
A Generative Probabilisti
 Oriented Wavelet Modelfor Texture SegmentationInna Stainvas�and David LoweNeural Computing Resear
h GroupInformation EngineeringAston UniversityUnited Kingdomstainvai,d.lowe�aston.a
.uk17 O
tober 2001; Revised 12 August 2002

�Corresponding author. Address: NCRG, Information Engineering, Aston University,Aston street, Birmingham B4 7ET, United Kingdom, Phone +44 (0)121 359 3611 ext.4244; Fax +44 (0)121 333 4586 1



Abstra
tThis paper addresses image segmentation via a generative modelapproa
h. A Bayesian network (BNT) in the spa
e of dyadi
 wavelettransform 
oeÆ
ients is introdu
ed to model texture images. Themodel is similar to a Hidden Markov model (HMM), but with non-stationary transitive 
onditional probability distributions. It is 
om-posed of dis
rete hidden variables and observable Gaussian outputsfor wavelet 
oeÆ
ients. In parti
ular, the Gabor wavelet transform is
onsidered.The introdu
ed model is 
ompared with the simplest joint Gaus-sian probabilisti
 model for Gabor wavelet 
oeÆ
ients for several tex-tures from the Brodatz album [1℄. The 
omparison is based on 
ross-validation and in
ludes probabilisti
 model ensembles instead of singlemodels. In addition, the robustness of the models to 
ope with addi-tive Gaussian noise is investigated. We further study the feasibility ofthe introdu
ed generative model for image segmentation in the noveltydete
tion framework [2℄. Two examples are 
onsidered: (i) sea surfa
epollution dete
tion from intensity images and (ii) image segmentationof the still images with varying illumination a
ross the s
ene.Keywords: Dyadi
 wavelet transform, Gabor wavelet trans-form, generative probabilisti
 model, Bayesian networks and en-sembles, image texture segmentation, novelty dete
tion.Glossary:BNT - Bayesian networkHMM - Hidden Markov modelWT - Wavelet transformWTC - Wavelet transform 
oeffi
ientsGWT - Gabor wavelet transformGWTC - Gabor wavelet transform 
oeffi
ientsMAP - Maximum a posterior prin
ipleML - Maximum likelihoodEM - Expe
tation-MaximizationMRF - Markov random fieldHMTM - Hidden Markov tree modelCPD - Conditional probability distributionCPT - Conditional probability tableSNR - Signal to noise ratioCV - Cross-validationPDF - Probability density fun
tionGMM - Gaussian mixture modelIntrodu
tionImage segmentation is a diÆ
ult and yet very important problem arising inmany visual appli
ations su
h as medi
al imaging, automated monitoring,2



do
ument pro
essing, remote sensing and many others. The main goal ofimage segmentation is to de
ompose an image into its 
onstituent parts orobje
ts [3, 4℄. This be
omes possible sin
e real obje
ts have homogeneousphysi
al properties that should be re
e
ted in images. In some 
ases, anassumption of the homogeneity of the obje
t gray level intensity or 
oloris suÆ
ient and works well in pra
ti
e. In many others, this assumptionis violated, and instead image obje
ts are assumed to be represented asrepeated patterns 
alled visual textures (see Figures 2a,d for some textureexamples). Though textures are easily re
ognized by humans, there is no aunique and stri
t mathemati
al de�nition of the latter [5, see for review andother de�nitions℄.Segmentation based on texture properties is referred to as texture seg-mentation. The level to whi
h segmentation is 
arried and the approa
hesto address the problem 
ru
ially depend on the parti
ular appli
ation, i.e.its aims and the available information. In general, the less is known aboutthe possible number of obje
ts (textures) in the image s
ene and their ap-pearan
e, the more diÆ
ult the problem be
omes. In some appli
ations, theimage parts should be additionally 
lassi�ed into 
ertain texture 
ategories,su
h as soil, sand, grass, et
. This type of the segmentation problem isreferred to as a texture 
lassi�
ation problem and it assumes that represen-tatives of all possible textures that may appear in the image are available.There is also a 
onstrained variant of this problem when only the obje
t(texture) of interest should be found in the image and only the informa-tion about this parti
ular texture or its antipode appearan
e is availablebeforehand; we refer to this type of the segmentation problem as texturedete
tion.Texture 
lassi�
ation, dete
tion and image segmentation, in general, arediÆ
ult representatives of statisti
al pattern re
ognition when the data ishigh-dimensional. In the framework of statisti
al pattern re
ognition, tex-ture (image) 
lassi�
ation and dete
tion emerge as supervised and semi-supervised image pixel 
lassi�
ation tasks, respe
tively. In the most diÆ-
ult 
ase of the texture (image) segmentation when no a priori informationis available to us, texture segmentation emerges as unsupervised image pixel
lassi�
ation task.An important element of the supervised/unsupervised 
lassi�
ation us-ing a Bayesian approa
h, leading to a MAP (maximum a posterior prin
iple)when mis
lassi�
ation loss fun
tions are the same for all 
lasses [6℄, is esti-mating posterior 
lass probabilities p(
 = ijx) given the observation x 2 Rn.It is in general, a diÆ
ult task and one of the ways to avoid a dire
t estima-tion of the posterior 
lass probabilities is using 
lassi�ers based on generativemodels.Classi�ers based on generative models estimate posterior 
lass probabil-3



