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t. In this 
hapter we review re
ent theoreti
al work on the statisti
al physi
sof error 
orre
ting 
odes. We dis
uss the typi
al performan
e of four families of error-
orre
ting 
odes based on very sparse linear transformations: Sourlas 
odes, Gallager
odes, Ma
Kay-Neal 
odes and Cas
ading 
odes. By mapping the de
oding problemonto Ising spin systems with multi-spins intera
tions we are able to 
al
ulate averagesover 
ode 
onstru
tions, messages and noise. We �nd, as the noise level in
reases,a phase transition between su

essful de
oding and failure phases. This phasetransition 
oin
ides with upper bounds derived in the information theory literaturein most 
ases. We relate the pra
ti
al de
oding algorithm known as probabilitypropagation to the task of �nding lo
al minima of a free-energy. We show that pra
ti
alde
oding thresholds 
orrespond to noise levels where suboptimal minima of the free-energy emerge. Simulation results of pra
ti
al de
oding s
enarios using probabilitypropagation agree with theoreti
al predi
tions of the statisti
al physi
s approa
h. Thetypi
al performan
e predi
ted by the phase transition pi
ture is shown to be attainableonly in 
omputating times that grow exponentially with the message size. We use someof the physi
al insights obtained to design a method to 
al
ulate the performan
e andoptimize parameters of 
as
ading 
odes.
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tive 21. Introdu
tion1.1. Error-
orre
tionThe way we 
ommuni
ate has been deeply transformed during the twentieth 
entury.Telegraph, telephone, radio and television te
hnologies have brought to realityinstantaneous long distan
e 
ommuni
ation. Satellite and digital te
hnologies have madeglobal high-�delity 
ommuni
ation possible.Two obvious 
ommon features of modern digital 
ommuni
ation systems are thattypi
ally the message to be transmitted (e.g. images, text, 
omputer programs) isredundant and the medium used for transmission (e.g. deep-spa
e, atmosphere, opti
al�bres, et
...) is noisy. The key issues in modern 
ommuni
ation are, therefore,saving storage spa
e and 
omputing time by eliminating redundan
ies (sour
e 
odingor 
ompression) and making transmissions reliable by employing error 
orre
tionte
hniques (
hannel 
oding). Shannon was one of the �rst to point out these keyissues. His in
uential 1948 papers [Sha48℄ proved general results on the natural limitsof 
ompression and error-
orre
tion by setting up the framework to what is now knownas information theory.Shannon's 
hannel 
oding theorem states that error-free 
ommuni
ation is possibleif some redundan
y is added to the original message in the en
oding pro
ess. Amessage en
oded at rates R (message information 
ontent/
ode-word length) up tothe 
hannel 
apa
ity C
hannel 
an be de
oded with a probability of error that de
aysexponentially with the message length. Shannons proof was non-
onstru
tive andassumed en
oding with unstru
tured random 
odes and impra
ti
al (non-polynomialtime) [CT91℄ de
oding s
hemes. Finding pra
ti
al 
odes 
apable of rea
hing the natural
oding limits is one of the 
entral issues in 
oding theory.To illustrate the diÆ
ulties that may arise when trying to 
onstru
t highperforman
e 
odes from �rst prin
iples, we 
an use a simple geometri
 illustration. Onthe top left of Fig.1 we represent the spa
e of words (a message is a sequen
e of words),ea
h 
ir
le represents one sequen
e of binary bits. The word to be sent is represented bya bla
k 
ir
le in the left side �gure. Corruption by noise in the 
hannel is represented inthe top right �gure as a drift in the original word lo
ation. The 
ir
le around ea
h wordrepresent spheres that provide a de
ision boundary for ea
h parti
ular word, any signalinside a 
ertain de
ision region is re
ognized as representing the word at the 
enter ofthe sphere. In the 
ase depi
ted in Fig.1 the drift 
aused by noise pla
es the re
eivedword within the de
ision boundary of another word ve
tor, 
ausing a transmission error.Error-
orre
tion 
odes are based on mapping the original spa
e of words onto a higherdimensional spa
e in a way that the typi
al distan
e between en
oded words (
odewords)in
reases. If the original spa
e is transformed, the same drift shown in the top of Fig.1 isinsuÆ
ient to push the re
eived signal outside the de
ision boundary of the transmitted
odeword (bottom �gure).Based on this simple pi
ture we 
an formulate general designing 
riteria for gooderror-
orre
ting 
odes: 
odewords must be short sequen
es of binary digits (for fast
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Figure 1. In the top �gure we illustrate what happens when a word is transmittedwithout error-
orre
tion. White 
ir
les represent possible word ve
tors, the bla
k 
ir
lerepresents the word to be sent. The 
hannel noise 
auses 
orruption of the originalword that is represented by a drift in the top right pi
ture. The dashed 
ir
les indi
atede
ision boundaries in the re
eiver; in the 
ase depi
ted, noise 
orruption leads to atransmission error. In the bottom �gure we show qualitatively the error 
orre
tionme
hanism. The redundant information 
hanges the spa
e geometry, in
reasing thedistan
e between words. The same drift as in the top �gure does not result in atransmission error.transmission), the 
ode must allow for a large number of 
odewords (for a large setof words) and de
ision spheres must be as large as possible (for large error-
orre
tion
apability). The general 
oding problem 
onsists of optimizing one of these 
on
i
tingrequirements given the other two. So, for example, if the dimension of the latti
e anddiameter of de
ision spheres are �xed, the problem is �nding the latti
e geometry thatallows the densest possible sphere pa
king. This sphere pa
king problem is in
ludedin the famous list of problems introdu
ed by Hilbert (it is a
tually part of the 18thproblem). This problem 
an be solved for a very limited number of dimensions [CS98℄,but is very diÆ
ult in general. As a 
onsequen
e, 
onstru
tive pro
edures are knownonly for a limited number of small 
odes.For long, the best pra
ti
al 
odes known were Reed-Solomon 
odes (RS), operatingin 
onjun
tion with 
onvolutional 
odes (
on
atenated 
odes). The 
urrent te
hnologi
alstandard are RS 
odes, proposed in 1960, found almost everywhere from 
ompa
tdisks to mobile phones and digital television. Con
atenated 
odes are the 
urrentstandard in deep-spa
e missions (e.g. Galileo mission) [MS77, OO79℄. Re
ently, Turbo
odes [BGT93℄ have been proven to outperform 
on
atenated 
odes and are be
omingin
reasingly more 
ommon. These 
odes are 
omposed of two 
onvolutional 
odesworking in parallel and show pra
ti
al performan
e 
lose to Shannon's bound whende
oded with iterative methods known as probability propagation, �rst studied in the
ontext of 
oding by Wiberg [Wib96℄.Despite the su

ess of 
on
atenated and Turbo 
odes, the 
urrent performan
e
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ord is owned by Gallager's low-density parity-
he
k 
odes, e.g., [Chu00, Dav99,Dav98℄. Gallager 
odes were �rst proposed in 1962 [Gal62, Gal63℄ and then were allbut forgotten soon after due to 
omputational limitations of the time and due to thesu

ess of 
onvolutional 
odes.To give an idea of how parity-
he
k 
odes operate, we exemplify with the simplest
ode of this type known as Hamming 
ode [Ham50℄ . A (7; 4) Hamming 
ode, where (7; 4)stands for the number of bits in the 
odeword and input message respe
tively, operatesby adding 3 extra bits for ea
h 4 message bits, this is done by a linear transformationG, 
alled the generator matrix, represented by:
G = 0BBBBBBBBB�

1 0 0 00 1 0 00 0 1 00 0 0 10 1 1 11 0 1 11 1 0 1
1CCCCCCCCCA : (1)

When the generator matrix G is applied to a digital message s = (s1; s2; s3; s4), we getan en
oded message de�ned by t = Gs 
omposed of 4 message bits plus redundantinformation (parity-
he
k) as 3 extra bits t5 = s2 � s3 � s4, t6 = s1 � s3 � s4 andt7 = s1 � s2 � s4 (� indi
ates binary sums). One interesting point to note is that thetransmitted message is su
h that t5 � s2 � s3 � s4 = 0 and similarly for t6 and t7, whatallows dire
t 
he
k of single 
orrupted bits. The de
oding pro
edure relies in a se
ondoperator, known as parity-
he
k matrix, with the property HG = 0. For the generator(1) the parity-
he
k matrix has the following form:H = 0B� 0 0 0 1 1 1 10 1 1 0 0 1 11 0 1 0 1 0 1 1CA : (2)The de
oding pro
edure follows from the observation that the re
eived message is
orrupted by noise as r = Gs � n. By applying the parity-
he
k matrix we get thesyndrome Hr = Hn = z. In the (7; 4) Hamming 
ode the syndrome ve
tor gives thebinary representation for the position of the bit where an error has o

urred (e.g. ifn = (0; 0; 1; 0; 0; 0; 0), z = (0; 1; 1)). Due to this ni
e property de
oding is trivial andthis 
ode is known as a perfe
t single-error-
orre
ting 
ode [Hil86℄.Codes in the low-density parity-
he
k family work along the same prin
iples asthe simple Hamming 
ode above, the main di�eren
es are that they are mu
h longer,the parity-
he
k matrix is very sparse and multiple errors 
an be 
orre
ted. However,low-density parity-
he
k 
odes are not perfe
t and the de
oding problem is, in general,signi�
antly more diÆ
ult. Lu
kily, the sparseness of the matrix allows for the de
odingpro
ess to be 
arried out by probability propagation methods similar to those employedin Turbo 
odes. Throughout this 
hapter we 
on
entrate on low-density parity-
he
k
odes (LDPC) that are state-of-the-art 
on
erning performan
e and operate along simple
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iples. We study four variations of LDPCs known as Sourlas 
odes, Gallager 
odes,Ma
Kay-Neal 
odes and 
as
ading 
odes.1.2. Statisti
al physi
s of 
odingThe history of statisti
al physi
s appli
ation to error-
orre
ting 
odes started in 1989with a paper by Sourlas relating error-
orre
ting 
odes to spin glass models [Sou89℄. Heshowed that the Random Energy Model [Der81b, Saa98, DW99℄ 
an be thought of asan ideal 
ode 
apable of saturating Shannon's bound at vanishing 
ode rates. He alsoshowed that the SK model [KS78℄ 
ould operate as a pra
ti
al 
ode.In 1995, 
onvolutional 
odes were analyzed by employing the transfer-matrixformalism and power series expansions [AL95℄.In 1998, Sourlas work was extended for the 
ase of �nite 
ode rates [KS99a, VSK99℄by employing the repli
a method. Re
ently, Turbo 
odes were also analyzed using therepli
a method [MS00, Mon00℄.In this 
hapter we present the extension of Sourlas work together with the analysis ofother members in the family of low-density parity-
he
k 
odes. We rely mainly on repli
a
al
ulations [KMS00, MKSV00, VSK00b℄ and mean-�eld methods [KS98, VSK00a℄. Themain idea is to develop the appli
ation of statisti
al physi
s tools for analyzing error-
orre
ting 
odes. A number of results obtained are rederivations of well known resultsin information theory, while others put known results into a new perspe
tive.The main di�eren
es between the statisti
al physi
s analysis and traditional resultsin 
oding theory are: the emphasis on very large systems from the start (thermodynami
limit) and the 
al
ulation of ensemble typi
al performan
es instead of worst 
ase bounds.In this sense statisti
al physi
s te
hniques are 
omplementary to traditional methods.As a byprodu
t of our analysis we 
onne
t the iterative de
oding methods of probabilitypropagation with well known mean-�eld te
hniques, presenting a framework that mightallow a systemati
 improvement of de
oding te
hniques.1.3. OutlineIn the next se
tion we provide an overview of results and ideas from informationtheory that are relevant for understanding of the forth
oming se
tions. We also dis
ussmore deeply linear en
oding and parity-
he
k de
oding. We present the probabilitypropagation algorithm for 
omputing approximate marginal probabilities eÆ
iently and�nish by introdu
ing the statisti
al physi
s point of view of the de
oding problem.In Se
tion 3, we investigate the performan
e of error-
orre
ting 
odes based onsparse generator matri
es proposed by Sourlas. We employ repli
a methods to 
al
ulatethe phase diagram for the system at �nite 
ode rates. We then dis
uss the de
odingdynami
s of the probability propagation algorithm. Sourlas 
odes are regarded as a �rststep towards developing te
hniques to analyze other more pra
ti
al 
odes.Se
tion 4 provides a statisti
al physi
s analysis for Gallager 
odes. These 
odes usea dense generator and a sparse parity-
he
k matrix. The 
ode is mapped onto a K-body
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Figure 2. Mathemati
al model for a 
ommuni
ation system. Ea
h 
omponent isdis
ussed in the text.intera
tion spin system and typi
al performan
e is obtained using the repli
a method.A mean-�eld solution is also provided by mapping the problem onto a Bethe-like latti
e(Husimi 
a
tus), re
overing, in the thermodynami
 limit, the repli
a symmetri
 resultsand providing a very good approximation for �nite systems of moderate size. We showthat the probability propagation de
oding algorithm emerges naturally from the analysisand its performan
e 
an be predi
ted by studying the free-energy lands
ape. A simplete
hnique is introdu
ed to provide upper bounds for the pra
ti
al performan
e.In Se
tion 5 we investigate Ma
Kay-Neal 
odes that are a variation of Gallager
odes. In these 
odes, de
oding involves two very sparse parity-
he
k matri
es, one forthe signal with K non-zero elements in ea
h row and a se
ond for the noise with Lnon-zero elements. We map MN 
odes onto a spin system with K+L intera
ting spins.The typi
al performan
e is again obtained by using a repli
a symmetri
 theory.A statisti
al des
ription for the typi
al PP de
oding pro
ess for 
as
ading 
odes isprovided in Se
tion 6. We use this des
ription to optimize the 
onstru
tion parametersof a simple 
ode of this type.We 
lose this 
hapter in Se
tion 7 with 
on
luding remarks. Appendi
es withte
hni
al details are also provided.2. Coding and Statisti
al Physi
s2.1. Mathemati
al model for a 
ommuni
ation systemIn his papers from 1948 [Sha48℄, Shannon introdu
ed a mathemati
al model(s
hemati
ally represented in Fig.2) in
orporating the most basi
 
omponents of
ommuni
ation systems, he identi�ed key problems and proved some general results.In the following we will introdu
e the main 
omponents of Shannon's 
ommuni
ationmodel, the mathemati
al obje
ts involved as well as related general theorems.
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e and sink A data sour
e 
an be dis
rete or 
ontinuous. A dis
retesour
e is de�ned by the pair (S; �), where S is a set of m symbols (alphabet) and � is aprobability measure over the spa
e of sequen
es of symbols with any length (messages).In general any dis
rete alphabet 
an be mapped onto sequen
es of dlogme Boolean digitsf0; 1g. Continuous sour
es 
an always be made dis
rete at the expense of introdu
ingsome distortion to the signal [CT91℄. A sour
e is memoryless if ea
h symbol in thesequen
e is independent of the pre
eding and su

eeding symbols. A data sink is simplythe re
eiver of de
oded messages.2.1.2. Sour
e en
oder and de
oder Data sour
es usually generate redundant messagesthat 
an be 
ompressed to ve
tors of shorter average length. Sour
e en
oding, alsoknown as data 
ompression, is the pro
ess of mapping sequen
es of symbols from analphabet S onto a shorter representation A.Shannon employed the statisti
al physi
s idea of entropy to measure the essentialinformation 
ontent of a message. As enun
iated by Khin
hin [Khi57℄, the entropy ofShannon is de�ned as follows:De�nition 1 (Entropy) Let a1 a2 � � � amp1 p2 � � � pm !be a �nite s
heme, where aj are mutually ex
lusive events and pj are asso
iatedprobabilities with Pmj=1 pj = 1. The entropy of the s
heme in bits (or shannons) isde�ned as H2(A) = � mXj=1 pj log2 pj: (3)The entropy is usually interpreted as the amount of information gained by removingthe un
ertainty and determining whi
h event a
tually o

urs.Shannon [Sha48℄ posed and proved a theorem that establishes the maximalshortening of a message by 
ompression as a fun
tion of its entropy. The 
ompression
oeÆ
ient 
an be de�ned as � � limN!1hLNi=N , where N is the original messagelength and hLN i is the average length of 
ompressed messages. As presented byKhin
hin [Khi57℄ the theorem states:Theorem 1 (Sour
e 
ompression) Given a dis
rete sour
e with m symbols andentropy of H bits, for any possible 
ompression 
ode, the 
ompression 
oeÆ
ient issu
h that Hlog2m � �and there exists a 
ode su
h that� < H + �log2m;for arbitrarily small �.
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ompression s
heme that yields a 
oeÆ
ient � within the bounds above, given that thestatisti
al stru
ture � of the sour
e is known, was proposed in 1952 by Hu�man [Huf52℄.Several pra
ti
al algorithms are 
urrently known and the design of more eÆ
ient androbust s
hemes is still a very a
tive resear
h area [NG95℄.2.1.3. Noisy 
hannels Message 
orruption during transmission 
an be des
ribed bya probabilisti
 model de�ned by the 
onditional probability P (r j t) where t and rrepresent transmitted and re
eived messages respe
tively. We 
an assume that in any ofthe 
hannels used, only one 
omponent tj, j = 1; � � � ;M of the original message is beingsent. If there is no interferen
e e�e
ts between 
omponents, the 
hannel is memorylessand the 
onditional probability fa
torizes as P (r j t) =QMj=1 P (rj j tj).A memoryless 
hannel model is spe
i�ed by (T ; P (r j t);R), where T and R areinput and output alphabets and P (r j t) transition probabilities. The informationneeded to spe
ify t given the re
eived signal r is the 
onditional entropy:H2(T j R) = �Xr2R P (r)"Xt2T P (t j r)log2 (P (t j r))# : (4)The information on the original signal t 
onveyed by the re
eived signal r is given bythe mutual information I(T ;R) = H2(T ) � H2(T j R), where H2(T ) is de�ned in (3).The maximal information per bit that the 
hannel 
an transport de�nes the 
hannel
apa
ity [CT91℄.De�nition 2 (Channel 
apa
ity) Given the 
hannel model, the 
hannel 
apa
ity isC
hannel = maxP (t) I(T ;R);where I(T ;R) is understood as a fun
tional of the transmitted bits distribution P (t).Thus, for example, if C
hannel = 1=2, in the best 
ase, 2 bits must be transmitted for ea
hbit sent.The following 
hannel model (see [Ma
99, Ma
00a℄) is of parti
ular interest in this
hapter:De�nition 3 (Binary symmetri
 
hannel) The memoryless binary symmetri
 
han-nel (BSC) is de�ned by binary input and output alphabets T = R = f0; 1g and by the
onditional probabilityP (r 6= t j t) = p P (r = t j t) = 1� p: (5)The 
hannel 
apa
ity of a BSC is given byCBSC = 1�H2(p) = 1 + p log (p) + (1� p) log (1� p)In the 
urrent 
hapter we 
on
entrate on the binary symmetri
 
hannel due to itssimpli
ity and straightforward mapping onto an Ising spin system. However, there areseveral other 
hannel types that have been examined in the literature, and that play aninportant role in pra
ti
al appli
ations [OO79, CT91℄. The most important of these isarguably the Gaussian 
hannel; most of the analysis presented in this 
hapter 
an be
arried out in the 
ase of the Gaussian 
hannel as demonstrated in [KS99a, VSK99℄.
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Figure 3. Codebook for the (7; 4) Hamming 
ode de�ned by (1).2.1.4. Channel en
oder and de
oder Highly reliable 
ommuni
ation is possible eventhrough noisy 
hannels. It 
an be a
hieved by prote
ting a message with redundantinformation using a 
hannel en
oder de�ned as:De�nition 4 ((2N ;M) Code) A 
ode of rate R = N=M is an indexed list (
odebook)of 2N 
odewords t(i) 2 T ea
h of length M . Ea
h index i in the 
odebook 
orrespondsto a possible sequen
e of message bits.In a digital system, a 
ode 
an be regarded as a map of representations of 2N symbolsas Boolean sequen
es of N bits onto Boolean sequen
es ofM bits. In Fig.3 we show the
odebook for the Hamming 
ode de�ned by (1) that is a (24; 7) 
ode. Ea
h sequen
e ofN = 4 message bits is indexed and 
onverted in a 
odeword with M = 7 bits.A de
oding fun
tion g is a map of a 
hannel output r 2 R ba
k into a 
odeword.The probability that a symbol i is de
oded in
orre
tly is given by the probability of blo
kerror: pBlo
k = Pfg(r) 6= i j t = t(i)g: (6)The average probability that a de
oded bit bsj = gj(r) fails to reprodu
e the originalmessage bits is the probability of bit error:pb = 1N NXj=1 Pfbsj 6= sjg: (7)Shannon's 
oding theorem is as follows [CT91, Ma
00a℄:Theorem 2 (Channel 
oding) The aÆrmative part of the theorem states:For every rate R < C
hannel, there exists a sequen
e of (2MR;M) 
odes withmaximum probability of blo
k error p(M)Blo
k ! 0. Conversely, any sequen
e of (2MR;M)
odes with p(M)Blo
k ! 0 must have R � C
hannel.The negative part of the theorem is a 
orollary of the aÆrmative part and states:Error free 
ommuni
ation above the 
apa
ity C
hannel is impossible. It is not possibleto a
hieve a rate R with probability of bit error smaller thanpb(R) = H�12 �1� C
hannelR � : (8)
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tive 10This non-
onstru
tive theorem is obtained by assuming ensembles of random 
odesand impra
ti
al de
oding s
hemes. No pra
ti
al 
oding s
heme (i.e. that 
an be en
odedand de
oded in polynomial time) that saturates the 
hannel 
apa
ity is known to date.As Shannon's proof does not deal with 
omplexity issues, there is no guarantee thatsu
h pra
ti
al s
heme exists at all.2.2. Linear error-
orre
ting 
odes and the de
oding problemLinear error-
orre
tion 
odes add redundan
y to the original message s 2 f0; 1gNthrough a linear map like:t = Gs (mod 2); (9)where G is an M �N Boolean matrix. The re
eived message r = t+ n is a 
orruptedversion of the transmitted message. In the simplest form, optimal de
oding 
onsists of�nding an optimal estimate bs(r) assuming a model for the noisy 
hannel P (r j t) anda prior distribution for the message sour
e P (s).The de�nition of the optimal estimator depends on the parti
ular task and lossfun
tion assumed. An optimal estimator is de�ned as follows (see [Iba99℄ and referen
estherein):De�nition 5 (Optimal estimator) An optimal estimator bs(r) for a loss fun
tionL(s;bs(r)) minimizes the average of L in relation to the posterior distribution P (s j r).A posterior probability of messages given the 
orrupted message re
eived 
an be easilyfound by applying Bayes theorem:P (s j r) = P (r j t) Æ (t;Gs)P (s)Ps P (r j t) Æ (t;Gs)P (s) ; (10)where Æ(x; y) = 1 if x = y and Æ(x; y) = 0, otherwise.If we de�ne our task to be the de
oding of perfe
tly 
orre
t messages (i.e. weare interested in minimizing the probability of blo
k error pBlo
k), we have to employ atwo-valued loss fun
tion that identi�es single mismat
hes:L(s;bs(r)) = 1� MYj=1 Æ(sj; bsj): (11)An optimal estimator for this loss fun
tion must minimize the following:hL(s;bs(r))iP (sjr) = Xs P (s j r)L(s;bs(r))= 1�Xs P (s j r) MYj=1 Æ(sj; bsj)= 1� P (bs j r): (12)Clearly, the optimal estimator in this 
ase is bs = argmaxSP (s j r). This estimator isoften 
alled the Maximum a Posteriori estimator or simply MAP.
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tive 11If we tolerate a 
ertain degree of error in the de
oded message (i.e. we are insteadinterested in minimizing the probability of bit error pb), the loss fun
tion has to be anerror 
ounter like:L(s;bs(r)) = � MXj=1 sjbsj; (13)where we assume for simpli
ity the binary alphabet s 2 f�1gN . The optimal estimatormust minimize the following:hL(s;bs(r))iP (sjr) = � MXj=1 hsjiP (sjr)bsj: (14)An obvious 
hoi
e for the estimator isbsj = hsjiP (sjr)j hsjiP (sjr) j= sgn(hsjiP (sjr))= argmaxsjP (sj j r); (15)where P (sj j r) =Pfsk:k 6=jg P (s j r) is the marginal posterior distribution. As suggestedby Eq.(15), this estimator is often 
alled the Marginal Posterior Maximizer or MPM forshort.De
oding, namely, the 
omputation of estimators, be
omes a hard task, in general,as the message size in
reases. The MAP estimator requires �nding a global maximum ofthe posterior over a spa
e with 2N points and the MPM estimator requires to 
omputelong summations of 2N�1 terms for �nding the two valued marginal posterior. Theexponential s
aling makes a na��ve brute for
e evaluation qui
kly impra
ti
al, at leastin . An alternative is to use approximate methods to evaluate posteriors, popularmethods are Monte-Carlo sampling and the 
omputationally more eÆ
ient probabilitypropagation. In the sequen
e we will dis
uss the latter.2.3. Probability propagation algorithmThe probabilisti
 dependen
ies existing in a 
ode 
an be represented as a bipartitegraph [Lau96℄ where nodes in one layer 
orrespond to the M re
eived bits r� and nodesin the other layer to the N message bits sj. The 
onne
tions between the two layersare spe
i�ed by the generator matrix G. De
oding requires evaluation of posteriorprobabilities when the re
eived bits r are known (eviden
e).The evaluation of the MPM estimator requires the 
omputation of the followingmarginal joint distribution:P (sj; r) = Xfsi:i6=jgP (s j r)P (r)= Xfsi:i6=jgP (r j s)P (s)
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 5 r 6r2 r3 r4Figure 4. Bayesian network representing a linear 
ode of rate 2/3. If there is an arrowfrom a vertex sj to a vertex r�, sj is said to be a parent and r� is said to be a 
hild.= Xfsi:i6=jg MY�=1P (r� j si1 � � � siK ) NYj=1P (sj); (16)where si1 � � � siK are message bits 
omposing the transmitted bit t� = (Gs)� =si1 � � � � � siK and r is the message re
eived. Equation (16) shows a 
omplex partialfa
torization that depends on the stru
ture of the generator matrix G. We 
anen
ode this 
omplex partial fa
torization on a dire
ted graph known as a Bayesiannetwork [Pea88, CGH97, Jen96, KF98, AM00, Fre98, KFL01℄. As an example, we showin Fig.4 a simple dire
ted bipartite graph en
oding the following joint distribution:P (s1; � � � ; s4; r1; � � � ; r6) = P (r1 j s1; s2; s3)P (r2 j s3)P (r3 j s1; s2)� P (r4 j s3; s4)P (r5 j s3)P (r6 j s3)� P (s1)P (s2)P (s3)P (s4) (17)The generator matrix for the 
ode in Fig.4 is:

