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SUMMARY 

A quantitative mathematical examination of contemporary models 
of pulmonary gas transport and mixing is presented. This 
examination involved both a reappraisal of the boundary 
eondititons assumed in these models and an exhaustive account 
of their respective stability and convergence criteria. As 
a result of this examination a revised single series 
compartmental mathematical model, derived from physiological 
data and incorporating revised boundary conditions, is 
developed to allow for a more faithful simulation of pulmonary 
gas transport phenomena. 

The model is used to demonstrate that the expired "phase III 
slope" or “alveolar plateau slope" of a tracer gas may give 
an indication of end expiratory stratified concentration 
differences in the acinus. The model also allows for a 
comparison between rigid and compliant model predictions at 
low tidal ventilations. 

By extending the model to include parallel as well as sertes 
elements it is possible to simulate the combined effects of 
regional and stratified inhomogeneities upon gas mixing 
efficiency in both normal and diseased lungs. The influence 
of regional inequalities in ventilation, regional inequalities 
in diffusion pathway length and regional inequalities in gas 
flux (i.e. gas exchange) are studied in various simulated 
normal and diseased states. In all instances it is shown that 
such regional inequalities accentuate both the end expiratory 
concentration gradients (stratified inhomogeneities) and 
the resulting phase III slope of a respired tracer gas. 

Utilising an alternative and more detailed model of the 
bronchial airways, the predictions of the earlier series 
and series/parallel models are further verified. 
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CHAPTER 1 

INTRODUCTION 

As a complete mathematical description of the respiratory 

system as a whole is probably an impossible task, some attempts 

have been made to analyse it's more important characteristics. 

For example, the present study is concerned with the 

mathematical examination of pulmonary gas transport and mixing, 

with the particular aim of answering one question which has 

given rise to a large number of conflicting results - "is the 

concentration of an inert inspired tracer gas the same in the 

series spaces of the lung at the end of expiration?" 

Further, since quantitative information concerning the 

equilibrium of gas molecules within the terminal airway units 

(or primary lobules) of the human lung is difficult, if not 

impossible, to obtain from experimental data alone, it has 

been necessary to simulate the relevant gas mixing processes 

in lung models replicating the pulmonary airway system in order 

to shed some light on this problem. 

The importance of gaseous diffusion in the process of 

ventilation has been recognised since the early part of the 

century. As early as 1917, Krogh and Lindhard observed that, 

after a single inspiration of a gas, the concentration of the 

gas in the latter part of the subsequent expiration did not



reach a true plateau but continued to decrease generating the 

well-known phase III slope. Krogh and Lindhard contended that, 

while new air is entering the lung, there are always 

longitudinal concentration differences in the terminal 

airway units (stratified inhomogeneities) and that these 

differences are reflected at the mouth during the following 

expiration. 

This view, that stratified inhomogeneity was responsible for 

the phase III slope was accepted generally until Rauwerda 

(1946) published the results of his model investigations 

into the rate of gaseous diffusion. This work was subsidiary 

to his main purpose, which was the determination of cardiac 

output, and his approach to the problem of diffusion was the 

application of analytical mathematical techniques to model 

situations analogous to those thought to occur within the 

lung. 

He came to the conclusion that diffusion in the lungs was 

sufficiently rapid as to exclude a measurable concentration 

gradient within a terminal airways unit one second after the 

establishment of the gaseous interface. He defined a terminal 

airways unit as that structure fed by a terminal bronchiole, 

and hence having a length of 7 mm. As a result of his analysis 

he concluded that the current explanation of the phase III 

slope as representing stratified inhomogeneity was incorrect. 

It was not until some 20 years later that Cumming et al (1966)



criticised Rauwerda's analysis primarily on the assumptions on 

which he based his model. The major criticism being that the 

lung cannot be represented by any closed object (cylinder, 

sphere or cone) 7 mm. in length, because reflection and 

diffusion from both ends makes mixing very rapid. In fact, 

Cumming et al (1966) proposing instead several larger versions 

of Rauwerda's models and employing similar solution techniques 

demonstrated how stratification could be present at the end 

of a breath of normal duration. 

Both of these previous model analyses have been criticised by 

La Force and Lewis (1970) on two grounds. First "if the 

terminal airways are to be treated as a solid figure, the 

appropriate one is not a cone but a golf tee or a thumbtack". 

The second criticism is that "the airways are not a solid 

figure but a succession of dichotomous branches". Thus, 

La Force and Lewis set out to treat a "dichotomously branched 

model"having the lengths and cross-sectional areas proposed by 

the morphometric analysis of Weibel (1963). In addition to 

this model they also considered a model which takes into 

account the additional cross-sectional area contributed by 

the alveoli. 

From a geometric point of view the models considered by La 

Force and Lewis appeared to be more realistic. It is 

interesting to note, however, that their claim that the 

analysis was for a "dichotomously branched" model is of little



practical significance since the mathematics used by La Force 

and Lewis yielded the same results as that for a solid figure 

of the "thumbtack" shape. In fact, they concluded that the 

alveolar concentration stratification disappeared in much less 

than one second and therefore rejected the findings of 

Cumming et al (1966). 

Although these analyses represented the initial steps in 

analysing gas transport in a geometry approaching that of 

the lungs, they were inadequate because the effects of 

convective gas flow were not included. 

The inclusion of convective gas flow simultaneous with 

longitudinal diffusion has recently been considered by several 

groups of investigators (Cumming et al, 1971; Baker et al, 

1974, 1975; Scherer et al, 1972; Pedley 1970; Paiva, 1972, 

1973, 1978; Davidson and Fitzgerald, 1974; Davidson, 1975 

and Pack et al, 1974, 1977). These models improved on the 

earlier models in another important way; washout of gas from 

the lung could be simulated. This was of fundamental importance 

since, given that any stratification which is obtained reflects 

in some way that which actually occurs in the lung, there is 

no way that this will evidence itself in the expired gas 

concentrations. During expiration following an inspiration of 

air, for example, gas comparitively rich in oxygen is convected 

out of the lung, and diffusion continues down existing 

longitudinal concentration gradients; these gradients will



therefore decrease. That is, Krogh and Lindhards explanation 

for the phase III slope requires that the longitudinal 

concentration differences remain significant in the gas during 

expiration by the time it reaches the mouth. 

Although all the above groups of workers have allowed for the 

important concept of convectional transport they have differed 

considerably in its' interpretation within the framework of 

their models. For example, Cumming et al (1971) solved the 

classic static diffusion equation approximating convective gas 

flow by allowing successive quantums of flow to enter their 

Model followed by a diffusion period, (100 mls entered after 

every 150 m/sec diffusion period). Scherer et al {2972)), on 

the other hand, derived a partial differential equation for 

simultaneous convection and diffusion. More recently 

Davidson and Fitzgerald (1974) and Davidson (1975) developed 

a detailed model of a pathway through the branched system of 

the respiratory region, which when matched onto the one- 

dimensional "trumpet" model described by Pedley (1970) for 

the conducting airways, enabled the time course of gas 

concentrations from the mouth to the pulmonary membrane 

during a breath to be predicted. Besides allowing for the 

convective flow of gas and taking some account of the detailed 

anatomical features in the respiratory region, the pathway 

model also facilitated for the expansion of the respiratory 

region during breathing - an important physical process which 

will be dealt with in more detail in subsequent chapters.



The primary intent of these contemporary model simulations was 

to examine the existence of concentration stratification 

(serial gradients) and it's possible contribution to the phase 

III slope. All of the investigators found that significant 

concentration gradients exist within the acinus at the end of 

a normal inspiration but only Cumming et al (1971) observed 

a resulting 'phase III' slope during expiration. 

This thesis serves to reconcile these apparently conflicting 

conclusions by mathematically examining the above contemporary 

model analyses. As a result of the detailed examinations, 

a revised pulmonary gas transport model has been developed 

capable of simulating results in close agreement with those 

obtained from normal subjects. Further, by extending this 

revised model to include parallel as well as series elements 

it has been possible to infer how certain specific types of 

pulmonary defects can affect the gas mixing behaviour in the 

acinar region. By modifying the above revised models 

appropriately, it has also be possible to estimate how the 

effects of molecular exchange across the alveolar-capillary 

membrane influence the approach to gaseous equilibrium. 

Finally, an improved mathematical description of molecular 

gas movements consisting of a detailed model pathway from 

the mouth to the terminal alveolar sacs is presented. The 

model pathway consists of a succession of uniform cylindrical 

pipes varying in dimensions according to the morphometric 

data of Weibel (1963). This improved model has then been used



to examine how micro (rather than macro) changes in both 

airway calibre and regional gas flow-rate influence gas 

equilibrium in the acinus. Results obtained from this new 

model have also proved useful in both testing the predictions 

and verifying the conclusions of the earlier revised models 

discussed above.



CHAPTER 2 

ASSESSMENT OF CONTEMPORARY MODELS 

2.1 The Physical Models 

The best known and widely used quantitative description of the 

pulmonary airway system is the so-called Weibel symmetrical 

‘model A' (Weibel, 1963). Weibel has approximated the 

complex branching pattern of the bronchial tree by 23 

generations of successive dichotomously branching right 

cylindrical airway tubes (Figure 1). Generation O corresponds 

to the trachea and there are 2? (i = 0; LY .... 23) equal 

elements in generation i. Generations 17 to 19 correspond to 

respiratory bronchioles, where walls (lumen) are partially 

alveolated, and generations 20 to 22 to alveolar ducts where 

the entire wall is occupied by alveoli. Alveolar sacs 

(generation 23) end the bronchial tree (see table 1). 

The data from Weibel's ‘model A' is invariably used to 

represent the bronchial tree by combining the dimensions of 

all airways of the same generation number, thereby producing 

the well known "trumpet" (Paiva, 1972) or "thumbtack" 

(La Force and Lewis, 1970) shaped function of total cross- 

sectional area and distance (Figure 2).



With the advent of more powerful morphological measuring 

techniques, a greater insight into the detailed shape of 

the "trumpet" model distal to generation 17 (respiratory 

bronchioles) has been attained (Horsfield et al, 1968, 1971 

and Hansen and Ampaya, 1975) (Figure 3). These improved 

morphometric estimates have been employed more recently to 

examine the influence of changes in the structural dimensions 

of the models on the gas mixing behaviour in the acinus 

(Paiva, 1976 and Mons and Ultman, 1977). 

2.2 The Mechanisms of Pulmonary Gas Transport 
  

The inspired gas enters the lung through the trachea and 

passes through some 23 generations of branching to reach the 

terminal alveolar sacs. The bulk movement of the inspired 

gas is induced by a pressure gradient and is termed 

convection. Superimposed on this bulk flow at all times is 

molecular diffusion due to local concentration gradients. 

The actual transport of the inspired gas is accomplished by 

the coupling of these two mechanisms. If inspired gas is a 

mixture of only two components (as assumed in all contemporary 

models), then the transport of either component may be 

described by the binary convective-diffusion equation. 

OF 
at 

+ (V. Vv) F = DV? F + R (1) 

in which F is the concentration (in, say, mol/litre) of
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the component under consideration in the binary system, V 

is the velocity vector of the bulk flow, V is the vector 

operator "del" (Hildebrand, 1962), D is the diffusion 

coefficient between the two components of the gas mixture 

and R is the sink or source term in the mass balance equation. 

Equation (1) is a general equation in the vector form and is 

valid for any co-ordinate system. The first term on the left 

hand side of this equation gives the transient change of F at 

the position under consideration, the second term represents 

the convection of this component due to local velocity V at 

the same position. 

The first term on the right hand side describes the diffusion 

of the gas under consideration through an indigenous gas 

in the binary system as characterised by D whose value depends 

on the total pressure and the temperature of the mixture, the 

molecular weights of the two species involved and is almost 

independent of the composition of the mixture. The last term 

of the equation represents the rate of production or 

disappearance usually due to chemical reactions. If no 

reactions are involved in the mass transport process, 

R= 0. 

In a healthy subject breathing normally, i.e. 500 cm? 

tidal volume, the inspired air arrives by convection until 

the age or 20° bronchial generation of Weibel's 'model A'
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and attains then, by diffusion the alveolocapillary membrane, 

where it passes into the blood. This is demonstrated more 

precisely in Figure 4 in which characteristic times for 

convection and diffusion have been calculated. The 

ascending curve (t,) represents the time for the inspired 

gases to pass through one generation by convection and the 

descending curve (tq) and equivalent time for the diffusion. 

The first curve rises very steeply because the lung ends in 

a “cul-de-sac", and the second varies with the square of the 

lengths of the different generations. 

2.3 The Governing Equations 

The equations governing the transport (simultaneous convection 

and diffusion) of gas molecules within the bronchial airways 

are obtained by applying Ficks Law and the principal of mass 

balance to an elemental segment of the “trumpet" model shown 

in figure 2 (see Figure 5). 

Diffusional Transport 

The transport of gas molecules due to diffusion at a distance 

‘y' from the portal end of the "trumpet" model may be written 

as: 

GS = ps ee (2)
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where, F = F (y, t) is the fractional input gas concentration 

at distance 'y' from the beginning of the model and at time t 

after the start of the transport process, S = S (y) is the 

total cross-sectional area of the airways at distance 'y' 

from the portal end and D is the binary molecular diffusion 

coefficient of the input gas/residual gas. From equation (2) 

and the conservation of mass, it follows that, 

Se ee (3) 
at dy 

hence, from equations (2) and (3) we obtain 

aa = - _ (D Ss oF 

ot oy oy 
) (4) 

where t is the time. 

In deriving equation (4) all previous investigators have 

explicitly assumed that the tortuosity resulting from branching 

does not affect the form of the overall conservation equation 

for the total gas in the a generation and that any 

concentration gradients perpendicular to the airway axes 

(i.e. radial concentration gradients) can be ignored. The 

latter assumption has been shown to be realistic as judged 

from a detailed survey of gas diffusion in an alveolar duct 

(Paiva, 1974).
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Convectional Transport 

Equation (4) describes the change in the number of gas molecules 

in the elemental segment due to diffusion. This number also 

changes due to the convective airflow which is responsible 

for the change in lung volume. 

tT = PFS ¥v (5) 

where, v is the convective velocity of input gas molecules 

(Sv is the volumetric gas flow rate). Using equations (3) 

and (5) it follows that, 

s => = == (F S v) (6) 
ot oy 

Now the general form of the governing gas transport equation 

(convection-diffusion equation) is obtained by combining the 

equations (4) and (6) such that, 

ae = Ge 22 = 2 as 4) (7) 
ot oy oy oy 

s 

When discussing solutions of equation (7) it is important to 

distinguish between two distinctly different types of model, 

i.e. that of the 'rigid model' and the ‘compliant model'.



Rigid Models 

Workers who have employed rigid type models, i.e. (Pedley, 

1970; Paiva, 1972, 1973 and Baker et al, 1974, 1975) have 

further simplified equation (7) by assuming that, 

Se = Q (constant) (8) 

This last assumption has caused considerable controversy 

particularly as regards the correct boundary conditions to 

employ at the alveolar wall (Scrimshire et al, 1978). 

Compliant Models 

On the otherhand, those workers who have developed compliant 

models such as Scherer et al(1972) and Pack et al (1974,1977) 

have adopted a different approach in that they have assumed 

that the incompressible convective flow into and out of the 

bronchial airways is caused by the expansion and contraction 

of the alveolar regions. In fact, they considered that the 

amount of convection v (y, t) S (y, t) was equal to the total 

volume change in the airways distal to some base point, i.e. 

L 

wy, t) = a a8 dy (9) 
S(y, t) 

y 

and where L is the total length of the model.
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The expansion and contraction of these models is determined 

by the functional relation, 

Sty, t) = 8 (y)[ 1.0 - fly) b(t) | (10) 

which defines the total cross-sectional area at any point 

during the breathing cycle in terms of a "flexibility 

function" f(y), and an oscillatory function of time, b(t). 

Since there is a lack of experimental evidence on the precise 

distribution of lung volume changes (Hughes et al, 1972; 

Marshall and Holden, 1963) the functional form of f(y) must 

remain empirical and the authors assume it to be evenly 

distributed along the length of their models. 

Perhaps the most perplexing problem encountered in developing 

a compliant lung model is in deciding exactly how the model 

should expand and contract. For example, should we apriori 

specify how the volume changes thereby imposing a flow of 

gas into and out of the bronchial airways such as in the 

models of Scherer et al (1972) and Pack et al (1977). Or 

should we impose the flow of gas and allow the model to 

expand and contract in a way that at least agrees 

qualitatively with observed behaviour in vivo as 

experimentally determined by such authors as Hughes et al 

(1972). Since in all instances a flow of gas must be 

imposed in order to solve the pulmonary gas transport equation,



it would appear that the latter approach is the more 

realistic. The mathematical details of such an alternative 

approach will now be presented and compared with the 

corresponding contemporary model developments. 

Hughes et al (1972) have inferred from their somewhat 

extensive experimental findings that lung volume varies 

approximately in proportion to the cube of bronchial 

distance, i.e. 

Vv o 1° (11) 

ae Wes kD? (12) 

Where V is the lung volume and 1 is the bronchial distance. 

Let us now define the following, 

Vy Initial lung volume or functional 

residual capacity (13) 

Ve = Vi Ave (14) 

where, AV is the amount of the tidal volume (Vp) that 

enters the lung model over an infintesimal time interval At. 

Then we may write, 

Vr |= kody 3 (15) 

Vo = k Is° (16)
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and hence, 

V2 + 
le = li ( HW ) (17) 

V2 + 
If we now let a = ( a , then 

ig = (a ly (18) 

S2 = a? § (19) 

Thus, as At + O equations (18) and (19) imply that, 

L(t + At) [a cy] 1 ¢) (20) i 

and, 

S (t + At) [a ce]? s ce) (21) 

Inherent in the derivation of equations (20) and (21) is the 

fact that the trumpet model simultaneously increases/decreases 

it's length whilst the volume expands/contracts respectively. 

However, previous compliant lung models (Scherer et al, 1972 

and Pack et al, 1974, 1977) have only allowed their models to 

expand and contract but have kept their lengths fixed. It will 

be shown later (Chapter 3) that these inconsistencies in the 

physical models can contribute to an artificially rapid approach 

towards gaseous equilibrium within the acinus.



2.4 The Assumed Boundary Conditions 

At this stage the general form of the boundary conditions 

assumed by all previous contemporary workers, employing either 

a ‘rigid’ or a 'compliant' "trumpet" shaped model, shall 

merely be stated and subsequently be assessed in the light of 

a recent reappraisal (Scrimshire et al, 1978). 

DURING INSPIRATION 

  

Htc, t) = 1,0 for t,< t < 4 (22) 

and 

oF = . = = 0.0 for t)< t < 5 (23) 

y=L 

DURING EXPIRATION 

ar Tr 3 = Q.30 for os ex 2 (24) 

y=0. 

and 

3 T 3 = 0.0 for $<teTr (25) 
yeL 

Before assessing these boundary conditions it is advantageous 

to consider the functional form of the total flux equations, 

G (y, t) defined as the combination of both convective and 

diffusive flux contributions, i.e.
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Gly, t) = SvF - DS = (26) 

Rigid Models 

For rigid models we know that from equations (8) and (26) 

that, 

f) 0 "y ! 0 n Gp (yr t) (27) 

Thus, 

a ° ‘ 1 U n o 

© 5 Gp (0, t) (28) 

Since we are assuming that a uniform convective flux (that 

is uniform flow) of gas enters the model, we do not expect any 

concentration differences to exist near the model entrance. 

In other words, we require that 

GR (o, t) = + QF (29) 

y=0 

which implies from equation (28) that 

oF 
Geen = 0.0 y (30) 

y=0
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It is thus intuitively obvious that the input gas concentrations 

at the model entrance must remain constant as defined in 

equation (22). 

Whilst the boundary conditions conventionally assumed for the 

entry portal of all previously proposed models are easily 

understood, and represent a reasonable approximation to reality, 

those specified at the distal end of rigid models are less 

obvious. The intention is to define a situation which ensures 

a zero flux of input gas across the alveolar wall, y = L, thus 

mimicing the behaviour of an insoluable tracer. 

From equation (27) we have that, 

6 (bet) = fo P = Ds (L) 3 (31) 
y= y= 

and on substituting from equations (23) and (25) into equation 

(31) we find, 

G (lL, t) = +QF| , for ty t < 5 (32) 
y=L 

and, 

Gp (ly t) = “S60 R|| | for $<tyt (33) 

y=h
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From a scrutiny of equation (32) it is clear that a finite 

flux of input gas is being continuously drawn out of the 

model across the alveolar wall during inspiration, and from 

equation (33) it can be seen that gas is being similarly 

drawn into the model during expiration. This is not really 

suprising since the conservation of mass dictates that, 

during inspiration in a rigid model, an outflow must occur 

across the alveolar wall and during expiration a reverse inflow 

must occur. Such an artifact in rigid models violates the 

physiological condition of "no flux" at the alveolar wall. 

Now, during expiration the contribution from diffusive mixing 

near the model entrance is negligible in comparison to the 

convective mixing (Paiva, 1972). As a result a relatively 

uniform convective flux of gas out of the model is 

anticipated, which may be stated mathematically as, 

Gp (o, t) = = Rosa (34) 

yao 

During expiration, we have from equation (27) that 

ate ve x oF GR (o, t) = QF DS (0) By (35) 

yao) y=0O 

Substituting from equation (34) into equation (35) gives 

oF ms 
By = Oo (36)
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which also implies that the concentration gradient has 

smoothed out by the time the mouth is reached (Pedley, 1970). 

In fact, equations (33) and (34) state that eventually gas 

is leaving the model at the same rate at which it is being 

withdrawn through the alveolar wall; hence concentration 

gradients would not be expected to persist under such 

conditions. In other words, the artifact caused by the 

violation of the "no-flux" condition at the alveolar wall 

would appear to be primarily responsible for the unrealistically 

rapid approach to gaseous equilibrium. 

Compliant Models 

For the compliant models of Scherer et al (1972) and Pack 

et al (1974, 1977) we have from equations (9) and (26) that 

n o my | | 

L 
a & Wee) = £ J = dy e DS ty (37) 

Y 

Putting y = L in equation (37) yields 

-ps a) , tet <i (38) 

y=L 

tt GL, t) 

In order to ensure that the total flux is zero at the alveolar 

wall, it is further necessary to specify the boundary condition
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By = 0.0, as in rigid models. 

Since some 95 per cent of lung volume is contained within 

the terminal generations of the bronchial tree (a linear 

distance of only 0.6 cms) it is hardly suprising that these 

compliant models again fail to display any stratified 

inhomogeneities in the acinar region because of this 

explicit assumption. On reflection, it is clearly 

inappropriate to specify the boundary conditions in terms 

of a fixed concentration gradient at the alveolar wall, 

since it is the change in concentration gradient immediately 

adjacent to this point that is the main purpose of the 

simulations. 

2.5 Alternative Boundary Conditions 

From the above discussions it is evident that a better 

approximation to the actual conditions within the lungs 

could be made by ensuring a zero flux of gas at the 

alveolar wall whilst simultaneously allowing the concentration 

gradient to be a variable. Applying the former condition, 

i.e.G(L,t) =O to equation (31) yields, 

o= +QF| — vs () = for tig t<¥ (39)
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: oF T Oo= -QOF - DS (L) 3 He ee (40) 

y=L 

oF 6 F 7 | a DS Uw) a. fOr ty < oD) (41) 

y=L y=L 

and, 

Sl - 7 pear | + fr go ke 8 eal 
y=L y=L 

Equations (41) and (42) now represent a true "no-flux" 

condition. 

By adopting boundary conditions identical to those given in 

equations (41) and (42), it can be shown how significant 

concentration gradients (stratified inhomogeneities) can 

exist at end expiration, (a 0.7% difference in input gas 

concentration between the ends of a single compartmental 

model). Further, by suitably modifying this analysis it is 

possible to simulate the corresponding single breath 

nitrogen washout curve having a 'phase III' slope of 3.42% 

in agreement with the experimental findings obtained from 

normal subjects (Mills and Harris, 1965 and Jones, 1967).
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The application of the above revised boundary conditions to 

situations analogous to those thought to occur within the 

lung will be discussed in more detail in chapters 3 and 4. 

