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Low Density Parity Chek Codes { A Statistial Physis Prospetive 21. Introdution1.1. Error-orretionThe way we ommuniate has been deeply transformed during the twentieth entury.Telegraph, telephone, radio and television tehnologies have brought to realityinstantaneous long distane ommuniation. Satellite and digital tehnologies have madeglobal high-�delity ommuniation possible.Two obvious ommon features of modern digital ommuniation systems are thattypially the message to be transmitted (e.g. images, text, omputer programs) isredundant and the medium used for transmission (e.g. deep-spae, atmosphere, optial�bres, et...) is noisy. The key issues in modern ommuniation are, therefore,saving storage spae and omputing time by eliminating redundanies (soure odingor ompression) and making transmissions reliable by employing error orretiontehniques (hannel oding). Shannon was one of the �rst to point out these keyissues. His inuential 1948 papers [Sha48℄ proved general results on the natural limitsof ompression and error-orretion by setting up the framework to what is now knownas information theory.Shannon's hannel oding theorem states that error-free ommuniation is possibleif some redundany is added to the original message in the enoding proess. Amessage enoded at rates R (message information ontent/ode-word length) up tothe hannel apaity Channel an be deoded with a probability of error that deaysexponentially with the message length. Shannons proof was non-onstrutive andassumed enoding with unstrutured random odes and impratial (non-polynomialtime) [CT91℄ deoding shemes. Finding pratial odes apable of reahing the naturaloding limits is one of the entral issues in oding theory.To illustrate the diÆulties that may arise when trying to onstrut highperformane odes from �rst priniples, we an use a simple geometri illustration. Onthe top left of Fig.1 we represent the spae of words (a message is a sequene of words),eah irle represents one sequene of binary bits. The word to be sent is represented bya blak irle in the left side �gure. Corruption by noise in the hannel is represented inthe top right �gure as a drift in the original word loation. The irle around eah wordrepresent spheres that provide a deision boundary for eah partiular word, any signalinside a ertain deision region is reognized as representing the word at the enter ofthe sphere. In the ase depited in Fig.1 the drift aused by noise plaes the reeivedword within the deision boundary of another word vetor, ausing a transmission error.Error-orretion odes are based on mapping the original spae of words onto a higherdimensional spae in a way that the typial distane between enoded words (odewords)inreases. If the original spae is transformed, the same drift shown in the top of Fig.1 isinsuÆient to push the reeived signal outside the deision boundary of the transmittedodeword (bottom �gure).Based on this simple piture we an formulate general designing riteria for gooderror-orreting odes: odewords must be short sequenes of binary digits (for fast



Low Density Parity Chek Codes { A Statistial Physis Prospetive 3
noisy channel

noisy channel  error-correction

 error-correction
without

with

Figure 1. In the top �gure we illustrate what happens when a word is transmittedwithout error-orretion. White irles represent possible word vetors, the blak irlerepresents the word to be sent. The hannel noise auses orruption of the originalword that is represented by a drift in the top right piture. The dashed irles indiatedeision boundaries in the reeiver; in the ase depited, noise orruption leads to atransmission error. In the bottom �gure we show qualitatively the error orretionmehanism. The redundant information hanges the spae geometry, inreasing thedistane between words. The same drift as in the top �gure does not result in atransmission error.transmission), the ode must allow for a large number of odewords (for a large setof words) and deision spheres must be as large as possible (for large error-orretionapability). The general oding problem onsists of optimizing one of these onitingrequirements given the other two. So, for example, if the dimension of the lattie anddiameter of deision spheres are �xed, the problem is �nding the lattie geometry thatallows the densest possible sphere paking. This sphere paking problem is inludedin the famous list of problems introdued by Hilbert (it is atually part of the 18thproblem). This problem an be solved for a very limited number of dimensions [CS98℄,but is very diÆult in general. As a onsequene, onstrutive proedures are knownonly for a limited number of small odes.For long, the best pratial odes known were Reed-Solomon odes (RS), operatingin onjuntion with onvolutional odes (onatenated odes). The urrent tehnologialstandard are RS odes, proposed in 1960, found almost everywhere from ompatdisks to mobile phones and digital television. Conatenated odes are the urrentstandard in deep-spae missions (e.g. Galileo mission) [MS77, OO79℄. Reently, Turboodes [BGT93℄ have been proven to outperform onatenated odes and are beominginreasingly more ommon. These odes are omposed of two onvolutional odesworking in parallel and show pratial performane lose to Shannon's bound whendeoded with iterative methods known as probability propagation, �rst studied in theontext of oding by Wiberg [Wib96℄.Despite the suess of onatenated and Turbo odes, the urrent performane



Low Density Parity Chek Codes { A Statistial Physis Prospetive 4reord is owned by Gallager's low-density parity-hek odes, e.g., [Chu00, Dav99,Dav98℄. Gallager odes were �rst proposed in 1962 [Gal62, Gal63℄ and then were allbut forgotten soon after due to omputational limitations of the time and due to thesuess of onvolutional odes.To give an idea of how parity-hek odes operate, we exemplify with the simplestode of this type known as Hamming ode [Ham50℄ . A (7; 4) Hamming ode, where (7; 4)stands for the number of bits in the odeword and input message respetively, operatesby adding 3 extra bits for eah 4 message bits, this is done by a linear transformationG, alled the generator matrix, represented by:
G = 0BBBBBBBBB�

1 0 0 00 1 0 00 0 1 00 0 0 10 1 1 11 0 1 11 1 0 1
1CCCCCCCCCA : (1)

When the generator matrix G is applied to a digital message s = (s1; s2; s3; s4), we getan enoded message de�ned by t = Gs omposed of 4 message bits plus redundantinformation (parity-hek) as 3 extra bits t5 = s2 � s3 � s4, t6 = s1 � s3 � s4 andt7 = s1 � s2 � s4 (� indiates binary sums). One interesting point to note is that thetransmitted message is suh that t5 � s2 � s3 � s4 = 0 and similarly for t6 and t7, whatallows diret hek of single orrupted bits. The deoding proedure relies in a seondoperator, known as parity-hek matrix, with the property HG = 0. For the generator(1) the parity-hek matrix has the following form:H = 0B� 0 0 0 1 1 1 10 1 1 0 0 1 11 0 1 0 1 0 1 1CA : (2)The deoding proedure follows from the observation that the reeived message isorrupted by noise as r = Gs � n. By applying the parity-hek matrix we get thesyndrome Hr = Hn = z. In the (7; 4) Hamming ode the syndrome vetor gives thebinary representation for the position of the bit where an error has ourred (e.g. ifn = (0; 0; 1; 0; 0; 0; 0), z = (0; 1; 1)). Due to this nie property deoding is trivial andthis ode is known as a perfet single-error-orreting ode [Hil86℄.Codes in the low-density parity-hek family work along the same priniples asthe simple Hamming ode above, the main di�erenes are that they are muh longer,the parity-hek matrix is very sparse and multiple errors an be orreted. However,low-density parity-hek odes are not perfet and the deoding problem is, in general,signi�antly more diÆult. Lukily, the sparseness of the matrix allows for the deodingproess to be arried out by probability propagation methods similar to those employedin Turbo odes. Throughout this hapter we onentrate on low-density parity-hekodes (LDPC) that are state-of-the-art onerning performane and operate along simple



Low Density Parity Chek Codes { A Statistial Physis Prospetive 5priniples. We study four variations of LDPCs known as Sourlas odes, Gallager odes,MaKay-Neal odes and asading odes.1.2. Statistial physis of odingThe history of statistial physis appliation to error-orreting odes started in 1989with a paper by Sourlas relating error-orreting odes to spin glass models [Sou89℄. Heshowed that the Random Energy Model [Der81b, Saa98, DW99℄ an be thought of asan ideal ode apable of saturating Shannon's bound at vanishing ode rates. He alsoshowed that the SK model [KS78℄ ould operate as a pratial ode.In 1995, onvolutional odes were analyzed by employing the transfer-matrixformalism and power series expansions [AL95℄.In 1998, Sourlas work was extended for the ase of �nite ode rates [KS99a, VSK99℄by employing the replia method. Reently, Turbo odes were also analyzed using thereplia method [MS00, Mon00℄.In this hapter we present the extension of Sourlas work together with the analysis ofother members in the family of low-density parity-hek odes. We rely mainly on repliaalulations [KMS00, MKSV00, VSK00b℄ and mean-�eld methods [KS98, VSK00a℄. Themain idea is to develop the appliation of statistial physis tools for analyzing error-orreting odes. A number of results obtained are rederivations of well known resultsin information theory, while others put known results into a new perspetive.The main di�erenes between the statistial physis analysis and traditional resultsin oding theory are: the emphasis on very large systems from the start (thermodynamilimit) and the alulation of ensemble typial performanes instead of worst ase bounds.In this sense statistial physis tehniques are omplementary to traditional methods.As a byprodut of our analysis we onnet the iterative deoding methods of probabilitypropagation with well known mean-�eld tehniques, presenting a framework that mightallow a systemati improvement of deoding tehniques.1.3. OutlineIn the next setion we provide an overview of results and ideas from informationtheory that are relevant for understanding of the forthoming setions. We also disussmore deeply linear enoding and parity-hek deoding. We present the probabilitypropagation algorithm for omputing approximate marginal probabilities eÆiently and�nish by introduing the statistial physis point of view of the deoding problem.In Setion 3, we investigate the performane of error-orreting odes based onsparse generator matries proposed by Sourlas. We employ replia methods to alulatethe phase diagram for the system at �nite ode rates. We then disuss the deodingdynamis of the probability propagation algorithm. Sourlas odes are regarded as a �rststep towards developing tehniques to analyze other more pratial odes.Setion 4 provides a statistial physis analysis for Gallager odes. These odes usea dense generator and a sparse parity-hek matrix. The ode is mapped onto a K-body
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Figure 2. Mathematial model for a ommuniation system. Eah omponent isdisussed in the text.interation spin system and typial performane is obtained using the replia method.A mean-�eld solution is also provided by mapping the problem onto a Bethe-like lattie(Husimi atus), reovering, in the thermodynami limit, the replia symmetri resultsand providing a very good approximation for �nite systems of moderate size. We showthat the probability propagation deoding algorithm emerges naturally from the analysisand its performane an be predited by studying the free-energy landsape. A simpletehnique is introdued to provide upper bounds for the pratial performane.In Setion 5 we investigate MaKay-Neal odes that are a variation of Gallagerodes. In these odes, deoding involves two very sparse parity-hek matries, one forthe signal with K non-zero elements in eah row and a seond for the noise with Lnon-zero elements. We map MN odes onto a spin system with K+L interating spins.The typial performane is again obtained by using a replia symmetri theory.A statistial desription for the typial PP deoding proess for asading odes isprovided in Setion 6. We use this desription to optimize the onstrution parametersof a simple ode of this type.We lose this hapter in Setion 7 with onluding remarks. Appendies withtehnial details are also provided.2. Coding and Statistial Physis2.1. Mathematial model for a ommuniation systemIn his papers from 1948 [Sha48℄, Shannon introdued a mathematial model(shematially represented in Fig.2) inorporating the most basi omponents ofommuniation systems, he identi�ed key problems and proved some general results.In the following we will introdue the main omponents of Shannon's ommuniationmodel, the mathematial objets involved as well as related general theorems.



Low Density Parity Chek Codes { A Statistial Physis Prospetive 72.1.1. Data soure and sink A data soure an be disrete or ontinuous. A disretesoure is de�ned by the pair (S; �), where S is a set of m symbols (alphabet) and � is aprobability measure over the spae of sequenes of symbols with any length (messages).In general any disrete alphabet an be mapped onto sequenes of dlogme Boolean digitsf0; 1g. Continuous soures an always be made disrete at the expense of introduingsome distortion to the signal [CT91℄. A soure is memoryless if eah symbol in thesequene is independent of the preeding and sueeding symbols. A data sink is simplythe reeiver of deoded messages.2.1.2. Soure enoder and deoder Data soures usually generate redundant messagesthat an be ompressed to vetors of shorter average length. Soure enoding, alsoknown as data ompression, is the proess of mapping sequenes of symbols from analphabet S onto a shorter representation A.Shannon employed the statistial physis idea of entropy to measure the essentialinformation ontent of a message. As enuniated by Khinhin [Khi57℄, the entropy ofShannon is de�ned as follows:De�nition 1 (Entropy) Let a1 a2 � � � amp1 p2 � � � pm !be a �nite sheme, where aj are mutually exlusive events and pj are assoiatedprobabilities with Pmj=1 pj = 1. The entropy of the sheme in bits (or shannons) isde�ned as H2(A) = � mXj=1 pj log2 pj: (3)The entropy is usually interpreted as the amount of information gained by removingthe unertainty and determining whih event atually ours.Shannon [Sha48℄ posed and proved a theorem that establishes the maximalshortening of a message by ompression as a funtion of its entropy. The ompressionoeÆient an be de�ned as � � limN!1hLNi=N , where N is the original messagelength and hLN i is the average length of ompressed messages. As presented byKhinhin [Khi57℄ the theorem states:Theorem 1 (Soure ompression) Given a disrete soure with m symbols andentropy of H bits, for any possible ompression ode, the ompression oeÆient issuh that Hlog2m � �and there exists a ode suh that� < H + �log2m;for arbitrarily small �.



Low Density Parity Chek Codes { A Statistial Physis Prospetive 8A ompression sheme that yields a oeÆient � within the bounds above, given that thestatistial struture � of the soure is known, was proposed in 1952 by Hu�man [Huf52℄.Several pratial algorithms are urrently known and the design of more eÆient androbust shemes is still a very ative researh area [NG95℄.2.1.3. Noisy hannels Message orruption during transmission an be desribed bya probabilisti model de�ned by the onditional probability P (r j t) where t and rrepresent transmitted and reeived messages respetively. We an assume that in any ofthe hannels used, only one omponent tj, j = 1; � � � ;M of the original message is beingsent. If there is no interferene e�ets between omponents, the hannel is memorylessand the onditional probability fatorizes as P (r j t) =QMj=1 P (rj j tj).A memoryless hannel model is spei�ed by (T ; P (r j t);R), where T and R areinput and output alphabets and P (r j t) transition probabilities. The informationneeded to speify t given the reeived signal r is the onditional entropy:H2(T j R) = �Xr2R P (r)"Xt2T P (t j r)log2 (P (t j r))# : (4)The information on the original signal t onveyed by the reeived signal r is given bythe mutual information I(T ;R) = H2(T ) � H2(T j R), where H2(T ) is de�ned in (3).The maximal information per bit that the hannel an transport de�nes the hannelapaity [CT91℄.De�nition 2 (Channel apaity) Given the hannel model, the hannel apaity isChannel = maxP (t) I(T ;R);where I(T ;R) is understood as a funtional of the transmitted bits distribution P (t).Thus, for example, if Channel = 1=2, in the best ase, 2 bits must be transmitted for eahbit sent.The following hannel model (see [Ma99, Ma00a℄) is of partiular interest in thishapter:De�nition 3 (Binary symmetri hannel) The memoryless binary symmetri han-nel (BSC) is de�ned by binary input and output alphabets T = R = f0; 1g and by theonditional probabilityP (r 6= t j t) = p P (r = t j t) = 1� p: (5)The hannel apaity of a BSC is given byCBSC = 1�H2(p) = 1 + p log (p) + (1� p) log (1� p)In the urrent hapter we onentrate on the binary symmetri hannel due to itssimpliity and straightforward mapping onto an Ising spin system. However, there areseveral other hannel types that have been examined in the literature, and that play aninportant role in pratial appliations [OO79, CT91℄. The most important of these isarguably the Gaussian hannel; most of the analysis presented in this hapter an bearried out in the ase of the Gaussian hannel as demonstrated in [KS99a, VSK99℄.
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Figure 3. Codebook for the (7; 4) Hamming ode de�ned by (1).2.1.4. Channel enoder and deoder Highly reliable ommuniation is possible eventhrough noisy hannels. It an be ahieved by proteting a message with redundantinformation using a hannel enoder de�ned as:De�nition 4 ((2N ;M) Code) A ode of rate R = N=M is an indexed list (odebook)of 2N odewords t(i) 2 T eah of length M . Eah index i in the odebook orrespondsto a possible sequene of message bits.In a digital system, a ode an be regarded as a map of representations of 2N symbolsas Boolean sequenes of N bits onto Boolean sequenes ofM bits. In Fig.3 we show theodebook for the Hamming ode de�ned by (1) that is a (24; 7) ode. Eah sequene ofN = 4 message bits is indexed and onverted in a odeword with M = 7 bits.A deoding funtion g is a map of a hannel output r 2 R bak into a odeword.The probability that a symbol i is deoded inorretly is given by the probability of blokerror: pBlok = Pfg(r) 6= i j t = t(i)g: (6)The average probability that a deoded bit bsj = gj(r) fails to reprodue the originalmessage bits is the probability of bit error:pb = 1N NXj=1 Pfbsj 6= sjg: (7)Shannon's oding theorem is as follows [CT91, Ma00a℄:Theorem 2 (Channel oding) The aÆrmative part of the theorem states:For every rate R < Channel, there exists a sequene of (2MR;M) odes withmaximum probability of blok error p(M)Blok ! 0. Conversely, any sequene of (2MR;M)odes with p(M)Blok ! 0 must have R � Channel.The negative part of the theorem is a orollary of the aÆrmative part and states:Error free ommuniation above the apaity Channel is impossible. It is not possibleto ahieve a rate R with probability of bit error smaller thanpb(R) = H�12 �1� ChannelR � : (8)



Low Density Parity Chek Codes { A Statistial Physis Prospetive 10This non-onstrutive theorem is obtained by assuming ensembles of random odesand impratial deoding shemes. No pratial oding sheme (i.e. that an be enodedand deoded in polynomial time) that saturates the hannel apaity is known to date.As Shannon's proof does not deal with omplexity issues, there is no guarantee thatsuh pratial sheme exists at all.2.2. Linear error-orreting odes and the deoding problemLinear error-orretion odes add redundany to the original message s 2 f0; 1gNthrough a linear map like:t = Gs (mod 2); (9)where G is an M �N Boolean matrix. The reeived message r = t+ n is a orruptedversion of the transmitted message. In the simplest form, optimal deoding onsists of�nding an optimal estimate bs(r) assuming a model for the noisy hannel P (r j t) anda prior distribution for the message soure P (s).The de�nition of the optimal estimator depends on the partiular task and lossfuntion assumed. An optimal estimator is de�ned as follows (see [Iba99℄ and referenestherein):De�nition 5 (Optimal estimator) An optimal estimator bs(r) for a loss funtionL(s;bs(r)) minimizes the average of L in relation to the posterior distribution P (s j r).A posterior probability of messages given the orrupted message reeived an be easilyfound by applying Bayes theorem:P (s j r) = P (r j t) Æ (t;Gs)P (s)Ps P (r j t) Æ (t;Gs)P (s) ; (10)where Æ(x; y) = 1 if x = y and Æ(x; y) = 0, otherwise.If we de�ne our task to be the deoding of perfetly orret messages (i.e. weare interested in minimizing the probability of blok error pBlok), we have to employ atwo-valued loss funtion that identi�es single mismathes:L(s;bs(r)) = 1� MYj=1 Æ(sj; bsj): (11)An optimal estimator for this loss funtion must minimize the following:hL(s;bs(r))iP (sjr) = Xs P (s j r)L(s;bs(r))= 1�Xs P (s j r) MYj=1 Æ(sj; bsj)= 1� P (bs j r): (12)Clearly, the optimal estimator in this ase is bs = argmaxSP (s j r). This estimator isoften alled the Maximum a Posteriori estimator or simply MAP.



Low Density Parity Chek Codes { A Statistial Physis Prospetive 11If we tolerate a ertain degree of error in the deoded message (i.e. we are insteadinterested in minimizing the probability of bit error pb), the loss funtion has to be anerror ounter like:L(s;bs(r)) = � MXj=1 sjbsj; (13)where we assume for simpliity the binary alphabet s 2 f�1gN . The optimal estimatormust minimize the following:hL(s;bs(r))iP (sjr) = � MXj=1 hsjiP (sjr)bsj: (14)An obvious hoie for the estimator isbsj = hsjiP (sjr)j hsjiP (sjr) j= sgn(hsjiP (sjr))= argmaxsjP (sj j r); (15)where P (sj j r) =Pfsk:k 6=jg P (s j r) is the marginal posterior distribution. As suggestedby Eq.(15), this estimator is often alled the Marginal Posterior Maximizer or MPM forshort.Deoding, namely, the omputation of estimators, beomes a hard task, in general,as the message size inreases. The MAP estimator requires �nding a global maximum ofthe posterior over a spae with 2N points and the MPM estimator requires to omputelong summations of 2N�1 terms for �nding the two valued marginal posterior. Theexponential saling makes a na��ve brute fore evaluation quikly impratial, at leastin . An alternative is to use approximate methods to evaluate posteriors, popularmethods are Monte-Carlo sampling and the omputationally more eÆient probabilitypropagation. In the sequene we will disuss the latter.2.3. Probability propagation algorithmThe probabilisti dependenies existing in a ode an be represented as a bipartitegraph [Lau96℄ where nodes in one layer orrespond to the M reeived bits r� and nodesin the other layer to the N message bits sj. The onnetions between the two layersare spei�ed by the generator matrix G. Deoding requires evaluation of posteriorprobabilities when the reeived bits r are known (evidene).The evaluation of the MPM estimator requires the omputation of the followingmarginal joint distribution:P (sj; r) = Xfsi:i6=jgP (s j r)P (r)= Xfsi:i6=jgP (r j s)P (s)
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 5 r 6r2 r3 r4Figure 4. Bayesian network representing a linear ode of rate 2/3. If there is an arrowfrom a vertex sj to a vertex r�, sj is said to be a parent and r� is said to be a hild.= Xfsi:i6=jg MY�=1P (r� j si1 � � � siK ) NYj=1P (sj); (16)where si1 � � � siK are message bits omposing the transmitted bit t� = (Gs)� =si1 � � � � � siK and r is the message reeived. Equation (16) shows a omplex partialfatorization that depends on the struture of the generator matrix G. We anenode this omplex partial fatorization on a direted graph known as a Bayesiannetwork [Pea88, CGH97, Jen96, KF98, AM00, Fre98, KFL01℄. As an example, we showin Fig.4 a simple direted bipartite graph enoding the following joint distribution:P (s1; � � � ; s4; r1; � � � ; r6) = P (r1 j s1; s2; s3)P (r2 j s3)P (r3 j s1; s2)� P (r4 j s3; s4)P (r5 j s3)P (r6 j s3)� P (s1)P (s2)P (s3)P (s4) (17)The generator matrix for the ode in Fig.4 is:

G = 0BBBBBBB�
1 1 1 00 1 0 01 1 0 00 0 1 10 0 1 00 0 1 0

1CCCCCCCA : (18)
Given r, an exat evaluation of the marginal joint distribution (16) in a spae ofbinary variables s 2 f�1gN would require (N +M)(2N�1 � 1) + 1 operations. In theeighties Pearl [Pea88℄ proposed an iterative algorithm that requires O(N) omputationalsteps to alulate approximate marginal probabilities using Bayesian networks. Thisalgorithm is known as belief propagation [Pea88℄, probability propagation [KF98℄,generalized distributive law [AM00℄ or sum-produt algorithm [Fre98, KFL01℄ (see also[OS01℄).The probability propagation algorithm is exat when the Bayesian networkassoiated to the partiular problem is free of loops. To introdue the probability
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Low Density Parity Chek Codes { A Statistial Physis Prospetive 14The marginal probability p(s3) an be �nally omputed by :p(s3) = Xs2 Q23(s2)R43(s3)p(s3 j s2)= Xs2 Xs1 Q12(s1)p(s2 j s1)Xs4 p(s4 j s3)R54(s4)p(s3 j s2)= Xs2 Xs1 p(s1)p(s2 j s1)Xs4 p(s4 j s3)Xs5 p(s5 j s4)= Xs1;s2;s4;s5 p(s1)p(s2 j s1)p(s3 j s2)p(s4 j s3)p(s5 j s4): (25)The evaluation of p(s3) using probability propagation is exat and requires only 16operations, muh less than the 61 operations required for the brute fore alulation.A slightly more omplex situation is shown in Fig. 6 representing the followingjoint distribution:p(s1; :::; s12) = p(s6)p(s8)p(s9)p(s10)p(s11)p(s12)p(s1 j s10)p(s2 j s11; s12)� p(s3 j s1; s2; s9)p(s4 j s3; s8)p(s5 j s3; s6)p(s7 j s4): (26)Suppose that the variables are binary, s7 and s5 are given evidene verties and wewould like to ompute the marginal p(s3). A brute fore evaluation would require11� (29 � 1) + 1 = 5622 operations.In general we an just initialize the messages with random values, or make use ofprior knowledge that may be available, and update the verties in a random order, butthis may require several iterations for onvergene to the orret values. In the partiularase of trees there is an obvious optimal sheduling that takes only one iteration pervertex to onverge: start at the leaves (verties with a single edge onneted to them)and proeed to the next internal level until the intended vertex. For the tree in Fig.6the optimal shedule would be as follows:� Q11;2; Q12;2; Q10;1; Q65; Q93; Q84 and R74� Q13; Q23 and R43; R53The Q-messages are just the prior probabilities:Qj�(sj) = p(sj); (27)where j = 6; 8; 9; 10; 11; 12.The R-message between s7 and s4 is:R74(s4) =Xs7 R7(s7)p(s7 j s4); (28)where R7(s7) = Æ(s7; s�7) and s�7 is the value �xed by the evidene.Following the shedule we have the following Q-messages:Q13(s1) = Xs10 p(s1 j s10)Q10;1(s10) (29)Q23(s2) = Xs11;s12 p(s2 j s11; s12)Q11;2(s11)Q12;2(s12): (30)
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Figure 6. Marginal probabilities also an be alulated exatly in a Bayesian tree.
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Figure 7. Left side: forward (Q) message from parent to hild. Right side: bakward(R) message from hild to parent.The remaining R-messages are:R43(s3) = Xs4;s8 p(s4 j s3; s8)Q84(s8)R74(s4) (31)R53(s3) = Xs6;s5 p(s5 j s3; s6)Q65(s6)R5(s5); (32)where R5(s5) = Æ(s5; s�5) and s�5 is the value �xed by the evidene.Finally we an fuse all the messages in the vertex s3 as follows:p(s3) = Xs1;s2;s9 p(s3 j s1; s2; s9)Q13(s1)Q23(s2)R43(s3)R53(s3)Q93(s9): (33)By substituting the expressions for the messages in (33) it is relatively straightforwardto verify that this expression gives the exat value for the marginal of (26). In thisase the probability propagation algorithm requires only 432 operations against 5622operations required by the brute fore evaluation.



