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SUMMARY

A quantitative mathematical examination of contemporary models
of pulmonary gas transport and mixing is presented. This
examination involved both a reappraisal of the boundary
conditions assumed in these models and an exhaustive account
of their respective stability and convergence criteria. As

a result of this examination a revised single series
compartmental mathematical model, derived from physiological
data and incorporating revised boundary conditions, is
developed to allow for a more faithful simulation of pulmonary
gas transport phenomena.

The model is used to demonstrate that the expired "phase III
slope" or "alveolar plateau slope" of a tracer gas may give
an indication of end expiratory stratified concentration
differences in the acinus. The model also allows for a
comparison between rigid and compliant model predictions at
low tidal ventilations.

By extending the model to include parallel as well as sertes
elements it is possible to simulate the combined effects of
regional and stratified inhomogeneities upon gas mixing
efficiency in both normal and diseased lungs. The influence
of regional inequalities in ventilation, regional inequalities
in diffusion pathway length and regional inequalities in gas
flux (i.e. gas exchange) are studied in various simulated
normal and diseased states. In all instances it is shown that
such regional inequalities accentuate both the end expiratory
concentration gradients (stratified inhomogeneities) and

the resulting phase III slope of a respired tracer gas.
Utilising an alternative and more detailed model of the
bronchial airways, the predictions of the earlier series

and series/parallel models are further verified.
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CHAPTER 1

INTRODUCTION

As a complete mathematical description of the respiratory
system as a whole is probably an impossible task, some attempts
have been made to analyse it's more important characteristics.
For example, the present study is concerned with the
mathematical examination of pulmonary gas transport and mixing,
with the particular aim of answering one question which has
given rise to a large number of conflicting results - "is the
concentration of an inert inspired tracer gas the same in the

series spaces of the lung at the end of expiration?"

Further, since quantitative information concerning the
equilibrium of gas molecules within the terminal airway units
(or primary lobules) of the human lung is difficult, if not
impossible, to obtain from experimental data alone, it has

been necessary to simulate the relevant gas mixing processes

in lung models replicating the pulmonary airway system in order

to shed some light on this problem.

The importance of gaseous diffusion in the process of
ventilation has been recognised since the early part of the
century. As early as 1917, Krogh and Lindhard observed that,
after a single inspiration of a gas, the concentration of the

gas in the latter part of the subsequent expiration did not



reach a true plateau but continued to decrease generating the
well-known phase III slope. Krogh and Lindhard contended that,
while new air is entering the lung, there are always
longitudinal concentration differences in the terminal

airway units (stratified inhomogeneities) and that these
differences are reflected at the mouth during the following

expiration.

This view, that stratified inhomogeneity was responsible for
the phase III slope was accepted generally until Rauwerda
(1946) published the results of his model investigations

into the rate of gaseous diffusion. This work was subsidiary
to his main purpose, which was the determination of cardiac
output, and his approach to the problem of diffusion was the
application of analytical mathematical techniques to model
situations analogous to those thought to occur within the

lung.

He came to the conclusion that diffusion in the lungs was
sufficiently rapid as to exclude a measurable concentration
gradient within a terminal airways unit one second after the
establishment of the gaseous interface. He defined a terminal
airways unit as that structure fed by a terminal bronchiole,
and hence having a length of 7 mm. As a result of his analysis
he concluded that the current explanation of the phase III
slope as representing stratified inhomogeneity was incorrect.

It was not until some 20 years later that Cumming et al (1966)



criticised Rauwerda's analysis primarily on the assumptions on
which he based his model. The major criticism being that the
lung cannot be represented by any closed object (cylinder,
sphere or cone) 7 mm. in length, because reflection and
diffusion from both ends makes mixing very rapid. 1In fact,
Cumming et al (1966) proposing instead several larger versions
of Rauwerda's models and employing similar solution techniques
demonstrated how stratification could be present at the end

of a breath of normal duration.

Both of these previous model analyses have been criticised by
La Force and Lewis (1970) on two grounds. First "if the
terminal airways are to be treated as a solid figure, the
appropriate one is not a cone but a golf tee or a thumbtack".
The second criticism is that "the airways are not a solid
figure but a succession of dichotomous branches". Thus,

La Force and Lewis set out to treat a "dichotomously branched
model"having the lengths and cross-sectional areas proposed by
the morphometric analysis of Weibel (1963). 1In addition to
this model they also considered a model which takes into
account the additional cross-sectional area contributed by

the alveoli.

From a geometric point of view the models considered by La
Force and Lewis appeared to be more realistic. It is
interesting to note, however, that their claim that the

analysis was for a "dichotomously branched" model is of little



practical significance since the mathematics used by La Force
and Lewis yielded the same results as that for a solid figure
of the "thumbtack" shape. 1In fact, they concluded that the
alveolar concentration stratification disappeared in much less
than one second and therefore rejected the findings of

Cumming et al (1966).

Although these analyses represented the initial steps in
analysing gas transport in a geometry approaching that of
the lungs, they were inadequate because the effects of

convective gas flow were not included.

The inclusion of convective gas flow simultaneous with
longitudinal diffusion has recently been considered by several
groups of investigators (Cumming et al, 1971; Baker et al,
1974, 1975; Scherer et al, 1972; Pedley 1970; Paiva, 1972,
1973, 1978; Davidson and Fitzgerald, 1974; Davidson, 1975

and Pack et al, 1974, 1977). These models improved on the
earlier models in another important way; washout of gas from
the lung could be simulated. This was of fundamental importance
since, given that any stratification which is obtained reflects
in some way that which actually occurs in the lung, there is

no way that this will evidence itself in the expired gas
concentrations. During expiration following an inspiration of
air, for example, gas comparitively rich in oxygen is convected
out of the lung, and diffusion continues down existing

longitudinal concentration gradients; these gradients will



therefore decrease. That is, Krogh and Lindhards explanation
for the phase III slope requires that the longitudinal
concentration differences remain significant in the gas during

expiration by the time it reaches the mouth.

Although all the above groups of workers have allowed for the
important concept of convectional transport they have differed
considerably in its' interpretation within the framework of
their models. For example, Cumming et al (1971) solved the
classic static diffusion equation approximating convective gas
flow by allowing successive quantums of flow to enter their
mModel followed by a diffusion period, (100 mls entered after
every 150 m/sec diffusion period). Scherer et al (1972), on
the other hand, derived a partial differential equation for
simultaneous convection and diffusion. More recently

Davidson and Fitzgerald (1974) and Davidson (1975) developed

a detailed model of a pathway through the branched system of
the respiratory region, which when matched onto the one-
dimensional "trumpet" model described by Pedley (1970) for

the conducting airways, enabled the time course of gas
concentrations from the mouth to the pulmonary membrane

during a breath to be predicted. Besides allowing for the
convective flow of gas and taking some account of the detailed
anatomical features in the respiratory region, the pathway
model also facilitated for the expansion of the respiratory
region during breathing - an important physical process which

will be dealt with in more detail in subsequent chapters.



The primary intent of these contemporary model simulations was
to examine the existence of concentration stratification
(serial gradients) and it's possible contribution to the phase
III slope. All of the investigators found that significant
concentration gradients exist within the acinus at the end of
a normal inspiration but only Cumming et al (1971) observed

a resulting 'phase III' slope during expiration.

This thesis serves to reconcile these apparently conflicting
conclusions by mathematically examining the above contemporary
model analyses. As a result of the detailed examinations,

a revised pulmonary gas transport model has been developed
capable of simulating results in close agreement with those
obtained from normal subjects. Further, by extending this
revised model to include parallel as well as series elements
it has been possible to infer how certain specific types of
pulmonary defects can affect the gas mixing behaviour in the
acinar region. By modifying the above revised models
appropriately, it has also be possible to estimate how the
effects of molecular exchange across the alveolar-capillary
membrane influence the approach to gaseous equilibrium.
Finally, an improved mathematical description of molecular
gas movements consisting of a detailed model pathway from

the mouth to the terminal alveolar sacs is presented. The
model pathway consists of a succession of uniform cylindrical
pipes varying in dimensions according to the morphometric

data of Weibel (1963). This improved model has then been used



to examine how micro (rather than macro) changes in both
airway calibre and regional gas flow-rate influence gas
equilibrium in the acinus. Results obtained from this new
model have also proved useful in both testing the predictions
and verifying the conclusions of the earlier revised models

discussed above.



CHAPTER 2

ASSESSMENT OF CONTEMPORARY MODELS

2.1 The Physical Models

The best known and widely used quantitative description of the
pulmonary airway system is the so-called Weibel symmetrical
'model A' (Weibel, 1963). Weibel has approximated the

complex branching pattern of the bronchial tree by 23
generations of successive dichotomously branching right
cylindrical airway tubes (Figure 1). Generation O corresponds
to the trachea and there are 2i (1 =0, X ..:. 23) equal
elements in generation i. Generations 17 to 19 correspond to
respiratory bronchioles, where walls (lumen) are partially
alveolated, and generations 20 to 22 to alveolar ducts where
the entire wall is occupied by alveoli. Alveolar sacs

(generation 23) end the bronchial tree (see table 1).

The data from Weibel's 'model A' is invariably used to
represent the bronchial tree by combining the dimensions of
all airways of the same generation number, thereby producing
the well known "trumpet" (Paiva, 1972) or "thumbtack"

(La Force and Lewis, 1970) shaped function of total cross-

sectional area and distance (Figure 2).



With the advent of more powerful morphological measuring
techniques, a greater insight into the detailed shape of

the "trumpet" model distal to generation 17 (respiratory
bronchioles) has been attained (Horsfield et al, 1968, 1971

and Hansen and Ampaya, 1975) (Figure 3). These improved
morphometric estimates have been employed more recentiy to
examine the influence of changes in the structural dimensions
of the models on the gas mixing behaviour in the acinus

(Paiva, 1976 and Mons and Ultman, 1977).

2.2 The Mechanisms of Pulmonary Gas Transport

The inspired gas enters the lung through the trachea and
passes through some 23 generations of branching to reach the
terminal alveolar sacs. The bulk movement of the inspired

gas is induced by a pressure gradient and is termed
convection. Superimposed on this bulk flow at all times is
molecular diffusion due to local concentration gradients.

The actual transport of the inspired gas is accomplished by
the coupling of these two mechanisms. If inspired gas is a
mixture of only two components (as assumed in all contemporary
models), then the transport of either component may be

described by the binary convective-diffusion equation.

aF
ot

+ (V. V) F = DV®EPFP + R (1)

in which F is the concentration (in, say, mol/litre) of



-.lo_

the component under consideration in the binary system, V

is the velocity vector of the bulk flow, V is the vector
operator "del" (Hildebrand, 1962), D is the diffusion
coefficient between the two components of the gas mixture

and R is the sink or source term in the mass balance equation.
Equation (1) is a general equation in the vector form and is
valid for any co-ordinate system. The first term on the left
hand side of this equation gives the transient change of F at
the position under consideration, the second term represents
the convection of this component due to local velocity V at

the same position.

The first term on the right hand side describes the diffusion
of the gas under consideration through an indigenous gas

in the binary system as characterised by D whose value depends
on the total pressure and the temperature of the mixture, the
molecular weights of the two species involved and is almost
independent of the composition of the mixture. The last term
of the equation represents the rate of production or
disappearance usually due to chemical reactions. If no
reactions are involved in the mass transport process,

R E O.

In a healthy subject breathing normally, i.e. 500 cm?®
tidal volume, the inspired air arrives by convection until

the lgth or 20th bronchial generation of Weibel's 'model A'
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and attains then, by diffusion the alveolocapillary membrane,
where it passes into the blood. This is demonstrated more
precisely in Figure 4 in which characteristic times for
convection and diffusion have been calculated. The
ascending curve (tc) represents the time for the inspired
gases to pass through one generation by convection and the
descending curve (td] and equivalent time for the diffusion.
The first curve rises very steeply because the lung ends in
a "cul-de-sac", and the second varies with the square of the

lengths of the different generations.

243 The Governing Equations

The equations governing the transport (simultaneous convection
and diffusion) of gas molecules within the bronchial airways
are obtained by applying Ficks Law and the principal of mass
balance to an elemental segment of the "trumpet" model shown

in figure 2 (see Figure 5).

Diffusional Transport

The transport of gas molecules due to diffusion at a distance
'y' from the portal end of the "trumpet" model may be written

as:

Li L = - D S — (2)
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where, F = F (y, t) is the fractional input gas concentration
at distance 'y' from the beginning of the model and at time t
after the start of the transport process, S = S (y) is the
total cross-sectional area of the airways at distance 'y'
from the portal end and D is the binary molecular diffusion
coefficient of the input gas/residual gas. From equation (2)

and the conservation of mass, it follows that,

§ = = . 02 (3)
ot oy
hence, from equations (2) and (3) we obtain
S aF = - i (D S L ) (4)
at dy dy

where t is the time.

In deriving equation (4) all previcus investigators have
explicitly assumed that the tortuosity resulting from branching
does not affect the form of the overall conservation equation
for the total gas in the nth generation and that any
concentration gradients perpendicular to the airway axes

(i.e. radial concentration gradients) can be ignored. The
latter assumption has been shown to be realistic as judged

from a detailed survey of gas diffusion in an alveolar duct

(Paiva, 1974).
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Convectional Transport

Equation (4) describes the change in the number of gas molecules
in the elemental segment due to diffusion. This number also
changes due to the convective airflow which is responsible

for the change in lung volume.

T = PS8Svwy (5)

where, v is the convective velocity of input gas molecules
(Sv is the volumetric gas flow rate). Using equations (3)
and (5) it follows that,

g 2F = = ek (F S v) (6)

At oy
Now the general form of the governing gas transport equation
(convection-diffusion equation) is obtained by combining the
equations (4) and (6) such that,

oF - 8 (D S F ) = o2 (F S v) (7)

ot dy oy ay

S

When discussing solutions of equation (7) it is important to
distinguish between two distinctly different types of model,

i.e. that of the 'rigid model' and the 'compliant model'.



Rigid Models

Workers who have employed rigid type models, i.e. (Pedley,
1970; Paiva, 1972, 1973 and Baker et al, 1974, 1975) have

further simplified equation (7) by assuming that,

S v = é (constant)
This last assumption has caused considerable controversy
particularly as regards the correct boundary conditions to

employ at the alveolar wall (Scrimshire et al, 1978).

Compliant Models

On the otherhand, those workers who have developed compliant

(8)

models such as Scherer et al(l1972) and Pack et al (1974,1977)

have adopted a different approach in that they have assumed
that the incompressible convective flow into and out of the
bronchial airways is caused by the expansion and contraction

of the alveolar regions. 1In fact, they considered that the

amount of convection v (y, t) S (y, t) was equal to the total

volume change in the airways distal to some base point, i.e.

L

v (y, t) = _._L_.... B_S dy
S(y, t) ot

Yy

and where L is the total length of the model.

(9)
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The expansion and contraction of these models is determined

by the functional relation,

S(y, t) = S (y) [ 1.0 - £(y) b (t) ] (10)

which defines the total cross-sectional area at any point
during the breathing cycle in terms of a "flexibility
function" f(y), and an oscillatory function of time, b(t).
Since there is a lack of experimental evidence on the precise
distribution of lung volume changes (Hughes et al, 1972;
Marshall and Holden, 1963) the functional form of f(y) must
remain empirical and the authors assume it to be evenly

distributed along the length of their models.

Perhaps the most perplexing problem encountered in developing
a compliant lung model is in deciding exactly how the ﬁodel
should expand and contract. For example, should we apriori
specify how the volume changes thereby imposing a flow of
gas into and out of the bronchial airways such as in the
models of Scherer et al (1972) and Pack et al (1977). Or
should we impose the flow of gas and allow the model to
expand and contract in a way that at least agrees
qualitatively with observed behaviour in vivo as
experimentally determined by such authors as Hughes et al
(1972) . Since in all instances a flow of gas must be

imposed in order to solve the pulmonary gas transport equation,



it would appear that the latter approach is the more
realistic. The mathematical details of such an alternative
approach will now be presented and compared with the

corresponding contemporary model developments.

Hughes et al (1972) have inferred from their somewhat
extensive experimental findings that lung volume varies
approximately in proportion to the cube of bronchial

distance, i.e.

Vv ¢ 13 (11)

roo o= % 3P (12)

Where V is the lung volume and 1 is the bronchial distance.

Let us now define the following,

vV, Initial lung volume or functional

residual capacity (13)

Vz o= V1 + &VT (1-4)

where, ﬁVT is the amount of the tidal volume (VT) that

enters the lung model over an infintesimal time interval At.
Then we may write,

V] = k 11 3 (15)

V. = k 1;® (16)
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and hence,

Va2 +
1, = 1 ( 7 ) (17)
Va2 +
If we now let a = ( 2  then
l, = a l, (18)
Sa2 £= a2 S] (19)

Thus, as At =+ O equations (18) and (19) imply that,

1 (t + At) [a ] 1 ) (20)

il

and,

S (t + At) [a (t)]z S (t) (21)

Inherent in the derivation of equations (20) and (21) is the
fact that the trumpet model simultaneously increases/decreases

it's length whilst the volume expands/contracts respectively.

However, previous compliant lung models (Scherer et al, 1972

and Pack et al, 1974, 1977) have only allowed their models to
expand and contract but have kept their lengths fixed. It will
be shown later (Chapter 3) that these inconsistencies in the
physical models can contribute to an artificially rapid approach

towards gaseous equilibrium within the acinus.



2.4 The Assumed Boundary Conditions

At this stage the general form of the boundary conditions
assumed by all previous contemporary workers, employing either
a 'rigid' or a 'compliant' "trumpet" shaped model, shall
merely be stated and subsequently be assessed in the light of

a recent reappraisal (Scrimshire et al, 1978).

DURING INSPIRATION

EF fo, &) = 1.0 for ;& £t & % (22)
and
oF T
a—y— = 0.0 for ty € £t < 5 (23)
y=5L
DURING EXPIRATION
oF T
"3,7‘ = 0.0 for B<EgT (24)
y=0Q
and
oF 2
—;l = 0.0 for 5<tsT (25)
y=L

Before assessing these boundary conditions it is advantageous
to consider the functional form of the total flux equations,
G (y, t) defined as the combination of both convective and

diffusive flux contributions, i.e.
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Sl 8. = svF = 98 g (26)

Rigid Models

For rigid models we know that from equations (8) and (26)

that,
- L F
GR (ys, t) = QF D S 3y (27)
Thus,
L=, K oF
Gy (o, t) = QF % D S (o) Ty (28)

Since we are assuming that a uniform convective flux (that
is uniform flow) of gas enters the model, we do not expect any
concentration differences to exist near the model entrance.

In other words, we require that

Gp (0, t) = + QF (29)

which implies from equation (28) that

oF
b s = 0.0
v (30)

y=0
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It is thus intuitively obvious that the input gas concentrations
at the model entrance must remain constant as defined in

equation (22).

Whilst the boundary conditions conventionally assumed for the
entry portal of all previously proposed models are easily
understood, and represent a reasonable approximation to reality,
those specified at the distal end of rigid models are less
obvious. The intention is to define a situation which ensures
a zero flux of input gas across the alveolar wall, y = L, thus

mimicing the behaviour of an insoluable tracer.

From equation (27) we have that,

s wk L F
GR (L, t) = +Q F B s (L) 5y (31)

y=L y=L

and on substituting from equations (23) and (25) into equation

(31) we find,

&, L € s+ 08l . or W o

R

Il

(32)

S

y=L
and,

~-Qp . for ~§<t\$T (33)
y=L

GR (L, t)
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From a scrutiny of equation (32) it is clear that a finite
flux of input gas is being continuously drawn out of the
model across the alveolar wall during inspiration, and from
equation (33) it can be seen that gas is being similarly
drawn into the model during expiration. This is not really
suprising since the conservation of mass dictates that,
during inspiration in a rigid model, an outflow must occur
across the alveolar wall and during expiration a reverse inflow
must occur. Such an artifact in rigid models violates the
physiological condition of "no flux" at the alveolar wall.
Now, during expiration the contribution from diffusive mixing
near the model entrance is negligible in comparison to the
convective mixing (Paiva, 1972). As a result a relatively
uniform convective flux of gas out of the model is

anticipated, which may be stated mathematically as,

y=o

During expiration, we have from equation (27) that

G, (0, t) = = QF » B8 (o) L& (35)

R ¢ i )y
y=0 y=0

Substituting from equation (34) into equation (35) gives

oF o

Iy = 0 (36)
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which also implies that the concentration gradient has

smoothed out by the time the mouth is reached (Pedley, 1970).

In fact, equations (33) and (34) state that eventually gas

is leaving the model at the same rate at which it is being
withdrawn through the alveolar wall; hence concentration
gradients would not be expected to persist under such
conditions. 1In other words, the artifact caused by the
violation of the "no-flux" condition at the alveolar wall

would appear to be primarily responsible for the unrealistically

rapid approach to gaseous equilibrium.

Compliant Models

For the compliant models of Scherer et al (1972) and Pack

et al (1974, 1977) we have from equations (9) and (26) that

L
G (Yr t) = .y J :
Y

195]
F
=

|

dy F - DS == (37)

%]
T

c

Putting y = L in equation (37) yields

AF
Ds{L)a—y i B & 2 2T (38)

y=L

]

GC(L, t)

In order to ensure that the total flux is zero at the alveolar

wall, it is further necessary to specify the boundary condition
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3y = 0.0, as in rigid models.

Since some 95 per cent of lung volume is contained within
the terminal generations of the bronchial tree (a linear
distance of only 0.6 cms) it is hardly suprising that these
compliant models again fail to display any stratified
inhomogeneities in the acinar region because of this
explicit assumption. On reflection, it is clearly
inappropriate to specify the boundary conditions in terms

of a fixed concentration gradient at the alveolar wall,
since it is the change in concentration gradient immediately
adjacent to this point that is the main purpose of the

simulations.

2.5 Alternative Boundary Conditions

From the above discussions it is evident that a better
approximation to the actual conditions within the lungs

could be made by ensuring a zero flux of gas at the

alveolar wall whilst simultaneously allowing the concentration
gradient to be a variable. Applying the former condition,

i.e.G(L,t) =0 to equation (31) yields,

0= +QF] — ps (@ & for t, ¢ t < 3 (39)
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. oF T
0= =0F = DS (L) 5; for 5 = A B (40)
i yzL
Rearranging, we obtain
OF = 0 F T
Wl T 58 (L) SR T e 4k
y=L y=L
and,
9 A B "
'§§ = - SQ(L) F o Tor = T AL og T (42)
y=L y=L

Equations (41) and (42) now represent a true "no-flux"

condition.

By adopting boundary conditions identical to those given in
equations (41) and (42), it can be shown how significant
concentration gradients (stratified inhomogeneities) can
exist at end expiration, (a 0.7% difference in input gas
concentration between the ends of a single compartmental
model). Further, by suitably modifying this analysis it is
possible to simulate the corresponding single breath
nitrogen washout curve having a 'phase III' slope of 3.42%
in agreement with the experimental findings obtained from

normal subjects (Mills and Harris, 1965 and Jones, 1967).
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The application of the above revised boundary conditions to
situations analogous to those thought to occur within the

lung will be discussed in more detail in chapters 3 and 4.

