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Abstract

This paper addresses image segmentation via a generative model
approach. A Bayesian network (BNT) in the space of dyadic wavelet
transform coefficients is introduced to model texture images. The
model is similar to a Hidden Markov model (HMM), but with non-
stationary transitive conditional probability distributions. It is com-
posed of discrete hidden variables and observable Gaussian outputs
for wavelet coefficients. In particular, the Gabor wavelet transform is
considered.

The introduced model is compared with the simplest joint Gaus-
sian probabilistic model for Gabor wavelet coefficients for several tex-
tures from the Brodatz album [1]. The comparison is based on cross-
validation and includes probabilistic model ensembles instead of single
models. In addition, the robustness of the models to cope with addi-
tive Gaussian noise is investigated. We further study the feasibility of
the introduced generative model for image segmentation in the novelty
detection framework [2]. Two examples are considered: (i) sea surface
pollution detection from intensity images and (ii) image segmentation
of the still images with varying illumination across the scene.

Keywords: Dyadic wavelet transform, Gabor wavelet trans-
form, generative probabilistic model, Bayesian networks and en-
sembles, image texture segmentation, novelty detection.

Glossary:

BNT - Bayesian network

HMM - Hidden Markov model

WT - Wavelet transform

WTC - Wavelet transform coefficients

GWT - Gabor wavelet transform

GWTC - Gabor wavelet transform coefficients
MAP - Maximum a posterior principle

ML - Maximum likelihood

EM - Expectation-Maximization

MRF - Markov random field

HMTM - Hidden Markov tree model

CPD - Conditional probability distribution
CPT - Conditional probability table

SNR - Signal to noise ratio

CV - Cross-validation

PDF - Probability density function

GMM - Gaussian mixture model
Introduction

Image segmentation is a difficult and yet very important problem arising in
many visual applications such as medical imaging, automated monitoring,



document processing, remote sensing and many others. The main goal of
image segmentation is to decompose an image into its constituent parts or
objects [3, 4]. This becomes possible since real objects have homogeneous
physical properties that should be reflected in images. In some cases, an
assumption of the homogeneity of the object gray level intensity or color
is sufficient and works well in practice. In many others, this assumption
is violated, and instead image objects are assumed to be represented as
repeated patterns called visual textures (see Figures 2a,d for some texture
examples). Though textures are easily recognized by humans, there is no a
unique and strict mathematical definition of the latter [5, see for review and
other definitions].

Segmentation based on texture properties is referred to as texture seg-
mentation. The level to which segmentation is carried and the approaches
to address the problem crucially depend on the particular application, i.e.
its aims and the available information. In general, the less is known about
the possible number of objects (textures) in the image scene and their ap-
pearance, the more difficult the problem becomes. In some applications, the
image parts should be additionally classified into certain texture categories,
such as soil, sand, grass, etc. This type of the segmentation problem is
referred to as a texture classification problem and it assumes that represen-
tatives of all possible textures that may appear in the image are available.
There is also a constrained variant of this problem when only the object
(texture) of interest should be found in the image and only the informa-
tion about this particular texture or its antipode appearance is available
beforehand; we refer to this type of the segmentation problem as texture
detection.

Texture classification, detection and image segmentation, in general, are
difficult representatives of statistical pattern recognition when the data is
high-dimensional. In the framework of statistical pattern recognition, tex-
ture (image) classification and detection emerge as supervised and semi-
supervised image pixel classification tasks, respectively. In the most diffi-
cult case of the texture (image) segmentation when no a priori information
is available to us, texture segmentation emerges as unsupervised image pixel
classification task.

An important element of the supervised /unsupervised classification us-
ing a Bayesian approach, leading to a MAP (maximum a posterior principle)
when misclassification loss functions are the same for all classes [6], is esti-
mating posterior class probabilities p(c = i|z) given the observation xz € R".
It is in general, a difficult task and one of the ways to avoid a direct estima-
tion of the posterior class probabilities is using classifiers based on generative
models.

Classifiers based on generative models estimate posterior class probabil-



ities using the Bayes’ rule:

p(zlc = i)p(c = i)
S plale = i)p(c = i)

where M is a number of classes. If all the class priors are the same, esti-
mation of the posterior probabilities is completely replaced by estimating
conditional class probabilities p(z|c = 7). Though this problem may also be
quite difficult, it may still be easier than the original one. Moreover, since
our main goals are classification, detection and segmentation, less complex
models and less data than for a texture synthesis problem!, may be required.
The generative model classifiers may be easily updated when a new class is
added or removed, or when new features independent from the previous are
introduced. Using generative models for texture classification implies that
textures are samples of ergodic stochastic processes [7].