2.6 The Numerical Solution Techniques 
  

The numerical solution techniques employed by the contemporary 

workers fall into two main catagories, i.e. those workers who 

have adopted finite difference techniques (Scherer et al 

(1972); Baker et al (1974, 1975); Pack et al (1974, 1977) 

and Scrimshire et al (1978)) and those other workers who have 

resorted to Monte Carlo methods or stochastic simulation 

(Paiva, 1972, 1973 and Jones and Scrimshire, 1976). In order 

to determine which of these methods is the most efficient to 

use when solving the pulmonary gas transport equation, it is 

necessary to compare their respective stability and 

convergence criteria. 

Finite Difference Schemes 

Essentially, two types of finite difference approximation are 

available, i.e. those of the 'explicit' (direct) and the 

‘implicit' (indirect) types. The pertinent characteristics 

of these schemes will now be highlighted and subsequently 

it will be demonstrated how the explicit scheme is more 

efficient than it's implicit counterpart in the numerical 

solution of the pulmonary gas transport equation. Further,



Gn 

a general stability criterion for a 'four point! explicit 

finite difference approximation to parabolic type systems 

is derived which will not only be of use in the present 

situation but also in many other scientific and engineering 

situations analogous to that of the present case. 

Explicit Methods 

The power of the explicit method over that of its implicit 

counterpart is due mainly to the fact that in the former 

case the approximate value at any nodal point i on the 

Coe ice time level may be expressed directly in terms of 

known values on the ao time level (see diagram below). 

ea UNKNOWN 
ted VALUES 

KNOWN ha os Merion 
VALUES Fin,j i Pitl,j 

  

Central (rather than forward or backward) difference 

approximation of derivatives have been employed due mainly 

to their higher order of convergence. In fact, both forward 

and backward differences are accurate to O (Ay) whereas 

central differences are accurate to O (Ay?) as has been 

demonstrated in all standard texts on numerical methods 

(see for example Smith, 1965). Thus, the most efficient
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derivatives may finite difference approximation of explicit 

be summarised as follows:- 

te Peg aes” Fa 3? 
ot (43) 

(At) 

ae ee ey ED= 1,3) 
ay (44) 

2 (Ay) 

pee ay oF eae tical 
(Ay) 2 (45) 

  

4 

On substituting these finite difference approximations into 

equation (7) we obtain the following, 

  

Bag Ales ay gle Pte age Pe 

tak PS 0.4 Ey 1,5) (46) 

where, 

D as, ; 
Ke = 5 (Ay) - - & (47) 

Slay i 
1 

and, 

bt 
= thy)?
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Equation (46) may be further simplified yielding 

1} (Dy = Kj)r Fy +uCL 2 Dry Fj Lig 2. Soe se) 

PD RD hy (49) 

for 2< i<N- 1 and for j Say 27 aseee 

In order to ensure that the solutions of the difference 

equations given in equation (49) converge to the true 

solution of the pulmonary gas transport equation (7), it 

has been necessary to derive an appropriate stability 

criterion. There are basically two main methods of treating 

stability, i.e. the matrix method and the method of Fourier 

Series. We will now illustrate these two methods as applied 

to the system of relations given in equation (49) 

Stability by the Fourier Series method 

This method, developed by von Neumann during World War II, 

was first discussed in detail by O'Brien et al (E952). Xe 

expresses an initial line of errors in terms of a finite 

Fourier series, and considers the growth of a function that 

reduces to this series for t = O by a ‘variables separable' 

method identical with that commonly used for deriving 

analytical solutions of partial differential equations. The
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Fourier series can be formulated in terms of sines or cosines 

but the algebra is easier if the complex exponential form 

is used, i.e. with ‘y ay cos a or 

z bo sin an replaced by the equivalent, 

mae inty , where i = ((-1) andl is the 

interval throughout which the function is defined. 

The idea behind this method is to express the errors at the 

nodal points along t = O between y =O and Nh, by E (ph) = Ep, 

p= 0, 1, ..... N. Then the (N + 1) equations 

A @ f6@nph | (p=.0,7 Ap «ose al) 

are sufficient to determine the (N + 1) unknowns Ao, A; .... 

Ay uniquely, showing that an arbitrary distribution of 

initial errors can be expressed in terms of this complex 

exponential form. As our finite difference equations will 

always be linear, and therefore separate solutions additive, 

we need only consider the propagation of the error due to 

ei fph a singe term, such as . The coefficient An isa 

constant and can be neglected.
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To investigate the propagation of this error as t increases 

it is necessary to find a solution to the finite-difference 

equation which reduces to er hen when t = qk = 0. Assume 

iBy ~«t ifph «qk ifph q 
E = = = Deg e e e e e 3 

«k : 5 
where 3 = e-, and «, in general, is a complex constant. 

This obviously reduces to et fh when q = O. The error will 

not increase as t increases provided 

ieee) 

Letting F = een g qT in equation (49) yields 
Prd 

j = 5 " i ; 
et Bph 3 a = (D- K,) VS er PP 1)h 3 Bo (lL = 2pr) eT PPh | 

+ (0 - Kj) @ erin ae Ce 

for 2: <5 i°< N= J land for 5 .= 2) 27... ae 

Simplifying equation (50) we have that 

Bo = w- ky) ret) 4 (1 - avr) + (D+ K,) x ebhh



  

(§- 1) = - apr sin? (&) + 4x, x sin (By cos (82 (51) 

For stability we require that [3 \< Ly) dee. 

D 
reo 

2 D*sin? (Bh) + K,? cos? (8) Woe) 2 - 2 

Two cases now arise 

Case 1: D>K, and cos? (By = O and then 

from equation (52) we know that, 

x 
x < 3p (53) 

Case 2: D< Ky and sin? By = O and then we have that, 

D 
ES) hee 

2 (54) 2K, 

Whilst the Fourier Series method is very powerful it is also 

rather laborious particularly as regards the present problem. 

Fortunately, there is an alternative and more rigorous 

technique which involves matrix algebra.
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Matrix Method of Stability 

This method expresses the finite-difference equations given 

in equation (49) in matrix form and examines the eigenvalues 

of an associated matrix. Before continuing it is necessary to 

state the following useful theorems on the bounds for 

eigenvalues, the proofs of which are given in appendix I. 

Gerschgorin's Theorem aorsengorin s Theorem 

The modulus of the largest eigenvalue of the Square matrix A 

cannot exceed the largest sum of the moduli of the terms along 
any row or column. 

Brauers Theorem aaauers sheorem 

Let Bis be the sum of the moduli of the terms along the gen 

row excluding the diagonal element agg° Then every 

eigenvalue of A lies inside or on the boundary of at least 

one of the circles | \ - Bon (eS ae 

The finite-difference equations given in equation (49) 

together with the initial and conventional boundary conditions 
given previously, may be written in matrix form as, 

1j+ail = i 
1,j 

24 (D - K2)r (1 - 2pr) (D + Ky)r Poy 

Ee 2pDr (1 - 2pr) Py



Thus, the matrix determining the propagation of error is, 

A= £ 

(D - Kg)r (1 - 2Dr) (D + K2)r 

(D - Ky-1)¥ (1 - 2Dr) (D + Kya) ¥ 

2Dr (2 ="25x) 

Application of Brauer's theorem to this matrix, with 

Gagne (1 - 2Dr) and Ps = 2Dr, 

shows that its eigenvalues } lie on or within the circle 

re (1 - 2pr)| < pr 

Ay = 1- 4Dr, Ao = 1 

and for stability, 

| al See ale 

Hence 

=] <¢ I = 4pr < 1, giving Cx a as previously 

demonstrated using the Fourier Series method (see equation (53)).



Stability of General Explicit Methods 

Consider the problem of solving the more general linear 

parabolic partial differential equation with variable 

coefficients, i.e. 

aF a?r ar es = re ae > at a ay? b dy + CF ot d (55) 

where a, b, c and d are functions of t andy only, and 

with the more general boundary condition 

oF bl 
p By os Gis OEE: = Vv (56) 

where p, q and v are functions of t only. 

Now, there is an important class of simulations to linear 

parabolic equations with variable coefficients for which 

rigorous sufficient conditions for stepwise stability are 

easily obtained (see Hildebrand, 1968). In illustration, let 

us suppose that a 'four-point' formulae has been obtained, 

for equations (55) and (56) above, in the form, 

EG aer a CaP iat 3, 7 Sod Pas 
(57) 

+ Fy 4 + 41,5 

as a consistent simulation, where the coefficients c,G4.9) 

are known functions of i and j}. We suppose that equation (57)



holds for i = 1, 2 ...s5 Neand 4 =) ly 27 «cone The 

propagated error ey 5 due to an initial error distribution 
' 

oy is then specified by the relations, 

i 

tial: = z & 4d) 8s eng (58) 
n=-1 

and, 

e141 = 3; (59) 

If the coefficients C_ c. and C, are non-negative for a? 

all relevant values of i and j, i.e. 

c, (4,5) 20 (ny= jek, 07; 2) (60) 

and if their sum does not exceed unity, 

z Cc. Gag) < 1 (61) 
n=-1 

then we may deduce from equation (58) the relation 

< £ Se (i,j) < max €, : &, . 
isn, 3 | n | itn,j 

FOr 2 = 1, 2) acewew GRO. = ie 2 ic cewns « (62) 

It thus follows that when the conditions (60) and (61) are 

satisfied for all relevant values of i and j, the errors 

propagated by a single line of initial errors can never exceed
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the largest initial error in magnitude, so that the 

formulation is stable in the stepwise sense. While the 

conditions (60), (61) and (62) are sufficient for stepwise 

stability, they may not be necessary, in the sense that the 

formulation may be stable even though one or more of these 

conditions is violated. 

The power of the above general stability criterion can only 

be realised when it is applied to an actual physical problem. 

As it happens, the pulmonary gas transport equation forms an 

ideal "model example" on which to demonstrate it's wide range 

of application. 

On equating coefficients of equation (49) with those of 

equation (57) we have that 

CpG) = be (63) 

e [earn = (i =, 2Dz) (64) 

Cc, (4,3) = (D+ K,) = (65) 

and then using equations (60) and (61) we have 

r< xs ’ Ky < D again as previously derived by the Fourier 

Series method. It is apparent that this general stability 

criterion is superior to both that of the Fourier Series method 

and the matrix method and as such will find wider applications 

in other scientific and engineering fields.



Implicit methods 

One of the most powerful and widely used implicit schemes is 

that of the Crank-Nicolson implicit method. It involves 

e 2 
replacing the derivatives = ’ i by the mean of 

their finite-difference approximations on the aco and 

We? time tevetanaicas 

  

  

oF. (Wied, ja) 7 “i-1, 541) fits ie ‘dey 
ay 2 2 (Ay) 2 (Ay) 

e2r_ 1 Ore ele ate ep ae) 
EZ (ay)? 

(Etienne) + des i,j i513 (67) 

(Ay)? 

In this case the approximate value at the pene node on the 

Cepek Dye time level depends upon values at both the qth and 

Ca 3) th time levels (see diagram). 

Fi-a,j Pid 
  

Soe KNOWN 

aes bese ce! UNKNOWN 

[eer i, jt1 Fitl,j+1 
          

Hence, it will not be possible to solve the resulting 

difference equations directly and therefore an indirect 

technique such as the Gauss elimination method will have to 

be adopted.



If the finite difference approximations given in equations 

(66) and (67) are substituted into the pulmonary gas 

transport equation (7) we obtain 

+ (2 # 2DrjyF, Dt Ki)r e ee era ea i+], 541 

= {D = Ki)r Pi + (2 = eRe) 4 + {D + K,)r ra (68) 

for 2 x No) and for y= WS ea ee 

where Ky has been defined previously in equation (47). 

The solution of the system of difference equations given in 

equation (68) is best achieved by making use of the Gauss 

elimination method which is detailed in appendix II. The 

Crank-Nicolson equations given in equation (68) can be 

written in matrix form as 

ES 17 c 

| 
(2 + 2Dr) = (Db + Ky )e | asa 

“(Di = (Koje Ne 2p) - KO Ks Bae) 

| 

- (D- Ky)r (2 + zor) | Fy, 341 | 

(2 - 2Dr) (D+ K,)r Fy; 

(D = K,)r “(2 - 2br) (D+ K,)= Foj 

| (D - Ky)r (2 = 2Dr) Fy,j      
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(25 = £ My) FS 41 Sa (2 oF ar My) Py (69) 

where 

My = = 2p (Di+ By), 

(D'="K2) = 23 (D + K3) 

(D = Ky) =~ 20. 

Equation (69) can also be written in the form 

(t+ cm) Fy, = [4 > Gr emp] 2, (70) 

and letting B a (21 - ry My) we have 

B Peet = (AT |= B) Ej (72) 

giving 

ar 

FS +1 = (4B = 5) = (72) 

The Crank-Nicolson finite-difference equations will be stable 

when the modulus of every eigenvalue of (4B! - I) does not
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exceed one, that is, when 

In
 

where \ is an eigenvalue of B. 

Equation (73) implies that } > 2. For the matrix B, 

age 2 + 2Dr, max =e = 2Dr, so Brauer's theorem leads 

to, 

A = (2 + 2Dr) < 20Dr, 

or 

= 2Dr <€ X = 2 = 2Dpr < 2Dr 

i.e. 

2 < 2% < 24 4Dr 

proving that the equations are unconditionally stable as 

A’ 2 2 for all values of r. 

Although the Crank-Nicolson finite-difference equations are 

stable for all values of r this does not imply that their 

solution converges rapidly to the actual solution of the 

pulmonary gas transport equation. In fact, due to the 

presence of the convection term in equation (7), the 

Gaussion elimination method, which is necessary in order to 

solve the relevant difference equations, requires large 

(73)
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amounts of computing time in order to attain the same degree 

of accuracy as that achieved with the direct explicit 

method. 

The convergence properties of both the above schemes have 

been dealt with in an exhaustive manner in appendix III. 

Stochastic Simulation Methods 

Stochastic simulation methods have proved to be attractive 

alternatives to the classical approaches in solving the gas 

transport equation. The full theoretical description of 

the stochastic method is given by Cox and Miller (1968) and 

the first use of stochastic methods for solving the gas 

transport equation owes much to Paiva, (1972). 

The essence of this method is to sub-divide the "trumpet" 

model of the bronchial tree into annular sections of length 

Ay as in figure 5b where Ph and qn represent random particle 

movements and a, causes a drift which is equated to gas 

convection. If we now let b, represent the total number of 

particles in the nth annulus and Lee and S, be the gas 

concentration and total cross-sectional area associated with 

this annulus then we know that: 

(74)
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and for a time change of At 

  

  

Ab, = AF, Ay s, (75) 

It should now be clear that the change in the number of 

particles in the ne annulus in time At may be represented 

as 

ab, = b [ (m1) > (m } - bd [mm > @2)] 

+5 | (atl) > (ay | = b [any + int) | (76) 

Using equations (74) and (75) together with the probabilities 

given in figure 5b we find that: 

Ben een = 82 enc ny “Png © enol? 1 SY * Sy Sn aa) 

ns Sat Patl (na i ane) Tony Sn Pa (Pp, © a.) (77) 

which may be rearranged and divided by AyAt to give 

AF s Ss 
no UU nel x n+1 ae 

BE | Sy Brel Past Pitn * Sy Fat] Inti 7 FnPa 

oe == Ss F: a = 1s F a (78) sat nel “nel “ni n+l “n+l “n+l 

If we compare the previous finite difference approximation 

equation (68) with that of equation (78) we find that stability
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is assured provided 

  1 n=1 Ba = 5 q, = a F (Ay)? = 2D At 
n 

(79) 

and 2a, S, (Ay) = Q At 

For a particular flow (Q) equation (79) allows a stochastic 

matrix P to be constructed. The elements of this stochastic 

matrix define the probabilities of gas molecules moving 

between the annular states in time interval At. Thus, if 

Fo is the column vector of concentrations at zero time and 

F, is the corresponding concentrations at time At then 

Py = P Fa (80) 

and similarly the end inspiratory concentrations are given 

by 

m Fo= p@p (81) 

where T =m (At) is the duration of the inspiratory cycle. 

A similar procedure will yield the expiratory concentrations 

with the proviso that the initial expiratory concentrations 

are identical to the end inspiratory gas concentrations as 

previously assumed in all model analyses.



It would appear from equation (81) that the technique of 

stochastic simulation is only a slight variation of the 

explicit finite difference method. However, on comparing 

the stability criteria corresponding to these two schemes 

it is found that this is grossly untrue. The conditions given 

in equation (79) dictate that small step lengths, Ay, and 

hence large computing times are necessary in order to obtain 

a stable and convergent solution. 

DISCUSSION 

The major contributions of the present assessment of 

contemporary models have been to critically examine 

(2) the assumed boundary conditions 

(ii) the assumed physical models 

(iii) the methods of solving the governing pulmonary 

gas transport equations, and 

(iv) The stability and convergence of the methods 

employed in (iii) 

Whilst the earlier diffusion type models have already been 

exhaustively scrutinised by various eminent physiologists 

(Chang and Farhi, 1973; Piper and Schied, 1971 and Cumming, 

1974) the same cannot be said for the more recent 

simultaneous convection-diffusion model analyses. It is 

hoped therefore that the present chapter has made some 

headway in achieving such a general scrutiny.
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CHAPTER 3 

A_REVISED MODEL 

The objective of this chapter is to highlight the crucial 

role played by boundary conditions in influencing the 

simulation of gaseous transport mechanisms in the bronchial 

tree. Initially, results are presented pertaining to the 

rigid trumpet single series compartmental model as given 

in figure 2, however, later in this chapter it is shown 

how these results compare favourably with the corresponding 

compliant model predictions. 

aot The Revised Boundary Conditions 

It is of value to restate the form of the revised boundary 

conditions previously derived in chapter 2 as it will 

subsequently be necessary to examine their stability and 

convergence within the context of a previously adopted 

explicit finite difference numerical solution technique 

(Bush et al, 1977). 

The revised boundary conditions may be written in the form:- 

(82)
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and 
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where t; and T have been defined previously. 

The stability and convergence of the above revised boundary 

conditions will now be examined in two ways firstly by 

recourse to the general stability criterion derived in 

chapter 2 and secondly by the less rigorous Fourier Series 

method. A third method (the matrix method) is dealt with in 

detail in appendix II. 

Using central difference approximations of derivatives, as 

derived earlier, equations (82) and (83) become 

2r(Ay)O — 2Kyr (Ay) O 
+ i = 2Dr- + Li Sao is aS Ne 2Dr F. 

4 N N N,jt+1 

and 

ar(Ay)Q  2Kyr (Ay) O 
up i= 2by = -—s- 

1,3 s DS 
abr &. 

| N N 
Py jt
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N 2 ae oy Sy 

Method 1 

Now, from the general stability conditions derived earlier 

in chapter 2 we know that 

3 
OS yp eo (D ¥ Ay) (87) 

where, 

ee (88) 
N DS 

N 

Since Ay << Dy stability and convergence of the above revised 

boundary conditions is quaranteed by the relations derived 

using the Fourier Series method. 

Method 2 

When the Fourier Series method of stability was applied to 

equations (84) and (85) it was found that stability and 

convergence depended upon the value of r where 

2 [ 4D sin? (Bh) + 2B | 
r= be eee (89) 

= pn2 (6h 2 [8° (2D - By)sin* (>) + By |
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and where 

2Q (D+ Ky) (Ay) 
By = SSS (90) 

DS, 

The expression on the right hand side of equation (89) can be 

re-written in terms of partial fractions in the form, 

1 By (4D - B 

(2D = By) 
w) z 

(2D - By) [ eva - By)sin? (BB) + my | 

Sisxecaiee imeensie sie. FOL) 

For the particular solutions that have so far been given, 

the values of the physical model parameters were as follows:- 

0.02, Ss. W Ay 26,216.0 (see Table ) 
N 

6.25, 06 oS
 wt W 250 cm*/sec 

Substituting these values into the expression for K we 

obtain, 

K = 0.0125 

and hence from equation (90) we know that 

10.5 e wee eet 

Py == 36, 216.0 D (92)
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Since r > 0, the expression for r given in equation (91) 

  

will assume a minimum value when sin (By = 6 

i.e. 

a - i ee Es gai: 
min (20> = By) (2D = By) (4D - By) 

i 
(93) Yr < B. 

min (2D - *) 

When By is very small (as in the present case where 

By = 0.0004), equation (93) becomes identical to the 

relationship derived earlier (see chapter 2). In order to 

test the validity of this stability criterion equation (7) 

was solved with the revised "no-flux" boundary conditions and 

for different values of r (in fact, r= 0.5 and r = 1.0) 

it was found that the solutions were identical to the sixth 

decimal place, thus indicating that both a convergent and 

stable solution was attained. Hence, it is concluded that 

all of the present and subsequent model predictions are free 

from numerical artefacts arising from the use of a non-zero 

concentration gradient at the alveolar wall.



See The Total Flux Equation 

The total flux at any station within the model is made up of 

both convection and diffusion flux contributions and is 

defined as:- 

G (yt) = £0F (y,t) -psi (94) 

From this equation we can derive the gaseous flux per unit 

flow which is defined as 

St) = sryyt) - 2S FF. (95) 
Q Q » 

In order to fully appreciate the physical or physiological 

significance of the above revised boundary conditions it is 

only necessary to compare the flux curves (Pack et al, 1977) 

as plotted in figures 6 and 7. Figure 6 presents results for 

the conventional type rigid model, (Paiva, 1973) and clearly 

demonstrates the sink and source effects occurring during 

inspiration and expiration respectively. However, when the 

revised boundary conditions are applied it is clear from 

figure 7 that these artefacts disappear and that a true 

"no-flux" condition is specified at the alveolar wall, 

y=L, throughout the duration of the respiration cycle.



Concentration/Distance Profiles 

The resulting concentration/distance profiles, corresponding 

to the revised boundary conditions, are shown in figure 8 from 

which it will be noted that not only are there sionificant 

concentration differences in the acinus region at end 

inspiration, but more importantly, these stratifications 

persist during expiration. For example, a 0.7 per cent 

(== 5.32 mm Hg) difference in tracer gas concentration exists 

between the ends of the model at end expiration (see Table 2); 

60 per cent of this difference occurring in the acinus. These 

end expiratory concentration gradient distributions are perhaps 

more readily discernable in relation to a more refined 

concentration scale as indicated in figure 9. 

The Single-Breath Nitrogen Washout Test 

In order to test the validity of the above revised boundary 

conditions and to relate the true "no-flux" conditions to 

know behaviour in vivo it is necessary to modify the above 

analysis to facilitate a simulation of the single breath 

nitrogen washout curve by taking, 

Fp (t) = 0.8 [ ic = F {o; t-- ta) | (96) 

where FE (t) is the variation of the nitrogen concentration 
N 

2 

at the entry of the trachea during the first expiration following 

a single oxygen inspiration.
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The resulting plot of expired nitrogen against volume is 

given in figure 10 and clearly shows the expected phase III 

(or alveolar plateau) slope, (see Table 3). On extrapolating 

this curve to 500 mls expired the observed slope is 

equivalent to 3.42 per cent, which is reminiscent of the 

average value for normals obtained experimentally by Mills 

and Harris (1965) and more recently by Jones (1967). 

The only previous analytical work to show a similar finite 

phase III slope was that of Cumming et al (1971), who 

produced a 1.1 per cent gradient between 750 mls and 

1250 mls expired. These authors, however, did not attempt 

to simulate simultaneous convection and diffusion, but 

allowed successive quantums of flow to enter their model 

followed by a diffusion period. Although this "relaxation" 

technique only provided a crude approximation to the actual 

process of pulmonary gas transport, it did guarantee that no 

gas was lost across the alveolar wall. Moreover, by 

controlling the way in which gas flowed out of their model, 

a continual fall in fractional concentration at the mouth was 

ensured, giving rise to the small alveolar slope. 

3.3 Simulation of the single-breath washout test for 

Gases of Different Diffusivity 

  

The ability of the present model analysis to discriminate 

between the behaviour of insoluble tracer gases of differing 

binary molecular diffusion coefficient will now be examined.