G = 0BBBBBBB�
1 1 1 00 1 0 01 1 0 00 0 1 10 0 1 00 0 1 0

1CCCCCCCA : (18)
Given r, an exa
t evaluation of the marginal joint distribution (16) in a spa
e ofbinary variables s 2 f�1gN would require (N +M)(2N�1 � 1) + 1 operations. In theeighties Pearl [Pea88℄ proposed an iterative algorithm that requires O(N) 
omputationalsteps to 
al
ulate approximate marginal probabilities using Bayesian networks. Thisalgorithm is known as belief propagation [Pea88℄, probability propagation [KF98℄,generalized distributive law [AM00℄ or sum-produ
t algorithm [Fre98, KFL01℄ (see also[OS01℄).The probability propagation algorithm is exa
t when the Bayesian networkasso
iated to the parti
ular problem is free of loops. To introdu
e the probability
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2312

R5432 1Figure 5. Marginal probabilities 
an be 
al
ulated exa
tly in a Bayesian 
hain. R-messages 
ow from a 
hild to a parent and Q-messages 
ow from a parent to a 
hild.propagation algorithm we start with the simple 
hain in Fig.5, whi
h represents thefollowing joint distribution:p(s1; s2; s3; s4; s5) = p(s1)p(s2 j s1)p(s3 j s2)p(s4 j s3)p(s5 j s4): (19)Suppose now that we would like to 
ompute p(s3), we would then have to 
ompute:p(s3) = Xs1;s2;s4;s5 p(s1)p(s2 j s1)p(s3 j s2)p(s4 j s3)p(s5 j s4): (20)A brute for
e evaluation of (20) would take 5 � (24 � 1) + 1 = 61 operations in abinary �eld. The probability propagation algorithm redu
es signi�
antly the number ofoperations needed by rationalizing the order in whi
h they are performed. For Fig.5 we
an start by marginalizing vertex s5 and writing:R54(s4) =Xs5 p(s5 j s4): (21)The fun
tion R54(s4) 
an be regarded as a ve
tor (a message) 
arrying informationabout vertex s5. In a similar way we 
an write:R43(s3) =Xs4 p(s4 j s3)R54(s4): (22)Again R43(s3) 
an be seen as a message 
arrying information about verti
es s4 and s5.Note that we 
an write (21) in the same form as (22) by assuming that R5(s5) = 1 if s5is not given or R5(s5) = Æ(s5; s�) if s5 = s�, where Æ(x; y) = 1 if x = y and Æ(x; y) = 0,otherwise.We 
an also gather information from verti
es to the left of s3. Firstly, we marginalizes1 by introdu
ing:Q12(s1) = p(s1): (23)We then propagate the message Q12(s1) to s2 produ
ing a new message:Q23(s2) =Xs1 Q12(s1)p(s2 j s1): (24)
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s Prospe
tive 14The marginal probability p(s3) 
an be �nally 
omputed by :p(s3) = Xs2 Q23(s2)R43(s3)p(s3 j s2)= Xs2 Xs1 Q12(s1)p(s2 j s1)Xs4 p(s4 j s3)R54(s4)p(s3 j s2)= Xs2 Xs1 p(s1)p(s2 j s1)Xs4 p(s4 j s3)Xs5 p(s5 j s4)= Xs1;s2;s4;s5 p(s1)p(s2 j s1)p(s3 j s2)p(s4 j s3)p(s5 j s4): (25)The evaluation of p(s3) using probability propagation is exa
t and requires only 16operations, mu
h less than the 61 operations required for the brute for
e 
al
ulation.A slightly more 
omplex situation is shown in Fig. 6 representing the followingjoint distribution:p(s1; :::; s12) = p(s6)p(s8)p(s9)p(s10)p(s11)p(s12)p(s1 j s10)p(s2 j s11; s12)� p(s3 j s1; s2; s9)p(s4 j s3; s8)p(s5 j s3; s6)p(s7 j s4): (26)Suppose that the variables are binary, s7 and s5 are given eviden
e verti
es and wewould like to 
ompute the marginal p(s3). A brute for
e evaluation would require11� (29 � 1) + 1 = 5622 operations.In general we 
an just initialize the messages with random values, or make use ofprior knowledge that may be available, and update the verti
es in a random order, butthis may require several iterations for 
onvergen
e to the 
orre
t values. In the parti
ular
ase of trees there is an obvious optimal s
heduling that takes only one iteration pervertex to 
onverge: start at the leaves (verti
es with a single edge 
onne
ted to them)and pro
eed to the next internal level until the intended vertex. For the tree in Fig.6the optimal s
hedule would be as follows:� Q11;2; Q12;2; Q10;1; Q65; Q93; Q84 and R74� Q13; Q23 and R43; R53The Q-messages are just the prior probabilities:Qj�(sj) = p(sj); (27)where j = 6; 8; 9; 10; 11; 12.The R-message between s7 and s4 is:R74(s4) =Xs7 R7(s7)p(s7 j s4); (28)where R7(s7) = Æ(s7; s�7) and s�7 is the value �xed by the eviden
e.Following the s
hedule we have the following Q-messages:Q13(s1) = Xs10 p(s1 j s10)Q10;1(s10) (29)Q23(s2) = Xs11;s12 p(s2 j s11; s12)Q11;2(s11)Q12;2(s12): (30)
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Figure 6. Marginal probabilities also 
an be 
al
ulated exa
tly in a Bayesian tree.
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Figure 7. Left side: forward (Q) message from parent to 
hild. Right side: ba
kward(R) message from 
hild to parent.The remaining R-messages are:R43(s3) = Xs4;s8 p(s4 j s3; s8)Q84(s8)R74(s4) (31)R53(s3) = Xs6;s5 p(s5 j s3; s6)Q65(s6)R5(s5); (32)where R5(s5) = Æ(s5; s�5) and s�5 is the value �xed by the eviden
e.Finally we 
an fuse all the messages in the vertex s3 as follows:p(s3) = Xs1;s2;s9 p(s3 j s1; s2; s9)Q13(s1)Q23(s2)R43(s3)R53(s3)Q93(s9): (33)By substituting the expressions for the messages in (33) it is relatively straightforwardto verify that this expression gives the exa
t value for the marginal of (26). In this
ase the probability propagation algorithm requires only 432 operations against 5622operations required by the brute for
e evaluation.
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an now summarize the rules for 
al
ulating the message that 
ows through aparti
ular edge:� Multiply all in
oming messages by the lo
al probability table (for example: p(s3 js1; s2; s9) for vertex s3) and sum over all verti
es not atta
hed to the edge that
arries the outgoing message.� Both Q and R messages must be only fun
tions of the parent in the edge throughwhi
h the message is 
owing.Probability propagation is only exa
t if the Bayesian network asso
iated has no
y
les. However, we 
an blindly apply the same algorithm in a general graph hopingthat 
onvergen
e to a good approximation is attained. In this kind of appli
ation there isno obvious optimal s
hedule and nodes 
an be updated serially, in parallel or randomly.Before writing the probability propagation equations for a general graph let us�rst provide some de�nitions. Two verti
es sj and r� are adja
ent if there is an edge
onne
ting them. If there is an arrow from sj to r�, sj is said to be a parent and r� a
hild. The 
hildren of sj are denoted by M(j) and the parents of r� are L(�). Linear
odes are spe
i�ed by bipartite graphs (like in Fig.4) where all parents are in one layerand all 
hildren in the other layer. A message is a probability ve
tor Q = (Q0; Q1) withQ0 + Q1 = 1. The probability propagation algorithm in a bipartite graph operates bypassing messages between the two layers through the 
onne
tion edges, �rst forwardsfrom the top layer (parents) to the bottom layer (
hildren), then ba
kwards, and soon iteratively. Child-to-parent messages (ba
kward messages in Fig.4) are R-messagesdenoted R�j, while parent-to-
hild messages (forward messages) are Q-messages denotedby Qj�.With the help of Fig.7 using the algorithm above the forward (Q) messages betweena parent sj and 
hild r� are just (see also [Dav99℄):Qaj� = P (Sj = a j fJ� : � 2 M(j)�g) (34)= ��j p(sj = a) Y�2M(j)n�Ra�j; (35)where ��j is a required normalization,M(j) n� stands for all elements in the set M(j)ex
ept �.Similarly we 
an get the expression for the ba
kward (R) messages between 
hildr� and parent sj:Ra�j = Xfsi:i2L(�)njgP (r� j sj = a; fsi : i 2 L(�) n jg) Yi2L(�)njQsii�: (36)An approximation for the marginal posterior 
an be obtained by iterating Equations(34) and (36) until 
onvergen
e or some stopping 
riteria is attained, and fusing allin
oming information to a parent node by 
al
ulating:Qaj = �j p(sj = a) Y�2M(j)Ra�j; (37)
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tive 17where �j is a normalizationQaj is an approximation for the marginal posterior P (sj j r).Initial 
onditions 
an be set to the prior probabilities Qsj� = p(s).It is 
lear (see also [Pea88℄) that the probability propagation (PP) algorithm isexa
t if the asso
iated graph is a tree and that the 
onvergen
e for the exa
t marginalposterior o

urs within a number of iterations proportional to the diameter of thetree. However, graphs de�ning error-
orre
ting 
odes always have 
y
les and it hasbeen observed empiri
ally that de
oding with the PP algorithm also yields good results[FM98, Che97℄ in spite of that.There are a number of studies of probability propagation in loopy graphs with asingle 
y
le [Wei97℄ and des
ribing Gaussian joint distributions [Fre99℄ but no de�niteexplanation for its good performan
e in this 
ase is known to date.2.4. Low-density parity 
he
k 
odesMarginal posteriors 
an be 
al
ulated in O(NK) steps, where K is the average
onne
tivity of a 
hild node, by using probability propagation. Therefore, the use of verysparse generator matri
es (P�j G�j = O(N)) seems favorable. Moreover, it is possibleto prove that the probability of a 
y
le-free path of length l in a random graph de
ayswith O(K l=N), that indi
ates that small 
y
les are harder to �nd if the generator matrixis very sparse and that PP de
oding is expe
ted to provide better approximations for themarginal posterior (no proof is known for this statement). En
oding is also faster if verysparse matri
es are used, requiring O(N) operations. Despite the advantages, the use ofvery sparse matri
es for en
oding has the serious drawba
k of produ
ing 
odewords thatdi�er in onlyO(K) bits from ea
h other, what leads to a high probability of undete
tableerrors. Codes with sparse generator matri
es are known as Sourlas 
odes and will beour obje
t of study in the next Se
tion.A solution for the bad distan
e properties of sparse generator 
odes is to use a densematrix for en
oding (providing a minimum distan
e between 
odewords of O(N)), whilede
oding is 
arried out in a very sparse graph, allowing eÆ
ient use of PP de
oding. Themethod known as parity-
he
k de
oding [Hil86, OO79℄ is suitable in this situation, asen
oding is performed by a generator matrix G, while de
oding is done by transformingthe 
orrupted re
eived ve
tor r = Gs+n (mod 2) with a suitable parity 
he
k matrixHhaving the propertyHG (mod 2) = 0, yielding the syndrome ve
tor z =Hn (mod 2) .De
oding redu
es to �nding the most probable ve
tor n when the syndrome ve
torz is known, namely, MPM estimates involve the 
al
ulation of the marginal posteriorP (nj j z). In [Ma
99℄, Ma
Kay proved that this de
oding method 
an attain vanishingblo
k error probabilities up to the 
hannel 
apa
ity if optimally de
oded (not ne
essarilypra
ti
ally de
oded).This type of de
oding is the basis for the three families of 
odes (Gallager, Ma
Kay-Neal and 
as
ading we study in this 
hapter.
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tive 182.5. De
oding and statisti
al physi
sThe 
onne
tion between spin systems in statisti
al physi
s and digital error 
orre
ting
odes, �rst noted by Sourlas [Sou89℄, is based on the existen
e of a simple isomorphismbetween the additive Boolean group (f0; 1g;�) and the multipli
ative binary group(f+1;�1g; �) de�ned by:S �X = (�1)s�x; (38)where S;X 2 f+1;�1g and s; x 2 f0; 1g. Trough this isomorphism every additionon the Boolean group 
orresponds to a unique produ
t on the binary group and vi
e-versa. A parity-
he
k bit in a linear 
ode is usually formed by a Boolean sum of Kbits of the form LKj=1 sj what 
an be mapped onto a K-spin 
oupling QKj=1 Sj. Thesame type of mapping 
an be applied to other error-
orre
ting 
odes as 
onvolutional
odes [Sou94b, AL95℄ and Turbo 
odes [MS00, Mon00℄.The de
oding problem depends on posteriors like P (S j J), where J is the eviden
e(re
eived message or syndrome ve
tor). By applying Bayes' theorem this posterior 
an,in general, be written in the form:P�
(S j J) = 1Z(J) exp [ln P�(J j S) + ln P
(S)℄ ; (39)where � and 
 are hyper-parameters assumed to des
ribe features like the en
odings
heme, sour
e distribution and noise level. This form suggests the following family ofGibbs measures:P��
(S j J) = 1Z exp [��H�
(S;J)℄ (40)H�
(S;J) = � ln P�(J j S)� ln P
(S); (41)where J 
an be regarded as quen
hed disorder in the system. It is not diÆ
ult tosee that the MAP estimator is represented by the ground state of the Hamiltonian(40), i.e. by the sign of thermal averages bSMAPj = sgn(hSji�!1) at zero temperature.On the other hand the MPM estimator is provided by the sign of thermal averagesbSMPMj = sgn(hSji�=1) at temperature one. We have seen in that if we are 
on
ernedwith the probability of bit error pe the optimal 
hoi
e for an estimator is MPM, this isequivalent to de
oding at �nite temperature � = 1, known as the Nishimori temperature[Nis80, Nis93, Nis01, Ruj93℄.The evaluation of typi
al quantities involves the 
al
ulation of averages over thequen
hed disorder (eviden
e) J , namely, averages over:P��
�(J) =XS P��(J j S)P
�(S); (42)where �� and 
� represent the \real" hyper-parameters, in other words, the hyper-parameters a
tually used for generating the eviden
e J . Those \real" hyper-parametersare, in general, not known to the re
eiver, but 
an be estimated from the data. To
al
ulate these estimates we 
an start by writing free-energy like negative log-likelihoodsfor the hyper-parameters:hF (�; 
)iP��
� = �h ln P�
(J)iP��
� : (43)
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tive 19This log-likelihood 
an be regarded as measuring the typi
al plausibility of � and 
,given the data J [Ber93℄. This fun
tion 
an be minimized to �nd the most plausiblehyper-parameters (known as type II maximum likelihood hyper-parameters or just ML-IIhyper-parameters) [Ber93℄.The ML-II hyper-parameters 
orrespond in this 
ase to � = �� and 
 = 
�, i.e.the \real" hyper-parameters must be used in the posterior for de
oding. This fa
t is a
onsequen
e of the following inequality:hF (��; 
�)iP��
� � hF (�; 
)iP��
� : (44)The proof of (44) follows dire
tly from the information inequality [Iba99, CT91℄, i.e.the non-negativity of the KL-divergen
e :D(P��
�kP�
) � 0� ln �P��
�(J)P�
(J) ��P��
� � 0�h ln P��
�(J)iP��
� � � h ln P�
(J)iP��
� : (45)When the true and assumed hyper-parameters agree, we say that we are at theNishimori 
ondition [Iba99, Nis01℄. At the Nishimori 
ondition many 
al
ulationssimplify and 
an be done exa
tly (for an example see Appendix B.3). Throughoutthis 
hapter we assume, unless it is stated, the Nishimori 
ondition.For ba
kground reading about statisti
al physi
s methods in general, Nishimori's
ondition and its relevan
e to the 
urrent 
al
ulation we refer the reader to [Nis01℄.3. Sourlas CodesThe 
ode of Sourlas is based on the idea of using a linear operator G (generator matrix)to transform a message ve
tor s 2 f0; 1gN onto a higher dimensional ve
tor t 2 f0; 1gM .The en
oded ve
tor is t = Gs (mod 2), ea
h bit tk being the Boolean sum of K messagebits (parity-
he
k). This ve
tor is transmitted through a noisy 
hannel and a 
orruptedM dimensional ve
tor r is re
eived.De
oding 
onsists of produ
ing an estimate bs of the original message. Thisestimate 
an be generated by 
onsidering a probabilisti
 model for the 
ommuni
ationsystem. Redu
ed (order N) time/spa
e requirements for the en
oding pro
ess and theexisten
e of fast (polynomial time) de
oding algorithms are guaranteed by 
hoosingsparse generator matri
es, namely, a matrix G with exa
tly K nonzero elements perrow and C nonzero elements per 
olumn, where K and C are of order 1. The rateof su
h a 
ode, in the 
ase of unbiased messages, is evidently R = N=M , as the totalnumber of nonzero elements in G is MK = NC the rate is also R = K=C.In the statisti
al physi
s language a binary message ve
tor � 2 f�1gN is en
oded toa higher dimensional ve
tor J0 2 f�1gM de�ned as J0hi1;i2:::iKi = �i1�i2 : : : �iK , where Msets ofK indi
es are randomly 
hosen. A 
orrupted version J of the en
oded message J0has to be de
oded for retrieving the original message. The de
oding pro
ess is the pro
ess
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s Prospe
tive 20of 
al
ulating an estimate b� to the original message by minimizing a given expe
ted losshhL(�; b�)iP (Jj�)iP (�) averaged over the indi
ated probability distributions [Iba99℄. Thede�nition of the loss depends on the parti
ular task; the overlap L(�; b�) = Pj �jb�j
an be used for de
oding binary messages. As dis
ussed in Se
tion 2.2, an optimalestimator for this parti
ular loss fun
tion is b�j = signhSjiP (Sj jJ) [Iba99℄, where S isan N dimensional binary ve
tor representing the dynami
al variables of the de
odingpro
ess and P (Sj j J) =PSk;k 6=j P (S j J) is the marginal posterior probability. UsingBayes theorem, the posterior probability 
an be written as:ln P (S j J) = ln P (J j S) + ln P (S) + 
onst: (46)The likelihood P (J j S) has the form:P (J j S) = Y
hosen sets XJ0hi1���iK i P (Jhi1���iKi j J0hi1���iKi) P (J0hi1���iKi j S): (47)The term P (J0hi1���iKi j S) models the deterministi
 en
oding pro
ess being:P (J0hi1���iKi j S) = Æ(J0hi1���iKi;Si1 � � �SiK ): (48)The noisy 
hannel is modeled by the term P (Jhi1���iKi j J0hi1���iKi). For the simple
ase of a memoryless binary symmetri
 
hannel (BSC), J is a 
orrupted version ofthe transmitted message J0 where ea
h bit is independently 
ipped with probability pduring transmission, in this 
ase [Sou94a℄:ln P (Jhi1���iKi j J0hi1���iKi) = 12(1 + J0hi1���iKi) ln P (Jhi1���iKi j +1)+ 12(1� J0hi1���iKi) ln P (Jhi1���iKi j �1)= 
onst + 12ln �1� pp � Jhi1���iKi J0hi1���iKi: (49)Putting equations together we obtain the following Hamiltonian:ln P (S j J) = � �N H(S) (50)= �NX� A� J� Yi2L(�)Si + � 0N NXj=1 Sj; (51)where a set of indi
es is denoted L(�) = hi1; : : : iKi and A is a tensor with theproperties A� 2 f0; 1g andPf�:i2L(�)gA� = C 8i, whi
h determines theM 
omponentsof the 
odeword J0. The intera
tion term is at Nishimori's temperature �N =12 ln (1�pp ) [Nis80, Iba99, Ruj93, Nis93℄, and � 0N = 12 ln (1�p�p� ) is the message priortemperature, namely, the prior distribution of message bits is assumed to be P (Sj =+1) = 1� p� and P (Sj = �1) = p�.The de
oding pro
edure translates to �nding the thermodynami
 spin averagesfor the system de�ned by the Hamiltonian (50) at a 
ertain temperature (Nishimoritemperature for optimal de
oding); as the original message is binary, the retrievedmessage bits are given by the signs of the 
orresponding averages.
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k Codes { A Statisti
al Physi
s Prospe
tive 21The performan
e of the error-
orre
ting pro
ess 
an be measured by the overlapbetween a
tual message bits and their estimates for a given s
enario 
hara
terized by
ode rate, 
orruption pro
ess and information 
ontent of the message. To assess thetypi
al properties we average this overlap over all possible 
odes A and noise realizations(possible 
orrupted ve
tors J) given the message � and then over all possible messages:� = 1N * NXi=1 �i hsignhSiiiA;Jj�+� (52)Here signhSii is the sign of the spins thermal average 
orresponding to the Bayesianoptimal de
oding. The average error per bit is, therefore, given by pb = (1� �)=2.The number of 
he
ks per bit is analogous to the spin system 
onne
tivity andthe number of bits in ea
h 
he
k is analogous to the number of spins per intera
tion.The 
ode of Sourlas has been studied in the 
ase of extensive 
onne
tivity, where thenumber of bonds C�� N � 1K � 1 � s
ales with the system size. In this 
ase it 
an be mappedonto known problems in statisti
al physi
s su
h as the SK [KS78℄ (K=2) and RandomEnergy (REM) [Der81a℄ (K!1) models. It has been shown that the REM saturatesShannon's bound [Sou89℄. However, it has a rather limited pra
ti
al relevan
e as the
hoi
e of extensive 
onne
tivity 
orresponds to a vanishingly small 
ode rate.3.1. Lower bound for the probability of bit errorIt has been observed in [MS00℄ that a sparse generator 
ode 
an only attain vanishingprobability of bit error if K ! 1. This fa
t alone does not rule out the pra
ti
al useof su
h 
odes as they 
an still be used if a 
ontrolled probability of error is allowed oras part of a 
on
atenated 
ode.Before engaging in a relatively 
omplex analysis, it is of theoreti
al interest toestablish a detailed pi
ture of how the minimum bit error attainable de
ays with K.This 
an be done in quite a simple manner suggested in [MS00℄. Let us suppose thatmessages are unbiased and random and that the 
hannel is a BSC of noise level p.Assume, without loss of generality, that the message �j = 1 for all j is sent. The biterror probability 
an be expressed as the sum pb = PNl=1 pb(l), where pb(l) representsthe probability of de
oding in
orre
tly any l bits. Clearly pb � pb(1).The probability of de
oding in
orre
tly a single bit 
an be easily evaluated. A bitj engages in exa
tly C intera
tions with di�erent groups of K bits in a way that their
ontribution to the Hamiltonian is:Hj = �Sj X�2M(j) J� Yi2L(�)nj Si; (53)where M(j) is the set of all index sets that 
ontain j. If all bits but j are set to Si = 1,an error in j only 
an be dete
ted if its 
ontribution to the Hamiltonian is positive; ifP�2M(j)A�J� � 0 the error is undete
table. The probability of error in a single bit is
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tive 22therefore pb(1) = Pf X�2M(j) J� � 0g; (54)where A� = 1 for exa
tly C terms and J� 
an be simply regarded as a random variabletaking values +1 and �1 with probabilities 1� p and p respe
tively, therefore:pb � l�CXl2N;C�2l�0 C!(C � l)! l! (1� p)C�l pl: (55)A lower bound for for pb in the large C regime 
an be obtained by using theDeMoivre-Lapla
e limit theorem [Fel50℄, writing:pb � 12erf
�(1� p)C8p � � 4pp�(1� p)C exp��(1� p)2C264p2 � ; (56)where erf
(x) = 2p� R1x du exp(�u2) and the asymptoti
 behavior is given in [GR94℄(page 940). This bound implies that K ! 1 is a ne
essary 
ondition for a vanishingbit error probability in sparse generator 
odes at �nite rates R = K=C.3.2. Repli
a Theory for the Typi
al Performan
e of Sourlas CodesIn order to 
al
ulate the typi
al performan
e of Sourlas 
odes we employ the statisti
alphysi
s te
hnique known as repli
a theory.To simplify analysis we use the gauge transformation [FHS78℄ Si 7! Si�i andJhi1���iKi 7!Jhi1���iKi�i1 � � � �iK that maps any general message to the 
on�guration de�nedas ��i = 1 8i (ferromagneti
 
on�guration). By introdu
ing the external �eld F � � 0N=�we rewrite the Hamiltonian in the form:H(S) = � Xhi1���iKiAhi1���iKi Jhi1���iKi Si1 � � �SiK � F NXj=1 �jSj ; (57)With the gauge transformation, the bits of the un
orrupted en
oded messagebe
ome J0hi1���iKi = 1 and, for the BSC, the 
orrupted bits 
an be des
ribed as randomvariables with probability:P (J) = (1�p) Æ (J�1) + p Æ (J+1) ; (58)where p is the 
hannel 
ip rate. For deriving the typi
al properties we 
al
ulate thefree-energy following the repli
a theory pres
ription:f = � 1� limN!1 1N ��n ����n=0 hZniA;�;J ; (59)where hZniA;�;J represents an analyti
al 
ontinuation in the interval n 2 [0; 1℄ of therepli
ated partition fun
tion:hZniA;�;J = TrfS�j g De�FP�;k �kS�k+�P�;�A� J� S�i1 ���S�iKEA;J;� : (60)
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tive 23The overlap � 
an be rewritten using gauged variables as :� = 1N NXi=1 DhsignhSiiiA;Jj��E� ; (61)where �� denotes the transformation of a message � into the ferromagneti
 