Low Density Parity Chek Codes { A Statistial Physis Prospetive 16We an now summarize the rules for alulating the message that ows through apartiular edge:� Multiply all inoming messages by the loal probability table (for example: p(s3 js1; s2; s9) for vertex s3) and sum over all verties not attahed to the edge thatarries the outgoing message.� Both Q and R messages must be only funtions of the parent in the edge throughwhih the message is owing.Probability propagation is only exat if the Bayesian network assoiated has noyles. However, we an blindly apply the same algorithm in a general graph hopingthat onvergene to a good approximation is attained. In this kind of appliation there isno obvious optimal shedule and nodes an be updated serially, in parallel or randomly.Before writing the probability propagation equations for a general graph let us�rst provide some de�nitions. Two verties sj and r� are adjaent if there is an edgeonneting them. If there is an arrow from sj to r�, sj is said to be a parent and r� ahild. The hildren of sj are denoted by M(j) and the parents of r� are L(�). Linearodes are spei�ed by bipartite graphs (like in Fig.4) where all parents are in one layerand all hildren in the other layer. A message is a probability vetor Q = (Q0; Q1) withQ0 + Q1 = 1. The probability propagation algorithm in a bipartite graph operates bypassing messages between the two layers through the onnetion edges, �rst forwardsfrom the top layer (parents) to the bottom layer (hildren), then bakwards, and soon iteratively. Child-to-parent messages (bakward messages in Fig.4) are R-messagesdenoted R�j, while parent-to-hild messages (forward messages) are Q-messages denotedby Qj�.With the help of Fig.7 using the algorithm above the forward (Q) messages betweena parent sj and hild r� are just (see also [Dav99℄):Qaj� = P (Sj = a j fJ� : � 2 M(j)�g) (34)= ��j p(sj = a) Y�2M(j)n�Ra�j; (35)where ��j is a required normalization,M(j) n� stands for all elements in the set M(j)exept �.Similarly we an get the expression for the bakward (R) messages between hildr� and parent sj:Ra�j = Xfsi:i2L(�)njgP (r� j sj = a; fsi : i 2 L(�) n jg) Yi2L(�)njQsii�: (36)An approximation for the marginal posterior an be obtained by iterating Equations(34) and (36) until onvergene or some stopping riteria is attained, and fusing allinoming information to a parent node by alulating:Qaj = �j p(sj = a) Y�2M(j)Ra�j; (37)



Low Density Parity Chek Codes { A Statistial Physis Prospetive 17where �j is a normalizationQaj is an approximation for the marginal posterior P (sj j r).Initial onditions an be set to the prior probabilities Qsj� = p(s).It is lear (see also [Pea88℄) that the probability propagation (PP) algorithm isexat if the assoiated graph is a tree and that the onvergene for the exat marginalposterior ours within a number of iterations proportional to the diameter of thetree. However, graphs de�ning error-orreting odes always have yles and it hasbeen observed empirially that deoding with the PP algorithm also yields good results[FM98, Che97℄ in spite of that.There are a number of studies of probability propagation in loopy graphs with asingle yle [Wei97℄ and desribing Gaussian joint distributions [Fre99℄ but no de�niteexplanation for its good performane in this ase is known to date.2.4. Low-density parity hek odesMarginal posteriors an be alulated in O(NK) steps, where K is the averageonnetivity of a hild node, by using probability propagation. Therefore, the use of verysparse generator matries (P�j G�j = O(N)) seems favorable. Moreover, it is possibleto prove that the probability of a yle-free path of length l in a random graph deayswith O(K l=N), that indiates that small yles are harder to �nd if the generator matrixis very sparse and that PP deoding is expeted to provide better approximations for themarginal posterior (no proof is known for this statement). Enoding is also faster if verysparse matries are used, requiring O(N) operations. Despite the advantages, the use ofvery sparse matries for enoding has the serious drawbak of produing odewords thatdi�er in onlyO(K) bits from eah other, what leads to a high probability of undetetableerrors. Codes with sparse generator matries are known as Sourlas odes and will beour objet of study in the next Setion.A solution for the bad distane properties of sparse generator odes is to use a densematrix for enoding (providing a minimum distane between odewords of O(N)), whiledeoding is arried out in a very sparse graph, allowing eÆient use of PP deoding. Themethod known as parity-hek deoding [Hil86, OO79℄ is suitable in this situation, asenoding is performed by a generator matrix G, while deoding is done by transformingthe orrupted reeived vetor r = Gs+n (mod 2) with a suitable parity hek matrixHhaving the propertyHG (mod 2) = 0, yielding the syndrome vetor z =Hn (mod 2) .Deoding redues to �nding the most probable vetor n when the syndrome vetorz is known, namely, MPM estimates involve the alulation of the marginal posteriorP (nj j z). In [Ma99℄, MaKay proved that this deoding method an attain vanishingblok error probabilities up to the hannel apaity if optimally deoded (not neessarilypratially deoded).This type of deoding is the basis for the three families of odes (Gallager, MaKay-Neal and asading we study in this hapter.



Low Density Parity Chek Codes { A Statistial Physis Prospetive 182.5. Deoding and statistial physisThe onnetion between spin systems in statistial physis and digital error orretingodes, �rst noted by Sourlas [Sou89℄, is based on the existene of a simple isomorphismbetween the additive Boolean group (f0; 1g;�) and the multipliative binary group(f+1;�1g; �) de�ned by:S �X = (�1)s�x; (38)where S;X 2 f+1;�1g and s; x 2 f0; 1g. Trough this isomorphism every additionon the Boolean group orresponds to a unique produt on the binary group and vie-versa. A parity-hek bit in a linear ode is usually formed by a Boolean sum of Kbits of the form LKj=1 sj what an be mapped onto a K-spin oupling QKj=1 Sj. Thesame type of mapping an be applied to other error-orreting odes as onvolutionalodes [Sou94b, AL95℄ and Turbo odes [MS00, Mon00℄.The deoding problem depends on posteriors like P (S j J), where J is the evidene(reeived message or syndrome vetor). By applying Bayes' theorem this posterior an,in general, be written in the form:P�(S j J) = 1Z(J) exp [ln P�(J j S) + ln P(S)℄ ; (39)where � and  are hyper-parameters assumed to desribe features like the enodingsheme, soure distribution and noise level. This form suggests the following family ofGibbs measures:P��(S j J) = 1Z exp [��H�(S;J)℄ (40)H�(S;J) = � ln P�(J j S)� ln P(S); (41)where J an be regarded as quenhed disorder in the system. It is not diÆult tosee that the MAP estimator is represented by the ground state of the Hamiltonian(40), i.e. by the sign of thermal averages bSMAPj = sgn(hSji�!1) at zero temperature.On the other hand the MPM estimator is provided by the sign of thermal averagesbSMPMj = sgn(hSji�=1) at temperature one. We have seen in that if we are onernedwith the probability of bit error pe the optimal hoie for an estimator is MPM, this isequivalent to deoding at �nite temperature � = 1, known as the Nishimori temperature[Nis80, Nis93, Nis01, Ruj93℄.The evaluation of typial quantities involves the alulation of averages over thequenhed disorder (evidene) J , namely, averages over:P���(J) =XS P��(J j S)P�(S); (42)where �� and � represent the \real" hyper-parameters, in other words, the hyper-parameters atually used for generating the evidene J . Those \real" hyper-parametersare, in general, not known to the reeiver, but an be estimated from the data. Toalulate these estimates we an start by writing free-energy like negative log-likelihoodsfor the hyper-parameters:hF (�; )iP��� = �h ln P�(J)iP��� : (43)



Low Density Parity Chek Codes { A Statistial Physis Prospetive 19This log-likelihood an be regarded as measuring the typial plausibility of � and ,given the data J [Ber93℄. This funtion an be minimized to �nd the most plausiblehyper-parameters (known as type II maximum likelihood hyper-parameters or just ML-IIhyper-parameters) [Ber93℄.The ML-II hyper-parameters orrespond in this ase to � = �� and  = �, i.e.the \real" hyper-parameters must be used in the posterior for deoding. This fat is aonsequene of the following inequality:hF (��; �)iP��� � hF (�; )iP��� : (44)The proof of (44) follows diretly from the information inequality [Iba99, CT91℄, i.e.the non-negativity of the KL-divergene :D(P���kP�) � 0� ln �P���(J)P�(J) ��P��� � 0�h ln P���(J)iP��� � � h ln P�(J)iP��� : (45)When the true and assumed hyper-parameters agree, we say that we are at theNishimori ondition [Iba99, Nis01℄. At the Nishimori ondition many alulationssimplify and an be done exatly (for an example see Appendix B.3). Throughoutthis hapter we assume, unless it is stated, the Nishimori ondition.For bakground reading about statistial physis methods in general, Nishimori'sondition and its relevane to the urrent alulation we refer the reader to [Nis01℄.3. Sourlas CodesThe ode of Sourlas is based on the idea of using a linear operator G (generator matrix)to transform a message vetor s 2 f0; 1gN onto a higher dimensional vetor t 2 f0; 1gM .The enoded vetor is t = Gs (mod 2), eah bit tk being the Boolean sum of K messagebits (parity-hek). This vetor is transmitted through a noisy hannel and a orruptedM dimensional vetor r is reeived.Deoding onsists of produing an estimate bs of the original message. Thisestimate an be generated by onsidering a probabilisti model for the ommuniationsystem. Redued (order N) time/spae requirements for the enoding proess and theexistene of fast (polynomial time) deoding algorithms are guaranteed by hoosingsparse generator matries, namely, a matrix G with exatly K nonzero elements perrow and C nonzero elements per olumn, where K and C are of order 1. The rateof suh a ode, in the ase of unbiased messages, is evidently R = N=M , as the totalnumber of nonzero elements in G is MK = NC the rate is also R = K=C.In the statistial physis language a binary message vetor � 2 f�1gN is enoded toa higher dimensional vetor J0 2 f�1gM de�ned as J0hi1;i2:::iKi = �i1�i2 : : : �iK , where Msets ofK indies are randomly hosen. A orrupted version J of the enoded message J0has to be deoded for retrieving the original message. The deoding proess is the proess



Low Density Parity Chek Codes { A Statistial Physis Prospetive 20of alulating an estimate b� to the original message by minimizing a given expeted losshhL(�; b�)iP (Jj�)iP (�) averaged over the indiated probability distributions [Iba99℄. Thede�nition of the loss depends on the partiular task; the overlap L(�; b�) = Pj �jb�jan be used for deoding binary messages. As disussed in Setion 2.2, an optimalestimator for this partiular loss funtion is b�j = signhSjiP (Sj jJ) [Iba99℄, where S isan N dimensional binary vetor representing the dynamial variables of the deodingproess and P (Sj j J) =PSk;k 6=j P (S j J) is the marginal posterior probability. UsingBayes theorem, the posterior probability an be written as:ln P (S j J) = ln P (J j S) + ln P (S) + onst: (46)The likelihood P (J j S) has the form:P (J j S) = Yhosen sets XJ0hi1���iK i P (Jhi1���iKi j J0hi1���iKi) P (J0hi1���iKi j S): (47)The term P (J0hi1���iKi j S) models the deterministi enoding proess being:P (J0hi1���iKi j S) = Æ(J0hi1���iKi;Si1 � � �SiK ): (48)The noisy hannel is modeled by the term P (Jhi1���iKi j J0hi1���iKi). For the simplease of a memoryless binary symmetri hannel (BSC), J is a orrupted version ofthe transmitted message J0 where eah bit is independently ipped with probability pduring transmission, in this ase [Sou94a℄:ln P (Jhi1���iKi j J0hi1���iKi) = 12(1 + J0hi1���iKi) ln P (Jhi1���iKi j +1)+ 12(1� J0hi1���iKi) ln P (Jhi1���iKi j �1)= onst + 12ln �1� pp � Jhi1���iKi J0hi1���iKi: (49)Putting equations together we obtain the following Hamiltonian:ln P (S j J) = � �N H(S) (50)= �NX� A� J� Yi2L(�)Si + � 0N NXj=1 Sj; (51)where a set of indies is denoted L(�) = hi1; : : : iKi and A is a tensor with theproperties A� 2 f0; 1g andPf�:i2L(�)gA� = C 8i, whih determines theM omponentsof the odeword J0. The interation term is at Nishimori's temperature �N =12 ln (1�pp ) [Nis80, Iba99, Ruj93, Nis93℄, and � 0N = 12 ln (1�p�p� ) is the message priortemperature, namely, the prior distribution of message bits is assumed to be P (Sj =+1) = 1� p� and P (Sj = �1) = p�.The deoding proedure translates to �nding the thermodynami spin averagesfor the system de�ned by the Hamiltonian (50) at a ertain temperature (Nishimoritemperature for optimal deoding); as the original message is binary, the retrievedmessage bits are given by the signs of the orresponding averages.



Low Density Parity Chek Codes { A Statistial Physis Prospetive 21The performane of the error-orreting proess an be measured by the overlapbetween atual message bits and their estimates for a given senario haraterized byode rate, orruption proess and information ontent of the message. To assess thetypial properties we average this overlap over all possible odes A and noise realizations(possible orrupted vetors J) given the message � and then over all possible messages:� = 1N * NXi=1 �i hsignhSiiiA;Jj�+� (52)Here signhSii is the sign of the spins thermal average orresponding to the Bayesianoptimal deoding. The average error per bit is, therefore, given by pb = (1� �)=2.The number of heks per bit is analogous to the spin system onnetivity andthe number of bits in eah hek is analogous to the number of spins per interation.The ode of Sourlas has been studied in the ase of extensive onnetivity, where thenumber of bonds C�� N � 1K � 1 � sales with the system size. In this ase it an be mappedonto known problems in statistial physis suh as the SK [KS78℄ (K=2) and RandomEnergy (REM) [Der81a℄ (K!1) models. It has been shown that the REM saturatesShannon's bound [Sou89℄. However, it has a rather limited pratial relevane as thehoie of extensive onnetivity orresponds to a vanishingly small ode rate.3.1. Lower bound for the probability of bit errorIt has been observed in [MS00℄ that a sparse generator ode an only attain vanishingprobability of bit error if K ! 1. This fat alone does not rule out the pratial useof suh odes as they an still be used if a ontrolled probability of error is allowed oras part of a onatenated ode.Before engaging in a relatively omplex analysis, it is of theoretial interest toestablish a detailed piture of how the minimum bit error attainable deays with K.This an be done in quite a simple manner suggested in [MS00℄. Let us suppose thatmessages are unbiased and random and that the hannel is a BSC of noise level p.Assume, without loss of generality, that the message �j = 1 for all j is sent. The biterror probability an be expressed as the sum pb = PNl=1 pb(l), where pb(l) representsthe probability of deoding inorretly any l bits. Clearly pb � pb(1).The probability of deoding inorretly a single bit an be easily evaluated. A bitj engages in exatly C interations with di�erent groups of K bits in a way that theirontribution to the Hamiltonian is:Hj = �Sj X�2M(j) J� Yi2L(�)nj Si; (53)where M(j) is the set of all index sets that ontain j. If all bits but j are set to Si = 1,an error in j only an be deteted if its ontribution to the Hamiltonian is positive; ifP�2M(j)A�J� � 0 the error is undetetable. The probability of error in a single bit is



Low Density Parity Chek Codes { A Statistial Physis Prospetive 22therefore pb(1) = Pf X�2M(j) J� � 0g; (54)where A� = 1 for exatly C terms and J� an be simply regarded as a random variabletaking values +1 and �1 with probabilities 1� p and p respetively, therefore:pb � l�CXl2N;C�2l�0 C!(C � l)! l! (1� p)C�l pl: (55)A lower bound for for pb in the large C regime an be obtained by using theDeMoivre-Laplae limit theorem [Fel50℄, writing:pb � 12erf�(1� p)C8p � � 4pp�(1� p)C exp��(1� p)2C264p2 � ; (56)where erf(x) = 2p� R1x du exp(�u2) and the asymptoti behavior is given in [GR94℄(page 940). This bound implies that K ! 1 is a neessary ondition for a vanishingbit error probability in sparse generator odes at �nite rates R = K=C.3.2. Replia Theory for the Typial Performane of Sourlas CodesIn order to alulate the typial performane of Sourlas odes we employ the statistialphysis tehnique known as replia theory.To simplify analysis we use the gauge transformation [FHS78℄ Si 7! Si�i andJhi1���iKi 7!Jhi1���iKi�i1 � � � �iK that maps any general message to the on�guration de�nedas ��i = 1 8i (ferromagneti on�guration). By introduing the external �eld F � � 0N=�we rewrite the Hamiltonian in the form:H(S) = � Xhi1���iKiAhi1���iKi Jhi1���iKi Si1 � � �SiK � F NXj=1 �jSj ; (57)With the gauge transformation, the bits of the unorrupted enoded messagebeome J0hi1���iKi = 1 and, for the BSC, the orrupted bits an be desribed as randomvariables with probability:P (J) = (1�p) Æ (J�1) + p Æ (J+1) ; (58)where p is the hannel ip rate. For deriving the typial properties we alulate thefree-energy following the replia theory presription:f = � 1� limN!1 1N ��n ����n=0 hZniA;�;J ; (59)where hZniA;�;J represents an analytial ontinuation in the interval n 2 [0; 1℄ of therepliated partition funtion:hZniA;�;J = TrfS�j g De�FP�;k �kS�k+�P�;�A� J� S�i1 ���S�iKEA;J;� : (60)



Low Density Parity Chek Codes { A Statistial Physis Prospetive 23The overlap � an be rewritten using gauged variables as :� = 1N NXi=1 DhsignhSiiiA;Jj��E� ; (61)where �� denotes the transformation of a message � into the ferromagneti on�guration.To ompute the repliated partition funtion we losely follow [WS87a℄. We averageuniformly over all odes A suh that Phi1=i;i2���iKiAhi1���iKi = C 8i to �nd:hZniA;�;J = exp8<:N Extrq;bq 24C � CK + CK 0� nXl=0 Tl Xh�1:::�li qK�1:::�l1A (62)� C0� nXl=0 Xh�1:::�li q�1:::�lbq�1:::�l1A+ lnTrfS�g 
e�F�P� S���0� nXl=0 Xh�1 :::�li bq�1:::�lS�1 : : : S�l1AC359=; ;where Tl = htanhl(�J)iJ , as in [VB85℄, q0 = 1 and Extrq;bq f(q; bq) denotes the extremumof f (details in Appendix A.1). At the extremum of (62) the order parameters aquirea form similar to those of [WS87a℄:bq�1;:::;�l = Tl qK�1�1;:::;�lq�1;:::;�l = * lYi=1 S�i!0� nXl=0 Xh�1 :::�li bq�1:::�lS�1 : : : S�l1A�1+X : (63)where X = 
e�F�P� S���0� nXl=0 Xh�1:::�li bq�1:::�lS�1 : : : S�l1AC ; (64)and h:::iX = TrfS�g [(:::)X ℄ =TrfS�g [(:::)℄.To ompute the partition funtion it is neessary to assume a replia symmetri(RS) ansatz. It an be done by introduing auxiliary �elds �(x) and b�(y) (see also[WS87a℄): bq�1:::�l = Z dy b�(y) tanhl(�y);q�1:::�l = Z dx �(x) tanhl(�x) (65)for l = 1; 2; : : :.Plugging (65) into the repliated partition funtion (62), taking the limit n ! 0and using Eq.(59) (see Appendix A.2 for details):f = � 1� Extr�;b� f� ln osh � (66)



Low Density Parity Chek Codes { A Statistial Physis Prospetive 24+ � Z " KYl=1 dxl �(xl)#*ln"1 + tanh �J KYj=1 tanh �xj#+J� C Z dx dy �(x) b�(y) ln [1 + tanh �x tanh �y℄� C Z dy b�(y) ln osh �y+ Z " CYl=1 dyl b�(yl)#*ln"2 osh� CXj=1 yj + F�!#+�9=; ;where � = C=K. The saddle-point equations obtained by alulating funtionalvariatons of Eq.(66) provide a losed set of relations between �(x) and b�(y)�(x) = Z "C�1Yl=1 dyl b�(yl)# *Æ "x� C�1Xj=1 yj � F�#+� (67)b�(y) = Z "K�1Yl=1 dxl �(xl)# *Æ 24y � atanh�tanh �J QK�1j=1 tanh �xj�� 35+J :Later we will show that this self-onsistent pair of equations an be seen as a mean �elddesription of probability propagation deoding.Using the RS ansatz one an �nd that the loal �eld distribution is (see AppendixA.3) : P (h) = Z " CYl=1 dyl b�(yl)# *Æ "h� CXj=1 yj � F�#+� ; (68)where b�(y) is given by the saddle-point equations (67).The overlap (52) an be alulated using:� = Z dh sign(h)P (h): (69)The ode performane is assessed by assuming a prior distribution for the message,solving the saddle-point equations (67) numerially and then omputing the overlap.For Eq.(66) to be valid, the �xed point given by (67) must be stable and therelated entropy must be non-negative. Instabilities within the RS spae an be probedby alulating seond funtional derivatives at the extremum de�ning the free-energy(66). The solution is expeted to be unstable within the spae of symmetri repliasfor suÆiently low temperatures (large �). For high temperatures we an expand theabove expression around small � values to �nd the stability ondition:hJiJhxiK�2� � 0 (70)The average hxi� = R dx �(x) x vanishes in the paramagneti phase and is positive (non-zero when K is even) in the ferromagneti phase, satisfying the stability ondition. Wenow restrit our study to the unbiased ase (F = 0), whih is of pratial relevane,sine it is always possible to ompress a biased message to an unbiased one.



Low Density Parity Chek Codes { A Statistial Physis Prospetive 25For the aseK !1, C = �K we an obtain solutions to the saddle-point equationsat arbitrary temperatures. The �rst saddle-point equation (67) an be approximatedby: x = C�1Xl=1 yl � (C � 1)hyib� = (C � 1) Z dy y b�(y): (71)If hyib� = 0 (paramagneti phase) then �(x) must be onentrated at x = 0 implyingthat �(x) = Æ(x) and b�(y) = Æ(y) are the only possible solutions. Equation (71) alsoimplies that x � O(K) in the ferromagneti phase.Using Eq.(71) and the seond saddle-point equation (67) we �nd a self-onsistentequation for the mean �eld hyib�:hyib� = � 1� atanh htanh(�J) [tanh(�(C � 1)hyib�)℄K�1i�J : (72)For the BSC we average over the distribution (58). Computing the average, usingC = �K and resaling the temperature � = ~�(lnK)=K, we obtain in the limit K !1:hyib� � (1� 2p) htanh(~��hyib� ln(K))iK ; (73)where p is the hannel ip probability. The mean �eld hyib� = 0 is always a solutionto this equation (paramagneti solution); at � = ln(K)=(2�K(1 � 2p)) an extra non-trivial ferromagneti solution emerges with hyib� = 1 � 2p. The onnetion with theoverlap � is given by Eqs.(68) and (69) implying that � = 1 for the ferromagnetisolution. It is remarkable that the temperature where the ferromagneti solutionemerges is � � O(ln(K)=K). Paramagneti-ferromagneti barriers that emerge atreasonably high temperatures, in a simulated annealing proess, implying metastabilityand, onsequently, a very slow onvergene. It seems to advoate the use of smallK values in pratial appliations. For � > � both paramagneti and ferromagnetisolutions exist.The ferromagneti free-energy an be obtained from Eq.(66) using Eq.(71), resultingin fFERRO = ��(1� 2p). The orresponding entropy is sFERRO = 0. The paramagnetifree-energy is obtained by plugging �(x) = Æ(x) and b�(y) = Æ(y) into Equation (66):fPARA = � 1� (� ln(osh �) + ln 2); (74)sPARA = �(ln(osh �)� � tanh �) + ln 2: (75)Paramagneti solutions are unphysial for � > (ln 2)= [� tanh � � ln (osh �)℄, sinethe orresponding entropy is negative. To omplete the piture of the phase diagramwe have to introdue a replia symmetry breaking senario that yields sensible physis.In general, to onstrut a symmetry breaking solution in �nite onnetivity systems(see [Mon98b, FLRTZ01℄) is a diÆult task. We hoose as a �rst approah an one-stepreplia symmetry breaking sheme, known as the frozen spins solution, that yields exatresults for the REM [GM84, Par80℄.We assume that ergodiity breaks in suh a way that the spae of on�gurations isdivided in n=m islands. Inside eah of these islands there are m idential on�gurations,



Low Density Parity Chek Codes { A Statistial Physis Prospetive 26implying that the system an freeze in any of n=m mirostates. Therefore, in the spaeof replias we have the following situation:1N NXj=1 S�j S�j = 1 , if � and � are in the same island1N NXj=1 S�j S�j = q , otherwise: (76)By assuming the above struture the repliated partition funtion has the form:hZnRSBiA;�;J = *TrfS�j gexp �� nX�=1H(S� )!+A;J;�= *TrfS1j ;���;Sn=mj gexp0���m n=mX�=1H(S� )1A+A;J;�= *n=mY� TrfS�j gexp (��m H(S� ))+A;J;�= hZn=mRS iA;�;J ; (77)where in the �rst line we have used the ansatz with n=m islands with m identialon�gurations in eah and in the last step we have used that the overlap between anytwo di�erent islands is q. From (77) we have:hln ZRSB(�)iA;�;J = ��n ����n=0 hZnRSB(�)iA;�;J= 1mhln ZRS(�m)iA;�;J: (78)The number of on�gurations per island m must extremize the free-energy,therefore, we have:��mhln ZRSB(�)iA;�;J = 0; (79)what is equivalent tosRS(�g) = � ~�2 �� ~� ����~�=�g � 1~� hln ZRS( ~�)iA;�;J�= 0; (80)where we introdued ~� = � m. In this way m = �g=�, with �g being a root of thereplia symmetri paramagneti entropy (74), satisfying:�(ln(osh �g)� �g tanh �g) + ln 2 = 0 (81)The RSB-spin glass free-energy is given by fPARA (74) at temperature �g:fRSB-SG = � 1�g (� ln (osh �g) + ln 2); (82)onsequently the entropy is sRSB-SG = 0. In Fig.8 we show the phase diagram for a givenode rate R in the plane of temperature T and noise level p.
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Figure 8. Phase diagram in the plane of temperature T versus noise level p forK !1and C = �K, with � = 4. The dotted line indiates the Nishimori temperature TN .Full lines represent phase oexistene. The ritial noise level is p. The neessaryondition for stability of the ferromagneti phase within the replia symmetri spaeis satis�ed above the dashed line.3.3. Shannon's boundThe hannel oding theorem asserts that up to a ritial ode rate R, whih equals thehannel apaity (Shannon's bound), it is possible to reover information with arbitrarilysmall probability of error. For the BSC :R = 1� = 1 + p log2 p+ (1� p) log2 (1� p): (83)The ode of Sourlas, in the ase where K ! 1 and C � O(NK), an bemapped onto the REM and has been shown to saturates the hannel apaity in thelimit R ! 0 [Sou89℄. Shannon's bound an also be attained by Sourlas ode at zerotemperature for K ! 1 but with onnetivity C = �K. In this limit the model isanalogous to the diluted REM analyzed by Saakian [Saa98℄. The errorless phase ismanifested in a ferromagneti phase with total alignment (� = 1), only attainable forin�nite K. Up to a ertain ritial noise level, a noise level inrease produes ergodiitybreaking leading to a spin glass phase where the misalignment is maximal (� = 0). Theferromagneti-spin glass transition orresponds to the transition from errorless deodingto deoding with errors desribed by the hannel oding theorem. A paramagneti phaseis also present when the transmitted information is insuÆient to reover the originalmessage (R > 1).



