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Abstract. In this chapter we review recent theoretical work on the statistical physics
of error correcting codes. We discuss the typical performance of four families of error-
correcting codes based on very sparse linear transformations: Sourlas codes, Gallager
codes, MacKay-Neal codes and Cascading codes. By mapping the decoding problem
onto Ising spin systems with multi-spins interactions we are able to calculate averages
over code constructions, messages and noise. We find, as the noise level increases,
a phase transition between successful decoding and failure phases. This phase
transition coincides with upper bounds derived in the information theory literature
in most cases. We relate the practical decoding algorithm known as probability
propagation to the task of finding local minima of a free-energy. We show that practical
decoding thresholds correspond to noise levels where suboptimal minima of the free-
energy emerge. Simulation results of practical decoding scenarios using probability
propagation agree with theoretical predictions of the statistical physics approach. The
typical performance predicted by the phase transition picture is shown to be attainable
only in computating times that grow exponentially with the message size. We use some
of the physical insights obtained to design a method to calculate the performance and
optimize parameters of cascading codes.
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1. Introduction

1.1. Error-correction

The way we communicate has been deeply transformed during the twentieth century.
Telegraph, telephone, radio and television technologies have brought to reality
instantaneous long distance communication. Satellite and digital technologies have made
global high-fidelity communication possible.

Two obvious common features of modern digital communication systems are that
typically the message to be transmitted (e.g. images, text, computer programs) is
redundant and the medium used for transmission (e.g. deep-space, atmosphere, optical
fibres, etc...) is noisy. The key issues in modern communication are, therefore,
saving storage space and computing time by eliminating redundancies (source coding
or compression) and making transmissions reliable by employing error correction
techniques (channel coding). Shannon was one of the first to point out these key
issues. His influential 1948 papers [Sha48] proved general results on the natural limits
of compression and error-correction by setting up the framework to what is now known
as information theory.

Shannon’s channel coding theorem states that error-free communication is possible
if some redundancy is added to the original message in the encoding process. A
message encoded at rates R (message information content/code-word length) up to
the channel capacity Cchannel can be decoded with a probability of error that decays
exponentially with the message length. Shannons proof was non-constructive and
assumed encoding with unstructured random codes and impractical (non-polynomial
time) [CT91] decoding schemes. Finding practical codes capable of reaching the natural
coding limits is one of the central issues in coding theory.

To illustrate the difficulties that may arise when trying to construct high
performance codes from first principles, we can use a simple geometric illustration. On
the top left of Fig.1 we represent the space of words (a message is a sequence of words),
each circle represents one sequence of binary bits. The word to be sent is represented by
a black circle in the left side figure. Corruption by noise in the channel is represented in
the top right figure as a drift in the original word location. The circle around each word
represent spheres that provide a decision boundary for each particular word, any signal
inside a certain decision region is recognized as representing the word at the center of
the sphere. In the case depicted in Fig.1 the drift caused by noise places the received
word within the decision boundary of another word vector, causing a transmission error.
Error-correction codes are based on mapping the original space of words onto a higher
dimensional space in a way that the typical distance between encoded words (codewords)
increases. If the original space is transformed, the same drift shown in the top of Fig.1 is
insufficient to push the received signal outside the decision boundary of the transmitted
codeword (bottom figure).

Based on this simple picture we can formulate general designing criteria for good
error-correcting codes: codewords must be short sequences of binary digits (for fast
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Figure 1. In the top figure we illustrate what happens when a word is transmitted
without error-correction. White circles represent possible word vectors, the black circle
represents the word to be sent. The channel noise causes corruption of the original
word that is represented by a drift in the top right picture. The dashed circles indicate
decision boundaries in the receiver; in the case depicted, noise corruption leads to a
transmission error. In the bottom figure we show qualitatively the error correction
mechanism. The redundant information changes the space geometry, increasing the
distance between words. The same drift as in the top figure does not result in a
transmission error.

transmission), the code must allow for a large number of codewords (for a large set
of words) and decision spheres must be as large as possible (for large error-correction
capability). The general coding problem consists of optimizing one of these conflicting
requirements given the other two. So, for example, if the dimension of the lattice and
diameter of decision spheres are fixed, the problem is finding the lattice geometry that
allows the densest possible sphere packing. This sphere packing problem is included
in the famous list of problems introduced by Hilbert (it is actually part of the 18th
problem). This problem can be solved for a very limited number of dimensions [CS98],
but is very difficult in general. As a consequence, constructive procedures are known
only for a limited number of small codes.

For long, the best practical codes known were Reed-Solomon codes (RS), operating
in conjunction with convolutional codes (concatenated codes). The current technological
standard are RS codes, proposed in 1960, found almost everywhere from compact
disks to mobile phones and digital television. Concatenated codes are the current
standard in deep-space missions (e.g. Galileo mission) [MS77, OO79|. Recently, Turbo
codes [BGT93] have been proven to outperform concatenated codes and are becoming
increasingly more common. These codes are composed of two convolutional codes
working in parallel and show practical performance close to Shannon’s bound when
decoded with iterative methods known as probability propagation, first studied in the
context of coding by Wiberg [Wib96].

Despite the success of concatenated and Turbo codes, the current performance
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record is owned by Gallager’s low-density parity-check codes, e.g., [Chu00, Dav99,
Dav98]. Gallager codes were first proposed in 1962 [Gal62, Gal63] and then were all
but forgotten soon after due to computational limitations of the time and due to the
success of convolutional codes.

To give an idea of how parity-check codes operate, we exemplify with the simplest
code of this type known as Hamming code [Ham50] . A (7,4) Hamming code, where (7, 4)
stands for the number of bits in the codeword and input message respectively, operates
by adding 3 extra bits for each 4 message bits, this is done by a linear transformation
G, called the generator matrix, represented by:

1000
0100
0010

G=|0001 (1)
01 11
1 011
1101

When the generator matrix G is applied to a digital message s = (s1, s2, S3, S4), We get
an encoded message defined by ¢ = G's composed of 4 message bits plus redundant
information (parity-check) as 3 extra bits t5 = sy B $3 D s4, tg = $1 D 3 B s4 and
t7 = $1 @ $3 ® s4 (@ indicates binary sums). One interesting point to note is that the
transmitted message is such that t5 @ s @ s3 ® s4 = 0 and similarly for ¢ and t;, what
allows direct check of single corrupted bits. The decoding procedure relies in a second
operator, known as parity-check matrix, with the property HG = 0. For the generator
(1) the parity-check matrix has the following form:

0001111
H=|0110011/{. (2)
1010101
The decoding procedure follows from the observation that the received message is
corrupted by noise as r = G's & n. By applying the parity-check matrix we get the
syndrome Hr = Hn = z. In the (7,4) Hamming code the syndrome vector gives the
binary representation for the position of the bit where an error has occurred (e.g. if
n = (0,0,1,0,0,0,0), z = (0,1,1)). Due to this nice property decoding is trivial and
this code is known as a perfect single-error-correcting code [Hil86].

Codes in the low-density parity-check family work along the same principles as
the simple Hamming code above, the main differences are that they are much longer,
the parity-check matrix is very sparse and multiple errors can be corrected. However,
low-density parity-check codes are not perfect and the decoding problem is, in general,
significantly more difficult. Luckily, the sparseness of the matrix allows for the decoding
process to be carried out by probability propagation methods similar to those employed
in Turbo codes. Throughout this chapter we concentrate on low-density parity-check
codes (LDPC) that are state-of-the-art concerning performance and operate along simple
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principles. We study four variations of LDPCs known as Sourlas codes, Gallager codes,
MacKay-Neal codes and cascading codes.

1.2. Statistical physics of coding

The history of statistical physics application to error-correcting codes started in 1989
with a paper by Sourlas relating error-correcting codes to spin glass models [Sou89]. He
showed that the Random Energy Model [Der81b, Saa98, DW99] can be thought of as
an ideal code capable of saturating Shannon’s bound at vanishing code rates. He also
showed that the SK model [KS78] could operate as a practical code.

In 1995, convolutional codes were analyzed by employing the transfer-matrix
formalism and power series expansions [AL95].

In 1998, Sourlas work was extended for the case of finite code rates [KS99a, VSK99]
by employing the replica method. Recently, Turbo codes were also analyzed using the
replica method [MS00, Mon00].

In this chapter we present the extension of Sourlas work together with the analysis of
other members in the family of low-density parity-check codes. We rely mainly on replica
calculations [KMS00, MKSV00, VSK00b] and mean-field methods [KS98, VSKO00a]. The
main idea is to develop the application of statistical physics tools for analyzing error-
correcting codes. A number of results obtained are rederivations of well known results
in information theory, while others put known results into a new perspective.

The main differences between the statistical physics analysis and traditional results
in coding theory are: the emphasis on very large systems from the start (thermodynamic
limit) and the calculation of ensemble typical performances instead of worst case bounds.
In this sense statistical physics techniques are complementary to traditional methods.
As a byproduct of our analysis we connect the iterative decoding methods of probability
propagation with well known mean-field techniques, presenting a framework that might
allow a systematic improvement of decoding techniques.

1.8. Outline

In the next section we provide an overview of results and ideas from information
theory that are relevant for understanding of the forthcoming sections. We also discuss
more deeply linear encoding and parity-check decoding. We present the probability
propagation algorithm for computing approximate marginal probabilities efficiently and
finish by introducing the statistical physics point of view of the decoding problem.

In Section 3, we investigate the performance of error-correcting codes based on
sparse generator matrices proposed by Sourlas. We employ replica methods to calculate
the phase diagram for the system at finite code rates. We then discuss the decoding
dynamics of the probability propagation algorithm. Sourlas codes are regarded as a first
step towards developing techniques to analyze other more practical codes.

Section 4 provides a statistical physics analysis for Gallager codes. These codes use
a dense generator and a sparse parity-check matrix. The code is mapped onto a K-body
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Figure 2. Mathematical model for a communication system. Each component is
discussed in the text.

interaction spin system and typical performance is obtained using the replica method.
A mean-field solution is also provided by mapping the problem onto a Bethe-like lattice
(Husimi cactus), recovering, in the thermodynamic limit, the replica symmetric results
and providing a very good approximation for finite systems of moderate size. We show
that the probability propagation decoding algorithm emerges naturally from the analysis
and its performance can be predicted by studying the free-energy landscape. A simple
technique is introduced to provide upper bounds for the practical performance.

In Section 5 we investigate MacKay-Neal codes that are a variation of Gallager
codes. In these codes, decoding involves two very sparse parity-check matrices, one for
the signal with K non-zero elements in each row and a second for the noise with L
non-zero elements. We map MN codes onto a spin system with K + L interacting spins.
The typical performance is again obtained by using a replica symmetric theory.

A statistical description for the typical PP decoding process for cascading codes is
provided in Section 6. We use this description to optimize the construction parameters
of a simple code of this type.

We close this chapter in Section 7 with concluding remarks. Appendices with
technical details are also provided.

2. Coding and Statistical Physics

2.1. Mathematical model for a communication system

In his papers from 1948 [Sha48], Shannon introduced a mathematical model
(schematically represented in Fig.2) incorporating the most basic components of
communication systems, he identified key problems and proved some general results.
In the following we will introduce the main components of Shannon’s communication
model, the mathematical objects involved as well as related general theorems.
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2.1.1. Data source and sink A data source can be discrete or continuous. A discrete
source is defined by the pair (S,7), where S is a set of m symbols (alphabet) and 7 is a
probability measure over the space of sequences of symbols with any length (messages).
In general any discrete alphabet can be mapped onto sequences of [log m| Boolean digits
{0,1}. Continuous sources can always be made discrete at the expense of introducing
some distortion to the signal [CT91]. A source is memoryless if each symbol in the
sequence is independent of the preceding and succeeding symbols. A data sink is simply
the receiver of decoded messages.

2.1.2. Source encoder and decoder Data sources usually generate redundant messages
that can be compressed to vectors of shorter average length. Source encoding, also
known as data compression, is the process of mapping sequences of symbols from an
alphabet S onto a shorter representation A.

Shannon employed the statistical physics idea of entropy to measure the essential
information content of a message. As enunciated by Khinchin [Khi57], the entropy of
Shannon is defined as follows:

Definition 1 (Entropy) Let

al a2 am
pr P2 ' DPm

be a finite scheme, where a; are mutually exclusive events and p; are associated
probabilities with Z;n:lpj = 1. The entropy of the scheme in bits (or shannons) is
defined as

HQ(A) = - ij log, pj. (3)
7j=1

The entropy is usually interpreted as the amount of information gained by removing
the uncertainty and determining which event actually occurs.

Shannon [Sha48] posed and proved a theorem that establishes the maximal
shortening of a message by compression as a function of its entropy. The compression
coefficient can be defined as u = limy_,o(Ly)/N, where N is the original message
length and (Ly) is the average length of compressed messages. As presented by
Khinchin [Khi57] the theorem states:

Theorem 1 (Source compression) Given a discrete source with m symbols and
entropy of H bits, for any possible compression code, the compression coefficient is
such that
H
<
logom —

and there exists a code such that
H+ ¢
log, m’

o<

for arbitrarily small €.
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A compression scheme that yields a coefficient ; within the bounds above, given that the
statistical structure 7 of the source is known, was proposed in 1952 by Huffman [Huf52].
Several practical algorithms are currently known and the design of more efficient and
robust schemes is still a very active research area [NG95].

2.1.3. Noisy channels Message corruption during transmission can be described by
a probabilistic model defined by the conditional probability P(r | t) where ¢ and =
represent transmitted and received messages respectively. We can assume that in any of
the channels used, only one component ¢;, j = 1,---, M of the original message is being
sent. If there is no interference effects between components, the channel is memoryless
and the conditional probability factorizes as P(r | t) = H]]Vil P(rj | t;).

A memoryless channel model is specified by (7, P(r | t), R), where 7 and R are
input and output alphabets and P(r | ¢) transition probabilities. The information
needed to specify ¢ given the received signal r is the conditional entropy:

(T |R) ==Y _P(r) |Y_P(t|r)log, (P(t]r)]. (4)
rer teT
The information on the original signal ¢ conveyed by the received signal r is given by

the mutual information I(T; R) = Hy(T) — Ho(T | R), where Hy(T) is defined in (3).
The maximal information per bit that the channel can transport defines the channel
capacity [CTI1].

Definition 2 (Channel capacity) Given the channel model, the channel capacity is

channel = IT, )
C channel max (T; R)

where I(T; R) is understood as a functional of the transmitted bits distribution P(t).
Thus, for example, if Cepanner = 1/2, in the best case, 2 bits must be transmitted for each
bit sent.

The following channel model (see [Mac99, Mac00a]) is of particular interest in this
chapter:

Definition 3 (Binary symmetric channel) The memoryless binary symmetric chan-
nel (BSC) is defined by binary input and output alphabets T = R = {0,1} and by the
conditional probability

P(r#£t|t)y=p P(r=t|t)y=1-np. (5)
The channel capacity of a BSC is given by
Crsc =1~ Hy(p) =1+p log (p) + (1 = p) log (1 - p)

In the current chapter we concentrate on the binary symmetric channel due to its
simplicity and straightforward mapping onto an Ising spin system. However, there are
several other channel types that have been examined in the literature, and that play an
inportant role in practical applications [OO79, CT91]. The most important of these is
arguably the Gaussian channel; most of the analysis presented in this chapter can be
carried out in the case of the Gaussian channel as demonstrated in [KS99a, VSK99.



Low Density Parity Check Codes — A Statistical Physics Prospective 9

message index codeword | message index codeword

bits bits
0000 0 0000000 1000 8 1000011
0001 1 0001111 1001 9 1001100
0010 2 0010110 1010 10 1010101
0011 3 0011001 1011 11 1011010
0100 4 0100101 1100 12 1100110
0101 5 0101010 1101 13 1101101
0110 6 0110011 1110 14 1110010
0111 7 0111100 1111 15 1111111

Figure 3. Codebook for the (7,4) Hamming code defined by (1).

2.1.4. Channel encoder and decoder Highly reliable communication is possible even
through noisy channels. It can be achieved by protecting a message with redundant
information using a channel encoder defined as:

Definition 4 ((2V, M) Code) A code of rate R = N/M s an indezed list (codebook)
of 2N codewords t(i) € T each of length M. Each index i in the codebook corresponds
to a possible sequence of message bits.

In a digital system, a code can be regarded as a map of representations of 2V symbols
as Boolean sequences of N bits onto Boolean sequences of M bits. In Fig.3 we show the
codebook for the Hamming code defined by (1) that is a (2?,7) code. Each sequence of
N = 4 message bits is indexed and converted in a codeword with M = 7 bits.

A decoding function g is a map of a channel output r» € R back into a codeword.
The probability that a symbol 7 is decoded incorrectly is given by the probability of block
error:

priock = P{g(r) # i [t =1(i)}. (6)
The average probability that a decoded bit 5; = g¢;() fails to reproduce the original
message bits is the probability of bit error:

= P £ 5} (7

Shannon’s coding theorem is as follows [CT91, Mac00al:

Theorem 2 (Channel coding) The affirmative part of the theorem states:
For every rate R < Copanne, there ezists a sequence of (2ME M) codes with

maximum probability of block error p,(gzlv‘[)k — 0. Conwversely, any sequence of (2M% M)

codes with p,(gjl\fc)k — 0 must have R < Copannel-
The negative part of the theorem is a corollary of the affirmative part and states:
Error free communication above the capacity C panne 1S impossible. It is not possible
to achieve a rate R with probability of bit error smaller than

m(R) = Hy' (1 - CC@;””“) - (8)
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This non-constructive theorem is obtained by assuming ensembles of random codes
and impractical decoding schemes. No practical coding scheme (i.e. that can be encoded
and decoded in polynomial time) that saturates the channel capacity is known to date.
As Shannon’s proof does not deal with complexity issues, there is no guarantee that
such practical scheme exists at all.

2.2. Linear error-correcting codes and the decoding problem

Linear error-correction codes add redundancy to the original message s € {0,1}"
through a linear map like:

t = Gs (mod 2), (9)

where G is an M x N Boolean matrix. The received message r» = t 4+ n is a corrupted
version of the transmitted message. In the simplest form, optimal decoding consists of
finding an optimal estimate §(r) assuming a model for the noisy channel P(r | t) and
a prior distribution for the message source P(s).

The definition of the optimal estimator depends on the particular task and loss
function assumed. An optimal estimator is defined as follows (see [Iba99] and references
therein):

Definition 5 (Optimal estimator) An optimal estimator 8(r) for a loss function
L(s,3(r)) minimizes the average of L in relation to the posterior distribution P(s | ).

A posterior probability of messages given the corrupted message received can be easily
found by applying Bayes theorem:

_ P(r|t)é(t;Gs) P(s)
Pl ) = Bl [9) 6 (2: Ga) P(a) (10

where §(z;y) = 1 if x = y and §(z;y) = 0, otherwise.

If we define our task to be the decoding of perfectly correct messages (i.e. we
are interested in minimizing the probability of block error pgjock), we have to employ a
two-valued loss function that identifies single mismatches:

L@@@»:1—Ila%gy (11)

An optimal estimator for this loss function must minimize the following:

(L(s,3(r)psry = ) P(s|7)L(s,3(r))

=1-Y_ P(s|r)[[d(s;s%)

J=1

=1-P(E|r). (12)

Clearly, the optimal estimator in this case is § = argmaxgP(s | r). This estimator is
often called the Maximum a Posteriori estimator or simply MAP.
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If we tolerate a certain degree of error in the decoded message (i.e. we are instead
interested in minimizing the probability of bit error p,), the loss function has to be an
error counter like:

L(s,3(r)) = - Z 5§55 (13)

where we assume for simplicity the binary alphabet s € {£1}". The optimal estimator
must minimize the following:

(L(s,8(r))) Py = — Z (55) P(sir)Sj- (14)

An obvious choice for the estimator is

5, = {sre
{0 Pesin |
= sgn((s;)p(sir))
= argmax, P(s; | 7), (15)

where P(s; [ 1) = >/, ;.; P(s| r) is the marginal posterior distribution. As suggested
by Eq.(15), this estimator is often called the Marginal Posterior Mazimizer or MPM for
short.

Decoding, namely, the computation of estimators, becomes a hard task, in general,
as the message size increases. The MAP estimator requires finding a global maximum of
the posterior over a space with 2V points and the MPM estimator requires to compute
long summations of 2V~ terms for finding the two valued marginal posterior. The
exponential scaling makes a naive brute force evaluation quickly impractical, at least
in . An alternative is to use approximate methods to evaluate posteriors, popular
methods are Monte-Carlo sampling and the computationally more efficient probability
propagation. In the sequence we will discuss the latter.

2.3. Probability propagation algorithm

The probabilistic dependencies existing in a code can be represented as a bipartite
graph [Lau96] where nodes in one layer correspond to the M received bits r, and nodes
in the other layer to the IV message bits s;. The connections between the two layers
are specified by the generator matrix G. Decoding requires evaluation of posterior
probabilities when the received bits r are known (evidence).

The evaluation of the MPM estimator requires the computation of the following
marginal joint distribution:

P(sj,r)= Y _ P(s|r)P(r)
{sini#5}

= ) P(rls)P(s)

{sii#5}
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PARENTS

Figure 4. Bayesian network representing a linear code of rate 2/3. If there is an arrow
from a vertex s; to a vertex r,, s; is said to be a parent and r, is said to be a child.

M N
= Z HP(T# ‘ Sil"'SiK) HP(Sj)J (16)

{ssiiA} n=1 j=1
where s; ---s;, are message bits composing the transmitted bit t, = (Gs), =

Si, ® -+ @ s, and 7 is the message received. Equation (16) shows a complex partial
factorization that depends on the structure of the generator matrix G. We can
encode this complex partial factorization on a directed graph known as a Bayesian
network [Pea88, CGH97, Jen96, KF98, AMO00, Fre98, KFL0O1]. As an example, we show
in Fig.4 a simple directed bipartite graph encoding the following joint distribution:

P(Sla"';54,7”1;"',7”6) = P(Tl | 51,52;53)P(7“2 \ 53)P(7“3 \ 51;52)
X P(T4 | S3,S4)P(’I“5 | Sg)P(’I“G | 83)

X P(Sl)P(Sg)P(Sg)P(S4) (17)
The generator matrix for the code in Fig.4 is:
1110
01 00
1100
= 1

G 0011 (18)
0010
0010

Given r, an exact evaluation of the marginal joint distribution (16) in a space of
binary variables s € {£1}" would require (N + M)(2¥~! — 1) + 1 operations. In the
eighties Pearl [Pea88] proposed an iterative algorithm that requires O(N) computational
steps to calculate approximate marginal probabilities using Bayesian networks. This
algorithm is known as belief propagation [Pea88|, probability propagation [KF98],
generalized distributive law [AMO0] or sum-product algorithm [Fre98, KFLO1] (see also
[OS01]).

