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Abstract

We combine the replica approach from statistical physidhk wivaria-

tional approach to analyze learning curves analyticallye &gply the
method to Gaussian process regression. As a main result nive d-

proximative relations between empirical error measuresgeneraliza-
tion error and the posterior variance.

1 Introduction

Approximate expressions for generalization errors fortdirdimensional statistical data
models can be often obtained in the large data limit usingnasgtic expansions. Such
methods can yield approximate relations for empirical and errors which can be used
to assess the quality of the trained model see e.g. [1]. Wniately, such an approxi-
mation scheme does not seem to be easily applicable to paputaparametrianodels
like Gaussian process (GP) models and Support Vector Masi{BVMs). We apply the
replica approach of statistical physics to asses the agerage learning performance of
these kernel machines. So far, the tools of statistical iphysave been successfully ap-
plied to a variety of learning problems [2]. However, thisgdnt method suffers from the
drawback that data averages can be performed exactly odirwery idealistic assump-
tions on the data distribution in the "thermodynamic” limftinfinite data space dimension.
We try to overcome these limitations by combining the repheethod with a variational
approximation. For Bayesian models, our method allows wexfvess useful data aver-
aged a-posteriori expectations by means of an approximeasune. The derivation of this
measure requires no assumptions about the data densitpassumptions about the input
dimension.

The main focus of this article is Gaussian process regnessiere we demonstrate the
various strengths of the presented method. It solves soithe @roblems stated at the end
of our previous NIPS paper [3] which was based on a simpleesdmt unmotivated trun-
cation of a cumulant expansion. For Gaussian process mageshow that our method
does not only give explicit approximations for generali@atrrors but also of their sample
fluctuations. Furthermore, we show how to compute corrastio our theory and demon-
strate the possibility of deriving approximate universddtions between average empirical
and true errors which might be of practical interest.

An earlier version of our approach, which was still res#itto the assumption of idealized
data distributions appeared in [4].



2 Setup and Notation

We assume that a class of elementary predictors (neurabrietywregressors etc.) is given
by functionsf (x). In a Bayesian formulation, we have a prior distributionr¥és class of
functionsf. Assuming that a set of observations. . ., v, is conditionally independent
given inputsey, . .., z,,, we assign a likelihood term of the forexp (—8h(f(z;),y:)) to
each observation. Posterior expectations (denoted bylanigiackets) of any functional
F{f} are expressed in the form

(F{f}) = (F{f} exp (—Bzh(f(wi%yi))) 1)

where the partition functimZm normalizes the posterior anfd denotes the expectation
with respect to the prior. We are interested in computingayes/(F'{f})]p of posterior
expectations over different drawings of training data €&ts= {(z1,41),. .-, (Tm,ym)}
were all data examples are independently generated frosathe distribution. In the next
section we will show how to derive a measure which enable® w®mpute analytically
approximate combined data and posterior averages.

3 A Grand-Canonical Approach

We utilize the statistical mechanics approach to the amsabyfslearning. Our aim is to
compute the so-called averaged "free energyln Z,,]p which serves as a generating
function for suitable data averages of posterior expemtatiThe partition functiolr,,, is

Zm = Eexp <_B Z h(f(mz) yz)) : (2)

To perform the averaggn Z,,|p we use the replica trickn Z,,]p = lim, o M

where[Z] ] p is computed for integer and the continuation is performed at the end [5].
We obtain

m

eXP(ﬂtha )] ) 3)
(z.9)

whereFE,, denotes the expectation over the replicated prior measure.

Zn(m) =[Z,|p = En (

Eq.(3) can be transformed into a simpler form by introduchngy”"grand canonical” parti-
tion functionZ,, (1)

En(u) = Z e:;_TZn(m) =E, exp(_Hn) (4)
m=0 '

with the Hamiltonian
H, = —e" lexp (—Bzh(fa(x),y)ﬂ : (5)
a=1 (,9)

The density:—H~ evaluates alh replicasfl .., fn Of the predictor at theamedata point
(z,y) and the expectatiop- -], ,) is taken with respect to the true data density, y).

The "grand canonical” partltlon functlmn(u) represents a "poissonized” version of the
original model with fluctuating number of examples. The 'lcheal potential’y deter-

mines the expected value of = M which yields simplyu = Inm forn — 0. For
sufficiently largem, we can replace the sum in Eq. (4) by its dominating term

InZ,(m) ~InZ,(u) + m(lnm — 1) — mp. (6)



thereby neglecting relative fluctuations. We recover thgial (canonical) free energy as
0 InZ,(m) ., 9 InE,(Inm)
on ~ o n :

4 Variational Approximation

For most interesting cases, the partition functi®(u) can not be computed in closed
form for givenn. Hence, we use a variational approach to approximgidy a different
tractable HamiltoniadZ?. It is easy to write down the first terms in an expansion of the
"grand canonical” free energy with respect to the diffeeeflg, — H?