Low Density Parity Chek Codes { A Statistial Physis Prospetive 28At zero temperature saddle-point equations (67) an be rewritten as:�(x) = Z "C�1Yl=1 dyl b�(yl)# Æ "x� C�1Xj=1 yj# (84)b�(y) = Z "K�1Yl=1 dxl �(xl)# (85)� *Æ "y � sign(J K�1Yl=1 xl)min(j J j; :::; j xK�1 j)#+J ;The solutions for these saddle-point equations may result in very struturedprobability distributions. As an approximation we hoose the simplest self-onsistentfamily of solutions whih are, sine J = �1, given by:b�(y) = p+Æ(y � 1) + p0Æ(y) + p�Æ(y + 1) (86)�(x) = C�1Xl=1�C T[p�;p0;C�1℄(l) Æ(x� l);with T[p+;p0;p�;C�1℄(l) = 0Xfk;h;mg (C � 1)!k! h! m! pk+ ph0 pm� ; (87)where the prime indiates that k; h;m are suh that k � h = l; k + h + m = C � 1.Evidene for this simple ansatz omes from Monte-Carlo integration of Eq.(67) at verylow temperatures, that shows solutions omprising three dominant peaks and a relativelyweak regular part. Plugging this ansatz (86) in the saddle-point equations we write alosed set of equations in p� and p0 that an be solved numerially.Solutions are of three types: ferromagneti (p+ > p�), paramagneti (p0 = 1) andreplia symmetri spin glass (p� = p+). Computing free-energies and entropies enablesone to onstrut the phase diagram. At zero temperature the paramagneti free-energyis fPARA = �� and the entropy is sPARA = (1� �) ln 2, this phase is physial only for� < 1, what is expeted sine it orresponds exatly to the regime where the transmittedinformation is insuÆient to reover the atual message (R > 1).The ferromagneti free-energy does not depend on the temperature, having theform fFERRO = ��(1 � 2p) with entropy sFERRO = 0. We an �nd the ferromagneti-spin glass oexistene line that orresponds to the maximum performane of a Sourlasode by equating Eq. (82) and fFERRO. Observing that �g = �N(p) (as seen in Fig. 8)we �nd that this transition oinides with the hannel apaity (83). It is interesting tonote that in the large K regime both RS-ferromagneti and RSB-spin glass free-energies(for T < Tg) do not depend on the temperature, it means that Shannon's bound issaturated also for �nite temperatures up to Tg. In Fig.9 we represent the omplete zerotemperature phase diagram.The bound obtained depends on the stability of the ferromagneti and paramagnetisolutions within the spae of symmetri replias at zero temperature. Instabilities are



Low Density Parity Chek Codes { A Statistial Physis Prospetive 29

0.0 0.1 0.2 0.3 0.4 0.5
p

0.0

0.5

1.0

1.5

2.0

R

PARA

SG

FERRO

(ρ=0)

(ρ=0)

(ρ=1)

Figure 9. Phase diagram in the plane ode rate R versus noise level p for K ! 1and C = �K at zero temperature. The ferromagneti-spin glass oexistene lineorresponds to Shannon's bound.found in the ferromagneti phase for p > 0. These instabilities within the repliasymmetri spae puts in question our result of saturating Shannon's bound, sinea orretion to the ferromagneti solution ould hange the ferromagneti-spin glasstransition line. However, the instability vanishes for high temperatures, whih supportsthe ferromagneti-spin glass transition line obtained and possible saturation of the boundin some region.Shannon's bound an only be attained in the limitK !1; however, there are somepossible drawbaks in using high K values due to large barriers whih are expetedto our between the paramagneti and ferromagneti phases. We now onsider the�nite K ase, for whih we an solve the RS saddle-point equations (67) for arbitrarytemperatures using Monte-Carlo integration. We an also obtain solutions for the zerotemperature ase using Eqs.(86) iteratively.It has been shown that K > 2 extensively onneted models [GM84℄ exhibit Parisi-type order funtions with similar disontinuous struture as found in the K ! 1ase; it was also shown that the one-step RSB frozen spins solution, employed todesribe the spin glass phase, is loally stable within the omplete replia spae andzero �eld (unbiased messages ase) at all temperatures. We, therefore, assume thatthe ferromagneti-spin glass transition for K > 2 is desribed by the frozen spins RSBsolution.At the top of Fig.10 we show the zero temperature overlap � as a funtion of thenoise level p at ode rate R = 1=2 obtained by using the three peaks ansatz. Notethat the RSB spin glass phase dominates for p > p (see bottom of Fig.10). In the
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Figure 10. Top: zero temperature overlap � as a funtion of the noise level p forvarious K values at ode rate R = 1=2, as obtained by the iterative method. Bottom:RS-ferromagneti free-energies (white irles for K = 2 and from the left: K = 3; 4; 5and 6) and RSB-spin glass free-energy (dotted line) as funtions of the noise level p.The arrow indiates the region where the RSB-spin glass phase starts to dominate.Inset: a detailed view of the RS-RSB transition region.bottom �gure we plot RS free-energies and RSB frozen spins free-energy, from whihwe determine the noise level p for oexistene of ferromagneti and spin-glass phases(pointed by an arrow). Above the transition, the system enters in a paramagneti orRS spin glass phase with free-energies for K = 3; 4; 5 and 6 that are lower than theRSB spin glass free-energy; nevertheless, the entropy is negative and these free-energiesare therefore unphysial. It is remarkable that the oexistene value does not hangesigni�antly for �nite K in omparison to in�nite K. Remind that Shannon's boundannot be attained for �nite K, sine �! 1 (pb ! 0) only if K !1.It is known that the K = 2 model with extensive onnetivity (SK model) requiresa full Parisi solution to reover the onavity of the free-energy [MPV87℄. No stablesolution is known for the intensively onneted model (Viana-Bray model). Probabilitypropagation only solves the deoding problem approximately, the approximatedsolutions are similar to those obtained by supposing replia symmetry. Thus, thetheoretial relevane of the RS results for K = 2 are to be evaluated by omparisonwith simulations of probability propagation deoding.3.4. Deoding with probability propagationThe deoding task onsists of evaluating estimates of the form b�j = signhSjiP (Sj jJ). Themarginal posterior P (Sj j J) = PSl;l 6=j P (S j J) an be, in priniple, be alulated



Low Density Parity Chek Codes { A Statistial Physis Prospetive 31simply by using Bayes theorem and a proper model for the enoding and orruptionproesses (namely, oding by a sparse generator matrix with K bit long parity-heksand a memoryless BSC hannel) to write:P (Sj j J) = 1P (J) XSl;l 6=jY� P (J� j Si1 � � �SiK ) NYi=1 P (Si); (88)where P (J) is a normalization dependent on J only. A brute fore evaluation of theabove marginal on a spae of binary vetors S 2 f�1gN with M heks would take(M + N + 1)2N operations, what beomes infeasible very quikly. To illustrate howdramatially the omputational requirements inrease, assume a ode of rate R = 1=2,if N = 10 the number of operations required is 31744, if one inreases the message sizeto N = 1000, 3� 10304 operations are required! Monte-Carlo sampling is an alternativeto brute fore evaluation; it onsists of generating a number (muh less than 2N) oftypial vetors S and using this to estimate the marginal posterior, however the samplesize required an prove to be equally prohibitive.As a solution to these resoure problems, we an explore the struture of (88)to devise an algorithm that produes an approximation to P (Sj j J) in O(N)operations. We start by onentrating on one partiular site Sj; this site interatsdiretly with a number of other sites through C ouplings denoted by Jhi1���iKi andfJ�g = J�(1); � � � ; J�(C�1). Suppose now that we isolate only the interation via ouplingJhi1���iKi, if the bipartite Bayesian network representing the dependenies in the problemis a tree, it is possible to write:P (Sj j Jhi1���iKi) = P (Sj)P (Jhi1���iKi) XfSi1 ���SiK�1gP (Jhi1���iKi j Sj; Si1 � � �SiK�1)� K�1Yl=1 P (Sil j fJ� : � 2 M(il)g): (89)Terms like P (Sil j fJ�g) an be interpreted simply as updated priors for Sil. In a tree,these terms fatorize like P (Sil j fJ�g) = QC�1j=1 P (Sil j J�(j)) and a reursive relationan be obtained, introduing:Qx�j = P (Sj = x j fJ� : � 2 M(j) n �g) (90)and Rx�j = XfSi:i2L(�)njgP (J� j Sj; fSi : i 2 L(�) n jg) Yi2L(�)njQSi�i ; (91)where M(j) is the set of ouplings linked to site j and L(�) is the set of sites linked tooupling �.Equation (89) an be rewritten as:Qx�j = a�jP (Sj = x) Y�2M(j)n�Rx�j: (92)Equations (91) and (92) an be solved iteratively, requiring (2KKC + 2C2)NToperations with T being the (order 1) number of steps needed for onvergene. These



Low Density Parity Chek Codes { A Statistial Physis Prospetive 32omputational requirements may be further redued by using advaned Markov hainMonte-Carlo methods [Ma99℄.An approximation to the marginal posterior (88) is obtained by ounting theinuene of all C interations over eah site j and using the assumed fatorizationproperty to write:Qxj = ajP (Sj = x) Y�2M(j)Rx�j: (93)This is an approximation in the sense that the reursion obtained from (89) is onlyguaranteed to onverge to the orret posterior if the system has a tree struture, i.e.,every oupling appears only one as one goes bakwards in the reursive hain.By taking advantage of the normalization onditions for the distributions Q+1�j +Q�1�j = 1 and R+1�j + R�1�j = 1, one an hange variables and redue the number ofequations by a fator of two m�j = Q+1�j �Q�1�j and bm�j = R+1�j �R�1�j .The analogy with statistial physis an be exposed by �rst observing that :P (J� j Sj; fSi : i 2 L(�) n jg) � exp0���J� Yi2L(�) Si1A : (94)That an be also written in the more onvenient form:P (J� j Sj; fSi : i 2 L(�) n jg) � 12osh(�J�)0�1 + tanh(�J�) Yj2L(�)Sj1A : (95)Plugging Eq.(95) for the likelihood in equations (92), using the fat that the priorprobability is given by P (Sj) = 12 (1 + tanh(� 0NSj)) and omputing m�j and bm�j (seeAppendix A.6) one obtains:bm�j = tanh(�J�) Yl2L(�)njm�lm�j = tanh0� X�2M(l)n� atanh(bm�j) + � 0N1A : (96)The pseudo-posterior an then be alulated:mj = tanh0� X�2M(l) atanh(bm�j) + � 0N1A ; (97)providing Bayes optimal deoding b�j = sign(mj).Equations (96) depend on the reeived message J . In order to make the analysismessage independent, we an use a gauge transformation bm�j 7! �j bm�j and m�j 7!�jm�j to write:bm�j = tanh(�J) Yl2L(�)njm�lm�j = tanh0� X�2M(l)n� tanh�1(bm�j) + � 0N�j1A : (98)
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Figure 11. Overlap as a funtion of the ip probability p for deoding using TAPequations for K = 2. From the bottom: Monte-Carlo solution of the RS saddle-pointequations for unbiased messages (p� = 0:5) at T = 0:26 (line) and 10 independent runsof TAP deoding for eah ip probability (plus signs), T = 0:26 and biased messages(p� = 0:1) at the Nishimori temperature TN .In the new variables, a deoding suess orresponds to bm�j > 0 and m�j = 1 forall � and j. By transforming these variables as bm = tanh(�y) and m = tanh(�x)and onsidering the atual message and noise as quenhed disorder, Eqs. (98) an berewritten as: y = 1� *tanh�1 tanh(�J)K�1Yj=1 tanh(�xj)!+Jx = *C�1Xj=1 yj + �F+� : (99)For a large number of iterations, one an expet the ensemble of probabilitynetworks to onverge to an equilibrium distribution where bm andm are random variablessampled from distributions b�(y) and �(x) respetively. The above relations lead toa dynamis of the distributions b�(y) and �(x), that is exatly as the one obtainedwhen solving iteratively RS saddle-point equations (67). The probability distributionsb�(y) and �(x) an be, therefore, identi�ed with b�(y) and �(x) respetively and theRS solutions orrespond to deoding a generi message using probability propagationaveraged over an ensemble of di�erent odes, noise and signals.Equations (96) are now used to show the agreement between the simulated deodingand analytial alulations. For eah run, a �xed ode is used to generate 20000bit odewords from 10000 bit messages, orrupted versions of the odewords are then
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Figure 12. Overlap as a funtion of the ip probability p for deoding using TAPequations for K = 5. The dotted line is the replia symmetri saddle-point equationsMonte-Carlo integration for unbiased messages (p� = 0:5) at the Nishimori temperatureTN . The bottom error bars orrespond to 10 simulations using the TAP deoding. Thedeoding performs badly on average in this senario. The upper urves are for biasedmessages (p� = 0:1) at the Nishimori temperature TN . The simulations agree withresults obtained using the replia symmetri Ansatz and Monte-Carlo integration.deoded using (96). Numerial solutions for 10 individual runs are presented in Figs.11and 12, initial onditions are hosen as bm�l = 0 and m�l = tanh(� 0N) reeting the priorbeliefs. In Fig.11 we show results for K = 2 and C = 4 in the unbiased ase, at oderate R = 1=2 (prior probability P (Sj = +1) = p� = 0:5) and low temperature T = 0:26(we avoided T = 0 due to numerial diÆulties). Solving the saddle-point equations(67) numerially using Monte-Carlo integration methods we obtain solutions with goodagreement to simulated deoding. In the same �gure we show the performane forthe ase of biased messages (P (Sj = +1) = p� = 0:1), at ode rate R = 1=4. Alsohere the agreement with Monte-Carlo integrations is satisfatory. The third urve inFig.11 shows the performane for biased messages at the Nishimori temperature TN , asexpeted, it is far superior ompared to low temperature performane and the agreementwith Monte-Carlo results is even better.In Fig.12 we show the results obtained for K = 5 and C = 10. For unbiasedmessages the system is extremely sensitive to the hoie of initial onditions and doesnot perform well on average even at the Nishimori temperature. For biased messages(p� = 0:1, R = 1=4) results are far better and in agreement with Monte-Carlo integrationof the RS saddle-point equations.



Low Density Parity Chek Codes { A Statistial Physis Prospetive 35The experiments show that probability propagation methods may be usedsuessfully for deoding Sourlas-type odes in pratie, and provide solutions that areonsistent with the RS analytial solutions.4. Gallager CodesIn 1962 Gallager [Gal62℄ proposed a oding sheme whih involves sparse lineartransformations of binary messages in the deoding stage, while enoding uses a densematrix. His proposal was overshadowed by onvolutional odes due to omputationallimitations. The best omputer available to Gallager in 1962 was an IBM 7090 ostingUS$ 3 million and with disk apaity of 1 Megabyte, while onvolutional odes, inomparison, only demanded a simple system of shift registers to proess one byte at atime.Gallager odes have been redisovered reently by MaKay and Neal that proposeda losely related ode [MN95℄ to be disussed in Setion 5. This almost oinided withthe breakthrough disovery of high performane Turbo odes [BGT93℄. Variations ofGallager odes have displayed performane omparable (sometimes superior) to Turboodes [Dav98, Dav99℄, qualifying them as state-of-the-art odes.A Gallager ode is de�ned by a binary matrix A = [C1 j C2℄, onatenating twovery sparse matries known to both sender and reeiver, with C2 (of dimensionality(M � N) � (M � N)) being invertible and C1 of dimensionality (M � N) � N .A non-systemati Gallager ode is de�ned by a random matrix A of dimensionality(M � N) � M . This matrix an, in general, be organized in a systemati form byeliminating a number � � O(1) of rows and olumns.Enoding refers to the generation of an M dimensional binary vetor t 2 f0; 1gM(M > N) from the original message � 2 f0; 1gN byt = GT � (mod 2); (100)where all operations are performed in the �eld f0; 1g and are indiated by (mod 2). Thegenerator matrix isG = [I j C�12 C1℄ (mod 2); (101)where I is the N�N identity matrix, implying thatAGT (mod 2) = 0 and that the �rstN bits of t are set to the message �. Note that the generator matrix is dense and eahtransmitted parity-hek arries information about an O(N) number of message bits.In regular Gallager odes the number of non-zero elements in eah row of A is hosento be exatly K. The number of elements per olumn is then C = (1�R)K, where theode rate is R = N=M (for unbiased messages). The enoded vetor t is then orruptedby noise represented by the vetor � 2 f0; 1gM with omponents independently drawnfrom P (�) = (1� p)Æ(�) + pÆ(� � 1). The reeived vetor takes the formr = GT� + � (mod 2): (102)



Low Density Parity Chek Codes { A Statistial Physis Prospetive 36Deoding is arried out by multiplying the reeived message by the matrix A toprodue the syndrome vetorz = Ar = A� (mod 2); (103)from whih an estimate b� for the noise vetor an be produed. An estimate for theoriginal message is then obtained as the �rst N bits of r + b� (mod 2). The Bayesoptimal estimator (also known as marginal posterior maximizer, MPM) for the noise isde�ned as b�j = argmax�jP (�j j z). The performane of this estimator an be measuredby the bit error probability pb = 1 � 1=M PMj=1 Æ[b�j; �j℄, where Æ[; ℄ is the Kronekerdelta. Knowing the matries C2 and C1, the syndrome vetor z and the noise level pit is possible to apply Bayes theorem and ompute the posterior probabilityP (� j z) = 1Z� [z = A� (mod 2)℄P (� ); (104)where �[X℄ is an indiator funtion providing 1 ifX is true and 0 otherwise. To omputethe MPM one has to ompute the marginal posterior P (�j j z) =Pi6=j P (� j z), whihin general requires O(2M) operations, thus beoming impratial for long messages. Tosolve this problem we an take advantage of the sparseness of A and use probabilitypropagation for deoding, requiring O(M) operations to perform the same task.4.1. Upper bound on ahievable ratesIt was pointed by MaKay in [Ma99℄ that an upper bound for rates ahievable forGallager odes an be found from information theoreti arguments. This upper boundis based on the fat that eah bit of the syndrome vetor z = A�(mod 2) is a sumof K noise bits independently drawn from a bimodal delta distribution P (�) withP (� = 0) = 1� p. The probability of zj = 1 is p1z(K) = 12 � 12(1� 2p)K (see AppendixC.1 for details). Therefore, the maximal information ontent in the syndrome vetor is(M � N)H2(p1z(K)) (in bits or shannons), where H2(x) is the binary entropy. In thedeoding proess one has to extrat information from the syndrome vetor in order toreonstrut a noise vetor � whih has an information ontent of MH2(p). It learlymeans that a neessary ondition for suessful deoding is:(M �N)H2(p1z(K)) �MH2(p)(1�R)H2(p1z(K)) � H2(p)R � 1� H2(p)H2(p1z(K)) : (105)In Fig.13a we plot this bound by �xingK and �nding the minimum value for C suh thatR = 1�C=K veri�es (105). Observe that as K !1, p1z(K)! 1=2 and R! 1�H2(p)that orresponds to Shannon's bound.In Fig.13b we plot the bound by �xing C and �nding the maximum K suh thatR = 1 � C=K satis�es (105), reovering the urves presented in [Ma99℄. Note thatK ! 1 implies C ! 1 and vie-versa. Gallager odes only an attain Shannon'sbound asymptotially in the limit of large K or, equivalently, large C.
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Figure 13. (a) Bounds for the rate R as a funtion of the noise level p for severalvalues of K. From bottom to top: K = 2 to 10; 20 and Shannon limit. (b) Bounds forseveral values of C. From bottom to top C = 2; 3; 4; 5 and Shannon limit.4.2. Statistial physis formulationThe onnetion to statistial physis is made by replaing the �eld f0; 1g by Ising spinsf�1g and mod 2 sums by produts [Sou89℄. The syndrome vetor aquires the form ofa multi-spin oupling J� = Qj2L(�) �j where j = 1; � � � ;M and � = 1; � � � ; (M � N).The K indies of nonzero elements in the row � of A are given by L(�) = fj1; � � � ; jKg,and in a olumn l are given by M(l) = f�1; � � � ; �Cg.The following family of posterior probabilities an be introdued:P(� j J ) = 1Z exp [��H(� ;J )℄ (106)H(� ;J ) = �  M�NX�=1 0�J� Yj2L(�) �j � 11A� F MXj=1 �j :The Hamiltonian depends on hyper-parameters  and F . For optimal deoding,  andF have to be set to spei� values that best represent how the enoding proess andorruption were performed (Nishimori ondition [Iba99℄). Therefore,  must be takento in�nity to reet the hard onstraints in Eq.(104) and F = atanh(1� 2p), reetingthe hannel noise level p. The temperature � must simultaneously be hosen to be theNishimori temperature �N = 1, that will keep the hyper-parameters in the orret value.The disorder in (106) is trivial and an be gauged to J� 7! 1 by using �j 7! �j�j. Theresulting Hamiltonian is a multi-spin ferromagnet with �nite onnetivity in a random�eld �jF : Hgauge (� ; �) = � M�NX�=1 0� Yj2L(�) �j � 11A� F MXj=1 �j�j: (107)At the Nishimori ondition  ! 1 and the model is even simpler, orresponding



Low Density Parity Chek Codes { A Statistial Physis Prospetive 38to a paramagnet with restrited on�guration spae on a non-uniform external �eld:Hgauge(� 2 
; �) = �F MXj=1 �j�j; (108)where 
 = f� : Yj2L(�) �j = 1 ; � = 1; � � � ;M �Ng: (109)The optimal deoding proess simply orresponds to �nding loal magnetizationsat the Nishimori temperature mj = h�ji�N and alulating Bayesian estimates asb�j = sgn(mj).In the f�1g representation the probability of bit error, aquires the formpb = 12 � 12M MXj=1 �j sgn(mj); (110)onneting the ode performane with the omputation of loal magnetizations.4.3. Replia theoryIn this setion we use the replia theory for analyzing the typial performane of Gallagerodes along the same lines disussed for Sourlas odes. We start by rewriting the gaugedHamiltonian (107) in a form more suitable for omputing averages over di�erent odes:Hgauge (� ; �) = � Xhi1���iKiAhi1���iKi (�i1 � � � �iK � 1)� F MXj=1 �j�j; (111)where Ahi1���iKi 2 f0; 1g is a random symmetri tensor with the properties:Xhi1���iKiAhi1���iKi =M �N Xhi1;���;ij=l;���;iKiAhi1;���;iKi = C 8l; (112)that selets M �N sets of indies (onstrution). The onstrution fAhi1���iKig and thenoise vetor � are to be regarded as quenhed disorder. As usual, the aim is to omputethe free-energy:f = � 1� limM!1 1M hln ZiA;� ; (113)from whih the typial marosopi (thermodynami) behavior an be obtained. Thepartition funtion Z is:Z = Tr� exp ���Hgauge (� ; �)� : (114)The free energy an be evaluated alulating following expressionf = � 1� limM!1 1M ��n ����n=0 hZniA;� ; (115)