on�guration.To 
ompute the repli
ated partition fun
tion we 
losely follow [WS87a℄. We averageuniformly over all 
odes A su
h that Phi1=i;i2���iKiAhi1���iKi = C 8i to �nd:hZniA;�;J = exp8<:N Extrq;bq 24C � CK + CK 0� nXl=0 Tl Xh�1:::�li qK�1:::�l1A (62)� C0� nXl=0 Xh�1:::�li q�1:::�lbq�1:::�l1A+ lnTrfS�g 
e�F�P� S���0� nXl=0 Xh�1 :::�li bq�1:::�lS�1 : : : S�l1AC359=; ;where Tl = htanhl(�J)iJ , as in [VB85℄, q0 = 1 and Extrq;bq f(q; bq) denotes the extremumof f (details in Appendix A.1). At the extremum of (62) the order parameters a
quirea form similar to those of [WS87a℄:bq�1;:::;�l = Tl qK�1�1;:::;�lq�1;:::;�l = * lYi=1 S�i!0� nXl=0 Xh�1 :::�li bq�1:::�lS�1 : : : S�l1A�1+X : (63)where X = 
e�F�P� S���0� nXl=0 Xh�1:::�li bq�1:::�lS�1 : : : S�l1AC ; (64)and h:::iX = TrfS�g [(:::)X ℄ =TrfS�g [(:::)℄.To 
ompute the partition fun
tion it is ne
essary to assume a repli
a symmetri
(RS) ansatz. It 
an be done by introdu
ing auxiliary �elds �(x) and b�(y) (see also[WS87a℄): bq�1:::�l = Z dy b�(y) tanhl(�y);q�1:::�l = Z dx �(x) tanhl(�x) (65)for l = 1; 2; : : :.Plugging (65) into the repli
ated partition fun
tion (62), taking the limit n ! 0and using Eq.(59) (see Appendix A.2 for details):f = � 1� Extr�;b� f� ln 
osh � (66)
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tive 24+ � Z " KYl=1 dxl �(xl)#*ln"1 + tanh �J KYj=1 tanh �xj#+J� C Z dx dy �(x) b�(y) ln [1 + tanh �x tanh �y℄� C Z dy b�(y) ln 
osh �y+ Z " CYl=1 dyl b�(yl)#*ln"2 
osh� CXj=1 yj + F�!#+�9=; ;where � = C=K. The saddle-point equations obtained by 
al
ulating fun
tionalvariatons of Eq.(66) provide a 
losed set of relations between �(x) and b�(y)�(x) = Z "C�1Yl=1 dyl b�(yl)# *Æ "x� C�1Xj=1 yj � F�#+� (67)b�(y) = Z "K�1Yl=1 dxl �(xl)# *Æ 24y � atanh�tanh �J QK�1j=1 tanh �xj�� 35+J :Later we will show that this self-
onsistent pair of equations 
an be seen as a mean �elddes
ription of probability propagation de
oding.Using the RS ansatz one 
an �nd that the lo
al �eld distribution is (see AppendixA.3) : P (h) = Z " CYl=1 dyl b�(yl)# *Æ "h� CXj=1 yj � F�#+� ; (68)where b�(y) is given by the saddle-point equations (67).The overlap (52) 
an be 
al
ulated using:� = Z dh sign(h)P (h): (69)The 
ode performan
e is assessed by assuming a prior distribution for the message,solving the saddle-point equations (67) numeri
ally and then 
omputing the overlap.For Eq.(66) to be valid, the �xed point given by (67) must be stable and therelated entropy must be non-negative. Instabilities within the RS spa
e 
an be probedby 
al
ulating se
ond fun
tional derivatives at the extremum de�ning the free-energy(66). The solution is expe
ted to be unstable within the spa
e of symmetri
 repli
asfor suÆ
iently low temperatures (large �). For high temperatures we 
an expand theabove expression around small � values to �nd the stability 
ondition:hJiJhxiK�2� � 0 (70)The average hxi� = R dx �(x) x vanishes in the paramagneti
 phase and is positive (non-zero when K is even) in the ferromagneti
 phase, satisfying the stability 
ondition. Wenow restri
t our study to the unbiased 
ase (F = 0), whi
h is of pra
ti
al relevan
e,sin
e it is always possible to 
ompress a biased message to an unbiased one.
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s Prospe
tive 25For the 
aseK !1, C = �K we 
an obtain solutions to the saddle-point equationsat arbitrary temperatures. The �rst saddle-point equation (67) 
an be approximatedby: x = C�1Xl=1 yl � (C � 1)hyib� = (C � 1) Z dy y b�(y): (71)If hyib� = 0 (paramagneti
 phase) then �(x) must be 
on
entrated at x = 0 implyingthat �(x) = Æ(x) and b�(y) = Æ(y) are the only possible solutions. Equation (71) alsoimplies that x � O(K) in the ferromagneti
 phase.Using Eq.(71) and the se
ond saddle-point equation (67) we �nd a self-
onsistentequation for the mean �eld hyib�:hyib� = � 1� atanh htanh(�J) [tanh(�(C � 1)hyib�)℄K�1i�J : (72)For the BSC we average over the distribution (58). Computing the average, usingC = �K and res
aling the temperature � = ~�(lnK)=K, we obtain in the limit K !1:hyib� � (1� 2p) htanh(~��hyib� ln(K))iK ; (73)where p is the 
hannel 
ip probability. The mean �eld hyib� = 0 is always a solutionto this equation (paramagneti
 solution); at �
 = ln(K)=(2�K(1 � 2p)) an extra non-trivial ferromagneti
 solution emerges with hyib� = 1 � 2p. The 
onne
tion with theoverlap � is given by Eqs.(68) and (69) implying that � = 1 for the ferromagneti
solution. It is remarkable that the temperature where the ferromagneti
 solutionemerges is �
 � O(ln(K)=K). Paramagneti
-ferromagneti
 barriers that emerge atreasonably high temperatures, in a simulated annealing pro
ess, implying metastabilityand, 
onsequently, a very slow 
onvergen
e. It seems to advo
ate the use of smallK values in pra
ti
al appli
ations. For � > �
 both paramagneti
 and ferromagneti
solutions exist.The ferromagneti
 free-energy 
an be obtained from Eq.(66) using Eq.(71), resultingin fFERRO = ��(1� 2p). The 
orresponding entropy is sFERRO = 0. The paramagneti
free-energy is obtained by plugging �(x) = Æ(x) and b�(y) = Æ(y) into Equation (66):fPARA = � 1� (� ln(
osh �) + ln 2); (74)sPARA = �(ln(
osh �)� � tanh �) + ln 2: (75)Paramagneti
 solutions are unphysi
al for � > (ln 2)= [� tanh � � ln (
osh �)℄, sin
ethe 
orresponding entropy is negative. To 
omplete the pi
ture of the phase diagramwe have to introdu
e a repli
a symmetry breaking s
enario that yields sensible physi
s.In general, to 
onstru
t a symmetry breaking solution in �nite 
onne
tivity systems(see [Mon98b, FLRTZ01℄) is a diÆ
ult task. We 
hoose as a �rst approa
h an one-steprepli
a symmetry breaking s
heme, known as the frozen spins solution, that yields exa
tresults for the REM [GM84, Par80℄.We assume that ergodi
ity breaks in su
h a way that the spa
e of 
on�gurations isdivided in n=m islands. Inside ea
h of these islands there are m identi
al 
on�gurations,
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tive 26implying that the system 
an freeze in any of n=m mi
rostates. Therefore, in the spa
eof repli
as we have the following situation:1N NXj=1 S�j S�j = 1 , if � and � are in the same island1N NXj=1 S�j S�j = q , otherwise: (76)By assuming the above stru
ture the repli
ated partition fun
tion has the form:hZnRSBiA;�;J = *TrfS�j gexp �� nX�=1H(S� )!+A;J;�= *TrfS1j ;���;Sn=mj gexp0���m n=mX�=1H(S� )1A+A;J;�= *n=mY� TrfS�j gexp (��m H(S� ))+A;J;�= hZn=mRS iA;�;J ; (77)where in the �rst line we have used the ansatz with n=m islands with m identi
al
on�gurations in ea
h and in the last step we have used that the overlap between anytwo di�erent islands is q. From (77) we have:hln ZRSB(�)iA;�;J = ��n ����n=0 hZnRSB(�)iA;�;J= 1mhln ZRS(�m)iA;�;J: (78)The number of 
on�gurations per island m must extremize the free-energy,therefore, we have:��mhln ZRSB(�)iA;�;J = 0; (79)what is equivalent tosRS(�g) = � ~�2 �� ~� ����~�=�g � 1~� hln ZRS( ~�)iA;�;J�= 0; (80)where we introdu
ed ~� = � m. In this way m = �g=�, with �g being a root of therepli
a symmetri
 paramagneti
 entropy (74), satisfying:�(ln(
osh �g)� �g tanh �g) + ln 2 = 0 (81)The RSB-spin glass free-energy is given by fPARA (74) at temperature �g:fRSB-SG = � 1�g (� ln (
osh �g) + ln 2); (82)
onsequently the entropy is sRSB-SG = 0. In Fig.8 we show the phase diagram for a given
ode rate R in the plane of temperature T and noise level p.
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Figure 8. Phase diagram in the plane of temperature T versus noise level p forK !1and C = �K, with � = 4. The dotted line indi
ates the Nishimori temperature TN .Full lines represent phase 
oexisten
e. The 
riti
al noise level is p
. The ne
essary
ondition for stability of the ferromagneti
 phase within the repli
a symmetri
 spa
eis satis�ed above the dashed line.3.3. Shannon's boundThe 
hannel 
oding theorem asserts that up to a 
riti
al 
ode rate R
, whi
h equals the
hannel 
apa
ity (Shannon's bound), it is possible to re
over information with arbitrarilysmall probability of error. For the BSC :R
 = 1�
 = 1 + p log2 p+ (1� p) log2 (1� p): (83)The 
ode of Sourlas, in the 
ase where K ! 1 and C � O(NK), 
an bemapped onto the REM and has been shown to saturates the 
hannel 
apa
ity in thelimit R ! 0 [Sou89℄. Shannon's bound 
an also be attained by Sourlas 
ode at zerotemperature for K ! 1 but with 
onne
tivity C = �K. In this limit the model isanalogous to the diluted REM analyzed by Saakian [Saa98℄. The errorless phase ismanifested in a ferromagneti
 phase with total alignment (� = 1), only attainable forin�nite K. Up to a 
ertain 
riti
al noise level, a noise level in
rease produ
es ergodi
itybreaking leading to a spin glass phase where the misalignment is maximal (� = 0). Theferromagneti
-spin glass transition 
orresponds to the transition from errorless de
odingto de
oding with errors des
ribed by the 
hannel 
oding theorem. A paramagneti
 phaseis also present when the transmitted information is insuÆ
ient to re
over the originalmessage (R > 1).
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tive 28At zero temperature saddle-point equations (67) 
an be rewritten as:�(x) = Z "C�1Yl=1 dyl b�(yl)# Æ "x� C�1Xj=1 yj# (84)b�(y) = Z "K�1Yl=1 dxl �(xl)# (85)� *Æ "y � sign(J K�1Yl=1 xl)min(j J j; :::; j xK�1 j)#+J ;The solutions for these saddle-point equations may result in very stru
turedprobability distributions. As an approximation we 
hoose the simplest self-
onsistentfamily of solutions whi
h are, sin
e J = �1, given by:b�(y) = p+Æ(y � 1) + p0Æ(y) + p�Æ(y + 1) (86)�(x) = C�1Xl=1�C T[p�;p0;C�1℄(l) Æ(x� l);with T[p+;p0;p�;C�1℄(l) = 0Xfk;h;mg (C � 1)!k! h! m! pk+ ph0 pm� ; (87)where the prime indi
ates that k; h;m are su
h that k � h = l; k + h + m = C � 1.Eviden
e for this simple ansatz 
omes from Monte-Carlo integration of Eq.(67) at verylow temperatures, that shows solutions 
omprising three dominant peaks and a relativelyweak regular part. Plugging this ansatz (86) in the saddle-point equations we write a
losed set of equations in p� and p0 that 
an be solved numeri
ally.Solutions are of three types: ferromagneti
 (p+ > p�), paramagneti
 (p0 = 1) andrepli
a symmetri
 spin glass (p� = p+). Computing free-energies and entropies enablesone to 
onstru
t the phase diagram. At zero temperature the paramagneti
 free-energyis fPARA = �� and the entropy is sPARA = (1� �) ln 2, this phase is physi
al only for� < 1, what is expe
ted sin
e it 
orresponds exa
tly to the regime where the transmittedinformation is insuÆ
ient to re
over the a
tual message (R > 1).The ferromagneti
 free-energy does not depend on the temperature, having theform fFERRO = ��(1 � 2p) with entropy sFERRO = 0. We 
an �nd the ferromagneti
-spin glass 
oexisten
e line that 
orresponds to the maximum performan
e of a Sourlas
ode by equating Eq. (82) and fFERRO. Observing that �g = �N(p
) (as seen in Fig. 8)we �nd that this transition 
oin
ides with the 
hannel 
apa
ity (83). It is interesting tonote that in the large K regime both RS-ferromagneti
 and RSB-spin glass free-energies(for T < Tg) do not depend on the temperature, it means that Shannon's bound issaturated also for �nite temperatures up to Tg. In Fig.9 we represent the 
omplete zerotemperature phase diagram.The bound obtained depends on the stability of the ferromagneti
 and paramagneti
solutions within the spa
e of symmetri
 repli
as at zero temperature. Instabilities are
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Figure 9. Phase diagram in the plane 
ode rate R versus noise level p for K ! 1and C = �K at zero temperature. The ferromagneti
-spin glass 
oexisten
e line
orresponds to Shannon's bound.found in the ferromagneti
 phase for p > 0. These instabilities within the repli
asymmetri
 spa
e puts in question our result of saturating Shannon's bound, sin
ea 
orre
tion to the ferromagneti
 solution 
ould 
hange the ferromagneti
-spin glasstransition line. However, the instability vanishes for high temperatures, whi
h supportsthe ferromagneti
-spin glass transition line obtained and possible saturation of the boundin some region.Shannon's bound 
an only be attained in the limitK !1; however, there are somepossible drawba
ks in using high K values due to large barriers whi
h are expe
tedto o

ur between the paramagneti
 and ferromagneti
 phases. We now 
onsider the�nite K 
ase, for whi
h we 
an solve the RS saddle-point equations (67) for arbitrarytemperatures using Monte-Carlo integration. We 
an also obtain solutions for the zerotemperature 
ase using Eqs.(86) iteratively.It has been shown that K > 2 extensively 
onne
ted models [GM84℄ exhibit Parisi-type order fun
tions with similar dis
ontinuous stru
ture as found in the K ! 1
ase; it was also shown that the one-step RSB frozen spins solution, employed todes
ribe the spin glass phase, is lo
ally stable within the 
omplete repli
a spa
e andzero �eld (unbiased messages 
ase) at all temperatures. We, therefore, assume thatthe ferromagneti
-spin glass transition for K > 2 is des
ribed by the frozen spins RSBsolution.At the top of Fig.10 we show the zero temperature overlap � as a fun
tion of thenoise level p at 
ode rate R = 1=2 obtained by using the three peaks ansatz. Notethat the RSB spin glass phase dominates for p > p
 (see bottom of Fig.10). In the
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Figure 10. Top: zero temperature overlap � as a fun
tion of the noise level p forvarious K values at 
ode rate R = 1=2, as obtained by the iterative method. Bottom:RS-ferromagneti
 free-energies (white 
ir
les for K = 2 and from the left: K = 3; 4; 5and 6) and RSB-spin glass free-energy (dotted line) as fun
tions of the noise level p.The arrow indi
ates the region where the RSB-spin glass phase starts to dominate.Inset: a detailed view of the RS-RSB transition region.bottom �gure we plot RS free-energies and RSB frozen spins free-energy, from whi
hwe determine the noise level p
 for 
oexisten
e of ferromagneti
 and spin-glass phases(pointed by an arrow). Above the transition, the system enters in a paramagneti
 orRS spin glass phase with free-energies for K = 3; 4; 5 and 6 that are lower than theRSB spin glass free-energy; nevertheless, the entropy is negative and these free-energiesare therefore unphysi
al. It is remarkable that the 
oexisten
e value does not 
hangesigni�
antly for �nite K in 
omparison to in�nite K. Remind that Shannon's bound
annot be attained for �nite K, sin
e �! 1 (pb ! 0) only if K !1.It is known that the K = 2 model with extensive 
onne
tivity (SK model) requiresa full Parisi solution to re
over the 
on
avity of the free-energy [MPV87℄. No stablesolution is known for the intensively 
onne
ted model (Viana-Bray model). Probabilitypropagation only solves the de
oding problem approximately, the approximatedsolutions are similar to those obtained by supposing repli
a symmetry. Thus, thetheoreti
al relevan
e of the RS results for K = 2 are to be evaluated by 
omparisonwith simulations of probability propagation de
oding.3.4. De
oding with probability propagationThe de
oding task 
onsists of evaluating estimates of the form b�j = signhSjiP (Sj jJ). Themarginal posterior P (Sj j J) = PSl;l 6=j P (S j J) 
an be, in prin
iple, be 
al
ulated
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tive 31simply by using Bayes theorem and a proper model for the en
oding and 
orruptionpro
esses (namely, 
oding by a sparse generator matrix with K bit long parity-
he
ksand a memoryless BSC 
hannel) to write:P (Sj j J) = 1P (J) XSl;l 6=jY� P (J� j Si1 � � �SiK ) NYi=1 P (Si); (88)where P (J) is a normalization dependent on J only. A brute for
e evaluation of theabove marginal on a spa
e of binary ve
tors S 2 f�1gN with M 
he
ks would take(M + N + 1)2N operations, what be
omes infeasible very qui
kly. To illustrate howdramati
ally the 
omputational requirements in
rease, assume a 
ode of rate R = 1=2,if N = 10 the number of operations required is 31744, if one in
reases the message sizeto N = 1000, 3� 10304 operations are required! Monte-Carlo sampling is an alternativeto brute for
e evaluation; it 
onsists of generating a number (mu
h less than 2N) oftypi
al ve
tors S and using this to estimate the marginal posterior, however the samplesize required 
an prove to be equally prohibitive.As a solution to these resour
e problems, we 
an explore the stru
ture of (88)to devise an algorithm that produ
es an approximation to P (Sj j J) in O(N)operations. We start by 
on
entrating on one parti
ular site Sj; this site intera
tsdire
tly with a number of other sites through C 
ouplings denoted by Jhi1���iKi andfJ�g = J�(1); � � � ; J�(C�1). Suppose now that we isolate only the intera
tion via 
ouplingJhi1���iKi, if the bipartite Bayesian network representing the dependen
ies in the problemis a tree, it is possible to write:P (Sj j Jhi1���iKi) = P (Sj)P (Jhi1���iKi) XfSi1 ���SiK�1gP (Jhi1���iKi j Sj; Si1 � � �SiK�1)� K�1Yl=1 P (Sil j fJ� : � 2 M(il)g): (89)Terms like P (Sil j fJ�g) 
an be interpreted simply as updated priors for Sil. In a tree,these terms fa
torize like P (Sil j fJ�g) = QC�1j=1 P (Sil j J�(j)) and a re
ursive relation
an be obtained, introdu
ing:Qx�j = P (Sj = x j fJ� : � 2 M(j) n �g) (90)and Rx�j = XfSi:i2L(�)njgP (J� j Sj; fSi : i 2 L(�) n jg) Yi2L(�)njQSi�i ; (91)where M(j) is the set of 
ouplings linked to site j and L(�) is the set of sites linked to
oupling �.Equation (89) 
an be rewritten as:Qx�j = a�jP (Sj = x) Y�2M(j)n�Rx�j: (92)Equations (91) and (92) 
an be solved iteratively, requiring (2KKC + 2C2)NToperations with T being the (order 1) number of steps needed for 
onvergen
e. These
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omputational requirements may be further redu
ed by using advan
ed Markov 
hainMonte-Carlo methods [Ma
99℄.An approximation to the marginal posterior (88) is obtained by 
ounting thein
uen
e of all C intera
tions over ea
h site j and using the assumed fa
torizationproperty to write:Qxj = ajP (Sj = x) Y�2M(j)Rx�j: (93)This is an approximation in the sense that the re
ursion obtained from (89) is onlyguaranteed to 
onverge to the 
orre
t posterior if the system has a tree stru
ture, i.e.,every 
oupling appears only on
e as one goes ba
kwards in the re
ursive 
hain.By taking advantage of the normalization 
onditions for the distributions Q+1�j +Q�1�j = 1 and R+1�j + R�1�j = 1, one 
an 
hange variables and redu
e the number ofequations by a fa
tor of two m�j = Q+1�j �Q�1�j and bm�j = R+1�j �R�1�j .The analogy with statisti
al physi
s 
an be exposed by �rst observing that :P (J� j Sj; fSi : i 2 L(�) n jg) � exp0���J� Yi2L(�) Si1A : (94)That 
an be also written in the more 
onvenient form:P (J� j Sj; fSi : i 2 L(�) n jg) � 12
osh(�J�)0�1 + tanh(�J�) Yj2L(�)Sj1A : (95)Plugging Eq.(95) for the likelihood in equations (92), using the fa
t that the priorprobability is given by P (Sj) = 12 (1 + tanh(� 0NSj)) and 
omputing m�j and bm�j (seeAppendix A.6) one obtains:bm�j = tanh(�J�) Yl2L(�)njm�lm�j = tanh0� X�2M(l)n� atanh(bm�j) + � 0N1A : (96)The pseudo-posterior 
an then be 
al
ulated:mj = tanh0� X�2M(l) atanh(bm�j) + � 0N1A ; (97)providing Bayes optimal de
oding b�j = sign(mj).Equations (96) depend on the re
eived message J . In order to make the analysismessage independent, we 
an use a gauge transformation bm�j 7! �j bm�j and m�j 7!�jm�j to write:bm�j = tanh(�J) Yl2L(�)njm�lm�j = tanh0� X�2M(l)n� tanh�1(bm�j) + � 0N�j1A : (98)
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Figure 11. Overlap as a fun
tion of the 
ip probability p for de
oding using TAPequations for K = 2. From the bottom: Monte-Carlo solution of the RS saddle-pointequations for unbiased messages (p� = 0:5) at T = 0:26 (line) and 10 independent runsof TAP de
oding for ea
h 
ip probability (plus signs), T = 0:26 and biased messages(p� = 0:1) at the Nishimori temperature TN .In the new variables, a de
oding su

ess 
orresponds to bm�j > 0 and m�j = 1 forall � and j. By transforming these variables as bm = tanh(�y) and m = tanh(�x)and 
onsidering the a
tual message and noise as quen
hed disorder, Eqs. (98) 
an berewritten as: y = 1� *tanh�1 tanh(�J)K�1Yj=1 tanh(�xj)!+Jx = *C�1Xj=1 yj + �F+� : (99)For a large number of iterations, one 
an expe
t the ensemble of probabilitynetworks to 
onverge to an equilibrium distribution where bm andm are random variablessampled from distributions b�(y) and �(x) respe
tively. The above relations lead toa dynami
s of the distributions b�(y) and �(x), that is exa
tly as the one obtainedwhen solving iteratively RS saddle-point equations (67). The probability distributionsb�(y) and �(x) 
an be, therefore, identi�ed with b�(y) and �(x) respe
tively and theRS solutions 
orrespond to de
oding a generi
 message using probability propagationaveraged over an ensemble of di�erent 
odes, noise and signals.Equations (96) are now used to show the agreement between the simulated de
odingand analyti
al 
al
ulations. For ea
h run, a �xed 
ode is used to generate 20000bit 
odewords from 10000 bit messages, 
orrupted versions of the 
odewords are then
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Figure 12. Overlap as a fun
tion of the 
ip probability p for de
oding using TAPequations for K = 5. The dotted line is the repli
a symmetri
 saddle-point equationsMonte-Carlo integration for unbiased messages (p� = 0:5) at the Nishimori temperatureTN . The bottom error bars 
orrespond to 10 simulations using the TAP de
oding. Thede
oding performs badly on average in this s
enario. The upper 
urves are for biasedmessages (p� = 0:1) at the Nishimori temperature TN . The simulations agree withresults obtained using the repli
a symmetri
 Ansatz and Monte-Carlo integration.de
oded using (96). Numeri
al solutions for 10 individual runs are presented in Figs.11and 12, initial 
onditions are 
hosen as bm�l = 0 and m�l = tanh(� 0N) re
e
ting the priorbeliefs. In Fig.11 we show results for K = 2 and C = 4 in the unbiased 
ase, at 
oderate R = 1=2 (prior probability P (Sj = +1) = p� = 0:5) and low temperature T = 0:26(we avoided T = 0 due to numeri
al diÆ
ulties). Solving the saddle-point equations(67) numeri
ally using Monte-Carlo integration methods we obtain solutions with goodagreement to simulated de
oding. In the same �gure we show the performan
e forthe 
ase of biased messages (P (Sj = +1) = p� = 0:1), at 
ode rate R = 1=4. Alsohere the agreement with Monte-Carlo integrations is satisfa
tory. The third 
urve inFig.11 shows the performan
e for biased messages at the Nishimori temperature TN , asexpe
ted, it is far superior 
ompared to low temperature performan
e and the agreementwith Monte-Carlo results is even better.In Fig.12 we show the results obtained for K = 5 and C = 10. For unbiasedmessages the system is extremely sensitive to the 
hoi
e of initial 
onditions and doesnot perform well on average even at the Nishimori temperature. For biased messages(p� = 0:1, R = 1=4) results are far better and in agreement with Monte-Carlo integrationof the RS saddle-point equations.
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tive 35The experiments show that probability propagation methods may be usedsu

essfully for de
oding Sourlas-type 
odes in pra
ti
e, and provide solutions that are
onsistent with the RS analyti
al solutions.4. Gallager CodesIn 1962 Gallager [Gal62℄ proposed a 
oding s
heme whi
h involves sparse lineartransformations of binary messages in the de
oding stage, while en
oding uses a densematrix. His proposal was overshadowed by 
onvolutional 
odes due to 
omputationallimitations. The best 
omputer available to Gallager in 1962 was an IBM 7090 
ostingUS$ 3 million and with disk 
apa
ity of 1 Megabyte, while 
onvolutional 
odes, in
omparison, only demanded a simple system of shift registers to pro
ess one byte at atime.Gallager 
odes have been redis
overed re
ently by Ma
Kay and Neal that proposeda 
losely related 
ode [MN95℄ to be dis
ussed in Se
tion 5. This almost 
oin
ided withthe breakthrough dis
overy of high performan
e Turbo 
odes [BGT93℄. Variations ofGallager 
odes have displayed performan
e 
omparable (sometimes superior) to Turbo
odes [Dav98, Dav99℄, qualifying them as state-of-the-art 
odes.A Gallager 
ode is de�ned by a binary matrix A = [C1 j C2℄, 
on
atenating twovery sparse matri
es known to both sender and re
eiver, with C2 (of dimensionality(M � N) � (M � N)) being invertible and C1 of dimensionality (M � N) � N .A non-systemati
 Gallager 
ode is de�ned by a random matrix A of dimensionality(M � N) � M . This matrix 
an, in general, be organized in a systemati
 form byeliminating a number � � O(1) of rows and 
olumns.En
oding refers to the generation of an M dimensional binary ve
tor t 2 f0; 1gM(M > N) from the original message � 2 f0; 1gN byt = GT � (mod 2); (100)where all operations are performed in the �eld f0; 1g and are indi
ated by (mod 2). Thegenerator matrix isG = [I j C�12 C1℄ (mod 2); (101)where I is the N�N identity matrix, implying thatAGT (mod 2) = 0 and that the �rstN bits of t are set to the message �. Note that the generator matrix is dense and ea
htransmitted parity-
he
k 
arries information about an O(N) number of message bits.In regular Gallager 
odes the number of non-zero elements in ea
h row of A is 
hosento be exa
tly K. The number of elements per 
olumn is then C = (1�R)K, where the
ode rate is R = N=M (for unbiased messages). The en
oded ve
tor t is then 
orruptedby noise represented by the ve
tor � 2 f0; 1gM with 
omponents independently drawnfrom P (�) = (1� p)Æ(�) + pÆ(� � 1). The re
eived ve
tor takes the formr = GT� + � (mod 2): (102)
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oding is 
arried out by multiplying the re
eived message by the matrix A toprodu
e the syndrome ve
torz = Ar = A� (mod 2); (103)from whi
h an estimate b� for the noise ve
tor 
an be produ
ed. An estimate for theoriginal message is then obtained as the �rst N bits of r + b� (mod 2). The Bayesoptimal estimator (also known as marginal posterior maximizer, MPM) for the noise isde�ned as b�j = argmax�jP (�j j z). The performan
e of this estimator 
an be measuredby the bit error probability pb = 1 � 1=M PMj=1 Æ[b�j; �j℄, where Æ[; ℄ is the Krone
kerdelta. Knowing the matri
es C2 and C1, the syndrome ve
tor z and the noise level pit is possible to apply Bayes theorem and 
ompute the posterior probabilityP (� j z) = 1Z� [z = A� (mod 2)℄P (� ); (104)where �[X℄ is an indi
ator fun
tion providing 1 ifX is true and 0 otherwise. To 
omputethe MPM one has to 
ompute the marginal posterior P (�j j z) =Pi6=j P (� j z), whi
hin general requires O(2M) operations, thus be
oming impra
ti
al for long messages. Tosolve this problem we 
an take advantage of the sparseness of A and use probabilitypropagation for de
oding, requiring O(M) operations to perform the same task.4.1. Upper bound on a
hievable ratesIt was pointed by Ma
Kay in [Ma
99℄ that an upper bound for rates a
hievable forGallager 
odes 
an be found from information theoreti
 arguments. This upper boundis based on the fa
t that ea
h bit of the syndrome ve
tor z = A�(mod 2) is a sumof K noise bits independently drawn from a bimodal delta distribution P (�) withP (� = 0) = 1� p. The probability of zj = 1 is p1z(K) = 12 � 12(1� 2p)K (see AppendixC.1 for details). Therefore, the maximal information 
ontent in the syndrome ve
tor is(M � N)H2(p1z(K)) (in bits or shannons), where H2(x) is the binary entropy. In thede
oding pro
ess one has to extra
t information from the syndrome ve
tor in order tore
onstru
t a noise ve
tor � whi
h has an information 
ontent of MH2(p). It 
learlymeans that a ne
essary 
ondition for su