The probability propagation algorithm is exact when the Bayesian network
associated to the particular problem is free of loops. To introduce the probability
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R43 R _ "5
T2 -B @5 g

Q12 Q23

Figure 5. Marginal probabilities can be calculated exactly in a Bayesian chain. R-
messages flow from a child to a parent and Q-messages flow from a parent to a child.

propagation algorithm we start with the simple chain in Fig.5, which represents the
following joint distribution:

p(s1, 52, 83, 84, 85) = p(s1)p(s2 | 51)p(s3 | 52)p(54 | 83)p(85 | 54). (19)
Suppose now that we would like to compute p(s3), we would then have to compute:
plss) = > pls))p(sa | s1)p(ss | s2)p(sa | s3)p(ss | 54). (20)
51,82,84,55

A brute force evaluation of (20) would take 5 x (2 — 1) + 1 = 61 operations in a
binary field. The probability propagation algorithm reduces significantly the number of
operations needed by rationalizing the order in which they are performed. For Fig.5 we
can start by marginalizing vertex s5 and writing:

R54 34 ZP S5 | 34 (21)

The function Rs4(s4) can be regarded as a vector (a message) carrying information
about vertex ss. In a similar way we can write:

Ru3(s3) ZP Sq | s3)Rsa(54). (22)

S4
Again Ry3(s3) can be seen as a message carrying information about vertices s4 and ss.
Note that we can write (21) in the same form as (22) by assuming that Rs(s5) = 1 if s
is not given or Rs(s5) = d(ss5;s*) if s5 = s*, where §(z;y) = 1 if 2 = y and d(z;y) = 0,
otherwise.
We can also gather information from vertices to the left of s3. Firstly, we marginalize
s1 by introducing:

Q12(s1) = p(s1). (23)

We then propagate the message QQ12(s1) to sy producing a new message:

Q23(s2) ZQH s1)p(s2 | s1). (24)
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The marginal probability p(s3) can be finally computed by :
= Zst s2) Raz(s3)p(ss | s2)

= ZZQR 51 52 | S1 ZP S4 | 53 R54 54) (53 \ 52)

S9 S1
ZZZpsl (s2 | s1) Zp84\83 Zp85|54
= Z p(s1)p(sz | 81),’0(83 | 52)p(s4 | 33)p(s5 | 54). (25)
51,52,54,85

The evaluation of p(s3) using probability propagation is exact and requires only 16
operations, much less than the 61 operations required for the brute force calculation.

A slightly more complex situation is shown in Fig. 6 representing the following
joint distribution:

P(81; - S12) = P(86)P(88)P(59)P(510)P(511)P(512)P(51 | 510)P(82 | 811, 512)
X p(S3 | S1, 89, S9)D(S4 | S3,58)p(S5 | 83, S6)P(S7 | S4). (26)
Suppose that the variables are binary, s; and s; are given evidence vertices and we
would like to compute the marginal p(s3). A brute force evaluation would require
11 x (22 — 1) + 1 = 5622 operations.

In general we can just initialize the messages with random values, or make use of
prior knowledge that may be available, and update the vertices in a random order, but
this may require several iterations for convergence to the correct values. In the particular
case of trees there is an obvious optimal scheduling that takes only one iteration per
vertex to converge: start at the leaves (vertices with a single edge connected to them)
and proceed to the next internal level until the intended vertex. For the tree in Fig.6
the optimal schedule would be as follows:

b Qll,?:Q12,2:Q10,1:Q65:Q93:Q84 and Ry
o (13,93 and Ru3, Rss

The Q-messages are just the prior probabilities:
Qjuls;j) = p(s;), (27)
where j = 6,8,9,10,11, 12.

The R-message between s; and sy is:

R74 54 ZR7 57 87 \ 84) (28)

where Rz(s7) = 0(s7, s%) and s% is the value fixed by the evidence.
Following the schedule we have the following Q-messages:

Q13(81) = Z p(Sl \ Slo)Qlo,l(Slo) (29)

510

Q23(32) = Z p(52 | S11, 512)@11,2(511)Q12,2(512)- (30)

$11,512



Low Density Parity Check Codes — A Statistical Physics Prospective 15

Figure 7. Left side: forward (Q) message from parent to child. Right side: backward
(R) message from child to parent.

The remaining R-messages are:

R43(53) = Z p(54 | 53;58)Q84(58)R74(54) (31)
R53(53) = Z p(55 | 53;56)Q65(56)R5(55); (32)

where Rj(s5) = 0(s5, st) and s is the value fixed by the evidence.
Finally we can fuse all the messages in the vertex s3 as follows:

p(s3) = Z p(s3 | 51,89, 59)Q3(51)Q23(52) Raz(s3) Rsa(53)Qoa(s9).  (33)
51,582,89
By substituting the expressions for the messages in (33) it is relatively straightforward
to verify that this expression gives the exact value for the marginal of (26). In this
case the probability propagation algorithm requires only 432 operations against 5622
operations required by the brute force evaluation.
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We can now summarize the rules for calculating the message that flows through a
particular edge:

e Multiply all incoming messages by the local probability table (for example: p(s3 |
S1, S92, Sg) for vertex s3) and sum over all vertices not attached to the edge that
carries the outgoing message.

e Both Q and R messages must be only functions of the parent in the edge through
which the message is flowing.

Probability propagation is only exact if the Bayesian network associated has no
cycles. However, we can blindly apply the same algorithm in a general graph hoping
that convergence to a good approximation is attained. In this kind of application there is
no obvious optimal schedule and nodes can be updated serially, in parallel or randomly.

Before writing the probability propagation equations for a general graph let us
first provide some definitions. Two vertices s; and r, are adjacent if there is an edge
connecting them. If there is an arrow from s; to r,, s; is said to be a parent and r, a
child. The children of s; are denoted by M(j) and the parents of r, are £(u). Linear
codes are specified by bipartite graphs (like in Fig.4) where all parents are in one layer
and all children in the other layer. A message is a probability vector Q = (Q°, Q") with
Q° + Q' = 1. The probability propagation algorithm in a bipartite graph operates by
passing messages between the two layers through the connection edges, first forwards
from the top layer (parents) to the bottom layer (children), then backwards, and so
on iteratively. Child-to-parent messages (backward messages in Fig.4) are R-messages
denoted R,,;, while parent-to-child messages (forward messages) are Q-messages denoted
by Qjp-

With the help of Fig.7 using the algorithm above the forward (Q)) messages between
a parent s; and child r, are just (see also [Dav99)):

?MZP(S:GI{J v e M(j)u}) (34)
= Oy p H Ru]’ (35)
VEM(5)\p

where «,,; is a required normalization, M(j) \ p stands for all elements in the set M (j)
except .
Similarly we can get the expression for the backward (R) messages between child
r, and parent s;:
R = Z P(ry|sj=a,{sitie L(u)\j}) H Q- (36)
{siieL(mw)\s} i€L()\j
An approximation for the marginal posterior can be obtained by iterating Equations

(34) and (36) until convergence or some stopping criteria is attained, and fusing all
incoming information to a parent node by calculating:

Q4 =a;p(s H Rm, (37)

veM(j



Low Density Parity Check Codes — A Statistical Physics Prospective 17

where a; is a normalization Q% is an approximation for the marginal posterior P(s; | 7).
Initial conditions can be set to the prior probabilities @3, = p(s).

It is clear (see also [Pea88|) that the probability propagation (PP) algorithm is
exact if the associated graph is a tree and that the convergence for the exact marginal
posterior occurs within a number of iterations proportional to the diameter of the
tree. However, graphs defining error-correcting codes always have cycles and it has
been observed empirically that decoding with the PP algorithm also yields good results
[FM98, Che97] in spite of that.

There are a number of studies of probability propagation in loopy graphs with a
single cycle [Wei97] and describing Gaussian joint distributions [Fre99] but no definite
explanation for its good performance in this case is known to date.

2.4. Low-density parity check codes

Marginal posteriors can be calculated in O(NK) steps, where K is the average
connectivity of a child node, by using probability propagation. Therefore, the use of very
sparse generator matrices (Y, G,; = O(N)) seems favorable. Moreover, it is possible
to prove that the probability of a cycle-free path of length [ in a random graph decays
with O(K'/N), that indicates that small cycles are harder to find if the generator matrix
is very sparse and that PP decoding is expected to provide better approximations for the
marginal posterior (no proof is known for this statement). Encoding is also faster if very
sparse matrices are used, requiring O(N) operations. Despite the advantages, the use of
very sparse matrices for encoding has the serious drawback of producing codewords that
differ in only O(K) bits from each other, what leads to a high probability of undetectable
errors. Codes with sparse generator matrices are known as Sourlas codes and will be
our object of study in the next Section.

A solution for the bad distance properties of sparse generator codes is to use a dense
matrix for encoding (providing a minimum distance between codewords of O(N)), while
decoding is carried out in a very sparse graph, allowing efficient use of PP decoding. The
method known as parity-check decoding [Hil86, OO79] is suitable in this situation, as
encoding is performed by a generator matrix G, while decoding is done by transforming
the corrupted received vector 7 = Gs+n (mod 2) with a suitable parity check matrix H
having the property HG (mod 2) = 0, yielding the syndrome vector z = Hn (mod 2) .

Decoding reduces to finding the most probable vector n when the syndrome vector
z is known, namely, MPM estimates involve the calculation of the marginal posterior
P(n; | z). In [Mac99], MacKay proved that this decoding method can attain vanishing
block error probabilities up to the channel capacity if optimally decoded (not necessarily
practically decoded).

This type of decoding is the basis for the three families of codes (Gallager, MacKay-
Neal and cascading we study in this chapter.
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2.5. Decoding and statistical physics

The connection between spin systems in statistical physics and digital error correcting
codes, first noted by Sourlas [Sou89], is based on the existence of a simple isomorphism
between the additive Boolean group ({0,1},®) and the multiplicative binary group
({+1,—1},-) defined by:

S-X = (1), (38)
where S, X € {+1,—1} and s,z € {0,1}. Trough this isomorphism every addition
on the Boolean group corresponds to a unique product on the binary group and wvice-
versa. A parity-check bit in a linear code is usually formed by a Boolean sum of K
bits of the form @]K:l s; what can be mapped onto a K-spin coupling HJK:1 S;. The
same type of mapping can be applied to other error-correcting codes as convolutional
codes [Sou94b, AL95| and Turbo codes [MS00, Mon00].

The decoding problem depends on posteriors like P(S | J), where J is the evidence
(received message or syndrome vector). By applying Bayes’ theorem this posterior can,
in general, be written in the form:

Foy(S [ J) =

1
77 exp[ln Py(J | S)+1n P,(S)], (39)
where a and 7 are hyper-parameters assumed to describe features like the encoding
scheme, source distribution and noise level. This form suggests the following family of

Gibbs measures:

Pase(8 | 1) =  oxp [~ (S:.T)] (40)

Hoy(S;J) = —In P, (J | S)—1n P,(S), (41)
where J can be regarded as quenched disorder in the system. It is not difficult to
see that the MAP estimator is represented by the ground state of the Hamiltonian
(40), i.e. by the sign of thermal averages S’\}/IAP = 8gn((S;)s) at zero temperature.
On the other hand the MPM estimator is provided by the sign of thermal averages
S'\JI-VIPM = sgn((S;)p=1) at temperature one. We have seen in that if we are concerned
with the probability of bit error p, the optimal choice for an estimator is MPM, this is
equivalent to decoding at finite temperature § = 1, known as the Nishimori temperature
[Nis80, Nis93, Nis01, Rujo3].

The evaluation of typical quantities involves the calculation of averages over the
quenched disorder (evidence) J, namely, averages over:

Por(J) =Y Por(J | S)P(S), (42)

where a* and v* represent the “real” hyper-parameters, in other words, the hyper-
parameters actually used for generating the evidence J. Those “real” hyper-parameters
are, in general, not known to the receiver, but can be estimated from the data. To
calculate these estimates we can start by writing free-energy like negative log-likelihoods
for the hyper-parameters:

<F(O‘77)>Pa*7* =—(In Pcw(J)>pa*7* : (43)
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This log-likelihood can be regarded as measuring the typical plausibility of o and 7,
given the data J [Ber93]. This function can be minimized to find the most plausible
hyper-parameters (known as type Il mazimum likelihood hyper-parameters or just ML-II
hyper-parameters) [Ber93].

The ML-IT hyper-parameters correspond in this case to a = a* and v = 77, i.e.
the “real” hyper-parameters must be used in the posterior for decoding. This fact is a
consequence of the following inequality:

(F(a' 1), < (Pl ). (44)
The proof of (44) follows directly from the information inequality [Iba99, CT91], i.e.
the non-negativity of the KL-divergence :

D(‘Doz*'y* Pav) >0

o (), 2

— (In Parye () < = (In Py (J))

P Paye (45)
When the true and assumed hyper-parameters agree, we say that we are at the
Nishimori condition [Iba99, NisO1]. At the Nishimori condition many calculations
simplify and can be done exactly (for an example see Appendix B.3). Throughout
this chapter we assume, unless it is stated, the Nishimori condition.
For background reading about statistical physics methods in general, Nishimori’s

condition and its relevance to the current calculation we refer the reader to [Nis01].

3. Sourlas Codes

The code of Sourlas is based on the idea of using a linear operator G (generator matriz)
to transform a message vector s € {0, 1}V onto a higher dimensional vector t € {0, 1}.
The encoded vector is t = G's (mod 2), each bit ¢ being the Boolean sum of K message
bits (parity-check). This vector is transmitted through a noisy channel and a corrupted
M dimensional vector r is received.

Decoding consists of producing an estimate S of the original message. This
estimate can be generated by considering a probabilistic model for the communication
system. Reduced (order N) time/space requirements for the encoding process and the
existence of fast (polynomial time) decoding algorithms are guaranteed by choosing
sparse generator matrices, namely, a matrix G with exactly K nonzero elements per
row and C nonzero elements per column, where K and C are of order 1. The rate
of such a code, in the case of unbiased messages, is evidently R = N/M, as the total
number of nonzero elements in G is MK = NC' the rate is also R = K/C.

In the statistical physics language a binary message vector € € {£1}" is encoded to
a higher dimensional vector J® € {£1}" defined as Jj; ;, .\ = & &, .- - &ixe, Where M
sets of K indices are randomly chosen. A corrupted version J of the encoded message J°
has to be decoded for retrieving the original message. The decoding process is the process
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of calculating an estimate E to the original message by minimizing a given expected loss
UL(E,E))p (J16)) P(e) averaged over the indicated probability distributions [Iba99]. The
definition of the loss depends on the particular task; the overlap E(S,E) = Zj @Ej
can be used for decoding binary messages. As discussed in Section 2.2, an optimal
estimator for this particular loss function is fj = sign(S;)p(s, |5y [Iba%9], where § is
an N dimensional binary vector representing the dynamical variables of the decoding
process and P(S; [ J) =3 g ;. P(S | J) is the marginal posterior probability. Using
Bayes theorem, the posterior probability can be written as:

In P(S|J)=1InP(J|S)+In P(S) + const. (46)
The likelihood P(J | S) has the form:
PIIS) = [I > Pl | Jiin) PJfiny | S). (47)

chosen sets JO
(i1-ig)

The term P(J<0. ixy | §) models the deterministic encoding process being;
Py | 8) = 0070, 5= Si). (48)

(i1--ix) (i1+ix

The noisy channel is modeled by the term P(Jj, ..., | JZl ixy)- For the simple
case of a memoryless binary symmetric channel (BSC), J is a corrupted version of
the transmitted message J° where each bit is independently flipped with probability p

during transmission, in this case [Sou94a]:

1
In P(Jii i) | JZl i) = 2(1 + J<l1 irey) I P(Jiiy iy | +1)
1
+ 5= Tiirey) 10 P(Jiiy iy | =1)
1 1—p
= const + §1H <T> J(212K> J?HH() (49)
Putting equations together we obtain the following Hamiltonian:
In P(S | J) = — By H(S) (50)
—ﬁNZA I, H 5+5NZSJ, (51)
iEL(p
where a set of indices is denoted L(u) = (21,...2K) and A is a tensor with the

properties A, € {0,1} and Z{u:ieﬁ(u)} A, = C Vi, which determines the M components
of the codeword J°. The interaction term is at Nishimori’s temperature Sy =
sln (11'%”) [Nis80, Tha99, Ruj93, Nis93], and Sy = 3ln (%) is the message prior
temperature, namely, the prior distribution of message bits is assumed to be P(S; =
+1) =1 —pe and P(S; = —1) = pg.

The decoding procedure translates to finding the thermodynamic spin averages
for the system defined by the Hamiltonian (50) at a certain temperature (Nishimori
temperature for optimal decoding); as the original message is binary, the retrieved
message bits are given by the signs of the corresponding averages.



Low Density Parity Check Codes — A Statistical Physics Prospective 21

The performance of the error-correcting process can be measured by the overlap
between actual message bits and their estimates for a given scenario characterized by
code rate, corruption process and information content of the message. To assess the
typical properties we average this overlap over all possible codes A and noise realizations
(possible corrupted vectors J) given the message € and then over all possible messages:

p= % <Z§z <Sign<Si>>A,J§> (52)
i=1 I3

Here sign(S;) is the sign of the spins thermal average corresponding to the Bayesian
optimal decoding. The average error per bit is, therefore, given by p, = (1 — p)/2.

The number of checks per bit is analogous to the spin system connectivity and
the number of bits in each check is analogous to the number of spins per interaction.
The code of Sourlas has been studied in the case of extensive connectivity, where the

K—1
onto known problems in statistical physics such as the SK [KS78] (K=2) and Random
Energy (REM) [Der81la] (K—oc) models. It has been shown that the REM saturates
Shannon’s bound [Sou89]. However, it has a rather limited practical relevance as the

number of bonds C' ~ ( N-1 ) scales with the system size. In this case it can be mapped

choice of extensive connectivity corresponds to a vanishingly small code rate.

3.1. Lower bound for the probability of bit error

It has been observed in [MS00] that a sparse generator code can only attain vanishing
probability of bit error if K — oc. This fact alone does not rule out the practical use
of such codes as they can still be used if a controlled probability of error is allowed or
as part of a concatenated code.

Before engaging in a relatively complex analysis, it is of theoretical interest to
establish a detailed picture of how the minimum bit error attainable decays with K.
This can be done in quite a simple manner suggested in [MS00]. Let us suppose that
messages are unbiased and random and that the channel is a BSC of noise level p.
Assume, without loss of generality, that the message {; = 1 for all j is sent. The bit
error probability can be expressed as the sum p, = Zl]\;lpb(l), where py(l) represents
the probability of decoding incorrectly any [ bits. Clearly p, > p,(1).

The probability of decoding incorrectly a single bit can be easily evaluated. A bit
j engages in exactly C' interactions with different groups of K bits in a way that their
contribution to the Hamiltonian is:

neM(G)  ieL(p)\j
where M(j) is the set of all index sets that contain j. If all bits but j are set to S; = 1,

an error in j only can be detected if its contribution to the Hamiltonian is positive; if
ZﬂeM(j) A, J, <0 the error is undetectable. The probability of error in a single bit is
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therefore
p(1)=P{ Y J, <0}, (54)
HEM(])
where A, = 1 for exactly C terms and .J, can be simply regarded as a random variable

taking values +1 and —1 with probabilities 1 — p and p respectively, therefore:
I<c

> = _C!l)! (=) (55)

1EN,C—21<0

v

Po

A lower bound for for p, in the large C' regime can be obtained by using the
DeMoivre-Laplace limit theorem [Fel50], writing:

> gort ((1 o )C> ~ e <‘%> ’ (56)

where erfc(z) = % [% du exp(—u?) and the asymptotic behavior is given in [GR94]

(page 940). This bound implies that K — oo is a necessary condition for a vanishing
bit error probability in sparse generator codes at finite rates R = K/C.

3.2. Replica Theory for the Typical Performance of Sourlas Codes

In order to calculate the typical performance of Sourlas codes we employ the statistical
physics technique known as replica theory.

To simplify analysis we use the gauge transformation [FHS78] S; — S;§; and
Jiiy iy =iy i) Gin -+ - iy that maps any general message to the configuration defined
as £ = 1 Vi (ferromagnetic configuration). By introducing the external field F = By /5
we rewrite the Hamiltonian in the form:

N

H(S) = — Z A<111K> J<111K> Sil - 'SiK — FZSJS] , (57)
(i1-igc) j=1

With the gauge transformation, the bits of the uncorrupted encoded message

become J<0. i)

i1l

variables with probability:

PJ)=(1=p)s(J=1)+ps(J+1), (58)

= 1 and, for the BSC, the corrupted bits can be described as random

where p is the channel flip rate. For deriving the typical properties we calculate the
free-energy following the replica theory prescription:

1. 1 0

=—— lim — —

(Z™) a0y (59)

where (Z")4¢. represents an analytical continuation in the interval n € [0, 1] of the
replicated partition function:

(Z")aga = Trygey <€BFZ°~’C SEHP D A T S%...S?K>A TE (60)
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The overlap p can be rewritten using gauged variables as :
|
p= 5 2 { (ian(S) e, (61)
i=1
where £* denotes the transformation of a message £ into the ferromagnetic configuration.
To compute the replicated partition function we closely follow [WS87a]. We average

uniformly over all codes A such that >_, Ay iy = C Vi to find:

i1=i,d2-iK)

n

§ c c
(2")ags = exp ¢ N Extrog |C— 2+ — Y b, (62)
=0 (a1...0q)

n

- C Y o wilora
)

=0 <a1 ey
C

+ lnTr{sa} <6BF£ZQSQ>g Z Z qAal,,,alSm...So‘l

n
=0 <a1 ...al)

where T; = (tanh'(3.J)), as in [VB85], ¢o = 1 and Extr,; f(g,q) denotes the extremum
of f (details in Appendix A.1). At the extremum of (62) the order parameters acquire
a form similar to those of [WS87al:

.....

—1
l n
Qan,....0) = < (H Sai) Z Z Z]\al...alsal B e > . (63)
i=1 1=0 (a1..a;) N

where
c

n

K= (P20 Y eSS (64)

=0 (a1...aq)

and (...)x = Trigey [(...)X] /Trysoy [(-.0)]-

To compute the partition function it is necessary to assume a replica symmetric
(RS) ansatz. It can be done by introducing auxiliary fields 7(z) and 7(y) (see also
[WS8T7a)):

- / dy 7 (y) tanh'(By).

