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t. We analyse how the Generative Topographi
 Mapping (GTM)
an be modi�ed to 
ope with missing values in the training data. Ourapproa
h is based on an Expe
tation-Maximisation (EM) method whi
hestimates the parameters of the mixture 
omponents and at the sametime deals with the missing values. We in
orporate this algorithm into ahierar
hi
al GTM. We verify the method on a toy data set (using a singleGTM) and a realisti
 data set (using a hierar
hi
al GTM). The resultsshow our algorithm 
an help to 
onstru
t informative visualisation plots,even when some of the training points are 
orrupted with missing values.1 Introdu
tionData visualisation, whi
h plays a key role in developing good models for largequantities of data, is an important aid in dimension redu
tion, gives informationabout lo
al deviations in performan
e and provides a useful 
he
k for obje
tivequantitative measures. However, in many appli
ations the input data is in
om-plete. Therefore it is important to know how to use the available data and howto re
onstru
t the missing values. For example, in the pharma
euti
al �eld, s
i-entists use 
omputer modelling to examine and analyse the mole
ular stru
tureof 
ompounds and high throughput s
reening to assess their intera
tion withbiologi
al targets. Many 
ompounds are not s
reened against a 
omplete set oftargets, yet we do not want to ex
lude all su
h 
ompounds from data analysissin
e that risks missing potential drugs.The hierar
hi
al generative topographi
 mapping (GTM) model is an intera
-tive data visualisation te
hnique, whi
h enables the user to 
onstru
t arbitrarilydetailed proje
tion plots. The basi
 building blo
k is the GTM [1℄ . The problem
onsidered here is to train the GTM model with in
omplete data and re
onstru
tthe missing values. This way the data, in
luding the missing 
omponents, 
anbe shown in a visualisation plot that is as \faithful" as possible. For hierar
hi-
al GTM, the in
omplete data 
an be displayed at all levels of the hierar
hy ofvisualisation plots.Our algorithm 
an be des
ribed brie
y as follows. A joint density model ofthe data is learned in an unsupervised way from the in
omplete training data



2 Yi Sun et al.set by using an EM algorithm. For visualisation purposes, the missing data is�lled in by 
omputing the posterior mean. In [2℄, the GTM was trained onlywith 
omplete data, and an additional 
ondition was added to re
onstru
t themissing data. In 
ontrast, our algorithm is more generi
.Sin
e our algorithm is based on Gaussian mixture models (GMM) and theEM algorithm, in se
tion 2 we brie
y introdu
e the EM algorithm for GMMs.The GTM with in
omplete data algorithm is detailed in se
tion 3. Se
tion 4gives a basi
 introdu
tion to hierar
hi
al GTM. We illustrate the algorithm inse
tion 5 with a toy data and a high dimensional data set from 
ow diagnosti
sof an oil pipeline. Se
tion 6 dis
usses the result.2 The EM Algorithm for Gaussian Mixture ModelsThe EM algorithm is espe
ially relevant sin
e it is a general method for param-eter estimation in mixture models that is based on the idea of �lling in missingdata. This se
tion introdu
es brie
y the algorithm for �nding the maximumlikelihood parameters of a Gaussian mixture model [3℄.We 
onsider a mixture densityP (tn) = KXj=1 P (tnjj; �j)P (j); (1)whi
h is generating the (i.i.d.) data T = ftngNn=1. In this 
ase ea
h 
omponent ofthe mixture is denoted by j and parametrised by �j , and P (j) is the prior prob-ability for the mixture 
omponent j. Then the log likelihood of the parametersgiven the data set is L(�) = NXn=1 log KXj=1 P (tnjj; �j)P (j): (2)The binary indi
ator variables znj are introdu
ed to spe
ify whi
h 
omponentof the mixture generated the data point. znj = 1 if and only if tn is generatedby 
omponent j, otherwise znj = 0. Then equation (2) 
an be re-written as the
omplete data log likelihood fun
tion:L
(�) = NXn=1 KXj=1 znj log[P (tnjznj ; �)P (znj ; �)℄: (3)Sin
e znj is not known, the expe