One can easily recognize MRFs (Markov Random Fields) [8, 9] as a type
of generative model classifier. Though MRFs can describe a wide range of
image distributions, they are known to be computationally intensive. The
convergence and computation of MRFs grow exponentially with the clique
size, that make them unrealistic in practice.

Recently, with the rapid development of wavelet techniques an interest
in the generative model classifier approaches was revived. New approaches
based on modeling the texture images in the wavelet domain have been
proposed [10, 11, 12]. Due to multi-resolution properties of the wavelet
transform (WT) and locality of wavelet basis functions, a wavelet image
representation turns out to be simple, i.e. it is sparse [13, 14] and it has
small redundancy. This allows the encoding of WT coefficients by simple
probabilistic models that are factorized across scale. The models can be
trained from the single image due to the ergodicity assumption, that sam-
pling over an image space domain and over a random field are equivalent
[7, 15].

Despite, the common assumptions and ideas underlying these approaches,
they still differ in the type of the wavelet transform used and probabilistic
models imposed. The multi-scale statistical model [11] assumes a wavelet
transform with a pyramidal structure but with a trivial non-parametric con-
ditional distributions as a ratio of Parzen window density estimators. Alter-
natively Hidden Markov Tree Models (HMTMs) [10] are parametric models
with discrete hidden states and Gaussian observable variables introduced for
separable 2D wavelet transforms. In addition, these models are limited by
the independent band assumption, i.e. wavelet coefficients corresponding to
three different orientations: horizontal, vertical and diagonal, are assumed
to be independent. Finally, random cascades on wavelet trees [12] have been
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'The problem of generating textures as samples from the probabilistic model.



introduced for the steerable pyramid? [16] and the pyramid (wavelet) coeffi-
cients are described as Gaussian scale mixtures with the continuous (hidden)
scale variables obeying a multi-scale autoregressive process. This model was
used for image denoising and wavelet coefficient coding.

In this paper, we continue this line of thought and introduce a generative
probabilistic model for Gabor wavelet transform (GWT) coefficients to solve
two types of image segmentation problems: texture classification and texture
detection. The GWT has been successfully and extensively used for texture
analysis [17, 18, 19]; it is shift-invariant, has optimal spatial/frequency lo-
calization properties, has finer orientation selectivity than a separable real-
ization of the WT [13] and is biologically motivated. The GWT (Sect. 1)
may be more efficient for the analysis of complex oriented textures than the
2D separable WT.

Though the model is demonstrated using a Gabor WT, it is quite general
and may be easily generalized to probabilistic modeling of the output coeffi-
cients of any bank of filters depending on scale and orientation parameters,
such as the dyadic oriented wavelet transform [13] or a bank of difference of
Gaussian filters [20] considered at different scales and orientations.

The introduced generative model (Sect. 2) has the form of a Bayesian
network (BNT) [21] and is similar to HMTMs as it has a mixed discrete
hidden state and continuous observation variable model. However, the inde-
pendent band assumption is relaxed and replaced by the wavelet coefficient
independence within the scale. Similar to [12] the model encodes orientation
and scale dependencies simultaneously. In contrast to the reviewed works,
the dyadic WT is used instead of the decimated (pyramidal) WT and our
main goal is a texture segmentation instead of texture synthesis. The Ga-
bor BNT parameters are found using the EM (expectation maximization
algorithm) and image classification is based on the Bayesian classifier that
is equivalent to classification by ML (maximum likelihood) in our case?.

In order to perform texture detection, the novelty detection approach
[2] is used. In the texture detection problem, probabilistic model for only
one texture of interest is learned; and final detection is based on identifying
the image pixels as belonging to the texture, if they get sufficiently large
likelihood value under the learned probabilistic model.

The introduced model is compared (Sect. 3) with the simplest joint Gaus-
sian probabilistic model for Gabor wavelet coefficients for several textures
from the Brodatz album [1]. The comparison is based on cross-validation
and includes probabilistic model ensembles instead of single models. In ad-
dition, the robustness of the models to cope with additive Gaussian noise is
investigated. We further study the feasibility of the introduced generative

2The 2D separable wavelet transform may be considered as a partial case of the steer-
able pyramid
3¢lass priors are assumed to be the same



model (Sect. 4) for (i) sea surface pollution detection from intensity images
and (ii) object detection from still images with varying illumination across
the scene.

1 Gabor Wavelet Transform

Application of the oriented WT has been motivated by many physiologi-
cal experiments discovering a class of cells in the mammalian visual cortex,
whose responses depend on the frequency and orientation of the visual stim-
uli [13]. In particular, it has been shown [17] that these impulse responses
can be approximated by Gaussian windows modulated by a harmonic wave.
These observations motivated a wide use of the Gabor WT in the computer
vision study.

