
Semi-Supervised Constrution ofGeneral Visualization HierarhiesPeter Ti�no Yi Sun Ian NabneyAston University, Aston Triangle, Birmingham, B4 7ETUnited KingdomAbstrat We have reently developed a prini-pled approah to interative non-linear hierarhi-al visualization [8℄ based on the Generative To-pographi Mapping (GTM). Hierarhial plots areneeded when a single visualization plot is not suf-�ient (e.g. when dealing with large quantities ofdata). In this paper we extend our system by givingthe user a hoie of initializing the hild plots ofthe urrent plot in either interative, or automatimode. In the interative mode the user interativelyselets \regions of interest" as in [8℄, whereas in theautomati mode an unsupervised minimum messagelength (MML)-driven onstrution of a mixture ofGTMs is used. The latter is partiularly usefulwhen the plots are overed with dense lusters ofhighly overlapping data projetions, making it dif-�ult to use the interative mode. Suh a situationoften arises when visualizing large data sets. Weillustrate our approah on a data set of 2300 18-dimensional points and mention extension of oursystem to aommodate disrete data types.Keywords: Latent trait model, minimum messagelength, hierarhial models, data visualizationI. IntrodutionIn general, a single two-dimensional proje-tion of high-dimensional data, even if it is non-linear, may not be suÆient to apture all ofthe interesting aspets of the data. Therefore,we have developed a prinipled approah to in-terative onstrution of non-linear visualiza-tion hierarhies [8℄, the basi building blok ofwhih is the Generative Topographi Mapping(GTM) [1℄.Sine GTM is a generative probabilistimodel, we were able to formulate training of

the visualization hierarhy in a uni�ed andprinipled framework of maximum likelihoodparameter estimation using the expetation-maximization algorithm [8℄. In this study, wepresent a further development in this dire-tion, again taking advantage of the probabilis-ti harater of GTM. When the user initializeshild plots of the urrent plot they an do so ineither interative or automati modes. In theinterative mode user deides what subsets ofthe data are interesting enough to be visualizedin a greater detail at lower level plots [8℄. Inthe automati mode, the number and positionof hildren GTMs are determined in an unsu-pervised manner using the minimum messagelength (MML) methodology. This is impor-tant, e.g. when dealing with large quantitiesof data that make visualization plots at higherlevels so ompliated that the interative modeannot be used.Using a data partitioning tehnique (e.g. [7℄)for segmenting the data set, followed by on-struting visualization plots in the individualompartments is not a good alternative { thereis no diret onnetion between the riterionfor hoosing the quantization regions and mak-ing loal low-dimensional projetions. UsingGTM, however, suh a onnetion an be es-tablished. GTM is a generative probabilistimodel, whih enables us to use a prinipledminimum message length (MML)-based learn-ing of mixture models with an embedded modelseletion riterion [4℄. Hene, given a parentGTM, the number and position of its hildrenis based on the modeling properties of the hil-dren themselves, and not some outside ad-horiterion.



II. Generative TopographiMappingThe Generative Topographi Mapping (GTM)is a latent spae model, i.e. it models prob-ability distributions in the (observable) dataspae by means of latent (hidden) variables. InGTM, the visualization spae is identi�ed withthe latent spae (usually a bounded subset ofa two-dimensional Eulidean spae).In general, the L-dimensional latent spaeH � <L, in whih latent points x =(x1; :::; xL)T live, is overed by a grid of Klatent spae enters xi 2 H, i = 1; 2; :::;K.Let the data spae D be the D-dimensionalEulidean spae <D. We de�ne a non-lineartransformation f : H ! D as a radial basisfuntion network by overing the latent spaewith a set of M �1 �xed non-linear basis fun-tions �j : H ! <, j = 1; 2; :::;M � 1. As usualin the GTM literature, we work with spherialGaussian funtions of the same width �, po-sitioned on a regular grid. The bias term isinluded via an additional onstant basis fun-tion �M (�) = 1. Latent spae points x 2 H,are mapped into the data spae viaf(x) =W �(x); (1)where W is a D�M matrix of weight param-eters and �(x) = (�1(x); :::; �M (x))T .GTM forms, in the data spae, a onstrainedmixture of K spherial Gaussians P (tjxi) withinverse variane �, entered at the f -images,f(xi), of the latent spae enters xi 2 H,P (tj xi;W; �) =� �2��D=2 exp���2 kf(xi)� tk2� : (2)Imposing a uniform prior over xi, the densitymodel in D provided by the GTM isP (t) = 1=K KXi=1 P (tjxi): (3)Given a data set � = ft1; t2; :::; tNg of in-dependently generated points in D, the ad-justable parametersW and � of the model are