More specifically, it will be shown how gaseous concentration 

differences (stratified inhomogeneities) existing in the acinar 

region can be related to expired concentrations measureable at 

the mouth, 

Figures 11 and 12 show the input gas concentrations within the 

model at end inspiration and end expiration respectively for 

three tracers having molecular diffusion coefficients of 

0.1 cm?/sec, 0.315 cm?/sec and 0.76 cm?/sec corresponding to 

SF,/N,, Ne/N, and He/N, mixtures. As intuitively expected, 

it can be seen that at end inspiration the heavier gas (SF.) 

has penetrated deeper into the model than that of the lighter 

gases (Ne or He), and hence it has a greater dead space volume. 

Furthermore, the heavier gas displays a more marked concentration 

stratification in the acinar regions. The actual concentration 

differences between the ends of the model at end expiration are 

0.42% for He, 0.6% for Ne, and 1.2% for SF,, with the greatest 

gradients occurring over the last 0.5 cms of the model length. 

The resulting concentrations of the three tracer gases being 

expired through the "mouth" end of the model are given in 

figure 13 and show that the heavier the gas, the greater the 

dead space volume and the greater the alveolar plateau slope. 

The plateau slopes for the three tracer gases were calculated 

©n the basis of an extrapolation to 500 mls expired and were 

found to be 2.9% for He, 3.4% for Ne and 4.8% for SF..



The theoretical results presented in figures 12 and 13 show 

that the expired "alveolar plateau" slope of a tracer gas 

does indeed give an indication of end expiratory concentration 

differences in the acinus. Moreover, the magnitude of the 

slope and the degree of stratified inhomogeneity, increase 

as the molecular weight of the input gas increases (that 

is D decreases). Such results concur with the experimental 

findings of previous workers (Georg et al, 1965; Cumming 

et al, 1967; Read, 1966; Power, 1969; Sikand et al, 1967; 

and Kawashiro et al, 1976), who also concluded that gases 

having lower diffusivities should reach equilibrium more 

slowly and that the observed expired concentration differences 

arose as a consequence of similar differences obtaining in 

the more distal regions of the bronchial tree. 

3.4 Simulation of the single-breath washout test for 

gases of different solubility 
  

The particular form of the revised boundary conditions so far 

encountered ensure that none of the tracer gas escapes, or 

indeed is reabsorbed through the alveolar wall. As the 

three gases just considered have very low blood solubilities 

(SFg = 0.0067, Ne = 0.011, He = 0.0098) such an assumption 

would appear to be a reasonably accurate representation. 

Nevertheless, it is interesting to speculate how a finite 

gas flux across the alveolar wall would affect concentration



gradients. Change and Farhi (1973) have already considered 

such a case in qualitative terms, and have suggested that 

the gas exchange is likely to increase any stratified 

inhomogeneities in the acinus. The present model may readily 

be modified to accommodate a finite gas flux across the 

alveolar wall by slightly altering the boundary conditions 

(82) and (83) above. The necessary modification involves 

changing "G = 0" to "G = k", where k is the amount of 

input tracer gas (mls/sec) being taken up by the blood 

flowing in the alveolar capillaries. In fact, equations 

(82) and (83) become 
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The effect of applying three values of G (10, 25 and 50 

mls/sec) to a hypothetical tracer gas having a diffusion 

coefficient of 0.25 cm?/sec (equivalent to 02/N2) is shown 

in figure 14 for end inspiration. It can be seen that the 

higher the G value, the greater the concentration gradients 

for the input gas in the acinar region and the lower the 

alveolar gas concentration. The latter effect is to be



expected since higher values of G are associated with tracers 

having a higher blood solubility hence they are being removed 

from alveolar space at a faster rate by capillary blood. 

Figure 15 gives the ensueing end expiratory concentrations 

within the model. It will be noted that more marked 

stratified inhomogeneities are associated with tracers having 

higher blood solubilities, and that these concentration 

gradients are also reflected at the "mouth" end of the model 

as is evident from figure 16. 

A more realistic illustration of the independent effects of 

input gas solubility on stratified inhomogeneities may be 

given by considering the specific gases Argon and Nitrous 

Oxide because they have very similar diffusion coefficients 

(D = 0.192 for Ar and D = 0.189 for N20). Because the 

solubility of Argon can be considered negligible, a value of 

zero is assumed for G. Nitrous Oxide in contrast has a 

much greater affinity for blood, having a solubility 

coefficient of 0.465. Using an earlier algebraic gas 

exchange model (Scrimshire et al, 1973) the value of G 

during a normal initial breath of 100% N20 is estimated to 

be approximately 5.5 mls/sec. The results for the two tracer 

gases are given in figures 17 and 18 and as anticipated, 

greater end inspiratory and end expiratory input gas 

concentration gradients exist in the acinus for Nitrous Oxide. 

Moreover, the actual alveolar concentration level for Nitrous



Oxide is significantly lower than that for Argon for the 

reason previously discussed. The simulated single-breath 

input gas washout tests for these two tracer gases are 

given in figure 19 and demonstrate a significantly greater 

alveolar plateau slop for Nitrous Oxide again reflecting 

conditions within the lung. 

3.5 Results for Different Volumetric Flow-Rates 
  

As yet, only square wave flow-rates have been imposed in order 

to achieve the required tidal ventilation. Since the precise 

volumetric flow-rate variation within the bronchial airways 

is at present unknown (see Schroter and Sudlow, 1969) it is 

of interest to consider alternative forms of mass movement. 

Furthermore, the consideration of flow-rates other than that 

of the square-wave type will provide an alternative means of 

testing the stability and convergence of the revised boundary 

conditions. 

On resolving equation (7) with both triangular and a 

sinusoidal wave flow-forms and for the same parameter 

specifications as previously considered in figures (6) to 

(19), the results given in figures (20) to (23) were 

obtained. It is clear from these curves that the only 

significant changes, in comparison to those earlier 

simulated results given in figures (6) to (19), are as 

follows:-



(i) The concentration/distance profiles for the 

sinusoidal wave flow-rate oscillate whilst the 

alveolar tracer gas concentration level continually 

increases during inspiration 

(24) The dead space volumes (or phase II) of all tracer 

gases were slightly greater when the triangular 

and sinusoidal flow-rates were considered 

Chi2) The calculated phase III (alveolar plateau) slopes 

of all tracer gases compared well with those obtained 

when a square wave flow-rate was considered. This is 

more readily demonstrated in table 4. 

It is intuitively obvious that the concentration/distance 

profiles in the conducting airways (where mass movement by 

convection is dominant) will change in synchrony with the 

oscillating flow form. However, in the more distal regions 

this effect is negligible. 

The small fluctuations in phase II and phase III values are 

in agreement with the experimental results of Bashoff et 

al (1967) and Jones and Glaister (1969). These workers 

demonstrated that increasing expiratory flow-rate results 

in small decreases in the dead space volume and alveolar 

plateau slope.



3.6 Results for different Pre-inspiratory Lung Volumes 
  

It is well known that the shape of phase II and the slope of 

phase III are critically dependent upon the initial lung 

volume from which the single-breath test was performed 

(Mills and Harris, 1965; Bashoff et al, 1967; Jones, 1967). 

The results presented in figures 24 and 25 are for a range 

of such pre-inspiratory lung volumes, in fact, for lung 

volumes varying between 2.5 litres and 5.5 litres. The 

most important observation to be made concerning these results 

is that both the end expiratory concentration differences and 

the resulting phase III slopes decrease as the pre-inspiratory 

lung volume increases (see Table 5). 

Since there is a significant variation in functional residual 

capacity (FRC) between one normal subject and the next, we 

would not expect to be able to put rigorous bounds on the 

corresponding change in phase III slope. In fact, Mills and 

Harris (1965) have indicated that in normals this phase III 

slope may vary between 2% - 4%. 

It should be noted that the results given in figures 24 and 

25 and Table 5 are typical of those obtained with various 

flow-forms and diffusivities.
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357 Breath-Holding Studies 

In almost all single-breath determinations, whether they be 

obtained from normal or abnormal subjects, a finite breath- 

holding time is unavoidably incurred due mainly to the 

inability of the subject under consideration to perform an 

instantaneous reversal of flow. This is particularly true 

in the case of chronic bronchitics and emphysematics who 

find difficulty in performing even the simplest respiratory 

maneouvres. Thus, it is necessary and interestina to 

speculate how a finite breath-holding time will influence 

both the approach towards gaseous equilibrium and the 

observed phase III slope of a respired tracer gas. 

At the outset it was necessary to modify the existing 

analysis in the following way:- 

INSPIRATION 

Y (eo, t) = 1.0, for €,< t < u (99) 

oF z = +5 ow elie ere eae. = (100)
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BREATH-HOLDING 

      

  

oF af T = = 0.0, for = 5 t < 3, (101) 

y=0 

oF is T 
By = 0.0, for z < T, (102) 

y=L 

EXPIRATION 

oe = 6:0 for T, <t<T (103) ay 20, . < 

=0 

aF 7 Q F yy = Be) ” T <= < 2 (104) 

y=L y=L 

where T, is the duration of breath-holding. 

The boundary conditions holding during breath-holding are 

obtained from equations (82) and (83) with Q iO (ise, 

no convective flow of gas through the "mouth end" of the 

model).
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When the gas transport equation was solved with the above 

boundary conditions and for various breath-holding times, 

the results presented in figures 27, 28 and 29 and table 7 

were obtained. The figures give results corresponding to 

1, 2 and 5 seconds breath-holding respectively. As breath- 

holding proceeds two major effects were noticed, i.e. 

(i) The appearance of the phase II (concentration 

transition) occurred earlier indicating a 

significant reduction in dead space volume 

(ii) The slope of phase III (alveolar plateau) was 

significantly reduced. 

These two “effects" may be more readily examined by 

reference to the results in Table 7. 

The above two observations have already been verified 

experimentally by Georg et al (1965), Cumming et al (1967) 

and Power (1969). Further, the actual concentration points 

detailed in table 7 can be related to similar experimentally 

tabulated results of Cumming et al (1967). 

The reasons for the rapid decrease in phase II and phase III 

values are two-fold:- 

(a) During breath-holding the dead space gas and 

the alveolar gas will have time to reach an
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equilibrium concentration and therefore any 

stratified inhomogeneities existing in the 

acinus will have been abolished. 

(b) Since Q =O during breath-holding the alveolar 

wall boundary condition reduces to the 

conventionally assumed condition as given in 

equation (102). Thus, all previous arguments 

apply suggesting that any concentration 

gradients will be eventually obliterated. 

3.8 Compliant Model Predictions 

The results presented so far have been based upon a rigid 

physical model, hence it was necessary to impose a gaseous 

flow to simulate inspiration and expiration. In reality, 

breathing is brought about by the expansion and contraction 

of the respiratory regions of the lung, however, in order to 

follow these movements exactly it would be necessary to solve 

the appropriate hydrodynamic equations. Such additional 

complexity is considered unnecessary in view of the fact 

that the results obtained from variable volume models 

(for example, Pack et al, 1977) do not differ significantly 

from those obtained from rigid models at low tidal volumes 

(for example, Paiva, 1973) which are similar to that so far 

considered in this chapter. However, when it becomes



necessary to simulate larger tidal ventilations some account 

must be taken of lung expansion (Davidson, 1975, 1977). 

The geometrical boundaries of the trumpet model were allowed 

to expand and contract in accordance with the relation 

derived by Hughes et al (1972), i.e. lung volume varied 

proportional to the cube of the bronchial distance. On 

solving the pulmonary gas transport equation, whilst 

simultaneously allowing for such lung expansion the results 

given in figure 30 and table 8 were obtained. These results 

are for a square-wave flow rate (0 = 250 cm*/sec) and a tidal 

volume of 500 mls. Clearly, there is very good agreement 

between the "rigid" and "compliant" model predictions for 

these specific values of the respiratory parameters. The 

only effect of considering rigid rather than variable volume 

models (at low tidal volume) would appear to be that input 

gas concentrations are slightly underestimated a point 

also noted by Paiva (1978). 

Perhaps the greatest significance to the clinician is the 

ability of the variable volume model to allow for larger 

tidal ventilations and subsequent larger expirations. This 

is an important improvement in the model development since 

Bashoff et al (1967) have indicated that there are 

basically two main forms of the single-breath test, i.e.



(i) Inspiration of a small tidal volume (Vn % 500 mls) 

from the level of F.R.C. and subsequent expiration 

to the resting expiratory level 

(ii) Inspiration of a larger tidal volume (Vip ® 1000 mls) 

from the level of F.R.C. and then expiration of 

about 2 litres. 

The latter form (ii) is usually used in estimating the slope 

of the phase III. In fact, the value taken for this slope is 

the difference in expired gas concentration between 750 mls 

and 1,250 mls expired. 

On carrying out a single-breath nitrogen washout test 

identical to that described in (ii) above, the results 

demonstrated in figure 31 and table 9 were obtained. As 

expected, the longer duration of the expiratory cycle 

reduces both the end expiratory concentration stratifications 

and the phase III slope. Table 9 gives a detailed description 

of these concentration differences.
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CHAPTER 4 

REGIONAL DIFFERENCES 

One has only got to consider the complex branching pattern of 

the bronchial airways (Weibel, Model B, 1963; Horsfield and 

Cumming, 1968 and Horsfield et al, 1971) to realise the 

limitations of the single series compartmental models in 

providing a realistic simulation of molecular gas movements. 

This situation is even more pronounced in many cases of chronic 

obstructive lung disease (C.0.L.D.) (Horsfield et al, 1973 and 

Demedts et al, 1976) and as such there is a need for an 

improved physical model representation. 

Further, in many forms of pulmonary disease, the pattern of 

regional ventilation and blood flow distributions may be greatly 

altered from the normal. For example, investigations using Xe! 33 

as a tracer gas have shown very considerable regional abnormalities 

of function in vivo, as revealed by impairment of both ventilation 

and perfusion, in numerous eubiects diagonsed as having 

pulmonary emphysema. In certain subjects it has been clearly 

demonstrated that most of the tidal volume goes to zones, or 

possibly lobes, of the lung in which the structure is relatively 

preserved, but which represent only a small fraction of the total 

lung volume (Bentivoglio et al, 1963). The latter findings 

again emphasise the need for an improved model description.



  

= 67 = 

oF A_REGIONAL MODEL 

The basic form of such an improved physical model consists of 

an upper airways compartment in series with two parallel 

compartments as shown diagramatically in figure 28. The 

choice of two parallel compartments was taken solely for ease 

of illustration, but the model can be extended to include any 

number of such parallel compartments vide infra. 

Regional Inhomogeneities 

In order to assess the effects of regional inhomogeneities 

upon the efficiency of pulmonary gas transport and mixing it 

is necessary to specify which particular model parameters are 

varying and exactly what type of inhomogeneity they are 

simulating. In fact, only three specific types of regional 

inhomogeneity have been considered. 

(a) Regional inequalities of volumetric flow-rate 

(b) Regional variations in compartmental volume 

(c) Regional differences in diffusion pathway length 

In cases (a) and (b), only single parameter variations occur, 

whereas, in case (c) multiple variations are necessary. For 

the changes required for type (c) it was found neccesary to 

utilise the empirical relationship derived by Hughes et al 

(1972) which states that lung volume varies proportional to the 

cube of the bronchial length.
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Let Q (i = 1, 2) be the regional volumetric flow-rates down 

the parallel compartments and vy (i = 1, 2) their corresponding 

volumes, then in mathematical terms the above three types of 

regional inhomogeneity may be 

(a) Q. F Q and 

(b) Q% = and 

(c) Vv, # #V2 and 

stated in the form:- 

1; + I, “Where 1, 

are the lengths of the parallel compartments. 

Since, 

V foe 915 

i.e. V = k 13 

we may now write 

V, = kil,? aK PM: 

and from (iii) we can derive 

1 

Vo > 
1, = 1, ae 

which implies that, 

So = a? S; 

and l» 

(i) 

(ii) 

(iii) 

(iv) 

(v)
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Further, in each of cases (a), (b) and (c) the parallel 

compartments expand and contract to accommodate their relative 

inspired and expired fractions of the total tidal volume. In 

order to simulate the compliant characteristics of these 

parallel compartments, it was again necessary to make recourse 

to the empirical findings of Hughes et al (1972). 

Thus, at time t = O the cross-sectional area/distance 

distributions for the parallel compartments are given by, 

Sy een Sa (et) cet 2 (vi) 

where the data for the S; (i 1,2) have been obtained from a 

modified version of Weibel's Model A; ve is the distance 

variable corresponding to compartment i (i = 1,2) respectively. 

During the subsequent time interval At, Q; At (4 = 1,2) of 

gas enters these parallel compartments causing an increase in 

volume (and hence also S,) according to the relations previously 

outlined in (iv) and (v) above, i.e. 

S, (yjn t+ st) = a,? 8; (yy; th; i = 1,2 (vii) 

where, 

a, = Joh wee »i=t, 2 (viii)
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Equations (vii) and (viii) yield an efficient itteration 

procedure governing the expansion and subsequent contraction 

of the parallel compartments (i.e. respiratory regions). It 

is important to note that coupled with equations (vii) and 

(viii) we also have, 

yy, (t + dt) = Op¥y oe t= U2 (ix) 

indicating that the diffusion pathway lengths are continually 

increasing during inspiration and similarly decreasing during 

expiration in line with the suggestion proposed by Chang and 

Farhi (1973). However, it should also be noted that similar 

Solutions to the governing gas transport equations are obtained 

When equation (x) is employed, 

y, (€ + At) ye (ee tee Dee (x) 

4.2 THE GOVERNING EQUATIONS 

The equations governing the transport of gaseous species into 

and out of the compliant model illustrated in figure 32 may 

be written as:- 

  

mi oF a a Py 1 as, oF, Q; oF, 
= aD ae ee ee (105) 

at ay,? Sy Yq ay ey ae 

(i1.= 0, 1 and 2)



ef 

and i = O refers to the upper airways compartment; Fy = Fy (y,,t) 

is the fractional concentration of input tracer gas at distance 

¥ from the portal end of compartment i and at time t after the 

start of the respiratory maneouvre; Sy 5; S; (y,7t) is the total 

cross-sectional area/distance distribution relative to 

compartment i and at time t during its expansion/contraction 

cycle; Ys is the distance variable assocated with compartment 

i and D is the binary molecular diffusion coefficient between 

the inspired and residual gases. 

The solution of equation (105) in the model configuration shown 

in figure (32) requires the specification of appropriate initial 

and boundary conditions. 

4.3 BOUNDARY CONDITIONS 

The initial and boundary conditions employed in the present 

chapter are almost identical to those used in the last chapter, 

the only difference being that in this chapter it is necessary 

to specify a further internal boundary condition at the junction 

of the series and parallel compartments (branch point A in 

figure (32) ).
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Inspiratory Cycle 

We assume a constant flow of input gas through the "mouth end" 

of the model which implies that, 

B. (0, £) = 1.0 fer ty < = 
° 

(106) In
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At point A we must have a continuity relationship which implies 

that, 

ES i z Poa = Pia A i = 1,2 forty « t < 3 (LOT) 

At the alveolar walls of the parallel compartments we again 

must impose "zero flux" conditions when considering the 

transport of insoluble tracer gases. The total flux of gas 

at any point in the model and at time t is given by:- 

e oF, 
G; (yar t) = Qs Fy (yyrt) - DS; Wy, pot = 12 (108) 

(O < t < T) 

Putting Gy (Ly, t) =0, i=1,2 (where Ly refers to the length 

of compartment i) gives, 

ey Q, Pi T = ae 1 ty SE < = (109) oY; DS; @y) < <2 

y.= Yr by. i=1,2 
to e
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Expiratory Cycle 

During expiration the contribution from diffusive mixing at the 

portal end of the model is considered negligible in comparison 

to the convective mixing (Paiva, 1972), hence we have that, 

oF 
wel = 0 for F<txT (110) 
vo 2 

y=0 

The "no flux" conditions at the alveolar walls, yy; again 

yields from (108) above:- 

oF, Q, F 
i f i ze eae ; =<t<-? (111) dy; D Sy (L;) 2 

Yuh Yee ee hee 

The single most important boundary condition relating the 

influence of regional inequalities to the corresponding expired 

gas concentrations at the mouth, is the condition holding at 

branch point A (see figure 32). In fact, this condition assumes 

the form, 
2 

: . x Q, F 
5 z (Qi Fin + Q2F2,) = ea i “ih 

on (Qi + Qo) : Q. vee) 

bv.
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and in the general case of n parallel compartments we 

obviously would have, 

eh Su ta 
OA n . (1.13) 

$ 

It is through the interaction of equations (111) and (112) 

that the combined effects of regional and stratified 

inhomogeneities can be studied with the present lung model. 

4.4 RESULTS FOR CONSTANT DIFFUSION PATHWAY LENGTHS 
  

The solutions to equation (105) for constant diffusion pathway 

lengths (i.e. yi = y2) and for the prescribed initial and 

boundary conditions are presented in figures (33) and (34). 

In each case, results are given for two positions of the nodal 

branch point A, that is in generation 17 (solid line) and 

generation 14 (dotted line), however, other positions may 

also be considered as will be discussed later. 

It is clear from table lOand figures 33 (a to c) that the higher 

the regional flow differences, the greater the end expiratory 

acinar concentration gradients irrespective of the position of 

the nodal point A. The largest concentration gradients
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(stratified inhomogeneities) occurrred when point A was in the 

region of the respiratory bronchioles (see table 10) in agree- 

ment with the current trend of experimental predictions (Engel 

et al, 1973; Sikand et al, 1966, 1976 and Kawashiro et al, 1976). 

It should also be noted that in the regions adjacent to the 

branch point A significant ‘local' stratification is present 

and that this will also contribute to the subsequent expired 

concentration curve at the mouth. On closer examination of 

table lo and figures 33 (d to f) it is found that similar 

tnereases in concentration gradient are observed for constant 

regional flows e, (i = 1,2), consequent upon decreases in the 

Yegional compartmental volumes V i=1,2). Such results were yf 

also noted by Young and Martin (1966) and Tsunoda et al (1972). 

The sensitivity of the single-breath nitrogen washout curve to 

such independent Oo} (i = 1,2) and vy (i = 1,2) variations is 

clearly demonstrated in figures 34 (a to f) and a detailed 

breakdown of the results can be found in table 10. Essentially 

three observations are noted on closely scrutinishing these 

curves, i.e. 

(9) the phase III slope (alveolar plateau) increases as 

either the regional flow-differences increase or as 

the regional volumes vy (i = 1,2) decrease (when the 

Qa (i = 1,2) remain constant). 

Gy) the steeper phase III slopes occur when nodal point 

A is situated in the more distal airways reflecting 

the corresponding steeper concentration gradients.
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(iii) the phase III (concentration transition) appears 

later (reflecting a greater dead space volume) when 

nodal point A is situated in the more distal airways. 

The first observation above indicates that regional 

inequalities in ventilation produce the increased end 

expiratory concentration gradients (stratified inhomogeneities) 

and correspondingly increased phase III slopes. Hence, even 

without considering the added effects of diffusion pathway 

length variation we have already established useful criterion 

for distinguishing between the gas mixing behaviour in 

diseased lungs. 

4.5 RESULTS FOR VARIABLE DIFFUSION PATHWAY LENGTHS 

As already mentioned in the opening paragraph of this chapter, 

the structure of the human bronchial tree is certainly not 

symmetrical as assumed in Weibel's Model A (1963) but 

significant regional differences in diffusion pathway length 

Sccur within both the normal and diseased lungs. For example, 

Horsfield and Cumming (1968) and Horsfield et al (1971) have 

concluded from their somewhat extensive morphometric analyses 

that within the respiratory lobules the distribution of path- 

way lengths varies from 2 mm to 9 mm and on extrapolating this 

result to the lung as a whole, they have suggested that total 

pathway lengths may vary as much as from 7.5 cms to 21.5 cms.
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The implications of the above findings upon the efficiency of 

pulmonary gas transport and mixing have not, as yet, been 

considered due mainly to the nature of the previously assumed 

physical models of the pulmonary airways (i.e. the single 

series 'trumpet' or 'thumbtack' models). What is really 

required is a lung model that will allow for regional 

differences in diffusion pathway length and lung volume 

simultaneous with regional inequalities in ventilation 

distribution, such as that outlined in figure 32. 

The results illustrated in figures 35 (a to f) show how the 

added effect of variable diffusion pathway lengths influence 

gas mixing efficiency in the acinus. It is clear that in all 

cases considered, there are significantly greater stratified 

concentration differences when the diffusion pathway length is 

varied simultaneous with increased regional flow-differences. 

