
Statistial Physis of Low Density Parity ChekError Correting CodesDavid Saad1, Yoshiyuki Kabashima2, Tatsuto Murayama2 and Renato Viente31Neural Computing Researh Group, Aston University, Birmingham B4 7ET, UK.2Dept. of Comp. Intel. & Syst. Si., Tokyo Institute of Tehnology, Yokohama2268502, Japan.3 Dep. de F��sia Geral, Instituto de F��sia, Universidade de S~ao Paulo,Caixa Postal 66318, 05315-970 S~ao Paulo - SP, Brazil.Abstrat. We study the performane of Low Density Parity Chek(LDPC) error-orreting odes using the methods of statistial physis.LDPC odes are based on the generation of odewords using Booleansums of the original message bits by employing two randomly-onstrutedsparse matries. These odes an be mapped onto Ising spin models andstudied using ommon methods of statistial physis. We examine var-ious regular onstrutions and obtain insight into their theoretial andpratial limitations. We also briey report on results obtained for irreg-ular ode onstrutions, for odes with non-binary alphabet, and on howa �nite system size e�ets the error probability.1 IntrodutionModern teleommuniation relies heavily on error orreting mehanisms to om-pensate for orruption due to noise during transmission. The information trans-mission ode rate, measured in the fration of informative transmitted bits, playsa ruial role in determining the speed of ommuniation hannels. Rigorousbounds [1℄ have been derived for the maximal ode rate for whih odes, apableof ahieving arbitrarily small error probability, an be found. However, thesebounds are not onstrutive and most existing pratial error-orreting odesare far from saturating them.Two ode families urrently ahieve the highest information transmissionrates for a given orruption level, espeially in the high ode rate regime. Turboodes [2℄ have been introdued less than a deade ago, and were followed by theredisovery of Low Density Parity Chek Codes (LPDC) [3℄. The latter have beenoriginally introdued by Gallager [4℄ in 1962, and abandoned in favour of otherodes due to the limited omputing failities of the time. Both odes show exel-lent performane and reently disovered irregular LDPC onstrutions nearlysaturate Shannon's bound for in�nite message size [5℄.LDPC odes are generally based on the introdution of random sparse matri-es for generating the transmitted odeword as well as for deoding the reeivedorrupted odeword. Two main types of matries have been studied: regular on-strutions, where the number of non-zero row/olumn elements in these matries



remains �xed; and irregular onstrutions where it an vary from row to row orolumn to olumn. Various deoding methods have been suessfully employed;we will mainly refer here to the leading deoding tehniques based on BeliefPropagation (BP) [6℄.Most analyses of LDPC odes have been obtained via methods of informationtheory, baked up by numerial simulations. These rely on deriving upper andlower bounds for the performane of odes, with or without making assumptionsabout the ode used. These bounds represent a worst ase analysis, and may betight or loose depending on the auray and restritiveness of the assumptionsused, and the spei� di�erene between the worst and typial ases.The statistial physis based analysis takes a di�erent approah, analysingdiretly the typial ase, making use of expliit assumptions about the ode usedand its marosopi harateristis. Moreover, using methods adopted from sta-tistial physis of Ising spin systems, one an atually arry out averages overensembles of odes with the same marosopi properties to obtain exat per-formane estimates in the limit of in�nitely large systems. Two methods havebeen used in partiular, the replia method and the Bethe approximations [7℄,that is also linked to the Thouless-Anderson-Palmer (TAP) approah [8℄ to di-luted systems. In this paper we will review reent studies of LDPC odes, usinga statistial physis based analysis. We fous on two spei� odes, Gallager'soriginal LDPC ode [4℄ and the MN ode [3℄ where messages are representedby binary vetors and are ommuniated through a Binary Symmetri Channel(BSC) where unorrelated bit ips appear with probability p.A Gallager ode is de�ned by a binary matrix A = [A j B℄, onatenatingtwo very sparse matries known to both sender and reeiver, with B (of dimen-sionality (M�N)�(M�N)) being invertible - the matrix A is of dimensionality(M �N)�N .Enoding refers to the prodution of a M dimensional binary odeword t 2f0; 1gM (M > N) from the original message � 2 f0; 1gN by t = GT � (mod 2),where all operations are performed in the �eld f0; 1g and are modulo 2. Thegenerator matrix is G = [I j B�1A℄ (mod 2), where I is the N � N identitymatrix, implying that AGT = 0 (mod 2) and that the �rst N bits of t are set tothe message �. In regular Gallager odes the number of non-zero elements in eahrow of A is hosen to be exatly K̂. The number of elements per olumn is thenC = (1� R)K̂, where the ode rate is R = N=M (for unbiased messages). Theenoded vetor t is then orrupted by noise represented by the vetor � 2 f0; 1gMwith omponents independently drawn with probability P (�) = (1 � p)Æ(�) +pÆ(� � 1). The reeived vetor takes the form r = GT � + � (mod 2).Deoding is arried out by multiplying the reeived message by the matrix Ato produe the syndrome vetor z = Ar = A� (mod 2) from whih an estimate�̂ for the noise vetor an be produed. An estimate for the original message isthen obtained as the �rst N bits of r+ b� (mod 2). The Bayes optimal estimator(also known as marginal posterior maximiser, MPM) for the noise is de�ned asb�j = argmax�jP (�j j z), where �j 2 f0; 1g. The performane of this estimatoran be measured by the probability of bit error Pb = 1 � 1=M PMj=1 Æ[b�j ; �j ℄,



where Æ[; ℄ is Kroneker's delta. Knowing the matries B and A, the syndromevetor z and the noise level p, it is possible to apply Bayes' theorem and omputethe posterior probabilityP (� j z) = 1Z� [z = A� (mod 2)℄P (� ); (1)where �[X ℄ is an indiator funtion providing 1 if X is true and 0 otherwise.To ompute the MPM one has to ompute the marginal posterior P (�j j z) =Pi6=j P (� j z), whih in general requires O(2M ) operations, thus beomingimpratial for long messages. To solve this problem one an use the sparsenessof A to design algorithms that require O(M) operations to perform the sametask. One of these methods is the probability propagation algorithm, also knownas belief propagation (BP) [6℄.The MN ode has a similar struture, exept for the fat that the generatormatrix is G = B�1A. The randomly-seleted sparse matries A and B are ofdimensionality M�N and M�M respetively; these are haraterized by Kand L non-zero unit elements per row and C and L per olumn respetively.Correspondingly, the ode rate beomes R=N=M = K=C. Deoding is arriedout by taking the produt of the matrix B and the reeived message z=GT �+�(mod 2). The equationz = A� +B� = AS +B� (mod 2); (2)is solved via the iterative methods of BP [3℄ to obtain the most probable Booleanvetors S and � ; the posterior probability (1) beomes slightly more elaborate,inluding two sets of free variables S and � and two priors.2 Statistial physisTo failitate the statistial physis analysis we replae the f0; 1g representa-tion by the onventional Ising spin f1;�1g representation, and mod 2 sumsby produts [9℄. For instane, in Gallager's ode, the syndrome vetor aquiresthe form of a multi-spin oupling J� = Qj2L(�) �j where j = 1; � � � ;M and� = 1; � � � ; (M �N). The K̂ indies of nonzero elements in the row � of a matrixA, that is not neessarily a onatenation of two matries (therefore de�ninga non-strutured Gallager ode), are given by L(�) = fj1; � � � ; jK̂g, and in aolumn l are the C indies given by M(l) = f�1; � � � ; �Cg.The posterior (1) an be written as the Gibbs distribution [10℄:P (� j J ) = 1Z lim�!1 exp [��H�(� ;J )℄ (3)H�(� ;J ) = �M�NX�=1 J�0� Yj2L(�) �j � 11A� F� MXj=1 �j ;where H the Hamiltonian of the system.