essful de
oding is:(M �N)H2(p1z(K)) �MH2(p)(1�R)H2(p1z(K)) � H2(p)R � 1� H2(p)H2(p1z(K)) : (105)In Fig.13a we plot this bound by �xingK and �nding the minimum value for C su
h thatR = 1�C=K veri�es (105). Observe that as K !1, p1z(K)! 1=2 and R! 1�H2(p)that 
orresponds to Shannon's bound.In Fig.13b we plot the bound by �xing C and �nding the maximum K su
h thatR = 1 � C=K satis�es (105), re
overing the 
urves presented in [Ma
99℄. Note thatK ! 1 implies C ! 1 and vi
e-versa. Gallager 
odes only 
an attain Shannon'sbound asymptoti
ally in the limit of large K or, equivalently, large C.
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Figure 13. (a) Bounds for the rate R as a fun
tion of the noise level p for severalvalues of K. From bottom to top: K = 2 to 10; 20 and Shannon limit. (b) Bounds forseveral values of C. From bottom to top C = 2; 3; 4; 5 and Shannon limit.4.2. Statisti
al physi
s formulationThe 
onne
tion to statisti
al physi
s is made by repla
ing the �eld f0; 1g by Ising spinsf�1g and mod 2 sums by produ
ts [Sou89℄. The syndrome ve
tor a
quires the form ofa multi-spin 
oupling J� = Qj2L(�) �j where j = 1; � � � ;M and � = 1; � � � ; (M � N).The K indi
es of nonzero elements in the row � of A are given by L(�) = fj1; � � � ; jKg,and in a 
olumn l are given by M(l) = f�1; � � � ; �Cg.The following family of posterior probabilities 
an be introdu
ed:P
(� j J ) = 1Z exp [��H
(� ;J )℄ (106)H
(� ;J ) = � 
 M�NX�=1 0�J� Yj2L(�) �j � 11A� F MXj=1 �j :The Hamiltonian depends on hyper-parameters 
 and F . For optimal de
oding, 
 andF have to be set to spe
i�
 values that best represent how the en
oding pro
ess and
orruption were performed (Nishimori 
ondition [Iba99℄). Therefore, 
 must be takento in�nity to re
e
t the hard 
onstraints in Eq.(104) and F = atanh(1� 2p), re
e
tingthe 
hannel noise level p. The temperature � must simultaneously be 
hosen to be theNishimori temperature �N = 1, that will keep the hyper-parameters in the 
orre
t value.The disorder in (106) is trivial and 
an be gauged to J� 7! 1 by using �j 7! �j�j. Theresulting Hamiltonian is a multi-spin ferromagnet with �nite 
onne
tivity in a random�eld �jF : Hgauge
 (� ; �) = �
 M�NX�=1 0� Yj2L(�) �j � 11A� F MXj=1 �j�j: (107)At the Nishimori 
ondition 
 ! 1 and the model is even simpler, 
orresponding
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tive 38to a paramagnet with restri
ted 
on�guration spa
e on a non-uniform external �eld:Hgauge(� 2 
; �) = �F MXj=1 �j�j; (108)where 
 = f� : Yj2L(�) �j = 1 ; � = 1; � � � ;M �Ng: (109)The optimal de
oding pro
ess simply 
orresponds to �nding lo
al magnetizationsat the Nishimori temperature mj = h�ji�N and 
al
ulating Bayesian estimates asb�j = sgn(mj).In the f�1g representation the probability of bit error, a
quires the formpb = 12 � 12M MXj=1 �j sgn(mj); (110)
onne
ting the 
ode performan
e with the 
omputation of lo
al magnetizations.4.3. Repli
a theoryIn this se
tion we use the repli
a theory for analyzing the typi
al performan
e of Gallager
odes along the same lines dis
ussed for Sourlas 
odes. We start by rewriting the gaugedHamiltonian (107) in a form more suitable for 
omputing averages over di�erent 
odes:Hgauge
 (� ; �) = �
 Xhi1���iKiAhi1���iKi (�i1 � � � �iK � 1)� F MXj=1 �j�j; (111)where Ahi1���iKi 2 f0; 1g is a random symmetri
 tensor with the properties:Xhi1���iKiAhi1���iKi =M �N Xhi1;���;ij=l;���;iKiAhi1;���;iKi = C 8l; (112)that sele
ts M �N sets of indi
es (
onstru
tion). The 
onstru
tion fAhi1���iKig and thenoise ve
tor � are to be regarded as quen
hed disorder. As usual, the aim is to 
omputethe free-energy:f = � 1� limM!1 1M hln ZiA;� ; (113)from whi
h the typi
al ma
ros
opi
 (thermodynami
) behavior 
an be obtained. Thepartition fun
tion Z is:Z = Tr� exp ���Hgauge
 (� ; �)� : (114)The free energy 
an be evaluated 
al
ulating following expressionf = � 1� limM!1 1M ��n ����n=0 hZniA;� ; (115)
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tive 39where hZniA;� = X� 1;���;� n MYj=1*exp F�� nX�=1 ��j !+�� * Yhi1���iKi nY�=1 exp ��
Ahi1���iKi(��i1 � � � ��iK � 1)�+A : (116)The average over 
onstru
tions h(� � �)iA takes the form:h(� � �)iA = 1N XfAg MYj=1 Æ0� Xhi1=j;i2;���;iKiAhi1=j;���;iKi � C1A (� � �)= 1N XfAg MYj=1 "I dZj2�i 1ZC+1j ZPhi1=j;i2;���;iK iAhi1=j;���;iK ij # (� � �) ; (117)and the average h(� � �)i� over the noise is:h(� � �)i� = X�=�1;+1(1� p)Æ(� � 1) + pÆ(� + 1) (� � �): (118)By 
omputing the averages above and introdu
ing auxiliary variables through theidentity Z dq�1����mÆ q�1����m � 1M MXi Zi��1i � � � ��mi ! = 1 (119)one �nds, after using standard te
hniques (see Appendix B.1 for details), the followingexpression for the repli
ated partition fun
tion:hZniA;� = 1N Z �dq0dbq02�i � nY�=1 dq�dbq�2�i ! � � � (120)� exp24MKK! nXm=0 Xh�1����mi TmqK�1����m� M nXm=0 Xh�1����mi q�1����mbq�1����m35� MYj=1Trf��g 24*exp "F�� nX�=1 ��#+�� I dZ2�i exp hZPnm=0Ph�1����mi bq�1����m ��1 � � � ��miZC+1 35 ;where Tm = e�n�
 
oshn(�
) tanhm(�
). Comparing this expression with that obtainedfor the 
ode of Sourlas in Eq. (A.7), one 
an see that the di�eren
es are thedimensionalityM for Gallager 
odes instead of N for Sourlas (re
e
ting the fa
t that inthe former the noise ve
tor of dimension M is the dynami
al variable) and the absen
eof disorder in the 
ouplings, yielding a slightly modi�ed de�nition for the 
onstants Tm.
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Figure 14. Suboptimal ferromagneti
 solution �NFERRO(x) for the saddle-pointequations (124) obtained numeri
ally. Parameters are K = 4, C = 3 and p = 0:20.Cir
les 
orrespond to an experimental histogram obtained by de
oding with probabilitypropagation in 100 runs for 10 di�erent random 
onstru
tions.4.4. Repli
a symmetri
 solutionThe repli
a symmetri
 ansatz 
onsists of assuming the following form for the orderparameters: q�1����m = Z dx �(x) xm bq�1����m = Z dbx b�(bx) bxm: (121)By performing the limit 
 ! 1, plugging (121) into (120), 
omputing thenormalization 
onstant N , integrating in the 
omplex variable Z and 
omputing thetra
e (see Appendix B.2) we �nd:hZniA;� = Extr�;b��exp��MC �Z dxdbx �(x) b�(bx) (1 + xbx)n � 1�+  MCK Z KYj=1 dxj �(xj) (1 + KYj=1 xj)n � 1!# (122)� 0�Z CYj=1 dbxj b�(bxj)*"X�=�1 e��F� CYj=1(1 + �bxj)#n+�1AM9=; :Using (115): f = 1� Extr�;b��CK ln2 + C Z dxdbx �(x) b�(bx) ln(1 + xbx)� CK Z KYj=1 dxj �(xj) ln(1 + KYj=1 xj) (123)
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Figure 15. Free-energies for K = 4, C = 3 and R = 1=4. The full line 
orrespondsto the free-energy of thermodynami
 states. Up to ps only the ferromagneti
 state ispresent. The ferromagneti
 state then dominates the thermodynami
s up to p
, wherethermodynami
 
oexisten
e with suboptimal ferromagneti
 states takes pla
e. Dashedlines 
orrespond to repli
a symmetri
 free-energies of non-dominant metastable states.� Z CYj=1 dbxj b�(bxj)*ln"X�=�1 e��F� CYj=1(1 + �bxj)#+�9=; :The extremization above yields a pair of saddle-point equations:b�(bx) = Z K�1Yj=1 dxj �(xj) Æ "bx� K�1Yj=1 xj# (124)�(x) = Z C�1Yl=1 dbxl b�(bxl) *Æ "x� tanh �F� + C�1Xl=1 atanh bxl!#+� ;where � = 1 (Nishimori temperature) and F = 12 ln (1�pp ) for optimal de
oding.Following the derivation of Appendix A.3 very 
losely, the typi
al overlap � =h 1M PMj=1 �jb�jiA;� between the estimate b�j = sgn(h�ji�) and the a
tual noise �j is givenby: � = Z dh P (h) sgn(h) (125)P (h) = Z CYl=1 dbxl b�(bxl) *Æ "h� tanh �F� + CXl=1 atanh bxl!#+� :4.5. Thermodynami
 quantities and typi
al performan
eThe typi
al performan
e of a 
ode as predi
ted by the repli
a symmetri
 theory 
anbe assessed by solving (124) numeri
ally and 
omputing the overlap � using (125).
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Figure 16. Pi
torial representation of the repli
a symmetri
 free-energy lands
ape
hanging with the noise level p. Up to ps there is only one stable state F 
orrespondingto the ferromagneti
 state with � = 1. At ps, a se
ond stable suboptimal ferromagneti
state F 0 emerges with � < 1, as the noise level in
reases, 
oexisten
e is attained at p
.Above p
, F 0 be
omes the global minimum dominating the system thermodynami
s.The numeri
al 
al
ulation 
an be done by representing distributions � and b� byhistograms (we have used representations with 20000 bins), and performing Monte-Carlo integrations in an iterative fashion until a solution is found. Overlaps 
an beobtained by plugging the distribution b� that is a solution for (124) into (125).Numeri
al 
al
ulations show the emergen
e of two solution types, the �rst
orresponds to a totally aligned (ferromagneti
) state with � = 1 des
ribed by:�FERRO(x) = Æ[x� 1℄ b�FERRO(bx) = Æ[bx� 1℄: (126)The ferromagneti
 solution is the only stable solution up to a spe
i�
 noise level ps.Above ps another stable solution with � < 1 (suboptimal ferromagneti
) 
an be obtainednumeri
ally. This solution is depi
ted in Fig.14 for K = 4, C = 3 and p = 0:20.The ferromagneti
 state is always a stable solution for (124) and is present for all
hoi
es of noise level or 
onstru
tion parameters C and K. The stability 
an be veri�edby introdu
ing small perturbations to the solution and observing that the solution isre
overed after a number of iterations of (124).The free-energy for the ferromagneti
 state at Nishimori's temperature is simplyfFERRO = �F (1 � 2p). In Fig. 15 we show free-energies for K = 4 and R = 1=4, p
indi
ates the noise level where 
oexisten
e between the ferromagneti
 and suboptimalferromagneti
 phases o

urs. This 
oexisten
e noise level 
oin
ides, within the numeri
alpre
ision, with the information theoreti
 upper bound of Se
tion 4.1. In Fig.16 we showpi
torially how the repli
a symmetri
 free-energy lands
ape 
hanges with the noise levelp. In Fig.17 we show the overlap as a fun
tion of the noise level, as obtained forK = 4 and R = 1=4 (therefore C = 3). Full lines indi
ate values 
orresponding to
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Figure 17. Overlaps for K = 4, C = 3 and R = 1=4. The full line 
orrespondsto overlaps predi
ted by thermodynami
al 
onsiderations. Up to ps only theferromagneti
 � = 1 state is present, it then dominates the thermodynami
s up top
, where 
oexisten
e with suboptimal ferromagneti
 states takes pla
e. Dashed lines
orrespond to overlaps of non-dominant states.states of minimum free-energy that are predi
ted thermodynami
ally. The general ideais that the ma
ros
opi
 behaviour of the system is dominated by the global minimumof the free-energy (thermodynami
 equilibrium state). After a suÆ
iently long time thesystem eventually visits 
on�gurations 
onsistent with the minimum free-energy statestaying there almost all of the time. The whole dynami
s is ignored and only the stableequilibrium, in a thermodynami
 sense, is taken into a

ount. Also in Fig. 17 we showresults obtained by simulating probability propagation de
oding (bla
k 
ir
les). Thepra
ti
al de
oding stays in a meta-stable (in the thermodynami
 sense) state betweenps and p
 and the pra
ti
al maximum noise level 
orre
ted is a
tually given by ps.Returning to the pi
torial representation in Fig.16, the noise level ps that providesthe pra
ti
al threshold is signalled by the appearan
e of spinodal points in the repli
asymmetri
 free-energy, de�ned as points separating (meta)stable and unstable regionsin the spa
e of thermodynami
al 
on�gurations (�). The noise level ps may, therefore,be 
alled spinodal noise level.The solutions obtained must produ
e non-negative entropies to be physi
allymeaningful. The entropy 
an be 
omputed from the free-energy (123) as s = �2 �f��yielding: s = �(u(�) � f) (127)u(�) = � Z CYj=1 dbxj b��(bxj)*F�P�=�1 �e��F�QCj=1(1 + �bxj)P�=�1 e��F�QCj=1(1 + �bxj) +� ;where b�� is a solution for the saddle-point equations (124) and u(�) 
orresponds to
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Figure 18. Internal energy density for K = 4, C = 3 and R = 1=4 for bothferromagneti
 and suboptimal ferromagneti
 states. The equality is a 
onsequen
eof using the Nishimori 
ondition (see Appendix B.3).the internal energy density at temperature �. For the ferromagneti
 state sFERRO = 0what indi
ates that the repli
a symmetri
 ferromagneti
 solution is physi
al and thatthe number of mi
ro-states 
onsistent with the ferromagneti
 state is at most ofpolynomial order in N . The entropy of the suboptimal ferromagneti
 state 
an beobtained numeri
ally. Up to the spinodal noise level ps the entropy vanishes as onlythe ferromagneti
 state is stable. Above ps the entropy of the repli
a symmetri
suboptimal ferromagneti
 state is negative and, therefore, unphysi
al. At p
 the entropyof the suboptimal ferromagneti
 state be
omes positive again. The internal energydensity obtained numeri
ally is depi
ted in Fig.18 being u = �F (1 � 2p) for bothferromagneti
 and suboptimal ferromagneti
 states, justi�ed by assuming Nishimori's
ondition 
 !1, � = 1 and F = atanh(1� 2p) [Iba99℄ (see Appendix B.3).The unphysi
al behavior of the suboptimal ferromagneti
 solution between ps andp
 indi
ates that the repli
a symmetri
 ansatz does not provide the 
orre
t physi
aldes
ription of the system. The 
onstru
tion of a 
omplete one-step repli
a symmetrybreaking theory turns out to be a diÆ
ult task in the family of models we fo
us onhere [WS88, Mon98b, Mon98a℄; although it may be possible in prin
iple using a newmethod, re
ently introdu
ed by Mezard and Parisi [MP01℄. An alternative is to 
onsidera frozen spins solution. In this 
ase the entropy in the interval ps < p < p
 is 
orre
tedto sRSB = 0 and the free-energy and internal energy are frozen to the values at p
.Any 
andidate to a physi
al des
ription for the system would have to be 
omparedwith simulations to be validated. Nevertheless, our aim here is predi
ting the behaviorof a parti
ular de
oding algorithm, namely, probability propagation. In the next se
tionwe will show that, to this end, the repli
a symmetri
 theory will be suÆ
ient.
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τFigure 19. First step in the 
onstru
tion of Husimi 
a
tus with K = 3 and
onne
tivity C = 4.4.6. Codes on a 
a
tusIn this se
tion we present a statisti
al physi
s treatment of Gallager 
odes by employinga mean-�eld approximation based on the use of a generalized tree stru
ture (Bethe latti
e[WS87b℄) known as Husimi 
a
tus that is exa
tly solvable [Guj95, BL82, RK92, Gol91℄.There are many di�erent ways of building mean-�eld theories. One 
an makea perturbative expansion around a tra
table model [Ple82, Tan00℄ or assume atra
table stru
ture and variationally determine the model parameters [SJ98℄. In theapproximation we employ, the tra
table stru
ture is tree-like and the 
ouplings J� arejust assumed to be those of a model with 
y
les. In this framework the probabilitypropagation de
oding algorithm (PP) emerges naturally providing an alternative view tothe relationship between PP de
oding and mean-�eld approximations already observedin [KS98℄. Moreover, this approa
h has the advantage of being slightly more 
ontrolledand easier to understand than repli
a 
al
ulations.A Husimi 
a
tus with 
onne
tivity C is generated starting with a polygon of Kverti
es with one Ising spin in ea
h vertex (generation 0). All spins in a polygon intera
tthrough a single 
oupling J� and one of them is 
alled the base spin. In Fig.19 we showthe �rst step in the 
onstru
tion of a Husimi 
a
tus, in a generi
 step the base spins ofthe (C � 1)(K � 1) polygons in generation n � 1 are atta
hed to K � 1 verti
es of apolygon in the next generation n. This pro
ess is iterated until a maximum generationnmax is rea
hed, the graph is then 
ompleted by atta
hing C un
orrelated bran
hes ofnmax generations at their base spins. In this way ea
h spin inside the graph is 
onne
tedto C polygons exa
tly. The lo
al magnetization at the 
enter mj 
an be obtained by�xing boundary (initial) 
onditions in the 0-th generation and iterating the relatedre
ursion equations until generation nmax is rea
hed. Carrying out the 
al
ulation inthe thermodynami
 limit 
orresponds to having nmax � lnM generations andM !1.The Hamiltonian of the model has the form (106) where L(�) denotes thepolygon � of the latti
e. Due to the tree-like stru
ture, lo
al quantities far from theboundary 
an be 
al
ulated re
ursively by spe
ifying boundary 
onditions. The typi
alde
oding performan
e 
an therefore be 
omputed exa
tly without resorting to repli
a
al
ulations [Guj95℄.We adopt the approa
h presented in [RK92℄ for obtaining re
ursion relations. Theprobability distribution P�k(�k) for the base spin of the polygon � is 
onne
ted to
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tive 46(C � 1)(K � 1) distributions P�j(�j), with � 2 M(j) n � (all polygons linked to jbut �) of polygons in the previous generation:P�k(�k) = 1N Trf�jg exp24�
0�J��k Yj2L(�)nk �j � 11A+ �F�k35 (128)� Y�2M(j)n� Yj2L(�)nk P�j(�j);where the tra
e is over the spins �j su
h that j 2 L(�) n k.The e�e
tive �eld bx�j on a base spin j due to neighbors in polygon � 
an be writtenas : e�2bx�j = e2�F P�j(�)P�j(+) ; (129)Combining (128) and (129) we �nd the re
ursion relation (see Appendix B.4 for details):e�2bx�k = Trf�jge��
J�Qj2L(�)nk �j+Pj2L(�)nk(�F+P�2M(j)n� bx�j)�jTrf�jge+�
J�Qj2L(�)nk �j+Pj2L(�)nk(�F+P�2M(j)n� bx�j)�j : (130)By 
omputing the tra
es and taking 
 !1 and � = 1 one obtains:bx�k = atanh24J� Yj2L(�)nk tanh(F + X�2M(j)n� bx�j)35 (131)The e�e
tive lo
al magnetization due to intera
tions with the nearest neighbors inone bran
h is given by bm�j = tanh(bx�j). The e�e
tive lo
al �eld on a base spinj of a polygon � due to C � 1 bran
hes in the previous generation and due to theexternal �eld is x�j = F +P�2M(j)n� bx�j; the e�e
tive lo
al magnetization is thereforem�j = tanh(x�j). Equation (131) 
an then be rewritten in terms of bm�j and m�j andthe PP equations [Ma
99, KS98, KF98℄ 
an be re
overed:m�k = tanh0�F + X�2M(k)n� atanh (bm�k)1Abm�k = J� Yj2L(�)nkm�j (132)On
e the magnetization on the boundary (0-th generation) are assigned, the lo
almagnetization mj in the 
entral site is determined by iterating (132) and 
omputing :mj = tanh0�F + X�2M(j) atanh (bm�j)1A (133)A free-energy 
an be obtained by integration of (132) [MKSV00, VSK00b, BL82℄.The equations (132) des
ribing PP de
oding represent extrema of the following free-energy: F(fm�k; bm�kg) = M�NX�=1 Xi2L(�) ln(1 +m�i bm�i) (134)
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Figure 20. Transitions for Gallager 
odes with K = 6 (left) and K = 10 (right).Shannon's bound (dashed line), information theory upper bound (full line) andthermodynami
 transition obtained numeri
ally (Æ). Transitions obtained by Monte-
arlo integration of Eq.(138) (�) and by simulations of PP de
oding (+, M = 5000averaged over 20 runs) are also shown. Bla
k squares are estimates for pra
ti
althresholds based on Se
.4.8. In both �gures, symbols are 
hosen larger than the errorbars. � M�NX�=1 ln(1 + J� Yi2L(�)m�i)� MXj=1 ln24eF Y�2M(j)(1 + bm�j) + e�F Y�2M(j)(1� bm�j)35The iteration of the maps (132) is a
tually one out of many di�erent methods of �ndingstable extrema of this free-energy.The de
oding pro
ess 
an be performed by iterating the multidimensionalmap (132)using some de�ned s
heduling. Assume that the iterations are performed in parallelusing the following pro
edure:(i) E�e
tive lo
al magnetizations are initialized as m�k = 1 � 2p, re
e
ting priorprobabilities.(ii) Conjugate magnetizations bm�k are updated.(iii) Magnetizations m�k are 
omputed.(iv) If 
onvergen
e or a maximal number of iterations is attained, stop. Otherwise goto step (ii).Equations (132) have �xed points that are in
onveniently dependent on theparti
ular noise ve
tor �. By applying the gauge transformation J� 7! 1 and �j 7! �j�jwe get a map with noise independent �xed points that has the following form:m�k = tanh0��kF + X�2M(k)n� atanh (bm�k)1A (135)
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Figure 21. Mean normalized overlap � between the a
tual noise ve
tor � andde
oded noise b� for a Gallager 
ode with K = 4 and C = 3 (therefore R = 1=4).Theoreti
al values (�) obtained by Monte-
arlo integration of Eq.(138) and averagesof 20 simulations of PP de
oding for 
ode word lengths M = 5000 (�) and M = 100(full line). Symbols are 
hosen larger than the error bars.bm�k = Yj2L(�)nkm�j: (136)In terms of e�e
tive �elds x�k and bx�k we have:x�k = �kF + X�2M(k)n� bx�k bx�k = atanh0� Yj2L(�)nk tanh(x�j)1A : (137)The above equations provide a mi
ros
opi
 des
ription for the dynami
s of a probabilitypropagation de
oder, a ma
ros
opi
 des
ription 
an be 
onstru
ted by retainingonly statisti
al information about the system, namely by des
ribing the evolution ofhistograms of variables x�k and bx�k.Assume that the e�e
tive �elds x�k and bx�k are random variables independentlysampled from the distributions P (x) and bP (bx) respe
tively, in the same way assumethat �j is sampled from P (�) = (1� p) Æ(� � 1) + Æ(� + 1). A re
ursion relation in thespa
e of probability distributions [BL82℄ 
an be found from Eq. (137):Pn(x) = Z d� P (�) Z C�1Yl=1 dbxl bPn�1(bxl) Æ "x� F� � C�1Xl=1 bxl#bPn�1(bx) = Z K�1Yj=1 dxj Pn�1(xj) Æ "bx� atanh K�1Yj=1 tanh(xj)!# ; (138)where Pn(x) is the distribution of e�e
tive �elds at the n-th generation due to theprevious generations and external �elds, in the thermodynami
 limit the distributionfar from the boundary will be P1(x) (generation n!1). The lo
al �eld distribution
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Figure 22. PP de
oding 
onvergen
e time as a fun
tion of the 
ode size (M �N) forK = 4 C = 3 and p = 0:05, therefore, well below the threshold. The 
onvergen
e time
learly does not s
ale with the system size.at the 
entral site is 
omputed by repla
ing C�1 by C in the �rst equation (138), takinginto a

ount C polygons in the generation just before the 
entral site, and inserting thedistribution P1(x):P (h) = Z d� P (�) Z CYl=1 dbxl bP1(bxl) Æ "x� F� � CXl=1 bxl# : (139)Equations (138) are identi
al to equations (124) obtained by the repli
a symmetri
theory [KMS00, MKSV00, VSK00b℄ if the variables des
ribing �elds are transformed tothose of lo
al magnetizations through x 7! tanh(�x).In Fig.14 we show empiri
al histograms obtained by performing 100 runs of PPde
oding for 10 di�erent 
odes of size M = 5000 and 
ompare with a distributionobtained by solving equations like (138). The pra
ti
al PP de
oding is performed bysetting initial 
onditions as m�j = 1 � 2p to 
orrespond to the prior probabilities anditerating (132) until stationarity or a maximum number of iterations is attained [Ma
99℄.The estimate for the noise ve
tor is then produ
ed by 
omputing b�j = sign(mj). Atea
h de
oding step the system 
an be des
ribed by histograms of variables (132), thisis equivalent to iterating (138) (a similar idea was presented in [Ma
99, Dav98℄).In Fig.20 we summarize the transitions obtained for K = 6 and K = 10. A dashedline indi
ates Shannon's limit, the full line represents the information theoreti
 upperbound of Se
tion 4.1, white 
ir
les stand for the 
oexisten
e line obtained numeri
ally.Diamonds represent spinodal noise levels obtained by solving (138) numeri
ally and(+) are results obtained by performing 20 runs using PP de
oding. It is interesting toobserve that the pra
ti
al performan
e tends to get worse as K grows large, what agreeswith the general belief that de
oding gets harder as Shannon's limit is approa
hed.