ities using the Bayes' rule:p(
 = ijx) = p(xj
 = i)p(
 = i)PMi=1 p(xj
 = i)p(
 = i) ;where M is a number of 
lasses. If all the 
lass priors are the same, esti-mation of the posterior probabilities is 
ompletely repla
ed by estimating
onditional 
lass probabilities p(xj
 = i). Though this problem may also bequite diÆ
ult, it may still be easier than the original one. Moreover, sin
eour main goals are 
lassi�
ation, dete
tion and segmentation, less 
omplexmodels and less data than for a texture synthesis problem1, may be required.The generative model 
lassi�ers may be easily updated when a new 
lass isadded or removed, or when new features independent from the previous areintrodu
ed. Using generative models for texture 
lassi�
ation implies thattextures are samples of ergodi
 sto
hasti
 pro
esses [7℄.One 
an easily re
ognize MRFs (Markov Random Fields) [8, 9℄ as a typeof generative model 
lassi�er. Though MRFs 
an des
ribe a wide range ofimage distributions, they are known to be 
omputationally intensive. The
onvergen
e and 
omputation of MRFs grow exponentially with the 
liquesize, that make them unrealisti
 in pra
ti
e.Re
ently, with the rapid development of wavelet te
hniques an interestin the generative model 
lassi�er approa
hes was revived. New approa
hesbased on modeling the texture images in the wavelet domain have beenproposed [10, 11, 12℄. Due to multi-resolution properties of the wavelettransform (WT) and lo
ality of wavelet basis fun
tions, a wavelet imagerepresentation turns out to be simple, i.e. it is sparse [13, 14℄ and it hassmall redundan
y. This allows the en
oding of WT 
oeÆ
ients by simpleprobabilisti
 models that are fa
torized a
ross s
ale. The models 
an betrained from the single image due to the ergodi
ity assumption, that sam-pling over an image spa
e domain and over a random �eld are equivalent[7, 15℄.Despite, the 
ommon assumptions and ideas underlying these approa
hes,they still di�er in the type of the wavelet transform used and probabilisti
models imposed. The multi-s
ale statisti
al model [11℄ assumes a wavelettransform with a pyramidal stru
ture but with a trivial non-parametri
 
on-ditional distributions as a ratio of Parzen window density estimators. Alter-natively Hidden Markov Tree Models (HMTMs) [10℄ are parametri
 modelswith dis
rete hidden states and Gaussian observable variables introdu
ed forseparable 2D wavelet transforms. In addition, these models are limited bythe independent band assumption, i.e. wavelet 
oeÆ
ients 
orresponding tothree di�erent orientations: horizontal, verti
al and diagonal, are assumedto be independent. Finally, random 
as
ades on wavelet trees [12℄ have been1The problem of generating textures as samples from the probabilisti
 model.4



introdu
ed for the steerable pyramid2 [16℄ and the pyramid (wavelet) 
oeÆ-
ients are des
ribed as Gaussian s
ale mixtures with the 
ontinuous (hidden)s
ale variables obeying a multi-s
ale autoregressive pro
ess. This model wasused for image denoising and wavelet 
oeÆ
ient 
oding.In this paper, we 
ontinue this line of thought and introdu
e a generativeprobabilisti
 model for Gabor wavelet transform (GWT) 
oeÆ
ients to solvetwo types of image segmentation problems: texture 
lassi�
ation and texturedete
tion. The GWT has been su

essfully and extensively used for textureanalysis [17, 18, 19℄; it is shift-invariant, has optimal spatial/frequen
y lo-
alization properties, has �ner orientation sele
tivity than a separable real-ization of the WT [13℄ and is biologi
ally motivated. The GWT (Se
t. 1)may be more eÆ
ient for the analysis of 
omplex oriented textures than the2D separable WT.Though the model is demonstrated using a Gabor WT, it is quite generaland may be easily generalized to probabilisti
 modeling of the output 
oeÆ-
ients of any bank of �lters depending on s
ale and orientation parameters,su
h as the dyadi
 oriented wavelet transform [13℄ or a bank of di�eren
e ofGaussian �lters [20℄ 
onsidered at di�erent s
ales and orientations.The introdu
ed generative model (Se
t. 2) has the form of a Bayesiannetwork (BNT) [21℄ and is similar to HMTMs as it has a mixed dis
retehidden state and 
ontinuous observation variable model. However, the inde-pendent band assumption is relaxed and repla
ed by the wavelet 
oeÆ
ientindependen
e within the s
ale. Similar to [12℄ the model en
odes orientationand s
ale dependen
ies simultaneously. In 
ontrast to the reviewed works,the dyadi
 WT is used instead of the de
imated (pyramidal) WT and ourmain goal is a texture segmentation instead of texture synthesis. The Ga-bor BNT parameters are found using the EM (expe
tation maximizationalgorithm) and image 
lassi�
ation is based on the Bayesian 
lassi�er thatis equivalent to 
lassi�
ation by ML (maximum likelihood) in our 
ase3.In order to perform texture dete
tion, the novelty dete
tion approa
h[2℄ is used. In the texture dete
tion problem, probabilisti
 model for onlyone texture of interest is learned; and �nal dete
tion is based on identifyingthe image pixels as belonging to the texture, if they get suÆ
iently largelikelihood value under the learned probabilisti
 model.The introdu
ed model is 
ompared (Se
t. 3) with the simplest joint Gaus-sian probabilisti
 model for Gabor wavelet 
oeÆ
ients for several texturesfrom the Brodatz album [1℄. The 
omparison is based on 
ross-validationand in
ludes probabilisti
 model ensembles instead of single models. In ad-dition, the robustness of the models to 
ope with additive Gaussian noise isinvestigated. We further study the feasibility of the introdu
ed generative2The 2D separable wavelet transform may be 
onsidered as a partial 
ase of the steer-able pyramid3
lass priors are assumed to be the same5