2.0 The Numerical Solution Techniques

The numerical solution techniques employed by the contemporary
workers fall into two main catagories, i.e. those workers who
have adopted finite difference techniques (Scherer et al
(1972) ; Baker et al (1974, 1975); Pack et al (1974, 1977)

and Scrimshire et al (1978)) and those other workers who have
resorted to Monte Carlo methods or stochastic simulation
(Paiva, 1972, 1973 and Jones and Scrimshire, 1976). In order
to determine which of these methods is the most efficient to
use when solving the pulmonary gas transport equation, it is
necessary to compare their respective stability and

convergence criteria.

Finite Difference Schemes

Essentially, two types of finite difference approximation are
available, i.e. those of the 'explicit' (direct) and the
'implicit' (indirect) types. The pertinent characteristics
of these schemes will now be highlighted and subsequently

it will be demonstrated how the explicit scheme is more
efficient than it's implicit counterpart in the numerical

solution of the pulmonary gas transport equation. Further,
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a general stability criterion for a 'four point' explicit
finite difference approximation to parabolic type systems
is derived which will not only be of use in the present
situation but also in many other scientific and engineering

situations analogous to that of the present case.

Explicit Methods

The power of the explicit method over that of its implicit
counterpart is due mainly to the fact that in the former
case the approximate value at any nodal point i on the

(5 + l)th time level may be expressed directly in terms of

known values on the jth time level (see diagram below).

B s UNKNOWN
+.d VALUES
l KNOWN
e et T = VALUES
: o 1. F, ;
Fi"lrj Fll] i+l,]

Central (rather than forward or backward) difference
approximation of derivatives have been employed due mainly
to their higher order of convergence. 1In fact, both forward
and backward differences are accurate to O (Ay) whereas
central differences are accurate to O (Ay?) as has been
demonstrated in all standard texts on numerical methods

(see for example Smith, 1965). Thus, the most efficient



S

explicit finite difference approximation of derivatives may

be summarised as follows:-

R O N T (0,
ot (43)
(At)
_a_I_': = (Fi = l,j & Fi o~ lfj)
o (44)
2 (4y)
o U TP T SR T R R T
oy 2 (45)
(Ay)
On substituting these finite difference approximations into
equation (7) we obtain the following,
Fi,j R Fi'j L T O 2Fi,j 8 IR l,j)
PEDE AR g By g ) (46)
where,
D 3S -
K, = = (Ay) 2, - 2 (47)
i 2 S,
S; oy 3l
i
and,
At
r

(Ay)?
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Equation (46) may be further simplified yielding

F = (D - Ki)r Fi

1,3 + 1 + (1 = 2 DY) Fi i

I

1,3

R RITE L ia (49)

for 2£ 1 E N~=1 and for =1, 2, ceess

In order to ensure that the solutions of the difference
equations given in equation (49) converge to the true
solution of the pulmonary gas transport equation (7), it

has been necessary to derive an appropriate stability
criterion. There are basically two main methods of treating
stability, i.e. the matrix method and the method of Fourier
Series. We will now illustrate these two methods as applied

to the system of relations given in equation (49)

Stability by the Fourier Series method

This method, developed by von Neumann during World war II,
was first discussed in detail by O'Brien et al (1981): Tt
expresses an initial line of errors in terms of a finite
Fourier series, and considers the growth of a function that
reduces to this series for t = 0 by a 'variables separable'
method identical with that commonly used for deriving

analytical solutions of partial differential equations. The
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Fourier series can be formulated in terms of sines or cosines
but the algebra is easier if the complex exponential form

. ; - nm
is used, i.e. with i an cos —Tx or

z bn sin E%X replaced by the equivalent,

7 An b 52;1 , where i = J(—l) and 1 is the

interval throughout which the function is defined.

The idea behind this method is to express the errors at the

nodal points along t = O between y =0 and Nh, by E (ph) = Ep,
p=0,1, ..... N. Then the (N + 1) equations
N
Ep = I A e dgnph , (b= 0: 1, cevesall)
n
n=0

are sufficient to determine the (N + 1) unknowns Ay, A; ....
AN uniquely, showing that an arbitrary distribution of
initial errors can be expressed in terms of this complex
exponential form. As our finite difference equations will
always be linear, and therefore separate solutions additive,
we need only consider the propagation of the error due to
o1iBph

a singe term, such as . The coefficient Al is a

constant and can be neglected.
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To investigate the propagation of this error as t increases

it is necessary to find a solution to the finite-difference

iBph

equation which reduces to e when t = gk = 0. Assume

E _ elBy eat = einh emqk L= einh‘E q
P:q
ak ; :
where 3 = e , and <«, in general, is a complex constant.
This obviously reduces to einh when q = 0. The error will

not increase as t increases provided

Y AT £
Letting Fp 4 = einh E 9 in equation (49) yields
e”'ﬂph S : B S (D - Ki) X elﬁ(p_l)h‘g 9 4 L, == 2Dr)einh§I

+(D-K) r eiB(P+l)h}q (50)

for 2 ‘S i '\s N — 1 and fOI' j = l' 2' R

Simplifying equation (50) we have that

igh

'5 = (D - Ki) re + (1 - 2Dr) + (D + Ki) : eiBh



gh

- = e in2 (Bh Bh £h
(s l) = 4Dr sin 2) + 4Ki r sin { 2)cos( 5
For stability we require that I; lég PN 5N
D
r. &
2 2 (Bh 2 2 Bh
2 Désin* ( 2) + K;® cos®( 2)
Two cases now arise
Case 1: D >K, and cos? (%?) = 0 and then
from equation (52) we know that,
1
réﬁ
Case 2: D < Ki and sin? (%?) = 0 and then we have that,
2K, °
i

Whilst the Fourier Series method is very powerful it is also

(51)

(52)

(53)

(54)

rather laborious particularly as regards the present problem.

Fortunately, there is an alternative and more rigorous

technique which involves matrix algebra.



Matrix Method of Stability

This method expresses the finite-difference equations given

in equation (49) in matrix form and examines the eigenvalues
of an associated matrix. Before continuing it is necessary to
state the following useful theorems on the bounds for

eigenvalues, the proofs of which are given in appendix T.

Gerschgorin's Theorem

The modulus of the largest eigenvalue of the square matrix A
cannot exceed the largest sum of the moduli of the terms along

any row or column.

Brauers Theorem

Let Ps be the sum of the moduli of the terms along the Sth

row excluding the diagonal element d..+ Then every
eigenvalue of A lies inside or on the boundary of at least
one of the circles | A - a__ | = p .

Ss s
The finite-difference equations given in equation (49)

together with the initial and conventional boundary conditions

given previously, may be written in matrix form as,

~ ré - — -
F2,j 1 (D - K2)r (1 - 2Dr) (D + Ky)r F2,j
FN,j *q 2Dr (1 - 2Dr)J FN,j




Thus, the matrix determining the propagation of error is,

(D - Kz)r (1 - 2Dr) (D + Ky)r

(D - K. ,)r (1 - 2Dr) (D + K

N-1 N+1) T

2Dr (1 = 2b7)

Application of Brauer's theorem to this matrix, with

a = (1 - 2Dr) and P = 2Dr,
ss s

shows that its eigenvalues ) 1lie on or within the circle
A - (1 - 2Dr) | € 2Dr
A1 = 1 - 4Dr, Ao = 1

and for stability,
J e @i gk = %

Hence

-1 £ 1 =~ 4br £ 1, giving r £ é% as previously

demonstrated using the Fourier Series method (see equation (53)).




Stability of General Explicit Methods

Consider the problem of sclving the more general linear
parabolic partial differential equation with variable

coefficients, i.e.

dF 3’F OF
— = + — 4+ C +
3t & b 3y GF d (55)
where a, b, ¢ and d are functions of t and y only, and
with the more general boundary condition
OF a
p 3y 2 Net, SRl = v (56)
where p, q and v are functions of t only.
Now, there is an important class of simulations to linear
parabolic equations with variable coefficients for which
rigorous sufficient conditions for stepwise stability are
easily obtained (see Hildebrand, 1968). 1In illustration, let
us suppose that a 'four-point' formulae has been obtained,
for equations (55) and (56) above, in the form,
Eio84g CaqptbadlBeig 4 * Cpli)F, s
(57)
+ Cl(l,j)Fi+1'j + di,j

as a consistent simulation, where the coefficients Cn(i,j)

are known functions of i and j. We suppose that equation (57)



holds for 4 = 1, 2 ...v00 Napll 3 = 1, 2¢ ceesas The
propagated error €4 3 due to an initial error distribution
r

95 is then specified by the relations,

- ) ¢ .3 €

n i+ n,j (58)

and,

1.1 = %y (59)

If the coefficients C_,, C, and C are non-negative for

1

all relevant values of i and j, i.e.

Cn (1,)) 20 (n = %y 0 1) (60)

and if their sum does not exceed unity,

DX Cn (i,3) € 1 (61)
n=~1

then we may deduce from equation (58) the relation

I |
€ Z < Z Stz <p £, ; l < max le. >
a {580 s N At n 140, i i+tn,j
JOFE 3 = 1. & sane-tt @and 3w )02 s e (62)

It thus follows that when the conditions (60) and (61) are
satisfied for all relevant values of i and j, the errors

propagated by a single line of initial errors can never exceed
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the largest initial error in magnitude, so that the
formulation is stable in the stepwise sense. While the
conditions (60), (61) and (62) are sufficient for stepwise
stability, they may not be necessary, in the sense that the
formulation may be stable even though one or more of these

conditions is violated.

The power of the above general stability criterion can only

be realised when it is applied to an actual physical problem.
As it happens, the pulmonary gas transport equation forms an
ideal "model example" on which to demonstrate it's wide range

of application.

On equating coefficients of equation (49) with those of

equation (57) we have that

Cq (45 = W=x)r (63)
Co (1,3) = (L = 2Dx) (64)

and then using equations (60) and (61) we have

r & f% ¢ Ki < D again as previously derived by the Fourier

Series method. It is apparent that this general stability
criterion is superior to both that of the Fourier Series method
and the matrix method and as such will find wider applications

in other scientific and engineering fields.



Implicit methods

One of the most powerful and widely used implicit schemes is

that of the Crank-Nicolson implicit method. It involves

. 2
replacing the derivatives %5 ' %§§ by the mean of

their finite-difference approximations on the jth and

(3 + l)th time levels, i.e.

3 _ 1| ian 90 T By en) | Wy gt B ) dE
R 2 (ay) 2 (Ay)
o T N i T e
oy £ i (Ay)?
(F... . = 2F, . % F . )
+ i+l,5 35 3=1.3 (67)
(Ay)?

In this case the approximate value at the ith node on the

(3 + 1) time level depends upon values at both the jt9 and

{3+ 1)th time levels (see diagram).

F . P .
i-1 .
l 0] i.] 1+1.3  ynown

- UNKNOWN
Fi-) 441 Fi,5+1 Fi+1,99

Hence, it will not be possible to solve the resulting
difference equations directly and therefore an indirect
technique such as the Gauss elimination method will have to

be adopted.



If the finite difference approximations given in equations
(66) and (67) are substituted into the pulmonary gas

transport equation (7) we obtain

(D + Ki)r F

= i By lsRe g gy * 1B R 2DENR, g ¥ i+1,j+1
= (D = Ki)r Fi—l,j + (2 = ZDr)Fi_j + (D + Ki)r Fi+1,j (68)
for 2 1 N="1 and For g = L & sowswsena

where Ki has been defined previously in equation (47).

The solution of the system of difference equations given in
equation (68) is best achieved by making use of the Gauss
elimination method which is detailed in appendix II. The
Crank-Nicolson equations given in equation (68) can be

written in matrix form as

= q -
|
(2 + 2Dx) = (D + K,)r Fl,j+l
w0 =~ K.)¥ {2 + ZDy) - D + K,}x F2,j+1
w2+ 2DE) Fi,5+1

. AL o
(2 - 2Dr) (D + K,}r Fl,j
(D= K, )2 {2 - 2B} (D + K,)E F2,j
; (D - KN)r (2 = 2Dr) FN,]




i.e., as

(2T - r MN) Fj 4 1 = (2 + r MN) Fj (69)
where
= =
M, = - 2D (D + Ky)
(D = Ki) - 2D (D + Kjp)
(D - KN) - 2D

Equation (69) can also be written in the form

(2~ cm) B, &[4 - @3 -emp]e, (70)

and letting B

]

(2 = ¥ MN) we have

B Fj+l = (41 -~ R Fj (71)
giving
il
Fj + 1 = (4B - Fj L2

The Crank-Nicolson finite-difference equations will be stable

when the modulus of every eigenvalue of (4B"! - I) does not
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exceed one, that is, when

where )X is an eigenvalue of B.

Equation (73) implies that A > 2. For the matrix B,

"

. » 2 + 2Dr, max Ps = 2Dr, so Brauer's theorem leads
to,;
X = (2 + 2Dr) g 2 Dr |
or
= 2Dy & & = 2 = 2Dy & 2Z2BTr
l.e-

2 £ X £ 2% 4Dr

proving that the equations are unconditionally stable as

A > 2 for all values of r.

Although the Crank-Nicolson finite-difference equations are
stable for all values of r this does not imply that their
solution converges rapidly to the actual solution of the
pulmonary gas transport equation. 1In fact, due to the
presence of the convection term in equation (7), the
Gaussion elimination method, which is necessary in order to

solve the relevant difference equations, requires large

(73)
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amounts of computing time in order to attain the same degree
of accuracy as that achieved with the direct explicit

method.

The convergence properties of both the above schemes have

been dealt with in an exhaustive manner in appendix III,

Stochastic Simulation Methods

Stochastic simulation methods have proved to be attractive
alternatives to the classical approaches in solving the gas
transport equation. The full theoretical description of
the stochastic method is given by Cox and Miller (1968) and
the first use of stochastic methods for solving the gas

transport equation owes much to Paiva, (1972).

The essence of this method is to sub-divide the "trumpet"
model of the bronchial tree into annular sections of length
Ay as in figure 5b where Pn and q, represent random particle
movements and a  causes a drift which is equated to gas
convection. If we now let bn represent the total number of
particles in the nth annulus and Fn and Sn be the gas
concentration and total cross-sectional area associated with

this annulus then we know that:

b = F_ Ay S (74)
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and for a time change of At
ﬁbn = AF Ay S (75)

It should now be clear that the change in the number of
particles in the nth annulus in time At may be represented

as
b = b [ (1) > (m) ]| -b [(n) > (-1

b b e > ) | - b |+ e | (76)

Using equations (74) and (75) together with the probabilities

given in figure 5b we find that:
=0 PuaTh-y Bhq * 8,0 = 8y B, 8, (g < a.)
an+1) - Ay Sn Fn {pn + an) (77)

which may be rearranged and divided by &yﬁt'to give

AF s S
B _ 2 n-1 ol n+1 e
At N Sn Fn--l pn-l ann i Sn Fn+l qn+1 ann
+ W S S F a - 8 F a (78)
SnAt n-1 "n-1 "n-1 n+l "n+l "n+l

If we compare the previous finite difference approximation

equation (68) with that of equation (78) we find that stability
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is assured provided

1 n=1
o 5 4, = S 4 (Ay)? = 2D At
n
(79)
and 2 a, Sn (Ay) = Q At
For a particular flow (Q) equation (79) allows a stochastic
matrix P to be constructed. The elements of this stochastic
matrix define the probabilities of gas molecules moving
between the annular states in time interval At. Thus, if
Fo is the column vector of concentrations at zero time and
F, is the corresponding concentrations at time At then
Fy = P FO (80)
and similarly the end inspiratory concentrations are given
by
m

F = p"F (81)

where T = m (At) is the duration of the inspiratory cycle.
A similar procedure will yield the expiratory concentrations
with the proviso that the initial expiratory concentrations
are identical to the end inspiratory gas concentrations as

previously assumed in all model analyses.



It would appear from equation (81) that the technique of
stochastic simulation is only a slight variation of the
explicit finite difference method. However, on comparing

the stability criteria corresponding to these two schemes

it is found that this is grossly untrue. The conditions given
in equation (79) dictate that small step lengths, Ay, and
hence large computing times are necessary in order to obtain

a stable and convergent solution.

DISCUSSION

The major contributions of the present assessment of

contemporary models have been to critically examine

() the assumed boundary conditions
(ii) the assumed physical models

(iii) the methods of solving the governing pulmonary

gas transport equations, and
(iv) The stability and convergence of the methods
employed in (iii)
Whilst the earlier diffusion type models have already been
exhaustively scrutinised by various eminent physiologists
(Chang and Farhi, 1973; Piper and Schied, 1971 and Cumming,
1974) the same cannot be said for the more recent
simultaneous convection-diffusion model analyses. It is
hoped therefore that the present chapter has made some

headway in achieving such a general scrutiny.
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CHAPTER 3

A REVISED MODEL

The objective of this chapter is to highlight the crucial
role played by boundary conditions in influencing the
simulation of gaseous transport mechanisms in the bronchial
tree. Initially, results are presented pertaining to the
rigid trumpet single series compartmental model as given

in figure 2, however, later in this chapter it is shown

how these results compare favourably with the corresponding

compliant model predictions.

o {5+ | The Revised Boundary Conditions

It is of value to restate the form of the revised boundary
conditions previously derived in chapter 2 as it will
subsequently be necessary to examine their stability and
convergence within the context of a previously adopted
explicit finite difference numerical solution technique

(Bush et al, 1977).

The revised boundary conditions may be written in the form:-

|
|
+

(82)
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and '

T U
D § (L) 5
y=L y=L

(ST
A
o
I/
=

for (83)

where t; and T have been defined previously.

The stability and convergence of the above revised boundary
conditions will now be examined in two ways firstly by
recourse to the general stability criterion derived in
chapter 2 and secondly by the less rigorous Fourier Series
method. A third method (the matrix method) is dealt with in

detail in appendix II.

Using central difference approximations of derivatives, as

derived earlier, equations (82) and (83) become

2r(Ay)Q  2Kyr(Ay)Q

F,441 = 200 Py y 5 + | 1 - 2Dr + 5 + S, N,J

and

2r(Ay)Q  2Kyr (AY)Q | o
P = 2Dr F s I = 2Dy ~ -

N, j+1 P=1,73 SN DSN

N;j

..... vessesss (83)
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where,

K 1 (Ay) D _a,s._.__N + 9 (86)

N 2 SN Yy SN
Method 1
Now, from the general stability conditions derived earlier
in chapter 2 we know that
1

r £ D ¥ AN’ (87)
where,

A = Qy) (K + D) (88)

N DS
N
Since AN<3 D, stability and convergence of the above revised
boundary conditions is guaranteed by the relations derived
using the Fourier Series method.
Method 2
When the Fourier Series method of stability was applied to
equations (84) and (85) it was found that stability and
convergence depended upon the value of r where
2 [40 sin? (B} - BIJ
T - (89)

- .. 2 Bh 2
[SD (2D BN)Sln ( 2) + BN ]



S O

and where

2 Q0 (D + KN} (Ay)

By = g (90)
N

The expression on the right hand side of equation (89) can be
re-written in terms of partial fractions in the form,

§ BN (4D - B

(2D = BN)

N/ 1
2 . — PR
(2D - B) [BD(ZD B ) sin? () + BN:I

H
1
|

SR R e e S

For the particular solutions that have so far been given,

the values of the physical model parameters were as follows:-

I
Il

Ay Q.02, SN 26,216.0 (see Table )

.

D = 0,25, Q

I

250 cm?®/sec

Substituting these values into the expression for K we

obtain,

K = 0.0125

and hence from equation (90) we know that

N - = 261,216 .0 (92)
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Since r > O, the expression for r given in equation (91)

will assume a minimum value when sin (%;) =0
l'el
z e g 1 el By (4D - B} .
min (2D - BN) (2D - BN) (4D - BN)
1
(93)
r < B
min (2D - TNJ

When BN is very small (as in the present case where

BN:£:O.0004), equation (93) becomes identical to the
relationship derived earlier (see chapter 2). 1In order to
test the validity of this stability criterion equation (7)
was solved with the revised "no-flux" boundary conditions and
for different values of r (in fact, r = 0.5 and r = 1.0)

it was found that the solutions were identical to the sixth
decimai place, thus indicating that both a convergent and
stable solution was attained. Hence, it is concluded that
all of the present and subsequent model predictions are free

from numerical artefacts arising from the use of a non-zero

concentration gradient at the alveolar wall.



3.3 The Total Flux Equation

The total flux at any station within the model is made up of
both convection and diffusion flux contributions and is

defined as:-
G (y,t) =+ QF (y,t) - D S == (94)

From this equation we can derive the gaseous flux per unit

flow which is defined as

G(trtj = + F (_Y.rt) - M E . (95)

0 ) Tl

In order to fully appreciate the physical or physiological
significance of the above revised boundary conditions it is
only necessary to compare the flux curves (Pack et al, 1977)
as plotted in figures 6 and 7. Figure 6 presents results for
the conventional type rigid model, (Paiva, 1973) and clearly
demonstrates the sink and source effects occurring during
inspiration and expiration respectively. However, when the
revised boundary conditions are applied it is clear from
figure 7 that these artefacts disappear and that a true
"no-flux" condition is specified at the alveolar wall,

y=L, throughout the duration of the respiration cycle.



Concentration/Distance Profiles

The resulting concentration/distance profiles, corresponding
to the revised boundary conditions, are shown in figure 8 from
which it will be noted that not only are there sionificant
concentration differences in the acinus region at end
inspiration, but more importantly, these stratifications
persist during expiration. For example, a 0.7 per cent

(2= 5.32 mm Hg) difference in tracer gas concentration exists
between the ends of the model at end expiration (see Table 2);
60 per cent of this difference occurring in the acinus. These
end expiratory concentration gradient distributions are perhaps
more readily discernable in relation to a more refined

concentration scale as indicated in figure 9.

The Single-Breath Nitrogen Washout Test

In order to test the validity of the above revised boundary
conditions and to relate the true "no-flux" conditions to
know behaviour in vivo it is necessary to modify the above
analysis to facilitate a simulation of the single breath

nitrogen washout curve by taking,
FE (t) = 0.8 [ 1.0 - F (o0; £ =~ t;)] (96)

where FE (t) is the variation of the nitrogen concentration
N
2

at the entry of the trachea during the first expiration following

a single oxygen inspiration.
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The resulting plot of expired nitrogen against volume is
given in figure 10 and clearly shows the expected phase III
(or alveolar plateau) slope, (see Table 3). On extrapolating
this curve to 500 mls expired the observed slope is
equivalent to 3.42 per cent, which is reminiscent of the
average value for normals obtained experimentally by Mills

and Harris (1965) and more recently by Jones (1967).

The only previous analytical work to show a similar finite
phase III slope was that of Cumming et al (1971), who
produced a 1.1 per cent gradient between 750 mls and

1250 mls expired. These authors, however, did not attempt
to simulate simultaneous convection and diffusion, but
allowed successive quantums of flow to enter their model
followed by a diffusion period. Although this "relaxation"
technique only provided a crude approximation to the actual
process of pulmonary gas transport, it did guarantee that no
gas was lost across the alveolar wall. Moreover, by
controlling the way in which gas flowed out of their model,
a continual fall in fractional concentration at the mouth was

ensured, giving rise to the small alveolar slope.

3.3 Simulation of the single-breath washout test for

Gases of Different Diffusivity

The ability of the present model analysis to discriminate
between the behaviour of insoluble tracer gases of differing

binary molecular diffusion coefficient will now be examined.