The Gabor WT is a type of dyadic oriented wavelet transform [13] with
complex valued filters defined by:
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where 7 = (z,y) and k = (f cos 6, fsinf) is a vector defining a radial fre-
quency f and orientation 6 of the cosinusoidal/sinusoidal modulation waves.
The MTF (modulated transfer function) of this filter is given by:
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Equation (2) shows that in the frequency domain the energy of the filter is
concentrated at the frequency w = k and its effective support is inversely
proportional to the scale parameter o.

The filter parameters are sampled by the equal logarithmic frequency
band scheme; i.e. Gaussian filters are distributed over the frequency domain
in such a way that their size increases by a factor 2 and adjacent Gaussians
intersect at positions where their respective magnitudes have values of half
of their maxima. Such sampling guarantees almost a complete covering of
the frequency domain [13]. As a result one gets the following scheme:

. f, .
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The initial frequency is equal to fy = %, where N is the texture sample

size in pixels. Parameter j stands for an octave number. For some textures,
the lowest radial frequencies are not very useful, because the corresponding
features are too coarse. So actually, one can start from a larger octave
number jp > 1 and compensate low frequencies with a Gaussian filter with

the MTF given by emp(—Q‘(‘;ﬂ‘Q
Jjo—1

). The orientation parameter 0 is sampled



Figure 1: Gabor WT and Gabor BNT: a. Sum of the MTFs of the even
Gabor WT for j = 2...5 with four orientations and a low-pass Gaussian
filter; N = 64 ; b. Gabor BNT. Note how the BNT for the Gabor WTCs
(Figure 1b) exploits the rosette like structure of the Gabor WT filters in the
frequency domain (see Figure la).

with A = n/K, where K is a number of considered orientations starting
from 6y = 0, so that 6, = (k—1)A#. Filter (1) is a complex filter, consisting
of a pair of real filters corresponding to the real gg and imaginary gy parts.
In applications often only real-valued even symmetric Gabor filters corre-
sponding to the real part of the filter (1): gr = Cae:zp(—%) cos(2rk - 7)
is used. Using the even-symmetric filters only has been justified by psy-
chophysical studies [18]; moreover, it speeds up the learning and segmen-
tation/classification processes’. We use a fast separable realization of the
Gabor WT in the spatial domain as was proposed in [19]. GWT coefficients
are obtained convolving an image x with the family of filters (1) sampled by
scheme (3):

Wikt = % gr(fj.0r), Wike =z *g1(f;,0k). (4)

The sum of the MTFs of the low-pass filter and the even part of the
GWT for j =2...5 and K = 4 orientations for the case of N = 64 pixels is
shown in Figure 1a and an example of the GWT coefficients in Figures 7c-d.

2 Gabor WT coefficient modeling

The Gabor WT obeys similar primary and secondary properties as the 2D
separable WT [22]. Primary properties include: locality of the filters in
the spatial and frequency domain, multi-resolution and compression. The

“our code is written and algorithm given for a general case of complex GWT coefficients,
however only the even part is used in simulations presented.



latter means that the WT leads to a sparse representation, i.e. there are
many small coefficients.  The primary properties have been used as an
argument to the approximate independence of the WT coefficients (WTCs)
and as an assumption of the sharply peaked exponential distribution of the
WTCs [13, 14]. However, the WT can not completely decorrelate real-
world signals or images; these residual dependencies always remain and are
referred to as secondary properties. The secondary properties mean that
large/small coefficients tend to propagate across scales and, additionally,
across adjacent orientations in the context of the Gabor WT. We propose
to model the primary and secondary properties of the Gabor WT coefficients
by the Bayesian network [21, 23, see for introduction on graphical models]
depicted in Figure 1b.

This network is similar to a Hidden Markov model [24], but with non-
stationary transitive conditional probability distributions (CPDs). Similar
to a way the HMTM in the wavelet domain inherits the tree structure of
the WT, the BNT for the Gabor WTCs (Figure 1b) exploits the rosette
like structure of the Gabor WT filters in the frequency domain (see Fig-
ure la). This network consists of the discrete and Gaussian continuous
nodes. Nodes S; and Mj;, are discrete and hidden and nodes Wjy; are con-
tinuous, observable and correspond to GWTC (4). Node S; corresponds to
an octave number j and represents the overall scale activity. We assume
that the discrete variable S; is binary; when its value is zero (S; = 0) the
scale is non-active and when S; = 1, it is in an active state. Discrete vari-
ables M, k= 1... K correspond to K orientations of the Gabor WT for
the scale o; and have a similar activity state interpretation as S;.