model (Se
t. 4) for (i) sea surfa
e pollution dete
tion from intensity imagesand (ii) obje
t dete
tion from still images with varying illumination a
rossthe s
ene.1 Gabor Wavelet TransformAppli
ation of the oriented WT has been motivated by many physiologi-
al experiments dis
overing a 
lass of 
ells in the mammalian visual 
ortex,whose responses depend on the frequen
y and orientation of the visual stim-uli [13℄. In parti
ular, it has been shown [17℄ that these impulse responses
an be approximated by Gaussian windows modulated by a harmoni
 wave.These observations motivated a wide use of the Gabor WT in the 
omputervision study.The Gabor WT is a type of dyadi
 oriented wavelet transform [13℄ with
omplex valued �lters de�ned by:g(~r) = C�exp(�k ~r k22�2 )exp(2�i~k � ~r); C� = 12��2 ; (1)where ~r = (x; y) and ~k = (f 
os �; f sin �) is a ve
tor de�ning a radial fre-quen
y f and orientation � of the 
osinusoidal/sinusoidal modulation waves.The MTF (modulated transfer fun
tion) of this �lter is given by:ĝ(~w) = exp(�k ~w � ~k k22�?2 ); �? = 12�� : (2)Equation (2) shows that in the frequen
y domain the energy of the �lter is
on
entrated at the frequen
y ~w = ~k and its e�e
tive support is inverselyproportional to the s
ale parameter �.The �lter parameters are sampled by the equal logarithmi
 frequen
yband s
heme; i.e. Gaussian �lters are distributed over the frequen
y domainin su
h a way that their size in
reases by a fa
tor 2 and adja
ent Gaussiansinterse
t at positions where their respe
tive magnitudes have values of halfof their maxima. Su
h sampling guarantees almost a 
omplete 
overing ofthe frequen
y domain [13℄. As a result one gets the following s
heme:fj = 2j�1f0; �?j = fj3p2ln2 ; j = 1; 2 : : : log2(N=2): (3)The initial frequen
y is equal to f0 = p2N , where N is the texture samplesize in pixels. Parameter j stands for an o
tave number. For some textures,the lowest radial frequen
ies are not very useful, be
ause the 
orrespondingfeatures are too 
oarse. So a
tually, one 
an start from a larger o
tavenumber j0 > 1 and 
ompensate low frequen
ies with a Gaussian �lter withthe MTF given by exp(� k~wk22�?2j0�1 ). The orientation parameter � is sampled6
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Figure 1: Gabor WT and Gabor BNT: a. Sum of the MTFs of the evenGabor WT for j = 2 : : : 5 with four orientations and a low-pass Gaussian�lter; N = 64 ; b. Gabor BNT. Note how the BNT for the Gabor WTCs(Figure 1b) exploits the rosette like stru
ture of the Gabor WT �lters in thefrequen
y domain (see Figure 1a).with �� = �=K, where K is a number of 
onsidered orientations startingfrom �0 = 0, so that �k = (k�1)��. Filter (1) is a 
omplex �lter, 
onsistingof a pair of real �lters 
orresponding to the real gR and imaginary gI parts.In appli
ations often only real-valued even symmetri
 Gabor �lters 
orre-sponding to the real part of the �lter (1): gR = C�exp(�k~rk22�2 ) 
os(2�~k � ~r)is used. Using the even-symmetri
 �lters only has been justi�ed by psy-
hophysi
al studies [18℄; moreover, it speeds up the learning and segmen-tation/
lassi�
ation pro
esses4. We use a fast separable realization of theGabor WT in the spatial domain as was proposed in [19℄. GWT 
oeÆ
ientsare obtained 
onvolving an image x with the family of �lters (1) sampled bys
heme (3): Wjk1 = x � gR(fj ; �k); Wjk2 = x � gI(fj; �k): (4)The sum of the MTFs of the low-pass �lter and the even part of theGWT for j = 2 : : : 5 and K = 4 orientations for the 
ase of N = 64 pixels isshown in Figure 1a and an example of the GWT 
oeÆ
ients in Figures 7
-d.2 Gabor WT 
oeÆ
ient modelingThe Gabor WT obeys similar primary and se
ondary properties as the 2Dseparable WT [22℄. Primary properties in
lude: lo
ality of the �lters inthe spatial and frequen
y domain, multi-resolution and 
ompression. The4our 
ode is written and algorithm given for a general 
ase of 
omplex GWT 
oeÆ
ients,however only the even part is used in simulations presented.7



