The Theory of On-Line Learning -
A Statistical Physics Approach

D. Saad

The Neural Computing Research Group
University of Aston, Birmingham, B4 7TET, UK

Abstract: In this paper we review recent theoretical approaches for analysing
the dynamics of on-line learning in multilayer neural networks using methods
adopted from statistical physics. The analysis is based on monitoring a set of
macroscopic variables from which the generalisation error can be calculated. A
closed set of dynamical equations for the macroscopic variables is derived an-
alytically and solved numerically. The theoretical framework is then employed
for defining optimal learning parameters and for analysing the incorporation
of second order information into the learning process using natural gradient
descent and matrix-momentum based methods. We will also briefly explain
an extension of the original framework for analysing the case where training
examples are sampled with repetition.

1 Introduction

Layered neural networks are powerful nonlinear information process-
ing systems, capable of implementing arbitrary continuous and discrete
input-output maps to any desired accuracy, given a sufficient number of
hidden nodes and a sufficiently large example set. They have been em-
ployed successfully in a variety of regression and classification tasks, and
have been studied using a wide range of methods (for a review see Bishop
(1995)). On-line learning refers to the iterative modification of the net-
work parameters according to a predetermined training rule, following
successive presentations of single training examples, each representing
a specific input vector and the corresponding output. On-line learn-
ing is one of the leading techniques in training large neural networks,
especially via gradient descent on a differentiable error measure.

In this review we focus on the use of methods from non-equilibrium
statistical mechanics, for analysing on-line learning in multilayer neu-
ral network. We concentrate on our contribution to this area and show
how these methods can be employed to monitor the learning dynamics,
particularly the evolution of the generalisation error, to define optimal
learning parameters and to devise and examine improved learning meth-
ods. For a general review see Saad (1998) and Mace and Coolen (1998).

The paper is organised as follows: In section 2 we will derive a compact
description of the training dynamics using a set of macroscopic variables,



setting up the main theoretical framework. This will then be employed
to derive optimal training parameters (section 3), to examine analyti-
cally the efficacy of natural gradient descent (section 4), and to suggest
and examine practical alternatives using matrix-momentum based meth-
ods. In section 5 we will explain how the method can be extended to
handle scenarios where training examples are sampled with repetition.
In section 6 we will point to the main remaining open questions.

2 Learning in multilayer neural networks

For setting up the basic framework, as in Saad and Solla (1995a, 1995b),
we consider a learning scenario whereby a feed-forward neural network
model, the ‘student’, emulates an unknown mapping, the ‘teacher’, given
examples of the teacher mapping (in this case another feed-forward neu-
ral network); here we restrict the derivation and the examples to the
noiseless case although more general scenarios where training examples
are corrupted by noise may also be considered. This provides a rather
general learning scenario since both student and teacher can represent a
very broad class of functions. Student performance is typically measured
by the generalization error, which is the student’s expected error on an
unseen example. The object of training is to minimize the generalization
error by adapting the student network’s parameters appropriately.

We consider a student mapping from an N-dimensional input space & €
RN onto a scalar function o(J, &) =35 | g (J;€), which represents a soft
Committee machine (SCM - Biehl and Schwarze (1995)), where g(z) =
erf(gc/\/i) is the activation function of the hidden units; J = {J;}1<i<k
is the set of input-to-hidden adaptive weights for the K hidden nodes
and the hidden-to-output weights are set to one. The activation of
hidden node 7 in the student under presentation of the input pattern
¢" is denoted z!' = J;-&€*. This configuration preserves most properties
of a general multi-layer network and can be extended to accommodate
adaptive hidden-to-output weights as shown by Riegler and Biehl (1995).

Training examples are of the form (&*,(*) where u=1,2, .. labels each
independently drawn example in a sequence. Components of the in-
dependently drawn input vectors €” are uncorrelated random variables
with zero mean and unit variance. The corresponding output (* is given
by a teacher of a similar configuration to the student ex Mpt for a pos-
sible difference in the number M of hidden units: (#=3%",", g (B,-&"),
where B={B,, }1 << is the set of input-to-hidden adaptive weights for
teacher hidden nodes. The activation of hidden node n in the teacher
under presentation of the input pattern £ is denoted y# = B, - £".
Indices 4, j, k and n, m refer to student and teacher units respectively.



The error made by the student is given by the quadratic deviation,
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This training error is then used to define the learning dynamics via a gra-
dient descent rule for the update of student weights J**' = J 4 Lorer,

where §F = ¢'(2/) XM, g(y#) - jK:1 q(Tﬁ‘)] and the learning rate 7 has
been scaled with the input size N. Performance on a typical input de-
fines the generalization error €,(J)=(€(J, €)) ¢} through an average over
all possible input vectors &.