The magnitude of such differences can be computed from tables 

10 and 1] and in some cases amount to as much as a 50% increase 

in gradient, irrespective of the position of the nodal point A. 

The degree of the concentration gradient adjacent to the nodal 

point A has also increased in the present case (i.e. ‘local’ 

stratification has increased) and the extent of these increases 

may also be judged by scrutinising the corresponding single- 

breath nitrogen washout curvesas given in figures 36 (a to f). 

On comparing the single-breath nitrogen washout curves given 

in figures 34 (a to f) and 36 (a to f) (corresponding to
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‘constant' and 'variable' diffusion pathway lengths, 

respectively) one cannot fail to observe the following 

major differences:- 

(a) The phase III slopes presented in figures 36 (a to f) 

are substantially greater than their corresponding 

counterparts given in figures 34 (a to f) (see table 11), 

reflecting the already observed greater differences in 

end expiratory concentration gradient. 

(b) In all cases considered, the appearance of the 

concentration transition (phase II) is slightly delayed 

in the latter curves (figures 36 (a to f) ) indicating 

that transit time distribution may well influence dead 

space determination in patients with chronic lung 

disorders. 

4.6 SIMULATION OF "AVERAGE CASE OF EMPHYSEMA" 

A further group of simulations were carried out in order to 

demonstrate how the present regional model could predict 

results in agreement with known experimental findings. More 

specifically, the "average case of emphysema" as quoted by 

Briscoe and Cournand (1959) was analysed. Briscoe and 

Cournand (1959) have indicated that in an "average case of 

emphysema" 66 per cent of.the lung volume is ventilated by 

only 10 per cent of the alveolar ventilation which may readily
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be incorporated within the framework of the existing lung 

model analysis by taking V;:V2 = 1:2 with 01:02 = 9:1. 

The actual parameter variations considered are detailed in 

table 12 where once again both constant and variable 

diffusion pathway lengths have been considered. 

The results given in figures 37 (a to £) and 39 (a to f) 

again demonstrates those features already observed in 

figures 33 (a to f) and 35 (a to f) (i.e. tnereased end 

expiratory stratifications for corresponding increases 

in the regional flow differences. On singling out those 

average cases of emphysema as discusssed above, it is found 

from table 12 that these end expiratory concentration 

stratifications may vary between 1.25% and 3.0%. 

The single-breath nitrogen washout curves corresponding to 

this latter group of simulations are presented in figures 

38 (a to f) and 40 (a to f) and clearly demonstrate those 

features previously noted in (a) and (b) above (see 

section 4.5). On scrutinising table 12 it is found that in 

those cases in which 66% of the lung volume is ventilated 

by 90% of the inspired tidal volume, the phase III slope 

varies between 7.74% and 13.47% which compares favourably 

with known experimental findings obtained from patients 

with C.O.L.D. (chronic obstructive lung disease) and pulmonary 

emphysema by Demedts et al (1976). In fact, Demedts et 

al (1976) have indicated that in patients with severe forms 

of C.0O.L.D. with emphysema (group D in their paper)the phase 

III slope varies between 8.0% and 13.0% in close agreement with 

the present theoretical pre“ictions.
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4.7 Simulation of the Single-Breath Washout Test 
  

for gases of different diffusivity 
  

It is of interest to compare the present 'regional' model 

predictions with the corresponding single 'series' compartmental 

model simulations given in the last chapter. In particular, 

attention will be focused on the relations between the end 

expiratory acinar input gas concentration gradients and the 

subsequent expired concentrations measured at the mouth. 

Figures 41 (a to f) and 42 (a to £) show the input gas 

concentrations within the present ‘regional’ model (for the 

same regional inhomogeneities as considered in section 4.5) 

at end expiration for three tracers having molecular diffusion 

coefficients of 0.1 cm*/sec, 0.315 cm?/sec and 0.76 cm?/sec 

corresponding to SF¢/N2, Ne/N2 and He/N2 mixtures. As 

intuitively expected, it can be seen that in each case the 

heavier gas displays a more marked concentration stratification 

in the acinus reaffirming the results already given in section 

3.3. The actual magnitudes of these concentration differences 

can be found by reference to table 13. 

The resulting concentrations of the three tracer gases being 

expired through the "mouth" end of the present regional model 

are given in figures 43 (a to f) and 44 (a to f) and show that 

(independent of the type of regional inequality considered) 

the heavier the gas the greater the dead space volume and 

the greater the phase III slope (see table 13). Again, these
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latter results bear out the predictions given previously 

in chapter 3 (section 3.3). 

Apart from the major observations detailed above, it is also 

important to note the following 'secondary features' arising 

from a close inspection of all curves given-in figures 41 

to 44(a to f):- 

(i) 

(ii) 

(idd) 

(iv) 

For all the tracer gases considered the greatest 

concentration gradients always occur when nodal 

point A is situated in the more distal airways 

(respiratory bronchioles) 

For all the tracer gases considered more marked 

concentration differences were observed when the 

diffusion pathway lengths varied simultaneous 

with the regional inequalities in flow and volume 

The ‘local' stratification adjacent to branch point 

A was in all cases greatest for the heaviest tracer 

gas 

The phase III slopes of all tracer gases considered 

were steepest when the diffusion pathway lengths 

varied simultaneously with the regional inequalities 

in flow and volume reflecting the corresponding 

steeper concentration gradients noted in (ii) above.
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(v) In all cases considered there is greatest delay in 

the appearance of the concentration transition 

(phase II) for the heaviest tracer gas. 

4.8 Simulation of the Single Breath Washout Test for 

gases of different Solubility 

In order to compare the 'serties' and 'parallel' model 

simulations for the transport and mixing of gases of 

different solubility it is necessary to formulate appropriate 

boundary conditions (similar to those specified in equations 

(96) and (97) which will allow for a specific finite flux 

of gas to be taken up by the blood flowing in the alveolar 

capillaries. Clearly, these modified boundary conditions 

will assume the following form:- 

Zi - i t aot = + + - — (114) 
oy, D Sy (L;) D Sj (L;) 

Eleas ¥yehy 

for Oc tea, i= 1,2 

and, 

ms an ea ret ° = rend wats) Y4 iY gy ag 
yah; Vr 

T 
for o3< te 7, i= 1,2
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where, 

GEG + G2 (116) 

The solutions to equation (105) corresponding to the above 

boundary conditions (i.e. equations (114) and (115) ), and 

for various combinations of Q, and G; (i = 1,2) are presented 

in figures 45 (a to f) and 46 (a to f). These figures are 

for a hypothetical gas having a diffusion coefficient of 

0.25 cm?/sec (equivalent to 02/N2). The actual values of 

G; (i = 1,2) and Q% (i = 1,2) considered can be found by 

reference to table 15. On examining these curves it is clear 

that the higher the Gy (i = 1,2) value, the greater the 

steeper the concentration gradients for the input gas in the 

acinus and the lower the alveolar gas concentration level in 

agreement with the results already presented in figure 14 

(chapter 3). It should again be noted that apart from these 

main observations, the 'secondary features' outlined in the 

last section reapply in the case of the present simulations 

(i.e. points (1) to (v) ). 

On modifying the existing 'regional' model analysis slightly 

to allow for the simulation of the tracer gases Argon and 

Nitrous Oxide, the results presented in figures 47 (a to f) 

and 48(a to f) were obtained. As anticipated, greater end 

expiratory input gas concentration gradients exist in the acinus 

for Nitrous Oxide (this is more readily apparent from figures
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47 (a to £)). Similarly, the single-breath input gas washout 

tests for these two tracer gases given in figures 48 (a to f) 

demonstrate a significantly greater phase III slope for 

Nitrous Oxide again reflecting conditions within the lung and 

concurring with the results given in section 3.4 (last chapter). 

4.9 Breath-Holding Studies 

It has already been mentioned in section 3.7 that chronic 

bronchitics and emphysematics find difficulty in performing 

even the simplest routine respiratory maneouvres. By means 

of the existing 'regional' lung model analysis, it is possible 

to predict how a finite breath-holding time will interfere 

with the combined effects of regional and stratified 

inhomogeneities upon both the rate of approach towards gaseous 

equilibrium within the acinus and the phase III slope of the 

resulting single-breath nitrogen washout curves. 

In order to allow for a finite breath-holding time the 

following modifications to the model equations were necessary. 

INSPIRATION 

F. (0, t) = 1.0 be bare (117) ° , . , 2 Lf 2 

F,=F t ~ <= (118) ik “oa.” aS am Og
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EXPIRATION 

(120) 

(121) 

(122) 

(123)
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(QiFiy i* Q2F2,) r e poe pn < © ¢€ * (124) 
on (Qi + Q2) 2 

oF, Q, F, 
a e§ 1 alae epee ne pas © ts PT (125) BY; DS, (,) B 

oa of i=1,2 
yh yh 

On carrying out the above modifications and resolving the 

governing pulmonary gas transport equation (105), the results 

given in figures 49 (a to f) through to 54 (a to f) (fora 

value of D = 0.25 cm?/sec equivalent to 0O,/N2) were obtained. 

The values assumed by the physical model parameters for these 

latter simulations are detailed in table 16 along with a 

quantitative assessment of the actual predicted concentration 

gradients. 

One may summarise ali the results presented in figures 49 to 

54 by noting the following three important features:- 

(a) For all cases considered, the end expiratory input gas 

concentration gradients decrease as the duration of 

breath-holding increases
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(b) For all the cases considered in (a) above, the 

corresponding phase III slopes of the single-breath 

nitrogen washout curves similarly decrease as the 

time of breath-holding increases 

(c) As breath-holding time increases the concentration 

transition (phase II) appears earlier in the expirate 

reflecting a significant reduetton in dead space 

volume 

All of the above three features are more marked in the present 

cases (i.e. when large regional inequalities in flow and 

volume are present), than in the series model simulations 

presented in the last chapter (section 3.7). It should 

also be borne in mind that the features noted in (a), (b) 

and (c) above are common to all tracer gases considered 

(i.e. SF,, Ne and He). 

4.10 Cardiogenic Gas Mixing Effects 

Engel et al (1973) have demonstrated marked differences in 

gas mixing behaviour between in vitro and post mortem studies 

on canine lungs. In fact, they have suggested that the effects 

of heartbeat may be such as to enhance the approach towards 

gaseous equilibrium, amounting to as much as a four-fold 

increase in the value of the molecular diffusion coefficient 

in certain regional lung areas. This type of empirical
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finding is well suited to simulation within the framework 

lung model analysis, the revised of the existing 'regional' 

governing equation now being:- 

oF. o7F, : 
ee a Q, oF, 

at oa Sy ay ee (126) a i Ss; oy; 

do=d, 2 

where all model parameters are as described previously and 

(i = 1,2) are the regional variations in the molecular By 
diffusion coefficient due to the action of the heart. 

The form of the revised boundary conditions at the alveolar 

walls Y, = Ly (i = 1,2) become:- 

The solutions to eugation (105) for various values of Dy, 

(i = 1,2) are given in figures 55 (a to f£) and Q Ml and Ss, 

56 (a to f) and the detailed concentration values are also 

Clearly, the major factors to emerge given in table 17, 

(127) 

from this latter group of model simulations may be detailed 

in the following manner:-



(i) 

(ii) 

(da) 
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the ‘overall' concentration stratification in the 

acinus is significantly reduced when the effects 

of cardiogenic gas mixing are involved. 

In line with (i) the phase III slopes have also 

been reduced indicating that there is some sort 

of direct relationship between the end expiratory 

input gas concentrations and the subsequent expired 

concentration curves at the mouth. 

The concentration transition (phase II) appears 

slightly later for the case of the present 

simulations in contrast to the larger dead space 

volume variations observed for breath-holding 

studies.
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4.11 DISCUSSION 

The major contribution of the present chapter has been to 

present an exhaustive study of the combined effects of regional 

and stratified inhomogeneities within the context of a 

“multiple pathway" pulmonary gas transport model. That this 

"multiple pathway" model was a natural and necessary extension 

of the single series compartmental model analyses becomes 

self evident on perusing through any of the current review 

papers in the literature (Puper and Scheid, 1971; Cumming, 

1974 and Pedley, 1977). 

In essence, the most important finding of this chapter has 

been to show how, under a wide range of simulatory conditions, 

regional inequalities in ventilation and volume can increase 

stgniftieantly both the end expiratory acinar concentration 

gradients and the resulting phase III slopes of a tracer gas. 

Further, on examining the results in more detail, it has also 

been possible to differentiate between the effects of, on the 

one hand geometric (diffusion pathway length) variations, and 

On the other hand, regional inequalities in volumetric gas 

flow-rate, upon the efficiency of gas transport and mixing 

within the acinus. This distinet difference between 'geometric' 

and 'ventilatory' inequalities is most important to a full 

understanding of how gas mixes within the more distal regions 

of diseased lungs, The initial hypotheses put forward by 

Horsfield and Cumming (1967, 1968) and Cumming (1974) concerning



the influence of assymmetrical bronchial tree characteristics 

upon the gas mixing process have been put on a quantitative 

basis in this chapter and subsequently shown to have a 

substantial '‘effect'. 

Finally, whilst the experimental evidence purporting to 

Support the existence of sequential or asynchronous lung 

emptying is well documented in the literature (Fowler, 

1949; Roos et al, 1955; Sandquist et al, 1959; Shephard, 

1956; Young et al, 1963, 1966; Read, 1966; Sikand et al, 

1966; Milic Emili et al, 1966; Dollfuss et al, 1967; Engel et al, 1979, 

Mills and Harris, 1965; Bashoff et al, 1967; Hughes et al, 

1968; Sutherland et al, 1968; Robertson et al, 1969 

and Tsunodo et al, 1972), the present chapter has demonstrated 

that, nevertheless, significant phase III slopes can be 

produced without recourse to such temporal lung emptying 

patterns.
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CHAPTER 5 

A_BRANCHED "PIPE" MODEL 

Traditionally, models used to simulate gas transport within 

the lung have been based on a single one-dimensional form 

which represents the bronchial tree such as those presented 

in chapters 3 and 4 of this thesis. Now, although these 

“trumpet" type models can lead to a reasonably accurate 

description of molecular gas movements within a regular 

monotonically increasing branching airway system, they are 

nevertheless, deficient in that they are unable to account 

for sudden abrupt changes in terminal airways structure as 

indicated, for example, in the experimental findings of 

Hansen and Ampaya (1975). This deficiency is due mainly to 

the fact that the previous "trumpet" models were not 

considering a particular airway but rather a combination of 

all such airways leading in some cases to an unrealistic 

physical situation (see figure 57). 

The obvious way to overcome this problem is to consider a 

particular pathway through the bronchial airways resembling 

as close as possible the actual geometric configuration, 

This is not an easy task as the tortuosity of the airways 

causes complex flow formations within each particular 

pathway (Schroter and Sudlow, 1969). It has therefore been
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necessary to ignore the tortuosity of the actual airway 

system and consider instead a direct pathway from the mouth 

to the distal air sacs (figure 58). 

It is the intention of the present chapter to develop such 

a branched "pipe" (or pathway) model in order to obtain 

greater insight into the rate of approach towards gaseous 

equilibrium within the more distal regions of both normal 

and diseased lungs. In particular, this detailed pathway 

model will prove extremely useful in testing the predictions 

and verifying the conclusions of the contemporary "trumpet" 

type lung models developed in the previous two chapters. 

Sel Model Configuration 

The basic form of the single pathway model (or "pipe" model) 

consists of a succession of right cylindrical airway pipes 

arranged in order of decreasing size, the dimensions of which 

are derived from a modified version of Weibel's Model A 

(Weibel, 1963) and are given in table 18. The general form 

of the model configuration employed in the present chapter 

is detailed in figure 59 and represents a detailed dual 

branched pathway from the carina to the distal air sacs. 

Clearly, this model may be extended to include any number of 

such branched pathways through the respiratory region 

vide infra.



5.2 The Governing Equations 

On applying Fick's law and the conservation of mass to any of 

the cylindrical pipes shown in figure 60 we obtain the 

following set of partial differential equations describing the 

transport of gaseous molecules into and out of the model:- 

  

oF, o°F, oF, 
ae = Dy By.? = Ne en i= 0, 23 (128) 

i a 

where Fi SS FS (Yue t) is the fractional concentration of input 

gas at distance Yi from the portal end of the relevant tube i 

and at time t after the start of the respiratory maneouvre; 

Vy is the convective velocity of gas molecules down tube i and 

remains constant throughout the length of each tube and D; is 

the effective diffusion coefficient with respect to tube i and 

assumes the value of the binary molecular diffusion coefficient 

in the respiratory region (i > 17).
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5.3 Boundary Conditions 

Inspiratory Cycle 

The inspiratory boundary conditions associated with each tube 

may be stated as follows:- 

¥, (©, €) = Wowfert,< t9< 4 (129) 

F, (0, t) = Pil, (yyy t)) O< is 23 (130) 

for tj) << t < 5 

where Ly is the length of tube i 

| Fi (ya, 0) = O, for oO < £6 23 (231) 

and 

BP, (=, t) * 0, for © ~< i % 22 (132) 

& < t<¢ $ 

The revised boundary conditions (discussed in chapters 2 and 

3) hold at the alveolar wall of the most distal pipe i.e.
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OF 23 V23 
son = | 

yo3 D23 (133) 

y23=L23 Y23=L23 

for t1 € £ In N
I
B
 

Taking the Laplace Transform of both sides of equation (128) 

yields 

  — i =—<2 = or = 6 (134) 

for © < ai < 22 

and where, of course, 

F, = J e7P* (yy) 8) ae (135) 

fo} 

The general solution of equation (134) may be written in the 

form, 

v, + | v,? + 4pD, 
i ad i % 

F = i Ay exp 2D, L 

aa 2 Wy | vy i 4pD, 

(136)
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Employing the boundary conditions given in equations (129) 

to (133) above, we find that 

  

  

  

A = @ OF 6 dg 8 (137) 

and 

F (O, t) z See B= 3 = z Leas 20 (138) 
P 

i.e. 

» 2 2 Vv - [vteapn EF, = p exp ° ° ° y (139) 

2D 2 

and, 

¥, = 
i Y; (140) 

iL <4 22 

Hence, 

st 2 vi- Jv 2 + 4pD. F . = i igi 7 = exp ° Yo (141)
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and 

  

P 2D Tes) 

= =P Fie One) Wis - J vy + 4pD 
Fi (y,-t) = nl tk exp i t i 

2 

for l<i< 2, 

On performing the inverse Laplace Transforms detailed in 

equations (141) and (142) above (see appendix V), we obtain 

the following: 

  

= We 
= 2 Yo ° y. V. 

Po (y,7®) = 3 erfc Es + exp oo 

(4D,t) ? D ° ° 

" y + Vt 
erie ° 2 (143) 

(4D,t) 

fort; < £ < 5 

and in a similar fashion we have 

pork y, - Vyt ) B, Wyst) = = ¥,.1 10,t) | ere i A s on 2 t 

2 D 
(4D, t) i 

y. + Vat ) 
erfc + S | (144) 

2 (4D,t)
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The input gas concentrations down the last tube of the model 

pathway are calculated using a previously derived explicit 

finite difference solution technique (Scrimshire et al, 1978) 

and the relevant boundary conditions. 

Expiratory Cycle 

Due to the nature of the boundary conditions holding during 

expiration (in the present model configuration) it was not 

possible to obtain an exact analytical solution to the 

governing pulmonary gas transport equations. Thus, it was 

again necessary to resort to a previously derived numerical 

solution technique (Scrimshire et al, 1978). The application 

of this technique within the context of the present branched 

“pipe" model configuration is outlined in appendix VI. 

The boundary conditions applying during expiration may be 

stated in the form:- 

oF 
2 = z Wo = oO for 3 < t< F (145) 

ye 

FP, (0, t) = Fyoy (Ls _y ee), Ls ds 22 (146) 

for 

N
I
B
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and once again the revised boundary conditions hold at the 

distal alveolar wall of the last pipe, i.e. 

oF 23 i ee < 

2Y23 c ae e es Da3 (147) 

Y23=Lo3 Yo3=Lo3 

for + < £ <¢ 8 

5.4 Comparison of the "trumpet" and "pipe" 
  

Model predictions 

It is of interest to compare the predictions of the contemporary 

"trumpet" (single series compartmental) type lung models 

developed in chapter 3 with those of the present single "pipe" 

(single pathway) models in order to test the accuracy of the 

“combined airways" approximation. Figure 61 clearly 

demonstrates that the input gas penetrates further into the 

model when the present "pipe" configuration is employed. 

Further, there are greater end inspiratory and end expiratory 

concentration gradients within the pipe model. However, the 

most important feature to note on closely scrutinising the 

curves given in figure 61 is the fact that the "combined 

airways" approximation affords a realistic simulation of 

pulmonary gas transport (see also appendix VII).
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The resulting single-breath nitrogen washout curves 

corresponding to both the "trumpet" and the "pipe" models 

are compared in figure 62 and indicate slightly increased 

phase III values for the existing "pipe" model configuration 

accounting for the corresponding small Gif rerences in 

stratified inhomogeneity already observed (see table 19). 

555 Comparison of the regional "trumpet" and regional 

"pathway" model predictions 

The real impetus behind the present "branched pathway" model 

development was not just to simulate behaviour in the normal 

state but to estimate the influence of small airways disease 

upon the rate of approach to gaseous equilibrium in the acinus. 

Thus, the original model configuration was extended to include 

a dual pathway through the respiratory region beginning at 

generation 17 (nodal point A in figure 59) and ending at the 

terminal air sacs (gen. 23). The choice of a dual pathway 

was taken solely for ease of illustration, but the model can 

be extended to include any number of such regional pathways, 

vide infra. 

Solutions to equation (128) in the model configuration of 

figure 59 are presented in figures 62 (a to f) and for the 

specific a, (i = 1,2) and Vi (i = 1,2) values detailed in 

table 2C. It is clear from these curves that greater end
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expiratory acinar input gas concentration gradients are 

associated with more marked regional flow differences. 

For example, when 01/02 = 125.0/125.0 and Vi/V2 = 

3.0/3.0 the end expiratory input gas concentration gradient 

is 0.44%, whereas, when 01/02 = 125.0/125.0_ and Vi/V2 = 

1.0/4.0 this gradient increases to 0.99%. 

It should also be noted that in the region adjacent to the 

branch point significant 'local' stratification is present 

and this will also contribute to the subsequent expired 

concentration curve at the mouth. The sensitivity of the 

single-breath nitrogen washout curve to such av; (iL = 1,2) 

variations is clearly demonstrated in figures 63 (a to f). 

Essentially two observations are noted on closely 

scrutinising these curves, i.e. 

(i) steeper phase III slopes are associated with more 

marked regional flow differences reflecting the 

already observed steeper stratified concentration 

gradients (see table 20). For example, when 

Op/Os = 198:0/125.0 ane Vi/vn = 3/3 ehe phase 

III slope was only 2.51% (on extrapolating to 

500 mls expired), whereas, when Q:/Q2 = 125.0/125.0 

and Vi/V2 = 1.0/4.0 the corresponding phase III 

slope was 6.72% (see table 20).
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(ii) the phase III (concentration transition) appears 

slightly later (reflecting a small increase in 

dead space volume) for more marked regional 

flow differences. 

Please note that the above observations ( (i) and (ii)) 

were also noted in the last chapter (figures 33 to 40). 

Although the model given in figure 59 is certainly an 

improvement over that of the 'single pathway' analyses it 

still fails to take into account the known assymetrical 

bronchial pathway length characteristics. However, these 

characteristics are readily amenable to simulation within 

the framework of the existing branched model (similar in 

many respects to the variable diffusion pathway length 

model of the last chapter). On re-solving equation (128) 

when taking these assymetrical characteristics into account 

the results given in figures 64 (a to f) were obtained. 

Closely scrutinising these curves and comparing them with 

those previously given in figures 62 (a to f), it can be seen 

that, in all cases considered, there are greater end expiratory 

input gas concentration differences when the diffusion 

pathway length varies simultaneous with more marked regional 

flow differences. For example, on singling out those cases 

cited earlier, it is found that when 01/02 = 125.0/125.0 

and Vi/V2 = 1.5/4.0 the end expiratory concentration gradient 

is 0.7% whilst with Q:/0; = 200.0/50.0 and V;/V2 = 1.5/3.5



= 104 = 

the corresponding value is 1.48% which amounts to as much as 

a 50% increase in gradient. Once again the degree of the 

concentration gradient adjacent to the nodal point A has 

also increased. 

