10.061 32.115 40.069 38.957 0.8244 1.0285 0.4222 0.8265 0.08 11.546 33.690 38.361 39.310 0.8570 0.9759 0.4608 0.8114 0.10 12.037 35.123 36.779 39.620 0.8865			0.	02	09.498	27.713	41.578	37.890	0.7314	1.09/3		0.3702	0.0000
14 0.0610.848 51.652 37.500 38.851 0.8147 0.9622 0.4452 0.8202 0.08 11.417 33.314 35.713 39.227 0.8493 0.9104 0.4774 0.8031 0.10 11.930 34.811 34.075 39.553 0.8601 0.8615 0.5082 0.7863 0.00 99.016 26.307 46.520 37.520 0.7011 1.2273 31.586 0.3392 0.8739 0.02 99.751 28.452 43.905 38.078 0.7472 1.1530 0.4024 0.8419 0.04 10.411 30.377 41.914 38.551 0.7863 1.0872 0.4024 0.8419 0.06 11.006 32.115 40.069 38.957 0.8244 1.0285 0.4322 0.8265 0.08 1.546 33.690 38.361 39.310 0.8577 0.4608 0.8114 0.10 12.037 35.123 36.779 39.620 0.8851 1.2789	1	11.	0.	04	10.212	29.796	39.450	38.411	0.7757	1.0270		0.4115	0.8377
0.08 11.417 33.314 35.713 39.227 0.8433 0.9104 0.4774 0.8031 0.10 11.930 84.811 34.075 39.553 0.8801 0.8615 0.5082 0.7863 0.00 09.016 26.307 46.520 37.520 0.7011 1.2273 31.586 0.3392 0.8739 0.02 09.751 28.452 43.905 38.078 0.7472 1.1530 0.3714 0.8577 0.04 10.411 30.377 41.914 38.551 0.7880 1.0872 0.4024 0.8419 0.06 11.006 32.115 40.069 38.957 0.3244 1.0285 0.4322 0.8265 0.08 11.546 38.609 38.361 39.310 0.8570 0.9759 0.4608 0.8114 0.10 12.037 35.123 36.779 39.620 0.8855 0.9283 0.4883 0.7967 1.00 0.00 9.341 27.258 48.307 37.772		14	0.	.06	10.848	81.652	37.500	38.851	0.8147	0.9652		0.4452	0.8202
0.10 11.930 84.811 34.075 39.553 0.8801 0.8615 0.5082 0.7863 0.00 09.016 26.307 46.520 37.520 0.7011 1.2273 31.586 0.3392 0.8739 0.02 09.751 28.452 43.905 38.078 0.7472 1.1530 0.3714 0.8577 0.06 11.006 32.115 40.069 38.957 0.8244 1.0285 0.4024 0.8419 0.06 11.006 32.115 40.069 38.957 0.8244 1.0285 0.4222 0.8265 0.08 11.546 33.690 38.361 39.310 0.8570 0.9759 0.4608 0.8114 0.10 12.037 35.123 36.779 39.620 0.8865 0.9283 0.4883 0.7967 0.00 09.341 27.258 48.307 37.772 0.7216 1.2789 31.586 0.3392 0.8735 0.02 10.022 29.236 46.293 38.274			0.	.08	11.417	B3.314	35.713	39.227	0.8493	0.9104		0.4/74	0.0031
$18 \begin{array}{ c c c c c c c c c c c c c c c c c c c$			0.	. 10	11.930	84.811	34.075	39.553	0.8801	0.8615	1	0.5082	0.7863
0.02 09.751 28.452 43.905 38.078 0.7472 1.1530 0.3714 0.8577 0.04 10.411 30.377 41.914 38.551 0.7880 1.0872 0.4024 0.8419 0.06 11.006 32.115 40.069 38.957 0.8244 1.0285 0.4322 0.8265 0.08 11.546 33.690 38.361 39.310 0.8570 0.9759 0.4608 0.8114 0.10 12.037 35.123 36.779 39.620 0.8865 0.9283 0.4883 0.7967 0.00 9.341 27.258 48.307 37.772 0.7216 1.2789 31.586 0.3392 0.8735 0.02 0.020 29.236 46.293 38.274 0.7639 1.2095 0.3677 0.8591 0.04 10.635 31.033 44.406 38.706 0.8018 1.1473 0.3953 0.8451 0.04 0.635 31.033 44.406 38.706 0.8018	F		0	. 00	09.016	26.307	46.520	37.520	0.7011	1.2273	31.586	0.3392	0.8739
16 0.04 10.411 30.377 41.914 38.551 0.7880 1.0872 0.4024 0.8419 16 0.06 11.006 32.115 40.069 38.957 0.8244 1.0285 0.4322 0.8265 0.08 11.546 33.690 38.361 39.310 0.8570 0.9759 0.4608 0.8114 0.10 12.037 35.123 36.779 39.620 0.3865 0.9283 0.4883 0.7967 0.00 99.341 27.258 48.307 37.772 0.7216 1.2789 31.586 0.3392 0.8735 0.00 99.341 27.258 48.307 37.772 0.7216 1.2789 31.586 0.3392 0.8735 0.00 10.635 31.033 44.406 38.706 0.8018 1.1473 0.3953 0.8451 0.04 10.635 31.033 44.406 38.706 0.8051 0.9911 0.4218 0.8313 0.08 1.197 32.671 42.643 39.709 0.8351 0.9938 0.4723 0.8047 0			0	.02	09.751	28.452	43.905	38.078	0.7472	1.1530		0.3714	0.8577
16 0.06 11.006 32.115 40.069 38.957 0.8244 1.0285 0.4322 0.8265 0.08 11.546 33.690 38.361 39.310 0.8570 0.9759 0.4608 0.8114 0.10 12.037 35.123 36.779 39.620 0.8865 0.9283 0.4808 0.7967 0.00 09.341 27.258 48.307 37.772 0.7216 1.2789 31.586 0.3392 0.8735 0.02 10.020 29.236 46.293 38.274 0.7639 1.2095 0.3677 0.8591 0.04 10.635 31.033 44.406 38.706 0.8018 1.1473 0.3953 0.8451 0.04 10.635 31.033 44.406 38.706 0.8018 1.1473 0.3953 0.8451 0.04 10.635 31.033 44.406 38.706 0.8018 1.0402 0.44218 0.8313 0.08 11.197 32.671 42.643 39.799 0.8951 0.9938 0.4723 0.8047 0.00 99.680 <			6	.04	10.411	30.377	41.914	38.551	0.7880	1.0872		0.4024	0.8419
0.08 11.546 33.690 38.361 39.310 0.8570 0.9759 0.4608 0.8114 0.10 12.037 35.123 36.779 39.620 0.8865 0.9283 0.4883 0.7967 0.00 09.341 27.258 48.307 37.772 0.7216 1.2789 31.586 0.3392 0.8735 0.02 10.020 29.236 46.293 38.274 0.7639 1.2095 0.3677 0.8591 0.04 10.635 31.033 44.406 38.706 0.8018 1.1473 0.3953 0.8451 0.04 10.635 31.033 44.406 38.706 0.8018 1.1473 0.3953 0.8451 0.06 11.197 32.671 42.643 39.083 0.8350 1.0911 0.4218 0.8313 0.08 1.710 34.169 40.998 39.419 0.8669 1.0402 0.44723 0.8047 0.10 12.182 35.545 39.462 39.709 0.8951		16	0	.06	11.006	32.115	40.06	9 38.95	0.8244	4 1.0285		0.4322	0.8265
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			6	.08	11.546	38.690	38.361	39.310	0.8570	0.9759		0.4608	0.8114
0.100 09.341 27.258 48.307 37.772 0.7216 1.2789 31.586 0.3392 0.8735 0.02 10.020 29.236 46.293 38.274 0.7639 1.2095 0.3677 0.8591 0.04 10.635 31.033 44.406 38.706 0.8018 1.1473 0.3953 0.8451 0.06 11.197 32.671 42.643 39.083 0.8350 1.0911 0.4218 0.8313 0.08 1.710 34.169 40.998 39.419 0.8669 1.0402 0.4475 0.8179 0.10 12.182 35.545 39.462 39.709 0.8951 0.9938 0.4723 0.8047 0.00 29.680 28.245 50.727 38.021 0.7428 1.3340 31.586 0.3392 0.8730 0.02 10.312 30.090 48.809 38.482 0.7819 1.2684 0.3647 0.8601 0.04 10.892 31.781 47.002 38.880			5	10	12.037	35.123	36.77	9 39.620	0.886	5 0.9283	3	0.4883	0.7967
0.00 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.04 0.03 0.03 0.04 0.03 0.03 0.04 0.03 <th< td=""><td>-</td><td></td><td>6</td><td>. 10</td><td>09.341</td><td>27.258</td><td>48.307</td><td>7 37.772</td><td>0.7216</td><td>5 1.2789</td><td>31.586</td><td>0.3392</td><td>0.8735</td></th<>	-		6	. 10	09.341	27.258	48.307	7 37.772	0.7216	5 1.2789	31.586	0.3392	0.8735
$18 \begin{array}{ c c c c c c c c c c c c c c c c c c c$			F	. 00	10 020	29.236	46.29	3 38.274	10.7639	1.2095		0.3677	0.8591
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0	.02	10.635	31.033	44.40	6 38.70	5 0.801	8 1.1473	3	0.3953	0.8451
0.08 1.710 34.169 40.998 39.419 0.8669 1.0402 0.4475 0.8179 0.10 12.182 35.545 39.462 39.709 0.8951 0.9938 0.4723 0.8047 0.00 99.680 28.245 50.727 38.021 0.7428 1.3340 31.586 0.3392 0.8730 0.02 10.312 30.090 48.809 38.482 0.7819 1.2684 0.3647 0.8601 0.04 10.892 31.781 47.002 38.880 0.8147 1.2089 0.3894 0.8475 0.06 11.424 33.335 45.303 39.231 0.8497 1.1547 0.4134 0.8351 0.08 11.915 34.768 43.706 39.544 0.8792 1.1052 0.4366 0.8230 0.10 12.369 36.092 42.205 39.823 0.9063 1.0598 0.4591 0.8111 0.00	1	18	F	.04	11.197	32.671	42.64	3 39.08	3 0.835	0 1.091		0.4218	0.8313
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			F	.00		04.100	10.000	2 20 41	0 0 966	0 1 040	2	0 1175	5 0 8179
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0	.08	311.710	34.109	39 40.99	2 39.70	9 0.895	1 0.993	8	0.472	3 0.8047
$20 \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F		P	. 10	h9 680	28 24	5 50.72	7 38.02	1 0.742	8 1.334	0 31.58	6 0.339	2 0.8730
$20 \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1		0	.00	,			00.40	0 0 701	0 1 269	1	0 364	7 0.8601
$20 \begin{array}{c} 0.04 10.892 \\ 0.06 11.424 \\ 0.08 11.915 \\ 0.08 11.915 \\ 0.10 12.369 \\ 0.02 \\ 22 \\ 0.04 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.04 \\ 0.02 \\ 0.04 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.00 \\ 0.02 \\ 0.04 \\ 0.06 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.00 \\ 0.02 \\ 0.06 \\ 0.08 \\ 0.08 \\ 0.00 \\ 0.02 \\ 0.06 \\ 0.08 \\ 0.00 \\ 0.02 \\ 0.06 \\ 0.08 \\ 0.00 \\ 0.02 \\ 0.06 \\ 0.08 \\ 0.00 \\ 0.02 \\ 0.06 \\ 0.08 \\ 0.00 \\ 0.02 \\ 0.06 \\ 0.08 \\ 0.00 \\ 0.02 \\ 0.06 \\ 0.08 \\ 0.00 \\ 0.02 \\ 0.06 \\ 0.08 \\ 0.00 \\ 0$			4	. 02	210.312	30.090	148.809	38.48	0 0 81	17 1 208	9	0.389	4 0.8475
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		20	p	.04	110.892	31.78.	1 47.002	2 30.00	0.014	11.200	-	0 412	10 8351
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		20	p	.06	511.424	33.33	5 45.303	3 39.23	0.849	$\frac{11.154}{100}$	2	0.415	6 0.8230
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			þ	.08	811.915	34.76	3 43.700	5 39.54	4 0.07		0	0 459	10.8111
$22 \frac{0.00}{0.02}$	L		p	1.10	0 12.369	B6.092	42.20	5 39.82	23 0.900	53 1.055	0	0.455	10.0111
22 0.04 0.06 0.08			p	.0	0		_						
22 <u>0.04</u> <u>0.06</u> 0.08			p	0.0	2		-				1		+
		2-	20	0.0	4			-	-				
0.08		41	- 6	0.0	6			-	-				
			F	0.0	8							_	
0.10			F).1	0								1

TABLE No. A-4. 2.3 The upper and the lower bound solutions for the drawing of hexagonal tube from round on a cylindrical plug.

Input tube size : 1.0625 in o.d. x 0.2500 in gauge Reduction of area : 37.16%

	29	of	-		T	JPPER BO	UN D			LO	WER BOU	ND
die	B	f.		Draw	Mean	Mean die	Mean	Mean	Mean die	Mean	Mean	Mean die
t	160	let		force	draw	pressure	yield	draw	pressure	yield	draw	pressure
ale	IP-	5	UO		stress		stress	stress/	/yield	stress	stress/	/yield
VIL	.IE	UP	C+	P	J.	Da	Y	vield	stress	Ym	yield	stress
Equ	SP	Me	fri	tonf	tenfin-2	tonf in-2	tonf in-2	stress		tonf in-2	stress	
-	-	0.	00	00 000	21 040	24 256	26 262	0 6053	0 6717	34 101	0 1697	0 8150
9		0	02	12.607	31,438	17.331	38.801	0.8102	0.4780	04.101	0.7353	0.6704
	-	0.	04	14.592	36.438	13.345	39.884	0.9123	0.3680		0.9020	0.5584
	2	0.	06	15 904	20 111	10 020	10 180	0 0724	0 2087		1 0042	0 4711
		-	0.0	16 624	11 155	10.030	40.409	1 0141	0.2511		1 0648	0.4023
		0.	10	17.212	42.922	07.854	41.145	1.0432	0.2166		1.0988	0.3476
-		0.	10	00 007	00.050	05 050	00.000	0 6245	0 7050	24 101	0 4607	0 9140
		0.	00	11 714	23.259	25.853	38.268	0.0345	0.7052	34.101	0.4097	0.8149
		0.	02	11.714	29.212	21.337	50.200	0.7055	0.0000		0.7350	0.6704
	4	0.	04	13.355	33.305	18.395	39.225	0.8491	0.5018			0.0110
		0.	00	14.550	36.283	16.013	89.863	0.9102	0.4368		0.8282	0.6110
		0.	08	15.45/	38.544	14.104	40.319	0.9560	0.3864		0.9017	0.5565
L		0.	10	16,168	40.319	12.692	40.663	0.9915	0.3462		0.9592	0.5122
		0.	.00	09.830	24.512	27.321	37.024	0.6621	0.7379	34.101	0.4697	0.8148
		0.	02	11.613	28.961	24.140	38.206	0.7581	0.6520		0.5717	0.7625
	6	0.	04	12.984	32.379	21.554	39.017	0.8299	0.6520		0.6593	0.7145
	0	0	06	14.068	35.082	19.438	39.611	0.8857	0.5822		0.7346	0.6705
		0.	.08	14.946	37.270	17.686	40.065	0.9302	0.4777		0.7991	0.6300
		0.	. 10	15.670	39.078	16.216	40.424	0.9667	0.4380		0.8542	0.5929
Γ		0	.00	10.072	25.118	28.046	37.195	0.6753	0.7540	34.101	0.4697	0.8147
		0	. 02	11.667	29.095	25.206	38.239	0.7609	0.6777		0.5579	0.7696
	7	0	.04	12.935	32.257	22.828	38.989	0.8273	0.6138		0.6354	0.7278
	1	0	. 06	13.965	34.826	20.832	39.556	0.8804	0.5601		0.7035	0.6889
		0	.08	14.818	36.952	19.142	40.008	0.9238	0.5146		0.7632	0.6528
		0	. 10	15.535	38.741	17.697	40.358	0.9599	0.4758		0.8154	0.6192
F		0	.00	10.310	25.710	28.766	37.358	0.6882	0.7700	34.101	0.4697	0.8146
		0	02	11 757	29 319	26 189	88 291	0 7656	0 7010		0 5474	0 7750
	~	0	04	12.938	32.264	23.983	88.991	0.8275	0.6420		0.6168	0.7392
	8	10	06	13.919	34.709	22.093	89.531	0.8780	0.5914		0.6788	0.7031
		10		14 745	26 770	00 151	80 062	h 0201	0 5479		0 7340	0 6705
		10	10	15.45	38.530	19.050	40.317	0.9557	0.5099		0.7832	0.6399
-		0	. 10	10.768	26.854	30,193	87.666	b.7129	0.8016	34,101	0.4697	0.8143
		10	.00	11 000		07.005		6	0.0010		0.5000	0.000
		1	.04	12 042	29.923	DE 054	88.442	h 9220	0.7432		0.5323	0.7524
11	0	0	.04	13.936	34.753	24.340	89.541	0.8789	0.6462		0.6419	0.7237
		10	. 06					E	0.0402		0.0410	0.1207
1		0	.08	14.711	36.684	22.824	89.946	p.9184	0.6060		0.6896	0.6965
L		10	. 10	15.388	38.372	P1.476	40.286	0.9525	10.5702		0.7322	0.6706

..... (continued)

The upper and the lower bound solutions for the drawing of Hexagonal tube from round on a cylindrical plug.

Input tube size : Reduction of area :

1.0625 in o.d. x 0.2500 in gauge 37.16%

-		+	T				UPPER B	OUND			LO	WER BOU	ND
a	R	0	±	0.000	Maza	-	Maan die	Mean	Mean	Mean die	Mean	Mean	Mean die
P	a	eff	7	Uraw	Mean	ľ	neas ure	vield	draw	pressure	vield	draw	pressure
ent	bu	C OE	C	force	WEID		pressure	ctrace	strass	/vield	stress	stress	/yield
lei	P-	-	tio	-	stres	S	-	211622	wield	ctross	Y	/vield	stress
Vint	ma	ea	LIC	P	U	zag	Pm -2	taof in-2	ryielu	511635	tonf in-2	stress	
ŭ	5	Σ	4	tont	tont	n -	TONT IN -		211622		04.101	0 4607	0 9141
		0.	00	11.208	27.9	949	31.610	37.951	0.7365	0.8329	34.101	0.4097	0.7875
		0.	02	12.286	30.0	638	29.672	38.613	0.7935	0.7819		0.5220	0.7070
1	2	0.	04	13.224	32.	977	27,924	39.152	0.8423	0.7358		0.5706	0.7621
	2	0.	06	14.047	35.	028	26.350	39.599	0.8845	0.6943	1	0.6157	0.7378
		0.	.08	14.773	36.	840	24.930	39.977	0.9215	0.6569		0.0075	0.6921
		0.	. 10	15.420	38.	452	23.646	40.301	0.9541	0.0231	ļ	0.0305	0.0021
	-	0.	.00	11.629	29.	001	33.025	38.216	0.7589	0.8642	34.101	0.4697	0.8137
		6	.02	12.594	31.	406	31.276	38.794	0.8096	0.8184	-	0.5145	0.7910
	.,	0	.04	13.449	33.	538	29.674	39.277	0.8539	0.7765		0.5566	0.7691
	14	0	.06	14.212	35.	441	28.210	39.687	0.8930	0.7382		0.5962	0.7480
		6	08	14.895	37.	145	26.872	40.040	0.9277	0.7032		0.6332	0.7277
		0	.00	15 51	28	683	25 646	40.347	0.9587	0.6711	T	0.6680	0.7080
-		0	00	12 036	30.	016	34.446	38.464	0.7803	0.8955	34.101	0.4697	0.8133
		6	.00	12.912	32.	200	32.840	38.976	0.8261	0.8538	1	0.5088	0.7935
		10	.02	120 70	100	100	1 21 253	20 113	0 8668	0.8151	1.0	0.5459	0.7743
11	16	10	. 04	13.700	1 34.	938	2 29 970	39.391	0.9032	0.7794		0.5810	0.7557
		4	.00	14.41.	1 35.	- 350	20.070	100.000	0.0250	0 7464		0 6142	0.7377
		0	.08	15.05	7 37.	.548	28.705	40.121	0.9355	10 7158	1	0.6456	0.7202
-	-	0	.10	15.64	1 39.	.010	25 883	3 38 690	0.8011	0.9272	34.101	0.4697	0.8129
		0	. 00	13 23	5 33	.001	34.388	3 39.158	0.8429	0.8886	5	0.5044	0.7953
1		0	.02	2 10.20					10 000	0 9526	-	0 5374	0.7783
1.	18	0	.04	1 13.96	7 34	.830	32.99	3 39.55	7 0 914	5 0.8189		0.5689	0.7617
	10	0	. 06	5 14.63	5 30	.49:	5 31.092	2 39.90	10.314	0.0100		0 5000	0 7455
		6	.08	3 15.24	7 38	.02	1 30.479	9 40.216	5 0.9454	4 0.7876	5	0.5988	0.7455
L		0	. 10	15.80	9 39	.423	3 29.348	8 40.49.	10.9736	5 0.7584	+	0.9274	0.7250
T		0	.00	12.81	7 31	.96	3 37.34	1 38.92	2 0.821	2 0.949	4 34.10	0.4697	0.8124
		6	0.0	2 13.56	2 33	.82	0 35.93	6 39.33	9 0.859	7 0.923	3	0.5007	0.7967
	20	E C	0.0	4 14.24	6 35	.52	5 34.61	5 39.70	5 0.894	7 0.889	3	0.5304	+ 0.7813
	20		0.0	6 14.87	5 37	.09	5 33.37	5 40.02	9 0.926	7 0.857	5	0.5589	0.7664
		F	0.0	8 15.45	7 38	.54	4 32.21	1 40.31	9 0.956	0 0.827	6	0.5861	L 0.7518
		F).1	0 15.99	5 39	.88	7 31.11	8 40.58	0 0.982	9 0.799	5	0.6122	2 0.7376
t		-	0	0	-								
		ŧ	0.0	2									-
		-	2.0	4									
	22	28	0.0	-	-		1						
			0.0	0		-	-						
			0.0	8			-			1	1	2	
L			0.1	.0	1		_	_	_		_		

The upper and the lower bound solutions for the drawing of hexagonal tube from round on a cylindrical plug.

Input tube size : 1.0625 in o.d. x 0.1875 in gauge Reduction of area : 46.00%

	29	of	1		τ	IPPER BO	UN D			LO	WER BOU	ND
die	a	÷.		Draw	Mean	Mean die	Mean	Mean	Mean die	Mean	Mean	Mean die
t	160	bef		force	draw	pressure	yield	draw	pressure	yield	draw	pressure
ale	e-	5	UO		stress		stress	stress/	/yield	stress	stress/	/yield
NIN	E	UP	t	Р	UTA	Pm	Ϋ́m	yield	stress	Ym	yield	stress
Eq	Se	ň	Ţ	tonf	tenfin-2	tonf in-2	tonf in-2	stress	Selection 1	tonf in-2	stress	
-		0.	00	07.386	26.542	20.355	37.583	0.7062	0.5416	36.413	0.6239	0.7615
		0.	02	10.281	36.945	13.473	39.999	0.9236	0.3585		0.9358	0.5796
	~	0.	04	11 643	11 839	10 008	40 947	1.0218	0.2663		1.0876	0.4524
	2	0.	06	12.433	44.676	07.954	41.456	1.0776	0.2116		1.1543	0.3519
		0	08	12.948	46.526	06.593	41.775	1.1137	0.1754		1.1772	0.2963
		0.	10	13 310	17 827	05 630	41 992	1,1389	0.1498		1.1786	0.2479
-		-	00	07.781	27.962	21.480	37.954	0.7367	0.5659	36.413	0.6239	0.7615
		10	00	09 629	24 632	17 150	30 515	0 8764	0.4519		0.8063	0.6623
		0.	04	10.828	38.910	14.216	40.391	0.9633	0.3746		0.9355	0.5797
	4	0.	.06	11.655	41.880	12.123	40.955	1.0226	0.3194		1.0257	0.5105
		10	08	12 261	11 060	10 560	11 348	1 0656	0.2783		1.0873	0.4525
		0	. 10	12.726	45.728	09.351	41.639	1.0982	0.2464		1.1282	0.4035
-		0	.00	08 157	29 312	22,579	38 292	0.7655	0.5897	36.413	0.6239	0.7614
		10	02	09.553	34.330	19.449	39.449	0.8702	0.5051	1	0.7520	0.6933
		0	.04	10 571	07 000	16 071	10 200	0 9447	0 1106	1	0 8541	0 6331
	6	to	06	11 345	40.768	14.942	40.748	1.0005	0.3902		0.9351	0.5797
		10	08	11.953	42.951	13.400	41.150	1.0437	0.3499	1	0.9988	0.5323
		0	. 10	12 442	44.709	12,143	41,462	1.0783	0.3171	1	1.0485	0.4901
F		10	00	08.338	29.962	23.122	38.451	0.7792	0.6013	36.413	0.6239	0.7613
1		0	.02	09.588	34.453	20.224	39.476	0.8728	0.5260	1	0.7353	0.7025
1	-	10	04	10,536	37.860	17.932	40.184	0.9422	0.4664	1	0.8271	0.6495
	1	0	. 06	11.279	40.530	16.089	40.703	0.9957	0.4184	1	0.9024	0.6018
1		0	.08	11 876	12 676	14.581	41,100	1.0383	0.3792		0.9640	0.5589
		0	. 10	12.367	44.438	13.327	41.415	1.0730	0.3466	1	1.0140	0.5198
T		0	. 00	08.514	30.595	23.660	38.603	0.7926	0.6129	36.413	0.6239	0.7611
		0	.02	09.649	34.673	3 21.027	39.523	0.8773	0.5447		0.7224	0.7094
	0	To	.04	10.537	7 37.863	3 18.886	40.184	0.9422	0.4892	T	0.8055	0.6622
	9	0	.06	11.249	40.424	17.124	40.683	0.9936	0.4436		0.8756	0.6191
		10	.08	3 11.834	42.523	3 15.653	41.073	1.0353	0.4055		0.9345	0.5797
		0	.10	12.32	44.274	1 14.410	41.386	1.0698	0.3733		0.9837	0.5437
Г		0	.00	08.854	4 31.818	3 24.726	38.889	0.8182	0.6358	36.413	0.6239	0.7608
		0	. 02	09.81	35.284	4 22.478	39.654	0.8898	0.5780		0.7037	0.7192
1.	10	0	.04	1 10.608	3 38.120	20.576	40.235	5 0.9474	0.5291		0.7735	0.6804
	10	10	.06	11.26	5 40.48	1 18.956	40.693	3 0.9948	0.4874		0.8344	0.6445
1		0	. 01	8 11.82	0 42.475	5 17.563	41.064	1 1.0344	0.4516		0.8875	0.6110
		0	.10	12.29	5 44.182	2 16.335	41.370	1.0680	0.4206		0.9337	0.5798

..... (continued)

The upper and the lower bound solutions for the drawing of Hexagonal tube from round on a cylindrical plug.

Input tube size : 1.0625 in o.d. x0.1875 in gauge Reduction of area : 46.00%

0 04	+	T		UPPER E	BOUND	- les		LO	WER BOU	ND
die A	°.	Draw	Mean	Mean die	Mean	Mean	Mean die	Mean	Mean	Mean die
te t	ef	force	draw	pressure	yield	draw	pressure	yield	draw	pressure
len	C O		stress		stress	stress	/yield	stress	stress	/yield
evi -in	an	P	G	n_	Ÿ-	/vield	stress	Ym	/yield	stress
n ba	Me	tanf	tonf in 2	tonf in-2	tonf in-2	stress		tonf in ⁻²	stress	
	0 00	09.179	32.986	25.787	39.154	0.8425	0.6586	36.413	0.6239	0.7604
	0.0	210.004	26 020	23 805	39,808	0.9048	0.6080		0.6908	0.7256
	0.0	10.024	38.579	22.082	40.326	0.9566	0.5640		0.7507	0.6929
12	0.0	311 345	40.767	20.578	40.747	1.0005	0.5256		0.8043	0.6620
	0.0	811 871	42,656	19.257	41.097	1.0379	0.4918		0.8521	0.6330
	0.1	012.329	44.304	18.090	41.391	1.0704	0.4620		0.8947	0.6057
	0.0	000 120	24 108	26.850	38,401	0.8657	0.6815	36.413	0.6239	0.7600
	0.0	210.246	36.818	25.061	39.973	0.9211	0.6361		0.6814	0.7301
	0.0	410.897	39.156	23.476	40.439	0.9683	0.5958		0.7338	0.7018
114	0.0	611.464	41.194	22.068	40.828	1.0090	0.5601		0.7813	0.6749
	0.0	811 962	12,984	20.8112	41,159	.0444	0.5282		0.8246	0.6493
	0.1	012.403	44.569	19.684	41.438	.0756	0.4996	1	0.8638	0.6250
	0 0	0hg 794	35 195	27.923	39.635	0.8880	0.7045	36.41	0.6239	0.7595
	0.0	210 179	37 651	26 282	40,142	0.9379	0.6631		0.6742	0.7334
	0.0	411 0781	39.808	24.808	40.565	0.9813	0.6259	1	0.7206	0.7085
116	0.0	611 600	11 715	23 476	40,924	1.0193	0.5923	1	0.7632	0.6846
	0.0	812 082	13 115	22 274	41.233	1.0529	0.5620		0.8025	0.6618
	0.0	012.002	11 937	21,184	41.502	1.0828	0.5345	1	0.8386	0.6400
-	0.1	010 089	36 25/	29.014	39.857	0.9096	0.7279	36.41	30.6239	0.7589
	0.0	-10 715	38 505	27 487	40.312	0.9552	0.6897	1	0.6685	0.7358
1	0.0	111 273	10 500	26.099	40.699	0.9953	0.6548	1	0.7100	0.7136
118	0.0	611 773	42.304	1 24.835	41.033	1.0310	0.6231	1	0.7486	0.6922
	0.0	0 12 222	43.920	23.680	41.323	1.0628	0.5941	1	0.7845	0.6717
	0.1	012.629	45.382	2 22.623	3 41.579	1.0915	0.5676		0.8178	0.6520
-	6.0	010 379	37 29	7 30,13	40.070	0.9308	0.7520	36.41	30.6239	0.7583
	6.0	210 959	39 380	28.69	7 40,483	0.9727	0.7162		0.6639	0.7376
	6	411 480	41.25	4 27.380	40.839	1.0102	0.6833	3	0.7014	0.7176
20	6.0	611 052	12 01	2 26 170	0 41,150	1.0437	0.6531	1	0.7365	0.6982
	6.0	12 391	11 18	9 25 05	7 41 424	11.0740	0.6253	3	0.7694	0.6796
	6	012.772	45.89	5 24.02	9 41.667	1.1014	1 0.5997	7	0.8002	0.6616
-	6	0	10.00				1			
	0.0	02					-			
	5	14						1		1
122			1					1		
	P.0				1					
	h	10				1		1		
-	p	10			-	1	1			

The upper and the lower bound solutions for the drawing of octagonal tube from round on a cylindrical plug.

Input tube size : 1.000 in o.d. x 0.1875 in gauge Reduction of area : 16.36%

	29	of	F		τ	JPPER BO	UN D			LO	WER BOU	ND
die	a	f.		Draw	Mean	Mean die	Mean	Mean	Mean die	Mean	Mean	Mean die
tu	16u	bef		force	draw	pressure	yield	draw	pressure	yield	draw	pressure
ale	P -	ŭ	ION		stress		stress	stress/	/yield	stress	stress/	/yield
niv	Ē	UPa	ic t	P	UT20	Pm	Ym	yield	stress	Ym	yield	stress
Eq	Se	Σ	fr	tonf	tonf in-2	tonf in-2	tonf in-2	stress		tonf in-2	stress	
		0.	00	05.234	13.076	44.845	32.891	0.3976	1.3634	27.317	0.1813	0.9313
		0.	02	08.068	20.155	33.302	35.684	0.5648	0.9332		0.3237	0.8593
	2	0.	04	09.626	24.047	26.170	36.891	0.6518	0.7094		0.4438	0.7944
	4	0.	06	10.606	26.495	21.497	37.971	0.7052	0.5722		0.5499	0.7360
		0.	08	11.278	28.174	18.222	38.008	0.7413	0.4794		0.6301	0.6832
		0.	10	11.767	29.396	15.806	38.313	0.7673	0.4125		0.7016	0.6356
F		0	00	05.662	14.144	48.606	33.381	0.4237	1.4561	27.317	0.1813	0.9312
		0	.02	07 450	18 612	41.596	35,153	0.5295	1.1833		0.2554	0.8943
	,	0.	.04	08.724	21.795	36.089	36.214	0.6018	0.9966	100	0.3235	0.8593
	4	0.	.06	09.674	24.167	31.783	36.925	0.6545	0.8607		0.3861	0.8260
		0.	.08	10,408	26,000	28.359	37.437	0.6945	0.7575		0.4435	0.7944
		0	. 10	10.992	27.458	25.583	37.824	0.7259	0.6764		0.4962	0.7645
Г		0	.00	06.030	21.065	51.947	33.780	0.4460	1.5378	27.317	0.1813	0.9312
		0	.02	07.373	18,420	46.761	35.084	0.5250	1.3328		0.2313	0.9063
	,	0	.04	08.433	21.067	42.318	35.983	0.5855	1.1761		0.2786	0.8824
	6	10	06	09.288	23.203	38.560	36.643	0.6332	1.0523		0.3232	0.8593
		10	.08	09.991	24.959	35.371	37.150	0.6718	0.9521		0.3655	0.8369
		0	. 10	10.579	26.428	32.646	37.553	0.7038	0.8693		0.4053	0.8153
Г		0	00	06.196	15,480	53,495	33,953	0.4559	1.5755	27.317	0.1813	0.9311
-		0	.02	07.398	18.482	48.867	35.106	0.5265	1.3920		0.2243	0.9098
	-	0	.04	08.377	20.924	44.804	35.937	0.5823	1.2467		0.2652	0.8891
	1	0	. 06	09.186	22.940	41.282	36.567	0.6276	1.1289		0.3042	0.8691
1		0	.08	09.867	24.648	38.229	37.063	0.6650	1.0315		0.3414	0.8496
		0	.10	10.446	26.095	35.571	37.463	0.6965	0.9495		0.3769	0.8307
Г		0	. 00	06.353	15.870	54.982	34.113	0.4652	1.6118	27.317	0.1813	3 0.9310
		0	. 02	07.353	18,596	50.786	35,147	0.5291	1.4450		0.2189	0.9124
	0	0	.04	09.121	20.868	47.034	35.918	0.5810	1.3095		0.2553	0.8942
	0	0	. 06	09.121	22.787	43.720	36.518	0.6240	1.1972		0.2897	0.8765
		0	.08	09.778	24.426	40.798	37.000	0.6602	1.1026		0.3229	0.8593
L		0	.10	10.345	25.842	38.215	37.394	0.6911	1.0219		0.3547	0.8425
Γ	The second	0	. 00	06.644	16.598	57.847	34.402	0.4825	1.6815	27.317	0.1819	9 0.9309
		0	. 02	07.572	18.915	53.273	35.260	0.5364	1.5392		0.2114	4 0.9160
1.	10	0	.04	08.372	20.914	50.996	35.933	0.5820	1.4192		0.2406	0.9013
	10	0	.00	09.068	3 22.652	48.022	35.478	0.6210	1.3165		0.2688	8 0.8870
		0	.08	8 09.678	3 24.177	45.335	36.928	0.6547	1.2276		0.296	0.8730
L		0	.10	10.217	25.524	42.905	37.307	0.6841	1.1500		0.322	4 0.8593

..... (continued)

The upper and the lower bound solutions for the drawing of octagonal tube from round on a cylindrical plug.

Input tube size : Reduction of area : 1.000 in o.d. x 0.1875 in gauge 16.36_{m}

	+	T			UPPER E	BOUND			LO	WER BOU	ND
a R	° =	1		Maan	Moon diel	Mean	Mean	Mean die	Mean	Mean	Mean die
Pa	eff		aw	deav	nracsure	vield	draw	pressure	yield	draw	pressure
ngl	000		prce	WEID	pressure	ctrass	strass	/vield	stress	stress	/yield
le-	- +		-	STIESS		511633 V	wield	stross	Y	/vield	stress
Iniv	ea	=	P	Uza2	Pm -2	m-2	ryielu	211622	toof in-2	stress	
Ec	Σu	-	tont	tont in ~	tont in -		511622	1 7504	07 217	0 1813	0 9307
	0.0	0 0	6.920	17.287	60.682	34.667	0.4986	1.7504	27.517	0.2064	0.9183
	0.0	2	07.733	19.317	57.530	35.400	0.5457	1.0251		0.200	0.0001
10	0.0	4 (08.450	21.110	54.592	35.996	0.5864	1.5166		0.2308	0.9061
112	0.0	6 (09.088	24.702	51.880	36.493	0.6221	1.4216		0.2545	0.8823
	0.0	8 (09.657	24.124	49.385	36.913	0.6535	1.3379		0.2110	0.0020
	0.1	0	10.168	25.402	47.092	37.273	0.6815	1.2634		0.3000	0.8707
-	0.0	0	07.194	17.972	63.611	34.921	0.5145	1.8215	27.317	0.1813	0.9306
	0.0	2	07.922	19.791	60.759	35.562	0.5565	1.7085		0.2027	0.9199
	0.0	4	08 576	21 125	58.071	36.097	0.5935	1.6087		0.2236	0.9094
114	0.0	6	09 166	22.890	55.558	36.552	0.6265	1.5199		0.2441	0.8991
	0.0		08.701	24.233	53.217	36.944	0.6559	1.4404	1	0.2640	0.8889
1	0.0	8	10.105	05 445	1 51 020	27 286	0 6825	1.3688	1	0.283	0.8789
-	10.1		10.18/	25.44	66 740	37.200	0.5311	1.8972	27.31	7 0.181	3 0.9303
	0.0	00	07.476	10.001			10 5000	1 7022	1	0 199	0.9211
1. Calif	0.0)2	08.142	2 20.34	64.105	35.746	0.5690	1.7933		0.218	2 0.9119
16	0.0)4	08.747	21.85	61.602	30.231	0.6338	1 6163		0.236	1 0.9029
110	0.0	06	09.298	3 23.220	3 59.240	30.031	. 0.0000	1.0100		10.050	7 0 9020
	0.0	08	09.803	3 24.49	57.020	37.018	0.6616	1.5403		0.255	8 0 8851
	0.	10	10.26	7 25.64	3 54.935	5 37.341	0.6865	1.4/11	1	10.270	0.0001
	0.	00	07.78	3 19.44	70.16	1 35.443	0.5485	1.9796	27.31	7 0.181	3 0.9301
	6	02	08.39	3 20.97	8 67.68	9 35.954	4 0.5835	1.8826		0.197	8 0.9219
110	0.	04	08.96	3 22.39	0 65.324	4 36.398	3 0.6151	1.7947		0.214	8 0 9057
110	6.	06	09.48	3 23.69	0 63.07	5 36.78	/ 0.6440	1./146	·	0.220	0.0007
	5	08	09.96	4 24.89	1 60.94	6 37.13	1 0.6704	4 1.6414	1	0.245	5 0.8978
	0.	10	10.40	9 26.00	4 58.93	2 37.43	3 0.6946	5 1.5741		0.260	8 0.8899
-	6	00	08 11	1 20 26	9 73.94	5 35.72	2 0.5674	4 2.0700	27.31	7 0.181	3 0.9298
	6	02	08.69	0 21.70	2 71.58	6 36.18	7 0.599	9 1.9782	2	0.196	0 0.9225
	P.	0.4	09.22	4 23.04	3 69.32	1 36.59	5 0.629	7 1.8942	2	0.210	0.9152
120) <u>p</u> .	04	00 70	0 01 00	1 67 15	7 36 95	8 0.657	0 1.817	1	0.224	18 0.9080
	p.	06	10.19	1 25 43	3 65 09	5 37.28	2 0.682	2 1.746	0	0.238	38 0.9008
	<u>p</u> .	08	10.10	1 20.40	7 00.00	1 27 57	10 705	5 1 680	2	0.252	0.8938
-	<u>p</u> .	10	10.61	1 26.50	07 63.13	4 34.5/	4 0.705	5 1.000			
	p.	00									
	p.	02									
12.	7 p.	04			-						-
14	- þ.	06		_							
	b.	08			-	-					
	þ.	. 10	1						1		1

TABLE No. A-4. 3.2 The upper and the lower bound solutions for the drawing of octagonal tube from round on a cylindrical plug.

Input tube size : Reduction of area : 35.97%

1.1250 in o.d. x 0.3125 in gauge

	29	of	-		t	IPPER BC	UN D			LO	WER BOU	ND
die	D a	-		Draw	Mean	Mean die	Mean	Mean	Mean die	Mean	Mean	Mean die
tu	160	let		force	draw	pressure	yield	draw	pressure	yield	draw	pressure
ale	le -	5	UO	1. 1. 1. 1.	stress		stress	stress/	/yield	stress	stress/	/yield
VIL	E	UP	ct	Р	J72	Dm	Ϋ́m	yield	stress	Ym	yield	stress
Equ	Se	M	fr	tonf	tenfin-2	tonf in-2	tonf in-2	stress		tonf in-2	stress	
-	-	0.	00	10 657	20 965	24 577	35.657	0.5809	0.6843	33.777	0.4489	0.8096
		0	02	15.286	29.928	18.056	38.443	0.7785	0.5027		0.6948	0.6772
	~	0	04	17.821	34.892	14.148	39.570	0.8818	0.3939		0.8563	0.5726
	2	0.	06	10 111	38 011	11 607	40.214	0.9452	0.3232		0.9605	0.6892
		1	0.0	20.507	40.150	09.833	40.631	0.9882	0.2738		1.0262	0.4224
		0.	10	21.302	41.707	08.526	40.923	1.0192	0.2374		1.0663	0.3583
-		1.		11 262	22 050	25 002	36 293	0.6075	0.7162	83.777	0.4489	0.8095
		10	00	14,1202	27.645	22.082	37.873	0.7290	0.6084		0.5843	0.7395
		10.	04	16,149	31,618	19.098	38.843	0.8140	0.5262		0.6945	0.6773
	4	0	.06	10.050	04 575	16 700	20 502	0 9752	0 1626		0.7838	0.6620
		1	0.0	18 826	34.575	14 966	39.902	0.9219	0.4124		0.8559	0.5727
		10.	10	19.753	38.675	13.492	40.345	0.9596	0.3718		0.9139	0.5287
-		10	. 00	111 040	00.104	07 076	26 640	0 6220	0 7172	83 777	0.4489	0.8095
		-		11.846	23.194	21.370	37 794	0.7235	0.6690	1	0.5420	0.7619
		10	02	15.634	30,609	22.118	38.606	0.7929	0.6036		0.6233	0.7180
	6	10	. 04	10.070	00.041	20 110	20 211	0 9477	0 5/01		0.6941	0.6774
		10	.06	18 083	35 404	18.434	39.679	0.8923	0.5031	1	0.7557	0.6399
		10	10	19.006	37.213	17.000	40.053	0.9291	0.4640		0.8091	0.6051
1		1	. 10	10 101	00 751	29 057	26 805	0 6453	0 7623	83.777	0.4489	0.8094
1		0	.00	14 021	27.452	25.510	37.822	0.7258	0.6931	1	0.5294	0.7685
		1º	. 04	14.021		00.005	00 570	0 7006	0 6220	1	0 6011	0 7303
1	7	0	.04	15.556	30.457	23.325	38.5/0	0. 8415	0.5830	1	0.6647	0.6945
1		0	.06	17 890	35.027	19.846	39.599	0.8845	0.5392		0.7213	0.6611
1		10	. 08	18.797	36.803	18.452	39.970	0.9208	0.5013	1	0.7712	0.6298
+		10	. 10	122 410	24 208	29.731	36 963	0 6574	0.7773	33.777	0.4489	0.8094
		0	.00	14.122	27.650	26.828	37.874	0.7300	0.7150	F	0.5197	0.7784
1		10	. 02	25 540	00.050	104 414	20 565	0 7902	0 6605	1	0 583	0.7396
	8	10	.04	16 745	30.650	22 657	39 110	0.8384	0.6130	1	0.641	0.7077
		10	. 06	10.747	02.750	101 100	20 550	0 9709	0.5714		0.9636	0.6776
		10	.08	18 660	34.799	19.767	39.915	0.9153	0.5348		0.740	0.6492
+		10	. 10	10.000	100.004	10.707	00.010	0.0100	0.0007	02 777	0 119	0 8002
		10	. 00	12.95	25.365	130.061	38 016	0.6807	0.7544	03.111	0.505	0.7804
		10	. 02	15 656	30.654	26.356	38.617	0.7938	0.7073		0.558	0.7529
1	10		.04	10.000	100.004	104.70	100 100	10 0000	0 6651		0 607	0 7267
		10	. 00	16.74	3 32.781	24.784	39.108	0.8382	0.6273	1	0.651	7 0.7017
1		10	. 01	18 53	7 36 203	22.105	39.865	0.9104	0.5932		0.692	0.6779
	1.1	10	. 10	1 10.00	100.200		100.000	1	and the state of the state of	1	1	1

..... (continued)

The upper and the lower bound solutions for the drawing of octagonal tube from round on a cylindrical plug.