More specifically, it will be shown how gaseous concentration
differences (stratified inhomogeneities) existing in the acinar
region can be related to expired concentrations measureable at

the mouth.

Figures 11 and 12 show the input gas concentrations within the
model at end inspiration and end expiration respectively for
three tracers having molecular diffusion coefficients of

0.1 cm?/sec, 0.315 cm?/sec and 0.76 cm?/sec corresponding to
SF¢/N,, Ne/N, and He/N, mixtures. As intuitively expected,

it can be seen that at end inspiration the heavier gas (SFg)
has penetrated deeper into the model than that of the lighter
gases (Ne or He), and hence it has a greater dead space volume.
Furthermore, the heavier gas displays a more marked concentration
stratification in the acinar regions. The actual concentration
differences between the ends of the model at end expiration are
0.42% for He, 0.6% for Ne, and 1.2% for SFgs, with the greatest

gradients occurring over the last 0.5 cms of the model length.

The resulting concentrations of the three tracer gases being
expired through the "mouth" end of the model are given in

figure 13 and show that the heavier the gas, the greater the
dead space volume and the greater the alveolar plateau slope.
The plateau slopes for the three tracer gases were calculated
on the basis of an extrapolation to 500 mls expired and were

found to be 2.9% for He, 3.4% for Ne and 4.8% for SFg.



The theoretical results presented in figures 12 and 13 show
that the expired "alveolar plateau" slope of a tracer gas

does indeed give an indication of end expiratory concentration
differences in the acinus. Moreover, the magnitude of the
slope and the degree of stratified inhomogeneity, inerease

as the molecular weight of the input gas increases (that

is D decreases). Such results concur with the experimental
findings of previous workers (Georg et al, 1965; Cumming

et al, 1967; Read, 1966; Power, 1969; Sikand et al, 1967;

and Kawashiro et al, 1976), who also concluded that gases
having lower diffusivities should reach equilibrium more
slowly and that the observed expired concentration differences
arose as a consequence of similar differences obtaining in

the more distal regions of the bronchial tree.

3.4 Simulation of the single-breath washout test for

gases of different solubility

The particular form of the revised boundary conditions so far
encountered ensure that none of the tracer gas escapes, or
indeed is reabsorbed through the alveolar wall. As the

three gases just considered have very low blood solubilities
(SF¢ = 0.0067, Ne = 0.011, He = 0.0098) such an assumption
would appear to be a reasonably accurate representation.
Nevertheless, it is interesting to speculate how a finite

gas flux across the alveolar wall would affect concentration



gradients. Change and Farhi (1973) have already considered
such a case in qualitative terms, and have suggested that

the gas exchange is likely to increase any stratified
inhomogeneities in the acinus. The present model may readily
be modified to accommodate a finite gas flux across the
alveolar wall by slightly altering the boundary conditions
(82) and (83) above. The necessary modification involves
changing "G = 0" to "G = k", where k is the amount of
input tracer gas (mls/sec) being taken up by the blood
flowing in the alveolar capillaries. In fact, equations

(82) and (83) become

oF n g #l A .
3y = * PE I { DS (L) (97}
Y:L =T,
and,
5F ol s 0 P G
Ay _ DS (L) B8 (L) (98)
y=L y=L

The effect of applying three values of G (10, 25 and 50
mls/sec) to a hypothetical tracer gas having a diffusion
coefficient of 0.25 cm?/sec (equivalent to 0,/N,) is shown
in figure 14 for end inspiration. It can be seen that the
higher the G value, the greater the concentration gradients
for the input gas in the acinar region and the lower the

alveolar gas concentration. The latter effect is to be



expected since higher values of G are associated with tracers
having a higher blood solubility hence they are being removed

from alveolar space at a faster rate by capillary blood.

Figure 15 gives the ensueing end expiratory concentrations
within the model. It will be noted that more marked
stratified inhomogeneities are associated with tracers having
higher blood solubilities, and that these concentration
gradients are also reflected at the "mouth" end of the model

as is evident from figure 16.

A more realistic illustration of the independent effects of
input gas solubility on stratified inhomogeneities may be
given by considering the specific gases Argon and Nitrous
Oxide because they have very similar diffusion coefficients
(D = 0.192 for Ar and D = 0.189 for N;0). Because the
solubility of Argon can be considered negligible, a value of
zero is assumed for G. Nitrous Oxide in contrast has a

much greater affinity for blood, having a solubility
coefficient of 0.465. Using an earlier algebraic gas
exchange model (Scrimshire et al, 1973) the value of G

during a normal initial breath of 100% N;0 is estimated to

be approximately 5.5 mls/sec. The results for the two tracer
gases are given in figures 17 and 18 and as anticipated,
greater end inspiratory and end expiratory input gas
concentration gradients exist in the acinus for Nitrous Oxide.

Moreover, the actual alveolar concentration level for Nitrous



Oxide is significantly lower than that for Argon for the
reason previously discussed. The simulated single-breath
input gas washout tests for these two tracer gases are
given in figure 19 and demonstrate a significantly greater
alveolar plateau slop for Nitrous Oxide again reflecting

conditions within the lung.

32D Results for Different Volumetric Flow-Rates

As yet, only square wave flow-rates have been imposed in order
to achieve the required tidal ventilation. Since the precise
volumetric flow-rate variation within the bronchial airways

is at present unknown (see Schroter and Sudlow, 1969) it is

of interest to consider alternative forms of mass movement.
Furthermore, the consideration of flow-rates other than that
of the square-wave type will provide an alternative means of
testing the stability and convergence of the revised boundary

conditions.

On resolving equation (7) with both triangular and a
sinusoidal wave flow-forms and for the same parameter
specifications as previously considered in figures (6) to
(19), the results given in figures (20) to (23) were
obtained. It is clear from these curves that the only
significant changes, in comparison to those earlier
simulated results given in figures (6) to (19), are as

follows:~-



(i) The concentration/distance profiles for the
sinusoidal wave flow-rate oscillate whilst the
alveolar tracer gas concentration level continually

increases during inspiration

(ii) The dead space volumes (or phase II) of all tracer
gases were slightly greater when the triangular

and sinusoidal flow-rates were considered

(111) The calculated phase III (alveolar plateau) slopes
of all tracer gases compared well with those obtained
when a square wave flow-rate was considered. This is

more readily demonstrated in table 4.

It is intuitively obvious that the concentration/distance
profiles in the conducting airways (where mass movement by
convection is dominant) will change in synchrony with the
oscillating flow form. However, in the more distal regions

this effect is negligible.

The small fluctuations in phase IT and phase III values are
in agreement with the experimental results of Bashoff et

al (1967) and Jones and Glaister (1969). These workers
demonstrated that increasing expiratory flow-rate results
in small decreases in the dead space volume and alveolar

plateau slope.



3.6 Results for different Pre-inspiratory Lung Volumes

It is well known that the shape of phase II and the slope of
phase III are critically dependent upon the initial lung
volume from which the single-breath test was performed
(Mills and Harris, 1965; Bashoff et al, 1967; Jones, 1967).
The results presented in figures 24 and 25 are for a range
of such pre-inspiratory lung volumes, in fact, for lung

volumes varying between 2.5 litres and 5.5 litres. The

most important observation to be made concerning these results

is that both the end expiratory concentration differences and

the resulting phase III slopes decrease as the pre-inspiratory

lung volume increases (see Table 5).

Since there is a significant variation in functional residual
capacity (FRC) between one normal subject and the next, we
would not expect to be able to put rigorous bounds on the
corresponding change in phase III slope. In fact, Mills and
Harris (1965) have indicated that in normals this phase III

slope may vary between 2% - 4%.

It should be noted that the results given in figures 24 and
25 and Table 5 are typical of those obtained with various

flow-forms and diffusivities.
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37 Breath-Holding Studies

In almost all single-breath determinations, whether they be
obtained from normal or abnormal subjects, a finite breath-
holding time is unavoidably incurred due mainly to the
inability of the subject under consideration to perform an
instantaneous reversal of flow. This is particularly true
in the case of chronic bronchitics and emphysematics who
find difficulty in performing even the simplest respiratory
maneouvres. Thus, it is necessary and interestina to
speculate how a finite breath-holding time will influence
both the approach towards gaseous equilibrium and the

observed phase III slope of a respired tracer gas.

At the outset it was necessary to modify the existing

analysis in the following way:-

INSPIRATION
i
P o, £) = 1.0, LTor £;& € £ 5 (99)
3F gl Q F T

y=L y=L
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BREATH-HOLDING

3F T

Iy - 0.0, for & < t 4 %, (101)
y=0

OF L i

3; = 0.9, for 5 Coa T T TB (102)
y=L

EXPIRATION

9F - 0.0 for T. < t « T (103)

oy i B >
=0

9F _ 0 F

dy i D S (L) : e D RS
y=L y=L

where TB is the duration of breath-holding.

The boundary conditions holding during breath-holding are
obtained from eguations (82) and (83) with é = 8  {i.e,
no convective flow of gas through the "mouth end" of the

model) .
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When the gas transport equation was solved with the above
boundary conditions and for various breath-holding times,
the results presented in figures 27, 28 and 29 and table 7
were obtained. The figures give results corresponding to
l, 2 and 5 seconds breath-holding respectively. As breath-

holding proceeds two major effects were noticed, i.e.

(i) The appearance of the phase II (concentration
transition) occurred earlier indicating a

significant reduction in dead space volume

(ii) The slope of phase III (alveolar plateau) was

significantly reduced.

These two "effects" may be more readily examined by

reference to the results in Table 7.

The above two observations have already been verified
experimentally by Georg et al (1965), Cumming et al (1967)
and Power (1969). Further, the actual concentration points
detailed in table 7 can be related to similar experimentally

tabulated results of Cumming et al (1967).

The reasons for the rapid decrease in phase II and phase III

values are two-fold:-

(a) During breath-holding the dead space gas and

the alveolar gas will have time to reach an
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equilibrium concentration and therefore any
stratified inhomogeneities existing in the

acinus will have been abolished.

(b) Since éEEO during breath-holding the alveolar
wall boundary condition reduces to the
conventionally assumed condition as given in
equation (102). Thus, all previous arguments
apply suggesting that any concentration

gradients will be eventually obliterated.

3.8 Compliant Model Predictions

The results presented so far have been based upon a rigid
physical model, hence it was necessary to impose a gaseous
flow to simulate inspiration and expiration. In reality,
breathing is brought about by the expansion and contraction
of the respiratory regions of the lung, however, in order to
follow these movements exactly it would be necessary to solve
the appropriate hydrodynamic equations. Such additional
complexity is considered unnecessary in view of the fact
that the results obtained from variable volume models

(for example, Pack et al, 1977) do not differ significantly
from those obtained from rigid models at low tidal volumes
(for example, Paiva, 1973) which are similar to that so far

considered in this chapter. However, when it becomes



necessary to simulate larger tidal ventilations some account

must be taken of lung expansion (Davidson, 1975, 1977).

The geometrical boundaries of the trumpet model were allowed
to expand and contract in accordance with the relation
derived by Hughes et al (1972), i.e. lung volume varied
proportional to the cube of the bronchial distance. On
solving the pulmonary gas transport equation, whilst
simultaneously allowing for such lung expansion the results
given in figure 30 and table 8 were obtained. These results
are for a square-wave flow rate (Q = 250 cm?/sec) and a tidal
volume of 500 mls. Clearly, there is very good agreement
between the "rigid" and "compliant" model predictions for
these specific values of the respiratory parameters. The
only effect of considering rigid rather than variable volume
models (at low tidal volume) would appear to be that input
gas concentrations are slightly underestimated a point

also noted by Paiva (1978).

Perhaps the greatest significance to the clinician is the
ability of the variable volume model to allow for larger
tidal ventilations and subsequent larger expirations. This
is an important improvement in the model development since
Bashoff et al (1967) have indicated that there are

basically two main forms of the single-breath test, i.e.



(1) Inspiration of a small tidal volume (Vva 500 mls)
from the level of F.R.C. and subsequent expiration

to the resting expiratory level

(ii) Inspiration of a larger tidal volume (VT A2 1000 mls)
from the level of F.R.C. and then expiration of

about 2 litres.

The latter form (ii) is usually used in estimating the slope
of the phase III. 1In fact, the value taken for this slope is
the difference in expired gas concentration between 750 mls

and 1,250 mls expired.

On carrying out a single-breath nitrogen washout test
identical to that described in (ii) above, the results
demonstrated in figure 31 and table 9 were obtained. As
expected, the longer duration of the expiratory cycle

reduces both the end expiratory concentration stratifications
and the phase III slope. Table 9 gives a detailed description

of these concentration differences.
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CHAPTER 4

REGIONAL DIFFERENCES

One has only got to consider the complex branching pattern of
the bronchial airways (Weibel, Model B, 1963; Horsfield and
Cumming, 1968 and Horsfield et al, 1971) to realise the
limitations of the single series compartmental models in
providing a realistic simulation of molecular gas movements.
This situation is even more pronounced in many cases of chronic
obstructive lung disease (C.0.L.D.) (Horsfield et al, 1973 and
Demedts et al, 1976) and as such there is a need for an

improved physical model representation.

Further, in many forms of pulmonary disease, the pattern of
regional ventilation and blood flow distributions may be greatly
altered from the normal. For example, investigations using Xe!33
ds a tracer gas have shown very considerable regional abnormalities
of function in vivo, as revealed by impairment of both ventilation
and perfusion, in numerous subjecgs diagonsed as having

pulmonary emphysema. In certain subjects it has been clearly
demonstrated that most of the tidal volume goes to zones, or
possibly lobes, of the lung in which the structure is relatively
preserved, but which represent only a small fraction of the total
lung volume (Bentivoglio et al, 1963). The latter findings

again emphasise the need for an improved model description.
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4.1 A REGIONAL MODEL

The basic form of such an improved physical model consists of
an upper airways compartment in series with two parallel
compartments as shown diagramatically in figure 28. The
choice of two parallel compartments was taken solely for ease
of illustration, but the model can be extended to include any

number of such parallel compartments vide infra.

Regional Inhomogeneities

In order to assess the effects of regional inhomogeneities
upon the efficiency of pulmonary gas transport and mixing it
is necessary to specify which particular model parameters are
varying and exactly what type of inhomogeneity they are
simulating. In fact, only three specific types of regional

inhomogeneity have been considered.

(a) Regional inequalities of volumetric flow-rate
(b) Regional variations in compartmental volume
(c) Regional differences in diffusion pathway length

In cases (a) and (b), only single parameter variations occur,
whereas, in case (c) multiple variations are necessary. For
the changes required for type (c) it was found neccesary to
utilise the empirical relationship derived by Hughes et al
(1972) which states that lung volume varies proportional to the

cube of the bronchial length.
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Let éi (1 = 1, 2) be the regional volumetric flow-rates down

the parallel compartments and Vi (i =1, 2) their corresponding

volumes, then in mathematical terms the above three types of

regional inhomogeneity may be stated in the form:-

(a) 0, # Q- and
(b) 0 = Q04 and
(c) Vi ¥ Vv, and

1, % 1, where 1,

are the lengths of the parallel compartments.

Since,
v e 33
i.e. V = k 13

we may now write

vV, = k 1]3 ’ Vo

and from (iii) we can derive

12 - 11 (—'— =

which implies that,

52 = 3.2 S]_

and 1,

(i)

(ii)

(iii)

(iv)

(v)
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Further, in each of cases (a), (b) and (c) the parallel
compartments expand and contraet to accommodate their relative
inspired and expired fractions of the total tidal volume. 1In
order to simulate the compliant characteristics of these
parallel compartments, it was again necessary to make recourse

to the empirical findings of Hughes et al (1972).

Thus, at time t = O the cross-sectional area/distance

distributions for the parallel compartments are given by,

8, = 8§ (yi, E) i i =1, 2 (vi)
where the data for the Si (i = 1,2) have been obtained from a
modified version of Weibel's Model A; Yy is the distance
variable corresponding to compartment i (i = 1,2) respectively.
During the subsequent time interval At, éi 5t (d = 1.,2) of

gas enters these parallel compartments causing an increase in
volume (and hence also Si) according to the relations previously

outlined in (iv) and (v) above, i.e.

= 2 - .
Sy (yi, t + 4At) = a;* 8 (yi, e L™ 3.2 (vii)

where,

a, = ook = A, 2 (viii)



= s

Equations (vii) and (viii) yield an efficient itteration
procedure governing the expansion and subsequent contraction
of the parallel compartments (i.e. respiratory regions). It
is important to note that coupled with equations (vii) and

(viii) we also have,

Yy (t + AL) S () ; % = 1,2 (ix)

indicating that the diffusion pathway lengths are continually
increasing during inspiration and similarly decreasing during
expiration in line with the suggestion proposed by Chang and
Farhi (1973). However, it should also be noted that similar
Solutions to the governing gas transport equations are obtained

When equation (x) is employed,

> ) (£ + At) = . ¥y () ; 1 = 1,2 (x)

4.2 THE GOVERNING EQUATIONS

The equations governing the transport of gaseous species into
and out of the compliant model illustrated in figure 32 may

be written as:-

—_— (105)

+
0|
1

(. = 0; 1 and 2)
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and i = O refers to the upper airways compartment; Fi = Fi{yi,t)
is the fractional concentration of input tracer gas at distance
Yy from the portal end of compartment i and at time t after the
start of the respiratory maneouvre; Si = Si (yi,t) is the total
cross-sectional area/distance distribution relative to
compartment i and at time t during its expansion/contraction
cycle; Yy is the distance variable assocated with compartment

i and D is the binary molecular diffusion coefficient between

the inspired and residual gases.
The solution of equation (105) in the model configuration shown

in figure (32) requires the specification of appropriate initial

and boundary conditions.

4.3 BOUNDARY CONDITIONS

The initial and boundary conditions employed in the present
chapter are almost identical to those used in the last chapter,
the only difference being that in this chapter it is necessary
to specify a further ¢nternal boundary condition at the junction
of the series and parallel compartments (branch point A in

figure (32) ).
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Inspiratory Cycle

We assume a constant flow of input gas through the "mouth end"

of the model which implies that,

F, (0, t) = 1.0 for &y £ T £ % . (106)

At point A we must have a continuity relationship which implies

that,
F . = F fx1,2 forti £ & £ & (107)
oA ia '’ X Ry N 2
At the alveolar walls of the parallel compartments we again
must impose "zero flux" conditions when considering the
transport of insoluble tracer gases. The total flux of gas
at any point in the model and at time t is given by:-
- aFi

{0 & £ & 7T)

Putting Gi (Li’ t) =0, 1 = 1,2 (where Li refers to the length

of compartment i) gives,

-

OF Q Fy T
e B gt e Ly E X 2 (109)
ayi D Si(Li) 2

y.=L, ¥ s USRS, o

3 1
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Expiratory Cycle

During expiration the contribution from diffusive mixing at the
portal end of the model is considered negligible in comparison

to the convective mixing (Paiva, 1972), hence we have that,

oF
.a_....c.) = 0 for F—- < o< T (110)
- 2
y=0
The "no flux" conditions at the alveolar walls, yi=Li again
vields from (108) above:-
oF 6 35 F
i i i T
s = - 3 =< tgT (111)
Byi D S (Li) 2
Yi=Ly Yol v = 1.2

The single most important boundary condition relating the
influence of regional inequalities to the corresponding expired
gas concentrations at the mouth, is the condition holding at

branch point A (see figure 32). 1In fact, this condition assumes

the form,

2
) ‘ B A
P X (Ql FlA + Q?FZA) L i=1 i iA
" TR T o 112
S :
i=1
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and in the general case of n parallel compartments we

obviously would have,

2 -
L. Q Fyq
; & tm)
oA = : (113)
z Q
f=1 1

It is through the interaction of equations (111) and (112)
that the combined effects of regional and stratified

inhomogeneities can be studied with the present lung model.

4.4 RESULTS FOR CONSTANT DIFFUSION PATHWAY LENGTHS

The solutions to equation (105) for constant diffusion pathway
lengths (i.e. y; = y;) and for the prescribed initial and
boundary conditions are presented in figures (33) and (34).
In each case, results are given for two positions of the nodal
branch point A, that is in generation 17 (solid line) and
generation 14 (dotted line), however, other positions may

also be considered as will be discussed later.

It is clear from table 10and figures 33 (a to c¢) that the higher
the regional flow differences, the greater the end expiratory
acinar concentration gradients irrespective of the position of

the nodal point A. The largest concentration gradients
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(stratified inhomogeneities) occurrred when point A was in the
region of the respiratory bronchioles (see table 10) in agree-
ment with the current trend of experimental predictions (Engel
et al, 1973; Sikand et al, 1966, 1976 and Kawashiro et al, 1976).
It should also be noted that in the regions adjacent to the
branch point A significant 'local' stratification is present
and that this will also contribute to the subsequent expired
concentration curve at the mouth. On closer examination of
table 10 and figures 33 (d to f) it is found that similar
tnereases in concentration gradient are observed for constant
regional flows éi (i = 1,2), consequent upon decreases in the
Yegional compartmental volumes Vi (i = 1,2). Such results were

also noted by Young and Martin (1966) and Tsunoda et al (1972).

The sensitivity of the single-breath nitrogen washout curve to
such independent éi (1 = 1,2) and V, (i = 1,2) variations is
clearly demonstrated in figures 34 (a to f) and a detailed
breakdown of the results can be found in table 10. Essentially
three observations are noted on closely scrutinishing these

curves, i.e.

(1) the phase III slope (alveolar plateau) increases as
either the regional flow-differences increase or as
the regional volumes Vi (i = 1,2) decrease (when the

Qi (i =1,2) remain constant).

(ii) the steeper phase III slopes occur when nodal point
A is situated in the more distal airways reflecting

the corresponding steeper concentration gradients.
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(21%) the phase III (concentration transition) appears
later (reflecting a greater dead space volume) when

nodal point A is situated in the more distal airways.

The first observation above indicates that regional
inequalities in ventilation produce the Znereased end
expiratory concentration gradients (stratified inhomogeneities)
and correspondingly inereased phase III slopes. Hence, even
without considering the added effects of diffusion pathway
length variation we have already established useful criterion
for distinguishing between the gas mixing behaviour in

diseased lungs.

4.5 RESULTS FOR VARIABLE DIFFUSION PATHWAY LENGTHS

As already mentioned in the opening paragraph of this chapter,
the structure of the human bronchial tree is certainly not
symmetrical as assumed in Weibel's Model A (1963) but
significant regional differences in diffusion pathway length
Occur within both the normal and diseased lungs. For example,
Horsfield and Cumming (1968) and Horsfield et al (1971) have
concluded from their somewhat extensive morphometric analyses
that within the respiratory lobules the distribution of path-
way lengths varies from 2 mm to 9 mm and on extrapolating this
result to the lung as a whole, they have suggested that total

pathway lengths may vary as much as from 7.5 cms to 21.5 cms.
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The implications of the above findings upon the efficiency of
pulmonary gas transport and mixing have not, as yet, been
considered due mainly to the nature of the previously assumed
physical models of the pulmonary airways (i.e. the single
series 'trumpet' or 'thumbtack' models). What is really
required is a lung model that will allow foé regional
differences in diffusion pathway length and lung volume
simultaneous with regional inequalities in ventilation

distribution, such as that outlined in figure 32.