Qay..op = / dz 7(x) tanh!(fz) (65)

fori=1,2,...
Plugging (65) into the replicated partition function (62), taking the limit n — 0
and using Eq.(59) (see Appendix A.2 for details):

f= — % Eztr, = {alncosh 3 (66)
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K K
+ a/ [H dx; 7(x)) <1n 1+ tanh 8J Htanh ij] >
1=1 J

j=1
_ C’/d:r dy 7(z) 7(y) In[l + tanh Sz tanh Sy]

— C/dy 7(y) Incosh By

+ / dez ﬁ(yl)] <ln IZCoshﬁ (Z Y, —l—Ff) > )
=1 3

j=1
where @« = C/K. The saddle-point equations obtained by calculating functional

variatons of Eq.(66) provide a closed set of relations between 7(z) and 7(y)

wta) = [ T] dv %(yn] <6 [x—zyj—F€> (67)
L1=1 j=1 ¢

K-1 atanh ( tanh 5.J Hi_ltanhﬂx'
del ﬂ(xl)] <5 Y — ( 6 j=1 3) >
J

1=1
Later we will show that this self-consistent pair of equations can be seen as a mean field

description of probability propagation decoding.
Using the RS ansatz one can find that the local field distribution is (see Appendix
A3):
> , (68)
£
where 7(y) is given by the saddle-point equations (67).
The overlap (52) can be calculated using:

p= / dh sign(h) P(h). (69)

The code performance is assessed by assuming a prior distribution for the message,

P(h):/[del?T(yl)] <5 [h—zyj—Ff

solving the saddle-point equations (67) numerically and then computing the overlap.

For Eq.(66) to be valid, the fixed point given by (67) must be stable and the
related entropy must be non-negative. Instabilities within the RS space can be probed
by calculating second functional derivatives at the extremum defining the free-energy
(66). The solution is expected to be unstable within the space of symmetric replicas
for sufficiently low temperatures (large ). For high temperatures we can expand the
above expression around small 3 values to find the stability condition:

(T)ala)r 220 (70)
The average (), = [ da7(z) z vanishes in the paramagnetic phase and is positive (non-
zero when K is even) in the ferromagnetic phase, satisfying the stability condition. We

now restrict our study to the unbiased case (F = 0), which is of practical relevance,
since it is always possible to compress a biased message to an unbiased one.
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For the case K — 0o, C' = aK we can obtain solutions to the saddle-point equations
at arbitrary temperatures. The first saddle-point equation (67) can be approximated
by:

=Y wm (€= D= (- 1) [dry7e) (7)

If (y)= = 0 (paramagnetic phase) then m(x) must be concentrated at = 0 implying
that m(z) = d(x) and 7(y) = d(y) are the only possible solutions. Equation (71) also
implies that © ~ O(K) in the ferromagnetic phase.

Using Eq.(71) and the second saddle-point equation (67) we find a self-consistent
equation for the mean field (y)z:

(y)s = <% atanh [tanh(ﬁj) [tanh(8(C — 1)@)@]“1 >J . (72)

For the BSC we average over the distribution (58). Computing the average, using
C' = aK and rescaling the temperature § = f(InK')/K, we obtain in the limit K — oc:

(0= ~ (1~ 2) [tanh(Faly)s ()] (73)

where p is the channel flip probability. The mean field (y)z = 0 is always a solution
to this equation (paramagnetic solution); at . = In(K)/(2aK (1 — 2p)) an extra non-
trivial ferromagnetic solution emerges with (y)z = 1 — 2p. The connection with the
overlap p is given by Eqs.(68) and (69) implying that p = 1 for the ferromagnetic
solution. It is remarkable that the temperature where the ferromagnetic solution
emerges is . ~ O(In(K)/K). Paramagnetic-ferromagnetic barriers that emerge at
reasonably high temperatures, in a simulated annealing process, implying metastability
and, consequently, a very slow convergence. It seems to advocate the use of small
K values in practical applications. For § > [, both paramagnetic and ferromagnetic
solutions exist.

The ferromagnetic free-energy can be obtained from Eq.(66) using Eq.(71), resulting

in frerro = —a(1 — 2p). The corresponding entropy is spgrro = 0. The paramagnetic
free-energy is obtained by plugging 7(z) = d(z) and 7(y) = d(y) into Equation (66):
1
frara = — B(a In(cosh ) +1n 2), (74)
spara = a(In(cosh ) — 3 tanh 3) + In 2. (75)

Paramagnetic solutions are unphysical for & > (In 2)/ [ tanh 5 — In (cosh ()], since
the corresponding entropy is negative. To complete the picture of the phase diagram
we have to introduce a replica symmetry breaking scenario that yields sensible physics.

In general, to construct a symmetry breaking solution in finite connectivity systems
(see [Mon98b, FLRTZ01])) is a difficult task. We choose as a first approach an one-step
replica symmetry breaking scheme, known as the frozen spins solution, that yields exact
results for the REM [GM84, Par80].

We assume that ergodicity breaks in such a way that the space of configurations is
divided in n/m islands. Inside each of these islands there are m identical configurations,
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implying that the system can freeze in any of n/m microstates. Therefore, in the space
of replicas we have the following situation:

N

1

N Z S]‘?‘Sf =1, if @ and S are in the same island
j=1

T

N ZS;‘S? = ¢ , otherwise. (76)
7j=1

By assuming the above structure the replicated partition function has the form:

(Zhsplags = <T1"{S;*}6XP (—527{(8" )) >
a=1 AL

1y

n/m
= <Tr{s}’m’s;l/m}exp —Bm Z’H(Sa) >
a=1

A ¢

n/m
= <H Triseyexp (—Bm H(S* ))>
@ A?‘]ig
= (2" e (77)
where in the first line we have used the ansatz with n/m islands with m identical

configurations in each and in the last step we have used that the overlap between any
two different islands is ¢. From (77) we have:

0

(In Zrsp(B))aes = o (Zis(B))ag,s
n n=0

_ %(ln Zus (Bm)) ac. (78)

The number of configurations per island m must extremize the free-energy,

therefore, we have:

0
8—m<1n Zrss(B3))aes =0, (79)
what is equivalent to
! 1 _
= — 2 —= = 1 Z
sl = 7 5l { = I Zus(A)aco

=0, (80)

where we introduced 8 = 8 m. In this way m = Bq/B. with 3, being a root of the
replica symmetric paramagnetic entropy (74), satisfying:

a(In(cosh ;) — B, tanh 3;) +1n 2 =0 (81)
The RSB-spin glass free-energy is given by fpara (74) at temperature ,:
1
frsB-sq = 5 (e In(cosh B,) +1n 2), (82)
9

consequently the entropy is sgsp.sq = 0. In Fig.8 we show the phase diagram for a given
code rate R in the plane of temperature T and noise level p.
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Figure 8. Phase diagram in the plane of temperature T versus noise level p for K — oo
and C = aK, with @ = 4. The dotted line indicates the Nishimori temperature Ty.
Full lines represent phase coexistence. The critical noise level is p.. The necessary
condition for stability of the ferromagnetic phase within the replica symmetric space
is satisfied above the dashed line.

3.8. Shannon’s bound

The channel coding theorem asserts that up to a critical code rate R., which equals the
channel capacity (Shannon’s bound), it is possible to recover information with arbitrarily
small probability of error. For the BSC :

1
R.=—=1+plog, p+(1—p)log, (1 —p). (83)

c

The code of Sourlas, in the case where K — oo and C ~ O(N¥), can be
mapped onto the REM and has been shown to saturates the channel capacity in the
limit R — 0 [Sou89]. Shannon’s bound can also be attained by Sourlas code at zero
temperature for K — oo but with connectivity C' = oK. In this limit the model is
analogous to the diluted REM analyzed by Saakian [Saa98]. The errorless phase is
manifested in a ferromagnetic phase with total alignment (p = 1), only attainable for
infinite K. Up to a certain critical noise level, a noise level increase produces ergodicity
breaking leading to a spin glass phase where the misalignment is maximal (p = 0). The
ferromagnetic-spin glass transition corresponds to the transition from errorless decoding
to decoding with errors described by the channel coding theorem. A paramagnetic phase
is also present when the transmitted information is insufficient to recover the original
message (R > 1).
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At zero temperature saddle-point equations (67) can be rewritten as:

[C—1

ww) = [ de%yz] [x—zy]] (84

=1
[K—1

dx; 7(z ] (85)

Li=1

X <6 [y — sign(J H x)min(| J |, ..., | 21 )] > ,

=1

The solutions for these saddle-point equations may result in very structured
probability distributions. As an approximation we choose the simplest self-consistent
family of solutions which are, since J = +1, given by:

T(y) = peo(y — 1) +pod(y) +p-6(y +1) (86)
Cc-
Z T[pi,po;C—l}(l) 5(37 - l);
I=1—C

with
(0 -1)! .
Ty, wow—sc-1(l) = Z A Pt pt ™, (87)
oy KR m!

where the prime indicates that k, h, m are such that k —h =1, k+h+m = C — 1.
Evidence for this simple ansatz comes from Monte-Carlo integration of Eq.(67) at very
low temperatures, that shows solutions comprising three dominant peaks and a relatively
weak regular part. Plugging this ansatz (86) in the saddle-point equations we write a
closed set of equations in p4 and py that can be solved numerically.

Solutions are of three types: ferromagnetic (p, > p_), paramagnetic (po = 1) and
replica symmetric spin glass (p_ = py). Computing free-energies and entropies enables
one to construct the phase diagram. At zero temperature the paramagnetic free-energy
is fpara = —« and the entropy is spara = (1 — ) In 2, this phase is physical only for
a < 1, what is expected since it corresponds exactly to the regime where the transmitted
information is insufficient to recover the actual message (R > 1).

The ferromagnetic free-energy does not depend on the temperature, having the
form frrrro = —a(1 — 2p) with entropy sprrro = 0. We can find the ferromagnetic-
spin glass coexistence line that corresponds to the maximum performance of a Sourlas
code by equating Eq. (82) and frrrro. Observing that 5, = Bn(p.) (as seen in Fig. 8)
we find that this transition coincides with the channel capacity (83). It is interesting to
note that in the large K regime both RS-ferromagnetic and RSB-spin glass free-energies
(for T < T,) do not depend on the temperature, it means that Shannon’s bound is
saturated also for finite temperatures up to 7T,. In Fig.9 we represent the complete zero
temperature phase diagram.

The bound obtained depends on the stability of the ferromagnetic and paramagnetic
solutions within the space of symmetric replicas at zero temperature. Instabilities are
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Figure 9. Phase diagram in the plane code rate R versus noise level p for K — oo
and C = aK at zero temperature. The ferromagnetic-spin glass coexistence line
corresponds to Shannon’s bound.

found in the ferromagnetic phase for p > 0. These instabilities within the replica
symmetric space puts in question our result of saturating Shannon’s bound, since
a correction to the ferromagnetic solution could change the ferromagnetic-spin glass
transition line. However, the instability vanishes for high temperatures, which supports
the ferromagnetic-spin glass transition line obtained and possible saturation of the bound
in some region.

Shannon’s bound can only be attained in the limit ' — oo; however, there are some
possible drawbacks in using high K values due to large barriers which are expected
to occur between the paramagnetic and ferromagnetic phases. We now consider the
finite K case, for which we can solve the RS saddle-point equations (67) for arbitrary
temperatures using Monte-Carlo integration. We can also obtain solutions for the zero
temperature case using Eqs.(86) iteratively.

It has been shown that K > 2 extensively connected models [GM84] exhibit Parisi-
type order functions with similar discontinuous structure as found in the K — oo
case; it was also shown that the one-step RSB frozen spins solution, employed to
describe the spin glass phase, is locally stable within the complete replica space and
zero field (unbiased messages case) at all temperatures. We, therefore, assume that
the ferromagnetic-spin glass transition for K > 2 is described by the frozen spins RSB
solution.

At the top of Fig.10 we show the zero temperature overlap p as a function of the
noise level p at code rate R = 1/2 obtained by using the three peaks ansatz. Note
that the RSB spin glass phase dominates for p > p. (see bottom of Fig.10). In the
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Figure 10. Top: zero temperature overlap p as a function of the noise level p for
various K values at code rate R = 1/2, as obtained by the iterative method. Bottom:
RS-ferromagnetic free-energies (white circles for K = 2 and from the left: K = 3,4,5
and 6) and RSB-spin glass free-energy (dotted line) as functions of the noise level p.
The arrow indicates the region where the RSB-spin glass phase starts to dominate.
Inset: a detailed view of the RS-RSB transition region.

bottom figure we plot RS free-energies and RSB frozen spins free-energy, from which
we determine the noise level p. for coexistence of ferromagnetic and spin-glass phases
(pointed by an arrow). Above the transition, the system enters in a paramagnetic or
RS spin glass phase with free-energies for K = 3,4,5 and 6 that are lower than the
RSB spin glass free-energy; nevertheless, the entropy is negative and these free-energies
are therefore unphysical. It is remarkable that the coexistence value does not change
significantly for finite K in comparison to infinite K. Remind that Shannon’s bound
cannot be attained for finite K, since p — 1 (p, — 0) only if K — oc.

It is known that the K = 2 model with extensive connectivity (SK model) requires
a full Parisi solution to recover the concavity of the free-energy [MPV87]. No stable
solution is known for the intensively connected model (Viana-Bray model). Probability
propagation only solves the decoding problem approximately, the approximated
solutions are similar to those obtained by supposing replica symmetry. Thus, the
theoretical relevance of the RS results for K = 2 are to be evaluated by comparison
with simulations of probability propagation decoding.

3.4. Decoding with probability propagation

The decoding task consists of evaluating estimates of the form EJ = sign(S;) p(s;|7)- The
marginal posterior P(S; | J) = > g ,.; P(S | J) can be, in principle, be calculated
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simply by using Bayes theorem and a proper model for the encoding and corruption
processes (namely, coding by a sparse generator matrix with K bit long parity-checks
and a memoryless BSC channel) to write:

PS; 1) = gy 2 POl S50 [T P(S). (88)

Sz,l#J 7

where P(J) is a normalization dependent on J only. A brute force evaluation of the
above marginal on a space of binary vectors § € {£1}" with M checks would take
(M + N + 1)2" operations, what becomes infeasible very quickly. To illustrate how
dramatically the computational requirements increase, assume a code of rate R = 1/2,
if N = 10 the number of operations required is 31744, if one increases the message size
to N = 1000, 3 x 103%* operations are required! Monte-Carlo sampling is an alternative
to brute force evaluation; it consists of generating a number (much less than 2%V) of
typical vectors S and using this to estimate the marginal posterior, however the sample
size required can prove to be equally prohibitive.

As a solution to these resource problems, we can explore the structure of (88)
to devise an algorithm that produces an approximation to P(S; | J) in O(N)
operations. We start by concentrating on one particular site S;; this site interacts

directly with a number of other sites through C couplings denoted by J. and

(i1-+ixc)
{J.} = Juy: -+, Juc—1). Suppose now that we isolate only the interaction via coupling
Jiiyig), if the blpartlte Bayesian network representing the dependencies in the problem

is a tree, it is possible to write:

P(S))
P(S | Jin) = pry Y P(Jgreir) | S5 S+ Sigey)
(S i) (SiiSir .}
ipt iR
K—1
X P(Si, | {Jy:pe M(3i)}). (89)
I=1
Terms like P(S;, | {J,}) can be interpreted simply as updated priors for S;. In a tree,
these terms factorize like P(S;, | {J.}) = H —, P(Si, | Ju)) and a recursive relation
can be obtained, introducing:
v =P =2 {Ju:ne MG\ v} (90)
and

Ri= Y PSS {Si:iecom)\i) ] @ (91)
{SisieL(v)\j} i€L(V)\]
where M(j) is the set of couplings linked to site j and £(v) is the set of sites linked to

coupling v.
Equation (89) can be rewritten as:
n=ayP(S;=2) ] R (92)
veM(j)\u

Equations (91) and (92) can be solved iteratively, requiring (28X KC + 2C?)NT
operations with 7" being the (order 1) number of steps needed for convergence. These
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computational requirements may be further reduced by using advanced Markov chain
Monte-Carlo methods [Mac99].

An approximation to the marginal posterior (88) is obtained by counting the
influence of all C interactions over each site j and using the assumed factorization
property to write:

Qi =a;P(S;=2) [] Ry (93)
veM(j)
This is an approximation in the sense that the recursion obtained from (89) is only
guaranteed to converge to the correct posterior if the system has a tree structure, i.e.,
every coupling appears only once as one goes backwards in the recursive chain.

By taking advantage of the normalization conditions for the distributions Zjl +
Ml = 1 and RJrl + R, ' = 1, one can change variables and reduce the number of
equations by a factor of two my; = QN —Q, and m,; = R — R L.

The analogy with statistical physics can be exposed by first observing that :

P, | S {Sizie L\ i} ~exp (=67, ] Si)- (94)
ieL(p)
That can be also written in the more convenient form:
1

P(J, | S;,{Si:ie L(p)\j}) ~ icosh(ﬁJu) 1 + tanh(BJ,) H S; 1. (95)

FEL(1)
Plugging Eq.(95) for the likelihood in equations (92), using the fact that the prior
probability is given by P(S;) = 3 (1 + tanh(8yS;)) and computing m,; and m,; (see
Appendix A.6) one obtains:

= tanh(S.J,) H Ml
leL(mw)\j
m,; = tanh Z atanh(m,;) + By | - (96)
veM(D)\n

The pseudo-posterior can then be calculated:

m; = tanh Z atanh(m,;) + By | , (97)
veM(I)
providing Bayes optimal decoding EJ = sign(m;).
Equations (96) depend on the received message J. In order to make the analysis
message independent, we can use a gauge transformation m,; — §;m,; and m,; —
§jmy; to write:

= tanh(5.J) H i
leL(p)\j
m,; = tanh Z tanh™" () + ByE; | - (98)

veM()\p
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Figure 11. Overlap as a function of the flip probability p for decoding using TAP
equations for K = 2. From the bottom: Monte-Carlo solution of the RS saddle-point
equations for unbiased messages (ps = 0.5) at T' = 0.26 (line) and 10 independent runs
of TAP decoding for each flip probability (plus signs), T'= 0.26 and biased messages
(pe = 0.1) at the Nishimori temperature Tn.

In the new variables, a decoding success corresponds to m,; > 0 and m,; = 1 for
all 4 and j. By transforming these variables as m = tanh(fy) and m = tanh(fz)
and considering the actual message and noise as quenched disorder, Eqgs. (98) can be
rewritten as:

y = % <tanh—1 <tanh(ﬁJ) 1:[ tanh(ﬁxj))>
x = <iyj+fF> : (99)
3

j=1

For a large number of iterations, one can expect the ensemble of probability
networks to converge to an equilibrium distribution where m and m are random variables
sampled from distributions @(y) and ¢(z) respectively. The above relations lead to
a dynamics of the distributions a(y) and ¢(z), that is exactly as the one obtained
when solving iteratively RS saddle-point equations (67). The probability distributions
q@(y) and ¢(z) can be, therefore, identified with 7(y) and 7w(z) respectively and the
RS solutions correspond to decoding a generic message using probability propagation
averaged over an ensemble of different codes, noise and signals.

Equations (96) are now used to show the agreement between the simulated decoding
and analytical calculations. For each run, a fixed code is used to generate 20000
bit codewords from 10000 bit messages, corrupted versions of the codewords are then
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Figure 12. Overlap as a function of the flip probability p for decoding using TAP
equations for K = 5. The dotted line is the replica symmetric saddle-point equations
Monte-Carlo integration for unbiased messages (pe = 0.5) at the Nishimori temperature
Tn. The bottom error bars correspond to 10 simulations using the TAP decoding. The
decoding performs badly on average in this scenario. The upper curves are for biased
messages (p¢ = 0.1) at the Nishimori temperature T. The simulations agree with
results obtained using the replica symmetric Ansatz and Monte-Carlo integration.

decoded using (96). Numerical solutions for 10 individual runs are presented in Figs.11
and 12, initial conditions are chosen as m,; = 0 and m,; = tanh(f} ) reflecting the prior
beliefs. In Fig.11 we show results for K = 2 and C' = 4 in the unbiased case, at code
rate R = 1/2 (prior probability P(S; = +1) = p = 0.5) and low temperature 7" = 0.26
(we avoided T" = 0 due to numerical difficulties). Solving the saddle-point equations
(67) numerically using Monte-Carlo integration methods we obtain solutions with good
agreement to simulated decoding. In the same figure we show the performance for
the case of biased messages (P(S; = +1) = pe = 0.1), at code rate R = 1/4. Also
here the agreement with Monte-Carlo integrations is satisfactory. The third curve in
Fig.11 shows the performance for biased messages at the Nishimori temperature Ty, as
expected, it is far superior compared to low temperature performance and the agreement
with Monte-Carlo results is even better.

In Fig.12 we show the results obtained for K = 5 and C' = 10. For unbiased
messages the system is extremely sensitive to the choice of initial conditions and does
not perform well on average even at the Nishimori temperature. For biased messages
(pe = 0.1, R = 1/4) results are far better and in agreement with Monte-Carlo integration
of the RS saddle-point equations.
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The experiments show that probability propagation methods may be used
successfully for decoding Sourlas-type codes in practice, and provide solutions that are
consistent with the RS analytical solutions.

4. Gallager Codes

In 1962 Gallager [Gal62] proposed a coding scheme which involves sparse linear
transformations of binary messages in the decoding stage, while encoding uses a dense
matrix. His proposal was overshadowed by convolutional codes due to computational
limitations. The best computer available to Gallager in 1962 was an IBM 7090 costing
US$ 3 million and with disk capacity of 1 Megabyte, while convolutional codes, in
comparison, only demanded a simple system of shift registers to process one byte at a
time.

Gallager codes have been rediscovered recently by MacKay and Neal that proposed
a closely related code [MN95] to be discussed in Section 5. This almost coincided with
the breakthrough discovery of high performance Turbo codes [BGT93]. Variations of
Gallager codes have displayed performance comparable (sometimes superior) to Turbo
codes [Dav98, Dav99], qualifying them as state-of-the-art codes.

A Gallager code is defined by a binary matrix A = [Cy | Cs], concatenating two
very sparse matrices known to both sender and receiver, with Cy (of dimensionality
(M — N) x (M — N)) being invertible and C4y of dimensionality (M — N) x N.
A non-systematic Gallager code is defined by a random matrix A of dimensionality
(M — N) x M. This matrix can, in general, be organized in a systematic form by
eliminating a number € ~ O(1) of rows and columns.

Encoding refers to the generation of an M dimensional binary vector ¢t € {0, 1}
(M > N) from the original message £ € {0,1}" by

t = GT¢ (mod 2), (100)

where all operations are performed in the field {0, 1} and are indicated by (mod 2). The
generator matrix is

G =1[I|C;'Cy] (mod 2), (101)

where I is the N x N identity matrix, implying that AGT (mod 2) = 0 and that the first
N bits of t are set to the message &. Note that the generator matrix is dense and each
transmitted parity-check carries information about an O(N) number of message bits.
In regular Gallager codes the number of non-zero elements in each row of A is chosen
to be exactly K. The number of elements per column is then C' = (1 — R)K, where the
code rate is R = N/M (for unbiased messages). The encoded vector ¢ is then corrupted
by noise represented by the vector ¢ € {0,1}* with components independently drawn
from P(¢) = (1 —p)d(¢) + pd(¢ — 1). The received vector takes the form

r=GT¢+ ¢ (mod 2). (102)
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Decoding is carried out by multiplying the received message by the matrix A to
produce the syndrome vector

z=Ar = A¢ (mod 2), (103)

from which an estimate T for the noise vector can be produced. An estimate for the
original message is then obtained as the first N bits of » + 7 (mod 2). The Bayes
optimal estimator (also known as marginal posterior mazimizer, MPM) for the noise is
defined as 7; = argmax, P(7; | 2). The performance of this estimator can be measured
by the bit error probability p, = 1 — 1/M Z;\il 8[7;: ¢, where d[;] is the Kronecker
delta. Knowing the matrices Cy and C4, the syndrome vector z and the noise level p
it is possible to apply Bayes theorem and compute the posterior probability

Plr|2) = %X z = Ar (mod 2)] P(r), (104)

where y[X] is an indicator function providing 1 if X is true and 0 otherwise. To compute
the MPM one has to compute the marginal posterior P(7; | z) =} ,.; P(7 | z), which
in general requires O(2M) operations, thus becoming impractical for long messages. To
solve this problem we can take advantage of the sparseness of A and use probability
propagation for decoding, requiring O(M) operations to perform the same task.