Input tube size : $1.1250 \text{ in o.d. } \times 0.3125 \text{ in gauge}$ Reduction of area : 35.97%

$12 \begin{array}{c c c c c c c c c c c c c c c c c c c $	die
$12 \frac{1}{9} \frac$	12000
$12 \frac{1}{0.00} \frac{1}{12.871} \frac{1}{0.00} \frac{1}{12.877} \frac{1}{2.5.363} \frac{1}{39.542} \frac{1}{0.8790} \frac{1}{0.6755} \frac{1}{0.6217} \frac{1}{0.77} \frac{1}{0.8638} \frac{1}{0.6580} \frac{1}{0.871} \frac{1}{0.871} \frac{1}{0.871} \frac{1}{0.925} \frac{1}{0.871} \frac{1}{0.925} \frac{1}{0.871} \frac{1}{0.925} \frac{1}{0.871} \frac{1}{0.925} \frac{1}{0.8780} \frac{1}{0.7247} \frac{1}{0.8638} \frac{1}{33.777} \frac{1}{0.4487} \frac{1}{0.887} \frac{1}{0.887} \frac{1}{0.889} \frac{1}{0.7247} \frac{1}{0.8638} \frac{1}{33.777} \frac{1}{0.4487} \frac{1}{0.887} \frac{1}{0.887} \frac{1}{0.887} \frac{1}{0.887} \frac{1}{0.887} \frac{1}{0.887} \frac{1}{0.883} \frac{1}{0.887} \frac{1}{0.883} \frac{1}{0.883} \frac{1}{0.887} \frac{1}{0.883} \frac{1}{0.88$	ure
$12 \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
$\frac{12}{9} = \frac{9}{2} = \frac{9}{100} + \frac{9}{10$	s
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$12 \begin{array}{c ccccccccccccccccccccccccccccccccccc$	91
$12 \begin{array}{c ccccccccccccccccccccccccccccccccccc$	151
$12 \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20
12 0.06 16.865 33.020 26.668 39.161 0.8432 0.7103 0.3627 0.7103 0.08 17.752 34.757 25.363 39.542 0.8790 0.6755 0.6217 0.7 0.10 18.550 36.318 24.170 39.871 0.9109 0.6438 0.6580 0.6 0.10 18.055 37.400 32.661 37.809 0.7247 0.8638 33.777 0.4487 0.8	398
0.08 17.752 34.757 25.363 39.542 0.8790 0.6755 0.6217 0.7 0.10 18.550 36.318 24.170 39.871 0.9109 0.6438 0.6580 0.6 0.10 18.005 37.400 32.661 37.809 0.7247 0.8638 33.777 0.4487 0.8	
0.10 18.550 36.318 24.170 39.871 0.9109 0.6438 0.6580 0.6 0.10 18.550 36.318 24.170 39.871 0.9109 0.6438 33.777 0.4487 0.8	84
0.8638 33.777 0.4487 0.8	1/9
0.00113.995 27.400 02.001	009
0.0215 128 29 619 31,130 38,368 0.7719 0.8234 0.4897 0.7	384
0.0416 145 31.610 29.710 38.841 0.8138 0.7858 0.5283 0.7	549
14 0.04 10.140 01.000 28.395 39.241 0.8512 0.7510 0.5647 0.7	493
0.00 27 000 05 004 07 178 09 601 0 8847 0.7188 0.5990 0.5	307
0.08 17.893 35.034 27.178 59.001 0.001 0.6891 0.6314 0.7	127
0.10 18.650 36.514 20.052 55.012 57.01 0.8918 33.777 0.4489 0.8	087
0.00 14.493 28.375 33.942 58.005 0.7450 0.8552 0.4845 0.	908
0.02 15.520 30.387 52.347 60.000 0.000 0.000 0.000 0.5184 0.	734
16 0.04 16.455 32.218 31.240 38.980 0.8264 0.8266 0.8266 0.5507 0.	565
0.06 17.308 33.888 30.017 39.353 0.8811 0.7687 0.5813 0.	400
0.08 18.090 35.418 28.875 39.082 0.0925 0.7007	12/1
0.10 18.808 36.825 27.808 39.974 0.9212 0.7307 0.8105 0.	1085
0.00 14.980 29.329 35.220 38.297 0.7658 0.9196 33.777 0.4463 0.	7926
0 02 15.923 31.175 33.932 38.740 0.8047 0.8060 0.400 0.	1001
0.04 16.789 32.871 32.716 39.128 0.8401 0.8543 0.5106 0.	7621
	TISO
0.5671 0.	/4/4
0.10 19.010 37.219 29.474 40.055 0.9292 0.7696 0.5936 0.	7331
0 00 15.458 30.266 36.498 38.524 0.7856 0 9474 33.777 0.4489 0.	3082
0.02 16 221 21 975 35, 298 38, 925 0.8214 0.9162 0.4771 0.	7940
0.5042 0.	7801
$20 \frac{0.04}{5} \frac{17.140}{5} \frac{35.33}{5} \frac{34.127}{5} \frac{39.600}{5} \frac{0.8846}{5} \frac{0.8585}{5} \frac{0.5303}{5} 0.5303 0.5503 0$	7666
0.06 17.031 00.020 00 00 00 00 0125 0 8319 0.5554 0	7533
0.08 19.591 36.399 32.049 39.887 0.9125 0.8067 0.5795 0	7404
0.10 19.243 37.677 51.076 40.147 0.0000 0.000	
0.00	
0.02	
22 0.04	
22 p.06	
0.08	
p.10	

The upper and the lower bound solutions for the drawing of octagonal tube from round on a cylindrical plug.

Input tube size : 1.1250 in o.d. x 0.2500 in gauge Reduction of area : 41.75%

	29	of	-		τ	IPPER BO		LOWER BOUND				
die	0	f.		Draw	Mean	Mean die	Mean	Mean	Mean die	Mean	Mean	Mean die
t	16	et		force	draw	pressure	yield	draw	pressure	yield	draw	pressure
ale	Je.	00	UO		stress		stress	stress/	/yield	stress	stress/	/yield
iva	-in	an	÷	P	Π.	Da	Y	vield	stress	Ym	yield	stress
Equ	Sel	Me	fri	toof	topfin-2	toof in-2	toof in-2	stress		tonf in-2	stress	
-	-	0	00	1011	00 557	21 652	26 748	0 6410	0 5892	35, 320	0.5446	0.7731
		0.	00	13 303	33,233	14,981	39.209	0.8476	0.4077	00.020	0.8287	0.6138
		0.	02	10.000	00.200	14.001	10.000	0.0407	0.0005		0 0000	0 1062
	2	0.	04	15.245	38.083	11.3/2	40.228	1 00/9	0.3095		1.0739	0.4084
		<u>.</u>	00	17 181	40.988	07 651	40.789	1.0431	0.2082		1.1163	0.3419
		0.	08	1/.101	42.919	07.001	41.144	1.0401	0.2002		1 1040	0.000
		0.	10	17.732	44.297	06.572	41.390	1.0702	0.1788	25 220	1.1340	0.2909
		0	00	09.942	24.837	22.848	37.116	0.6692	0.0150	35.320	0.5540	0.7751
		0.	.02	12.386	30.941	18.737	38.685	0.7998	0.5048		0.7063	0.6873
	1.	0.	. 04	14.022	35.029	15.899	39.599	0.8846	0.4259		0.8284	0.6139
	4	0.	. 06	15.191	37.949	13.651	40.201	0.9440	0.3678		0.9200	0.5507
		0.	.08	16.067	40.138	12.002	40.628	0.9879	0.3234		0.9000	0.4903
		0.	. 10	16.748	41.839	10.704	40.947	1.0218	0.2884	L	1.0378	0.4493
Γ		0	.00	10.437	26.074	24.018	37.457	0.6961	0.6412	35.320	0.5446	0.7730
		0	. 02	12.264	30.638	20.973	38.613	0.7934	0.5592		0.6571	0.7145
	,	0	.04	13.641	34.076	18.560	39.394	0.8550	0.4955		0.7505	0.6617
1	0	10	06	14.713	36.754	16.622	39.960	0.9198	0.4438		0.8280	0.6140
		0	.08	15.571	38.897	15.039	40.389	0.9631	0.4015		0.8920	0.5709
		0	. 10	16.272	40.650	13.726	40.727	0.9981	0.3664		0.9445	0.5319
F		10	00	10 670	26 677	21 501	37 619	0 7091	0.6538	35.320	0.5446	0.7729
1		0	.02	12 311	30.755	21.879	38.641	0.7959	0.5816	1	0.642	0.7225
1	_	10	04	13.587	33.942	19.656	39.365	0.8622	0.5225	1	0.7254	0.6762
	7	10	.04	14.609	36.495	17.822	39.907	0.9145	0.4738		0.7963	0.6339
		10	.00	15 118	38 586	16 289	40 328	0.9568	0.4330		0.8566	0.5951
		10	10	16.144	40.329	14.993	40.665	0.9917	0.3986	1	0.907	0.5595
+		10	. 10	120.010	07.000	05 105	07 775	0 7010	0 6662	25 220	0 544	0 7729
		10	.00	12 303	30 060	22 705	38 691	0.8004	0.6011	55.520	0.630	0.7285
1		10	. 02	12.397	30.909	20 642	20 365	0 8622	0.5464	1	0.705	0.6875
	8	0	.04	13.50/	33.941	19 642	39.303	0.0022	0.5004		0.770	3 0.6495
	-	0	.06	15 376	38 411	17.421	40.293	0.9533	0.4612		0.827	4 0.6142
		0	.08	3 10.070	00.411	110.10	10.200	0.0070	0 1075		0 976	0 5916
+		0	.10	16.065	40.132	16.148	40.627	0.98/8	0.4275	35 320	0.544	6 0.7727
1		0	.00	11.380	20.428	20.235	30.072	0.7409	0.0307	00.02	10.044	10.7727
1		0	. 02	12.638	3 31.570	24.205	33.832	0.8130	0.6358		0.614	1 0.7371
1.	10	0	.04	1 13.690	34.200	22.390	39.421	0.8675	0.5881		0.076	0.7036
	10	0	.06	14.583	3 36.430	20.810	39.421	0.9132	0.5466	1	0.732	2 0.6720
		0	.08	8 15.349	38.344	19.427	40.280	0.9519	0.5103		0.782	0.6424
		0	.10	16.014	40.005	18.209	40.603	0.9853	0.4783		0.826	q 0.6145

..... (continued)

The upper and the lower bound solutions for the drawing of octagonal tube from round on a cylindrical plug.

Input tube size : 1.1250 in o.d. x 0.2500 in gauge Reduction of area : 41.75%

0 94	+			UPPER E	BOUND			LOWER BOUND			
a B	੍ਰੈ H	Draw	nean	Mean die	Mean	Mean	Mean die	Mean	Mean	Mean die	
t d	eft	force	draw	pressure	yield	draw	pressure	yield	draw	pressure	
en	C O	, or cc	stress		stress	stress	/yield	stress	stress	/yield	
ival i-in	cti	D	G	n_	Ÿ-	/vield	stress	Ym	/yield	stress	
up:	Me	tonf	tonf in 2	tonf in-2	tonf in-2	stress		tonf in ⁻²	stress		
	0 00	11 020	20 554	27 111	38.352	0.7706	0.7148	35.320	0.5446	0.7725	
	0.00	12 032	32 305	25.580	39.000	0.8283	0.6670		0.6028	0.7428	
	0.02	12.952	24 672	23 941	39.523	0.8773	0.6244		0.6559	0.7145	
12	0.04	14 702	36 730	22.497	39.955	0.9193	0.5866		0.7044	0.6877	
	0.00	15 425	38.533	21.201	40.317	0.9557	0.5528		0.7487	0.6622	
	0 10	16 062	40 125	20.039	40.626	0.9877	0.5225		0.7890	0.6379	
	0.00	12 271	30 65/	28 528	38,617	0.7938	0.7387	35.320	0.5446	0.7723	
	0.00	12.2/1	33 11/	26 881	39,182	0.8451	0.6961		0.5945	0.7468	
	0.02	14 120	35.274	25.391	39.652	0.8896	0.6575		0.6408	0.7225	
14	0.04	14.885	37.185	24.044	40.048	0.9285	0.6226		0.6835	0.6991	
	0.00	15 567	38 88	22,822	40.387	0.9629	0.5910		0.7231	0.6768	
	0.00	16 177	40.412	21.713	40.681	0.9934	0.5622	1	0.7596	0.6554	
	10.00	12 704	31,736	29.643	3 38.870	0.8164	0.7626	35.320	0.5446	0.7721	
12.5	0.00	12 507	33 968	28 130	39.371	0.8628	0.7239	1	0.5882	0.7498	
	0.04	11/ 395	35 960	26.762	39.796	0.9036	0.6885	1	0.6290	0.7284	
116	0.06	15 110	27 74	3 25 500	1 40 161	0.9399	0.6560		0.6670	0.7078	
	0.00	15.110	30 350	9 24 34	3 40.479	0.9723	0.6263		0.7028	0.6880	
	0.00	16.340	40.81	9 23.28	1 40.757	1.0015	0.5989		0.7361	0.6689	
-	0.10	13 132	32.80	5 30.76	7 39.113	3 0.8387	0.7866	35.320	0.5446	0.7718	
	0.00	13 952	34.85	5 29.37	6 39.562	0.8810	0.7510		0.5833	0.7521	
1	0.0	114 694	36.70	6 28.08	9 39.950	0.9188	3 0.7182	2	0.6197	0.7331	
118	0.0	15.366	38.38	6 26.89	9 40.288	3 0.9528	3 0.6877	7	0.6540	0.7147	
	0.00	15,979	39.91	7 25.79	8 40.586	5 0.9835	5 0.6596	5	0.6864	0.6969	
	0.1	0 16.540	41.31	8 24.77	7 40.85	1 1.0114	4 0.6335	5	0.7168	0.6796	
-	6.0	13.558	33.87	0 31.90	7 39.34	9 0.860	7 0.8109	35.320	0.5446	0.7715	
	0.0	2 14.318	35.76	9 30.60	7 39.75	6 0.899	7 0.7778	3	0.5792	0.7539	
	6.0	115.012	37.50	2 29.39	5 40.11	2 0.934	9 0.7470		0.6121	0.7368	
120	6.0	6 15.647	39.08	9 28.21	5 40.42	6 0.966	9 0.718	3	0.6432	0.7202	
	6.0	0 16.231	40.54	7 27.21	2 40.70	6 0.996	1 0.691	5	0.6727	0.7040	
	6.1	0 16.770	41.89	2 26.22	9 40.95	7 1.022	8 0.666	6	0.7007	0.6884	
-	6.0	0	-		1	1					
	0.0	2									
-	0.0	4	-								
122	1 6.0	6									
	6.0	0									
	h 1	0									
	P.1			-					-		

The upper and the lower bound solutions for the drawing of octagonal tube from round on a cylindrical plug.

Input tube size : 1.1250 in o.d. x0.1875 in gauge Reduction of area : 51.95%

	24	of	-		τ	PPER BC	UN D			LO	WER BOU	ND
die	e	f.		Draw	Mean	Mean die	Mean	Mean	Mean die	Mean	Mean	Mean die
ī	1 Bu	bet		force	draw	pressure	yield	draw	pressure	yield	draw	pressure
uivale	P -	ŭ	ION		stress		stress	stress/	/yield	stress	stress/	/yield
	E	UPa	t t	P	UTA	Dm	Ϋ́m	yield	stress	Ym	yield	stress
Eq	Se	ž	-	tonf	tenf in-2	tonf in-2	tonf in -2	stress		tonf in-2	stress	
		0.	00	08.074	30.433	18.477	38.564	0.7891	0.4791	37.909	0.7402	0.7032
		0.	02	10.992	41.432	11.834	40.872	1.0137	0.3069		1.0551	0.5064
	2	0.	04	12.305	46.381	08.661	41.750	1.1109	0.2246		1.1753	0.3788
	2	0.	06	13.050	49.188	06.823	42.215	1.1652	0.1769		1.2084	0.2938
		0	08	13.530	50.996	05.626	42.503	1.1998	0.1459		1.2053	0.2355
		0.	10	13.864	52.257	04.786	42.699	1.2238	D.1241		1.1891	0.1943
		0	00	08.445	31.830	19.341	38.892	0.8184	0.4973	37.909	0.7402	0.7031
		0.	02	10.324	38.914	15.134	40.392	0.9634	0.3891		0.9321	0.5939
	,	0.	04	11.493	43.319	12.388	41.216	1.0510	0.3185		1.0549	0.5065
	4	0.	06	12.289	46.318	10.474	41.739	1.1097	0.2693		1.1308	0.4361
		0.	08	12.865	48.490	09.067	42.101	1.1517	D.2331		1.1753	0.3798
		0.	10	13.301	50.135	07.991	42.367	1.1833	0.2054		1.1986	0.3323
		0.	00	08.800	33.167	20.181	39.194	0.8462	0.5149	37.909	0.7402	0.7030
		0.	02	10.212	38.490	17.040	40.309	0.9549	0.4347		0.8769	0.6276
	1	0.	04	11.218	42.281	14.710	41.028	1.0305	0.3753		0.9790	0.5627
	0	0	06	11.970	45.115	12.928	41.533	1.0862	0.3299		1.0545	0.5066
		0.	08	12.552	47.312	11.525	41.906	1.1290	0.2941		1.1093	0.4581
		0.	10	13.017	49.064	10.394	42.195	1.1628	0.2652		1.1482	0.4159
Г		0.	00	08.972	33.816	20.594	39.337	0.8596	0.5235	37.909	0.7402	0.7029
1		0.	.02	10.234	38.574	17.788	40.325	0.9566	0.4522		0.8595	0.6377
	7	0.	.04	11.172	42.110	15.625	40.997	1.0271	0.3972		0.9527	0.5803
	1	0.	06	11.896	44.838	13.918	41.485	1.0808	0.3538		1.0248	0.5300
		0.	.08	12.471	47.005	12.541	41.855	1.1230	0.3188		1.0800	0.4851
L		0	. 10	12.938	48.767	11.408	42.146	1.1571	0.2900		1.1216	0.4456
		0	.00	09.140	34.451	21.002	39.471	0.8727	0.5320	87.909	0.7402	0.7028
1		0	. 02	10.285	38.765	18.458	40.363	0.9604	0.4676		0.8460	0.6454
	9	0	.04	11.164	42.715	16.437	40.991	1.0265	0.4164		0.9313	0.5940
	0	0	. 06	11.860	44.700	14.803	41.461	1.0781	0.3750		0.9996	0.5481
		0	.08	12.42	46.825	13.457	41.825	1.1195	0.3409		1.0539	0.5069
L		0	.10	12.889	48.581	12.332	42.116	1.1535	0.3124		1.0967	0.4698
		0	. 00	09.468	35.687	21.809	39.739	0.8980	0.5488	B7.909	0.7402	0.7026
		0	. 02	10.439	39.344	19.648	40.476	0.9720	0.4944		0.8263	0.6563
1		0	.04	11.220	42.291	17.351	41.030	1.0307	0.4493		0.8989	0.6139
	0	0	. 06	11.863	44.713	16.351	41.463	1.0784	0.4115		0.9600	0.5752
1		0	.08	12.401	46.739	15.074	41.811	1.1179	0.3793	-	1.0108	0.5397
L		0	.10	12.857	48.458	13.978	42.096	1.1511	0.3518		1.0523	0.5071

..... (continued)

The upper and the lower bound solutions for the drawing of octagonal tube from round on a cylindrical plug.

Input tube size : Reduction of area : 1.1250 in o.d. $x^{0.1875}$ in gauge 51.95 %

0	2	+	T			UPPER E	BOUND			LO	WER BOU	ND
a t	3	•	±	Dray	Mean	Mean die	Mean	Mean	Mean die	Mean	Mean	Mean die
+ 4	יוע	efi	1	forre	draw	pressure	vield	draw	pressure	yield	draw	pressure
en		CO	LO	10.cc	stress		stress	stress	/yield	stress	stress	/yield
Iev.	-	UE	E	D	G	n	Ÿ_	/vield	stress	Ym .	/yield	stress
nb	Le l	Mes	Fr	tonf	tonf in 2	tonf in-2	tonf in-2	stress		tonf in ⁻²	stress	
<u> </u>	+	-	00	10111	00.000	00 607	20 097	0 9224	0.5654	37.909	0.7402	0.7024
	H	0.	00	09.786	30.880	20 713	40.617	0.9867	b.5180		0.8127	0.6636
1	+	0.	02	11 338	40.077	19.095	41.111	1.0395	D.4775		0.8756	0.6277
17		0.	04	11.935	44.983	17.700	41.510	1.0837	p.4427		0.9300	0.5943
	-	0.	06	10 445	16 006	16 190	11 839	1,1211	b.4124	1	0.9771	0.5632
	+	0.	10	12.445	40.900	15 430	12 114	1,1533	b.3859		1.0176	0.5343
	-	0.	10	12.007	40.571	102 402	10 223	0 9/61	0.5818	37.909	0.7402	0.7021
		0.	00	10.097	10 899	21.706	40.223	1.0003	0.5396	1	0.8026	0.6688
		0.	02	11.001	13 120	20 224	41,217	1.0511	D.5028	1	0.8579	0.6377
111	+	0.	04	12.051	45.420	18 922	41.586	1.0922	0.4704	1	0.9069	0.6084
1.	•	0.	00	12.001	43.420	17 772	41.896	1.1277	D.4418		0.9502	0.5809
	1	0.	108	12.555	47.240	16 9/9	42,160	1,1587	D.4164	1	0.9883	0.5550
-	-	0.	10	12.901	40.001	10.040	40.440	0 9632	h 5984	37,909	0.7402	0.7017
	1	0.	.00	10.402	39.208	24.204	40.449	1 0206	b. 5601	10	0.7949	0.6727
-		0	. 02	11.085	41.779	22.000	40.930	1 0647	0 5262		0.8441	0.6452
110	5	0	.04	11.678	44.015	21.285	41.340	1 1021	h 1959	1	0.8885	5 0.6192
1.	-	0	. 06	12.198	45.977	20.060	41.001	1 1267	b 4688		0.9283	3 0.5946
		0	.08	12.659	47.712	18.964	41.973	1.1507	6 4444	1	0.9640	0.5713
-		0	. 10	13.068	49.251	17.977	42.226	1.1000	0.4444	27 000	0.0040	2 0 7014
		0	. 00	10.707	40.355	25.018	40.670	0.9922	D 5800	37.903	0.788	3 0.6756
		0	. 02	11.331	42.706	23.590	41.100	1 0797	0.5485	1	0.833	0 0.6511
11	R	0	. 04	11.882	44.783	22.300	41.473	1.1157	0.5200	+	0.873	4 0.6278
1.	•	0	. 06	12.3/1	40.023	21.140	41.752	1 1477	0 1942	+	0.910	1 0.6055
1		0	.08	12.810	48.28	20.098	42.007	1.14/1	0.4342	1	0 943	5 0.5843
-	-	0	. 10	13.204	49.767	19.144	42.308	1.1763	0.4707	27 00	0.040	2 0 7001
1		p	.00	11.012	2 41.505	5 25.849	40.885	1.0151	b 5997	37.90	0.783	4 0.6779
		0	. 02	2 11.588	3 43.676	24.518	41.200	1.0000	b.5357		0.823	9 0.6558
12	0	p	.04	1 12.103	3 45.61	23.308	41.020	1 12900	0.5/01		0.860	8 0.6347
12	0	þ	.06	5 12.56	5 47.36.	1 22.20	41.912	1.120	0.0404		0 894	8 0.6144
		p	.08	3 12.98	4 48.93	7 21.19	1 42.174	1 1 1878	A 0.5100		0.926	0 0.5951
-	_	þ	. 10	13.36	3 50.36	8 20.27	4 42.404	1.10/0	5 0.4000			
		þ	.00						-		-	
		p	. 0:	2	_	-	-					
12	2	p	.0.	4								
12	2	· þ	.0	6								
		þ	.0	8	_						-	
		þ	.1	0		1				_		1

TABLE No. A-4.4.1 The upper and the lower bound solutions for the drawing of decagonal tube from round on a cylindrical plug.

Input tube size : 1.0625 in o.d. x 0.3750 in gauge Reduction of area : 18.75%

	29	-to	-		U	PPER BO	UN D			LOWER BOUND				
die	0	f.	-	Draw	Mean	Mean die	Mean	Mean	Mean die	Mean	Mean	Mean die		
tu	160	let		force	draw	pressure	yield	draw	pressure	yield	draw	pressure		
ale	le-	5	UO		stress		stress	stress/	/yield	stress	stress/	/yield		
NIN	E	UPa	ic t	P	UZA	Pm	Ym	yield	stress	Ym	yield	stress		
Eqi	Se	M	F	tonf	tonf in-2	tonf in-2	tonf in-2	stress		tonf in-2	stress			
		0.	00	09.122	13.863	40.671	33.255	0.4169	1.2230	28.290	0.2089	0.9083		
		0.	02	13.757	20.906	33.506	35.931	0.5818	0.9326		0.3392	0.8425		
	2	0.	04	16.775	25.493	28.104	37.299	0.6835	0.7535		0.4503	0.7829		
	2	0.	.06	18.883	28.696	24.110	38.140	0.7524	0.6321		0.5449	0.7288		
		0.	.08	20.434	31.053	21.077	38.711	0.8022	0.5445		0.6252	0.6796		
		0.	. 10	21.622	32.859	18.708	39.125	0.8398	0.4781		0.6935	0.6349		
Г		0	.00	09.769	14.845	43.576	33.687	0.4407	1.2936	28.290	0.2089	0.9083		
		0	.02	12.535	19.049	39.519	35.307	0.5395	1.1193		0.2766	0.8746		
	1	0	.04	14.726	22.049	35.901	36.395	0.6149	0.9864		0.3391	0.8425		
	4	0	.06	16.498	25.071	32.785	37.182	0.6743	0.8818		0.3968	0.8120		
		0	. 08	17.956	27.287	30.117	37.780	0.7223	0.7972		0.4501	0.7829		
		0	. 10	19.176	29.142	27.823	38.250	0.7619	0.7274		0.4992	0.7553		
Γ		0	.00	10.369	15.758	46.297	34.067	0.4626	1.3590	28.290	0.2089	0.9082		
		0	. 02	12.401	18.545	43.386	35.235	0.5348	1.2313		0.2545	0.8856		
	1	0	.04	14.133	21.477	40.760	36.114	0.5947	1.1256	1	0.2978	0.8638		
	0	0	.06	15.623	23.742	38.149	36.802	0.6451	1.0366		0.3387	0.8426		
1		0	.08	16.916	25.707	35.887	37.357	0.6881	0.9606		0.3778	0.8221		
L		0	. 10	18.048	27.427	33.847	37.816	0.7253	0.8950		0.4147	0.8023		
1		0	.00	10.653	16.190	47.591	34.241	0.4728	1.3899	28.290	0.2089	0.9082		
		0	.02	12.460	18.936	45.020	35.267	0.5369	1.2765	1	0.2481	0.8888		
1	7	0	.04	14.034	1 21.329	42.569	36.066	0.5913	1.1803		0.2856	0.8700		
	1	0	.06	15.416	5 23.427	40.290	36.710	0.6382	1.0975		0.3214	0.0010		
		0	.08	16.635	5 25.281	38.194	37.240	0.6789	1.0250		0.3550	0.0000		
L		0	.10	17.719	26.927	36.274	37.685	0.7145	0.9626		0.3883	0.8165		
		0	.00	10.926	5 16.605	48.845	34.405	0.4826	1.4197	28.290	0.2089	0.9082		
		0	. 02	12.560	19.087	46.532	35.320	0.5404	1.3174		0.2433	0.8912		
	8	0	.04	14.00	7 21.286	44.306	36.053	0.5904	1.2289		0.2763	0.8740		
	-	0	. 06	15.29	23.244	42.210	36.655	0.0341	1.1515		0.0000	0.0000		
		0	0.08	3 16.44	9 24.997	40.257	37.16	0.6727	1.0833		0.3305	0.8273		
-		C).10	17.48	26.573	38.44/	37.59	10.7005	1.0227		0.0070	0.0270		
		C	0.00	11.44	3 17.391	1 51.235	34.706	0.5011	1.4763	28.290	0.2089	0.9081		
		L	0.0	2 12.82	4 19.488	49.292	35.45	5 0 5925	31,3135	1	0.2630	0.8812		
	10)10	0.0	4 14.07	0 21.39.	47.595	50.080	0.5520	11.0100		10 0000	0 0000		
		4	0.0	6 15.21	5 23.12	3 45.585	36.619	9 0.6314	1 1.2448	1	0.2888	0.8554		
		4	0.0	8 16.25	0 26 15	43.865	37.07	3 0.6978	3 1,1271	1	0.3381	0.8428		
L		10).1	0111.50	9 20.15	42.240	131.4/0	10.0370	11112/1	1	1.0001			

..... (continued)

The upper and the lower bound solutions for the drawing of decagonal tube from round on a cylindrical plug.

Input tube size : Reduction of area : 1.0625 in o.d. x 0.3750 in gauge 18.75%

0 0	*			UPPER E	BOUND			LO	WER BOU	ND
a B	<u>ੂ</u> ਸ	Draw	Mean	Mean die	Mean	Mean	Mean die	Mean	Mean	Mean die
te	efi	force	draw	pressure	vield	draw	pressure	yield	draw	pressure
nal	C O	10.00	stress		stress	stress	/yield	stress	stress	/yield
val i-i	c it	D	G	n	Ÿ	/vield	stress	Y	/yield	stress
inp	fri	+oof	tanf in 2	toof in-2	tonf in-2	stress		tonf in -2	stress	
Ш 0,		100		50 401	24 076	0 5191	1 5292	28,290	0.2089	0.9080
	0.00	11.924	18.121	53.481	34.970	0.5601	1.4543	20.200	0.2318	0.8967
	0.02	13.137	19.950	50 138	36 163	0.5983	1.3864		0.2541	0.8856
12	0.04	14.230	22.000	18 532	36 646	0.6330	1.3246		0.2758	0.8747
12	0.06	15.201	23.192	40.552	50.040	0.0000	1 0000		0 2060	0 8639
	0.08	16.210	24.634	46.990	37.059	0.654/	1 2161		0.3175	0.8534
	0.10	17.090	25.971	45.517	37.429	0.0939	1.2101	200 200	0 2080	0 9079
	0.00	12.376	18.808	55.630	35.222	0.5340	1.5/94	20.290	0.2003	0.8983
	0.0	2 13.447	20.435	54.125	35.799	0.5/12	1.5120		0.000	0.0005
11	0.0	4 14.446	21.953	42.641	36.264	0.6054	1.4516		0.2475	0.8885
14	0.0	15.379	23.371	51.195	36.693	0.6369	1.3952		0.2662	0.8794
	0.0	8 16.251	24.697	49.794	37.076	0.6661	1.3430		0.2845	0.8701
	0.1	17.069	25.940	48.443	37.421	0.6932	1.2945		0.3023	3 0.8610
	0.0	12 806	19,461	57.697	35.449	0.5490	1.6276	28.290	0.208	0.9078
	0.0	2 13.774	1 20.932	56.334	35.939	0.5824	1.5675		0.2259	0.8994
	0.0	4 14.685	5 22.316	54.334	36.375	0.6135	1.5116		0.2426	6 0.8911
116	0.0	6 15 54	100 600	53 554	3% 766	0.6434	1.4596		0.259	0.8829
	60	8 16 25	1 24 840	52.378	37.119	0.6694	1.4110		0.275	0.8748
	6.0	0 17.11	5 26.010	51.129	37.440	0.6947	1.3656	T	0.290	7 0.8668
-	0.1	0 10 00		50 761	25 668	0 5637	1 6755	28,290	0.208	9 0.9077
1 10	0.0	14 11	5 20.100	59.701	36 106	0.5941	1.6205		0.223	9 0.9003
	0.0	2 14.11	0 21.430	5150.500	100.100	0.001	1 5600	1	0 238	7 0 8929
118	0.0	4 14.95	6 22.728	3 57.267	36.501	0.6227	1.5009	1	0.253	2 0.8856
1.0	0.0	6 15.75	1 23.937	56.04	30.855	0.67494	1.5200		0.267	5 0.8784
	0.0	8 16.50	6 25.08	54.000	0 07 405	0.6083	1 1323		0.281	5 0.8713
-	0.1	0 17.22	4 26.17	53.00	3 37.400	0.0900	1 7015	29 20	0 0 208	9 0 9076
	0.0	0 13.63	6 20.72	3 61.760	35.871	0.5///	1.721	20.25	0.222	3 0.9009
	0.0	2 14.45	4 21.150	0 60.598	3 30.207	0.005/	1.0/03			
20	0.0	4 15.23	3 23.15	0 59.446	6 36.627	0.6320	1.6230)	0.235	6 0.8943
120	0.0	6 15.97	6 24.27	8 58.30	9 36.957	0.6569	9 1.5777	/	0.248	6 0.8878
	0.0	8 16.68	4 25.35	4 57.19	3 37.260	0.680	5 1.5350		0.261	4 0.8813
	0.1	0 17.36	0 26.38	2 56.10	2 37.540	0.7028	3 1.4944	1	0.274	0.8749
	b.0	0								
	p.0	2								
100	0.0)4		1						
122	1	16								1.1.3
	5.0									
	p.s	18		1						
1.00	p.:			-		1	-	_		

TABLE No. A-4.4.2 The upper and the lower bound solutions for the drawing of decagonal tube from round on a cylindrical plug.

Input tube size : 1.1250 in o.d. x 0.3125 in gauge Reduction of area : 32.50%

	29	of	1		τ	PPER BO	UN D			LOWER BOUND				
die	0	+	-1	Draw	Mean	Mean die	Mean	Mean	Mean die	Mean	Mean	Mean die		
t	16	et		force	draw	pressure	yield	draw	pressure	yield	draw	pressure		
ale	Je.	00	UO		stress		stress	stress/	/yield	stress	stress/	/yield		
i vi	E	ПВ	Ct	P	σ.,	Da	Y	vield	stress	Ym	yield	stress		
Equ	Se	Me	fri	tonf	tenfin-2	tonf in-2	tonf in-2	stress		tonf in-2	stress			
-	-	0.	00	10.653	19,788	27.377	35.561	0.5564	0.7699	32.805	0.3952	0.8274		
-		0	02	15.469	28.732	20.360	38.149	0.7532	0.5725		0.6234	0.7066		
	_	0.	04	10 150	22 712	16 056	39 315	0 8575	0.4515		0.7821	0.6085		
	2	0.	06	19.851	36.872	13.225	39.984	0.9222	0.3719		0.8914	0.5283		
		-	0.0	21 025	39.052	11,233	40,419	0.9662	0.3159		0.9657	0.4624		
		0.	10	21.883	40.646	09.759	40.725	0.9981	0.2744		1.0152	0.4080		
-		0.	10	11.074	00.040	00.007	25 042	0 5006	0 9065	22 805	0 3952	0 8274		
		0	00	11.274	20.942	28.987	37 558	0.3020	0.6901	52.005	0.5194	0.7639		
		0.	02	16.365	30.398	21.560	38.556	0.7884	0.5999		0.6231	0.7067		
	4	0.	04	10.000	00.000	10.005	20, 220	0.0502	0 5202		0 7097	0 6551		
		<u> </u>	.00	17.961	33.362	19.025	39.238	0.8503	0.5293		0.7818	0.6086		
		0.	.08	19.201	35.015	17.005	39.734	0.0070	0.4/01		0.1010	0.5005		
-		0	. 10	20.192	37.504	15.364	40.112	0.9350	0.4275	00 005	0.8416	0.5665		
		0	.00	11.871	22.050	30.544	36.293	0.6076	0.8410	32.005	0.3952	0.7843		
		0	. 02	14.067	20.129	27.409	57.472	0.03/5	0.7374	ļ	0.4000	0.7040		
	6	0	. 04	15.809	29.365	24.905	38.306	0.7660	0.6862		0.5558	0.7442		
	0	0	.06	17.222	31.990	22.725	38.928	0.8217	0.6261		0.0220	0.7000		
		0	.08	18.390	34.158	20.875	39.412	0.8667	0.5752		0.6822	0.6719		
L		0	. 10	19.370	35.979	19.293	39.800	0.9040	0.5316	60.005	0.7348	0.6393		
1		0	.00	12.161	22.588	31.305	36.458	0.6196	0.8586	32.805	0.3952	0.82/3		
		0	.02	14.118	26.224	28.592	37.265	0.6993	0.7842	1	0.4686	0.7903		
1	7	0	.04	15.720	29.199	26.238	38.265	0.7631	0.7197		0.5349	0.7555		
1	1	0	.06	17.052	31.672	24.206	38.844	0.8151	0.6639		0.5948	0.7226		
		0	.08	18.175	33.759	22.445	39.325	0.8585	0.6156	1	0.6488	0.6917		
	4	0	.10	19.135	35.543	20.911	39.708	0.8951	0.5/36	1	0.09/5	0.0025		
		0	.00	12.445	23.116	32.053	36.617	0.6313	0.8754	32.805	0.3952	p.8273		
		0	. 02	14.217	26.408	29.604	37.547	0.7033	0.8085		0.4598	0.7948		
	0	0	.04	15.701	29.165	27.439	38.256	0.7623	0.7493		0.5188	0.7640		
	0	0	.06	16.960	31.503	25.534	38.816	0.8116	0.6973		0.5728	0.7348		
1		0	.08	18.041	33.510	23.856	39.270	0.8533	0.6515	Press and	0.6222	p.7071		
		0	.10	18.977	35.249	23.373	39.646	0.8891	0.6110		0.6674	p.6807		
Г		0	. 00	12.997	24.141	33.520	36.918	0.6539	0.9080	32.805	0.3952	p.8272		
		0	. 02	14.499	26.931	31.450	37.686	0.7145	0.8519		0.4471	0.8012		
1.	1 0	6	.04	15.800	29.347	29.572	38.301	0.7662	0.8010		0.4955	0.7762		
	10	10	. 06	16.936	31.458	27.875	38.806	0.8106	0.7551		0.5405	0.7523		
		10	. 08	17.936	33.316	26.344	39.227	0.8493	0.7136		0.5825	0.7293		
	-	10	.10	18.823	3 34.963	3 24.960	39.585	0.8832	0.6761	L	0.6215	p.7073		
TABLE No. A-4.4.2

..... (continued)

The upper and the lower bound solutions for the drawing of decagonal tube from round on a cylindrical plug.

Input tube size : 1.1250 in o.d. x 0.3125 in gauge Reduction of area : 32.50 %

0 0	1.	- 1			UPPER E	BOUND			LO	WER BOU	ND
a L	1	ੰ ਜ	Draw	Mean	Mean die	Mean	Mean	Mean die	Mean	Mean	Mean die
p d	1	eri	force	draw	nressure	vield	draw	pressure	yield	draw	pressure
en		0 U	TUTLE	stress	p. 2000	stress	stress	/yield	stress	stress	/yield
val i-i		cti	D	G	n	Ÿ.	/vield	stress	Ym	/yield	stress
inb		fri	toof	tonf in 2	tonf in-2	tonf in-2	stress		tonf in -2	stress	
	1	00	10 500	05 100	24 051	27 100	0 6756	0 9363	32,804	0.3952	0.8271
	E	0.00	13.530	27 571	33,142	37.853	0.7284	0.8909	01.00	0.4385	0.8054
	1	0.02	16.007	20 732	31,937	38.395	0.7744	0.8461		0.4794	0.7845
112	E	0.04	10.007	23.752	01.007	00.050	0.01.00	0 0010		0 5179	0 7643
	E	0.06	17.045	31.659	29.937	38.852	0.8149	0 7668	1	0.5542	0.7447
	H	$\frac{10}{2}$	19 913	33.38/	27.232	39.581	0.8828	0.7321		0.5884	0.7259
	-	0.10	10.013	34.344	27.202	00.001	0.0005	0.0704	22 804	0 2052	0 8270
	F	0.00	14.048	26.094	36.354	37.463	0.6965	0.9704	32.004	0.4323	0.8084
	ľ	0.02	15.220	28.271	34.737	38 516	0.7849	0.8869	1	0.4676	0.7904
14	ŀ	0.04	17 234	32.010	31.81	39.933	0.8222	0.8493	1	0.5011	0.7730
1.		0.00	111.204	02.020	00.500	20,000	0 0557	6 9144		0 5330	0.7560
	1	0.08	18.103	33.626	30.509	39.290	0.0007	0.0144		0.5634	0.7396
-	_	0.10	18.897	35.100	29.292	39.615	0.8800	0.7019	22 805	0.305	0.8268
		0.00	14.553	27.032	37.738	37.713	0.7108	0 9617	32.000	0.4276	0.8107
		0.02	2 12.010	29.007	30.200	00.217	0.7000	0.0011	1	0 4585	0 79/9
116		0.04	16.587	30.809	34.881	38.654	0.7971	0.9249		0.488	0.7796
1.0		0.06	5 17.476	32.460	33.5//	39.030	0.0310	0.0303	1	0.400.	
		0.0	3 18.293	3 33.978	32.353	39.373	0.8630	0.8579		0.516	7 0 7501
-		0.10	19.046	35.377	31.204	39.673	0.8917	0.8274		0.545	0.7501
		0.0	15.050	27.954	39.112	37.952	0.7366	1.0306	32.805	0.395	0.8207
		0.0	2 16.025	5 29.765	37.758	3 38.403	0.7751	0.9949	1	0.4200	0.0124
110	2	0.0	4 16.924	1 31.435	5 36.472	38.800	0.8102	p.9610		0.451	40.7984
110	2	0.0	6 17.756	5 32.980	35.254	39.152	0.8423	0.9289		0.477	9 0.7848
		0.0	8 18.526	5 34.412	34.101	39.467	0.8719	p.8985	1	0.503	40.7714
		0.1	0 19.243	3 35.743	3 33.013	3 39.750	0.8992	p.8699		0.527	9 0.7584
		0.0	0 15.54	1 28.866	40.485	5 38.182	0.7560	1.0603	32.80	5 0.395	2 0.8265
		0.0	2 16.44	3 30.542	2 39.225	38.590	0.7914	1.0273		0.420	8 0.8137
12	~	0.0	4 17.28	2 32.10	1 38.022	2 38.954	0.8241	p.9958		0.445	6 0.8012
12	U	0.0	6 18.06	4 33.55	3 36.876	5 39.280	0.8542	0.9658		0.469	5 0.7883
		0.0	8 18.79	5 34.910	35.786	39.574	0.8821	. p.9372	-	0.492	6 0.7769
		0.1	0 19.47	3 36.17	9 34.749	3 34.749	p.9081	p.9101		0.514	9 0.7651
T		b.0	0							-	
		p.0	2					-			
10	2	0.0	4				-				-
12	2	b.0	6					_			-
2		0.0	8						-	-	
		6.1	.0								1
	Concerner.	COLUMN TO A COLUMN	and the second sec		and the second se	and the second se					and the second sec

TABLE No. A-4. 4.3

The upper and the lower bound solutions for the drawing of decagonal tube from round on a cylindrical plug.

Input tube size : 1.1250 in o.d. x0.2500 in gauge Reduction of area : 37.73%

	29	of	-		τ	JPPER BC	UN D			LO	WER BOU	ND
die	e	÷		Draw	Mean	Mean die	Mean	Mean	Mean die	Mean	Mean	Mean die
t	IBU	bet		force	draw	pressure	yield	draw	pressure	yield	draw	pressure
ale	P-	ŭ	ION		stress		stress	stress/	/yield	stress	stress/	/yield
ni v	E	UPa	tu	P	UTA	Dm	Ϋ́m	yield	stress	Ym	yield	stress
Eq	Se	ž	F	tonf	tonf in-2	tonf in-2	tonf in-2	stress		tonf in-2	stress	
		0.	00	09.3716	21.899	223:979	36.246	0.6042	0.6616	34.256	0.4766	0.7950
		0.	02	13.4183	31.355	16.8381	38.782	0.8085	0.4645		0.7441	0.6488
	2	0.	04	15.4873	36.190	12.874	39.844	0.9083	0.3552		0.9082	0.5368
	4	0.	06	16.7390	39.115	10.403	40.431	0.9674	0.2870		1.0063	0.4505
		0.	08	17.5770	41.073	08.722	40.805	1.0066	0.2406		1.0627	0.3830
		0.	10	18.1770	42.476	07.507	40.064	1.0344	0.2071		1.0931	0.3300
Γ		0.	00	09.8962	23.125	25.334	36.620	0.6315	0.6918	34.256	0.4766	0.7950
		0.	02	12.4391	29.067	20.963	38.232	0.7603	0.5725		0.6261	0.7170
	1	0.	.04	14.1649	33.100	17.792	39.179	0.8448	0.4859		0.7439	0.6489
	4	0.	.06	15.4093	36.008	15.427	39.806	0.9046	0.4213		0.8361	0.5893
		0.	.08	16.3480	38.202	13.605	40.252	0.9491	0.3715		0.9079	0.5370
		0.	. 10	17.0810	39.915	12.163	40.586	0.9835	0.3321		0.9635	0.4911
		0.	.00	10.3999	24.302	26.645	36.964	0.6574	0.7208	34.256	0.4766	0.7949
		0.	. 02	12.2985	28.739	23.419	38.150	0.7533	0.6336		0.5800	0.7418
	4	0.	.04	13.7435	32.115	20.824	38.957	0.8244	0.5634		0.6682	0.6933
	0	0	.06	14.8778	34.766	18.718	39.543	0.8792	0.5064		0.7434	0.6490
		0	.08	15.7910	36.900	16.986	39.990	0.9227	0.4595		0.8038	0.6085
L		0	. 10	16.5416	38.654	15.539	40.341	0,9582	0.4204		0.8616	0.5713
		0	.00	10.6444	24.873	27.281	37.126	0.6700	0.7350	34.256	0.4766	0.7949
		0	. 02	12.3406	28.837	24.413	38.174	0.7554	0.6576		0.5661	0.7491
	7	0	.04	13.6778	31.962	22.030	38.922	0.8212	0.5934		0.6443	0.7068
	1	0	. 06	14.7573	34.484	20.043	39.483	0.8734	0.5399		0.7124	0.6676
		0	. 08	15.6462	36.562	18.371	39.920	0.9159	0.4948		0.7718	0.6313
-		0	. 10	16.3904	38.301	16.949	40.271	0.9511	0.4565		0.8235	0.5977
		0	. 00	10.8844	25.434	27.918	37.282	0.6822	0.7488	34.256	0.4766	0.7948
		0	. 02	12.4224	29.028	25.318	38.222	0.7595	0.6791		0.5554	0.7547
	8	0	.04	13.6684	31.940	23.111	38.917	0.8207	0.6199		0.6255	0.7171
	0	0	. 06	14.6968	3 34.343	21.231	39.452	0.8705	0.5695		0.6877	0.6821
		0	.08	15.5593	36.358	19.621	39.878	0.9117	0.5263		0.7428	0.6493
-		0	.10	16.2926	28.072	18.229	40.226	0.9464	0.4889		0.7917	0.6186
		0	.00	11.3523	26.528	29.160	37.579	0.7059	0.7763	34.256	0.4766	0.7947
		0	.02	12.6582	29.579	26.956	38.358	0.7711	0.7173		0.5402	0.7625
1	0	0	.04	13.7586	32.151	25.022	38.965	0.8251	0.6658		0.5981	0.7319
		0	.06	14.6974	1 34.344	23.324	39.453	0.8705	0.6207		0.6507	0.7030
		0	.08	15.507	1 36.237	21.828	39.853	0.9092	0.5809		0.6986	0.6756
L	-	0	.10	16.2124	1 37.885	20.504	40.189	0.9427	0.5456		10.7421	0.6496

TABLE No. A-44.3 (continued)

The upper and the lower bound solutions for the drawing of Decagonal tube from round on a cylindrical plug.