tation E[znj jtn; �j ℄ of znj given the 
urrentparameter values �j is 
omputed. This is the probability that the Gaussian jgenerated the data point tn and is denoted by rnj . This is the E-step of the EMalgorithm:rnj = j�j j�1=2expf� 12 (tn � �j)T��1j (tn � �j)gP (j)PKk=1 j�kj�1=2expf� 12 (tn � �k)T��1k (tn � �k)gP (k) : (4)
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omplete Data 3The means �j and 
ovarian
e matri
es �j of the jth 
omponent Gaussian areupdated in the M-step using the data set weighted by the rnj :�t+1j = PNn=1 rnjtnPNn=1 rnj (5)�t+1j = PNn=1 rnj(tn � �t+1j )(tn � �t+1j )TPNn=1 rnj (6)The equations above are for full 
ovarian
e matri
es, but there are similar equa-tions for other 
ovarian
e stru
tures.3 Generative Topographi
 Mapping and In
omplete Data3.1 The Generative Topographi
 MappingThe generative topographi
 mapping (GTM) [1℄ is a nonlinear latent variablemodel that uses latent (or hidden) variables to model a probability distributionin the data spa
e. It is a 
onstrained mixture of Gaussians whose parametersare optimised using the expe
tation-maximisation (EM) algorithm.For the GTM, t denotes the data in a D-dimensional Eu
lidean spa
e and xdenotes the latent variables in an L-dimensional latent spa
e. Considering a non-linear transformation from the latent spa
e to the data spa
e using a radial basisfun
tion network(see e.g. [4℄), the latent data is mapped to data spa
e by a radialbasis fun
tion y =W�(x) with weightsW and a basis fun
tion matrix �. Thegoal of the latent variable model is to �nd a representation for the distributionp(t) in terms of a number K of latent points xj(j = 1; 2; :::K) and 
orrespondingGaussian distributions 
entred on y(xj;W) [1℄. The data density is de�ned byP (tjW; �) = 1K KXj=1 P (tjxj;W; �) (7)and P (tjxj;W; �) = � �2��D=2 exp�� �2 ky(xj;W)� tk2� (8)where W and the inverse varian
e � 
an be �tted by maximum likelihood withthe EM algorithm.The latent spa
e representation of the point tn, i.e. the proje
tion of tn, istaken to be the mean PKj=1 rnj xj of the posterior distribution on the latentspa
e.3.2 In
orporating missing values into the EM algorithm for theGTM modelTo handle missing values in the data set, we write data points tn as (ton; tmn ),where ea
h data ve
tor 
an have di�erent patterns of missing 
omponents;m and



4 Yi Sun et al.o denote subve
tors and submatri
es of the parameters mat
hing the missing andobserved 
omponents of the data. The EM algorithm treats both the indi
atorvariables znj and the missing inputs tmn as hidden variables. For the GTM, asthe 
ovarian
e matrix is 
onstrained to be isotropi
, �j = ��1I, the 
ovarian
eof missing and observed values �moj is equal to 0. The expe
ted value in theE-step is taken with respe
t to both sets of hidden variables. If we knew thevalues of the indi
ator variables znj , we would write the negative log likelihoodfun
tion asL(W; �) = NXn=1 KXj=1 znjnD2 ln(2�)� D2 ln� + �2 h k ton � yoj k2 +k tmn � ymj k2 io (9)After taking the expe
tation, the suÆ
ient statisti
s for the parameters in-
lude three unknown terms, znj , znjtmn and znjtmn tmn . So we must 
al
ulate theexpe
tations for these three terms. Following [5℄, we introdu
e:t̂mnj = E(tmn jznj = 1; ton; �j) = (ymj )old (10)whi
h is the least-squares regression between tmn and ton predi
ted by Gaussianj, and `old' denotes the value 
omputed in the last M-step.The expe
tation of znj is E[znj jton; �j ℄ = rnj (equation (4)) measured onlyon the observed dimensions of tn. For the GTM, we 
al
ulate:E[znjtmn jton; �j ℄ = E[znj jton; �j ℄E[tmn jznj = 1; ton; �j ℄ = rnj t̂mnj= rnj(ymj )old (11)In the M-step, the missing values are expressed using the posterior means:E[tmn jton; �j ℄ = KXj=1 rnjE[tmn jznj = 1; toi ; �j ℄ (12)and the weights are then updated to Wnew as used way for GTM [1℄. Thevarian
e is updated by:��1 = 1ND NXn=1 KXj=1 rnj �kton � yojk2 +E[znjktmn � ymj k2℄� (13)whereE[znjktmn � ymj k2℄ = E[ktmn � ymj k2jznj = 1℄= (��1)old + (t̂mnj)T (t̂mnj)� 2(t̂mnj)Tymj + (ymj )Tymj (14)and ymj = (Wnew�(xj))m.