Low Density Parity Che
k Codes { A Statisti
al Physi
s Prospe
tive 50

Figure 23. Tanner graph representing the neighborhood of a bit node in an irregularGallager 
ode. Bla
k 
ir
les represent 
he
ks and white 
ir
les represent bits.4.7. Tree-like approximation and the thermodynami
 limitThe geometri
al stru
ture of a Gallager 
ode de�ned by the matrixA 
an be representedby a bipartite graph as in Fig.(23) (Tanner graph) [KF98℄ with bit and 
he
k nodes(in this 
ase, we show an irregular 
onstra
tion where the values of K and C arenot �xed). Ea
h 
olumn j of A represents a bit node and ea
h row � representsa 
he
k node, A�j = 1 means that there is an edge linking bit j to 
he
k �. It ispossible to show [RU01℄ that for a random ensemble of regular 
odes, the probabilityof 
ompleting a 
y
le after walking l edges starting from an arbitrary node is upperbounded by P[l;K;C;M ℄ � l2K l=M . It implies that for very large M only 
y
les ofat least order lnM survive. In the thermodynami
 limit M ! 1 and the probabilityP[l;K;C;M ℄! 0 for any �nite l and the bulk of the system is e�e
tively tree-like. Bymapping ea
h 
he
k node to a polygon with K bit nodes as verti
es, one 
an map aTanner graph into a Husimi latti
e that is e�e
tively a tree for any number of generationsof order less than lnM . In Fig.22 we show that the number of iterations of (132) requiredfor 
onvergen
e far from the threshold does not s
ale with the system size, therefore,it is expe
ted that the interior of a tree-like latti
e approximates a Gallager 
ode within
reasing a

ura
y as the system size in
reases. Figure 21 shows that the approximationis fairly good even for sizes as small as M = 100 when 
ompared to theoreti
al resultsand simulations for sizeM = 5000. Nevertheless, the di�eren
e in
reases as the spinodalnoise level approa
hes, what seems to indi
ate the breakdown of the approximation. Apossible explanation is that 
onvergen
e times larger than O(lnM) may be requiredin this region. An interesting analysis of the 
onvergen
e properties of probabilitypropagation algorithms for some spe
i�
 graphi
al models 
an be found in [Wei97℄.
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tive 514.8. Estimating spinodal noise levelsWe now estimate the threshold noise level ps by introdu
ing a measure for the numberof parity-
he
ks violated by a bit �l:El = � X�2M(l)0�J��l Yj2L(�)nl �j � 11A : (140)By using gauged variables:El = � X�2M(l)0��l Yj2L(�)nl �j � 11A : (141)Suppose that random guesses are generated by sampling the prior distribution, theirtypi
al overlap will be � = 1� 2p. Assume now that the ve
tors sampled are 
orre
tedby 
ipping �l if El = C. If the lands
ape has a single dominant minimum we expe
t thatthis pro
edure will tend to in
rease the overlap � between � and the a
tual noise ve
tor� in the �rst step up to the noise level ps, where suboptimal mi
ros
opi
 
on�gurationsare expe
ted to emerge. Above ps there is a large number of suboptimal ferromagneti
mi
ro-states with an overlap around � = 1 � 2p (see Fig.21), and we expe
t that if asingle bit of a randomly guessed ve
tor is 
orre
ted, the overlap will then either in
reaseor de
rease, staying un
hanged on average. A vanishing variation in the mean overlapwould, therefore, signal the emergen
e of suboptimal mi
ro-states at ps.The probability that a bit �l = +1 is 
orre
ted is:P (El = C j �l = +1) = Y�2M(l)P 8<: Yj2L(�)nl �j = �19=; : (142)For a a bit �l = �1 :P (El = C j �l = �1) = Y�2M(l)241� P 8<: Yj2L(�)nl �j = �19=;35 : (143)Considering ve
tors sampled from a prior P (�) = (1� p) Æ(� � 1) + p Æ(� + 1) wehave: P 8<: Yj2L(�)nl �j = �19=; = 12 � 12 (1� 2p)K�1: (144)The gauged overlap is de�ned as � =PMj=1 Sj and the variation on the overlap after
ipping a bit l is �� = �1 � �0 = S1l � S0l . The mean variation in the overlap due to a
ip in a bit �l with El = C is therefore:12h��i = P (�l = +1 j El = C) � P (�l = �1 j El = C) (145)= P�l=�1 �lP (El = C j �l)P (�l)P�l=�1 P (El = C j �l))P (�l) ;
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tive 52where we applied the Bayes theorem to obtain the last line.By plugging the prior probability, (142) and (144) into the above expression we get:12h��i = �1� (1� 2p)K�1�C (1� p) � �1 + (1� 2p)K�1�C p[1� (1� 2p)K�1℄C (1� p) + [1 + (1� 2p)K�1℄C p : (146)At ps we have h��i = 0 and:ps1� ps = �1� (1� 2ps)K�11 + (1� 2ps)K�1� : (147)The above equation 
an be solved numeri
ally yielding reasonably a

urate estimatesfor pra
ti
al thresholds ps as 
an be seen in Fig.20.Ma
Kay [Ma
99℄ and Gallager [Gal62, Gal63℄ introdu
ed probabilisti
 de
odingalgorithms whose performan
e analysis is essentially the same those as presented here.However, the results obtained in Se
tion 4.3 put the analysis into a broader perspe
tive:algorithms that generate de
oding solutions in polynomial time, as is the 
ase ofprobabilisti
 de
oding or probability propagation, seem to be bounded by the pra
ti
althreshold ps due to the presen
e of suboptimal solutions. On other hand, de
odingin exponential time is always possible up to the thermodynami
 transition at p
 (withp
 attaining 
hannel 
apa
ity if K ! 1), by performing an exhaustive sear
h for theglobal minimum of the free-energy (134).5. Ma
Kay-Neal CodesMa
Kay-Neal (MN) 
odes were introdu
ed in [MN95℄ as a variation on Gallager 
odes.As in the 
ase of Gallager 
odes (see Se
tion 4), MN 
odes are de�ned by two verysparse matri
es, but with the di�eren
e that information on both noise and signal isin
orporated to the syndrome ve
tor. MN 
odes are also de
oded using sparse matri
eswhile en
oding uses a dense matrix, what yields good distan
e properties and a de
odingproblem solvable in linear time by using the methods of probability propagation.Cas
ading 
odes, a 
lass of 
onstru
tions inside the MN family re
ently proposed byKanter and Saad [KS99b, KS00b, KS00a℄, have been shown to outperform some of the
utting-edge Gallager and turbo 
ode 
onstru
tions. We will dis
uss 
as
ading 
odes inthe next se
ion, but this fa
t alone justi�es a thorough study of MN 
odes.Theorems showing the asymptoti
 goodness of the MN family have been provedin [Ma
99℄. By assuming that equal message and noise biases (for a BSC), it wasproved that the probability of error vanishes as the message length in
reases and thatit is possible to get as 
lose as desired to 
hannel 
apa
ity by in
reasing the number ofnon-zero elements in a 
olumn of the very sparse matri
es de�ning the 
ode.It 
an also be shown by a simple upper bound that MN 
odes, unlike Gallager 
odes,might as well attain Shannon's bound for a �nite number of non-zero elements in the
olumns of the very sparse matri
es, given that unbiased messages are used. This upperbound does not guarantee that 
hannel 
apa
ity 
an be attained in polynomial time oreven that it 
an be attained at all. Results obtained using statisti
al physi
s te
hniques
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tive 53[KMS00, MKSV00, VSK00b, VSK00a℄ seem to indi
ate that Shannon's bound 
ana
tually be approa
hed with exponential time de
oding. This feature is 
onsideredto be new and somewhat surprising [Ma
00b℄.Statisti
al physi
s has been applied to analyze MN 
odes and its variantsin [KMS00, MKSV00, VSK00b℄. In the analysis we use the repli
a symmetri
 theory toobtain all relevant thermodynami
 quantities and to 
al
ulate the phase diagram. Thetheory also yields a noise level where suboptimal solutions emerge that is in 
onne
tionwith the pra
ti
al thresholds observed when probability propagation de
oding is used.Assuming that a message is represented by a binary ve
tor � 2 f0; 1gN sampledindependently from the distribution P (�) = (1�p�) Æ(�)+p� Æ(��1), the MN en
odingpro
ess 
onsists of produ
ing a binary ve
tor t 2 f0; 1gM de�ned byt = G� (mod 2); (148)where all operations are performed in the �eld f0; 1g and are indi
ated by (mod 2). The
ode rate is, therefore, R = N=M .The generator matrix G is an M �N dense matrix de�ned byG = C�1n Cs (mod 2); (149)with Cn being an M �M binary invertible sparse matrix and Cs an M � N binarysparse matrix.The transmitted ve
tor t is then 
orrupted by noise. We here assume a memorylessbinary symmetri
 
hannel (BSC), namely, noise is represented by a binary ve
tor� 2 f0; 1gM with 
omponents independently drawn from the distribution P (�) =(1� p) Æ(�) + p Æ(� � 1).The re
eived ve
tor takes the formr = G� + � (mod 2): (150)De
oding is performed by pre-pro
essing the re
eived message with the matrix Cnand produ
ing the syndrome ve
torz = Cnr = Cs� +Cn� (mod 2); (151)from whi
h an estimate b� for the message 
an be dire
tly obtained.An MN 
ode is 
alled regular if the number of elements set to one in ea
h row ofCs is 
hosen to be K and the number of elements in ea
h 
olumn is set to be C. Forthe square matrix Cn the number of elements in ea
h row (or 
olumn) is set to L. Inthis 
ase the total number of ones in the matrix Cs is MK = NC, yielding that therate 
an alternatively be expressed as R = K=C.In 
ontrast, an MN 
ode is 
alled irregular if ea
h row m in Cs and Cn 
ontains Kmand Lm non-zero elements respe
tively. In the same way, ea
h 
olumn j of Cs 
ontainsCj non-zero elements and ea
h 
olumn l of Cn 
ontains Dl non-zero elements.Counting the number of non-zero elements in the matri
es leads to the followingrelations: NXj=1 Cj = MX�=1K� MXl=1 Dl = MX�=1 L�; (152)
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tive 54The 
ode rate is, therefore, R = K=C, where:K = 1M MX�=1K� C = 1N NXj=1 Cj: (153)The Bayes optimal estimator b� for the message � is b�j = argmaxSjP (Sj j z).The performan
e of this estimator is measured by the probability of bit error pb =1 � 1=N PNj=1 Æ[b�j; �j℄, where Æ[; ℄ is the Krone
ker delta. Knowing the matri
es Csand Cn, the syndrome ve
tor z, the noise level p and the message bias p�; the posteriorprobability is 
omputed by applying Bayes theorem:P (S; � j z) = 1Z� [z = CsS +Cn� (mod 2)℄P (S)P (� ); (154)where �[X℄ is an indi
ator fun
tion providing 1 if X is true and 0 otherwise.To obtain the estimate one has to 
ompute the marginal posteriorP (Sj j z) = XfSi:i6=jgX� P (S; � j z); (155)whi
h requires O(2N) operations and is impra
ti
al for long messages. Again we 
an usethe sparseness of [Cs j Cn℄ and the methods of probability propagation for de
oding,what requires only O(N) operations.When p = p�, MN and Gallager 
odes are equivalent under a proper transformationof parameters, as the 
ode rate is R = N=M for MN 
odes and R = 1�N=M for Gallager
odes. The main di�eren
e between the 
odes is in the syndrome ve
tor z. For MN
odes the syndrome ve
tor in
orporates information on both message and noise whilefor Gallager 
odes only information on the noise is present (see Eq.(103)). This featureopens the possibility of adjusting the 
ode behavior by 
ontrolling the message bias p�.An MN 
ode 
an be thought as a non-linear 
ode [Ma
00
℄. Redundan
y inthe original message 
ould be removed (introdu
ed) by using a sour
e (de)
ompressorde�ned by some non-linear fun
tion � = g(�0; p�) and en
oding would then be t =Gg(�0; p�) (mod 2). In the following we show that other new features emerge due tothe introdu
tion of the parameter p�.5.1. Upper bound on a
hievable ratesIn a regular MN 
ode the syndrome ve
tor z = CsS + Cn� (mod 2) is a sum of Kmessage bits drawn from the distribution P (�) = (1� p�) Æ(�)+ p� Æ(�� 1) and L noisebits drawn from P (�) = (1� p) Æ(�) + p Æ(� � 1).The probability of zj = 1 is (see Appendix C.1)p1z(K;L) = 12 � 12(1� 2p�)K(1� 2p)L: (156)The maximum information 
ontent in the syndrome ve
tor is MH2(p1z(K;L)) (in bitsor shannons), where H2(x) is the binary entropy. The amount of information needed to
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onstru
t both the message ve
tor � and the noise ve
tor � is NH2(p�) +MH2(p) (inbits or shannons). Thus, it is a ne
essary 
ondition for su

essful de
oding that:M H2(p1z(K;L)) � N H2(p�) +M H2(p)H2(p1z(K;L))�H2(p) � R H2(p�)R � H2(p1z(K;L)) � H2(p)H2(p�) : (157)For the 
ase p� = p and L = C, we 
an re
over bounds (105) for Gallager 
odeswith dimensions and parameters rede�ned as M 0 = M +N , N 0 = N and K 0 = K + L.In [Ma
99℄, a theorem stating that 
hannel 
apa
ity 
an be attained when K !1 wasproved for this parti
ular 
ase.If unbiased (p� = 1=2) messages are used, H2(p�) = 1, H2(p1z(K;L)) = 1 and thebound (157) be
omesR � 1 � H2(p); (158)i.e., MN 
odes may be 
apable of attaining 
hannel 
apa
ity even for �nite K and L,given that unbiased messages are used.5.2. Statisti
al physi
s formulationThe statisti
al physi
s formulation for MN 
odes is a straightforward extension of theformulation presented for Gallager 
odes. The �eld (f0; 1g;+ (mod 2)) is repla
ed by(f�1g;�) [Sou89℄ and the syndrome ve
tor a
quires the form :J� = Yj2Ls(�) �j Yl2Ln(�) �l (159)where j = 1; � � � ; N , l = 1; � � � ;M and � = 1; � � � ;M .The K� indi
es of nonzero elements in the row � of the signal matrix Cs are givenby Ls(�) = fj1; � � � ; jK�g, and in a 
olumn j are given byMs(j) = f�1; � � � ; �Cjg. In thesame way, for the noise matrix Cn, the L� indi
es of nonzero elements in the row � aregiven by Ln(�) = fj1; � � � ; jL�g, and in a 
olumn l are given by Mn(l) = f�1; � � � ; �Dlg.Under the assumption that priors P (S) and P (� ) are 
ompletely fa
torizable, theposterior (154) 
orresponds to the limit 
 !1 and � = 1 (Nishimori temperature) of:P
(S; � j J ) = 1Z exp [��H
(S; � ;J )℄ (160)H
(S; � ;J ) = � 
 MX�=10�J� Yj2Ls(�) Sj Yl2Ln(�) �l � 11A� Fs NXj=1 Sj � Fn MXl=1 �l;with Fs = 12 atanh(1�p�p� ) and Fn = 12 atanh(1�pp ) (Nishimori 
ondition [Iba99℄).By applying the gauge transformation Sj 7! Sj�j and �l 7! �l�l the 
ouplings 
anbe gauged out J� 7! 1, eliminating the disorder. The model is free of frustration (as
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tive 56in [Tou77℄, the model is 
at) . Similarly to Gallager 
odes, the resulting Hamiltonian
onsists of two sub-latti
es intera
ting via multi-spin ferromagneti
 iterations with �nite
onne
tivity in random �elds �jFs and �lFn:Hgauge
 (S; � ; �; �) = � 
 MX�=10� Yj2Ls(�) Sj Yl2Ln(�) �l11A� Fs NXj=1 �jSj � Fn MXl=1 �l�l: (161)At the Nishimori 
ondition 
 ! 1, and the model 
an also be regarded as aparamagnet with restri
ted 
on�guration spa
e on a non-uniform external �eld:Hgauge((S; � ) 2 
; �; �) = �Fs NXj=1 �jSj � Fn MXl=1 �l�l; (162)where 
 = f(S; � ) : Yj2Ls(�) Sj Yl2Ln(�) �l = 1 ; � = 1; � � � ;Mg: (163)Optimal de
oding 
onsists of �nding lo
al magnetizations at the Nishimoritemperature in the signal sub-latti
e mj = hSji�N and 
al
ulating Bayesian estimatesb�j = sgn(mj).The probability of bit error ispb = 12 � 12N NXj=1 �j sgn(mj); (164)
onne
ting the 
ode performan
e with the 
omputation of lo
al magnetizations.5.3. Repli
a theoryThe repli
a theory for MN 
odes is the theory 
onstru
ted for Gallager 
odes, with theintrodu
tion of extra dynami
al variables S. The gauged Hamiltonian (161) is writtenas: Hgauge
 (S; � ; �; �) = � 
XhjliAhjli (Sj1 � � �SjK�l1 � � � �lL � 1)� Fs NXj=1 �jSj � Fn MXl=1 �l�l; (165)where hjli is a shorthand for hj1 � � � jK l1 � � � lLi.Code 
onstru
tions are des
ribed by the tensor Ahili 2 f0; 1g that spe
i�es a set ofindi
es hj1 � � � jK l1 � � � lLi 
orresponding to non-zero elements in a parti
ular row of thematrix [Cs j Cn℄. To 
ope with non-invertible Cn matri
es we 
an start by 
onsideringan ensemble with uniformly generated M �M matri
es. The non-invertible matri
es
an be made invertible by eliminating a � � O(1) number of rows and 
olumns, resulting
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tive 57in an ensemble of (M � �) � (M � �) invertible Cn matri
es and (M � �) � (N � �)Cs matri
es. As we are interested in the thermodynami
 limit we 
an negle
t O(1)di�eren
es and 
ompute the averages in the original spa
e of M �M matri
es. Theaverages are then performed over an ensemble of 
odes generated as follows:(i) Sets of numbers fCjgNj=1 and fDlgMl=1 are sampled independently from distributionsPC and PD respe
tively;(ii) Tensors Ahjli are generated su
h thatXhjliAhjli =M;Xhj1=j���jK l1���lLiAhjli = Cj Xhj1���jK l1=l���lLiAhjli = Dl:The free-energy is 
omputed by the repli
a method as:f = � 1� limN!1 1N ��n ����n=0 hZniA;�;� (166)The repli
ated partition fun
tion is:hZniA;�;� = XS1;���;Sn X� 1;���;� n NYj=1*exp Fs�� nX�=1 S�j !+� (167)� MYl=1 *exp Fn�� nX�=1 ��l !+�� *Yhjli nY�=1 exp h�
Ahjli(S�j1 � � �S�jK��l1 � � � ��lL � 1)i+A :The average over 
onstru
tions h(� � �)iA is:h(� � �)iA = XfCj ;Dlg NYj=1PC(Cj) MYl=1 PD(Dl) 1N Æ0� Xhj1=j;i2;���;jKliAhjli � Cj1A� Æ0� Xhjl1=l;l2;���;lKiAhjli �Dl1A (� � �)= XfCj ;Dlg NYj=1PC(Cj) MYl=1 PD(Dl)� 1N XfAg NYj=1 "I dZj2�i 1ZCj+1j ZPhi1=j;i2;���;iKli Ahj1=j;���;jKlij #
� MYl=1 "I dYl2�i 1Y Dl+1l YPhj l1=l;l2;���;lLi Ahjl1=l;���;lLil # (� � �); (168)
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tive 58where the �rst sum is over pro�les fCj; Dlg 
omposed by N numbers drawnindependently from PC(C) and M numbers drawn from PD(D). The se
ond sum isover 
onstru
tions A 
onsistent with the pro�le fCj; Dlg.The signal average h(� � �)i� has the form:h(� � �)i� = X�=�1;+1(1� p�) Æ(� � 1) + p� Æ(� + 1) (� � �): (169)Similarly, the noise average h(� � �)i� is:h(� � �)i� = X�=�1;+1(1� p) Æ(� � 1) + p Æ(� + 1) (� � �): (170)Along the same steps des
ribed for Gallager 
odes, we 
ompute averages above andintrodu
e auxiliary variables viaZ dq�1����m Æ q�1����m � 1N NXi ZiS�1i � � �S�mi ! = 1 (171)Z dr�1����m Æ r�1����m � 1M MXi Yi��1i � � � ��mi ! = 1 (172)Using the same type of te
hniques employed in the 
ase of Gallager 
odes (seeAppendix C.2 for details), we obtain the following expression for the repli
ated partitionfun
tion: hZniA;�;� = NYj=1XCj PC(Cj) MYl=1XDl PD(Dl)� �dq0dbq02�i � nY�=1 dq�dbq�2�i ! � � ��dr0dbr02�i � nY�=1 dr�dbr�2�i ! � � �� exp24MLNKK!L! nXm=0 Xh�1����mi TmqK�1����m rL�1����m� N nXm=0 Xh�1����mi q�1����mbq�1����m� M nXm=0 Xh�1����mi r�1����mbr�1����m35� 1N NYj=1 TrfS�j g 24*exp "Fs�� nX�=1 S�j #+�� I dZj2�i exp hZjPnm=0Ph�1����mi bq�1����m S�1j � � �S�mj iZCj+1j 35
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tive 59� MYl=1 Trf��l g 24*exp "Fn�� nX�=1 ��l #+�� I dYl2�i exp hYlPnm=0Ph�1����mi br�1����m ��1l � � � ��ml iY Dl+1l 35 ; (173)where Tm = e�n�
 
oshn(�
) tanhm(�
). Note that the above expression is an extensionof Eq. (120).The repli
a symmetry assumption is enfor
ed by using the ans�atze:q�1����m = Z dx �(x) xm bq�1����m = Z dbx b�(bx) bxm (174)and r�1����m = Z dy �(y) ym br�1����m = Z dby b�(by) bym: (175)By plugging the above ans�atze, using the limit 
 ! 1 and standard te
hniques(see Appendix C.3 for details) the following expression for the free-energy:f = 1� Extrfb�;�;b�;�gn� ln 2 (176)+ C Z dx �(x) dbx b�(bx) ln (1 + xbx)+ � D Z dy �(y) dby b�(by) ln (1 + yby)� � Z " KYj=1 dxj�(xj)#" LYl=1 dyl�(yl)# ln 1 + KYj=1 xj LYl=1 yl!� XC PC Z " CYj=1 dbxj b�(bxj)#* ln"X�=�1 e���Fs CYj=1(1 + �bxj)#+�� � XD PD Z " DYl=1 dbyl b�(byl)#* ln"X�=�1 e���Fn DYl=1(1 + �byl)#+�o;where C =PC C PC(C), D =PD D PD(D) and � =M=N = C=K.By performing the extremization above, restri
ted to the spa
e of normalizedfun
tions, we �nd the following saddle-point equations:b�(bx) = Z K�1Yj=1 dxj �(xj) LYl=1 dyl �(yl) Æ "bx� K�1Yj=1 xj LYl=1 yl# (177)�(x) = 1CXC C PC Z C�1Yl=1 dbxl b�(bxl)� *Æ "x� tanh �Fs� + C�1Xl=1 atanh bxl!#+� ;
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tive 60b�(by) = Z L�1Yl=1 dyl �(yl) KYj=1 dxj �(xj) Æ "by � L�1Yl=1 yl KYj=1 xj#�(y) = 1DXD D PD Z D�1Yl=1 dbyl b�(byl)� *Æ "y � tanh �Fn� + D�1Xl=1 atanh byl!#+� :The typi
al overlap � = h 1N PNj=1 �jb�jiA;�;� between the estimate b�j = sgn(hSji�N )and the a
tual signal �j is given by (see Appendix A.3):� = Z dh P (h) sgn(h) (178)P (h) = XC PC(C) Z CYl=1 dbxl b�(bxl)� *Æ "h� tanh �Fs� + CXl=1 atanh bxl!#+� :The intensive entropy is simply s = �2 �f�� yielding:s = �(u(�) � f) (179)u = �XC PC Z CYj=1 dbxj b��(bxj)*Fs�P�=�1 �e��Fs�Qj(1 + �bxj)P�=�1 e��Fs�Qj(1 + �bxj) +�� �XD PD Z DYj=1 dbyj b��(byj)*Fn�P�=�1 �e��Fn�Qj(1 + �byj)P�=�1 e��Fn�Qj(1 + �byj) +�where starred distributions are solutions for (177) and u(�) is the internal energy density.For optimal de
oding the temperature must be 
hosen to be � = 1 (Nishimoritemperature) and the �elds areFs = 12 ln �1� p�p� � Fn = 12 ln �1� pp � :5.4. Probability propagation de
odingIn Se
tions 3 and 4 we derived probability propagation equations �rstly by assuming a setof fa
torization properties and writing a 
losed set of equations that allowed the iterative
omputation of the (approximate) marginal posterior and se
ondly by 
omputing lo
almagnetizations on the interior of a Husimi 
a
tus (Bethe approximation). The twomethods are equivalent as the fa
torization properties assumed in the former are en
odedin the geometry of the latti
e assumed in the latter.Here we use insights provided in the last se
tions to build a de
oding algorithmfor MN 
odes dire
tly. From the repli
a symmetri
 free-energy (176) we 
an write the
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tive 61following Bethe free-energy:F(m;
m) = MN ln 2 + 1N MX�=1 Xi2Ls(�) ln �1 +ms�i bms�i� (180)+ 1N MX�=1 Xj2Ln(�) ln �1 +mn�j bmn�j�� 1N MX�=1 ln0�1 + J� Yi2Ls(�)ms�i Yj2Ln(�)mn�j1A� 1N NXi=1 ln24X�=� e�Fs Y�2Ms(i) �1 + � bms�i�35� 1N MXj=1 ln24X�=� e�Fn Y�2Mn(j) �1 + � bmn�j�35 :The variables ms�j (mn�j) are 
avity e�e
tive magnetizations of signal (noise) bitsintera
ting through the 
oupling �, obtained by removing one of the C 
ouplings inMs(j) (Mn(j)) from the system. The variables bms�j (bmn�j) 
orrespond to e�e
tivemagnetizations of signal (noise) bits due to the 
oupling � only.The de
oding solutions are �xed points of the free-energy (181) given by :�F(m;
m)�ms�j = 0 �F(m;
m)� bms�j = 0 (181)�F(m;
m)�mn�j = 0 �F(m;
m)� bmn�j = 0 (182)The solutions for the above equations are the equations being solved by theprobability propagation de
oding algorithm:ms�l = tanh24 X�2Ms(l)n� atanh(bms�l) + Fs35 (183)bms�j = J� Yi2Ls(�)njms�i Yl2Ln(�)mn�l; (184)mn�l = tanh24 X�2Mn(l)n� atanh(bmn�l) + Fn35 (185)bmn�j = J� Yi2Ls(�)ms�i Yl2Ln(�)njmn�l: (186)The estimate for the message is b�j = sgn(msj), where msj is the lo
al magnetizationdue to all 
ouplings linked to the site j 
an be 
omputed as:msj = tanh24 X�2Ms(j) atanh(bms�j) + Fs35 (187)
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tive 62One possibility for the de
oding dynami
s is to update Eqs. (183) and (185) untila 
ertain halting 
riteria is rea
hed, and then 
omputing the estimate for the messageusing equation (187). The initial 
onditions are set to re
e
t the prior knowledge aboutthe message ms�j(0) = 1� 2p� and noise mn�l(0) = 1� 2p.As the prior information is limited, a polynomial time de
oding algorithm (likePP) will work only if the solution is unique or the initial 
onditions are inside the
orre
t basin of attra
tion. In this 
ase the 2(NK +MC) equations (181) only need tobe iterated an O(1) number of times to get a su