—InZ,(p) = —1In Ene‘H5+(Hn—H2)O—% <<(Hn—H2)2)O—<Hn—H2>g> +....(7)

The brackets. . .)o denote averages with respect to the effective measure vighictiuced

by the prior ande—H» and acts in the space of replicated variables. As is well know
the first two leading terms in Eq.(7) present an upper bouhtb[6- In =, (1). Although
differentiating the bound with respecttowill usually not preserve the inequality, we still
expect! that an optimization with respect #? is a sensible thing to do [7].

4.1 Variational Equations

The grand-canonical ensemble was chosen such that Eqr(becawritten as an integral
over alocal quantity in the input variablei.e. in the formH,, = —m [ dz H(z, {f.(z)})
with

H(z, {fa(@)}) = /dyp(y,x) exp (—ﬂzh(fa(fﬂ),y)> : (8)
a=1
We will now specialize to Gaussian priors ovgrfor which a local quadratic expression

1= [ @) o) + 3 o) o) ©
ab a

is a suitable trial Hamiltonian, leading to Gaussian avesdg .)o. The functions),;(x)
andr, (z) are variational parameters to be optimized. It is importahiave an explicit de-
pendence on the input variabtén order to take a non uniform input density into account.

To perform the variation of the first two terms in Eq.(7) weetitat the locality of Eq.(8)
makes the "variational free energy’In E,, exp(—H?) + (H,, — H2), an explicit function
of the first two local moments

Kap(z) = (fa(x)fo(x))o  ralx) = (fa(@))o - (10)

Hence, a straightforward variation yields

(M@, £(2)o
dKab(l‘)

= s (2) m—d<H§i’a{if))>° = a(s) | (11)

To extend the variational solutions to non-integer values,ave assume that for adl the
optimal parameters are replica symmetric,iig(z) = #(z) as well asj.,(z) = n(z) for
a # bandn,,(z) = no(x). We also use a corresponding notation £y, () andr, (z).

1Guided by the success of the method in physical applicatfoninstance in polymer physics.



4.2 Interpretation of H?

Note, that our approach is not equivalent to a variationgk@xmation of the original
posterior. In contrastl, contains the full information of the statistics of the tiamdata.
We can use the distribution induced by the prior anéf~ in order to compute approximate
combined data and posterior averages. As an example, wedirsider the expected local
posterior variances?(z) = [(f?(z)) — (f(z))?]p. Following the algebra of the replica
method (see [5]) this is approximated within the variatioealica approach as

o*(x) = lim ((FZ@))o = (fa(@) f3(2))0 ) = Ko(z) — K(x) . (12)
Second, we consider the noisy locakan square prediction errasf the posterior mean
predictorf(x) = (f(x)) which is given bye(z, y) = [(f(z) — y)?]p. In this case

fey) = lim ((fa@) (@) +27 — 2ifalz))o )
= K(@)- @)+ (@) - p)* (13)

We can also calculatfuctuationswith respect to the data average, for example

n—0
a=1,2 b=3,4

[(f(z) =9)*(f(z') =4')’]p = lim < I (at@) =) T (ol —y’)> - (14

5 Regression with Gaussian Processes

This statistical model assumes that data are generatgd as f(z;) + &, wheref is
Gaussian white noise with variange!. The prior over functions has zero mean and
covariance’(z,z') = E|[f(z) f(z')]. Hence, we have(f,y) = +(y — f(z))?. Using the
definitions Egs.(12,13), we get

OH(z, {fa(®)}))o _ _p(x) 2 J dy p(y|x)e(z,y)
=— In(1 15

871 2 H( +60 (Z’)) + ,8_1 + 0'2(.’17) ( )
which yields the set of variational equations (11). Theydmee particularly easy when the
regression model uses a translationally invariant kefi{el— z') and the input distribution
is homogeneous in a finite interval. The variational equnti(l1) can then be solved in
terms of the eigenvalues of the Gaussian process kernel.

[8, 9] studied learning curves for Gaussian process reipresghich are not only averaged
over the data but also over the data generating prgteassing a Gaussian process prior on
f+«. Applying these averages to our theory and adapting theiantaf [9] simply replaces
in EQ.(15) the termf dy p(y|z)e(z, y) by e(z) + o2 while 02 (z) = é(z).

5.1 Learning Curves and Fluctuations

Practical situations differ from this "typical case” ansiy. The data generating process
is unknown but assumed to lii@ed The resulting learning curve is then conditioned on
this particular "teacher’,. The left panel of Fig.1 shows an example. Displayed are the
mean square prediction erro(circle and solid line) and its sample fluctuations (errasha
Ae with respect to the data average (cross and broken line).targetf, was a random
but fixed realization from a Gaussian process prior with dopiés Radial Basis Function
kernelC(z,2') = >, exp(—(z—2' —k)?/21%),1 = 0.1. We keep the example simple, e.g
the Gaussian process regression model used the same kainaiae3~! = o2 = 0.01.
The inputs are one dimensional, independent and uniforistsitlitedz € [0, 1]. Symbols
represent simulation data. A typical property of our thegines) is that it becomes very
accurate for sufficiently large number of example data.
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Figure 1: Gaussian process regression using a periodi@Rzasis Function kernel, input
dimension d=1z € [0, 1], and homogeneous input densityeft: Generalization errot

and fluctuationg\e for data noiser? = 5~! = 0.01. Right: Correction of the free energy.
Symbols: We subtracted the first two contributions to Eqfrgth the true value of the free
energy. The latter was obtained by simulations. Lines shevtttird contribution of Eq.(7).
The value of the noise variange ' decreases from top to bottom. All y-data was set equal
to zero.