4.1. Upper bound on achievable rates

It was pointed by MacKay in [Mac99] that an upper bound for rates achievable for
Gallager codes can be found from information theoretic arguments. This upper bound
is based on the fact that each bit of the syndrome vector z = A¢(mod 2) is a sum
of K noise bits independently drawn from a bimodal delta distribution P({) with
P(¢ =0) =1—p. The probability of z; = 1 is p}(K) = £ — (1 — 2p)" (see Appendix
C.1 for details). Therefore, the maximal information content in the syndrome vector is
(M — N)H,(p!(K)) (in bits or shannons), where Hy(z) is the binary entropy. In the
decoding process one has to extract information from the syndrome vector in order to
reconstruct a noise vector ¢ which has an information content of M Hy(p). It clearly
means that a necessary condition for successful decoding is:

(M — N)Hy(p,(K)) > MH,(p)
(1= R)Hs(p,(K)) > Hs(p)
___Hi(p)

Hy(pL(K))
In Fig.13a we plot this bound by fixing K and finding the minimum value for C' such that

R =1-C/K verifies (105). Observe that as K — oo, pl(K) — 1/2 and R — 1 — Hy(p)
that corresponds to Shannon’s bound.

R<1 (105)

In Fig.13b we plot the bound by fixing C' and finding the maximum K such that
R = 1 — C/K satisfies (105), recovering the curves presented in [Mac99]. Note that
K — oo implies C' — oc and vice-versa. Gallager codes only can attain Shannon’s
bound asymptotically in the limit of large K or, equivalently, large C'
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Figure 13. (a) Bounds for the rate R as a function of the noise level p for several
values of K. From bottom to top: K = 2 to 10,20 and Shannon limit. (b) Bounds for
several values of C. From bottom to top C' = 2,3,4,5 and Shannon limit.

4.2. Statistical physics formulation

The connection to statistical physics is made by replacing the field {0, 1} by Ising spins
{£1} and mod 2 sums by products [Sou89]. The syndrome vector acquires the form of
a multi-spin coupling J, = ngc ¢; where j =1,---,M and p = 1,---,(M — N).
The K indices of nonzero elements in the row p of A are given by L(u) = {j1, -, ik},
and in a column [ are given by M(l) = {1, -, uc}.

The following family of posterior probabilities can be introduced:

Py(r | 7) = Gesp [, (2 7)] (106)
G =-—7§: JLII73—1 —F}:%.

The Hamiltonian depends on hyper—parameters v and F'. For optimal decoding, v and
F have to be set to specific values that best represent how the encoding process and
corruption were performed (Nishimori condition [Iba99]). Therefore, v must be taken
to infinity to reflect the hard constraints in Eq.(104) and F = atanh(1 — 2p), reflecting
the channel noise level p. The temperature § must simultaneously be chosen to be the
Nishimori temperature Sy = 1, that will keep the hyper-parameters in the correct value.

The disorder in (106) is trivial and can be gauged to J, — 1 by using 7; — 7;(;. The
resulting Hamiltonian is a multi-spin ferromagnet with finite connectivity in a random

field ¢;F

ngauge T C = —v Z H Tj — 11 — FZCJTJ (107)

= JEL()

At the Nishimori condition v — oo and the model is even simpler, corresponding
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to a paramagnet with restricted conﬁguration space on a non-uniform external field:

HEYE (7 € Q; ¢) = —FZCJT], (108)
where
[ n=t.n=1---,M-N}. (109)
JEL(1)

The optimal decoding process simply corresponds to finding local magnetizations
at the Nishimori temperature m; = (7;)g, and calculating Bayesian estimates as
7; = sgn(m;).

In the {£1} representation the probability of bit error, acquires the form

1 1 g
Po=75" 537 ;Cj sgn(m;), (110)

connecting the code performance with the computation of local magnetizations.

4.3. Replica theory

In this section we use the replica theory for analyzing the typical performance of Gallager
codes along the same lines discussed for Sourlas codes. We start by rewriting the gauged
Hamiltonian (107) in a form more suitable for computing averages over different codes:

HEE (71 C) = =7 Y Agi) (Tiy - Tig FZCJTJ, (111)

(i1iK)

where A € {0,1} is a random symmetric tensor with the properties:

> Apigy =M—-N S A = O VL (112)
(i1+ix) (i1, =lyire)

that selects M — N sets of indices (construction). The construction { A, ..i.y} and the
noise vector ¢ are to be regarded as quenched disorder. As usual, the aim is to compute

(i1ix)

the free-energy:
1 1
f=—= lim M(ln AYNS (113)

M-

from which the typical macroscopic (thermodynamic) behavior can be obtained. The
partition function Z is:

Z = Trrexp (—HE"*(1:()) . (114)
The free energy can be evaluated calculating following expression
1 1 0
=—— lim — — Zz" 115
G0 3 (Eac (115)
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where

- sl (i)

T, T j=1

< H HGXP BY Ay iz (T T, {;—1)}> : (116)
A

21 ZK

The average over constructions ((--)) 4 takes the form:

ZH5 > Apmjing — C | ()

{.A} Jj=1 <i1_j7i27"'7iK>

Z(H:J}ha'“ai )A(iI:ja"'ai )
NZH ]{27TZZC+1Z " K](): (117)
{A} J

and the average ((-+))¢ over the noise is:
(D= D, (1=p)6(C=1) + ps(C+1) (---). (118)
(=—1,+1
By computing the averages above and introducing auxiliary variables through the

identity

/dqal...amé <qa1...am - — ZZTm e ) =1 (119)

one finds, after using standard techniques (see Appendix B.1 for details), the following
expression for the replicated partition function:

dQOdQO anan
. 192
REY N/( 27 ) < - Com (120)

MEZ X
X exp ? Z qu(ll"'oém

m=0 (a1 +am)

- MZ Z o -- amQ(n ‘Om

=0{ayam)

T |
X H TI“{Ta} <exp
Hren

dZ eXp |:Z an:[] Z(“l"'am> Z]\al---am 7—&1 . Tam:| -‘
% 7C+1 J ,

)

a=1

where T, = e7"%7 cosh™(3v) tanh™(S7). Comparing this expression with that obtained
for the code of Sourlas in Eq. (A.7), one can see that the differences are the
dimensionality M for Gallager codes instead of N for Sourlas (reflecting the fact that in
the former the noise vector of dimension M is the dynamical variable) and the absence
of disorder in the couplings, yielding a slightly modified definition for the constants 7,,.
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Figure 14. Suboptimal ferromagnetic solution mNprrro () for the saddle-point
equations (124) obtained numerically. Parameters are K = 4, C = 3 and p = 0.20.
Circles correspond to an experimental histogram obtained by decoding with probability
propagation in 100 runs for 10 different random constructions.

4.4. Replica symmetric solution

The replica symmetric ansatz consists of assuming the following form for the order
parameters:

I /dx r(@) T Gaa = /dfg #(3) 7. (121)

By performing the limit v — oo, plugging (121) into (120), computing the
normalization constant A/, integrating in the complex variable Z and computing the
trace (see Appendix B.2) we find:

(27 4 = Extrﬂﬁ{exp [—MC < / deds w(z) 7(3) (1 + 25)" — 1>

+ (M?C /jl:[ldxj m(x;) (1 -l-jl;[lxj)n — 1)] (122)

n> M
¢

X /Hd@ 7(Z)) < [Z P + 07y)

o==%£1 j=1

Using (115):

/- % Extrﬂﬁ{% 2+ C / dzd? 7(z) 7(7) In(1 + 27)

- & [ TLdes nte) m+ ) (123)
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Figure 15. Free-energies for K = 4, C = 3 and R = 1/4. The full line corresponds
to the free-energy of thermodynamic states. Up to ps only the ferromagnetic state is
present. The ferromagnetic state then dominates the thermodynamics up to p., where
thermodynamic coexistence with suboptimal ferromagnetic states takes place. Dashed
lines correspond to replica symmetric free-energies of non-dominant metastable states.

)

The extremization above yields a pair of saddle-point equations:
K-1 K-1
7) = / H dl‘j W(Q?j) ) [5— H l“j] (124)
J=1 Jj=1
c-1 c—1
= /Hd@ (@) <5 z — tanh (5Fc + ) atanh @>]> ,
=1 =1 ¢

where # =1 (Nishimori temperature) and F = ( ) for optimal decoding.

c
— /Hd@ (z <ln[Ze”’3F<H 1+ 0%j)
j=1

o==+1

Following the derivation of Appendix A. 3 very c losely, the typical overlap p =

(27 Z] 1 (i) ac between the estimate 7; = sgn((7;)s) and the actual noise (; is given

by:
p = / dh P(h) sen(h) (125)

= /ﬁd@ (7)) <5 [h—tanh <6FC + iatanh §l>]> :
=1 ¢

=1

4.5. Thermodynamic quantities and typical performance

The typical performance of a code as predicted by the replica symmetric theory can
be assessed by solving (124) numerically and computing the overlap p using (125).
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Figure 16. Pictorial representation of the replica symmetric free-energy landscape
changing with the noise level p. Up to ps there is only one stable state F' corresponding
to the ferromagnetic state with p = 1. At p,, a second stable suboptimal ferromagnetic
state F' emerges with p < 1, as the noise level increases, coexistence is attained at pe.
Above p., F' becomes the global minimum dominating the system thermodynamics.

The numerical calculation can be done by representing distributions = and 7 by
histograms (we have used representations with 20000 bins), and performing Monte-
Carlo integrations in an iterative fashion until a solution is found. Overlaps can be
obtained by plugging the distribution 7 that is a solution for (124) into (125).
Numerical calculations show the emergence of two solution types, the first
corresponds to a totally aligned (ferromagnetic) state with p = 1 described by:

Teemno(@) = 02 — 1] Fepnno(3) = 67 — 1], (126)

The ferromagnetic solution is the only stable solution up to a specific noise level p;.
Above pg another stable solution with p < 1 (suboptimal ferromagnetic) can be obtained
numerically. This solution is depicted in Fig.14 for K = 4, ¢’ = 3 and p = 0.20.
The ferromagnetic state is always a stable solution for (124) and is present for all
choices of noise level or construction parameters C' and K. The stability can be verified
by introducing small perturbations to the solution and observing that the solution is
recovered after a number of iterations of (124).

The free-energy for the ferromagnetic state at Nishimori’s temperature is simply
frerro = —F(1 — 2p). In Fig. 15 we show free-energies for K = 4 and R = 1/4, p,
indicates the noise level where coexistence between the ferromagnetic and suboptimal
ferromagnetic phases occurs. This coexistence noise level coincides, within the numerical
precision, with the information theoretic upper bound of Section 4.1. In Fig.16 we show
pictorially how the replica symmetric free-energy landscape changes with the noise level
p.

In Fig.17 we show the overlap as a function of the noise level, as obtained for
K = 4 and R = 1/4 (therefore C = 3). Full lines indicate values corresponding to
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Figure 17. Overlaps for K = 4, C = 3 and R = 1/4. The full line corresponds
to overlaps predicted by thermodynamical considerations. TUp to ps; only the
ferromagnetic p = 1 state is present, it then dominates the thermodynamics up to
Pe, where coexistence with suboptimal ferromagnetic states takes place. Dashed lines
correspond to overlaps of non-dominant states.

states of minimum free-energy that are predicted thermodynamically. The general idea
is that the macroscopic behaviour of the system is dominated by the global minimum
of the free-energy (thermodynamic equilibrium state). After a sufficiently long time the
system eventually visits configurations consistent with the minimum free-energy state
staying there almost all of the time. The whole dynamics is ignored and only the stable
equilibrium, in a thermodynamic sense, is taken into account. Also in Fig. 17 we show
results obtained by simulating probability propagation decoding (black circles). The
practical decoding stays in a meta-stable (in the thermodynamic sense) state between
ps and p. and the practical maximum noise level corrected is actually given by ps.
Returning to the pictorial representation in Fig.16, the noise level p; that provides
the practical threshold is signalled by the appearance of spinodal points in the replica
symmetric free-energy, defined as points separating (meta)stable and unstable regions
in the space of thermodynamical configurations (p). The noise level ps may, therefore,
be called spinodal noise level.

The solutions obtained must produce non-negative entropies to be physically
meaningful. The entropy can be computed from the free-energy (123) as s = 52%
yielding:

s = - ) (127)

B 5 7 Yy T (14 7))
U(B) - /Hd <FC ZT:il eTBF( H;J:l(l + T/x\j) C:

where 7* is a solution for the saddle-point equations (124) and u(f) corresponds to
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Figure 18. Internal energy density for K = 4, C = 3 and R = 1/4 for both
ferromagnetic and suboptimal ferromagnetic states. The equality is a consequence
of using the Nishimori condition (see Appendix B.3).

the internal energy density at temperature 5. For the ferromagnetic state spprro = 0
what indicates that the replica symmetric ferromagnetic solution is physical and that
the number of micro-states consistent with the ferromagnetic state is at most of
polynomial order in N. The entropy of the suboptimal ferromagnetic state can be
obtained numerically. Up to the spinodal noise level p, the entropy vanishes as only
the ferromagnetic state is stable. Above p, the entropy of the replica symmetric
suboptimal ferromagnetic state is negative and, therefore, unphysical. At p. the entropy
of the suboptimal ferromagnetic state becomes positive again. The internal energy
density obtained numerically is depicted in Fig.18 being u = —F(1 — 2p) for both
ferromagnetic and suboptimal ferromagnetic states, justified by assuming Nishimori’s
condition 7 — oo, f =1 and F' = atanh(1 — 2p) [Iba99] (see Appendix B.3).

The unphysical behavior of the suboptimal ferromagnetic solution between p, and
p. indicates that the replica symmetric ansatz does not provide the correct physical
description of the system. The construction of a complete one-step replica symmetry
breaking theory turns out to be a difficult task in the family of models we focus on
here [WS88, Mon98b, Mon98al; although it may be possible in principle using a new
method, recently introduced by Mezard and Parisi [MPO1]. An alternative is to consider
a frozen spins solution. In this case the entropy in the interval p, < p < p. is corrected
to sgsg = 0 and the free-energy and internal energy are frozen to the values at p..

Any candidate to a physical description for the system would have to be compared
with simulations to be validated. Nevertheless, our aim here is predicting the behavior
of a particular decoding algorithm, namely, probability propagation. In the next section
we will show that, to this end, the replica symmetric theory will be sufficient.
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Figure 19. First step in the construction of Husimi cactus with K = 3 and
connectivity C' = 4.

4.6. Codes on a cactus

In this section we present a statistical physics treatment of Gallager codes by employing
a mean-field approximation based on the use of a generalized tree structure (Bethe lattice
[WS87hb]) known as Husimi cactus that is exactly solvable [Guj95, BL82, RK92, Gol91].

There are many different ways of building mean-field theories. One can make
a perturbative expansion around a tractable model [Ple82, Tan00] or assume a
tractable structure and variationally determine the model parameters [SJ98]. In the
approximation we employ, the tractable structure is tree-like and the couplings 7, are
just assumed to be those of a model with cycles. In this framework the probability
propagation decoding algorithm (PP) emerges naturally providing an alternative view to
the relationship between PP decoding and mean-field approximations already observed
in [KS98]. Moreover, this approach has the advantage of being slightly more controlled
and easier to understand than replica calculations.

A Husimi cactus with connectivity C' is generated starting with a polygon of K
vertices with one Ising spin in each vertex (generation 0). All spins in a polygon interact
through a single coupling 7, and one of them is called the base spin. In Fig.19 we show
the first step in the construction of a Husimi cactus, in a generic step the base spins of
the (C' — 1)(K — 1) polygons in generation n — 1 are attached to K — 1 vertices of a
polygon in the next generation n. This process is iterated until a maximum generation
nmax 15 reached, the graph is then completed by attaching C uncorrelated branches of
nmax generations at their base spins. In this way each spin inside the graph is connected
to C polygons exactly. The local magnetization at the center m; can be obtained by
fixing boundary (initial) conditions in the 0-th generation and iterating the related
recursion equations until generation npyax is reached. Carrying out the calculation in
the thermodynamic limit corresponds to having nmax ~ In M generations and M — oc.

The Hamiltonian of the model has the form (106) where L(u) denotes the
polygon p of the lattice. Due to the tree-like structure, local quantities far from the
boundary can be calculated recursively by specifying boundary conditions. The typical
decoding performance can therefore be computed exactly without resorting to replica
calculations [Guj95].

We adopt the approach presented in [RK92] for obtaining recursion relations. The
probability distribution P, (7;) for the base spin of the polygon u is connected to
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(C — 1)(K — 1) distributions P,;(7;), with v € M(j) \ p (all polygons linked to j
but 1) of polygons in the previous generation:

1
Pur(mi) = 57 Ty exp | 57 | T [T =-1|+8Fn (128)

JEL(p)\K
< 11 11 Putm),

veM(i)\n FEL(1)\K
where the trace is over the spins 7; such that j € L(u) \ k.
The effective field Z,,; on a base spin j due to neighbors in polygon v can be written
as :
28F P, vj (_)
7Pyj(+) ) (129)
Combining (128) and (129) we find the recursion relation (see Appendix B.4 for details):

—25”'

e =€

’ Trgrye” 7T Wieconn e coonBFFZoemine o)
2Tk J

e (130)

Tr{r-}ew"’j“ jecoone i+ ciune BF+HE e mne TvilTi
J

By computing the traces and taking v — oo and 5 = 1 one obtains:

T, = atanh [.7” H tanh(F + Z fyj)-l (131)
[ JEL(M)\k VEM(5)\n J

The effective local magnetization due to interactions with the nearest neighbors in
one branch is given by m,; = tanh(Z,;). The effective local field on a base spin
j of a polygon u due to C' — 1 branches in the previous generation and due to the
external field is z,; = F' + ZueM(j)\u 7,;; the effective local magnetization is therefore
m,; = tanh(z,;). Equation (131) can then be rewritten in terms of m,; and m,; and
the PP equations [Mac99, KS98, KF98] can be recovered:

my, = tanh | F' + Z atanh ()
veM(k)\p

P =T, [ 7 (132)
JEL()\k
Once the magnetization on the boundary (0-th generation) are assigned, the local
magnetization m; in the central site is determined by iterating (132) and computing :

m; = tanh | F + Z atanh (m,;) (133)
veM(j)

A free-energy can be obtained by integration of (132) [MKSV00, VSK00b, BL82].
The equations (132) describing PP decoding represent extrema of the following free-
energy:

Flme ) = 33 (14 myuii) (134)

p=1 iel(p)
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Figure 20. Transitions for Gallager codes with K = 6 (left) and K = 10 (right).
Shannon’s bound (dashed line), information theory upper bound (full line) and
thermodynamic transition obtained numerically (o). Transitions obtained by Monte-
carlo integration of Eq.(138) (¢) and by simulations of PP decoding (+, M = 5000
averaged over 20 runs) are also shown. Black squares are estimates for practical
thresholds based on Sec.4.8. In both figures, symbols are chosen larger than the error
bars.
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The iteration of the maps (132) is actually one out of many different methods of finding
stable extrema of this free-energy.
The decoding process can be performed by iterating the multidimensional map (132)
using some defined scheduling. Assume that the iterations are performed in parallel
using the following procedure:

(i) Effective local magnetizations are initialized as my, = 1 — 2p, reflecting prior
probabilities.
(ii) Conjugate magnetizations m,, are updated.
(iii) Magnetizations myy, are computed.
(iv) If convergence or a maximal number of iterations is attained, stop. Otherwise go
to step (ii).
Equations (132) have fixed points that are inconveniently dependent on the

particular noise vector . By applying the gauge transformation J, — 1 and 7; — 7;(
we get a map with noise independent fixed points that has the following form:

myr = tanh | G F + Z atanh (m,;) (135)
veM(k)\p
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Figure 21. Mean normalized overlap p between the actual noise vector ¢ and
decoded noise T for a Gallager code with K = 4 and C = 3 (therefore R = 1/4).
Theoretical values () obtained by Monte-carlo integration of Eq.(138) and averages
of 20 simulations of PP decoding for code word lengths M = 5000 (e) and M = 100
(full line). Symbols are chosen larger than the error bars.

A =[] mu (136)
JEL(p)\k

In terms of effective fields =, and 7, we have:

Tup = GF + Z Ty Z,, = atanh H tanh(z,;) | . (137)
veM(k)\u JEL()\k
The above equations provide a microscopic description for the dynamics of a probability
propagation decoder, a macroscopic description can be constructed by retaining
only statistical information about the system, namely by describing the evolution of
histograms of variables z,;, and Z.

Assume that the effective fields z,, and 7, are random variables independently
sampled from the distributions P(z) and P(Z) respectively, in the same way assume
that ¢; is sampled from P(¢) = (1 —p) 6(¢ —1) + §({+1). A recursion relation in the
space of probability distributions [BL82] can be found from Eq. (137):

Cc—-1 R Cc—-1
P,(z) = /dg P(C) /H %) Py 1 (7)) 6 |2 — FC— ) &)
=1 =1 -

K-1
T — atanh (H tanh(a:j)) , (138)
j=1

K-1
P, (%) = /dej Py 1(z)) 6
j=1

where P,(x) is the distribution of effective fields at the n-th generation due to the
previous generations and external fields, in the thermodynamic limit the distribution
far from the boundary will be Py (x) (generation n — oo). The local field distribution
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Figure 22. PP decoding convergence time as a function of the code size (M — N) for

K =4 C = 3 and p = 0.05, therefore, well below the threshold. The convergence time
clearly does not scale with the system size.

at the central site is computed by replacing C'—1 by C'in the first equation (138), taking
into account C' polygons in the generation just before the central site, and inserting the
distribution Py (x):

P(h) = /d( P(C) /Hd@ Po(@) 6 |z — FC - Z@] | (139)

Equations (138) are identical to equations (124) obtained by the replica symmetric
theory [KMS00, MKSV00, VSKO00b] if the variables describing fields are transformed to
those of local magnetizations through = — tanh(fz).