Comparing the single-breath nitrogen washout curves given 

in figures 63 (a to f) and 65 (a to f) (corresponding to 

‘constant' and 'variable' branched pathways respectively) 

the following major differences will be noted:- 

(a) the phase III slopes given in figures 65 (a to f) are, 

in all instances, substantially areater than those given 

in figures 63 (a to f) (see table 27) reflecting the 

already observed greater differences in concentration 

gradient 

(b) in all cases the appearance of the concentration 

transition (phase II) is slightly delayed in the latter 

curves (figures 65 (a to f) ). 

The above two observations were also noted in chapter 4 and 

quantify the predictions of Horsfield and Cumming (1967, 1968) 

and Cumming (1974) that the assymetry of the human bronchial 

tree may well influence the gas mixing behaviour in the acinus.



5.6 DISCUSSION 

The present 'branched pathway' analysis of gas transport 

through the bronchial airways departs from the traditional 

modelling approach in that a detailed pathway from the 

carina to the distal air sacs has been considered. The 

results obtained when using such a model and when employing 

a somewhat modified form of the revised boundary conditions 

(as presented in chapters 3 and 4) agree very closely with 

the predictions of contemporary "trumpet" model analyses. 

Further, the corresponding very close alignment of results 

as obtained from the regional "trumpet" and regional 

"pathway" (or 'pipe') model analyses stronaly supports the 

accuracy of the underlying physical model approximation 

common to all contemporary derivations namely, that of the 

‘combined airways' approximation. 

All the results thus far presented (i.e. those of chapters 

3, 4 and 5) have been for a constant value of the molecular 

diffusion coefficient (D = 0.25 cm/sec for 02/N2; D = 

0.76 cm?/sec for He/N2; D = 0.315 em?/sec for Ne/N2; 

D = 0.1 cm?/sec for SF./N2 and D = 0.192 cm*/sec for Ar/N2). 

Whilst this latter approximation is acceptable for the more 

distal airway units (where the convective flow of gas is so 

low as to exclude any dispersion effects) the same cannot be 

said for the larger airways where complex flow formations 

are known to occur (Schroter and Sudlow, 1969).
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It has been generally accepted that longitudinal gas 

dispersion can be characterised by molecular diffusion in 

the alveolar ducts and sacs. Longitudinal dispersion in the 

upper airways (first few generations) is about three orders 

of magnitude greater. However, the relevant role of 

difference physical dispersive factors is not well known 

and, until recently, the Taylor-Aris equation (Taylor, 1953; 

Aris, 1956) for axial dispersion of a gas in fully developed 

laminar flow (mean velocity v) in a circular pipe (radius 

d, length L) was used, i.e. 

  Pere = Pmor + 48D cae) 

More recently, Scherer et al (1975) have obtained empirical 

equations for axial dispersion of a gas flowing through a 

five generation glass model of the upper bronchial airways. 

These authors found that the effective diffusion coefficient 

(Doge) was given by, 

Dage = Pugs * 1:08 ¥ a (149) 

for inspiration, and 

D = D + O.37 dv (150) 
eff mol 

for expiration. Diol is the molecular diffusion coefficient
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v the mean axial velocity of gas molecules and d the airway 

diameter of the relevant generation. 

Solutions of equation (128) have been analysed when the 

effective diffusion coefficient assumed the following form:- 

2 2 

D, = D 7 te 
i ~ “mol , ey Se ee (151) 48D 31 s 

and 

D, = D ¢ Lay, ,t: < t < 2 (152) 1 mol , ee es S12 

Do eo. O87 Gv, eS ee (153) 

and where dq, is the diameter of generation i. 

The calculations indicated that the net effect of axial 

dispersion is small, and that molecular diffusion remains 

the decisive factor in limiting gas transport through the 

lung. Closer inspection of the 'single pathway' model 

calculations clarifies why this happens. Differences in the 

concentration profiles produced by axial dispersion are only 

apparent (see figures 66 and 67) during early inspiration
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(t < 0.8 secs in a 4.0 secs breath) and early expiration 

(t = 2.0 to t = 2.4 secs). During early inspiration the 

concentration profile traverses those airways where axial 

dispersion is high (Z < 12). Here the axial diffusion can 

be very large at peak flows (e.g. 200 times the molecular 

diffusivity) but at such times the fast flow quickly convects 

away the concentration differential through which the 

diffusion becomes effective. 

In particular, the Taylor diffusivity (proportional to 

the flow velocity squared) becomes negligible relative to 

the molecular diffusion beyond the 709 generation owing to 

the lower flow velocity in the smaller airways (see Pack 

et al, 1977). Once the concentration differential passes 

the fae generation only the molecular diffusion is 

effective. These latter results confirm the experimental 

findings of Horsfield et al (1977) and Worth et al (2977) 

who concluded that axial dispersion has little or no effect 

upon the rate of gaseous mixing of the normal respiratory 

gases in vivo.
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CHAPTER 6 

DISCUSSION 

Having developed suitable revised models of pulmonary gas 

transport and mixing and subsequently compared their 

predictions with contemporary model findings it is now 

necessary to re-examine the revised boundary conditions in 

the light of these comparisons. The present chapter therefore 

addresses itself to a reassessment of all the results so far 

presented in chapters 3, 4 and 5. 

6.1 Reassessment of the Revised Boundary Conditions 
  

The major criticism levelled at the contemporary "trumpet" 

model analyses, as discussed in chapter 2, was concerned with 

the boundary conditions imposed at the distal ends of such 

models. In fact, two independent explanations why the 

conventionally assumed boundary conditions caused a rapid 

equilibration of input gas concentrations during early 

expiration were put forward, namely 

(i) In order to ensure that the total flux was zero at 

the alveolar wall, it was necessary to specify the 

boundary condition oF 

oy 

y=L 

= 0.0 in both rigid and 

compliant "trumpet" models. However, since some
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95 per cent of the lung volume is contained within the 

terminal generations of the bronchial tree (a linear 

distance of only 0.2 cms) it was hardly suprising 

that the contemporary models failed to display any 

stratified inhomogeneities in the acinar region 

because of this explicit assumption. Further, it was 

clearly inappropriate to specify the boundary condition 

in terms of a fixed concentration gradient at the 

alveolar wall, since it was the change in concentration 

gradient immediately adjacent to this alveolar wall that 

was the main purpose of the contemporary model 

simulations, 
> I ° ° (ii) The imposition of the zero gradient ae = 

<
 

y=L 

boundary condition at the distal end of rigid models 

(Baker et al, 1974; Paiva, 1973 and Pedley, 1970) 

did not specify a true no flux condition for the 

transport of insoluble tracer gases. The artefact 

caused by the violation of this required no-flux 

condition at the alveolar wall (i.e. the "sink" and 

"source" effects) was then held responsible for the 

unrealistically rapid approach to gaseous equilibrium. 

Ideally, it would be most advantageous to know which of the 

above two physical phenomena has the more dominant influence 

upon the phase III slope of the single-breath nitrogen
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washout curve. Having stated the objective in this manner 

it is now necessary to examine in some detail 

above possibilities. 

each of the 

6.2 Results for non "trumpet"/"thumbtack" models   

It is interesting to speculate how physical model geometries 

Other than those of the usual "trumpet" or "thumbtack" shape 

will influence the rate of approach towards gaseous 

equilibrium within the acinus. Clearly, these results will 

indicate whether the second explanation given 

to the case of the “trumpet" shape or applies 

boundaries. 

The actual model geometries considered may be 

mathematically as follows:- 

subject to the conditions, 

S (0) = e. 

and 

above is specific 

to all geometrical 

described 

(154) 

(155) 

(156)



= 212) = 

where, 85 is the total cross-sectional area of the portal 

end of the respective model and vi, is the lung volume 

(ERC, ¢ 

Thus, in more precise terms S (y) may be written in the 

form, 

(n+ L) (Vv, <5 S,) yn 

n+1 

S(y) = * Ss (157) 

  

L 

The solutions of the pulmonary gas transport equation in 

which S(y)follows the functional forms given in equation 

(157) (for values of n = 1, 2, 3, 4, 5 and 6) and for both 

the conventional and revised boundary conditions are given 

in figures 68 and 69. 

On comparing both the end inspiratory and end expiratory 

concentration/distance profiles corresponding to each of the 

conventional and revised model predictions it becomes apparent 

that although the artefact caused by the violation of the 

"no flux" condition does have an "effect" on the shape of 

these profiles, it is not as significant as when the “trumpet” 

model configuration is employed. 

The variable determining how influential the violation of the 

“no flux" condition can be in determining the rate of approach 

towards gaseous equilibrium within the acinus is not § (y) 

but dS _ : 
dy = S” (y) « £.e.



= 223° > 

aes n (n + 1) (Vy, - LS.) yon a. 

pat 

Now, 

mM #1), .=. Bs) 
SUE) 2 Se eee (159) 

L2 

(Vy, = LS.) 

L2 
a since : 
a is a constant common to all model 

simulations we know that as n increases S'(L) increases and 

hence the violation of the "no flux" condition has a more 

pronounced effect. 

6.3 Effects of considering negative 'G' values 
  

What is now really required is a means of separating, in the 

present analysis, the dynamic influence of gas flux from the 

more static influence of the geometrical boundaries of the 

model. This may best be achieved by allowing for both 

positive and negative values of 'G' in the model simulations 

and observing the change, if any, in the resulting end 

expiratory concentration gradients, and the subsequent phase 

III slopes of the corresponding single-breath nitrogen 

washout curves.
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The end inspiratory and end expiratory concentration/distance 

profiles for a tracer gas having a molecular diffusion 

coefficient of D = 0.25 cm’/sec (equal to 02/N2) and for 

six values of G (i.e. G = -10.0, -25.0, -50.0, +10.0, 

+25.0, +50.0) are given in figure 70. Now, on 

closely scrutinising these figures it will be noticed that, 

even for the most negative value of G, significant 

concentration differences (stratified inhomogeneities) exist 

in the acinus at end expiration (see table 21). Hence, 

although the "no flux" condition has been violated there 

are, nevertheless, significant stratified inhomogeneities 

in the distal regions due to the fact that the concentration 

gradient at the alveolar wall has not been fixed (see 

equation (98) ) but has been allowed to vary in such a manner 

as to account for the variations in 'G'. 

These latter findings are more readily discernable by 

reference to the corresponding single-breath nitrogen washout 

curves shown in figure 71. The phase III slopes of 

all curves in these figures remain significant for all the 

values of G considered (see table 21). It should be noted 

at this stage that the above observations were common to 

all tracer gas simulations (i.e. SFe¢, He, Ne, etc.) 

Combining the results given in the last section with the 

present findings it should now be obvious that the true 

explanation for the failure of the contemporary model
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analyses in predicting a significant phase III slope was due 

to the fact that the concentration gradient at the alveolar 

wall was being fixed (i.e. explanation (i) ). 

6.4 Bronchial Cross-Section from Lung Gas Washout - 
  

The Inverse Problem 

A further means of discriminating between the above two 

explanations (i.e. (i) and (ii) ) is to approach the problem 

from an alternative and perhaps more attractive way. By 

utilising certain known characteristics of the airway mixing 

Process it is possible to obtain an equation relating total 

bronchial tree cross-sectional area to the washout nitrogen 

concentration, and then subsequently infer from this 

relation the type of boundary condition likely to hold at 

the distal ends of the "trumpet" models. 

Numerical solution of the pulmonary gas transport equation 

(equation (7) ) has revealed two important characteristics 

of the gas mixing process in the airways. 

The first is the presence of an almost stationary state 

o *y
 

RY 0) for the concentration profile near the end ( | 

a oo 

of a steady flow inspiration of 0, for breathing frequencies 

less than about 40 min i (Scherer et al, 1972; Paiva, 1973;
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Pack et al, 1977; Paiva et al, 1976 and Scrimshire et al, 1978). 

This stationary state has also been demonstrated experimentally 

during the inspiration of oxygen by direct sampling of gas from 

bronchioles (Engel et al, 1973). 

The second characteristic of gas mixing detected by numerical 

simulation is the relatively small amount of mixing during 

expiration compared to that during inspiration. This is 

demonstrated in figure 72, which shows the concentration of 

nitrogen which would be expired at the mouth following 

inspiration of a single breath of oxygen as calculated by 

numerical solution of equation (7). Comparison of the curves 

obtained by including or neglecting mixing during expiration 

indicates that the effect of mixing during expiration is 

small, leading to a shift of the curve to the left by less 

than 5% of the inspired tidal volume. The computations shown 

in figure 72 were done assuming D equal to the molecular 

diffusivity, since previous work (Pack et al, 1977; Chang, 

1976 and Scrimshire et al, 1978) has shown that the effect of 

Convective dispersion on the shape of the N, washout curve is 

small. It appears, therefore, that nitrogen can be considered 

to be convected out of the lung during expiration in.the single- 

breath nitrogen washout test without significant additional 

mixing with the inspired oxygen. This fact suggests that, to 

a good approximation, the nitrogen concentration profile washed 

out during expiration, if expressed as a function of expired,
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volume, represents the stationary nitrogen concentration 

profile in the airways at the end of inspiration as a function 

of cumulative airway volume. 

It is now possible to utilise these characteristics of the 

airway mixing process to obtain an equation relating total 

bronchial tree cross-section to the washout nitrogen 

concentration profile. 

Consider a single breath of oxygen inhaled into a lung 

initially containing a constant Nz concentration. Assuming 

that a stationary state exists at the end of inspiration and 

that the resulting nitrogen concentration gradient is convected 

out of the lung during expiration without further mixing, the 

nitrogen profile to be convected out is given as a solution of 

the equation, 

OF 3 wy os = (160) < | i 

a
l
e
 

where v is the gas velocity at the end of inspiration. 

Introducing the transformation from linear distance y to 

cummulative airway volume V (y) (Butler, 1974):- 

y 
vy) = ; s() af (161) 

°



= 18 = 

Equation .(160) becomes, 

ye Ges eu ae 2 oF Vv a av (D Ss av) (162) 

Where V (t) = Sv is the volume flow rate at any instant over 

the total airway cross-section. Assuming V to be constant 

during inspiration and integrating equation (162) once gives, 

aF VF - ps? qv = constant (163) 

Equation (163) represents the total N2 flux (cm*/sec) at any 

point in the airway model during the stationary state. This 

flux must be equal to zero, since at the mouth, where pure O, 

is being inspired Fy, = oO and aF yy, /AV = 0. Equation 

(163) with the constant equal to zero states that the 

stationary state present in the airways at the end of inspiration 

represents a balance between Nz being convected down the 

bronchial tree towards the distal alveoli and N2 tending to 

diffuse up the broncial tree towards the mouth due to the 

concentration gradient (Scherer and Pack, 1977). Setting the 

constant in equation (163) equal to zero and rearranging gives 

an equation for determining total airway cross-section S$ (V). 

(164) 
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Since there is no effective mixing during expiration, F (V) 

and dF/dV can be obtained directly from the Nz washout curve 

measured at the mouth during expiration. 

Equation (164) has been derived using the transformation given 

by equation (161), where V represents the cumulative airway 

volume into the lung. In applying equation (164) to the 

expired nitrogen concentration profile, the tacit assumption 

is made that the first 1.5 litres of gas expired in the single 

breath Nz washout test represents gas which, at the end of 

inspiration, was contained in the airways and not in the 

alveoli (Scherer and Pack, 1977). 

Figure 73 shows total bronchial cross-sectional areas which 

were computed from the expired nitrogen washout curves of 

three normal subjects compared with anatomical data obtained 

from detailed measurement post-mortem on several human lungs 

(see again Scherer and Pack, 1977). Agreement in shape and 

order of magnitude between computed and anatomical curves is 

reasonably good above 400 mls expired. 

In calculating the total bronchial area from the nitrogen 

washout data, equation (164) was used, cardiogenic oscillations 

Were neglected, and D was set equal to the molecular 

diffusivity (Pad of nitrogen in oxygen. The single breath 

tests were carried out with a relatively constant inspired 

flow-rate (V in equation (164) ). To achieve this, the actual
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inspired flow-rate, as measured by a pneumotachograph, was 

demonstrated to the subject on an oscilloscope along with a 

constant signal which was set at the desired flow-rate. 

Subjects practised keeping their flow-rate constant before 

definitive measurements were made. However, the expired 

flow-rate was not controlled. The total volume of oxygen 

inspired by the subject was measured and, from knowledge 

of this and their measured residual volume, the lung volume 

at end inspiration was calculated. This allowed the computed 

areas to be corrected to the same lung volume at which the 

anatomical measurements were made (4.8 L), assuming that total 

bronchial cross-sectional area is proportional to total lung 

volume to the 2/3 power (Hughes et al, 1972). For the curves 

presented in figure 73, the correction was small, being less 

than 8% in each case. 

In using equation (164) to compute airway cross-section from 

an experimental washout curve, the question arises as to what 

functional form to use for D, the effective diffusivity. 

Different forms of effective diffusivity have been used in 

modelling mass transport in the airways to account for the 

gas mixing related to the combined actions of convection and 

axial and radial diffusion (Pack et al, 1977 and serimehive 

et al, 1978). Scherer et al (1975) obtained an effective 

diffusivity from measurements in a physical model of the 

airways, i.e. 

Db = »D, er ie 1.08 vd (165)
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whereas others (Pack et al, 1977; Chang, 1976 and Scrimshire 

et al, 1978) have used the formulation of Taylor (1953) for 

steady laminar flow:- 

va? 
mol 192 D 

mol 
(166) 

The effects of employing these different values of D in 

equation (164) is shown in figure 74. In these cases, v 

was set equal to V/s and d was assigned the constant value 

of 0.05 cms, which is typical of the diameter of airway 

generations at and beyond generation 17 according to measured 

anatomical data. The rationale for using this value for d 

is that the stattonary Nz profile at end inspiration is located 

in this region of the airway structure. The change in 

computed area resulting from employing the above values of 

effective diffusivity (equations (165) and (166) ) is seen to 

be very small. 

The fact that equation (164) gives a good estimate of S(V) 

implies that the slope of the alveolar plateau is due 

largely to diffusion gradients in the distal airways rather 

than to a distribution of transit times from well-mixed 

compartments emptying in parallel. This can be demonstrated 

more rigorously in the following way:-
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From equation (161) we have that 

Cs oF 

= s — (167) 
dy dv 

  

and since all of the experimental curves yield significant 

dF. dF. 
phase III slopes, then Ngo. © and similarly No > 0 

dv dy 

  

indicating that diffusion gradients must be present in the 

acinar region and must subsequently contribute to the expired 

phase III slope. 

Conversely, if we use the contemporary model predictions, 

i.e. that dF/dV = O and substitute into equation (164) of 

the present chapter we find that S = » violating the inherent 

assumption, of all models, i.e. that of finite geometrical 

boundaries. Thus, the fact that a sloping phase III has not 

been observed in most of the contemporary model simulations 

could well be due to the fact that the boundary conditions 

oF usually used, i.e. impermeability or ay = 0.0 at the 

y=L 

alveolar wall of the single path model, foree the alveolar 

plateau to be almost flat in the alveolar region. 

The assumptions necessary for equation (164) to hold for the 

single-breath N2 washout test should be kept in mind. They 

are: (a) that the multiple pathways can be adequately 

described by the average single series "trumpet" pathway 

model; (b) that a stationary state exists at the end of
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inspiration, representing a balance between the forward 

convection of nitrogen down the bronchial tree and the backward 

diffusion of nitrogen from the alveolar region up the 

bronchial tree towards the mouth; (c) that the resulting 

concentration profile is convected out of the lung during 

expiration with very little further mixing; and (d) that 

the first 1.5 litres of gas expired were contained in airways 

at the end of inspiration rather than in the alveoli. 

Assumption (a) has been used by several authors (Scherer 

et al, 1972; Paiva, 1973; Baker et al, 1974; Pack et al, 1977 

and Scrimshire et al, 1978) in deriving equation (160). It 

represents a considerable simplification of the multipath 

bronchial geometry, but has yielded much new and valuable 

tinstght into the airway convection-diffusion process. 

Assumption (b) has been confirmed experimentally (Engel et al, 

1973) and numerically (Paiva, 1973 and Paiva et al, 1976) 

for certain regions of the bronchial tree. Numerical studies 

(Paiva, 1973 and Paiva et al, 1976) indicate, however, that if 

the inspiratory flow is not perfectly steady, then a quasi-steady 

state is not established for the nitrogen concentration profile 

closest to the mouth. In this region, nitrogen continues to 

diffuse back towards the mouth faster than convection can carry 

it forward. This results in a decrease in dF/dV below the 

value consistent with a stationary state. The resulting
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increase in S(V) as computed from equation (164) probably 

explains the lack of agreement between the computed curves 

and anatomical data for expired volumes of less than 0.4 

litres (see figure 73). Additional numerical studies using 

equation (164) will provide further information on this point 

and will enable a correction to the computed area curve for 

a volume of less than 0.4 litres to be developed. 

Assumption (c) is suggested by the numerical computations 

shown in figure 72 and by some physiological studies 

(Bouhuys, 1974) which show that the shape of the single breath 

N, washout curve is insensitive to the expiratory flow rate. 

Gas dispersion measurements in a physical model of the upper 

bronchial generations (Scherer et al, 1975) have also shown 

less gas mixing (by a factor of 1/3) during expiration 

compared to inspiration. Additional gas mixing on expiration 

would tend to flatten the alveolar plateau, which would lead, 

on using equation (164), to an overestimate of peripheral 

airway total cross-section. 

Assumption (d) is difficult to justify directly, since the 

sequence of emptying of lung structures is not known. It 

can be inferred, however, from known anatomical easurenente 

that the cumulative airway volume, neglecting the alveoli, 

is about 1.6 litres at 75% of total lung ea The 

agreement in order of magnitude shown in figure 71 between the 

computed total bronchial area and that from anatomic measure- 

ments suggests that assumption (d) is reasonably correct. 

+* Webel
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Summarising the above information it may be said that the 

relationship between total bronchial cross-sectional area 

and cumulative airway volume given by equation (164) 

represents the end result of combining recent evidence from 

both numerical and experimental studies on gas mixing in the 

lung. Instead of solving the governing pulmonary gas 

transport equation (equation (7) ) by specifying S(y) and 

boundary and initial conditions (as done in chapters 3, 4 

and 5), one uses the "solution" of the equation which is 

provided by the measured expired nitrogen concentration 

profile to calculate S(V) (i.e. the inverse problem). This 

method of determining bronchial area may be especially useful 

in obtaining information about the smaller, more peripheral 

airways where many pathological processes first appear 

(Scherer and Pack, 1977). 

6.5 Equivalent Asynchronous Emptying 

The question now arises as to the untqueness of the results 

presented in chapters 4 and 5, i.e. could equivalent results 

be produced without recourse to the revised boundary conditions. 

This question is best answered by means of a simple ., 

mathematical analysis. 

Considering again the form of the parallel "trumpet" model 

given in figure 32 only the following two situations are worthy 

of some attention, namely



PS SS 

(1) When the regional volumetric flow-rates down the 

parallel compartments are constant (i.e. not time 

varying) and the revised boundary conditions hold 

at the distal alveolar walls, then the internal 

boundary condition holding at nodal point A assumes 

the form, 

Qi Fi (t) + Oa Pott) (168) 

(Qi + Q2) 

(2) When the conventionally assumed boundary conditions 

are holding at the distal alveolar walls of the 

parallel compartments, then in order to achieve an 

equivalent concentration/time variation to that given 

in equation (168) it is necessary to vary the 

regional flow-rates such that the internal boundary 

condition holding at nodal point A becomes 

Q1(t) Put Qa (t) Fa 

Qilt) + Q2 (t) (169) 

In effect, equations (168) and (169) define an equivalence 

relationship between the revised regional modd of chapter 4 

and a hypothetical (but deterministic) complete mix 

asynchronous model. Such asynchronous emptying lung models 

have already been examined by Young et al (1963); Young and 

Martin (1966) and Tsunoda et al (1972).
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Extending the above development to the general case of n 

parallel compartments it should now be obvious that the 

following form of equtvelance relation obtains at nodal 

point A:- 

(170) 

It would appear from the above considerations that the revised 

boundary conditions initially given in chapter 2 not only 

provide for a more realistic simulation of pulmonary gas 

transport and mixing but also allow for a link between series 

and parallel model predictions. 