Input tube size : 1.1250 in o.d. x0.2500 in gauge Reduction of area : 37.73%

0 94	+			UPPER E	BOUND		LO	WER BOU	ND	
a A	°A	Draw	Mean	Mean die	Mean	Mean	Mean die	Mean	Mean	Mean die
t d	eff	force	draw	nressure	vield	draw	pressure	yield	draw	pressure
en	C O	OILE	etross	p	stress	stress	/yield	stress	stress	/yield
val i-a	u II	D	G	D	Ÿ.	/vield	stress	Ym .	/yield	stress
inh	lea	P toof	tanf in 2	tonf in-2	tonf in-2	stress		tonf in ⁻²	stress	
	2 -	1011	07 500	20 380	37 858	0.7288	0.8025	34.256	0.4766	0.7946
	0.00	11.806	27.590	28 450	38,523	0.7855	0.7515		0.5298	0.7677
	0.02	12.949	00.200	26.718	39 061	0.8339	0.7057		0.5789	0.7420
112	0.04	13.939	32.575	25 165	39.506	0.8756	0.6647		0.6244	0.7175
12	0.06	14.003	54.552	20.100	20 991	0 9120	0 6279		0.6664	0.6939
1.1	0.08	15.564	36.370	23.770	10 201	0.9439	0.5947		0.7053	0.6715
	0.10	10.239	37.947	22.010	0.201	0.7510	0 8286	34.256	0.4766	0.7945
Tons.	0.00	12.251	28.629	31.580	30.123	0.7510	0.7832	1041200	0.5222	0.7715
	0.02	13.273	31.016	29.005	20.102	0.0014	0.7410		0.5648	0.7493
14	0.04	114.175	33.124	28.200	2 39.100	0.0430	0 7042		0.6047	0.7280
1-	0.06	14.977	34.998	26.84	39.593	0.0000	0.7042		0.6420	0.7075
	0.0	315.694	36.674	25.538	39.943	0.9101	0.0093		0 6769	0.6877
	0.10	016.339	38.181	24.343	2 40.248	0.9480	0.0300	24 256	0 4766	0.7943
	0.00	12.690	29.655	32.79	4 38.37	0.772	0.004	54.250	0 5164	0.7742
	0.0	2 13.618	31.822	31.21	3 38.890	0.818	0.013		0.5540	0.7548
116	0.0	4 14.449	33.765	29.32	6 39.326	6 0.8586	5 0.7750	2	0.5340	0.7261
10	0.0	6 15.198	35.515	28.42	6 39.70	3 0.894	5 0.740		0.5894	0.7301
	0.0	8 15.876	37.100	27.19	1 40.030	0.9268	3 0.708		0.0223	0.7173
	0.1	0 16.493	38.542	26.05	1 40.31	9 0.955	9 0.678	5	0.0544	0.7000
	0.0	0 13.128	30.678	34.00	8 38.62	3 0.794	3 0.880	34.250	0.4760	0.7941
	0.0	2 13.980	32.668	32.55	5 39.08	2 0.835	9 0.842	9	0.5119	0.7764
110	0.0	4 14.752	34.474	31.20	1 39.48	1 0.873	2 0.807	8	0.545	5 0.7591
110	0.0	6 15.456	6 36.119	29.94	2 39.82	9 0.906	8 0.775	2	0.5772	2 0.7424
	6.0	8 15.100	37.623	8 28.77	0 40.13	6 0.937	40.744	9	0.607	4 0.7261
	0.1	0 16.691	В9.004	27.68	0 40.41	0 0.965	2 0.716	7	0.636	10.7103
	0.0	0 13.568	3 31.707	35.24	288.863	6 0.815	8 0.906	8 34.25	5 0.476	5 0.7939
	0.0	2 14.358	3 33.551	33.88	39.27	9 0.854	2 0.871	9	0.508	2 0.7780
100	0.0	4 15.08	1 85.243	1 32.61	.5 39.64	5 0.888	9 0.839	2	0.538	3 0.7626
120	0.0	6 15.74	5 36.79	5 31.42	4 39.96	8 0.920	6 0.808	6	0.567	1 0.7475
	0.0	8 16.35	9 38.228	3 30.30	07.40.25	7 0.949	6 0.779	8	0.594	6 0.7328
	0.1	0 16.92	6 39.55	3 29.26	60 40.51	6 0.976	62 0.752	9	0.620	9 0.7185
-	6	0								-
	p.0	02								
	- 6	14		1						
12	25	06						1	_	
	5.	201								_
	P.1	101.						1		
	P	101	_							

TABLE No. A-4.4.4

The upper and the lower bound solutions for the drawing of decagonal tube from round on a cylindrical plug.

Input tube size : 1.1250 in o.d. x 0.1875 in gauge Reduction of area : 46.95%

	99	of	-		U	PPER BC	UN D		LO	WER BOU	ND	
die	0	-	-	Draw	Mean	Mean die	Mean	Mean	Mean die	Mean	Mean	Mean die
t	916	et		force	draw	pressure	yield	draw	pressure	yield	draw	pressure
ale	Je -	0	UO		stress		stress	stress/	/yield	stress	stress/	/yield
i ve	- E	an	E	P	(J-2)	Da	Y.	vield	stress	Ym	yield	stress
Equ	Se	Me	fri	tonf	tenfin-2	tonf in-2	tonf in-2	stress		tonf in-2	stress	
-	-	0.	00	07.884	26.912	20.104	37.681	0.7142	0.5335	36.653	0.6390	0.7335
		0	02	10 949	37.378	13.136	40.087	0.9324	0.3486		0.9484	0.5506
	~	0	04	12.365	42.210	09.678	41.015	1.0291	0.2574		1.0915	0.4253
	2	0.	06	13.178	44.986	07.678	41.510	1.0837	0.2038		1.1500	0.3378
		0	0.0	13,705	46.786	06.351	41.818	1.1188	0.1686		1.1668	0.2753
		0.	10	14.075	48.048	05.415	42.029	1.1432	0.1437		1.1634	0.2297
-		-		00 000	20 102	21 004	37 990	0.7397	0.5529	36.653	0.6390	0.7335
		10	00	10 190	34.786	16.642	39.548	0.8796	0.4381		0.8216	0.6333
		0	04	11.430	39.018	13.726	40.412	0.9655	0.3613		0.9481	0.5507
	4	0	.06	12.284	41.933	11.664	40.965	1.0236	0.3070		1.0342	0.4823
		10	0.9	10 007	11 060	10 135	11 3/8	1.0656	0.2668		1.0913	0.4253
		0	10	13 382	45.681	08.958	41.631	1.0973	0.2358		1.1278	0.3779
-		0	.00	08.561	29.226	21.863	38.271	0.7637	0.5713	36.653	0.6390	0.7334
		10	02	10 025	24 222	18 628	39 426	0.8680	0.4867		0.7676	0.6646
		0	.04	11.082	37.831	16.185	40.178	0.9416	0.4229		0.8688	0.6041
1	6	-		11.880	40.555	14.291	40.708	0.9962	0.3734	1	0.947	0.5509
		10	08	12 504	12 683	12 787	41,102	1.0385	0.3341	1	1.0088	3 0.5040
		0	. 10	13.004	44.391	11.565	41.406	1.0721	0.3022		1.0556	6 0.4625
F		1	00	08.719	29.765	22.278	38.403	0.7751	0.5801	36.653	0.639	0.7334
1		0	.02	10 025	34.222	19.398	39.426	0.8680	0.5051	1	0.750	9 0.6739
	-	to	04	11.007	37.576	17.139	40.127	0.9364	0.4463	T	0.842	1 0.6207
	1	0	06	11.772	40.188	15.336	40.638	0.9889	0.3993	1	0.916	0.5730
		0	08	12.385	42.277	13.867	41.028	1.0304	0.3611		0.765	6 0.5302
		10	. 10	12.885	43.986	12.651	41.335	1.0641	0.3294	1	1.023	2 0.4918
T		10	.00	08.873	30,289	22.686	38.530	0.7861	0.5888	36.65	3 0.639	d 0.7333
		10	0	10.054	1 34.322	20.082	39.448	0.8701	0.5212		0.738	q 0.6810
1	~	10	. 04	10.972	37.455	17.981	40.102	0.9340	0.4667		0.820	8 0.6335
	8	10	. 06	11.70	39.956	16.262	40.594	0.9843	30.4221		0.889	8 0.5904
		10	0	12.30	3 41.998	14.835	40.976	1.0249	0.3850		0.947	1 0.5512
		10	1.10	12.80	43.694	13.633	41.283	3 1.0584	1 0.3538		0.994	8 0.5155
Г		0	0.00	09.17	31.302	2 23.481	. 38.769	0.8074	1 0.6057	36.653	0.639	q 0.7322
		0	0.0	2 10.16	7 34.709	21.281	39.53	0.8780	0.5489		0.719	3 0.691
1.	1 0	10	0.0	4 10.97	9 37.480	19.432	40.107	0.9345	5 0.5012		0.789	0.652
	10	16	0.0	6 11.65	2 39.77	7 17.864	4 40.559	0.9807	7 0.4608		0.849	4 0.6160
		To	0.0	8 12.21	8 41.710	16.522	40.92	3 1.0192	2 0.4262		0.901	9 0.582
L		6).1	0 12.70	1 43.35	9 15.363	3 41.223	3 1.0518	3 0.3963	1	0.946	0.551

TABLE No. A-4.4.4

..... (continued)

The upper and the lower bound solutions for the drawing of decagonal tube from round on a cylindrical plug.

Input tube size : Reduction of area : 1.1250 in o.d. x 0.1875 in gauge 46.95%

0 0	*			UPPER E	BOUND		LO	WER BOU	ND	
a R	° n	Draw	Mean	Mean die	Mean	Mean	Mean die	Mean	Mean	Mean die
te t	eft	forre	draw	nressure	vield	draw	pressure	yield	draw	pressure
en	0.0	TUILE	ctross	p. c	stress	stress	/yield	stress	stress	/yield
lev i-a	L it		511233	-	V	/viald	strass	Y_	/vield	stress
em	lea	P	za2	Pm-2	toof in-2	etress	311233	tonf in -2	stress	
E S	2 4	TOIL	20 077	24 257	38 994	0.8277	0.6221	36.653	0.6390	0.7330
	0.00	09.455	32.211	24.237	00.004	0.000	0 5700		0 7064	0.6978
	0.0	2 10.323	35.241	22.340	39.645	0.8889	0.5729		0.7664	0.6648
12	0.0.	1 11.053	37.730	20.681	40.150	0.9394	0.0304		0.8196	0.6339
12	0.0	5 11.673	39.849	19.239	40.575	0.3021	0.4004		0.0000	0 6049
	0.0	8 12.208	41.674	17.978	40.917	1.0185	0.4610		0.8008	0.6046
	0.1	12.673	43.262	16.866	41.206	1.0499	0.4325	26 653	0.9000	0.7327
	0.0	09.734	33.227	25.021	39.208	0.8475	0.0303	30.033	0.0000	
	0.0	2 10.505	35.859	23.316	39.775	0.9016	0.5947		0.6970	0.7027
1 41	0.0	4 11.168	3 38.123	21.806	40.230	0.9475	0.5562	1	0.7494	0.6/41
114	0.0	6 11.744	40.090	20.469	40.619	0.9870	0.5221		0.7968	0.04/1
	0.0	8 12.249	41.814	19.280	40.943	1.0213	0.4917		0.8396	0.6215
	0.1	0 12.695	43.336	18.216	41.219	1.0513	0.4646		0.8782	0.5973
	0.0	0 10 000	34 167	25.796	39.414	0.8669	0.6545	36.653	0.6390	0.7325
	0 0	2 10 70	1 36.541	24.246	39.916	0.9154	0.6151		0.6897	0.7063
1	0.0	4 11.31	3 38.620	22.855	40.334	0.9575	0.5799		0.7362	0.6812
116	0.0	6 11 05	1 10 155	21 606	40,689	0.9943	0.5482	1	0.7788	0.6572
	0.0	0 12 22	1 40.45	20 480	40.993	1.0266	0.5196	1	0.8179	0.6344
	0.0	0 12.75	6 43.546	5 19.46	1 41.257	1.0555	0.4937	1	0.8535	0.6126
-	0.1	0 10 00	FLOF 100	DE 570	20 617	0 8862	0.6709	36.653	0.6390	0.7324
	0.0	10.28	0 27 27	7 25 15	4 40.066	0.9304	0.6349	1	0.6840	0.7091
	0.0	2 10.92	4 39.20	23.86	2 40.448	3 0.9692	0.6023		0.7257	0.6867
118	0.0	4 11.40		1 00 60	7 10 775	1 0036	0.5727	,	0.7643	0.6653
1.	0.0	6 11.98	8 40.92	4 22.00	40.77	1.0000	0 5456	1	0.8000	0.6447
	0.0	8 12.44	2 42.47	2 21.61	7 41 215	1 0610	0.5200		0.8330	0.6250
-	0.1	0 12.85	1 43.87	9 27 38	5 39 818	3 0.9058	3 0.6877	36.653	0.6390	0.7321
	0.0	0 10.50	30.00	27.50					0 6793	3 0 7112
	0.0	2 11.15	1 38.06	7 26.06	2 40.22	0.946	10.634		0.7170	0.6911
20	0.0	11.67	7 39.86	3 24.85	0 40.57	0.9024	+ 0.024.		-	0.0710
120	p.0	6 12.15	3 41.48	5 23.73	7 40.88	2 1.0148	3 0.596	1	0.7522	2 0.6/18
1	0.0	12.58	42.85	9 11.71	5 41.15	1 1.0439	9 0.570	5	0.7850	0.0531
	p.:	10 12.97	77 44.30	1 21.77	2 41.39	1 1.0703	3 0.546	5	0.0150	5 0.0331
-	þ.	00								
	p.	02								
100	0.	04						-		
120	- 6	06								-
	5	201								
	h	10							·	
	μ.	101		-	and the second	_	_			

TABLE No. A-4.5.1 The upper and the lower bound solutions for the drawing of round tube from round on a cylindrical plug.

Input tube size : 1.0625 in o.d. x0.3125 in gauge Reduction of area : 13.75%

	29	of	-		Ţ	JPPER BC	UN D			LO	WER BOU	ND
die	0	÷.		Draw	Mean	Mean die	Mean	Mean	Mean die	Mean	Mean	Mean die
tu	16	et		force	draw	pressure	yield	draw	pressure	yield	draw	pressure
ale	Je	00	UO		stress		stress	stress/	/yield	stress	stress/	/yield
il va	-14	UP	÷	P	Π.	D-	Y.	vield	stress	Ym	yield	stress
Equ	Ser	Me	fri	toof	+ 2	toof in-2	toof in-2	stress		tonf in-2	stress	- Real
-	-	0	00	3.0611	4.8201	30.235	27.254	0.1768	1.1094	26.147	0.1054	0.8946
		0.	00	5 0051	0 0000	27 716	000 000	0 2674	n 9239		0.2129	0.7871
		0.	04	6 6523	10 171	21.710	81.545	0.3321	0.7916		0.3081	0.6919
	2	0.	04	6.8673	12.388	22.542	82.557	0.3805	0.6924		0.3922	0.6078
		<u> </u>		0.0071	10 015	00 176	02 270	h 4191	0 6153		0 4665	0.5335
		0.	.08	8.8371	13.915	20.4/6	83 800	0.4101	0.5536		0.5322	0.4678
	_	0.	. 10	9.02/4	15.159	10.724	53.000	0.4402	0.0000		0.0000	0.0040
		0	.00	3.5929	5.6575	35.487	28.089	0.2014	1.2634	26.147	0.1054	0.8946
		0	.02	4.8702	7.6688	34.180	29.745	0.25/8	1.1491		0.2128	0.7872
	1.	0	.04	5.9874	9.4279	32.588	30.925	0.3040	1.0550		0.2120	0.7072
	+	0	.06	6.9655	10.968	30.962	31.819	0.3447	p.9730		0.2618	0.7382
1		0	.08	7.8257	12.322	29.397	32.525	0.3789	p.9038		0.3078	0.6922
		0	. 10	8.5865	13.520	27.928	B3.098	0.4085	0.8438		0.3511	0.0409
Г		0	.00	4.1427	6.5232	40.918	28.852	0.2262	1.4182	26.147	0.1054	0.8946
		0	.02	5.1494	8.1085	40.016	80.059	0.2697	1.3312		0.1426	0.8574
	,	0	.04	6.0723	9.5616	38.895	B1.007	0.3085	1.2544		0.1783	0.8217
1	6	1	06	6.9175	10.892	37.685	B1.778	0.3428	1.1859		0.2126	0.7874
1		10	.08	7 6921	12,112	36.456	82.520	0.3736	1.1245	I	0.2455	0.7545
		0	. 10	8.4034	13.232	35.244	32.964	0.4014	1.0691		0.2771	0.7229
F		1	00	4.4244	6.9668	43.700	29.212	0.2385	1.4960	26.147	0.1054	0.8946
1		10	.02	5 3535	8 1298	12 920	80.280	0.2784	1.4174		0.1373	0.8627
	_	to	04	6.2170	9.7896	41.945	B1.145	0.3143	1.3467	1	0.1682	0.8318
	7	10	.04	7 0196	11 051	10 876	81 865	h. 3468	1.2828	1	0.1980	0.8020
		10	.00	7.7629	12,223	39.770	82.576	0.3764	1.2246		0.2267	0.7733
		10	.00	8.4546	13.312	38.661	83.002	0.4034	1.1715	1	0.2545	0.7455
F		10	. 10	14 7100	7 4177	46 520	00 550	h 2509	1 5741	26 147	0.1054	0.8946
		10	.00	5 5823	8 7900	40.529	80.520	0.2880	1.5021	120.147	0.1333	0.8667
		10	. 02	6.4007	10.078	44.986	B1.316	0.3218	1.4365		0.1605	0.8395
	8	10	.04	0.4007		1	61 000	6 0500	0.0760		0 1969	0 8132
	-	0	.06	7.1685	11.287	44.031	81.992	0.3528	1 3210		0.2123	30.7877
		0	.08	3/.8885	12.421	43.030	52.574	0.3013	1.0210		0.0071	0 7620
F		0	.10	8.5641	13.485	42.013	83.082	0.4076	1 7215	26 145	0.237	10.8946
		0	.00	5.2979	8.3423	52.328	01.220	6 2001	1 6604	20.14/	0.127	10.8723
		0	0.02	20.0910	9.5911	51.794	p1.025	6.3091	1 6116		0 1/0	5 0.8504
	10	0	0.04	16.8471	10.781	51.115	B1./1/	0.3399	1.0110		0.1490	0.0004
	10	10	0.00	7.5672	11.915	50.344	32.320	0.3687	1.55//	1	0.170	0.0291
		0	0.0	88.2525	12.994	49.515	B2.852	0.3955	1.5072	1	0.191	0.8083
L		0).10	8.9047	14.021	48.654	B3.326	0.4207	1.4599	1	0.2119	0.7880

TABLE No. A-4. 5.1 (continued)

The upper and the lower bound solutions for the drawing of round tube from round on a cylindrical plug.

Input tube size : Reduction of area :

1.0625 in o.d. x0.3125 in gauge 13.75 %

0 24	+	T			UPPER E	BOUND		LO	WER BOU	ND	
a B	0	It	0.531/	Mean	Mean die	Mean	Mean	Mean die	Mean	Mean	Mean die
t a	eff	1	force	draw	pressure	vield	draw	pressure	yield	draw	pressure
en	CO	E I	TOILE	ctross		stress	stress	/yield	stress	stress	/yield
val i-a	u	Ŧ	D	6	n	Ÿ	/vield	stress	Y	/yield	stress
inh	Jes	E	toof	toof in 2	toof in-2	tonf in-2	stress		tonf in-2	stress	
	-	00	5 9051	9,2983	58.325	30.845	0.3014	1.8909	26.147	0.1054	0.8946
	0.	00	6 6492	10 470	57,914	31,542	0.3319	1.8361		0.1240	0.8760
	0.	02	7 3662	11,590	57.378	32.156	0.3607	1.7843		0.1422	0.8578
12	0.	04	8.0562	12.685	56.755	32.703	0.3879	1.7354		0.1600	0.8400
	0.	00	0.0000	10 700	56 071	23 105	0 1136	1,6891		0.1775	0.8225
	0.	10	0 3578	14.735	55.345	33.639	0.4380	1.6452		0.1947	0.8053
	0.	00	6.5336	10.288	64.534	31.438	0.3272	2.0527	26.147	0.1054	0.8946
	0.	00	7 046	1 11 110	54 235	32 057	0.3559	2.0038		0.1212	0.8788
	0.	04	7 938	12.500	63.826	32.613	0.3833	1.9571		0.1368	0.8632
14	0.	04	8 6090	13.55	63.334	33.115	0.4094	1.9125		0.1522	0.8478
	0.	00	0.000	14 58	62 780	33.573	3 0.4343	1.8699		0.1673	0.8327
	0.	10	9.200	1 15.57	62.180	33.992	0.4582	1.8292		0.1821	0.8179
	10.	00	0.001	1 10.07	70.00	222.000	0 2525	2 2173	26 147	0.1054	0.8946
	0.	00	7.185	12 12 10	1 70 78	1 32 566	6 0.3809	2.1735		0.1192	0.8808
	0.	.02	8.554	9 13.47	70.49	3 33.07	5 0.4073	3 2.1312	2	0.1328	0.8672
116	10	. 04	0.004		1 70 10	7 22 54	0 1326	2 0 00	,	0.1462	0.8538
1	10	.00	9.215	5 15 52	6 69 69	9 33 97	2 0.4570	2.0516	5	0.1594	0.8406
	0	.08	9.000	a 16 51	6 69.22	2 34.37	0 0.480	5 2.0140		0.1724	0.8276
	0	. 10	7 861	5 12 37	8 77.64	9 32.55	3 0.380	3 2.3853	3 26.147	0.1054	0.8946
	0	.00	8.542	5 13.45	1 77.57	6 33.06	6 0.406	8 2.3460	0	0.1176	0.8824
	0	. 02	0.011	F 14 FO	1 77 11	1 33 53	0 0 432	5 2.3080	2	0.1296	0.8704
118	0	.04	9.211	0 15 53	8 77 17	1 33.97	7 0.457	3 2.271	2	0.1415	0.8585
1.	p	. 06	9.00/	1 16 55	0 76 87	0 34 38	1 0 481	4 2.235	5	0.1532	0.8468
120	0	.08	11.51	2 17.54	5 76.51	9 34.76	4 0.504	7 2.201	1	0.1648	3 0.8352
-	-	. 10	9 564	0 13 48	6 84 59	7 33.08	3 0.407	6 2.557	1 26.14	7 0.1054	1 0.8946
	0	.00	9.240	4 14.55	0 84.64	5 33.55	9 0.433	6 2.522	2	0.1163	3 0.8837
	P	.02		0 15 50	0 04 60	9 34 00	2 0 158	6 2.488	3	0.1270	0.8730
20	0	.04	1 9.906	10 16 67	9 84.00	1 34.00	6 0 483	3 2.455	2	0.137	7 0.8623
120	0	.06	11 21	0 17 65	3 84 33	3 34.80	4 0.507	2 2.423	1	0.148	2 0.8518
	2	. 08	3 11.21	10 10 65	6 94 11	3 35 16	8 0.530	5 2.391	8	0.158	6 0.8414
-	p	. 10	11.82	10 18.05	0 04.11	.5 55.10	0.000	12.001	-	1	1
	010	.00	0				-		1		
	F	.0.					-		1	-	
122	7 0	.0.	4						1	1	
122	- p	.00	6						1	-	
	þ	1.0	8				+				
	þ).1	0				1	1		_	1

TABLE No. A-4.5.2 The upper and the lower bound solutions for the drawing of round tube from round on a cylindrical plug.

Input tube size : Reduction of area : 19.64%

1.0625 in o.d. x0.1875 in gauge

	2.94	of	1		τ	PPER BO	UN D		LO	WER BOU	ND	
die	0	+	-1	Draw	Mean	Mean die	Mean	Mean	Mean die	Mean	Mean	Mean die
t	916	et		force	draw	pressure	yield	draw	pressure	yield	draw	pressure
ale	Je.	CO	UO		stress		stress	stress/	/yield	stress	stress/	/yield
VIL	-im	an	C ti	P	J.	Da	Ym	vield	stress	Ym	yield	stress
Equ	Sel	Me	fri	tonf	tenfin-2	tonf in-2	tonf in -2	stress		tonf in-2	stress	
-	-	0.	00	3 1716	7.6575	31, 326	29.737	0.2575	1.0534	28.630	0.1823	0.8177
		0	02	5.4442	13.144	27.512	32.923	0.3992	0.8356		0.3530	0.6470
	-	0	04	7 0400	17 021	23 036	34 566	0 1921	0 6925		0.4905	0.5095
	2	0.	.06	8 2300	19.870	21.039	35.588	0.5583	0.5912		0.6010	0.3990
		-	0.0	9.1306	22.045	18.717	36.291	0.6074	0.5157		0.6899	0.3101
		0.	10	9.8391	23.755	16.834	36.806	0.6454	0.4576		0.7612	0.2388
-		10	00	3 5184	8.4950	31,326	30.324	0.2802	1.1460	28.630	0.1823	0.8177
		10	02	4 8957	11.820	27.512	32.271	0.3663	1.0147		0.2722	0.7278
		0	.04	6.0461	14.597	23.936	33.580	0.4347	0.9104		0.3528	0.6472
	4	0	.06	7.0139	16.934	21.039	34.532	0.4904	0.8255		0.4252	0.5478
1		to	0.8	7.8365	18,920	18,717	35.261	0.5366	0.7552		0.4902	0.5098
		0	. 10	8.5427	20.625	16.834	35.839	0.5755	0.6958		0.5484	0.4516
F	-	0	.00	3 9736	0 3626	38 260	30 878	0.3029	1.2391	28,630	0.1823	0.8177
		10	02	4.9175	11.873	36.876	32.298	0.3676	1.1417		0.2432	0.7568
		0	.04	5.8443	3 14.110	35.321	33.366	0.4229	1.0586		0.2998	0.7002
	6	to	06	6.6684	16.100	33.752	34.205	0.4707	0.9867		0.3525	0.6475
		10	08	7.4039	17.876	32.236	34.886	0.5124	0.9240		0.4016	0.5984
1		10	.10	8.0631	19.467	30.800	35.451	0.5491	0.8688		0.4472	0.5528
F		10	00	1 0545	9 7894	40.473	31,145	0.3143	1.2858	28.630	0.1823	0.8177
1		10	.02	5.0005	12.073	38.845	32.400	0.3726	1.1989		0.2347	0.7653
1	-	10	.04	5.8555	5 13.127	37.484	33.378	0.4235	1.1230		0.2839	0.7161
	1	10	.06	6.6290	16.005	36.086	34.167	0.4684	1.0561		0.3302	0.6700
1		10	.08	7.330	17.698	34.709	34.820	0.5082	0.9968		0.3737	0.6262
		10	. 10	7.967	5 19.237	33.383	35.372	0.5438	0.9438		0.4147	0.5853
T		10	. 00	4.237	10.231	41.857	31.405	0.3258	1.3328	28.630	0.1823	0.8177
		10	. 02	5.1098	3 12.337	40.795	32.532	2 0.3792	1.2540		0.2282	0.7718
	0	10	.04	5.9090	14.267	39.586	33.435	5 0.4267	1.1840		0.2718	0.7282
	6	10	.06	6.641	5 16.035	38.328	34.179	0.4691	1.1214		0.3130	0.6870
1		To	0.08	7.313	7 17.658	3 37.070	34.806	6 0.5073	3 1.0650		0.3521	0.6479
		To).10	7.931	9 19.151	35.841	35.342	2 0.5419	1.0141	2	0.3891	0.6109
Г		10	0.00	4.611	5 11.134	45.549	31.910	0.3489	1.4274	28.630	0.1823	0.8177
		To).0:	5.380	4 12.990	44.694	32.850	0.3954	1.3605		0.2191	0.7809
	1 0	10	0.04	6.099	1 14.726	43.714	33.63	5 0.4378	3 1.2996		0.2544	0.7456
	10	小	0.00	6.770	6 16.347	42.673	34.304	4 0.4765	5 1.2440		0.2882	0.7118
		10	0.0	8 7.398	1 17.862	41.609	34.88	1 0.5121	1.1929		0.3205	0.6795
L		1	0.1	0 7.985	2 19.27	9 40.546	35.38	7 0.5448	3 1.1458		0.3515	0.6485

TABLE No. A-4. 5.2 (continued)

The upper and the lower bound solutions for the drawing of round tube from round on a cylindrical plug.

Input tube size : 1.0625 in o.d. x0.1875 in gauge Reduction of area : 19.64%

0.0	1.	- 1			UPPER E	BOUND		LO	WER BOU	ND	
a H		° =	Dealy	Maan	Maan die	Mean	Mean	Mean die	Mean	Mean	Mean die
Pa		-	forco	draw	nressure	vield	draw	pressure	yield	draw	pressure
en		0 0	UILE	e tross	p. 2000	stress	stress	/yield	stress	stress	/yield
Val i-a	1	i i	D	G C	0	- V	/vield	stress	Y	/yield	stress
inb		ric	P	toof in 2	toof in-2	tonf in-2	stress		tonf in -2	stress	
ш ,	1		1011		10.045	00.004	0 2722	1 5232	08 630	0.1823	0.8177
	4	0.00	4.9959	12.062	49.345	32.394	0.3723	1.4649		0.2130	0.7870
	10	0.02	5.6973	13.755	48.045	22 001	0.4530	1,4109		0.2425	0.7575
12	10	0.04	6.3619	15.360	47.835	34 511	0.4891	1.3607		0.2711	0.7289
12	10	0.06	0.9912	10.0/9	40.900	25 047	0 5227	1,3140		0.2986	0.7014
	10	0.08	7.5871	18.318	46.052	35.047	0.5227	1 2703		0.3252	0.6748
	0	0.10	8.1515	19.681	45.128	35.524	0.5540	1.2705	<u>L</u>	b.1000	0 0177
	1	0.00	5.3917	13.018	53.255	32.863	0.3961	1.6205	28.630	0.1823	0.81/7
	0	0.02	6.0467	14.599	52.682	33.581	0.4347	1.5688		0.2085	0.7915
11		0.04	6.6737	16.113	52.011	34.211	0.4710	1.5203		0.2339	0.7001
14		0.06	7.2734	17.561	51.275	34.770	0.5051	1.4747		0.2000	0.7414
	F	0.08	7.8468	18.945	50.499	35.270	0.5371	1.4318		0.2825	D. /1/5
	Ī	0.10	8.3952	20.269	49.699	35.722	0.5674	1.3913		0.3057	0.0943
		0.00	5.8002	14.004	57.290	33.318	0.4203	1.7195	28.630	0.1823	0.81//
	I	0.02	6.4225	15.506	56.829	33.964	0.4565	1.6732		0.2051	0.7949
1.	.	0.04	7.0228	3 16.956	56.281	34.541	0.4909	1.6294	1	0.2274	0.7720
116		0.06	7.6015	18.353	55.669	35.060	0.5235	1.5875		p.2490	0.7510
		0 08	8.1595	5 19.700	55.012	35.531	0.5544	1.5483		p.2701	0.7299
		0 10	8.6970	20.998	3 54.325	35.960	0.5839	1.5107		p.2906	0.7094
-	-	0.1	6.222	7 15.024	61.463	3 33.763	0.4450	1.8204	28.630	p.1823	0.8177
	1	0.00	6.821	5 16.470	61.109	34.352	0.4794	1.7789		p.2025	0.7975
		0.0	7 103	2 17 874	160.674	4 34.886	0.5124	1.7392		p.2222	0.7778
118	3	0.0	7.967	7 19.23	7 60.17	7 35.372	0.5438	1.7013		p.2414	0.7585
		0.00		100 55	50 62	1 25 817	0 5740	1,6649		b.2602	0.7398
		0.0	8 8.515	1 21 84	1 59.05	7 36.228	3 0.6029	1.6301		0.2786	0.7214
-		0.1	9.040	5 16 08	1 65 78	7 34.198	3 0.4702	1.9237	28.630	p.1823	0.8177
		0.0	0 0.000	0 17 48	7 65 53	9 34.742	0.503	3 1.8864	1	0.2003	0.8000
		0.0	2 7.243	0 10 06	1 65 21	5 35 24	0 535	1.850	5	0.2180	0.7820
121	0	0.0	4 7.811	9 18.80	1 54.83	0 35.69	0.565	9 1.8160		0.2353	0.7647
1-	~	0.0	6 0.307	1 21 50	5 64 39	9 36,12	3 0.595	4 1.782	7	0.2522	0.7478
		0.0	8 0.900	2 22 78	3 63 93	0 36.51	7 0.623	9 1.750	7	0.2688	3 0.7312
-	-	0.1	0 9.430	5 22.70	5 00.00						1
		0.0	0			-					
		0.0	2					-			-
2	2	0.0	4								
14	2	0.0	6			-			+		
		b.0	8								-
		þ.1	.0				1	_	1	1	_

TABLE No. A-4.5.3

The upper and the lower bound solutions for the drawing of round tube from round on a cylindrical plug.

Input tube size : 1.1250 in o.d. x 0.2500 in gauge Reduction of area : 30.36 %

	UPPER BOUND									LC	WER BOU	ND
die	D	-	-	Draw	Mean	Mean die	Mean	Mean	Mean die	Mean -	Mean	Mean die
Tu	161	et		force	draw	pressure	yield	draw	pressure	yield	draw	pressure
ale	Je-	50	LO		stress		stress	stress/	/yield	stress	stress/	/yield
vin	-i m	UP	ic ti	Р	UTA	Pm	Ϋ́m	yield	stress	Ym	yield	stress
Eq	Se	Me	2 J	tonf	tonf in-2	tonf in-2	tonf in -2	stress		tonf in-2	stress	
		0.	00	6.4225	13.419	30.784	33.052	0.4060	0.9314	32.179	0.2877	0.7123
		0.	02	10.358	21.648	26.000	36.166	0.5984	0.7189		0.5258	0.4742
	2	0.	04	12.995	27.152	22.094	37.744	0.7194	0.5854		0.5933	0.3067
	2	0.	06	14.867	31.064	19.111	38.7139	0.8024	0.4937		0.8106	0.1894
		0.	.08	16.261	33.976	16.804	39.373	0.8629	0.4268		0.8922	0.1078
		0.	10	17.338	36.227	14.979	39.851	0.9090	0.3759		0.9485	0.0515
Г		0	.00	6.8784	14.371	32.970	33.481	0.4292	0.9847	32.179	0.2877	0.7123
		0.	.02	9.2157	19.255	30.376	35.378	0.5442	0.8586		0.4170	0.5830
	1	0.	. 04	11.103	23.201	27.889	36.643	0.6332	0.7611		0.4156	0.4744
	4	0	.06	12.652	26.437	25.669	37.555	0.7039	0.6835		0.6167	0.3833
		0	.08	13.942	29.131	23.723	38.248	0.7616	0.6202	1	0.6930	0.3070
L		0	. 10	15.030	31.404	22.023	38.793	0.8095	0.5677		0.7659	0.2431
		0	.00	7.3422	15.341	35.194	33.985	0.4526	1.0383	B2.179	0.2877	0.7123
1		0	.02	9.0702	18.951	33.386	35.272	0.5373	0.9465		0.3762	0.6238
	6	0	. 04	10.567	22.080	31.571	36.302	0.6082	0.869/		0.4550	0.5450
	0	6	. 06	11.872	24.806	29.847	37.107	0.6685	0.8043		0.5252	0.4748
		0	.08	13.017	27.198	28.248	37.756	0.7204	0.7482	 	0.5870	0.4124
F		0	. 10	14.028	29.311	26.778	38.292	0.7654	0.6993	60.170	0.0431	0.3309
1		0	.00	7.5775	15.832	36.321	34.097	0.4643	1.0652	32.179	0.2011	0.7123
1		0	.02	9.1243	19.064	34.747	35.312	0.5399	0.9840		0.3041	0.5667
1	7	0	.04	10.493	3 21.924	33.146	36.254	0.6047	0.9143		0.4352	0.5041
	'	0	.06	11.708	3 24.464	31.599	37.010	0.0010	0.0000		0.5525	0.4475
		0	.08	12.793	3 26.730	30.137	37.033	0.7103	0.0000	1	0.0020	0 3062
+		10	. 10	13.766	16 220	28.770	34 296	0.7538	1 0923	32,179	0.2877	0.7123
		0	.00	0 224	10.523	36.064	35 384	0.5447	1.0192	F	0.3548	0.6452
1		10	. 02	10 191	121 921	34.634	36.253	0.6047	0.9553		0.4164	0.5836
	8	110	.04	11.63	3824.307	33.231	36.965	0.6576	0.8990	1	0.4729	0.5271
		H		12.666	5 26.465	31.887	37.563	0.7046	0.8489	1	0.4246	0.4754
		10	1 10	13.604	4 28.425	30.613	38.071	0.7466	0.8041	1	0.5720	0.4280
F		10		8.298	3 17.338	39.777	34.686	0.4999	1.1468	32.179	0.2877	0.7123
		to	0.0	9.513	4 19.877	38.640	35.591	0.5585	1.0857		0.3417	0.6583
		to	0	1 10.63	1 22.213	3 37.462	36.343	0.6112	1.0308		0.3921	0.6079
	10	上		6 11.66	1 24.364	36.285	36.982	0.6588	0.9812		0.4391	0.5609
		To	0.0	8 12.61	1 26.350	35.134	37.532	0.7021	0.9361		0.4830	0.5170
		To).1	0 13.49	28.186	34.020	38.01	0 7415	0.8950	1	0.5239	p.4761

TABLE No. A-4.5.3

..... (continued)

The upper and the lower bound solutions for the drawing of round tube from round on a cylindrical plug.

Input tube size : Reduction of area : 1.1250 in o.d. x 0.2500 in gauge 30.36 %

0 0	- 1			UPPER E	BOUND		LO	WER BOU	ND	
a R	े म	Draw	Mean	Mean die	Mean	Mean	Mean die	Mean	Mean	Mean die
le t	eff	force	draw	nressure	vield	draw	pressure	yield	draw	pressure
en	C O	IUILE	ctross	p. c	stress	stress	/yield	stress	stress	/yield
val i-i	cti	D	T	n	Ÿ.	/vield	stress	Ym	/yield	stress
inp	fri	tonf	tanf in 2	tonf in-2	tonf in-2	stress		tonf in-2	stress	
	0.00	0 7020	18 372	42.147	35.067	0.5239	1.2019	32.179	0.2877	0.7123
	0.00	0.7323	20 641	11 196	35.844	0.5758	1.1493		0.3327	0.6678
	0.02	10 894	20.041	40.203	36.511	0.6234	1.1011		0.3753	0.6247
112	0.04	11 9/3	21 746	39,197	37.090	0.6672	1.0568		0.4154	0.5845
	0.00	12 732	26.603	38.197	37.599	D.7075	1.0159		0.4534	0.5466
	0.10	13 565	28 344	37.216	38.051	0.7449	0.9781		0.4892	0.5108
	0.00	9 3004	19 432	44.580	35.439	D.5483	1.2579	32.179	0.2877	0.7123
	0.02	10 295	21.511	43.774	36.124	D.5955	1.2117		0.3262	0.6737
	0.04	11,237	23.478	42.925	36.725	D.6394	1.1688		0.3630	0.6370
114	0.06	12.127	25.339	42.057	37.256	p.6801	1.1289		0.3980	0.6020
1.50	0.08	12.970	27.101	41.185	37.731	p.7183	1.0915		0.4313	0.5687
	0.10	13.769	28.769	40.318	38.158	p.7539	1.0566	5	0.4630	0.5370
-	0.00	9,8058	20.522	47.080	35.505	p.5732	1.3149	32.179	0.2877	0.7132
	0.02	210.751	22.464	46.396	36.420	0.6168	1.2739	9	0.3213	0.6787
	0.04	111 638	24.317	45.669	36.938	0.6578	1.2354	1	0.3536	0.6464
116	0.00	12.485	26.087	44.919	37.461	0.6964	1.199		0.3845	0.6155
	0.05	13.294	27.777	44.157	37.906	0.7328	1.1649	9	0.4141	0.5892
	0.10	14 066	29.391	43.392	38.312	p.7671	1.132	5	0.4425	0.5575
	6.00	110.350	21.646	49.658	36.167	0.5985	1.373	32.179	0.2877	0.7123
	0.00	11.240	23.485	49.080	36.727	p.6394	.1.336	3	0.3174	10.6826
1.0	6.0	4 12.087	25.255	48.452	37.233	0.6783	1.301	6	0.3461	0.6539
118	0.0	6 12.901	26.956	47.816	37.693	p.7151	1.268	6	0.3737	0.6263
	6.0	13.684	1 28.593	47.155	38.114	p.7502	1.237	2	0.4003	3 0.5997
	0.1	0 14.438	3 30.167	46.484	38.500	0.7835	1.207	4	0.425	9 0.5741
-	0.0	0 10.91	5 22.805	52.321	36.524	0.6244	1.432	5 32.179	9 0.287	7 0.7123
	0.0	2 11.75	9 24.570	51.842	37.040	0.6633	1.399	6	0.314	3 0.6857
-	60	1 12.576	5 26.276	5 51.323	3 37.512	0.7005	1.368	2	0.340	0 0.6599
120	0.0	6 13.36	5 27.928	3 50.776	5 37.945	0.7360	1.338	1	0.364	9 0.6350
	0.0	8 14.13	1 29.526	5 50.209	38.345	5 p.7700	1.309	4	0.389	0 0.6110
	0.1	0 14.87	1 31.07	2 49.628	3 38.716	5 p.8026	1.281	.9	0.412	3 0.5877
-	6.0	0								
	0.0	2				1				-
-	60	4							4	
122	2 6.0	6		1						
	5.0	0			1 - 2 - 2					-
	h.1	0								
	p.1		_	1					-	

TABLE No. A-4.5.4

The upper and the lower bound solutions for the drawing of round tube from round on a cylindrical plug.

Reduction of area : 37.78%

Input tube size : 1.1250 in o.d. x 0.1875 in gauge

-	0 0	*	T			UPPER B	OUND		LO	WER BOU	ND	
le	R	°.	±	100	Maan	Mean die	Mean	Mean	Mean die	Mean	Mean	Mean die
P +	e	eff	1	force	draw	nressure	vield	draw	pressure	yield	draw	pressure
en	5u	CO	C	UILE	etroce	p. 2000	stress	stress	/yield	stress	stress	/yield
J PA		5	Ŧ	D	6	0	Ÿ	/vield	stress	Y	/yield	stress
inb	em	lea	E	P	taof in 2	toof in-2	toof in-2	stress		tonf in-2	stress	
ш	S	-	-	10111		1011 11	05 061	0 5265	0 9937	31 269	0.4055	0.5945
		0.	00	6.5008	18.918	31.160	35.201	0.3305	0.6518	54.200	0.6959	0.3041
		0.	02	10.347	30.114	20.666	40.023	0.9261	D.5164		0.8691	0.1309
	2	0.	04	12.730	37.000	20.000	10.024	1 0202	h 1275		0.9705	0.0295
	2	0.	06	14.351	41.766	15 151	40.934	1.0203	D.3647		1.0282	.0.0282
		0.	08	15.515	45.140	10.101	41.000	1 1264	0 2190		1.0594	-0.0591
		0.	10	16.389	47.698	13.348	41.970	1.1304	0.3100	1 200	0 1055	0 59/5
		0.	00	6.8355	19.893	32.765	35.596	0.5588	0.9205	84.209	0.5689	0.4311
		0.	02	9.1246	26.554	29.395	37.580	0.7005	0.7021	1	0 6956	0 3044
	1.	0.	.04	10.889	31.692	26.418	38.860.	0.8155	0.0/90		0.0000	0.0044
	4	0	.06	12.285	35.752	23.901	39.752	0.8994	p.6013		0.7935	0.2005
		0	.08	13.413	39.035	21.782	40.416	0.9658	0.5389		0.0000	0.1312
		0	. 10	14.342	41.740	19.988	40.929	1.0198	p.4883		0.9204	0.0730
	-	0	.00	7.175	20.881	34.392	35.922	0.5813	p.9574	84.269	0.4055	0.5945
1		0	.02	8.852	25.761	32.033	37.372	p.6893	p.8571	1	0.5187	0.4813
	1	0	.04	10.257	29.851	29.812	38.424	p.7769	þ.7759		0.6144	0.3856
	0	0	.06	11.447	33.314	27.799	39.227	p.8493	p.7087		0.6951	0.3049
		6	.08	12.466	36.279	25.994	39.862	p.9101	þ.6522		0.7631	0.2363
		6	.10	13.347	38.843	24.390	40.378	p.9620	p.6040	1	0.8203	0.1797
F		0	.00	7.346	21.381	35.216	36.083	p.5925	0.9760	34.269	0.4055	0.5945
		6		8.839	25.725	33.158	37.362	þ.6885	0.8875		0.5036	0.4964
	-	. 6	.02	10,121	29.457	31.186	38.328	p.7685	0.8137		0.5885	0.4115
1	:1	6	06	11.232	32.688	29.362	\$9.087	p.8363	0.752		0.6619	0.3381
		E	.00	12 200	35 507	07 697	39.706	0.8944	0.6796	5	0.725	10.2746
		6	.10	13.051	87.984	26.185	40.209	D.9447	0.6512	2	0.780	0.2199
F		-	00	7.520	21.885	6 36.045	36.242	p.6039	0.9946	5 34.26	9 0.405	50.5945
		F	.00	8.872	25.820	84.220	87.388	p.6906	0.915	2	0.491	9 0.5081
		E		10 056	00 255	82 148	88 281	0.7656	0.847	5	0.568	2 0.4318
	8	3 6	04	11.098	3 32.300	30.782	38.999	D.8282	0.7893	3	0.635	4 0.3646
		E	1.00	12 022	84 985	2 09 237	89.591	b.8837	0.738	5	0.694	5 0.3055
1		E	1.08	12.84	5 37.384	4 27.813	40.088	D.9325	0.693	8	0.746	5 0.2535
ł		-).10	12.04	60.00	07 72	D 06 555	b 6267	1 032	2 34,26	9 0.405	5 0.5945
		E	0.00	1.87	2 22.908	0 06 040	P7 505	a b 7001	0.9662		0.475	3 0.5247
	10	0 E		9.02	20.20	7 84 76	7 88.284	1 0.7647	7 0.9081		0.538	4 0.4616
		F	0.0	10.000	E 02.00	2 83 35	1 88 93	0.8220	0,856	7	0.595	5 0.4045
		F	0.00	5 10.990	5 62.00	1 02.00	7 00 40	0.0220	0 810	,	0.647	1 0.3529
		4	2.0	8 11.84	5 84.47	4 82.00	p9.48.	1.0/30	10.700	-	0.602	7 0 2062
		t	0.1	0 12.61	B B6.72	2 BO.74	1 в9.953	3 p.919.	1 0.769	4	0.093	10.3003

TABLE No. A-4. 5.4

..... (continued)

The upper and the lower bound solutions for the drawing of round tube from round on a cylindrical plug.