The results illustrated in figures 35 (a to f) show how the
added effect of variable diffusion pathway lengths influence
gas mixing efficiency in the acinus. It is clear that in all
cases considered, there are significantly greater stratified
concentration differences when the diffusion pathway length is
varied simultaneous with increased regional flow-differences.
The magnitude of such differences can be computed from tables
10 and 1} and in some cases amount to as much as a 50% increase
in gradient, irrespective of the position of the nodal point A.
The degree of the concentration gradient adjacent to the nodal
point A has also increased in the present case (i.e. 'local'
stratification has increased) and the extent of these increases
may also be judged by scrutinising the corresponding single-

breath nitrogen washout curves as given in figures 36 (a to f).

On comparing the single-breath nitrogen washout curves given

in figures 34 (a to f) and 36 (a to f) (corresponding to
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'constant' and 'variable' diffusion pathway lengths,
respectively) one cannot fail to observe the following

major differences:-

(a) The phase III slopes presented in figures 36 (a to f)
are substantially greater than their corresponding
counterparts given in figures 34 (a to f) (see table 11),
reflecting the already observed greater differences in

end expiratory concentration gradient.

(b) In all cases considered, the appearance of the
concentration transition (phase II) is slightly delayed
in the latter curves (figures 36 (a to f) ) indicating
that transit time distribution may well influence dead
space determination in patients with chronic lung

disorders.

4.6 SIMULATION OF "AVERAGE CASE OF EMPHYSEMA"

A further group of simulations were carried out in order to
demonstrate how the present regional model could predict
results in agreement with known experimental findings. More
specifically, the "average case of emphysema" as quoted by
Briscoe and Cournand (1959) was analysed. Briscoe and

Cournand (1959) have indicated that in an "average case of
emphysema" 66 per cent of. the lung volume is ventilated by

only 10 per cent of the alveolar ventilation which may readily



e ey

be incorporated within the framework of the existing lung

model analysis by taking V,:V, = 1:2 with élzéz = 9:1.

The actual parameter variations considered are detailed in
table 12 where once again both constant and variable

diffusion pathway lengths have been considered.

The results given in figures 37 (a to f) and 39 (a to f)
again demonstrates those features already observed in
figures 33 (a to f) and 35 (a to f) (i.e. Znereased end
expiratory stratifications for corresponding iZnereases

in the regional flow differences. On singling out those
average cases of emphysema as discusssed above, it is found
from table 12 that these end expiratory concentration

stratifications may vary between 1.25% and 3.0%.

The single-breath nitrogen washout curves corresponding to
this latter group of simulations are presented in fiqures

38 (a to f) and 40 (a to f) and clearly demonstrate those
features previously noted in (a) and (b) above (see

section 4.5). On scrutinising table 12 it is found that in
those cases in which 66% of the lung volume is ventilated

by 90% of the inspired tidal volume, the phase III slope
varies between 7.74% and 13.47% which compares favourably

with knoqn experimental findings obtained from patients

with C.0.L.D. (chronic obstructive lung disease) and pulmonary
emphysema by Demedts et al (1976). 1In fact, Demedts et

al (1976) have indicated that in patients with severe forms

of C.0.L.D. with emphysema (group D in their paper)the phase
IIT slope varies between 8.0% and 13.0% in close agreement with

the present theoretical precictions.
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4.7 Simulation of the Single-Breath Washout Test

for gases of different diffusivity

It is of interest to compare the present 'regional' model
predictions with the corresponding single 'series' compartmental
model simulations given in the last chapter. 1In particular,
attention will be focused on the relations between the end
expiratory acinar input gas concentration gradients and the

subsequent expired concentrations measured at the mouth.

Figures 41 (a to f) and 42 (a to f) show the input gas
concentrations within the present 'regional' model (for the
same regional inhomogeneities as considered in section 4.5)

at end expiration for three tracers having molecular diffusion
coefficients of 0.1 cm?/sec, 0.315 cm?/sec and 0.76 cm?/sec
corresponding to SFg¢/N,, Ne/N, and He/N, mixtures. As
intuitively expected, it can be seen that in each case the
heavier gas displays a more marked concentration stratification
in the acinus reaffirming the results already given in section
3.3. The actual magnitudes of these concentration differences

can be found by reference to table 13.

The resulting concentrations of the three tracer gases being
expired through the "mouth" end of the present regional model
are given in figures 43 (a to f) and 44 (a to f) and show that
(independent of the type of regional inequality considered)
the heavier the gas the greater the dead space volume and

the greater the phase III slope (see table 13). Again, these
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latter results bear out the predictions given previously

in chapter 3 (section 3.3).

Apart from the major observations detailed above, it is also

important to note the following 'secondary features' arising

from a close inspection of all curves given.-in figures 41

to 44 {a to f):-

(1)

(ii)

(111)

(iv)

For all the tracer gases considered the greatest
concentration gradients always occur when nodal
point A is situated in the more distal airways

(respiratory bronchioles)

For all the tracer gases considered more marked
concentration differences were observed when the
diffusion pathway lengths varied simultaneous

with the regional inequalities in flow and volume

The 'local' stratification adjacent to branch point
A was in all cases greatest for the heaviest tracer

gas

The phase III slopes of all tracer gases considered
were steepest when the diffusion pathway lengths
varied simultaneously with the regional inequalities
in flow and volume reflecting the corresponding

steeper concentration gradients noted in (ii) above.
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(v) In all cases considered there is greatest delay in
the appearance of the concentration transition

(phase II) for the heaviest tracer gas.

4.8 Simulation of the Single Breath Washout Test for

gases of different Solubility

In order to compare the 'series’ and 'parallel' model
simulations for the transport and mixing of gases of
different solubility it is necessary to formulate appropriate
boundary conditions (similar to those specified in equations
(96) and (97) which will allow for a specific finite flux

of gas to be taken up by the blood flowing in the alveolar
capillaries. Clearly, these modified boundary conditions

will assume the following form:-

for O t<3 ., 1=1,2
and,
_afi = - __.i.___ Fi - __E_l....._ (115)
Byi D Si (Li) D Si (Li)
= Y=
¥k 54

£ T
et g W, i= 1,2
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where,

G = Gy + G (116)

The solutions to equation (105) corresponding to the above
boundary conditions (i.e. equations (114) and (115) ), and
for various combinations of éi and Gi (i = 1,2) are presented
in figures 45 (a to f) and 46 (a to f). These figures are
for a hypothetical gas having a diffusion coefficient of

0.25 cm?/sec (equivalent to 0,/N,). The actual values of

Gi (i =1,2) and éi (i = 1,2) considered can be found by

reference to table 15. On examining these curves it is clear
that the higher the Gi (i = 1,2) value, the greater the
steeper the concentration gradients for the input gas in the
acinus and the lower the alveolar gas concentration level in
agreement with the results already presented in fiqgure 14
(chapter 3). It should again be noted that apart from these
main observations, the 'secondary features' outlined in the
last section reapply in the case of the present simulations

(i.e. points (1) to (v) ).

On modifying the existing 'regional' model analysis slightly

to allow for the simulation of the tracer gases Argon and
Nitrous Oxide, the results presented in figures 47 (a to f)

and 48(a to f) were obtained. As anticipated, greater end
expiratory input gas concentration gradients exist in the acinus

for Nitrous Oxide (this is more readily apparent from figures
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47 (a to f)). Similarly, the single-breath input gas washout
tests for these two tracer gases given in figures 48 (a to f)
demonstrate a significantly greater phase III slope for

Nitrous Oxide again reflecting conditions within the lung and

concurring with the results given in section 3.4 (last chapter).

4.9 Breath-Holding Studies

It has already been mentioned in section 3.7 that chronic
bronchitics and emphysematics find difficulty in performing
even the simplest routine respiratory maneouvres. By means

of the existing 'regional' lung model analysis, it is possible
to predict how a finite breath-holding time will interfere
with the combined effects of regional and stratified
inhomogeneities upon both the rate of approach towards gaseous
equilibrium within the acinus and the phase III slope of the

resulting single-breath nitrogen washout curves.

In order to allow for a finite breath-holding time the

following modifications to the model equations were necessary.

INSPIRATION
F_ (0, ) = 1.0 ty £ £ = £ (117)
o ’ . r Y, =S = )
F,_ = F £ & k2 = (118)
IA™ oA E0E Ll
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BREATH-HOLDING

iA oA

EXPIRATION

0ol -3

N

(119)

(120)

(121)

(122)

(123)
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(Q1F1, + Qa2Fs,)

F o, = : : . T it g 2 (124)
(Q1 + Q2)
oF Q. F,
1 4 = 0
PN et 5 T , T. <t T (125)
ay 4 D §; (Li) B
. a5 i = 1,2
b =Dy

On carrying out the above modifications and resolving the
governing pulmonary gas transport equation (105), the results
given in figures 49 (a to f) through to 54 (a to f) (for a
value of D = 0.25 cm?/sec equivalent to 0,/N,) were obtained.
The values assumed by the physical model parameters for these
latter simulations are detailed in table 16 along with a
quantitative assessment of the actual predicted concentration

gradients.

One may summarise all the results presented in figures 49 to

54 by noting the following three important features:-

(a) For all cases considered, the end expiratory input gas
concentration gradients decrease as the duration of

breath-holding Znecreases
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(b) For all the cases considered in (a) above, the
corresponding phase III slopes of the single-breath
nitrogen washout curves similarly decrease as the

time of breath-holding <increases

(c) As breath-holding time inereases the concentration
transition (phase II) appears earlier in the expirate
reflecting a significant reduction in dead space

volume

All of the above three features are more marked in the present
cases (i.e. when large regional inequalities in flow and
volume are present), than in the series model simulations
presented in the last chapter (section 3.7). It should

also be borne in mind that the features noted in (a), (b)

and (c) above are common to all tracer gases considered

(i.e. SF¢, Ne and He).

4.10 Cardiogenic Gas Mixing Effects

Engel et al (1973) have demonstrated marked differences in

gas mixing behaviour between in vitro and post mortem studies
on canine lungs. In fact, they have suggested that the effects
of heartbeat may be such as to enhance the approach towards
gaseous equilibrium, amounting to as much as a four-fold
increase in the value of the molecular diffusion coefficient

in certain regional lung areas. This type of empirical
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finding is well suited to simulation within the framework
of the existing 'regional' lung model analysis, the revised

governing equation now being:-

F 32%F, :
Tfi = D ——H% + 1 Si 3Fl Q. 23F,
2 i 9y, S, — Ve = i i
1 . yi ayi g— "a"y“— (126)
i i
3 =1, 2

where all model parameters are as described previously and
Di (i = 1,2) are the regional variations in the molecular

diffusion coefficient due to the action of the heart.

The form of the revised boundary conditions at the alveolar

walls Yy *= Li (i = 1,2) become:-

= g R 3P (127)

The solutions to eugation (105) for various values of Di’

Qi and Si (i = 1,2) are given in fiqures 55 (a to f) and
56 (a to f) and the detailed concentration values are also
given in table 17, Clearly, the major factors to emerge

from this latter group of model simulations may be detailed

in the following manner:-



(1)

(ii)

(iii)
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the 'overall' concentration stratification in the
acinus is significantly reduced when the effects

of cardiogenic gas mixing are involved.

In line with (i) the phase III slopes have also
been reduced indicating that there is some sort

of direct relationship between the end expiratory
input gas concentrations and the subsequent expired

concentration curves at the mouth.

The concentration transition (phase II) appears
slightly later for the case of the present
simulations in contrast to the larger dead space
volume variations observed for breath-holding

studies.
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4.1L DISCUSSION

The major contribution of the present chapter has been to
present an exhaustive study of the combined effects of regional
and stratified inhomogeneities within the context of a
"multiple pathway" pulmonary gas transport ﬁodel. That this
"multiple pathway" model was a natural and necessary extension
of the single series compartmental model analyses becomes

self evident on perusing through any of the current review
papers in the literature (Puper and Scheid, 1971; Cumming,

1974 and Pedley, 1977).

In essence, the most important finding of this chapter has
been to show how, under a wide range of simulatory conditions,
regional inequalities in ventilation and volume can increase
significantly both the end expiratory acinar concentration
gradients and the resulting phase III slopes of a tracer gas.
Further, on examining the results in more detail, it has also
been possible to differentiate between the effects of, on the
one hand geometric (diffusion pathway length) variations, and
©n the other hand, regional inequalities in volumetric gas
flow-rate, upon the efficiency of gas transport and mixing
within the acinus. This distinet difference between 'geometric'
and 'ventilatory' inequalities is most important to a full
understanding of how gas mixes within the more distal regions
of diseased lungs. The initial hypotheses put forward by

Horsfield and Cumming (1967, 1968) and Cumming (1974) concerning



the influence of assymmetrical bronchial tree characteristics
upon the gas mixing process have been put on a quantitative
basis in this chapter and subsequently shown to have a

substantial 'effect'.

Finally, whilst the experimental evidence purporting to
support the existence of sequential or asynehronous lung
emptying is well documented in the literature (Fowler,

1949; Roos et al, 1955; Sandquist et al, 1959; Shephard,

1956; Young et al, 1963, 1966; Read, 1966; Sikand et al,

1966; Milic Emili et al, 1966; Dollfuss et al, 1967;Engel et al, 1979,
Mills and Harris, 1965; Bashoff et al, 1967; Hughes et al,
1968; Sutherland et al, 1968; Robertson et al, 1969

and Tsunodo et al, 1972), the present chapter has demonstrated
that, nevertheless, significant phase III slopes can be
produced without recourse to such temporal lung emptying

patterns.
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CHAPTER 5

A BRANCHED "PIPE" MODEL

Traditionally, models used to simulate gas transport within
the lung have been based on a single one-dimensional form
which represents the bronchial tree such as those presented
in chapters 3 and 4 of this thesis. Now, although these
"trumpet" type models can lead to a reasonably accurate
description of molecular gas movements within a regular
monotonically increasing branching airway system, they are
nevertheless, deficient in that they are unable to account
for sudden abrupt changes in terminal airways structure as
indicated, for example, in the experimental findings of
Hansen and Ampaya (1975). This deficiency is due mainly to
the fact that the previous "trumpet" models were not
considering a particular airway but rather a combination of
all such airways leading in some cases to an unrealistic

physical situation (see figure 57).

The obvious way to overcome this problem is to consider a
particular pathway through the bronchial airways resembling
as close as possible the actual geometric configuration.
This is not an easy task as the tortuosity of the airways
causes complex flow formations within each particular

pathway (Schroter and Sudlow, 1969). It has therefore been
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necessary to ignore the tortuosity of the actual airway
system and consider instead a direct pathway from the mouth

to the distal air sacs (figure 58).

It is the intention of the present chapter to develop such

a branched "pipe" (or pathway) model in order to obtain
greater insight into the rate of approach towards gaseous
equilibrium within the more distal regions of both normal
and diseased lungs. In particular, this detailed pathway
model will prove extremely useful in testing the predictions
and verifying the conclusions of the contemporary "trumpet"

type lung models developed in the previous two chapters.

Sl Model Configuration

The basic form of the single pathway model (or "pipe" model)
consists of a succession of right cylindrical airway pipes
arranged in order of decreasing size, the dimensions of which
are derived from a modified version of Weibel's Model A
(Weibel, 1963) and are given in table 18. The general form
of the model configuration employed in the present chapter

is detailed in figure 59 and represents a detailed dual
branched pathway from the carina to the distal air sacs.
Clearly, this model may be extended to include any number of
such branched pathways through the respiratory region

vide infra.



5.2 The Governing Equations

On applying Fick's law and the conservation of mass to any of
the cylindrical pipes shown in figure 60 we obtain the
following set of partial differential equations describing the

transport of gaseous molecules into and out of the model:-

F 3%F, F,
--é-E-' = Dl ay.z e Vl ay r i= O, 23 (128)
i i
where Fi = Fi {yi, t) is the fractional concentration of input

gas at distance Y from the portal end of the relevant tube i
and at time t after the start of the respiratory maneouvre;

Vi is the convective velocity of gas molecules down tube i and
remains constant throughout the length of each tube and Di is
the effective diffusion coefficient with respect to tube i and
assumes the value of the binary molecular diffusion coefficient

in the respiratory region (i > 17).
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33 Boundary Conditions

Inspiratory Cycle

The inspiratory boundary conditions associated with each tube

may be stated as follows:-

Fol0, 8) = 1.0 farty & t § = (129)
F, (0, £) = By 5 (L, 40 £)0 @O < ig 23 (130)
for £ty £ £ < -g
where Li is the length of tube i
F. (yi, 0) = 0, for 6 £ 3 23 (131)
and
B, (=, £t} = 0, for 0 £ % &£ 22 (132)

N3

The revised boundary conditions (discussed in chapters 2 and

3) hold at the alveolar wall of the most distal pipe i.e.
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9F2 3 Vas
- F
§Y23 D23 (133)
y23=L23s y23=L23

for B3 & E

/A

|3

Taking the Laplace Transform of both sides of equation (128)

yields

o B, ek & WP, W O (134)

for B <X 1.2 22
and where, of course,

F, = J‘ e N F, (yi, £) &t (135)
o

The general solution of equation (134) may be written in the

form,
V., + ]v.2 + 4pD,
i ‘ i i "
Fl = Al exp 2Di i 2
= 2
Vi J Vi + 4pDi
+ By exp - Y (136)
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Employing the boundary conditions given in equations (129)

to (133) above, we find that

A, = 0, 0 & &g % (137)
and
B, = % T R 1 Fl‘lp(o' " v 2 &R xS (138)
s A
= % ot e = J:Qf 4D D, 3 (139)
2D
and,
P D,
" S
33 E 22
Hence, "
- D[..l L exp VO_J'Zoz :"4;50 " (141)
D
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and
- " 2
P, (y;.t) 2,,[ R T v, V;? + 4pD,
i ———— exp 42
p 2D, Vg . N3
i 8
for 1 £ 1 £ 22
On performing the inverse Laplace Transforms detailed in
equations (141) and (142) above (see appendix V), we obtain
the following:
v = V_t
_ X o o Y. ¥V
FO (yo.t) = 3 erfc : + ake 0 o
(4D_t) ? D
o o
5 Y +. N .t
erfc 0 1o (143)
(4D _t) *
O

and in a similar fashion we have

F, (yi,t) = %

Yo, = W, .t | 3
" F,_y (0,t) | erfc i i 1 exp{yivi (

(144)
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The input gas concentrations down the last tube of the model
pathway are calculated using a previously derived explicit
finite difference solution technique (Scrimshire et al, 1978)

and the relevant boundary conditions.

Expiratory Cycle

Due to the nature of the boundary conditions holding during
expiration (in the present model configuration) it was not
possible to obtain an exact analytical solution to the
governing pulmonary gas transport equations. Thus, it was
again necessary to resort to a previously derived numerical
solution technique (Scrimshire et al, 1978). The application
of this technique within the context of the present branched

"pipe" model configuration is outlined in appendix VI.

The boundary conditions applying during expiration may be

stated in the form:-

BFO T
_3..}_,.._ = 0 for 3 & EB&E T (145)
()
Yomo
Fi [@; £}y = Fl 1 (Li_l s Bl 1 1 & 22 (146)
for

p| =3
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and once again the revised boundary conditions hold at the

distal alveolar wall of the last pipe, i.e.

oF
g3 1 o B .
By r 213
£ D23 (147)
Y23=La2j Y23=Las
for g € £ & B
5.4 Comparison of the "trumpet" and "pipe"

Model predictions

It is of interest to compare the predictions of the contemporary
"trumpet" (single series compartmental) type lung models
developed in chapter 3 with those of the present single "pipe"
(single pathway) models in order to test the accuracy of the
"combined airways" approximation. Figure 61 clearly
demonstrates that the input gas penetrates further into the
model when the present "pipe" configuration is employed.
Further, there are greater end inspiratory and end expiratory
concentration gradients within the pipe model. However, the
most important feature to note on closely scrutinising the
curves given in figure 61 is the fact that the "combined
airways" approximation affords a realistic simulation of

pulmonary gas transport (see also appendix VII).
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The resulting single-breath nitrogen washout curves
corresponding to both the "trumpet" and the "pipe" models
are compared in figure 62 and indicate slightly increased
phase III values for the existing "pipe" model configuration
accounting for the corresponding small différences in

stratified inhomogeneity already observed (see table 19).

5.5 Comparison of the regional "trumpet" and regional

"pathway" model predictions

The real impetus behind the present "branched pathway" model
development was not just to simulate behaviour in the normal
state but to estimate the influence of small airways disease
upon the rate of approach to gaseous equilibrium in the acinus.
Thus, the original model configuration was extended to include
a dual pathway through the respiratory region beginning at
generation 17 (nodal point A in figure 59) and ending at the
terminal air sacs (gen. 23). The choice of a dual pathway

was taken solely for ease of illustration, but the model can
be extended to include any number of such regional pathways,

vide infra.

Solutions to equation (128) in the model configuration of
figure 59 are presented in figures 62 (a to f) and for the
specific 0, (i = 1,2) and V. (i = 1,2) values detailed in

table 2C. It is clear from these curves that greater end
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expiratory acinar input gas concentration gradients are
associated with more marked regional flow differences.

For example, when él/éz = 125.0/125.0 and Vi /N3 =
3.0/3.0 the end expiratory input gas concentration gradient
is 0.44%, whereas, when 0,/Q; = 125.0/125.0 and V,/V; =

1,0/4.0 this gradient increases to 0.99%.

It should also be noted that in the region adjacent to the
branch point significant 'local' stratification is present
and this will also contribute to the subsequent expired
concentration curve at the mouth. The sensitivity of the
single-breath nitrogen washout curve to such éi/vi {3 = 3.2
variations is clearly demonstrated in figures 63 (a to f).
Essentially two observations are noted on closely

scrutinising these curves, i.e.

(i) steeper phase III slopes are associated with more
marked regional flow differences reflecting the
already observed steeper stratified concentration
gradients (see table 2¢Q). For exémple, when
Or/flz = 135.0/135.0 and Ws/Vi = 3/3 the phese
ITTI slope was only 2.51% (on extrapolating to
500 mls expired), whereas, when 0,/0, = 125.0/125.0
and V,/V, = 1.0/4.0 the correspondinag phase III

slope was 6.72% (see table 20).
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(ii) the phase III (concentration transition) appears
slightly later (reflecting a small increase in
dead space volume) for more marked regional

flow differences.

Please note that the above observations ( (i) and (ii))

were also noted in the last chapter (figures 33 to 40).

Although the model given in figure 59 is certainly an
improvement over that of the 'single pathway' analyses it
still fails to take into account the known assymetrical
bronchial pathway length characteristics. However, these
characteristics are readily amenable to simulation within

the framework of the existing branched model (similar in

many respects to the variable diffusion pathway length

model of the last chapter). On re-solving equation (128)

when taking these assymetrical characteristics into account
the results given in figures 64 (a to f) were obtained.
Closely scrutinising these curves and comparing them with
those previously given in figures 62 (a to f), it can be seen
that, in all cases considered, there are greater end expiratory
input gas concentration differences when the diffusion

pathway length varies simultaneous with more marked regional
flow differences. For example, on singling out those cases
cited earlier, it is found that when él/é? = 1285.0/125.0

and V,/V; = 1.5/4.0 the end expiratory concentration gradient

is 0.7% whilst with Q,/Q, = 200.0/50.0 and V,/V, = 1.5/3.5
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the corresponding value is 1.48% which amounts to as much as
a 50% increase in gradient. Once again the degree of the
concentration gradient adjacent to the nodal point A has

also increased.