Low Density Parity Chek Codes { A Statistial Physis Prospetive 39where hZniA;� = X� 1;���;� n MYj=1*exp F�� nX�=1 ��j !+�� * Yhi1���iKi nY�=1 exp ��Ahi1���iKi(��i1 � � � ��iK � 1)�+A : (116)The average over onstrutions h(� � �)iA takes the form:h(� � �)iA = 1N XfAg MYj=1 Æ0� Xhi1=j;i2;���;iKiAhi1=j;���;iKi � C1A (� � �)= 1N XfAg MYj=1 "I dZj2�i 1ZC+1j ZPhi1=j;i2;���;iK iAhi1=j;���;iK ij # (� � �) ; (117)and the average h(� � �)i� over the noise is:h(� � �)i� = X�=�1;+1(1� p)Æ(� � 1) + pÆ(� + 1) (� � �): (118)By omputing the averages above and introduing auxiliary variables through theidentity Z dq�1����mÆ q�1����m � 1M MXi Zi��1i � � � ��mi ! = 1 (119)one �nds, after using standard tehniques (see Appendix B.1 for details), the followingexpression for the repliated partition funtion:hZniA;� = 1N Z �dq0dbq02�i � nY�=1 dq�dbq�2�i ! � � � (120)� exp24MKK! nXm=0 Xh�1����mi TmqK�1����m� M nXm=0 Xh�1����mi q�1����mbq�1����m35� MYj=1Trf��g 24*exp "F�� nX�=1 ��#+�� I dZ2�i exp hZPnm=0Ph�1����mi bq�1����m ��1 � � � ��miZC+1 35 ;where Tm = e�n� oshn(�) tanhm(�). Comparing this expression with that obtainedfor the ode of Sourlas in Eq. (A.7), one an see that the di�erenes are thedimensionalityM for Gallager odes instead of N for Sourlas (reeting the fat that inthe former the noise vetor of dimension M is the dynamial variable) and the abseneof disorder in the ouplings, yielding a slightly modi�ed de�nition for the onstants Tm.
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Figure 14. Suboptimal ferromagneti solution �NFERRO(x) for the saddle-pointequations (124) obtained numerially. Parameters are K = 4, C = 3 and p = 0:20.Cirles orrespond to an experimental histogram obtained by deoding with probabilitypropagation in 100 runs for 10 di�erent random onstrutions.4.4. Replia symmetri solutionThe replia symmetri ansatz onsists of assuming the following form for the orderparameters: q�1����m = Z dx �(x) xm bq�1����m = Z dbx b�(bx) bxm: (121)By performing the limit  ! 1, plugging (121) into (120), omputing thenormalization onstant N , integrating in the omplex variable Z and omputing thetrae (see Appendix B.2) we �nd:hZniA;� = Extr�;b��exp��MC �Z dxdbx �(x) b�(bx) (1 + xbx)n � 1�+  MCK Z KYj=1 dxj �(xj) (1 + KYj=1 xj)n � 1!# (122)� 0�Z CYj=1 dbxj b�(bxj)*"X�=�1 e��F� CYj=1(1 + �bxj)#n+�1AM9=; :Using (115): f = 1� Extr�;b��CK ln2 + C Z dxdbx �(x) b�(bx) ln(1 + xbx)� CK Z KYj=1 dxj �(xj) ln(1 + KYj=1 xj) (123)
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Figure 15. Free-energies for K = 4, C = 3 and R = 1=4. The full line orrespondsto the free-energy of thermodynami states. Up to ps only the ferromagneti state ispresent. The ferromagneti state then dominates the thermodynamis up to p, wherethermodynami oexistene with suboptimal ferromagneti states takes plae. Dashedlines orrespond to replia symmetri free-energies of non-dominant metastable states.� Z CYj=1 dbxj b�(bxj)*ln"X�=�1 e��F� CYj=1(1 + �bxj)#+�9=; :The extremization above yields a pair of saddle-point equations:b�(bx) = Z K�1Yj=1 dxj �(xj) Æ "bx� K�1Yj=1 xj# (124)�(x) = Z C�1Yl=1 dbxl b�(bxl) *Æ "x� tanh �F� + C�1Xl=1 atanh bxl!#+� ;where � = 1 (Nishimori temperature) and F = 12 ln (1�pp ) for optimal deoding.Following the derivation of Appendix A.3 very losely, the typial overlap � =h 1M PMj=1 �jb�jiA;� between the estimate b�j = sgn(h�ji�) and the atual noise �j is givenby: � = Z dh P (h) sgn(h) (125)P (h) = Z CYl=1 dbxl b�(bxl) *Æ "h� tanh �F� + CXl=1 atanh bxl!#+� :4.5. Thermodynami quantities and typial performaneThe typial performane of a ode as predited by the replia symmetri theory anbe assessed by solving (124) numerially and omputing the overlap � using (125).
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Figure 16. Pitorial representation of the replia symmetri free-energy landsapehanging with the noise level p. Up to ps there is only one stable state F orrespondingto the ferromagneti state with � = 1. At ps, a seond stable suboptimal ferromagnetistate F 0 emerges with � < 1, as the noise level inreases, oexistene is attained at p.Above p, F 0 beomes the global minimum dominating the system thermodynamis.The numerial alulation an be done by representing distributions � and b� byhistograms (we have used representations with 20000 bins), and performing Monte-Carlo integrations in an iterative fashion until a solution is found. Overlaps an beobtained by plugging the distribution b� that is a solution for (124) into (125).Numerial alulations show the emergene of two solution types, the �rstorresponds to a totally aligned (ferromagneti) state with � = 1 desribed by:�FERRO(x) = Æ[x� 1℄ b�FERRO(bx) = Æ[bx� 1℄: (126)The ferromagneti solution is the only stable solution up to a spei� noise level ps.Above ps another stable solution with � < 1 (suboptimal ferromagneti) an be obtainednumerially. This solution is depited in Fig.14 for K = 4, C = 3 and p = 0:20.The ferromagneti state is always a stable solution for (124) and is present for allhoies of noise level or onstrution parameters C and K. The stability an be veri�edby introduing small perturbations to the solution and observing that the solution isreovered after a number of iterations of (124).The free-energy for the ferromagneti state at Nishimori's temperature is simplyfFERRO = �F (1 � 2p). In Fig. 15 we show free-energies for K = 4 and R = 1=4, pindiates the noise level where oexistene between the ferromagneti and suboptimalferromagneti phases ours. This oexistene noise level oinides, within the numerialpreision, with the information theoreti upper bound of Setion 4.1. In Fig.16 we showpitorially how the replia symmetri free-energy landsape hanges with the noise levelp. In Fig.17 we show the overlap as a funtion of the noise level, as obtained forK = 4 and R = 1=4 (therefore C = 3). Full lines indiate values orresponding to
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Figure 17. Overlaps for K = 4, C = 3 and R = 1=4. The full line orrespondsto overlaps predited by thermodynamial onsiderations. Up to ps only theferromagneti � = 1 state is present, it then dominates the thermodynamis up top, where oexistene with suboptimal ferromagneti states takes plae. Dashed linesorrespond to overlaps of non-dominant states.states of minimum free-energy that are predited thermodynamially. The general ideais that the marosopi behaviour of the system is dominated by the global minimumof the free-energy (thermodynami equilibrium state). After a suÆiently long time thesystem eventually visits on�gurations onsistent with the minimum free-energy statestaying there almost all of the time. The whole dynamis is ignored and only the stableequilibrium, in a thermodynami sense, is taken into aount. Also in Fig. 17 we showresults obtained by simulating probability propagation deoding (blak irles). Thepratial deoding stays in a meta-stable (in the thermodynami sense) state betweenps and p and the pratial maximum noise level orreted is atually given by ps.Returning to the pitorial representation in Fig.16, the noise level ps that providesthe pratial threshold is signalled by the appearane of spinodal points in the repliasymmetri free-energy, de�ned as points separating (meta)stable and unstable regionsin the spae of thermodynamial on�gurations (�). The noise level ps may, therefore,be alled spinodal noise level.The solutions obtained must produe non-negative entropies to be physiallymeaningful. The entropy an be omputed from the free-energy (123) as s = �2 �f��yielding: s = �(u(�) � f) (127)u(�) = � Z CYj=1 dbxj b��(bxj)*F�P�=�1 �e��F�QCj=1(1 + �bxj)P�=�1 e��F�QCj=1(1 + �bxj) +� ;where b�� is a solution for the saddle-point equations (124) and u(�) orresponds to
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Figure 18. Internal energy density for K = 4, C = 3 and R = 1=4 for bothferromagneti and suboptimal ferromagneti states. The equality is a onsequeneof using the Nishimori ondition (see Appendix B.3).the internal energy density at temperature �. For the ferromagneti state sFERRO = 0what indiates that the replia symmetri ferromagneti solution is physial and thatthe number of miro-states onsistent with the ferromagneti state is at most ofpolynomial order in N . The entropy of the suboptimal ferromagneti state an beobtained numerially. Up to the spinodal noise level ps the entropy vanishes as onlythe ferromagneti state is stable. Above ps the entropy of the replia symmetrisuboptimal ferromagneti state is negative and, therefore, unphysial. At p the entropyof the suboptimal ferromagneti state beomes positive again. The internal energydensity obtained numerially is depited in Fig.18 being u = �F (1 � 2p) for bothferromagneti and suboptimal ferromagneti states, justi�ed by assuming Nishimori'sondition  !1, � = 1 and F = atanh(1� 2p) [Iba99℄ (see Appendix B.3).The unphysial behavior of the suboptimal ferromagneti solution between ps andp indiates that the replia symmetri ansatz does not provide the orret physialdesription of the system. The onstrution of a omplete one-step replia symmetrybreaking theory turns out to be a diÆult task in the family of models we fous onhere [WS88, Mon98b, Mon98a℄; although it may be possible in priniple using a newmethod, reently introdued by Mezard and Parisi [MP01℄. An alternative is to onsidera frozen spins solution. In this ase the entropy in the interval ps < p < p is orretedto sRSB = 0 and the free-energy and internal energy are frozen to the values at p.Any andidate to a physial desription for the system would have to be omparedwith simulations to be validated. Nevertheless, our aim here is prediting the behaviorof a partiular deoding algorithm, namely, probability propagation. In the next setionwe will show that, to this end, the replia symmetri theory will be suÆient.
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τFigure 19. First step in the onstrution of Husimi atus with K = 3 andonnetivity C = 4.4.6. Codes on a atusIn this setion we present a statistial physis treatment of Gallager odes by employinga mean-�eld approximation based on the use of a generalized tree struture (Bethe lattie[WS87b℄) known as Husimi atus that is exatly solvable [Guj95, BL82, RK92, Gol91℄.There are many di�erent ways of building mean-�eld theories. One an makea perturbative expansion around a tratable model [Ple82, Tan00℄ or assume atratable struture and variationally determine the model parameters [SJ98℄. In theapproximation we employ, the tratable struture is tree-like and the ouplings J� arejust assumed to be those of a model with yles. In this framework the probabilitypropagation deoding algorithm (PP) emerges naturally providing an alternative view tothe relationship between PP deoding and mean-�eld approximations already observedin [KS98℄. Moreover, this approah has the advantage of being slightly more ontrolledand easier to understand than replia alulations.A Husimi atus with onnetivity C is generated starting with a polygon of Kverties with one Ising spin in eah vertex (generation 0). All spins in a polygon interatthrough a single oupling J� and one of them is alled the base spin. In Fig.19 we showthe �rst step in the onstrution of a Husimi atus, in a generi step the base spins ofthe (C � 1)(K � 1) polygons in generation n � 1 are attahed to K � 1 verties of apolygon in the next generation n. This proess is iterated until a maximum generationnmax is reahed, the graph is then ompleted by attahing C unorrelated branhes ofnmax generations at their base spins. In this way eah spin inside the graph is onnetedto C polygons exatly. The loal magnetization at the enter mj an be obtained by�xing boundary (initial) onditions in the 0-th generation and iterating the relatedreursion equations until generation nmax is reahed. Carrying out the alulation inthe thermodynami limit orresponds to having nmax � lnM generations andM !1.The Hamiltonian of the model has the form (106) where L(�) denotes thepolygon � of the lattie. Due to the tree-like struture, loal quantities far from theboundary an be alulated reursively by speifying boundary onditions. The typialdeoding performane an therefore be omputed exatly without resorting to repliaalulations [Guj95℄.We adopt the approah presented in [RK92℄ for obtaining reursion relations. Theprobability distribution P�k(�k) for the base spin of the polygon � is onneted to



Low Density Parity Chek Codes { A Statistial Physis Prospetive 46(C � 1)(K � 1) distributions P�j(�j), with � 2 M(j) n � (all polygons linked to jbut �) of polygons in the previous generation:P�k(�k) = 1N Trf�jg exp24�0�J��k Yj2L(�)nk �j � 11A+ �F�k35 (128)� Y�2M(j)n� Yj2L(�)nk P�j(�j);where the trae is over the spins �j suh that j 2 L(�) n k.The e�etive �eld bx�j on a base spin j due to neighbors in polygon � an be writtenas : e�2bx�j = e2�F P�j(�)P�j(+) ; (129)Combining (128) and (129) we �nd the reursion relation (see Appendix B.4 for details):e�2bx�k = Trf�jge��J�Qj2L(�)nk �j+Pj2L(�)nk(�F+P�2M(j)n� bx�j)�jTrf�jge+�J�Qj2L(�)nk �j+Pj2L(�)nk(�F+P�2M(j)n� bx�j)�j : (130)By omputing the traes and taking  !1 and � = 1 one obtains:bx�k = atanh24J� Yj2L(�)nk tanh(F + X�2M(j)n� bx�j)35 (131)The e�etive loal magnetization due to interations with the nearest neighbors inone branh is given by bm�j = tanh(bx�j). The e�etive loal �eld on a base spinj of a polygon � due to C � 1 branhes in the previous generation and due to theexternal �eld is x�j = F +P�2M(j)n� bx�j; the e�etive loal magnetization is thereforem�j = tanh(x�j). Equation (131) an then be rewritten in terms of bm�j and m�j andthe PP equations [Ma99, KS98, KF98℄ an be reovered:m�k = tanh0�F + X�2M(k)n� atanh (bm�k)1Abm�k = J� Yj2L(�)nkm�j (132)One the magnetization on the boundary (0-th generation) are assigned, the loalmagnetization mj in the entral site is determined by iterating (132) and omputing :mj = tanh0�F + X�2M(j) atanh (bm�j)1A (133)A free-energy an be obtained by integration of (132) [MKSV00, VSK00b, BL82℄.The equations (132) desribing PP deoding represent extrema of the following free-energy: F(fm�k; bm�kg) = M�NX�=1 Xi2L(�) ln(1 +m�i bm�i) (134)
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Figure 20. Transitions for Gallager odes with K = 6 (left) and K = 10 (right).Shannon's bound (dashed line), information theory upper bound (full line) andthermodynami transition obtained numerially (Æ). Transitions obtained by Monte-arlo integration of Eq.(138) (�) and by simulations of PP deoding (+, M = 5000averaged over 20 runs) are also shown. Blak squares are estimates for pratialthresholds based on Se.4.8. In both �gures, symbols are hosen larger than the errorbars. � M�NX�=1 ln(1 + J� Yi2L(�)m�i)� MXj=1 ln24eF Y�2M(j)(1 + bm�j) + e�F Y�2M(j)(1� bm�j)35The iteration of the maps (132) is atually one out of many di�erent methods of �ndingstable extrema of this free-energy.The deoding proess an be performed by iterating the multidimensionalmap (132)using some de�ned sheduling. Assume that the iterations are performed in parallelusing the following proedure:(i) E�etive loal magnetizations are initialized as m�k = 1 � 2p, reeting priorprobabilities.(ii) Conjugate magnetizations bm�k are updated.(iii) Magnetizations m�k are omputed.(iv) If onvergene or a maximal number of iterations is attained, stop. Otherwise goto step (ii).Equations (132) have �xed points that are inonveniently dependent on thepartiular noise vetor �. By applying the gauge transformation J� 7! 1 and �j 7! �j�jwe get a map with noise independent �xed points that has the following form:m�k = tanh0��kF + X�2M(k)n� atanh (bm�k)1A (135)
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Figure 21. Mean normalized overlap � between the atual noise vetor � anddeoded noise b� for a Gallager ode with K = 4 and C = 3 (therefore R = 1=4).Theoretial values (�) obtained by Monte-arlo integration of Eq.(138) and averagesof 20 simulations of PP deoding for ode word lengths M = 5000 (�) and M = 100(full line). Symbols are hosen larger than the error bars.bm�k = Yj2L(�)nkm�j: (136)In terms of e�etive �elds x�k and bx�k we have:x�k = �kF + X�2M(k)n� bx�k bx�k = atanh0� Yj2L(�)nk tanh(x�j)1A : (137)The above equations provide a mirosopi desription for the dynamis of a probabilitypropagation deoder, a marosopi desription an be onstruted by retainingonly statistial information about the system, namely by desribing the evolution ofhistograms of variables x�k and bx�k.Assume that the e�etive �elds x�k and bx�k are random variables independentlysampled from the distributions P (x) and bP (bx) respetively, in the same way assumethat �j is sampled from P (�) = (1� p) Æ(� � 1) + Æ(� + 1). A reursion relation in thespae of probability distributions [BL82℄ an be found from Eq. (137):Pn(x) = Z d� P (�) Z C�1Yl=1 dbxl bPn�1(bxl) Æ "x� F� � C�1Xl=1 bxl#bPn�1(bx) = Z K�1Yj=1 dxj Pn�1(xj) Æ "bx� atanh K�1Yj=1 tanh(xj)!# ; (138)where Pn(x) is the distribution of e�etive �elds at the n-th generation due to theprevious generations and external �elds, in the thermodynami limit the distributionfar from the boundary will be P1(x) (generation n!1). The loal �eld distribution
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Figure 22. PP deoding onvergene time as a funtion of the ode size (M �N) forK = 4 C = 3 and p = 0:05, therefore, well below the threshold. The onvergene timelearly does not sale with the system size.at the entral site is omputed by replaing C�1 by C in the �rst equation (138), takinginto aount C polygons in the generation just before the entral site, and inserting thedistribution P1(x):P (h) = Z d� P (�) Z CYl=1 dbxl bP1(bxl) Æ "x� F� � CXl=1 bxl# : (139)Equations (138) are idential to equations (124) obtained by the replia symmetritheory [KMS00, MKSV00, VSK00b℄ if the variables desribing �elds are transformed tothose of loal magnetizations through x 7! tanh(�x).In Fig.14 we show empirial histograms obtained by performing 100 runs of PPdeoding for 10 di�erent odes of size M = 5000 and ompare with a distributionobtained by solving equations like (138). The pratial PP deoding is performed bysetting initial onditions as m�j = 1 � 2p to orrespond to the prior probabilities anditerating (132) until stationarity or a maximum number of iterations is attained [Ma99℄.The estimate for the noise vetor is then produed by omputing b�j = sign(mj). Ateah deoding step the system an be desribed by histograms of variables (132), thisis equivalent to iterating (138) (a similar idea was presented in [Ma99, Dav98℄).In Fig.20 we summarize the transitions obtained for K = 6 and K = 10. A dashedline indiates Shannon's limit, the full line represents the information theoreti upperbound of Setion 4.1, white irles stand for the oexistene line obtained numerially.Diamonds represent spinodal noise levels obtained by solving (138) numerially and(+) are results obtained by performing 20 runs using PP deoding. It is interesting toobserve that the pratial performane tends to get worse as K grows large, what agreeswith the general belief that deoding gets harder as Shannon's limit is approahed.
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Figure 23. Tanner graph representing the neighborhood of a bit node in an irregularGallager ode. Blak irles represent heks and white irles represent bits.4.7. Tree-like approximation and the thermodynami limitThe geometrial struture of a Gallager ode de�ned by the matrixA an be representedby a bipartite graph as in Fig.(23) (Tanner graph) [KF98℄ with bit and hek nodes(in this ase, we show an irregular onstration where the values of K and C arenot �xed). Eah olumn j of A represents a bit node and eah row � representsa hek node, A�j = 1 means that there is an edge linking bit j to hek �. It ispossible to show [RU01℄ that for a random ensemble of regular odes, the probabilityof ompleting a yle after walking l edges starting from an arbitrary node is upperbounded by P[l;K;C;M ℄ � l2K l=M . It implies that for very large M only yles ofat least order lnM survive. In the thermodynami limit M ! 1 and the probabilityP[l;K;C;M ℄! 0 for any �nite l and the bulk of the system is e�etively tree-like. Bymapping eah hek node to a polygon with K bit nodes as verties, one an map aTanner graph into a Husimi lattie that is e�etively a tree for any number of generationsof order less than lnM . In Fig.22 we show that the number of iterations of (132) requiredfor onvergene far from the threshold does not sale with the system size, therefore,it is expeted that the interior of a tree-like lattie approximates a Gallager ode withinreasing auray as the system size inreases. Figure 21 shows that the approximationis fairly good even for sizes as small as M = 100 when ompared to theoretial resultsand simulations for sizeM = 5000. Nevertheless, the di�erene inreases as the spinodalnoise level approahes, what seems to indiate the breakdown of the approximation. Apossible explanation is that onvergene times larger than O(lnM) may be requiredin this region. An interesting analysis of the onvergene properties of probabilitypropagation algorithms for some spei� graphial models an be found in [Wei97℄.



Low Density Parity Chek Codes { A Statistial Physis Prospetive 514.8. Estimating spinodal noise levelsWe now estimate the threshold noise level ps by introduing a measure for the numberof parity-heks violated by a bit �l:El = � X�2M(l)0�J��l Yj2L(�)nl �j � 11A : (140)By using gauged variables:El = � X�2M(l)0��l Yj2L(�)nl �j � 11A : (141)Suppose that random guesses are generated by sampling the prior distribution, theirtypial overlap will be � = 1� 2p. Assume now that the vetors sampled are orretedby ipping �l if El = C. If the landsape has a single dominant minimum we expet thatthis proedure will tend to inrease the overlap � between � and the atual noise vetor� in the �rst step up to the noise level ps, where suboptimal mirosopi on�gurationsare expeted to emerge. Above ps there is a large number of suboptimal ferromagnetimiro-states with an overlap around � = 1 � 2p (see Fig.21), and we expet that if asingle bit of a randomly guessed vetor is orreted, the overlap will then either inreaseor derease, staying unhanged on average. A vanishing variation in the mean overlapwould, therefore, signal the emergene of suboptimal miro-states at ps.The probability that a bit �l = +1 is orreted is:P (El = C j �l = +1) = Y�2M(l)P 8<: Yj2L(�)nl �j = �19=; : (142)For a a bit �l = �1 :P (El = C j �l = �1) = Y�2M(l)241� P 8<: Yj2L(�)nl �j = �19=;35 : (143)Considering vetors sampled from a prior P (�) = (1� p) Æ(� � 1) + p Æ(� + 1) wehave: P 8<: Yj2L(�)nl �j = �19=; = 12 � 12 (1� 2p)K�1: (144)The gauged overlap is de�ned as � =PMj=1 Sj and the variation on the overlap afteripping a bit l is �� = �1 � �0 = S1l � S0l . The mean variation in the overlap due to aip in a bit �l with El = C is therefore:12h��i = P (�l = +1 j El = C) � P (�l = �1 j El = C) (145)= P�l=�1 �lP (El = C j �l)P (�l)P�l=�1 P (El = C j �l))P (�l) ;



Low Density Parity Chek Codes { A Statistial Physis Prospetive 52where we applied the Bayes theorem to obtain the last line.By plugging the prior probability, (142) and (144) into the above expression we get:12h��i = �1� (1� 2p)K�1�C (1� p) � �1 + (1� 2p)K�1�C p[1� (1� 2p)K�1℄C (1� p) + [1 + (1� 2p)K�1℄C p : (146)At ps we have h��i = 0 and:ps1� ps = �1� (1� 2ps)K�11 + (1� 2ps)K�1� : (147)The above equation an be solved numerially yielding reasonably aurate estimatesfor pratial thresholds ps as an be seen in Fig.20.MaKay [Ma99℄ and Gallager [Gal62, Gal63℄ introdued probabilisti deodingalgorithms whose performane analysis is essentially the same those as presented here.However, the results obtained in Setion 4.3 put the analysis into a broader perspetive:algorithms that generate deoding solutions in polynomial time, as is the ase ofprobabilisti deoding or probability propagation, seem to be bounded by the pratialthreshold ps due to the presene of suboptimal solutions. On other hand, deodingin exponential time is always possible up to the thermodynami transition at p (withp attaining hannel apaity if K ! 1), by performing an exhaustive searh for theglobal minimum of the free-energy (134).5. MaKay-Neal CodesMaKay-Neal (MN) odes were introdued in [MN95℄ as a variation on Gallager odes.As in the ase of Gallager odes (see Setion 4), MN odes are de�ned by two verysparse matries, but with the di�erene that information on both noise and signal isinorporated to the syndrome vetor. MN odes are also deoded using sparse matrieswhile enoding uses a dense matrix, what yields good distane properties and a deodingproblem solvable in linear time by using the methods of probability propagation.Casading odes, a lass of onstrutions inside the MN family reently proposed byKanter and Saad [KS99b, KS00b, KS00a℄, have been shown to outperform some of theutting-edge Gallager and turbo ode onstrutions. We will disuss asading odes inthe next seion, but this fat alone justi�es a thorough study of MN odes.Theorems showing the asymptoti goodness of the MN family have been provedin [Ma99℄. By assuming that equal message and noise biases (for a BSC), it wasproved that the probability of error vanishes as the message length inreases and thatit is possible to get as lose as desired to hannel apaity by inreasing the number ofnon-zero elements in a olumn of the very sparse matries de�ning the ode.It an also be shown by a simple upper bound that MN odes, unlike Gallager odes,might as well attain Shannon's bound for a �nite number of non-zero elements in theolumns of the very sparse matries, given that unbiased messages are used. This upperbound does not guarantee that hannel apaity an be attained in polynomial time oreven that it an be attained at all. Results obtained using statistial physis tehniques



Low Density Parity Chek Codes { A Statistial Physis Prospetive 53[KMS00, MKSV00, VSK00b, VSK00a℄ seem to indiate that Shannon's bound anatually be approahed with exponential time deoding. This feature is onsideredto be new and somewhat surprising [Ma00b℄.Statistial physis has been applied to analyze MN odes and its variantsin [KMS00, MKSV00, VSK00b℄. In the analysis we use the replia symmetri theory toobtain all relevant thermodynami quantities and to alulate the phase diagram. Thetheory also yields a noise level where suboptimal solutions emerge that is in onnetionwith the pratial thresholds observed when probability propagation deoding is used.Assuming that a message is represented by a binary vetor � 2 f0; 1gN sampledindependently from the distribution P (�) = (1�p�) Æ(�)+p� Æ(��1), the MN enodingproess onsists of produing a binary vetor t 2 f0; 1gM de�ned byt = G� (mod 2); (148)where all operations are performed in the �eld f0; 1g and are indiated by (mod 2). Theode rate is, therefore, R = N=M .The generator matrix G is an M �N dense matrix de�ned byG = C�1n Cs (mod 2); (149)with Cn being an M �M binary invertible sparse matrix and Cs an M � N binarysparse matrix.The transmitted vetor t is then orrupted by noise. We here assume a memorylessbinary symmetri hannel (BSC), namely, noise is represented by a binary vetor� 2 f0; 1gM with omponents independently drawn from the distribution P (�) =(1� p) Æ(�) + p Æ(� � 1).The reeived vetor takes the formr = G� + � (mod 2): (150)Deoding is performed by pre-proessing the reeived message with the matrix Cnand produing the syndrome vetorz = Cnr = Cs� +Cn� (mod 2); (151)from whih an estimate b� for the message an be diretly obtained.An MN ode is alled regular if the number of elements set to one in eah row ofCs is hosen to be K and the number of elements in eah olumn is set to be C. Forthe square matrix Cn the number of elements in eah row (or olumn) is set to L. Inthis ase the total number of ones in the matrix Cs is MK = NC, yielding that therate an alternatively be expressed as R = K=C.In ontrast, an MN ode is alled irregular if eah row m in Cs and Cn ontains Kmand Lm non-zero elements respetively. In the same way, eah olumn j of Cs ontainsCj non-zero elements and eah olumn l of Cn ontains Dl non-zero elements.Counting the number of non-zero elements in the matries leads to the followingrelations: NXj=1 Cj = MX�=1K� MXl=1 Dl = MX�=1 L�; (152)