latter means that the WT leads to a sparse representation, i.e. there aremany small 
oeÆ
ients. The primary properties have been used as anargument to the approximate independen
e of the WT 
oeÆ
ients (WTCs)and as an assumption of the sharply peaked exponential distribution of theWTCs [13, 14℄. However, the WT 
an not 
ompletely de
orrelate real-world signals or images; these residual dependen
ies always remain and arereferred to as se
ondary properties. The se
ondary properties mean thatlarge/small 
oeÆ
ients tend to propagate a
ross s
ales and, additionally,a
ross adja
ent orientations in the 
ontext of the Gabor WT. We proposeto model the primary and se
ondary properties of the Gabor WT 
oeÆ
ientsby the Bayesian network [21, 23, see for introdu
tion on graphi
al models℄depi
ted in Figure 1b.This network is similar to a Hidden Markov model [24℄, but with non-stationary transitive 
onditional probability distributions (CPDs). Similarto a way the HMTM in the wavelet domain inherits the tree stru
ture ofthe WT, the BNT for the Gabor WTCs (Figure 1b) exploits the rosettelike stru
ture of the Gabor WT �lters in the frequen
y domain (see Fig-ure 1a). This network 
onsists of the dis
rete and Gaussian 
ontinuousnodes. Nodes Sj and Mjk are dis
rete and hidden and nodes Wjki are 
on-tinuous, observable and 
orrespond to GWTC (4). Node Sj 
orresponds toan o
tave number j and represents the overall s
ale a
tivity. We assumethat the dis
rete variable Sj is binary; when its value is zero (Sj = 0) thes
ale is non-a
tive and when Sj = 1, it is in an a
tive state. Dis
rete vari-ables Mjk; k = 1 : : : K 
orrespond to K orientations of the Gabor WT forthe s
ale �j and have a similar a
tivity state interpretation as Sj.From the Markovian properties of the Gabor BNT graph, one 
an seethat the Gabor WTCs 
orresponding to di�erent s
ales are assumed to be
onditionally independent given a 
orresponding parent s
ale variable S.Similarly, the Gabor WTCs are assumed to be 
onditionally independentwithin the s
ale given the values of the 
orresponding parent orientationvariableM . This network imposing 
onditional independen
e on the WTCs
onne
ts them (introdu
es dependen
ies) through the hidden state variables.The joint probability of the 
omplete variable (W;S;M) is read from theBNT graph as:p(W;S;M) = 2Yi=1 KYk=1 JYj=j0 P (WjkijMjk)P (MjkjSj)P (Sj jSj�1); (5)where P (Sj0 jSj0�1) � P (Sj0) stands for a prior probability of the binaryvariable Sj0 (j0 is a number of the band o
tave from whi
h the modelingstarts).When only the even (
osine) WTCs are 
onsidered ea
h node Mjk hasonly one 
hild wavelet node Wjk1 and the produ
t over i is dropped inequation (5). If desired, a 
oeÆ
ient 
orresponding to a low-pass �lter may8



also be 
onsidered. It is assumed to be independent of the WTCs, thus, itsPDF is modeled separately and multiplied by p(W;S;M).Gabor BNT parameters in
lude 
onditional probability tables (CPTs)for dis
rete variables Sj; Mjk and means and varian
es for Wjki. Therefore,the following parameters have to be de�ned: (i) prior probability p(Sj0 = 0),(one parameter); (ii) transitive probabilities between s
ale a
tivity statevariables, p(Sj+1 = 0jSj = l), where l 2 f0; 1g and j = j0 : : : J � 1 (2(J �j0) parameters); (iii) transitive probabilities between s
ale and orientationa
tivity state variables, p(Mjk = 0jSj = l) (2K(J � j0+1) parameters); (iv)
onditional means �jki;l and varian
es �jki;l of the wavelet 
oeÆ
ients giventhat the parent orientation nodeMjk is in the state l 2 f0; 1g (8K(J�j0+1)parameters for even and odd parts of WTCs). Sin
e the Gabor WT �ltersare band-width �lters, theoreti
al means are approximately equal to zero5.In addition, we allow tying CPTs between s
ale and orientation parameters,so that p(Mjk = 0jSj = l) do not depend on j. This signi�
antly redu
esthe number of parameters and in addition, imposes new s
ale/orientationdependen
ies on the WTCs.The joint WTC probability is a mixture of Gaussians with diagonal ma-tri
es and with a number of mixture 
omponents equal to 2K(J�j0+1), butwith the mixture 
oeÆ
ients 
onstrained by the Gabor BNT stru
ture. Adire
t modeling of a Gaussian mixture with the same number of mixture
omponents, requires imposing an appropriate prior on the mixture 
oeÆ-
ients and 
ovarian
e matri
es and is not simple. The marginal distribution(non-joint) of WTCs is a mixture of two Gaussians that approximates ex-ponential distributions quite well; this is due to modeling small 
oeÆ
ientsby a Gaussian with a small � and large 
oeÆ
ients with � large.We also 
onsider a jointly Gaussian distribution model in the Gaborianspa
e as a baseline for 
omparison. This model 
an eÆ
iently 
apture lin-ear 
orrelations between wavelet 
oeÆ
ients and thus is a good model for
omparison. We also note that sin
e the Gabor WT basis is not a stri
tly
omplete basis (as the lowest/highest pass �lters are negle
ted), data model-ing by a joint Gaussian distribution in the original signal spa
e and Gaborianspa
e are not equivalent. The network parameters are found using the EMalgorithm that is straightforward for the 
onsidered Bayesian network andis similar to the Baum-Welsh (Forward-ba
kward) algorithm used in HMM[25, 23, 24℄.5This is due to the ergodi
ity assumption: E[W ℄ � R x � g ds = F [x � g℄jw=0 =F [x℄jw=0F [g℄jw=0, where s is a spatial variable, x is a signal, g is a band-pass �lter withF [g℄jw=0 � 0 and F is a Fourier transform.
9