Input tube size : Reduction of area :

1.1250 in o.d. x0.1875 in gauge 37.75%

0 0	- 1			UPPER B	OUND			LO	WER BOU	ND
A le	ेन	Draw	Mean	Mean die	Mean	Mean	Mean die	Mean	Mean	Mean die
te d	eft	force	draw	pressure	vield	draw	pressure	yield	draw	pressure
en	C O	INICE	stress		stress	stress	/yield	stress	stress	/yield
val -ii	c ti	D	G	n	Ÿ-	/vield	stress	Ym	/yield	stress
inh	fri	toof	tonf in 2	tonf in-2	tonf in-2	stress		tonf in ⁻²	stress	
ш «	0.00	9 2307	23 953	39,452	36,863	0.6498	1.0702	34.269	0.4055	0.5945
	0.00	0.2007	26 913	38 196	37,196	0.7142	1.0136		0.4638	0.5361
	0.02	10 180	29 628	36,941	38.370	0.7722	0.9628		0.5176	0.4824
112	0.04	11 039	32 126	35.715	38,959	0.8246	0.9167		0.5670	0.4330
	0.00	11.829	34.428	34.533	39.471	0.8722	0.8749		0.6125	0.3875
	0.10	12 560	36 554	33,401	39,919	0.9157	0.8367		0.6543	0.3457
	0.00	0 500	25 022	11 213	37 168	0 6732	1.1088	34 269	0.4055	0.5945
	0.00	0.590	27 703	40,136	37.887	0.7312	1.0593	T	0.4555	0.5445
	0.02	10 376	30 198	39.050	38.508	0.7842	1.0141		0.5022	0.4978
114	0.04	11 175	32 523	37.977	39.050	0.8329	0.9725		0.5456	0.4544
	0.00	11 021	34 693	36,929	39.528	0.8777	0.7342	1	0.5861	0.4139
	0.00	12 618	36 723	35 913	39,953	0.9191	0.8989		0.6238	0.3762
	0.00	2.010	26 110	13 020	37 470	0 6971	1,1481	84.269	0.4005	0.5945
	0.00	9.825	28.593	42.087	38.114	0.7502	1.1042	T	0.4492	0.5508
1	0.04	10 625	20 022	11 140	38 680	0.7994	1.0636	1	0.4903	0.5097
116	0.04	11.020	00.922	41.140	20 183	0 8451	1 0258	1	0.5290	0.4710
	0.00	12 080	35 183	39 263	39.632	0.8877	0.9907	1	0.5653	3 0.4346
	0.00	12.766	37.135	38.349	40.038	.0.9275	0.9578	1	0.5995	0.4005
-	0.10	0.000	07 047	11 970	27 760	0 7214	1 1882	34.269	0.4055	0.5945
	0.00	10 150	29.565	44.068	38.355	0.7708	1.1490		0.4442	0.5558
	0.0	10.10	31 766	43.240	38.877	0.8171	1.1122	1	0.4809	0.5191
118	0.04	11 62	1 22 959	12 107	39 347	0.8605	1.0778	1	0.5156	0.4844
	0.00	12 312	7 35 846	41.577	39.772	0.9013	1.0454	1 - 1 H M	0.5485	0.4515
	0.08	12.967	7 37.737	40.757	40.159	0.9397	1.0149		0.5797	0.4203
-	6.0	0 76	2 28 110	16 79/	1 38,068	0.7453	1,2292	34.269	0.4055	5 0.5945
	6.0	2 10 51	7 30 608	46.093	3 38,606	0.7928	1.1939		0.4403	0.5598
	0.0	111 04	202 711	45 371	30 002	0 8368	1,1606		0.4732	2 0.5268
120	0.0	e 11.93	1 34.723	3 44.639	39.534	0.8783	1.1291		0.504	7 0.4953
	0.0	0 12 50	3 36 650	13 903	3 39,938	0.9177	1.0993		0.5346	5 0.4654
	6.0	0 13 22	7 38 49	5 43.17	40.310	0.8550	1.0710)	0.5632	2 0.4368
-	0.1	0 10.22	/ 00.43							
	0.0	2			-					
	F.0				+	-	-	1		
127	2 0.0	4					1	1		
-	<u>p.o</u>	6		-	-		1	1		
	0.0	8					1	1		
	p.1	0		_	_	_	_	_		

A-5 EXPERIMENTAL RESULTS

TABLE No. A-5.1.1 Experimental results of the drawing of square tube from round on a cylindrical plug

mean draw speed = 5 ft min^{-1}

lubricant : TD 50

Test No.	Tube reference No.	Die	Equiv. Die semi angle α_e^o	Tube o d (in) x gauge (in)	Internal dia. (i.d _b in)	Actual plug dia. (d _p in)	Reduction of area (%)	Plug force, Fp (tonf)	Draw force,P (tonf)	Mean draw stress O _{za} (tonf/1n ²)	Remarks
007*	4/a25007/02-80	4JB	7	1 x ¼	0.500	0.437	40.58	0,5092	10.5641	30.1821	
014	4/a2507*/08-80	4JB		1 x ¼	0.500	0.470	44.57	0.8143	11.2634	34.4969	
033*	2/a18709/08-80	4JB		1 x 3/16	0.625	0.557	46.44	-	-	-	T.failure
034*	4/a25008/08-80	4JB		1 x ¼	0.500	0.495	47.79	-	11.6129	37.7584	T.failure
035*	4/a25008/08-80	4JB		1 x ¼	0.500	0.495	47.79	-	11.4561	37.2486	T. failure
038*	4/a25008/08-80	4JB		1 x ¼	0.500	0.495	47.79	-	11.4516	37.2340	T.failure
036*	3/a21908/08-80	4JB		1 x 7/32	0.5625	0.495	42.71	0.9413	10.9140	35.9407	1
102	15/a2197*/04-81	4GB	8	1 x 7/32	0.5625	0.470	39.19	0.9722	9.4355	28.8984	
138	15/a2197**/05-81	4GB	1	1 x 7/32	0.5625	0.485	41.28	1.3426	9.6775	30.6731	
006	15/221008/04-81	4GB	1	1 x 7/32	0.5625	0.488	41.71	1.5741	9.9193	31.6950	T. failure
103	14/a18708 /04-81	4GB		1 x 3/16	0.625	0.488	34.61	1.5092	10.0968	32.2619	and the second se
137	16/a2507*/04-81	4GB		1 x ¼(.255)	0.490	0.470	45.29	1.8518	11.2903	34.5792	T.failure
101	16/a25008/04-81	4GB		1 x ¼(.255)	0.490	0.485	47.56	1.5741	11.8548	36.3082	T.failure
126	15/a2197*/05-81	4HA	8	1 x 7/32	0.5625	0.470	39.19	1.8055	10.4032	31.8623	T.failure
130	15/a2197**/05-81	4HA		1 x 7/32	0.5625	0.485	41.28	1.4815	11.2903	35.8133	
132	16/a2507*/05-81	4HA		1 x ¼(.255)	0.490	0.470	45.29	1.9599	12.2581	37.5432	
133	16/a2507**/05-81	4HA		1 x ¼(.255)	0.490	0.485	47.56	1.7940	12.1371	38.7813	
127	15/a2197*/05-81	4DA	7	1 x 7/32	0.5625	0.470	39.19	1.8518	10.6452	32.6033	T.failure
056*	15/a21908/01-81	4MC	7	1 x 7/32	0.5625	0.495	42.71	2.5926	12.0968	39.3318	T.failure
057*	16/a2507*/01-81	4MC		1 x ¼	0.500	0.470	44.57	1.5741	11.9355	36.5552	T.failure
124	15/a2197*/05-81	4MC		1 x 7/32	0.5625	0.470	39.19	1.3796	8.7097	26.6754	
128	15/a2197**/05-81	4MC		1 x 7/32	0.5625	0.485	41.28	1.2685	9.2097	29.2134	
131	16/a2507*/05-81	4MC	1	$1 \times \frac{1}{2}(.255)$	0.490	0.470	45.29	2.2222	11.7742	36.0612	T. failure
125	15/a2197*/05-81	4KD	7	1 x 7/32	0.5625	0.470	39.19	1.0833	8.5968	26.3296	
120	15/92197**/05-81	AKD		$1 \times 7/32$	0.5625	0.485	41.28	1.3889	9.4355	29.9297	T.failure

Test number with asterisk (*) denotes the first stock of tubing, batch A

T. failure: Tensile failure

TABLE No. A-5.1.2.1 Experimental results of the drawing of hexagonal tube from round on a cylindrical plug

mean draw speed = 5 ft min^{-1}

lubricant : TD 50

Test No.	Tube reference No.	Die	Equiv. Die semi angle α_e^{o}	Tube o d (in) x gauge (in)	Internal dia. (i.d _b in)	Actual plug dia. (d _p in)	Reduction of area (%)	Plug force, Fp (tonf)	Draw force, p (tonf)	Mean draw stress O _{ZA} (tonf/in ²)	Remarks
009*	5/b12811/2-80	6NB	7	1 1/16 x 10g	0.806(5)	0.677	22,95	1.1574	7.2581	25.0686	
013	11/b17711/3-80	6NB		1 1/16 x 7g	0.708(5)	0.677	41.20	2.3148	8.7097	30.0823	
017*	7/b21910/8-80	6NB		1 1/16 x 7/32	0.624(5)	0.620	40.05	2.0648	13.6710	39,3305	
018	11/b17710/8-80	6NB		1 1/16 x 7g	0.708(5)	0.620	29.40	1.1481	7.1048	20.4401	
021*	2/a18710/8-80	6NB		1 x 3/16	0.625	0.620	27.37	2.0222	10.8742	31.2843	
037*	3/a21909/8-80	6NB		1 x 7/32	0.562(5)	0.557	24.41	1.5336	9.5363	23.4982	
047	11/b17711/01-81	6NB		1 1/16 x 7g	0.708(5)	0.682	42.28	2.2222	9.8387	32.9127	
039*	5/b12811/12-80	6WB	8	1 1/16 x 10g	0.806(5)	0.682	24.37	0.9954	7.0564	24.8295	
040	11/b17711/12-80	6WB		1 1/16 x 7g	0.708(5)	0.682	42.28	2.0833	9.5693	31.2476	
041*	8/016011/12-80	6WB	-	1% x 8g	0.805	0.682	41.14	1.8518	11.1290	39.1600	
042*	6/b16011/12-80	6WB		1 1/16 x 8g	0.748	0.682	37.35	1.9444	11.7742	41.4304	
043*	2/a18710/12-80	6WB		1 x 3/16	0.625	0.620	27.37	1.6088	9.6774	27.8412	
044	11/b17710/12-80	6WB		1 1/16 x 7g	0.708(5)	0.620	29.40	0.8680	6.6734	19.1989	
045*	7/b21910/12-80	6WB		1 1/16 x 7/32	0.624(5)	0.620	40.05	1.6898	12.7419	36.6575	
046*	1/a17610/12-80	6WB		1 x 7g (.177)	0.648	0.620	23.70	1.2963	8.2258	23.6650	
083	16/a2507**/03-81	6NB	7	1 x ¼ (.255)	0.490	0.485	22.13	1.0339	8.1720	17.5835	
084	15/a21909/03-81	6NB		1 x 7/32	0.562(5)	0.557	24.41	0.8218	7.3185	18.0335	
085	14/a18710/03-81	6NB		1 x 3/16	0.625	0.620	27.37	1.4043	8,5484	24.5931	
086	17/b16011/03-81	6NB		1 1/16 x 8g	0.748	0.682	37.35	1.9290	8.7634	30,8363	
088	16/a2507**/08-81	6WB	8	1 x ¼ (.255)	0.490	0.485	22.13	1.0741	7.3064	15,7211	
089	15/a21909/03-81	6WB		1 x 7/32	0.562(5)	0.557	24.41	0.6481	6.3710	15.6986	
090	14/a18710/03-81	6WB		1 x 3/16	0.625	0.620	27.37	1.5586	8.0376	23.1237	
091	1/a ^h 17610/03-81	6WB		1 x 7g (.176	0.648	0.620	23.70	1.2963	7.9032	22.7370	
092	17/b16011/03-81	6WB		1 1/16 x 8g	0.748	0.682	37.35	1.4815	8.0645	28.3769	
093	9/c18711/03-81	6WB		1 ¹ / ₈ x 3/16	0.750	0.682	48.54	-	-	-	T. failure

Test number with asterisk (*) denotes the first stock of tubing, batch A

T. failure: Tensile failure

TABLE No. A-5.1.2.2 Experimental results of the drawing of hexagonal tube from round on a cylindrical plug

mean draw speed = 5 ft min^{-1}

lubricant : TD 50

Test No.	Tube reference No.	Die	Equiv. Die semi angle α_e^0	Tube o d (in) x gauge (in)	Internal dia. (i.d _b in)	Actual plug dia. (d _p in)	Reduction of area (%)	Plug force, Fp (tonf)	Draw force,P (tonf)	Mean draw stress σ_{za} (tonf/in ²)	Remarks
095	5/b ^h 12812/4-81	6WB	8	1 1/16 x 10g	0.806(5)	0.745	43.16	1.7593	8.2258	38.5131	T. failure
094	2/a ^h 18710/4-81	6WB		1 x 3/16	0.625	0.620	27.37	1.8518	8.0645	23.2010	
105	9/c ^h 18710/5-81	6WB		1½ x 3/16	0.750	0.620	37.06	2.4190	11.3306	32.5974	
106	8/c ^h 16011/5-81	6WB		1½ x 8g	0.805	0.682	41.14	1.7824	10.0000	35.1874	
107	$10/c^{h}$ 25010/5-81	6WB		1% x ¼	0.625	0.620	49.42	1.9444	13.0645	37.5856	Tag failure
114	20 /b 23509/5-81	6WB		1.040 x .235	0.570	0.557	31.71	1.2037	9.1935	22.6536	
115	20 /b 23509/5-81	6NB	1	1.040 x .235	0.570	0.557	31.71	1.4815	10.2621	25.2866	
123	1/a ^h 17610/5-81	6NB		1 x 7g (0.176	0.648	0.620	23.70	1.3079	7.1371	20.5329	
031	11/b17711/8-80	6AA	10	1 1/16 x 7g	0.708(5)	0.682	42.28	1.9546	9.2645	32.5994	
118	15/a21909/5-81	6AA	8	1 x 7/32	0.562(5)	0.557	24.41	1.0262	7.8360	19.3086	
120	11/b17710/5-81	6AA	10	1 1/16 x 7g	0.708(5)	0.620	29.41	1.6204	7.8226	22.5050	
135	-16/a2507**/5-81	6AA	8	1 x ¼(.255)	0.490	0.485	22.13	2.1991	9.6169	20.6925	
000	11/517711/0 00	GRA	7	$1 \frac{1}{16} \times 7a$	0.708(5)	0,682	42.28	2.3148	10.1075	35.5657	T failure
032	11/01//11/8-80	CDA		1 x 7/22	0.562(5)	0.557	24.41	0.8796	7,7419	19.0767	
119	15/221909/5-81	CDA	-	1 1/16 x 70	0.708(5)	0.620	29.41	1.8981	8.3266	24,2968	
121	1/01/10/5-81	6BA		$\frac{1}{1 \times 7a}$	0.648	0.620	23.70	1.7438	8.1452	23.4330	
122	1/2 1/010/5-01	GDA		$1 \times \frac{1}{2}$	0.190	0.485	22.13	1.8171	9.0726	19.5212	
136	16/a250/**5-81	OBA		1 X /4(.200)	0.490	0.405				1	
								1		1	
	ter and the second second									1	
			-								
							1				

Test number with asterisk (*) denotes the first stock of tubing, batch A

T. failure: Tensile failure

TABLE No. A-5.1.3.1	Experimental results o	f the	drawing of	octagonal	tube	from	round	on	a cy	ylindrical	plug	5
---------------------	------------------------	-------	------------	-----------	------	------	-------	----	------	------------	------	---

mean draw speed = 5 ft min^{-1}

lubricant : TD 50

Test No.	Tube reference No.	Die	Equiv. Die semi angle α_e^0	Tube o d (in) x gauge (in)	Internal dia. (i.d _b in)	Actual plug dia. (d _p in)	Reduction of area (%)	Plug force, Fp (tonf)	Draw force,P (tonf)	Mean draw stress σ_{za} (tonf/in ²)	Remarks
004	11/b17711/1-80	8PB	7	1 1/16 x 7g	0.708(5)	0.677	29.50	0.7246	5.8871	16.9589	
008*	8/c16011/2-80	8PB		1% x 8g	0.805	0.677	28.43	1.2963	8.8710	25.5546	
010*	5/b12812/2-80	8PB	1	1 1/16 x 10g	0.806(5)	0.740	26.28	1.4815	6.5726	23.7256	
012*	10/c25010/2-80	8PB		11/8 x 1/4	0.625	0.615	40.33	2.1296	14.2742	34.8106	
020*	7/b21910/8-80	8PB		1 1/16 x 7/32	0.625	0.620	30.12	1.3229	10.8089	26.6753	
028*	8/c16012/8-80	8PB	-	1¼ x 8g	0.805	0.745	44.09	2.5463	11.2097	41.3345	
029*	6/b16011/8-80	8PB		1 1/16 x 8g	0.742	0.682	24.65	1.3194	8.8710	25.9536	
058	11/b17711/01-81	8PB	1	1 1/16 x 7g	0.708(5)	0.682	30.58	1.0818	6.0484	17.6956	
068	16/a2507**/03-81	8PB		1 x ¼ (.255)	0.490	0.485	12.48	0.4333	4.2200	8.0786	
069	15/a21909/03-81	8PB	+	1 x 7/32	0.562(5)	0.557	13.68	0.4630	3.9314	8.4831	
070	14/a187 10/03081	8PB		1 x 3/16	0.625	0.620	15.34	0.7870	4.7581	11.7425	
071	19/c18711/03-81	8PB		1½ x 3/16	0.750	0.682	38.10	2.5463	11.2500	32.9137	
072	19/c18712/03-81	8PB		1 ¹ / ₈ x 3/16	0.750	0.745	50.89	1.3426	11 2500	41.4832	
079	17/b16012/03-81	8PB	1	1 1/16 x 8g	0.748	0.745	40.22	1.2500	7.7218	28.4733	
082	11/b17711/03081	8PB		1 1/16 x 7g	0.708(5)	0.682	30.58	1.0802	6.1021	17.8528	
073	16/22507**/03-81	AWB	8	$1 \times \frac{1}{2} (.255)$	0.490	0.485	12.48	0.5401	4.8387	9.2631	
073	15/a21909/03-81	8WB		1 x 7/32	0.562(5)	0.557	13.68	0.4961	4.2338	9.1356	
075	14/a18710/03-81	8WB	1	1 x 3/16	0.625	0.620	15.34	0.9259	5.1613	12.7376	
076	19/c18711/03-81	8WB		1 ¹ / ₈ x 3/16	0.750	0.750	38.10	1.8518	9.8790	28,9026	
077	17/b16012/o3-81	8WB		1 1/16 x 8g	0.748	0.745	40.22	1.1111	7.1371	26.3173	
078	19/c18712/03-81	8WB		1 ¹ / ₈ x 3/16	0.750	0.750	50.89	1.4444	10.4516	38.5319	
080	11/b17710/o3-81	8WB		1 1/16 x 7g	0.708(5)	0.620	17.71	0.0926	3.8710	9.5532	
081	11/b17711/03-81	8WB		1 1/16 x 7g	0.708(5)	0.682	30.58	1.2778	6.6935	19.5829	
113	20 /b 23509/05-81	8WB		1.040 x .235	0.570	0.557	22.02	0.9259	6.9355	14.9652	
112	20 /b 23509/05-81	8 PB	7	1.040 x .235	0.570	0.557	22.02	0.9259	6.8952	14.8782	

Test number with asterisk (*) denotes the first stock of tubing, batch A

T. failure: Tensile failure

Test No.	Tube reference No.	Die	Equiv. Die semi angle α_e^0	Tube o d (in) x gauge (in)	Internal dia. (i.d _b in)	Actual plug dia. (d _p in)	Reduction of area (%)	Plug force, Fp (tonf)	Draw force,P (tonf)	Mean draw strees Oza (tonf/in ²)	Remarks
053	11/b17711/01-81	8SD	7	1 1/16 x 7g	0.708(5)	0.682	30.58	1.6046	10.2419	29,9645	
054*	5/b12812/01-81	8SD		1 1/16 x 10g	0.806(5)	0.745	27.83	1.8055	9.3548	34.4948	
055*	8/c16012/01-81	8SD		1% x 8g	0.805	0.745	44.09	-	12.9032	47.5791	T failure
116	15/a21909/05-81	8SD		1 x 7/32	0.562(5)	0.557	13.68	1.2268	8.54845	18.4455	
117	20 ⁻ /b ⁻ 23509/05-81	8SD		1.040 x .235	0.570	0.557	22.02	-	11.1693	24,1009	
						1					
						1					
			-								
		1			Call II						
		1									
-											
						8 Y					
-											
-		1									
-											
		1		Contraction of the second second			Deserve a				

TABLE No. A-5.1.3.2. Experimental results of the drawing of octagonal tube from round on a cylindrical plug

mean draw speed = 5 ft min^{-1}

lubricant : TD 50

Test number with asterisk (*) denotes the first stock of tubing, batch A

T. failure: Tensile failure

TABLE No. A-5.1.4

Experimental results of the drawing of decagonal tube from round on a cylindrical plug

mean draw speed = 5 ft min^{-1}

lubricant : TD 50

Test No.	Tube reference No.	Die	Equiv. Die semi angle α_e^0	Tube o d (in) x gauge (in)	Internal dia. (i.d _h in)	Actual plug dia. (d _p in)	Reduction of area (%)	Plug force, Fp (tonf)	Draw force, P (tonf)	Mean draw stress σ_{za} (tonf/in ²)	Remarks
016*	10/c25010/8-80	100B	7	1% x %	0.625	0.620	37.02	2.2355	13,9548	32.2413	
019*	7/b21910/8-80	10QB		1 1/16 x 7/32	0.624(5)	0,620	25.34	1.7123	9.6621	22.3234	
025	11/b17711/8-80	10QB		1 1/16 x 7g	0.708(5)	0.682	24.97	0.7639	5.2016	14.0803	
026*	6/b1601218-80	10QB		1 1/16 x 8g	0.748	0.745	34.13	2.6389	10.7258	35.8943	
027*	9/c18712/8-80	10QB		1 ¹ / ₈ x 3/16	0.750	0.745	45.89	2.7315	12.9032	43.1811	
063	15/a21909/03-81	10QB		1 x 7/32	0.562(5)	0.557	8.54	0.2778	3.0107	6.1311	
064	14/a18710/03-81	10QB	1	1 x 3/16	0.625	0.620	9.56	0.8642	3.9247	9.0677	
065	17/b16012/03-81	100B		1 1/16 x 8g	0.748	0.745	34.13	1.3194	7.0968	23.7496	
066	19/c18712/3-81	100B		1½ x 3/16	0.750	0.745	45.89	1.4815	10.8871	36.4341	
067	16/a2507**/03-81	100B		1 x ¼(.255)	0.490	0.485	7.85	0.3704	3.5484	6.4518	
110	20 /h 23509/05-81	100B	1	1.040 x .235	0.570	0.557	17.37	0.7870	5.8468	11.9064	
111	20 ⁺ /d25011/05-81	10QB		1 3/16 x ¼	0.687(5)	0.682	49.80	2.8704	15.0806	40.8222	T. failure
					-			1			

Test number with asterisk (*) denotes the first stock of tubing, batch A

T. failure: Tensile failure

TABLE No. A-5.1.5

Experimental results of the drawing of round

tube from round on a cylindrical plug

mean draw speed = 5 ft min^{-1}

lubricant : TD 50

Test No.	Tube reference No.	Die	Equiv. Die semi angle α_e^0	Tube o d (in) x gauge (in)	Internal dia. (i.d _b in)	Actual plug dia. (d _p in)	Reduction of area (%)	Plug force, Fp (tonf)	Draw force,P (tonf)	Mean draw stress σ_{za} (tonf/in ²)	Remarks
015*	10/c25010/8-80	oc RA	7	11/8 x 1/4	0.625	0.620	29.65	2.2955	12.4419	25.7335	
022*	6/b16012/8-80	cc RA		1 1/16 x 8g	0.748	0.745	22.96	1.5819	8.1634	23.3585	
023*	9/c18712/8-80	œ RA		1 ¹ / ₈ x 3/16	0.750	0.745	36.71	2.5639	11.5097	32.9335	
024	11/b17711/8-80	cc RA		1 1/16 x 7g	0.708(5)	0.682	14.68	0.1852	2.6613	6.3351	
061	17/616012/0381	oc RA		1 1/16 x 8g	0.748	0.745	22.96	0.4630	5.0000	14.3069	
062	19/c18712/03-81	cc RA	1	1 ¹ / ₈ x 3/16	0.750	0.745	36.71	0.8449	9.0323	25.8447	
108	20-/b-23509/05-81	œ RA	1	1.040 x .235	0.570	0.557	8.85		3.2258	5.9546	
109	20 ⁺ /d25011/05-81	oc RA		1 3/16 x ¼	0.687(5)	0.682	42.92	2.3148	14.4931	34.4999	
	-										
			-								
							1				
			1								
			1					A State Ten			
-				1							
-											

Test number with asterisk (*) denotes the first stock of tubing, batch A

T. failure: Tensile failure

TABLE	No.	A-5	.2	.1
-------	-----	-----	----	----

TEST No.	Tensile test No.	Tube ref. No.	Die	Equiv. die semi- angle α.0	Tube o d (in) x gauge (in)	Tube inlet area (A in ²)	Actual plug dia (d _p in)	Reduction of area (%)	Tensile force (tonf)	Mean flow stress Of (tonf/ir ²)	Mean yield stress, Y _m (ton/in ²)
103	79	14/a18708-/	4GB	8	1 x 3/16	0.4786	0.488	34.61	13.25	42.7608	35.1218
138	80	15/a2197**/	4GB		1 x 7/32	0.5369	0.485	41.28	11.25	36.0423	29.6035
102	81	15/a2197*/	4GB		1 x 7/32	0.5369	0.470	39.19	11.8	36.4438	29.9333
124	82	15/a2197*/	4MC	7	1 x 7/32	0.5369	0.470	39.19	12.5	38.5598	31.6713
128	83	15/a2197**/	4MC		1 x 7/32	0.5369	0.485	41.28	12.0	38.4299	31.5646
125	84	15/a2197*/	4KD	7	1 x 7/32	0.5369	0.470	39.19	10.6	32.6663	26.8306
126	85	15/a2197*/	4HA	8	1 x 7/32	0.5369	0.470	39.19	14.0	43.2385	35.5142
130	86	15/a2197**/	4HA		1 x 7/32	0.5369	0.485	41.28	13.55	43.1788	35.4651
132	87	16/a2507*/	4HA		1 x ¼ (.255)	0.5968	0.470	45.29	14.15	43.5544	35.7736
133	88	16/a2507**/	4HA		1 x ¼ (.255)	0.5968	0.485	47.56	14.5	49.9144	38.5334
-											
-	1	14 Mar. 19 19-1	1				S. COL				
-	1										
			T								
			1								
	1										
					1						
-			1								
-	-		1								
		1									
		1	1								
		1				1					
	And the second second					1					
	a second second second						A CONTRACTOR OF THE OWNER	-	1	-	

TEST No.	Tensile test No.	Tube ref. No.	Die	Equiv. die semi- angle a.º	Tube o d (in) x gauge (in)	Tube inlet area (A_in ²)	Actual plug dia (d _p in)	Reduction of area (%)	Tensile force (tonf)	Mean flow stress σ_f (tonf/in ²)	Mean yield stress, Y _m (ton/in ²)
009	17	5/b12811/	6NB	7	1 1/16 x 10g	0.3758	0.677	22.95	11.85	41.4851	30.9899
037	18	3/a21909/	6NB		1 x 7/32	0.5369	0.557	24.41	17.50	43.5699	34.1615
021*	19	2/a18710/	6NB		1 x 3/16	0.4786	0.620	27.37	15.75	46.0094	35.2348
013	20	11/b17711/	6NB	1.2.5	1 1/16 x 7g	0.4924	0.677	41.20	12.5	43.3505	34.8225
018	21	11/b17710/	6NB		1/16 x 7g	0.4924	0.620	29.40	13.5	39.3240	31.3922
017	22	7/b119107	6NB		1 1/16 x 7/32	0.5798	0.620	40.05	17.9	51.7957	41.0992
085	49	14/a18710/	6NB		1 x 3/16	0.4786	0.620	27.37	14.60	42.2762	34.7238
083	50	16/a2507**/	6NB		1 x ¼(.25	5)0.5968	0.485	22.13	16.5	36.0884	29.6414
086	51	17/b16011/	6NB	1	1/16 x 8g	0.4536	0.682	37.35	10.7	38.2723	31.4409
084	52	15/a21909/	6NB		1 x 7/32	0.5369	0.557	24.41	14.4	36.0647	29.6219
088	53	16/a2507**/	6WB	8	1 x ¼	0.5968	0.485	22.13	16.5	36.0351	29.5976
087	54	16/a2507**/	6WB		1 x ¼(.25	5) 0.5968	0.485	22.13	16.5	36.1345	29.5976
091	55	1/ah17610/	6WB		1 x 7g(.1	76)0.4556	0.620	23.70	15.0	43.5121	35.7389
089	56	15/a21909/	6wB		1 x 7/32	0.5369	0.557	24.41	14.25	35.5661	29.2124
090	57	14/a18710/	6WB		1 x 3/16	0.4786	0.620	27.37	14.75	42.7360	35.1014
092	58	17/b16011/	6wB		1 1/16 x 8g	0.4536	0.682	37.54	11.00	39.1938	32,1920
094	66	2/a ^h 18710/	6 wB		1 x 3/16	0.4786	0.620	27.37	18.75	54.6652	44.8995
114	67	20-/b-23509/	6wB		1.040 x .235	0.5943	0.557	31.71	17.3	43.1486	35.4403
105	68	9/e ^h 18710/	6wB		1 ¹ / ₈ x 3/16	0.5522	0.620	37.06	15.5	44.9224	36.8972
106	69	8/e ^h 16011/	6WB		1½ x 8g	0.4851	0.682	41.14	14.5	51.5932	42.3762
123	70	1/a ^h 17610/	6NB	7	1 x 7g(.17	6) 0.4556	0.620	23.70	18.25	53.1655	43.6678
115	71	20 ⁻ /b ⁻ 23509/	6NB		1.040 x .235	0.5943	0.557	31.71	17.25	43.0239	35.3379
136	72	16/a2507**/	6BA	7	1 x ¼(.255)	0.5968	0.485	22.13	16.35	35.7075	29.3285
122	73	1/a ^h 17610/	6BA		1 x 7g(.17	6) 0.4556	0.620	23.70	13.15	38.3537	31.5020
119	74	15/a21909/	6BA	Sale	1 x 7/32	0.5369	0.557	24.41	14.26	35.4783	29.1403

TABLE No. A-5.2 .2.1 Tensile test results of the drawn hexagonal tube from round on a cylindrical plug

TEST No.	Tensile test No.	Tube ref. No.	Die	Equiv. die semi- angle α.9	Tube o d (in) x gauge (in)	Tube inlet area (A_in ²)	Actual plug dia (d _p in)	Reduction of area (%)	Tensile force (tonf)	Mean flow stress σ_f (tonf/in ²)	Mean yield stress, Y _m (ton/in ²)
121	75	11/617710/	6BA	0	1 x 7g	0.4924	0.620	29.41	13.5	39.4366	32.3915
135	76	16/a2507*/	6AA	8	1 x ¼(.255)	0.5968	0.485	22.13	16.75	36.5451	30.0165
118	77	15/a21909/	6AA	8	1 x 7/32	0.5369	0.557	24.41	14.50	36.0864	29.6398
120	78	11/b17710/	6AA	10	1 1/16 x 7g	0.4924	0.620	29.41	13.0	37,6768	30.9460
				-							
			-								
		4				+					
										1	
-						1					

TABLE No. A-5.2.2.2 Tensile test results of the drawn hexagonal tube from round on a cylindrical plug

TEST No.	Tensile test No.	Tube ref. No.	Die	Equiv. die semi- angle α_0^0	Tube o d (in) x gauge (in)	Tube inlet area (A in ²)	Actual plug dia (dpin)	Reduction of area (%)	Tensile force (tonf)	Mean flow stress Of (tonf/ir ²)	Mean yield stress, Y _m (ton/in ²)
004	10	11/b17711/.	8PB	7	1 1/16 x 7g	0.4924	0.677	29.50	13.5	39.2237	31.4207
029*	11	6/b16011/	8PB		1 1/16 x 8g	0.4536	0.682	24.65	19.75	58.1170	47.1691
010*	12	5/b12812/	8PB		1 1/16 x 10g	0.3758	0.740	26.28	12.5	45.2936	36.7613
008*	13	8/c16011/	8PB		1½ x 8g	0.4851	0.677	28.43	15.4	44.8151	34.6722
020*	14	7/b21910/	8PB		1 1/16 x 7/32	0.5798	0.620	30.12	21.0	52.3441	41.2915
012*	15	10/c25010/	8PB		1% x ¼	0.6872	0.615	40.33	21.5	53.0667	42.2959
028*	16	8/c16012/	8PB		1% x 8g	0.4851	0.745	44.09	13.1	48.8241	39.1239
068	34	16/a2507**/	8PB		1 x ¼(.255)	0.5968	0.485	12.48	16.0	31.0710	25.5203
069	35	15/a21909/	8PB		1 x 7/32	0.5369	0.557	13.68	13.4	29.2900	24.0575
070	36	14/a18710/	8PB		1 x 3/13	0.4786	0.620	15.34	15.0	37.5441	30.8370
082	37	11/b17711/	8PB		1 1/16 x 7g	0.4924	0.682	30.58	13.5	40.0968	32.9337
071	38	19/c18711/	8PB		1 ¹ / ₈ x 3/16	0,5522	0.682	38.10	16.65	49.5210	40.6743
079	39	17/b16012/	8PB		1 1/16 x 8g	0.4536	0.745	40.22	11.45	42.8370	35.1844
072	40	19/c18712/	8PB		1 ¹ / ₈ x 3/16	0.5522	0.745	50.89	14.6	54.1159	44.4484
073	41	16/a2507**/	8WB	8	1 x ¼(.255)	0.5968	0.485	12.48	16.55	32.0947	26.3611
074	42	15/a21909/	8WB		1 x 7/32	0.5369	0.557	13.68	14.50	31.7288	26.0606
075	43	14/a18710/	8WB		1 x 3/16	0.4786	0.620	15.34	15.65	39.1479	32.1543
080	44	11/b17710/	8WB		1 1/16 x 7g	0.4924	0.620	17.71	13.20	33.0454	27.1420
081	45	11/b17711/	8WB		1 1/16 x 7g	0.4924	0.682	30.58	12.6	37.3537	30.6807
077	46	17/616012/	8WB		1 1/16 x 8g	0.4536	0.745	40.22	10.65	39.9697	32.8293
076	47	19/c18711/	8WB		1¼ x 3/16	0.5522	0.682	38.10	16.0	47.5456	39.0518
078	48	19/c18712/	8WB		1¼ x 3/16	0.5522	0.745	50.89	13.35	49.5220	40.67.52
113	62	20 ⁻ /b ⁻ 23509/	8WB		1.040 x .235	0.5943	0.557	22.02	18.5	40.5176	33.2793
112	63	20 /b 23509/	8PB	7	1.040 x .235	0.5943	0.557	22.02	18.65	39.5476	32.4826
117	64	20 ⁻ /b ⁻ 123509/	8SD	7	1.040 x .235	0.5943	0.557	22.02	18.75	41.0165	33.6891

TABLE No. A-5.2.3.1 Tensile test results of the drawn octagonal tube from round on a cylindrical plug

TEST No.	Tensile test No.	Tube ref. No.	Die	Equiv. die semi- angle α.0	Tube o d (in) x gauge (in)	Tube inlet area (A_in ²)	Actual plug dia (d _p in)	Reduction of area (%)	Tensile force (tonf)	Mean flow stress σ_f (tonf/in ²)	Mean yield stress, Y _m (ton/in ²)
116	65	15/a21909/	88D	7	1 x 7/32	0.5369	0,557	13.68	14.75	32.0017	26.2930
-											
-											
										1	
										1	
										1	
-						+			1000	1	
									1 1 1 1 1 1		
-						1					
-											
-							1				
-		A CONTRACTOR OF THE OWNER OF THE		-							
-					Ser Anter V.						•

TABLE No. A-5.2.3.2 Tensile test results of the drawn octagonal tube from round on a cylindrical plug

TABLE	No.	A-5	. 2	.4
-------	-----	-----	-----	----

TEST No.	Tensile test No.	Tube ref. No.	Die	Equiv. die semi- angle α_0^{O}	Tube o d (in) x gauge (in)	Tube inlet area (A in ²)	Actual plug dia (dpin)	Reduction of area (%)	Tensile force (tonf)	Mean flow stress Of (tonf/in ²)	Mean yield stress, Y _m (ton/in ²)
025	05	11/b17711/	10QB	7	1 x 7g (.176)	0.4924	0.682	24.97	13.35	36.404	28.9711
019*	06	7/b21910/	10QB		1 1/16 x 7/32	0.5798	0.620	25.34	21.0	48.8824	39.1239
016*	07	10/c25010/	10QB		11/8 x 1/4	0.6872	0.620	37.02	21.5	50.2648	39.5953
026*	08	6/b16012/	10QB		1 1/16 x 8g	0.4536	0.745	34.13	16.25	54.6967	43.0528
027*	09	9/c18712/	10QB		1 ¹ / ₈ x 3/16	0.5522	0.745	45.89	14.9	50.2275	41.0434
067	29	16/a2507**/	10QB		1 x ¼ (.255)	0.5968	0.485	7.85	16.35	30.3464	24.9252
063	30	15/a21909/	10QB		1 x 7/32	0.5369	0.557	8.54	16.1	33.3304	27.3761
065	31	17/b16012/	10QB		1 1/16 x 8g	0.4536	0.745	34.13	11.6	39.2857	32.2675
064	32	14/a18710/	10QB		1 x 3/16	0.4786	0.620	9.56	14.6	34.2043	28.0939
066	33	19/c18712/	10QB	-	1 ¹ / ₈ x 3/16	0.5522	0.745	45.89	15.15	51.0246	41.9093
110	61	20 /b 23509/	10QB		1.040 x .235	0.5943	0.557	17.37	18.0	37.2418	30.5887
										-	
				-		1	1				
		1									
-											
							-			1	
				-						1	
		the second s									
-	C. States										

TEST No.	Tensile test No.	Tube ref. No.	Die	Equiv. die semi- angle α.0	Tube o d (in) x gauge (in)	Tube inlet area (A_in ²)	Actual plug dia (d _p in)	Reduction of area (%)	Tensile force (tonf)	Mean flow stress Of (tonf/in ²)	Mean yield stress, Y _m (ton/in ²)
022*	01	6/b16012/	oc RA	7	1 1/16 x 8g	0.4536	0.745	22.96	18.75	54.048	42.4577
024	02	11/b17711/	oc RA		1 1/16 x 7g	0.4924	0.682	14.68	13.32	32.490	19.8307
015*	03	10/c25010/	oc RA		1 1/8 x 1/4	0.6872	0.620	29.65	23.15	48.377	38.3545
023*	04	9/c18712/	or RA		1 ½ x 3/16	0.5522	0.745	36.71	16.85	48.508	39,5014
061	27	17/b16012/	oc RA		1 1/16 x 8g	0.4536	0.745	22.96	12.0	35.0233	28,7666
062	28	19/c18712/	oc RA		1 ½ x 3/16	0.5522	0.745	36.71	16.35	47.3823	38.9177
108	59	20-/b-23509/	∞ RA		1.040 x .235	0.5943	0.557	8.85	16.75	31.3771	25.7717
109	60	20+/d25011/	∞ RA		1 3/16 x ¼	0.7359	0.682	42.92	19.0	45.4907	37.3640
		the state of the s									

.

Test number with asterisk (*) denotes the first stock of tubing, batch A

TABLE No. A-5.3.1

- A66 -

The mean coefficient of friction determined from the split rotating die method

mean draw speed = 5 ft min^{-1}

lubricant : TD 50

Test No.	Tube reference No.	Polygonal tube	Tube o d (in) x gauge (in)	Internal dia. (i.d _p in)	Actual plug dia. (d _p in)	Reduction of area (%)	Draw force, P (tonf)	Drag force, Q (tonf)	Mean press- ure, Pm (tonf/in ²)	Mean coeffi- cient of friction, μ	ū
	1.1.1.1077**/OF	1 Causano	1 x 3/16	0.625	0.485	34.61	10.3226	0.81906	72.4654	0.042	
140	14/a18//**/05-6	1 Square	$1 \times 3/16$	0.625	0.485	34.61	9.4355	1.0000	66.2379	0.042	
141	14/210// 03-0	i bquare	1 1 0/10				9.3145	0.81667	65.3885	0.042	
140	14/01877**/05-8	1 Square	1 x 3/16	0.625	0.485	34.61	9.7850	0.73333	68.4915	0.042	
142	14/210//~/03-0	i byuure					9.4758	0.76667	66.5208	0.042	1
			1 2/16	0.625	0.488	34.61	10.2016	0.73333	71.6160	0.042	.042
143	14/a1878 /05-81	Square	1 x 5/10	0.025	0.400		10.1613	0.80000	71.3331	0.042	
	15/ 0105* /05 01	Caucano	1 + 7/32	0 5625	0.485	39.19	8.9516	0.80000	62.8409	0.042	
144	15/a2197*/05-8.	Square	1 x 7/32	0.002			8.8710	0.83333	62.2751	0.042	
							8.9747	0.77147	63.0031	0.042	
-			1/	0 400	0.485	22 /3	7.4032	0.80000	***	****	
147	16/a2507**/08-8	1 hexagona	1 X /4	0.490	0.405	1 22.45	1.1002				
						1					1
				-							1
							_				1
	BUSINESS IN T										
	E.										
-											
-											
-											
-											
		1 1 1 1								1	

**** The rotor drive was off when one of the die tips broke

TABLE No. A-5.4.1

The mean coefficient of friction from the experimental determination of redundant work and the apparent strain method

mean draw speed = 5 ft min^{-1}

lubricant : TD 50

Test	Tube reference	Die	Tube od(in) x	Inlet	Reduct-	Homoge-	Mean	Mean	Mean	Mean	Homoge-	Homoge-	Fric tion	Mean	Mean
No.	code		gauge (in)	area	ion of	neous	draw	flow	equiva-	yield	neous	neous	work	pressure	coeff. of
					area	strain	stress	stress	lent	stress	yield st-	work			friction
	A Provide State	1		Ab	'r'	ε _h	Gza	OF	strain	Ym	ress Yh	Wh	WF	Pm	μ
				in2	(%)		tonf in-2	tonf in ²	٤m	tont in-2	tenf in-2	tenfin-2	tonf in-2	tonf in-2	
103	14/a18708 /	4GB	1 x 3/16	0.8786	34.61	0.425	32.262	42.761	0.715	35.122	31.363	13.323	.7.156	7.751	0.039
126	15/a2197*/	4HA	1 x 7/32	0.5369	39.18	0.497	31.862	43.238	0.752	35.514	32.455	16.136	5.146	7.971	0.022
130	15/a2197**/	4HA	1 x 7/32	0.5369	41.27	0.532	34.813	43.179	0.748	35.465	32.940	17.532	9.302	8.144	0.044
132	16/a2507*/	4HA	1 x ¼(.255)	0.5962	45.29	0.603	37.543	43.554	0.778	35.774	33.848	20.416	9.715	8.595	0.040
124	15/a2197*/	4MC	1 x 7/32	0.5369	39.18	0.497	26.675	38.560	0.444	31.671	26.675	16.136	12.603	5.915	0.118
128	15/a2197**/	4MC	1 x 7/32	0.5369	41.27	0.532	29.213	38.430	0.437	31.565	32.940	17.532	15.404	5.667	0.172
088	16/a2507**/	6WB	$1 \times \frac{1}{4}(.255)$	0.5968	22.13	0.250	15.721	36.035	0.325	29.598	27.949	6.989	6.088	10.592	0.062
089	15/a11909/	6WB	1 x 7/32	0.5369	24.40	0.280	15.699	35.566	0.306	29.212	28.637	8.008	6.747	8.237	0.074
092	17/b16011/	6WB	1 1/16 x 8g	0.4536	37.35	0.468	28.377	39.194	0.479	32.192	32.025	14.975	12.959	5.512	0.092
083	16/a2507**/	6NB	1 x ¼(.255)	0.5968	22.13	0.250	17.583	36.088	0.328	29.641	27.949	6.989	7.871	11.499	0.082
084	15/a21909/	6NB	1 x 7/32	0.5369	24.40	0.280	18.033	36.065	0.327	29.622	28.637	8.008	8.356	9.305	0.086
009*	5/b12811/	6NB	1 1/16 x 8g	0.3758	22.95	0.313	25.069	38.183	0.313	30.990	29.703	7.743	15.371	4.787	0.148
032*	3/a21909/	6NB	1 x 7/32	0.5369	24.40	0.476	23.498	42.090	0.476	34.161	30.191	8.443	7.231	11.617	0.042
021	2/a18710/	6NB	1 x 3/16	0.4786	27.37	0.544	31.284	43.413	0.544	35.235	31.146	9.960	12.114	11.893	0.061
118	15/a2507**/	6AA	1 x 7/32	0.5369	24.40	0.280	19.309	36.086	0.328	29.640	28.637	8.008	9.599	9.772	0.101
120	11/b17710/	6AA	1 1/16 x 7g	0.4924	29.40	0.348	22.505	37.437	0.399	30.946	30.035	10.458	10.144	6.039	0.076
135	16/a2507**/	6AA	1 x ¼(.255)	0.5968	22.13	0.250	20.692	36.545	0.347	30.016	27.949	6.989	10.271	13.134	0.102
119	15/a21909/	6BA	1 x 7/32	0.5369	24.40	0.280	19.077	35.478	0.303	29.140	28.649	8.008	10.248	9.394	0.122
121	11/b17710/	6BA	1 1/16 x 7g	0.4924	29.40	0.348	23.955	39.437	0.493	32.391	30.035	10.458	7.995	6.631	0.043
122	1/a ⁿ 17610/	6BA	1 x 7g	0.4556	23.70	0.271	23.433	38.354	0.434	31.502	28.431	7.692	9.776	10.301	0.063
136	16/a2507**/	6BA	1 x ¼(.255)	0.5968	22.13	0.250	19.521	35.707	0.312	29.328	27.949	6.989	10.368	12.079	0.120
073	16/a2507**/	8WB	1 x ¼(.255)	0.5968	12.48	0.133	9.263	32.095	0.191	26.361	24.373	3.248	4.255	12.181	0.086

TABLE No. A-5.4.2

The mean coefficient of friction from the experimental determination of redundant

work and the apparent strain method

mean draw speed = 5 ft min^{-1}

lubricant : TD 50

Test	Tube reference	Die	Tube od (in) x	Inlet	Reduct-	Homoge-	Mean	Mean	Mean	Mean	Homoge-	Homoge-	Friction	Mean	Mean
No.	code	76	gauge (in)	area	ion of	neous	draw	flow	equiva-	yield	neous	neous	work	pressure	coeff. of
					area	strain	stress	stress	lent	stress	yield st-	work			friction
				Ah	'r'	ε _h	Oza	Of	strain	Ym	ress Yh	Wh	Wf	Pm	μ
		12		in2	(%)		tonf in-2	tonf in ²	Em	tont in-2	tonf in-2	tonfin-2	tonf in-2	tent in-2	
074	15/a21909/	BWB	1 x 7/32	0.5369	13.67	0.147	9.136	31.148	0.181	26.061	24.897	3.659	4.411	9.620	0.092
080	11/617710/	BWB	1 1/16 x 7g	0.4924	17.71	0.195	9.553	33.045	0.219	27.142	26.474	5.160	3.621	4.281	0.048
081	11/b17711/	BWB	1 1/16 x 7g	0.4924	30.58	0.365	.9.583	37.354	0.384	30.681	30.346	11.078	3.804	6.117	0.072
077	17/b16012/	BWB	1 1/16 x 8g	0.4536	40.22	0.514	26.317	39.970	0.524	32.829	32.697	16.823	9.111	5.880	0.065
068	16/a2507**/	BPB	1 x ¼ (.255)	0.5968	12.48	0.133	8.079	31.071	0.165	25.520	24.373	3.248	3.879	10.496	0.083
004	11/b17711/	BPB	1 1/16 x 7g	0.4924	29.50	0.350	.6.959	38,888	0.416	31.421	25.321	10.573	3.899	5.075	0.026
008*	8/c16011/	BPB	1½ x 8g	0.4851	28.43	0.335	25.555	42.720	0.508	34.672	31.474	10.530	7.954	5.212	0.034
116	15/a21909/	BSD	1 x 7/32	0.5369	13.67	0.147	8.445	32.012	0.189	26.293	24.897	3.659	13.480	15.477	0.272
117	20 /b 23509/	BSD	1.040 x .235	0.5943	22.02	0.249	24.101	41.016	0.590	24.101	27.916	6.944	4.216	15.551	0.019
067	16/a2507**/	LOQB	1 x ¼(.255)	0.5968	7.85	0.082	6.452	30.346	0.148	24.925	21.914	1.791	2.770	14.261	0.064
065	17/b16012/	LOOB	1 1/16 x 8g	0.4536	34.13	0.417	23.750	39.286	0.484	32.267	21.267	13.044	8.128	7.005	0.052
061	17/b16012/	∝RA	1 1/16 x 8g	0.4536	22.96	0.261	4.307	35.023	0.286	28.767	28.207	7.358	6.094	7.341	0.067
108	20 /b 23509/	cRA	1.040 x .235	0.5943	8.85	0.093	5.955	31.377	0.172	25.772	22.520	2.086	1.516	10.307	0.027
		-													
								-							
								1			-				
															1

A-6 SPECIFICATIONS FOR THE EQUIPMENT AND INSTRUMENTATION

A-6.1 'Brookes' hydraulic drawbench

Manufacturer:	Brookes Ltd.
Primary drive:	3-phase induction motor;
	40 hp, 50 Hz and 1440 rev min ^{-1}
Hydraulic delivery:	25.2 g min ⁻¹ at 1440 rev min ⁻¹ and
	a pressure of 100 lbf in^{-2} ;
	maximum working pressure of
	2000 lbf in $^{-2}$ at 30 tonf
Nominal speed range:	0 to 15 ft min ^{-1}
Stroke:	54 in

A-6.1.1 Rotary drive

Primary drive:	3-phase induction motor; 7.5 hp and
	1435 rev min ^{-1}
Variable speed unit:	'Crofts' belt drive with speed ratio
	of 4:1
Reduction gear unit:	'Crofts' gear unit with reduction
	ratio 16.61:1
'Reynolds' chain:	Duplex chain 5/8 in pitch;
	Serial No.