6.6 Nitrogen Retention Test - "Stationary Interface" 

The single-breath nitrogen retention curve is obtained by 

plotting the expired nitrogen volume against the total expired 

volume of gas at any particular time t during a single-breath 

expiratory maneouvre. 

If a single-breath of oxygen of defined size enters a lung of 

known volume and is then perfectly mixed it is simple to predict 

the volume of nitrogen which would be recovered in an expirate 

of any given size, namely:-



=) Lee = 

Te vy is the initial lung volume, 

and Vos is the assumed anatomical dead space volume, 

and Vip is the tidal volume entering the lung, 

then the concentration of nitrogen at the end of inspiration 

in "alveolar air" will be, C1, where 

   
J es (171) 

Since the oxygen is perfectly mixed we know that the amount 

Of nitrogen expired will be constant (see figure 75) and 

is given by, 

cay = 
ey. = ON Nos) Vy (172) 

where V(t) is the total volume of gas expired after time t. 

Note that we are assuming an 80%/20% N,/O, mixture in the ee ae 

above derivation. 

In the more general case of incomplete diffusive mixing 

(such as the cases considered in chapters 3, 4 and 5) we have 

the following situation:- 

Let Fy (t) represent the theoretical "trumpet" model expired 
a 

nitrogen concentration at time t and let Q(t) be the 

corresponding rate of flow at the same instant in time. Then
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the expired nitrogen volume at this particular time t will 

be given by 

€ 

Vy, = J Q (t) Fig, ) dt (173) 

and, of course 

t 
’ 

Vv. = J Q (t) dt (174) 

° 

By comparing the single-breath nitrogen retention curves 

predicted on the basis of the perfectly mixed model (see 

figure 76) and the imperfectly mixed "trumpet" model we can 

determine the effectiveness of gas mixing in terms of a 

percentage deficiency for both normal and diseased subjects. 

This percentage deficiency in gas mixing after an expired 

tidal volume of Vor is defined as, 

€ 

cr ox vet) - ff 2 (e) Fy ce) 
°   (175) 

Vp 

and the normal value is about 20% which may rise to 75% in 

advanced disease.
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After suitably modifying the "series" and "parallel" trumpet 

model analyses to allow for the simulation of the single breath 

nitrogen retention curve, the results given in figure 77 were 

obtained. These results are for a simulated normal (see 

chapter 3) and a simulated "average case of emphysema", 

(see chapter 4) and are compared with the "ideal" 

instantaneously mixed model predictions. On examining table 

22, it will be found that the predicted percentage deftetencies 

in these cases are 19.66% for the normal and 29.4% for the 

“average case of emphysema" in very good agreement with the 

expected values. These differences in the percentage 

deficiencies may be explained in the following way:- 

as the inspired gas traverses the bronchi it's linear velocity 

falls progressively as the bronchial cross section increases. 

Somewhere in the region of the respiratory bronchioles the 

velocity due to mass flow becomes equal to the velocity due 

to diffusion down a concentration gradient so that beyond 

this point mass flow ceases and gas molecules are transported 

solely by diffusion. 

At this point there exists an interface between the gas being 

inspired and that in the alveoli which remains in a fixed 

position so long as the inspired flow rate is constant. This 

has been designated the stationary interface position (Paiva, 

1978). As new molecules of inspired gas arrive at the 

stattonary interface they enter it and diffuse through it,
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so changing the distal airways concentration but not 

affecting the position of the interface in the airways, so 

long as the inspired flow rate remains constant. It is 

possible to determine the exact location of this stationary 

interface point within the bronchial airways by making some 

simple assumptions. 

Considering once again the governing pulmonary gas transport 

equation, i.e. 

oF _ o?F 1 oS oF - Q oF 
sy o aes * ¢ ay | S dy (276) 

we know that at the stationary interface point the gradient 

of input gas concentration is a maximum:- 

a is maximum (177) 

Yoo 

where 'y = a' is the actual location of the stationary 

interface point. It should now be obvious that what we 

are actually searching for is in fact the point of inflexion 

which leads to the additional constraint of 

2 
ae = ° (178)
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into equation 

  

Substituting equations (177) and (178) 

(176) yields, 

oF _ eo iw . ¢ oF 
| { S ty 2} oy a 

y=a y=a y=a 

Finally, once the stationary interface point is reached there 

is no appreciable concentration change with time implying 

that to a first approximation 

Or 
at 

  

y=a 

equation (179) becomes 

    

Hence, 

/ 2 5 - 2 5 = = (180) 

y=a y=a 

and therefore 

° 

= = a". i (181) 

  

y= 

Equation (181) demonstrates clearly that the position of the 

stationary interface point depends solely upon S, Q and D.
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It is intuitively obvious that the idea of a single 

stationary interface point may be extended to the more general 

case of a distribution of such stationary interface points 

(such as would obtain within an n compartmental "trumpet" 

Model). The location of these points will depend mainly 

upon the regional flow-rates Q; (i = 1 to n) and of course 

the diffusion pathway lengths 1; (i = 1 ton). ‘Thus, 

equation (181) will now become, 

a a Oy ea = Aton (182) 
D 

  

where, a, are the actual locations of the stationary interface 

points within each of the parallel "trumpet" configurations. 

Now, the differences in the percentage deficiencies noted in 

table 22 may be related to corresponding differences in 

gas mixing behaviour distal to the relevant stationary interface 

POints. In fact, it has already been demonstrated in chapters 

3 and 4 that the greatest concentration drop occurs gver that 

region distal to the stationary interface point (equivalent to 

nodal point A in the regional lung model).
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CHAPTER 7 

CONCLUSION 

The present mathematical examination of pulmonary gas transport 

has considered the following:- 

(1) 

(IT) 

(III) 

(Iv) 

(v) 

A critical assessment of the contemporary physical 

models 

A reappraisal of the boundary conditions assumed in 

these contemporary physical models 

A detailed examination of the numerical solution 

techniques employed by contemporary workers in 

solving the governing pulmonary gas transport 

equations 

A corresponding detailed examination of the stability 

and convergence criteria associated with the 

numerical solution techniques dealt with in (III) 

above . 

An extension of the variable gradient boundary 

condition at the distal end of the "trumpet" model 

to allow for a finite flux of gas across the alveolar 

membrane, thereby simulating gas exchange.



(vz) 

(VIT) 

(VIII) 

(IX) 
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An extension of the single sertes "trumpet" model 

to include parallel compartments 

The combined effects of regtonal and stratified 

inhomogeneities upon pulmonary gas transport and 

mixing in both normal and diseased lunas. 

The development of an assymetrical “series-parallel" 

“trumpet" model to allow for the simulation of 

varying diffusion pathway length characteristics 

The development of the "pipe" (or branched pathway) 

model to test the accuracy of the "trumpet" model 

predictions. 

Having now detailed the mathematical improvements made to 

the contemporary gas transport model analyses, it is next 

required to state any conclusions drawn, based on these 

improved model predictions, i.e. 

(Cd) 

(2) 

A true "no flux" condition ts specified by means of 

the revised boundary conditions 

The phase III slope (alveolar plateau slope)” appears 

to be due to failure of the input gas to reach 

equilibrium during the expiratory cycle, and may be 

related directly to the variable gradient boundary 

conditions holding at the alveolar wall of the 

trumpet model.



(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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Increased phase III slopes are associated with 

heavier tracer gases and consequently increased 

stratified inhomogeneities. 

Gases of higher solubility display both a more 

marked concentration stratification and an 

increased phase III slope 

Rigtd and compliant model predictions for low 

tidal ventilations are virtually identical 

Regional inequalities of ventilation cause an 

increase in end expiratory stratified 

inhomogeneities together with a corresponding 

increased phase III slope 

Simultaneous regional inequalities in ventilation 

and gas flux further increase the end expiratory 

concentration gradients and the subsequent phase 

III slope 

Regional differences in diffusion pathway length 

can cause slight differences in the dead space 

volume (i.e. the appearance of phase ITI) 

Regional differences in diffusion pathway length 

increase the end expiratory acinar input gas 

concentration differences over and above those 

observed in (6) above



(10) 

(11) 

(12) 
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The concentration gradients adjacent to nodal point 

A (i.e. local stratifications) increase for similar 

increases in either ventilation inequality or 

diffusion pathway length variation 

The single "branched pathway" model verifies the 

accuracy of the single series "trumpet" model 

predictions 

The multiple "branched pathway" model verified 

the accuracy of the multiple compartment 

"trumpet" model predictions
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CHAPTER 8 

FUTURE WORK 

The most important area of future work must be the extension 

of the proposed serves and parallel models to allow for more 

realistic estimates of the uptake of a soluble tracer gas 

during a single-breath maneouvre (i.e. a more realistic 

simulation of the effects of qas exchange across the 

alveolar membrane). This type of development is of paramount 

importance in the case of the regional model as it will 

allow for a quantitative analysis of both the independent 

and combined effects of ventilation (Q;) and perfusion 

(G;) inequalities upon gas mixing efficiency within the 

acinus region of both normal and diseased lungs. 

Having carried out the extensions to the models discussed above 

it should then be possible to simulate the important phenomena 

of carbon dioxide retention, by forcing G; to assume negative 

values. 

Another area demanding immediate investigation is that of the 

recovery of bronchial cross-sectional area distributions 

from single-breath washout data. Clearly, there will be a 

corresponding demand for more detailed experimental results 

in this area. In particular, there is a growing need for
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some type of classification of each of the phase I, phase II 

and phase III slopes of single-breath washout curves recovered 

from patients with chronic lung disorders. 

In the long term it now appears plausible that a combined 

lung mechanics/gas transport model will be developed. Such 

a model would provide greater insight into the influence of 

regional differences in compliance upon gas mixing behaviour 

within the more distal lung regions.
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APPENDIX I 

Gerschgorin's Theorem 

The modulus of the largest eigenvalue of the square matrix 

A cannot exceed the largest sum of the moduli of the terms 

along any row or column. 

Proof 

Let Ay be an eigenvalue of the N x N matrix A, and x 

the corresponding eigenvector with components V,, V2..... Vi, 

Then the equation 

in detail, is 

STE tl vy Se ar 2 V5 ssc + Fics Me = »G Vy 

25a vy + 49,2 Vy mcisa ct 25 on ve = AG Vy 

aa V2 + an,2 Vo os 6 + anon vy = ry Me 

Let Ng be the largest in modulus of Vue Vo vereee We 

Select the sth equation and divide by Wage giving



Vi V2 n 
he. = a ce) + @ Gee) oF waves HS a) i sl Ny s,2 We sn V, 

Therefore, 

jtshoe dug | ght cece Wha, | 

  

Since the eigenvalues of the transpose of A are the same as 

those of A the theorem is also true for columns. 

Brauer's Theorem 

Let ee be the sum of the moduli of the terms along the 

a row excluding the diagonal element a, s* Then every 
, 

eigenvalue of A lies inside or on the boundary of at least 

one of the circles A - ase = ee 

Proof 

By the previous proof 

Vi ee (gd FP weet Be ee tee 
Ss 

x = a Vi . =) + a 
a s;1 — °



Hence, 

  

  

  

Which completes the proof. 
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a 
s,n 
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APPENDIX IT 

Gauss's Elimination Method 

When there are N - 1 internal mesh points along each time 

row the Crank-Nicolson equations can be written very 

generally as 

b,U, - ¢1U2 =d, 

- a2U; + beU2 - c2U3 = d, 

~ 4g 0g-g + ByOs = €Vigy =a, 

Payer ue) * usr Oper = 61 

where the a's, b's, c's and d's are known. The first equation 

can be used to eliminate U; from the second equation, the new 

second equation used to eliminate U, from the third equation 

and so on, until finally, the new last but one equation can be 

used to eliminate Uno from the last equation, giving one 

Uy-i- The unknowns Uno ’ 

Uy-3 seeeeee-e Uz, Ui can then be found in turn by back- 

equation with only one unknown, 

substitution. Noting that the coefficient c in each new 

equation is the same as in the corresponding old equation, 

assume that the following stage of the eliminations has been 

reached, =



i-k, “i=1 tek “ad i-l 

ed aay oe Uy aon Vial is a, 

where «; = bi, Sy = ay 

leads to Eliminating Le 
z 

    b, = U = Ca Uy = da, + i a i, 41 i ree 

Bees SSE ee or tee (a) 

where 

ax 1, @; Sz 

@, =! Ba = ae) apa Go = ane 2 = 1 2 332. 
a a «, a a e, 

i=] i-l 

and 

N-1 ‘N-2 N-1 “N-1 N-1
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Elimination of Uy» gives 

S41 “Ne? in SNe "NA? 
yea ~ cs Y Uys = Sys = N-2 N-2 

1.e. 

“Nol “Net “ned (b) 

Equations (a) and (b) show that the solution can be 

calculated from 

  

N-1 U. ry 
N-1 oe 

U ane (3), + 2. oo ) (i = N-2, N-3 aN) L =. i i “itl u einisvele 

where the «'s and S's are given recursively by 

Si = @:; Se 4.6 Syoy, wld 2) as Nel) 

In many problems sy and a;/ *;_, are independent of time 

and need only be calculated once, irrespective of the number of 

time steps,
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APPENDIX III 

Analytical Treatment of Convergence 

Let F represent the exact solution of the pulmonary gas 

transport equation and F' the exact solution of the difference 

equations used to approximate this parabolic partial 

differential equation. Then the finite-difference solution 

is said to be convergent when F' tends to F ag 6y and St 

both tend to zero. 

Now, 

Oy. = Bsa = FF. 2 (i) 

and the pulmonary gas transport equation is:- 

Fi, jtl (Di = K;) ba Pink, a + CL = SDE 54 

a (44) 

Substituting from (i) into (ii) yields . 

ey 441 = {Dy = ki)r Si21,4 + (1 = eDEVes 4 

ECD eye eats (By ge. 7 7i, 9? 

a ¥ [> (Fug 5 - 2Fs 5 7 Fi-1,3) = 5, (Pia 4 - Pigg | (iii)
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From 

sources, i.e. 

(a) stability, and (b) convergence 

Stability has already been dealt with 

it is now only necessary to show that 

in (iii) vanish as Ay +O and 

Expanding F, i,jtl ! and Le Fal. 

(iii) we can see that the total error is due to two 

in chapter 2 and 

the remaining terms 

a > OO. 

5 by means of a 

Taylor series and using the Mean Value theorem, we have 

oP... 
Fy jal = Fig + ok a+ (y, t + wy ki) (iv) 

at 

oF, . hn? Ry 
Fiu4. = F, t+h—= 4 2 —+5 (y + uh, t) (v) at1Lid i, 2 2 

ay ay 

oF, h? °F, 5 
Be ee iy ashe) (ya) 

, rd ay ay? 

where h = Ay, k = At, O <= ty <= 1, 

O < te<1 and © < we < 2.
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The expression for convergence error is 

By) (vii) 

Substituting from equations (iv) (v) and (vi) into equation 

(vii) we obtain the following:- 

  

OF. 2 
Convergence error = k —tJ1 iy, £ + wrk 

at 

oF, 4 oF, 
So hee Ky he td (viii) 

dy? ay | 

with =l < YW <= 2 

However, 

Yr hes & z (ix)
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hence, 

OF. 6 
Convergence Error = k ed (y, t + Wik) 

| et 

o°F, ; ar, 
Oy an, Eee 

dy? ay 

Now, in the limit as Ay + O and At + O (i.ew h+O 

and k + 0) the convergence error will tend to the partial 

differential equation itself and will therefore tend to 

zero. In other words, mesh refinement gives convergence. 

The actual estimation of the convergence error is more 

difficult for particular h and k values, since estimates 

for the higher derivatives are not known. Therefore the 

usual process is that of mesh refining where the mesh size 

is reduced until two successive mesh sizes give the same 

results, but it was still necessary to show theoretically 

that convergence will occur since Fox and Mayer (1968) 

have indicated that there are pathological (mathematically 

speaking) cases where the assumption that mesh refining alone 

will show convergence may be dangerous. 

It was demonstrated in chapter 3 that the revised model 

predictions were convergent by means of such a "mesh 

refinement technique". .
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APPENDIX IV 

This appendix demonstrates how the matrix method of 

stability can easily deal with our revised boundary conditions 

(or for that matter any general derivative boundary conditions). 

From chapter 2 we know that the total finite difference 

approximation to the pulmonary gas transport equation may 

be written in matrix form as:- 

Fo del = | (1 - 2Dr) (D + Ky)xr 4 

Peja) = | (D - Ks)r (1 - 2Dr) (D + K3)r F3,3 

ey (D = Ky-.)F (2o=— 2px): (>) + Ky-4)¥ Fy-1,4 

Py, jel 2Dr B= 2Br(l = Ay) Py, | 

a 0 

0 

oO 

-2DA i 
= Gr 

Q 

As each compartment of the last column vector is a constant 

the matrix determining the propagation of the error is,



=i SL 

A= (l=) 2D) (Di Ks) 

(D - K3)r (1 - 2Dr) (D + K3)r 

(De Ky-1)" (1 - 2Dr) (D + Ky_y)r 

2Dr Ee) 2Dr (l= Ay) 

Application of Brauer's theorem (see appendix I) to this 

matrix, with 

az, =11- 2pr (1 - ay)} and P, = 2pr, 

shows that it's eigenvalues }\ lie on or with the circle 

| A = aa Seon ay) S (2Dr 

and for stability we require that | r| < 1 yielding 

L 
xr < eas 

= Dec2 Ay) 

Since Ay << 1 we obtained a stable and convergent solution 

for r = 1.0, Ay = 0.02 and hence At = 0.0004 

Clearly, the above matrix method of stability is more 

rigorous and powerful than other classical methods because 

it takes full account of derivative boundary conditions.
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APPENDIX V 

Consider the following inverse Laplace Transform:- 

oxi, 
F(y,t) = af z exp {zatyl sp y (i) 

D 

before we can perform this inverse we need two further 

results, i.e. 

Lh exp (-yfp) = sys exp (- FE) (44) 

and, 

ic 

J TEAccme= eeu (441) 
° 

Thus, using the results given in (ii) and (iii) equation (i) 

becomes 
t 

F(y,t) = —— i s 
2 4 TD 

ERS 
2: 

exp - oe Gaay s)*{as (iv) 

We will now show how the R.H.S. of equation (iv) can be derived 

from the following integrals:-
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Wee ee? 
qy = \ e7 dz and qT, = e*daz 

(v) 
(y-VS) (y + VS) a dS GaSe 

(4Ds) (4Ds) 7 

Letting 

Bite a ge Le An OF 
D 2 

then, 

z'dz* = z2daz 

= z! dz= aia Ww az! 

D 

Thus, I, becomes 

5 Ny: gs = 
Ip = 2 ene laez (vi) 

  

(y = VS) 

(4Ds) 

From equations (v) and (vi) we know that



oe \ ‘ Zz -z? 
Ey t7e Iz = i ot ———Syee [ C dz foe 

Now let 

= ty - vw) 
ae y in (vii) 

  

(4DU) 

then, 

Gree (y + VU) ue? au 4 JD 

and, 

= 2 

1 = (y + VU) 

Hence, 

= 

1 -3 i =e T2 = rf> Ss *exp 

° 

' 

n
a
 

a B|
+ 

n Ke
 1 < n 

N 
n
r
 

Qu n 

(vii) 

(viii)
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Comparing equations (iv) and (viii) we have 

l Wy 
Be) ed ie (ttt oe Peer) (ix) 

But 

At - vt An + Vt 
Ii = “> erfe (Sg I2 = *> erfe ( a) 

2 (4Dt) 2 (4Dt) 

Thus, 

F(y,t) = 5 erfc ( x) + exp ® erfc w+) (x) 
(4Dt) (4Dt) 

Values of the function erf and erfc are tabulated in Handbook 

of Mathematical Functions (Dover, 1965) edited by 

Abramowitz and Stegund.
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APPENDIX VI 

Since exact analytical solutions to the governing "pipe" 

model gas transport equations cannot be found for the 

expiratory cycle, a suitable numerical solution technique 

must be employed. Such a solution technique has been 

detailed elsewhere (Scrimshire et al, 1978); however, we 

shall now indicate how it can be applied in the present 

situation. 

The general form of the governing gas transport equation 

down tube i is:- 

oF, rr, oF, 
—_ = db, == + Vv, = (i) 
at teva = Oe 

Using the following central difference approximation of 

derivatives, 

  

oF _ Eiegele ae ta. ae 
axe , ot as 

SE) este je ee tel ge s (iii) 
°y 2 (Ay) 

and 

oo oa lyse Ss Sis 
ay ee (iv) 

and substituting into equation (i) we have
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n n n Gen an 
(Pj ude) e n Sy jue eye tel ae 

n 2 (at) (ay,,) 

n n 

Vee tei Ete? 
2(dy,) 

Simplifying equation (v) yeilds 

n 

1,541 
n 

S itl,j 
n 

(D, ny K)) Th FE + Give 2D.) rE a 
ij 

n 
ay a 1 

where, 

mee 2 Niee (ays) 

Equations (vi) and (vii) hold for 0 < n «< 23 and for i > 0; 

When i = O we have from boundary condition (145) 

From equation (vi) we know that, 

(v) 

(vi) 

(vii) 

(viii) 

(ix)
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° ° 
tye (D, + K3)%5 F 203 + (l= 2D4r,)F 1,4 

oO 
+ (D, - K,)% F On3 i) 

Substituting from equation (ix) into equation (x) we find, 

Oo oO . 
F , + 2Dor, (F : F a) (xi) Sys 5 

Similarly at the distal end of the last tube we have from 

boundary condition (147) that 

23 ry 23 

(Fi mt1, 3 Eire jaye t cots, 
2(Ayos) Da3 m,j (xii) 

i.e. 

2V. Tas 23 a 23 oe 23 23 F aig 0 F no 57 (Ayo3) F sana) (xiii) 

Putting i = m in equation (vi) yields, 

23 23 - 29 
Ee m,j+1 (D23 + Ko3)ro3F m+1,3 tL 2D23%23)F mj 

= 23 
+ (D23 K23)r23F m=-1,3 (xiv)
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Substituting from equation (xiii) into equation (xiv) gives, 

2 En agp 2D2sroaF oy it } T= 2D23r23 — Vas (Ay23) § J a nae 

Bey xv ny (xv) 

Stability and convergence of the above schemes are guaranteed 

so long as, in each case, the following conditions are 

satisfied (Hildebrand, 1968) :- 

r< => and ros 
2D 

  (xvi) 

Care must be exercised in choosing the AY, such that the 

conditions given in equations (xvi) are not violated.
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APPENDIX VII 

Comparison of the derivations of the governing "trumpet" 
  

and "pipe" model gas transport equations 
  

Because of the geometrical complexity of the airways, most 

authors have assumed a one-dimensional lung model based upon 

the depth of the airways for the discussion of gas transport. 

In this model, the airways are regarded as a variable 

(trumpet shaped) cross-sectional channel along which the gas 

moves in and out. The depth of the airways is then 

equivalent to the distance measuring along the channel from 

its entrance. It is also assumed in this model that the gas 

velocity and concentration are uniform over all airways at a 

given airway depth so that the mathematical equation which 

describes the gas transport involves only the mean gas velocity 

and the molecular diffusion coefficient of the gas. 

For the purpose of derivation only we are assuming a lung 

model based on Weibel's (1963) 'Model A', although the 

mathematical theory may equally well be applied to any lung 

model consisting of a symmetric and dichotomous branching 

system of airways.
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Owing to the symmetrical nature of the lung model, we know 

that the inspired gas molecules may traverse any one of 

2?3 distinct pathways in order to reach the terminal air 

sacs. Thus, by deriving an equation for the mass 

conservation of the gas in a typical pathway we may easily 

extend the result to the general case of obtaining an 

equation of gas transport in all airways. 