Comparing the single-breath nitrogen washout curves given
in figures 63 (a to f) and 65 (a to f) (correspondino to
'constant' and 'variable' branched pathways respectively)

the following major differences will be noted:-

(a) the phase III slopes given in figures 65 (a to f) are,
in all instances, substantially areater than those given
in figures 63 (a to f) (see table 27") reflecting the
already observed greater differences in concentration

gradient

(b) in all cases the appearance of the concentration
transition (phase II) is slightly delayed in the latter

curves (figures 65 (a to £) ).

The above two observations were also noted in chapter 4 and
quantify the predictions of Horsfield and Cumming (1967, 1968)
and Cumming (1974) that the assymetry of the human bronchial

tree may well influence the gas mixing behaviour in the acinus.



5.6 DISCUSSION

The present 'branched pathway' analysis of gas transport
through the bronchial airways departs from the traditional
modelling approach in that a detailed pathway from the
carina to the distal air sacs has been considered. The
results obtained when using such a model and when employing
a somewhat modified form of the revised boundary conditions
(as presented in chapters 3 and 4) agree very closely with
the predictions of contemporary "trumpet" model analyses.
Further, the corresponding very close alignment of results
as obtained from the regional "trumpet" and regional
"pathway" (or 'pipe') model analyses stronagly supports the
accuracy of the underlying physical model approximation
common to all contemporary derivations namely, that of the

'combined airways' approximation.

All the results thus far presented (i.e. those of chapters
3, 4 and 5) have been for a constant value of the molecular
diffusion coefficient (D = 0.25 cm?/sec for 0,/N,; D =

0.76 cm?/sec for He/N,; D = 0.315 cm?/sec for Ne/N;;

D = 0.1 cm?/sec for SF¢/N, and D = 0.192 cm?/sec for Ar/N,).
Whilst this latter approximation is acceptable for the more
distal airway units (where the convective flow of gas is so
low as to exclude any dispersion effects) the same cannot be
said for the larger airways where complex flow formations

are known to occur (Schroter and Sudlow, 1969).



= Lo =

It has been generally accepted that longitudinal gas
dispersion can be characterised by molecular diffusion in
the alveolar ducts and sacs. Longitudinal dispersion in the
upper airways (first few generations) is about three orders
of magnitude greater. However, the relevant role of
difference physical dispersive factors is not well known
and, until recently, the Taylor-Aris equation (Taylor, 1953;
Aris, 1956) for axial dispersion of a gas in fully developed
laminar flow (mean velocity v) in a circular pipe (radius

d, length L) was used, i.e.

Bats * Upoa * 48D (1483
More recently, Scherer et al (1975) have obtained empirical
equations for axial dispersion of a gas flowing through a
five generation glass model of the upper bronchial airways.

These authors found that the effective diffusion coefficient
(Deff) was given by,

Deff = Dmol 4+ 1.08 v 4 (149)
for inspiration, and

D = D + 0,37 & ¥ (150)

eff mol

for expiration. Dmol is the molecular diffusion coefficient,
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v the mean axial velocity of gas molecules and d the airway

diameter of the relevant generation,

Solutions of equation (128) have been analysed when the

effective diffusion coefficient assumed the following form:-

d 2V 2
D = D + i_.i_.
i mol 280 s By 2 € & 7 (151)
mol
and
D = + 1.08 d.w & A fL i I {152)
i mol % : dal TR <2
D, = D + 0.37 a.v E C & 2 B (153)
i mol : 2V P2 =&

and where di is the diameter of generation i.

The calculations indicated that the net effect of azial
dispersion is small, and that molecular diffusion remains
the decisive factor in limiting gas transport through the
lung. Closer inspection of the 'single pathway' model
calculations clarifies why this happens. Differences in the
concentration profiles produced by axial dispersion are only

apparent (see figures 66 and 67) during early inspiration
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(t < 0.8 secs in a 4.0 secs breath) and early expiration

(t = 2.0 to t = 2.4 secs). During early inspiration the
concentration profile traverses those airways where axial
dispersion is high (2 < 12). Here the axial diffusion can

be very large at peak flows (e.g. 200 times the molecular
diffusivity) but at such times the fast flow quickly convects
away the concentration differential through which the

diffusion becomes effective.

In particular, the Taylor diffusivity (proportional to

the flow velocity squared) becomes negligible relative to
the molecular diffusion beyond the thh generation owing to
the lower flow velocity in the smaller airways (see Pack

et al, 1977). Once the concentration differehtial passes
the 12th generation only the molecular diffusion is
effective. These latter results confirm the experimental
findings of Horsfield et al (1977) and Worth et al (1977)
who concluded that axial dispersion has little or no effect
upon the rate of gaseous mixing of the normal respiratory

gases in vivo.
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CHAPTER 6

DISCUSSION

Having developed suitable revised models of pulmonary gas
transport and mixing and subsequently compared their
predictions with contemporary model findings it is now
necessary to re-examine the revised boundary conditions in

the light of these comparisons. The present chapter therefore
addresses itself to a reassessment of all the results so far

presented in chapters 3, 4 and 5.

6.1 Reassessment of the Revised Boundary Conditions

The major criticism levelled at the contemporary "trumpet"
model analyses, as discussed in chapter 2, was concerned with
the boundary conditions imposed at the distal ends of such
models. In fact, two independent explanations why the
conventionally assumed boundary conditions caused a rapid
equilibration of input gas concentrations during early

expiration were put forward, namely

(1) In order to ensure that the total flux was zero at
the alveolar wall, it was necessary to specify the
boundary condition 2F

dy
y=L

0.0 in both rigzd and

compliant "trumpet" models. However, since some
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95 per cent of the lung volume is contained within the
terminal generations of the bronchial tree (a linear
distance of only 0.2 cms) it was hardly suprising

that the contemporary models failed to display any
stratified inhomogeneities in the acinar region

because of this explicit assumption. Further, it was
clearly inappropriate to specify the boundary condition
in terms of a fixed concentration gradient at the
alveolar wall, since it was the change in concentration
gradient immediately adjacent to this alveolar wall that
was the main purpose of the contemporary model
simulations.

($£i1) The imposition of the zero gradient oL = 0.0

=3
<

y=L

boundary condition at the distal end of rigid models
(Baker et al, 1974; Paiva, 1973 and Pedley, 1970)
did not specify a true no fluz condition for the
transport of insoluble tracer gases. The artefact
caused by the violation of this required no-flux
condition at the alveolar wall (i.e. the "sink" and
"source" effects) was then held responsible for the

unrealistically rapid approach to gaseous equilibrium.

Ideally, it would be most advantageous to know which of the
above two physical phenomena has the more dominant influence

upon the phase III slope of the single-breath nitrogen
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washout curve. Having stated the objective in this manner

it is now necessary to examine in some detail

above possibilities.

each of the

6.2 Results for non "trumpet"/"thumbtack" models

It is interesting to speculate how physical model geometries

other than those of the usual "trumpet" or "thumbtack" shape

will influence the rate of approach towards gaseous

equilibrium within the acinus. Clearly, these results will

indicate whether the second explanation given above is specific

to the case of the "trumpet" shape or applies

boundaries.

The actual model geometries considered may be

mathematically as follows:-

s (y) = B ¥ > b2 & §F £ D
subject to the conditions,
S (o) = So
and
L
J- S (y) dy = VL
(o]

to all geometrical

described

(154)

(15%)

(156)
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where, SO is the total cross-sectional area of the portal
end of the respective model and VL is the lung volume

(P.R.C.).

Thus, in more precise terms § (y) may be written in the

form,

(n + 1) (Vv - L SO) Yn

S (y)

n+1

The solutions of the pulmonary gas transport equation in
which S(y)follows the functional forms given in equation
(157) (for values of n = 1, 2, 3, 4, 5 and 6) and for both
the conventional and revised boundary conditions are given

in figures 68 and 69.

On comparing both the end inspiratory and end expiratory
concentration/distance profiles corresponding to each of the
conventional and revised model predictions it becomes apparent
that although the artefact caused by the violation of the

"no flux" condition does have an "effect" on the shape of
these profiles, it is not as significant as when the "trumpet"

model configuration is employed.

The variable determining how influential the violation of the
"no flux" condition can be in determining the rate of approach
towards gaseous equilibrium within the acinus is not § (v)

but d4ds _ . .
day - S° £y) . L.e.

+ S (157)
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e n{n+ 1)V -~ ES) o=l T
Ln+1
Now,
n (a4 1) dV. = L8}
gipr) w = 2 (159)

(V = LSO)
and since

1,2 is a constant common to all model
simulations we know that as n increases S'(L) increases and

hence the violation of the "no flux" condition has a more

pronounced effect.

6.3 Effects of considering negative 'G' values

What is now really required is a means of separating, in the.
present analysis, the dynamie influence of gas flux from the
more statie influence of the geometrical boundaries of the
model. This may best be achieved by allowing for both
positive and negative values of 'G' in the model simulations
and observing the change, if any, in the resulting end
expiratory concentration gradients, and the subsequent phase
III slopes of the corresponding single-breath nitrogen

washout curves.
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The end inspiratory and end expiratory concentration/distance
profiles for a tracer gas having a molecular diffusion
coefficient of D = 0.25 cm?/sec (equal to 0,/N,) and for

six values of G (i.e. G = -10.0, -25.0, -50.0, +10.0,

+25.0, +50.0) are given in figure 70. Now, on
closely scrutinising these figures it will be noticed that,
even for the most negative value of G, significant
concentration differences (stratified inhomogeneities) exist
in the acinus at end expiration (see table 21). Hence,
although the "no flux" condition has been violated there

are, nevertheless, significant stratified inhomogeneities

in the distal regions due to the fact that the concentration
gradient at the alveolar wall has not been fixed (see
equation (98) ) but has been allowed to vary in such a manner

as to account for the wvariations in 'G'.

These latter findings are more readily discernable by
reference to the corresponding single-breath nitrogen washout
curves shown in figure 71. The phase III slopes of
all curves in these figures remain significant for all the
values of G considered (see table 21). It should be noted

at this stage that the above observations were common to

all tracer gas simulations (i.e. SFg, He, Ne, etc.)

Combining the results given in the last section with the
present findings it should now be obvious that the true

explanation for the failure of the contemporary model
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analyses in predicting a significant phase III slope was due
to the fact that the concentration gradient at the alveolar

wall was being fixed (i.e. explanation (i) ).

6.4 Bronchial Cross-Section from Lung Gas Washout -

The Inverse Problem

A further means of discriminating between the above two
explanations (i.e. (i) and (ii) ) is to approach the problem
from an alternative and perhaps more attractive way. By
utilising certain known characteristics of the airway mixing
Process it is possible to obtain an equation relating total
bronchial tree cross-sectional area to the washout nitrogen
concentration, and then subsequently infer from this
relation the type of boundary condition likely to hold at

the distal ends of the "trumpet" models.

Numerical solution of the pulmonary gas transport equation
(equation (7) ) has revealed two important characteristics

of the gas mixing process in the airways.

The first is the presence of an almost stationary state

X7 O ) for the concentration profile near the end

-

of a steady flow inspiration of 0, for breathing frequencies

less than about 40 min -1, (Scherer et al, 1972; Paiva, 1973;



=k l6 =

Pack et al, 1977; Paiva et al, 1976 and Scrimshire et al, 1978) .
This stationary state has also been demonstrated experimentally
during the inspiration of oxygen by direct sampling of gas from

bronchioles (Engel et al, 1973).

The second characteristic of gas mixing detected by numerical
simulation is the relatively small amount of mixing during
expiration compared to that during inspiration. This is
demonstrated in figure 72, which shows the concentration of
nitrogen which would be expired at the mouth following
inspiration of a single breath of oxygen as calculated by
numerical solution of equation (7). Comparison of the curves
obtained by including or neglecting mixing during expiration
indicates that the effect of mixing during expiration is

small, leading to a shift of the curve to the left by less

than 5% of the inspired tidal volume. The computations shown
in figure 72 were done assuming D equal to the molecular
diffusivity, since previous work (Pack et al, 1977; Chang,

1976 and Scrimshire et al, 1978) has shown that the effect of
Convective dispersion on the shape of the N, washout curve is
small. It appears, therefore, that nitrogen can be considered
to be convected out of the lung during expiration in.the single-
breath nitrogen washout test without significant additional
mixing with the inspired oxygen. This fact suggests that, to

a good approximation, the nitrogen concentration profile washed

out during expiration, if expressed as a function of expired,
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volume, represents the stationary nitrogen concentration
profile in the airways at the end of inspiration as a function

of cumulative airway volume.

It is now possible to utilise these characteristics of the
airway mixing process to obtain an equation relating total
bronchial tree cross-section to the washout nitrogen

concentration profile.

Consider a single breath of oxygen inhaled into a lung
initially containing a constant N, concentration. Assuming
that a stationary state exists at the end of inspiration and
that the resulting nitrogen concentration gradient is convected
out of the lung during expiration without further mixing, the
nitrogen profile to be convected out is given as a solution of
the equation,

oF

d

<

|

|
W~

where v is the gas velocity at the end of inspiration.
Introducing the transformation from linear distance y to

cummulative airway volume V (y) (Butler, 1974):-

y
V(y) = J s (§) a3 (161)
o]
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Equation . (160) becomes,

U IR . dF
MR R LAY A6
Where V (t) = Sv 1is the volume flow rate at any instant over

the total airway cross-section. Assuming V to be constant
during inspiration and integrating equation (162) once gives,
dF

VF - D 82 gy =~ constant (163)

Equation (163) represents the total N, flux (cm?/sec) at any
Point in the airway model during the stationary state. This
flux must be equal to zero, since at the mouth, where pure 0,

is being inspired FN2 = 0 and dFNz/dV = 0. Equation

(163) with the constant egqual to zero states that the

stationary state present in the airways at the end of inspiration
represents a balance between N; being convected down the
bronchial tree towards the distal alveoli and N; tending to
diffuse up the broncial tree towards the mouth due to the
concentration gradient (Scherer and Pack, 1977). Setting the
constant in equation (163) equal to zero and rearranging gives

an equation for determining total airway cross-section S (V).

g = (‘—é) (E-F-/f;—v) (164)
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Since there is no effective mixing during expiration, F (V)
and dF/dV can be obtained directly from the N; washout curve

measured at the mouth during expiration.

Equation (164) has been derived using the transformation given
by equation (161), where V represents the cumulative airway
volume into the lung. In applying equation (164) to the
expired nitrogen concentration profile, the tacit assumption
is made that the first 1.5 litres of gas expired in the single
breath N, washout test represents gas which, at the end of
inspiration, was contained in the airways and not in the

alveoli (Scherer and Pack, 1977).

Figure 73 shows total bronchial cross-sectional areas which
were computed from the expired nitrogen washout curves of

three normal subjects compared with anatomical data obtained
from detailed measurement post-mortem on several human lungs
(see again Scherer and Pack, 1977). Agreement in shape and
order of magnitude between computed and anatomical curves is

reasonably good above 400 mls expired.

In calculating the total bronchial area from the nitrogen
washout data, equation (164) was used, cardiogenic oscillations
Were neglected, and D was set equal to the molecular
diffusivity (Dmol) of nitrogen in oxygen. The single breath
tests were carried out with a relatively constant inspired

flow-rate (V in equation (164) ). %o achieve this, the actual
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inspired flow-rate, as measured by a pneumotachograph, was
demonstrated to the subject on an oscilloscope along with a
constant signal which was set at the desired flow-rate.
Subjects practised keeping their flow-rate constant before
definitive measurements were made. However, the expired
flow-rate was not controlled. The total volume of oxygen
inspired by the subject was measured and, from knowledge

of this and their measured residual volume, the lung volume
at end inspiration was calculated. This allowed the computed
areas to be corrected to the same lung volume at which the
anatomical measurements were made (4.8 L), assuming that total
bronchial cross-sectional area is proportional to total lung
volume to the 2/3 power (Hughes et al, 1972). For the curves
presented in figure 73, the correction was small, being less

than 8% in each case.

In using equation (164) to compute airway cross-section from
an experimental washout curve, the question arises as to what
functional form to use for D, the effective diffusivity.
Different forms of effective diffusivity have been used in
modelling mass transport in the airways to account for the
gas mixing related to the combined actions of convection and
axial and radial diffusion (Pack et al, 1977 and Scrimshire
et al, 1978). Scherer et al (1975) obtained an effective

diffusivity from measurements in a physical model of the

airways, i.e.

D = Dmol + 1,08 v d (165)
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whereas others (Pack et al, 1977; Chang, 1976 and Scrimshire
et al, 1978) have used the formulation of Taylor (1953) for

steady laminar flow:-

b = D + —m—— (166)

The effects of employing these different values of D in
equation (164) is shown in figure 74. In these cases, Vv

was set equal to Q/S and d was assigned the constant value

of 0.05 cms, which is typical of the diameter of airway
generations at and beyond generation 17 according to measured
anatomical data. The rationale for using this value for d

is that the stationary N, profile at end inspiration is located
in this region of the airway structure. The change in

computed area resulting from employing the above values of
effective diffusivity (equations (165) and (166) ) is seen to

be very small.

The fact that equation (164) gives a good estimate of S (V)
implies that the slope of the alveolar plateau is due
largely to diffusion gradients in the distal airways.rather
than to a distribution of transit times from well-mixed
compartments emptying in parallel. This can be demonstrated

more rigorously in the following way:-
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From equation (161) we have that

dFN2 dFN2

= S —_— (167)
dy dav

and since all of the experimental curves yield significant

drF dF
phase III slopes, then _ N, > 0 and similarly N2

av dy

> 0

indicating that diffusion gradients must be present in the
acinar region and must subsequently contribute to the expired

phase III slope.

Conversely, if we use the contemporary model predictions,
i.e. that dF/dV = O and substitute into equation (164) of
the present chapter we find that S = » violating the inherent
assumption, of all models, i.e. that of finite geometrical
boundaries. Thus, the fact that a sloping phase III has not
been observed in most of the contemporary model simulations
could well be due to the fact that the boundary conditions

oF

usually used, i.e. impermeability or Y = 0.0 at the

y=L

alveolar wall of the single path model, force the alveolar

plateau to be almost flat in the alveolar region.

The assumptions necessary for equation (164) to hold for the
single-breath N; washout test should be kept in mind. They
are: (a) that the multiple pathways can be adequately
described by the average single series "trumpet" pathway

model; (b) that a stationary state exists at the end of
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inspiration, representing a balance between the forward
convection of nitrogen down the bronchial tree and the backward
diffusion of nitrogen from the alveolar region up the

bronchial tree towards the mouth; (c) that the resulting
concentration profile is convected out of the lung during
expiration with very little further mixing; and (d) that

the first 1.5 litres of gas expired were contained in airways

at the end of inspiration rather than in the alveoli.

Assumption (a) has been used by several authors (Scherer

et al, 1972; Paiva, 1973; Baker et al, 1974; Pack et al, 1977
and Scrimshire et al, 1978) in deriving equation (160). It
represents a considerable simplification of the multipath
bronchial geometry, but has yielded much new and valuable

insight into the airway convection-diffusion process.

Assumption (b) has been confirmed experimentally (Engel et al,
1973) and numerically (Paiva, 1973 and Paiva et al, 1976)

for certain regions of the bronchial tree. Numerical studies
(Paiva, 1973 and Paiva et al, 1976) indicate, however, that if
the inspiratory flow is not perfectly steady, then a quasi-steady
State is not established for the nitrogen concentration profile
closest to the mouth. 1In this region, nitrogen continues to
diffuse back towards the mouth faster than convection can carry
it forward. This results in a decrease in dF/dV below the

value consistent with a stationary state. The resulting
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increase in S(V) as computed from equation (164) probably
explains the lack of agreement between the computed curves
and anatomical data for expired volumes of less than 0.4
litres (see figure 73). Additional numerical studies using
equation (164) will provide further information on this point
and will enable a correction to the computed area curve for

a volume of less than 0.4 litres to be developed.

Assumption (c) 1is suggested by the numerical computations
shown in figure 72 and by some physiological studies

(Bouhuys, 1974) which show that the shape of the single breath
N, washout curve is insensitive to the expiratory flow rate.
Gas dispersion measurements in a physical model of the upper
bronchial generations (Scherer et al, 1975) have also shown
less gas mixing (by a factor of 1/3) during expiration
compared to inspiration. Additional gas mixing on expiration
would tend to flatten the alveolar plateau, which would lead,
on using equation (164), to an overestimate of peripheral

airway total cross-section.

Assumption (d) is difficult to justify directly, since the
sequence of emptying of lung structures is not known. It

can be inferred, however, from knowm anatomical measuréments
that the cumulative airway volume, neglecting the alveoli,

is about 1.6 litres at 75% of total lung inflation?- The
agreement in order of magnitude shown in figure 71 between the

computed total bronchial area and that from anatomic measure-

ments suggests that assumption (d) is reasonably correct.

#  Wedsel
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Summarising the above information it may be said that the
relationship between total bronchial cross-sectional area
and cumulative airway volume given by equation (164)
represents the end result of combining recent evidence from
both numerical and experimental studies on gas mixing in the
lung. Instead of solving the governing pulmonary gas
transport equation (equation (7) ) by specifyinag S(y) and
boundary and initial conditions (as done in chapters 3, 4
and 5), one uses the "solution" of the egquation which is
provided by the measured expired nitrogen concentration
profile to calculate S(V) (i.e. the Znverse problem). This
method of determining bronchial area may be especially useful
in obtaining information about the smaller, more peripheral
airways where many pathological processes first appear

(Scherer and Pack, 1977).

6.5 Equivalent Asynchronous Emptying

The question now arises as to the uniqueness of the results
presented in chapters 4 and 5, i.e. could equivalent results

be produced without recourse to the revised boundary conditions.
This question is best answered by means of a simple .,

mathematical analysis.

Considering again the form of the parallel "trumpet" model

given in figure 32 only the following two situations are worthy

of some attention, namely
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(L) When the regional volumetric flow-rates down the
parallel compartments are constant (i.e. not time
varying) and the revised boundary conditions hold
at the distal alveolar walls, then the internal
boundary condition holding at nodal point A assumes

the form,

é1F1(t) + éze(t)
(Qy + Q3)

(168)

(2) When the conventionally assumed boundary conditions
are holding at the distal alveolar walls of the
parallel compartments, then in order to achieve an
equivalent concentration/time variation to that given
in equation (168) it is necessary to vary the
regional flow-rates such that the internal boundary

condition holding at nodal point A becomes

Q1 (£) Py 4 @alt) P
Qi L8} & @ (%) (A59)

In effect, equations (168) and (169) define an equivalence
relationship between the revised regional modé of chapter 4
and a hypothetical (but deterministic) complete mizx
asynchronous model. Such asynchronous emptying lung models
have already been examined by Young et al (1963); Young and

Martin (1966) and Tsunoda et al (1972).
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Extending the above development to the general case of n
parallel compartments it should now be obvious that the

following form of equivelance relation obtains at nodal

point A:-
n ] n .
5 Q, Fy (£} 1 9 (8) Fy
P b (170)
n . n .
D Qy ) Q; (t)
i=1 i

It would appear from the above considerations that the revised
boundary conditions initially given in chapter 2 not only
provide for a more realistic simulation of pulmonary gas
transport and mixing but also allow for a l<nk between series

and parallel model predictions.