Low Density Parity Chek Codes { A Statistial Physis Prospetive 54The ode rate is, therefore, R = K=C, where:K = 1M MX�=1K� C = 1N NXj=1 Cj: (153)The Bayes optimal estimator b� for the message � is b�j = argmaxSjP (Sj j z).The performane of this estimator is measured by the probability of bit error pb =1 � 1=N PNj=1 Æ[b�j; �j℄, where Æ[; ℄ is the Kroneker delta. Knowing the matries Csand Cn, the syndrome vetor z, the noise level p and the message bias p�; the posteriorprobability is omputed by applying Bayes theorem:P (S; � j z) = 1Z� [z = CsS +Cn� (mod 2)℄P (S)P (� ); (154)where �[X℄ is an indiator funtion providing 1 if X is true and 0 otherwise.To obtain the estimate one has to ompute the marginal posteriorP (Sj j z) = XfSi:i6=jgX� P (S; � j z); (155)whih requires O(2N) operations and is impratial for long messages. Again we an usethe sparseness of [Cs j Cn℄ and the methods of probability propagation for deoding,what requires only O(N) operations.When p = p�, MN and Gallager odes are equivalent under a proper transformationof parameters, as the ode rate is R = N=M for MN odes and R = 1�N=M for Gallagerodes. The main di�erene between the odes is in the syndrome vetor z. For MNodes the syndrome vetor inorporates information on both message and noise whilefor Gallager odes only information on the noise is present (see Eq.(103)). This featureopens the possibility of adjusting the ode behavior by ontrolling the message bias p�.An MN ode an be thought as a non-linear ode [Ma00℄. Redundany inthe original message ould be removed (introdued) by using a soure (de)ompressorde�ned by some non-linear funtion � = g(�0; p�) and enoding would then be t =Gg(�0; p�) (mod 2). In the following we show that other new features emerge due tothe introdution of the parameter p�.5.1. Upper bound on ahievable ratesIn a regular MN ode the syndrome vetor z = CsS + Cn� (mod 2) is a sum of Kmessage bits drawn from the distribution P (�) = (1� p�) Æ(�)+ p� Æ(�� 1) and L noisebits drawn from P (�) = (1� p) Æ(�) + p Æ(� � 1).The probability of zj = 1 is (see Appendix C.1)p1z(K;L) = 12 � 12(1� 2p�)K(1� 2p)L: (156)The maximum information ontent in the syndrome vetor is MH2(p1z(K;L)) (in bitsor shannons), where H2(x) is the binary entropy. The amount of information needed to



Low Density Parity Chek Codes { A Statistial Physis Prospetive 55reonstrut both the message vetor � and the noise vetor � is NH2(p�) +MH2(p) (inbits or shannons). Thus, it is a neessary ondition for suessful deoding that:M H2(p1z(K;L)) � N H2(p�) +M H2(p)H2(p1z(K;L))�H2(p) � R H2(p�)R � H2(p1z(K;L)) � H2(p)H2(p�) : (157)For the ase p� = p and L = C, we an reover bounds (105) for Gallager odeswith dimensions and parameters rede�ned as M 0 = M +N , N 0 = N and K 0 = K + L.In [Ma99℄, a theorem stating that hannel apaity an be attained when K !1 wasproved for this partiular ase.If unbiased (p� = 1=2) messages are used, H2(p�) = 1, H2(p1z(K;L)) = 1 and thebound (157) beomesR � 1 � H2(p); (158)i.e., MN odes may be apable of attaining hannel apaity even for �nite K and L,given that unbiased messages are used.5.2. Statistial physis formulationThe statistial physis formulation for MN odes is a straightforward extension of theformulation presented for Gallager odes. The �eld (f0; 1g;+ (mod 2)) is replaed by(f�1g;�) [Sou89℄ and the syndrome vetor aquires the form :J� = Yj2Ls(�) �j Yl2Ln(�) �l (159)where j = 1; � � � ; N , l = 1; � � � ;M and � = 1; � � � ;M .The K� indies of nonzero elements in the row � of the signal matrix Cs are givenby Ls(�) = fj1; � � � ; jK�g, and in a olumn j are given byMs(j) = f�1; � � � ; �Cjg. In thesame way, for the noise matrix Cn, the L� indies of nonzero elements in the row � aregiven by Ln(�) = fj1; � � � ; jL�g, and in a olumn l are given by Mn(l) = f�1; � � � ; �Dlg.Under the assumption that priors P (S) and P (� ) are ompletely fatorizable, theposterior (154) orresponds to the limit  !1 and � = 1 (Nishimori temperature) of:P(S; � j J ) = 1Z exp [��H(S; � ;J )℄ (160)H(S; � ;J ) = �  MX�=10�J� Yj2Ls(�) Sj Yl2Ln(�) �l � 11A� Fs NXj=1 Sj � Fn MXl=1 �l;with Fs = 12 atanh(1�p�p� ) and Fn = 12 atanh(1�pp ) (Nishimori ondition [Iba99℄).By applying the gauge transformation Sj 7! Sj�j and �l 7! �l�l the ouplings anbe gauged out J� 7! 1, eliminating the disorder. The model is free of frustration (as



Low Density Parity Chek Codes { A Statistial Physis Prospetive 56in [Tou77℄, the model is at) . Similarly to Gallager odes, the resulting Hamiltonianonsists of two sub-latties interating via multi-spin ferromagneti iterations with �niteonnetivity in random �elds �jFs and �lFn:Hgauge (S; � ; �; �) = �  MX�=10� Yj2Ls(�) Sj Yl2Ln(�) �l11A� Fs NXj=1 �jSj � Fn MXl=1 �l�l: (161)At the Nishimori ondition  ! 1, and the model an also be regarded as aparamagnet with restrited on�guration spae on a non-uniform external �eld:Hgauge((S; � ) 2 
; �; �) = �Fs NXj=1 �jSj � Fn MXl=1 �l�l; (162)where 
 = f(S; � ) : Yj2Ls(�) Sj Yl2Ln(�) �l = 1 ; � = 1; � � � ;Mg: (163)Optimal deoding onsists of �nding loal magnetizations at the Nishimoritemperature in the signal sub-lattie mj = hSji�N and alulating Bayesian estimatesb�j = sgn(mj).The probability of bit error ispb = 12 � 12N NXj=1 �j sgn(mj); (164)onneting the ode performane with the omputation of loal magnetizations.5.3. Replia theoryThe replia theory for MN odes is the theory onstruted for Gallager odes, with theintrodution of extra dynamial variables S. The gauged Hamiltonian (161) is writtenas: Hgauge (S; � ; �; �) = � XhjliAhjli (Sj1 � � �SjK�l1 � � � �lL � 1)� Fs NXj=1 �jSj � Fn MXl=1 �l�l; (165)where hjli is a shorthand for hj1 � � � jK l1 � � � lLi.Code onstrutions are desribed by the tensor Ahili 2 f0; 1g that spei�es a set ofindies hj1 � � � jK l1 � � � lLi orresponding to non-zero elements in a partiular row of thematrix [Cs j Cn℄. To ope with non-invertible Cn matries we an start by onsideringan ensemble with uniformly generated M �M matries. The non-invertible matriesan be made invertible by eliminating a � � O(1) number of rows and olumns, resulting



Low Density Parity Chek Codes { A Statistial Physis Prospetive 57in an ensemble of (M � �) � (M � �) invertible Cn matries and (M � �) � (N � �)Cs matries. As we are interested in the thermodynami limit we an neglet O(1)di�erenes and ompute the averages in the original spae of M �M matries. Theaverages are then performed over an ensemble of odes generated as follows:(i) Sets of numbers fCjgNj=1 and fDlgMl=1 are sampled independently from distributionsPC and PD respetively;(ii) Tensors Ahjli are generated suh thatXhjliAhjli =M;Xhj1=j���jK l1���lLiAhjli = Cj Xhj1���jK l1=l���lLiAhjli = Dl:The free-energy is omputed by the replia method as:f = � 1� limN!1 1N ��n ����n=0 hZniA;�;� (166)The repliated partition funtion is:hZniA;�;� = XS1;���;Sn X� 1;���;� n NYj=1*exp Fs�� nX�=1 S�j !+� (167)� MYl=1 *exp Fn�� nX�=1 ��l !+�� *Yhjli nY�=1 exp h�Ahjli(S�j1 � � �S�jK��l1 � � � ��lL � 1)i+A :The average over onstrutions h(� � �)iA is:h(� � �)iA = XfCj ;Dlg NYj=1PC(Cj) MYl=1 PD(Dl) 1N Æ0� Xhj1=j;i2;���;jKliAhjli � Cj1A� Æ0� Xhjl1=l;l2;���;lKiAhjli �Dl1A (� � �)= XfCj ;Dlg NYj=1PC(Cj) MYl=1 PD(Dl)� 1N XfAg NYj=1 "I dZj2�i 1ZCj+1j ZPhi1=j;i2;���;iKli Ahj1=j;���;jKlij #
� MYl=1 "I dYl2�i 1Y Dl+1l YPhj l1=l;l2;���;lLi Ahjl1=l;���;lLil # (� � �); (168)



Low Density Parity Chek Codes { A Statistial Physis Prospetive 58where the �rst sum is over pro�les fCj; Dlg omposed by N numbers drawnindependently from PC(C) and M numbers drawn from PD(D). The seond sum isover onstrutions A onsistent with the pro�le fCj; Dlg.The signal average h(� � �)i� has the form:h(� � �)i� = X�=�1;+1(1� p�) Æ(� � 1) + p� Æ(� + 1) (� � �): (169)Similarly, the noise average h(� � �)i� is:h(� � �)i� = X�=�1;+1(1� p) Æ(� � 1) + p Æ(� + 1) (� � �): (170)Along the same steps desribed for Gallager odes, we ompute averages above andintrodue auxiliary variables viaZ dq�1����m Æ q�1����m � 1N NXi ZiS�1i � � �S�mi ! = 1 (171)Z dr�1����m Æ r�1����m � 1M MXi Yi��1i � � � ��mi ! = 1 (172)Using the same type of tehniques employed in the ase of Gallager odes (seeAppendix C.2 for details), we obtain the following expression for the repliated partitionfuntion: hZniA;�;� = NYj=1XCj PC(Cj) MYl=1XDl PD(Dl)� �dq0dbq02�i � nY�=1 dq�dbq�2�i ! � � ��dr0dbr02�i � nY�=1 dr�dbr�2�i ! � � �� exp24MLNKK!L! nXm=0 Xh�1����mi TmqK�1����m rL�1����m� N nXm=0 Xh�1����mi q�1����mbq�1����m� M nXm=0 Xh�1����mi r�1����mbr�1����m35� 1N NYj=1 TrfS�j g 24*exp "Fs�� nX�=1 S�j #+�� I dZj2�i exp hZjPnm=0Ph�1����mi bq�1����m S�1j � � �S�mj iZCj+1j 35



Low Density Parity Chek Codes { A Statistial Physis Prospetive 59� MYl=1 Trf��l g 24*exp "Fn�� nX�=1 ��l #+�� I dYl2�i exp hYlPnm=0Ph�1����mi br�1����m ��1l � � � ��ml iY Dl+1l 35 ; (173)where Tm = e�n� oshn(�) tanhm(�). Note that the above expression is an extensionof Eq. (120).The replia symmetry assumption is enfored by using the ans�atze:q�1����m = Z dx �(x) xm bq�1����m = Z dbx b�(bx) bxm (174)and r�1����m = Z dy �(y) ym br�1����m = Z dby b�(by) bym: (175)By plugging the above ans�atze, using the limit  ! 1 and standard tehniques(see Appendix C.3 for details) the following expression for the free-energy:f = 1� Extrfb�;�;b�;�gn� ln 2 (176)+ C Z dx �(x) dbx b�(bx) ln (1 + xbx)+ � D Z dy �(y) dby b�(by) ln (1 + yby)� � Z " KYj=1 dxj�(xj)#" LYl=1 dyl�(yl)# ln 1 + KYj=1 xj LYl=1 yl!� XC PC Z " CYj=1 dbxj b�(bxj)#* ln"X�=�1 e���Fs CYj=1(1 + �bxj)#+�� � XD PD Z " DYl=1 dbyl b�(byl)#* ln"X�=�1 e���Fn DYl=1(1 + �byl)#+�o;where C =PC C PC(C), D =PD D PD(D) and � =M=N = C=K.By performing the extremization above, restrited to the spae of normalizedfuntions, we �nd the following saddle-point equations:b�(bx) = Z K�1Yj=1 dxj �(xj) LYl=1 dyl �(yl) Æ "bx� K�1Yj=1 xj LYl=1 yl# (177)�(x) = 1CXC C PC Z C�1Yl=1 dbxl b�(bxl)� *Æ "x� tanh �Fs� + C�1Xl=1 atanh bxl!#+� ;



Low Density Parity Chek Codes { A Statistial Physis Prospetive 60b�(by) = Z L�1Yl=1 dyl �(yl) KYj=1 dxj �(xj) Æ "by � L�1Yl=1 yl KYj=1 xj#�(y) = 1DXD D PD Z D�1Yl=1 dbyl b�(byl)� *Æ "y � tanh �Fn� + D�1Xl=1 atanh byl!#+� :The typial overlap � = h 1N PNj=1 �jb�jiA;�;� between the estimate b�j = sgn(hSji�N )and the atual signal �j is given by (see Appendix A.3):� = Z dh P (h) sgn(h) (178)P (h) = XC PC(C) Z CYl=1 dbxl b�(bxl)� *Æ "h� tanh �Fs� + CXl=1 atanh bxl!#+� :The intensive entropy is simply s = �2 �f�� yielding:s = �(u(�) � f) (179)u = �XC PC Z CYj=1 dbxj b��(bxj)*Fs�P�=�1 �e��Fs�Qj(1 + �bxj)P�=�1 e��Fs�Qj(1 + �bxj) +�� �XD PD Z DYj=1 dbyj b��(byj)*Fn�P�=�1 �e��Fn�Qj(1 + �byj)P�=�1 e��Fn�Qj(1 + �byj) +�where starred distributions are solutions for (177) and u(�) is the internal energy density.For optimal deoding the temperature must be hosen to be � = 1 (Nishimoritemperature) and the �elds areFs = 12 ln �1� p�p� � Fn = 12 ln �1� pp � :5.4. Probability propagation deodingIn Setions 3 and 4 we derived probability propagation equations �rstly by assuming a setof fatorization properties and writing a losed set of equations that allowed the iterativeomputation of the (approximate) marginal posterior and seondly by omputing loalmagnetizations on the interior of a Husimi atus (Bethe approximation). The twomethods are equivalent as the fatorization properties assumed in the former are enodedin the geometry of the lattie assumed in the latter.Here we use insights provided in the last setions to build a deoding algorithmfor MN odes diretly. From the replia symmetri free-energy (176) we an write the



Low Density Parity Chek Codes { A Statistial Physis Prospetive 61following Bethe free-energy:F(m;m) = MN ln 2 + 1N MX�=1 Xi2Ls(�) ln �1 +ms�i bms�i� (180)+ 1N MX�=1 Xj2Ln(�) ln �1 +mn�j bmn�j�� 1N MX�=1 ln0�1 + J� Yi2Ls(�)ms�i Yj2Ln(�)mn�j1A� 1N NXi=1 ln24X�=� e�Fs Y�2Ms(i) �1 + � bms�i�35� 1N MXj=1 ln24X�=� e�Fn Y�2Mn(j) �1 + � bmn�j�35 :The variables ms�j (mn�j) are avity e�etive magnetizations of signal (noise) bitsinterating through the oupling �, obtained by removing one of the C ouplings inMs(j) (Mn(j)) from the system. The variables bms�j (bmn�j) orrespond to e�etivemagnetizations of signal (noise) bits due to the oupling � only.The deoding solutions are �xed points of the free-energy (181) given by :�F(m;m)�ms�j = 0 �F(m;m)� bms�j = 0 (181)�F(m;m)�mn�j = 0 �F(m;m)� bmn�j = 0 (182)The solutions for the above equations are the equations being solved by theprobability propagation deoding algorithm:ms�l = tanh24 X�2Ms(l)n� atanh(bms�l) + Fs35 (183)bms�j = J� Yi2Ls(�)njms�i Yl2Ln(�)mn�l; (184)mn�l = tanh24 X�2Mn(l)n� atanh(bmn�l) + Fn35 (185)bmn�j = J� Yi2Ls(�)ms�i Yl2Ln(�)njmn�l: (186)The estimate for the message is b�j = sgn(msj), where msj is the loal magnetizationdue to all ouplings linked to the site j an be omputed as:msj = tanh24 X�2Ms(j) atanh(bms�j) + Fs35 (187)



Low Density Parity Chek Codes { A Statistial Physis Prospetive 62One possibility for the deoding dynamis is to update Eqs. (183) and (185) untila ertain halting riteria is reahed, and then omputing the estimate for the messageusing equation (187). The initial onditions are set to reet the prior knowledge aboutthe message ms�j(0) = 1� 2p� and noise mn�l(0) = 1� 2p.As the prior information is limited, a polynomial time deoding algorithm (likePP) will work only if the solution is unique or the initial onditions are inside theorret basin of attration. In this ase the 2(NK +MC) equations (181) only need tobe iterated an O(1) number of times to get a suessful deoding. On the other hand,when there are many solutions, it is possible to obtain improved deoding in exponentialtime by hoosing random initial onditions and omparing free-energies of the solutionsobtained, seleting a global minimum.Observe that the free-energy desribed here is not equivalent to the variationalmean-�eld free-energy introdued in [Ma95, Ma99℄. Here no essential orrelations aredisregarded exept those related to the presene of loops are disregarded.In the next setion we will analyze the landsape of the replia symmetri free-energy for three families of nstrution parameters and will be able to predit thepratial performane of a PP deoding algorithm.5.5. Equilibrium results and deoding performaneThe saddle-point equations (177) an be solved by using Monte-Carlo integrationiteratively. In this setion we show that MN odes an be divided, as far as performaneis onerned, into three parameter groups: K � 3, K = 2 and K = 1; L > 1.We, therefore, treat eah these ases separately in the following.5.5.1. Analytial solution: the ase of K � 3 Replia symmetri results for the asesof K � 3 an be obtained analytially, therefore we fous �rst on this simple ase.For unbiased messages (Fs = 0), we an easily verify that the ferromagneti state,haraterised by � = 1, and the probability distributions�(x) = Æ(x� 1) (188)b�(bx) = Æ(bx� 1)�(y) = Æ(y � 1)b�(by) = Æ(by � 1)and the paramagneti state of � = 0 with the probability distributions�(x) = Æ(x) (189)b�(bx) = Æ(bx)b�(by) = Æ(by)�(y) = 1 + tanh(Fn)2 Æ(y � tanh(Fn))+ 1� tanh(Fn)2 Æ(y + tanh(Fn));



Low Density Parity Chek Codes { A Statistial Physis Prospetive 63satisfy replia symmetri saddle-point equations (177). Other solutions ould beobtained numerially. To hek for that, we represented the distributions withhistograms of 20000 bins and iterated Eqs.(177) 100 � 500 times with 2 � 105 Monte-Carlo sampling steps for eah iteration. No solutions other than ferromagneti andparamagneti have been observed.The thermodynamially dominant state is found by evaluating the free-energy ofthe two solutions using Eq.(176), whih yieldsfFERRO = �CK Fn tanh(Fn); (190)for the ferromagneti solution andfPARA = CK ln 2� ln 2� CK ln (2 osh(Fn)) ; (191)for the paramagneti solution.Figure 24(a) desribes shematially the nature of the solutions for this ase, interms of the replia symmetri free-energy and overlap obtained, for various noise levelsp and unbiased messages p� = 1=2. The oexistene line in the ode rate versus noiselevel plane is given byfFERRO � fPARA = ln 2R [R � 1 +H2(p)℄ = 0: (192)This an be rewritten asR = 1�H2(p) = 1 + p log2(p) + (1� p) log2(1� p); (193)whih oinides with hannel apaity and is represented in Fig. 25(a) together withthe overlap � as a funtion of the noise level p.Equation (193) seems to indiate that all onstrutions with K � 3 may attainerror-free data transmission for R < R in the limit where both message and odewordlengths N and M beome in�nite, thus saturating Shannon's bound. However, asdesribed in Fig.24(a), the paramagneti state is also stable for any noise level, whathas dynamial impliations if a replia symmetri free-energy is to be used for deoding(as is the ase in probability propagation deoding).To validate the solutions obtained we have to make sure that the entropy ispositive. Entropies an be omputed by simply plugging distributions (189) and(190) into Eq.(179). The energy densities for the unbiased ase are u = uPARA =uFERRO = �� Fn (1 � 2p), sine the Nishimori ondition is employed (see AppendixB.3). Ferromagneti entropies are sFERRO = u� fFERRO = 0 andsPARA = u� fPARA= � � Fn (1� 2p)� CK ln 2 + ln 2 + CK ln (2 osh(Fn)) : (194)It an be seen by using a simple argument that sPARA is negative below p. Forp < p, fPARA > fFERRO and u� sPARA > u� sFERRO .This indiates that the distribution (190) is non-physial below p, despite beinga solution of replia symmetri saddle-point equations. This result seems to indiate
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Figure 24. Figures in the left side show shemati representations free-energylandsapes while �gures on the right show overlaps � a funtion of the noise levelp; thik and thin lines denote stable solutions of lower and higher free energiesrespetively, dashed lines orrespond to unstable solutions. (a) K � 3 - The solidline in the horizontal axis represents the phase where the ferromagneti solution(F, � = 1) is thermodynamially dominant. The paramagneti solution (P, � = 0)beomes dominant at p, that oinides with the hannel apaity. (b) K = 2 - Theferromagneti solution and its mirror image are the only minima of the free-energy upto ps (solid line). Above ps sub-optimal ferromagneti solutions (F', � < 1) emerge.The thermodynami transition ours at p3 is below the maximum noise level given bythe hannel apaity, whih implies that these odes do not saturate Shannon's boundeven if optimally deoded. () K = 1 - The solid line in the horizontal axis representsthe range of noise levels where the ferromagneti state (F) is the only minimum of thefree-energy. The sub-optimal ferromagneti state (F') appears in the region representedby the dashed line. The dynamial transition is denoted by ps, where F' �rst appears.For higher noise levels, the system beomes bistable and an additional unstable solutionfor the saddle point equations neessarily appears. The thermodynamial transitionours at the noise level p1 where F' beomes dominant.