The following notation will be used throughout the theory:- 

i represents a typical pathway (1 < i <«< 273) 

Fj (y,t) is the gas concentration in the qo) pathway at 

location y and time t 

; ; ,th 
S;(y,t) is the cross-sectional area of the i pathway 

at location y and time t 

G; (y,t) is the mass flux of the gas due to the bulk gas 

Motion and molecular diffusion per unit cross-sectional area 

of the pen pathway 

h 
V, (y,t) is the gas velocity in the it pathway 

D is the molecular diffusion coefficient 

A; (yt) is the net loss rate due to chemical reactions and 

th 
transverse diffusion from the i pathway to surrounding 

pathways and airway surfaces per unit length.
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We may note immediately that 

G; (y,t) = V, (ys t) F, (y,t) - Dr (i) 

Conservation of mass 

Let us consider an element of the ith pathway with a length 

Ay. Then the increase in the mass (or concentration) of the 

gas in the element during a time interval At must be equal 

to the next mass flux into the element minus the loss during 

the same period. Mathematically, this corresponds to the 

following relation:- 

Fily,t + At) Si(y,t + At) Ay = PF, (y,t)S, (y,t) Ay 

=I S; (y,t)G; (y,t)At - Syly + Ay,t) Gly + Ay, t)dt 

~ Ay (yrt)Ay At (14) 

Dividing equation (ii) by Ay At and letting Ay + 0, 

At + O, we obtain in the limit, 

a ln, eek S ae (SS, = sy (5484) Ay (441i)
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Substituting equation (i) into equation (iii) and simplifying 

we have 

=oe a 
ae (Pid? + ay 

= 3 ps (F,V,5,) = D ay (Ss, —= ) A, (iv) 

In the particular case of our "pipe" model derivation we also 

have that 

S.V, = constant (v) 

and hence equation (iv) simplifies to 

oF oF, oF; 

ot ne oy- cs we oy ty) 

However, in order to proceed to the corresponding "trumpet" 

model equation the following identities are required, i.e. 

m 

S (y,t) = ie S: (vii) 
: x 
i=l 

m 

F (y,t) =4 Py Se (viii) 
; sa 5 
i=l 

1 ™m 

V(y7t)) = eas Vv, S; (ix) 

i=l 

m 
A (y,t) = x A, 

1 2 (x)
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where m = 27° (when using Weibel's Model A) 

Taking the summation of both sides of equation (iv) from 

i= 1 tom yields, 

m 

3 = 3 ile, 
Ut CE S)iedt By (S VF) + iu 

  

m t 

ae E nes Sn 
i=l oy 

sleiere sisivioverere) (x4) 

Now, 

F, = F +) F,* 
1 oe 

thus 

m m m 

Us gee SU) = PEE IS act teste ee ES (xii) 
1 A, * a 

i=1 peal a0) 

But, 

m™m m m 

= F a ' = EFS, = = FS, oe gS a= 

b " Be pe
 t B b " Be
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and similarly we may say that, 

m
3
 

hy
 wn uu ° 

Hence, equation (xi) becomes 

3 3 oF 3 Vip se (RS) + ay (SEVER) (SVE) 

ke
 

| 

mb eee Fy ee =D By (Ss By + Ss oy ) A (xiii) 

where 

m 

ViF' = S x 5, ee Vy 
Ss pos i zi 

i=l 

and 

m 
Say opens 
oF’ iL it a = = z S, = (xiv) ay Ss jel i oy 

It may easily be shown that dy = O and we express V'F 

in the following form, 

Nae oF Cpa? Je ieee Vik D dy (xv)
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where D' is an apparent diffusion coefficient and may be 

related to the Taylor Diffusion (Taylor,1953). 

We may now 

i3e> 

se = - (Derr ae 3B) - 

where, 

Doe eas =n Dane 

Dt = -V'F! us 

When considering N, - O, diffusion 

write equation (xiii) in the more familiar form, 

an inert gas Nj, of low solubility and thus A is negligible. 

The standard notation used by almost all previous 

has been the following:- 

F =F, Vs = Q = constant 

Equation (xvi) now becomes 

26
 | + 

a
l
e
 

21
8 

ai
e 

21
% 1 

Ke
 

Ke
 

a ys 
by (Si\VoF) <A (xvi) 

in the human lung we have 

workers 

Q 2F S dy (xvii)
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where, F is the 'over-all' mean fractional concentration 

of gas in the airways situated at distance y from the origin 

of the 'combined airways' or "trumpet" shaped model, and at 

time t. 

8 is the mean mass flow-rate of gas occurring throughout the 

model. 

S is the total cross-sectional area of all the airways 

situated at distance y from the origin of the model. 

It should now be clear why there are slight differences 

between the "trumpet" and "pipe" model predictions given 

in chapters 3, 4 and 5.
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Table 1 

  

  

zZ Z s 

10 0.39 9.80 

iG 0.33 14,33 

12 0.28 21.05 

13 0.23 32.53 

14 0.20 50.73 

15 0.17 82.60 

16 0.14 131.60 

17 0.12 242.18 

18 0.10 522.00 

19 0.08 1307.00 

20 0.07 2946.00 

20 0.06 5510.00 

22 0.05 15328.00 

23 0.04 26216 .00 

  

Weibel's Model A with the data scaled such that the FRC 

corresponds to that of an average normal lung (3.0 litres) 

where, 

z is the generation number 

1 is the generation length in cm 

S is the total cross-sectional area in cm?



Table 2 

  

Distance Fractional Gas Concentration 

y (cm) Conventional (a) Revised (b) 

~ 0.00 0.178040 0.155106 

J 02:33 a 0.154794 

Conder ing 0.61 " 0.154409 
ete 0.84 " 0.153931 

1.04 yy OL 1S 3664. 

teed an 0.152709 

{ 1.36 a O.151825 

| 1.48 " 0.151004 
Acinan 1.58 " 0.150414 

Region 1.66 Mi 0.149832 

Levs ee 0.149280 

1.73 se 0.148725 

1.84 bb 0.148510 

\ 1.88 0.178040 0.148296 

  

The table gives the end expiration input gas concentration against 

distance down the model for (a) the conventional and (b) the 

revised boundary conditions. It will be noted that no 

concentration differences are apparent when the conventional 

boundary conditions apply, whereas with the revised boundary 

conditions significant gradients exist throughout the model. 

Specifically, a 0.42% difference in fractional gas concentration 

(representing 60% of the total predicted gradient) is evident in 

the acinar region.



Table 3 

  

  

Expired Nitrogen Concentration 

Volume (m1) Conventional (a) Revised (b) 

25.50) 0.000000 0.000000 

50.0 0.000000 0.000000 

60.0 0.000000 0.000000 

75.0 0.041709 0.041047 

100.0 0.385600 0.378557 

125.0 OSS7T2455 0.561785 

150.0 0.632282 0.621552 

175.0 0.650133 0.640789 

200.0 0.655388 0.647882 

225.0 0.656929 0.651382 

250.0 O65 7513 0.653808 

275.0 0.657564 0.655901 

300.0 0.657568 0.657879 

325.0 0.657568 0.659804 

350.0 0.657568 0.661695 

375.0 0.657568 0.663559 

400.0 0.657568 O.66539 7: 

425.0 0.657568 0.667210 

450.0 0.657568 0.668999 

475.0 0.657568 0.670763 

500.0 0.657568 0.672504 

  

The table gives the expired nitrogen concentrations at the 

beginning of the trachea for (a) the conventional and (b) the 

revised boundary conditions. It will be noted that the alveolar 

plateau has zero gradient when the conventional boundary conditions 

apply, whereas with the revised boundary conditions a significant 

plateau slope of the order of 1.87% over the terminal 250 ml expired 

i.e. 3.74% on extrapolating to 500 ml expired.



TABLE 4 

Comparison of single-breath Nz washout concentrations for 

square, triangular and sinusoidal wave flow-rates. 

  

T, SQUARE TRIANGULAR SINUSOIDAL 

Zou 0.000000 0.000000 0.000000 

sles 0.000000 0.000000 0.000000 

2.3 0.041047 0.187008 0.001577 

2.4 0.378557 0.560900 0.081669 

2.5 0.561785 0.636096 0.351281 

2.6 0.621582 0.652229 0.544129 

2.7 0.640789 0.657830 0.613815 

2.8 0.647882 0.661267 0.633886 

2.9 0.651382 0.664082 0.640351 

3.0 0.653808 0.666585 0.643865 

3.1 0.655901 0.668847 0.646928 

3.2 0.657879 0.670893 0.649988 

3.3 0.659804 0.672736 0.653057 

3.4 0.661695 0.674384 0.656065 

35 0.663559 0.675845 0.658936 

3.6 0.665397 0.677124 0.661602 

3.7 0.667210 0.678228 0.664005 

3.8 0.668999 0.679157 0.666096 

3.19 0.670732 0.679915 0.667832 

4.0 0.672504 0.680500 0.669174 

TE corresponds to the expiration time



TABLE 5 

Relation between the end expiratory concentration gradients 

(stratified inhomogeneities) and the pre-inspiratory lung 

  

volume. 

F_R C (LITRES) AF 
aaa! 2 

3.0 0.70% 

365 0.65% 

4.0 0.59% 

4.5 0.51% 

5.0 0.48% 

AFy, corresponds to the computed end expiratory input 

gas concentration differences between the ends of the 

model (in this case, for a hypothetical gas having a 

molecular diffusion coefficient of 0.25 cm’/sec 

equivalent to 02/N>2)



TABLE 6 

Variation of PHASE III slope with pre-inspiratory lung volume. 

F_R_C (LITRES) AN2 

3.0 3.74% 

Biles 3.00% 

4.0 2.508 

4.5 2.15% 

5.0 1.89% 

AN, corresponds to the computed phase III slope and is 

obtained on extrapolating the single-breath Nz washout 

curves to 500 mls expired.



TABLE 7 

Relation between the phase II (dead space volume), Phase III 

(alveolar plateau slope) and the breath-holding time. 

BREATH-HOLDING TIME PHASE II PHASE III 

1.0 SECONDS 100 mls 2.1% 

2.0 SECONDS 90 mls 1.05% 

5.0 SECONDS 65 mls 0.03% 

It is clear from this table that both the dead space volume 

and the alveolar plateau slope decrease rapidly for 

increasing breath-holding times.



TABLE 8 

Comparison of the rigid and compliant model predictions. 

EXP. VOL RIGID COMPLIANT 

25.0 0.000000 0.000000 

50.0 0.000000 0.000000 

60.0 0.000000 0.000000 

75.0 0.041047 0.020755 

100.0 0.378557 0.310366 

125.0 0.561785 0.529923 

150.0 0.621552 0.615770 

175.0 0.640789 0.646508 

200.0 0.647882 0.657929 

225.0 0.651382 0.662818 

250.0 0.653808 0.665529 

275.0 0.655901 0.667515 

300.0 0.657879 0.669260 

325.0 0.659804 0.670921 

350.0 0.661695 0.672550 
375.0 0.663559 0.674163 
400.0 0.665317 0.675766 
425.0 0.667210 0.677361 
450.0 0.668999 0.678947 

475.0 0.670763 0.680526 

500.0 0.672504 0.682096 

RIGID corresponds to the model with a fixed trumpet volume. 

COMPLIANT corresponds to the model with a variable trumpet 

volume.



TABLE 9 

The simulated single-breath Nz washout concentrations obtained 

from the compliant lung model and for a tidal volume of 

1000 mls (i.e. V,= 1 litre) 

EXP. VOL Fup 

50.0 0.059976 

100.0 0.386778 

150.0 0.495857 

200.0 0.524327 

250.0 0.534947 

300.0 0.541702 

350.0 0.547603 

400.0 0.553287 

450.0 0.558889 

500.0 0.564434 

550.0 0.569927 

600.0 0.575371 

650.0 0.580764 

700.0 0.586106 

750.0 0.591397 

800.0 0.596636 

850.0 0.601824 

900.0 0.606961 

950.0 0.612044 

1000.0 0.617076 

Where oN. corresponds to the expired nitrogen concentration 

at the mouth.
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TABLE 18 

Data for the "pipe" (or "pathway") model. 

“2 y,; (cm) S, (cm?) 

° 12.00 2.54 

1 4.76 1.165 

2 1590 U5325 

3 0.76 1.25 

4 2227 0.155 

5 1.07 0.0972 

6 0.90 0.0619 

7 0.76 0.0398 

8 0.64 0.0271 

9 0.54 0.0187 

10 0.39 0.0096 

ay 0.33 0.0070 

a2 0.28 0.0051 

13 0.23 0.0040 

14 0.20 0.0031 

15 O01 0.0025 

16 0.14 0.0020 

17 0,42 0.0018 

18 0.10 0.0020 

19 0.08 0.0024 

20 0.07 0.0028 

21 0.06 0.0026 

22 0.05 0.0036 

23 0.04 0.0031 

where, Yi is the length of the a "pipe" of the 

"pathway", and S; is the cross-sectional area of the i 

"pipe" of this pathway. 

th



TABLE 19 

Comparison of "trumpet" and "pipe" model predictions. 

    

AF. 4FN, 

TRUMPET 0.7% 3.74% 

PIPE 0.74% 3.96% 

where, AFo, is the end expiratory input gas concentration 

gradient and AF, the corresponding phase III slope based 

on an extrapolation to 500 mls expired.
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TABLE 21 

AF AF. 
    

Go O2 Np 

=50.0 0.15% 0.79% 

=250 0.418 2.20% 

-10.0 0.57% 3.04% 

+10.0 0.798% 4.17% 

+2550 0.95% 5.02% 

+50.0 1.218% 6.43% 

where, AF is the end expiratory input gas concentration 
O2 

gradient within the model and Fy, is the corresponding 

phase III slope based on an extrapolation to 500 mls expired.



TABLE 22 

Predicted percentage defictenctes for a simulated normal 

and for a simulated "average case of emphysema". 

PERCENTAGE DEFICIENCY 

NORMAL 19.66% 

AVERAGE CASE OF EMPHYSEMA 29.46%
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A REAPPRAISAL OF BOUNDARY CONDITIONS 

ASSUMED IN PULMONARY GAS TRANSPORT MODELS * 

DAVIDA. SCRIMSHIRE, ROBERT J. LOUGHNANEand TERENCE J. JONES 

Department of Production Technology and Production Management (Biomedical Engineering Section), 
University of Aston in Birmingham, Gosta Green, Birmingham B4 7ET, England 

Abstract. Solutions of the classic pulmonary gas transport equation are presented in which a true 
‘no-flux’ boundary condition is specified throughout the respiratory cycle. For the particular models 
studied it is demonstrated that diffusive mixing is incomplete at end expiration, and that such stratified 
inhomogeneities give rise to a realistic alveolar plateau for a simulated Ny washout test. The reasons 
for the disparity of the present findings with those obtained by contemporary workers are explained 
by critically examining the boundary conditions conventionally assumed at the alveolar wall. 

Alveolar plateau Gas flux 
Boundary conditions Pulmonary gas transport models 
Diffusive and convective mixing Stratified inhomogeneities 

The application of modelling techniques to investigate gaseous transport in the 
human lung has attracted considerable attention from both physiologists and 

mathematicians during recent years. Whilst the representation of bronchial tree 

geometry has become progressively more realistic, and the techniques for solving 

the governing equations more accurate, the conclusions drawn by the various 
authors have not differed in essence from those presented over thirty years ago by 

Rauwerda (1946). Namely, that diffusional equilibrium is attained very rapidly, 

and no significant concentration gradients exist in the acinus at the end of the 
breathing cycle. Experimental findings, in contrast, suggest that gas mixing is in- 

complete at end expiration, hence series inequalities must be present to some extent, 

even in the normal lung. The work of Read (1966a,b), Cumming er al. (1967), 

Power (1969) and Kawashiro er al. (1976) for example, would be difficult to explain 

in terms other than stratified inhomogeneities. Moreover, the results obtained by 
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Sikand er al. (1966, 1976) also point to the presence of incomplete diffusive mixing. 

In view of such incontroyertible experimental evidence it would appear cogent to 

re-examine the analytical work in an attempt to reconcile these apparently different 
views of pulmonary gas transport. 

The physical model invariably used by workers to represent the bronchial tree is 

formulated by combining the dimensions of all airways of the same generation 
number, thereby producing the well-known ‘trumpet’ (Paiva, 1972) or ‘thumbtack’ 

(La Force and Lewis, 1970) shaped function of total cross-sectional area and distance. 

Actual data is either derived from the definitive morphometric studies of Weibel 
(1963) or the more recent work of Hansen and Ampaya (1975), scaled to an average 

FRC. Gaseous transport is then simulated by applying the governing partial 
differential equation, which describes the convection and diffusion of a tracer gas 
into an indigenous gaseous phase: 

Fp [es SF|_Qe “ 
at dy " Sady dy| S$ dy 

  

where F = F(y,t) is the fractional concentration of inspired tracer gas at distance y 

from the beginning of the model and at time t after the start of the respiratory 

manoeuvre; S = S(y) is the total cross-sectional area of the model at distance y from 

the portal end; D is the binary molecular diffusion coefficient between the inspired 

and residual gases; and Qis the volumetric gas flow rate. The solution of equation (1) 

enables a plot of gas concentration against distance within the physical model to 
be given for the entire respiratory cycle. 

Whilst several different numerical techniques have been employed to obtain such 

results (Scherer e a/., 1972; Paiva, 1973; Baker er al., 1974; Davidson, 1975; 

Pack er al., 1977), the boundary conditions assumed have always been identical, 

and are usually stated as follows: 

F(o,t) = 1.0 for t, <t <T/, (2) 

oF ' 
aS = 0.0 fe <t<T/, a ay |e ort; <t <T/, Q) 

  

and for expiration: 

  

ane = 0.0 for T/, <t <T (4) 
9y | y-0 

F) 200 fort, <t<T 6) OY | vat 

  

where t, is the time required for the inspired gases to traverse the upper 10 generations 

(approx. volume 60 ml) and T is the total duration of the respiratory cycle. 

On applying these conditions to a typical model based on Weibel’s Model A, 
and describing the airways from the end of generation 10 to the alveolar wall (see 

table 1), it is found that although there are significant concentration differences
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TABLE | 

z 1 8 

10 0.39 
iW 0.33 

122 21.05 

13 32. 

14 0.20 50.73 

15 0.17 82.60 

16 0.14 131.60 

17 0.12 242.18 

18 0.10 522.00 

19 0.08 1307.00 
20 0.07 2946.00 

21 0.06 5510.00 

22 0.05 15328.00 

23 0.04 26216.00 

Weibel’s Model A with the data 
lung (3.0 litres) where, 

z = the generation number, 
1 = the generation length in cm, 
S = the total cross-sectional area in em?. 

scaled such that the FRC corresponds to that of an average normal 

    

in the acinar region at end inspiration, these stratifications are completely obliterated 
during early expiration. Bearing in mind that some measure of concentration 

gradient would be expected from the experimental work, it is evident that either the 

physical model is not a sufficiently accurate analogue of the pulmonary airways, 
or the prescribed boundary conditions do not represent the processes obtaining in 

the actual lung. 

   

THE PHYSICAL MODEL 

The influence of changes in the structural dimensions of the models has been 
extensively studied by several groups of investigators. Baker er al. (1974, 1975) found 

that the efficiency of gas mixing was insensitive to any single or multiple variation 

in airway size. Indirectly, Paiva er al. (1976) came to the same conclusion by 

utilising the data of Hansen and Ampaya (1975), and noting that the results did not 
differ significantly from those presented in an earlier study (Paiva, 1973) which 

assumed Weibel’s Model A (Weibel, 1963). Furthermore, the work of Pack et al. 

(1974, 1977), which considers an expanding and contracting alveolar region, also 

demonstrates that diffusion equilibrium is unaffected by variable model dimensions.
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CONVENTIONAL BOUNDARY CONDITIONS 

Whilst the boundary conditions conventionally assumed for the entry portal of 
all previously proposed models are easily understood, and represent a reasonable 
approximation to reality, those specified at the distal end are less obvious. The 
intention is to define a situation which ensures a zero flux of gas across the alveolar 
wall, thus mimicing the behaviour of an insoluble tracer. 
In the work of authors assuming a ‘rigid’ physical model (for example Baker e7 al., 

1974; Paiva, 1973; Pedley, 1970) the actual effect of applying . = 0 may best 
OY |yat 

be mathematically interpreted by considering the functional form of the total flux 
equation, G(y,t). 

For inspiration we can write, 

  

Gly,t) =QF -ps= fort, <t ee (6) 

and for expiration, 

Gvy,t) = QF — DS ] for Pett (2) 

In both equations (6) and (7) the total flux is defined to be the summation of 

convective and diffusive flux contributions. Now, at the alveolar wall, 

  

k 4 oF ‘ T 
G(L,t) = QF|,_, — DS(L) mailer for t, <t<5 (8) 

and similarly, 

G(L) = - QF |. ~ psy & for} <t<T (9) 
y= sf   

Substituting from equation (3) into equation (8) yields 

G(L,t) = +QF|,_, fort, <t<T/, (10) 

and by a similar procedure equations (5) and (9) give, 

G(L,t) = -QF|,_, fort <t<T (11) 

From a scrutiny of equation (10) it is clear that a finite flux of input gas is being 

continually drawn our of the model across the alveolar wall during inspiration, and 
from equation (11) it can be seen that gas is being similarly drawn into the model 
during expiration. When ‘flux curves’ (Pack ef a/., 1977) are plotted for the entire 
respiratory cycle, as in fig. 1, these phenomena are readily apparent. 

It should now be obvious why the conventional boundary conditions given in 

equations (3) and (5) fail to give a true no-flux condition at the distal end of



PULMONARY GAS TRANSPORT MODELS. 321 

08 
s y 

= 06 

E oa 
5 

3 02 
y 

00 

740.10 
oo 

ee eee 4 
oo 10 20 

DISTANCE, cm 

Fig. 1. Gaseous flux per unit flow existing in the model when using the conventional boundary 
conditions, Curve 1 is at 0.4 sec after the start of inspiration and curves 2 to 10 are at equivalent 
0.14-see time intervals thereafter. Note that a zero-flux condition at the distal end of the model is nor 

specified 
    

rigid models, and why tracer gas concentrations fall too rapidly during inspiration. 

Thus during expiration the flux at the model entrance (y = 0) is given by, 

G(o,t) = -QF,.,, for -<t<T (12) 

Equations (11) and (12) state that eventually gas is leaving the model at the same 

rate at which it is being withdrawn through the alveolar wall; hence concentration 
gradients would not be expected to persist under such conditions. In other words, 

the artifact caused by the violation of the required no-flux condition at the alveolar 

wall would appear to be primarily responsible for the unrealistically rapid approach 

to gaseous equilibrium. 
In contrast, the models of Scherer e7 al. (1972) and Pack ef al. (1977) undergo 

volume changes during both inspiration and expiration in such a manner that 
convective gas flow is always zero at the alveolar wall. They assume that the amount 

of convection v(y.t)S(y,t) at any point y in the models are equal to the total volume 

change in the airways distal to that point, that is, 

  

1 
Il os 

=a ed 13 viy.t) Sy. | at ly (13) 

y 

The expansion and contraction of the models is represented by the functional 

relation, 

S(y.0) = SQ] — fyb] (4)
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which defines the cross-sectional area at any point during the breathing cycle 

in terms of a ‘flexibility function’ f(y), and an oscillatory function of time b(t). 

Since there is a lack of experimental evidence on the precise distribution of lung 

volume changes (Hughes e¢ a/., 1972; Marshall and Holden, 1963) the functional 
form of f(y) must remain empirical, and the authors assume it to be evenly 

distributed along the axial length of their models. 

Substituting from equation (14) into equation (13) gives, 

i 
v(yat) = a S(yyity) dy (15) 

Putting y = L in equation (13) gives v(L,t) = 0, hence convective gas flow is always 

zero at the alveolar wall. Now, equation (13) may be rewritten in the form, 

    

Qyy.) = S(y.)v(y.) = | dy (16) 

and therefore we know that Q(L,t) =0. 

Substituting into equations (6) and (7) yields, 

Gy =ps 1, <t<T (1) 
oy 

In order to ensure that the total flux is zero at the alveolar wall, it is further 
oe a : ae 

necessary to specify the boundary condition e =0, as in the rigid models. 
yel 

Since some 95 per cent of lung volume is contained within the terminal generations 
of the bronchial tree (a linear distance of only 0.6 cm) it is hardly surprising that 

these models again fail to display any stratified inhomogeneities in the acinar region 

because of this explicit assumption. On reflection, it is clearly inappropriate to specify 
the boundary conditions in terms of a fixed concentration gradient at the alveolar 

wall, since it is the changes in concentration gradient immediately adjacent to this 

point that is the main purpose of the simulations. 