3 Texture 
lassi�
ationFor performan
e evaluation of generative Gabor BNTs for texture 
lassi�
a-tion, images from the Brodatz album [1℄ have been used. The Brodatz data
onsists of 112 mono
hrome images of di�erent textures of size 512 � 512pixels and is available on-line6. Textures are referred to by the number inparenthesis (i.e. D12) that 
orresponds to the page number in the Brodatztexture book [1℄. Despite a wide use of the Brodatz data, there is not asingle ben
hmark te
hnique 
omparing di�erent algorithms, sin
e the lat-ter are applied in di�erent s
enarios and use di�erent measures and datablo
ks. We 
hoose nine images from the Brodatz album [1℄; this 
hoi
e was
onstrained to su
h images that any sub-image of size 64�64 pixels 
roppedfrom the entire image is suÆ
ient for per
eptual dis
rimination. This meansthat the 
hosen textures are regular and are likely to satisfy the ergodi
ity
ondition7.First the GWT has been applied to ea
h image and then obtained wavelet
oeÆ
ients (as images) have been sampled uniformly with the rate of 64pixels per row and 
olumn to get texture samples in the wavelet domain.These samples have been disjointly split into S = 10 
ross-folds, in orderto estimate mis
lassi�
ation error using 
ross-validation (CV) [26℄. Severals
hemes to use CV may be proposed in the 
ontext of generative 
lassi�ers.The one that has been used is des
ribed below.Let us enumerate di�erent textures by an index r = 1; 2; : : : ;M , i.e.instead of saying that the texture represents grass, sand, soil or whatever itis referred by its number. Now, let frs be the sth 
ross-fold for the rth-textureand prs(W) be a probability assigned to a sample W by the Gabor BNT ofthe rth-texture with the parameters trained on all the texture samples ex
epta 
ross-fold frs. In order to 
lassify a sampleW 2 frs in the Gaborian spa
e,the ML 
lassi�er should 
ompare probability prs(W) with the probabilitiesassigned by the Gabor BNTs 
orresponding to textures � 6= r. But thereare S probability models for ea
h �th-texture and none of them have seentraining data for texture r during training; i.e. there exist SM�1 (M is anumber of textures) di�erent 
lassi�ers to estimate error on the 
ross-foldfrs. In order to avoid this 
omputational burden and stabilize results, wepropose to average p�s(W) over 
ross-folds per ea
h alternative texture8, toget a simple texture ensemble pe�(W ) = 1S PSs=1 p�s(W). Then the 
lass isassigned by ML a

ording to:r? = argmaxr;� fprs(W); pe�(W)g:6For example, http://www.ux.his.no/�tranden/brodatz.html.7The 
omplexity of the Gabor BNT depends on j0; J; K, so the number of parametersgrows linearly with log2(N), where N is the size of the sub-image. It may also be suÆ
ientto start with larger j0 for larger N , so N is 
riti
al only for 
onvolution operation and fromthe statisti
al viewpoint, to provide a suÆ
ient number of independent training samples.8One 
an also try to average log-likelihood, instead, or to 
onsider some voting s
heme.10



Let the number of 
lassi�
ation errors for the 
ross-fold s and texture r to beers, then the mean Err = 1S PSs=1 ers is used to estimate the 
lassi�
ationerror for texture r.In addition to CV experiments, the robustness of the proposed models toGaussian additive noise is 
he
ked. A new test image 
omposed of 4 randomtexture pat
hes with square or triangle layouts (see Figure 2), is 
ontami-nated with a small amount of additive Gaussian noise and is presented for
lassi�
ation. Mis
lassi�
ation errors of the texture ensembles for this imageare evaluated to assess and 
ompare performan
es of the di�erent models.3.1 Texture segmentation resultsFour probabilisti
 models have been simulated in the Gaborian spa
e: thejointly Gaussian probabilisti
 model (A) and three Gabor BNT models withan in
reasing 
omplexity: (B) with � = 0 and with CPTs tied; (C) with� = 0 and without CPTs tied; (D) without 
onstraints on the CPTs and� parameters. The Gabor BNTs have been trained by the EM algorithmfor a maximum of 200 epo
hs and are stopped earlier if the log-likelihoodin
rease from one iteration to the next is less than 10�4.Model's mis
lassi�
ation errors in the CV experimentModels D103 D111 D16 D17 D21 D24 D29 D34 D6A 9 32 13 38 10 35 46 32 14B 6 31 8 29 8 28 33 25 6C 7 33 8 25 9 31 39 23 8D 8 36 11 29 11 38 39 18 9Table 1: Averaged mis
lassi�
ation errors (in per
ent) in the 
ross-validationexperiments for di�erent textures (
olumns) and using di�erent probabilisti
models (rows). See text for model's des
ription. Textures are referred tothe same as in the Brodatz album.The mean mis
lassi�
ation error results in per
ents for CV experimentsare presented in Table 1. Our results 
learly demonstrate that texture 
las-si�
ation by ML using the Gabor BNTs (the lines B-D of Table 1) is superiorto using the jointly Gaussian probabilisti
 model A (the line A of Table 1).It turns out that the most 
exible model D is the worst among the 
on-sidered Gabor BNTs, apart from texture D34. This is due to the 
urseof dimensionality problem [27℄: there is insuÆ
ient data to robustly traina 
lassi�er in high dimensional parameter spa
e. This leads to estimatorswith high varian
e and large predi
tion errors. A way to avoid this prob-lem is by imposing appropriate bias 
onstraints or priors [28℄. One 
aneasily re
ognize the model B as a 
onstrained version of the model D. Thisalso demonstrates that the imposed orientation 
onstraints in the Gaborian11