determined by maximum likelihood using anexpetation-maximization (EM) algorithm [1℄.For the purpose of data visualization, we useBayes' theorem to \invert" the transformationf . The posterior distribution on H, given adata point tn 2 D, is a sum of delta funtionsentered at enters xi, with oeÆients equalto the posterior probability Rin that the i-thGaussian, orresponding to the latent spaeenter xi, generated tn [1℄. The latent spaerepresentation of the point tn, i.e. the proje-tion of tn, is then the mean PKi�1Rin xi ofthe posterior distribution on H.Following [8℄, we refer to the f -image of thelatent spae, f(H), as the projetion manifoldof the GTM.A. Hierarhial GTMIn [8℄, we extended GTM to hierarhies ofGTMs, organized in hierarhial trees and in-teratively onstruted in a top down fashion,starting from a single Root plot. Let us �rstonentrate on simple mixtures of GTMs, i.e.on hierarhial trees of depth 1, where the mix-ture omponents are hildren of the Root.Consider a mixture of A GTMs. Eahmixture omponent P (tja) has an assoiated(non-negative) mixture oeÆient �a satisfy-ing PAa=1 �a = 1. The mixture distribution isthen given byP (t) = AXa=1 �a P (tja): (4)The mixture is trained by an EM algorithm.In the E-step, given eah data point tn 2 D,we ompute the model responsibilities orre-sponding to the ompetition among the mix-ture omponentsP (ajtn) = �a P (tnja)PAb=1 �b P (tnjb) : (5)ResponsibilitiesR(a)i;n of the latent spae entersxi, i = 1; 2; :::;K, orresponding to the ompe-tition among the latent spae enters withineah GTM a, are alulated as in standardGTM (see [1℄).



The free parameters are estimated in theM-step using the posterior over hidden variablesomputed in the E-step. The mixture oeÆ-ients are determined by�a = PNn=1 P (ajtn)N : (6)Weight matriesW(a) are alulated by solving(�T B(a) �) (W(a))T = �T R(a) T; (7)where � is a K � M matrix with elements(�)ij = �j(xi), T is a N � D matrix stor-ing the data points t1; :::; tN as rows, R(a) is aK�N matrix ontaining, for eah latent spaeenter xi, and eah data point tn, saled re-sponsibilities (R(a))in = P (ajtn)R(a)i;n , and B(a)is a K �K diagonal matrix with diagonal el-ements orresponding to responsibilities of la-tent spae enters for the whole data sample,(B)ii =PNn=1(R(a))in.The inverse varianes are re-estimated using1�(a) = ( NXn=1P (aj tn) KXi=1 R(a)i;nkW(a) �(xi)� tnk2)=(D NXn=1P (aj tn)): (8)Training equations for a full hierarhy ofGTMs are more involved, but the only realompliation is that for nodes on levels > 2,we also have to onsider model responsibilitiesof the parent nodes, and these are reursivelypropagated as we inrementally build the hier-arhy. We refer the interested reader to [8℄.III. MML formulation forunsupervised learning ofmixtures and hierarhies ofGTMsGiven a set � = ft1; t2; :::; tNg of datapoints, minimum message length (MML)strategies selet, among the models inferredfrom �, the one whih minimizes length of themessage transmitting � [9℄. Given that the