A-6.2 'Sheffield' hydraulic drawbench

Manufacturer:	Department of Mechanical Engineering,
	Sheffield University
Primary drive:	'Crompton Parkinson' 50 hp motor;
	3-phase, 50 c/s, M.C. rating,
	1440 rev min ^{-1} ; 415 V Ellison starter:
	50 c/s, and 76 Amp

- A69 -

DS 240 pump ('Langdale Engineering Co.'); Hydraulic delivery: 29.5 g min⁻¹ at 1250 rev min⁻¹ for a pressure of 4400 lbf in $^{-2}$ on continuous duty; working intermittently at 1500 rev min⁻¹ pressures of 5500 lbf in⁻² are developed; at a maximum speed of 1650 rev min⁻¹ the oil pressure is 6500 lbf in⁻² 0 to 100 ft min⁻¹ Nominal speed range: 120 in Stroke: Capable of 30 tonf at 100 ft min⁻¹ Capacity: 'Reynolds' chain: Duplex chain 1 in pitch; No. 114 088

A-6.3 Equipment for the measurement of drawing parameters

A-6.3.1 Load transducers

A summary of the load transducers on the 'Brookes' bench is given on Table A-6.1.

A-6.3.2 Speed measurements

(i) Rotational speed:	'Smith' type tachogenerator; 25 volts				
	d.c./1000 rev min ⁻¹ ; output maximum				
	current 100 mA; armature resistance				
	39 ohm				
ii) Draw speed:	'LAS - 15' photo-cell; supply voltage				
	11-20 kHz; light source: 2.5 volts				

A-6.3.3 Other data recording accessories

Voltage supply:	'Farnell L30 BT' stabilised power				
	source; 0 to 30 volts d.c. and				
	1 Amp maximum				
Bridge amplifier:	'SGA 300 KAP'; provides supply voltage				

- A70 -

virtually independent of the source voltage; potentiometers for zero, span and bridge supply adjustments Ultra-violet recorder: 'S.E. Oscillograph 3006'; 12 channels Calibrating meter: Type 'TCAA' advance electronics

A-6.4 Testing machines

Load cells calibration

'Denison' universal hydraulic testing machine

Model 7104 DCJ

Machine No. E62404

Tensile testing machine

'Denison' universal testing machine Model T42B4 Serial No. 28176

Metrology equipment (for the verification of die angles)

'Nikon', Nippon Kogaku (Japan)

Model Shadowgraph 5A

Serial No. 2368

TABLE	No.	A-6.1	Load	transducers

'BROOKES' DRAWBENCH							
Reference name of the transducer	Measured parameter	Strain gauge resistance	Manufacturer of the gauges	Galvanometer code	U-V recorder channel No.		
TAG LOAD	Draw force	75 ohm	Saunders - Roe	M100 9043	4		
	Torque	29 ohm	"	M40 9435	5		
PLUG LOAD	Plug force	120 ohm	Tinsley Tylcon	B450 2-165	8		
RING LOAD (split-die)	Axial force	100 ohm		A1000 2-298	9		
CUP LOAD (split-die)	Drag force	1 <mark>2</mark> 0 ohm	"	M20 9037	1		
	Torque	50 ohm					

A-7 CALIBRATION CURVES

A73 -

channel : 8 galvo : B-450 2-165 voltage : 6.5 V range : 10 tonf

Fig. A-7.3 Calibration curve of the ring load cell of the split rotating die.

- A75 -

Fig. A-7.4 Calibration curve of the cup-load cell of the split rotating die.

- A76 -

A77 -

1

- A-8 Deformation pattern for the upper bound solution of the drawing of polygonal tubes from round stock on a cylindrical plug.
- A-8.1 Banding the exit plane with N-2 hyperbolic curves.

Fig. A-8.1 Double symmetric section at the exit plane.

OP is a line of symmetry and the included angle $\phi = \beta = \frac{\pi}{Ns}$. The section is banded by N-2 hyperbolic curves and the inner limiting curve corresponds to the plug surface. The equation of the hyperbola is given by :-

$$\frac{x_{i}^{2}}{a_{i}^{2}} - \frac{y_{i}^{2}}{b_{i}^{2}} = 1$$
 (A-8.1)

with respect to x_i, y_i axes, or

$$\frac{\left(X_{a}\sin\xi + Y_{a}\cos\xi - 1_{i}\right)^{2}}{a_{i}^{2}} - \frac{\left(X_{a}\cos\xi - Y_{a}\sin\xi\right)^{2}}{b_{i}^{2}} = 1 \quad (A-8.2)$$

where
$$\begin{pmatrix} x_i \\ y_i \end{pmatrix} = \begin{pmatrix} -\sin\xi - \cos\xi \\ \cos\xi - \sin\xi \end{pmatrix} \begin{cases} X_a - 1_i \sin\xi \\ Y_a - 1_i \cos\xi \end{cases}$$
 (A-8.3)

and $\xi = \phi$

The intersection of the hyperbola i and the straight line $y_i = -\tan\phi$. $x_i + l_i \tan\phi$ is denoted by $(v,w) \equiv (x_i, y_i)$, where $v = x_i = \frac{-l_i \tan^4\phi^+}{(1 - \tan^4\phi)(a_i^2 + l_i^2 \tan^4\phi)}$ $(1 - \tan^4\phi)$

for
$$\phi = \beta < \pi/4$$
 (A-8.4)

(A-8.5)

or $v = x_i = \frac{a_i^2 + l_i^2}{2l_i}$ for $\phi = \beta = \pi/4$

and
$$w = y_i = tan\phi (-v + 1_i)$$

The cross-sectional area enclosed by the hyperbola i, the straight line $y_i = -\tan \phi x_i + 1 \tan \phi$, the plug surface and the Y axis is found to be

$$A_{T}(i) = \cot \phi \left[v \sqrt{v^{2} - a_{i}^{2}} - a_{i}^{2} ln \left\{ \frac{v + \sqrt{v^{2} - a_{i}^{2}}}{a_{i}} \right\} \right]$$

$$+ q_{i}^{2} \cdot tan\phi - \phi \cdot r_{p}^{2}$$
 (A-8.6)

$$q_{i} = 1_{i} - v$$
 (A-8.7)

 a_i , the distance from the origin $(0,0)_i$ to the vertex of the hyperbola i is adjusted as the (x_i, y_i) axes translate along the straight line $X_a = \tan \xi$. Y_a or the line of symmetry. The value of a_i is selected to suit the corners of the asymptotes drawn for every l_i . In particular, $a_i = N \stackrel{<}{=} 0.1$, so that the hyperbola corresponding to the outer surface of the polygon is almost coincident with the asymptote.

e.g.
$$a_i = 1 - \frac{(i-1)}{N}$$
, where $i = 2, \dots, n = N$

The diagonal wall thickness, $t_a = \kappa H_a$ is divided into N - 2 elemental lengths. Let the elemental lengths be Δt_2 , Δt_3 , Δt_{N-1} such that $\sum_{i=2} \Delta t_i = t_a$. Then, i

$$l_i = l_2 + \sum_{n=2} \Delta t_{n-1}$$
, $3 \le i \le N$

If $\Delta t_2 = \Delta t_3 \dots = \Delta t_{N-1} = \Delta t$, then

$$\Delta t = \frac{\kappa H_a}{(N-1)} \text{ and}$$

$$l_i = l_2 + (i-2)\Delta t$$

$$= r_p + (i-2) \cdot \Delta t \qquad 3 \le i \le N$$

(A-8.8)

A-8.2 Dividing the entry plane into (N-2)X (M-1) sectors. Each sector is further sub-divided into a small and a large triangle.

Assuming a constant reduction of area, the outer radius $U_r(i)_r$ of the cross-sectional area at the entry plane corresponding to the material enclosed by the hyperbola i and the plug at the exit, can be determined.

If
$$A_r = \frac{\text{Area at entry}}{\text{Area at exit}} = \frac{A_b}{A_a}$$
,

then $\left(\frac{2\varphi}{2\pi}\right)$. $\pi U_r^2(i) = A_T(i)$. $A_r + \frac{2\varphi}{2\pi}$. πr_p^2

i.e. ϕ . $U_{r}^{2}(i) = A_{T}(i) \cdot A_{r} + \phi \cdot r_{p}^{2}$

By substituting for $A_{T}(i)$ and simplifying,

$$U_{\mathbf{r}}(\mathbf{i}) = \mathrm{SQRT} \left\{ \frac{1}{\phi} \left\{ \operatorname{cot}\phi : \left[\mathbf{v} \sqrt{\mathbf{v}^{2} - \mathbf{a_{i}}^{2}} - \mathbf{a_{i}}^{2} \right] \right\} \right\}$$

$$(A-8.9)$$

$$\ln \left\{ \frac{\mathbf{v} + \sqrt{\mathbf{v}^{2} - \mathbf{a_{i}}^{2}}}{\mathbf{a_{i}}} \right\} + q_{\mathbf{i}}^{2} \cdot \operatorname{tan}\phi A_{\mathbf{r}} + r_{\mathbf{p}}^{2}(1 - A_{\mathbf{r}}) \right\}$$

The area banded by the radii $U_r(i + 1)$ and $U_r(i)$ is divided into M - 1 sectors each subtending an angle $d\phi_j$, where j refers to the element between the radial lines j and j + 1. If the inclination of the radial line j to the Y_b axis is ϕ_j , then $d\phi_j = \phi_{j+1} - \phi_j$.

Also note (i) $\sum d\phi_j = d\phi_1 + d\phi_2 + \dots + \phi_2$

$$d\phi_{M-1} = 2\phi$$
, and

if $d\phi_1 = d\phi_2$, ... = $d\phi_{m-1} = d\phi$, then

$$d\phi = \frac{2\phi}{M-1}$$
 (A-8.10)

(ii) $\phi_j = \phi_{j-1} + d\phi_{j-1}$

$$= d\phi_{1} + d\phi_{2} + \dots + d\phi_{j-1}$$

= (j-1) d\phi
= (j-1) \ldots \frac{2\phi}{M-1} (A-8.11)

The elemental area of each sector, say ABCD in fig. A-8.2(b) is divided into a large triangle ADC and a small triangle ABC. If the angle subtended at the centre is $d\phi_j = d\alpha$ and the radial increment AD = δR , where $U_r(i) = R$, then the area of the large triangle ADC,

$$\Delta_{L} = \frac{1}{2} \delta R (R + \delta R) \delta \alpha$$

= $\frac{1}{2} R \cdot \delta R \cdot \delta \alpha + \frac{1}{2} \delta R^{2} \cdot \delta \alpha$ (A-8.12)

and the small triangle ABC,

$$\Delta_{c} = \frac{1}{2}R \cdot \delta R \cdot \delta \alpha \qquad (A-8.13)$$

From equations (A-8.12) and (A-8.13),

$$\Delta_{d} = \Delta_{L} - \Delta_{S} = \frac{1}{2} \delta R^{2} \cdot \delta \alpha \qquad (A-8.14)$$

and
$$\Delta_{\rm L} + \Delta_{\rm S} = ABCD$$
 (A-8.15)

From equations (A-8.14) and (A-8.15),

 $\Delta_{\rm L} = \frac{1}{2} (ABCD + \Delta_{\rm d}) \tag{A-8.16a}$

 $\Delta_{s} = \frac{1}{2} (ABCD - \Delta_{s})$ (A-8.17a)

Substituting for area ABCD and \triangle_d , the general expressions for the areas of the large and small triangles are:

$$\Delta_{L} = \frac{1}{2} \cdot \frac{\Phi}{M-1} \left\{ \left(U_{r}^{2}(i+1) - U_{r}^{2}(i) \right) + \left(U_{r}(i+1) - U_{r}(i) \right)^{2} \right\}$$
(A-8.16b)

$$\Delta_{\rm S} = \frac{1}{2} \cdot \frac{\Phi}{M-1} \left\{ \left(U_{\rm r}^{2}(i+1) - U_{\rm r}^{2}(i) \right) - \left(U_{\rm r}^{2}(i+1) - U_{\rm r}^{2}(i) \right)^{2} \right\}$$
(A-8.17b)

The co-ordinates of A, B, C, D, are readily determined. e.g. at B,

$$X_{b}(i,j+1) = U_{r}(i)\sin\phi_{j} + 1$$

 $Y_{b}(i,j+1) = U_{r}(i)\cos\phi_{j} + 1$
(A-8.18)

With known co-ordinates of A, B, C, D the centroids of the large and the small triangles are calculated. The centroid of the large triangle ACD,

$$X_{b}CL(i,j) = \left\{ X_{b}(i,j) + X_{b}(i+1,j+1) + X_{b}(i+1,j) \right\} / 3$$
$$Y_{b}CL(i,j) = \left\{ Y_{b}(i,j) + Y_{b}(i+1,j+1) + Y_{b}(i+1,j) \right\} / 3$$
(A-8.19)

and the centroid of the small triangle ACB,

$$X_{b}^{cS(i,j)} = \left\{ X_{b}^{(i,j)} + X_{b}^{(i+1,j+1)} + X_{b}^{(i,j+1)} \right\} / 3$$

$$Y_{b}^{cS(i,j)} = \left\{ Y_{b}^{(i,j)} + Y_{b}^{(i+1,j+1)} + Y_{b}^{(i,j+1)} \right\} / 3$$

(A-8.20)

A-8.3 Mapping the exit plane with triangles corresponding to those at entry plane (Fig. A-8.3).

(a) Exit plane

(b) Entry plane

- A85 -

Each triangle at the entry plane is transformed into a corresponding triangle at the exit section, with the constant reduction of area A_r ,

$$\Delta_{L}' = \Delta_{L} / A_{r}$$

$$\Delta_{S}' = \Delta_{S} / A_{r}$$
(A-8.21)

Starting from the Y_a axis, and with the intersection of Y_a axis and the hyperbolae i and i + 1, the vertices (1) and (2) (or $(X_a, Y_a)_{i,j}$ and $(X_a, Y_a)_{i+1,j}$, where j = 1) of the large triangle are known. The problem now remains to find the third point of the triangle. Since area (Δ_L') is known and the third point is known to lie on the hyperbola i + 1, the co-ordinates of the vertex (3) (or $(X_a, Y_a)_{i+1,j+1}$) can be determined. The vertex (3) of the large triangle now becomes the vertex (2) of the smaller triangle (Δ_S') and in a similar manner the third vertex known to lie on the hyperbola i, can be determined.

The same procedure is repeated until the whole band area (i), between hyperbolae i + 1 and i is mapped with large and small triangles. The next band is similarly mapped to complete the whole exit plane.

Finally the centroids of the mapped triangles are located as in the entry plane.

Location of the third vertex of the triangle

Area of the triangle,

$$A' = \frac{1}{2} \left\{ (Y_2 X_1 - Y_1 X_2) + Y_3 (X_2 - X_1) + X_3 (Y_1 - Y_2) \right\}$$
 (A-8.22)

Two vertices are known and the third lies on the hyperbola, i.e.

$$\frac{(X_3 \sin\xi + Y_3 \cos\xi - 1)^2}{a^2} - \frac{(X_3 \cos\xi - Y_3 \sin\xi)^2}{b^2} = 1$$
 (A-8.23)

Equations (A-8.22) and (A-8.23) are solved simultaneously to yield,

$$x_{3} = \frac{-(c_{2} - d_{2}) + \sqrt{(c_{2} - d_{2})^{2} - 4(c_{3} - d_{3})(c_{1} - d_{1} - a^{2})}}{2(c_{3} - d_{3})}$$

(A-8.24)

The computer selects the appropriate value and calculates,

$$Y_3 = m_1 - k_1 X_3$$
 (A-8.25)

where,

$$m_1 = \frac{2\Delta' - (Y_2 X_1 - Y_1 X_2)}{(X_2 - X_1)}$$

$$k_1 = \frac{Y_1 - Y_2}{X_2 - X_1}$$

$$c_{3} = \sin^{2}\xi - k_{1}\sin^{2}\xi + k_{1}^{2}\cos^{2}\xi$$

$$c_{2} = m_{1}\sin^{2}\xi - 21\sin\xi - 2k_{1}m_{1}\cos^{2}\xi + 2k_{1}1\cos\xi$$

$$c_{1} = m_{1}^{2}\cos^{2}\xi - 2m_{1}1\cos\xi + 1^{2}$$

$$d_{3} = \tan^{2}\phi \left\{\cos^{2}\xi + k_{1}\sin^{2}\xi + k_{1}^{2}\sin^{2}\xi\right\}$$

$$d_{2} = \tan^{2}\phi \left\{-m_{1}\sin^{2}\xi - 2k_{1}m_{1}\sin^{2}\xi\right\}$$

$$d_{1} = \tan^{2}\phi \cdot m_{1}^{2} \cdot \sin^{2}\xi$$

The inner curve is a circle and the third point of the triangle will therefore be calculated from the simultaneous solution of the equations of the circle and the area of a triangle

i.e.
$$(X_3, Y_3)$$
 satisfies $X^2 + Y^2 = r_p^2$ (A-8.26)

$$X_{3} = \frac{m_{1}k_{1} + \sqrt{(m_{1}k_{1})^{2} - (1 + k_{1}^{2})(m_{1}^{2} - r_{p}^{2})}}{(1 + k_{1}^{2})}$$
(A-8.27)

The computer selects the larger positive value and determines

$$Y_3 = m_1 - k_1 X_3$$
 (A-8.28)

The centroids of triangles at the exit plane

For the large triangle:

$$X_{a}CL(i,j) = \left\{ X_{a}(i,j) + X_{a}(i+1,j+1) + X_{a}(i+1,j) \right\} / 3$$

$$Y_{a}CL(i,j) = \left\{ Y_{a}(i,j) + Y_{a}(i+1,j+1) + Y_{a}(i+1,j) \right\} / 3$$
(A-8.29)

For the small triangle:

$$X_{a}CS(i,j) = \left\{ X_{a}(i,j) + X_{a}(i+1,j+1) + X_{a}(i,j+1) \right\} / 3$$

$$Y_{a}CS(i,j) = \left\{ Y_{a}(i,j) + Y_{a}(i+1,j+1) + Y_{a}(i,j+1) \right\} / 3$$

(A-8.30)

A-8.4 Shear surfaces defining the plastic deforming zone at the die, Fig. A-8.4 and A-8.5

A triangular element at the die entry is assumed to shear at an elemental surface inclined at an angle t0 to the die axis. The position of the element is defined on a general spherical surface (ρ_b, θ, ϕ) with the centre at the virtual apex of the equivalent die cone. The parameter t is used to optimize the shear surface by minimising the total shear work.

Similarly a general pyramidical shear surface is defined at the exit of the deforming zone and the parameter t optimizes the geometry of the surface.

Defining the 'entry' plane (X_b, Y_b) as the plane perpendicular to the die axis through the point where the outermost tube elements (i.e. at $r = R_b$) come into contact with the die, and forming starts; similarly the 'exit' plane is defined as the plane perpendicular to the die axis which passes through the point where the outermost material elements start to flow parallel to the die axis, thus:-

- (i) δ_b(i,j) is the horizontal distance an element with its centroid denoted by (i,j), travels after shearing at the assumed discontinuity boundary, measured to the 'entry' plane.
- (ii) $\delta_a(i,j)$ is the horizontal distance the particle travels after shear at the assumed pyrammidical discontinuity boundary, measured to the 'exit' plane.

Therefore, the total horizontal distance covered by the particle in the deforming zone becomes:-

 $Z_{s}(i,j) = DIEH + \delta_{b}(i,j) - \delta_{a}(i,j)$ (A-8.31)

- A89 -

If the centroid of a triangular element at entry is $(X_b, Y_b)'(i, j)$ and the centroid of its corresponding transformed triangular element at the exit is $(X_a, Y_a)'(i, j)$, then the vector joining the two centroids defines the flow. $(X_b, Y_b)'$ denotes a plane through the centroid of the triangular element on the assumed shear surface and parallel to the 'entry' plane (X_b, Y_b) . Plane $(X_a, Y_a)'$ is similarly defined on the exit shear boundary.

The length of the flow path Z_t for each element, and the relative angular deflexions η and ψ as the element flows through the deforming zone are determined from the geometry (see fig. A-8.6). The results are summarised below.

$$\delta_{b}(i,j) = \rho_{b}(\cos\theta(i,j) - \cos\alpha_{e}) \qquad (A-8.32)$$
where $\theta(i,j) = \sin^{-1}\left\{\frac{R_{b}(i,j)}{\rho_{b}}\right\} \qquad (A-8.33)$

and $R_{b}(i,j) = \sqrt{X_{b}^{2}(i,j) + Y_{b}^{2}(i,j)}$

$$\phi_{A}(i,j) = \tan^{-1} \left\{ \frac{X_{a}(i,j)}{Y_{a}(i,j)} \right\}$$

$$\phi_{B}(i,j) = \tan^{-1} \left\{ \frac{X_{b}(i,j)}{Y_{b}(i,j)} \right\}$$
(A-8.34)

$$\delta_{a}(i,j) = \delta_{a} \left\{ \frac{H_{a}}{2R_{a}(i,j)\cos\Phi_{A}(i,j)} - 1 \right\}$$
(A-8.35)

where
$$\Phi_{A}(i,j) = \begin{cases} \tan^{-1}\left\{\frac{X_{a}(i,j)}{Y_{a}(i,j)}\right\}, \text{ for } \phi_{A} \leq \beta \\ 2\beta - \tan^{-1}\left\{\frac{X_{a}(i,j)}{Y_{a}(i,j)}\right\}, \text{ for } \phi_{A} > \beta \end{cases}$$
 (A-8.36)

Fig. A-8.4

3.4 Plastic deformation zone in the drawing of polygonal tube from round stock on a cylindrical plug.

- A92 -

(a) A space diagram to illustrate the approximate flow path of an element in the deformation zone relative to an equivalent axisymmetric drawing condition.

(c) The exit plane (or the plane through the element (i,j) where it ceases to deform).
 (d) The pyramidical surface at the exit (to the deformation zone).
 Fig. A-8.6 Detailed sketches for the derivation of the relative angles η, ψ and Φ_{B/A}

and the flow path Zt (see sections A-8.4 & A-8.5).

and
$$R_{a}(i,j) = \sqrt{X_{a}^{2}(i,j) + Y_{a}^{2}(i,j)}$$
 (A-8.37)

$$Z_{t}(i,j) = \left[\left\{ X_{b}(i,j) - X_{a}(i,j) \right\}^{2} + \left\{ Y_{b}(i,j) - Y_{a}(i,j) \right\}^{2} + Z_{s}^{2}(i,j) \right]^{\frac{1}{2}}$$
(A-8.38)

$$\eta(i,j) = \tan^{-1} \left\{ \frac{R_a(i,j)\sin \phi_{B/A}(i,j)}{Z_p(i,j)} \right\}$$
(A-8.39)

where
$$\phi_{B/A}(i,j) = \tan^{-1} \left\{ \frac{X_b(i,j)}{Y_b(i,j)} - \tan^{-1} \left\{ \frac{X_a(i,j)}{Y_a(i,j)} \right\}$$
 (A-8.40)

and
$$Z_{p}(i,j) = \left[\left\{ R_{b}(i,j) - R_{a}(i,j)\cos\phi_{B/A}(i,j) \right\}^{2} + Z_{s}^{2}(i,j) \right]^{\frac{1}{2}}$$
(A-8.41)

$$\psi(\mathbf{i},\mathbf{j}) = \left| \Theta_{(\mathbf{i},\mathbf{j})} - \Theta_{(\mathbf{i},\mathbf{j})} \right| \qquad (A-8.42)$$

where
$$\Theta_{(i,j)} = \tan^{-1} \left\{ \frac{R_b(i,j) - R_a(i,j)\cos\phi_{B/A}(i,j)}{Z_s(i,j)} \right\}$$
 (A-8.43)

A-8.6 Velocity discontinuities, \dot{U}_{ra} and \dot{U}_{rb}

The resultant velocity of the tangential components on both sides of shear surface gives the velocity discontinuity.

From Fig. A-8.7 and A-8.8, the entry shear surface yields,

$$\stackrel{\cdot}{\mathbf{U}_{\mathbf{rb}}} = \left[\stackrel{\cdot}{\mathbf{U}_{\phi}}^{2} + \left\{ - \stackrel{\cdot}{\mathbf{U}_{b}} \operatorname{sint}\theta + \stackrel{\cdot}{\mathbf{U}_{\theta}} \cos((1 - t)\theta) + \right. \right]$$

$$\left[\stackrel{\cdot}{\mathbf{U}_{\rho}} \sin((1 - t)\theta) \right\}^{2} \left] \stackrel{1}{\underline{2}}$$
(A-8.44)

Substituting for the values of velocity components derived in equations (3.6), the above equation reduces to,

$$\dot{U}_{rb} = U_{b} \left[\left\{ \frac{\cos t\theta}{\cos (1-t)\theta} \cdot \frac{tan\eta}{\cos \psi} \right\}^{2} + \left\{ -\sin t\theta + (A-8.45)\right\} \right]$$

$$\cosh \theta \tan \psi + \cosh \theta \tan (1-t)\theta \left\{ 2 \right\}^{2}$$

A similar situation occurs at the exit shear surface boundary when the velocity of the particle just before shear is $(U_{\rho}, U_{\theta}, U_{\phi})$, but after shear the particle travels parallel to the tube axis with a velocity U_{a} . From the assumption of an equivalent divergent deformation passage,

$$\dot{U}_{ra} = \dot{U}_{rb} \cdot \left(\frac{\rho_{b}'}{\rho_{a}'}\right)^{2}$$
 (A-8.46)

where $\rho_{b}^{\ \prime \, 2}$ and $\rho_{a}^{\ \prime \, 2}$ are given by equations (3.5).

Fig. A-8.7 Velocity discontinuity \dot{U}^* at the entry shear surface in the drawing of polygonal tube from round stock on a cylindrical plug.

 $\dot{U}_{rs1} = -U_b sint\theta + \dot{U}_{\theta} cos(\theta - t\theta) + \dot{U}_{\rho} sin(\theta - t\theta)$

(a) Resultant velocity component (\dot{U}_{rsl}) tangential to the shear surface and the ρ - θ plane

 $\dot{(U_{\varphi})}$ = component of velocity normal to ρ - θ plane)

(b) The resultant velocity tangential to the shear surface (or the velocity discontinuity suffered by an element entering the deformation zone)

$$\dot{\mathbf{u}}_{rb} = \left\{ \dot{\mathbf{u}}_{\phi}^{2} + \mathbf{u}_{rs1}^{2} \right\}^{\frac{1}{2}} = \left\{ \dot{\mathbf{u}}_{\phi}^{2} + \left[-\mathbf{u}_{b} \operatorname{sint}\theta + \dot{\mathbf{u}}_{\theta} \cos(\theta - t\theta) + \dot{\mathbf{u}}_{\rho} \sin(\theta - t\theta) \right]^{2} \right\}^{\frac{1}{2}}$$

Fig. A-8.8 The derivation of the velocity discontinuity of an element at the entry shear surface.

Fig. A-9.1 Round tube drawn through an elliptical polygonal die on a cylindrical plug divided into elements for the lower bound solution.

A-9.1 Geometrical derivations

N

The die length (L) is divided into (NL-1) elemental lengths such that,

$$\sum_{i}^{L-1} \Delta Z_{i} = L$$
(A-9.1)

Using the geometrical relationship shown in Chapter 3.3.2 and Fig. 3.6, and starting from the inlet plane, where $Z_{i=1} = 0$, the following calculations are performed:-

(a) At any section Z_i , calculate R(i), $\lambda_s(i)$, $\lambda_c(i)$, A(i). The following relationship is developed in Fig. A-9.1:-

$$A_{i} = A_{1} + \sum_{j=2}^{i} \Delta A_{j-1}$$
 (A-9.2)

$$Z_{i} = Z_{1} + \sum_{j=2}^{1} \Delta Z_{j-1}$$
 (A-9.3)

- (b) For the tube element i, between the surfaces i and i + 1, the die/tube surface areas $\triangle A_{s1}$ and $\triangle A_{c1}$, and the plug/tube surface area $\triangle A_{s2}$ are calculated. The change of the cross-sectional area of the tube over the element i, $\triangle A(i)$ is determined.
- A-9.2 Development of recursive equations to calculate the draw stress and the mean pressure.

Starting from the inlet plane, surface i = 1, since there is no backpull $\sigma_{z_1} = 0$, the stress on the surface i = 2 can be determined from the equilibrium equation (3.82). The calculated value of σ_{z_2} is used to obtain σ_{z_3} , etc. The general equation to determine the

stress on surface i is given by,

$$\sigma_{z_{j}} = \sigma_{z_{1}} + \sum_{j=2}^{i} \Delta \sigma_{z_{j-1}}$$
(A-9.4)

The stress esquation (3.82) established from the equilibrium of the element i in the horizontal direction and the use of Tresca's yield criterion, can be conveniently re-written as,

$$\Delta \left(\frac{\sigma_{\mathbf{z}_{\mathbf{i}}}}{Y}\right) = \frac{1}{(A_{\mathbf{i}} + \Delta A_{\mathbf{i}})} \left\{ -\left(\frac{\sigma_{\mathbf{z}_{\mathbf{i}}}}{Y}\right) \cdot \Delta A_{\mathbf{i}} + \left[1 - \left(\frac{\sigma_{\mathbf{z}_{\mathbf{i}}}}{Y}\right)\right] \right\}$$

$$\left[K_{\mathbf{s}_{1}} \cdot \Delta A_{\mathbf{s}_{1}}(\mathbf{i}) + K_{\mathbf{c}_{1}} \cdot \Delta A_{\mathbf{c}_{1}}(\mathbf{i}) + K_{\mathbf{s}_{2}} \cdot \Delta A_{\mathbf{s}_{2}}(\mathbf{i}) \right] \right\}$$

$$(A-9.5)$$

where,

$$K_{s_{1}} = (\sin\alpha_{s} + \mu\cos\alpha_{s}) = \text{constant 1}$$

$$K_{c_{1}} = (\sin\alpha_{c} + \mu\cos\alpha_{c}) = \text{constant 2} \qquad (A-9.6)$$

$$K_{s_{2}} = \mu = \text{constant 3}$$

Example:

Starting from $Z_{i} = 1 = 0$ and the known conditions of stress the change of stress over element i = 1, can be determined. Say $\left(\frac{\sigma_{z_1}}{\gamma}\right) = 0$, for element i = 1,

$$\Delta \left(\frac{\sigma_{z_1}}{Y}\right) = \frac{1}{(A_1 + \Delta A_1)} \left\{ -(0) \cdot \Delta A_1 + \begin{bmatrix} 1 - (0) \end{bmatrix} \right\}$$
$$\begin{bmatrix} K_{s_1} \cdot \Delta A_{s_1}(1) + K_{s_1} \cdot \Delta A_{s_1}(1) + K_{s_1} \cdot \Delta A_{s_2}(1) \end{bmatrix}$$

for element i = 2,

$$\begin{pmatrix} \frac{\sigma_{\mathbf{z}_{2}}}{\mathbf{y}} \end{pmatrix} = \begin{pmatrix} \frac{\sigma_{\mathbf{z}_{1}}}{\mathbf{y}} \end{pmatrix} + \Delta \begin{pmatrix} \frac{\sigma_{\mathbf{z}_{1}}}{\mathbf{y}} \end{pmatrix} = \Delta \begin{pmatrix} \frac{\sigma_{\mathbf{z}_{1}}}{\mathbf{y}} \end{pmatrix}$$

$$\cdot \quad \Delta \begin{pmatrix} \frac{\sigma_{\mathbf{z}_{2}}}{\mathbf{y}} \end{pmatrix} = \frac{1}{(\mathbf{A}_{2} + \Delta \mathbf{A}_{2})} \quad \left\{ - \begin{pmatrix} \frac{\sigma_{\mathbf{z}_{2}}}{\mathbf{y}} \end{pmatrix} \cdot \Delta \mathbf{A}_{2} + \left[1 - \begin{pmatrix} \frac{\sigma_{\mathbf{z}_{2}}}{\mathbf{y}} \end{pmatrix} \right] \right\}$$

$$\left[\mathbf{K}_{\mathbf{s}_{1}} \cdot \Delta \mathbf{A}_{\mathbf{s}_{1}}(2) + \mathbf{K}_{\mathbf{c}_{1}} \cdot \Delta \mathbf{A}_{\mathbf{c}_{1}}(2) + \mathbf{K}_{\mathbf{s}_{2}} \cdot \Delta \mathbf{A}_{\mathbf{s}_{2}}(2) \right] \right\}$$

..... etc.

The mean pressure at the die/tube interface can be calculated from the total normal force for elements $i = 1, 2, \ldots$ NL divided by the total die/tube surface area.

The normal force at the die/tube interface of the element i,

$$NF_{1}(i) = p_{i} \cdot \left(\Delta A_{s_{1}}(i) + \Delta A_{c_{1}}(i) \right)$$

$$= p_{i} \cdot \Delta A_{sT}(i)$$

$$NE_{1}(i) = (-1)$$

or

 $\frac{\mathrm{NF}_{1}(1)}{\mathrm{Y}} = \left\{ 1 - \left(\frac{\mathrm{O}_{z_{1}}}{\mathrm{Y}}\right) \right\} \cdot \Delta \mathrm{A}_{\mathrm{ST}}(1)$ (A-9.7)

.'. the total normal force for elements i = 1, NL,

$$\frac{NF_{1}}{Y} = \sum_{i=1}^{NL-1} \frac{NF_{1}(i)}{Y}$$
$$= \sum_{i=1}^{NL-1} \left\{ 1 - \left(\frac{\sigma_{z_{i}}}{Y}\right) \right\} \cdot \Delta A_{sT}(i)$$
(A-9.8)

The dimensionless mean pressure becomes,

$$\left(\frac{\mathbf{p}_{m}}{\mathbf{y}}\right) = \frac{(\mathrm{NF}_{1}/\mathrm{Y})}{\sum \Delta A_{\mathrm{sT}}(\mathrm{i})}$$

$$= \frac{\sum \left\{1 - \left(\frac{\sigma_{\mathbf{z}_{\mathbf{i}}}}{Y}\right)\right\} \cdot \Delta A_{\mathbf{sT}}(\mathbf{i})}{\sum \Delta A_{\mathbf{sT}}(\mathbf{i})}$$
$$= 1 - \frac{\sum \left(\frac{\sigma_{\mathbf{z}_{\mathbf{i}}}}{Y}\right) \cdot \Delta A_{\mathbf{sT}}(\mathbf{i})}{\sum \Delta A_{\mathbf{sT}}(\mathbf{i})}$$

(A-9.9)

A-10 PARAMETERS FOR THE DESIGN OF DIES FOR THE DRAWING OF POLYGONAL TUBE FROM ROUND ON A CYLINDRICAL PLUG

A-10.1 Equivalent die semi-angle

In the drawing of polygonal tube from round stock on a cylindrical plug, a circular section on entry transforms to a polygonal section at the exit in a single pass; the die passage comprises the conical and the plane surfaces of different inclinations to the tube axis to allow for gradual transformation. The conventional term of the die semiangle is therefore, inapplicable; the die angle changes from a minimum at the diagonals to a maximum at the mid section of the die. An equivalent die semi-angle ' α_e ' is, therefore, defined to facilitate the comparison between the dies drawing tubes with the same number of sides and with different numbers of sides.

The equivalent die semi-angle ' α_{e} ' is the semi-cone angle of the axisymmetric tube drawing die which produces the same reduction of area as the polygonal tube drawing die, for the same die length. See Fig. A-10.1.

From the equivalent axisymmetric drawing, Fig. A-10.1 (b), the die length is given by,

$$L = \frac{D_b - D_e}{\tan \alpha_e}$$
(A-10.1)

Therefore, the inclinations of the conical and plane surfaces of the polygonal tube drawing die become:-

$$\alpha_{c} = \tan^{-1} \left\{ \frac{D_{b} - H_{a}}{2L} \right\}$$

$$\alpha_{s} = \tan^{-1} \left\{ \frac{D_{b} - H_{a} \cos\beta}{2L} \right\}$$
(A-10.2)
(A-10.3)

(b) axisymmetric tube drawing die

For the pyramidical and triangular plane surface die shapes, if the diameter of the input stock is different from that used in the design, the deformation pattern does not change; however, the equivalent die semi-angle changes. If the outside diameter of the new stock is D_b ', then the effective length,

$$L_{e} = \frac{\frac{D_{b}' - H_{a} \cos\beta}{2 \tan \alpha_{s}}}{(A-10.4)}$$

and the equivalent die semi-angle becomes :-

$$\alpha_{e}' = \tan^{-1} \left\{ \frac{D_{b}' - D_{e}}{2L_{e}} \right\}$$
 (A-10.5)

A-10.2 Design data

Tables A-10.1 and A-10.2 show die design parameters for the input stock of outside diameter of 1 in and 1 1/16 in and 1 1/8 in and 1 3/16 in respectively, for different die semi-angles. The optimum equivalent die semi-angle of 8° was used in the design of dies for drawing of polygonal tube from round on a cylindrical plug.

A-10.2.1 Details of dies manufactured for the drawing of polygonal tube from round (mechanical drawings are given on pages

A109, A110 and A111)

(1) Square die

Reference: 4WB

Exit section diagonal length $H_a = 1.000$ in Inlet stock o.d.. $D_b = 1$ in Die length L = 0.7191 in Conical angle $\alpha_c = 0^{\circ}$ Angle of inclination of the plane surface to the die axis

$$\alpha_{s} = 11^{\circ} 31$$

Equivalent die semi-angle $\alpha_e = 8^\circ$

However, this die was manufactured with the exit diagonal length $H_a = 1$ in, but a conical angle $\alpha_c = 1^\circ 54'$ in order to draw tubes with o.d. of 1 1/16 in and an equivalent angle of $7^\circ 54'$.

(2) Hexagonal die

Reference: 6WB	
Exit diagonal length	$H_{a} = 1.000 \text{ in}$
Inlet stock o.d.	$D_{b} = 1 \ 1/8 \ in$
Die length	L = 0.767 in
Conical angle	$\alpha_{c} = 4^{\circ} 40'$

Angle of inclination of the plane surface to the die axis

$$\alpha = 9^{\circ} 36'$$

Equivalent die semi-angle

$$\alpha_e = 8^\circ$$

(3) Octagonal die

Reference: 8WBExit diagonal length $H_a = 1.000$ inInlet stock o.d. $D_b = 1 1/8$ inDie lengthL = 0.627 inConical angle $\alpha_c = 5^{\circ} 42'$

Angle of inclination of the plane surface to the die axis

$$\alpha_s = 9^\circ 07'$$

Equivalent die semi angle

$$\alpha_e = 8^\circ$$

TABLE No. A-10.1

Parameters for the design of dies for drawing polygonal tube from round

	Nominal tube o.d. = 1.0000 in EQUIVALENT DIE SEMI-ANGLE ^Q e (degrees)									Nominal tube o.d. = 1.0625 in EQUIVALENT DIE SEMI-ANGLE α_{β} (degrees)							
		4	5	6	7*	8	9	10		4	5	6	7*	8	9	10	
SQUARE TUBE	L	1.445	1.155	0.961	0.823	0.719	0.638	0.573		1.892	1.512	1.259	1.077	0.941	0.835	0.750	
	ac	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.946	1.184	1.422	1.661	1.901	2.142	2.385	
	as	5.786	7.225	8.660	10.089	11.511	12.927	14.334	_	5.365	6.702	8.035	9,364	10.689	12.003	13.323	
	Le				0.823	0.719							0.999	0.872			
	ae!			103 1120	7.000	8.000							7.550	8.623		un and a state	
HE XAGONAL TUBE	L	0.648	0.518	0.431	0.369	0.322	0.286	0.256	-	1.095	0.875	0.728	0.623	0.545	0.483	0.434	
	ac	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	1.635	2.045	2.457	2.869	3.283	3.699	4.117	
	α	5.903	7.371	8.833	10.290	11.739	13.180	14.613	_	5.127	6.406	7.681	8,954	10.223	11.489	12,750	
	Le				0.454	0.397		1.700	_				0.666	0.582			
	ae'				5.700	6.514							6.560	7.495			
	L	0.366	0.292	0.243	0.208	0.182	0.161	0.145	_	0.813	0.649	0,540	0.463	0.404	0,359	0.322	
GONAL	ac	0.00	0.00	0.00	0.00	0.00	0.00	0.00		2.202	2.754	3.308	3.863	4.419	4.978	5.538	
	as	5.941	7.418	8.890	10.355	11.813	13.263	14.703	_	4.875	6.091	7.305	8.517	9.727	10.934	12.138	
ATC	Le				0.281	0.237							0.511	0.432			
8	a.				5.210	6.154							6,350	7,494	1.50		
NAL	L	0.234	0.187	0.156	0.133	0.117	0.103	0.093	_	0.681	0.545	0.453	0.388	0.339	0.301	0.270	
	ac	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	2.626	3.284	3.943	4.604	5.266	5.931	6.597	
NGC	α	5.958	7.439	8.915	10.384	11.846	13,300	14,744		4.675	5.42	7.007	8.171	9.334	10.494	11.652	
1 C	Le				0.186	0.158			_				0.423	0.360			
4	ae'				5.050	5.926							6,430	7.546			
ULAR	L	-	-	-	-	-	-	-	_		0.357	0.297	0.254	0.222	0.197	0.177	
	ac	-	-	-	-	-	-	-	_	4	5	6	7	8	9	10	
					4												
TI																	
U																	

* optimal equivalent die semi-angle for the section bar drawing dies

1

TABLE No. A-10.2

Parameters for the design of dies for drawing polygonal tube from round

Nominal tube o.d. = 1.125 in EQUIVALENT DIE SEMI-ANGLE α_e (degrees)									Nominal tube o.d. = 1.1875 in EQUIVALENT DIE SEMI-ANGLE α_{p} (degrees)							
		4	5	6	7*	8	9	10		4	5	6	7*	8	9	10
	L	2.339	1.869	1.556	1.332	1.164	1.033	0.927		2,786	2.227	1.853	1,586	1,386	1.230	1,105
80	Q.c.	1.543	1.915	2.300	2.686	3,074	3,463	3.855		1.927	2.411	2.896	3.382	3.869	4.358	4.850
AR	α.	5.105	6.377	7.647	8.915	10.178	11.437	12.694		4.928	6.157	7.384	8.609	9.831	1.050	12.200
squ TU	La				1.174	1.026							-			
	Qie'				7.930	9.058									0.000	0 100
XAGONAL TUBE	L	1.542	1.232	1.026	0.878	0.767	0.680	0.611		1.989	1.589	1.323	1.132	0.989	0.878	0.789
	Q.	2.321	2.904	3.487	4.071	4.658	5.246	5.837		2.699	3.375	4.053	4.737	5.412	6.095	6.772
	α_	4.801	5.999	7.195	8.389	9.582	10.771	11.958		4.621	5.774	6.927	8.078	9.227	10.374	11.520
	L				0.878	0.767										
HE	(le'				7.000	8.000										
	L	1.259	1.007	0.838	0.717	0.627	0.556	0.499		1.706	1.364	1.135	0.972	0.849	0.753	0.677
TUBE	0 c	2.841	3.552	4.265	4.980	5.695	6.413	7.132		3.145	3.932	4.721	5.510	6.301	7.093	7.887
	Q	4.565	5.704	6.843	7.980	9.116	10.250	11.383		4.417	5.520	6.622	7.724	8.824	9.924	11.022
	L				0.741	0.627							0.972			
oc	C /				6.770	8.000			-				7.000			
	L	1.128	0.902	0.751	0.642	0.561	0.498	0.447		1.575	1.259	1.048	0.897	0.784	0.695	0.625
IAN	a	3,171	3,964	4.759	5.555	6.353	7.151	7.952		3.407	4.259	5.112	5.966	6.821	7.678	8.535
DECAGO	C-	4 408	5 509	6,609	7,708	8,806	9,904	11,000		4.292	5.364	6.436	7.507	8.578	9.648	10.717
	Lo	1.100	0.000	101000	0,659	0.562			-				0.897			
	Cl-1				6,820	8.000							7.00			
ULAR	L	0.894	0.714	0,595	0.509	0.445	0.395	0.354		1.341	1.071	0.892	0.763	0.667	0.592	0.532
	a	4	5	6	7	8	9	10		4	5	6	7.000	8	9	10
	c	1			1	2			-							
TUT		1	1	1					_		E ESSUE					
CI		1		1					—							
the second s		A CONTRACTOR OF THE OWNER	-	The second second second second	And a	-		and the second designed and th			And a state of the second					

* optimal equivalent die semi-angle for the section bar drawing dies

- A109 -

- A111 -

A-11 DIES USED IN THE DRAWING EXPERIMENTS

Table A-11.1 shows the set of dies used in the investigations on the drawing of polygonal tube from round on a cylindrical plug.

