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Abstract. We analyse how the Generative Topographic Mapping (GTM)
can be modified to cope with missing values in the training data. Our
approach is based on an Expectation-Maximisation (EM) method which
estimates the parameters of the mixture components and at the same
time deals with the missing values. We incorporate this algorithm into a
hierarchical GTM. We verify the method on a toy data set (using a single
GTM) and a realistic data set (using a hierarchical GTM). The results
show our algorithm can help to construct informative visualisation plots,
even when some of the training points are corrupted with missing values.

1 Introduction

Data visualisation, which plays a key role in developing good models for large
quantities of data, is an important aid in dimension reduction, gives information
about local deviations in performance and provides a useful check for objective
quantitative measures. However, in many applications the input data is incom-
plete. Therefore it is important to know how to use the available data and how
to reconstruct the missing values. For example, in the pharmaceutical field, sci-
entists use computer modelling to examine and analyse the molecular structure
of compounds and high throughput screening to assess their interaction with
biological targets. Many compounds are not screened against a complete set of
targets, yet we do not want to exclude all such compounds from data analysis
since that risks missing potential drugs.

The hierarchical generative topographic mapping (GTM) model is an interac-
tive data visualisation technique, which enables the user to construct arbitrarily
detailed projection plots. The basic building block is the GTM [1] . The problem
considered here is to train the GTM model with incomplete data and reconstruct
the missing values. This way the data, including the missing components, can
be shown in a visualisation plot that is as “faithful” as possible. For hierarchi-
cal GTM, the incomplete data can be displayed at all levels of the hierarchy of
visualisation plots.

Our algorithm can be described briefly as follows. A joint density model of
the data is learned in an unsupervised way from the incomplete training data
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set by using an EM algorithm. For visualisation purposes, the missing data is
filled in by computing the posterior mean. In [2], the GTM was trained only
with complete data, and an additional condition was added to reconstruct the
missing data. In contrast, our algorithm is more generic.

Since our algorithm is based on Gaussian mixture models (GMM) and the
EM algorithm, in section 2 we briefly introduce the EM algorithm for GMMs.
The GTM with incomplete data algorithm is detailed in section 3. Section 4
gives a basic introduction to hierarchical GTM. We illustrate the algorithm in
section 5 with a toy data and a high dimensional data set from flow diagnostics
of an oil pipeline. Section 6 discusses the result.

2 The EM Algorithm for Gaussian Mixture Models

The EM algorithm is especially relevant since it is a general method for param-
eter estimation in mixture models that is based on the idea of filling in missing
data. This section introduces briefly the algorithm for finding the maximum
likelihood parameters of a Gaussian mixture model [3].

We consider a mixture density

K
= P(tali;0;)P(), (1)

j=1

which is generating the (i.i.d.) data T = {t,,}_,. In this case each component of
the mixture is denoted by j and parametrised by 6;, and P(j) is the prior prob-
ability for the mixture component j. Then the log likelihood of the parameters
given the data set is

ZlogZP nlj:0;)P(j). (2)

The binary indicator variables z,; are introduced to specify which component
of the mixture generated the data point. z,; = 1 if and only if t,, is generated
by component j, otherwise z,; = 0. Then equation (2) can be re-written as the
complete data log likelihood function:

ZZanlog[P n‘Zn], ) (Zn]: )] (3)
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Since zp; is not known, the expectation E[zy,;|t,, ;] of z,; given the current
parameter values 6; is computed. This is the probability that the Gaussian j
generated the data point t,, and is denoted by r,;. This is the E-step of the EM
algorithm:

|55 2exp{ =5 (tn — ;)" X (60 — 1) }P(5)
S | Dk 2exp{ =3 (6 — )T S5 (6 — i) Y P ()

(4)

T‘nj =



GTM-based Data Visualisation with Incomplete Data 3

The means u; and covariance matrices X; of the jth component Gaussian are
updated in the M-step using the data set weighted by the rp;:

N
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By = N (5)
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The equations above are for full covariance matrices, but there are similar equa-
tions for other covariance structures.

3 Generative Topographic Mapping and Incomplete Data

3.1 The Generative Topographic Mapping

The generative topographic mapping (GTM) [1] is a nonlinear latent variable
model that uses latent (or hidden) variables to model a probability distribution
in the data space. It is a constrained mixture of Gaussians whose parameters
are optimised using the expectation-maximisation (EM) algorithm.