Low Density Parity Chek Codes { A Statistial Physis Prospetive 65that the replia symmetri free-energy does not provide the right desription below p.A simple alternative, is to use the frozen spins solution as the formulation of a theorywith replia symmetry breaking for highly diluted systems is a diÆult task (see, forexample, [WS88, Mon98b℄).Nevertheless, the pratial performane of the probability propagation deoding isdesribed by the replia symmetri theory, the presene of paramagneti stable statesimplies the failure of PP deoding at any noise level. Even without knowing the orretphysis below p, it is possible to use an exhaustive searh for the global minimum ofthe free-energy in Setion 5.4 to attain Shannon's bound in exponential time.5.5.2. The ase of K = 2 - All odes withK � 3 potentially saturate Shannon's boundand are haraterized by a �rst order phase transition between the ferromagneti andparamagneti solutions. Solutions for the ase with K = 2 an be obtained numerially,yielding signi�antly di�erent physial behavior as shown in Fig.24(b).At very large noise levels, the paramagneti solution (190) gives the uniqueextremum of the free-energy until the noise level reahes p1, at whih the ferromagnetisolution (189) of higher free-energy beomes loally stable. As the noise level dereasesto p2 the paramagneti solution beomes unstable and a sub-optimal ferromagnetisolution and its mirror image emerge. Those solutions have lower free-energy than theferromagneti solution until the noise level reahes p3. Below p3, the ferromagnetisolution beomes the global minimum of the free-energy, while the sub-optimalferromagneti solutions remain loally stable. However, the sub-optimal solutionsdisappear at the spinodal noise level ps and the ferromagneti solution (and its mirrorimage) beomes the unique stable solution of the saddle-point Eqs.(177).The analysis implies that p3, the ritial noise level below whih the ferromagnetisolution beomes thermodynamially dominant, is lower than p = H�12 (1 � R) whihorresponds to Shannon's bound. Namely, K = 2 does not saturate Shannon's bound inontrast to K � 3 odes even if deoded in exponential time. Nevertheless, it turns outthat the free-energy landsape, with a unique minimum for noise levels 0 < p < ps, o�erssigni�ant advantages in the deoding dynamis omparing to that of odes with K � 3,allowing for the suessful use of polynomial time probability propagation deoding.5.5.3. The ase of K = 1 and general L > 1 - The hoie of K = 1, independentlyof the value hosen for L > 1, exhibits a di�erent behavior presented shematially inFig.24(); also in this ase there are no simple analytial solutions and all solutionsin this senario but the ferromagneti one have been obtained numerially. The �rstimportant di�erene to be noted is that the paramagneti state (190) is no longer asolution of the saddle-point equations (177) and is being replaed by a sub-optimalferromagneti state, very muh like Gallager odes. Convergene to � = 1 solution anonly be guaranteed for noise levels p < ps , where only the ferromagneti solution ispresent.The K = 1 odes do not saturate Shannon's bound in pratie, however, we have
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Figure 25. Transition lines in the plane rate R versus the ip rate p, obtained fromnumerial solutions and the TAP approah (N =104), and averaged over 10 di�erentinitial onditions with error bars muh smaller than the symbols size. (a) Numerialsolutions for K =L=3, C =6 and varying input bias fs (�) and TAP solutions forboth unbiased (+) and biased (�) messages; initial onditions were hosen lose to theanalytial ones. The ritial rate is multiplied by the soure information ontent toobtain the maximal information transmission rate, whih learly does not go beyondR = 3=6 in the ase of biased messages; for unbiased patterns H2(fs) = 1. (b) Forthe unbiased ase of K=L=2; initial onditions for the TAP (+) and the numerialsolutions (�) were hosen to be of almost zero magnetization. () For the ase ofK = 1, L = 2 and unbiased messages. We show numerial solutions of the analytialequations (�) and those obtained by the TAP approah (+). The dashed line indiatesthe performane of K = L = 2 odes for omparison. Codes with K = 1, L = 2outperform K = L = 2 for ode rates R < 1=3.
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Figure 28. Asymptoti behavior of the transition for small rates. The full linerepresents Shannon's bound, irles represent transitions obtained by using only the�rst ummulants and squares orrespond to the Gaussian approximation.5.6. Error-orretion: regular vs. irregular odesMatrix onstrution irregularity an improve the pratial performane of MN odes.This fat has been �rst reported in the information theory literature (see for example[Dav99, Dav98, LMSS98℄). Here we analyze this problem by using the language and toolsof statistial physis. We now use the simplest irregular onstrutions as an illustration,here, the onnetivities of the signal matrix Cs are desribed by a simple bimodalprobability distribution:PC(C) = (1� �) Æ(C � Co) + � Æ(C � Ce): (203)The mean onnetivity is C = (1��) Co + � Ce and Co < C < Ce; bits in a group withonnetivity Co will be referred as ordinary bits and bits in a group with onnetivityCe as elite bits. The noise matrix Cn is hosen to be regular.To gain some insight on the e�et of irregularity on solving the PP equations(183) and (185) we performed several runs starting from the �xed initial onditionsms�j(0) = 1� 2p� and mn�l(0) = 1� 2p as presribed in the last setion. For omparisonwe also iterated the saddle-point equations (177) obtained by the replia symmetri(RS) analysis, setting the initial onditions to be �0(x) = (1 � p�) Æ(x � ms�j(0)) +p� Æ(x + ms�j(0)) and �0(y) = (1 � p) Æ(y � mn�l(0)) + p Æ(y + mn�l(0)), as suggestedfrom the interpretation of the �elds �(x) and �(y) in the last setion.In Fig.29 (a) we show a typial urve for the overlap � as a funtion of the noise levelp. The RS theory agrees very well with PP deoding results. The addition of irregularity
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Figure 29. (a) Overlap as a funtion of the noise level p for odes with K = L = 3and C = 15 with message bias p� = 0:3. Analytial RS solutions for the regular odeare denoted as � and for the irregular ode; with Co = 4 and Ce = 30 denoted as�. Results are averages over 10 runs of the PP algorithm in an irregular ode of sizeN = 6000 starting from �xed initial onditions (see the text); they are plotted as �in the rightmost urve for omparison. PP results for the regular ase agree with thetheoretial solutions and have been omitted to avoid overloading the �gure. (b) Free-energies for the ferromagneti state (full line) and for the failure state (line with Æ).The transitions observed in (a) are indiated by the dashed lines. Arrows indiate thethermodynami (T) transition, the upper bound (u.b.) of Setion 5.1 and Shannon'sbound.improves the performane onsiderably. In Fig.29 (b) we show the free-energies of thetwo emerging states. The free-energy for the ferromagneti state with overlap � = 1 isshown as a full line, the failure suboptimal ferromagneti state (in Fig.29 (a) with overlap� = 0:4) is shown as a line marked with Æ. The transitions seen in Fig.29(a) are denotedby dashed lines. It is lear that they are far below the thermodynami (T) transition,indiating that the system beomes trapped in suboptimal ferromagneti states fornoise levels p between the observed transitions and the thermodynami transition. Thethermodynami transition oinides with the upper bound (u.b.) in Setion 5.1 andis very lose to, but below, Shannon's limit whih is shown for omparison. Similarbehavior was observed in regular MN odes with K = 1.5.7. The spinodal noise levelThe PP algorithm an be regarded as an iterative solution of �xed point equations forthe free-energy (181) whih is sensitive to the presene of loal minima in the system.One an expet onvergene to the global minimum of the free-energy from all initialonditions when there is a single minimum or when the landsape is dominated by thebasin of attration of this minimum when random initial onditions are used.To analyze this point we run deoding experiments starting from initial onditionsms�j(0) and mn�l(0) that are random perturbations of the ferromagneti solution drawn
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Figure 30. Spinodal noise level ps for regular and irregular odes. In bothonstrutions parameters are set as K = L = 3. Irregular odes with Co = 4 andCe = 30 are used. PP deoding is arried out with N = 5000 and a maximum of 500iterations; they are denoted by + (regular) and � (irregular). Numerial solutions forthe RS saddle-point equations are denoted by � (regular) and  (irregular). Shannon'slimit is represented by a full line and the upper bound of Setion 5.1 is represented bya dashed line. The symbols are hosen to be larger than the atual error bars.from the following distributions:P �ms�j(0)� = (1� �s) Æ(ms�j(0)� �j) + �s Æ(ms�j(0) + �j) (204)and P �mn�l(0)� = (1� �n) Æ(mn�l(0)� �l) + �n Æ(mn�l(0) + �l); (205)where for onveniene we hoose 0 � �s = �n = � � 0:5.We performed PP deoding several times for di�erent values of � and noise level p.For � � 0:026 we observed that the system onverges to the ferromagneti state for allonstrutions, message biases p� and noise levels p examined. It implies that this stateis always stable. The onvergene ours for any � for noise levels below the transitionobserved in pratie.These observations suggest that the ferromagneti basin of attration dominatesthe landsape up to some noise level ps. The fat that no other solution is ever observedin this region suggests that ps is the noise level where suboptimal solutions atuallyappear, namely, it is the noise level that orresponds to the appearane of spinodalpoints in the free-energy. The same was observed for regular MN odes with K = 1 orK = 2.We have shown that MN odes an be divided into three ategories with di�erentequilibrium properties: (i) K � 3, (ii) K = 2 and (iii) general L > 1, K = 1. In thenext two subsetions we will disuss these ases separately.
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Figure 31. Spinodal noise level ps for irregular odes as a funtion of the messagebias p�. The onstrution is parameterized by K = L = 3, Co = 4 and Ce = 30 withC = 15. PP deoding is arried out with N = 5000 and a maximum of 500 iterations,and is represented by +, while theoretial RS solutions are represented by �. The fullline indiates Shannon's limit. Symbols are larger than the atual error bars5.7.1. Biased messages: K � 3 To show how irregularity a�ets odes with this hoieof parameters we hoose K;L = 3, Co = 4, Ce = 30 and biased messages with p� = 0:3.These hoies are arbitrary but illustrate what happens with the pratial deodingperformane. In Fig.30 we show the transition from the deoding phase to a failurephase as a funtion of the noise level p for several rates R in both regular and irregularodes. Pratial deoding (� an Æ) results are obtained for systems of size N = 5000with a maximum number of iterations set to 500. Random initial onditions are hosenand the whole proess repeated 20 times. The pratial transition point is found whenthe number of failures equals the number of suesses.These experiments were ompared with the theoretial values for ps obtained bysolving the RS saddle-point equations (177) (represented as + and � in Fig. 30) and�nding the noise level for whih a seond solution appears. For omparison the odinglimit is represented in the same �gure by a full line.As the onstrutions used are hosen arbitrarily one an expet that thesetransitions an be further improved, even though the improvement shown in Fig.30is already fairly signi�ant.The analytial solution obtained forK � 3 and unbiased messages p� = 1=2, impliesthat the system is bistable for arbitrary ode onstrutions when these parameters arehosen. The spinodal noise level is then ps = 0 in this ase and annot be improvedby adding irregularity to the onstrution. Up to the noise level p the ferromagnetisolution is the global minimum of the free-energy, and therefore Shannon's limit isahievable in exponential time, however, the bistability makes these onstrutions
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Figure 32. Pitorial representation of the free-energy landsape for odes with K � 3and biased messages p� < 0:5 as a funtion of the noise level p. Up to the spinodalnoise level ps there is only the ferromagneti state F . At ps another state F 0 appears, dominating the deoding dynamis. The ritial noise level p indiates the pointwhere the state F 0 beomes the global minimum (thermodynami transition).unsuitable for pratial deoding with a PP algorithm when unbiased messages areonsidered.The situation improves when biased messages are used. Fixing the matriesCn andCs one an determine how the spinodal noise level ps depends on the bias p�. In Fig.31we ompare simulation results with the theoretial preditions of ps as a funtion of p�.The spinodal noise level ps ollapses to zero as p� inreases towards the unbiased ase.It obviously suggests using biased messages for pratial MN odes with parametersK � 3 and PP deoding.The qualitative pitures of the energy landsape for oding with biased and unbiasedmessages with K � 3 di�er signi�atively. In Fig.32 this landsape is skethed asa funtion of the noise level p for a given bias. Up to the spinodal noise level psthe landsape is totally dominated by the ferromagneti state F . At the spinodalnoise level another suboptimal state F 0 emerges, dominating the deoding dynamis.At p the suboptimal state F 0 beomes the global minimum. The bold horizontalline represents the region where the ferromagneti solution with � = 1 dominates thedeoding dynamis. In the region represented by the dashed line deoding dynamis isdominated by suboptimal ferromagneti � < 1 solutions.5.7.2. Unbiased messages: For the remaining parameter hoies, namely general L > 1,K = 1 and K = 2, it was shown that unbiased oding is generally possible yielding loseto Shannon's limit performane.The K � 3 ase the pratial performane is de�ned by the spinodal noise level psand the addition of irregularity modi�es ps.In the general L, K = 1 family we illustrate the e�et of irregularity by the hoieof L = 2, Co = 4 and Ce = 10. In Fig.33 we show the transitions observed by performing
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Figure 33. Spinodal noise level ps for regular and irregular odes. The onstrutionsare of K = 1 and L = 2, irregular odes are parameterized by Co = 4 and Ce = 10.PP deoding is arried out with N = 5000 and a maximum of 500 iterations ; they aredenoted by + (regular) and � (irregular). Numerial solutions for RS equations aredenoted by � (regular) and Æ (irregular). The oding limit is represented by a line.Symbols are larger than the atual error bars.20 deoding experiments with messages of length N = 5000 and a maximal number ofiterations set to 500 (+ for regular and � for irregular). We ompare the experimentalresults with theoretial preditions based on the RS saddle-point equations (177) (�for regular and Æ for irregular). Shannon's limit is represented by a full line. Theimprovement is modest, as expeted, sine regular odes already present lose to optimalperformane. Disrepanies between the theoretial and numerial results are due to�nite size e�ets.We also performed a set of experiments using K = L = 2 with Co = 3 and Ce = 8,the same system size N = 5000 and maximal number of deoding iterations 500. Thetransitions obtained experimentally and predited by theory are shown in Fig.34.6. Casading CodesKanter and Saad (KS) reently proposed a variation of MN odes that has been shown tobe apable of attaining lose to hannel apaity performane and outperforming Turboodes [KS99b, KS00b, KS00a℄. The entral idea is to explore the superior dynamialproperties (i.g. large basin of attration) of MN odes with K = 1; 2 and the potentialfor attaining hannel apaity of MN odes with K > 2 by introduing onstrutionswith intermediate properties. This is done by employing irregular onstrutions like theone depited in Fig. 36, with the number of non-zero elements per row set to severaldi�erent values K1; � � � ; Km.
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Figure 34. Spinodal noise level values ps for regular and irregular odes.Construtions are of K = 2 and L = 2, irregular odes are parameterised by Co = 3and Ce = 8. PP deoding is arried out with N = 5000 and a maximum of 500iterations; they are denoted by + (regular) and � (irregular). Theoretial preditionsare denoted by � (regular) and Æ (irregular). The oding limit is represented by a line.Symbols are larger than the atual error bars.In Fig.35 we show a performane omparison (presented in [KS00b℄) of Turbo, KSand Gallager odes with optimized irregular onstrutions [RSU01℄ for a memorylessGaussian hannel . The bit error probability pb is plotted against the signal to noiseratio in deibels (10 log10(S=N)) for odes of sizes N = 1000 and N = 10000.The introdution of multi-spin interations of several di�erent orders and of morestrutured matries makes the statistial physis of the problem muh harder to solve.We, therefore, adopt a di�erent approah: �rst we write the probability propagationequations and �nd an appropriate marosopi desription in terms of �eld distributions,we then solve saddle-point like equations for the �eld distributions to �nd the typialperformane.Casading odes are spei� onstrutions of MN odes. The signal matrix Csis de�ned by m random sub-matries with K1; K2; � � � ; Km non-zero elements per rowrespetively. The matrix Cn is omposed of two sub-matries: Cn(1)ij = Æi;j + Æi;j+�and Cn(2)ij = Æi;j. The inverse C�1n used in the enoding proess is easily obtainable.In Fig.36 we represent a KS ode with three signal sub-matries, the non-zero elementsin the noise matrix Cn are denoted by lines, we also represent the inverse of the noisematrix C�1n .The signal matrix Cs is subdivided into Mj �N sub-matries, with j = 1; � � � ; m.The total number of non-zero elements is given by NC = Pmj=1MjKj what yieldsC =Pmj=1 �jKj, where �j =Mj=N . The ode onstrution is, therefore, parameterizedby the set f(�j; Kj)g. If we �x fKjg, the parameters f�jg ompletely speify the
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Figure 35. Bit error probability pb as a funtion of the signal to noise ratio for odesof rate R = 1=2, sizesN = 1000 (right) and N = 10000 (left) in a memoryless Gaussianhannel. Blak triangles represent asading odes, dashed lines represent Turbo odesand dotted lines represent optimized irregular Gallager odes of similar sizes [KS00b℄.onstrution. A further onstraint to the parameters set f�jg is provided by the hoieof a ode rate, as the inverse ode rate is � =M=N =Pmj=1 �j.Enoding and deoding using asading odes are performed in exatly the samefashion as desribed in 5 for MN odes. A binary vetor t 2 f0; 1gM de�ned byt = G� (mod 2); (206)is produed, where all operations are performed in the �eld f0; 1g and are indiated by(mod 2). The ode rate is R = N=M . The generator matrixG is aM�N dense matrixde�ned by G = C�1n Cs (mod 2): (207)The transmitted vetor � is then orrupted by noise. Assuming a memoryless binarysymmetri hannel (BSC), noise is represented by a binary vetor � 2 f0; 1gM withomponents independently drawn from the distribution P (�) = (1�p) Æ(�)+p Æ(��1).The reeived vetor isr = G� + � (mod 2): (208)Deoding is performed by omputing the syndrome vetorz = Cnr = Cs� +Cn�(mod 2); (209)from whih an estimate b� for the message an be obtained.
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Figure 36. Casading onstrution with three signal sub-matries with K1;K2 andK3 non-zero elements per row, respetively. The number of non-zero elements perolumn is kept �xed to C. The noise matrix Cn is omposed by two sub-matries, thenon-zero elements are denoted by lines. The inverse C�1n is also represented.6.1. Typial PP deoding and saddle-point like equationsIn this setion we show how a statistial desription for the typial PP deoding anbe onstruted without using replia alulations. To keep the analysis as simple aspossible we exemplify the proedure with a KS ode with two signal matries denoted1s and 2s and two noise sub-matries denoted 1n and 2n. The hannel is hosen to bea memoryless binary symmetri hannel (BSC). The number of non-zero elements perrow is K1 and K2, respetively, and the inverse rate is � = �1 + �2. Therefore, for a�xed ode rate, the ode onstrution is spei�ed by a single parameter �1. We presentone ode in this family in Fig.37.The PP deoding dynamis for these odes is desribed by Eqs. (185). However,due to the irregular harater of the onstrution, sites inside eah one of the sub-matries are onneted di�erently. Reminding the statistial physis formulation of MNodes presented in Setion 5.2, non-zero row elements in the matries depited in Fig.37
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KFigure 37. Casading ode with two signal matries with parameters K1 and K2.Note that noise sites inside the shaded regions take part in a di�erent number ofinterations than the ordinary sites.orrespond to sites taking part in one multi-spin interation. Therefore, signal sites inthe sub-matrix 1s interat with other K1�1 signal sites in 1s and exatly two noise sitesin 1n. Moreover, the same site takes part in other �1K1+�2K2�1 multi-spin ouplingsin both 1s and 2s. Sites in sub-matrix 2s interat with one noise site in 2n and K2� 1signal sites in 2s, taking part in other �1K1 + �2K2 � 1 multi-spin interation. Noisesites in the sub-matrix 1n interat with another noise site and with K1 signal sites in1s. Finally, noise sites in 2n interat with K2 sites in 2s. Thus, the Hamiltonian for aKS ode takes the following form:H = �  M1X�=1(J� Si1 � � �SiK1 ����+� � 1) (210)�  MX�=M1+1(J� Si1 � � �SiK2 �� � 1)� Fn MXl=1 �l � Fs NXj=1 Sj;where J� = �i1 � � � �iK1 ����+�, for � = 1; � � � ;M1 and J� = �i1 � � � �iK2 �� for � = M1 +1; � � � ;M . Additionally, Nishimori's ondition requires that  !1, Fs = atanh(1�2p�)and Fn = atanh(1 � 2p), where the prior probabilities are de�ned as in the previoushapters.We an write PP deoding equations for eah one of the sub-matries 1s, 2s, 1nand 2n. The shaded regions in Fig.37 have to be desribed by di�erent equations, butan be disregard if the width � is of O(1), implying �=N ! 0 for N !1.For the sub-matrix 1s we have:m(1s)�j = tanh24 X�2M1s(j)n� atanh(bm(1s)�j ) + X�2M2s(j) atanh(bm(2s)�j ) + Fs35



Low Density Parity Chek Codes { A Statistial Physis Prospetive 79bm(1s)�j = J� m(1n)�� m(1n)��+� Yl2L1s(�)njm(1s)�l ; (211)where the seond equation represents interations with two noise sites and and K1 � 1signal sites. The �rst equation represents the �1K1 + �2K2 � 1 multi-spin interationsthe site j partiipates in.Similarly, for the sub-matrix 2s we have:m(2s)�j = tanh24 X�2M1s(j) atanh(bm(1s)�j ) + X�2M2s(j)n� atanh(bm(2s)�j ) + Fs35bm(2s)�j = J� m(2n)� Yl2L2s(�)njm(2s)�l (212)For the sub-matrix 1n we have:m(1n)�j = tanh hatanh(bm(1n)�j ) + Fni (213)bm(1n)�j = J� m(1n)�i Yl2L1s(�)m(1s)�l ; (214)where either j = �, i = �+� or j = �+�, i = �.Finally, for sub-matrix 2n we have:m(2n)� = tanh [Fn℄ (215)bm(2n)� = J� Yl2L2s(�)m(2s)�l (216)The pseudo-posterior and deoded message are given by :mj = tanh24 X�2M1s(j) atanh(bm(1s)�j ) + X�2M2s(j) atanh(bm(2s)�j )35 (217)b�j = sgn(mj): (218)The above equations provide a mirosopi desription for the PP deoding proess,we an produe a marosopi desription for the typial deoding proess by writingequations for probability distributions related to the dynamial variables. It is importantto stress that the equations desribing the PP deoding are entirely deterministi whenouplings J� and initial onditions are given. The randomness omes into the problemwhen quenhed averages over messages, noise and onstrutions are introdued.By performing the gauge transformationm(as)�j ! �jm(as)�j bm(as)�j ! �j bm(as)�j (219)m(an)�j ! �jm(an)�j bm(an)�j ! �j bm(an)�j (220)J� ! 1 (a = 1; 2); (221)introduing e�etive �elds x�j = atanh(m�j), bx�j = atanh(bm�j) and assuming thatx(as)�j , bx(as)�j , y(an)�j , by(an)�j are independently drawn from distributions Pa(x), bPa(bx), Ra(y),bRa(by), respetively, we get the following saddle-point like equations (for simpliity, werestrit the treatment to the ase of unbiased messages Fs = 0).
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Figure 38. Monte-Carlo integration of �eld distributions and simulations for a KSode with two signal matries (K1 = 1 and K2 = 3) , � = 5 (R = 1=5) and �1 = 3.Cirles: full statistis (4000 bins). Squares: simulations N = 5000.For the sub-matrix 1s:P1(x) = Z �1K1�1Yj=1 dbxj bP1(bxj) �1K2Yl=1 d bwl bP2( bwl)� Æ "x� �1K1�1Xj=1 xj � �2K2Xl=1 wl# (222)bP1(bx) = Z K1�1Yj=1 dxjP1(xj)dy1R1(y1)dy2R1(y2) (223)� Æ "bx� atanh(tanh(y1)tanh(y2)K1�1Yj=1 tanh(xj))#For 2s: P2(x) = Z �1K1Yj=1 dbxj bP1(bxj) �1K2�1Yl=1 d bwl bP2( bwl) (224)� Æ "x� �1K1Xj=1 xj � �2K2�1Xl=1 wl# (225)bP2(bx) = Z K2�1Yj=1 dxjP2(xj)dyR2(y)� Æ "bx� atanh(tanh(y)K2�1Yj=1 tanh(xj))#



Low Density Parity Chek Codes { A Statistial Physis Prospetive 81For 1n we have:R1(y) = Z dby bR1(by) hÆ [y � by � �Fn℄i� (226)bR1(by) = Z K1Yj=1 dxjP1(xj)dyR1(y)� Æ "bx� atanh(tanh(y) K1Yj=1 tanh(xj))#Finally, for sub-matrix 2n:R2(y) = hÆ [y � �Fn℄i� (227)bR2(by) = Z K2Yj=1 dxjP2(xj) Æ "bx� atanh(K2Yj=1 tanh(xj))#The typial overlap an then be obtained as in the ase of MN odes by omputing:� = Z dh P (h) sgn(h) (228)P (h) = Z �1K1Yj=1 dbxj bP1(bxj) �1K2Yl=1 dbwl bP2(bwl) Æ "h� �1K1Xj=1 xj � �2K2Xl=1 wl# (229)The numerial solution of these equations provides the typial overlap for asadingodes with two signal matries parameterized by �1 (�2 = ���1). In Fig.38 we ompareresults obtained by solving the above equations numerially (Monte-Carlo integrationwith 4000 bins) and PP deoding simulations (10 runs, N = 5000) with R = 1=5 and�1 = 3. The agreement between theory and experiments supports the assumptionsemployed to obtain the saddle-point like equations.6.2. Optimizing onstrution parametersEquations (222) to (229) an be used to optimize ode onstrutions within a givenfamily. For the family introdued in Fig.37 with �xed parameters K1 and K2 theoptimization requires to �nd the value of �1 that produes the highest threshold ps.In Fig.39 we show the threshold (spinodal noise level) ps for a KS ode with K1 = 1,K2 = 3 and rate R = 1=5 (� = 5). The optimal performane is obtained by seleting�1 = 3 and is very lose to the hannel apaity.7. Conlusions and PerspetivesIn this hapter we analyzed error-orreting odes based on very sparse matries bymapping them onto spin systems of the statistial physis. The equivalene betweenoding onepts and statistial physis is summarized in the following table.
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Figure 39. Spinodal noise level ps as a funtion of �1 for a KS ode with K1 = 1,K2 = 3 and R = 1=5 (� = 5). Cirles: Monte-Carlo integrations of saddle-pointequations (4000 bins). Squares: PP deoding simulations (10 runs with sizeN = 5000).The best performane is reahed for �1 = 3 and is lose to the hannel apaity for aBSC (indiated by a dashed line).Coding Theory Statistial Physismessage bits s spins Sreeived bits r multi-spin disordered ouplings J (Sourlas)syndrome bits z multi-spin ouplings J (Gallager, MN, KS)bit error probability pe gauged magnetization � (overlap)posterior probability Boltzmann weightMAP estimator ground stateMPM estimator thermal average at Nishimori's temperatureIn the statistial physis framework, random parity-hek matries (or generatormatries as in the ase of Sourlas odes), random messages and noise are treated asquenhed disorder and the replia method is employed to ompute the free-energy.Under the assumption of replia symmetry we found in most of the ases that twophases emerge: a suessful deoding (� = 1) and failure (� < 1) phases. For MN odeswith K = 2 or K = 1 three phases emerge representing suessful deoding, failure andatastrophi failure.The general piture that emerges shows a phase transition between suessful andfailure states that oinides with the information theory upper bounds in most ases,the exeption being MN odes with K = 2 (and to some extent K = 1) where thetransition is bellow the upper bound.A areful analysis of replia symmetri quantities reveals unphysial behavior forlow noise levels with the appearane of negative entropies. This question is resolved in



Low Density Parity Chek Codes { A Statistial Physis Prospetive 83the ase of Sourlas odes with K !1 by the introdution of a simple frozen spins �rst-step replia symmetry breaking ansatz. Despite the diÆulties in the replia symmetrianalysis, threshold noise values observed in simulations using probability propagation(PP) deoding agree with the noise level where meta-stable states (or spinodal points)appear in the replia symmetri free-energy.A mean-�eld (Bethe) theory based on the use of a tree-like lattie (Husimi atus)exposes the relationship between PP deoding and statistial physis and supports theagreement between theory and simulations as PP deoding an be reinterpreted as amethod for �nding loal minima of a Bethe free-energy. Those minima an be desribedby distributions of avity loal �elds that are solutions of the replia symmetri saddle-point equations.The performane of the deoding proess with probability propagation an beobtained by looking at the Bethe free-energy landsape (or the replia symmetrilandsape), in this way we an show that information theoreti upper bounds an beattained by looking for global minima of the Bethe free-energy, whih may requireomputing time that grows exponentially with the system size. In pratial time sales,simple deoding proedures that simply �nd minima beome trapped in meta-stablestates. That is the reason why pratial thresholds are linked to the appearane ofspinodal points in the Bethe free-energy.For asading odes we adopted a di�erent approah for the analysis. Using theinsights obtained in the analysis of the other odes we started by writing down the PPdeoding equations and writing the Bethe free-energy and the saddle-point like equationsfor distributions of avity �elds. The transitions predited by these saddle-point likeequations were shown to agree with experiments. We then employed this proedure tooptimize parameters of one simple family of asading odes.By studying the replia symmetri landsape we lassi�ed the various odes bytheir onstrution parameters, we also showed that modi�ations in ode onstrution,like the use of irregular matries, an improve the performane by hanging the way thefree-energy landsape evolves with the noise level. We summarize the results obtainedin the following table: Channel apaity Pratial deoding ofunbiased messagesSourlas K !1 K = 2Gallager K !1 any KMaKay-Neal K > 2 K = 1, any L > 1 or K = 2Casading still unlear Kj = 1; 2 for some jThese results shed light on the properties that limit the theoretial and pratialperformane of parity hek odes, explain the di�erenes between Gallager and MNonstrutions and explores the role of irregularity in LDPC error-orreting odes.Some new diretions are now being pursued and are worth mentioning. Thestatistial physis of Gallager odes with non-binary alphabets is investigated