To facilitate cross-referencing the dies were given 3-part identification numbers. The first digit refers to the number of sides of the polygon required, followed by a letter designating the die and ends with one of the four letters A, B, C and D indicating the shape of the deforming zone. TABLE No. A-11.1 Dies used in the drawing of polygonal tube from round stock on a cylindrical plug

	Die Ref. Number	Deforming shape	Radius/ straight	Material of the die	α _e (degress)	Remarks
	4DA	pyramidical	straight	special alloy steel		
	4HA	"	(1.50 in)	carbide		
NO	4JB	elliptical	straight	"	7	
ECTI	4MC	triangular	"	tool steel (ARNE)	7	
PE S	4GD	inverted parabolic	"	special alloy steel	7	
SoUA	4KD	"		tool steel (ARNE)	7	
	4WB	elliptical			8	Design for tube drawing
	4GB	elliptical			8	Design for tube drawing
	6BA	pyramidical	,,	tungsten carbide		Industrial die
ONAL	6 A A	pyramidical	radius (1.375 in)			"
EXAC	6NB	elliptical	straight	tool steel (ARNE)	7	
H	6WB		**	"	8	Design for tube drawing
	8PB				7	
GONA	8SD	inverted parabolic			7	
CTA	8WB	elliptical	**	"	8	Design for tube drawing
						S. In
	10QB	elliptical	straight	tool steel (ARNE)	7	
IANOS						
ECAC						
LR	aRA	conical	straight	tool steel	7	
CULA						
CIR						

A-12 THE SPLIT ROTATING DIE (Plate A-12.1)

The rotating die arrangement consisted mainly of the die shaft (4), the conical die (27) and the driving chain wheel (25). The die shaft had a cup form of 6 in bore which enclosed the conical die, and rotated about its axis in the die casing (2) by means of the chain wheel (25) fixed on its external surface. The die shaft was supported by the three anti-friction bearings (23, 24 and 26), arranged to carry the reaction of the chain and transmit the thrust from the conical die to the die casing through a compact axial thrust load cell (15).

The die inserts (10) consisted of Ns number of blades, equal to the number of sides of the polygonal section being drawn. They enclosed a converging pyramidical die forming orifice, while their exterior formed a surface around which a conical die rotated. The holder (5) of the die inserts functioned as a load cell and measured the drag force 'Q' (see Fig. 4.2). The special die tip seat (7) (and a mechanical drawing on page All8) enabled the die inserts to be changed without removing the die insert holder. The same feature transmitted the drag force 'Q' to the cup load cell (5) through a thrust roller bearing (22). This arrangement also made it possible to restrict or permit twisting by engaging or releasing the dog clutch (6, 11).

The axial thrust 'R' (see Fig. 4.2) exerted on the conical die resulted from the bursting force on the die inserts, as the metal deformed. The axial thrust was transmitted from the die to the die shaft and through the ring load cell to the die casing fixed to the bed of the drawbench.

A holder (5) was used as a load cell to measure the reaction 'Q'

Part No.	No. of parts	Part Name/Description	Material	Part No.	No. of parts	Part Name/Description	Material
1	2	Rivet bolt	Mild steel	19	1	Set screw 1/2 x 7.75 x 1	
2	1	Thrust block casing	Mild streel	20	6	Grubb socket screw 3/8 x 1.75	
3	1	Thrust block cover	Mild steel	21	4	Grubb socket screw 3/8 x 1	
4	1	Thrust block shaft	High S.steel	22	1	Thrust roller bearing Nth-4472 Torrin	ngton
5	1	Thrust block die housing	Vibrac 30	23	1	Thrust roller bearing K81138/GS89328	B/WS81138INA
6		Sliding key bush	Mild steel	24	1	Cylindrical roller bearing xLPJ 7 1,	/2 R & E
7	1	Die tip seat	Vibrac 30	25	1	Duplex chain wheel 213634 Reynold	
8	1	Back bearing seal	Brass	26	1	Taper roller bearing LL735449/LL7354	410 TIMKEN
9	1	Front bearing seal	Brass	27	1	Conical die	
10	Ns	Die tip	High S.steel	28	2	Gauge cover	Mild steel
11	1	Die clutch lever	EN 11	29	2	Spring washer	
12	1	Hinge seal	Mild steel	30	1	Sealing sleeve	Brass
13	1	Die tip spacer	Silver steel	31	2	Copper ring	Copper
14	2	Sliding pin	EN 11				
15	1	Back load cell	Vibrac 30				
16	12	Set screw 1/2 x 2 x 1.5					
17	4	Set screw 1/2 x 4.5 x 2					
18	4	Set screw 5/16 x 1.5 x 1					

TABLE NO.	A-12.1	Components	of	the	split	rotating	die	rig	shown	in	Table	A-12	. 1
-----------	--------	------------	----	-----	-------	----------	-----	-----	-------	----	-------	------	-----

on the die inserts. The central part of the cupwall was reduced in thickness and two sets of strain gauges bonded on the outer surface of this thin walled portion. One set measured the traction 'Q' exerted on the die inserts, and the other set measured the torque exerted and transmitted to the die insert holder when the dog clutch was engaged. The dog clutch was used to prevent the drawn tube from twisting due to the torque transmitted by friction from the rotating conical die.

The drive (see Plate A-12.2) consisted of a 7.5 h.p., 3-phase motor coupled to a Crofts variable speed belt-cone unit with a speed ratio of 4:1. The output shaft of the combined motor-speed unit was coupled to a 16.61:1 reduction gear unit to provide a rotational speed range of 30 to 120 rev min⁻¹. A duplex chain transmitted the power to the shaft of the rotating die and drove it with infinitesimally variable speed range from a minimum of 15 rev min⁻¹ to a maximum of 60 rev min⁻¹. A marine tachogenerator measured the speed of the rotating die. The output shaft of the variable speed unit drove the tachogenerator through a chain and sprocket with a speed ratio of 1:2.

- A117

- A118 -

A-13 MAIN COMPUTER PROGRAMME FOR THE DRAWING OF POLYGONAL

TUBE DIRECTLY FROM ROUND STOCK ON A CYLINDRICAL PLUG⁺

Z			M	AS	5 T	ER		MA.	11	P	RO	G										-				-		-					v					1 1	1					
3			D	IN	1 21	NS	I	NC)	(A	(1	1,	-1	1)	,1	A (. 11	,	11)	, X	8	(1	1,	11)		8		11	11	2.		AC	50		11		.,					
4			14	AC	:5	(1	1	,1	1),	Xe	CS	;(11	,1	1)	,	18	CS	: (11		11),	XA	C	L (11		11),	TA	C		11	1	11	2.						
5			28	30	L	(1	1	.1	1),	YB	CI	.(11	,1	1)	,	11	10))	,P	L	(1)	()	, 8	R	(1	03),	AR	LT	A	1	3)	, A	RL	т.	9 (. 1	0.				
6			24	2 5	T	A C	1	1)		R	ST	9	(1)	1)	R	AS	: (1	11	,1	1),	RA	AL	(1	1,	. 1	1)	.1	28	5(11	,1	1),	RB	L	(1	1,	. 1	1.				
7			1.1	-	T	41	1	11	-	11	1	T	15	T A	ŝ	11		11	j.	Di	BL	(11	.1	1)).	DE	S	(1)	1.	11),	. D.	AL	(1	1,	,1	1)	,					
1			-			4 4			:		ú í		-	(1	1	11	5	P	HI	C	RA	c.	11	1	1)	5	CK	IL	(11	-1	1)		CK	IS	0	11	.1	11)				
G			20	M 3	5.		:	11	1	::				;			1		51	-	AI	i	11	1	1		ET	T	21	(1	1	11	is	.7	5 (1	1 .	11	1)					
7			03	Ē.	T A	SI	1	11	1	11		-				:.		.:	4	-	11	۰.			1	11	- 1	1		10		1	1.	1	1)		11	10	11	•				
10			72	L	(1	٦,	.1	1)		21	5 (.1	10	11	,,	41	L		11			:	UR				1		. :	Un.		-	10	; '	:.		11			'				
11			14	(10),	, A	T	1	3)	,×	(XI	*(11),	YY	IN	(1	1.		XX	M	(1	1,		ΓT	mu	. 1		•^	Am		. 0	.,	11	1		c ,	-					
12	C																															-			112	0160								
13	C	DIM	-	IS .	IO	N	F	OR		TH	ε	I	NC	0.1	IN	G	S	r o	CH	((TU	BI	ES)	AN	N D	T	H		PR	00	55	SS	2D	P	R	DD	00	. 1	(5 = (СТ	10	NJ
14	c	GAL	1.4		(T	1)		TU	19	IN	G	0	.D	(DO	1)	AN	D	T	HE		DI	AG	10	NA	L																	
15	č	1 = 1	1.1	4	0	F	÷	HG		20	1	G	ON	AL	S	TO	0 01	ĸ	(1	H	=)	-																						
14	2			2220	~	•			1018	-	-				1						-																							
10	÷							2.0					- 0		-	-																												
11				E	AU		1	20	10	' .	1		90			-																												
15		201	0 1	0	RM	AI		51	0	- 4																																		
19	С																																											
20			1	R	IT	E	(2	,2	22	00)	D	01	,1	٦,	.DI	45												_											-	,			
21	1	220	0 1	:0	RM	AT	11	11	1	5 X		• S	TO	CK	C	II	1 E	NS	I	NC	S:	•	,1	20	JX.	<i>,</i> '	TL	JE	Ε	DI	AN	IE.	TE	R							- 0	41		
22			1		I	NO	CH	ES		,1	21	XC	.'	TU	186		TH	IC	KI	NE	SS			-	=	۰,	FC	5 .	4,	•	1	N	CH	ES	٠,	. /	20	IX.		S	EC	I I		
23			21	N	D	I	AG	C M	A	Ĺ	:	=	۰.	FS			•	I	N	CH	ES	•)																					
21	C					-	100	1000					-			-																												
35	č																																											
	5																																											
20	6																																											
27	C	1307.70	-													,		~		-			~																					
38	С	SP	EC	IF	Y	D	RA	W		G	۷	EL.	ac	1	Ť	¢	1 14	C.F	12	51	35		UN						~ ~	~														
29	C	SP	EC	IF	Y	S	TR	E	55	- 5	ST	RA	IN	(: UI	2V	E	FC	R	1	HE	=	DR	A	41	NU		51	uc	ĸ														
30	C	SI	G M	A =	K *	- 51	PS	II	-0	N	**	N	WH	EF	E	K	I	S	I	N	TO	N	-F	0	RC	51	ISG	a .	IN	-														
31	С																																											
32	C			DA	TA		VL	A.	. Y	K	. Y	N/	3.	0	.50	٥.	20	,0	١.	23	521	1/																						
13	1			RF	AL	11	1.	2	ño)	V	LA	.Y	K	. YI	N		-																										
31				0 1	-	2	14	1	59	27	7		· ·			-																												
	-			•	-	•			•	100	2																																	
20	5								-						c			8.	11	TS			20		i Ni	1.1	r c	11	N	. 1	4	sc		40	0	11	N	TT	S.	15	a .	IN)	
20	C	DE	+1	NE			45	-	ĸ	-	NU	A	RC		3	CA				1 2		•	24		0	+ 1			~,		200			-		Ť			-		-	-	÷.,	
17	C																																											
.38				LI	SI	= 0	20)																																				
39				LA	SI	= 3	LI	S	C +	-	2																							-	-				-	-				
40	C			DI	M	EN	SI	0	NS	; (OF	T	HE	8	DR	AW	IN	G	A	N) '	TH	Е	U	ND	R	AW	N	ST	00	K	T	0	TH	E	A	6	UV	-	S	CA	LE		
41				T 1	=	11	*1	. I	SC																																			
12				DO	1:	= 0	0	1+	LI	S	С																																	
1.7				DH	=	=0	+		11	2	c																																	
	~			Ju		-0	ma	-	- 1		-																																	
44	C	-		-	~			_	T .						0	-	~ 1	-		1		-	-	-	SE	C .	TT	ON		250	11	TP	FI	>										
45	C	TO	3	EN	E	KA	11	-	11	1 F	N	UM	24	: "	0	r	21	0	23	1		1	-	-	35	-		UN	1 35			• "	-											
46				DO	1	00	1	10	SI	D	£=	4.	0																															
.47	C			RE	A	0 (1,	,2	03))	N	05	I	Ξ																							-	-	-					
40	C	20	15	FC	R	M.A	T	(1	3))																																		
49	C																																											
50	C	WH	EN	- 1	10	IZ	01	E	IS	5	6,	TH.	12	D	RA	WN	1	SE	CT	I	CN	1	S	R	00	IN	D																	
51	C										1																																	

 † The flow chart is given in Figure 3.7

IF (NOSIDE_EQ.6) GO TO 2561 52 NS=NOSIDE*2 53 WRITE(2,2000) NS 54 55 2000 FORMAT(1H1,5X, NUMBER OF SIDES OF DRAWN SECTION = ',12,//) GO TO 2562 56 57 2561 WRITE(2,2500) 2500 FORMAT(1H1,5%, 'NUMBER OF SIDES OF DRAWN SECTION = INFINITY', //) 58 59 C CALCULATE SECTION PARAMETERS, INCLUDED ANGLE (BETA), PLUG RADIUS (RP) 50 C INLET AREA(AB), OUTLET AREA(AA), AREA RATIO(AR), PLUG AREA(AP) AND REDUCTION(RED); REMEMBER THE SCALE TO OBTAIN ABSOLUTE VALUES WHERE APPRCP. 1 C 82 C :3 C 64 2562 BETA=PI/NS 65 C WHAT IF NS=INFINITY 66 C EASIER OF COURSE BUT IF (NOSIDE_E9.6) GO TO 2510 67 SPARAM=NS*COS (BETA) *SIN (BETA)/4.0 50 09 GO TO 2511 2510 SPARAM=P1/4.0 70 2511 RP=0_5*T1*(D01/T1-2.0) CK=0.5*(1_0-2.0*RP/DHE) 71 72 A3=PI*T1**2*(001/T1-1.0) 73 AA=DHE**2*(SPARAM-PI*0_25*(1.0-2.0*CK)**2) 74 75 AR=AB/AA 75 AP=PI*RP**2 77 RED=1.0-1.0/AR 78 RED100=RED+100.0 79 AAA=AA/LASC ABB=AE/LASC 50 91 DDO1=CO1/LISC RPP=RP/LISC WRITE(2,2152) A58,AAA,RED100 2152 FORMAT(/2CX, 'AREA AT INLET = ',F8.4,' SG INCHES',/2OX, 'AREA A 1T OUTLET = ',F8.4,' SG INCHES',/2OX, 'REDUCTION OF AREA = ',F8. 32 53 24 25 26 24, PER CENT") 37 C RADIUS OF CIRCUMSCRIBING CIRCLE AT INLET(RB) AND AT OUTLET(RA) R8=001/2.0 28 39 RA=DHE/2.0

 90 C
 IN CASE OF AXISYMMETRIC DRAWING MAPPING IS GENERALLY

 91 C
 OV RLOOKED, SO A BIG JUMP

 92
 IF (NOSIDE.EG.6) GO TO 2570

 93 C RADIUS OF INSCRIBED CIRCLE AT THE EXIT(RAI) RAI=DHE+COS(BETA)/2.0 94 95 C NOTE THAT TO SAVE COMPUTER TIME INSTEAD OF WORKING WITH ₽6 C DOUBLE SYMMETRIC SECTION A SINGLE SYMMETRIC SECTION IS 97 C USED; DENOTED HEREAFTER BY (DOUBLE) SYMMETRIC >>>>..... 98 C 99 C 100 C BANDING INLET (DOUBLE) SYMMETRIC SECTION INTO M-1 EQUAL SECTORS AND 101 C MAP OUTLET WITH N-2 HYPERBOLIC CURVES; (I, J) DEFINES GENERAL

```
102 C INTERSECTION AND (1,1) DENOTES THE ORIGIN
103 C
1.4
           N=10
105
           M=10
106 C THE FIRST CURVE OF OUTLET SECTION CORRESPONDS TO THE CIRCULAR PLUG
107 C PL(I) REFERS TO THE POSITION OF THE HYPEREOLA VIRTUAL ORIGIN ALONG
158 C THE LINE OF SYMMETRY AND A(I) IS THE FOCAL LENGTH
109
           T2=DHE/2.0-RP
           PL(Z)=RP
110
           PL(1)=0.C
111
112 C
113 C TZ IS THE THICKNESS OF THE SECTION TUBE ALONG THE DIAGONAL AND IS
114 C DIVIDED INTO N-2 EQUAL LENGTHS

115 DT=(T2-RP*(1.0/COS(BETA)-1.0))/(N-2)
110 C INCLUDED AREA OF THE PLUG AT(2) ;AT(1) CORRESPONDS TO THE ORIGIN
           AT (2) = AP / (NS*2.0)
117
118
            AT(1)=0.C
119
            ER (2) = RP
            ER (1)=0.0
120
121 C DIFFERENT FUNCTIONS OF THE SYMMETRIC ANGLE (BETA)
127 C
            TABATA=TAN (BETA)
123
            COBETA=1.0/TABETA
124
            T32=T43ETA**2
125
 125
            T34=T82**2
 127
            T38=T84**2
 123
            T2B=TAN (BETA+2.0)
            T282=T25**2
 129
130 C
121 C ???? REAL JOB OF MAPPING STARTS HERE ffffffff
 132 C
            00 65 I=3,N
 133
            PL(I)=RP/COS(BETA)+(I-2)*DT
 134
 135
            A(I)=1.0-(I-1)*1.0/N
 136 C TO CALCULATE CO-ORDINATES AT INTERSECTION OF THE HYPERBOLA AND THE
137 C LINE INCLINED TO (DOUBLE)BETA BY THE YA-AXIS
           IF (NS.EQ.4) GO TO 66
 138
 139
            X(I)=(-PL(I)*TE4+SQRT(PL(I)**2*TE8+(1.0-TE4)*(A(I)**2+
           1PL(I) * +2 * TE4) )) /(1.0-TB4)
 140
            GO TO 67
 141
       66 X(I)=(PL(I)**2+A(I)**2)/(2.0*PL(I))
 142
       67 Y(I)=TABETA*(-X(I)+PL(I))
 143
 144 C
 145 C CO-CRDINATES OF INTERSECTION TO GLOBAL XA-YA AXES
 146
            V = X(I)
 147
            W=Y(I)
            XA(I,M)=W
 148
 149
            YA(I,M) = -V + PL(I)
 150 C AREA ENCLOSED BY THE HYPERBOLA I AND THE PLUG I=2 DENOTED BY AT (I)
            PIL=PL(I)-V
 151
```

.

```
AT (1)=COBETA*(V*SQRT(V**2-A(1)**2)-A(1)**2*ALOG((V+SQRT(V**2-A(1)*
1*2))/A(1)))/2.0+PIL**2*TABETA/2.0-AT(2)
152
153
154 C
155 C AREA ENCLOSED BY THE CURVE AND THE PLUG REFERED TO THE OUTLET
156
             ABT=AT(I)+AR
157 C EQUIVALENT RADIUS AT INLET ER(I)
             ER (1) = SQRT ( (ABT + AP / (NS * 2) ) / BETA * 2.0)
158
159 C
160 C AREA OF BAND AT THE INLET ENCLOSED BY THE CIRCULAR ARC I AND I-1
            ABAND=BETA* (ER(I)**2-ER (I-1)**2) /2 .0
161
162 C DIVIDE AREA OF THE BAND INTO M-1 EQUAL SECTORS AND ALSO CALCULATE
163 C THE RADIAL WIDTH OF THE BAND
           ABCD=ABAND/(M-1)
154
             DR=ER(1)-ER(1-1)
165
             DOA=BETA/(M-1)
166
167 C
168 C CALCULATE AREAS OF LARGE AND SMALL TRIANGLES AT INLET PLANE
             DD=0.5*DR**2*DOA
169
             ARLTB(I)=0.5*(AECD+DD)
170
             ARSTB(I)=0.5*(ABCD-DD)
171
172 C EQUIVALENT TRIANGULAR AREAS AT THE EXIT PLANE
173
             ARLTA(I)=ARLTB(I)/AR
174
              ARSTA(I) = ARSTE(I) / AR
175 C
170 C INTERSECTION OF HYPERBOLA I AND YA-AXIS
             XA(I,1)=0.0
YA(I,1)=PL(I)-A(I)
177
178
179
       65 CONTINUE
120 C CURVE I=2 IS A CIRCLE AND THE CO-ORDINATES FOR INTERSECTION WITH

131 C LINE INCLINED AT BETA TO YA-AXIS CAN BE FOUND

152 YA(2,M)=RP+SQRT(1.0/(1.0+TB2))
              XA(2,M)=YA(2,M) *TABETA
123
              GO TO 69
164

        125
        69
        YA (2,1) = RP

        126
        XA (2,1) = 0.0

        127
        C
        DEFINE ORIGIN AT EXIT

        138
        XA (1,1) = 0.0

              YA(1,1)=0.0
WRITE(2,2992)
189
 190
 191 2998 FORMAT(5X, 'THE LIMITING CO-ORDINATES OF CURVES AT EXIT XA/YA ',/)
192 WRITE(2,2999) (XA(I,M),I=1,N)
              WRITE(2,2999) (YA(I,M),I=1,N)
 193
 194 2999 FORMAT (74,10(2X,F8.6),/)
 195 C
 196 C CO-ORDINATES OF TRIANGLES AT INLET
              DO 70 I=2,N
 197
              00 71 J=1,M
 198
              OJ=(J-1)*BETA/(M-1)
XB(I,J)=ER(I)*SIN(OJ)
 199
 200
```

201

Y3(I,J)=ER(I)*COS(OJ)

```
71 CONTINUE
70 CONTINUE
202
203
204 c
205 C LOCATE CENTROIDS OF LARGE AND SMALL TRIANGLES AT INLET
206
            00 75 I=2,N-1
207
             DO 76 J=1,M-1
            X3CL(I+1,J+1)=(X8(I,J)+X9(I+1,J)+X8(I+1,J+1))/3.0
Y3CL(I+1,J+1)=(Y9(I,J)+Y5(I+1,J)+Y8(I+1,J+1))/3.0
X3CS(I+1,J+1)=(X8(I,J)+X8(I+1,J+1)+X8(I,J+1))/3.0
208
209
210
             Y3CS(I+1,J+1)=(Y3(I,J)+YE(I+1,J+1)+Y5(I,J+1))/3.0
211
       76 CONTINUE
75 CONTINUE
            CONTINUE
212
213
214 C
215 C MAPPING CORRESPONDING TRIANGLES AT OUTLET PLANE
216 C DIFFERENT FUNCTIONS OF BETA
            CBETA=COS(EETA)
217
218
             CBETA2=CBETA**2
2 19
             SBETA=SIN (BETA)
220
             SBETA2=SBETA**2
             AZERO=0.0
221
222 DO 80 I=2,N-1
223 DO 81 J=1,M-1
224 C MAPPING LARGE TRIANGLES
225
             AREA=ARLTA(I+1)
             x1=xA(I,J)
226
             Y1=YA(I,J)
X2=XA(I+1,J)
227
228
             Y2=YA(I+1,J)
IF (J.E9.1) GO TO 82
229
230
231 C
232 C SUBSTITUTE FOR Y3 AND SOLVE FOR X3 USING THE EQUATIONS OF THE CURVE 233 C AND THE AREA OF THE TRIANGLE
             DM1=(2.0*AREA-(X2*Y1-X1*Y2))/(X1-X2)
234
235
             DK1=(Y2-Y1)/(X1-X2)
             C3=DK1**2-T82
236
237
             C2 =- 2.0 * DM1 * DK1 + 2.0 * DK1 * PL (I+1)
             C1=DM1**2+PL(I+1)**2-2.0*PL(I+1)*DM1
555
             SQT=SQRT(C2**2-4-0*C3*(C1-A(I+1)**2))
239
             X3R1=(-C2+SQT)/(2.0*C3)
240
241
             X3R2=(-C2-SQT)/(2.0*C3)
             Y3R1=DM1-DK1*X3R1
242
243
             Y3R2=DM1-0K1+X3R2
244 C
245 C SELECT THE CO-ORDINATE OF THE THIRD VERTEX
246 IF (Y3R1.LT.Y3R2) GO TO 83
              YA (I+1, J+1)=Y3R2
 247
             XA(I+1,J+1)=X3R2
GO TO 84
248
 249
             YA (I+1, J+1)=Y3R1
250
       83
 251
             XA(I+1,J+1)=X3R1
```

.

.

252		04	60	1	0	0,2	£					
2:3	C						-				AND SOLVE ON CURCETITUTING Y AND SOLVE O	
254	C	MAP	FIN	G	TH	ε	I	NI	TI	AL	LARGE TRIANGLES BY SUBSTITUTING A AND SOLVE P	rua i
255		82	DM	1=	(2	.0	1*1	AR	EA	- (x2+y1-x1+y2))/(Y2-Y1)	
256			DK	1=	(X	1-	- X	2)	10	YZ	-Y1)	
2 57			C1	=P	LC	I+	-1) *	*2	-1	32 * D M1 * * 2	
2.58			C2	=-	2.	0.	PI	10	1+	1)	+2.J*DK1*DM1*TB2	
250			03	= 1	5	- 1	K	1 *	*2	*	42	
2.27	~			<u> </u>	• •				-	-		
ccu	C							0.2	-		(0+03+(C1-A(T+1)++2))	
201			24	1=	24	RI		62				
202			Y 5	RI	= (-(. 4	+5	91		(2.0*(5)	
263			Y3	RZ	= (- (:2	- S	QT)	(2.0*(3)	
264			X 3	R 1	=0	M	- 1	DK	1*	· Y.	R1	
265			X3	R2	=9	M	1-	DK	1+	Y	R2	
266	С											
2.7	C	THE	TH	19	D	VE	ER	TE	X	0	THE TRIANGLE	
248			TE	- (Y3	2	1 -	GT	- 1	(3)	2) GO TO 86	
2:0			v.	11	+1		1+	1)	=1	13	2	
2.37			07			"	1.	11		12		
210			TA	1	71	-		.,	-1	3	6	
2/1		÷.,	GO	1	0	0	2					
272		86	XA	(1	+1	,	1+	1)	=)	13		
273			YA	CI	+1		1+	1)	= 1	13		
274	С											
275		85	IF	1	Ί.	G	Τ.	2)	1 (50	TO 89	
276	С	TO	MAP	5	MA	L	L	TR	IIA	AN	LES AT INLET WHERE ONE OF THE CURVES IS CIRCU	LAR
277			X 2	=)	A	II	+1		+	1)		
278			¥2	=	A	I)	+1		1+	1)		
279			AR	E	=	R	ST	A	(1.	+1		
2 10			FY	11:	=()	,	0 *	AF	RE	A -	x2 * Y1- X1 * Y2))/(X1-X2)	
281			FC	1:	= ()	12	- 4	11	11	(x	-x2)	
287				т.	- 0	10	TI	11	E M	1 +	<1) ** 2-(1_0+FK1**2)*(FM1**2-RP**2))	
201						11		1		1	+507)/(1 0+581++2)	
200										24		
224			* 3	221		"		15		~ '	-3417711.07781-27	
205	C									~	TUE TOT MELE	
206	С	TH	E TH	11	RD	V	ER	ITI	ΞX	0	THE TRIANGLE	
207			IF		(X.)	35	1.	. G	Γ.	X 3	2) GO TO 8/	
228			XA	1(I ,.	1+	1)	=	x 3.	S 2		
2:9			GC)	TO	8	8					
270		87	X	4 (1,	J +	1)) = '	X 3	S1		
201		88	YA	4 (Ι.	J +	1)) =	FM	1-	K1*XA(I,J+1)	
297	C											
202			G	2	τa	3	1					
- 01	c						1					
205	-											
295	C				-			57 2	- 0		CULLO SI EMENTS BANDED BY HYPERBOLAS I & THI	
270	C	MA	PPI	AG	5	m A	LL	-	IR	1.4	TODEAN ELEMENTS SANDED ST NIFENDOLNE & S T.T.	
277		89	X	<=	XA	CI	+	1,	1+	1)		
298			Y	2 =	YA	(1	+'	1,	1+	1)		
299	2		A	RE	A =	AR	51	T A	(1	+1		
300)		D	11	= (2.	.0.	* A	RE	A -	(X2+Y1-X1+Y2))/(X1-X2)	
3 (11			D	K 1	= (47	-	41	>/	()	1-X2)	

```
302 C
363
            C3=CK1++2-TB2
3 64
            C2=-2.0*DM1*DK1+2.0*DK1*PL(I)
3 0 5
            C1=DM1**2+PL(I)**2-2.0*PL(I)*DM1
3 06
            S2T=SGRT(C2**2-4.0*C3*(C1-A(I)**2))
307
            X3R1=(-C2+SQT)/(2.0*C3)
3 08
            X3R2=(-C2-SQT)/(2.0+C3)
309
            Y3R 1=DM1-0K1+X3R1
310
            Y3R2=0M1-0K1*X3R2
311 C
312 C SELECT THE CO-ORDINATE OF THE THIRD VERTEX
313
            IF (Y3R1.LT.Y3R2.AND.X3R1.GT.AZERO) GO TO 870
314
            XA(I, J+1) = X3R2
            YA(I,J+1)=Y3R2
GO TO 81
315
316
317
           XA(1,J+1)=X3R1
      870
            YA(1,J+1)=Y3R1
318
319
      81
           CONTINUE
320
      80 CONTINUE
321 C
322 C LOCATING THE CENTROIDS OF MAPPED TRIANGLES AT THE EXIT PLANE
           XACL(I+1,J+1)=(XA(I,J)+XA(I+1,J)+XA(I+1,J+1))/3_0
XACL(I+1,J+1)=(XA(I,J)+XA(I+1,J)+XA(I+1,J+1))/3_0
3 23
324
325
3 26
            YACL(I+1, J+1) = (YA(I, J) + YA(I+1, J) + YA(I+1, J+1))/3.0
327
            XACS(I+1,J+1) = (XA(I,J) + XA(I,J+1) + XA(I+1,J+1))/3.0
328
            YACS(I+1, J+1) = (YA(I, J) + YA(I, J+1) + YA(I+1, J+1))/3.0
329
330
      91 CONTINUE
90 CONTINUE
       91
331 C
332 C DEFINE X-Y AT THE ORIGIN
           00 95 J=1,M
333
334
            XA(1,J)=0.0
335
            YA(1,J)=0.0
336
            X3(1,J)=0.0
327
            YB(1,J)=0.0
338
       95
           CONTINUE
339 C THE CARD BELOW IS USED TO CALL FOR A FRESH PAGE 340 C WRITE(2,2001)
341 C2001 FORMAT(1H1)
342 C
343 C PRINT CO-ORDINATE OF INLET TRIANGLES AND THE EQUIVALENT RADIUS
     WRITE(2,2002)
2002 FORMAT(5X, 'VALUES OF X8,Y5 AT INLET PLANE AND EQUIV RADIUS ER',/)
WRITE(2,2003)
344
345
346
      2003 FORMAT(5X,'I=',5X,'J=1',8X,'J=2',8X,'J=3',8X,'J=4',8X,'J=5',8X,'J=
16',8X,'J=7',8X,'J=9',8X,'J=10',2X,'AS SHOWN',/)
D0 100 I=1,N
347
348
349
350
            WRITE(2,2005) ((I,(XB(I,J),J=1,M),ER(I)))
351
            WRITE(2,2006) (YB(I,J), J=1,M)
```

352	2005 FORMAT(5X,I2,10(2X,F8-6),2X,F8-4)
353	2006 FORMAT(7x,10(2x,F8.6))
354	100 CONTINUE
355	c
356	C CENTROLDS OF THE TRIANGLES AT INLET PLANE AND THE RESPECTIVE AREAS
357	
200	TOTO TOTAL TALLES ANALYSE OF VOCE VOCE VOCE AND ADEAS OF TOTANG SST
330	2009 FORMATC/13X, VALUES OF ABCS, ABCC, ABCC, AND AREAS OF TATAABCES
359	1,7)
350	00 105 I=3,N
361	WRITE(2,2010) ((I,(XBCS(I,J),J=2,M),ARSTB(I)))
362	WRITE(2,2011) (YBCS(I,J),J=2,M)
343	WRITE(2,2010) ((I,(XBCL(I,J),J=2,M),ARLTB(I)))
364	WRITE(2,2011) (YSCL(I,J),J=2,M)
245	2010 FORMAT(5X.12.6X.9(2X.F8.6).2X.F8.4)
356	2011 FORMAT(154 9(24 F8 6))
347	105 CONTINUE
3.9	
740	
207	POLE COMMETTICE OF TOTANCLES VA VA AND FOCAL LENGTH A(T) OF
370	2015 FORMATCH SK, VERTICES OF TRIANGLES AP, TA AND FOUND CERTIN ACC. OF
5/1	INTPERSOLA 1 //)
312	WRITE(2,2003)
313	A(2)=RP*(1.5/COS(3=TA)-1.0)
374	A(1)=0.0
375	DO 110 I=1,N
376	WRITE(2,2005) ((I,(XA(I,J),J=1,A),A(I)))
377	WRITE(2,2006) (YA(I,J),J=1,M)
378	110 CONTINUE
379	c
380	WRITE(2,202C)
381	2020 FORMAT (//5%, CENTROIDS OF TRIANGLES XACS, YACS, XACL AND YABL AND
332	TAREAS OF TRIANGLES . /)
383	DO 115 I=3.N
384	WRITE(2,2010) ((I.(XACS(I.J), J=2.M), ARSTA(I)))
325	WRITE(2, 2011) (YACS(1, J), J=2, M)
380	UPITE(2 2010) ((1 (XACL(1 L) L=2 M) ARLTA(1)))
727	
7.00	
200	
307	C NEODING DED CHURLES CODOD IN ADEA IT OUTLIST OCTATINED FOON AADDING
390	C MAPPING PER CENTAGE ERROR IN ARPA AT OUTET OFTATHED FROM MAPPING
571	C AND GEOMETRICAL VALUE (AA)
392	AST=AA/(NS+2)
393	0 E= ((AST-AT(N)) / AST) * 100_0
394	WRITE(2,2021) DE
395	2021 FORMAT(//5x, PER CENTAGE DIFFERENCE OF TOTAL X-SECTION AREA = ',
396	1F8.4,//)
397	C
393	c
399	C
400	C *********** PLOTTING ON THE RESULTING ENTRY AND EXIT PLANES *******
4:1	C

```
4 32 C CALL GIND THE PLOTTER AND OBSERVE THE ......
4 33 CALL OPENGINOGP
        SHIFT THE ORIGIN BY 50 MM IN THE X- DIRECTION AND
434 C
         BY 30 MM IN THE Y-DIRECTION FOR THE EXIT PLANE MAPPING ....
405 C
             CALL SHIFT2 (50.0,30.0)
406
         DEFINE NATURAL ORIGIN TO BE AT (0,0); EACH AXIS OF LENGTH 100 MM
CALL AXIPOS (0,0.0,0.0,100.0,1)
407 C
408
        CALL AXIPOS(0,0.0,0.0,100.0,1)
CALL AXIPOS(0,0.0,0.0,100.0,2)
DEFINE SCALING EQUAL AND LINEAR IN BOTH AXES;10 INTERVALS RANGE 0 TO 10
CALL AXISCA(3,10,0.0,10.0,1)
CALL AXISCA(3,10,0.0,10.0,2)
DRAW X-AXIS WITH TICK MARKS AT INTERVALS AND SCALING ON
409
410 C
411
412
413 C
        414 C
415
416 C
4 17
418 C
419
            CALL MOVTO2 (40.0,-15.0)
         DEFINE CHARACTER SIZE: 2.5 MM WIDE BY 3.0 MM HIGH
420 C
421
422 C
             CALL CHASIZ (2.5,3.0)
         LABEL X-AXIS
         CALL CHAHOL (10HX-A+LXIS*.)
CALL CHAHOL (10HIN X 0.1*.)
MOVE PEN FOR LABELLING Y-AXIS
423 C
424
         CALL MOVTO2 (-15.0,40.0)
DEFINE ROTATION OF 90 DEGREES FOR ALL FOLLOWING CHARACTER OUTPUT
CALL CHAANG(90.0)
425 C
426
427 C
428
429 C
         LABEL Y-AXIS
             CALL CHAHOL (10HY-A+LXIS+.)
CALL CHAHOL (10HIN X 0.1+.)
430 C
431
         RETURN CHARACTER ORIENTATION TO HORIZONTAL
432 C
433
             CALL CHAANG (0.0)
         START DRAWING HYPERBOLIC CURVES AT THE EXIT PLANE NOW >>> .....
434 C
             DO 2450 I=2,N
DO 2451 J=1,M
435
436
             XXN(J)=YA(I,J)
4 37
             YYN(J)=XA(I,J)
 438
 439
       2451 CONTINUE
 440
             CALL GRACUR (XXN,YYN,M)
       2450 CONTINUE
 441
 442 C
 443 C
          DRAW LINE OF SYMMETRY AT THE EXIT SECTION
             CALL MOVTO2 (0.0,0.0)
 444
 445
             XXNN=XXN(M) + 10_0
 446
              YYNN=YYN (M) +10.0
 447
             CALL LINEY2 (XXNN,YYNN)
 448 C
 449
             NL 2=N-2
             JOIN CENTRES OF LARGE TRIANGLES .....
 450 C
 451
             00 2440 J=2,M
```

```
DO 2441 I=3,N
XXM(I)=YACL(I,J)
452
453
              YYM(I)=XACL(I,J)
454
455
       2441 CONTINUE
              K=3
456
              DO 2442 IK=1,NL2
XXM1(IK)=XXM(K)
457
458
459
              YYM1(IK)=YYM(K)
460
              K = K + 1
461 2442 CONTINUE
462
              CALL GRAPOL (XXM1, YYM1, NL2)
463
      2440 CONTINUE
464 C
         SHIFT THE OFIGIN FOR THE MAPPING OF THE ENTRY PLANE ....
465 C
             CALL SHIFT2(0.0,130.0)
CHANGE LENGTH OF AXES AT ENTRY TO ACCOMMODATE DIFFERENT 0.D.'S
466
467 C
              CALL AXIPOS(0,0.0,0.0,140.0,1)
CALL AXIPOS(0,0.0,0.0,140.0,2)
CALL AXISCA(3,14,0.0,14.0,1)
CALL AXISCA(3,14,0.0,14.0,2)
468
459
470
471
472 C
473 C
              DRAW AXES FOR THE ENTRY PLANE
              DRAW AXES FOR THE ENIRT PLANE
CALL AXIDRA(1,1,1)
CALL AXIDRA(-1,-1,2)
LABEL AXES; FIRST MOVE PEN TO START POSITION RELATIVE TO NEW ORIGIN
CALL MOVTOZ(50.0,-15.0)
CALL CHAHOL(11HXB-A+LXIS*.)
CALL CHAHOL(11HXB-A+LXIS*.)
474
475
476 C
477
478 C
479
              CALL CHAHOL (10HIN % 0.1*.)
              MOVE PEN TO LABEL Y-AXIS
CALL MOVTO2(-15.0,60.0)
430 C
481
              ROTATE CHARACTER BY 90 DEGREES FOR Y-LABELLING
432 C
              CALL CHAANG(90.0)
483
434 C
              LABEL Y-AXIS
              CALL CHAHOL(11HY9-A*LXIS*_)
CALL CHAHOL(10HIN X 0.1*_)
RETURN CHARACTER ORIENTATION TO THE HORIZONTAL
485 C
486
437 C
              CALL CHAANG(0.0) START DRAWING CIRCULAR CURVES AT THE ENTRY SECTION
458
489 C
490
              00 2460 I=2,N
491
              00 2461 J=1,M
 492
              XXN(J)=YB(I,J)
493
               (L,I) EX=(L)NYY
 494 2461 CONTINUE
              CALL GRACUR (XXN,YYN,M)
 495
       2460 CONTINUE
 496
              JOIN THE CENTROIDS OF THE LARGE TRIANGLES BY STRAIGHT LINES
 497 C
 493
               00 2470 J=2,M
 499
              00 2471 1=3,N
 500
               XXM(I)=YBCL(I,J)
 501
              YYM(I)=XBCL(I,J)
```

503	2411	
504		DO 2472 TK=1 NI 2
5.75		
504		
505		
221		K=K+1
500	2412	
209		CALL GRAPOL(XXMI, TTMI, NL2)
510	2470	CONTINUE
511	C	DRAW LINE OF SYMMETRY BUT MOVE PEN FIRST TO THE ORIGIN
512		CALL MOVTO2(0.0,0.0)
513		XXNN=XXN(M)+10_0
514		YYNN=YYN(H)+10-0
515		CALL LINBY2 (XXNN,YYNN)
516	C	
5 17	C	CLOSE PLOT
518		CALL DEVEND
519	С	
520	2570	WRITE(2,2022)
521	2022	FORMAT(10x, 'PART TWO BEGINS HERE')
522	C	
523	C TO	CALCULATE THE EQUIVALENT RADIUS (RE) AT THE OUTLET
524		RE=SQRT((AA+AP)/PI)
525	c	DEFINE THE HOMOGENEOUS STRAINEPSILON-H
520		EPSILOH=ALOG(AR)
527		EQSTH=EPSILOH
528	c	CALCULATIONS FOR THE AXISYMMETRIC TUBE DRAWING; NON-FUNCTIONS
529	c	OF THE EQUIVALENT DIE SEMI-CONE ANGLE (ALFAE)
530		R = 2 = R = * * 2
531		RB2=RE**2
5 32		RP2=RP++2
533		3 + A = R 7 - 3 P
534		SHR=RB-RP
575		VN=SQPT(3, 0)
536		BFACTO = 1.0/(1.0+YN)
5 37	r	A MEAN YTELD STRESS OVER THE STRAIN RANGE O TO POSILON-H
538	c	IS DEFINED AND THE UNITS ARE IN TONE/SG IN
5 30		$y_{M} = y_{Y} + EDCTI (M + y_{N}) (1 + y_{N})$
510		
5/1		
5/7	c	TEGHC ADDRACTOR THE MEAN FOULVALENT STATUS FOR ANT ANTRACTOR
517	-	TERMS AFFEATING IN THE NEW LUGITALENT STRAIN LAFALSSING FOR THE
343	•	
244		
543		BJP=ALUG(RE2*(RE2=RF2)) (RE2*(RE2*RF2))/0.0
540		
541	-	USPERCIAREZERYCITECERCERTSTSLURRERRYCCLURRERTSJ
240	C	TERMS FOR FACTORS 12 IN THE EXPRESSION FOR APPARENT STRAIN CALCULATIONS
549		FACIU21=FLUG((KD=RF)/(KD=RF)/(KE+KF)/(KE=KF))
550		FACTOZZ=ALOG((RHZ-RPZ)/(RHZ-RPZ))

552 553 554	C TO GENERATE THE EQUIVALENT DIE SEMI-CONE ANGLES (2,4,6,7,8, C 20 degrees)
555	DO 120 KONFEL 11
556	TO PERFORM CALCULATIONS FOR AN ANGLE OF 7 DEGREES
5 57	
5 = 2	
550	
540	
541	
561	AND REAL FOR THE AND T
500	CANGLES EXPRESSED IN RAUTANS
503	
204	
202	
200	
201	C LENGTH OF THE DIE ALONG THE DRAW AXIS
205	DIEHECKO-KSJITALFAS
209	C RADIUS OF THE SHEAR SURFACE AT THE INLET (ROOB)
570	ROOB=DIEH*RD/(CALFAE*(RB-RE))
571	RC=ROOB
572	C
573	DIEHH=DIEH/LISC
574	WRITE(2,2025) LONE, DIEHH
575	2025 FORMAT(//5x, 'SEMI-DIE ANGLE = ',13,' DEGREES',/5x, 'DIE HEIGHT
576	1 = ',F8_4,' INCHES',/)
577	C BRANCH OFF IF NS=INFINITY, I.E. ROUND TO ROUND
578	IF (NOSIDE.EQ.6) GO TO 2571
579	C
53G	C ************************************
531	WRITE(2,2300)
285	2300 FORMAT(//15x, ******** UPPER BOUND SOLUTION FOR POLYGONAL DRAWIN
563	1G ************/)
554	C
535	C CALCULATION OF RADIAL DISTANCE OF THE PARTICLE(R) FROM THE AXIS
5 56	C PHI_NU,ETC, AND THE LENGTH OF THE FLOW PATH
537	c
588	C CALCULATIONS FOR THE SMALL TRIANGLES AT EXIT(A) AND ENTRY(B)
539	DO 125 I=3,N
590	DD. 126 J=2,M
591	RAS(I,J)=SGRT(XACS(I,J) **2+YACS(I,J)**2)
592	RBS(I,J)=SBRT(XBCS(I,J)**2+YECS(I,J)**2)
593	RRES=RES(I,J)/RC
594	THETAS(I,J)=ASIN(RRBS)
595	DB=RC*(1.C-CALFAE)
596	DA=0B
547	DBS(I,J)=RC*(COS(THETAS(I,J))-CALFAE)
598	PHIA=ATAN(XACS(I,J)/YACS(I,J))
599	BET2=2.0*BETA
600	IF (PHIA_GT_BETA) GO TO 127
601	DAS(I,J)=DA*(DHE/(2.D*COS(PHIA))-RAS(I,J))/RAS(I,J)