6.6 Nitrogen Retention Test - "Stationary Interface"

The single-breath nitrogen retention curve is obtained by
plotting the expired nitrogen volume against the total expired
volume of gas at any particular time t during a single-breath

expiratory maneouvre.

If a single-breath of oxygen of defined size enters a lung of
known volume and is then perfectly mixed it is simple to predict

the volume of nitrogen which would be recovered in an expirate

of any given size, namely:-
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£ VL is the initial lung volume,

and VDS is the assumed anatomical dead space volume,

and VT is the tidal volume entering the lung,

then the concentration of nitrogen at the end of inspiration

in "alveolar air" will be, C:i, where

e ] (’J-i malbads | (171)

% L

Since the oxygen is perfectly mixed we know that the amount
of nitrogen expired will be constant (see figure 75) and

is given by,
B N N R Y = N (172)

where VE(t) is the total volume of gas expired after time t.
Note that we are assuming an 80%/20% NG/OP mixture in the
& 4

above derivation.

In the more general case of incomplete diffusive mixing

(such as the cases considered in chapters 3, 4 and 5) we have

the following situation:-

Let FN (t) represent the theoretical "trumpet" model expired
2

nitrogen concentration at time t and let Q(t) be the

corresponding rate of flow at the same instant in time. Then
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the expired nitrogen volume at this particular time t will

be given by

{ 3
VN2 = \l 0 (k) FNz{t) dt (173)

and, of course

€
v = J‘ Q (L) 4t (174)
o

By comparing the single-breath nitrogen retention curves
predicted on the basis of the perfectly mixed model (see
figure 76) and the imperfectly mixed "trumpet" model we can
determine the effectiveness of gas mixing in terms of a
percentage deficiency for both normal and diseased subjects.
This percentage deficiency in gas mixing after an expired

tidal volume of VT’ is defined as,

i ox vy ) - [ 2 r @

N,

{175)

-

and the normal value is about 20% which may rise to 75% in

advanced disease.
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After suitably modifying the "series" and "parallel" trumpet
model analyses to allow for the simulation of the single breath
nitrogen retention curve, the results given in figure 77 were
obtained. These results are for a simulated normal (see
chapter 3) and a simulated "average case of emphysema",

(see chapter 4) and are compared with the "ideal"
instantaneously mixed model predictions. On examining table
22, it will be found that the predicted percentage deficiencies
in these cases are 19.66% for the normal and 29.4% for the
"average case of emphysema" in very good agreement with the
expected values. These differences in the percentage
deficiencies may be explained in the following way:-

as the inspired gas traverses the bronchi it's linear velocity
falls progressively as the bronchial cross section increases.
Somewhere in the region of the respiratory bronchioles the
velocity due to mass flow becomes equal to the velocity due

to diffusion down a concentration gradient so that beyond

this point mass flow ceases and gas molecules are transported

solely by diffusion.

At this point there exists an Znterface between the gas being
inspired and that in the alveoli which remains in a fixed
position so long as the inspired flow rate is constant. This
has been designated the stationary interface position (Paiva,
1978). As new molecules of inspired gas arrive at the

stationary interface they enter it and diffuse through it,
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so changing the distal airways concentration but not
affecting the position of the interface in the airways, so
long as the inspired flow rate remains constant. It is
possible to determine the exact location of this stationary
interface point within the bronchial airways by making some

simple assumptions.

Considering once again the governing pulmonary gas transport

equation, i.e.

3F _ 32F 1 238 2JF _ Eg 3F
o Dl;yz * S oy 3y} S 2y (176)
we know that at the stationary interface point the gradient
of input gas concentration is a maximum:-
ag is maximum (X77)
y=9
where 'y = a' is the actual location of the stationary
interface point. It should now be obvious that what we
are actually searching for is in fact the point of igflexion
which leads to the additional constraint of
2
&°F = 9 (178)
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Substituting equations (177) and (178)
(176) yields,
F - R % . @
t y S Ay S
Y'—"a y:a

into equation

(179)

Finally, once the stationary interface point is reached there

is no appreciable concentration change with time implying

that to a first approximation

AF
3t

y=a

equation (179) becomes

Hence,
D 3s _gj 3F
S dy S Iy
y:a y=a
and therefore
L ]
s o e |
Y D

y=a

(180)

(181)

Equation (181) demonstrates clearly that the position of the

stationary interface point depends solely upon S, Q and D.
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It is intuitively obvious that the idea of a single

stationary interface point may be extended to the more general
case of a distribution of such stationary interface points
(such as would obtain within an n compartmental "trumpet"
model). The location of these points will depend mainly

upon the regional flow-rates bi (i = 1 to n) and of course

the diffusion pathway lengths li {1 = 1 to n). Thus,

equation (181) will now become,

B = Ei + 1 = 1 %0omn (182)
D

where, a, are the actual locations of the stationary interface

points within each of the parallel "trumpet" configurations.

Now, the differences in the percentage deficiencies noted in
table 22 may be related to corresponding differences in

gas mixing behaviour distal to the relevant stationary interface
Points. In fact, it has already been demonstrated in chapters

3 and 4 that the greatest concentration drop occurs @Qver that
region distal to the stationary interface point (equivalent to

nodal point A in the regional lung model).
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CHAPTER 7

CONCLUSION

The present mathematical examination of pulmonary gas transport

has considered the following:-

(I) A critical assessment of the contemporary physical
models
(I1T) A reappraisal of the boundary conditions assumed in

these contemporary physical models

fIETE) A detailed examination of the numerical solution
techniques employed by contemporary workers in
solving the governing pulmonary gas transport

equations

(IV) A corresponding detailed examination of the stability
and convergence criteria associated with the
numerical solution techniques dealt with in (III)

above .

(V) An extension of the variable gradient boundary
condition at the distal end of the "trumpet" model
to allow for a finite flux of gas across the alveolar

membrane, thereby simulating gas exchanae.



(VI)

(VII)

(VIEL)

(IX)
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An extension of the single series "trumpet" model

to include parallel compartments

The combined effects of regional and stratified
inhomogeneities upon pulmonary gas transport and

mixing in both normal and diseased lunas.

The development of an assymetrical "series-parallel"
"trumpet" model to allow for the simulation of

varying diffusion pathway lenagth characteristics

The development of the "pipe" (or branched pathway)
model to test the accuracy of the "trumpet" model

predictions.

Having now detailed the mathematical improvements made to

the contemporary gas transport model analyses, it is next

required to state any conclusions drawn, based on these

improved model predictions, i.e.

(1)

(2)

A true "no flux" condition <s specified by means of

the revised boundary conditions

The phase III slope (alveolar plateau slope) appears
to be due to failure of the input gas to reach
equilibrium during the expiratory cycle, and may be
related directly to the variable gradient boundary
conditions holding at the alveolar wall of the

trumpet model.



(3)

(4)

(5)

(6)

(7)

(8)

(9)
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Increased phase III slopes are associated with
heavier tracer gases and consequently increased

stratified inhomogeneities.

Gases of higher solubility display both a more
marked concentration stratification and an

increased phase III slope

Rigid and compliant model predictions for ZLow

tidal ventilations are virtually identical

Regional inequalities of ventilation cause an
increase in end expiratory stratified
inhomogeneities together with a corresponding

increased phase III slope

Simultaneous regional inequalities in ventilation
and gas flux further increase the end expiratory
concentration gradients and the subsequent phase

IIT slope

Regional differences in diffusion pathway length
can cause slight differences in the dead space

volume (i.e. the appearance of phase II)

Regional differences in diffusion pathway length
increase the end expiratory acinar input gas
concentration differences over and above those

observed in (6) above



(10)

(11)

(12)

o L3 -

The concentration gradients adjacent to nodal point
A (i.e. local stratifications) increase for similar
increases in either ventilation inequality or

diffusion pathway length variation

The single "branched pathway" model verifies the
accuracy of the single series "trumpet" model

predictions

The multiple "branched pathway" model verified
the accuracy of the multiple compartment

"trumpet" model predictions
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CHAPTER 8

FUTURE WORK

The most important area of future work must be the extension
of the proposed series and parallel models to allow for more
realistic estimates of the uptake of a soluble tracer gas
during a single-breath maneouvre (i.e. a more realistic
simulation of the effects of gas exchange across the
alveolar membrane). This type of development is of paramount
importance in the case of the regional model as it will
allow for a quantitative analysis of both the independent

and combined effects of ventilation (éi) and perfusion

{Gi) inequalities upon gas mixing efficiency within the

acinus region of both normal and diseased lungs.

Having carried out the extensions to the models discussed above
it should then be possible to simulate the important phenomena
of carbon dioxide retention, by forcing G, to assume negative

values.

Another area demanding immediate investigation is that of the
recovery of bronchial cross-sectional area distributions

from single-breath washout data. Clearly, there will be a
corresponding demand for more detailed experimental results

in this area. 1In particular, there is a growing need for
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some type of classification of each of the phase I, phase II
and phase III slopes of single-breath washout curves recovered

from patients with chronic lung disorders.

In the long term it now appears plausible that a combined
lung mechanics/gas transport model will be developed. Such
a model would provide greater insight into the influence of
regional differences in compliance upon gas mixing behaviour

within the more distal lung regions.
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APPENDIX I

Gerschgorin's Theorem

The modulus of the largest eigenvalue of the square matrix
A cannot exceed the largest sum of the moduli of the terms

along any row or column.

Proof

Let li be an eigenvalue of the N x N matrix A, and X5

the corresponding eigenvector with components V;, Vo..... Vn.

Then the equation

in detail, is

i S A e Y ¥ e g L N sl ¥
Bgoh V3 Y By 5 Wg * e ¥ el W om kg Yy
gy * e W R W e AW
Let VS be the largest in modulus of Vl' V2 ...... Vn.

Select the sth equation and divide by VS, giving



" Vy Vs _n
kl i as,l (V } s 2 (V } ¥ eanes W 4s,n (V )
s s s
Therefore,
Ikil < }as,ll ¥ \as,Ql e e as,n*

Since the eigenvalues of the transpose of A are the same as

those of A the theorem is also true for columns.

Brauer's Theorem

Let PS be the sum of the moduli of the terms along the

sth row excluding the diagonal element a Then every

s,s"”

eigenvalue of A lies inside or on the boundary of at least

one of the circles A = & = |

Proof

By the previous proof

" ¥y
b = Ay (vs) A



Hence,

Which completes the proof.
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APPENDIX II

Gauss's Elimination Method

When there are N - 1 internal mesh points along each time
row the Crank-Nicolson equations can be written very

generally as

b]Ul - C1U2 = d;
- axlU; + szz = @aslly = d2
Bl e T T L LR = a,

-1y ¥ Py Y = Gna

where the a's, b's, c¢'s and d's are known. The first equation
can be used to eliminate U, from the second equation, the new
second equation used to eliminate U, from the third equation
and so on, until finally, the new last but one equation can be
used to eliminate Ug-2 from the last equation, giving one

equation with only one unknown, The unknowns U

Uy N-2 *
UN-B ¢«sseeee. Uz, Uy can then be found in turn by back-
substitution. Noting that the coefficient ¢ in each new
€Quation is the same as in the corresponding old equation,

assume that the following stage of the eliminations has been

reached, -



where «; = b, ,

Eliminating U, _

where

and

N-1 "N-

1

leads to

i Yiaa

and S,
i

(a)



Elimination of U -p 9Yives

&N-1 °N-2 ¥ BN=1 -2
(b1 = b gy > Ay ¥ <
N=2 N-2
1+ Es
"1 Yge1 T Spoy (b)

Equations (a) and (b) show that the solution can be

calculated from

’ _ Sn-1
N-1 Ear

U B2y e B R e R Hed 1)
1 = i i Ui ' R

where the «'s and S's are given recursively by

5 o3 = - i
% 8T wiey By « Cisq
i-1
oy
Sy = d1, s; =4, + ;;:1 8, 1 KL% 2, 3 .0u Nel)

In many problems ) and ai/ *;.1 are independent of time
and need only be calculated once, irrespective of the number of

time steps.
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APPENDIX III

Analytical Treatment of Convergence

Let F represent the exact solution of the pulmonary gas
transport equation and F' the exacet solution of the difference
equations used to approximate this parabolic partial
differential equation. Then the finite-difference solution

is said to be convergent when F' tends to F as 8y and 6t

both tend to zero.

Now,

By o = B o = Pr. . (i)

and the pulmonary gas transport equation is:-

Bider = WK e By, 5 (- 22009,
LR T (ii)
Substituting from (i) into (ii) yields .
ei,j+1 = (D - ki)r ei—l,j + (1 - 2Dr)ei'j
TP BT a5 (Fi,5+41 = Fi,3)

- ¥ LD (Fi+1’j - 2Fi’j + Fi_l’j) = &, (Fi+1’j - Fi_l'j)] (144
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From (iii) we can see that the total error is due to two

sources, i.e.

(a) stability, and (b) convergence

Stability has already been dealt with in chapter 2 and
it is now only necessary to show that the remaining terms

in (iii) vanish as Ay - O and At - O.

Expanding Fi,j+l ' Fi+l,j and Fi—l,j by means of a

Taylor series and using the Mean Value theorem, we have

P
- . 1,7
Fi,j+l = Fi,j + k —;——— vy € & Wy o)
T
aFi . b2 a?Fi
* -~ + I e I ]
Fi+1,j [‘i’j T R S (y + wah, t)
Yy oy
AF, b2 BZFi .
Mg % By g e —=ed 4 3 —=1  (y - ush, t)
i rJ 3y Byz
where h = Ay, k = At, & = Hy % A,

g < Mns<]l and O < py <€ 1.

(iv)

(v)

(vi)
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The expression for convergence error is

S AT (vii)

Substituting from equations (iv) (v) and (vi) into equation

(vii) we obtain the following:-

aF.
Convergence error = Kk el tw, £ + uzk )
ot
& I
3% F., . OF, .
~ £ PR B ——std (y & g BB - K, B -l (viii)
9y~ ay i
with S S s 1 2

However,

r h* =%k ! (ix)
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hence,
BFi i
Convergence Error = k ol (y, £ + pik)
ot
BzFi . P,
-p —=t1 (y + ush, t) + K, —=d (y, t)
dy? = dy

Now, in the limit as Ay » O and At » O (i.e. h = O
and k + 0) the convergence error will tend to the partial
differential equation itself and will therefore tend to

Zero. In other words, mesh refinement gives convergence.

The actual estimation of the convergence error is more
difficult for particular h and k values, since estimates

for the higher derivatives are not known. Therefore the
usual process is that of mesh refining where the mesh size

is reduced until two successive mesh sizes give the same
results, but it was still necessary to show theoretically
that convergence will occur since Fox and Mayer (1968)

have indicated that there are pathological (mathematically
speaking) cases where the assumption that mesh refinding alone

will show convergence may be dangerous.

It was demonstrated in chapter 3 that the revised model
predictions were convergent by means of such a "mesh

refinement technique". .
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This appendix demonstrates how the matrix method of

stability can easily deal with our revised boundary conditions

(or for that matter any general derivative boundary conditions).

From chapter 2 we know that the total finite difference

approximation to the pulmonary gas transport equation may

be written in matrix form as:-

2,4+

¥y 541

N-1, 5+

N,j+1

As each compartment of the last column vector is a constant

(1 - 2Dr) (D + K,)x

(D - K3)r (1 - 2Dr) (D + K3)r

(D - KN_l)r

@)

—EDAN

0

e

(1 -

2Dr

Gx

2Dr)

D+ Ko

- 2Dr (1

) r

- A

N’

the matrix determining the propagation of the error is,
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-— | ——

A = (1 - 2Dy} (D + Ka2)r

(D - K3)r (1 - 2Dr) (D + K3)r

(Bl= Ko )z (1= 2Dr) (0. + Foua)r

2Dr 1l = 2br (1 = AN)

Application of Brauer's theorem (see appendix I) to this

matrix, with

a_e =11 -20r A - a)§ ana p_ = 20r,

shows that it's eigenvalues A lie on or with the circle

|2 - {1-20r @ -2} ¢ 20
and for stability we require thatl k| < 1 yielding
1
S S B
D (2 AN)

Since Ay << 1 we obtained a stable and convergent solution

for r = 1.0, Ay = 0.02 and hence At = 0.0004

Clearly, the above matrix method of stability is more
rigorous and powerful than other classical methods because

it takes full account of derivative boundary conditions.
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APPENDIX V

Consider the following inverse Laplace Transform:-

] i 7 e
i {v Jv +4m1y (1)

Fly,t) = i PR
2D

before we can perform this inverse we need two further

results, i.e.

= 2
L 1 exp (- y,fg = e exp ( - EXE ) (ii)

and,
t
j -1 Fdt = L %F (iii)
(0]

Thus, using the results given in (ii) and (iii) equation (i)

becomes
i

Fly,t) = —&— ‘g S
ZJJHD 4

3
=2
exp {- E%E (y -V S)zjds (iv)

We will now show how the R.H.S. of equation (iv) can be derived

from the following integrals:-
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Il = e a2 and I2
(y-VS)
(4DS)
Letting
z'? = et e X in I
D 2
then,
Zhaz = 2 hd e
L]
d - = .
g J 212 & Vy dz'
D

Thus, I, becomes

(54 ]
z! _Zuz
I, = J- — e

v

g2 ol XY

(y —vs) e
(4DS)

From equations (v) and (vi) we know that

(v)

o}S

e d 2 (vi)



Vy 2
£, % & Py = ¥y % R e Tt (vii)
N[;z - %¥
(y-Vs)
(4DS)
Now let
¥ (y = VU)
8 ‘Y_‘g— in (vii)
(4DU)
then,
dz=—% j—D (y-!-VU)U-gdU
and,
z % 2
1 + d/%z 7 %¥ (y + VU)
Hence,
3 t
= -3
iy “+ e Iz = §i¥5— S ‘exp
0
~4.1 o - yey2las (viii)
ips Y -
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Comparing equations (iv) and (viii) we have

1 vy
Biye &) = fo ) (Ebe & © o) (ix)

But
AT - Vt Jm + Vt
I, = = erfc bJL———g), I, = % erfc ( 1———1;4
2 (4Dt) 2 (4Dt)
Thus,
Fly,t) = = | erfec X—H—g—) + exp (—X} erfc (X2 Vt) i

(4Dt) (4Dt)

Values of the function erf and erfc are tabulated in Handbook
of Mathematical Functions (Dover, 1965) edited by

Abramowitz and Stegund.
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APPENDIX VI

Since exact analytical solutions to the governing "pipe"
model gas transport equations cannot be found for the
expiratory cycle, a suitable numerical solution technique
must be employed. Such a solution technique has been
detailed elsewhere (Scrimshire et al, 1978); however, we
shall now indicate how it can be applied in the present

Situation.

The general form of the governing gas transport equation

down tube i is:-

dF,; azri oF ;
—2' =i gl ol G AT
ot A9y Ay

Using the following central difference approximation of

derivatives,

R Lk 7 U ol ¥

o r
3t it
P - o Wiy 4 ¥i-1,3]

R r
oy 2 (Ay)

and
ot L s U ARt 1 B i
oy = 2
(Ay)

and substituting into equation (i) we have

(1)

(ii)

(iii)

(iv)



= g h=

n n n n n
ot Bl | RREIE g fh ey e By
n 2
(At) (dy,)
n n
(7 ENESR R e Do
de LN i+l .9 1-1,7 (v)
2(Ay,)
Simplifying equation (v) yeilds
n A n _ n
F 1,341 (Dn + Kn) r. F Sy + (1 ZDnrn) F i,3
n
il R T i (vi)
where,
. L N el (vii)
K = 3 n n

Equations (vi) and (vii) hold for O £ n < 23 and for i > 0O;

when i = O we have from boundary condition(l4~5)

(o] O
(F i )
2] el = o (viii)
2 (dy,)
: o e G :
i.e. F 2,3 =R 0,3 (ix)

From equation (vi) we know that,
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(D + K.)r P 4+ (1. - 2D x )F2
(@] (@] @] O O

1,j+1 1,3

0,] (x)

o L8 o b :
F eI F Y3 + 2Dor (F : F o {x1)
Similarly at the distal end of the last tube we have from

boundary condition ({47 that

(F2%+l,j - Fz%—l,j) il Va3 a2
2(Ayas) D23 m, j (xii)
i.e.
oY I ST f_;ii_: (Byas) - ¥°0., (xiii)
Putting i1 = m in equation (vi) yields,
s = (D23 + Kp3)rp3F?3 + (1 - 2Dp3r,3)F?%3

m,j+l m+l, m,j

- 23
+ (D33 Ka3)rs3F m-1, 3 (xiv)
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Substituting from equation (xiii) into equation (xiv) gives,

23 = 23
F 2ngr23F m-

m,j+1

2
1.4 * {1 - 2D33rz3 - Vas (Aya3) j
-0 —_

¥ (xv)
Stability and convergence of the above schemes are guaranteed
so long as, in each case, the following conditions are

satisfied (Hildebrand, 1968) :-

r < -— and s s
2D
n

(xvi)

Care must be exercised in choosing the ﬁyn such that the

conditions given in equations (xvi) are not violated.
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APPENDIX VII

Comparison of the derivations of the governing "trumpet"

and "pipe" model gas transport equations

Because of the geometrical complexity of the airways, most
authors have assumed a one-dimensional lung model based upon
the depth of the airways for the discussion of gas transport.
In this model, the airways are regarded as a variable
(trumpet shaped) cross-sectional channel along which the gas
moves in and out. The depth of the airways is then
equivalent to the distance measuring along the channel from
its entrance. It is also assumed in this model that the gas
velocity and concentration are uniform over all airways at a

given airway depth so that the mathematical equation which

describes the gas transport involves only the mean gas velocity

and the molecular diffusion coefficient of the gas.

For the purpose of derivation only we are assuming a lung
model based on Weibel's (1963) 'Model A', although the
mathematical theory may equally well be applied to any lung
model consisting of a symmetric and dichotomous branching

system of airways.
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Owing to the symmetrical nature of the lung model, we know
that the inspired gas molecules may traverse any one of
223 distinct pathways in order to reach the terminal air
sacs. Thus, by deriving an equation for the mass
conservation of the gas in a typical pathway we may easily
extend the result to the general case of obtaining an

equation of gas transport in all airways.