In Fig.14 we show empirical histograms obtained by performing 100 runs of PP
decoding for 10 different codes of size M = 5000 and compare with a distribution
obtained by solving equations like (138). The practical PP decoding is performed by
setting initial conditions as m,; = 1 — 2p to correspond to the prior probabilities and
iterating (132) until stationarity or a maximum number of iterations is attained [Mac99).
The estimate for the noise vector is then produced by computing 7; = sign(m;). At
each decoding step the system can be described by histograms of variables (132), this
is equivalent to iterating (138) (a similar idea was presented in [Mac99, Dav98]).

In Fig.20 we summarize the transitions obtained for K = 6 and K = 10. A dashed
line indicates Shannon’s limit, the full line represents the information theoretic upper
bound of Section 4.1, white circles stand for the coexistence line obtained numerically.
Diamonds represent spinodal noise levels obtained by solving (138) numerically and
(+) are results obtained by performing 20 runs using PP decoding. It is interesting to
observe that the practical performance tends to get worse as K grows large, what agrees
with the general belief that decoding gets harder as Shannon’s limit is approached.
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Figure 23. Tanner graph representing the neighborhood of a bit node in an irregular
Gallager code. Black circles represent checks and white circles represent bits.

4.7. Tree-like approzimation and the thermodynamic limit

The geometrical structure of a Gallager code defined by the matrix A can be represented
by a bipartite graph as in Fig.(23) (Tanner graph) [KF98] with bit and check nodes
(in this case, we show an irreqular constraction where the values of K and C are
not fixed). Each column j of A represents a bit node and each row pu represents
a check node, A,; = 1 means that there is an edge linking bit j to check p. It is
possible to show [RU01] that for a random ensemble of regular codes, the probability
of completing a cycle after walking [ edges starting from an arbitrary node is upper
bounded by P[l; K,C, M] < I?K'/M. It implies that for very large M only cycles of
at least order In M survive. In the thermodynamic limit M — oo and the probability
P[l; K,C, M] — 0 for any finite [ and the bulk of the system is effectively tree-like. By
mapping each check node to a polygon with K bit nodes as vertices, one can map a
Tanner graph into a Husimi lattice that is effectively a tree for any number of generations
of order less than In M. In Fig.22 we show that the number of iterations of (132) required
for convergence far from the threshold does not scale with the system size, therefore,
it is expected that the interior of a tree-like lattice approximates a Gallager code with
increasing accuracy as the system size increases. Figure 21 shows that the approximation
is fairly good even for sizes as small as M = 100 when compared to theoretical results
and simulations for size M = 5000. Nevertheless, the difference increases as the spinodal
noise level approaches, what seems to indicate the breakdown of the approximation. A
possible explanation is that convergence times larger than O(InM) may be required
in this region. An interesting analysis of the convergence properties of probability
propagation algorithms for some specific graphical models can be found in [Wei97].
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4.8. Estimating spinodal noise levels

We now estimate the threshold noise level p, by introducing a measure for the number
of parity-checks violated by a bit 7;:

Bi=- > |Jm H KR (140)

peM(l) JEL(1

By using gauged variables:

E=->Y |n J[ »n-1]. (141)
peM(l) yEE N\

Suppose that random guesses are generated by sampling the prior distribution, their
typical overlap will be p =1 — 2p. Assume now that the vectors sampled are corrected
by flipping 7; if E; = C. If the landscape has a single dominant minimum we expect that
this procedure will tend to increase the overlap p between 7 and the actual noise vector
¢ in the first step up to the noise level py, where suboptimal microscopic configurations
are expected to emerge. Above p, there is a large number of suboptimal ferromagnetic
micro-states with an overlap around p = 1 — 2p (see Fig.21), and we expect that if a
single bit of a randomly guessed vector is corrected, the overlap will then either increase
or decrease, staying unchanged on average. A vanishing variation in the mean overlap
would, therefore, signal the emergence of suboptimal micro-states at p;.

The probability that a bit 7, = 41 is corrected is:

PE=C|n=+1)= [ P{ ] == : (142)

peM(l) JeL(p)\l

Foraabit =-1:

PE=C|ln=-1)= ] [1-PS ] == . (143)

peM(l) JEL(u\!

Considering vectors sampled from a prior P(7) = (1 —p) (7t —1) + pd(7 +1) we
have:

1 1
P T] — (12K,
T; = 5 2(1 2p) (144)
FEL(\!

The gauged overlap is defined as p = Z]Nil S; and the variation on the overlap after
flipping a bit [ is Ap = p; — po = S} — 5. The mean variation in the overlap due to a
flip in a bit 7; with E; = C' is therefore:

(M) = Pn=+1|E=C) — P(n=—1|F=0) (145)

_ Lp=a iP(Br=C | 1)P(n)
Yo P(Er=C|7))P(7n)’
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where we applied the Bayes theorem to obtain the last line.
By plugging the prior probability, (142) and (144) into the above expression we get:

VLU VL WU IR U VL
2 [1-(1=2p) " (1—p) + 1+ A -2p) " p
At ps we have (Ap) =0 and:
Ps . 1- (1 - 2p5)K71
1—ps |14 (1—2ps)K-1

The above equation can be solved numerically yielding reasonably accurate estimates

(147)

for practical thresholds ps as can be seen in Fig.20.

MacKay [Mac99] and Gallager [Gal62, Gal63| introduced probabilistic decoding
algorithms whose performance analysis is essentially the same those as presented here.
However, the results obtained in Section 4.3 put the analysis into a broader perspective:
algorithms that generate decoding solutions in polynomial time, as is the case of
probabilistic decoding or probability propagation, seem to be bounded by the practical
threshold p, due to the presence of suboptimal solutions. On other hand, decoding
in exponential time is always possible up to the thermodynamic transition at p, (with
pe attaining channel capacity if K — oo), by performing an exhaustive search for the
global minimum of the free-energy (134).

5. MacKay-Neal Codes

MacKay-Neal (MN) codes were introduced in [MN95] as a variation on Gallager codes.
As in the case of Gallager codes (see Section 4), MN codes are defined by two very
sparse matrices, but with the difference that information on both noise and signal is
incorporated to the syndrome vector. MN codes are also decoded using sparse matrices
while encoding uses a dense matrix, what yields good distance properties and a decoding
problem solvable in linear time by using the methods of probability propagation.

Cascading codes, a class of constructions inside the MN family recently proposed by
Kanter and Saad [KS99b, KS00b, KS00a], have been shown to outperform some of the
cutting-edge Gallager and turbo code constructions. We will discuss cascading codes in
the next secion, but this fact alone justifies a thorough study of MN codes.

Theorems showing the asymptotic goodness of the MN family have been proved
in [Mac99]. By assuming that equal message and noise biases (for a BSC), it was
proved that the probability of error vanishes as the message length increases and that
it is possible to get as close as desired to channel capacity by increasing the number of
non-zero elements in a column of the very sparse matrices defining the code.

It can also be shown by a simple upper bound that MN codes, unlike Gallager codes,
might as well attain Shannon’s bound for a finite number of non-zero elements in the
columns of the very sparse matrices, given that unbiased messages are used. This upper
bound does not guarantee that channel capacity can be attained in polynomial time or
even that it can be attained at all. Results obtained using statistical physics techniques
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[KMS00, MKSV00, VSK00b, VSKO00a] seem to indicate that Shannon’s bound can
actually be approached with exponential time decoding. This feature is considered
to be new and somewhat surprising [Mac00b)].

Statistical physics has been applied to analyze MN codes and its variants
in [KMS00, MKSV00, VSKO0O0b]. In the analysis we use the replica symmetric theory to
obtain all relevant thermodynamic quantities and to calculate the phase diagram. The
theory also yields a noise level where suboptimal solutions emerge that is in connection
with the practical thresholds observed when probability propagation decoding is used.

Assuming that a message is represented by a binary vector & € {0,1}" sampled
independently from the distribution P(§) = (1 —p¢) 6(§) +pe 6(£—1), the MN encoding
process consists of producing a binary vector t € {0, 1} defined by

t = G¢ (mod 2), (148)

where all operations are performed in the field {0, 1} and are indicated by (mod 2). The
code rate is, therefore, R = N/M.
The generator matrix G is an M x N dense matrix defined by

G = C:1C, (mod 2), (149)

with C,, being an M x M binary invertible sparse matrix and Cs an M x N binary
sparse matrix.

The transmitted vector ¢ is then corrupted by noise. We here assume a memoryless
binary symmetric channel (BSC), namely, noise is represented by a binary vector
¢ € {0,1} with components independently drawn from the distribution P(¢) =
(1=p)o(Q)+pd(C—1).

The received vector takes the form
r=G¢ + ¢ (mod 2). (150)

Decoding is performed by pre-processing the received message with the matrix C,,
and producing the syndrome vector

z=Cpr = Cs€ + Cp¢ (mod 2), (151)

from which an estimate Z for the message can be directly obtained.

An MN code is called regular if the number of elements set to one in each row of
C, is chosen to be K and the number of elements in each column is set to be C. For
the square matrix C,, the number of elements in each row (or column) is set to L. In
this case the total number of ones in the matrix Cs is MK = NC| yielding that the
rate can alternatively be expressed as R = K/C.

In contrast, an MN code is called irregular if each row m in C, and C,, contains K,,
and L,, non-zero elements respectively. In the same way, each column j of Cy contains
C; non-zero elements and each column [ of C,, contains D; non-zero elements.

Counting the number of non-zero elements in the matrices leads to the following

relations:
N M M

Yo=K, Y D= iLM, (152)
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The code rate is, therefore, R = K /C, where:

=2

_ 1 X _ 1
K:MZ:KH C=%2.0 (153)

The Bayes optimal estimator E for the message & is EJ = argmaXSjP(Sj | 2).
The performance of this estimator is measured by the probability of bit error p, =
1-1/N Z;VZI 8&;:&5], where 6[;] is the Kronecker delta. Knowing the matrices C,
and C,,, the syndrome vector z, the noise level p and the message bias p¢; the posterior
probability is computed by applying Bayes theorem:

P(S.7|2) = %X z = C,S + Cpr (mod 2)] P(S)P(7), (154)

where x[X] is an indicator function providing 1 if X is true and 0 otherwise.
To obtain the estimate one has to compute the marginal posterior

P(Sjlz)= > Y P(S.7|2) (155)
{Sii#s} T
which requires O(2V) operations and is impractical for long messages. Again we can use
the sparseness of [Cy | Cy,] and the methods of probability propagation for decoding,
what requires only O(N) operations.

When p = pe, MN and Gallager codes are equivalent under a proper transformation
of parameters, as the code rate is R = N/M for MN codes and R = 1—N/M for Gallager
codes. The main difference between the codes is in the syndrome vector z. For MN
codes the syndrome vector incorporates information on both message and noise while
for Gallager codes only information on the noise is present (see Eq.(103)). This feature
opens the possibility of adjusting the code behavior by controlling the message bias pe.

An MN code can be thought as a non-linear code [Mac00c]. Redundancy in
the original message could be removed (introduced) by using a source (de)compressor
defined by some non-linear function & = g¢(&o;p¢) and encoding would then be t =
Gg(&o;pe) (mod 2). In the following we show that other new features emerge due to
the introduction of the parameter p;.

5.1. Upper bound on achievable rates

In a regular MN code the syndrome vector z = CsS + C,,7 (mod 2) is a sum of K
message bits drawn from the distribution P(§) = (1 —p¢) 6(§) + pe §(£ — 1) and L noise
bits drawn from P({) = (1 —p) 6(¢) +p o(¢ — 1).
The probability of z; = 1 is (see Appendix C.1)
1 1

P L) = & — 51— 200" (1 — 20" (156)
The maximum information content in the syndrome vector is M Hy(pl(K, L)) (in bits
or shannons), where Hy(x) is the binary entropy. The amount of information needed to
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reconstruct both the message vector £ and the noise vector ¢ is N Hy(pe) + M Hy(p) (in
bits or shannons). Thus, it is a necessary condition for successful decoding that:

M H;(py(K, L)) > N Hy(pe) + M Hs(p)
Hy(py(K, L)) — Ha(p) > R Ha(pe)
Hy(p,(K, L)) — Hy(p)

Hy(pe) '
For the case p: = p and L = C, we can recover bounds (105) for Gallager codes

with dimensions and parameters redefined as M' = M + N, N' = N and K' = K + L.
In [Mac99], a theorem stating that channel capacity can be attained when K — oo was

R <

(157)

proved for this particular case.
If unbiased (pe = 1/2) messages are used, Ha(pe) = 1, Hy(pi(K, L)) = 1 and the
bound (157) becomes

R <1 — Hs(p), (158)

i.e., MN codes may be capable of attaining channel capacity even for finite K and L,
given that unbiased messages are used.

5.2. Statistical physics formulation

The statistical physics formulation for MN codes is a straightforward extension of the
formulation presented for Gallager codes. The field ({0,1}, 4 (mod 2)) is replaced by
({£1}, x) [Sou89] and the syndrome vector acquires the form :

T = H & H G (159)

JELs() €L ()
where j=1,--- N, [=1,--- Mand p=1,---, M.

The K, indices of nonzero elements in the row p of the signal matriz Cy are given
by Ls(i) = {j1,---,Jk,}, and in a column j are given by M,(j) = {ju,---, pc, }. In the
same way, for the noise matriz Cy,, the L, indices of nonzero elements in the row p are
given by £, (1) = {j1,---,Jr,.}, and in a column [ are given by M, (I) = {1, -, tip, }-

Under the assumption that priors P(S) and P(7) are completely factorizable, the
posterior (154) corresponds to the limit v — oo and § =1 (Nishimori temperature) of:

P8, 7| T) = 5 exp - BH,(S,7:7) (160)

M
H’Y(SaT;j) = _’YZ ju H Sj H —1
p=1 )

JEL(n)  LELn(n

N M
~R)_Si-R) . m
j=1 =1

with Fy = 2 atanh(%) and F, = 1 atanh(%) (Nishimori condition [Iba99]).
By applying the gauge transformation S; — S;§; and 7; — 7,(; the couplings can
be gauged out J, — 1, eliminating the disorder. The model is free of frustration (as
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in [Tou77], the model is flat) . Similarly to Gallager codes, the resulting Hamiltonian
consists of two sub-lattices interacting via multi-spin ferromagnetic iterations with finite
connectivity in random fields &; Fy and (;F,

HEE (S, 7:€,¢) = —vz II s H al

p=1 \jeLs(u) leﬂn

N
— FSZSJS] _FnZClTl- (161)
j=1 =1

At the Nishimori condition 7 — oo, and the model can also be regarded as a
paramagnet with restricted configuration space on a non-uniform external field:

M
HEuee (S, 1) € 0 ¢,¢) = —F, Zgj —F,)) G, (162)
=1

where
Q={S.7n: [ S [ n=1t.n=1.---, M} (163)
JELs(w) €L (1)

Optimal decoding consists of finding local magnetizations at the Nishimori
temperature in the signal sub-lattice m; = (S;)s, and calculating Bayesian estimates
& = sgn(m;).

The probability of bit error is

N
1 1
Pp=75" 55 ;fj sgn(m;), (164)

connecting the code performance with the computation of local magnetizations.

5.3. Replica theory

The replica theory for MN codes is the theory constructed for Gallager codes, with the
introduction of extra dynamical variables S. The gauged Hamiltonian (161) is written
as:

ngauge(S 7':5 C _’YZAJZ ' 7—l1"'7—lL_1)

- FSZSJ'SJ' —FnZCm, (165)
j=1 =1

where (j1) is a shorthand for (j; ---jgly---11).

Code constructions are described by the tensor A(il) € {0, 1} that specifies a set of
indices (j; - -+ jgly - - - I) corresponding to non-zero elements in a particular row of the
matrix [Cs | Cy]. To cope with non-invertible C,, matrices we can start by considering
an ensemble with uniformly generated M x M matrices. The non-invertible matrices
can be made invertible by eliminating a ¢ ~ O(1) number of rows and columns, resulting
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in an ensemble of (M —€) x (M — ¢) invertible Cy, matrices and (M —€) x (N — €)
C; matrices. As we are interested in the thermodynamic limit we can neglect O(1)
differences and compute the averages in the original space of M x M matrices. The
averages are then performed over an ensemble of codes generated as follows:

(i) Sets of numbers {C;}_; and {D;}}X, are sampled independently from distributions
Pc and Pp respectively;

(ii) Tensors A(jl) are generated such that

>_ Ay =M
gl

Yo A =06 Y Ay =D
(j1=7-jxl1-Ir) Gredrli=l-1)

The free-energy is computed by the replica method as:

119 )
(Z") A (166)

=—— lim — —

The replicated partition function is:

(Zaec= >, >, H<exp (Ffﬂzsa) >£ (167)

S SnTl-Tnjl

(= 2)>

<H Hexp By A 1,(S 7'1016"'713—1)}>
Jl a=1 A

The average over constructions ((--)) 4 is:

S PeenIIPo@oys| S Ag -6

{Cj,D1} i=1 =1 (Gr1=dviz.jxc D)
<o X agy-n) e
<J11:l7l25"'5lK>
N M
= > [IPcc)IPo(D)
{Cj.Di}i=1 =1
N
1 dZ; 1 2 iimirdy Ay
x _ZH % C+1Z] (i1 =gyig,igl) (J1=4 ik
N T 27mZ
< ) R D O TR F
15602, 50, 1=6ntb
< 11| f Gy (s
=1
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where the first sum is over profiles {C;, D;} composed by N numbers drawn
independently from Pc(C) and M numbers drawn from Pp(D). The second sum is
over constructions 4 consistent with the profile {C;, D, }.

The signal average ((--))¢ has the form:

(- Ne= D (1=p)d(E=1) + ped(E+1) (). (169)

£:717+1

Similarly, the noise average ((---))¢ is:

(- Ne= D @=p)d(C=1) + po(C+1) () (170)

(=—1,41
Along the same steps described for Gallager codes, we compute averages above and
introduce auxiliary variables via

/dqal...am b (qal...am - ZZSO“ o .“m> =1 (171)
1 M
/droa---ozm 0 (Ta1-'-am N M ZY;Tial o 'Tiam) =1 (172)

Using the same type of techniques employed in the case of Gallager codes (see
Appendix C.2 for details), we obtain the following expression for the replicated partition
function:

(ZMaec= 11D Pe HZPD (D)

j=1 C; I=1 D,

qudZ]\O dqaan d’l“od?o - drad?a
8 < omi )(E omi omi g omi

MLNK
T 2 2o Tnliiean T

m=0 (a;am)

- NZ Z Ga; - amqa1 “0m

(o1-+-0m)

- M E E Ty auy Ty ooy,

(a1 am)

H Trise) <exp F56525?]>
j=1 a=1 ¢

de exp {ZJ' an:(] Z(m---am) Z]\al"'am Sﬂql o .S]'.lm} -‘
j[ 27 Zo! J

X
@
>
o

ZIH

X

J
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M n
X H Trirey <exp FnﬁCZTf‘ >
=1 a=1 ¢

dY, exp [Yi Z;:O Z(al---am) ?ar"am Tlal ceeT)

2171 Y2D1+1

, (173)

where T, = e7"?7 cosh”(3v) tanh™ (7). Note that the above expression is an extension

of Eq. (120).
The replica symmetry assumption is enforced by using the ansitze:
G = / 0o 7(2) 3™ Gar = / i3 7(F) 7" (174)
and
torenn = (A6 V" T, = [ 4760 T (175)

By plugging the above ansatze, using the limit v — oc and standard techniques
(see Appendix C.3 for details) the following expression for the free-energy:

1
f= 3 Extr{ﬁ’mg,d)}{a In 2 (176)
+ U/dx 7(x) dz 7(Z) In (1 + 27)

+ a E/dy (y) dy &5\(?7) In (1 +yy)

PN / [H dxﬂr(xj)] [H dyld>(yl)] In <1 + H!EJ Hyl)

_ Z Pe / [H dz; 7?(@)] < In [Z 7P H(l +07;) >
C j=1 o=+1 j=1 ¢
s f[fmn] (w5 o o] )
D I=1 o=+1 1=1 ¢

where C =Y, C Po(C), D=3, DPp(D)and a = M/N =C/K.
By performing the extremization above, restricted to the space of normalized
functions, we find the following saddle—point equations:

K-1
/H dz; m(x;) H dy, ¢(y1) [ T, Hyl] (177)
=1 =1
1 g
:ﬁg C Pc /Edml (7))

c-1
X <<5 [:1: — tanh (ﬁst + Zatanh @)]> ,
=1 ¢

<.
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(7) = /1:[ dy1 ¢(y1) deﬁj m(x;) 0 [?7— I:I?JIH%‘]

. D1
o(y) = 5 g D Pp / g dyi ¢(1)

D-1
X <5 [y—tanh <ﬂFnC + ) atanh @)D .
=1 ¢

The typical overlap p = (+ Z;.V:lfjgjﬂ,g,g between the estimate EJ = sgn((S;)sy)
and the actual signal ; is given by (see Appendix A.3):

p = /dh P(h) sgn(h) (178)

P(h) = Y Pe(c) [ T[ 7@

C
% <5 h — tanh (51755 + ) atanh @>]> .
3
20f

=1
The intensive entropy is simply s = 35 yielding:
s =pBu(B) — f) (179)

¢ Fy oe?PEET]. (1 + 07;)
u= — 73/ dz; 7 (% o=l I
2 7e [ 11 (”< T L0 08)
2o o (Y 0T (0 + o)
—a), PD/dej ¢*(yj)< — : :
D j=1 ¢

P VAT

where starred distributions are solutions for (177) and u(3) is the internal energy density.

For optimal decoding the temperature must be chosen to be f = 1 (Nishimori
temperature) and the fields are

1 1-— 1 1—
F,=—1In < pg) F,=-1n (_p)
2 D¢ 2 P

5.4. Probability propagation decoding

In Sections 3 and 4 we derived probability propagation equations firstly by assuming a set
of factorization properties and writing a closed set of equations that allowed the iterative
computation of the (approximate) marginal posterior and secondly by computing local
magnetizations on the interior of a Husimi cactus (Bethe approximation). The two
methods are equivalent as the factorization properties assumed in the former are encoded
in the geometry of the lattice assumed in the latter.