data is modeled by a parametri probabilis-ti model P (�j�), the message onsists of twoparts { one speifying the model parameters,the other speifying the data given the model:Length(�; �) = Length(�) + Length(�j�):(9)By Shannon's arguments, the �rst term is noless than d� log p(�)e (based on a prior P (�)over the model spae), and the seond one isno less than d� log(P (�j�))e.Reently, Figueiredo and Jain [4℄ extendedthe MML framework to unsupervised learn-ing of mixture models. The partiular formof MML riterion adopted in [4℄ is of the form�̂ = argmin� L(�; �), whereL(�; �) = Q2 Xa:�a>0 log�N�a12 �+ A+2 log N12+ A+(Q+ 1)2 � logP (�j�); (10)where Q is the number of free parameters ofeah mixture omponent. We only ode theparameters of mixture omponents a with pos-itive prior �a. The number of suh ompo-nents is denoted by A+. For details onern-ing derivation of (10), we refer the reader to[4℄. We briey mention that the result followsfrom adopting a spei� form of MML, repla-ing Fisher information matrix of the mixtureby the omplete-data Fisher matrix (inludingbinary mixture omponent indiators), and im-posing non-informative Je�reys' prior on boththe vetor of mixing oeÆients f�ag and theparameters �a of individual mixture ompo-nents (we assume that these priors are inde-pendent).Minimization of (10), with A+ �xed, leadsto the following re-estimation of mixture oef-�ients [4℄: for a = 1; 2; : : : ; A+,�̂a(t+1) = max�0; �Q2 +PNn=1 P (ajtn)�PA+b=1max�0; �Q2 +PNn=1 P (bjtn)� ;(11)where omponent responsibilities P (ajtn) areomputed using (5). Free parameters �a =



(W(a); �(a)) of the individual GTMs are �ttedto the data � using the EM algorithm outlinedin setion II-A. Note that GTMs orrespond-ing to zero �̂a beome irrelevant and so (11) ef-fetively performs omponent annihilation [4℄.To start the training proess, we hoose themaximum number of omponents Amax we arewilling to onsider. Then, we initiate the om-ponent GTMs around randomly seleted points1; :::; Amax , from �. These \enters" induea Voronoi tessellation fVag in the data spae.Following [8℄, eah GTM a 2 f1; :::; Amaxg isinitialized to approximate the loal eigenspaeE(2)a spanned by the �rst 2 eigenvetors of theloal ovariane matrix of points from � be-longing to the Voronoi ompartment Va.As in [4℄, we adopt the omponent-wise EM(CEM) [3℄, i.e. rather than simultaneouslyupdating all the GTMs; we �rst update theparameters �1 of the �rst GTM (7{8), whileparameters of the remaining GTMs are �xed,then we reompute the model responsibilitiesfP (ajtn)gAa=1 (5) for the whole mixture. Af-ter this, we move to the seond omponent,update in the same manner �2, and reom-pute fP (ajtn)gAa=1, et., looping through themixture omponents. If one of the omponentGTMs dies (�̂a = 0), redistribution of its prob-ability mass to the remaining omponents in-reases their hane of survival. After onver-gene of CEM, we still have to hek whethera shorter message length an be ahieved byhaving a smaller number of mixture GTMs(down to A+ = 1). This is done by iterativelykilling o� the weakest GTM (with the small-est �̂a) and re-running CEM until onvergene.Finally, the winning mixture of GTMs is theone that leads to the shortest message lengthL(�; �) (10).Empirially, we observed that \strong"GTMs that survived for longer time periodstended to be overtrained. One does not en-ounter suh problems when dealing with sim-ple mixtures of Gaussians, as was the ase in[4℄. However, GTM is a onstrained mixtureof Gaussians and the low-dimensional mani-fold ontaining enters of Gaussian noise mod-

els (projetion manifold [8℄) tended to formompliated folds. Simple introdution of astronger regularization term [1℄ was not ofmuh help, sine then the individual GTMswere rather sti� and did not realize the fullpotential of having a mixture of nonlinear pro-jetions. Therefore, we adopted the followingtehnique: after a omponent GTM has beeneliminated and before starting a new ompeti-tion of the remaining GTMs for the data ex-plained by it, we re-initialize the remainingGTMs so that they remain in their respetivepositions, but have a \fresh start" with lessompliated projetion manifolds. For eahGTM we ollet the data points for whih thatGTM has responsibility (eq. (5)) higher thana threshold � = 0:85. We then initialize andtrain individual GTMs for 1 epoh in the tra-ditional way [1℄, eah on the orrespondingmodel-restrited set, as if they were not mem-bers of a mixture. After this re-initializationstep, the CEM algorithm is applied to the mix-ture on the whole data set.The proposed system for onstruting hier-arhies of non-linear visualization plots is sim-ilar to the one desribed in [8℄. The importantdi�erene is that now, given a parent plot, itshildren are not always onstruted in the in-terative way by letting the user identify \re-gions of interest" for the sub-plots. In denselypopulated higher-level plots with many over-lapping projetions, this may not be possi-ble. Instead, we let the user deide whetherhe wants the hildren to be onstruted in theinterative or unsupervised way. In the unsu-pervised ase, we use the MML tehnique todeide the \appropriate" number and approxi-mate position of hildren GTMs1 and view theresulting loal mixture as an initialization forthe full EM algorithm for training hierarhiesof GTMs [8℄.1We ollet data points from � for whih the parentGTM has responsibility higher than the threshold �.We then run MML-based learning of mixtures of GTMson this redued data set.