spa
e are appropriate. In general, the Gabor model B is the best one for
lassi�
ation.The robustness results for the models A-B are presented in Table 2.These results are with Gaussian additive noise of SNR = 20dB and SNR =40dB9; results without noise (SNR =1) serve as a baseline for 
omparison.All mis
lassi�
ation errors are averaged over �ve runs (ea
h run 
orrespondsto a random noise sampling) and are given in per
ents. These results 
learlyshow that the Gabor BNT ( the model B) is less sensitive to noise and morerobust than the model A. In summary, the model B generalizes better thanthe model A. Model's robustness to noiselayout triangle squareSNR 1 40dB 20dB 1 40dB 20dBModels:A: 16.6 18.9 41.4 13.8 16.3 41.2B: 12.8 14.1 31.3 9.9 11.6 30.8Table 2: Mis
lassi�
ation errors in per
ents versus models A, B and versusdi�erent levels of Gaussian additive noise. There is no noise when SNR =1.4 Texture Dete
tionIn many 
ases simple generative probabilisti
 models, su
h as des
ribingobje
ts by a smoothed intensity or 
olor generated from the normal multi-variate distribution is suÆ
ient [29, 30, ignoring the dynami
al aspe
t℄. Dif-�
ult examples when these models are inappropriate appear due to varyingillumination a
ross an image plane or when obje
ts/ba
kground are 
omplextextures. In these 
ases more 
omplex generative models should be appliedfor image segmentation.For segmentation by texture in video appli
ations one should 
onstru
tprobabilisti
 models that are invariant to non-rigid motions, s
aling and ro-tations. The GWT is not invariant to the latter and therefore the stationary,not evolving dynami
s, Gabor BNT is only suitable for a 
onstrained 
lassof video images, where the obje
ts are mainly translated and, obviously, forstill images.Segmentation is based on the novelty dete
tion approa
h [2℄. First, therepresentative part of the obje
t of interest or ba
kground is 
ropped andits probabilisti
 model is learned. Then the log-likelihood of the image9Signal to noise ratio in de
ibels (dB) is estimated as SNR = 20 log10 pvar(x)� , wherex is a signal with E[x℄ � 0 and � stands for the noise standard deviation.12
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40Figure 2: Robustness experiment: a. Image 
omposed of texturesD6; D103; D16; D17 with a triangle layout (SNR =1); b. Classi�
ationresults of Figure 2a. with the model A; 
. Classi�
ation results of Figure 2a.with the model B; d. Image 
omposed of textures D6; D103; D16; D17with a square layout (SNR = 1); e. Classi�
ation results of Figure 2d.with the model A; f. Classi�
ation results of Figure 2d. with the model B.pixels is evaluated by the learned model. It is assumed that pixels thatdo not belong to the learned model get small log-likelihood values underit10. Therefore, log-likelihood thresholding 
an be used for image segmen-tation. This threshold may be set using 
ross-validation approa
h, that isdata demanding; instead we use a Gaussian mixture model (GMM) to seta threshold automati
ally. This means that the log-likelihood of the data isassumed to be moderately well approximated by a mixture of two Gaussiandistributions, where the Gaussian 
omponent with the larger mean valuedes
ribes a distribution of the log-likelihood of the data belonging to thelearned model. Estimation of the GMM parameters is a standard pro
edure[31, 32℄. The threshold sele
tion pro
edure for the sea surfa
e pollution de-te
tion is s
hemati
ally illustrated in Figure 3; the problem and data aredis
ussed in the next Se
tion.In fa
t, one 
an go further and attempt to divide novel regions to di�erentlevels of novelty using GMM's with more than two mixture 
omponents.Intuitively, su
h segmentation implies that di�erent obje
ts (textures) have10Indeed, novelty dete
tion is a semi-heuristi
al and simpli�ed repla
ement to the statis-ti
al hypothesis testing where the null hypothesis is H0 : data is generated by the learnedprobabilisti
 model and an alternative is H1 : data is generated by any other model.13



di�erent levels of similarity to the learned 
on
ept that may be measuredby a log-likelihood11. This generalization is straightforward in the noveltydete
tion framework. There is no a guarantee, however, that it should workin any possible pra
ti
al situation.a b
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Log−likelihoodFigure 3: Threshold sele
tion for novelty dete
tion : a Empiri
aldistribution (bars) for the log-likelihood of the image pixels and its approx-imation by the GMM (solid line). b Two Gaussian 
omponents properlyweighted by their prior probabilities (solid 
urves) that are estimated bythe EM algorithm. The threshold value 
orresponds to a log-likelihoodvalue in the 
ross point (marked with the arrow) of the two 
urves. Thelearned model is the Gabor BNT for the normal wave region (model C).See Se
tion 4.1 for the problem and data des
ription. The 
orrespondingsegmentation result is presented in Figure 4e.4.1 Sea surfa
e pollution dete
tionIt is well known that water-borne pollutants, natural, su
h as algal bloom,ba
teria and �sh oil and leakage from the sea bed, and arti�
ial, su
h as
aused intentionally by ships, generate oily spills (sli
ks) on the water sur-fa
e. Monitoring and tra
king of sli
k regions is an an important environ-mental problem. Many government authorities are interested in automati
pollution dete
tion and general assessment of water quality.As has been demonstrated in [33℄, the sli
k regions may be eÆ
ientlydete
ted from remotely sensed low-platform mounted visible band 
ameraimages. This be
omes possible due to di�erent light re
e
tan
e of sli
k and11The log-likelihood should be more appropriate than the likelihood in this frameworkdue to the squashing e�e
t of the log-transform. Otherwise, a mixture of the generalizedexponential distributions should be more appropriate in the likelihood domain.14