From the Markovian properties of the Gabor BNT graph, one can see
that the Gabor WTCs corresponding to different scales are assumed to be
conditionally independent given a corresponding parent scale variable S.
Similarly, the Gabor WTCs are assumed to be conditionally independent
within the scale given the values of the corresponding parent orientation
variable M. This network imposing conditional independence on the WTCs
connects them (introduces dependencies) through the hidden state variables.
The joint probability of the complete variable (W, S, M) is read from the
BNT graph as:

J

K
p(W,8,M) =[] [T TI POWjkil Mje) P(M;i| S;) P(S;1S;-1). (5)
i=1k=17=j0

where P(Sj,|Sj,—1) = P(S},) stands for a prior probability of the binary
variable S}, (jo is a number of the band octave from which the modeling
starts).

When only the even (cosine) WTCs are considered each node M;; has
only one child wavelet node Wj;; and the product over i is dropped in
equation (5). If desired, a coefficient corresponding to a low-pass filter may



also be considered. It is assumed to be independent of the WTCs, thus, its
PDF is modeled separately and multiplied by p(W, S, M).

Gabor BNT parameters include conditional probability tables (CPTs)
for discrete variables S;j, Mj; and means and variances for Wj;. Therefore,
the following parameters have to be defined: (i) prior probability p(S;, = 0),
(one parameter); (ii) transitive probabilities between scale activity state
variables, p(S;+1 = 0|S; = 1), where I € {0,1} and j = jo...J =1 (2(J —
jo) parameters); (iii) transitive probabilities between scale and orientation
activity state variables, p(Mj, = 0|S; =1) (2K (J — jo + 1) parameters); (iv)
conditional means p1;; and variances o, of the wavelet coefficients given
that the parent orientation node Mjy, is in the state I € {0,1} (8K (J—jo+1)
parameters for even and odd parts of WTCs). Since the Gabor WT filters
are band-width filters, theoretical means are approximately equal to zero®.
In addition, we allow tying CPTs between scale and orientation parameters,
so that p(Mj, = 0/S; = [) do not depend on j. This significantly reduces
the number of parameters and in addition, imposes new scale/orientation
dependencies on the WTCs.

The joint WTC probability is a mixture of Gaussians with diagonal ma-
trices and with a number of mixture components equal to 2K/ —jot+1) pHyt
with the mixture coefficients constrained by the Gabor BNT structure. A
direct modeling of a Gaussian mixture with the same number of mixture
components, requires imposing an appropriate prior on the mixture coeffi-
cients and covariance matrices and is not simple. The marginal distribution
(non-joint) of WTCs is a mixture of two Gaussians that approximates ex-
ponential distributions quite well; this is due to modeling small coefficients
by a Gaussian with a small o and large coefficients with o large.

We also consider a jointly Gaussian distribution model in the Gaborian
space as a baseline for comparison. This model can efficiently capture lin-
ear correlations between wavelet coefficients and thus is a good model for
comparison. We also note that since the Gabor WT basis is not a strictly
complete basis (as the lowest /highest pass filters are neglected), data model-
ing by a joint Gaussian distribution in the original signal space and Gaborian
space are not equivalent. The network parameters are found using the EM
algorithm that is straightforward for the considered Bayesian network and
is similar to the Baum-Welsh (Forward-backward) algorithm used in HMM
[25, 23, 24].

This is due to the ergodicity assumption: E[W] ~ [z * g ds = Flz * gllu=0 =
Flz]|w=0F[g]|w=0, where s is a spatial variable, z is a signal, g is a band-pass filter with
Fl9]lw=0 = 0 and F is a Fourier transform.



3 Texture classification

For performance evaluation of generative Gabor BNTs for texture classifica-
tion, images from the Brodatz album [1] have been used. The Brodatz data
consists of 112 monochrome images of different textures of size 512 x 512
pixels and is available on-line®. Textures are referred to by the number in
parenthesis (i.e. D12) that corresponds to the page number in the Brodatz
texture book [1]. Despite a wide use of the Brodatz data, there is not a
single benchmark technique comparing different algorithms, since the lat-
ter are applied in different scenarios and use different measures and data
blocks. We choose nine images from the Brodatz album [1]; this choice was
constrained to such images that any sub-image of size 64 x 64 pixels cropped
from the entire image is sufficient for perceptual discrimination. This means
that the chosen textures are regular and are likely to satisfy the ergodicity
condition”.