The following notation will be used throughout the theory:-

i represents a typical pathway (1 < i < 2?%3)

Fi(y,t) is the gas concentration in the ith pathway at
location y and time t

X " .th
Si(y,t) is the cross-sectional area of the i pathway

at location y and time t

Gi(y,t) is the mass flux of the gas due to the bulk gas
motion and molecular diffusion per unit cross-sectional area

of the ith pathway

h

Vi(y,t) is the gas velocity in the it pathway

D is the molecular diffusion coefficient
Ai(y,t) is the net loss rate due to chemical reactions and
transverse diffusion from the ith pathway to surrounding

pathways and airway surfaces per unit length.
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We may note immediately that

SFi
Gi(Y:t) = Vi(Y;t) Fi (Y!t) " D W

Conservation of mass

Let us consider an element of the i pathway with a
Ay. Then the increase in the mass (or concentration)
gas in the element during a time interval At must be

to the next mass flux into the element minus the loss

the same period. Mathematically, this corresponds to
following relation:-

Fi(y,t + At) Si(y,t + At)Ay - Fi(y,t)si(y,t)ﬂy

= Si(y,t)Gi(y,t)At - Si(y + Ay, t) Gi(y + Ay, t)At

i Ai (y,t)dy At

Dividing equation (ii) by Ay At and letting Ay =+ O,

At - O, we obtain in the limit,

9 = W i ¥
=, EyS3) = 3y (G38;) Ay

length
of the
equal

during

the

(1)

(ii)

(iii)



= 363 =

Substituting equation (i) into equation (iii) and simplifying

we have

S,

3 < il _1i =
== (F;5,) 5y (FiVyS5) = D 3o (S, ) A, (iv)

In the particular case of our "pipe" model derivation we also
have that
S;V, = constant (v)

and hence equation (iv) simplifies to

3F 32Fi oF
SE o o TTREe M Sy V)
However, in order to proceed to the corresponding "trumpet"
model equation the following identities are required, i.e.
m
S (y,t) = L S, (vii)
. i i
i=1
m
F (y,t) =-é- S (viii)
; : T
i=1
1 m
Viy:t) = 5 » Vi Sy (ix)
i=1
m
A (Yrt) e 3 A,
1 S b
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where m = 2?*? (when using Weibel's Model A)

Taking the summation of both sides of equation (iv) from

i=1tomyields,

m m
2 UE B (ST ¢ B R (ST E T BTV
ot oy Lt Yy i i i=1 oy i i
m . m !
3 f oy d oF 0 oF
+ I (S;F,V,) = D =— (S ) + D — ? L S i.j
. oy g -
S uil y g oy R) oy ix1 i Sy A
LI I I A (Xi)
Now,
F, = F 4+ ®,°
i :
thus
m m m
E — P L] .
Fl Si o F Si + L Fi Si (>xi1)
i=1 i=1 i=1
But,
m m m
= FiSl = z F Si = Z Fl' Si =0

o
Il
et
H.
Il
|_l
H
1
'_l
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and similarly we may say that,

]
o

Hence, equation (xi) becomes

9 o - = d T
% (F S) + 3y (SVF) + = (S8 V'F')

oy
ol 3F JEML 44
= D 5y (S 3y + S 3y ) A (xiii)
where
m
Erl] 1 ' '
Ve = = z 5, Bt A
S il 3 .
i=1
and
m
o oF, '
oF! 1 i
— = = X S, (xiv)
oy S i=1 i oy
It may easily be shown that 3y = 0 and we express V'F

in the following form,

V'F!? — - Dl

|
"CI"‘]'

(xv)
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where D' is an apparent diffusion coefficient and may be

related to the Taylor Diffusion (Taylor,1953).

We may now write equation (xiii) in the more familiar form,

i.e.
EaE (F 8) =33-§ (Deffs-g—g)—-;—y(si?f‘) - A (xvi)
where,

Duge = 0B oF B!

B AL s WD <g;§)'1

When considering N, - 0, diffusion in the human lung we have

an inert gas N,, of low solubility and thus A is negligible.

The standard notation used by almost all previous workers

has been the following:-

F=F, VS=0Q= constant

Equation (xvi) now becomes

9F A BRRT, 1 98 P . 9 3F
BEn s Lar "B oy, %y s By (xvii)
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where, F is the 'over-all' mean fractional concentration
of gas in the airways situated at distance y from the origin

of the 'combined airways' or "trumpet" shaped model, and at

time t.

é is the mean mass flow-rate of gas occurring throughout the

model.

S is the total cross-sectional area of all the airways

situated at distance y from the origin of the model.

It should now be clear why there are slight differences
between the "trumpet" and "pipe" model predictions given

in chapters 3, 4 and 5.
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Table 1

Z : | S

10 0. 39 9.80
il 0 33 14.33
12 0.28 21.05
13 (123 323
14 0.20 50,73
15 e 82.60
16 0.1h4 131.60
B 0.12 242.18
18 0 1O 522.00
19 0.08 1307.00
20 007 2946.00
210 0.06 5510500
22 0.05 15328,.00
23 0.04 26216.00

Weibel's Model A with the data scaled such that the FRC
corresponds to that of an average normal lung (3.0 litres)

where,

z 1s the generation number

1 is the generation length in cm

S 1is the total cross-sectional area in cm?




Table 2

Distance Fractional Gas Concentration
y (cm) Conventional (a) Revised (b)
" 0.00 0.178040 0.155106
/J Q.33 o 0.154794
Senducting 0.61 " 0.154409
LAY 0.84 " 0.153931
1.04 1 Q. 1533850
e i 0.152709
/'1.36 L Q.151825
| 1.u48 " 0.151004
Acinap 1.58 i 0.15041Y
Region 1.66 " 0.149832
= Do i 2 0.149280
1.79 1 0.1u48725
1.84 ! 0.148510
% 1.88 0.178040 0.148296

The table gives the end expiration input gas concentration against
distance down the model for (a) the conventional and (b) the
revised boundary conditions. It will be noted that no
concentration differences are appafent when the conventional
boundary conditions apply, whereas with the revised boundary
conditions significant gradients exist throughout the model.
Specifically, a 0.42% difference in fractional gas concentration
(representing 60% of the total predicted gradient) is evident in

the acinar region.




Table 3

Expired

Volume (ml)

Nitrogen Concentration

Conventional (a)

Revised (b)

25.0 0.000000 0.000000

5050 0.000000 0.000000

60.0 0.000000 0.000000

75.0 0.041708 0.041047
100.0 0.385600 0.378557
125.0 Q.572455 0.561785
150.0 0.632282 0.621552
175.0 0.650133 0.640789
200.0 0.655388 0.647882
225.0 0.656929 0.651382
250.0 0.657513 0.653808
275.0 0.657564 0.655301
300.0 0.657568 0.657879
325.0 0.657568 0.659804
350.0 0.657568 0.661695
375.0 0.657568 0.663559
400.0 0.657568 05665387
425.0 0.657568 0.667210
450.0 0.657568 0.668999
475.0 0.657568 0,870763
500.0 0.657568 0.672504

The table gives the expired nitrogen concentrations at the
beginning of the trachea for (a) the conventional and (b) the
revised boundary conditions. It will be noted that the alveolar
plateau has zero gradient when the conventional boundary conditions
apply, whereas with the revised boundary conditions a significant

plateau slope of the order of 1.87% over the terminal 250 ml expired

i.e. 3.74% on extrapolating to 500 ml expired.




TABLE 4

Comparison of single-breath N; washout concentrations for

square, triangular and sinusoidal wave flow-rates.

| =

B W OW W W W W W W W W NN NN N NN NN
L] - - . . - . - L] - - - - - - . L ] . . -
O OV 0 J 6 U & W N H O W 0 < 6 U & W N -

T corresponds to the expiration time

E

SQUARE

0.000000
0.000000
0.041047
0.378557
0.561785
0.621582
0.640789
0.647882
0.651382
0.653808
0.655901
0.657879
0.659804
0.661695
0.663559
0.665397
0.667210
0.668999
0.670732
0.672504

TRIANGULAR

0.000000
0.000000
0.187008
0.560900
0.636096
0.652229
0.657830
0.661267
0.664082
0.666585
0.668847
0.670893
0.672736
0.674384
0.675845
0.677124
0.678228
0.679157
0.679915
0.680500

SINUSOIDAL

0.000000
0.000000
0.001577
0.081669
0.351281
0.544129
0.613815
0.633886
0.640351
0.643865
0.646928
0.649988
0.653057
0.656065
0.658936
0.661602
0.664005
0.666096
0.667832
0.669174



TABLE 5

Relation between the end expiratory concentration gradients

(stratified inhomogeneities) and the pre-inspiratory lung

volume.
F R C (LITRES) AF
O2
3.0 0.70%
3o 0.65%
4.0 0.59%
4.5 D=51%
5.0 0.48%

ﬂFO corresponds to the computed end expiratory input
2

gas concentration differences between the ends of the

model (in this case, for a hypothetical gas having a
molecular diffusion coefficient of 0.25 cm?/sec

equivalent to 0,/N;)




TABLE 6

Variation of PHASE III slope with pre-inspiratory lung

F R C (LITRES) AN,
3.0 3.74%
35 3.00%
4.0 2.50%
4.5 2.15%
5.0 1.89%

AN, corresponds to the computed phase III slope and is
obtained on extrapolating the single-breath N, washout

curves to 500 mls expired.

volume.



TABLE 7

Relation between the phase II (dead space volume), Phase III

(alveolar plateau slope) and the breath-holding time.

BREATH-HOLDING TIME PHASE II PHASE III
1.0 SECONDS 100 mls 2.1%
2.0 SECONDS 90 mls 1.05%
5.0 SECONDS 65 mls 0.03%

It is clear from this table that both the dead space volume

and the alveolar plateau slope decrease rapidly for

increasing breath-holding times.




TABLE 8

Comparison of the rigid and compliant model predictions.

EXP. VOL

25.0

50.0

60.0

75.0
100.0
125.0
150.0
175.0
200.0
£25.0
250.0
275.0
300.0
325.0
350.0
375.0
400.0
425.0
450.0
475.0
500.0

RIGID corresponds to the model with a fixed trumpet volume.

COMPLIANT corresponds to the model with a variable trumpet

volume.

RIGID

0.000000
0.000000
0.000000
0.041047
0.378557
0.561785
0.621552
0.640789
0.647882
0.651382
0.653808
0.655901
0.657879
0.659804
0.661695
0.663559
0.665317
0.667210
0.668999
0.670763
0.672504

COMPLIANT

0.000000
0.000000
0.000000
0.020755
0.310366
0.529923
0.615770
0.646508
0.657929
0.662818
0.665529
0.667515
0.669260
0.670921
0.672550
0.674163
0.675766
0.677361
0.678947
0.680526
0.682096



TABLE 9

The simulated single-breath N, washout concentrations obtained
from the compliant lung model and for a tidal volume of

1000 mls (i.e. VT= 1l litre)

EXP. VOL FNz

50.0 0.059976
100.0 0.386778
150.0 0.495857
200.0 0.524327
250.0 0.534947
300.0 0.541702
350.0 0.547603
400.0 0.553287
450.0 0.558889
500.0 0.564434
550,.0 0.+569927
600.0 0.575371
650.0 0.580764
700.0 0.586106
750.0 0591397
800.0 0.596636
850.0 0.601824
900.0 0.606961
950.0 0.612044
1000.0 0.617076

Where FN2 corresponds to the expired nitrogen concentration

at the mouth.
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TABLE 18

Data for the "pipe" (or "pathway") model.

i y; (cm) S; (cm?)
o} 12.00 2.54

1 4.76 1.165
2 1.90 1.5325
3 0.76 1.25

4 1.27 0.155
5 1.07 0.0972
6 0.90 0.0619
7 0.76 0.0398
8 0.64 0.0271
9 0.54 0.0187
10 0.39 0.0096
21 0.33 0.0070
12 0.28 0.0051
13 0.23 0.0040
14 0.20 0.0031
15 0.17 0.0025
16 0.14 0.0020
17 0.12 0.0018
18 0.10 0.0020
19 0.08 0.0024
20 0.07 0.0028
21 0.06 0.0026
22 0.05 0.0036
23 0.04 0.0031

where, Y is the length of the ith "pipe" of the

"pathway", and S; is the cross-sectional area of the ith

"pipe" of this pathway.




TABLE 19

Comparison of "trumpet"” and '"pipe” model predictions.

&Foz AFNZ
TRUMPET 0.7% 3.74%
PIPE 0.74% 3.96%

where, AFOZ is the end expiratory input gas concentration

gradient and &FNZ the corresponding phase III slope based

on an extrapolation to 500 mls expired.
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TABLE 21

AF AF

_G_ 0, N,

-50.0 0.15% 0.79%
-25.0 0.41% 2.20%
-10.0 0.57% 3.04%
+10.0 0.79% 4.17%
+25.0 0.95% 5.02%
+50.0 1.21% 6.43%

where, AF is the end expiratory input gas concentration

O

gradient within the model and ﬂFN is the corresponding
2

phase III slope based on an extrapolation to 500 mls expired.



TABLE 22

Predicted percentage deficiencies for a simulated normal

and for a simulated "average case of emphysema".

PERCENTAGE DEFICIENCY

NORMAL 19.66%

AVERAGE CASE OF EMPHYSEMA 29.46%
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A REAPPRAISAL OF BOUNDARY CONDITIONS
ASSUMED IN PULMONARY GAS TRANSPORT MODELS*
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University of Aston in Birmingham, Gosta Green, Birmingham B4 7ET, England

Abstract. Solutions of the classic pulmonary gas transport equation are presented in which a true
‘no-flux’ boundary condition is specified throughout the respiratory cycle. For the particular models
studied it is demonstrated that diffusive mixing is incomplete at end expiration, and that such stratified
inhomogeneities give rise to a realistic alveolar plateau for a simulated N, washout test. The reasons
for the disparity of the present findings with those obtained by contemporary workers are explained
by critically examining the boundary conditions conventionally assumed at the alveolar wall.

Alveolar plateau Gas [lux
Boundary conditions Pulmonary gas transport models
Diffusive and convective mixing  Stratified inhomogeneities

The application of modelling techniques to investigate gaseous transport in the
human lung has attracted considerable attention from both physiologists and
mathematicians during recent years. Whilst the representation of bronchial tree
geometry has become progressively more realistic, and the techniques for solving
the governing equations more accurate, the conclusions drawn by the various
authors have not differed in essence from those presented over thirty years ago by
Rauwerda (1946). Namely, that diffusional equilibrium is attained very rapidly,
and no significant concentration gradients exist in the acinus at the end of the
breathing cycle. Experimental findings, in contrast, suggest that gas mixing is in-
complete at end expiration. hence series inequalities must be present to some extent,
even in the normal lung. The work of Read (1966a.b), Cumming et al. (1967),
Power (1969) and Kawashiro er al. (1976) for example, would be difficult to explain
in terms other than stratified inhomogeneities. Moreover, the results obtained by
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318 D.A. SCRIMSHIRE et al.

Sikand et al. (1966, 1976) also point to the presence of incomplete diffusive mixing.
In view of such incontrovertible experimental evidence it would appear cogent to
re-examine the analytical work in an attempt to reconcile these apparently different
views of pulmonary gas transport.

The physical model invariably used by workers to represent the bronchial tree is
formulated by combining the dimensions of all airways of the same generation
number, thereby producing the well-known ‘trumpet’ (Paiva, 1972) or ‘thumbtack’
(La Force and Lewis, 1970) shaped function of total cross-sectional area and distance.
Actual data is either derived from the definitive morphometric studies of Weibel
(1963) or the more recent work of Hansen and Ampaya (1975), scaled to an average
FRC. Gaseous transport is then simulated by applying the governing partial
differential equation, which describes the convection and diffusion of a tracer gas
into an indigenous gaseous phase:

oF _pleF, 1asF] QoF i)
ot dy" S ady dy S dy

where F = F(y.t) is the fractional concentration of inspired tracer gas at distance y
from the beginning of the model and at time t after the start of the respiratory
manoeuvre; S = S(y) is the total cross-sectional area of the model at distance y from
the portal end: D is the binary molecular diffusion coefficient between the inspired
and residual gases: and Qis the volumetric gas flow rate. The solution of equation (1)
enables a plot of gas concentration against distance within the physical model to
be given for the entire respiratory cycle.

Whilst several different numerical techniques have been employed to obtain such
results (Scherer er al., 1972; Paiva, 1973: Baker et al.. 1974: Davidson. 1975:
Pack et al.. 1977), the boundary conditions assumed have always been identical,
and are usually stated as follows:

Fo,t) = 1.0for t, <t <TJ, )
Pl _gofort <t<T) (3)
ay y=|

and for expiration:

OF =00for T/, <t<T (4)
ay y=0

‘;—P =00forT/,<t<T )
"y y=L

where t, is the time required for the inspired gases to traverse the upper 10 generations
(approx. volume 60 ml) and T is the total duration of the respiratory cycle.

On applying these conditions to a typical model based on Weibel's Model A,
and describing the airways from the end of generation 10 to the alveolar wall (see
table 1), it is found that although there are significant concentration differences
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TABLE 1|

z 1 S

10 0.39 9.80
11 0.33 14.33
12 0.28 21.05
13 0.23 32.53
14 0.20 50,73
15 0.17 82.60
16 0.14 131.60
17 0.12 242.18
18 0.10 522.00
19 0.08 1307.00
20 0.07 2946.00
21 0.06 5510.00
22 0.05 15328.00
23 0.04 26216.00

Weibel's Model A with the data scaled such that the FRC corresponds to that of an average normal
lung (3.0 litres) where,
z = the generation number,
| = the generation length in ¢m.
S = the total cross-sectional area in cm”.

in the acinar region at end inspiration, these stratifications are completely obliterated
during early expiration. Bearing in mind that some measure of concentration
gradient would be expected from the experimental work, it is evident that either the
physical model is not a sufficiently accurate analogue of the pulmonary airways,
or the prescribed boundary conditions do not represent the processes obtaining in
the actual lung.

THE PHYSICAL MODEL

The influence of changes in the structural dimensions of the models has been
extensively studied by several groups of investigators. Baker et al. (1974, 1975) found
that the efficiency of gas mixing was insensitive to any single or multiple variation
in airway size. Indirectly, Paiva er al. (1976) came to the same conclusion by
utilising the data of Hansen and Ampaya (1975), and noting that the results did not
differ significantly from those presented in an earlier study (Paiva, 1973) which
assumed Weibel's Model A (Weibel, 1963). Furthermore, the work of Pack ez al.
(1974, 1977), which considers an expanding and contracting alveolar region, also
demonstrates that diffusion equilibrium is unaffected by variable model dimensions.
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CONVENTIONAL BOUNDARY CONDITIONS

Whilst the boundary conditions conventionally assumed for the entry portal of
all previously proposed models are easily understood, and represent a reasonable
approximation to reality, those specified at the distal end are less obvious. The
intention is to define a situation which ensures a zero flux of gas across the alveolar
wall, thus mimicing the behaviour of an insoluble tracer.

In the work of authors assuming a ‘rigid’ physical model (for example Baker er al.,

1974 Paiva, 1973; Pedley, 1970) the actual effect of applying 21; = () may best
& y=L

be mathematically interpreted by considering the functional form of the total flux
equation, G(y,t).
For inspiration we can write.

: oF il ,
and for expiration,
. S eSO
G(y.t) = —QF —-DS 3y {or72—<tsT (@)

In both equations (6) and (7) the total flux is defined to be the summation of
convective and diffusive flux contributions. Now. at the alveolar wall.

G(L.t) = QF|,_, —DS(L) oF. fort, <t sI (8)
: Ay |yt 2
and similarly,
s A
G(L.t) = =QF|,_, —DS{L}% i'or%-<t£T (9)
99 o st 2
Substituting from equation (3) into equation (8) yields
G(L.t) = + QF|,_, fort, <t <T), (10)
and by a similar procedure equations (5) and (9) give,
G(Lt) = —QF|,_, for+ <t<T (11

From a scrutiny of equation (10) it is clear that a finite flux of input gas is being
continually drawn out of the model across the alveolar wall during inspiration, and
from equation (11) it can be seen that gas is being similarly drawn info the model
during expiration. When ‘flux curves’ (Pack et al., 1977) are plotted for the entire
respiratory cycle, as in fig. 1, these phenomena are readily apparent.

It should now be obvious why the conventional boundary conditions given in
equations (3) and (5) fail to give a true no-flux condition at the distal end of
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Fig. |. Gaseous flux per unit flow existing in the model when using the conventional boundary

conditions. Curve 1 is at 0.4 sec after the start of inspiration and curves 2 to 10 are at equivalent

0.14-sec time intervals thereafter. Note that a zero-flux condition at the distal end of the model is nor
specified.

rigid models, and why tracer gas concentrations fall too rapidly during inspiration.
Thus during expiration the flux at the model entrance (y = 0) is given by,

for s <t<T (12)

G(o.t) = —QF]|,_,

Equations (11) and (12) state that eventually gas is leaving the model at the same
rate at which it is being withdrawn through the alveolar wall; hence concentration
gradients would not be expected to persist under such conditions. In other words,
the artifact caused by the violation of the required no-flux condition at the alveolar
wall would appear to be primarily responsible for the unrealistically rapid approach
to gaseous equilibrium.

In contrast, the models of Scherer et al. (1972) and Pack et al. (1977) undergo
volume changes during both inspiration and expiration in such a manner that
convective gas flow is always zero at the alveolar wall. They assume that the amount
of convection v(y,t)S(y,t) at any point y in the models are equal to the total volume
change in the airways distal to that point, that is,

K
1 a8
sy | at ¢

v(y.t) = (13)

¥

The expansion and contraction of the models is represented by the functional
relation,

S(y.t) =S(y)[1 —f(y)b(1)] (14)
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which defines the cross-sectional area at any point during the breathing cycle
in terms of a ‘flexibility function® f(y), and an oscillatory function of time b(t).
Since there is a lack of experimental evidence on the precise distribution of lung
volume changes (Hughes et al., 1972: Marshall and Holden, 1963) the functional
form of f(y) must remain empirical, and the authors assume it to be evenly
distributed along the axial length of their models.
Substituting from equation (14) into equation (13) gives,
L
b(t) ;
viy,t)= —— | S((y) d (15)
y.0 S(v.0 (Y)I(y) dy

v

Putting y = L in equation (13) gives v(L,t) = 0, hence convective gas flow is always
zero at the alveolar wall. Now, equation (13) may be rewritten in the form,

L -
Qy.1) = S(y,)v(y.1) = J~f5_l dy (16)

and therefore we know that Q(L.t) = 0.

Substituting into equations (6) and (7) yields.

T (17)

N

G(L.,t) = DS ':’;1; t, <t
¥}

In order to ensure that the total flux is zero at the alveolar wall. it is further

: oy oF . iy
necessary to specify the boundary condition {8— =0, as in the rigid models.
. y=L
Since some 95 per cent of lung volume is contained within the terminal generations

of the bronchial tree (a linear distance of only 0.6 cm) it is hardly surprising that
these models again fail to display any stratified inhomogeneities in the acinar region
because of this explicit assumption. On reflection. it is clearly inappropriate to specify
the boundary conditions in terms of a fixed concentration gradient at the alveolar
wall, since it is the changes in concentration gradient immediately adjacent to this
point that is the main purpose of the simulations.