Low Density Parity Chek Codes { A Statistial Physis Prospetive 84in [NKS01℄. In [KSNS01℄ the performane of error-orreting odes in the ase of �nitemessage lengths has been addressed, yielding tighter general reliability bounds. Newanalytial methods to investigate pratial noise thresholds using statistial physis havebeen proposed in [vMSK01℄ and [KNvM01℄ while the nature of Gallager odes phasediagram was studied in detail in [Mon01℄.We believe that methods developed over the years in the statistial physisommunity an make a signi�ant ontribution also in other areas of information theory.Researh in some of these areas, suh as CDMA and image restoration is alreadyunderway.AknowledgmentsSupport by Grants-in-aid, MEXT (13680400) and JSPS (YK), The Royal Soietyand EPSRC-GR/N00562 (DS) is aknowledged. We would like to aknowledge theontribution of Tatsuto Murayama to this researh e�ort.Appendix A. Sourlas Codes: Tehnial DetailsAppendix A.1. Free-energyIn order to ompute free-energies we need to alulate the repliated partitionfuntion (62). We an start from Eq.(60):hZniA;�;J = TrfS�j g h
exp ���H(n)(fS� g)��A;J;�i ; (A.1)where H(n)(fS�g) represents the repliated Hamiltonian and � the replia indies. Firstwe average over the parity-hek tensors A; for that an appropriate distribution has tobe introdued, denoting � � hi1; :::; iKi for a spei� set of indies:hZni = * 1N XfAgYi Æ0�X�ni A� � C1ATrfS�j ge�� H(n)(fS�g)+J;� ; (A.2)where the Æ distribution imposes a restrition on the onnetivity per spin, N is anormalization oeÆient and the notation � n i means the set � exept the element i.Using integral representations for the delta funtions and rearranging:hZni = TrfS�j g* 1N  Yi I dZi2�i 1ZC+1i ! (A.3)� XfAg  Y� (Yi2� Zi)A�! exp ���H(n)(fS�g)�+J;� :Remembering that A 2 f0; 1g, and using the expression (50) for the Hamiltonian wean hange the order of the summation and the produt above and sum over A:hZni = TrfS�j g* 1N  Yi I dZi2�i 1ZC+1i ! e�FP�;i �iS�i



Low Density Parity Chek Codes { A Statistial Physis Prospetive 85�Y� "1 + (Yi2� Zi)exp �J�X� Yi2� S�i !#+J;� : (A.4)Using the identity exp(�J�Qi2� S�i ) = osh(�) h1 + �Qi2� S�i � tanh(�J�)i we anperform the produt over � to write:hZni = TrfS�j g 1N  Yi I dZi2�i 1ZC+1i !
e�FP�;i �iS�i �� (A.5)�Y� "1 + Yi2� Zi! oshn(�) 1 + htanh(�J)iJX� Yi2� S�i+ htanh2(�J)iJ Xh�1�2iYi2� S�1i Yj2� S�2j + :::1A35 :De�ning h�1; �2; :::; �li as an ordered set of sets, and observing that for large N ,Ph�1:::�li(:::) = 1l! �P�(:::)�l we an perform the produt over the sets � and replae theenergy series by an exponential:hZni = TrfS�j g 1N  Yi I dZi2�i 1ZC+1i !
e�FP�;i�iS�i �� (A.6)�exp "oshn(�) X� (Yi2� Zi) + htanh(�J)iJX� X� Yi2� ziS�i+ htanh2(�J)iJ Xh�1�2iX� Yi2� ZiS�1i S�2i + :::1A35 :Observing that P� = 1=K!Pi1;:::iK , de�ning Tl = hoshn(�J)tanhl(�J)iJ andintroduing auxiliary variables q�1:::�m = 1N Pi ZiS�1i :::S�mi we �nd:hZniA;�;J = 1N  Yi I dZi2�i 1ZC+1i !�Z dq0dbq02�i ��  Y� Z dq�dbq�2�i ! : : : (A.7)� exp24NKK! 0�T0qK0 + T1X� qK� + T2 Xh�1�2i qK�1�2 + : : :1A35� exp24�N 0�q0bq0 +X� q�bq� + Xh�1�2i q�1�2bq�1�2 + : : :1A35� TrfS�j g "
e�FP�;i �iS�i �� expXi  bq0Zi +X� bq�ZiS�i + : : :!# :



Low Density Parity Chek Codes { A Statistial Physis Prospetive 86The normalization onstant is given by:N =XfAgYi Æ0�X�ni A� � C1A ; (A.8)and an be omputed using exatly the same methods as above, resulting in:N =  Yi I dZi2�i 1ZC+1i !�Z dq0dbq02�i �� exp "NKK! qK0 �Nq0bq0 + bq0Xi Zi# : (A.9)Computing the integrals over Zi's and using Laplae method to ompute theintegrals over q0 and bq0 we obtain:N = exp�Extrq0;bq0 �NKK! qK0 �Nq0bq0 +N ln�bqC0C!��� : (A.10)The extremum point is given byq0 = N (1�K)=K [(K � 1)!C℄1=Kand bq0 = (C N)(K�1=K) [(K � 1)!℄�1=K :Replaing the auxiliary variables in Eq.(A.7) using q�1:::�m=q0 ! q�1:::�m andbq�1:::�m=q0 ! bq�1:::�m, omputing the integrals over Zi and using Laplae method toevaluate the integrals we �nally �nd Eq.(62).Appendix A.2. Replia symmetri solutionThe replia symmetri free-energy (66) an be obtained by plugging the ansatz (65) intoEq.(A.7). Using Laplae method we obtain:hZniA;�;J = 1N exp�N Extr�;b� �CKG1 � C G2 + G3�� ; (A.11)where: G1 = T0 + T1X� Z KYj ( dxj �(xj) tanh(�xj))+T2 Xh�1�2i Z KYj � dxj �(xj) tanh2(�xj)�+ : : : ; (A.12)G2 = 1 +X� Z dx dy �(x) b�(y) tanh(�x) tanh(�y)+ Xh�1�2i Z dx dy �(x) b�(y) tanh2(�x) tanh2(�y) + : : : (A.13)



Low Density Parity Chek Codes { A Statistial Physis Prospetive 87and G3 = 1N ln 8<: Yi I dZi2�i 1ZC+1i !TrfS�j g 24*exp �FX�;i �iS�i +��exp bq0 Xi Zi +X� Xi ZiS�i Z dy b�(y)tanh(�y)+ Xh�1�2iXi ZiS�1i S�2i Z dy b�(y)tanh2(�y) + : : :1A359=; : (A.14)The equation for G1 an be worked out by using the de�nition of Tm and the fatthat (Ph�1:::�li 1) = � nl �to write:G1 = *oshn(�J) Z  KYj=1 dxj �(xj)!�  1 + tanh(�J) KYj=1 tanh(�xj)!n+J : (A.15)Following exatly the same steps we obtain:G2 = Z dx dy�(x) b�(y) (1 + tanh(�x) tanh(�y))n ; (A.16)and G3 = ln 8<:TrfS�g 24*exp  �F�X� S�!+�� I dZ2�i 1ZC+1 exp  bq0 Z Z dy b�(y) nY�=1(1 + S�tanh(�y))!#) : (A.17)Computing the integral over Zi and the trae we �nally �nd:G3 = ln (bqC0C! Z CYl=1 dylb�(yl)� "X�=�1 
e��F��� CYl=1(1 + �tanh(�yl))#n) : (A.18)Putting everything together, using Eq.(59) and some simple manipulation we �ndEq.(66).Appendix A.3. Loal �eld distributionIn this appendix we derive expliitly Eq.(68). The gauge transformed overlap an bewritten as � = 1N NXi=1 hsign(mi)iA;J;� ; (A.19)



Low Density Parity Chek Codes { A Statistial Physis Prospetive 88introduing the notation mi = hSii, where h� � �i is a gauged average.For an arbitrary natural number p, one an ompute p-th moment of mihmipiA;J;� = limn!0* XS1;:::;Sn S1i � S2i � : : : � Spi e��Pn�=1H(�)+A;J;� ; (A.20)where H(�) denotes the gauged Hamiltonian of the �-th replia. By performing thesame steps desribed in the Appendies Appendix A.1 and Appendix A.2, introduingthe auxiliary funtions �(x) and b�(y) de�ned in Eqs.(65), one obtainshmipiA;J;� = Z CYj=1 dyjb�(yj)*tanhp �F� + � CXj=1 yj!+� : (A.21)Employing the identitysign(x) + 1 = 2 limn!1 nXm=0 2n!(2n�m)!m! �1 + x2 �2n�m�1� x2 �m (A.22)whih holds for any arbitrary real number x 2 [�1; 1℄ and Eqs.(A.21) and (A.22) oneobtains hsign(mi)iA;J;� + 1 = 2 Z dh P (h)� limn!1 nXm=0C2n;m�1 + h2 �2n�m �1� h2 �m= Z dh P (h) sign(h); (A.23)where we introdued the loal �elds distributionP (h) = Z CYj=1 dyj �̂(yj)*Æ(h� F� � CXj=1 yj)+� ; (A.24)thus reproduing Eq.(68).Appendix A.4. Zero temperature self-onsistent equationsIn this appendix we desribe how one an write a set of self-onsistent equations to solvethe zero temperature saddle-point equations (84). Supposing a three peaks ansatz givenby: b�(y) = p+Æ(y � 1) + p0Æ(y) + p�Æ(y + 1) (A.25)�(x) = C�1Xl=1�C T[p�;p0;C�1℄(l) Æ(x� l); (A.26)with T[p+;p0;p�;C℄(l) = Xfk;h;m ; k�h=l ; k+h+m=C�1g (C � 1)!k! h! m! pk+ ph0 pm� : (A.27)



Low Density Parity Chek Codes { A Statistial Physis Prospetive 89We an onsider the problem as a random walk, where b�(y) desribes the probabilityof one step of length y (y > 0 means one step to the right) and �(x) desribes theprobability of being at distane x from the origin after C � 1 steps. With this idea inmind it is relatively easy to understand T[p+;p0;p�;C�1℄(l) as the probability of walking thedistane l after C � 1 steps with the probabilities p+, p� and p0 of respetively movingright, left and staying at the same position. We de�ne the probabilities of walkingright/left as  � =PC�1l T[p+;p0;p�;C�1℄(�l). Using seond saddle-point equations (84):p+ = Z "K�1Yl=1 dxl �(xl)# (A.28)� *Æ "1� sign(J K�1Yl=1 xl) min(j J j; j x1 j; : : : j#+J :The right side of the above equality an be read as the probability of making K�1independent walks, suh that after C � 1 steps: none is at origin and an even (forJ = +1) or odd (for J = �1) number of walks is at the left side.Using this reasoning for p� and p0 we an �nally write :p+ = (1� p) bK�12 Xj=0 (K � 1)!2j!(K � 1� 2j)! 2j�  K�2j�1+ (A.29)+ p bK�12 �1Xj=0 (K � 1)!(2j + 1)!(K � 2� 2j)! 2j+1�  K�2j�2++ p  K�1� odd(K � 1)p� = (1� p) bK�12 �1Xj=0 (K � 1)!(K � 2j � 2)!(2j + 1)! 2j+1�  K�2j�2+ (A.30)+ p bK�12 �1Xj=0 (K � 1)!(K � 2j � 1)!2j! 2j�  K�2j�1++ (1� p) K�1� odd(K � 1);where odd(x) = 1(0) if x is odd (even). Using that p+ + p� + p0 = 1 one an obtain p0.A similar set of equations an be obtained for a �ve peaks ansatz leading to the same setof solutions for the ferromagneti and paramagneti phases. The paramagneti solutionp0 = 1 is always a solution, for C > K a ferromagneti solution with p+ > p� > 0emerges.



Low Density Parity Chek Codes { A Statistial Physis Prospetive 90Appendix A.5. hJiJ = hJ tanh(�NJ)iJIn this appendix we establish the identity hJiJ = hJ tanh(�NJ)iJ for symmetrihannels. It was shown in [Sou94a℄ that :�N J = 12 ln� p(J j 1)p(J j �1)� ; (A.31)where �N is the Nishimori temperature and p(J j J0) are the probabilities that atransmitted bit J0 is reeived as J . From this we an easily �nd:tanh (�N J) = p(J j 1)� p(J j �1)p(J j 1) + p(J j �1) : (A.32)In a symmetri hannel (p(J j �J0) = p(�J j J0)), it is also represented astanh (�N J) = p(J j 1)� p(�J j 1)p(J j 1) + p(�J j 1) : (A.33)Therefore,hJ tanh (�N J)iJ = TrJ p(J j 1) J p(J j 1)p(J j 1) + p(�J j 1)+ TrJ p(J j 1) (�J) p(�J j 1)p(J j 1) + p(�J j 1)= TrJ p(J j 1) J p(J j 1)p(J j 1) + p(�J j 1)+ TrJ p(�J j 1) J p(J j 1)p(�J j 1) + p(J j 1)= TrJ J p(J j 1)= hJiJ : (A.34)Appendix A.6. Probability propagation equationsIn this setion we derive the probability propagation equations (36) and (34) in theform (96). We start by introduing the following representation for the variables QSk�kand RSk�k: QSk�k = 12 (1 +m�kSk) RSk�k = 12 (1 + bm�kSk) : (A.35)We an now put (91), (95) and (A.35) together to write:RSk�j = 1a� XfSk:k2L(�)njg 12 osh(�J�) 1 + tanh(�J�) Yj2L�Sj!� Yk2L(�)nj 12 (1 +m�kSk)= 12K 1a� XfSk:k2L(�)njg osh(�J�)0�1 + tanh(�J�) Yj2L(�)Sj1A



Low Density Parity Chek Codes { A Statistial Physis Prospetive 91� 0�1 + Xk2L(�)njm�kSk + Xk 6=l2L(�)njm�km�lSkSl + � � �1A= 12K 1a� osh(�J�)0�1 + tanh(�J�) Sj Yk2L(�)njm�k1A= 12 0�1 + tanh(�J�) Sj Yk2L(�)njm�k1A : (A.36)To obtain the last line we used that the normalization onstant is a� = 12K�1 osh(�J�).Writing the above equation in terms of the new variable bm�k we obtain the �rst equation(96): bm�k = R(+)�k �R(�)�k (A.37)= 12 0�1 + tanh(�J�) Yk2L(�)njm�k1A� 12 0�1 � tanh(�J�) Yk2L(�)njm�k1A= tanh(�J�) Yk2L(�)njm�k:To obtain the seond equation (96), we write:QSk�k = a�k 12 (1 + tanh(� 0NSk)) Y�2M(k)n� 12 (1 + bm�kSk) : (A.38)In the new variables m�k :m�k = a�k 12K 8<:(1 + tanh(� 0N)) Y�2M(k)n� (1 + bm�k) (A.39)� (1� tanh(� 0N)) Y�2M(k)n� (1� bm�k)9=;By using the identity e�x = osh(x)(1 + �tanh(x)) we an write:m�k = exp hP�2M(k)n� atanh(m�k) + � 0Nia�1�k 2K osh(� 0N )Q�2M(k)n� osh(atanh(m�k)) (A.40)� exp h�P�2M(k)n� atanh(m�k)� � 0Nia�1�k 2K osh(� 0N )Q�2M(k)n� osh(atanh(m�k))Computing the normalization a�j along the same lines gives:a�1�k = exp hP�2M(k)n� atanh(m�k) + � 0Ni2K osh(� 0N)Q�2M(k)n� osh(atanh(m�k))



Low Density Parity Chek Codes { A Statistial Physis Prospetive 92+ exp h�P�2M(k)n� atanh(m�k)� � 0Ni2K osh(� 0N)Q�2M(k)n� osh(atanh(m�k)) (A.41)Inserting (A.41) into (A.40) gives:m�k = tanh24 X�2M(k)n� atanh(m�k) + � 0N35 : (A.42)Appendix B. Gallager Codes: Tehnial DetailsAppendix B.1. Replia theoryThe replia theory for Gallager odes is very similar to the theory obtained for Sourlasodes (see Appendix A). We start with Eq.(116):hZniA;� = X�1;���;�n MYj=1*exp F�� nX�=1 ��j !+� (B.1)� * Yhi1���iKi nY�=1 exp ��Ahi1���iKi(��i1 � � � ��iK � 1)�+A :The average over onstrutions A is then introdued using Eq.(117) :hZniA;� = 1N X�1;���;�n MYj=1*exp F�� nX�=1 ��j !+�� XfAg MYj=1 "I dZj2�i 1ZC+1j ZPhi1=j;i2;���;iK iAhi1=j;���;iK ij #
� Yhi1���iKi exp"�Ahi1���iKi nX�=1(��i1 � � � ��iK � 1)# : (B.2)After observing thatMYj=1ZPhi1=j;i2;���;iK iAhi1=j;���;iK ij = Yhi1���iKi(Zi1 � � �ZiK )Ahi1���iK i;we an ompute the sum over Ahi1���iKi 2 f0; 1g:hZniA;� = 1N X�1;���;�n MYj=1*exp F�� nX�=1 ��j !+� (B.3)� MYj=1 "I dZj2�i 1ZC+1j #
� Yhi1���iKi(1 + Zi1 � � �ZiKen� nY�=1 exp ��(��i1 � � � ��iK )�) :



Low Density Parity Chek Codes { A Statistial Physis Prospetive 93We an now use the identity ex� = osh(x)(1 + �tanh(x)), where � = �1, to write:hZniA;� = 1N X�1;���;�n MYj=1*exp F�� nX�=1 ��j !+� (B.4)� XfAg MYj=1 "I dZj2�i 1ZC+1j #� Yhi1���iKi�1 + oshn(�)en� (Zi1 � � �ZiK)� nY�=1 �1 + ��i1 � � � ��iK tanh(�)�) :By following Appendix A.1 from Eq.(A.5) we an �nally �nd Eq.(120).Appendix B.2. Replia symmetri solutionAs in the ode of Sourlas (Appendix A.2) the repliated partition funtion an be putinto the form:hZniA;� = 1N exp�M Extr�;b� �CKG1 � C G2 + G3�� : (B.5)Introduing the replia symmetri ansatz (121) into the funtions G1, G2 and G3 weobtain: G1(n) = T0 + T1X� qK� + T2 Xh�1�2i qK�1�2 + � � � (B.6)= oshn(�)en� Z KYj=1 dxj �(xj)"1 + n!(n� 1)! tanh(�) KYj=1 xj+ n!(n� 2)!2! tanh2(�) KYj=1 x2j + � � �#= oshn(�)en� Z KYj=1 dxj �(xj)"1 + tanh(�) KYj=1 xj#n!1! 12n Z KYj=1 dxj �(xj)"1 + KYj=1 xj#n ;where we use the Nishimori ondition  !1, � = 1 to obtain the last line.G2(n) = 1 +X� q�bq� + Xh�1�2i q�1�2bq�1�2 + � � �= Z dxdbx �(x)b�(bx) [1 + xbx℄n : (B.7)and G3(n) = 1M ln Trf��g 24*exp"F�� nX�=1 ��#+�



Low Density Parity Chek Codes { A Statistial Physis Prospetive 94� I dZ2�i exp hZPnm=0Ph�1����mi bq�1����m ��1 � � � ��miZC+1 35= 1M ln Trf��g 24*exp "F�� nX�=1 ��#+�� I dZ2�i exp �Z R dbxb�(bx) Qn�=1(1 + ��bx)�ZC+1 #
= 1M ln bqC0C! Z CYl=1 dbxl b�(bxl)"X�=�1 
eF����� CYl=1(1 + �bxl)#n (B.8)By using Eq.(115) we an writef = � 1�Extr�;b� ��n ����n=0 �CKG1(n)� CG2(n) + G3(n)� ; (B.9)what yields the free-energy (123).Appendix B.3. Energy density at the Nishimori onditionIn general the average internal energy is evaluated as:U = hhH(�; F �)i��iJ ;� (B.10)= XJ P� P�(fJ�g j �) PF�(�)P ~J ;~� P�(f ~J�g j ~�) PF�(~�) (B.11)� P� H(�; F �) P���(fJ�g j � ) PF ���(� )P~� P���(fJ�g j ~� ) PF ���(~� ) ;where the hyper-parameters �, F � are used in the Hamiltonian H and �� is thetemperature, while , F and � are the atual parameters of the enoding and orruptionproesses.The Nishimori ondition is de�ned by setting the temperature and all hyper-parameters of the Hamiltonian to the values in the enoding and orruption proesses.If this is done, the expression for the energy an be rewritten:U = PJ ;� H(; F ) P�(fJ�g j � ) PF�(� )PJ ;� P�(fJ�g j � ) PF�(�) : (B.12)By plugging (106) for the likelihood P�(fJ�g j � ) and for the prior PF�(�); settingthe hyperparameters to  ! 1, � = 1 and F = atanh(1 � 2p) and performing thesummation over J �rst, we easily get:u = limM!1 UM = � F (1� 2p): (B.13)Note that this expression is independent of the marosopi state of the system.



Low Density Parity Chek Codes { A Statistial Physis Prospetive 95Appendix B.4. Reursion relationsWe start by introduing the e�etive �eld bx�j :tanh(�bx�j) = P�j(+)e��F � P�j(�)e+�FP�j(+)e��F + P�j(�)e+�F : (B.14)Equation (129) an be easily obtained from the equation above. Equation (130) isthen obtained by introduing Eq.(128) into Eq.(129) and performing a straightforwardmanipulation we obtain Eq.(131):exp(�2�bx�k) = Trf�jge���J�Q00j �j�1�Q0�Q00j e�F�j+�bx�j(�j�1)Trf�jge�(+J��kQ00j �j�1)Q0�Q00j e�F�j+�bx�j(�j�1) ; (B.15)where exp (�bx�j(�j � 1)) = P�j(�j)e��F�jP�j(+)e��Fand the produts Q0� and Q00j are over � 2 M(j) n � and j 2 L(�) n k respetively.The above equation an be rewritten as:e�2�bx�k = Trf�jgQ00j e��F+P0� bx�j��j h�1� J�Q00j �jtanh(�)�iTrf�jgQ00j e(�F+P0� bx�j)�j h�1 + J�Q00j �jtanh(�)�i : (B.16)By introduing the Nishimori ondition � = 1 and  !1 and omputing traes:exp(�2�bx�k) = Qj2L(�)nkP�=�1 ex�j� � J�Qj2L(�)nkP�=�1 �ex�j�Qj2L(�)nkP�=�1 ex�j� + J�Qj2L(�)nkP�=�1 �ex�j�= 1 � J�Qj2L(�)nk tanh(x�j)1 + J�Qj2L(�)nk tanh(x�j) ; (B.17)where we have introduedx�j = F + X�2M(j)n� bx�j:A brief manipulation of the equation above yields Eq.(131).Appendix C. MN odes: tehnial detailsAppendix C.1. Distribution of syndrome bitsIn this setion we evaluate probabilities pxz assoiated to syndrome bits in MN andGallager odes.In the ase of Gallager odes a syndrome bit � has the formz� = �l1 � � � � � �lK ; (C.1)where � 2 f0; 1g and � denotes mod 2 sums. Eah bit �l is randomly drawn withprobabilities P (� = 1) = p and P (� = 0) = 1 � p. The probability p0z(K) of z� = 0



Low Density Parity Chek Codes { A Statistial Physis Prospetive 96equates with the probability of having an even number of �l = 1 in the summation,therefore: p0z(K) = KXl even K!(K � l)!l! pl(1� p)K�l= KXl even (�1)l K!(K � l)!l! pl(1� p)K�l: (C.2)Consequently p1z(K) = KXl odd K!(K � l)!l! pl(1� p)K�l= � KXl odd (�1)l K!(K � l)!l! pl(1� p)K�l: (C.3)>From equations (C.2) and (C.3) above we an write:1� 2 p1z(K) = KXl odd (�1)l K!(K � l)!l! pl(1� p)K�l= (1� p� p)K = (1� 2p)K: (C.4)>From what we �nd:p1z(K) = 12 � 12(1� 2p)K: (C.5)For MN odes syndrome bits have the form:z� = �j1 � � � � � �jK � �l1 � � � � � �lL ; (C.6)where signal bits �j are randomly drawn with probability P (� = 1) = p� and noise bits�l are drawn with probability P (� = 1) = p.The probability p0z(K;L) of z� = 0 is, therefore:p0z(K;L) = p0z(K)p0z(L) + p1z(K)p1z(L)= 1� p1z(K)� p1z(L) + 2 p1z(K)p1z(L): (C.7)where pxz(K) and p0z(L) stand for probabilities involving the K signal bits and L noisebits, respetively.By plugging equation (C.5) into equation (C.7) we get:p1z(K;L) = 1� p0z(K;L)= 12 � 12(1� 2p�)K (1� 2p)L: (C.8)