Expressions for the generalization error and learning dynamics have
been obtained in the thermodynamic limit (N — o), and can be rep-
resented by a set of macroscopic variables (order parameters) of the
form: J;-Jr=Q;x, J;-Bn = Ripn, and B, -B,,, =T}, measuring overlaps
between student and teacher vectors. The overlaps R and ) become
the dynamical variables of the system while T' is defined by the task.
The learning dynamics is then defined in terms of differential equations
for the macroscopic variables with respect to the normalized number of
examples @ = p/N playing the role of a continuous time variable:

dRin _ 4 dQik
da = Pin da

where ¢y = (Siyn) (e}, Vi = (diTr + 0pwi) gy and vip = (0;0k)¢y- The
explicit expressions for ¢;,, ¥, v, and €, depend exclusively on the
overlaps ), R and T' (Saad and Solla (1995a,1995b)). Equations (2), de-
pend on a closed set of parameters and can be integrated and iteratively
solved, providing a full description of the order parameters evolution
from which the evolution of the generalization error can be derived.

=0 Yir. + 1> Vik (2)

Typical plots of the learning dynamics are presented in Fig.1. In this ex-
ample the learning process prunes unnecessary nodes when the student
network has excessive resources. A teacher with M = 2 hidden units
characterized by T}, =n dpm is to be learned by a student with K =3
hidden units. The initial values of the order parameters are R;, =0 for
all i,n, Q;; =0 for all 4 £k, while the norms );; of the student vectors
are initialized independently from a uniform distribution in the [0, 0.5]
interval. The time evolution of the various order parameters is shown
in Fig. la-c for n=1. The picture that emerges is one of specialization
with increasing «a; asymptotically the first student node imitates the first
teacher node (Q11 = R11 =T11) while ignoring the second one (R19=0),
the second student node imitates the second teacher node while ignoring
the first one, and the third student node gets eliminated (Q33=0). The
off-diagonal components Q;; shown in Fig.1b indicate that the two sur-
viving student vectors become increasingly uncorrelated. The overlap
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Figure 1: Dependence of the overlaps and €, on the normalized number
of examples «, for K=3 and M =2: (a) the lengths of student vectors,
(b) the correlation between student vectors, (c) the overlap between
various student and teacher vectors, and (d) the generalization error.

between student and teacher vectors (Fig.1c) displays a small « behav-
ior dominated by an undifferentiated symmetric solution, followed by
a transition onto the specialization required to obtain perfect general-
ization. The evolution of the generalization error is shown in Fig.1d.

3 Optimal learning parameters

On-line methods are often sensitive to the choice of learning parameters
and in particular the choice of learning rate; if chosen too large the
learning process may diverge, but if 7 is too small then convergence can
take an extremely long time. The optimal learning rate will also vary
substantially over time and may require annealing asymptotically. Most
existing analytical results for defining optimal learning rates concentrate
on the asymptotic regime where the system may be linearized.

The naive approach to learning rate optimization is to consider the
fastest rate of decrease in generalization error as a measure of opti-
mality. To find the locally optimal learning rate one minimizes de,/deo,



using Egs.(2), exploiting the fact that the change in €, over time depends
exclusively on the overlaps. The expression obtained for the locally op-
timal learning rate may be useful for some phases of the learning process
but is useless for others (Rattray and Saad (1998)).

A more appropriate measure of optimality is the total reduction in gen-
eralization error over the entire learning process as in Saad and Rattray
(1997). With this measure one can then define the globally optimal learn-
ing rate in a given time-window [a, ] to be that which provides the
largest decrease in generalization error between these two times:

Aey(n) = /aﬁ do = ./alc(n,a) da . (3)

ag

Since the generalization error depends solely on the overlaps @), R and
T, which are the dynamical variables (T remains fixed here), we can
expand the integrand in terms of these variables,
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The last two terms in equation (4) force the correct dynamics using sets
of Lagrange multipliers u;,, and v;;, corresponding to the equations of mo-
tion for R;, and ;i respectively. Variational minimization of the inte-
gral in equation (3) with respect to the dynamical variables leads to a set
of coupled differential equations for the Lagrange multipliers along with
a set of boundary conditions. Solving these equations over the interval
[ag, o] determines necessary conditions for  to maximize Aey(n). The
theory is completely general and may be employed for different learn-
ing parameters (e.g., regularization parameters as in Saad and Rattray
(1998), site dependent learning rates), various learning scenarios (struc-
turally unrealisable or where examples are corrupted by noise) and for
obtaining optimal learning rules (Rattray and Saad (1997).