For the GTM, t denotes the data in a D-dimensional Euclidean space and x
denotes the latent variables in an L-dimensional latent space. Considering a non-
linear transformation from the latent space to the data space using a radial basis
function network(see e.g. [4]), the latent data is mapped to data space by a radial
basis function y = W®(x) with weights W and a basis function matrix ®. The
goal of the latent variable model is to find a representation for the distribution
p(t) in terms of a number K of latent points x;(j = 1,2, ...K) and corresponding
Gaussian distributions centred on y(x;; W) [1]. The data density is defined by

K
PEW.5) = 2 3 Pltix;, W, 5) (7
and /2
P W = (£)  en{-SlvoaW-u} )

where W and the inverse variance 8 can be fitted by maximum likelihood with
the EM algorithm.

The latent space representation of the point t,, i.e. the projection of t,, is
taken to be the mean Z]K:1 rnj X; of the posterior distribution on the latent
space.

3.2 Incorporating missing values into the EM algorithm for the

GTM model

To handle missing values in the data set, we write data points t,, as (t2,t7"),
where each data vector can have different patterns of missing components; m and
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o denote subvectors and submatrices of the parameters matching the missing and
observed components of the data. The EM algorithm treats both the indicator
variables z,; and the missing inputs t]' as hidden variables. For the GTM, as
the covariance matrix is constrained to be isotropic, ¥; = 871, the covariance
of missing and observed values X7 is equal to 0. The expected value in the
E-step is taken with respect to both sets of hidden variables. If we knew the
values of the indicator variables z,;, we would write the negative log likelihood
function as

N K
LoV, =33 s { Dinam) — Dnp+ D[ 116 -y 1 +

e =y ]} (9)

After taking the expectation, the sufficient statistics for the parameters in-
clude three unknown terms, z,;, zn;t;} and z,;t;'t)’. So we must calculate the
expectations for these three terms. Following [5], we introduce:

tr = Bt 205 = 1,£5,6;) = (y7)" (10)

which is the least-squares regression between t;' and t{ predicted by Gaussian
7, and ‘old’ denotes the value computed in the last M-step.
The expectation of z,; is E[zn;|t%,6;] = rn; (equation (4)) measured only
on the observed dimensions of t,,. For the GTM, we calculate:
Elz,;t7[t5, 6] = Elznj[t0, 6,1 E[t] |20 = 1,80,8,] = rp; 67,

= ra7)™ (1)

In the M-step, the missing values are expressed using the posterior means:

E[t™|t°, Zrn] ™20 = 1,42, 6] (12)

and the weights are then updated to Wi, as used way for GTM [1]. The
variance is updated by:

N K
- 1 o o m m
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and yi = (Whew®(x3))™
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4 Hierarchical GTM

4.1 An introduction to hierarchical GTM

For a complex data set, a single two-dimensional visualisation plot may not be
sufficient since it is difficult to capture all of the interesting aspects in the data
set. Therefore a hierarchical visualisation system is desirable.

Given a training data set T = {tq,to,...,tx}, the probability, assigned to
this set by a hierarchy of GTMs organised in hierarchical tree 7T, is calculated
by considering the hierarchical GTM T as a mixture of GTMs [6], with mix-
ture components being the leaves M. The parameters of the hierarchy (weights
W, inverse variance 8 and parent-conditional mixture coefficients) are fitted by
maximum likelihood using the EM algorithm. Mixture coefficients for the mix-
ture components M are calculated recursively by multiplying parent-conditional
mixture coefficients down the path from the root to M.

Given a data point t, and a submodel M in the hierarchy 7, we have three
types of hidden variables: 1) Responsibility of Parent(M), the parent of M, for
generating t,. 2) Parent-conditional responsibility for t,, given that Parent(M)
generated t,, and 3) Responsibility of latent space centres x; of M for generating
tn.

To avoid numerical problems arising from multiplication of small probabilities
and to speed up the training process, the GTMs on deeper levels are trained only
on data points for which the parent model has responsibility greater than some
pre-set threshold €. In our experiments € = 1073.

4.2 Parameter initialisation

Having trained GTMs down to level £ of the hierarchical tree 7, we choose a
parent model A at level £ and, based on its visualisation plot, we select “regions
of interest” for child GTMs M at level £ 4+ 1. More precisely, the visualisation
plot of the parent GTM N shows low-dimensional representations in the latent
space of data space points from the training set.