First the GWT has been applied to each image and then obtained wavelet
coefficients (as images) have been sampled uniformly with the rate of 64
pixels per row and column to get texture samples in the wavelet domain.
These samples have been disjointly split into S = 10 cross-folds, in order
to estimate misclassification error using cross-validation (CV) [26]. Several
schemes to use CV may be proposed in the context of generative classifiers.
The one that has been used is described below.

Let us enumerate different textures by an index r = 1,2,..., M, i.e.
instead of saying that the texture represents grass, sand, soil or whatever it
is referred by its number. Now, let f, be the st cross-fold for the r*"-texture
and p,s(W) be a probability assigned to a sample W by the Gabor BNT of
the rt"-texture with the parameters trained on all the texture samples except
a cross-fold f,s. In order to classify a sample W € f,; in the Gaborian space,
the ML classifier should compare probability p,s(W) with the probabilities
assigned by the Gabor BNTs corresponding to textures p # r. But there
are S probability models for each p*-texture and none of them have seen
training data for texture r during training; i.e. there exist M~ (M is a
number of textures) different classifiers to estimate error on the cross-fold
frs. In order to avoid this computational burden and stabilize results, we
propose to average p,s(W) over cross-folds per each alternative texture®, to
get a simple tezture ensemble pg(W) = %Zleppg(W). Then the class is
assigned by ML according to:

r* = arg max {prs(W), p5 (W)}

For example, http://www.ux.his.no/~tranden/brodatz.html.

"The complexity of the Gabor BNT depends on jo, J, K, so the number of parameters
grows linearly with log,(IN), where N is the size of the sub-image. It may also be sufficient
to start with larger jo for larger N, so N is critical only for convolution operation and from
the statistical viewpoint, to provide a sufficient number of independent training samples.

80ne can also try to average log-likelihood, instead, or to consider some voting scheme.

10



Let the number of classification errors for the cross-fold s and texture r to be
érs, then the mean Er, = %Zle ers 1s used to estimate the classification
error for texture r.

In addition to CV experiments, the robustness of the proposed models to
Gaussian additive noise is checked. A new test image composed of 4 random
texture patches with square or triangle layouts (see Figure 2), is contami-
nated with a small amount of additive Gaussian noise and is presented for
classification. Misclassification errors of the texture ensembles for this image
are evaluated to assess and compare performances of the different models.

3.1 Texture segmentation results

Four probabilistic models have been simulated in the Gaborian space: the
jointly Gaussian probabilistic model (A) and three Gabor BNT models with
an increasing complexity: (B) with y = 0 and with CPTs tied; (C) with
p = 0 and without CPTs tied; (D) without constraints on the CPTs and
i parameters. The Gabor BNTs have been trained by the EM algorithm
for a maximum of 200 epochs and are stopped earlier if the log-likelihood
increase from one iteration to the next is less than 1074,

Model’s misclassification errors in the CV experiment

Models | D103 | D111 | D16 | D17 | D21 | D24 | D29 | D34 | D6
A 9 32 13 38 10 35 46 32 | 14
B 6 31 8 29 8 28 33 25 6
C 7 33 8 25 9 31 39 23 8
D 8 36 11 29 11 38 39 18 9

Table 1: Averaged misclassification errors (in percent) in the cross-validation
experiments for different textures (columns) and using different probabilistic
models (rows). See text for model’s description. Textures are referred to
the same as in the Brodatz album.

The mean misclassification error results in percents for CV experiments
are presented in Table 1. Our results clearly demonstrate that texture clas-
sification by ML using the Gabor BNTs (the lines B-D of Table 1) is superior
to using the jointly Gaussian probabilistic model A (the line A of Table 1).
It turns out that the most flexible model D is the worst among the con-
sidered Gabor BNTs, apart from texture D34. This is due to the curse
of dimensionality problem [27]: there is insufficient data to robustly train
a classifier in high dimensional parameter space. This leads to estimators
with high variance and large prediction errors. A way to avoid this prob-
lem is by imposing appropriate bias constraints or priors [28]. One can
easily recognize the model B as a constrained version of the model D. This
also demonstrates that the imposed orientation constraints in the Gaborian

11



space are appropriate. In general, the Gabor model B is the best one for
classification.

The robustness results for the models A-B are presented in Table 2.
These results are with Gaussian additive noise of SNR = 20dB and SNR =
40dB?; results without noise (SNR = oc) serve as a baseline for comparison.
All misclassification errors are averaged over five runs (each run corresponds
to a random noise sampling) and are given in percents. These results clearly
show that the Gabor BNT ( the model B) is less sensitive to noise and more
robust than the model A. In summary, the model B generalizes better than
the model A.