5.2 Corrections to the Variational Approximation

It is a strength of our method that the quality of the variagibapproximation Eq.(7) can
be characterized and systematically improved. In this pape restrict ourself to a char-
acterization and consider the case wherg-alhta is set equal to zero. Since the posterior
variances?(z) is independent of the data this is still an interesting méaeh which the
posterior variance can be estimated. We consider the #nind in the expansion to the free
energy Eq.(7). Itis a correction to the variational freerggeand evaluates to

= ting 22 (U — Do - (o~ H2E) = =5 (a)n(e!)Ca,0" o
m [ ) m [m0(@)C?(, ')
M [1 (1 (02(x)+61)2>L,x+ 2 l(ﬁ(@%l)]m,@ (o)

)

with C(z,2') = limp_0(fa(z) fa(z') — fal(z)fo(z'))o. Eq.(16) is shown by lines in the

right panel of Fig.1 for different values of the model noise'. We considered a homo-
geneous input density, the input dimension is one and thressipn model uses a periodic
RBF kernel. The symbols in Fig.1 show the difference betwbertrue value of the free

energy which is obtained by simulations and the first two seahEq.(7). The correction

term is found to be qualitatively accurate and emphasizdsaagpancy between free en-
ergy and the first two terms of the expansion Eq.(7) for a nmagimount of example data.
The calculated learning curves inherit this behaviour.

5.3 Universal Relations

We can relate the training erref and the empirical posterior varianeg

er = % [Z (f($i) - yz)zl ; op = % [Z 02(%‘)] 17
D i=1

i=1 D
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Figure 2: lllustration of relation Eq.(19)ft) and Eq.(20) ight). All error measures are
scaled with3. Symbols show simulation results for Radial Basis FundiRiBF) regression
and a homogeneous input distributiondin= 1, 2, 3 dimensions (square, circle, diamond).
The RBF kernel was periodic. Additionally, the left figureosls an example were the
inputs lie on a quasi two-dimensional manifold which is edded ind = 4 dimensions
(cross). In this case the RBF kernel was non-periodic.

to the free energya%[— InZn]p = B(er + 7). Using Egs.(6,7) and the stationarity of
the grand-canonical free energy with respect to the varatiparameters we obtain the
following relation

d 0 [ aHE @D
i —InZ,]lp ~ —m% /da: n . (18)

We use the fact that the posterior variance is independehegfdata and simply estimate
it from the model where alj-data is set equal to zero. In this case, Eq.(18) yields

0*(z)

03 = /dCU p(x) m (19)

which relates the empirical posterior variancg to the local posterior variane€’ (z) at
test inputsz. Similarly, we can derive an expression for the trainingeerr by using
Eqgs.(15,18) in combination with Eq.(19)

e(z,y)
er /d:v dy p(z,y) 05 o2 (@) (20)
It is interesting to note, that the relations (19,20) cantad assumptions about the data
generating process. They hold in general for Gaussian psat®dels with a Gaussian
likelihood. An illustration of Egs.(19,20) is given by Fiyfor the example of Gaussian
process regression with a Radial Basis Function kernehdndft panel of Fig.2, learning
starts in the upper right corner as the rescaled empiricgtepior variancedo?. is initially
one and decreases with increasing number of example datahé-aght panel of Fig.2,
learning starts in the lower left corner. The rescaled ingjerrorger on the noisy data set
is initially zero and increases to one with increasing nundfexample data. The theory
(line) holds for a sufficiently large number of example datd &s accuracy increases with
the input dimension. Egs.(19,20) can also be testegaldata. For common benchmark
sets such as Abalone and Boston Housing data we find thatlB¢g&){ hold well even for
small and medium sizes of the training data set.



6 Outlook

One may question if our approximate universal relationsodrany practical use as, for
example, the relation between training error and genetidiz error involves also the un-
known posterior variancg® (z). Nevertheless, this relation could be useful for casesravhe
a large number oflata inputs without output labetse available. Since for regression, the
posterior variance is independent of the output labels,awdause these extra input points
to estimater?(z).

The application of our technique to more complicated modefmssible and technically
more involved. For example, replaciag®” by ©(y f(z) — 1) in Eq.(1) and further rescal-
ing the kernelC'(z, 2') = K (z,z")/~ of the Gaussian process prior gives a model for hard
marginSupport Vector Machin€lassification with SVM kerneK (z, z'). The condition

of maximum margin classification will be ensured by the limes cc.

Of particular interest is the computation of empirical exstiors that can be used in practice
for model selection as well as the calculation of fluctuagiarror bars) for such estimators.
A prominent example is an efficient approximate leave-omeestimator for SVMs.

Work on these issues is in progress.
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