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hi
al GTM4.1 An introdu
tion to hierar
hi
al GTMFor a 
omplex data set, a single two-dimensional visualisation plot may not besuÆ
ient sin
e it is diÆ
ult to 
apture all of the interesting aspe
ts in the dataset. Therefore a hierar
hi
al visualisation system is desirable.Given a training data set T = ft1; t2; :::; tNg, the probability, assigned tothis set by a hierar
hy of GTMs organised in hierar
hi
al tree T , is 
al
ulatedby 
onsidering the hierar
hi
al GTM T as a mixture of GTMs [6℄, with mix-ture 
omponents being the leaves M. The parameters of the hierar
hy (weightsW, inverse varian
e � and parent-
onditional mixture 
oeÆ
ients) are �tted bymaximum likelihood using the EM algorithm. Mixture 
oeÆ
ients for the mix-ture 
omponentsM are 
al
ulated re
ursively by multiplying parent-
onditionalmixture 
oeÆ
ients down the path from the root to M.Given a data point tn and a submodel M in the hierar
hy T , we have threetypes of hidden variables: 1) Responsibility of Parent(M), the parent of M, forgenerating tn. 2) Parent-
onditional responsibility for tn, given that Parent(M)generated tn, and 3) Responsibility of latent spa
e 
entres xj ofM for generatingtn. To avoid numeri
al problems arising frommultipli
ation of small probabilitiesand to speed up the training pro
ess, the GTMs on deeper levels are trained onlyon data points for whi
h the parent model has responsibility greater than somepre-set threshold �. In our experiments � = 10�3.4.2 Parameter initialisationHaving trained GTMs down to level ` of the hierar
hi
al tree T , we 
hoose aparent model N at level ` and, based on its visualisation plot, we sele
t \regionsof interest" for 
hild GTMs M at level ` + 1. More pre
isely, the visualisationplot of the parent GTM N shows low-dimensional representations in the latentspa
e of data spa
e points from the training set.The regions of interest are sele
ted as follows: The user �rst sele
ts points 
i,i = 1; 2; :::; A, in the latent spa
e that 
orrespond to \
entres" of the subregionsthe user is interested in. The points 
i are then transformed via the map yNde�ned by the parent GTM N to the data spa
eyN (
i) =WN �N (
i) (15)The regions of interest are given by the Voronoi 
ompartments [7℄ in the dataspa
e 
orresponding to the points yN (
i), i = 1; 2; :::; A:Vi = �t 2 <Dj d (t;yN (
i)) = minj d (t;yN (
j))� ; (16)where d(�; �) is the Eu
lidean distan
e in the data spa
e <D. All points in Vi areallo
ated to the \
entre" yN (
i).