essful de
oding. On the other hand,when there are many solutions, it is possible to obtain improved de
oding in exponentialtime by 
hoosing random initial 
onditions and 
omparing free-energies of the solutionsobtained, sele
ting a global minimum.Observe that the free-energy des
ribed here is not equivalent to the variationalmean-�eld free-energy introdu
ed in [Ma
95, Ma
99℄. Here no essential 
orrelations aredisregarded ex
ept those related to the presen
e of loops are disregarded.In the next se
tion we will analyze the lands
ape of the repli
a symmetri
 free-energy for three families of 
nstru
tion parameters and will be able to predi
t thepra
ti
al performan
e of a PP de
oding algorithm.5.5. Equilibrium results and de
oding performan
eThe saddle-point equations (177) 
an be solved by using Monte-Carlo integrationiteratively. In this se
tion we show that MN 
odes 
an be divided, as far as performan
eis 
on
erned, into three parameter groups: K � 3, K = 2 and K = 1; L > 1.We, therefore, treat ea
h these 
ases separately in the following.5.5.1. Analyti
al solution: the 
ase of K � 3 Repli
a symmetri
 results for the 
asesof K � 3 
an be obtained analyti
ally, therefore we fo
us �rst on this simple 
ase.For unbiased messages (Fs = 0), we 
an easily verify that the ferromagneti
 state,
hara
terised by � = 1, and the probability distributions�(x) = Æ(x� 1) (188)b�(bx) = Æ(bx� 1)�(y) = Æ(y � 1)b�(by) = Æ(by � 1)and the paramagneti
 state of � = 0 with the probability distributions�(x) = Æ(x) (189)b�(bx) = Æ(bx)b�(by) = Æ(by)�(y) = 1 + tanh(Fn)2 Æ(y � tanh(Fn))+ 1� tanh(Fn)2 Æ(y + tanh(Fn));
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tive 63satisfy repli
a symmetri
 saddle-point equations (177). Other solutions 
ould beobtained numeri
ally. To 
he
k for that, we represented the distributions withhistograms of 20000 bins and iterated Eqs.(177) 100 � 500 times with 2 � 105 Monte-Carlo sampling steps for ea
h iteration. No solutions other than ferromagneti
 andparamagneti
 have been observed.The thermodynami
ally dominant state is found by evaluating the free-energy ofthe two solutions using Eq.(176), whi
h yieldsfFERRO = �CK Fn tanh(Fn); (190)for the ferromagneti
 solution andfPARA = CK ln 2� ln 2� CK ln (2 
osh(Fn)) ; (191)for the paramagneti
 solution.Figure 24(a) des
ribes s
hemati
ally the nature of the solutions for this 
ase, interms of the repli
a symmetri
 free-energy and overlap obtained, for various noise levelsp and unbiased messages p� = 1=2. The 
oexisten
e line in the 
ode rate versus noiselevel plane is given byfFERRO � fPARA = ln 2R
 [R
 � 1 +H2(p)℄ = 0: (192)This 
an be rewritten asR
 = 1�H2(p) = 1 + p log2(p) + (1� p) log2(1� p); (193)whi
h 
oin
ides with 
hannel 
apa
ity and is represented in Fig. 25(a) together withthe overlap � as a fun
tion of the noise level p.Equation (193) seems to indi
ate that all 
onstru
tions with K � 3 may attainerror-free data transmission for R < R
 in the limit where both message and 
odewordlengths N and M be
ome in�nite, thus saturating Shannon's bound. However, asdes
ribed in Fig.24(a), the paramagneti
 state is also stable for any noise level, whathas dynami
al impli
ations if a repli
a symmetri
 free-energy is to be used for de
oding(as is the 
ase in probability propagation de
oding).To validate the solutions obtained we have to make sure that the entropy ispositive. Entropies 
an be 
omputed by simply plugging distributions (189) and(190) into Eq.(179). The energy densities for the unbiased 
ase are u = uPARA =uFERRO = �� Fn (1 � 2p), sin
e the Nishimori 
ondition is employed (see AppendixB.3). Ferromagneti
 entropies are sFERRO = u� fFERRO = 0 andsPARA = u� fPARA= � � Fn (1� 2p)� CK ln 2 + ln 2 + CK ln (2 
osh(Fn)) : (194)It 
an be seen by using a simple argument that sPARA is negative below p
. Forp < p
, fPARA > fFERRO and u� sPARA > u� sFERRO .This indi
ates that the distribution (190) is non-physi
al below p
, despite beinga solution of repli
a symmetri
 saddle-point equations. This result seems to indi
ate
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Figure 24. Figures in the left side show s
hemati
 representations free-energylands
apes while �gures on the right show overlaps � a fun
tion of the noise levelp; thi
k and thin lines denote stable solutions of lower and higher free energiesrespe
tively, dashed lines 
orrespond to unstable solutions. (a) K � 3 - The solidline in the horizontal axis represents the phase where the ferromagneti
 solution(F, � = 1) is thermodynami
ally dominant. The paramagneti
 solution (P, � = 0)be
omes dominant at p
, that 
oin
ides with the 
hannel 
apa
ity. (b) K = 2 - Theferromagneti
 solution and its mirror image are the only minima of the free-energy upto ps (solid line). Above ps sub-optimal ferromagneti
 solutions (F', � < 1) emerge.The thermodynami
 transition o

urs at p3 is below the maximum noise level given bythe 
hannel 
apa
ity, whi
h implies that these 
odes do not saturate Shannon's boundeven if optimally de
oded. (
) K = 1 - The solid line in the horizontal axis representsthe range of noise levels where the ferromagneti
 state (F) is the only minimum of thefree-energy. The sub-optimal ferromagneti
 state (F') appears in the region representedby the dashed line. The dynami
al transition is denoted by ps, where F' �rst appears.For higher noise levels, the system be
omes bistable and an additional unstable solutionfor the saddle point equations ne
essarily appears. The thermodynami
al transitiono

urs at the noise level p1 where F' be
omes dominant.
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a symmetri
 free-energy does not provide the right des
ription below p
.A simple alternative, is to use the frozen spins solution as the formulation of a theorywith repli
a symmetry breaking for highly diluted systems is a diÆ
ult task (see, forexample, [WS88, Mon98b℄).Nevertheless, the pra
ti
al performan
e of the probability propagation de
oding isdes
ribed by the repli
a symmetri
 theory, the presen
e of paramagneti
 stable statesimplies the failure of PP de
oding at any noise level. Even without knowing the 
orre
tphysi
s below p
, it is possible to use an exhaustive sear
h for the global minimum ofthe free-energy in Se
tion 5.4 to attain Shannon's bound in exponential time.5.5.2. The 
ase of K = 2 - All 
odes withK � 3 potentially saturate Shannon's boundand are 
hara
terized by a �rst order phase transition between the ferromagneti
 andparamagneti
 solutions. Solutions for the 
ase with K = 2 
an be obtained numeri
ally,yielding signi�
antly di�erent physi
al behavior as shown in Fig.24(b).At very large noise levels, the paramagneti
 solution (190) gives the uniqueextremum of the free-energy until the noise level rea
hes p1, at whi
h the ferromagneti
solution (189) of higher free-energy be
omes lo
ally stable. As the noise level de
reasesto p2 the paramagneti
 solution be
omes unstable and a sub-optimal ferromagneti
solution and its mirror image emerge. Those solutions have lower free-energy than theferromagneti
 solution until the noise level rea
hes p3. Below p3, the ferromagneti
solution be
omes the global minimum of the free-energy, while the sub-optimalferromagneti
 solutions remain lo
ally stable. However, the sub-optimal solutionsdisappear at the spinodal noise level ps and the ferromagneti
 solution (and its mirrorimage) be
omes the unique stable solution of the saddle-point Eqs.(177).The analysis implies that p3, the 
riti
al noise level below whi
h the ferromagneti
solution be
omes thermodynami
ally dominant, is lower than p
 = H�12 (1 � R) whi
h
orresponds to Shannon's bound. Namely, K = 2 does not saturate Shannon's bound in
ontrast to K � 3 
odes even if de
oded in exponential time. Nevertheless, it turns outthat the free-energy lands
ape, with a unique minimum for noise levels 0 < p < ps, o�erssigni�
ant advantages in the de
oding dynami
s 
omparing to that of 
odes with K � 3,allowing for the su

essful use of polynomial time probability propagation de
oding.5.5.3. The 
ase of K = 1 and general L > 1 - The 
hoi
e of K = 1, independentlyof the value 
hosen for L > 1, exhibits a di�erent behavior presented s
hemati
ally inFig.24(
); also in this 
ase there are no simple analyti
al solutions and all solutionsin this s
enario but the ferromagneti
 one have been obtained numeri
ally. The �rstimportant di�eren
e to be noted is that the paramagneti
 state (190) is no longer asolution of the saddle-point equations (177) and is being repla
ed by a sub-optimalferromagneti
 state, very mu
h like Gallager 
odes. Convergen
e to � = 1 solution 
anonly be guaranteed for noise levels p < ps , where only the ferromagneti
 solution ispresent.The K = 1 
odes do not saturate Shannon's bound in pra
ti
e, however, we have
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Figure 25. Transition lines in the plane rate R versus the 
ip rate p, obtained fromnumeri
al solutions and the TAP approa
h (N =104), and averaged over 10 di�erentinitial 
onditions with error bars mu
h smaller than the symbols size. (a) Numeri
alsolutions for K =L=3, C =6 and varying input bias fs (�) and TAP solutions forboth unbiased (+) and biased (�) messages; initial 
onditions were 
hosen 
lose to theanalyti
al ones. The 
riti
al rate is multiplied by the sour
e information 
ontent toobtain the maximal information transmission rate, whi
h 
learly does not go beyondR = 3=6 in the 
ase of biased messages; for unbiased patterns H2(fs) = 1. (b) Forthe unbiased 
ase of K=L=2; initial 
onditions for the TAP (+) and the numeri
alsolutions (�) were 
hosen to be of almost zero magnetization. (
) For the 
ase ofK = 1, L = 2 and unbiased messages. We show numeri
al solutions of the analyti
alequations (�) and those obtained by the TAP approa
h (+). The dashed line indi
atesthe performan
e of K = L = 2 
odes for 
omparison. Codes with K = 1, L = 2outperform K = L = 2 for 
ode rates R < 1=3.
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Figure 26. Free-energies obtained by solving the analyti
al equations using Monte-Carlo integrations for K = 1, R = 1=6 and several values of L. Full lines representthe ferromagneti
 free-energy (FERRO, higher on the right) and the suboptimalferromagneti
 free-energy (higher on the left) for values of L = 2; :::; 7. The dashedline indi
ates Shannon's bound and the arrows represent the spinodal point values psfor L = 2; :::; 7. The thermodynami
 transition 
oin
ides with Shannon's bound.found that at rates R < 1=3 they outperform the K = L = 2 
ode (see Fig.25) whileo�ering improved de
oding times when probability propagation is used. Studying therepli
a symmetri
 free-energy in this 
ase shows that as the 
orruption rate in
reases,sub-optimal ferromagneti
 solutions (stable and unstable) emerge at the spinodal pointps. When the noise in
reases further this sub-optimal state be
omes the global minimumat p1, dominating the system's thermodynami
s. The transition at p1 must o

ur atnoise levels lower or equal to the value predi
ted by Shannon's bound.In Fig.26 we show free-energy values 
omputed for a given 
ode rate and severalvalues of L, denoting Shannon's bound by a dashed line; the thermodynami
 transitionobserved numeri
ally (i.e. the point where the ferromagneti
 free-energy equals thesub-optimal ferromagneti
 free-energy) is 
losely below Shannon's bound within thenumeri
al pre
ision used. Spinodal noise levels are indi
ated by arrows. In Fig.27 weshow spinodal noise levels as a fun
tion of L as predi
ted by the repli
a symmetri
theory (
ir
les) and obtained by running PP de
oding of 
odes with size 104. Theoptimal parameter 
hoi
e is L = 2.Due to the simpli
ity of the saddle-point equations (177) we 
an dedu
e theasymptoti
 behavior of K = 1 and L = 2 
odes for small rates (large C) by 
omputingthe two �rst 
ummulants of the distributions �; b�; � and b� (Gaussian approximation).A de
oding failure 
orresponds to hhi � O(1) and �2h � O(1). It implies thathbxi � O(1=C) and �bx � O(1=C). For that y must be small and we 
an use
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Figure 27. Spinodal point noise level ps for K = 1, R = 1=6 and several 
hoi
es of L.Numeri
al solutions are denoted by 
ir
les and PP de
oding solutions (10 runs withsize N=104) by bla
k triangles. Symbols are larger than the error bars.atanh(tanh(y1)tanh(y2)) � y1y2 and write :hxi � O(1) �2x � O(1) (195)hbxi � hyi2 (196)�2bx � hy2i2 � hyi4 (197)hyi = hbyi + (1� 2p)Fn �2y = �2by + 4f(1� p)F 2n (198)hbyi � htanh(x)ihyi (199)�2by � htanh2(x)ihy2i � htanh(x)i2hyi2 (200)To simplify further we 
an assume that p ! 0:5. Therefore Fn � (1 � 2p) . The
riti
al observation is that in order to have hhi � O(1) we need that bx � O(1=C) and
onsequently hyi � O(1=pC). Manipulating the set of equations above :hyi � htanhxihyi + (1� 2f)2By imposing the 
ondition over hyi:C�1=2 � (1� 2p)2(1� htanhxi)�1In terms of the 
ode rate R = 1=C:R � (1� 2p)4(1� htanhxi)2 (201)The asymptoti
 behavior of Shannon's bound is given by :R � (1� 2p)2ln 2 (202)Thus, the K = 1 and L = 2 
odes are not optimal asymptoti
ally (large C values).In Fig.28 we verify the relation (201) by iterating �rst 
ummulant equations inthe delta approximation and �rst and se
ond 
ummulant equations in the Gaussianapproximation.
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Figure 28. Asymptoti
 behavior of the transition for small rates. The full linerepresents Shannon's bound, 
ir
les represent transitions obtained by using only the�rst 
ummulants and squares 
orrespond to the Gaussian approximation.5.6. Error-
orre
tion: regular vs. irregular 
odesMatrix 
onstru
tion irregularity 
an improve the pra
ti
al performan
e of MN 
odes.This fa
t has been �rst reported in the information theory literature (see for example[Dav99, Dav98, LMSS98℄). Here we analyze this problem by using the language and toolsof statisti
al physi
s. We now use the simplest irregular 
onstru
tions as an illustration,here, the 
onne
tivities of the signal matrix Cs are des
ribed by a simple bimodalprobability distribution:PC(C) = (1� �) Æ(C � Co) + � Æ(C � Ce): (203)The mean 
onne
tivity is C = (1��) Co + � Ce and Co < C < Ce; bits in a group with
onne
tivity Co will be referred as ordinary bits and bits in a group with 
onne
tivityCe as elite bits. The noise matrix Cn is 
hosen to be regular.To gain some insight on the e�e
t of irregularity on solving the PP equations(183) and (185) we performed several runs starting from the �xed initial 
onditionsms�j(0) = 1� 2p� and mn�l(0) = 1� 2p as pres
ribed in the last se
tion. For 
omparisonwe also iterated the saddle-point equations (177) obtained by the repli
a symmetri
(RS) analysis, setting the initial 
onditions to be �0(x) = (1 � p�) Æ(x � ms�j(0)) +p� Æ(x + ms�j(0)) and �0(y) = (1 � p) Æ(y � mn�l(0)) + p Æ(y + mn�l(0)), as suggestedfrom the interpretation of the �elds �(x) and �(y) in the last se
tion.In Fig.29 (a) we show a typi
al 
urve for the overlap � as a fun
tion of the noise levelp. The RS theory agrees very well with PP de
oding results. The addition of irregularity
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Figure 29. (a) Overlap as a fun
tion of the noise level p for 
odes with K = L = 3and C = 15 with message bias p� = 0:3. Analyti
al RS solutions for the regular 
odeare denoted as � and for the irregular 
ode; with Co = 4 and Ce = 30 denoted as�. Results are averages over 10 runs of the PP algorithm in an irregular 
ode of sizeN = 6000 starting from �xed initial 
onditions (see the text); they are plotted as �in the rightmost 
urve for 
omparison. PP results for the regular 
ase agree with thetheoreti
al solutions and have been omitted to avoid overloading the �gure. (b) Free-energies for the ferromagneti
 state (full line) and for the failure state (line with Æ).The transitions observed in (a) are indi
ated by the dashed lines. Arrows indi
ate thethermodynami
 (T) transition, the upper bound (u.b.) of Se
tion 5.1 and Shannon'sbound.improves the performan
e 
onsiderably. In Fig.29 (b) we show the free-energies of thetwo emerging states. The free-energy for the ferromagneti
 state with overlap � = 1 isshown as a full line, the failure suboptimal ferromagneti
 state (in Fig.29 (a) with overlap� = 0:4) is shown as a line marked with Æ. The transitions seen in Fig.29(a) are denotedby dashed lines. It is 
lear that they are far below the thermodynami
 (T) transition,indi
ating that the system be
omes trapped in suboptimal ferromagneti
 states fornoise levels p between the observed transitions and the thermodynami
 transition. Thethermodynami
 transition 
oin
ides with the upper bound (u.b.) in Se
tion 5.1 andis very 
lose to, but below, Shannon's limit whi
h is shown for 
omparison. Similarbehavior was observed in regular MN 
odes with K = 1.5.7. The spinodal noise levelThe PP algorithm 
an be regarded as an iterative solution of �xed point equations forthe free-energy (181) whi
h is sensitive to the presen
e of lo
al minima in the system.One 
an expe
t 
onvergen
e to the global minimum of the free-energy from all initial
onditions when there is a single minimum or when the lands
ape is dominated by thebasin of attra
tion of this minimum when random initial 
onditions are used.To analyze this point we run de
oding experiments starting from initial 
onditionsms�j(0) and mn�l(0) that are random perturbations of the ferromagneti
 solution drawn
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Figure 30. Spinodal noise level ps for regular and irregular 
odes. In both
onstru
tions parameters are set as K = L = 3. Irregular 
odes with Co = 4 andCe = 30 are used. PP de
oding is 
arried out with N = 5000 and a maximum of 500iterations; they are denoted by + (regular) and � (irregular). Numeri
al solutions forthe RS saddle-point equations are denoted by � (regular) and 
 (irregular). Shannon'slimit is represented by a full line and the upper bound of Se
tion 5.1 is represented bya dashed line. The symbols are 
hosen to be larger than the a
tual error bars.from the following distributions:P �ms�j(0)� = (1� �s) Æ(ms�j(0)� �j) + �s Æ(ms�j(0) + �j) (204)and P �mn�l(0)� = (1� �n) Æ(mn�l(0)� �l) + �n Æ(mn�l(0) + �l); (205)where for 
onvenien
e we 
hoose 0 � �s = �n = � � 0:5.We performed PP de
oding several times for di�erent values of � and noise level p.For � � 0:026 we observed that the system 
onverges to the ferromagneti
 state for all
onstru
tions, message biases p� and noise levels p examined. It implies that this stateis always stable. The 
onvergen
e o

urs for any � for noise levels below the transitionobserved in pra
ti
e.These observations suggest that the ferromagneti
 basin of attra
tion dominatesthe lands
ape up to some noise level ps. The fa
t that no other solution is ever observedin this region suggests that ps is the noise level where suboptimal solutions a
tuallyappear, namely, it is the noise level that 
orresponds to the appearan
e of spinodalpoints in the free-energy. The same was observed for regular MN 
odes with K = 1 orK = 2.We have shown that MN 
odes 
an be divided into three 
ategories with di�erentequilibrium properties: (i) K � 3, (ii) K = 2 and (iii) general L > 1, K = 1. In thenext two subse
tions we will dis
uss these 
ases separately.
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Figure 31. Spinodal noise level ps for irregular 
odes as a fun
tion of the messagebias p�. The 
onstru
tion is parameterized by K = L = 3, Co = 4 and Ce = 30 withC = 15. PP de
oding is 
arried out with N = 5000 and a maximum of 500 iterations,and is represented by +, while theoreti
al RS solutions are represented by �. The fullline indi
ates Shannon's limit. Symbols are larger than the a
tual error bars5.7.1. Biased messages: K � 3 To show how irregularity a�e
ts 
odes with this 
hoi
eof parameters we 
hoose K;L = 3, Co = 4, Ce = 30 and biased messages with p� = 0:3.These 
hoi
es are arbitrary but illustrate what happens with the pra
ti
al de
odingperforman
e. In Fig.30 we show the transition from the de
oding phase to a failurephase as a fun
tion of the noise level p for several rates R in both regular and irregular
odes. Pra
ti
al de
oding (� an Æ) results are obtained for systems of size N = 5000with a maximum number of iterations set to 500. Random initial 
onditions are 
hosenand the whole pro
ess repeated 20 times. The pra
ti
al transition point is found whenthe number of failures equals the number of su

esses.These experiments were 
ompared with the theoreti
al values for ps obtained bysolving the RS saddle-point equations (177) (represented as + and � in Fig. 30) and�nding the noise level for whi
h a se
ond solution appears. For 
omparison the 
odinglimit is represented in the same �gure by a full line.As the 
onstru
tions used are 
hosen arbitrarily one 
an expe
t that thesetransitions 
an be further improved, even though the improvement shown in Fig.30is already fairly signi�
ant.The analyti
al solution obtained forK � 3 and unbiased messages p� = 1=2, impliesthat the system is bistable for arbitrary 
ode 
onstru
tions when these parameters are
hosen. The spinodal noise level is then ps = 0 in this 
ase and 
annot be improvedby adding irregularity to the 
onstru
tion. Up to the noise level p
 the ferromagneti
solution is the global minimum of the free-energy, and therefore Shannon's limit isa
hievable in exponential time, however, the bistability makes these 
onstru
tions
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Figure 32. Pi
torial representation of the free-energy lands
ape for 
odes with K � 3and biased messages p� < 0:5 as a fun
tion of the noise level p. Up to the spinodalnoise level ps there is only the ferromagneti
 state F . At ps another state F 0 appears, dominating the de
oding dynami
s. The 
riti
al noise level p
 indi
ates the pointwhere the state F 0 be
omes the global minimum (thermodynami
 transition).unsuitable for pra
ti
al de
oding with a PP algorithm when unbiased messages are
onsidered.The situation improves when biased messages are used. Fixing the matri
esCn andCs one 
an determine how the spinodal noise level ps depends on the bias p�. In Fig.31we 
ompare simulation results with the theoreti
al predi
tions of ps as a fun
tion of p�.The spinodal noise level ps 
ollapses to zero as p� in
reases towards the unbiased 
ase.It obviously suggests using biased messages for pra
ti
al MN 
odes with parametersK � 3 and PP de
oding.The qualitative pi
tures of the energy lands
ape for 
oding with biased and unbiasedmessages with K � 3 di�er signi�
atively. In Fig.32 this lands
ape is sket
hed asa fun
tion of the noise level p for a given bias. Up to the spinodal noise level psthe lands
ape is totally dominated by the ferromagneti
 state F . At the spinodalnoise level another suboptimal state F 0 emerges, dominating the de
oding dynami
s.At p
 the suboptimal state F 0 be
omes the global minimum. The bold horizontalline represents the region where the ferromagneti
 solution with � = 1 dominates thede
oding dynami
s. In the region represented by the dashed line de
oding dynami
s isdominated by suboptimal ferromagneti
 � < 1 solutions.5.7.2. Unbiased messages: For the remaining parameter 
hoi
es, namely general L > 1,K = 1 and K = 2, it was shown that unbiased 
oding is generally possible yielding 
loseto Shannon's limit performan
e.The K � 3 
ase the pra
ti
al performan
e is de�ned by the spinodal noise level psand the addition of irregularity modi�es ps.In the general L, K = 1 family we illustrate the e�e
t of irregularity by the 
hoi
eof L = 2, Co = 4 and Ce = 10. In Fig.33 we show the transitions observed by performing
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Figure 33. Spinodal noise level ps for regular and irregular 
odes. The 
onstru
tionsare of K = 1 and L = 2, irregular 
odes are parameterized by Co = 4 and Ce = 10.PP de
oding is 
arried out with N = 5000 and a maximum of 500 iterations ; they aredenoted by + (regular) and � (irregular). Numeri
al solutions for RS equations aredenoted by � (regular) and Æ (irregular). The 
oding limit is represented by a line.Symbols are larger than the a
tual error bars.20 de
oding experiments with messages of length N = 5000 and a maximal number ofiterations set to 500 (+ for regular and � for irregular). We 
ompare the experimentalresults with theoreti
al predi
tions based on the RS saddle-point equations (177) (�for regular and Æ for irregular). Shannon's limit is represented by a full line. Theimprovement is modest, as expe
ted, sin
e regular 
odes already present 
lose to optimalperforman
e. Dis
repan
ies between the theoreti
al and numeri
al results are due to�nite size e�e
ts.We also performed a set of experiments using K = L = 2 with Co = 3 and Ce = 8,the same system size N = 5000 and maximal number of de
oding iterations 500. Thetransitions obtained experimentally and predi
ted by theory are shown in Fig.34.6. Cas
ading CodesKanter and Saad (KS) re
ently proposed a variation of MN 
odes that has been shown tobe 
apable of attaining 
lose to 
hannel 
apa
ity performan
e and outperforming Turbo
odes [KS99b, KS00b, KS00a℄. The 
entral idea is to explore the superior dynami
alproperties (i.g. large basin of attra
tion) of MN 
odes with K = 1; 2 and the potentialfor attaining 
hannel 
apa
ity of MN 
odes with K > 2 by introdu
ing 
onstru
tionswith intermediate properties. This is done by employing irregular 
onstru
tions like theone depi
ted in Fig. 36, with the number of non-zero elements per row set to severaldi�erent values K1; � � � ; Km.
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Figure 34. Spinodal noise level values ps for regular and irregular 
odes.Constru
tions are of K = 2 and L = 2, irregular 
odes are parameterised by Co = 3and Ce = 8. PP de
oding is 
arried out with N = 5000 and a maximum of 500iterations; they are denoted by + (regular) and � (irregular). Theoreti
al predi
tionsare denoted by � (regular) and Æ (irregular). The 
oding limit is represented by a line.Symbols are larger than the a
tual error bars.In Fig.35 we show a performan
e 
omparison (presented in [KS00b℄) of Turbo, KSand Gallager 
odes with optimized irregular 
onstru
tions [RSU01℄ for a memorylessGaussian 
hannel . The bit error probability pb is plotted against the signal to noiseratio in de
ibels (10 log10(S=N)) for 
odes of sizes N = 1000 and N = 10000.The introdu
tion of multi-spin intera
tions of several di�erent orders and of morestru
tured matri
es makes the statisti
al physi
s of the problem mu
h harder to solve.We, therefore, adopt a di�erent approa
h: �rst we write the probability propagationequations and �nd an appropriate ma
ros
opi
 des
ription in terms of �eld distributions,we then solve saddle-point like equations for the �eld distributions to �nd the typi
alperforman
e.Cas
ading 
odes are spe
i�
 