Model’s robustness to noise

layout triangle square
SNR oo | 40dB | 20dB | oo | 40dB | 20dB
Models:
A: 16.6 | 189 | 414 | 13.8 | 16.3 | 41.2
B: 12.8 | 14.1 | 31.3 | 99 | 11.6 | 30.8

Table 2: Misclassification errors in percents versus models A, B and versus
different levels of Gaussian additive noise. There is no noise when SNR =
Q.

4 Texture Detection

In many cases simple generative probabilistic models, such as describing
objects by a smoothed intensity or color generated from the normal multi-
variate distribution is sufficient [29, 30, ignoring the dynamical aspect|. Dif-
ficult examples when these models are inappropriate appear due to varying
illumination across an image plane or when objects/background are complex
textures. In these cases more complex generative models should be applied
for image segmentation.

For segmentation by texture in video applications one should construct
probabilistic models that are invariant to non-rigid motions, scaling and ro-
tations. The GWT is not invariant to the latter and therefore the stationary,
not evolving dynamics, Gabor BNT is only suitable for a constrained class
of video images, where the objects are mainly translated and, obviously, for
still images.

Segmentation is based on the novelty detection approach [2]. First, the
representative part of the object of interest or background is cropped and
its probabilistic model is learned. Then the log-likelihood of the image

v var(z)

9Signal to noise ratio in decibels (dB) is estimated as SNR = 20log,,
x is a signal with E[z] ~ 0 and o stands for the noise standard deviation.

, where

12



Figure 2: Robustness experiment: a. Image composed of textures
D6, D103, D16, D17 with a triangle layout (SNR = o0); b. Classification
results of Figure 2a. with the model A; c. Classification results of Figure 2a.
with the model B; d. Image composed of textures D6, D103, D16, D17
with a square layout (SNR = oc); e. Classification results of Figure 2d.
with the model A; f. Classification results of Figure 2d. with the model B.

pixels is evaluated by the learned model. It is assumed that pixels that
do not belong to the learned model get small log-likelihood values under
it'%. Therefore, log-likelihood thresholding can be used for image segmen-
tation. This threshold may be set using cross-validation approach, that is
data demanding; instead we use a Gaussian mixture model (GMM) to set
a threshold automatically. This means that the log-likelihood of the data is
assumed to be moderately well approximated by a mixture of two Gaussian
distributions, where the Gaussian component with the larger mean value
describes a distribution of the log-likelihood of the data belonging to the
learned model. Estimation of the GMM parameters is a standard procedure
[31, 32]. The threshold selection procedure for the sea surface pollution de-
tection is schematically illustrated in Figure 3; the problem and data are
discussed in the next Section.

In fact, one can go further and attempt to divide novel regions to different
levels of novelty using GMM’s with more than two mixture components.
Intuitively, such segmentation implies that different objects (textures) have

Tndeed, novelty detection is a semi-heuristical and simplified replacement to the statis-
tical hypothesis testing where the null hypothesis is Hy : data is generated by the learned
probabilistic model and an alternative is H; : data is generated by any other model.

13



different levels of similarity to the learned concept that may be measured
by a log-likelihood!'". This generalization is straightforward in the novelty
detection framework. There is no a guarantee, however, that it should work
in any possible practical situation.

a b

ek . —
Log-likelihood Log-likelihood
Figure 3: Threshold selection for novelty detection : a Empirical
distribution (bars) for the log-likelihood of the image pixels and its approx-
imation by the GMM (solid line). b Two Gaussian components properly
weighted by their prior probabilities (solid curves) that are estimated by
the EM algorithm. The threshold value corresponds to a log-likelihood
value in the cross point (marked with the arrow) of the two curves. The
learned model is the Gabor BNT for the normal wave region (model C).
See Section 4.1 for the problem and data description. The corresponding
segmentation result is presented in Figure 4e.

4.1 Sea surface pollution detection

It is well known that water-borne pollutants, natural, such as algal bloom,
bacteria and fish oil and leakage from the sea bed, and artificial, such as
caused intentionally by ships, generate oily spills (slicks) on the water sur-
face. Monitoring and tracking of slick regions is an an important environ-
mental problem. Many government authorities are interested in automatic
pollution detection and general assessment of water quality.

As has been demonstrated in [33], the slick regions may be efficiently
detected from remotely sensed low-platform mounted visible band camera
images. This becomes possible due to different light reflectance of slick and

"The log-likelihood should be more appropriate than the likelihood in this framework
due to the squashing effect of the log-transform. Otherwise, a mixture of the generalized
exponential distributions should be more appropriate in the likelihood domain.
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surrounding water surfaces and due to different turbulent water motion char-
acteristics of slick and non-slick regions (slicks have a damping effect on the
turbulent water motion). As a result, slick regions generally appear brighter
in images than normal wave regions (see Figure 4a), as they reflect the sky
intensity. This finding has led to a successful unsupervised segmentation of
sea-surface images based on the Gaussian mixture model (GMM) applied to
the tonal (intensity) information [33]. However, this method is very sensitive
to illumination varying across the scene [34] and the main question is if the
slick regions may be detected as textures and not as just bright intensity
regions.