612			G	0	τ	0	1	28	٤.,																														
61.3		127	0	A	s (I	-1)=	= D	A*	(DH	21	(2.	0,	* C	05	: (1	BE	Ta	2-	Pł	II	A)))	- 2	A	s (Ι,.	1))/:	RAS	s (Ι,	1)			
604		128	9	H	EI	=	AT	AN	1 4	XE	C	5 (Ι,	. J) /	YE	BC	SI	I	, J))											*						
605			9	H	IS	3	4 (I.	.1) =	P	HI	8-	P	+I	A																							
656			7	2	(1		1)	=	T	ΞH	+	80	50	T	.1	1.	-0	AS	: (f	1)																	
407	r	THE	Ĩ	-	NG	÷		0.		TH	F	P		н	0	5		1.0	L	· ;	N	τ.			01	E	7	0	NE										
108	5	145			40					10	-	-	~ 1	"	v	F			-	-				-		-	-												
0.0	•										-																~ .												
009			1	. 1	5 (1,) =	= 5	OK	T	"	XE	C	sc	1,	- 7	2-	· X /	AC	5	(1		1)	,,	**	2+	. (AB	cs	(1			YA	cs	(1,		,**	2+
610			12	S	(1		1)	**	*2)																													
611	С																																						
012			Z	P	S =	S	R	T	((RB	S	(1	,1	1)	-R	AS	5 (Ι,	. 1)*	CO	35	()	PH	15	88	A (I	, 1)))) * (*2*	+ 2 5	S (1,	1)+	*2)	
613			-	I	TA	S	(I		1)	= A	T	AN	(7	A	S (1	.1	>	S:	IN	()	H	IS	58	A	(I)	,1))/	ZPS	S)								
614			E	E	TA	S	(I		1)	= A	T	AN	(1	R	E S	(Ι.	1)	-	RA	S	(I		(1	*(0	s (PI	HI	SB	AC	I	1))))	12	S ()))	
615			C	×	TS	(τ.	1) =	18	S	(8	ET	- A	5 (T	1)-	- TI	4 6	T	15	(T	1	1)	-					-		-					
6 16		124	č	0	NT			5	-		-					- '								~															
417		175			N 7	-		-																															
0 11	~	165				-		-																															
010	5						-		-				-				-					_				-													
014	C	CAL	. CL	1L	AI	1	NC	5	1	0 H		TH	E	L	AR	Gł	=	18	1	AN	e	- 5	S	A	T	E	XI	а. 1	(A	, ,	AN	υ.	LNL	LE	1.0	3)			
620			C	00	1	3	0	1:	= 3	, N																													
621			1	00	1	3	1	1:	=2	, 1	1																												
622			1	AS	L (I	,1):	= 5	QR	T	(X	AC	L	(1	,.	1)	**	2	+ Y	A	CL	(Ι,	1)*	* 2	2)											
623			5	ES	L	I	. 1):	= S	QR	T	(X	30	L	(1		1)	**	-2-	+ 4	B	CL	(Ι,	1)*	+ 2	2)											
624			5	RS	BL	=	RB	L	(1))	/R	C			÷								0															
625				H	FT	A	1 (T	1) =	A	SI	NI	R	RE	L)																						
626			1	F	1 (T	1	1	R	C .	.(co	SI	T	HE	T	AL	0		1)).	-0	AI	F	A	=)													
627			2		TA	-	AT.			¥ 1	è	1 (T		17	-	10				i	、 ~	~																
435					17	-	2 -	21		÷	0		-			1	20	-	17		-	·																	
4-0			;					2	- 0			21	2	.,	20		10	~			-		•	- 0						1-		1.		,					
0.27				14		1		1	- 0	-		UH	5.		۷.	U		0:	sei		111	~)	٠.	- 14	~ (- '	۰,		,,	1 2	-	(1)		'					
0.56				33		0		2:	2	-				- 17				-																					
631		132	1	AC	L	.1	- 7):	= D	A*	(DH	E	(2.	0,	* C	03	5 (BE	T.	2-	PI	HI	Α.	"		A	L (Ι,	1))/	RAI	L (1,	1)			
632		133	5 5	H	18	=	AT	AI	N (XB	C	L (Ι,	- 7)/	YI	BC	L	[]	,1))																	
633			7	H	IL	.8	A (I	, 1) =	P	HI	3.	-P	ΗI	A																							
634			3	L	(1	,	1)	=1	DI	EH	+	DB	L	(1	, 1).	-0	AL	. (1,	. J)																	
035	C	THE	1	. 2	NO	T	H	01	F	TH	E	P	AT	TH 1	0	F	F	L	W	I	N	T	H	E	0	ΞF	OF	MS	AT	IOI	N	201	NE						
5 16	С																																						
627				T	1.0	T	1	1	= 5	0.9	T	11	XI	- C	10	T	J).	- Y	AC	1	(1		1))	**	24	+ (YR	CI	(1	.1	1-1	YA	CL	(1	.1)	1 **	7+
678			1		1		15	-	+ 2	>		-			- '		,-		2	0.5	-	••	1	• •			-					~	•	. 55					-
470	c				•••	1	• •		-																														
610						- 0		-	. ,	-		11			_ 0								1									- 7			+	12.		•	
040						-3	GR.			-	-		::		- 7	AI		1				0 0					~ `	11	~				721		1,	2.75		,	
041				- 1	10	L	11		1.1	=+	1	AN	10	A		1	- 3	1	.2	IN	10	P H	11	LB	A	u.		1.1	11	241	-								
044			1	3 12	TA	L	(1		1)	= A	T	AN	(R	EL	C	Ι,	1) -	RA	L	(1		1)	*!	co	S ((2	HI	LB	AC	1,.	1)	"	12	LC))	
643			(CK	IL	. (1,	.1) =	AB	S	(3	E	F A	LC	I	-1).	- T	HB	T	AL	(Ι,	1))													
644		131	1 1	00	NT	I	NU	31																															
645		130) (00	NI	II	NU	ΞI																															
646	С																																						
647			1	GO		0	2	7	00	ť.																													
648			1	IR	IT	TE	(2		20	40	1)																												
649		2040	1	FO	RH	14	TO	5	x		F	NG	T	4	OF	1	PA	T	4	0 .		FI	0	W	T	N	TH	16	0	IF	7	0 N	F	7.1	51	7 11		1)	
650				10	11	-	17	-	20	1.77	1			1			1			- 1	1		0		-		• •	-	-		100		- '	-				-	
651			1	n n	-	17	1.		- 7																														
			100	an tai	-	1. 2	100	100	-	1000	- 11 C																												

```
WRITE(2,2041) (I,(ZTS(I,J),J=2,M))
WRITE(2,2042) (ZTL(I,J),J=2,M)
2042 FORMAT(15X,9(3X,F3.5))
652
653
054
      2041 FORMAT(5X,12,3X,9(3X,F8.5))
655
656
       134 CONTINUE
657 C
658 C OPTIMIZATION OF THE SHEAR WORK ; FIND THE VALUE OF T THAT
659 C MINIMIZES THE SHEAR WORK FACTOR R(S)
660 C
661 2700 UA=VLA
            U3=UA/AR
602
            WRITE(2,2045)
663
664 2045 FORMAT(5X, 'PARAMETER T
                                          SHEAR FACTOR R(S) ./)
665 C
666 C GENERATE VALUES OF T BETWEEN O AND 1 ( .....LATER TRY 0 ...... - 1)
667 C
668
            00 135 ITGEN=1,10
659
            T=ITGEN+0.1
670
            TP=1.0-T
671
            RS=0.0
672 DO 136 I=3,N
673 DO 137 J=2,M
674 C VALUE OF R(S) FOR THE SMALL TRIANGULAR ELEMENTS
            AREA=ARSTB(I)
675
676
            THETA=THETAS(I,J)
577
            EITA=EITAS(I,J)
673
            CKI=CKIS(I,J)
679 C RESULTANT TANGENTIAL VELOCITY
           URBS(I,J)=UB*SQRT((COS(T*THETA)*TAN(EITA)/(COS(TP*THETA)*COS(CKI))
1)**2+(-SIN(T*THETA)+COS(T*THETA)*TAN(CKI)+COS(T*THETA)*TAN(TP*THET
630
681
           2A))**2)
682
683 RSS=URBS(I,J) *AREA/(UB*COS(T*THETA))
684 C VALUE OF R(S) FOR THE LARGE TRIANGULAR ELEMENTS
            AREA=ARLTB(I)
685
626
            THETA=THETAL(I,J)
667
            EITA=EITAL(I,J)
688 CKI=CKIL(I,J)
639 C THE RESULTANT TANGENTIAL VELOCITY
            URBL(I, J)=UB*SQRT((COS(T*THETA)*TAN(EITA)/(COS(TP*THETA)*COS(CKI))
690
691
            1) **2+(-SIN(T*THETA)+COS(T*THETA)*TAN(CKI)+COS(T*THETA)*TAN(TP*THET
592
           2A))**2)
            RSL=UPBL(I,J) *AREA/(UB*COS(T*THETA))
693
694 C
 695
            RS=RS+RSS+RSL
        137 CONTINUE
 696
 697
       136 CONTINUE
698
            WRITE(2,2046) T,RS
 699
       2046 FORMAT (9X, F5.3, 3X, F10.6)
 700
            RSV=RS
            IF (ITGEN.EQ.1) GO TO 138
 701
```

702	С	SEL	ECT	THE	M	IN	IM		SHI	EA		FA	CTO	R	A	S	TH	E	co	MP	01	E	* 1	PL	ou	GH	5	••••	•••	••••	•••	
103			11	CR 3		51	- A .	2 4 7	91	·			20																			
704			GO	FO	15	2																										
7.5		138	RSM	= R 5	V																											
7 06			T 21 =	Т																												
707		135	CON	TIN	IUE																											
708	С																															
709			ARI	TE	(2,	20	47) 1	M .	251	4																					
710		2047	FOR	MAT	1)	15	Χ.	10F	TI	44	L	T		=	•	,F	5.	3	.5×	. '	AN	D	M	IN	IM	UM	R	(S)		=	•	
711			1.F1	0.6	5.1	1)																										
712	C																															
713			TTT	×																												
714			25=	251																												
715			Ta-	1	1-1																											
714	~	C	CILL A	TE	C 1		-	= 1 (- 70			()	11	c T	NG	т	HE		PT			1.3	т	FO	9	тн	F	INT	9	NAL	P	WER
7 10	5	CAL	CULA	15	5 1	- F	-		. 10			21	0	21	AG		-		JEI	1.	100	-		10	a.		-		- L. 14			
111	c																															
110			GVA	LUI	= = A	141	(1	1 * 3	AL	FA	-	* 2	,																			
719			ROO	60:	= R 0	OB	**	2-0	JVA	LU	E																					
720			300	A = 8	100	96-	DI	EHI	CA	LF	AE																					
721			800	AD:	= R 0	O A	**	5-6	SVA	LU	Ξ																					
722	С																															
723			FS=	·G _ (2																											
724			DO	14	0 1	=3	N.N																									
725			DO	14	1 1	= 2	. M																									
726	С	THE	VAL	UE.	OF	: ;	:(5) 1	OR	T	ΗĒ	S	MA	LL	Т	RI	AN	IGI	ULA	R	E	LE	ME	NT	S							
727			ARE	A =	ARS	TE	I) e)																								
778			THE	TA	=T+	101	15	(1	. 1)																							
729			FTT	-	- 1 1	TAS	: (1	4	5																							
770			CRI	=0	e T e	: (1	1	5																								
731			PAR	=0	101	(T	15	•																								
777			001	- 7	00.	. 7 0			11+	0.0	12	тн	FT	1)																		
727			RU C	- 0							3.			~ '																		
100			Pas		113			:																								
134			DEI	11	-00			1 .	.,																							
(1)			201	EH	= 2 :	50		,																								
736	C		-		-	1040		-			-																					
737			SKA	=4	-0	* (i	100	A *	*41	RC	OA	D*	*2	2																		
738			SKE	3=4	-0	* (7	100	8*	* 4/	RO	08	D*	*2)							-		-						-			
7 3 9			TK =	:(1	-04	+ 7 /	4 N (CK:	I)*	(-	T+	TA	N (T*	TH	ET	A .)+	1.0	110	C O	s (CK	1)	+1	P *	TA	NC	TP*	тна	TA	"
740			1**	2																							ineres.					
741			UX:	:(1	.0.	+9/	10*	CC	S (P	HI)/	((RC	- R	0 5)*	C (OS	(1)	16	TA)*	SI	N (TH	ET	A)	* C (050	CKI		*
742			1TAN	1(C	KI:)/1	TAN	(TI	HET	A))*	*2																				
743			VKI	1=(- T /	AN	(CK	1)	* (2	.0	* (RO	OA	**	21	RO	101	AD)+'	1 .	0)	-T	* T	AN	(1	* T	HE	TA) + T	P*1	AN	(
7 44			1TP	TH	ET	1)) * *	2																								
745			VK	3=(-T	AN	CCK	1)	* (2	-0	*(RO	08	**	21	RO	00	30)+	1 -	0)	-T	* T	AN	(1	*1	HE	TA) +T	P+1	AN	(
7 45			TTP	TH	ET	4)) * *	2		1			2555			02165			22.													
7 47			WK:	= ((TAR	NC	TT	A)	100	s (CK	1))+	(-	T .	TA	N	(т	P *	TH	ET	A)	+ T	AN	(0	KI)+	TAI	N (T	HEI	CA 1	+
749			ITP	TA	NC	TP.	TH	ET	A)-	1	01	TA	NC	TH	FI	A)))*	*7		-	100		020	1010			000000		and the second	1915	
7/0			YY	1-1	(7	A	(= 1	TA	110	00	in	KT	11	+ 1	2	0.	- (20	0.4		21	90	0.4	0	+ 1	- 6	11)	**	2			
750			~~~		11	AM	151	TA	110	00	in	VT	11	+1	2.	0.		20	OR.		21	0.0	08	0)	+ 1		11)	**	2			
750	-		CUL		11	- 14		L'A	50	03	CH			-		N		EC	100	u n		= 11	00		10	1		-	-			
(2)	¢	CAL	CUL	TE	R	00	1 (K)	10	R	SW	AL		1 1	1.1	ALA C		53	A	AU	n	r.N	- 0		13							

752				R	00	T	K A	=	SG	R	T	(2	-(]*	(SK	At	-T	K	+U	K)	+ 1	(V	Ki	4 +	-	(+)	XK	A	"											
753				R	00	T	KB	=	SG	R	т	(2	.()*	(SK	84	۰T	K.	+U	K)	+ ((V	KE	3+	()	(+	XX	8)))											
754	С																																							_	
755				2	00	T	K =	-0		*	(1	105	01	٢K	A	R	00	A	11	RO	01	D	+R	00	TC	K	3*	90	OE	5/1	RO	Det))	* Z (IC	EH	10	0S I	(B E	TTY	0
756				F	SS	5 =	RC	0	TH	(*	CI	S	(1	*	TH	1E	TA	()	*;	AR	E/	11	CO	S	(T	P	* T	4 5	TI	1)											
757	С																																								
758	C	1	H	2	VI	AL.	U	5	01	F	F	(s)	F	01	2	TH	16	1	LA	RO	SE	T	R	I A	N	GU	LA	R	EI	LE	ME	T	S							
7 5 9	-			A	8	EA	= 2	R	L	гз	(1)																													
760				T	H	ET	A =	- T	H	ET	A	1	I	. J)																										
761				Ē	T	TA	= :	-1	T	AL	(Ι.	1	5																											
7.2				c	2	1 =	CK	I	1	(1		ŝ																													
743					4			11	~	i.	1	5																													
7.1				0	2	F =	1:	c	-	71	1	Ť	1))		co	S	(T	H	FT	A)																			
7.5				0	4	T	0	 			è	÷'	-	Ś		•••	-	• •																							
703				5			v.	-0	-		1	1	•	'n																											
100				-	=			-0	-	17	-		-	• '																											
101				4	0	10	n.	- 1	-		'																														
100	C							-						. 9																											
709				5	ĸ	A =	4	- 0		(8	0	UA		* 4	',	RU	0				:																				
775				-	K	8=	4	- 0	*	(=	0	08	*	* 4	•/	RC	101	31		* 4	2					au.		~ .	~	~~			• •	-			1.		THE		
771				1	K	= (1	. 0	+	TA	N	CC	ĸ	1)	*	(-	. 1.	* 1	A	N (* 1	He		A J	+		0,	L	05		K1		1 -	- 1	AR	C.				
772				1	*	Z							-										-			-	1-		-				· +	u c	T A	1.	c	- 1		11	
773				L	IK	= (1	- 0	+	RA	D	*0	0	S	P	HI	.).	/ 1		RC		RO	123	*	co	15	cī	HC	1	A)	* 2	TW	•	ne	1.6		20	24			•
774				11	A	N	C	KI)	11	A	N	T	HE	T	AJ)	* *	2																						,
775				1	IK	A =	:(·	- T	A	N (C	KI)	* ((2	- 6	*	CF	10	0 4	*	* 2	11	50	O A	D)+	٦.	.0)-	1*	IA	NC	1*	IH	51	AJ	+1	P*1	AN	•
776				11	FP	*1	H	ET	A))	*	*2	-																							~					,
777				1	1K	8=	= (·	- 1	A	N	C	KI)	* 1	(2	.(*	CF	10	OE	*	* 2	2/1	50	O E	30)+	٦.	.0)-	1*	TA	N	1*	TH	ci	A)	+1		AN	·
778				11	P	*1	TH	ET	A))	*	*2																	_	_	÷	-									
779)	K	= (. (TA	N	(8	I	TA)	10	:0	SI	C	K.	()),	• (-1	*	FA	N	T	P*	TH	E	TA)+	TA	N	CK	1)	+1	AN	(1	HEI	A)	+
700				11	P	*1	A	Ni (T	P .	T	HE	T	A :)-	1.	.0	11	r A	N	T	HE	ET,	1)))	*	*2														
731				1	(K	A =	= ((1	A	N	(=	IT	A).	10	05	5 (CI	(I)))	*	(2	2 -1)*	(6	10	OA	**	+ 2	/R	00	AD)+	1.	0))*	*2				
782				3	K	8:	= ((1	A	N	E	17	A)	10	0 5	5 (CI	(I))	*	(2	2 - (]*	CR	10	08	**	• 2	1P	00	80)+	1.	0))*	*2				
763	C		C	A	_ C	UL	. A	TE		RC	00	т	(K)	FO	R	1	. A	RC	SE	1	R.	IA	NG	iL	ES	. 7	N	D	HE	NC	ε	۴ (S)						
784				1	20	01	K	A =	= 5	GF	11	(2	2 .	0	* (SI	A	+	TK	+1	١K) +	+ ()	JK	A	W	K+	XX	A))											
785				1	05	01	TK	8 =	=S	GS	11	(2	2 .	0	* (SI	(8	+	TK	+1	JK) +	+ (1	VK	84	+W	K+	XK	(8)))											
726	С																																								
767				3	20	01	TK	=0	١.	5 .	+ (RC	00	TI	KA	*	10	0	4/	R	00	A (++	RO	01	TK	8*	RC	00	9/	RO	OP	D)	*Z	DI	EH	10	05	(88	ETT	Y)
728				1	FS	L	=R	00	T	K	. C	05	; (T	+T	4	ET	A) *	AF	RE	A	10	0S	(1	TP	*1	H	ET	A)											
759	C																																								
790					FS	=	FS	+1	FS	s.	+ F	SI																													
761		1	4	1	00	N	TT	NI	15		510		ТР																												
797		1	41	1	00	N	TI	NI	1.																																
793	C						-		-																																
756				0		T	TE	1	>	21	15	0	>	F	S																										
795		20	5 /	1	FO		NA.	T	15	Y	-,	T	4.5		V A		I P	37	0 F		F(S)	-				11	n .	6.	11)									
796	c	20	- 1	3				•		~	'			200	• 0	-		100	•••	18		Ĩ.,					1	- 375	8.5	- '		с. Г.									
707	c							r .	. 1		•		2	0	+0		+ 0	0	от	r	7	0	1+	28		• 2	1														
700	c				-	2	- 1	2	- 1	•			•••	-		*		-				-			and a	-															
700	5		~		-			~	-	-	-		-	N	E	0		v		-	NT	-	ST		1	N	(p	T 2	10	N	MI) -		G	TM	1	ND	T	HE	
8 00	č		0	AL.		N	20	C C	-	-	-	V		T	DA	T		1	50	5	TH)			•				-		100		-	-							
0.00	5	n	01	10	0 5	N	20	2		W I	1	V	3		n H	-			- 14	5	1.11	-																			
CUI	6																																								

```
8 02
8 33 c
          RS=RS*1
804 C
815
          VOL=UE*AE
          EQSTM= (UB * AB * FS + (2 . 0/SQRT (3 . C)) * UB * RS) * 2 . 0 * NS/VOL +
806
8 67
          1ALFAE/SALFAE**2-COTFAE
868 C TRAPPING VALUES TO SEE WHAT'S UP !!!!!!!!!!!
809 C
           EQSTR=2.0+UB+RS+2.0+NS/(VOL+SQRT(3.0))+ALFAE/SALFAE++2-COTFAE
810
          EQSTIN=FS*2.0*NS
WRITE(2,2090) EQSTR,EQSTIW
811
312
     2090 FORMAT(SX, 'REDUNDANT STRAIN = ', F10.6/5X, 'INTERNAL WORK STRAIN = '
ā 13
814
          1,F10.0,/)
     WRITE(2,2051) EQSTM, EQSTH
2051 FORMAT(5X, 'THE MEAN EQUIVALENT STRAIN = ',F10.6,//5X, 'THE HOMOG.
315
316
          1 EQUIVALENT STRAIN = ',F10.6,//)
817
818 C
          WRITE(2,2240)
8 19
     2240 FORMAT (2X, 'COEFFICIENT APPARENT YIELD STRESS DRAW FORCE DRAW S

1TRESS MEAN DIE-PRESS DRAW POWER DRAW/YIELD MEAN-PRESS/YIELD')
820
321
          WRITE(2,2241)
8 22
                                                               (TONF)
                                                                          (TONF/S
     2241 FORMAT(2X, OF FRICTION
10 IN) (TONF/SQ IN)
                                               (TONF/SQ IN)
                                     STRAIN
8 23
                                                              STRESS RATIO ./)
                                                 STRESS
824
                                   (H-POWER)
3 25 C
    C TO FIND FRICTION FACTORS 11' AND 12'
8 26
827 C
828 C
2 29 C
           FA121=2.0/SIN (ALFAE*2.0)*ALOG(AR)
830
           FAI22=COTFAE*ALOG((RB-RP)/(RB+RP)*(RE+RP)/(RE-RP))
331
           FAI2=FAI21+FAI22
832
           ABAR=2.0*BETA*RB/(M-1)
833
DO 145 ICOEF=1,6
CMU=(ICOEF-1)*0_02
 335
 8 30
 837 C
 3 38
           GO TO 5001
 3 39 C
 340
           FI1=0.0
           FI2=0.0
 841
 542 C INTEGRATE THE RESPECTIVE TERMS OVER THE DIE/TUBE INTERFACE
 843
           00 146 J=1,M-1
 844
           THETA=THETAL(N,J+1)
           EITA=CITAL(N,J+1)
 845
           CKI=CKIL(N,J+1)
 846
 3 47 C
 FI1=FI1+SLAPEA*(SIN(THETA)+CMU*COS(THETA))
```

```
- A135 -
```

				-																															
252			FI	2=	FI	4	+5	LA	K E	A																									
855	12	140	00	NI	TV	(U)	-																												
354	С			-											-	-																			
835			FA	CT	10	=	(F	11	+C	MU	*0	LEI	H* 4		U*	61	= 17	*	P) / A	A														
8 56	C													-		12				1	- 12														
857			FA	CT	20	= ((F	12	*A	LO	G(AR)/8	SE	D*	+ C I	AL	A	*	UB +	PL	UG	TO	т/	(2	- 01	*NS	"	FCM	010	IOL				
358	С	FAC	TOR	S	TH	IU.	S	FO	UN	D	FO	RI	COM	PI	LE	TI	E S	SE (T	ION	6														
859			FA	CT	1:	=F	AC	T 1	D*	2.	0*	NS																							
860			FA	CT	2:	= F .	AC	T 2	D*	2.	0*	NS																							
861	С																																		
802	C																																		
503		5001	FA	CT	1:	= ((A	8-	AA)*	(1	.0	+C *	11	*0	:0	TF,	E)+	CML	*2	.0	*P	I*	RP	* 0	IEH)//	A						
8.44			FA	CT	2:	= F	1 T	2 *	CM	u				-								-													
545	~			-	-		••	-	-	-																									
244	2			C 1		- 1	••			1.	41	06	145	1 0	19	2 41	E		+ 0	T + 9	P*	D T	EH	+ (1+	AF))*	UE	+ C M	U/V	OL				
000	-			•••	-	- •	•	0							1				0.5	-	000000		0.00		5015	200.020	940			-					
001	6							~ .					-		,	~		~~	- >		-	E 1	CT.	-											
803	C	MA	IER	1.4	L.	H	AK	UR	INI	10		AL	101		-	-	1 1	1011				- 0	100	U A		÷ .	•								
369	C	ALS	O A	Т	TH	IF	s_	ST	AG	-	CA	LL	UL /	AI	=	1	HE		K I	C11	NU.		IUR	~	RM		0								
875			er	A	: 1 :	= 1	-0	10		.0+	YN)																							
871			PF	A	: T	= 0	3 F	AC	T*	FA	CT	41	FA	CT	1	-				-															Li I
872	C	HE	NCS		H	E	CA	LC	UL	AT.	10	N	OF	Т	H	5	08.	JE	CT	01	· A	LL	- 1	HI	5			• •	A	PPF	ARE	NI	214	~ 1 F	•
873			EQ	ST	TA:	=E	GS	TM	10	1.	0-	PF	AC	TO)																				
874	С																																		
875	C	DE	FIN	E	TI	HE	M	EA	N	YI	EL	D	STI	RE	5:	S		••				YI	EL	DM.	U	JP	то	ME	AN	EQL	VIU	ALE	NT		
376	C	ST	RAI	N	A	ND	Y	ME	AR	0	VE	R	TH	E	W	HO	LE	S	TR	AI	R	AN	Ge	= (EP	SI	LON	-A)						
877			YN	18	R	=Y	K *	EG	ST	A *	**	N/	(1	.0	+	YN)																		
378			YI	EI	DI	M =	YK	* 6	0 5	TM	**	YN	10	1.	C	+ 4	N)																		
879	C																																		
880	c	CA	101		T	=	TH	-	DE	AL	S	TR	ES	s .	F	OR	CE		AN	D	HE	0	COR	RE	SP	ON	DIN	G	POW	LR	QF	TH	E		
881	č	MA	CHI	N	-			AI	SC) 1	HE	R	AT	10	1	OF	T	HE	S	TR	ESS	1	01	TH	E	ME	AN	YI	ELD	S	TRE	SS			
222	č			37.0				0.00			100		-	-					-																
007	-					7 -	VN				CT.																								
000			5		10		TO	N	7.		11	a c	r																						
004			01		~~	=	10	-			MO	10	~																						
002			× :	5 1 1	s I	m-	21	91	1 .	• • •		-																							
000	C		-																																
156			D.	1 21		= t	03	T/	*		AK	11	AC	11																					
838			RI	IC	=Y	2	DI	-	· M.	11	EL	DM						-		-															
839			Di	AS	1P	= D	RA	WI	*	111	*2	24	0-	01	C	>>	0.	U*	12	-0	,														
890	C																													1212					
891			W	RI	ΤĒ	(2	,2	0:	552) (MU	,Ε	QS	TA	,	YM	BA	R,	DR	AW	F,S	10	SM;	ΔZ,	, D]	IEP	M.,0	DRA	WP,	, RS	IGY	m,			
892			18	DI	ΞY	M																													
693		2055	F	OR	MA	T	43	-	F 5	.3,	. 6X	,F	8.	6,	. 4	x,	F 8	-4	,5	х,	Fð.	.4,	, 41	X , F	F8.	-4,	7X,	, F8	- 4,	,6X	,F7	-3,	, 5 X ,	•	
3.74			15	8.	5,	6 X	, 1	8	.5)																									
895		145	C	0 N	TI	NU	E																												
896	C																																		
897	C		*	* *	**	**	**	*	* * :	* * 1	**	LO	WE	R	8	ou	IND	3	OL	UT.	ION	1 1	FOR	RP	01	LYS	ON	L	DRA	A L I	NG	***	****	**	****
598	C		T	HE	S	UB	- 5	RI	0 GI	RAI	1 0	AL	CU.	LA	T	ES	T	HE	L	OW.	ER	80	our	ND	B	YN	UM	RI	CAL	. I	NTE	GRA	ATIC	N	
890	-		11	RI	TE	17		26	40)		1002/100	1000	-	1	1999		- CUISE	1		-30														
9:0		2640	E	28	MA	TI	1	11	. 1	5 X		**	*	TH	E	1	OW	FR	8	ou	ND	SI	OLI	UTI	IOI	NO	F	SEC	TIC	N	DRA	WIN	NG +		
001			1+		• >				-													-	-	ALC: N											

902	С		PI	RI	NT	1.1	ГΗ	e	H	EAI	DI	NG	F	OR	1			- 1	NAI	-	1.8	BL	5 1	JF	R	621	01	13									
903			W	RI	TE	(2	2,	26	5	5)																											
479		2655	5 FI	OR	MA	TI	ú	12	X		CO	EF	FI	CI	EN	T		YI	EL	D	ST	RE	SS		DR	AW	L	DAI	D	DI	RA	4	STI	RES	SS	DI	
acs			10	0	0 0		= 11	0 0		0		6	PP	FS	SI	RE	-	0	RA	41	YI	EL	D		DI	EI	P/	YII	EL	D	P	LU	G	P/'	YIE	LD.	
703			16	۲						16													-		-	-			-								
900			2)						-																												
907			W	RI	TE	(2,	26	151	6)																											
908	3	2656	SF	OR	MA	T	(2	Χ,		OF	F	SI	CT	10	N		T	ON	F/	SQ]	(N)		(TO	NF)		(T	ON	-1	50	1	0		100	£.
959			1.5	15	0	II	N)	2.5	(TO	NF	15	Q	IN	1)	5	ST	RE	SS	R	AT	IIO	È.		S	TR	ES	S				ST	RE	SS	•)		
0.10	~				-	-	0.0			-		100																									
710	-																		110	c A	c (- 4	NG	1 8	23					-							
911	C		C	AL	CL	1	AI	5	5	NU	10	AL	1	NU																•							
912			A	LF	A C	=	AT	AN	10	(0	CI	-0	HS	.)/			1*	01	FH.	"		-															
913			A	LF	AS	5 = ,	AT	AN	10	(D	01	-0	HE	*(:05	5 (8	BE	TA	"	10	.2	.0*	DI	ΞH	())												
914			S	AL	FA	IC:	= S	IN	11	AL	FA	C)																									
915			C	AL	FA	10	= C	0.5	; (AL	FA	()																									
016				AL	= /	21	= 5	TA	10	41	FA	5)																									
710			-						. ;																												
411			C	AL	11	15	= 0	.0:	1	AL		27					-																				
918	С		C	ON	IST	[A]	NT	S	F	OR	1	HE		LL	- 11	5	E	. •		•••				•													
919			A	SE	=	00	01	*(: A	LF	AC	:/(2.	.C.	* S :	IN	(A	LF	AC	+ 4	L	FAS	;))														
920			в	SE	=	DD	01	*	50	RT	(0	AL	F	ACI	* *	2 -	CA	LF	AS	**	+ 2)/((2.	0 +	SI	N (AL	FA	C+	AL	FA	S))				
621	C																																				
0-77	~			2	101	EN	Go		r a	T				N	CI	1.5	FF	TC	TF	NT	r (GE	FR	IC	TI	ON	(0.	0.	0.	.02				1	0.1)	j.
7 4 6	-			~	5		-	· .					7		1	-	20.02			200		199		20					- '						200		
925			D	0	20	04	2	11	LU	=	5-	•••	.0																								
934			c	ML	= 1	(1	CC	13(FF	-1) •	•0.	.0.	4		-	- 14		14		eran.																
925	C		N	UM	1E	RI	CA	L	I	NT	EC	SR/	AT	101	NI	OF	T	HE	E D	RA	* W	ST	TRE	53	5.	• • •			••		•••		•••	••			
926	C		A	CC	:01	MU	LA	T	IV	2	SL	IRF	A	CE	A	T	DI	Ξ (TS	UF	R F	1)	AN	D	PL	.UG	(T	SU	RF	2)	11	AI	νD,				
977	c		N	0.8	M	AL		:01	RC	E	A	: CL	IMI	UL.	AT	IV	E	(5	UM	F	1	AND	S	UN	MFZ	2)											
0.35	~		-		10	E 1	-1		0	-																											
7 10			-	34	17		\mathbb{Z}		~																												
4 2 4			1	54	1	r c	-1		u .																												
930			S	UN	1F	1=	:0	.0																													
931			S	SUN	٩F	2=	0.	.0																													
932	C																																				
550	C			:05	2	NO		A	CK	-F	u	L	-	TH	E	NO	RM	AL	5	TI	RE	SS	AT		THI	ΕI	INL	ET	P	LA	AND	-	IS	ZE	RO		
976			ė		C.M	47	=1	1	n		-																										
0.75			7			7.			~																												
9.33	C				4.5	1 #	N	13				•••			17	•••	-		•																		
936			C	K:	51	= 5	A	LF	AS	+(M	1*1	CA	LF	AS																						
937			(:K(C 1	= 5	A	LF	AC	+(M	1*1	CA	LF	AC																						
938			(CK	\$2	= C	M	U																													
939	C		1	II	E	LE	N	GT	H	(1	IC	EH	H)	I	S	DI	V)	DI	ED	I	NT	0	50	E	QU.	AL	EL	. 21	EN	AL S	s	• •					
010				H	25	1		-																													
0.4							-				i	11																									
941				02	1-	01	-		"	C INT	-	.,																									
942	(-							-																												
943			1	AI	1=	Ac	53	10	2.	.0	* N	S)										-			-	_											
944	(C		I	Ri	Fi	11.	S	TO) '	TH	Ξ	SE	CO	ND	F	A	E	01	F	TH	E	ELE	M	EN	TI	DEN	101	E	0 8	DY	T	-1				
945			1	00	2	64	+7	I	= 2	2 ,1	NH																										
916				ZI	= (1-	-1)*	D	II																											
947				DT	= 2	De	11	12	1	1-	7 T	* T	AN	(4	1.5	AC	:)																				
741		~					1.		-	-				TO	ce																						
948		6	1	1-	VA	LL	JE	0	r		TE	-	LL	1.	36	1		-			T .		11		0 -	+ 1		=	13								
949			1	YI	=8	Se	=*	50	R	10	٤.	0*	AS	c*	11	*(.AI		N.D.	-2	1.	* 2		(A	35				,,								
950				SY	RI	=	YI	/R	I																		anth		-								
951	1	C		CO	NI	C	L	A	NI	0	FL	AT	S	UR	FA	CE	Ε :	IN	CLI	UD	EC) A	NGL	LE	S	AL	ONC	5 7	2-1	XI	S						

													-	32																																
952			C	A	MD	A	S =	= A	S	IN	(SY	R	I)																																
953			C	41	10	A	C :	=8	E	TA	-	CA	M	DA	S																															
954	С		A	R	EA	ĸ.	AT	r	S	20	T	IC)N	Z	I	•	••		• •	•		•		• •	•	• •			•	• •	•		•			• •	• •	• •	-					-		
955			A	I	=		51		I	**	2	* (1)	0S	(CI	AM	DA	AS)	* S	I	N (C	AI	MD	AS	S)	+	CA	M	DA	C)-	0.	.5	*8	3 8	T/	1 *	31	PP	*	• 2		
956			G	0	1	0	1	26	4	6																																				
957	c		C	H	AN	G	E	0	F	X	-	S E	c	TI	0	N	AL	1	AR	E	A	0	VE	R		TH	Ε	E	L	Ξđ	E	NT		I	•											
658	-		0			-			0	7 1		(cr	05	1	C	AM	04	15)	*5	I	NO	c	A	MD.	A	S)	+	CA	M	DA	c)*	TA	IN	()	AL	FA	AC).	+ ((3	S	E	*
0 10			10	7					4	c i			1	(1	0	-		41	F	1	\$ *	-	7+	R	T	1)	*	(R	T	* (A	SE	*	CA	L	- 4	s-	- 7	I	11	51	GR	T	(2		0*
7 37			10	-	-			10	2				-7	22		2	1.	-		1	41				-	50	0.	T (;	-	-	4 5	=	+7	7	+ C	41				.7	1 *	*	2)	1	1)
950			- *	12	Ε,	4	+		~		^	2.	- 2			2	, +	.,			~ -	• *	~	• '	1	34	R		-		17	~ ~	-	-	•			• •				•		• *	1	
901	C		1.0	-		- 11			1	12										~	-	-																								
902	C		C	A	-	.0	L	AT	E	3	SU	RI	- A	CF		A	KE	A		0	r	5	L	-m	E	NI	2	•	•				•													
963	C																																													
964	1	2646	D	A	I÷	=A	I	- 4	I	1																																				
965			D	A	S	[=	81	S :	*	SG	R	T	(2	.0	*	A	SE	*	ZI	*	CA	L	F;	15	-	21	*	*2)	* 0	Z	I/	(AS	E	* C	AL	LF	A :	S *	*	2)				
956			D	A	CI	=	2	I *	C	AM	D	A	C*	DZ	I	1	CA	L	FA	10																										
967			C	A	SI	TI	=	DA	S	I	+0	A	CI																																	
968					5	21	=	R F	T	A +	R	P	2*	07	T																															
6+0	c			c	c1	IM	11		T	TI	12		ST	GY	A	7	14	(0 4	is	TI	()	1	AN	D	S	I	GM	A	Z	10	DA	S	21)											
070	~					- 1	-	21		-	1.	•	TC	MA	7	-	n a	e.	TI	r					-			-			1	22.		-												
0.74							-	01	1.00	-		-	10		2	1	24	0	2 1																											
7/1	-		-	U	-		-	31	101			3		01		-	5				•																									
712	c		1	10	CI	10	0		11	1			50	KP	-	5	5	~	RC	-	3	•		•••	•	•••	•••			•																
975				3	U	1 1	1	= 1	5	07	* *	1	+0	AS	1	1			•																											
974			1	r S	U	RF	Z	=1	S	U	7 F	2	+0	AS	52	I																														
975	С																																													
976	С		1	IC	MI	EN	S	IC	N	L	55	S	S	TR	E	S	S	•	• •	••		• •			•	••	•									-		or a								
977			1	S	I	GM	A	Ζ:	= (1	.0	11	AI),	+ (-	SI	G	M	AZ	*1	A	I	+ (1	.()-	SI	G	M	AZ),	* (CK	S	1*	0	A S	SI	+						
978			10	CK.	C	1*	D	A (11	+1	CK	S	2*	01	15	2	I))																												
979	С		-	ST	R	ES	S	(N	8	SE	0	ON	G	F	A	CE		B	EC	01	M E	S	S	T	RE	E S	S	F	01	2	F	AC	Ε	I	C	F	1	EL	EN	1 5	N	Г			
930	c		-	1+	1			_																																						
9.31				T	G	4 4	7	=	T	GI	MA	7	+0	S	T G	M	AZ																													
027				- 0	ॅ	TO		2.	1	8		22	1	-		200		-																												
0.7				10		7 0		2	2	2	2.6		~	т	c	*			0	AM	0	۸r	E.,	AT		04	A T	¢	: 1	G	4 A	7	. T	SL	15	E 1	5.3	T	SU	2 8	F 2		SU	MI	= 1	
953					-	10		٩,	• 4	0	2.4	'	•	-	, ,	. 6	~ 1	. ,				~ ~		•	1		••	"	-	9	10.57	- 1			030	2013	1		1000	773.6		1		1.5	2	-
954			1	50	-	- 2	2							-				1				- /				1.7				,	1															
405		2020	100	- 3	R	2	11	C	٦×		2 (٨,		1.2	•	•.		1	27		21		^ ,		••	••		••		1															
936		2648		AI	1	= A	I																								1															
987		2647	a 1	C O	N	TI	N	U																																						
938	C																																													
9:9			1	AN	A	= A	I																																							
990			i	AA	S	=#	A	A	1 (2	.()*	NS	;)																										3						
991				AN	S	= 1	(A	A	5 -	· A	14	1)	11	A	s																															
992	C			ME	A	N	0	R	AW	1	SI	R	= 5	5	4	N	D	F	0	RC	E	F	:0	R	T	H	Ε	L	0 4	E	9	в	01	NO)				••							
693	c			TH	F		11	A	N	Y	II	-1	D	S	TR	E	S	s .	Y	ME	S	Τ.		E)	P	RI	ES	SI	ED	1	IN	1	TC	NE	: /	SG	1	I	N							
004	č			S T	6		in	-	c 1			7	*	-	= <	T																														
005				0 0	Ť	61		-	c T	6		17		1.1.15																																
004						U.			10	M						,	0.	- 14	c																											
007				0.	-	1.	10	0 0	10	111	24						P		2	SI	IP																									
991	C			01	=	14	.0	*	~ ~	1	= 1		-	12	A		-	1 1		30	A	-	-																							
998				P	1	=	(1	•	0-	-5	UI	TF	1,	1	21	R	F	1)	*	16	15	2																								
999	2.72			RP	M	1,	M	=	44	11	1	M	2	T																																
1000	C			PL	. U	G	14	0	RK	P	I	EC	E	M	E	N		PR	E	SS	U	R	C																							
1001				PN	12	=	(1		0-	-S	UI	MF	2	11	St	JR	F	2)	*	YN	E	ST	r																							

1002			RP	MZY	M=F	2 14	/YM	ES'	Т																				
1003	С		PR	INT	CC	DEF	FIC	IE	NT C	FF	RIC	TI	ON																
1004	C		PR	INT	DR	WAS	LO	AD	S.ST	RES	SES		TE				16	00	= e	c 110	-								
1005	C			-									• •	~.			10	- 1	63	304		•••	•						
1006			uo	TTE	12	24	451	~		-		~ • •												100000					
1007			100	LIC		.20	021	•••	10,1	WE2	1,0	RA	wr,	.51	GM	AD,		11,	PM	2,8	SI	GYI	1,RI	PM1	YM,				
1001			IRP	MET	<u> </u>							1.00	-																
1000		2003	FO	RMA	T (4	×.,	F5.	3,0	SX,F	8-4	,2(4X	,F8	. 4	.),	5 (6	X,	, F 8	-4),6	X.,	F8.	.5,	2(5	X .!	F8.	.5))		
10:09		2643	> co	NTI	NUE	-																							
1010	C																												
1011	C		**	***	***	**	***	***	***	THI	S E	ND:	S T	HE	L	OWE	R	80	UN	DE	CR	P	11 4	GON	41	DP	-	*****	
1012	С														-										~	-			1
1013	C		**	***	***	**	***	**	AXT	SYM	MET	RT	c p	0.0	BL	EM								1. 7-10					
1014	C															E.M.	00						640						
1015	-		40	TTE	12	25	801																						
1014				TIE			001									1	-												
1010		2201		RMA	10		,0x		-OWE	RA	ND	UPI	PER	8	oui	ND	SO	LU	TI	ONS	F	DR	AX:	ISY	MME	ETR	IC D	R	
1017			IAA	ING	!	1)																							
1018	C		CA	LCU	LAT	Ξ	THE	MS	EAN	EQU	IVA	LEI	NT	ST	RA	IN (EP	SI	LOI	N-M) 8	3 1	HE	RS	DUM	V D A	NT		
1019	С		ST	RAI	NC	EP	SIL	ON-	-R)										1										
1020	3	2571	EP	SIL	CM=	AJ	P+B.	JPI	2.0	1(3	- C*	VM:) * T	AL	FAI	E* (CJ	P+	LLD	e)									
1021			EP	SIL	OR=	EP	SIL	OM-	-EPS	ILO	н					-				242									
1022			WR	ITE	(2.	25	90)	FF	ITZ	OH .	FPS	110	1 P	= 0	STI	0.0													
1023	1	2590	FO	RMA	- (5	¥.	• TH	F F	IOMO	6	EQU	TV		MT		TOA	T 1	0 5	_		Ξ.								
1024	10		INT	1701	UTV	ini.	INT	- C T	DAT	N-		• •	52	4	3		1 1			1	3-0		24		HE	RE	DUND	A	
1025			,				C 9	4	()		-		, го	• •			. 1	HE	m	AN	54	101	VAL	-EN	TS	STR	AIN		
10.24	0		-				,	.0,				-		_															
1020	5		10	c n:	EAU	14		UR	INC	11	NAL	17	AEL	Ę	OF	RE	SU	LT	S.										
10.20	1		WK	LIE	2.	25	42)																						
1020	2	2346	FO	KMA	101	IX	· . I	.,0	1X,	'UPI	PER	90	DUN	D	SOL	_UT	IO	N .	,21	sx,	'I'	,6	×,'	'LO	WER	8 8	OUND		
1029			150	LUT.	ION		5x,	. I .)																				
1630			WR	ITE	(2,	25	40)																						
1031		2540	FO	RMA	1(2	x,	. CO	EFF	OF	Y	LEL	DS	STR	ES	S	DR	AW	F	DRO	E	DE	AW	ST	RE	55	M	FAN	D	
1032			1IE	-PR	SS	A	PPA	REN	T P	RES	SIY	IEL	D	Y	IEL	D	ST	RES	22	DR	AW	YT	FI D	0	000	12	VT.	,	
1033			22X	. 'FE	RIC	TI	NC	(1	ONF	150	TN)		(1	ONE	=)	• •	(1)	ONE	10	c 1	NI		17	ONE	: 10		:	
1034			3	STR	RAI	N	STR	RES	SR	ATTO	1 (TON	FI	sa	TA	in		CTO				e T				13	a Tu	,	
1035	С							-			1 00				• .	• •		311					RES		.,,				
1036	c		TO																	. 2.3			100 10	0 125			-	-	
1037	~		0.0	25	1 EA	7.0		1	HEA L	N LL	/ cr i	-10	15	M 1	C P		КI	CT	101	4 M	0=0	.0	0,0	1.0.	Ζ,.	•••	,6	-10	
10:5			00			100			.0																				
1020	~		6.41	0=()	LCO	Eri	-1	*0	-02																				
1039	C		EV	ALUA	ALE	TI	121	FAC	TOR	S I	I AI	ND	IS	•			• •												
1040			FA	стоі	[]=	1-0	J/A/	4* ((AB	-AA)) * ('	1.0)+C	MU	*00	TF	AE)+(CML	1+2	.0.	PI	*RP	*0	IEH)			
1041			FA	CTOI	[2=	CMI	1+00	TF	AE*	FACT	102	1+2	2.0	* C	MU /	SI	N (ALF	FAE	*2	.0)	* F	ACT	02	2				
1042	C		US	ING	TH	E	AT	ERI	AL	HORK	(H/	ARD	EN	IN	GF	AC	TO	R	(8 -	FA	CTO	2)	-	V AI	LIA	TE			
1043	С		TH	E PH	+I -	FAC	TOP	2,	THE	APF	ARE	ENT	5	TR	AIN	ICE	PS	ILC) N -	· A)	HE	NC	ÊT	H =	AP	PA	PENT		
1044	С		FR	ICTI	ON	AL	STR	AI	NE	PSIL	ON-	-F)	4	NO	TH	IF	ME	AN	S T	DE	ce /	~		0.1	au		THE		
1045	C		ST	RAIN	R	ANG	38 0	Т	0 5	PSTI	ON-	- 4	-			-			51	~ ~		in	-OA			ER	Ins		
1046			PH	TFAC	T=	AF	CTO	1+5	ACT	112	EAG	TO		•••			•												
1047			FD	STL	14-	EDO	TIC		11	0-01	TE		111																
1048			CP	CTIC	10-	50					111/	ic i	,																
10.49			VU		- VF	200			EPS	LLON			1.0																
1019	~		1.43	JAK	-TK		511	. O A	***	1/(1	-0-	TN)																
1050	5		HEI	NCE	TH	= 7	EAN	0	RAW	STR	ESS	5(5	IG	AM	DO	R	TH	ED	IM	EN	SIO	NL	ESS	DS	SIG	MAI	8 (0		
1021	6		TH	= Mt	AN	TO	OL	TU	BE I	PRES	SUR	RE (P-I	MF	AN	08	0	-ME	AN	1) 1	OP	11	-=0	TINC					

1052		SIGMAD=YMBAR*EPSILOA
1053		DSIGMAD=EPSILOA
1054		PMEAN=SIGMAD/FACTOI1
1055		DMEAN=PMEAN/YMBAR
1056	С	
1057		DRAWF=SIGMAD*AAA
1058	C	
1059	C	THE LOWER BOUND FOR AVISYMMETRIC CASE IS NOTHING BUT
1060	C	WATCH OUT IF THE MEAN COEFFICIENT OF ENTOTION IS O COOCOOR
1051		IF (ICOJEF, 59.1) GO TO 2507
1062		BUTA=2_Q*CMU*COTFAF
1063		DLSIGMA=(1,0+BUTA)/BUTA+(1,0-(3HA/BUB)++SUTA)
1064		G0 T0 2508
1055	2507	DLSIGMA=ALOG(BHB/BHA)
1000	2508	DLPRESS=1_0-DLSIGMA
1007		SIGMAL=YM*DLSIGMA
1063		PRESSL=YM+DLPRESS
1069	С	
1070		WRITE(2,2555) CMU, YMBAR DRAWF, SIGMAD PMEAN EPSTICA DMEAN YM
1071		DLSIGMA, DLPRESS
1072	2555	FORMAT (4X . F5 . 3 . 2 (5X . F8 . 4) . 4Y . F8 . 4 . 7Y . F8 . 4 . 4Y . F8 . 4 . 7Y . F8 . 7Y . F8 . 4 . 7Y
1073		4x,F8_4,2x,F8_4)
1074	2545	CONTINUE
1075	С	
1075	С	******************** END OF AXISYMMETRIC SOLUTION *******************************
1077	120	CONTINUE
1078	60	CONTINUE
1079		STOP
1080		END
1081		FINISH
1082	****	
	RRRRR	
*RRRRRRR		
+RRRRRRRR		NUMBER OF PAGES 22 RARRARRARRARRARRARRARRARRARRARRAR

• KK K K K K K K	88	
		THE REAL PROPERTY OF THE PROPERTY OF THE REAL PROPE
• KKKX ** KKKKKKKKKKKKKKKKKKKKKKKKKKKKKK	<pre></pre>	

A-14 THE AXISYMMETRIC TUBE DRAWING SOLUTIONS CORRESPONDING TO THE POLYGONAL TUBE DRAWING ON A CYLINDRICAL PLUG

In tube drawing the depth of metal shearing at the entry and exit to the deformation zone is small. Hence, the redundant work calculated at both the exit and the entry shear surfaces will not differ appreciably whether the velocity discontinuity assumed is tangential to a spherical, a conical or a plane surface. Furthermore, the range of the die semi-angles is restricted to 20° (78). A plane surface of velocity discontinuity and the convenient cylindrical co-ordinate system (r, θ , z) were, therefore, selected for the theoretical analysis of the axisymmetric tube drawing.