The regions of interest are selected as follows: The user first selects points c;,
i=1,2,..., A, in the latent space that correspond to “centres” of the subregions
the user is interested in. The points c¢; are then transformed via the map yar
defined by the parent GTM A to the data space

yn(ci)) = Wy @ (c;) (15)

The regions of interest are given by the Voronoi compartments [7] in the data
space corresponding to the points yar(c;), 1 = 1,2, ..., A:

Vi = {t € RP| d(t,yn(ei) = mjmd@,m(c,.))}, (16)

where d(-, ) is the Euclidean distance in the data space R”. All points in V; are
allocated to the “centre” yn(c;).
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We initialise the parameters W of child GTMs M, so that each GTM
initially approximates principal component analysis (PCA) of the corresponding
Voronoi compartment. For GTM M corresponding to a compartment V;, we
first evaluate the covariance matrix of training points in V; and obtain the first
L principal eigenvectors. Next, we determine W, by minimising the error

Knm
D IWar @ad(x) — U xM?, (17)

i=1

1
E= 2
where the columns of U are the first L principal eigenvectors of the data covari-
ance matrix (see [1]).

Following [1], parameter [ is initialised to be the larger of the L + 1 eigen-
value from PCA, that represents the variance of the data away from the PCA
plane , or the square of half of the grid spacing of the PCA-projected latent data
points in data space.

5 Experiment

In our experiments, GTM models were trained in two ways: (A1) the algorithm
defined in section 3.2 and (A2) standard EM applied to a dataset with the
missing values replaced by the unconditional mean.

5.1 The toy data

200 training data points were generated randomly in the interval [0, 27] as t1. The
variable to was then computed by the function to = t; +1.25sin(2t;). A spherical
Gaussian noise with standard deviation 0.1 was added to ts coordinates. Then
we deleted 30% of the values in ty randomly. Figure 1 shows the result using
A1l and A2. After training, the negative log likelihood is 1.62 and 2.66 per data
respectively.

5.2 QOil data

This example arises from the problem of determining the fraction of oil in a multi-
phase pipeline carrying a mixture of oil, water and gas. The data set consists
of 1000 12-dimensional points. Points in the data set are classified into three
different multi-phase flow configurations: homogeneous, annular and laminar [8].

Figure 2 shows the visualisation results. A hierarchy of GTMs up to level 3
was trained on the data set. For every level, 15 x 15 = 225 latent data points
were selected in the 2-dimensional latent space and the number of Gaussian basis
functions is 4x4 = 16. The final visualisation plot for the complete (uncorrupted)
data can be seen in figure 2(a). For the top level, after 10 training iterations, the
negative log likelihood is —3.93 per data point.
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After 15 iterations of training. After 15 iterations of training.

(a)Using the EM based algorithm (b)Using unconditional mean method

Fig. 1. The toy problem: the complete data points are plotted as circles while the
centres of the Gaussian mixture are plotted as plus signs. The centres are joined by a
line according to their ordering in the (one-dimensional) latent space (K = 60). The
stars represent the missing values. The discs surrounding each plus sign represent two
standard deviations’ width of the noise model.

We randomly deleted 30% of values in the data set. The maximum number
of corrupted coordinates per data point is 6. Again we compare the negative
log likelihood of A1l and A2. Here we just measured the values of negative log
likelihood for the top level GTM, since the likelihood for lower level models
depends on where the “regions of interest” are selected. For the incomplete data
set, after 10 training cycles, using the EM algorithm, the negative log likelihood is
—3.39 per data point, while using unconditional mean filling in the missing data,
the negative log likelihood is —1.31. Using our EM based algorithm for dealing
with missing values can indeed be beneficial as it can be seen by comparing
the top level (root) visualisation plots and the second visualisation plots on the
second level of the hierarchy. These second-level plots show better separation of
classes and match better to the models trained on the complete data set.

6 Conclusions

In this paper, we have shown how incomplete data can be included in the hier-
archical GTM training. The algorithm for dealing with missing values based on
the EM algorithm and Gaussian mixture models is a viable approach for data
visualisation. It is preferable to the simple strategy of just filling-in the missing
values with unconditional means.
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Fig. 2. Data visualisation for oil data by using hierarchical GTM. Plot (a) shows the
result of training on the complete data set. Plot (b) shows the result of using the
EM algorithm learning from incomplete data, while plot (c) shows the same data set
visualised using the unconditional mean to fill in the missing data.