Figure 4: Gaussian Probabilistic Models: a. Typical sea surface im-
age; b-c. Log-likelihoods of the image pixels assigned by models (A)-(B);
Brighter intensity values correspond to larger values of the log-likelihood; d.
Classification by ML using models (A)-(B); e-f. Segmentation based on the
novelty detection approach with models (A)-(B), respectively. GMM with
two components are applied to set a threshold. White color corresponds
to positive examples, i.e. pixels that correspond to sufficiently large log-
likelihood values and black color corresponds to novel regions. i.e. to pixels
obtaining a small log-likelihood under the normal model.

In order to answer this question, small sub-images corresponding to nor-
mal wave and front slick surface regions of the image are cropped and en-
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coded by the two types of the probabilistic models. The first type of model
are Gaussian models for the low-pass filter coefficients of the wave and slick
regions, referred to as models (A) and (B), respectively. These two mod-
els are based on the smoothed intensity, they do not carry an information
about region textures and are introduced as a baseline for comparison. The
other two models (C) and (D) are Gabor BNT models for the wave and
slick regions, respectively; they encode GWT coefficients and describe the
regions as textures with illumination being partially removed, as low-pass
filter coefficients are not modeled by the Gabor BNTs. The Gabor BNT
parameters used are: N = 32 pixels, octave 7 = 2,...,4 and 4 orientations.

The image pixel log-likelihoods assigned by the Gaussian models (A)-
(B) are presented in Figures 4b-c, respectively. Due to the availability of
the probabilistic models for normal wave and slick regions, slick segmen-
tation can be considered as the texture/object classification and detection
problems. Image pixel classification by ML based on the models (A)-(B)
is presented in Figure 4d. This classification is relatively good, unless the
sky region is assigned to the slick region, as sky intensities have large values.
Slick detection based on the models (A) and (B) are presented in Figures 4e-
f, respectively. Detection based on the model (A) considers the wave regions
to be normal (non-polluted) regions and the slick is found as an abnormal
(novel) region, that does not belong to a wave region. Novelty detection with
the model (A) discriminates the sky and sea surface regions, but does not
allow the detection of slicks. Alternatively, detection based on model (B),
considers the slicks as being regions of interest and the sky and wave regions
emerge as non-interesting regions. In the context of a novelty detection,
model (B) appears to be superior to model (A).

a b C

Figure 5: Gabor BNT models: a-b Log-likelihoods of the image pixels
assigned by the models (C)-(D); Brighter intensity values correspond to
larger values of the log-likelihood; ¢ Novelty detection based on the model
(C) encoding the normal wave region. A region identified as a new one
(negative class) appears in black color.
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The log-likelihoods assigned by the Gabor BNTs have been smoothed
with a uniform mask of size 11 x 11 pixels (see Figures 5a-b). This smooth-
ing is equivalent to a product of experts [35, 36] and leads to improved
segmentation. The slick detection with the model (C) is presented in Fig-
ure 5¢, the detection result with the model (D) is similar to the former. Both
models identify a narrow slick region as an alien (abnormal) to them. This
is due to narrowness of the slick region, i.e. Gabor coefficients are very high
around narrow slick edges, so that the narrow slick region pixels get small
log-likelihoods under the models (C) and (D). At the same time the models
are not able to discriminate between the normal wave and front slick regions.
In summary, the Gaussian models based on intensity features outperform
the Gabor BNTs in segmentation. Moreover, the latter have shown to be
useful only for edge and the narrow slick detection.

To encode Gabor WTC and a low-pass filter coefficient together, the
Gaussian models (A)/(B) have been combined with the texture models
(C)/(D), respectively. The combined model’s probabilities are a direct pixel-
wise product of the probabilities assigned to the image pixels by the two
models encoding the tonal intensity and texture features. This means that
the smoothed intensity and GW coefficients are assumed to be independent.
The combined models may be also interpreted as a mixture of two experts.
The log-likelihoods of the image pixels assigned by the combined models
(Figure 6a.) are very similar to the log-likelihoods assigned by the Gaussian
models. Novelty detection by the combined model for the wave region (Fig-
ure 6b.) is similar to detection with the Gaussian model (A) (compare with
(Figure 4e.), unless edge regions start to appear better as novel regions. The
same happens in segmentation with the combined model for the slick region.
It may be beneficial to properly weight the log-likelihoods of the mixture
models (Gabor BNTs need more weight), but this issue is beyond the scope
of our paper.