surrounding water surfa
es and due to di�erent turbulent water motion 
har-a
teristi
s of sli
k and non-sli
k regions (sli
ks have a damping e�e
t on theturbulent water motion). As a result, sli
k regions generally appear brighterin images than normal wave regions (see Figure 4a), as they re
e
t the skyintensity. This �nding has led to a su

essful unsupervised segmentation ofsea-surfa
e images based on the Gaussian mixture model (GMM) applied tothe tonal (intensity) information [33℄. However, this method is very sensitiveto illumination varying a
ross the s
ene [34℄ and the main question is if thesli
k regions may be dete
ted as textures and not as just bright intensityregions. a b 

d e f

Figure 4: Gaussian Probabilisti
 Models: a. Typi
al sea surfa
e im-age; b-
. Log-likelihoods of the image pixels assigned by models (A)-(B);Brighter intensity values 
orrespond to larger values of the log-likelihood; d.Classi�
ation by ML using models (A)-(B); e-f. Segmentation based on thenovelty dete
tion approa
h with models (A)-(B), respe
tively. GMM withtwo 
omponents are applied to set a threshold. White 
olor 
orrespondsto positive examples, i.e. pixels that 
orrespond to suÆ
iently large log-likelihood values and bla
k 
olor 
orresponds to novel regions. i.e. to pixelsobtaining a small log-likelihood under the normal model.In order to answer this question, small sub-images 
orresponding to nor-mal wave and front sli
k surfa
e regions of the image are 
ropped and en-15




oded by the two types of the probabilisti
 models. The �rst type of modelare Gaussian models for the low-pass �lter 
oeÆ
ients of the wave and sli
kregions, referred to as models (A) and (B), respe
tively. These two mod-els are based on the smoothed intensity, they do not 
arry an informationabout region textures and are introdu
ed as a baseline for 
omparison. Theother two models (C) and (D) are Gabor BNT models for the wave andsli
k regions, respe
tively; they en
ode GWT 
oeÆ
ients and des
ribe theregions as textures with illumination being partially removed, as low-pass�lter 
oeÆ
ients are not modeled by the Gabor BNTs. The Gabor BNTparameters used are: N = 32 pixels, o
tave j = 2; : : : ; 4 and 4 orientations.The image pixel log-likelihoods assigned by the Gaussian models (A)-(B) are presented in Figures 4b-
, respe
tively. Due to the availability ofthe probabilisti
 models for normal wave and sli
k regions, sli
k segmen-tation 
an be 
onsidered as the texture/obje
t 
lassi�
ation and dete
tionproblems. Image pixel 
lassi�
ation by ML based on the models (A)-(B)is presented in Figure 4d. This 
lassi�
ation is relatively good, unless thesky region is assigned to the sli
k region, as sky intensities have large values.Sli
k dete
tion based on the models (A) and (B) are presented in Figures 4e-f, respe
tively. Dete
tion based on the model (A) 
onsiders the wave regionsto be normal (non-polluted) regions and the sli
k is found as an abnormal(novel) region, that does not belong to a wave region. Novelty dete
tion withthe model (A) dis
riminates the sky and sea surfa
e regions, but does notallow the dete
tion of sli
ks. Alternatively, dete
tion based on model (B),
onsiders the sli
ks as being regions of interest and the sky and wave regionsemerge as non-interesting regions. In the 
ontext of a novelty dete
tion,model (B) appears to be superior to model (A).a b 

Figure 5: Gabor BNT models: a-b Log-likelihoods of the image pixelsassigned by the models (C)-(D); Brighter intensity values 
orrespond tolarger values of the log-likelihood; 
 Novelty dete
tion based on the model(C) en
oding the normal wave region. A region identi�ed as a new one(negative 
lass) appears in bla
k 
olor.16



The log-likelihoods assigned by the Gabor BNTs have been smoothedwith a uniform mask of size 11� 11 pixels (see Figures 5a-b). This smooth-ing is equivalent to a produ
t of experts [35, 36℄ and leads to improvedsegmentation. The sli
k dete
tion with the model (C) is presented in Fig-ure 5
, the dete
tion result with the model (D) is similar to the former. Bothmodels identify a narrow sli
k region as an alien (abnormal) to them. Thisis due to narrowness of the sli
k region, i.e. Gabor 
oeÆ
ients are very higharound narrow sli
k edges, so that the narrow sli
k region pixels get smalllog-likelihoods under the models (C) and (D). At the same time the modelsare not able to dis
riminate between the normal wave and front sli
k regions.In summary, the Gaussian models based on intensity features outperformthe Gabor BNTs in segmentation. Moreover, the latter have shown to beuseful only for edge and the narrow sli
k dete
tion.To en
ode Gabor WTC and a low-pass �lter 
oeÆ
ient together, theGaussian models (A)/(B) have been 
ombined with the texture models(C)/(D), respe
tively. The 
ombined model's probabilities are a dire
t pixel-wise produ
t of the probabilities assigned to the image pixels by the twomodels en
oding the tonal intensity and texture features. This means thatthe smoothed intensity and GW 
oeÆ
ients are assumed to be independent.The 
ombined models may be also interpreted as a mixture of two experts.The log-likelihoods of the image pixels assigned by the 
ombined models(Figure 6a.) are very similar to the log-likelihoods assigned by the Gaussianmodels. Novelty dete
tion by the 
ombined model for the wave region (Fig-ure 6b.) is similar to dete
tion with the Gaussian model (A) (
ompare with(Figure 4e.), unless edge regions start to appear better as novel regions. Thesame happens in segmentation with the 
ombined model for the sli
k region.It may be bene�
ial to properly weight the log-likelihoods of the mixturemodels (Gabor BNTs need more weight), but this issue is beyond the s
opeof our paper.Results with the extended version of the novelty dete
tion approa
h withthree GMM 
omponents for the 
ombined model en
oding the wave regionis presented in Figure 6
. As 
an be seen, a new additional 
luster in
ludesboth sli
k regions and, unfortunately, the remote wave region; moreover,the image region 
orresponding to this 
luster is identi�ed as more familiarthan the sky. We get the same result for Gaussian models (A) and (B).So far additional dis
rimination of the novelty regions into di�erent novelty(familiarity) levels is quite reasonable.In summary, the introdu
ed texture models for sea surfa
e sli
k seg-mentation allow us to �nd a narrow sli
k region, but are not satisfa
toryin general. This also means that tonal information is the most important
lue for sli
k dete
tion than texture features. An example 
onsidered inthe next se
tion, in 
ontrast, demonstrates the e�e
tiveness of the proposedprobabilisti
 models. 17