Here we use insights provided in the last sections to build a decoding algorithm
for MN codes directly. From the replica symmetric free-energy (176) we can write the
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following Bethe free-energy:
M 1
F(m. ) = 2+ > In (1 + mSms,) (180)
p=1 iECS(M)
| M
ol D In (14 mpm)
H=1G€Ln (1)

i ]
p=1 €L (1) JELy (1)
1 N
oFy
¥ z [T (o,
=1 HEM (

M
-y et I (o)
1 _a:i HEMn (5)

The variables my; (mj;) are cavity effective magnetizations of signal (noise) bits

interacting through the coupling u, obtained by removing one of the C' couplings in
M(j) (My(j)) from the system. The variables m?$. (m”

s (my;) correspond to effective
magnetizations of signal (noise) bits due to the coupling p only
The decoding solutions are fixed points of the free-energy (181) given by

OF (m, m) OF (m, m)
omy; O

IF(m,m OF(m,m

97 (m, m) 9F(m.m) _,, (182)
amm amﬂj

The solutions for the above equations are the equations being solved by the
probability propagation decoding algorithm:

= (181)

m;, = tanh Z atanh(m;,) + F;

(183)
veM,(1)\u
=7 I mu II ™ (184)
i€Ls (u)\j leLn(p)

my, = tanh Z atanh(m,) + F,

(185)
vEMn (1)\ 1

=7 [ mu [ m (186)
i€Ls (1) leLn()\J

The estimate for the message is 5] = sgn(m$), where m? is the local magnetization
due to all couplings linked to the site j can be computed as:

m; = tanh Z atanh(m,,;) + Fy (187)
vEM;(4)
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One possibility for the decoding dynamics is to update Eqgs. (183) and (185) until
a certain halting criteria is reached, and then computing the estimate for the message
using equation (187). The initial conditions are set to reflect the prior knowledge about
the message m?,;(0) = 1 — 2p, and noise mj;(0) =1 — 2p.

As the prior information is limited, a polynomial time decoding algorithm (like
PP) will work only if the solution is unique or the initial conditions are inside the
correct basin of attraction. In this case the 2(NK + MC') equations (181) only need to
be iterated an O(1) number of times to get a successful decoding. On the other hand,
when there are many solutions, it is possible to obtain improved decoding in exponential
time by choosing random initial conditions and comparing free-energies of the solutions
obtained, selecting a global minimum.

Observe that the free-energy described here is not equivalent to the variational
mean-field free-energy introduced in [Mac95, Mac99]. Here no essential correlations are
disregarded except those related to the presence of loops are disregarded.

In the next section we will analyze the landscape of the replica symmetric free-
energy for three families of cnstruction parameters and will be able to predict the
practical performance of a PP decoding algorithm.

5.5. FEquilibrium results and decoding performance

The saddle-point equations (177) can be solved by using Monte-Carlo integration
iteratively. In this section we show that MN codes can be divided, as far as performance
is concerned, into three parameter groups: K >3, K =2 and K =1,L > 1.

We, therefore, treat each these cases separately in the following.

5.5.1. Analytical solution: the case of K >3  Replica symmetric results for the cases
of K > 3 can be obtained analytically, therefore we focus first on this simple case.
For unbiased messages (F; = 0), we can easily verify that the ferromagnetic state,
characterised by p = 1, and the probability distributions

m(z) =d(x — 1) (188)
T(Z)=6(x —1)
¢(y) = 6oy — 1)
6(H) =6 —1)
and the paramagnetic state of p = 0 with the probability distributions
m(x) = 0(x) (189)



Low Density Parity Check Codes — A Statistical Physics Prospective 63

satisfy replica symmetric saddle-point equations (177). Other solutions could be
obtained numerically. To check for that, we represented the distributions with
histograms of 20000 bins and iterated Eqs.(177) 100 — 500 times with 2 x 10°> Monte-
Carlo sampling steps for each iteration. No solutions other than ferromagnetic and
paramagnetic have been observed.
The thermodynamically dominant state is found by evaluating the free-energy of
the two solutions using Eq.(176), which yields
C
JrERRO = K F, tanh(F},), (190)
for the ferromagnetic solution and

fPARA = % In2—1In2- % In (2 cosh(F,)), (191)

for the paramagnetic solution.

Figure 24(a) describes schematically the nature of the solutions for this case, in

terms of the replica symmetric free-energy and overlap obtained, for various noise levels

p and unbiased messages pe = 1/2. The coexistence line in the code rate versus noise
level plane is given by

In 2

R,

JFERRO — fPARA = [R. — 1+ Hy(p)] = 0. (192)

This can be rewritten as

R.=1— Hy(p) =1+ plogy(p) + (1 — p)logy(1 — p), (193)

which coincides with channel capacity and is represented in Fig. 25(a) together with
the overlap p as a function of the noise level p.

Equation (193) seems to indicate that all constructions with K > 3 may attain
error-free data transmission for R < R, in the limit where both message and codeword
lengths N and M become infinite, thus saturating Shannon’s bound. However, as
described in Fig.24(a), the paramagnetic state is also stable for any noise level, what
has dynamical implications if a replica symmetric free-energy is to be used for decoding
(as is the case in probability propagation decoding).

To validate the solutions obtained we have to make sure that the entropy is
positive. Entropies can be computed by simply plugging distributions (189) and
(190) into Eq.(179). The energy densities for the unbiased case are u = upara =
upgrro = —a F, (1 — 2p), since the Nishimori condition is employed (see Appendix
B.3). Ferromagnetic entropies are spprro = ¢ — frerro = 0 and

SPARA = U — fpaRA
C C
=—akF,(1-2p) — e In2+1n2+ e In (2 cosh(F,)). (194)

It can be seen by using a simple argument that spara is negative below p.. For

P < De; fPARA > frERRO and u — SpARA > U — SFERRO -
This indicates that the distribution (190) is non-physical below p., despite being
a solution of replica symmetric saddle-point equations. This result seems to indicate
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Figure 24. Figures in the left side show schematic representations free-energy
landscapes while figures on the right show overlaps p a function of the noise level
p; thick and thin lines denote stable solutions of lower and higher free energies
respectively, dashed lines correspond to unstable solutions. (a) K > 3 - The solid
line in the horizontal axis represents the phase where the ferromagnetic solution
(F, p = 1) is thermodynamically dominant. The paramagnetic solution (P, p = 0)
becomes dominant at p., that coincides with the channel capacity. (b) K = 2 - The
ferromagnetic solution and its mirror image are the only minima of the free-energy up
to ps (solid line). Above ps; sub-optimal ferromagnetic solutions (F’, p < 1) emerge.
The thermodynamic transition occurs at p3 is below the maximum noise level given by
the channel capacity, which implies that these codes do not saturate Shannon’s bound
even if optimally decoded. (c) K =1 - The solid line in the horizontal axis represents
the range of noise levels where the ferromagnetic state (F) is the only minimum of the
free-energy. The sub-optimal ferromagnetic state (F’) appears in the region represented
by the dashed line. The dynamical transition is denoted by ps, where F’ first appears.
For higher noise levels, the system becomes bistable and an additional unstable solution
for the saddle point equations necessarily appears. The thermodynamical transition
occurs at the noise level p; where F’ becomes dominant.



Low Density Parity Check Codes — A Statistical Physics Prospective 65

that the replica symmetric free-energy does not provide the right description below p..
A simple alternative, is to use the frozen spins solution as the formulation of a theory
with replica symmetry breaking for highly diluted systems is a difficult task (see, for
example, [WS88, Mon98b]).

Nevertheless, the practical performance of the probability propagation decoding is
described by the replica symmetric theory, the presence of paramagnetic stable states
implies the failure of PP decoding at any noise level. Even without knowing the correct
physics below p,, it is possible to use an exhaustive search for the global minimum of
the free-energy in Section 5.4 to attain Shannon’s bound in exponential time.

5.5.2. The case of K =2 - All codes with K > 3 potentially saturate Shannon’s bound
and are characterized by a first order phase transition between the ferromagnetic and
paramagnetic solutions. Solutions for the case with K = 2 can be obtained numerically,
yielding significantly different physical behavior as shown in Fig.24(b).

At very large noise levels, the paramagnetic solution (190) gives the unique
extremum of the free-energy until the noise level reaches p;, at which the ferromagnetic
solution (189) of higher free-energy becomes locally stable. As the noise level decreases
to ps the paramagnetic solution becomes unstable and a sub-optimal ferromagnetic
solution and its mirror image emerge. Those solutions have lower free-energy than the
ferromagnetic solution until the noise level reaches p;. Below ps3, the ferromagnetic
solution becomes the global minimum of the free-energy, while the sub-optimal
ferromagnetic solutions remain locally stable. However, the sub-optimal solutions
disappear at the spinodal noise level py and the ferromagnetic solution (and its mirror
image) becomes the unique stable solution of the saddle-point Eqs.(177).

The analysis implies that ps, the critical noise level below which the ferromagnetic
solution becomes thermodynamically dominant, is lower than p. = H,'(1 — R) which
corresponds to Shannon’s bound. Namely, K = 2 does not saturate Shannon’s bound in
contrast to K > 3 codes even if decoded in exponential time. Nevertheless, it turns out
that the free-energy landscape, with a unique minimum for noise levels 0 < p < p;, offers
significant advantages in the decoding dynamics comparing to that of codes with K > 3,
allowing for the successful use of polynomial time probability propagation decoding.

5.5.3. The case of K = 1 and general L > 1 - The choice of K = 1, independently
of the value chosen for L > 1, exhibits a different behavior presented schematically in
Fig.24(c); also in this case there are no simple analytical solutions and all solutions
in this scenario but the ferromagnetic one have been obtained numerically. The first
important difference to be noted is that the paramagnetic state (190) is no longer a
solution of the saddle-point equations (177) and is being replaced by a sub-optimal
ferromagnetic state, very much like Gallager codes. Convergence to p = 1 solution can
only be guaranteed for noise levels p < p, , where only the ferromagnetic solution is
present.

The K =1 codes do not saturate Shannon’s bound in practice, however, we have
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Figure 25. Transition lines in the plane rate R versus the flip rate p, obtained from
numerical solutions and the TAP approach (N =10%), and averaged over 10 different
initial conditions with error bars much smaller than the symbols size. (a) Numerical
solutions for K =L =3, C =6 and varying input bias f; (O) and TAP solutions for
both unbiased (+) and biased () messages; initial conditions were chosen close to the
analytical ones. The critical rate is multiplied by the source information content to
obtain the maximal information transmission rate, which clearly does not go beyond
R =3/6 in the case of biased messages; for unbiased patterns Ha(fs) =1. (b) For
the unbiased case of K =L =2; initial conditions for the TAP (+) and the numerical
solutions ({) were chosen to be of almost zero magnetization. (c) For the case of
K =1, L = 2 and unbiased messages. We show numerical solutions of the analytical
equations () and those obtained by the TAP approach (+). The dashed line indicates
the performance of K = L = 2 codes for comparison. Codes with K = 1, L = 2
outperform K = L = 2 for code rates R < 1/3.
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Figure 26. Free-energies obtained by solving the analytical equations using Monte-
Carlo integrations for K = 1, R = 1/6 and several values of L. Full lines represent
the ferromagnetic free-energy (FERRO, higher on the right) and the suboptimal
ferromagnetic free-energy (higher on the left) for values of L = 2,...,7. The dashed
line indicates Shannon’s bound and the arrows represent the spinodal point values p;
for L = 2,...,7. The thermodynamic transition coincides with Shannon’s bound.

found that at rates R < 1/3 they outperform the K = L = 2 code (see Fig.25) while
offering improved decoding times when probability propagation is used. Studying the
replica symmetric free-energy in this case shows that as the corruption rate increases,
sub-optimal ferromagnetic solutions (stable and unstable) emerge at the spinodal point
ps- When the noise increases further this sub-optimal state becomes the global minimum
at p;, dominating the system’s thermodynamics. The transition at p; must occur at
noise levels lower or equal to the value predicted by Shannon’s bound.

In Fig.26 we show free-energy values computed for a given code rate and several
values of L, denoting Shannon’s bound by a dashed line; the thermodynamic transition
observed numerically (i.e. the point where the ferromagnetic free-energy equals the
sub-optimal ferromagnetic free-energy) is closely below Shannon’s bound within the
numerical precision used. Spinodal noise levels are indicated by arrows. In Fig.27 we
show spinodal noise levels as a function of L as predicted by the replica symmetric
theory (circles) and obtained by running PP decoding of codes with size 10*. The
optimal parameter choice is L = 2.

Due to the simplicity of the saddle-point equations (177) we can deduce the
asymptotic behavior of K =1 and L = 2 codes for small rates (large C') by computing
the two first cummulants of the distributions 7,7, ¢ and ¢ (Gaussian approximation).
A decoding failure corresponds to (h) ~ O(1) and o} ~ O(1). It implies that
() ~ O(1/C) and oz ~ O(1/C). For that y must be small and we can use
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Figure 27. Spinodal point noise level ps for K = 1, R = 1/6 and several choices of L.
Numerical solutions are denoted by circles and PP decoding solutions (10 runs with
size N =10%) by black triangles. Symbols are larger than the error bars.

atanh(tanh(y;)tanh(ys)) & 3192 and write :
(x) ~ O(1) o2~ O(1) 195
(7) ~ ()2 196
o2~y

(y) =
(y) = (tanh(z))(y)

o; = (tanh®(z))(y") — (tanh(z))*(y)’
To simplify further we can assume that p — 0.5. Therefore F,, ~ (1 — 2p) . The

critical observation is that in order to have (h) ~ O(1) we need that 7 ~ O(1/C) and
consequently (y) ~ O(1/+/C). Manipulating the set of equations above :

(y) ~ (tanhz)(y) + (1—2f)*
By imposing the condition over (y):C~'/2 ~ (1 — 2p)?(1 — (tanhz))~!
In terms of the code rate R = 1/C:
(1—2p)*

<

7 + (1-2p)F, o) =07 + Af(1—p)F]

{
{y
{y
{

Q

(195)
(196)
¥ = ) (197)
(198)
(199)
(200)

R~ 201
(1 — (tanhz))? (201)
The asymptotic behavior of Shannon’s bound is given by :
1—2p)?
R~ U=2" (202)

In 2
Thus, the K = 1 and L = 2 codes are not optimal asymptotically (large C' values).

In Fig.28 we verify the relation (201) by iterating first cummulant equations in
the delta approximation and first and second cummulant equations in the Gaussian
approximation.
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Figure 28. Asymptotic behavior of the transition for small rates. The full line
represents Shannon’s bound, circles represent transitions obtained by using only the
first cummulants and squares correspond to the Gaussian approximation.

5.6. Error-correction: reqular vs. irreqular codes

Matrix construction irregularity can improve the practical performance of MN codes.
This fact has been first reported in the information theory literature (see for example
[Dav99, Dav98, LMSS98]). Here we analyze this problem by using the language and tools
of statistical physics. We now use the simplest irregular constructions as an illustration,
here, the connectivities of the signal matrix C, are described by a simple bimodal
probability distribution:

Po(C) = (1 0) 5(C —C,) + 06(C —C.). (203)

The mean connectivity is C = (1—6) C, + 6 C, and C, < C < C,; bits in a group with
connectivity C, will be referred as ordinary bits and bits in a group with connectivity
C. as elite bits. The noise matrix C,, is chosen to be regular.

To gain some insight on the effect of irregularity on solving the PP equations
(183) and (185) we performed several runs starting from the fixed initial conditions
m;,;(0) =1 —2p and m};(0) = 1 — 2p as prescribed in the last section. For comparison
we also iterated the saddle-point equations (177) obtained by the replica symmetric
(RS) analysis, setting the initial conditions to be mo(z) = (1 — p¢) d(z — m;;(0)) +
pe 6(z +my,;(0)) and po(y) = (1 —p) o(y —mj(0)) + p d(y + my(0)), as suggested
from the interpretation of the fields 7(x) and p(y) in the last section.

In Fig.29 (a) we show a typical curve for the overlap p as a function of the noise level
p. The RS theory agrees very well with PP decoding results. The addition of irregularity
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Figure 29. (a) Overlap as a function of the noise level p for codes with K = L = 3
and C' = 15 with message bias p; = 0.3. Analytical RS solutions for the regular code
are denoted as ¢ and for the irregular code; with C, = 4 and C; = 30 denoted as
O. Results are averages over 10 runs of the PP algorithm in an irregular code of size
N = 6000 starting from fixed initial conditions (see the text); they are plotted as e
in the rightmost curve for comparison. PP results for the regular case agree with the
theoretical solutions and have been omitted to avoid overloading the figure. (b) Free-
energies for the ferromagnetic state (full line) and for the failure state (line with o).
The transitions observed in (a) are indicated by the dashed lines. Arrows indicate the
thermodynamic (T) transition, the upper bound (u.b.) of Section 5.1 and Shannon’s
bound.

improves the performance considerably. In Fig.29 (b) we show the free-energies of the
two emerging states. The free-energy for the ferromagnetic state with overlap p = 1 is
shown as a full line, the failure suboptimal ferromagnetic state (in Fig.29 (a) with overlap
p = 0.4) is shown as a line marked with o. The transitions seen in Fig.29(a) are denoted
by dashed lines. It is clear that they are far below the thermodynamic (T) transition,
indicating that the system becomes trapped in suboptimal ferromagnetic states for
noise levels p between the observed transitions and the thermodynamic transition. The
thermodynamic transition coincides with the upper bound (u.b.) in Section 5.1 and
is very close to, but below, Shannon’s limit which is shown for comparison. Similar
behavior was observed in regular MN codes with K = 1.

5.7. The spinodal noise level

The PP algorithm can be regarded as an iterative solution of fixed point equations for
the free-energy (181) which is sensitive to the presence of local minima in the system.
One can expect convergence to the global minimum of the free-energy from all initial
conditions when there is a single minimum or when the landscape is dominated by the
basin of attraction of this minimum when random initial conditions are used.

To analyze this point we run decoding experiments starting from initial conditions
m;,;(0) and mp,;(0) that are random perturbations of the ferromagnetic solution drawn
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Figure 30. Spinodal noise level ps for regular and irregular codes. In both
constructions parameters are set as K = L = 3. Irregular codes with C, = 4 and
C. = 30 are used. PP decoding is carried out with NV = 5000 and a maximum of 500
iterations; they are denoted by + (regular) and x (irregular). Numerical solutions for
the RS saddle-point equations are denoted by ¢ (regular) and o (irregular). Shannon’s
limit is represented by a full line and the upper bound of Section 5.1 is represented by
a dashed line. The symbols are chosen to be larger than the actual error bars.

from the following distributions:

P (m?;(0)) = (1= Xy) 6(m?;(0) — &) + As 6(m3;(0) +&;) (204)
and

P (m(0)) = (1= X,) 6(m(0) —7) 4+ Ay 6(mf}y(0) + 1), (205)

where for convenience we choose 0 < A\, =\, = X < 0.5.

We performed PP decoding several times for different values of A and noise level p.
For A < 0.026 we observed that the system converges to the ferromagnetic state for all
constructions, message biases p; and noise levels p examined. It implies that this state
is always stable. The convergence occurs for any A for noise levels below the transition
observed in practice.

These observations suggest that the ferromagnetic basin of attraction dominates
the landscape up to some noise level p,. The fact that no other solution is ever observed
in this region suggests that p, is the noise level where suboptimal solutions actually
appear, namely, it is the noise level that corresponds to the appearance of spinodal
points in the free-energy. The same was observed for regular MN codes with K =1 or
K =2.

We have shown that MN codes can be divided into three categories with different
equilibrium properties: (i) K > 3, (ii) K = 2 and (iii) general L > 1, K = 1. In the
next two subsections we will discuss these cases separately.
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Figure 31. Spinodal noise level p, for irregular codes as a function of the message
bias p¢. The construction is parameterized by K = L = 3, ', = 4 and C. = 30 with

C' = 15. PP decoding is carried out with NV = 5000 and a maximum of 500 iterations,
and is represented by +, while theoretical RS solutions are represented by ¢. The full
line indicates Shannon’s limit. Symbols are larger than the actual error bars

5.7.1. Biased messages: K >3 To show how irregularity affects codes with this choice
of parameters we choose K, L = 3, C, = 4, C, = 30 and biased messages with p; = 0.3.
These choices are arbitrary but illustrate what happens with the practical decoding
performance. In Fig.30 we show the transition from the decoding phase to a failure
phase as a function of the noise level p for several rates R in both regular and irregular
codes. Practical decoding (¢ an o) results are obtained for systems of size N = 5000
with a maximum number of iterations set to 500. Random initial conditions are chosen
and the whole process repeated 20 times. The practical transition point is found when
the number of failures equals the number of successes.

These experiments were compared with the theoretical values for py obtained by
solving the RS saddle-point equations (177) (represented as + and * in Fig. 30) and
finding the noise level for which a second solution appears. For comparison the coding
limit is represented in the same figure by a full line.

As the constructions used are chosen arbitrarily one can expect that these
transitions can be further improved, even though the improvement shown in Fig.30
is already fairly significant.

The analytical solution obtained for K > 3 and unbiased messages p = 1/2, implies
that the system is bistable for arbitrary code constructions when these parameters are
chosen. The spinodal noise level is then p; = 0 in this case and cannot be improved
by adding irregularity to the construction. Up to the noise level p. the ferromagnetic
solution is the global minimum of the free-energy, and therefore Shannon’s limit is
achievable in exponential time, however, the bistability makes these constructions
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Figure 32. Pictorial representation of the free-energy landscape for codes with K > 3
and biased messages p¢ < 0.5 as a function of the noise level p. Up to the spinodal
noise level p, there is only the ferromagnetic state F. At ps; another state F' appears
, dominating the decoding dynamics. The critical noise level p. indicates the point
where the state F' becomes the global minimum (thermodynamic transition).

unsuitable for practical decoding with a PP algorithm when unbiased messages are
considered.

The situation improves when biased messages are used. Fixing the matrices C,, and
C; one can determine how the spinodal noise level p, depends on the bias pe. In Fig.31
we compare simulation results with the theoretical predictions of p, as a function of pe.
The spinodal noise level p, collapses to zero as p¢ increases towards the unbiased case.
It obviously suggests using biased messages for practical MN codes with parameters
K > 3 and PP decoding.

The qualitative pictures of the energy landscape for coding with biased and unbiased
messages with K > 3 differ significatively. In Fig.32 this landscape is sketched as
a function of the noise level p for a given bias. Up to the spinodal noise level p,
the landscape is totally dominated by the ferromagnetic state F. At the spinodal
noise level another suboptimal state F’ emerges, dominating the decoding dynamics.
At p. the suboptimal state F’ becomes the global minimum. The bold horizontal
line represents the region where the ferromagnetic solution with p = 1 dominates the
decoding dynamics. In the region represented by the dashed line decoding dynamics is
dominated by suboptimal ferromagnetic p < 1 solutions.

5.7.2. Unbiased messages: For the remaining parameter choices, namely general L > 1,
K =1and K = 2, it was shown that unbiased coding is generally possible yielding close
to Shannon’s limit performance.

The K > 3 case the practical performance is defined by the spinodal noise level p;
and the addition of irregularity modifies p;.

In the general L, K =1 family we illustrate the effect of irregularity by the choice
of L=2,C,=4and C, = 10. In Fig.33 we show the transitions observed by performing
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Figure 33. Spinodal noise level p, for regular and irregular codes. The constructions
are of K = 1 and L = 2, irregular codes are parameterized by C, = 4 and C, = 10.
PP decoding is carried out with NV = 5000 and a maximum of 500 iterations ; they are
denoted by + (regular) and * (irregular). Numerical solutions for RS equations are
denoted by ¢ (regular) and o (irregular). The coding limit is represented by a line.
Symbols are larger than the actual error bars.