The quantity that one onentrates on, in the statistial physis based analy-sis, is the free energy whih is linked to the probability of �nding the system in aspei� on�guration. In the thermodynami limit of in�nite system size, whihis the main ase onsidered in this work, the state of the system is dominated byon�gurations with the lowest free energy; �nite systems are more likely to befound in on�gurations with lower free energy, but may also be found in otheron�gurations with some probability.To investigate the typial properties of a model, we alulate the partitionfuntion Z(A;J ) = Trf� g exp[��H℄ and the free energy hln[Z(A;J )℄iA;� byaveraging over the randomness indued by the spei� ode matrix A and thetrue noise vetor �. For arrying out these averages we use the replia method [10℄or the Bethe approximation [11℄; both methods provide the same results.The replia method makes use of the identity hlnZi = hlimn!0 1=n [Zn�1℄i,by alulating averages over a produt of partition funtion replia. Employingassumptions about replia symmetries and analytially ontinuing the variablen to zero, one obtains solutions whih enable one to determine the state of thesystem. The Bethe approximation is based on a onsistent solution to a treebased expansion for alulating the free energy. Details of the tehniques usedand of the alulations themselves an be obtained in [7℄ and in the orrespondingpapers [10℄ and [11℄.3 ResultsOne the free energy for the possible solutions is alulated, one an identifythe stable dominant solutions and their overlap m with the true noise/signalvetors. In the ase of Gallager's ode we monitor m = 1=M PMj=1 Æ[b�j ; �j ℄,where b� is the noise vetor MPM estimate. In the ase of MN we alulatem = 1=N PNj=1 Æ[bSj ; �j ℄, estimating the signal vetor bS.One observes three types of solutions: perfet retrieval (ferromagneti solu-tion) m = 1; atastrophi failure (paramagneti solution) m = 0; and partialfailure (sub-optimal ferromagneti solution) 0 < m < 1.In eah ase one identi�es two main ritial noise levels: the spinodal point ps,the noise level below whih only perfet (ferromagneti) solutions exist; and pt,the noise level above whih the ferromagneti solution is no longer dominant. Theformer marks the pratial deoding limit, as urrent pratial deoding methodsfail above ps, while the latter marks the theoretial limits of the system.The results obtained for R = 1=4 Gallager ode are shown in Fig.1a, wherewe present the theoretial mean overlap between the atual noise vetor � andthe estimate b� as a funtion of the noise level p, as well as results obtained usingBP deoding. In Fig.1b we show the thermodynami transition for K̂ = 6 andR = 1=2 ompare with the theoretial upper bound, Shannon's bound and thetheoretial ps values.Results obtained for MN ode with variousK;L values are presented in Fig.2.On the left - a shemati desription of the free energy surfae for various K
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Fig. 1. (a) Mean normalized overlap between the atual noise vetor � and deodednoise b� for K̂ = 4 and C = 3 (therefore R = 1=4). Theoretial values (squares), exper-imental averages over 20 runs for ode word lengths M = 5000 (�) and M = 100 (fullline). (b) Transitions for K̂ = 6. Shannon's bound (dashed line), information theorybased upper bound (full line) and thermodynami transition obtained numerially (Æ).Theoretial (diamond) and experimental (+, M = 5000 averaged over 20 runs) BPdeoding transitions are also shown. In both �gures, symbols are hosen larger thanthe error bars.values; on the right a desription of the existing solutions for eah noise value pand their orresponding overlap m.For unbiased messages with K�3 and L>1. we obtain both the ferromag-neti and paramagneti solutions either by applying the TAP approah or bysolving the saddle point equations numerially. The former was arried out atthe values of F� and Fs=0) whih orrespond to the true noise and input biaslevels (for unbiased messages Fs=0) and thus to Nishimori's ondition [12℄. Thelatter is equivalent to having the orret prior within the Bayesian framework [9℄.The most interesting quantity to examine is the maximal ode rate, for agiven orruption proess, for whih messages an be perfetly retrieved. Thisis de�ned in the ase of K � 3 by the value of R = K=C = N=M for whihthe free energy of the ferromagneti solution beomes smaller than that of theparamagneti solution, onstituting a �rst order phase transition. The ritialode rate obtained R=1�H2(p)=1+(p log2 p+(1� p) log2(1� p)) ; oinideswith Shannon's apaity.The MN ode for K � 3 seems to o�er optimal performane. However, themain drawbak is rooted in the o-existene of the stable m = 1; 0 solutions,whih implies that from most initial onditions the system will onverge to theundesired paramagneti solution. Studying the ferromagneti solution numeri-ally shows a highly limited basin of attration, whih beomes smaller as Kand L inrease, while the paramagneti solution at m = 0 always enjoys a widebasin of attration.Studying the ase of K = 2 and L> 1, indiates the existene of paramag-neti, ferromagneti and sub-optimal ferromagneti solutions depited in Fig.2b.For orruption probabilities p>ps one obtains either a dominant paramagnetisolution or a mixture of ferromagneti (m=�1) and paramagneti (m=0) so-
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Fig. 2. Left hand �gures show a shemati representation of the free energy land-sape while �gures on the right show the ferromagneti, sub-optimal ferromagnetiand paramagneti solutions as funtions of the noise rate p; thik and thin lines denotestable solutions of lower and higher free energies respetively, dashed lines orrespondto unstable solutions. In all ases onsidered L > 1. (a) K � 3; the solid line in thehorizontal axis represents the phase where the ferromagneti solution (F, m = 1) isthermodynamially dominant, while the paramagneti solution (P, m = 0) beomesdominant for the other phase (dashed line). The ritial noise p denotes Shannon'shannel apaity. (b) K = 2; the ferromagneti solution and its mirror image are theonly minima of the free energy over a relatively small noise level (the solid line in thehorizontal). The ritial point,due to dynamial onsiderations, is the spinodal pointps where sub-optimal ferromagneti solutions (F', m < 1) emerge. The thermodynamitransition point p3, at whih the ferromagneti solution loses its dominane, is belowthe maximum noise level given by the hannel apaity, whih implies that these odesdo not saturate Shannon's bound even if optimally deoded. () K = 1; the solid linein the horizontal axis represents the range of noise levels where the ferromagneti state(F) is the only minimum of the free energy. The sub-optimal ferromagneti state (F')appears in the region represented by the dashed line. The spinodal point ps, where F'solution �rst appears, provides the highest noise value in whih onvergene to the fer-romagneti solution is guaranteed. For higher noise levels, the system beomes bistableand an additional unstable solution for the saddle point equations neessarily appears.A thermodynamial transition ours at the noise level p1 where the state F' beomesdominant.



lutions. Reliable deoding may only be obtained for p< ps, whih orrespondsto a spinodal point, where a unique ferromagneti solution emerges at m = 1(plus a mirror solution at m=�1). Initial onditions for BP deoding an behosen randomly, with a slight bias in the initial magnetization. The resultsobtained point to the existene of a unique pair of global solutions to whihthe system onverges (below ps) from all initial onditions. Similarly, the aseof K = 1; L > 1 presented in Fig.2 shows a dominant ferromagneti solutionbelow ps and the emergene of a sub-optimal ferromagneti solution above it,that beomes dominant at p1.The main di�erenes between the results obtained for Gallager and MN odesin the ase of unbiased messages are as follows. While Gallager's ode allows forsub-optimal pratial deoding for any K̂ value, it saturates Shannon's boundonly in the limit of K̂ ! 1. On the other hand, MN odes an theoretiallysaturate Shannon's limit for onstrutions with K � 3, whih are of no pratialvalue, but they an only ahieve suboptimal performane for regular on�gura-tions with K=1; 2.It should be pointed out that these results are valid only in the ase of unbi-ased signal vetors �. A di�erent piture emerges in the ase of biased messages;this inludes the emergene of a spinodal point also in the ase of K � 3 MNodes and a derease in the noise level of the thermodynami transition to belowShannon's limit.It has been shown that irregular LDPC onstrutions an ahieve better pra-tial performane (e.g. [5, 13℄). In analytial studies, based on the same frame-work presented here [14℄ we investigated the position of both ritial points psand pt with respet to Shannon's limit