onstru
tions of MN 
odes. The signal matrix Csis de�ned by m random sub-matri
es with K1; K2; � � � ; Km non-zero elements per rowrespe
tively. The matrix Cn is 
omposed of two sub-matri
es: Cn(1)ij = Æi;j + Æi;j+�and Cn(2)ij = Æi;j. The inverse C�1n used in the en
oding pro
ess is easily obtainable.In Fig.36 we represent a KS 
ode with three signal sub-matri
es, the non-zero elementsin the noise matrix Cn are denoted by lines, we also represent the inverse of the noisematrix C�1n .The signal matrix Cs is subdivided into Mj �N sub-matri
es, with j = 1; � � � ; m.The total number of non-zero elements is given by NC = Pmj=1MjKj what yieldsC =Pmj=1 �jKj, where �j =Mj=N . The 
ode 
onstru
tion is, therefore, parameterizedby the set f(�j; Kj)g. If we �x fKjg, the parameters f�jg 
ompletely spe
ify the
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Figure 35. Bit error probability pb as a fun
tion of the signal to noise ratio for 
odesof rate R = 1=2, sizesN = 1000 (right) and N = 10000 (left) in a memoryless Gaussian
hannel. Bla
k triangles represent 
as
ading 
odes, dashed lines represent Turbo 
odesand dotted lines represent optimized irregular Gallager 
odes of similar sizes [KS00b℄.
onstru
tion. A further 
onstraint to the parameters set f�jg is provided by the 
hoi
eof a 
ode rate, as the inverse 
ode rate is � =M=N =Pmj=1 �j.En
oding and de
oding using 
as
ading 
odes are performed in exa
tly the samefashion as des
ribed in 5 for MN 
odes. A binary ve
tor t 2 f0; 1gM de�ned byt = G� (mod 2); (206)is produ
ed, where all operations are performed in the �eld f0; 1g and are indi
ated by(mod 2). The 
ode rate is R = N=M . The generator matrixG is aM�N dense matrixde�ned by G = C�1n Cs (mod 2): (207)The transmitted ve
tor � is then 
orrupted by noise. Assuming a memoryless binarysymmetri
 
hannel (BSC), noise is represented by a binary ve
tor � 2 f0; 1gM with
omponents independently drawn from the distribution P (�) = (1�p) Æ(�)+p Æ(��1).The re
eived ve
tor isr = G� + � (mod 2): (208)De
oding is performed by 
omputing the syndrome ve
torz = Cnr = Cs� +Cn�(mod 2); (209)from whi
h an estimate b� for the message 
an be obtained.
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Figure 36. Cas
ading 
onstru
tion with three signal sub-matri
es with K1;K2 andK3 non-zero elements per row, respe
tively. The number of non-zero elements per
olumn is kept �xed to C. The noise matrix Cn is 
omposed by two sub-matri
es, thenon-zero elements are denoted by lines. The inverse C�1n is also represented.6.1. Typi
al PP de
oding and saddle-point like equationsIn this se
tion we show how a statisti
al des
ription for the typi
al PP de
oding 
anbe 
onstru
ted without using repli
a 
al
ulations. To keep the analysis as simple aspossible we exemplify the pro
edure with a KS 
ode with two signal matri
es denoted1s and 2s and two noise sub-matri
es denoted 1n and 2n. The 
hannel is 
hosen to bea memoryless binary symmetri
 
hannel (BSC). The number of non-zero elements perrow is K1 and K2, respe
tively, and the inverse rate is � = �1 + �2. Therefore, for a�xed 
ode rate, the 
ode 
onstru
tion is spe
i�ed by a single parameter �1. We presentone 
ode in this family in Fig.37.The PP de
oding dynami
s for these 
odes is des
ribed by Eqs. (185). However,due to the irregular 
hara
ter of the 
onstru
tion, sites inside ea
h one of the sub-matri
es are 
onne
ted di�erently. Reminding the statisti
al physi
s formulation of MN
odes presented in Se
tion 5.2, non-zero row elements in the matri
es depi
ted in Fig.37
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KFigure 37. Cas
ading 
ode with two signal matri
es with parameters K1 and K2.Note that noise sites inside the shaded regions take part in a di�erent number ofintera
tions than the ordinary sites.
orrespond to sites taking part in one multi-spin intera
tion. Therefore, signal sites inthe sub-matrix 1s intera
t with other K1�1 signal sites in 1s and exa
tly two noise sitesin 1n. Moreover, the same site takes part in other �1K1+�2K2�1 multi-spin 
ouplingsin both 1s and 2s. Sites in sub-matrix 2s intera
t with one noise site in 2n and K2� 1signal sites in 2s, taking part in other �1K1 + �2K2 � 1 multi-spin intera
tion. Noisesites in the sub-matrix 1n intera
t with another noise site and with K1 signal sites in1s. Finally, noise sites in 2n intera
t with K2 sites in 2s. Thus, the Hamiltonian for aKS 
ode takes the following form:H = � 
 M1X�=1(J� Si1 � � �SiK1 ����+� � 1) (210)� 
 MX�=M1+1(J� Si1 � � �SiK2 �� � 1)� Fn MXl=1 �l � Fs NXj=1 Sj;where J� = �i1 � � � �iK1 ����+�, for � = 1; � � � ;M1 and J� = �i1 � � � �iK2 �� for � = M1 +1; � � � ;M . Additionally, Nishimori's 
ondition requires that 
 !1, Fs = atanh(1�2p�)and Fn = atanh(1 � 2p), where the prior probabilities are de�ned as in the previous
hapters.We 
an write PP de
oding equations for ea
h one of the sub-matri
es 1s, 2s, 1nand 2n. The shaded regions in Fig.37 have to be des
ribed by di�erent equations, but
an be disregard if the width � is of O(1), implying �=N ! 0 for N !1.For the sub-matrix 1s we have:m(1s)�j = tanh24 X�2M1s(j)n� atanh(bm(1s)�j ) + X�2M2s(j) atanh(bm(2s)�j ) + Fs35
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tive 79bm(1s)�j = J� m(1n)�� m(1n)��+� Yl2L1s(�)njm(1s)�l ; (211)where the se
ond equation represents intera
tions with two noise sites and and K1 � 1signal sites. The �rst equation represents the �1K1 + �2K2 � 1 multi-spin intera
tionsthe site j parti
ipates in.Similarly, for the sub-matrix 2s we have:m(2s)�j = tanh24 X�2M1s(j) atanh(bm(1s)�j ) + X�2M2s(j)n� atanh(bm(2s)�j ) + Fs35bm(2s)�j = J� m(2n)� Yl2L2s(�)njm(2s)�l (212)For the sub-matrix 1n we have:m(1n)�j = tanh hatanh(bm(1n)�j ) + Fni (213)bm(1n)�j = J� m(1n)�i Yl2L1s(�)m(1s)�l ; (214)where either j = �, i = �+� or j = �+�, i = �.Finally, for sub-matrix 2n we have:m(2n)� = tanh [Fn℄ (215)bm(2n)� = J� Yl2L2s(�)m(2s)�l (216)The pseudo-posterior and de
oded message are given by :mj = tanh24 X�2M1s(j) atanh(bm(1s)�j ) + X�2M2s(j) atanh(bm(2s)�j )35 (217)b�j = sgn(mj): (218)The above equations provide a mi
ros
opi
 des
ription for the PP de
oding pro
ess,we 
an produ
e a ma
ros
opi
 des
ription for the typi
al de
oding pro
ess by writingequations for probability distributions related to the dynami
al variables. It is importantto stress that the equations des
ribing the PP de
oding are entirely deterministi
 when
ouplings J� and initial 
onditions are given. The randomness 
omes into the problemwhen quen
hed averages over messages, noise and 
onstru
tions are introdu
ed.By performing the gauge transformationm(as)�j ! �jm(as)�j bm(as)�j ! �j bm(as)�j (219)m(an)�j ! �jm(an)�j bm(an)�j ! �j bm(an)�j (220)J� ! 1 (a = 1; 2); (221)introdu
ing e�e
tive �elds x�j = atanh(m�j), bx�j = atanh(bm�j) and assuming thatx(as)�j , bx(as)�j , y(an)�j , by(an)�j are independently drawn from distributions Pa(x), bPa(bx), Ra(y),bRa(by), respe
tively, we get the following saddle-point like equations (for simpli
ity, werestri
t the treatment to the 
ase of unbiased messages Fs = 0).
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Figure 38. Monte-Carlo integration of �eld distributions and simulations for a KS
ode with two signal matri
es (K1 = 1 and K2 = 3) , � = 5 (R = 1=5) and �1 = 3.Cir
les: full statisti
s (4000 bins). Squares: simulations N = 5000.For the sub-matrix 1s:P1(x) = Z �1K1�1Yj=1 dbxj bP1(bxj) �1K2Yl=1 d bwl bP2( bwl)� Æ "x� �1K1�1Xj=1 xj � �2K2Xl=1 wl# (222)bP1(bx) = Z K1�1Yj=1 dxjP1(xj)dy1R1(y1)dy2R1(y2) (223)� Æ "bx� atanh(tanh(y1)tanh(y2)K1�1Yj=1 tanh(xj))#For 2s: P2(x) = Z �1K1Yj=1 dbxj bP1(bxj) �1K2�1Yl=1 d bwl bP2( bwl) (224)� Æ "x� �1K1Xj=1 xj � �2K2�1Xl=1 wl# (225)bP2(bx) = Z K2�1Yj=1 dxjP2(xj)dyR2(y)� Æ "bx� atanh(tanh(y)K2�1Yj=1 tanh(xj))#
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tive 81For 1n we have:R1(y) = Z dby bR1(by) hÆ [y � by � �Fn℄i� (226)bR1(by) = Z K1Yj=1 dxjP1(xj)dyR1(y)� Æ "bx� atanh(tanh(y) K1Yj=1 tanh(xj))#Finally, for sub-matrix 2n:R2(y) = hÆ [y � �Fn℄i� (227)bR2(by) = Z K2Yj=1 dxjP2(xj) Æ "bx� atanh(K2Yj=1 tanh(xj))#The typi
al overlap 
an then be obtained as in the 
ase of MN 
odes by 
omputing:� = Z dh P (h) sgn(h) (228)P (h) = Z �1K1Yj=1 dbxj bP1(bxj) �1K2Yl=1 dbwl bP2(bwl) Æ "h� �1K1Xj=1 xj � �2K2Xl=1 wl# (229)The numeri
al solution of these equations provides the typi
al overlap for 
as
ading
odes with two signal matri
es parameterized by �1 (�2 = ���1). In Fig.38 we 
ompareresults obtained by solving the above equations numeri
ally (Monte-Carlo integrationwith 4000 bins) and PP de
oding simulations (10 runs, N = 5000) with R = 1=5 and�1 = 3. The agreement between theory and experiments supports the assumptionsemployed to obtain the saddle-point like equations.6.2. Optimizing 
onstru
tion parametersEquations (222) to (229) 
an be used to optimize 
ode 
onstru
tions within a givenfamily. For the family introdu
ed in Fig.37 with �xed parameters K1 and K2 theoptimization requires to �nd the value of �1 that produ
es the highest threshold ps.In Fig.39 we show the threshold (spinodal noise level) ps for a KS 
ode with K1 = 1,K2 = 3 and rate R = 1=5 (� = 5). The optimal performan
e is obtained by sele
ting�1 = 3 and is very 
lose to the 
hannel 
apa
ity.7. Con
lusions and Perspe
tivesIn this 
hapter we analyzed error-
orre
ting 
odes based on very sparse matri
es bymapping them onto spin systems of the statisti
al physi
s. The equivalen
e between
oding 
on
epts and statisti
al physi
s is summarized in the following table.



Low Density Parity Che
k Codes { A Statisti
al Physi
s Prospe
tive 82

0 1 2 3 4 5
α1

0

0.1

0.2

0.3

ps

channel capacity

Figure 39. Spinodal noise level ps as a fun
tion of �1 for a KS 
ode with K1 = 1,K2 = 3 and R = 1=5 (� = 5). Cir
les: Monte-Carlo integrations of saddle-pointequations (4000 bins). Squares: PP de
oding simulations (10 runs with sizeN = 5000).The best performan
e is rea
hed for �1 = 3 and is 
lose to the 
hannel 
apa
ity for aBSC (indi
ated by a dashed line).Coding Theory Statisti
al Physi
smessage bits s spins Sre
eived bits r multi-spin disordered 
ouplings J (Sourlas)syndrome bits z multi-spin 
ouplings J (Gallager, MN, KS)bit error probability pe gauged magnetization � (overlap)posterior probability Boltzmann weightMAP estimator ground stateMPM estimator thermal average at Nishimori's temperatureIn the statisti
al physi
s framework, random parity-
he
k matri
es (or generatormatri
es as in the 
ase of Sourlas 
odes), random messages and noise are treated asquen
hed disorder and the repli
a method is employed to 
ompute the free-energy.Under the assumption of repli
a symmetry we found in most of the 
ases that twophases emerge: a su

essful de
oding (� = 1) and failure (� < 1) phases. For MN 
odeswith K = 2 or K = 1 three phases emerge representing su

essful de
oding, failure and
atastrophi
 failure.The general pi
ture that emerges shows a phase transition between su

essful andfailure states that 
oin
ides with the information theory upper bounds in most 
ases,the ex
eption being MN 
odes with K = 2 (and to some extent K = 1) where thetransition is bellow the upper bound.A 
areful analysis of repli
a symmetri
 quantities reveals unphysi
al behavior forlow noise levels with the appearan
e of negative entropies. This question is resolved in
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ase of Sourlas 
odes with K !1 by the introdu
tion of a simple frozen spins �rst-step repli
a symmetry breaking ansatz. Despite the diÆ
ulties in the repli
a symmetri
analysis, threshold noise values observed in simulations using probability propagation(PP) de
oding agree with the noise level where meta-stable states (or spinodal points)appear in the repli
a symmetri
 free-energy.A mean-�eld (Bethe) theory based on the use of a tree-like latti
e (Husimi 
a
tus)exposes the relationship between PP de
oding and statisti
al physi
s and supports theagreement between theory and simulations as PP de
oding 
an be reinterpreted as amethod for �nding lo
al minima of a Bethe free-energy. Those minima 
an be des
ribedby distributions of 
avity lo
al �elds that are solutions of the repli
a symmetri
 saddle-point equations.The performan
e of the de
oding pro
ess with probability propagation 
an beobtained by looking at the Bethe free-energy lands
ape (or the repli
a symmetri
lands
ape), in this way we 
an show that information theoreti
 upper bounds 
an beattained by looking for global minima of the Bethe free-energy, whi
h may require
omputing time that grows exponentially with the system size. In pra
ti
al time s
ales,simple de
oding pro
edures that simply �nd minima be
ome trapped in meta-stablestates. That is the reason why pra
ti
al thresholds are linked to the appearan
e ofspinodal points in the Bethe free-energy.For 
as
ading 
odes we adopted a di�erent approa
h for the analysis. Using theinsights obtained in the analysis of the other 
odes we started by writing down the PPde
oding equations and writing the Bethe free-energy and the saddle-point like equationsfor distributions of 
avity �elds. The transitions predi
ted by these saddle-point likeequations were shown to agree with experiments. We then employed this pro
edure tooptimize parameters of one simple family of 
as
ading 
odes.By studying the repli
a symmetri
 lands
ape we 
lassi�ed the various 
odes bytheir 
onstru
tion parameters, we also showed that modi�
ations in 
ode 
onstru
tion,like the use of irregular matri
es, 
an improve the performan
e by 
hanging the way thefree-energy lands
ape evolves with the noise level. We summarize the results obtainedin the following table: Channel 
apa
ity Pra
ti
al de
oding ofunbiased messagesSourlas K !1 K = 2Gallager K !1 any KMa
Kay-Neal K > 2 K = 1, any L > 1 or K = 2Cas
ading still un
lear Kj = 1; 2 for some jThese results shed light on the properties that limit the theoreti
al and pra
ti
alperforman
e of parity 
he
k 
odes, explain the di�eren
es between Gallager and MN
onstru
tions and explores the role of irregularity in LDPC error-
orre
ting 
odes.Some new dire
tions are now being pursued and are worth mentioning. Thestatisti
al physi
s of Gallager 
odes with non-binary alphabets is investigated
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tive 84in [NKS01℄. In [KSNS01℄ the performan
e of error-
orre
ting 
odes in the 
ase of �nitemessage lengths has been addressed, yielding tighter general reliability bounds. Newanalyti
al methods to investigate pra
ti
al noise thresholds using statisti
al physi
s havebeen proposed in [vMSK01℄ and [KNvM01℄ while the nature of Gallager 
odes phasediagram was studied in detail in [Mon01℄.We believe that methods developed over the years in the statisti
al physi
s
ommunity 
an make a signi�
ant 
ontribution also in other areas of information theory.Resear
h in some of these areas, su
h as CDMA and image restoration is alreadyunderway.A
knowledgmentsSupport by Grants-in-aid, MEXT (13680400) and JSPS (YK), The Royal So
ietyand EPSRC-GR/N00562 (DS) is a
knowledged. We would like to a
knowledge the
ontribution of Tatsuto Murayama to this resear
h e�ort.Appendix A. Sourlas Codes: Te
hni
al DetailsAppendix A.1. Free-energyIn order to 
ompute free-energies we need to 
al
ulate the repli
ated partitionfun
tion (62). We 
an start from Eq.(60):hZniA;�;J = TrfS�j g h
exp ���H(n)(fS� g)��A;J;�i ; (A.1)where H(n)(fS�g) represents the repli
ated Hamiltonian and � the repli
a indi
es. Firstwe average over the parity-
he
k tensors A; for that an appropriate distribution has tobe introdu
ed, denoting � � hi1; :::; iKi for a spe
i�
 set of indi
es:hZni = * 1N XfAgYi Æ0�X�ni A� � C1ATrfS�j ge�� H(n)(fS�g)+J;� ; (A.2)where the Æ distribution imposes a restri
tion on the 
onne
tivity per spin, N is anormalization 
oeÆ
ient and the notation � n i means the set � ex
ept the element i.Using integral representations for the delta fun
tions and rearranging:hZni = TrfS�j g* 1N  Yi I dZi2�i 1ZC+1i ! (A.3)� XfAg  Y� (Yi2� Zi)A�! exp ���H(n)(fS�g)�+J;� :Remembering that A 2 f0; 1g, and using the expression (50) for the Hamiltonian we
an 
hange the order of the summation and the produ
t above and sum over A:hZni = TrfS�j g* 1N  Yi I dZi2�i 1ZC+1i ! e�FP�;i �iS�i
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tive 85�Y� "1 + (Yi2� Zi)exp �J�X� Yi2� S�i !#+J;� : (A.4)Using the identity exp(�J�Qi2� S�i ) = 
osh(�) h1 + �Qi2� S�i � tanh(�J�)i we 
anperform the produ
t over � to write:hZni = TrfS�j g 1N  Yi I dZi2�i 1ZC+1i !
e�FP�;i �iS�i �� (A.5)�Y� "1 + Yi2� Zi! 
oshn(�) 1 + htanh(�J)iJX� Yi2� S�i+ htanh2(�J)iJ Xh�1�2iYi2� S�1i Yj2� S�2j + :::1A35 :De�ning h�1; �2; :::; �li as an ordered set of sets, and observing that for large N ,Ph�1:::�li(:::) = 1l! �P�(:::)�l we 
an perform the produ
t over the sets � and repla
e theenergy series by an exponential:hZni = TrfS�j g 1N  Yi I dZi2�i 1ZC+1i !
e�FP�;i�iS�i �� (A.6)�exp "
oshn(�) X� (Yi2� Zi) + htanh(�J)iJX� X� Yi2� ziS�i+ htanh2(�J)iJ Xh�1�2iX� Yi2� ZiS�1i S�2i + :::1A35 :Observing that P� = 1=K!Pi1;:::iK , de�ning Tl = h
oshn(�J)tanhl(�J)iJ andintrodu
ing auxiliary variables q�1:::�m = 1N Pi ZiS�1i :::S�mi we �nd:hZniA;�;J = 1N  Yi I dZi2�i 1ZC+1i !�Z dq0dbq02�i ��  Y� Z dq�dbq�2�i ! : : : (A.7)� exp24NKK! 0�T0qK0 + T1X� qK� + T2 Xh�1�2i qK�1�2 + : : :1A35� exp24�N 0�q0bq0 +X� q�bq� + Xh�1�2i q�1�2bq�1�2 + : : :1A35� TrfS�j g "
e�FP�;i �iS�i �� expXi  bq0Zi +X� bq�ZiS�i + : : :!# :
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s Prospe
tive 86The normalization 
onstant is given by:N =XfAgYi Æ0�X�ni A� � C1A ; (A.8)and 
an be 
omputed using exa
tly the same methods as above, resulting in:N =  Yi I dZi2�i 1ZC+1i !�Z dq0dbq02�i �� exp "NKK! qK0 �Nq0bq0 + bq0Xi Zi# : (A.9)Computing the integrals over Zi's and using Lapla
e method to 
ompute theintegrals over q0 and bq0 we obtain:N = exp�Extrq0;bq0 �NKK! qK0 �Nq0bq0 +N ln�bqC0C!��� : (A.10)The extremum point is given byq0 = N (1�K)=K [(K � 1)!C℄1=Kand bq0 = (C N)(K�1=K) [(K � 1)!℄�1=K :Repla
ing the auxiliary variables in Eq.(A.7) using q�1:::�m=q0 ! q�1:::�m andbq�1:::�m=q0 ! bq�1:::�m, 
omputing the integrals over Zi and using Lapla
e method toevaluate the integrals we �nally �nd Eq.(62).Appendix A.2. Repli
a symmetri
 solutionThe repli
a symmetri
 free-energy (66) 
an be obtained by plugging the ansatz (65) intoEq.(A.7). Using Lapla
e method we obtain:hZniA;�;J = 1N exp�N Extr�;b� �CKG1 � C G2 + G3�� ; (A.11)where: G1 = T0 + T1X� Z KYj ( dxj �(xj) tanh(�xj))+T2 Xh�1�2i Z KYj � dxj �(xj) tanh2(�xj)�+ : : : ; (A.12)G2 = 1 +X� Z dx dy �(x) b�(y) tanh(�x) tanh(�y)+ Xh�1�2i Z dx dy �(x) b�(y) tanh2(�x) tanh2(�y) + : : : (A.13)
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tive 87and G3 = 1N ln 8<: Yi I dZi2�i 1ZC+1i !TrfS�j g 24*exp �FX�;i �iS�i +��exp bq0 Xi Zi +X� Xi ZiS�i Z dy b�(y)tanh(�y)+ Xh�1�2iXi ZiS�1i S�2i Z dy b�(y)tanh2(�y) + : : :1A359=; : (A.14)The equation for G1 
an be worked out by using the de�nition of Tm and the fa
tthat (Ph�1:::�li 1) = � nl �to write:G1 = *
oshn(�J) Z  KYj=1 dxj �(xj)!�  1 + tanh(�J) KYj=1 tanh(�xj)!n+J : (A.15)Following exa
tly the same steps we obtain:G2 = Z dx dy�(x) b�(y) (1 + tanh(�x) tanh(�y))n ; (A.16)and G3 = ln 8<:TrfS�g 24*exp  �F�X� S�!+�� I dZ2�i 1ZC+1 exp  bq0 Z Z dy b�(y) nY�=1(1 + S�tanh(�y))!#) : (A.17)Computing the integral over Zi and the tra
e we �nally �nd:G3 = ln (bqC0C! Z CYl=1 dylb�(yl)� "X�=�1 
e��F��� CYl=1(1 + �tanh(�yl))#n) : (A.18)Putting everything together, using Eq.(59) and some simple manipulation we �ndEq.(66).Appendix A.3. Lo
al �eld distributionIn this appendix we derive expli
itly Eq.(68). The gauge transformed overlap 
an bewritten as � = 1N NXi=1 hsign(mi)iA;J;� ; (A.19)