REVISED BOUNDARY CONDITIONS 

From the above discussion, it is evident that a better approximation to the actual 

conditions within the lungs could be made by ensuring a zero flux at the alveolar 
wall whilst simultaneously allowing the concentration gradient to be a variable. 

Applying the former condition, i.e. G(L,t) = 0 to equations (6) and (7) yields, 

oF T 0 = QFI,., —DS(L) fort, <t<> (18) 
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and, 

o- ~ QF. = DSL) fort<t<T (19) OY. |e 2 

rearranging, we obtain, 

eee t 2 28 =+Dsqp Fhe fort, <t<5 (20) 

and, 

OF | eee ee T 2 Me lee =~ 5g Fhe for <teT al) 

Equations (20) and (21) now represent a true no-flux condition. The conventional 

boundary conditions at the entrance to the model (y = 0) are acceptable, for both 

inspiration and expiration, for the following reasons. During inspiration, we have 
from equation (6) that, 

  

oF 
oy 
  G(o.t) = QF|,_, — DS(O) fort, <t< 

v
i
a
 

  

Since we are assuming that a uniform convective flux (that is uniform flow) of gas 

enters the model, we do not expect any concentration differences to exist near the 

model entrance. In other words, we require that G(o,t) = + QF bee which implies, 

from equation (22) that, ee =0. It is thus intuitively obvious that the input 

gas concentrations at the model entrance must remain constant as defined in 
equation (2). 

For the expiratory phase, equation (7) gives 

G(0,t) = —OF|,., —Dsio) fort<t<T 3) 

  

Now, during expiration the contribution from diffusive mixing near the model 
entrance is negligible in comparison to the convective mixing (Paiva, 1972). As a 

result a relatively uniform convective flux of gas out of the model is anticipated, 

which may be stated mathematically as, 

G(o,t) = —QF|,_, (24) 

Substituting from equation (24) into equation (23) we obtain 

oF 
ay = 0, as given previously in equation (3). 

yeo
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Results 

Having defined the true ‘no-flux’ boundary conditions, it is possible to obtain a 

solution to equation (1), by means of the explicit finite difference technique detailed 

in Appendix I. The resulting concentration/distance curves are shown in fig. 2, 
from which it will be noted that not only are there significant concentration 

differences in the acinus region at end inspiration, but more importantly, these 
stratifications persist during expiration. For example, a 0.7 per cent (~ 5.32 mm Hg) 

difference in tracer gas concentration exists between the ends of the model at end 

10 
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Fig. 2. Effect of the revised boundary conditions upon the input gas concentrations in the model at 
various times during the respiratory cycle. Curve 1 is at 0.4 sec after the start of inspiration and 
curves 2 to 10 are at equivalent 0.4-sec time intervals thereafter. In this case significant concentration 
differences do exist in the acinar region at end expitation (i.e. curve 10), which is more clearly evident 

from a scrutiny of the actual concentration values given in table 2 
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Fig. 3. Gaseous flux per unit flow existing in the model when using the revised boundary conditions. 

Curve | is at 0.4 sec after the start of inspiration and curves 2 to 10 are at equivalent 0.4-sec time 

intervals thereafter. Note that in this case a zero-flux condition at the distal end of the model is specified.
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TABLE 2 

Distance Fractional gas concentration 
y(cm) — —$—<$<$$__— 

Conventional (a) Revised (b) 

0.00 0.178040 0.155106 
0.154794 

Conducting 0.61 0.154409 
airways 0.84 3931 

1.04 0.153351 
1.22 0.152709 
1.36 0.151825 
1.48 0.151004 

1.58 0.150414 
Acinar 1.66 0.149832 

region 1.73 0.149280 
1.79 i 0.148725 
184 5 0.148510 

1.88 0.178040 0.148296 

‘The table gives the end expiration input gas concentration against distance down the model for 
(a) the conventional and (b) the revised boundary conditions. It will be noted that no concentration 
differences are apparent when the conventional boundary conditions apply, whereas with the revised 
boundary conditions significant gradients exist throughout the model. Specifically, a 0.42", difference 
in fractional gas concentration (representing 60%, of the total predicted gradient) is evident in the acinar 

region. 

       

expiration (see table 2); 60 per cent of this difference occurring in the acinus. 

The corresponding flux curves are shown in fig. 3, and as expected illustrate the 

required zero flux across the alveolar wall and, by implication, demonstrate that 
a balance must always exist between the convective and diffusive movements of gas 

molecules at the alveolar wall throughout the breathing cycle. 

Discussion 

The main contribution of the present work has been to highlight the crucial role 
played by boundary conditions in providing a more realistic description of gaseous 

transport mechanisms in the bronchial tree. 
Specifically, it has been demonstrated that diffusional equilibrium within the 

terminal airways is incomplete at end expiration, which further suggests that the 

stratified inhomogeneity thus produced may contribute to the alveolar plateau. 
In order to test this hypothesis it is neccesary to modify our analysis to facilitate 

a simulation of the single breath nitrogen washout curve by taking, 

Fey, (t) = 0.8[1.0 — F(o,t — t,)] (25)
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TABLE 3 

Expired Nitrogen concentration 
volume (ml) a —$<—$—$—$__—_— —— — 

Conventional (a) Revised (b) 

25.0 0.000000 0.000000 
50.0 0.000000, 0.000000, 

60.0 0.000000, 0.000000, 

75.0 0.041709 0.041047 
100.0 0.385600 0.378557 
125.0 0.572455 0.561785 
150.0 0.632282 0.621552 
175.0 0.650133, 0.640789 

200.0 0.655388 0.647882 
225.0 0.656929 0.651382 
250.0 0.657513 0.653808 
275.0 0.657564 0.655901 

300.0 0.657568 0.657879 
325.0 0.657568 0.659804 
350.0 0.657568 0.661695 
375.0 0.657568 0.663559 

400.0 0.657568 0.665397 
425.0 0.657568 0.667210 
450.0 0.657568 0.668999 
475.0 0.657568 0.670763 
300.0 0.657568 0.672504 
  

The table gives the expired nitrogen concentrations at the beginning of the trachea for (a) the con- 
ventional and (b) the revised boundary conditions. It will be noted that the alveolar plateau has zero 
gradient when the conventional boundary conditions apply. whereas with the revised boundary con- 
ditions a significant plateau slope of the order of 1.87% over the terminal 250 ml expired, is apparent. 
On extrapolating the nitrogen washout curve to 500 ml, the slope rises to 3.42% which closely 

approximates to the experimentally observed value for normal subjects. 
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Fig, 5, Predicted single-breath nitrogen washout curve corresponding to the revised boundary conditions 
and when employing the data of Hansen and Ampaya (1975). Note that the slope of the concentration 
transition (phase II) and the shape of the “knee” of this curve differ significantly from the curve shown 

in fig. 4 (solid line).
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coefficient, Deff, which is identically equal to the molecular diffusion coefficient, 

Dmol, in the alveolar region since the gas velocity is very small. At present there is 

no agreement on the actual functional form of Deff to be used in the solution of 
the gas transport equation, however, the results obtained by Pack er al. (1977) 

illustrate that gas mixing efficiency is independent of the particular way in which 

the effective axial diffusion coefficient is employed. Moreover, the recent experi- 

mental results of Horsfield er al. (1977) and Worth et al. (1977) also suggest that 
the mechanism of Taylor Dispersion has a negligible effect on the mixing of the 

respiratory gases in vivo. Such results again emphasize the limited role that model 

parameters have upon gas mixing efficiency, compared to the significant influence 
of boundary conditions. 

The physical model chosen in the present study is rigid, hence it has been 

necessary to mathematically impose a gaseous flow to simulate inspiration and 

expiration. In reality, breathing is brought about by the expansion and contraction 

of the respiratory regions of the lung, however, in order to follow these movements 
exactly it would be necessary to solve the appropriate hydrodynamic equations. 

Such additional complexity is considered unnecessary in view of the fact that the 
results obtained from variable volume models (for example, Pack ef al., 1977) do 

not differ significantly from those obtained from rigid models (for example Paiva, 
1973) which are similar to that used in the present study. The only effect of considering 

rigid rather than variable volume models would appear to be that input gas con- 

centrations will tend to be slightly underestimated (Paiva, 1978). As a corollary, 
it is interesting to observe that even when a ‘compliant’ model is assumed, it is clear 
from equation (15) that a convective flow must still be imposed in order to obtain 
a solution to the gas transport equation. 

Appendix 1 

An explicit finite difference scheme (Bush e7 al., 1977) was employed in the 

numerical solution of equation (1) rather than an implicit scheme due to the more 

rapid computing times associated with the former. It was found that due to the 
presence of the convective term in equation (1), the Gauss-Seidel iteration procedure 

(which is necessary in order to solve the appropriate implicit difference equations) 

required large amounts of computing time in order to attain a convergent and 

accurate solution. Similarly, a suitable one-dimensional finite element solution of 
equation (1) suffered from the same deficiencies as dicussed above. The rationale 

for choosing central difference approximations of derivatives in favour of forward 

or backward differences was based solely on their properties of convergence. In fact, 
forward and backward differences are accurate to 0(Ay), whereas the central 

differences are accurate to 0( Ay’) as has been demonstrated in most standard texts 

on numerical methods (see Smith, 1965 for example). Thus, we have chosen to use 
central difference approximations of derivatives throughout the scheme, i.e.
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On substituting the above finite difference approximations into equation (1) we 

have, on simplifying 

Fysr= Fy + Dry 27 +B oR S+ 8 Jone, pone eG) 

Equation (i) is the finite difference approximation to the gas transport equation. 

In order for the solution of equation (i) to converge to the true solution of the 

transport equation we require a stability criterion. By applying the Fourier series 

method of stability to equation (i) we found that convergence depended upon the 

value of r where; (Smith, 1965) 

r< 2, (ii) 
2[> sin? i + K?} cos? a] 

and K, = 4(Ay [R s_9| 

This expression for r assumes a minimum value for two particular cases, i.e. 

Casel: K<D 

When K < D, ris minimum when cos [2 |- = 0 and thus 

r< a 
2D 

Case2: K>D 

When K > D, ris minimum when sin "| = 0 therefore, 

D Pee 
2K? 

Thus, in order to obtain a stable and convergent solution to the numerical 

approximation of the gas transport equation, we require that, if K <D4, then 
r<1/2D and if K>D, then r<D/2K’, we obtained a stable and convergent 

solution for D=0.25, Ay =0.02, r=1 and hence At =0.0004. A detailed con- 

sideration of the stability of the proposed solution technique is given in Appendix 2 

below.
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Appendix 2 

STABILITY OF SOLUTION TECHNIQUE 

Consider the problem of solving the more general linear parabolic partial differential 
equation with variable coefficients, i.e. 

oF @F 
ot ly’ 

where a, b, c and d are functions of t and y only, and with the more general 
boundary conditions 

  

   
  
  +o +eF + qd) 

where p, q and v are functions of t only. 
Now, there is an important class of simulations to linear parabolic equations 

with variable coefficients for which rigorous sufficient conditions for stepwise 
stability are easily obtained (see Hildebrand, 1968). In illustration, let us suppose 
that a ‘four-point’ formulae has been obtained, for equations (1) and (2) above, in 
the form, 

Fija = CAG DF 15 + GDF j + QGDF. 41; +4, @) 
asa consistent simulation, where the coefficients C,(ij) are known functions of i and j. 
We suppose that equation (3) holds for i = 1,2, ... Nandj = 1,2,... The propagated 
error ¢,, due to an initial error distribution g, is then specified by the relations, 

  

: 
aya = LD Coda ray (4) ol 

and, 

a =k 6) 
If the coefficients C_,, C, and C, are nonnegative for all relevant values of i and j, 
te, 

C,Gj)>0 (= —-1,0, 1) (6) 

and if their sum does not exceed unity, 

' 
XY Gai) <1 @) 

then we may deduce from equation (4) the relation 

leeks 2D CO DIa ssl < max]s.osl 

  

fori=1,
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It thus follows that when the conditions (6) and (7) are satisfied for all relevant 

values of i and j, the errors propagated by a single line of initial errors can never 
exceed the largest initial error in magnitude, so that the formulation is stable in the 

stepwise sense. While the conditions (6), (7) and (8) are sufficient for stepwise 

stability, they may not be necessary, in the sense that the formulation may be 

stable even though one or more of these conditions is violated. 
The finite difference approximation to the gas transport equation (i.e. equation (i) 

in Appendix 1) may be written in a form similar to that given in equation (1) above, 

Le. 

Fj,, =(D —K))rF,_,; + —2DnF,; + (D+K,)rF,,,; 

for2<i<N-1 (9) 

ial 

and similarly our revised boundary conditions may be expressed in finite difference 
form as, 

Fyje) = 2D1Fy3 + [: —2Dr £OI9 + iQ] Fy, (10) 
Wy ; 

where, 

Sy alDiess 0 K = 4149]? | Q] (a) 

On equating coefficients of equation (3) with those of equations (9) and (10) we 
have that 

  

1 1 
'<5p° [S| <Dantt = Aa) (12) 

where, 

Qy) Ay = 13 N= Ds, (Ky + D) (13) 

In this particular case A, << D and therefore the stability of our revised boundary 

conditions is guaranteed by the relations derived previously using the Fourier series 

method (See Appendix 1). 

When the Fourier series method of stability was applied to equation (10) we 
found that stability depended on the value of r where 

    

By 
t= (14) 

[span —B,) sin? (4 a a 

and where, 

2Q(D + Ky)(Ay) 
DS, 

  Bee (15)
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The expression on the R.H.S. of equation (14) can be re-written in terms of partial 
fractions in the form, 

Mewes ewei idea) 1 
2D-B,) GD -—B 

‘ wf Ww) [sep — By) sin? [*| + a | 

For the particular solution that we derived, the values of the model parameters 

were as follows, 

Ay = 0.02, $s, = 26, 216.0 (see table 1) 

D =0.25, Q =250 

  (16) 

Substituting these values into the expression previously given for K we obtain, 

K=0.0125 

and hence from equation (15) we know that 

10.5 
B,   <D (16) 

  

26,216 

Since r > 0, the expression for r given in equation (14) will assume a minimum value 

when sin ("| =0 

Le. 

1 _ BD — By) 1 
@D-B,) (2D -B,) (4D-B,y 

Ir, <=. aL 

P>-] 
When By, is very small (as in the present case where B,= 0.0004), equation (17) 

becomes identical to the relationship found in Appendix | (Case 1). In order to test 

the validity of this stability criterion we have solved equation (9) with the revised 

no flux boundary conditions and for different values of r (in fact, r = 0.5 and r = 1.0) 
it was found that the solutions were identical to the sixth decimal place, thus 

indicating that both a convergent and stable solution was attained. 
Hence it is concluded, that all of our model predictions are free from numerical 

artifacts arising from the use of a non-zero concentration gradient at the alveolar 
wall, 

Cnin < 

(a7) 
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Summary 

The effects of different tracer gas diffusivities upon 
pulmonary gas transport and mixing have been examined by means 
of a new lung model. Specifically, it has been demonstrated 
how the éxpired alveolar plateau slope of a tracer gas gives 
an indication of the magnitude of the end expiratory 
concentration differences existing in the acinus. Further, by 
modifying our initial analysis slightly (to allow for a 
finite flux of gas across the alveolar wall) it has been 
indicated how more marked stratified inhomogeneities are 
associated with the transport of soluble rather than insoluble 
tracer gases. 

Because of the practical difficulties of making direct measurements in 
the more distal regions of the bronchial tree it is at present only possible 
to infer what gas concentration differences exist in the acinus during the 
breathing cycle from expired data. Whilst Engel and his co-workers (1) 
have succeeded in sampling gas at terminal bronchiolar level in dogs, the 
experimental protocol requires open chest surgery and cannot be applied 
routinely in man. Moreover, as pointed out by the authors, the physical size 
of the catheter used may interfere significantly with local gas flows. 

In order for a reasonably accurate interpretation of single breath wash- 
out (or washin) curves to be made, it is obviously necessary to employ a 
suitable quantitative model. In a recent paper we have proposed such a gas 
transport model, and have demonstrated that simulated results correspond closely 
to those observed in normal subjects (2). In the present study use is made of 
this new model to examine the effects of different tracer gas diffusivities 
on gaseous transport and mixing in human lungs, and specifically relate gaseous 
concentration differences in the acinar region to concentrations measurable at 
the mouth.
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Methods 

The model is derived from a modified version of Weibel's 'Model A' and 
consists of the last 13 generations of the bronchial tree. The equations 
governing the transport of gases into and out of the model are written as:- 

Siete a°F do SOS Gok ii Q¢°-8F #- 0/2 "3 z| sy Se 
where F =F (y, t) is the fractional concentration of inspired tracer gas 
at distance y from the beginning of the model and at time t after the 

start of the respiratory maneouvre; S = 5S (y) is the total cross-sectional area 
of the model at distance y from the portal end; D is the binary molecular 
diffusion coefficient between the inspired and residual gases; and 0 is the 
volumetric gas flow rate. 

In order to solve equation (1) suitable boundary conditions must be 
specified. At the mouth there is a constant flow of inspired tracer gas and 
this may be written as, 

F(o,t) = 1.0 frti Ct <F (Eqn. 2) 

During expiration the contribution from diffusive mixing at the model 
entrance is considered negligible in comparison to the convective mixing and 
this implies that, 

oF T 
= 0 for 5 <4 << i. (Eqn. 3) ay 

y=0 

At the distal end of our model it is required that there is no flux of 
input tracer gas across the alveolar wall, y = L. Such a requirement may best 
be achieved by ensuring that the total contribution from both diffusive and 
convective gas fluxes is zero, implying that a balance exists between these two 
transport processes. In order to formulate this condition in mathematical terms 
we need to define the total flux function G (y, t), that is, 

OF 
eet). sem Qua eta DSi i (Eqn. 4) 

where G =G (y, t) is the total flux (made up of both a diffusive and a convective 
contribution) at distance y from the beginning of the model and at time t after 
the start of the respiratory maneouvre. 

We require that G(L, t) = 0 for all t, and from equation (4) the following 
zero flux boundary conditions may be derived, 

oF if Q F T Ss = + ae for ty <S E z (qn. 5) 
y= y=L 

nd,



oF Py rt ae Ss gle  O y F as 5 = D3 for 3 es T (Eqn. 6) 

yl yaL 

In the above equations t; is the time required for the inspired gases 
to traverse the upper 10 generations and T is the total duration of the 
respiratory cycle. The numerical technique used to solve the gas transport 
equation has been fully detailed elsewhere (2) along with an exhaustive 
examination of stability and convergence. 

RESULTS 

Figures 1 and 2 show the input gas concentrations within the model at 
end inspiration and end expiration respectively for three tracers having 
molecular diffusion coefficients of 0.1 cm*/sec, 0.315 cm*/sec and 0.76 
em?/sec corresponding to SFg/N2, Ne/N; and He/N> mixtures. As intuitively 
expected, it can be seen that at end inspiration the heavier gas (SF,)has 
penetrated deeper into the model than that of the lighter gases (Ne or He), 
and hence it has a greater dead space volume. Furthermore, the heavier gas 
displays a more marked concentration stratification in the acinar regions. 
The actual concentration differences between the ends of the model at end 
expiration are 0.42% for He, 0.6% for Ne and 1.2% for SF,, with the greatest 
gradients occurring over the last 0.5 cms of the model length. 

    

    

     
   

      

    
    

    

The resulting concentrations of the three tracer gases being expired 
through the "mouth" end of the model are given in Figure 3 and show that the 
heavier the gas, the greater the dead space volume and the greater the 
alveolar plateau slope. The plateau slopes for the three tracer gases were 
calculated on the basis of an extrapolation to 500 mls expired and were found 
to be 2.9% for He, 3.4% for Ne and 4.8% for SF,. 

DISCUSSION 

The theoretical results presented show that the expired "alveolar plateau" 
slope of a tracer gas does indeed give an indication of end expiratory 
concentration differences in the acinus. Moreover, the magnitude of the slope, 
and the degree of stratified inhomogeneity, increase as the molecular weight 
of the input gas increases (that is D decreases). Such results concur with 
the experimental findings of previous workers (3, 4, 5, 6, 7, 8) who also 
concluded that gases having lower diffusivities should reach equilibrium 
more slowly, and that the observed expired concentration differences arose as 
ja consequent of similar differences obtaining in the more distal regions of 
the bronchial tree. 

Only two previous attempts have been made to simulate similar results. In 
969, Sasaki and Farhi (9) employing an algebraic lung model, concluded that 
he only effect of considering a heavy rather than a light tracer gas was that 
he dead space volume should be greater. A few years later Paiva (10) using 
more detailed lung model analysis came to a similar conclusion, but could 

jot demonstrate any concentration gradients in the acinar region at end 
xpiration. We have indicated in a previous paper that a possible explanation 
or such a finding may well be traced to the boundary conditions assumed by 
hese authors, a fact also suggested by Scherer and Pack (11). The particular 
oundary conditions applied in the present model ensure that none of the input



tracer gas escapes, or indeed is reabsorbed, through the alveolar wall. As the 

three gases studied have very low blood solubilities (SFs = 0.0067, 
Ne = 0.011, He = 0.0098) such an assumption would appear to be a reasonably 
accurate representation. Nevertheless, it is interesting to speculate how a 
finite gas flux across the alveolar wall would affect concentration gradients. 
Chang and Farhi (12) have already considered such a case in qualitative terms, 
and have suggested that the gas exchange is likely to increase any stratified 
inhomogeneities existing in the acinus. The present model may readily be 
modified to accommodate a finite gas flux across the alveolar wall by slightly 
altering the boundary conditions (5) and (6). The necessary modification 
involves changing "G = 0" to "G = k", where k is the amount of input tracer gas 
(mls/sec) being taken up by the blood flowing in the alveolar capillaries. In 
fact, equations (5) and (6) become, 

oF = Q F is G 
2 > Dasic) DS () (Eqn. 7) 

y=L ‘y=L 

and, 

ar eres Q = = Gc yy Tg Dre ey, Ds ©) Ganm8) 
y=L y=L 

The effect of applying three values of G (10, 25 and 50 ml/sec) to a 
hypothetical gas having a diffusion coefficient of 0.25 cm*/sec (equivalent 
to 02/ Nz) is shown in Figure 4 for end inspiration. It can be seen that the 
higher the G value, the greater the concentration gradients for the input gas 
in the acinar region and the lower the alveolar gas concentration. The latter 
effect is to be expected since higher values of G are associated with tracers 
having a higher blood solubility hence they are being removed from alveolar 
space at a faster rate by capillary blood. 

Figure 5 gives the ensueing end expiratory concentrations within the model. 
It will be noted that more marked stratified inhomogeneities are associated with 
tracers having higher blood solubilities, and that these concentration gradients 
are also reflected at the "mouth" end of the model as is evident from Figure 6. 

A more realistic illustration of the independtnt effect of input gas 
solubility on stratified inhomogeneities may be given by considering the 
specific gases Argon and Nitrous Oxide because they have very similar diffusion 
coefficients (D = 0.192 for Ar and D = 0.189 for N20). Because the solubility 
of Argon can be considered negligible, a value of zero is assumed for G. 
Nitrous Oxide in contrast has a much greater affinity for blood, having a 
solubility coefficient of 0.465. Using an earlier algebraic gas exchange 
model (13, 14) the value of G during a normal initial breath of 1002 N20 
is estimated to be approximately 5.5 ml/sec. The results for the two tracer 
gases are given in Figures 7 and 8 and as anticipated, greater end inspiratory 
and end expiratory input gas concentration gradients exist in the acinus for 
Nitrous Oxide. Moreover, the actual alveolar concentration level for Nitrous 
Oxide is significantly lower than that of Argon for the reason previously 
discussed. The simulared single-breath input gas washout tests for these two 
tracer gases are given in Figure 9 and demonstrate a significantly greater 
alveolar plateau slope for Nitrous Oxide again reflecting conditions within 
the lung.
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