REVISED BOUNDARY CONDITIONS

From the above discussion, it is evident that a better approximation to the actual
conditions within the lungs could be made by ensuring a zero flux at the alveolar
wall whilst simultaneously allowing the concentration gradient to be a variable.
Applying the former condition, i.e. G(L.t) =0 to equations (6) and (7) yields,

oF . g3
—DS(L}Ty tort,s_tgE

y=1

0= QF| (18)

y=L
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and,

3 1
0= —0F|,., -DSUE| fort<t<T (19)
) dy 3

y=I

rearranging, we obtain,

oF 4 _Q_ T s

7 e + DS(L) F|,. fort <t< : 20)
and,

JF 7 T

et e A T .

ay ‘m_ DS(L) Ellya for 3 =t<T (21)

Equations (20) and (21) now represent a true no-flux condition. The conventional
boundary conditions at the entrance to the model (y = 0) are acceptable, for both
inspiration and expiration, for the following reasons. During inspiration, we have
from equation (6) that,

5
-Ds©) &

y

G(o,t) = QF| fort, <t<

Y=o

| =

y=0

Since we are assuming that a uniform convective flux (that is uniform flow) of gas

enters the model, we do not expect any concentration differences to exist near the

model entrance. In other words. we require that G(o.t) = + QF which implies,

: ; oF 5 R : :

from equation (22) that, = =0, It is thus intuitively obvious that the input
'Y Y=o

gas concentrations at the model entrance must remain constant as defined in

equation (2).
For the expiratory phase, equation (7) gives
for %T <t<T (23)

-

G(o.t) = —QF|

y=0

~ps(0) &
ay

y=0

Now, during expiration the contribution from diffusive mixing near the model
entrance is negligible in comparison to the convective mixing (Paiva, 1972). As a
result a relatively uniform convective flux of gas out of the model is anticipated,
which may be stated mathematically as,

G(o,t) = —QF]| (24)

y=0
Substituting from equation (24) into equation (23) we obtain
dF

oy =0, as given previously in equation (3).
yﬁﬂ
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Results

Having defined the true ‘no-flux’ boundary conditions, it is possible to obtain a
solution to equation (1), by means of the explicit finite difference technique detailed
in Appendix I. The resulting concentration/distance curves are shown in fig. 2,
from which it will be noted that not only are there significant concentration
differences in the acinus region at end inspiration, but more importantly, these
stratifications persist during expiration. For example, a 0.7 per cent (~ 5.32 mm Hg)
difference in tracer gas concentration exists between the ends of the model at end

10

FRACTIONAL CONCENTRATIONS
=}
@
T

(A

0.0 =

0.0 1.0 20

DISTANCE, om

Fig. 2. Effect of the revised boundary conditions upon the input gas concentrations in the model at

various times during the respiratory cycle. Curve 1 is at 0.4 sec after the start of inspiration and

curves 2 to 10 are at equivalent 0.4-sec time intervals thereafter. In this case significant concentration

differences do exist in the acinar region at end expiration (Le. curve 10), which is more clearly evident
from a scrutiny of the actual concentration values given in table 2.

1.0 5

GASEOQUS FLUX PER UNIT FLOW
-]
EY
—

L ——
G

0.0 1.0 20
DISTANCE, em

Fig. 3. Gaseous flux per unit flow existing in the model when using the revised boundary conditions.
Curve 1 is at 0.4 sec after the start of inspiration and curves 2 to 10 are at equivalent 0.4-sec time
intervals thereafter. Note that in this case a zero-flux condition at the distal end of the model is specified.
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TABLE 2
Distance Fractional gas concentration
y (em) _—
Conventional (a) Revised (b)
0.00 0.178040 0.155106
0.33 5 0.154794
Conducting (161 5 0.154409
airways 0.84 2 0.153931
1.04 - 0.153351
1,22 % 0.152709
1.36 i 0.151825
1.48 5 0.151004
1.58 . 0.150414
Acinar 1.66 i 0.149832
region 1.73 i 0.149280
1.79 5 0.148725
1.84 54 0.148510
1.88 0.178040 0.148296

The table gives the end expiration input gas concentration against distance down the model for

(a) the conventional and (b) the revised boundary conditions. It will be noted that no concentration

differences are apparent when the conventional boundary conditions apply, whereas with the revised

boundary conditions significant gradients exist throughout the model. Specifically, a 0.42% difference

in fractional gas concentration (representing 60", of the total predicted gradient) is evident in the acinar
region,

expiration (see table 2); 60 per cent of this difference occurring in the acinus.
The corresponding flux curves are shown in fig. 3, and as expected illustrate the
required zero flux across the alveolar wall and, by implication. demonstrate that
a balance must always exist between the convective and diffusive movements of gas
molecules at the alveolar wall throughout the breathing cycle.

Discussion

The main contribution of the present work has been to highlight the crucial role
played by boundary conditions in providing a more realistic description of gaseous
transport mechanisms in the bronchial tree.

Specifically, it has been demonstrated that diffusional equilibrium within the
terminal airways is incomplete at end expiration, which further suggests that the
stratified inhomogeneity thus produced may contribute to the alveolar plateau.
In order to test this hypothesis it is neccesary to modify our analysis to facilitate
a simulation of the single breath nitrogen washout curve by taking,

FE\,(t) = 0.8[1.0 — F(o.,t —t,)] (25)
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TABLE 3
Expired Nitrogen concentration
volume (ml) — _ —— - —
Conventional (a) Revised (b)
25.0 0,000000 0.000000
50.0 0.000000 0.000000
60.0 0.000000 0.000000
75.0 0.041709 0.041047
100.0 0.385600 0.378557
125.0 0.572455 0.561785
150.0 0.632282 0.621552
175.0 0.650133 0.640789
200.0 0.655388 0.647882
225.0 0.656929 0.651382
250.0 0.657513 0.653808
275.0 0.657564 0.655901
300.0 0.657568 0.657879
3250 0.657568 0.659504
350.0 0.657568 0.661695
375.0 0.657568 0.663559
400.0 0.657568 0.665397
425.0 0.657568 0.667210
450.0 0.657568 0.668999
475.0 0.657568 0.670763
500.0 0.657568 0.672504

The table gives the expired nitrogen concentrations at the beginning of the trachea for (a) the con-

ventional and (b) the revised boundary conditions. It will be noted that the alveolar plateau has zero

gradient when the conventional boundary conditions apply, whereas with the revised boundary con-

ditions a significant plateau slope of the order of 1.87%, over the terminal 250 ml expired, is apparent.

On extrapolating the nitrogen washout curve to 500 ml, the slope rises to 3.427%, which closely
approximates to the experimentally observed value for normal subjects.
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Fig. 5. Predicted single-breath nitrogen washout curve corresponding to the revised boundary conditions

and when employing the data of Hansen and Ampaya (1975). Note that the slope of the concentration

transition (phase 11) and the shape of the “knee” of this curve differ significantly from the curve shown
in fig. 4 (solid line),
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coefficient, Deff, which is identically equal to the molecular diffusion coefficient,
Dmol. in the alveolar region since the gas velocity is very small. At present there is
no agreement on the actual functional form of Deff to be used in the solution of
the gas transport equation, however, the results obtained by Pack er al. (1977)
illustrate that gas mixing efficiency is independent of the particular way in which
the effective axial diffusion coefficient is employed. Moreover. the recent experi-
mental results of Horsfield er al. (1977) and Worth er al. (1977) also suggest that
the mechanism of Taylor Dispersion has a negligible effect on the mixing of the
respiratory gases in vivo. Such results again emphasize the limited role that model
parameters have upon gas mixing efficiency. compared to the significant influence
of boundary conditions.

The physical model chosen in the present study is rigid, hence it has been
necessary to mathematically impose a gaseous flow to simulate inspiration and
expiration. In reality, breathing is brought about by the expansion and contraction
of the respiratory regions of the lung, however. in order to follow these movements
exactly it would be necessary to solve the appropriate hydrodynamic equations.
Such additional complexity is considered unnecessary in view of the fact that the
results obtained from variable volume models (for example, Pack ez al.. 1977) do
not differ significantly from those obtained from rigid models (for example Paiva,
1973) which are similar to that used in the present study. The only effect of considering
rigid rather than variable volume models would appear to be that input gas con-
centrations will tend to be slightly underestimated (Paiva, 1978). As a corollary.
itis interesting to observe that even when a ‘compliant’ model is assumed., it is clear
from equation (15) that a convective flow must still be imposed in order to obtain
a solution to the gas transport equation.

Appendix 1

An explicit finite difference scheme (Bush er al.. 1977) was employed in the
numerical solution of equation (1) rather than an implicit scheme due to the more
rapid computing times associated with the former. It was found that due to the
presence of the convective term in equation (1), the Gauss-Seidel iteration procedure
(which is necessary in order to solve the appropriate implicit difference equations)
required large amounts of computing time in order to attain a convergent and
accurate solution. Similarly. a suitable one-dimensional finite element solution of
equation (1) suffered from the same deficiencies as dicussed above. The rationale
for choosing central difference approximations of derivatives in favour of forward
or backward differences was based solely on their properties of convergence. In fact,
forward and backward differences are accurate to 0(A4y). whereas the central
differences are accurate to 0(Ay®) as has been demonstrated in most standard texts
on numerical methods (see Smith, 1965 for example). Thus, we have chosen to use
central difference approximations of derivatives throughout the scheme, i.e.
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E ={F=.|+I _Fl.i)

at At

E: (F1+J _Fi—I_‘j___}

ay 2(4y)
E=[Fi+li ‘JF +FI |J}
ay? (4yy

On substituting the above finite difference approximations into equation (1) we
have, on simplifying

F,, =F, +Dr(F,,, —2F, +F,_ |,}+%[9 ‘—3+Q]uy)(F, R

Equation (i) is the finite difference approximation to the gas transport equation.
In order for the solution of equation (i) to converge to the true solution of the
transport equation we require a stability criterion. By applying the Fourier series
method of stability to equation (i) we found that convergence depended upon the
value of r where; (Smith, 1965)

D
[D sin® ﬁ—i + K? cos? Iih]

and K, =1 (dy )[s :3 2]

r< (i1)

This expression for r assumes a minimum value for two particular cases. i.e.

Casel: K<D
When K < D, r is minimum when cos [’?} ] = () and thus
1
ST
Case 2 K>D
When K > D, r is minimum when sin [{ih] = 0 therefore,
D

T2
2K?

Thus, in order to obtain a stable and convergent solution to the numerical
approximation of the gas transport equation, we require that, if K < D4, then
r<1/2D and if K > D, then r <D/2K*, we obtained a stable and convergent
solution for D =0.25, 4y =0.02, r =1 and hence At=0.0004. A detailed con-
sideration of the stability of the proposed solution technique is given in Appendix 2
below.
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Appendix 2
STABILITY OF SOLUTION TECHNIQUE

Consider the problem of solving the more general linear parabolic partial differential
equation with variable coefficients, i.e.
gE _FF dF

=a-—+b— +cF+d 1
ot day3+ ay g 1)

where a, b, ¢ and d are functions of t and y only, and with the more general
boundary conditions

P(Ty+qF=V (2)

where p, q and v are functions of t only.

Now, there is an important class of simulations to linear parabolic equations
with variable coefficients for which rigorous sufficient conditions for stepwise
stability are easily obtained (see Hildebrand. 1968). In illustration, let us suppose
that a *four-point’ formulae has been obtained, for equations (1) and (2) above. in
the form,

Fijs1 =C_(1JF,_;; + CGJF,; + C(iJF,,,; +d; (3)

asa consistent simulation, where the coefficients C, (i.j) are known functions of i and i
We suppose that equation (3) holds fori = 1.2, ... Nandj = 1, 2, ... The propagated
error g due to an initial error distribution g, is then specified by the relations,

1
i1 = 2 Coid)8 0 (4)
h= =]
and,

E1=8 (5)

If the coefficients C _,, C, and C, are nonnegative for all relevant values of i and j,
ie.

C(ij)=0 (n=-1.0.1) (6)

and if their sum does not exceed unity,

Y Cij) <1 (7

LES |

then we may deduce from equation (4) the relation

|
|Eﬁ.j+l|'< _Z [ Cn[i\j)lsun_il{ rnl:ux|al~|ul

for i=d 2. 00N (8)
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It thus follows that when the conditions (6) and (7) are satisfied for all relevant
values of 1 and j. the errors propagated by a single line of initial errors can never
exceed the largest initial error in magnitude. so that the formulation is stable in the
stepwise sense, While the conditions (6), (7) and (8) are sufficient for stepwise
stability. they may not be necessary, in the sense that the formulation may be
stable even though one or more of these conditions is violated.

The finite difference approximation to the gas transport equation (i.e. equation (i)
in Appendix 1) may be written in a form similar to that given in equation (1) above,
ie.

Fj. =D -=K)F,_;+ (1 -2Dr)F,; + (D 4+ K)rF,

for2<i=N—1 )

ly+1

and similarly our revised boundary conditions may be expressed in finite difference
form as,

] s :
Fujur =2DrF,_ 4 [1 —2Dr + ig—i’g .S %{-‘Y}QJ Fy, (10)
N N
where,
N D, Q
Ki—-l-(Ay)[Sj o Si] (11)

On equating coefficients of equation (3) with those of equations (9) and (10) we
have that

1 1
S L e i € 12
r<sp |K.|<Dmdr42{D+ 5 (12)
where,
A, = Q(4y) (Ky +D) (13)

DS,

In this particular case A, << D and therefore the stability of our revised boundary
conditions is guaranteed by the relations derived previously using the Fourier series
method (See Appendix 1).

When the Fourier series method of stability was applied to equation (10) we
found that stability depended on the value of r where

2 [4D sin? [ 2‘—‘] & BN]
t= > (14)
[SD(ZD _By)sin’ [@‘] i B\f}

and where,

5 .
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The expression on the R.H.S. of equation (14) can be re-written in terms of partial
fractions in the form,

1 B,(4D —B,) 1

e -8By (D=8
i e a [SD(ZD—BN)sinl[%-h]+BN3]

For the particular solution that we derived, the values of the model parameters
were as follows.

Ay = 0.02, S, =26,216.0 (seetablel)
D =0.25, Q =250

(16)

Substituting these values into the expression previously given for K we obtain,
K=10.0125
and hence from equation (15) we know that

oIS
%= 26216

<D (16)

Since r > 0, the expression for r given in equation (14) will assume a minimum value

when sin [ﬁ;h] =0

ie.
1 _B,@4D -B,) 1
(2D —B,) (2D —-B,) (4D —-B,»

I

e e %
min B
o]

When By is very small (as in the present case where B ==0.0004), equation (17)
becomes identical to the relationship found in Appendix 1 (Case 1). In order to test
the validity of this stability criterion we have solved equation (9) with the revised
no flux boundary conditions and for different values of r (in fact,r = 0.5and r = 1.0)
it was found that the solutions were identical to the sixth decimal place, thus
indicating that both a convergent and stable solution was cttained.

Hence it is concluded, that all of our model predictions are free from numerical
artifacts arising from the use of a non-zero concentration gradient at the alveolar
wall.

rmiu <

(17)
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THEORETICAL ANALYSIS OF DIFFUSIVITY
ON PULMONARY GAS TRANSPORT AND MIXING

David A. Scrimshire
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(Biomedical Engineering Section)
Department of Production Technology and Production Management
University of Aston in Birmingham

Gosta Green, Birmingham, England.

Summary

The effects of different tracer gas diffusivities upon
pulmonary gas transport and mixing have been examined by means
of a new lung model. Specifically, it has been demonstrated
how the éxpired alveolar plateau slope of a tracer gas glves
an indication of the magnitude of the end explratory
concentration differences existing in the acinus. Further, by
modifying our initial analysis slightly (to allow for a
finite flux of gas across the alveolar wall) it has been
indicated how more marked stratified inhomogeneities are
associated with the transport of soluble rather than insoluble
tracer gases.

Because of the practical difficulties of making direct measurements in
the more distal regions of the bronchial tree it is at present only possible
to infer what gas concentration differences exist in the acinus during the
breathing cycle from expired data. Whilst Engel and his co-workers (1)
have succeeded in sampling gas at terminal bronchiolar level in dogs, the
experimental protocol requires open chest surgery and cannot be applied
routinely in man. Moreover, as pointed out by the authors, the physical size
of the catheter used may interfere significantly with local gas flows.

In order for a reasonably accurate interpretation of single breath wash-
out (or washin) curves to be made, it is obviously necessary to employ a
suitable quantitative model. In a recent paper we have proposed such a gas
transport model, and have demonstrated that simulated results correspond closely
to thos observed in normal subjects (2). In the present study use is made of
this new model to examine the effects of different tracer gas diffusivities
on gaseous transport and mixing in human lungs, and specifically relate gaseous
concentration differences in the acinar region to concentrations measurable at
the mouth.
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Methods

The model is derived from a modified version of Weibel's 'Model A' and
consists of the last 13 generations of the bronchial tree. The equations
governing the transport of gases into and out of the model are written as:-

S8 . 3%F 1 28  oF L5 YT BY

where F = F (y, t) is the fractional concentration of inspired tracer gas

at distance y from the beginning of the model and at time ¢t after the

start of the respiratory maneouvre; S = S (y) is the total cross-sectional area
of the model at distance y from the portal end; D is the binary molecular
diffusion coefficient between the inspired and residual gases; and Q is the
volumetric gas flow rate.

In order to solve equation (1) suitable boundary conditions must be
specified. At the mouth there is a constant flow of inspired tracer gas and
this may be written as,

F (o, t) = 1.0 for ti 5; £ :g; -% (Eqn. 2)

During expiration the contribution from diffusive mixing at the model
entrance is considered negligible in comparison to the convective mixing and
this implies that,

' p
4 0 7 <t (Eqn. 3)

ay
y=0

At the distal end of our model it is required that there is no flux of
input tracer gas across the alveolar wall, y = L. Such a requirement may best
be achieved by ensuring that the total contribution from both diffusive and
convective gas fluxes is zero, implying that a balance exists between these two
transport processes. In order to formulate this condition in mathematical terms
we need to define the total flux function G (y, t), that is,

oF

Bty t) = R = D8 E

(Eqn. 4)

where G = G (y, t) is the total flux (made up of both a diffusive and a convective
contribution) at distance y from the beginning of the model and at time ¢t after
the start of the respiratory maneouvre.

We require that G(L, t) = O for all t, and from equation (4) the following
zero flux boundary conditions may be derived,

3F . Q F T
-g = + -i)—s—(-]_:-) for t; \<\ t < 'E (Eqn. 5)
y= y=L

nd,
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3F Bt F T
T = 55 for 3 <::'t:g;; T (Eqn. 6)
y=L y=L

In the above equationms t; is the time required for the inspired gases
to traverse the upper 10 generations and T is the total duration of the
respiratory cycle. The numerical technique used to solve the gas transport
equation has been fully detailed elsewhere (2) along with an exhaustive
examination of stability and convergence.

RESULTS

Figures 1 and 2 show the input gas concentrations within the model at
end inspiration and end expiration respectively for three tracers having
molecular diffusion coefficients of 0.1 cm?/sec, 0.315 cm?/sec and 0.76
cm®/sec corresponding to SFg/N;, Ne/N, and He/N, mixtures. As intuitively
expected, it can be seen that at end inspiration the heavier gas (SFg)has
penetrated deeper into the model than that of the lighter gases (Ne or He),
and hence it has a greater dead space volume. Furthermore, the heavier gas
displays a more marked concentration stratification in the acinar regions.
The actual concentration differences between the ends of the model at end
expiration are 0.42%Z for He, 0.6% for Ne and 1.2Z for SFg, with the greatest
gradients occurring over the last 0.5 cms of the model length.

The resulting concentrations of the three tracer gases being expired
through the "mouth" end of the model are given in Figure 3 and show that the
heavier the gas, the greater the dead space volume and the greater the
alveolar plateau slope. The plateau slopes for the three tracer gases were
calculated on the basis of an extrapolation to 500 mls expired and were found
to be 2.9% for He, 3.47 for Ne and 4.87%7 for SFg.

DISCUSSION

The theoretical results presented show that the expired "alveolar plateau"
slope of a tracer gas does indeed give an indication of end expiratory
concentration differences in the acinus. Moreover, the magnitude of the slope,
and the degree of stratified inhomogeneity, Zncrease as the molecular weight
of the input gas increases (that is D decreases). Such results concur with
the experimental findings of previous workers (3, 4, 5, 6, 7, 8) who also
concluded that gases having lower diffusivities should reach equilibrium
more slowly, and that the observed expired concentration differences arose as

a consequent of similar differences obtaining in the more distal regions of
the bronchial tree.

Only two previous attempts have been made to simulate similar results. In
969, Sasaki and Farhi (9) employing an algebraic lung model, concluded that
he only effect of considering a heavy rather than a light tracer gas was that
he dead space volume should be greater. A few years later Paiva (10) using

more detailed lung model analysis came to a similar conclusion, but could

ot demonstrate any concentration gradients in the acinar region at end
xpiration. We have indicated in a previous paper that a possible explanation
or such a finding may well be traced to the boundary conditions assumed by
hese authors, a fact also suggested by Scherer and Pack (11). The particular
oundary conditions applied in the present model ensure that none of the input



tracer gas escapes, or indeed is reabsorbed, through the alveolar wall. As the
three gases studied have very low blood solubilities (SFs = 0.0067,

Ne = 0.0l11, He = 0.0098) such an assumption would appear to be a reasonably
accurate representation. Nevertheless, it is interesting to speculate how a
finite gas flux across the alveolar wall would affect concentration gradients.
Chang and Farhi (12) have already considered such a case in qualitative terms,
and have suggested that the gas exchange is likely to increase any stratified
inhomogeneities existing in the acinus. The present model may readily be
modified to accommodate a finite gas flux across the alveolar wall by slightly
altering the boundary conditions (5) and (6). The necessary modification
involves changing "G = 0" to "G = k", where k is the amount of input tracer gas
(mls/sec) being taken up by the blood flowing in the alveolar capillaries. In
fact, equations (5) and (6) become,

oF = Q F 'y G -
“a";‘ L o ) DS (L) (Eqn. 7)
y=L y=L
and,
3F A Q F = G
3y DS (L) D S (L) Fqo-nd)
Y s y=L

The effect of applying three values of G (10, 25 and 50 ml/sec) to a
hypothetical gas having a diffusion coefficient of 0.25 cm?/sec (equivalent
to 02/ N2) is shown in Figure 4 for end inspiration. It can be seen that the
higher the G value, the greater the concentration gradients for the input gas
in the acinar region and the lower the alveolar gas concentration. The latter
effect is to be expected since higher values of G are associated with tracers
having a higher blood solubility hence they are being removed from alveolar
space at a faster rate by capillary blood.

Figure 5 gives the ensueing end expiratory concentrations within the model.
It will be noted that more marked stratified inhomogeneities are associated with
tracers having higher blood solubilities, and that these concentration gradients
are also reflected at the "mouth" end of the model as is evident from Figure 6.

A more realistic illustration of the independtnt effect of input gas
solubility on stratified inhomogeneities may be given by considering the
specific gases Argon and Nitrous Oxide because they have very similar diffusion
coefficients (D = 0.192 for Ar and D = 0.189 for N,0). Because the solubility
of Argon can be considered negligible, a value of zero is assumed for G.
Nitrous Oxide in contrast has a much greater affinity for blood, having a
solubility coefficient of 0.465. Using an earlier algebraic gas exchange
model (13, 14) the value of G during a normal initial breath of 100% N,0
is estimated to be approximately 5.5 ml/sec. The results for the two tracer
gases are given in Figures 7 and 8 and as anticipated, greater end inspiratory
and end expiratory input gas concentration gradients exist in the acinus for
Nitrous Oxide. Moreover, the actual alveolar concentration level for Nitrous
Oxide is significantly lower than that of Argon for the reason previously
discussed. The simulared single-breath input gas washout tests for these two
tracer gases are given in Figure 9 and demonstrate a significantly greater
alveolar plateau slope for Nitrous Oxide again reflecting conditions within
the lung.
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