Low Density Parity Che
k Codes { A Statisti
al Physi
s Prospe
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ing the notation mi = hSii, where h� � �i is a gauged average.For an arbitrary natural number p, one 
an 
ompute p-th moment of mihmipiA;J;� = limn!0* XS1;:::;Sn S1i � S2i � : : : � Spi e��Pn�=1H(�)+A;J;� ; (A.20)where H(�) denotes the gauged Hamiltonian of the �-th repli
a. By performing thesame steps des
ribed in the Appendi
es Appendix A.1 and Appendix A.2, introdu
ingthe auxiliary fun
tions �(x) and b�(y) de�ned in Eqs.(65), one obtainshmipiA;J;� = Z CYj=1 dyjb�(yj)*tanhp �F� + � CXj=1 yj!+� : (A.21)Employing the identitysign(x) + 1 = 2 limn!1 nXm=0 2n!(2n�m)!m! �1 + x2 �2n�m�1� x2 �m (A.22)whi
h holds for any arbitrary real number x 2 [�1; 1℄ and Eqs.(A.21) and (A.22) oneobtains hsign(mi)iA;J;� + 1 = 2 Z dh P (h)� limn!1 nXm=0C2n;m�1 + h2 �2n�m �1� h2 �m= Z dh P (h) sign(h); (A.23)where we introdu
ed the lo
al �elds distributionP (h) = Z CYj=1 dyj �̂(yj)*Æ(h� F� � CXj=1 yj)+� ; (A.24)thus reprodu
ing Eq.(68).Appendix A.4. Zero temperature self-
onsistent equationsIn this appendix we des
ribe how one 
an write a set of self-
onsistent equations to solvethe zero temperature saddle-point equations (84). Supposing a three peaks ansatz givenby: b�(y) = p+Æ(y � 1) + p0Æ(y) + p�Æ(y + 1) (A.25)�(x) = C�1Xl=1�C T[p�;p0;C�1℄(l) Æ(x� l); (A.26)with T[p+;p0;p�;C℄(l) = Xfk;h;m ; k�h=l ; k+h+m=C�1g (C � 1)!k! h! m! pk+ ph0 pm� : (A.27)
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an 
onsider the problem as a random walk, where b�(y) des
ribes the probabilityof one step of length y (y > 0 means one step to the right) and �(x) des
ribes theprobability of being at distan
e x from the origin after C � 1 steps. With this idea inmind it is relatively easy to understand T[p+;p0;p�;C�1℄(l) as the probability of walking thedistan
e l after C � 1 steps with the probabilities p+, p� and p0 of respe
tively movingright, left and staying at the same position. We de�ne the probabilities of walkingright/left as  � =PC�1l T[p+;p0;p�;C�1℄(�l). Using se
ond saddle-point equations (84):p+ = Z "K�1Yl=1 dxl �(xl)# (A.28)� *Æ "1� sign(J K�1Yl=1 xl) min(j J j; j x1 j; : : : j#+J :The right side of the above equality 
an be read as the probability of making K�1independent walks, su
h that after C � 1 steps: none is at origin and an even (forJ = +1) or odd (for J = �1) number of walks is at the left side.Using this reasoning for p� and p0 we 
an �nally write :p+ = (1� p) bK�12 
Xj=0 (K � 1)!2j!(K � 1� 2j)! 2j�  K�2j�1+ (A.29)+ p bK�12 
�1Xj=0 (K � 1)!(2j + 1)!(K � 2� 2j)! 2j+1�  K�2j�2++ p  K�1� odd(K � 1)p� = (1� p) bK�12 
�1Xj=0 (K � 1)!(K � 2j � 2)!(2j + 1)! 2j+1�  K�2j�2+ (A.30)+ p bK�12 
�1Xj=0 (K � 1)!(K � 2j � 1)!2j! 2j�  K�2j�1++ (1� p) K�1� odd(K � 1);where odd(x) = 1(0) if x is odd (even). Using that p+ + p� + p0 = 1 one 
an obtain p0.A similar set of equations 
an be obtained for a �ve peaks ansatz leading to the same setof solutions for the ferromagneti
 and paramagneti
 phases. The paramagneti
 solutionp0 = 1 is always a solution, for C > K a ferromagneti
 solution with p+ > p� > 0emerges.
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tive 90Appendix A.5. hJiJ = hJ tanh(�NJ)iJIn this appendix we establish the identity hJiJ = hJ tanh(�NJ)iJ for symmetri

hannels. It was shown in [Sou94a℄ that :�N J = 12 ln� p(J j 1)p(J j �1)� ; (A.31)where �N is the Nishimori temperature and p(J j J0) are the probabilities that atransmitted bit J0 is re
eived as J . From this we 
an easily �nd:tanh (�N J) = p(J j 1)� p(J j �1)p(J j 1) + p(J j �1) : (A.32)In a symmetri
 
hannel (p(J j �J0) = p(�J j J0)), it is also represented astanh (�N J) = p(J j 1)� p(�J j 1)p(J j 1) + p(�J j 1) : (A.33)Therefore,hJ tanh (�N J)iJ = TrJ p(J j 1) J p(J j 1)p(J j 1) + p(�J j 1)+ TrJ p(J j 1) (�J) p(�J j 1)p(J j 1) + p(�J j 1)= TrJ p(J j 1) J p(J j 1)p(J j 1) + p(�J j 1)+ TrJ p(�J j 1) J p(J j 1)p(�J j 1) + p(J j 1)= TrJ J p(J j 1)= hJiJ : (A.34)Appendix A.6. Probability propagation equationsIn this se
tion we derive the probability propagation equations (36) and (34) in theform (96). We start by introdu
ing the following representation for the variables QSk�kand RSk�k: QSk�k = 12 (1 +m�kSk) RSk�k = 12 (1 + bm�kSk) : (A.35)We 
an now put (91), (95) and (A.35) together to write:RSk�j = 1a� XfSk:k2L(�)njg 12 
osh(�J�) 1 + tanh(�J�) Yj2L�Sj!� Yk2L(�)nj 12 (1 +m�kSk)= 12K 1a� XfSk:k2L(�)njg 
osh(�J�)0�1 + tanh(�J�) Yj2L(�)Sj1A
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tive 91� 0�1 + Xk2L(�)njm�kSk + Xk 6=l2L(�)njm�km�lSkSl + � � �1A= 12K 1a� 
osh(�J�)0�1 + tanh(�J�) Sj Yk2L(�)njm�k1A= 12 0�1 + tanh(�J�) Sj Yk2L(�)njm�k1A : (A.36)To obtain the last line we used that the normalization 
onstant is a� = 12K�1 
osh(�J�).Writing the above equation in terms of the new variable bm�k we obtain the �rst equation(96): bm�k = R(+)�k �R(�)�k (A.37)= 12 0�1 + tanh(�J�) Yk2L(�)njm�k1A� 12 0�1 � tanh(�J�) Yk2L(�)njm�k1A= tanh(�J�) Yk2L(�)njm�k:To obtain the se
ond equation (96), we write:QSk�k = a�k 12 (1 + tanh(� 0NSk)) Y�2M(k)n� 12 (1 + bm�kSk) : (A.38)In the new variables m�k :m�k = a�k 12K 8<:(1 + tanh(� 0N)) Y�2M(k)n� (1 + bm�k) (A.39)� (1� tanh(� 0N)) Y�2M(k)n� (1� bm�k)9=;By using the identity e�x = 
osh(x)(1 + �tanh(x)) we 
an write:m�k = exp hP�2M(k)n� atanh(m�k) + � 0Nia�1�k 2K 
osh(� 0N )Q�2M(k)n� 
osh(atanh(m�k)) (A.40)� exp h�P�2M(k)n� atanh(m�k)� � 0Nia�1�k 2K 
osh(� 0N )Q�2M(k)n� 
osh(atanh(m�k))Computing the normalization a�j along the same lines gives:a�1�k = exp hP�2M(k)n� atanh(m�k) + � 0Ni2K 
osh(� 0N)Q�2M(k)n� 
osh(atanh(m�k))
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tive 92+ exp h�P�2M(k)n� atanh(m�k)� � 0Ni2K 
osh(� 0N)Q�2M(k)n� 
osh(atanh(m�k)) (A.41)Inserting (A.41) into (A.40) gives:m�k = tanh24 X�2M(k)n� atanh(m�k) + � 0N35 : (A.42)Appendix B. Gallager Codes: Te
hni
al DetailsAppendix B.1. Repli
a theoryThe repli
a theory for Gallager 
odes is very similar to the theory obtained for Sourlas
odes (see Appendix A). We start with Eq.(116):hZniA;� = X�1;���;�n MYj=1*exp F�� nX�=1 ��j !+� (B.1)� * Yhi1���iKi nY�=1 exp ��
Ahi1���iKi(��i1 � � � ��iK � 1)�+A :The average over 
onstru
tions A is then introdu
ed using Eq.(117) :hZniA;� = 1N X�1;���;�n MYj=1*exp F�� nX�=1 ��j !+�� XfAg MYj=1 "I dZj2�i 1ZC+1j ZPhi1=j;i2;���;iK iAhi1=j;���;iK ij #
� Yhi1���iKi exp"�
Ahi1���iKi nX�=1(��i1 � � � ��iK � 1)# : (B.2)After observing thatMYj=1ZPhi1=j;i2;���;iK iAhi1=j;���;iK ij = Yhi1���iKi(Zi1 � � �ZiK )Ahi1���iK i;we 
an 
ompute the sum over Ahi1���iKi 2 f0; 1g:hZniA;� = 1N X�1;���;�n MYj=1*exp F�� nX�=1 ��j !+� (B.3)� MYj=1 "I dZj2�i 1ZC+1j #
� Yhi1���iKi(1 + Zi1 � � �ZiKen�
 nY�=1 exp ��
(��i1 � � � ��iK )�) :
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tive 93We 
an now use the identity ex� = 
osh(x)(1 + �tanh(x)), where � = �1, to write:hZniA;� = 1N X�1;���;�n MYj=1*exp F�� nX�=1 ��j !+� (B.4)� XfAg MYj=1 "I dZj2�i 1ZC+1j #� Yhi1���iKi�1 + 
oshn(�
)en�
 (Zi1 � � �ZiK)� nY�=1 �1 + ��i1 � � � ��iK tanh(�
)�) :By following Appendix A.1 from Eq.(A.5) we 
an �nally �nd Eq.(120).Appendix B.2. Repli
a symmetri
 solutionAs in the 
ode of Sourlas (Appendix A.2) the repli
ated partition fun
tion 
an be putinto the form:hZniA;� = 1N exp�M Extr�;b� �CKG1 � C G2 + G3�� : (B.5)Introdu
ing the repli
a symmetri
 ansatz (121) into the fun
tions G1, G2 and G3 weobtain: G1(n) = T0 + T1X� qK� + T2 Xh�1�2i qK�1�2 + � � � (B.6)= 
oshn(�
)en
� Z KYj=1 dxj �(xj)"1 + n!(n� 1)! tanh(�
) KYj=1 xj+ n!(n� 2)!2! tanh2(�
) KYj=1 x2j + � � �#= 
oshn(�
)en
� Z KYj=1 dxj �(xj)"1 + tanh(�
) KYj=1 xj#n
!1! 12n Z KYj=1 dxj �(xj)"1 + KYj=1 xj#n ;where we use the Nishimori 
ondition 
 !1, � = 1 to obtain the last line.G2(n) = 1 +X� q�bq� + Xh�1�2i q�1�2bq�1�2 + � � �= Z dxdbx �(x)b�(bx) [1 + xbx℄n : (B.7)and G3(n) = 1M ln Trf��g 24*exp"F�� nX�=1 ��#+�
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tive 94� I dZ2�i exp hZPnm=0Ph�1����mi bq�1����m ��1 � � � ��miZC+1 35= 1M ln Trf��g 24*exp "F�� nX�=1 ��#+�� I dZ2�i exp �Z R dbxb�(bx) Qn�=1(1 + ��bx)�ZC+1 #
= 1M ln bqC0C! Z CYl=1 dbxl b�(bxl)"X�=�1 
eF����� CYl=1(1 + �bxl)#n (B.8)By using Eq.(115) we 
an writef = � 1�Extr�;b� ��n ����n=0 �CKG1(n)� CG2(n) + G3(n)� ; (B.9)what yields the free-energy (123).Appendix B.3. Energy density at the Nishimori 
onditionIn general the average internal energy is evaluated as:U = hhH(
�; F �)i��iJ ;� (B.10)= XJ P� P
�(fJ�g j �) PF�(�)P ~J ;~� P
�(f ~J�g j ~�) PF�(~�) (B.11)� P� H(
�; F �) P
���(fJ�g j � ) PF ���(� )P~� P
���(fJ�g j ~� ) PF ���(~� ) ;where the hyper-parameters 
�, F � are used in the Hamiltonian H and �� is thetemperature, while 
, F and � are the a
tual parameters of the en
oding and 
orruptionpro
esses.The Nishimori 
ondition is de�ned by setting the temperature and all hyper-parameters of the Hamiltonian to the values in the en
oding and 
orruption pro
esses.If this is done, the expression for the energy 
an be rewritten:U = PJ ;� H(
; F ) P
�(fJ�g j � ) PF�(� )PJ ;� P
�(fJ�g j � ) PF�(�) : (B.12)By plugging (106) for the likelihood P
�(fJ�g j � ) and for the prior PF�(�); settingthe hyperparameters to 
 ! 1, � = 1 and F = atanh(1 � 2p) and performing thesummation over J �rst, we easily get:u = limM!1 UM = � F (1� 2p): (B.13)Note that this expression is independent of the ma
ros
opi
 state of the system.
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tive 95Appendix B.4. Re
ursion relationsWe start by introdu
ing the e�e
tive �eld bx�j :tanh(�bx�j) = P�j(+)e��F � P�j(�)e+�FP�j(+)e��F + P�j(�)e+�F : (B.14)Equation (129) 
an be easily obtained from the equation above. Equation (130) isthen obtained by introdu
ing Eq.(128) into Eq.(129) and performing a straightforwardmanipulation we obtain Eq.(131):exp(�2�bx�k) = Trf�jge�
��J�Q00j �j�1�Q0�Q00j e�F�j+�bx�j(�j�1)Trf�jge�
(+J��kQ00j �j�1)Q0�Q00j e�F�j+�bx�j(�j�1) ; (B.15)where exp (�bx�j(�j � 1)) = P�j(�j)e��F�jP�j(+)e��Fand the produ
ts Q0� and Q00j are over � 2 M(j) n � and j 2 L(�) n k respe
tively.The above equation 
an be rewritten as:e�2�bx�k = Trf�jgQ00j e��F+P0� bx�j��j h�1� J�Q00j �jtanh(�
)�iTrf�jgQ00j e(�F+P0� bx�j)�j h�1 + J�Q00j �jtanh(�
)�i : (B.16)By introdu
ing the Nishimori 
ondition � = 1 and 
 !1 and 
omputing tra
es:exp(�2�bx�k) = Qj2L(�)nkP�=�1 ex�j� � J�Qj2L(�)nkP�=�1 �ex�j�Qj2L(�)nkP�=�1 ex�j� + J�Qj2L(�)nkP�=�1 �ex�j�= 1 � J�Qj2L(�)nk tanh(x�j)1 + J�Qj2L(�)nk tanh(x�j) ; (B.17)where we have introdu
edx�j = F + X�2M(j)n� bx�j:A brief manipulation of the equation above yields Eq.(131).Appendix C. MN 
odes: te
hni
al detailsAppendix C.1. Distribution of syndrome bitsIn this se
tion we evaluate probabilities pxz asso
iated to syndrome bits in MN andGallager 
odes.In the 
ase of Gallager 
odes a syndrome bit � has the formz� = �l1 � � � � � �lK ; (C.1)where � 2 f0; 1g and � denotes mod 2 sums. Ea
h bit �l is randomly drawn withprobabilities P (� = 1) = p and P (� = 0) = 1 � p. The probability p0z(K) of z� = 0
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tive 96equates with the probability of having an even number of �l = 1 in the summation,therefore: p0z(K) = KXl even K!(K � l)!l! pl(1� p)K�l= KXl even (�1)l K!(K � l)!l! pl(1� p)K�l: (C.2)Consequently p1z(K) = KXl odd K!(K � l)!l! pl(1� p)K�l= � KXl odd (�1)l K!(K � l)!l! pl(1� p)K�l: (C.3)>From equations (C.2) and (C.3) above we 
an write:1� 2 p1z(K) = KXl odd (�1)l K!(K � l)!l! pl(1� p)K�l= (1� p� p)K = (1� 2p)K: (C.4)>From what we �nd:p1z(K) = 12 � 12(1� 2p)K: (C.5)For MN 
odes syndrome bits have the form:z� = �j1 � � � � � �jK � �l1 � � � � � �lL ; (C.6)where signal bits �j are randomly drawn with probability P (� = 1) = p� and noise bits�l are drawn with probability P (� = 1) = p.The probability p0z(K;L) of z� = 0 is, therefore:p0z(K;L) = p0z(K)p0z(L) + p1z(K)p1z(L)= 1� p1z(K)� p1z(L) + 2 p1z(K)p1z(L): (C.7)where pxz(K) and p0z(L) stand for probabilities involving the K signal bits and L noisebits, respe
tively.By plugging equation (C.5) into equation (C.7) we get:p1z(K;L) = 1� p0z(K;L)= 12 � 12(1� 2p�)K (1� 2p)L: (C.8)
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a theoryFor MN 
odes the repli
ated partition fun
tion has the following form:hZniA;�;� = XS1;���;Sn X� 1;���;� n NYj=1*exp Fs�� nX�=1 S�j !+� (C.9)� MYl=1 *exp Fn�� nX�=1 ��l !+�� *Yhjli nY�=1 exp h�
Ahjli(S�j1 � � �S�jK��l1 � � � ��lL � 1)i+A :By introdu
ing averages over 
onstru
tions (117) as des
ribed in Appendix B.1 we �nd:hZniA;�;� = XS1;���;Sn X� 1;���;� n NYj=1*exp Fs�� nX�=1 S�j !+� (C.10)� MYj=1*exp Fn�� nX�=1 ��j !+�� XfCj ;Dlg NYj=1PC(Cj) MYl=1 PD(Dl)� 1N XfAg NYj=1 "I dZj2�i 1ZCj+1j ZPhj1=j;j2;���;jK;liAhj1=j;���;jK ;lij #
� MYl=1 "I dYl2�i 1Y Dl+1l YPhj;l1=l;l2;���;lLiAhj;l1=l;���;lLil #
� Yhjli exp "�
Ahjli nX�=1(S�j1 � � �S�jK��l1 � � � ��lL � 1)# :Computing the sum over A we get:hZniA;�;� = XS1;���;Sn X� 1;���;� n NYj=1*exp Fs�� nX�=1 S�j !+�� MYj=1*exp Fn�� nX�=1 ��j !+�� XfCj ;Dlg NYj=1PC(Cj) MYl=1 PD(Dl) 1N� I dZj2�i 1ZCj+1j I dYl2�i 1Y Dl+1l� Yhili�1 + Zi1 � � �ZiKYl1 � � �YlLen�
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(S�i1 � � �S�iK��l1 � � � ��lL)�) : (C.11)We use the identity ex� = 
osh(x)(1 + �tanh(x)), where � = �1, to write:hZniA;�;� = XS1;���;Sn X� 1;���;� n NYj=1*exp Fs�� nX�=1 S�j !+� (C.12)� MYj=1*exp Fn�� nX�=1 ��j !+�� XfCj ;Dlg NYj=1PC(Cj) MYl=1 PD(Dl)� 1N I dZj2�i 1ZCj+1j I dYl2�i 1Y Dl+1l (C.13)� Yhili�1 + 
oshn(�
)en�
 (Zi1 � � �ZiKYl1 � � �YlL)� nY�=1 �1 + S�i1 � � �S�iK��l1 � � � ��lLtanh(�
)�) :The produ
t in the repli
a index � yields:nY�=1 �1 + S�i1 � � �S�iK��l1 � � � ��lLtanh(�
)� = nXm=0�tanhm(�
) (C.14)� Xh�1;���;�miS�1i1 � � �S�mi1 � � �S�1iK � � �S�miK ��1l1 � � � ��ml1 ��1lL � � � ��mlL �;where h�1; � � � ; �mi = f�1; � � � ; �m : �1 < � � � < �mg.The produ
t in the multi-indi
es hili 
an be 
omputed by observing that thefollowing relation holds in the thermodynami
 limit:Yhili �1 +  hili� = mmaxXm=0 Xhhili1;���;hilimi hili1 � � � hilimN!1�! exp24Xhili  hili35 ; (C.15)with mmax � (NKML)=K!L!.We �nd Eq.(173) by putting Eqs.(C.15) and (C.14) into (C.12) and using thefollowing identities to introdu
e auxiliary variables:Z dq�1����m Æ "q�1����m � 1N NXj=1 ZjS�1j � � �S�mj # = 1Z dr�1����m Æ "r�1����m � 1M MXl=1 Yl��1l � � � ��ml # = 1 (C.16)
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a symmetri
 free-energyWe �rst 
ompute the normalisation N for a given :N = Z �dq0dbq02�i �Z �dr0dbr02�i �� exp �MLNKK!L! T0qK0 rL0 � Nq0bq0 � Mr0br0�� NYj=1 I dZj2�i exp [Zjbq0℄ZCj+1j MYl=1 I dYl2�i exp [Ylbr0℄Y Dl+1l (C.17)By using Cau
hy's integrals to integrate in Zj and Yl and Lapla
e's method we get:N = exp�Extrq0;bq0;r0;br0 �MLNKK!L! T0qK0 rL0 �Nq0bq0 �Mr0br0+ NXj=1 ln bqCj0Cj!! + MXl=1 ln brLl0Ll!!#) : (C.18)The extremisation above yields the following equations:q0bq0 = 1N NXj=1 Cj = C (C.19)r0br0 = 1M MXl=1 Ll = L (C.20)qK0 rL0 = C (K � 1)!L!NK�1ML : (C.21)The variables 
an be normalised as:q�1����mq0 7! q�1����m r�1����mr0 7! r�1����m : (C.22)By plugging Eqs.(C.18), (C.19), the above transformation into (173) and by usingLapla
e's method we obtain:hZniA;�;� = Extrq;r;bq;br8<:exp24N CK nXm=1 Xh�1����mi TmqK�1����m rL�1����m� NC nXm=1 Xh�1����mi q�1����mbq�1����m� ML nXm=1 Xh�1����mi r�1����mbr�1����m35� NYj=1XCj PC(Cj) MYl=1XDl PD(Dl)� NYj=1 Cj!bqCj0 ! TrfS�j g 24*exp"Fs�� nX�=1 S�#+�
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tive 100� I dZj2�i exp hZjPnm=0Ph�1����mi bq�1����m S�1 � � �S�miZCj+1j 35� MYl=1 �Dl!brDl0 � Trf��l g 24*exp "Fn�� nX�=1 ��l #+�� I dYl2�i exp hYlPnm=0Ph�1����mi br�1����m ��1 � � � ��miY Dl+1l 359=; ;(C.23)where Tm = e�n�
 
oshn(�
) tanhm(�
).We 
an rewrite the repli
ated partition fun
tion as:hZniA;�;� = exp�NExtrq;r;bq;br �CKG1 � CG2 � LG3 + G4 + G5�� (C.24)Introdu
ing the repli
a symmetri
 ans�atze:q�1����m = Z dx �(x) xm bq�1����m = Z dbx b�(bx) bxm (C.25)and r�1����m = Z dy �(y) ym br�1����m = Z dby b�(by) bym: (C.26)By introdu
ing Nishimori's 
ondition 
 ! 1 and � = 1, we 
an work ea
h termon (C.24) out and �nd:G1(n) = T0 + T1X� qK� rL� + T2 Xh�1�2i qK�1�2rL�1�2 + � � � (C.27)= 
oshn(�
)en
� Z KYj=1 dxj LYl=1 dyl �(yl)� "1 + n!(n� 1)! tanh(�
) KYj=1 xj LYl=1 yl+ n!(n� 2)!2! tanh2(�
) KYj=1 x2j LYl=1 y2l + � � �#= 
oshn(�
)en
� Z KYj=1 dxj �(xj) LYl=1 dyl �(yl)� "1 + tanh(�
) KYj=1 xj LYl=1 yl#n
!1! 12n Z KYj=1 dxj�(xj) LYl=1 dyl�(yl)"1 + KYj=1 xj LYl=1 yl#n ;
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tive 101G2(n) = 1 +X� q�bq� + Xh�1�2i q�1�2bq�1�2 + � � �= Z dxdbx �(x)b�(bx) [1 + xbx℄n : (C.28)Similarly, G3(n) = 1 +X� r�br� + Xh�1�2i r�1�2br�1�2 + � � �= Z dydby �(y)b�(by) [1 + yby℄n : (C.29)G4(n) = 1N NXj=1 ln XCj PC(Cj) Cj!bqCj0 !� TrfS�g 24*exp "Fs�� nX�=1 S�j #+�� I dZj2�i exp hZjPnm=0Ph�1����mi bq�1����m S�1j � � �S�mj iZCj+1j 35 (C.30)= 1N NXj=1 ln XCj PC(Cj) Cj!bqCj0 !� TrfS�j g 24*exp "Fs�� nX�=1 S�j #+�� I dZj2�i exp �Zj R dbxb�(bx) Qn�=1(1 + S�j bx)�ZCj+1j #
= ln XCj PC(Cj) Z CjYl=1 dbxl b�(bxl)24XS=�1 
eFs��S�� CjYi=1(1 + Sbxi)35nIn the same way:G5(n) = 1M MXl=1 ln XDl PD(Dl)�Dl!brDl0 � (C.31)� Trf��g 24*exp "Fn�� nX�=1 ��l #+�� I dYl2�i exp hYlPnm=0Ph�1����mi br�1����m ��1l � � � ��ml iY Dl+1l 35
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tive 102= 1M MXl=1 ln XDl PD(Dl)�Dl!brDl0 �� TrfD�l g 24*exp "Fn�� nX�=1 ��l #+�� I dYl2�i exp hYl R dbyb�(by) Qn�=1(1 + ��l by)iY Dl+1l 35= ln XDl PC(Dl) Z DlYl=1 dbyl b�(byl)"X�=�1 
eFn����� DlYi=1(1 + �byi)#nBy using Eq.(166) we 
an writef = � 1�Extr�;b�;�;b� ��n ����n=0 �CKG1(n)� CG2(n)� LG3(n) (C.32)+ G4(n) + G5(n)℄ ;what yields free-energy (176).Appendix C.4. Viana-Bray model: Poisson 
onstru
tionsThe Viana-Bray (VB) model is a multi-spin system with random 
ouplings and strongdilution [VB85℄. We 
an introdu
e a VB version of our statisti
al me
hani
al formulationfor MN 
odes. The Hamiltonian for a VB-like 
ode is identi
al to Eq.(160):Hgauge
 (S; � ; �; �) = � 
XhjliAhjli (Sj1 � � �SjK�l1 � � � �lL � 1)� Fs NXj=1 �jSj � Fn MXl=1 �l�l: (C.33)The variables Ahjli are independently drawn from the distribution:P (A) = �1� L!K!ML�1NK� Æ(A) + L!K!ML�1NK Æ(A� 1): (C.34)The above distribution will yield the following averages:*XhjliAhjli+A =M (C.35)* Xhj1=j���jK l1���lLiAhjli+A = C (C.36)* Xhj1���jK l1=l���lLiAhjli+A = L: (C.37)
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e the varian
e of a Poisson distribution is given by the square root of the mean inthe thermodynami
 limit:P 8<:XhjliAhjli = x9=; M!1�! Æ (x � M) : (C.41)The Poisson distribution for the 
onstru
tion variables C and L will imply that a fra
tionNe�C of the signal bits and Me�L of the noise bits will be de
oupled from the system.These un
he
ked bits have to be estimate by randomly sampling the prior probabilityP (Sj), implying that the overlap � is upper bounded by:� � 1N hN �Ne�C +Ne�C(1� 2p�)i� 1� e�C + e�C(1� 2p�)� 1� 2 p�e�C : (C.42)Therefore, a VB-like 
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