a b 

Figure 6: Combined Gaussian and BNT model for the wave region:a Log-likelihood of the image pixels assigned by the joint models (produ
t ofexperts (A) and (C)); Brighter intensity values 
orrespond to larger valuesof the log-likelihood; b Conventional novelty dete
tion based on the jointmodel; 
 An extended novelty dete
tion based on the joint model with threeGaussian 
omponents; White, grey and bla
k shades stand for regions withhigh, intermediate and small log-likelihoods, respe
tively.4.2 Texture Dete
tionThis se
tion presents segmentation of a still image with varying illuminationa
ross the s
ene and textured obje
t/ba
kground (see Figure 7a). Part ofan animal body was 
ropped to build the Gabor BNT. The following GaborWT parameters have been used: N = 32 pixels, s
ale j = 2; : : : ; 4 and 4orientations. The Gabor WT 
oeÆ
ients are presented in Figure 7
-d; andthe output 
oeÆ
ients of the 
orresponding 
ompensating low-pass �lter arepresented in Figure 7b. The log-likelihood of the image pixels assigned byGaussian probabilisti
 model for the low-pass �lter 
oeÆ
ients is presentedin Figure 7e. The Gaussian probabilisti
 model has been 
onstru
ted for agrass region (the Gaussian model for an animal body region leads to evenworse results as this region does not appear homogeneous). This 
learlyindi
ates that smoothed intensity is not a good feature for segmentation ofthis image.At the same time, an animal body after the Gabor WT appears as a ho-mogeneous blob. Log-likelihood of the image pixels assigned by the GaborBNT learned on the 
ropped part of the animal body is presented in Fig-ure 7d. The log-likelihood has been smoothed to satisfy a priori 
ontinuityassumption about it12. A result of the log-likelihood smoothing with a uni-form mask of size 7� 7 pixels is presented in Figure 7g and a segmentationresult in Figure 7h.12This averaging roughly 
orresponds to a produ
t of experts18
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Figure 7: a. Original image. b. Output of the GWT 
ompensating low-pass�lter. 
. The GWT 
oeÆ
ient (j = 1 and k = 1) as an image. d. The GWT
oeÆ
ient (j = 3 and k = 3) as an image. e. Log-likelihood of the imagepixels assigned by Gaussian distribution of the smoothed intensity of thegrass region. f. Log-likelihood of the image pixels assigned by Gabor BNTlearned on the 
ropped part of the animal body. g. Smoothed log-likelihood.h. Segmentation of the image by thresholding the smoothed log-likelihood.5 Con
lusion and dis
ussionWe have introdu
ed the generative probabilisti
 oriented wavelet model andhave shown that it may be used for texture 
lassi�
ation and dete
tion. Theintrodu
ed model has been 
ompared using 
ross-validation with the jointGaussian probabilisti
 model for several textures from the Brodatz album[1℄. Our model is superior to the jointly Gaussian probabilisti
 model inthe Gaborian spa
e, espe
ially when additive noise is added. However, theGabor BNT training and 
lassi�
ation based on it are slower than with thejoint Gaussian probabilisti
 model.We have studied the feasibility of the introdu
ed generative model forimage segmentation in the novelty dete
tion framework [2℄. Two exampleshave been 
onsidered: (i) sea surfa
e pollution dete
tion from intensity im-ages and (ii) image segmentation of still images with varying illuminationa
ross the s
ene. The novelty dete
tion framework has been extended byproposing to dis
riminate the novelty regions into di�erent levels of famil-iarity based on the GMM operating on the log-likelihood.19



It may also be interesting to 
ompare this model with the probabilis-ti
 model that assumes independent non-Gaussian wavelet 
oeÆ
ient pdfs.Another possibility to en
ode Gabor WTCs is to use a fa
torial HMM [37,similar to Fig. 1b℄. This BNT better re
e
ts the stru
ture of the GaborBNT, but is more 
omplex and has only an approximated solution due toloops in the probabilisti
 graph. Our model may be generalized to addressthe unsupervised segmentation problem by 
onsidering a mixture of theGabor BNTs. It is interesting to generalize the Gabor BNTs for tra
kingproblems.A
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