Results with the extended version of the novelty detection approach with
three GMM components for the combined model encoding the wave region
is presented in Figure 6¢c. As can be seen, a new additional cluster includes
both slick regions and, unfortunately, the remote wave region; moreover,
the image region corresponding to this cluster is identified as more familiar
than the sky. We get the same result for Gaussian models (A) and (B).
So far additional discrimination of the novelty regions into different novelty
(familiarity) levels is quite reasonable.

In summary, the introduced texture models for sea surface slick seg-
mentation allow us to find a narrow slick region, but are not satisfactory
in general. This also means that tonal information is the most important
clue for slick detection than texture features. An example considered in
the next section, in contrast, demonstrates the effectiveness of the proposed
probabilistic models.
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Figure 6: Combined Gaussian and BNT model for the wave region:
a Log-likelihood of the image pixels assigned by the joint models (product of
experts (A) and (C)); Brighter intensity values correspond to larger values
of the log-likelihood; b Conventional novelty detection based on the joint
model; ¢ An extended novelty detection based on the joint model with three
Gaussian components; White, grey and black shades stand for regions with
high, intermediate and small log-likelihoods, respectively.

4.2 Texture Detection

This section presents segmentation of a still image with varying illumination
across the scene and textured object/background (see Figure 7a). Part of
an animal body was cropped to build the Gabor BNT. The following Gabor
WT parameters have been used: N = 32 pixels, scale 7 = 2,...,4 and 4
orientations. The Gabor WT coefficients are presented in Figure 7c-d; and
the output coefficients of the corresponding compensating low-pass filter are
presented in Figure 7b. The log-likelihood of the image pixels assigned by
Gaussian probabilistic model for the low-pass filter coefficients is presented
in Figure 7Te. The Gaussian probabilistic model has been constructed for a
grass region (the Gaussian model for an animal body region leads to even
worse results as this region does not appear homogeneous). This clearly
indicates that smoothed intensity is not a good feature for segmentation of
this image.

At the same time, an animal body after the Gabor WT appears as a ho-
mogeneous blob. Log-likelihood of the image pixels assigned by the Gabor
BNT learned on the cropped part of the animal body is presented in Fig-
ure 7d. The log-likelihood has been smoothed to satisfy a priori continuity
assumption about it'2. A result of the log-likelihood smoothing with a uni-
form mask of size 7 x 7 pixels is presented in Figure 7g and a segmentation
result in Figure 7h.

12This averaging roughly corresponds to a product of experts
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Figure 7: a. Original image. b. Output of the GWT compensating low-pass
filter. c. The GWT coefficient (j =1 and k£ = 1) as an image. d. The GWT
coefficient (j = 3 and k£ = 3) as an image. e. Log-likelihood of the image
pixels assigned by Gaussian distribution of the smoothed intensity of the
grass region. f. Log-likelihood of the image pixels assigned by Gabor BNT

learned on the cropped part of the animal body. g. Smoothed log-likelihood.
h. Segmentation of the image by thresholding the smoothed log-likelihood.

5 Conclusion and discussion

We have introduced the generative probabilistic oriented wavelet model and
have shown that it may be used for texture classification and detection. The
introduced model has been compared using cross-validation with the joint
Gaussian probabilistic model for several textures from the Brodatz album
[1]. Our model is superior to the jointly Gaussian probabilistic model in
the Gaborian space, especially when additive noise is added. However, the
Gabor BNT training and classification based on it are slower than with the
joint Gaussian probabilistic model.

We have studied the feasibility of the introduced generative model for
image segmentation in the novelty detection framework [2]. Two examples
have been considered: (i) sea surface pollution detection from intensity im-
ages and (ii) image segmentation of still images with varying illumination
across the scene. The novelty detection framework has been extended by
proposing to discriminate the novelty regions into different levels of famil-
iarity based on the GMM operating on the log-likelihood.
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It may also be interesting to compare this model with the probabilis-
tic model that assumes independent non-Gaussian wavelet coefficient pdfs.
Another possibility to encode Gabor WTCs is to use a factorial HMM [37,
similar to Fig. 1b]. This BNT better reflects the structure of the Gabor
BNT, but is more complex and has only an approximated solution due to
loops in the probabilistic graph. Our model may be generalized to address
the unsupervised segmentation problem by considering a mixture of the
Gabor BNTs. It is interesting to generalize the Gabor BNTs for tracking
problems.
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