20 decoding experiments with messages of length N = 5000 and a maximal number of
iterations set to 500 (+ for regular and x for irregular). We compare the experimental
results with theoretical predictions based on the RS saddle-point equations (177) (¢
for regular and o for irregular). Shannon’s limit is represented by a full line. The
improvement is modest, as expected, since regular codes already present close to optimal
performance. Discrepancies between the theoretical and numerical results are due to
finite size effects.

We also performed a set of experiments using K = L = 2 with C,, = 3 and C, = 8,
the same system size N = 5000 and maximal number of decoding iterations 500. The
transitions obtained experimentally and predicted by theory are shown in Fig.34.

6. Cascading Codes

Kanter and Saad (KS) recently proposed a variation of MN codes that has been shown to
be capable of attaining close to channel capacity performance and outperforming Turbo
codes [KS99b, KS00b, KS00a]. The central idea is to explore the superior dynamical
properties (i.g. large basin of attraction) of MN codes with K = 1,2 and the potential
for attaining channel capacity of MN codes with K > 2 by introducing constructions
with intermediate properties. This is done by employing irregular constructions like the
one depicted in Fig. 36, with the number of non-zero elements per row set to several
different values Ky, - -, K,,.
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Figure 34. Spinodal noise level values p; for regular and irregular codes.

Constructions are of K = 2 and L = 2, irregular codes are parameterised by C, = 3
and C. = 8. PP decoding is carried out with N = 5000 and a maximum of 500
iterations; they are denoted by + (regular) and * (irregular). Theoretical predictions
are denoted by ¢ (regular) and o (irregular). The coding limit is represented by a line.
Symbols are larger than the actual error bars.

In Fig.35 we show a performance comparison (presented in [KS00b]) of Turbo, KS
and Gallager codes with optimized irregular constructions [RSUO1] for a memoryless
Gaussian channel . The bit error probability p, is plotted against the signal to noise
ratio in decibels (10 log,,(S/N)) for codes of sizes N = 1000 and N = 10000.

The introduction of multi-spin interactions of several different orders and of more
structured matrices makes the statistical physics of the problem much harder to solve.
We, therefore, adopt a different approach: first we write the probability propagation
equations and find an appropriate macroscopic description in terms of field distributions,
we then solve saddle-point like equations for the field distributions to find the typical
performance.

Cascading codes are specific constructions of MN codes. The signal matrix Cj
is defined by m random sub-matrices with K, K5, -+, K,, non-zero elements per row
respectively. The matrix C), is composed of two sub-matrices: C,,ﬁ’ =0i; + Oijta
and C’nl(.;) = 0;;. The inverse C;! used in the encoding process is easily obtainable.
In Fig.36 we represent a KS code with three signal sub-matrices, the non-zero elements
in the noise matrix C,, are denoted by lines, we also represent the inverse of the noise
matrix C - L

The signal matrix Cj is subdivided into A; x N sub-matrices, with j = 1,---,m.
The total number of non-zero elements is given by NC = Z;’l:l M;K; what yields
C= Z;n:l a;K;, where a; = M;/N. The code construction is, therefore, parameterized

by the set {(a;, K;)}. If we fix {K;}, the parameters {a;} completely specify the
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Figure 35. Bit error probability p, as a function of the signal to noise ratio for codes
of rate R = 1/2, sizes N = 1000 (right) and N = 10000 (left) in a memoryless Gaussian
channel. Black triangles represent cascading codes, dashed lines represent Turbo codes
and dotted lines represent optimized irregular Gallager codes of similar sizes [KS00b].

construction. A further constraint to the parameters set {a;} is provided by the choice
of a code rate, as the inverse code rate is o = M/N = ™" | a;.

Encoding and decoding using cascading codes are performed in exactly the same
fashion as described in 5 for MN codes. A binary vector ¢ € {0,1}* defined by

t = G¢ (mod 2), (206)

is produced, where all operations are performed in the field {0,1} and are indicated by
(mod 2). The code rate is R = N/M. The generator matrix G is a M x N dense matrix
defined by

G =C,;'C, (mod 2). (207)

The transmitted vector 7 is then corrupted by noise. Assuming a memoryless binary
symmetric channel (BSC), noise is represented by a binary vector ¢ € {0,1}" with
components independently drawn from the distribution P(¢) = (1—p) 6(¢)+p d(¢—1).

The received vector is

r =G+ ¢ (mod 2). (208)
Decoding is performed by computing the syndrome vector
z = Cpr = Cs€ + Cp¢(mod 2), (209)

from which an estimate E for the message can be obtained.
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Figure 36. Cascading construction with three signal sub-matrices with K;, K and
K3 non-zero elements per row, respectively. The number of non-zero elements per
column is kept fixed to C'. The noise matrix C,, is composed by two sub-matrices, the
non-zero elements are denoted by lines. The inverse C; ! is also represented.

6.1. Typical PP decoding and saddle-point like equations

In this section we show how a statistical description for the typical PP decoding can
be constructed without using replica calculations. To keep the analysis as simple as
possible we exemplify the procedure with a KS code with two signal matrices denoted
1s and 2s and two noise sub-matrices denoted 1n and 2n. The channel is chosen to be
a memoryless binary symmetric channel (BSC). The number of non-zero elements per
row is K7 and K5, respectively, and the inverse rate is a = a; 4+ ay. Therefore, for a
fixed code rate, the code construction is specified by a single parameter a;. We present
one code in this family in Fig.37.

The PP decoding dynamics for these codes is described by Egs. (185). However,
due to the irregular character of the construction, sites inside each one of the sub-
matrices are connected differently. Reminding the statistical physics formulation of MN
codes presented in Section 5.2, non-zero row elements in the matrices depicted in Fig.37
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Figure 37. Cascading code with two signal matrices with parameters K; and Ks.
Note that noise sites inside the shaded regions take part in a different number of
interactions than the ordinary sites.

correspond to sites taking part in one multi-spin interaction. Therefore, signal sites in
the sub-matrix 1s interact with other K; —1 signal sites in 1s and exactly two noise sites
in 1n. Moreover, the same site takes part in other a; K + as Ky — 1 multi-spin couplings
in both 1s and 2s. Sites in sub-matrix 2s interact with one noise site in 2n and K, — 1
signal sites in 2s, taking part in other oy Ky + as K5 — 1 multi-spin interaction. Noise
sites in the sub-matrix 1n interact with another noise site and with K; signal sites in
1s. Finally, noise sites in 2n interact with K5 sites in 2s. Thus, the Hamiltonian for a
KS code takes the following form:

My
H= — ’YZ(‘YM Sil e SiKlTMTM-I-A - 1) (210)
p=1

M M N
—y Y (TS ST =)= F Y = F ) S,
=M +1 =1 j=1
where J,, = &, - i, CuCuta, for p=1,--- My and J,, = &, -+ - &y, G for p = My +
1,--+, M. Additionally, Nishimori’s condition requires that v — oo, F; = atanh(1—2p;)
and F, = atanh(1 — 2p), where the prior probabilities are defined as in the previous
chapters.

We can write PP decoding equations for each one of the sub-matrices 1s, 2s, 1n
and 2n. The shaded regions in Fig.37 have to be described by different equations, but
can be disregard if the width A is of O(1), implying A/N — 0 for N — oo.

For the sub-matrix 1s we have:

m") = tanh Z atanh(ffz,(jljs)) + Z atanh(r?zl(, '5)) + Fi

1] J
VEM 4 (j)\p vEMoas(5)
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iy = Jumimt s [ mi?, (211)
1€L1s(n)\]
where the second equation represents interactions with two noise sites and and K; — 1
signal sites. The first equation represents the a; Ky + as Ko — 1 multi-spin interactions
the site j participates in.
Similarly, for the sub-matrix 2s we have:

m®) = tanh { Z atanh(ﬁz,(jljs)) + Z atanh(ﬁfﬁs)) + FS}

1j
veEMi4(j) vEMas(§)\v

=J,m ] m (212)

leLos(m)\j
For the sub-matrix 1n we have:
mLJ ") = tanh {atanh( i )) + F, } (213)
~(In
ij ) H muz ’ (214)
leﬂls )

where either j =, i=p+Aorj=p+A i=pu
Finally, for sub-matrix 2n we have:

m(" = tanh [F,] (215)
m@ =7, |1 m3) (216)
l€£2s(l~l)

The pseudo-posterior and decoded message are given by :

m; = tanh Z atanh(r’ﬁl(,bs))+ Z atanh(r’ﬁl%s)) (217)

vEMi;5(j) VEMoas(J)
& = sgn(m,). (218)
The above equations provide a microscopic description for the PP decoding process,
we can produce a macroscopic description for the typical decoding process by writing
equations for probability distributions related to the dynamical variables. It is important
to stress that the equations describing the PP decoding are entirely deterministic when
couplings J,, and initial conditions are given. The randomness comes into the problem
when quenched averages over messages, noise and constructions are introduced.
By performing the gauge transformation

mgf —&m m) m,ﬂ‘}s)ﬁgjmﬁgs) (219)
m = ¢ml ml = Gl (220)
J, —1  (a=1,2), (221)

introducing effective fields x,; = atanh(m,;), z,; = atanh(m,;) and assuming that
£09)3(a5) " (an) (am)
g o wg o g g

R, (), respectively, we get the following saddle-point like equations (for simplicity, we

are independently drawn from distributions P,(z), ﬁa@), R.(y),

restrict the treatment to the case of unbiased messages Fy = 0).
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Figure 38. Monte-Carlo integration of field distributions and simulations for a KS
code with two signal matrices (K; =1 and Ky =3) ,a =5 (R =1/5) and a; = 3.
Circles: full statistics (4000 bins). Squares: simulations N = 5000.

For the sub-matrix 1s:
a1 Ki1—1 a1 Ko

= / [ d@;Pi@) [] daiPa(@)
j=1 =1
a1 Ki1—1 ar Ko
X 0 [:1: — Z T — Z wl] (222)
j=1 =1

Ki—1

P(z) = / [T d=iPi(x;)dys Ry (y1)dya R (32) (223)

j=1

Ki—1
X 8 [f— atanh(tanh(y;)tanh(y,) ] tanh(xj))]
7=1
For 2s:
a1 K a1 Ky—1

/ H d:vjpl z;) H dwng(wl) (224)
X 0 [x - Og(j T — ‘”i‘l wl] (225)

=1
Ks—1

Py(7) = / H dr; Py () dy Ra(y)

j=1

Ky—1
X 0 [:1: — atanh(tanh(y H tanh( :1:] ]
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For 1n we have:

Ruly) = / 455 6 [y — T — CFal), (226)

1%(??) = /ﬂdwjpl(%)dle(?J)

X [?E — atanh(tanh(y) ﬂtanh(xj))]

Finally, for sub-matrix 2n:

Ry(y) = (0[y — CFal), (227)
. K> K>
7j=1 7=1
The typical overlap can then be obtained as in the case of MN codes by computing:
) = / dh P(h) sen(h) (228)
a1 Ky R a1 Ko R a1 Ky as Ko
P(h) = / I1 45,26 ] dabs(@) o [h— S -y wl] (229)
j=1 =1 j=1 =1

The numerical solution of these equations provides the typical overlap for cascading
codes with two signal matrices parameterized by a; (a3 = a—al). In Fig.38 we compare
results obtained by solving the above equations numerically (Monte-Carlo integration
with 4000 bins) and PP decoding simulations (10 runs, N = 5000) with R = 1/5 and
a1 = 3. The agreement between theory and experiments supports the assumptions
employed to obtain the saddle-point like equations.

6.2. Optimizing construction parameters

Equations (222) to (229) can be used to optimize code constructions within a given
family. For the family introduced in Fig.37 with fixed parameters K; and K, the
optimization requires to find the value of «y that produces the highest threshold p;.
In Fig.39 we show the threshold (spinodal noise level) p, for a KS code with K; = 1,
K, = 3 and rate R = 1/5 (aw = 5). The optimal performance is obtained by selecting
a; = 3 and is very close to the channel capacity.

7. Conclusions and Perspectives

In this chapter we analyzed error-correcting codes based on very sparse matrices by
mapping them onto spin systems of the statistical physics. The equivalence between
coding concepts and statistical physics is summarized in the following table.
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Figure 39. Spinodal noise level ps; as a function of a; for a KS code with K; = 1,
Ky =3 and R = 1/5 (a = 5). Circles: Monte-Carlo integrations of saddle-point
equations (4000 bins). Squares: PP decoding simulations (10 runs with size N = 5000).
The best performance is reached for a; = 3 and is close to the channel capacity for a
BSC (indicated by a dashed line).

Coding Theory Statistical Physics

message bits s spins S

received bits r multi-spin disordered couplings J (Sourlas)
syndrome bits z multi-spin couplings J (Gallager, MN, KS)
bit error probability p. | gauged magnetization p (overlap)

posterior probability Boltzmann weight

MAP estimator ground state

MPM estimator thermal average at Nishimori’s temperature

In the statistical physics framework, random parity-check matrices (or generator
matrices as in the case of Sourlas codes), random messages and noise are treated as
quenched disorder and the replica method is employed to compute the free-energy.
Under the assumption of replica symmetry we found in most of the cases that two
phases emerge: a successful decoding (p = 1) and failure (p < 1) phases. For MN codes
with K = 2 or K = 1 three phases emerge representing successful decoding, failure and
catastrophic failure.

The general picture that emerges shows a phase transition between successful and
failure states that coincides with the information theory upper bounds in most cases,
the exception being MN codes with K = 2 (and to some extent K = 1) where the
transition is bellow the upper bound.

A careful analysis of replica symmetric quantities reveals unphysical behavior for
low noise levels with the appearance of negative entropies. This question is resolved in
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the case of Sourlas codes with K — oc by the introduction of a simple frozen spins first-
step replica symmetry breaking ansatz. Despite the difficulties in the replica symmetric
analysis, threshold noise values observed in simulations using probability propagation
(PP) decoding agree with the noise level where meta-stable states (or spinodal points)
appear in the replica symmetric free-energy.

A mean-field (Bethe) theory based on the use of a tree-like lattice (Husimi cactus)
exposes the relationship between PP decoding and statistical physics and supports the
agreement between theory and simulations as PP decoding can be reinterpreted as a
method for finding local minima of a Bethe free-energy. Those minima can be described
by distributions of cavity local fields that are solutions of the replica symmetric saddle-
point equations.

The performance of the decoding process with probability propagation can be
obtained by looking at the Bethe free-energy landscape (or the replica symmetric
landscape), in this way we can show that information theoretic upper bounds can be
attained by looking for global minima of the Bethe free-energy, which may require
computing time that grows exponentially with the system size. In practical time scales,
simple decoding procedures that simply find minima become trapped in meta-stable
states. That is the reason why practical thresholds are linked to the appearance of
spinodal points in the Bethe free-energy.

For cascading codes we adopted a different approach for the analysis. Using the
insights obtained in the analysis of the other codes we started by writing down the PP
decoding equations and writing the Bethe free-energy and the saddle-point like equations
for distributions of cavity fields. The transitions predicted by these saddle-point like
equations were shown to agree with experiments. We then employed this procedure to
optimize parameters of one simple family of cascading codes.

By studying the replica symmetric landscape we classified the various codes by
their construction parameters, we also showed that modifications in code construction,
like the use of irregular matrices, can improve the performance by changing the way the
free-energy landscape evolves with the noise level. We summarize the results obtained
in the following table:

Channel capacity | Practical decoding of
unbiased messages
Sourlas K — x K =2
Gallager K — > any K
MacKay-Neal | K > 2 K=1l,any L >1or K =2
Cascading still unclear K; =1,2 for some j

These results shed light on the properties that limit the theoretical and practical
performance of parity check codes, explain the differences between Gallager and MN
constructions and explores the role of irregularity in LDPC error-correcting codes.

Some new directions are now being pursued and are worth mentioning. The
statistical physics of Gallager codes with non-binary alphabets is investigated
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in [NKSO01]. In [KSNSO01] the performance of error-correcting codes in the case of finite
message lengths has been addressed, yielding tighter general reliability bounds. New
analytical methods to investigate practical noise thresholds using statistical physics have
been proposed in [vMSKO01] and [KNvMO1] while the nature of Gallager codes phase
diagram was studied in detail in [Mon01].

We believe that methods developed over the years in the statistical physics
community can make a significant contribution also in other areas of information theory.
Research in some of these areas, such as CDMA and image restoration is already
underway.
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Appendix A. Sourlas Codes: Technical Details

Appendiz A.1. Free-energy

In order to compute free-energies we need to calculate the replicated partition
function (62). We can start from Eq.(60):

(Z")aga = Tr{Sf} [(exp (_6%(n)({5a }))>A,J,§] ' (A.1)

where H (™ ({8%}) represents the replicated Hamiltonian and « the replica indices. First
we average over the parity-check tensors A; for that an appropriate distribution has to
be introduced, denoting p = (i1, ..., ix) for a specific set of indices:

<NZH5 D A= C | Trispye 7{(n){s}> : (A.2)

{A} p\i g
where the ¢ distribution imposes a restriction on the connectivity per spin, A is a
normalization coefficient and the notation p \ i means the set y except the element i.
Using integral representations for the delta functions and rearranging:

(2") = Trgsp < (Hy{ o ZC+1> (A.3)

xz(nnz )exp <"><{sa}>>>

{A} €W €
Remembering that A € {0,1}, and using the expression (50) for the Hamiltonian we
can change the order of the summation and the product above and sum over A:

n F (&S
<Z >: T‘r{sa < ( 27rZ ZC+1> 66 Za,1£ 7
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xH 1+ ([ ] Z)exp (w ZHS“) >J . (A.4)

1EWL o 1EN
Using the identity exp(8J,[[;c, S) = cosh(B) {14— (H S") tanh(ﬁJM)} we can

e e

perform the product over o to write:

(2% = Tr{s”‘}/\/ (Hf{ ori ZC“) (58T (A4.5)
X H 1+ (H Zi) cosh”(B) <1 + (tanh(B8.J)) ZHSO‘

€N a €W

+ (tanh*(B)); Y J[Se TS + }

(araz) i€p JEM

Defining (p1, fto, ..., i) as an ordered set of sets, and observing that for large N,
I
D gy () = = (Zu()> we can perform the product over the sets p and replace the

energy series by an exponential:

(2" = Tf{saw (Hf[ omi ZC“) (=T, (4.6)
X exp [cosh (Z HZ + (tanh(BJ)) ZZH%S“

1EW a  u i€u

+ (tanh’(8)); Y Y [[Ziserse +

(a1a2) B i€R

Observing that > = 1/K!3-, . defining 7, = (cosh”(B.J)tanh'(8.7)); and
introducing auxiliary variables gq,..a,, = + >.; Z:5{...S7™ we find:

s = 3 (T 52 ) (42
(H/ dé‘ﬁ%) a7

K Toag: +T12qa +75<Z>qam
ol

X exp

X exp -N q0q0 + Z qaqa + Z qmaquo@ + ...

(a1a2)

(T F0i 655 exp 3 (ZI\OZZ- + 3G ZiSe + .. )
i «@

x Trise)
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The normalization constant is given by:

N=ST[01 D A-C. (A.8)

{4y i n\i

and can be computed using exactly the same methods as above, resulting in:

(Hfzmzm) </dq2077i@0>

X exp [ 7 4 — Nqodo + G Z Z; (A.9)

Computing the integrals over Z;’s and using Laplace method to compute the

integrals over ¢q and ¢y we obtain:
K

N @

N = exp 3 Extry, 5 Fq — Nqoqo + Nln ol (A.10)
The extremum point is given by

Go = N(l—K)/K[(K . 1)!0]1/1(
and

G = (CN)I V(K =) E
Replacing the auxiliary variables in Eq.(A.7) using qa,..an/% — qay..a,, and
Qoy...cn /90 = GQay...a,» cOmputing the integrals over Z; and using Laplace method to
evaluate the integrals we finally find Eq.(62).

Appendiz A.2. Replica symmetric solution

The replica symmetric free-energy (66) can be obtained by plugging the ansatz (65) into
Eq.(A.7). Using Laplace method we obtain:

1 C
(Z")aga = N &P {NEXtrw,% [?91 —CGy + 93] } , (A.11)

where:

6=+ Y [ [T (et s

+75 Z /H dz; m(z;) tanh®(Bz;)) + (A.12)
(arasz)

a1

Go=1+ Z/ dx dy 7(x) 7 (y) tanh(Sz) tanh(Sy)

+ 3 / da dy m(x) 7 (y) tanh? (Ba) tanh? (By) + ... (A13)

(a1 2)



Low Density Parity Check Codes — A Statistical Physics Prospective 87

and

Gs = %ln (H% i Zc“) {523 RGXP 5F§§¢5?>
X exp o (Z Zi +ZZ ZSQ/ dy 7(y)tanh(Sy)

DD ZSMS'”/ dy 7 (y)tanh®(By) + ... . (A.14)

(a1a) ¢

3

The equation for G; can be worked out by using the definition of 7, and the fact

that (31, oy 1) = < 7 )to write:

G, - <cosh" 5) [ (ﬁ a1 )

J=1

K n
X <1—|—tanh B.J) | ] tanh( 5;@) > : (A.15)
J

i=1
Following exactly the same steps we obtain:

G, = / 4 dyr(x) 7(y) (1 + tanh(8z) tanh(5y))" (A.16)

and

Gs = In  Tryge |7<exp (6F§ZSO‘>>
3
X me ZoT1eXP ( dy7(y H(l +So‘tanh(ﬁy))>] } (A17)

a=1

Computing the integral over Z; and the trace we finally find:

I {%/H dyi7 ()

[Z <e”5F5> H (1 4 otanh( ﬁyl))] } (A.18)

o==1
Putting everything together, using Eq.(59) and some simple manipulation we find
Eq.(66).
Appendix A.3. Local field distribution

In this appendix we derive explicitly Eq.(68). The gauge transformed overlap can be
written as

N
1
=N Z sign(mi)) 4 s » (A.19)
=1
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introducing the notation m; = (S;), where (- --) is a gauged average.
For an arbitrary natural number p, one can compute p-th moment of m;

P = i 1,62, . GPeBYhog M)
(M) 476 Tlgr(l]< IZ Sh.s2. ... SP 1 : (A.20)
S'..S A

where H(® denotes the gauged Hamiltonian of the a-th replica. By performing the
same steps described in the Appendices Appendix A.1 and Appendix A.2, introducing
the auxiliary functions 7(x) and 7(y) defined in Eqgs.(65), one obtains

c c
(mif) 46 = / 11 dvi7 ) <tanh” (ﬁFS +8Y yj> > : (A.21)
7j=1 7=1 ¢
Employing the identity

i . - 2n! T2\ /1 —z\™

which holds for any arbitrary real number z € [—1,1] and Eqgs.(A.21) and (A.22) one
obtains

L 1+ A\"™ (1-h\"™
e (397 (5
_ / dh P(h) sign(h), (A.23)
where we introduced the local fields distribution
c c
P(h) = /dej F(y;) <5(h—F§—Zyj)> , (A.24)
j=1 3=1 ¢
thus reproducing Eq.(68).
Appendix A.4. Zero temperature self-consistent equations

In this appendix we describe how one can write a set of self-consistent equations to solve
the zero temperature saddle-point equations (84). Supposing a three peaks ansatz given
by:

T(y) = pso(y — 1) +pod(y) +p-6(y +1) (A.25)
C-1
m(z) = Tips posc—11(1) 6(z = 1), (A.26)
=1-C
with
C-1)! -
T[P+,p0,p—;0}(l) = Z 75{;! X 772! p’i pg p_. (A.27)

{k,h,m ; k—h=l ; k+h+m=C—-1}
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We can consider the problem as a random walk, where 7(y) describes the probability
of one step of length y (y > 0 means one step to the right) and 7(z) describes the
probability of being at distance x from the origin after C' — 1 steps. With this idea in
mind it is relatively easy to understand T%,, o .c—1](1) as the probability of walking the
distance [ after C' — 1 steps with the probabilities p,, p_ and py of respectively moving
right, left and staying at the same position. We define the probabilities of walking
right/left as ¢ = 37 Tty pop—ic—1)(£l). Using second saddle-point equations (84):

Py = / [H dxﬂr(xl)] (A.28)
X <<5 ll—sign(JH:cl) min(| J |, 2y |,... ]> .