6 Yi Sun et al.We initialise the parameters WM of 
hild GTMs M, so that ea
h GTMinitially approximates prin
ipal 
omponent analysis (PCA) of the 
orrespondingVoronoi 
ompartment. For GTM M 
orresponding to a 
ompartment Vi, we�rst evaluate the 
ovarian
e matrix of training points in Vi and obtain the �rstL prin
ipal eigenve
tors. Next, we determine WM by minimising the errorE = 12 KMXj=1 kWM �M(xMj ) � U xMj k2; (17)where the 
olumns of U are the �rst L prin
ipal eigenve
tors of the data 
ovari-an
e matrix (see [1℄).Following [1℄, parameter �M is initialised to be the larger of the L+1 eigen-value from PCA, that represents the varian
e of the data away from the PCAplane , or the square of half of the grid spa
ing of the PCA-proje
ted latent datapoints in data spa
e.5 ExperimentIn our experiments, GTM models were trained in two ways: (A1) the algorithmde�ned in se
tion 3:2 and (A2) standard EM applied to a dataset with themissing values repla
ed by the un
onditional mean.5.1 The toy data200 training data points were generated randomly in the interval [0; 2�℄ as t1. Thevariable t2 was then 
omputed by the fun
tion t2 = t1+1:25 sin(2t1). A spheri
alGaussian noise with standard deviation 0.1 was added to t2 
oordinates. Thenwe deleted 30% of the values in t2 randomly. Figure 1 shows the result usingA1 and A2. After training, the negative log likelihood is 1.62 and 2.66 per datarespe
tively.5.2 Oil dataThis example arises from the problem of determining the fra
tion of oil in a multi-phase pipeline 
arrying a mixture of oil, water and gas. The data set 
onsistsof 1000 12-dimensional points. Points in the data set are 
lassi�ed into threedi�erent multi-phase 
ow 
on�gurations: homogeneous, annular and laminar [8℄.Figure 2 shows the visualisation results. A hierar
hy of GTMs up to level 3was trained on the data set. For every level, 15 � 15 = 225 latent data pointswere sele
ted in the 2-dimensional latent spa
e and the number of Gaussian basisfun
tions is 4�4 = 16. The �nal visualisation plot for the 
omplete (un
orrupted)data 
an be seen in �gure 2(a). For the top level, after 10 training iterations, thenegative log likelihood is �3:93 per data point.
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(a)Using the EM based algorithm (b)Using un
onditional mean methodFig. 1. The toy problem: the 
omplete data points are plotted as 
ir
les while the
entres of the Gaussian mixture are plotted as plus signs. The 
entres are joined by aline a

ording to their ordering in the (one-dimensional) latent spa
e (K = 60). Thestars represent the missing values. The dis
s surrounding ea
h plus sign represent twostandard deviations' width of the noise model.We randomly deleted 30% of values in the data set. The maximum numberof 
orrupted 
oordinates per data point is 6. Again we 
ompare the negativelog likelihood of A1 and A2. Here we just measured the values of negative loglikelihood for the top level GTM, sin
e the likelihood for lower level modelsdepends on where the \regions of interest" are sele
ted. For the in
omplete dataset, after 10 training 
y
les, using the EM algorithm, the negative log likelihood is�3:39 per data point, while using un
onditional mean �lling in the missing data,the negative log likelihood is �1:31. Using our EM based algorithm for dealingwith missing values 
an indeed be bene�
ial as it 
an be seen by 
omparingthe top level (root) visualisation plots and the se
ond visualisation plots on these
ond level of the hierar
hy. These se
ond-level plots show better separation of
lasses and mat
h better to the models trained on the 
omplete data set.6 Con
lusionsIn this paper, we have shown how in
omplete data 
an be in
luded in the hier-ar
hi
al GTM training. The algorithm for dealing with missing values based onthe EM algorithm and Gaussian mixture models is a viable approa
h for datavisualisation. It is preferable to the simple strategy of just �lling-in the missingvalues with un
onditional means.
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(b) (
)Fig. 2. Data visualisation for oil data by using hierar
hi
al GTM. Plot (a) shows theresult of training on the 
omplete data set. Plot (b) shows the result of using theEM algorithm learning from in
omplete data, while plot (
) shows the same data setvisualised using the un
onditional mean to �ll in the missing data.