4 Natural Gradient Descent

The same theoretical framework may be used for examining novel train-
ing methods. Natural gradient descent (NGD) was recently proposed
by Amari (1998) as a principled alternative to standard on-line gradient
descent (GD). When learning to emulate a stochastic rule with some
probabilistic model, e.g. a feed-forward neural network, NGD has the
desirable properties of asymptotic optimality, given a sufficiently rich
model which is differentiable with respect to its parameters, and invari-
ance to re-parameterization of our model distribution. These properties



are achieved by viewing the parameter space of the model as a Rieman-
nian space in which local distance is defined by the Kullback-Leibler
divergence. The Fisher information matrix provides the appropriate
metric in this space. If the training error is defined as the negative log-
likelihood of the data under our probabilistic model, then the direction
of steepest descent in this Riemannian space is found by premultiplying
the error gradient with the inverse of the Fisher information matrix; this
defines the NGD learning direction.

Studying the learning performance of NGD in the case of isotropic tasks
and structurally matched student and teacher (K = M and T'=T0p,)
we determined generic behaviour in terms of task complexity K and non-
linearity 7' (Rattray et al (1998)). An analysis of the transient, using
globally optimal learning parameters reveals that trapping time in the
symmetric phase for the NGD optimized system scales as K2, compared
to a scaling of K8/3 for optimal GD. Asymptotically, NGD saturates the
universal bounds on generalization performance and provides a signifi-
cant improvement over optimized GD, especially for small 7'

However, in practical applications there will be an increased cost re-
quired in estimating and inverting the Fisher information matrix as it
requires an average over the input distribution and a matrix inversion.
An on-line matrix momentum algorithm (Orr and Leen (1994)) was in-
troduced in order to invert an estimate of the Hessian efficiently on-line.
We propose to use this method to compute the inverse of the Fisher
information matrix as required for NGD. This method is particularly
efficient since the inversion is replaced by a matrix-vector multiplication
which can be carried out by a back-propagation step. Since the true
Fisher information matrix will not be known in general we use a single
step approximation of it, which can be determined on-line. We com-
pared the efficiency of the proposed matrix momentum NGD with that
of standard GD and true NGD in training two-layer networks. It turns
out to provide a significant improvement over gradient descent learning
but with some sensitivity to parameter choice, due to noise in the Fisher
information estimate (Scarpetta et al (1999)).

5 Restricted Training Sets

In a realistic scenario the number of training examples scales with the
number of free parameters, and examples are therefore sampled with
repetition. This gives rise to correlations between the network parame-
ters and the training examples, which clearly affect the learning process.
One of the most significant aspects of having a fixed example set is the
distinction between the two key performance measures: the training er-
ror, measuring the network performance with respect to the restricted
training set, and the test (generalisation) error, calculated for all pos-



sible inputs sampled from the true distribution. The former may be
monitored in practical training scenarios, while the latter can only be
assessed. Another important aspect of learning from restricted training
sets which have been corrupted by noise is the emergence of overfitting
and the need to employ regularization techniques (e.g., weight decay,
early stopping - see Bishop (1995)).

The fundamental difference between the infinite and restricted training
set scenarios is that the joint probability distribution P(x,y) for the
student and teacher node activations, which is Gaussian in the former
case, takes here a more general form, which depends on the training
patterns and changes dynamically during the learning process. In fact,
we define P(x,y) as one of the macroscopic variables to be monitored
continuously, together with the overlaps R and @ (Coolen and Saad
(2000)). To follow the dynamics, one derives a set of coupled differential
equations describing the evolution of the macroscopic variables in the
limit N — oco. This set of equations cannot be closed in general; closure
is obtained by invoking the dynamical replica theory. The resulting
equations can be solved numerically with some simplifications.

The solutions describe the dynamics of both training and generalization
errors (and the various overlaps, Coolen et al (2000), Xiong and Saad
(2000)), provide insight to the link between the number of examples and
the breaking of internal symmetries as well as some asymptotic scaling
laws. Our ability to provide analytical solutions is limited due to the
complexity of the equations; however, such solutions are highly desirable
for deriving analytically generic scaling laws in both the symmetric phase
and asymptotically, and to make a quantitative link between the noise
level and the optimal regularization to be used.

6 Conclusion

We showed how the methods of statistical physics can provide insight
into the dynamics of on-line learning as well as play an important role
in defining optimal learning parameters and in examining the properties
of new learning algorithms. Several open questions remain, for instance,
finding principled methods for optimising the generalisation ability in
the case of restricted training sets and the dependence of the length of
the symmetric phase on the number of training examples.
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