and their values in regular onstrutions.We show that improved irregular onstrutions orrespond to models with higherps values while the position of pt hanges only slightly. The possibility of em-ploying the statistial physis based analysis for providing a prinipled methodto optimise the ode onstrution is still an open question.4 Related studiesWe also studied the e�et of non-binary alphabet on the performane of LDPCodes [15℄ as it seems to o�er improved performane in many ases [16℄. The al-phabet used in this study is de�ned over Galois �eldGF (q) [17℄. Our results showthat Gallager odes of this type saturate Shannon's limit as C !1 irrespetiveof the value of q. For �nite C, these odes exhibits two di�erent behaviours forC � 3 and C = 2. For C � 3, we show that the theoretial error orretingability of these odes is monotonially improving as q inreases, i.e., the value ofpt inreases with q for a given on�guration. The pratial deoding limit, deter-mined by the emergene of a suboptimal solution and the value of ps, dereaseswith q. On the other hand, C = 2 odes exhibit a ontinuous transition fromoptimal to sub-optimal solutions at a ertain noise level, below whih pratialBP deoding onverges to the (unique) optimal solution. This ritial noise levelmonotonially inreases with q and beomes even higher than that of some odes



of onnetivity C � 3, while the optimal deoding performane is inferior to thatof C � 3 odes with the same q value.The work desribed so far is limited to the ase of in�nite message length. In�nite systems there is some probability of �nding the system in a non-dominantstate, what translates to an error probability whih vanishes exponentially withthe systems size. Signi�ant e�ort has been dediated to bounding the reliabil-ity exponent in the information theory literature [18℄; we have also studied thereliability exponent [19℄ by arrying out diret averages over ensembles of Gal-lager odes, haraterised by �nite and in�nite K̂ values. In the limit of in�niteonnetivity our result ollapses onto the best general random oding exponentsreported in the IT literatures, the random oding exponent and the expurgatedexponent for high and low R values respetively. The method provides one ofthe only tools available for examining odes of �nite onnetivity, and preditsthe tightest estimate of the zero error noise level threshold to date for Gallagerodes. It an be easily extended to investigate other linear odes of a similartype and is learly of high pratial signi�ane.Finally, insight gained from the analysis led us to suggest the potential useof a similar system as a publi-key ryptosystem [20℄. The ryptosystem is basedon an MN ode where the matrix G and a orruption level p < ps play the roleof the publi key and the matries used to generate G play the role of the seretkey and are known only to the authorised user.In the suggested ryptosystem, a plaintext represented by an N dimensionalBoolean vetor � 2 (0; 1)N is enrypted to theM dimensional Boolean iphertextJ using a predetermined Boolean matrix G, of dimensionality M � N , and aorruptingM dimensional vetor �, whose elements are 1 with probability p and0 otherwise, in the following manner J = G � + � ; where all operations are(mod 2). The orrupting vetor � is hosen at the transmitting end. The matrixG, whih is at the heart of the enryption/deryption proess is onstrutedby hoosing two randomly-seleted sparse matries A (M �N) and B (M �M), and a dense matrix D (N �N), de�ning G = B�1AD (mod 2) : Thematries A and B are similar to those used in other MN onstrutions; thedense invertible Boolean matrix D is arbitrary and is added for improving thesystem's seurity. Authorised deryption follows a similar proedure to deodingorrupted messages in LDPC odes (i.e., using BP), while an unauthorised userwill �nd the deryption to be omputationally hard [20℄.5 ConlusionsWe showed how the methods of statistial physis an be employed to investigateerror-orreting odes and related areas, by studying the typial ase harater-istis of a given system. This approah provides a unique insight by examiningmarosopi properties of stohasti systems, arrying out expliit averages overensembles of odes that share the same marosopi properties.The results obtained shed light on the properties that limit the theoretialand pratial performane of parity hek odes, explain the di�erenes between
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