IV. Illustrative exampleAs an example we visualize in �gure 1 im-age segmentation data obtained by randomlysampling pathes of 3x3 pixels from a databaseof outdoor images. The pathes are harater-ized by 18 ontinuous attributes and are lassi-�ed into 4 lasses: ement + path, brikfae +window, grass + foliage and sky. The param-eters of GTMs were as follows: latent spae[�1; 1℄2, K = 15 � 15 latent spae enters,M = 4 � 4 + 1 RBF spherial Gaussian ker-nels of width 1, \weight-deay" regularizationoeÆient 0:1 [1℄. For a omplete informationon presentation of the visualization hierarhy,we refer the reader to [8℄.We organize the plots of the hierarhy in ahierarhial tree. In non-leaf plots, providedthe hild models were initialized in the inter-ative mode, we show the latent spae pointsi that were hosen to be the \enters" of theregions of interest to be modeled in greater de-tail at lower levels. These are shown as irleslabeled by numbers. The numbers determinethe order of the orresponding hild GTM sub-plots (left-to-right).We adopt the strategy, suggested in [2℄, ofplotting all the data points on every plot,but modifying the intensity in proportion tothe responsibility (posterior model probability)P (Mj tn) whih eah plot (sub-modelM) hasfor the data point tn. Points that are not wellaptured by a partiular plot will appear withlow intensity.The user an visualize the regions apturedby a partiular hild GTM M, by modify-ing the plot of its parent, Parent(M), sothat instead of the parent responsibilities,P (Parent(M)j tn), the responsibilities of themodel M, P (Mj tn), are used. Alternatively,the user an modulate with responsibilitiesP (Mj tn) all the anestor plots up to Root.As shown in [8℄ , suh a modulation of anes-tor plots is an important tool to help the userrelate hild plots to their parents.The Root plot ontains dense lusters ofoverlapping projetions. Six plots at the se-ond level were onstruted using the unsuper-

vised MML tehnique (Amax = 10). Note thatthe lasses are already fairly well-separated.We further detailed the seond plot in the in-terative mode, by seleting enters (shown asirles) of 2 regions of interest. Sine the �fthplot ontains a region of overlapping proje-tions, we use again the MML tehnique foronstruting its hildren plots. The result-ing hildren plots are readable enough to befurther detailed in the interative mode. Westress that all useful tools for understandingthe visualization hierarhy desribed in [8℄,suh as hildren-modulated parent plots, mag-ni�ation fator and diretional urvature plotsan also be used in the proposed system.V. Disrete data typesIn another line of development, we have ex-tended the basi hierarhial GTM [8℄ to dealwith noise models from the general exponen-tial family of distributions [6℄. This is im-portant for visualizing other than ontinuousdata types, e.g. binary or ount data, whereBernoulli or multinomial noise models an beused.We briey mention, that by employing MMLtehnique into suh generalized hierarhial vi-sualization system, we an perform e.g. semi-supervised hierarhial doument mining. Thedouments are represented as high dimensionaldisrete vetors through the key-word teh-nique. The visualization hierarhy is now om-posed of so-alled latent trait models [5℄, whihare basially GTMs endowed with noise modelsfrom the exponential family of distributions (inour example Bernoulli/multinomial). Othertools aimed at improving our understanding ofthe plots, like listing the most probable ditio-nary (key) words for eah latent spae enterxi [5℄, are also inorporated in the system.VI. ConlusionWe have desribed a prinipled approah tosemi-supervised data visualization. The pro-posed system gives the user a hoie of initial-izing the hild plots of the urrent plot in ei-ther interative, or automati mode. It is par-
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Fig. 1. Hierarhial visualization of the image segmentation data onstruted in a semi-interative way.
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