A-14.1 Upper bound

For the axisymmetric case equation (3.69) gives the mean equivalent strain,

$$\begin{split} \bar{\varepsilon}_{m} &= \ln \left\{ \frac{R_{b}^{2} - R_{p}^{2}}{R_{e}^{2} - R_{p}^{2}} \right\} + \frac{1}{6} \ln \left\{ \frac{R_{e}^{2}}{R_{b}^{2}} \cdot \frac{R_{b}^{2} - R_{p}^{2}}{R_{e}^{2} - R_{p}^{2}} \right\} \\ &+ \frac{2}{3\sqrt{3}} \tan \alpha_{e}^{2} \left\{ \frac{R_{b}}{(R_{b}^{2} - R_{p}^{2})^{2}} \left[R_{b}^{3} - 3R_{b}R_{p}^{2} + 2R_{p}^{3} \right] \right\} \end{split}$$
(A-14.1)
$$&+ \frac{R_{e}}{(R_{e}^{2} - R_{p}^{2})^{2}} \left[R_{e}^{3} - 3R_{e}R_{p}^{2} + 2R_{p}^{3} \right] \end{split}$$

The factors I_1 and I_2 in equations (3.52) and (3.56) reduce to

$$I_{1} = \frac{1}{A_{a}} \left\{ (A_{b} - A_{a})(1 + \mu_{m} \cot \alpha_{e}) + \mu_{m} \cdot 2\pi R_{p}L \right\}$$
(A-14.2)

$$I_{2} = \mu_{m} \cot \alpha_{e} \ln \left\{ \frac{R_{b} - R_{p}}{R_{b} + R_{p}} \cdot \frac{R_{e} + R_{p}}{R_{e} - R_{p}} \right\} +$$
(A-14.3)

$$2\mu_{m} \operatorname{cosec} 2\alpha_{e} \ln \left\{ \frac{R_{b}^{2} - R_{p}^{2}}{R_{e}^{2} - R_{p}^{2}} \right\}$$
. . the draw stress is evaluated from equation (3.62), i.e.

$$\sigma_{za} = \bar{\tilde{Y}}_{m} \cdot \frac{\varepsilon_{m}}{(1 - \Psi)}$$

where $\Psi = B \frac{I_2}{I_1}$ as given by equation (3.59) and equation (3.57) gives the value of $B = \frac{1}{1 + n}$

The mean pressure p_m is obtained from equation (3.61),

i.e.
$$p_{m} = \frac{\bar{Y}_{m}}{I_{1}} \cdot \left(\frac{\bar{\varepsilon}_{m}}{1 - \Psi}\right)$$

A- 14.2 The lower bound solution

The integration of equation (3.82) for the axisymmetric tube drawing reduces to

$$\sigma_{za} = Y_{m} \frac{1+\beta^{*}}{\beta^{*}} \left[1 - \left(\frac{h_{a}}{h_{b}}\right)^{\beta^{*}} \right]$$
(A-14.4)

Where, $\beta * = 2\mu_m \cot \alpha_e$

 h_a , h_b are the wall thicknesses of the exit equivalent circular tube and the inlet tubular stock respectively. A-15 COMPUTER SUB-PROGRAMS TO CALCULATE THE MEAN COEFFICIENT OF FRICTION IN POLYGONAL TUBE DRAWING USING EQUATIONS (4.10) AND (4.19)

A-15.1 Evaluation of mean coefficient of friction by the

semi-analytical method (equation 4.10)

1			M	AS	ΤE	R	S	EM	IN	12	тн	00																											
2	С		A	C	OM	PL	JT	ER	F	R	OG	RA	M	TO	E	V	AL	UA	TS		THE		X	R	FS	SI	0	¥	TO	D	E	TE	R	T	NE	т	HE		
3	С		M	EA	ŝŧ	CC	Ē	FF	IC	II	EN	Т	OF	F	RI	C	TI	ON	A	N	0 1	THE	1	1E	AN	P	RE	S	SU	RE		IN		H	E				
4	С		S	EM	I-	- 4 1	A	LY	TI	CC.	AL	M	ET	HO	D	8	AS	ED	C	N	AN		01	IL	VA	LE	NT	F	ca	NI	c	AL		I	2				
5	С		5	PE	CI	FY	1	TH	5	D	IA	GO	NA	L	LE	N	GT	н	UF		THE	EC	U	P	UT	S	TO	DC:	<	HA	=	HE	= 1	1	ōcc	1	IN	СН	
6	С		T	HE	E	GL	IL	VA	LE	EN'	т	DI	Ε	SE	MI	-	AN	GL	Ξ	(ALF	A		EN	D	EG	25	-	3)			-		-					
7			R	EA	DO	1.	.2	59)	DI	HE	.1	KO	NE								1			-	-	216		1										
8		299	F	OR	MA	TI	F	5.	3.	.2	х.	12)	200																									
9	C		S	PE	CI	FY	1	TH	=	0	RA	WI	NG	v	51	0	ст	TY	(TI	NC	IES	1		co	NO	3	4	NO	T	н	=	51		200	-	ST	DAT	м
10	C		c	HA	a A	CT	TE	RI	37	TI	C	OF	-	HE	1	IN	DR	AW	N	M	E T	11	-	T	GM	4 =		E	20	TI	0	N+	+ 2	1		=	0 5	¥.	
11	c		I	S	IN	1	01	NS	15	0	- 1	N												-	-			-					- 1			-		~	
12	1		R	= A	DC	1	.2	co)	VI	A	Y	ĸ	YN																									
13		200	F	OR	MA	T	(3	FO	1.0	1)		· ·																											
14			P	I =	5 -	14	.1	59	27	7																													
15	C		N	UM	8 5	P	0	F	TI	:5	TS	s	0	FA	8			-					-	-															
16	-		2	FA	00		2	02	,	T	04	TE	-		22	•		•••			- / .			1															
17		202	F	OR	MA	Ŧ	11	21		-	-																												
18	C		u (184)	-	200.00		• •	~ ,																															
19	c		т		SE			-	0.		c	-	c	up			т			-		MO		=	0.0	-		-	~ • •	T -		-						-	
20	č			91	TR	1	5	20	00	11	~~		3	- 1	• '	-	1			E		. MC	13	1	UR			1	U U	1 -	0		• •		-10	1.14	UN	e	
21	ci	2000	F	OR	MA	T	12	x		R	4 W		0.4	TE			s	TD	ES		n F				-	T 11							7 .	-			-		
22	c		11	EN	т		20	6ú	CT	TT	n N		51	04		-		10			DAL		-			10	ME	2			-	51	2 -				EA!	VIU	~
23	c		2.	TE	-	. 1	0	50				PA	1 2	60	NA		0	33			1	~		. 5	23		110			PR	5	23		C				2.4.	
24	č		70	24			1	C T			- 5	1	- '	00	C 1	-			- '		.,	^ 					00	,	~~		0	141		3	TUR	1			A
25	č			2 4			•	711	LL C		~ ~	· · ·	0		01	G						1.		-	~ >				20			UF	,	• '	ίλ,		NU		
56	č		ST	2.1	F /	Se		TN	0 5		TO	NE	10	0	TN			TO		1	0.3	TN	IN .			c +				2	+	~)		-	PER		CEI	413	
27	č		- 1	U N	.,	54	•	1 14	5		10	MF	13		TU			10	NP	1.	3.4	TN	15		R I	c i	10	m		"									
22	č		u		т =		,	20	0.0																														
20	~	2002		10		T	12	20																	-	.								-					
7.0	~		1	5 K	-									15		-	3	10	= 3					U		10	00	117				51	4 =				EQI	UIV	A
31	č		2+	TC	1 5 T	. "	11	50	C.I	11	UN.	-		UW CO			KE O	22		01	CAN	1.3	1.5	(<u>L</u>	55	1	10	L	.	ST	K	ES.	S	m	AN		,1	ex,	
12	č		10				~	г с т	~ •			,0		50	11 A	-			- '	1.	• •					PL	00				0	IAI		3	LNK	-		or .	A
22	2		20					71	30		~~	1	~		51	G	7 A .					1.	1.1		N J				E	F F		UF	•		< X ,		NC		
71	c				~ ,			10	26		C.M	51		AU	95			N)				u	N .						10	U.	1	N)		0	PER		CE	(T)	
75	5		31	1 14	r /	24	•	1 14	1		10	MP.	15	G	IN			10	NP	1:	sa	IN	6	F	RI	CT	10	IN		1)									
22	6							20																															
30				~ 1	10		:	20		2									-	-								-						-					
26		1001	."	JR	- A			× .	- 0	R		~~		-	29	U.	LV	AL	EN	T	RE	DU	CI	1	NO	-	FL	.0	-	ST	R	ES	S	Di	RAW		STR	RES	S
20			-	7 5	- 3		. K	= 2	5	H	2M	0G	EN	R	ED	02	4 D	AN	H	01	100	i R	EC		ND	F	RI	C	TI	M	E	AN	1	9	AP	P	ARI	E',	/
24			21	x ,	1		1				IC	AM	S	IN	ĸ	1	JF	A	RE	A		(51	G	MA	-F)		(SI	GI	MA.	- D)		(P-!	MEA	N
40			2)			0.	K				OR	ĸ			S	TI	2 N		ST	RI	AIN	IS	TR	A.	IN	S	TR	IA.	IN		S	TR	A I	N	• . /	1	χ,	.NO	-
41			4		NS	2	6	/1	00	10	I	NJ	(PE	R	C	EN	1)	T	01	4F/	SQ		N		ΤO	NF	1	sa	I	N		10	141	F/S	Q	I	4	(
46			2W			100	(WR)			(EH)	- 2110	(= 3)		(EF)	(. 1	121	M)			(A)•		1)		1					
45	C		R	EA	D	TH	12	_ D	AT	A	F	OR	I	ND	IV	I	DU	AL	P	01	- YG	ON	AL		TU	65	D	R	M A	IN	G	FI	RO	M	RO	U	ND		
44	C		T	HE	1	NP	0	T	DA	T	A	IN	CL	UD	E	TI	HE	T	ES	T	NL	MB	ER		DA	TE	0	F	T	HE		DR	AW	,1	POL	Y	GCI	NAL	
40	C		T	DB	=,	1	U	35	0		• •	X	G	AU	GE	,	P	LU	G	SI	ZE	,	DA	A	W	ST	Re	S	s,	A	N	D	TH	6	FL	0	W		
40	C		S	TR	ES	S	0	F	TH	E	D	RA	WN	M	AT	E	I S	AL		•		•••	• •																
41			D	5	00		T	ES	T=	-1,	, I	DA	TE	-	1.5		-	- 101			- 12																		
40			R	A	0(1,	.2	05)	NO	TC	ES	T,	ID	AY	,	IM	ON	,1	Y	EAR	,N	0 5	I	DE	.T	UB	E	DC	, T	G	AU	GE	,1	SI	Z	ε,		
4.4			-	and the second se		-	- 1 - 2 - 2	-	- 19 10	1000																													
			15	IG	MA	D,	.5	10	17.4	47				-																									

51	C	CALCULATIONS FOR SECTION PARAMETERS, INCLUDED ANGLE (BETA), PLUG	
25	C	RADIUS(RP), INLET AREA(AB), OUILET AREA(AA), AREA RATIO(AR), PLUG	
53	С	AREA(AP), REDUCTION OF AREA(RED), EQUIVALENT RADIUS AT EXIT(RE)	
54		NS=NOSIDE	
25		BETA=PI/NS	
56		DOT=TUBEOD	
57		T1=TGAUGE	
58		RP=PSIZE/2.0	
59	C	OTHERWISE FOR CLOSE PASS DRAW IN GENERAL RP=0.5+T1+ (D01/T1-2.C)	
60	~	TE (NS E0 99) 60 TO 101	
11			
01			
C 4		63 10 102	
05		101 SPARAM=PI/4.0	
54		102 CK=0.5*(1.0-2.0*RP/DHE)	
65		AB=PI*T1**2*(D01/T1-1.0)	
56		AA=DHE**2*(SPARAM-PI*0.25*(1.0-2.0*CK)**2)	
57		AR = AB / AA	
50		AP=PI*RP**2	
		8=0=1-0-1-0/AB	
70		PED100=PED+100 0	
71	~	CALCULATE THE FOULT VALENT DANTIE AT THE EVIT SECTION	
72	•	CALCULATE THE EXCLUSION AND THE EXIT SECTION	
77			
13		R3=001/2-0	
14		RA=DHE/2.U	
75	C	NOMINAL DIAMETRAL SINKEQSINK	
76		RPCLOSE=0.3*T1*(D01/T1-2.0)	
77		EQSINK=(RPCLOSE-RP) *1000_0	
73		LONZEIKONE	
79		ALFAE=LONE*PI/180.0	
30	C	THEREFORE	
91		TAL FAGETAN (AL FAE)	
22			
27	0		
	-	AN AN ATTAL FOR THE HEAV CORRECTION OF EDICTION AND THE HEAV	
34	5	CALCULATION FOR THE MEAN COEFFICIENT OF FRICTION AND THE MEAN	
25	C	PRESSURE STARTS FROM HEREDIE LENGTH=DIEH	
00		DIEH=(RB-RE)/TALFAR	
57		WT=SIGMAD	
30	С	CALCULATE THE MEAN EQUIVALENT STRAIN (EPSILON-*) CORRESPONDING	TO
39	C	THE FLOW STRESS, AND THE MEAN APPARENT STRAIN (EPSILON-4) AND	
90	C	HENCE THE FRICTIONAL WORK (WF)	
91		EPSILOM=EXP(1.D/YN*ALOG(SIGMAF/YK))	
02		$EPSILOA = EXP(1_0/(1_0+YN) * ALOG(WT * (1_0+YN)/YX))$	
02		WF = T - YK / (1 0 + YN) + SPS II 0 M + + (1 0 + YN)	
51			
OF			
01			
20			
41		WH=TK/(1_U+TN)*2PSILOH**(1+TN)	
98		MK=MI-MF-MM	
49	C	WHERE WE AND WE ARE THE HOMOGENEOUS AND REDUNDANT SORK RESPECTIVELY	
100 C			

101	C	DETERMINE THE MEAN COEFFICIENT OF FRICTION (CMU)
1 2	С	THE DENOMINATOR (CMUDE) AND THE NUMERATOR (CMUNU)
103		CMUNU=WF + RED/(1-D-RED)
104	с	
105		CMUDE1=WT*(2_0/SIN(ALFAE*2_0)*ALOG(AR)+COTFAE*ALOG((RB-RP)/(RB+RP)
106		1*(RE+RP)/(RE-RP)))
107		CMUDE2=WF/AA*((AB-AA)*COTFAE+2.0*PI*RP*DIEH)
108		CMUDE=CMUDE1-CMUDE2
109		CMU=CMUNU/CMUDE
110	c	TO CALCULATE THE MEAN PRESSURE(P-MEAN) EVALUATE THE FACTOR 11
111		FACTI1=RED/(1_0-RED)*(1_0+CMU*COTFAE)+2_0*PI*RP*DIEH/AA
112		PMEAN=SIGMAD/FACTI1
112	C	DEFINE THE RESULTING MEAN YIELD STRESS OVER THE STRAIN
114	č	RANGE O TO EPSILON-N
115	-	YMEAN=YK/(1.0+YN)*EPSILOA**YN
116		YMBARTYMEAN
117		YSIGMA=SIGMAD/YMEAN
118		YPM-AN=PMCAN/YMEAN
119	с	
120	c	TABULATE THE RESULTS
121	C	WRITE(2,2005) NOTEST, IDAY, IMON, IYEAR, NOSIDE, TUPEOD, TGAUGE, PSIZE,
122	c	1EDSINK .REDIDD .SIGMAF.SIGMAD .PMEAN .CMU .YPMEAN
123	c	1EBSINK REDICO SIGMAF SIGMAD YMEAN, CMU, YSIGMA
124	c	2005 FORMAT(2x,13,2x,2(12, '/'),12,4x,12,4x,F6.4,1x, 'x',1x,F6.4,3x,F5.3,
125	C	16X F4 1,7X F5 -2 -3 (6X F7 -4) -4X F6 -4 -2X F6 -4
126	č	A NEW SET OF WRITING
127	-	WRITE (2,2006) NOTEST, NOSIDE, EQSINK, REDICO, SIGMAF, SIGMAD, PMEAN,
128		1WH.WR.EPSILOH.EPSILOR.EPSILOF.EPSILOM.EPSILOA.WF
129		2006 FORMAT(1X, 13, 3X, 12, 5X, F4, 1, 6X, F5, 2, 6X, F7, 4, 2(5 ×, F7, 4), 2(2X, F7, 4),
130		14(2x - F5 - 3) - 3x - F5 - 3 - 1x - F7 - 4)
131	c	
132	-	60 CONTINUE
153		STOP
134		END

A-15.2 Evaluation of mean coefficient of friction by the

split rotating die method (equation 4.19)

1			MAS	TE		SPI	1	TD	IE																													
2	с		COM	PU	TE	R	R	OG	RA	M	TO	Ε	VA	LL	AL	TE	T	HE	M	EA	AN	C	0E	FF	I	11	EN	T	0	F	FR	IS	CT	IC	N	FR	OM	
3	c		THE	5	PL	IT	R	OT	AT	IN	G	DI	E	E)	P	ER	IM	EN	TS																			
6	~		THE		s	T	0	F .	C A	80	s	PR	IN	T	т	HE	н	EA	DI	NO	is	F	OR	T	н	2	IN	PL	JT	A	NO)	OU	TP	UT	V	AL	UES
-	•		UPT	TE	12	21	10	0.	•	1. 6	~	• ••					6 K	-					euc.															
2	-	000			TI	24		02	54		0.4	TE			5	TD	FS	0	F	1	INF		т	TI	IR	F				SI	2 5		OF		EG	UI	VA	
0	4		run	ma.	11	2 4	1.	TT	~		20	A11			-	AV	TA	1			150	N				4	20	1	TE	0		-	C	HE	CK	IN	G.	
(ILEN	T		CD	00	11	014		0 1	~	~ .					-	~				v			~	-		-			•	TA	M	c 1	NK		
3			2,12	X,	• 1	ES	T	0	+			٢	OL	. 14	0.0	NA	L	0.			LN .		^_	~ ~					3	-			17			011		
9			J OF	A	RE	A		F	OR	CE			TH	IRI	15	T		CO	EF	•	01	1. 	1	CH		UE		<u>.</u>		uu	ML	, K	A 1	10			?	
10			4,12	ZX,	"N	0.		T	ES	Т		Т	UE	BE	(NS)	GA	UG	ε	(1	C N)				(. 11	()	1			11	00	0	IN	,	
11			5 (F	R	C	EN	T)	P	(T	ON	F)		91	T	N	F)		FR	IC	T	ION	4	(TC	N	F-	IN	1)		C	M	11		C	ML	12.	,1	
12			6)																																			
13	C																																					
14	č		REA	0	TH	=	IN	Pu	т	DA	Ta					AX	IA	L	DR	A	G i	TA	T	HE		DI	Ε	(3)	A	N	D	TH	ε	DF	AW		
15	č		EOF	c=	6	P)		A	15	0	TH	=	T	: 5	r .	NU	ME	FR		A	TE.	. T	ES	T	T	UB	ē	SI	PE	CI	FI	IC	AT	IO	NS	;		
14	ř		AND	T		D		G	ST	75		7		-		100	223		-		0.00																	
17	6		27.	1.	11	15	22	7																														
11			PI		14	15	76	i ce		-	T				c	-			GI	E	01	=	TH	E	c	ON	TO	- 4	0	DI	F	(AL	FA	-1))		
18	C		05.	ING	0	EU	RE	23		27	IN	-			- 3	50		AP	CL	D	= .	. =	c	0	- ``	TU	-	-	-	TT	Ξ,	n T	=	0		E 4 -	(2-	
19	C		ANI	0 1	HE	5	217	1-	AN	GL.	=	UP		I H	-	PL	. Ac	• =	20	R			3	01		1.0	•	2					-			-		
20	C		FOI	RT	HE	P	AR	TI	cu	LA	R	DE	S.	I G	N																							
21	C		THI	EM	EA	N	RA	DI	US	0	F	TH	E	S	PL	11	6 3	11			ME	AN	1	11	v c	HE	5.	;;	U		161	0 14	~			101	n	
22	C		DH	E (=H	A)																																
23			RE	AD C	1,	29	9)	A	LF	AD	, A	LF	A	s,	RM	EA	N,	,DH	1 E																			
24		299	FO	RMA	TO	4 F	э.	0)																														
25			RE	AD (1,	20	0)	1	TC	AT	E																											
26			DO	60	I	TE	ST	=1	,1	TD	AT	E																										
27			RE.	ADC	1,	20	5)	N	101	ES	Τ.	,IC	A	۲,	IM	101	1,1	IYI	EAF	2,	NO.	SI	DE		TU	88	10),	T	5 AL	JG	Ē,	.PS	I	Z E			
35			1PD	RAW	.0	AX	IA	L,	PL	UG	FC) , A	F	OR	CE	8																						
29		205	FO	RMA	T (13	.4	(2	X.	.12)	.20	12	х,	F6		• >	,21	X . 1	5	.3	,4	. (?	X	, F	7.	. 4))										
70		200	FO	RMA	TO	IZ	i					8																										
71	c		CA	CU	IL A	TI	ON	1 0	F	SE	C 1	II	N	P	AR	AN	AE	TEI	RS.		IN	CL	.U	DE	D	AN	161	LE	(BET	TA.)						
22	c		PI	UG	24	DT	US	: (8	P		NE	EI		AR	EA	11	15) . (יטכ	TL	ET	A	RE	A	(A	A		AR	E	4 8	AS	TI	00	A	2)	,		
22	č		PI	uc	4.9	GA	(4	PI		ND		THE		RE	DU	ICT	TI	ON	01	=	AR	EA	(RE	0)													
21	č			00		-									-		-		1076			-					-											
24																																						
33			100	1 - 7	101																																	
20					UC	1 C C																																
31			11	=16		1.31																																
38			9E	TA=	•P]	./ 1	IS	-																														
39			RP	= P S	SIZ	E	2.	.0							-		-		-																			
40			SP	ARA	M=	=NS	*(:03	5 (1	3 61	FA.)*:	51	NC	36	ET.	A)	14	- 0																			
41			CK	=0.	.5,	.(1)-2	2 -1	0 *1	RP	101	HE)																								
42			AB	=P1	[*]	11	**	2 *	(D)	01/	11	1-	1 -	0)																								
43			AA	= 2 +	121	**2	*	(SF	A	RAN	1-1	PI	*0	. 2	5,	+ (1.	0-	2 .	0*	CK),	**	2)														
44			AR	= A 8	3/1	AA																																
45			AP	=P]		RP,	**	2																														
46			RE	D = 1	1 - (3-1	1 -1	3/	AR																													
47			RE	D10	10	= 2 1	= D	+ 11	00	-0																												
12			PP	CL	231	==(1	5 *	T1	* (1	00	11	T 1	- 7	1	01																						
10	r		NO	MT	NA1		T	M	FT	RAI		12	NK	-	X	PR	ES	SE	D	IN	1 1	1	00	0	OF		AN	1	N	CH								
	-		50	CT		- / .	10	-1	20		-	1+	10	0		2			Č .	-		-			-		Mass	-			100	100	1923	22				
20			54	211		- ()	(P)	-	0.5	-	A. C.			00		-																						

51			ALFAE=DALFAE*PI/130-0
52			ALFAD=DALFAD*PI/180.0
53	С		CALCULATE THE MEAN COEFFICIENT OF FRICTION (CMU) AND THE
54	C		CORRESPONDING APPLIED TORQUE TA (TONF-IN)
55	-		P=PDRAW
56			D=P-PI UGFO-AFORCE
57			TAL FAF=TAN (ALFAE)
58			TAL FAD = TAN (AL FAD)
50			A=1_0
40			B = (P/Q) * (1 D/TALFAE + TALFAD)
61			C = (P/Q) + (1 - O - TALFAD / TALFAE)
-2			T2GUAD=SGRT(B**2-4_0*A*C)
22			CMU1=(-6-T2QUAD)/(2.0*A)
-4			$(\pi u) = (-\pi + \tau 2 u) (2 - 0 + A)$
-5	c		TO CALCULATE THE APPROPRIATE VALUE
46	~		TE (CMU1.GT.CMU2) GO TO 101
17			1 MULE MU2
49			CO TO 102
20		101	
70	-	101	WITH CORRECT VALUE OF CMU. EVALUATE THE APPLIED TORQUE
71	-	102	TNUMET D-(CMU+TAL FAE)/(1.D-CMU+TAL FAE)
77		102	TA=DMEAN+CMU+P/COS(ALEAD)+1_0/TNUM
73	~		CALCULATE THE MEAN PRESSURE
71	č		DESTNE THE DIE LENGTH L (=DIEH)
75	-		DIEH-D S+(DOI-DHE+COS(BETA))/TALFAE
74			
77			CINTUST = 1 0-DIFH/RRATAL FAF
74			THE THE STRUCT IN (STRUCT)
70			AS=NS+DR++2/(4 0+STN(ALFAF))*(-SIN(2.0+THETA1)+2.0*(PI/2.0-THETA1)
24			DMEIN=D/(AS+(1, 0-CMU++2)+SIN(ALFAE))
57	c		
	č		TAGGENTE THE RESOLUTE CONTENTS
26			USITE (2 2005) NOTEST, IDAY, IMON, IYEAR, NOSIDE, TUBEOD, TGAUGE, PSIZE,
1.5			150 STNK REDIOD PORAW RAXIAL CHU, TA, CMU1, CMU2, PM HAN
14		2005	FORMAT(2X, 13, 2X, 2(12, 1/1), 12,4X, 12,4X, F6-4, 1X, 'X', 1X, F6-4, 3X, F5-3,
27		2005	164 F6 1 74 F5 2 4X F7 4 2(2X F7 - 4) 4X F8 - 4,3(1X, F7 - 4))
201		60	
20		00	STOP
0,			END
10			Lity

A-16 Hydraulic drawbench: Assembly and design of equipment

† Footnote

The work set out in detail in this section took a substantial fraction of the research time. Initially, the object of the research incorporated the installation of the tube drawing rig, design and manufacture of the equipment to measure the required draw parameters. However, the persistent shortage of the technical assistance forced the work on this bench to be abandoned eventually and the entire experimental work, therefore, was carried out on the operating 'Brookes' bench. At the time of typing the thesis, all the parts had been manufactured and it remained only for the calibration of the load and speed measuring transducers and the final inspection of the hydraulic system.

A-16.1 INTRODUCTION

The experimental investigations of the drawing of polygonal tube from round stock was initially to be carried out on two separate benches. An assembled "Brookes" drawbench with instrumentation (see Frontispiece) and a newly installed bench acquired from the Department of Mechanical Engineering, Sheffield University (see Plate A-16.1). The design capacity for the two benches is 30 tonf, but there are differences in the operating performances and the length of their strokes.

A-16.1.1 "Brookes" hydraulic bench

The drawbench has a stroke of 54 in and a speed of 0 to 15 ft min⁻¹. The bench previously used to draw polygonal bars from round stock and polygonal tubes from round on the corresponding polygonal plugs (2, 1), was complete with instrumentation. In addition, the drawbench was fitted with a split rotating die rig for the direct determination of the mean coefficient of friction and the mean pressure.

The technical specifications of this bench are reproduced in Appendix A-6.1.

The bench in operation is not as stiff as the "Sheffield" bench. When drawing, the dog was observed to lift off the bench, thus imparting a bending moment to the drawn tube. The dog assembly connected to the load cell through a trunion pin; the load cell was in turn, bolted to a cross-beam that pivoted freely between the tiebars. The tie-bars were fixed to the head of the ram of the hydraulic cylinder and ran freely on the flanged wheels. The wheels tended to lift off the track especially when the rotating die was used. A-16.1.2. "Sheffield" hydraulic drawbench

This drawbench designed for drawing tubes of $2\frac{1}{3}$ in diameter and to withstand a load of 30 tonf at 100 ft min⁻¹, has a stroke of 120 in.

The technical details of this bench are given in Appendix A-6.2.

The carriage runs along the centre line between the beams fixed to the side frame of the drawbench. The sliding brass collars have just the minimum clearance needed to allow free relative motion. Therefore, during drawing, the carriage was restrained from lifting off the centre line of the bench.

To restore the drawbench to its operational condition, the main motor, the oil reservoir and some of the low pressure piping were required. The rest of the 'chapter' describes briefly the work done on the bench and the design of the essential equipment. The mechanical drawings of these components are given in Appendix A-17.

A-16.2 ASSEMBLY

The bench as received was disconnected and, therefore, the task undertaken included the installation, modification and the manufacture of equipment to measure the various parameters to verify the theory for the drawing of polygonal tubes from round stock. The drive motor and respective starter, the oil reservoir, and the low pressure pipework to the pump and the exhaust line, were acquired separately.

A platform of steel U-channels was constructed to mount the motor and the oil reservoir. Gravity flow to the pump was found adequate; the infeed pipe from the reservoir passed through a square manifold, fabricated in the Departmental workshop, before branching

- A149 -

off into the four pump inlets.

The condition of the seals and the valves was examined visually and the piping generally cleaned. To economise in space, the pipe layout was placed under the bench; this necessitated some bending and cutting of the pipes. These pipes were bent cold to avoid formation of scale and consequential weakening if heat had been used. General precautionary measures were observed also when cutting the pipes to ascertain that no abrasive particle or dirt was trapped in the pipe.

The temperature rise of the chain drive was not of great concern; periodical greasing of the chain replaced the initial cost of continuous lubrication. The power available to the drive, 50 hp, was less than a half of the design value. Furthermore, the work in the laboratory was intermittent.

A-16.3. MODIFICATION OF THE DRAWBENCH AND THE DESIGN OF EQUIPMENT

In the drawing tests, the following parameters were measured:

- (i) the draw load
- (ii) the torque at the tag end
- (iii) the draw speed
- (iv) the plug load
- (v) the load at the die and
- (vi) the mean coefficient of friction.

In order to fit the equipment for the measurement of the above quantities, some modifications of the drawbench were necessary. These included:

- (1) the thrust block assembly to hold the die, the die load cell and the split rotating die rig (see mechanical drawings on pages A155, A156 and A157).
- (2) the dog assembly to transmit the draw load and the torque

reaction to the tag load cell (see mechanical drawings on page A158) and

(3) the thrust blocks at the tail end of the bench to hold the plug load cell (see mechanical drawings on pages A159 and A165).

One major consideration put into the design of the thrust block assembly at the die was to keep the tag length of the tube as short as possible, to avoid wasting stock and to reduce the cost of tagging.

One plug thrust block consisted of a single plate fixed to the rear of the bench. The other block fabricated by welding four parts together, could be bolted anywhere on the U-channel between the rear of the bench and the die thrust block, depending on the length of the plug bar.

A-16.3.1. The dog assembly

The dog assembly consisted of a trunion pin, two jaw side holders, the block housing and the jaws. The conventional wedge-type jaws were used to grip the tagged tubes.

The jaw side holders fitted the ends of the trunion pin where it protruded from the cross-holes of the load cell at the tag, and carried the drawing force and the torque reaction, and formed the wedge angle for the jaws. These side jaw holders fitted inside the rectangular housing which resisted the splitting force in the jaws and held them in alignment against the torque reaction, but they did not carry any direct drawing force.

The dog pivoted freely on the trunnion pin and a wheel was attached therefore to support it when not drawing. The height of the wheel was such that it lifted clear off the track during the working stroke and did not interfere with the self-alignment of the load cell. To a lesser extent this arrangement reduced unnecessary pre-loading.

A-16.3.2. The measurement of the drawing parameters

The draw force and the torque were measured by a load cell at the tag holder of the drawbench, the plug force was measured by a load cell fixed at the rear of the bench and a ring load cell at the die thrust block measured the die load. The draw speed was obtained by a direct method, based on the measurement of finite distances and the time to cover them. The determination of the mean coefficient of friction by the split rotating die rig was carried out on the "Brookes" bench, but the rig could be transferred readily to this drawbench with a modified driving system.

A-16.3.2.1. The load cells

The load cells were designed for a nominal maximum of 0.1% strain in the active direction of the gauges, under the maximum expected loading conditions. They were heat treated and lapped before bonding the gauges. The three load cells are:

- (1) the load cell at the tag (see mechanical drawing on page A160).
- (2) the load cell at the plug end (see mechanical drawing on page A164) and
- (3) the ring load cell at the die (see mechanical drawing on page A166).

A-16.3.2.1.1. The tag load cell

This load cell, in addition to measuring the draw force, was designed also to measure the rotational torque. At a combined maximum draw load of 30 tonf and a torque of 500 lbf-in, the principal strains in the respective directions of the gauges were slightly less than 0.1%. One end of the load cell was connected to the dog through a trunnion pin, while the other flanged end was bolted to the cross-plate of the sliding carriage. This load cell was fixed to the plate by passing it through from the rear. The clearance between the brass collars of the carriage and the two parallel beams along which the carriage slides is just the minimum distance required. Therefore, the movement is only very slight and is a characteristic of a stiff bench. The cross-plates on the carriage were modified to withstand the torque reaction in addition to the direct load (see mechanical drawings on page A159).

A-16.3.2.1.2 The plug load cell

The load cell was machined from a cylindrical block with a 2 in bore and designed for a maximum strain of 0.1% for a load of 10 tonf. One end of the flanged cell bolted to the rear plate of the drawbench with the axis aligned with that of the die.

A-16.3.2.1.3 The die load cell

The load cell designed for a maximum axial load of 30 tonf, consisted of a continuous ring of a square cross-section. On one side were eight integral supports equally spaced and on the other side were an equivalent number of the equispaced supports in positions equal to half the pitch. The ring was thus formed from a continuous series of circumferentially shaped beams which strained in terms of bending and torsion when subjected to an axial thrust. The stress and strain distribution, and the stiffness of this type of load cell is discussed elsewhere in detail by Basily (2).

One set of the sectoral supports was bolted to the thrust block and the other set to the die holder plate. Care was taken to ensure that the presence of threads did not affect the stress distribution at the points at which the strain gauges were bonded. A-16.3.2.2. The draw speed measuring device

An aluminium angle of $\frac{3}{4}$ in x $\frac{3}{4}$ in x $\frac{1}{5}$ in with a row of 2 mm diameter holes spaced at $\frac{1}{4}$ in intervals, was fixed to the side frame of the drawbench. The photo-cell and the light source were mounted on a bracket on the carriage which was fixed to the ram of the hydraulic cylinder. Thus the light activated switch receives intermittently the illumination, for every $\frac{1}{4}$ in movement of the ram.

The pulses from the photo-cell are recorded on the u-v chart against the time signals of the quartz timer installed in the recorder. The time lapse between the signals is, therefore, measured accurately and the mean draw speed derived. During the experiments, the time is set to give a pulse every 0.1 s depending on the drawing speed.

A-17 <u>MECHANICAL DRAWINGS OF PARTS</u> FOR THE 'SHEFFIELD' DRAWBENCH ASSEMBLY AND OTHER TUBE DRAWING ACCESSORIES

- A155 -

A156 -

- A157 -

- A158

A159

1 A160 -

- A161 -

NOTE General tol. ± 1/64

Drawn: Maranga	19/3/80	Draw 45/60
Material: Mild Steel	No. of parts	. 1

- A163 -

Title: Plug load cell		
Drawn: S.M. Maranga	6/3/79	Draw 1/79
Material: EN 24	No. of pa	rts 1 ·
Dimensions Inches	Scale: Fu	ll size

- A164 -

.

A165

NOTE [1] Unspecified Tol. ± 0.005 [2] Angular Tol. ± 0.1°

Title: Die load cell		
Drawn: Maranga	23/3/80	Draw 3/79
Material: EN 32	No. of pa	orts 1
Dimensions: Inches	Scale: 1	1

Drawn: S.M. Maranga	17/12/80	Draw 29/79
Material: Tool Steel	No. of par	ts 1
Dimensions: Inches	Scale: 1:1	

A167 -

A169

Figure A-18.1 Forces and velocities in axisymmetric drawing

From equilibrium of forces in the horizontal direction,

 $P = Q \sin \alpha + F \cos \alpha \qquad (A-18.1)$

Figure A-18.2 Velocity and friction vector with die rotation at position f in Fig. A-18.1 (View normal to the die surface, 'q' direction)

U_s: velocity of a point f moving along the die surface without rotation U_n: circumferential velocity of point f relative to the die during rotation

AC = F: friction force vector without die rotation

When the die rotates, AC swings round a position AD. Since the friction force acts in opposite direction to the relative motion between the two surfaces, and if $\varphi_1 = \varphi_2 = \varphi$ and the magnitude of the force F is unchanged by the motion,

$$AD = AC = F \tag{A-18.2}$$

There will therefore be a reduction in draw force corresponding to BC $\cos\alpha$. By equilibrium of forces the draw force P_r with die rotation will be given by:

$$P_{r} = Q \sin \alpha + F' \cos \alpha$$

= Q sin \alpha + F cos \alpha. cos \alpha A-18.3)
Combining equations (A-18.3) and (A-18.1) gives:

$$\frac{F}{Q} = \frac{(r - r)^{const}}{(P_r - P\cos\phi)} = \mu_P$$
(A-18.4)

Rotational torque is given by:

$$T = F'' \frac{d_{f}}{2}$$
$$= \frac{F}{2} \sin \varphi d_{f} \qquad (A-18.5)$$

Equations (A-18.1) and (A-18.5) can be combined to give:

$$\frac{F}{Q} = \frac{2T\sin\alpha}{(Pd_{e}\sin\varphi - 2T\cos\alpha)} = \mu_{T}$$
(A-18.6)

ITANYA RIA IBUKU RIRI

Matuku-ini maya turi unyinyi wa mitukanio iria iganda ihuthagira hari guthondeka mithemba ya indo iria andu mabataraga, wendi wa kunyihia wira, o hamwe na unyinyi wa ihumo cia hinya uria uhuthikaga hari gutwarithia macini na iganda niiratuma athondeki a miberethi-yacuuma ya miena miingi maambiririe gwiciriria njira ingi cia kumithondeka. Hari gicunji kimwe kia ubundi ucio wa miberethi kiri bata muno igandaini na klagiriire kwerekerio meciiria. Gicunji kiu ni kiria kiigii uthondeki wa miberethi ya miena miingi kuuma hari miberethi ya githiururi na njira ya kwamba kuingiria muberethi wa githiururi gikamaini gia githiururi na kuuhitukiria gikama-ini kiu thabari imwe nigetha uumire moena uuria ungi urikitie gucongoo ugatuika wa miena miingi. Ta uthondeki-ini wa nati iria ihuthikaga mwako-ini na hari kwoha cuuma ubundi uyu no unyihie wira muno o hamwe na mahuthiro ma hinya wa gutwarithia macini. O hamwe na uguo ubundi wa muthemba uyu no uhote gutuma cuuma iria ithondekete nati igie na hinya na yagirire makiria mahuthiro-ini mayo.

O na gutuika wira muingi wa iganda-ini wa kugeria mawoni ma mithemba miingi na wa gwiciiria niurikitie kurutwo ukonii mugucirie wa muberethi wa githiururi utonyetio mucuuma muraihu wa githiururi irima-ini riagwo kana na njira ya kuugucia uhitukirio gikama-ini gia githiururi, gutiri wira mwandiki wa ibuku riri ooi kana aiguite urikitie kurutwo wigii uthondeki wa muberethi wa miena miingi kuuma hari muberethi wa githiururi na njira ya kuhitukiria ucio wa githiururi gikama-ini gia githiururi nigetha uumire mwene uria ungi urikitie gucongwo ugatuika wa miena miingi. Uhoro uria wi thiini wa ibuku riri ukonii wira uria mwandiki wario arikitie kuruta wa gwiciria uria ubundi wa muthemba ta ucio ungihoteka o hamwe na wa kugeria na ciiko uria meciria na mawoni maake mangihuthika ubundi-ini thiini wa iganda.

Gukiri uguo-ri, itanya ria ibuku riri ni gukinyiria athomi ario meciria na mawoni ma mwandiki o hamwe na cionererie cia uria meciria na mawoni maake mangihuthika iganda-ini hari guthondeka muberethi wa miena miingi kuuma hari wa githiururi na njira ya kuugucia thabari imwe uhitukiirio gikama-ini gia githiururi. Mwandiki niagundurire wira-ini wake ati mwakire wa gikama kana muhaanire wa gicunji kiria muberethi wa githiururi ukuingirira nigetha ucoke uume urikitie gucongwo ugatuika wa miena miingi na irima riaguo ria gatagati riri o uria riuma kiambiriria-ini, niguo uri bata muno makiria. Mwakire kana muhaanire wa gikama uria wagiriire makiria ni uria ukunyihia wira wa guthondeka muberethi na njira iria irendekana na ningi utume uitangi wa hinya wa macini ukorwo uri munyinyi muno makiria o uria kungihoteka.

Mwandiki wa ibuku niecciriirie njira igiri cia kuonania muigana wa hinya uria muingi na uria munyinyi makiria uria ungihuthika hari kuguucia muberethi na wa gikama o hamwe na uhihinyi uria ungiendekana thiini wa gikama. Mutaratara wa komubiuta (macini ya mathabu na uhoro) niwathondekirwo wa gukobia mathabu kuuma mageria-ini maingi na njira nyingi ndiganu cia kuguucia muberethi. Maundu mamwe maria mangicenjia matume hinya wa kuguucia muberethi o hamwe na unhihinyanu uria wi thiini wa gikama o nacio icenjie nita muigana wa ukumuthanu uria uri kuria cuuma inyitaniire o hamwe na muhaanire wa gicunji kiria gicongaga muberethi nigetha uume uri wa miena miingi. Mathabu maria maarutirwo ni komubiuta na maria mwandiki wa ibuku aambite guthugunda meciria-ini maake moothe ni maiguanire na njira njega.

Njira igiri cia guthima muigana wa ukumuthanu gatagati-ini ga cuuma ya muberethi na ya gikama ni cieciriirio na ikihuthirwo na ithimi iria cionekire kuhuthiritwo njira icio cieri ikiiguana o wega.

Maranga wa Muriuki