=1

The right side of the above equality can be read as the probability of making K — 1
independent walks, such that after C' — 1 steps: none is at origin and an even (for
J = +1) or odd (for J = —1) number of walks is at the left side.

Using this reasoning for p_ and p, we can finally write :

15

(K= o ko
pr=01-p) ) R T (A.29)
=0
[ E=L—1
¥ . (K —1)! 2 K =22
— DK -2-2j) 7
+ " odd(K — 1)
5511 (K1)
=(1- - 21y K=2j=2 A.30
p-=(-p) < K—y—rn (A-30)
K
(K —1)! 2 K—2j—1
tp < K =2 =i V- v

+ (1—p)" " odd(K — 1),

where odd(z) = 1(0) if x is odd (even). Using that p, + p_ 4+ py = 1 one can obtain py.
A similar set of equations can be obtained for a five peaks ansatz leading to the same set
of solutions for the ferromagnetic and paramagnetic phases. The paramagnetic solution
po = 1 is always a solution, for C' > K a ferromagnetic solution with p, > p_ > 0
emerges.
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Appendiz A.5. (J); = (J tanh(BnJ)) s

In this appendix we establish the identity (J); = (J tanh(8yJ)); for symmetric
channels. Tt was shown in [Sou94a] that :
1 p(J 1)
J=—-In|——=% A31

v = 5 n (L) (A31)
where By is the Nishimori temperature and p(J | J°) are the probabilities that a
transmitted bit J° is received as .J. From this we can easily find:
(1) —p(I | -1)
(J 1) +p(J|=1)
In a symmetric channel (p(J | —J°) = p(=J | J%)), it is also represented as
(1) —p(=T 1)
([ 1) +p(=T 1)

(A.32)

tanh (Gy J) = i

tanh (By J) = i (A.33)

Therefore,
Jp(J|1)

(J 1) +p(=J 1)

(=) p(=J 1)

(J 1) +p(=J 1)
Jp(J 1)

(J 1) +p(=J 1)
Jp(J 1)

(=7 [ 1) +p(J|1)

(J tanh (B J))s = Tryp(J | 1) p

+TTJP(J|1)p

=Tryp(J |1
J(|)p

+ Tryp(—=J | 1)
p

=Tr; Jp(J|1)
= (J)s. (A.34)

Appendiz A.6. Probability propagation equations

In this section we derive the probability propagation equations (36) and (34) in the
form (96). We start by introducing the following representation for the variables Qi};
5
and Ru};:
5, _ 1 s, _ 1 kS, A
Quk = 5 (1 + m#kSk) Ruk = 5 (1 + Mk k) . ( 35)
We can now put (91), (95) and (A.35) together to write:

R = L > %Cosh(BJﬂ) (1 + tanh(8.J,) [] Sj)

U (ekeL (i) iein

1
X H 5(1+muk5’k)
keL(m)\j

11
= o Z | cosh(8J,) | 1 + tanh(8.J,) H S;
{Sk:keL(p)\5} JEL(1)
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X 1+ Z mukSk + Z mukmulSkSl + .-
keL(u)\j k#leL(p)\]

11
= o~ cosh(J,) {1 + tanh(5J,) S, T

K
D keL(\j

1
=5 |1+ tanh(8J,) S; T - (A.36)
keL(u)\j
To obtain the last line we used that the normalization constant is a, = 52— cosh(5.J},).
Writing the above equation in terms of the new variable m,, we obtain the first equation

(96):
e = R — RU) (A.37)

uk uk

1
=3 1 + tanh(8J,) H 'm#k

keL(u)\j
1
) 1 — tanh(8J,) H ,m”k
keL(pn)\j
= tanh(S.J,) H M-

keL(pn)\j

To obtain the second equation (96), we write:

1 1 .
QY = Ok (1+tanh(8yS:) ] 5 (1 4 Sy - (A.38)
vEM(k)\u
In the new variables m,, :
1 .
Mk = ke | (1+ tanh(By)) T @+ (A.39)
veM(k)\p

— (1—tanh(8y)) J[ (-

veM(k)\n
By using the identity e”® = cosh(z)(1 + otanh(x)) we can write:
exp [Z%M(k)\# atanh(m,;) + ﬁ}v]
a;klZK cosh(By) [T, e mep . cosh(atanh(m,y))
exp [— > vemi) atanh(myg) — 6}\,}
a;klZK cosh(By) IT,c ey . cosh(atanh(myy))
Computing the normalization a,; along the same lines gives:
B exp [ZVGM(,C)\# atanh(m,) + B}V]
Duk = 9K cosh(By) [T, e mep . cosh(atanh(m,y))

(A.40)

muk =
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exp {— D veM\u atanh(m,) — Sy

A4l
* 2K cosh(By) [, e mepy, cosh(atanh(m,y)) ( )

Inserting (A.41) into (A.40) gives:
myx = tanh Z atanh(myr) + By | - (A.42)

veM(k)\n

Appendix B. Gallager Codes: Technical Details

Appendiz B.1. Replica theory

The replica theory for Gallager codes is very similar to the theory obtained for Sourlas
codes (see Appendix A). We start with Eq.(116):

= > ]I <eXp (FgﬂZT >> (B.1)

7_17' ’7-11 J 1

x < [T ITew [mA<n---z~K><nﬂ:---ﬁ;—1>}> -
¢ A

111K> a=1

The average over constructions A is then introduced using Eq.(117) :

i 2 )

7', 7 g=1
Dir=ivia, i) Air=ioeiz)
{A} j=1
H exp [57-'4@1-..1,() Z(Tf; - -Ti”‘K — 1)] ) (B.2)
(i1ix) a=1

After observing that

(i1=7,1 ‘Al ; i
HZ 1=dia r=din) H (Zi, -+ Z3, ) Miino

(i1-+ik)

we can compute the sum over Ay, ...,y € {0,1}:

(ZMac = % S T1 <exp (FCﬂZTja>> (B.3)
: ¢
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We can now use the identity e = cosh(z)(1 + otanh(z)), where o = +1, to write:

R (8
x ZH

T j{ 27i ZCJrl

X H {1 + M(Z“Z”{)

en57

(iy i)

X H T tanh(ﬁ*y)]}.

By following Appendix A.1 from Eq.(A.5) we can finally find Eq.(120).

Appendiz B.2. Replica symmetric solution

As in the code of Sourlas (Appendix A.2) the replicated partition function can be put
into the form:

1 C
<Zn>A,( = N exp {M Extr, z [?91 - CG + 93} } . (B.5)
Introducing the replica symmetric ansatz (121) into the functions G, G and G3 we
obtain:
Gi(n) = 75+Tl2qa +Ta ) QR+ (B.6)
(a1a2)
cosh™ (37) n! K
= enWﬁ j[ ITI dlb xg (7}—— 1)! tallh(ﬁ%y)]jl.rj
]:
n!
2
+ ( ~ oy tanh*((37) HSU + -

_ COSEIMB /Hd:c] «T]
ity L /dea m(z;) 1+Hx]

where we use the Nishimori condition v — oo, B = 1 to obtain the last line.

=14+ ZQQQa + Z Qa1a2qa1a2

a1a2

_ / ded? 7(2)7(3) [1 + 23]" (B.7)

K n
1+ tanh(57) H ]

3

and

1
Gs(n) = Mln Tryray <exp

ge])

¢
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dz exp {Z ZZLZO Z<a1~~~am) Z]\a1~~~am 7O L7 Cm

P o 70+
L Fﬁgzn: a

= — In Tryre ex T
=7 0 Trieey p 2 C

X

fggpmﬂzfﬁﬁ@>HLJ1+fﬁﬂ]

27 ZC+1

C n
= M C' /Hdl‘l ™ /SE\Z [T_Zil <eFﬂCT>C E(l +7'/ZE\[) (BS)
By using Eq.(115) we can write
f=—gBxteg oo | 56i0) — CGaln) + o) (B9
= ﬁXrﬂ,ﬂannzoKln 2l 3\n)|, .

what yields the free-energy (123).

Appendix B.3. Energy density at the Nishimori condition

In general the average internal energy is evaluated as:
U = (M, F*))ge) 7 (B.10)
Z Zg VB {ju} ‘ C) PFB(C)
ng 76({~7u} ‘ C) PFB(C)
y ZT HOY F*) P ({Tu} | ) Ppep-(7)
> Pyes-({Tu} | T) Preg-(T)

where the hyper-parameters v*, F* are used in the Hamiltonian H and [3* is the

(B.11)

temperature, while v, F' and [ are the actual parameters of the encoding and corruption
processes.

The Nishimori condition is defined by setting the temperature and all hyper-
parameters of the Hamiltonian to the values in the encoding and corruption processes.
If this is done, the expression for the energy can be rewritten:

2g. H(WF) Pys({Tu} | T) Prp(T)
7. BT} [ 7) Prs(C)

By plugging (106) for the likelihood P,s({J,} | ) and for the prior Ppg(¢); setting
the hyperparameters to v — oo, § = 1 and F' = atanh(1 — 2p) and performing the

U =

(B.12)

summation over J first, we easily get:

U
= lim — =— F (1 - 2p). B.1
u= lm ©=—F (1-2) (B.13)

M-

Note that this expression is independent of the macroscopic state of the system.
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Appendiz B.4. Recursion relations

We start by introducing the effective field z,, :

Puy(H)e = Puy(-)e”
Fuy(H)e 77+ Byy(-)e
Equation (129) can be easily obtained from the equation above. Equation (130) is

tanh(ﬂ/x\,,j) =

(B.14)

then obtained by introducing Eq.(128) into Eq.(129) and performing a straightforward
manipulation we obtain Eq.(131):

T\I‘{Tj}eﬂ')/(_:]u Hj Tj—l) H;j H;’ eﬂFTj—l—ﬂfy]‘(T]‘—l)

exp(—207 ) = , (B.15)

Tr{Tj}eﬁ'Y(‘FJuTk H;’ Tj—l) H;j H;’ eﬁFTj—I—ﬁfw‘ (Tj—l)
where

P,;(1;)e PFi

exp (B3, (1 — 1)) = ~u\ 7)) ~ 7

p(ﬁ J( J )) Pyj(_'_)e_ﬁp

and the products H’V and H;’ are over v € M(j) \ pand j € L(u) \ k respectively.
The above equation can be rewritten as:

Tri-3 H; e(5F+ZL 703 ) T [(1 f H;' Tjtanh(ﬁv)ﬂ
Ty [T e P72 20)% [ (14 7, TT; mytanh(8y) ) |
By introducing the Nishimori condition f =1 and v — oo and computing traces:
HJEﬂ(u)\k does1 € = Ty Hjeﬁ(u)\k Dy TEMIT
Iliccue 2orms1 €47 + Tuljesqu 2or—sr T

1= Tulljecqy tanh(zy))
U+ Tl tanh(zy,)’

e726§uk —

(B.16)

exp(—207 ) =

(B.17)

where we have introduced

Tpj = F+ Z :fl,j.
veM(j)\p

A brief manipulation of the equation above yields Eq.(131).

Appendix C. MN codes: technical details

Appendiz C.1. Distribution of syndrome bits

In this section we evaluate probabilities p? associated to syndrome bits in MN and
Gallager codes.
In the case of Gallager codes a syndrome bit 4 has the form

z#:Ch@"'@Clki (Cl)

where ¢ € {0,1} and @ denotes mod 2 sums. Each bit (; is randomly drawn with
probabilities P(( = 1) = p and P(¢ = 0) = 1 — p. The probability p(K) of z, = 0
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equates with the probability of having an even number of (;, = 1 in the summation,
therefore:
K I
0 _ : l K-l
PAK) = ) mp(l - p)
I even
K
K!
= (=1)! ey (1 =) (C.2)
z §n (K =D
Consequently
K
K!
1 _ I K-l
p.(K) = Z mp(l —p)
1 odd
K
K!
= - (—1)! ey P (1 =) (C.3)
z%d (K =D
;From equations (C.2) and (C.3) above we can write:
K K|
1-2p(K) = Z (—1)! m pl(1—p)~!
1 odd S
=(1-p-p)~=0-2p" (C.4)
. From what we find:
1 1
p.(K) = 5 5= 2p)*. (C.5)

For MN codes syndrome bits have the form:
=& ® B DB By, (C.6)

where signal bits &; are randomly drawn with probability P({ = 1) = p¢ and noise bits
¢, are drawn with probability P({ = 1) = p.
The probability p(K, L) of z, = 0 is, therefore:

p2K, L) = p)(K)p)(L) + pL(K)pi(L)
=1—pl(K)—pl(L) + 2 pi(K)p,(L). (C.7)

where pZ(K) and p}(L) stand for probabilities involving the K signal bits and L noise
bits, respectively.
By plugging equation (C.5) into equation (C.7) we get:

=5 52K (1) (©8)
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Appendixz C.2. Replica theory
For MN codes the replicated partition function has the following form:

(Zacc= >, >, H<exp <F56250)> (C.9)

S SnT1 Tn] 1

(= 2)>

< H exp 57«4_71 (S5 - Se T T — 1)}>
Jl a=1 A
By introducing averages over constructions (117) as described in Appendix B.1 we find:

(ZMacc= Y. >, H<exp <F55250)> (C.10)

S SnTl'TTLJI

M)

N

N

X Z HPC(C]) HPD(DZ)
1
% WZH

{C;,D;} §=1
?{ Z( = "4(]1 =j, J>]
Z J1=4:32," JK
C +1
o1 27TZZ
< 1

% le 1 YZ(j,ll—l,IQ,---,lL)A(jall_la"'le)]
. D;+1 {
i 2m Y,

x | exp [57,4%2(5 LSS T T — 1)] .
b o=t
Computing the sum over A we get:

(2" aec = Z > H<exp <F€BZS“)>

SnTl' TTL] 1

M
<exp (Fncﬁ > T;‘) >
j=1 a=1 ¢

N

> I Peen TPy

(Cy,Di} j=1

j[dZ 1 j[le 1
27 ZC +1 27 Y;Dl“

Zi o Zi Yy o0 Y,
X H{l + B
(al)

M

X

X

X
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X Hexp [By(S¢ ---Sf‘KTl‘f---Tf;)}} . (C.11)

We use the identity e*” = cosh(z)(1 + otanh(z)), where o = £1, to write:

(ZMacc= Y. >, H<exp (Fgﬁzsa)> (C.12)

S Sn}rl,}rngl

X H <exp (FnCBZTJO‘) >
j=1 a=1 ¢

S TIPe(c) TIPo(my)

{Cszl}j_l
1 dy; 1
N 2772 ZC +1 fﬁﬁDl+l (C.13)
Cosh"(ﬁv)
X H{1 + enT(Zn“'ZiKYh‘“YlL)

X H 1+ 5¢---8¢ 7% -7/ tanh(57)] } :

The product in the replica 1ndeX a yields:

H 1+ S&---S2 727 tanh(By)] = Z [tanhm(ﬁfy) (C.14)
a=1 m=0
> Z S SRm L G G 'Tl?mTlil ...Tlozm},
<a17"'7am>
where (v, -, ) ={ag, - am i ap < < ap

The product in the multi-indices (¢l) can be computed by observing that the

following relation holds in the thermodynamic limit:
mmax

H (1 + w(l'l)) - Z Z Yiany, Wity m

(al) m=0 ((il)1,-+(il)m)
T exp {Z ¢<iz>} : (C.15)
with mmaz ~ (NEML) /KL

We find Eq.(173) by putting Eqs.(C.15) and (C.14) into (C.12) and using the
following identities to introduce auxiliary variables:

r N
1 (e} «
/ dGayam O |Gayay, — v szsjl Lo S m] =1

M
]‘ a1 am
/drm...amé Tayoany, — MZY}TI T ] =1 (C.16)
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Appendiz C.3. Replica symmetric free-enerqy

We first compute the normalisation A for a given :

qudQO drodry
v [ (5 ] (50)

LNK R R
X exp{ KL 76‘]0 7“0 — Nqoqo — MTOTO]
dZ;exp | qu dY; exp [Yi7o]
H% 271 C +1 Hf 2mi YDl+1 (017)

By using Cauchy’s integrals to 1ntegrate in Z; and Y; and Laplace’s method we get:

MENK
N =exp {Extrqo,%,rofo [ KL

5e(f) e ()]}

j=1 =1

76‘10 7"0 NqoGo — Moy

The extremisation above yields the following equations:

N
~ 1 —
D% = 77 ZC]‘ =C (C.19)
j=1
| M
oo =47 ; L=1L (C.20)
KL — (K —1L!
0 — C NKflML . (021)
The variables can be normalised as:
foam Qoyayy Tarwam Ty oy, - (C.22)
qo To

By plugging Egs.(C.18), (C.19), the above transformation into (173) and by using
Laplace’s method we obtain:

(Z2")aec = Extry, ;7 qexp | N— Z Z mqa1 o 51,,,am

(a1-am)

- NCZ Z qm amqm ‘Qm

(a1+am)

- MLZ Z (N DN

(a1 am)

[12_Petc; IS Poion
)

on
(ﬁ) Tr{s}x} <exp
1 \9

::]2

X
=

J i3
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% dZJ P |:Z] ZZ:U Z(al---am) a\al---am Sar ... Soém:|
X

271 ZC’j +1

J
M
X H <AD1> Trzey <exp

=1

Fnﬁc Z Tla] >
a=1 ¢

in exp |:Yi ZZ:O Z(al---am) ?al"'am T Tam:|

omi YlDlJrl

(C.23)

where T, = e "7 cosh™ () tanh™(B37).
We can rewrite the replicated partition function as:

C _
(Z2") a6c = exp {N Extreg7 [?gl —CGy — LG3 + Gy + 95} } (C.24)

Introducing the replica symmetric ansatze:

I / de 7(2) 2™ G, = / i3 7 () 7 (C.25)
and
Tajam = /dy o(y) y" Taywam = /d?j 3@) y". (C.26)

By introducing Nishimori’s condition 7 — oo and § = 1, we can work each term
n (C.24) out and find:

Gi(n) = T0+leq§rg+7 > g e (C.27)

(al a2)

cosh™ (S
= T B ) /Hd% dez o(y1)
L

| K
1+(nn tanh(S7) ijHyl

j=1 =1

L
:EHy + -

=1 =1

n! K
+ 72 tanh2 5’}/
J

( )|2|
h"( -
- [T vt [Tt

=

K L n
1+ tanh(S7) H iy H yl]
1=1

j=1 =

g / dey () dez¢ )

K L n
it H] ,
':1 =1
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=14+ ZQQQa + Z Qa1a2qa10¢2

(a102)
_ / drds (2)7(E) [1 + 23]

Similarly,

=1+ Zro/ra + Z Talagralag

(@1az)

- / dydg o(y)3@) [1 + vil".

N

Gi(n) = In ) " Pe(C) (%

j=1 dy

X Trygay |:<exp

sﬂSZS“ >
3

27 chf' +

ke ()

]

X

3

X

j{ dZ; exp {Zj an:[] Z(m---am) Qoy o, S]‘?“ o

271 AChE
j

=In ;PC( /demr ) {Z <eFS’855> H 1+ 57) -‘

S=+1

In the same way:

Zln ZPD D)) <?51>

<exp F,.B¢ Z Tla] >
a=1

X Tr{Ta}

¢

dYE exp |:Y2 ZZ:O Z(al---am> ?Oél"'am 7—la1

]g dz, exp [7; [ dir(@) [Taz,(1+ S53)] ]

21 Y}Dl“

101

(C.28)

(C.29)

SJ%}] (C.30)

J

(C.31)
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X Tr{D?} <exp

Fnﬁc Z Tla] >
a=1 ¢

2y, &5 [Yi [ dga(@) TTiey (1+709)]

2171 Y2D1+1
D, n
=1In ZPC Dy) /dez o(U1) [Z (e™7eT). [T +73)
T=%1 i=1
By using Eq.(166) we can write
1 d C _ _
f = — BEXtrﬂ,ﬁ,¢,$ a—n L [Egl (n) - ng(n) - ng(n) (032)

+ Gu(n) +Gs(n)],
what yields free-energy (176).

Appendiz C.J. Viana-Bray model: Poisson constructions

The Viana-Bray (VB) model is a multi-spin system with random couplings and strong
dilution [VB85]. We can introduce a VB version of our statistical mechanical formulation
for MN codes. The Hamiltonian for a VB-like code is identical to Eq.(160):

Hgauge(s Tag C _’YZAJZ ’ 7—l1"'7—lL_1)

- FSZgSj — FnZgn. (C.33)
j=1 =1

The variables A(jl) are independently drawn from the distribution:

P(A) = <1 - %) 5(A) + % S(A—1). (C.34)

The above distribution will yield the following averages:

ZAJI > =M (C.35)

< 1) o -
(1=j-jxli-lr) A

Ay > = L. (C.37)
) 4

(Grdrlhi=
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In the thermodynamic limit the above summations are random variabels with a Poisson

distributions:
MJ?
_ . _—-M
Py Ajp =7 =e M= (C.38)
gb
_°
_ __-C
P Y. Ajpy=ap=e — (C.39)
(J1=4-jxlilr)
Tt
_ _ —L

(J1-jxli=l--lr)
Since the variance of a Poisson distribution is given by the square root of the mean in
the thermodynamic limit:

P ZIA<jl>:x M2 5 (x — M), (C.41)
20

The Poisson distribution for the construction variables C' and L will imply that a fraction
Ne=C of the signal bits and Me™L of the noise bits will be decoupled from the system.
These unchecked bits have to be estimate by randomly sampling the prior probability
P(S;), implying that the overlap p is upper bounded by:

1 —_ _
p < N N — Ne @ + Ne™“(1 — 2p¢)

<1—e4e 71— 2p)
<1—2pee . (C.42)

Therefore, a VB-like code has necessarily an error-floor that decays exponentially with
the C chosen.
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