Low Density Parity Chek Codes { A Statistial Physis Prospetive 97Appendix C.2. Replia theoryFor MN odes the repliated partition funtion has the following form:hZniA;�;� = XS1;���;Sn X� 1;���;� n NYj=1*exp Fs�� nX�=1 S�j !+� (C.9)� MYl=1 *exp Fn�� nX�=1 ��l !+�� *Yhjli nY�=1 exp h�Ahjli(S�j1 � � �S�jK��l1 � � � ��lL � 1)i+A :By introduing averages over onstrutions (117) as desribed in Appendix B.1 we �nd:hZniA;�;� = XS1;���;Sn X� 1;���;� n NYj=1*exp Fs�� nX�=1 S�j !+� (C.10)� MYj=1*exp Fn�� nX�=1 ��j !+�� XfCj ;Dlg NYj=1PC(Cj) MYl=1 PD(Dl)� 1N XfAg NYj=1 "I dZj2�i 1ZCj+1j ZPhj1=j;j2;���;jK;liAhj1=j;���;jK ;lij #
� MYl=1 "I dYl2�i 1Y Dl+1l YPhj;l1=l;l2;���;lLiAhj;l1=l;���;lLil #
� Yhjli exp "�Ahjli nX�=1(S�j1 � � �S�jK��l1 � � � ��lL � 1)# :Computing the sum over A we get:hZniA;�;� = XS1;���;Sn X� 1;���;� n NYj=1*exp Fs�� nX�=1 S�j !+�� MYj=1*exp Fn�� nX�=1 ��j !+�� XfCj ;Dlg NYj=1PC(Cj) MYl=1 PD(Dl) 1N� I dZj2�i 1ZCj+1j I dYl2�i 1Y Dl+1l� Yhili�1 + Zi1 � � �ZiKYl1 � � �YlLen�



Low Density Parity Chek Codes { A Statistial Physis Prospetive 98� nY�=1 exp ��(S�i1 � � �S�iK��l1 � � � ��lL)�) : (C.11)We use the identity ex� = osh(x)(1 + �tanh(x)), where � = �1, to write:hZniA;�;� = XS1;���;Sn X� 1;���;� n NYj=1*exp Fs�� nX�=1 S�j !+� (C.12)� MYj=1*exp Fn�� nX�=1 ��j !+�� XfCj ;Dlg NYj=1PC(Cj) MYl=1 PD(Dl)� 1N I dZj2�i 1ZCj+1j I dYl2�i 1Y Dl+1l (C.13)� Yhili�1 + oshn(�)en� (Zi1 � � �ZiKYl1 � � �YlL)� nY�=1 �1 + S�i1 � � �S�iK��l1 � � � ��lLtanh(�)�) :The produt in the replia index � yields:nY�=1 �1 + S�i1 � � �S�iK��l1 � � � ��lLtanh(�)� = nXm=0�tanhm(�) (C.14)� Xh�1;���;�miS�1i1 � � �S�mi1 � � �S�1iK � � �S�miK ��1l1 � � � ��ml1 ��1lL � � � ��mlL �;where h�1; � � � ; �mi = f�1; � � � ; �m : �1 < � � � < �mg.The produt in the multi-indies hili an be omputed by observing that thefollowing relation holds in the thermodynami limit:Yhili �1 +  hili� = mmaxXm=0 Xhhili1;���;hilimi hili1 � � � hilimN!1�! exp24Xhili  hili35 ; (C.15)with mmax � (NKML)=K!L!.We �nd Eq.(173) by putting Eqs.(C.15) and (C.14) into (C.12) and using thefollowing identities to introdue auxiliary variables:Z dq�1����m Æ "q�1����m � 1N NXj=1 ZjS�1j � � �S�mj # = 1Z dr�1����m Æ "r�1����m � 1M MXl=1 Yl��1l � � � ��ml # = 1 (C.16)



Low Density Parity Chek Codes { A Statistial Physis Prospetive 99Appendix C.3. Replia symmetri free-energyWe �rst ompute the normalisation N for a given :N = Z �dq0dbq02�i �Z �dr0dbr02�i �� exp �MLNKK!L! T0qK0 rL0 � Nq0bq0 � Mr0br0�� NYj=1 I dZj2�i exp [Zjbq0℄ZCj+1j MYl=1 I dYl2�i exp [Ylbr0℄Y Dl+1l (C.17)By using Cauhy's integrals to integrate in Zj and Yl and Laplae's method we get:N = exp�Extrq0;bq0;r0;br0 �MLNKK!L! T0qK0 rL0 �Nq0bq0 �Mr0br0+ NXj=1 ln bqCj0Cj!! + MXl=1 ln brLl0Ll!!#) : (C.18)The extremisation above yields the following equations:q0bq0 = 1N NXj=1 Cj = C (C.19)r0br0 = 1M MXl=1 Ll = L (C.20)qK0 rL0 = C (K � 1)!L!NK�1ML : (C.21)The variables an be normalised as:q�1����mq0 7! q�1����m r�1����mr0 7! r�1����m : (C.22)By plugging Eqs.(C.18), (C.19), the above transformation into (173) and by usingLaplae's method we obtain:hZniA;�;� = Extrq;r;bq;br8<:exp24N CK nXm=1 Xh�1����mi TmqK�1����m rL�1����m� NC nXm=1 Xh�1����mi q�1����mbq�1����m� ML nXm=1 Xh�1����mi r�1����mbr�1����m35� NYj=1XCj PC(Cj) MYl=1XDl PD(Dl)� NYj=1 Cj!bqCj0 ! TrfS�j g 24*exp"Fs�� nX�=1 S�#+�



Low Density Parity Chek Codes { A Statistial Physis Prospetive 100� I dZj2�i exp hZjPnm=0Ph�1����mi bq�1����m S�1 � � �S�miZCj+1j 35� MYl=1 �Dl!brDl0 � Trf��l g 24*exp "Fn�� nX�=1 ��l #+�� I dYl2�i exp hYlPnm=0Ph�1����mi br�1����m ��1 � � � ��miY Dl+1l 359=; ;(C.23)where Tm = e�n� oshn(�) tanhm(�).We an rewrite the repliated partition funtion as:hZniA;�;� = exp�NExtrq;r;bq;br �CKG1 � CG2 � LG3 + G4 + G5�� (C.24)Introduing the replia symmetri ans�atze:q�1����m = Z dx �(x) xm bq�1����m = Z dbx b�(bx) bxm (C.25)and r�1����m = Z dy �(y) ym br�1����m = Z dby b�(by) bym: (C.26)By introduing Nishimori's ondition  ! 1 and � = 1, we an work eah termon (C.24) out and �nd:G1(n) = T0 + T1X� qK� rL� + T2 Xh�1�2i qK�1�2rL�1�2 + � � � (C.27)= oshn(�)en� Z KYj=1 dxj LYl=1 dyl �(yl)� "1 + n!(n� 1)! tanh(�) KYj=1 xj LYl=1 yl+ n!(n� 2)!2! tanh2(�) KYj=1 x2j LYl=1 y2l + � � �#= oshn(�)en� Z KYj=1 dxj �(xj) LYl=1 dyl �(yl)� "1 + tanh(�) KYj=1 xj LYl=1 yl#n!1! 12n Z KYj=1 dxj�(xj) LYl=1 dyl�(yl)"1 + KYj=1 xj LYl=1 yl#n ;



Low Density Parity Chek Codes { A Statistial Physis Prospetive 101G2(n) = 1 +X� q�bq� + Xh�1�2i q�1�2bq�1�2 + � � �= Z dxdbx �(x)b�(bx) [1 + xbx℄n : (C.28)Similarly, G3(n) = 1 +X� r�br� + Xh�1�2i r�1�2br�1�2 + � � �= Z dydby �(y)b�(by) [1 + yby℄n : (C.29)G4(n) = 1N NXj=1 ln XCj PC(Cj) Cj!bqCj0 !� TrfS�g 24*exp "Fs�� nX�=1 S�j #+�� I dZj2�i exp hZjPnm=0Ph�1����mi bq�1����m S�1j � � �S�mj iZCj+1j 35 (C.30)= 1N NXj=1 ln XCj PC(Cj) Cj!bqCj0 !� TrfS�j g 24*exp "Fs�� nX�=1 S�j #+�� I dZj2�i exp �Zj R dbxb�(bx) Qn�=1(1 + S�j bx)�ZCj+1j #
= ln XCj PC(Cj) Z CjYl=1 dbxl b�(bxl)24XS=�1 
eFs��S�� CjYi=1(1 + Sbxi)35nIn the same way:G5(n) = 1M MXl=1 ln XDl PD(Dl)�Dl!brDl0 � (C.31)� Trf��g 24*exp "Fn�� nX�=1 ��l #+�� I dYl2�i exp hYlPnm=0Ph�1����mi br�1����m ��1l � � � ��ml iY Dl+1l 35



Low Density Parity Chek Codes { A Statistial Physis Prospetive 102= 1M MXl=1 ln XDl PD(Dl)�Dl!brDl0 �� TrfD�l g 24*exp "Fn�� nX�=1 ��l #+�� I dYl2�i exp hYl R dbyb�(by) Qn�=1(1 + ��l by)iY Dl+1l 35= ln XDl PC(Dl) Z DlYl=1 dbyl b�(byl)"X�=�1 
eFn����� DlYi=1(1 + �byi)#nBy using Eq.(166) we an writef = � 1�Extr�;b�;�;b� ��n ����n=0 �CKG1(n)� CG2(n)� LG3(n) (C.32)+ G4(n) + G5(n)℄ ;what yields free-energy (176).Appendix C.4. Viana-Bray model: Poisson onstrutionsThe Viana-Bray (VB) model is a multi-spin system with random ouplings and strongdilution [VB85℄. We an introdue a VB version of our statistial mehanial formulationfor MN odes. The Hamiltonian for a VB-like ode is idential to Eq.(160):Hgauge (S; � ; �; �) = � XhjliAhjli (Sj1 � � �SjK�l1 � � � �lL � 1)� Fs NXj=1 �jSj � Fn MXl=1 �l�l: (C.33)The variables Ahjli are independently drawn from the distribution:P (A) = �1� L!K!ML�1NK� Æ(A) + L!K!ML�1NK Æ(A� 1): (C.34)The above distribution will yield the following averages:*XhjliAhjli+A =M (C.35)* Xhj1=j���jK l1���lLiAhjli+A = C (C.36)* Xhj1���jK l1=l���lLiAhjli+A = L: (C.37)



Low Density Parity Chek Codes { A Statistial Physis Prospetive 103In the thermodynami limit the above summations are random variabels with a Poissondistributions: P 8<:XhjliAhjli = x9=; = e�MMxx! (C.38)P 8<: Xhj1=j���jK l1���lLiAhjli = x9=; = e�CCxx! (C.39)P 8<: Xhj1���jK l1=l���lLiAhjli = x9=; = e�LLxx! : (C.40)Sine the variane of a Poisson distribution is given by the square root of the mean inthe thermodynami limit:P 8<:XhjliAhjli = x9=; M!1�! Æ (x � M) : (C.41)The Poisson distribution for the onstrution variables C and L will imply that a frationNe�C of the signal bits and Me�L of the noise bits will be deoupled from the system.These unheked bits have to be estimate by randomly sampling the prior probabilityP (Sj), implying that the overlap � is upper bounded by:� � 1N hN �Ne�C +Ne�C(1� 2p�)i� 1� e�C + e�C(1� 2p�)� 1� 2 p�e�C : (C.42)Therefore, a VB-like ode has neessarily an error-oor that deays exponentially withthe C hosen.Referenes[AL95℄ Ami, C. D. E., and Luk, J., Zero-temperature error-orreting ode for a binary symmetrihannel, J. Phys. A 28 (1995), 135{147.[AM00℄ Aji, S., and MEliee, R., The generalized distributive law, IEEE Trans. Info. Theory 46(2000), 325{343.[Ber93℄ Berger, J., Statistial deision theory and Bayesian analysis, Springer-Verlag, New York,NY, 1993.[BGT93℄ Berrou, C., Glavieux, A., and Thitimajshima, P., Near Shannon limit error-orretingoding and deoding: Turbo odes, in Pro. IEEE Int. Conf. Commun (ICC) (Geneva,Switzerland), 1993, pp. 1064{1070.[BL82℄ Bowman, D., and Levin, K., Spin-glass in the Bethe approximation: Insights and problems,Phys. Rev. B 25 (1982), 3438{3441.[CGH97℄ Castillo, E., Guti�errez, J., and Hadi, A., Expert systems and probabilisti network models,Springer-Verlag, New York, NY, 1997.[Che97℄ Cheng, J.-F., Iterative deoding, Ph.D. thesis, California Institute of Tehnology, Marh1997.



Low Density Parity Chek Codes { A Statistial Physis Prospetive 104[Chu00℄ Chung, S.-Y., On the onstrution of some apaity-approahing oding shemes, Ph.D.thesis, Massahusetts Institute of Tehnology, September 2000.[CS98℄ Conway, J., and Sloane, N., Sphere pakings, latties and groups, Springer-Verlag, NewYork, 1998.[CT91℄ Cover, T., and Thomas, J., Elements of information theory, John Wiley & Sons, New York,NY, 1991.[Dav98℄ Davey, M., Reord-breaking orretion using low-density parity-hek odes, Hamilton prizeessay, Gonville and Caius College, Cambridge, Otober 1998.[Dav99℄ Davey, M., Error-orretion using low-density parity-hek odes, Ph.D. thesis, Universityof Cambridge, Deember 1999.[Der81a℄ Derrida, B., Random-energy model: An exatly solvable model of disordered systems, Phys.Rev. B 24 (1981), 2613{2626.[Der81b℄ Derrida, B., Random Energy Model: An exatly solvable model of disordered systems, Phys.Rev. B 24 (1981), 238{251.[DW99℄ Dorlas, T., and Wedagedera, J., Phase diagram of the Random Energy Model with higherorder ferromagneti term and error orreting odes due to Sourlas, Phys. Rev. Lett. 83(1999), 4441{4444.[Fel50℄ Feller, W., An introdution to probability theory and its appliations, vol. 1, John Wiley &Sons, New York, NY, 1950.[FHS78℄ Fradkin, E., Huberman, B., and Shenker, S., Gauge symmetries in random magnetisystems, Phys. Rev. B 18 (1978), 4879{4814.[FLRTZ01℄ Franz, S., Leone, M., Rii-Tersenghi, F., and Zehina, R., Exat solutions for diluted spinglasses and optimization problems, Phys. Rev. Lett. 87 (2001), art. no. 127209.[FM98℄ Frey, B., and MaKay, D., A revolution: Belief propagation in graphs with yles, Advanesin Neural Information Proessing Systems 10 (Cambridge, MA) (Jordan, M., Kearns, M.,and Solla, S., eds.), The MIT Press, 1998, pp. 479{485.[Fre98℄ Frey, B., Graphial models for mahine learning and digital ommuniation., MIT Press,Cambridge, MA, 1998.[Fre99℄ Freeman, Y. W. W., Corretness of belief propagation in Gaussian graphial models ofarbitrary topology., Teh. Report TR UCB{CSD-99-1046, UC Berkeley CS DepartmentTR UCB{CSD-99-1046, 1999.[Gal62℄ Gallager, R., Low density parity hek odes, IRE Trans. Info. Theory IT-8 (1962), 21{28.[Gal63℄ Gallager, R., Low-density parity-hek odes, Researh monograph series, no. 21, MITPress, Cambridge,MA, 1963.[GM84℄ Gross, D., and Mezard, M., The simplest spin glass, Nulear Pnysis B 240 (1984), 431{452.[Gol91℄ Goldshmidt, Y., Spin glass on the �nite-onnetivity lattie: The replia solution withoutreplias, Phys. Rev. B 43 (1991), 8148{8152.[GR94℄ Gradshteyn, I., and Ryzhik, I., Table of integrals, series and produts, Aademi Press,London, 1994.[Guj95℄ Gujrati, P., Bethe or bethe-like lattie alulations are more reliable than onventionalmean-�eld alulations, Phys. Rev. Lett. 74 (1995), 809{812.[Ham50℄ Hamming, R., Error deteting and error orreting odes, Bell. Sys. Teh. J. 26 (1950),147{160.[Hil86℄ Hill, R., A �rst ourse in oding theory, Claredon Press, Oxford, 1986.[Huf52℄ Hu�man, D., A method for onstrution of minimum redundany odes, Pro. IRE 40(1952), 1098{1101.[Iba99℄ Iba, Y., The Nishimori line and Bayesian statistis, J. Phys. A 32 (1999), 3875{3888.[Jen96℄ Jensen, F., An introdution to Bayesian networks, UCL Press, London, 1996.[KF98℄ Kshishang, F., and Frey, B., Iterative deoding of ompound odes by probabilitypropagation in graphial models, IEEE J. Seleted Areas in Commun. 2 (1998), 153{159.



Low Density Parity Chek Codes { A Statistial Physis Prospetive 105[KFL01℄ Kshishang, F., Frey, B., and Loeliger, H.-A., Fator graphs and the sum-produtalgorithm, IEEE Trans. on Info. Theory 47 (2001), 498{519.[Khi57℄ Khinhin, A., Mathematial foundations of information theory, Dover Publiations, In.,New York, NY, 1957.[KMS00℄ Kabashima, Y., Murayama, T., and Saad, D., Typial performane of Gallager-type error-orreting odes, Phys. Rev. Lett. 84 (2000), 1355{1358.[KNvM01℄ Kabashima, Y., Nakamura, K., and van Mourik, J., Statistial mehanis of typial setdeoding, ond-mat/0106323, June 2001.[KS78℄ Kirkpatrik, S., and Sherrington, D., In�nite-ranged models of spin-glasses, Phys. Rev. B17 (1978), 4384{4403.[KS98℄ Kabashima, Y., and Saad, D., Belief propagation vs. TAP for deoding orrupted messages,Europhys. Lett. 44 (1998), 668{674.[KS99a℄ Kabashima, Y., and Saad, D., Statistial physis of error-orreting odes, Europhys. Lett.45 (1999), 97{103.[KS99b℄ Kanter, I., and Saad, D., Error-orreting odes that nearly saturate Shannon's bound, Phys.Rev. Lett. 83 (1999), 2660{2663.[KS00a℄ Kanter, I., and Saad, D., Casading parity-hek error-orreting odes, Phys. Rev. E 61(2000), 2137{2140.[KS00b℄ Kanter, I., and Saad, D., Finite-size e�ets and error-free ommuniation in Gaussianhannels, J. Phys. A 33 (2000), 1675{1681.[KSNS01℄ Kabashima, Y., Sazuka, N., Nakamura, K., and Saad, D., Tighter deoding reliability boundfor gallager's error-orreting odes, Phys. Rev. E 64 (2001), art. no. 046113.[Lau96℄ Lauritzen, S., Graphial models, Oxford University Press, New York, NY, 1996.[LMSS98℄ Luby, M., Mitzenmaher, M., Shokrollahi, A., and Spielman, D., Improved low-densityparity-hek odes using irregular graphs and belief propagation, Teh. Report SRC 1998-009, Digital Systems Researh Center, http://www.researh.digital.om/SRC/, 1998.[Ma95℄ MaKay, D., Free energy minimization algorithm for deoding and ryptanalysis,Eletronis Letters 31 (1995), 446{447.[Ma99℄ MaKay, D., Good error-orreting odes based on very sparse matries, IEEE Trans. onInfo. Theory 45 (1999), 399{431.[Ma00a℄ MaKay, D., Information theory, inferene and learning algorithms, 2000, available athttp://wol.ra.phy.am.a.uk/makay/.[Ma00b℄ MaKay, D., private ommuniation, 2000.[Ma00℄ MaKay, D., Relationships between sparse graph odes, Proeedings of the 2000 Workshopon Information-Based Indution Sienes (IBIS2000) (Izu, Japan), 2000, pp. 257{270.[MKSV00℄ Murayama, T., Kabashima, Y., Saad, D., and Viente, R., Statistial physis of regularlow-density parity-hek error-orreting odes, Phys. Rev. E 62 (2000), 1577{1591.[MN95℄ MaKay, D., and Neal, R., Good odes based on very sparse matries, Leture Notes inComputer Siene, vol. 1025, Spriger, Berlin, 1995, pp. 100{111.[Mon98a℄ Monasson, R., Optimization problems and replia symmetry breaking in �nite onnetivityspin glasses, J. Phys. A 31 (1998), 513{529.[Mon98b℄ Monasson, R., Some remarks on hierarhial replia symmetry breaking in �nite-onnetivity systems, Philos. Mag. B 77 (1998), 1515{1521.[Mon00℄ Montanari, A., Turbo odes: the phase transition, Eur. Phys. J. B 18 (2000), 121{136.[Mon01℄ Montanari, A., The glassy phase of gallager odes, Eur. Phys. J. B 23 (2001), 121{136.[MP01℄ Mezard, M., and Parisi, G., The bethe lattie spin glass revisited, Eur. Phys. J. B 20 (2001),217{233.[MPV87℄ Mezard, M., Parisi, G., and Virasoro, M., Spin glass theory and beyond, World Sienti�Publishing Co., Singapore, 1987.[MS77℄ MaWilliams, F., and Sloane, N., The theory of error-orreting odes, North-Holland,Amsterdam, 1977.



Low Density Parity Chek Codes { A Statistial Physis Prospetive 106[MS00℄ Montanari, A., and Sourlas, N., The statistial mehanis of turbo odes, Eur. Phys. J. B18 (2000), 107{119.[NG95℄ Nelson, M., and Gailly, J., The data ompression book, M & T Books, New York, NY, 1995.[Nis80℄ Nishimori, H., Exat results and ritial properties of the Ising model with ompetinginterations, J. Phys. C 13 (1980), 4071{4076.[Nis93℄ Nishimori, H., Optimal deoding for error-orreting odes, J. Phys. So. of Japan 62 (1993),2973{2975.[Nis01℄ Nishimori, H., Statistial physis of spin glasses and information proessing, OxfordUniversity Press, Oxford, UK, 2001.[NKS01℄ Nakamura, K., Kabashima, Y., and Saad, D., Statistial mehanis of low-density parityhek error-orreting odes over galois �elds, Eurphys. Lett. 56 (2001), 610{616.[OO79℄ Omura, A., and Omura, J., Priniples of digital ommuniation and oding, MGraw-HillBook Co., Singapore, 1979.[OS01℄ Opper, M., and Saad, D., Advaned mean �eld methods: Theory and pratie, MIT Press,Cambridge, MA, 2001.[Par80℄ Parisi, G., The order parameter for spin glasses: a funtion on the interval 0-1, J. Phys.A 13 (1980), 1101{1112.[Pea88℄ Pearl, J., Probabilisti reasoning in intelligent systems, Morgan Kaufmann Publishers, In.,San Franiso, CA, 1988.[Ple82℄ Plefka, T., Convergene ondition of the TAP equation for the in�nite-ranged ising spinglass model, J. Phys. A 15 (1982), 1971{1978.[RK92℄ Rieger, H., and Kirkpatrik, T., Disordered p-spin interation models on Husimi trees,Phys. Rev. B 45 (1992), 9772{9777.[RSU01℄ Rihardson, T., , Shokrollahi, A., and Urbanke, R., Design of prvably good low-densityparity hek odes, IEEE Trans. on Info. Theory 47 (2001), 619{637.[RU01℄ Rihardson, T., and Urbanke, R., The apaity of low-density parity hek odes undermessage-passing deoding, IEEE Trans. on Info. Theory 47 (2001), 599{618.[Ruj93℄ Ruj�an, P., Finite temperature error-orreting odes, Phys. Rev. Lett. 70 (1993), 2968{2971.[Saa98℄ Saakian, D., Diluted generalized random energy model, JETP Lett. 67 (1998), 440{444.[Sha48℄ Shannon, C., Mathematial theory of ommuniation, Bell. Sys. Teh. J. 27 (1948), (pt. I)379{423 (pt. II) 623{656.[SJ98℄ Saul, L., and Jordan, M., Exploiting tratable substrutures in intratable, Advanes inNeural Information Proessing Systems 10 (Cambridge, MA) (Touretzky, D., Mozer, M.,and Hasselmo, M. E., eds.), MIT Press, 1998, pp. 479{485.[Sou89℄ Sourlas, N., Spin-glass models as error-orreting odes, Nature 339 (1989), 693{695.[Sou94a℄ Sourlas, N., Spin-glasses, error-orreting odes and �nite-temperature deoding, Europhys.Lett. 25 (1994), 159{164.[Sou94b℄ Sourlas, N., Statistial mehanis and error-orreting odes, From Statistial Physis toStatistial Inferene and Bak (Grassberger, P., and Nadal, J.-P., eds.), NATO ASISeries, vol. 428, Kluwer Aademi Publishers, 1994, pp. 195{204.[Tan00℄ Tanaka, T., Information geometry of mean �eld approximation, Neural Computation 12(2000), 1951{1968.[Tou77℄ Toulouse, G., Theory of the frustration e�et in spin glasses: I, Communiations on Physis2 (1977), 115{119.[VB85℄ Viana, L., and Bray, A., Phase diagrams for dilute spin glasses, J. Phys. C 18 (1985),3037{3051.[vMSK01℄ van Mourik, J., Saad, D., and Kabashima, Y., Weight vs. magnetization enumerator forgallager odes, Cryptography and Coding, 8-th IMA International Conferene (Berlin,Germany) (Honary, B., ed.), Springer, 2001, pp. 148{157.[VSK99℄ Viente, R., Saad, D., and Kabashima, Y., Finite-onnetivity systems as error-orreting



Low Density Parity Chek Codes { A Statistial Physis Prospetive 107odes, Phys. Rev. E 60 (1999), 5352{5366.[VSK00a℄ Viente, R., Saad, D., and Kabashima, Y., Error-orreting ode on a atus: a solvablemodel, Europhys. Lett. 51 (2000), 698{704.[VSK00b℄ Viente, R., Saad, D., and Kabashima, Y., Statistial mehanis of irregular low-densityparity-hek odes, J. Phys. A 33 (2000), 6527{6542.[Wei97℄ Weiss, Y., Belief propagation and revision in networks with loops, Teh. Report A.I. Memo1616, MIT, 1997.[Wib96℄ Wiberg, N., Codes and deoding on general graphs, Ph.D. thesis, Dep. of EletrialEngineering, Link�oping University, 1996.[WS87a℄ Wong, K., and Sherrington, D., Graph bipartitioning and spin glasses on a random networkof �xed �nite valene, J. Phys. A 20 (1987), L793{L799.[WS87b℄ Wong, K., and Sherrington, D., Graph bipartitioning and the Bethe spin-glass, J. Phys. A20 (1987), L785{L791.[WS88℄ Wong, K., and Sherrington, D., Intensively onneted spin glasses: towards a replia-symmetry-breaking solution of the groud state, J. Phys. A 21 (1988), L459{L466.


