
The Theory of On-Line Learning -A Statisti
al Physi
s Approa
hD. SaadThe Neural Computing Resear
h GroupUniversity of Aston, Birmingham, B4 7ET, UKAbstra
t: In this paper we review re
ent theoreti
al approa
hes for analysingthe dynami
s of on-line learning in multilayer neural networks using methodsadopted from statisti
al physi
s. The analysis is based on monitoring a set ofma
ros
opi
 variables from whi
h the generalisation error 
an be 
al
ulated. A
losed set of dynami
al equations for the ma
ros
opi
 variables is derived an-alyti
ally and solved numeri
ally. The theoreti
al framework is then employedfor de�ning optimal learning parameters and for analysing the in
orporationof se
ond order information into the learning pro
ess using natural gradientdes
ent and matrix-momentum based methods. We will also brie
y explainan extension of the original framework for analysing the 
ase where trainingexamples are sampled with repetition.1 Introdu
tionLayered neural networks are powerful nonlinear information pro
ess-ing systems, 
apable of implementing arbitrary 
ontinuous and dis
reteinput-output maps to any desired a

ura
y, given a suÆ
ient number ofhidden nodes and a suÆ
iently large example set. They have been em-ployed su

essfully in a variety of regression and 
lassi�
ation tasks, andhave been studied using a wide range of methods (for a review see Bishop(1995)). On-line learning refers to the iterative modi�
ation of the net-work parameters a

ording to a predetermined training rule, followingsu

essive presentations of single training examples, ea
h representinga spe
i�
 input ve
tor and the 
orresponding output. On-line learn-ing is one of the leading te
hniques in training large neural networks,espe
ially via gradient des
ent on a di�erentiable error measure.In this review we fo
us on the use of methods from non-equilibriumstatisti
al me
hani
s, for analysing on-line learning in multilayer neu-ral network. We 
on
entrate on our 
ontribution to this area and showhow these methods 
an be employed to monitor the learning dynami
s,parti
ularly the evolution of the generalisation error, to de�ne optimallearning parameters and to devise and examine improved learning meth-ods. For a general review see Saad (1998) and Ma
e and Coolen (1998).The paper is organised as follows: In se
tion 2 we will derive a 
ompa
tdes
ription of the training dynami
s using a set of ma
ros
opi
 variables,



2setting up the main theoreti
al framework. This will then be employedto derive optimal training parameters (se
tion 3), to examine analyti-
ally the eÆ
a
y of natural gradient des
ent (se
tion 4), and to suggestand examine pra
ti
al alternatives using matrix-momentum based meth-ods. In se
tion 5 we will explain how the method 
an be extended tohandle s
enarios where training examples are sampled with repetition.In se
tion 6 we will point to the main remaining open questions.2 Learning in multilayer neural networksFor setting up the basi
 framework, as in Saad and Solla (1995a, 1995b),we 
onsider a learning s
enario whereby a feed-forward neural networkmodel, the `student', emulates an unknown mapping, the `tea
her', givenexamples of the tea
her mapping (in this 
ase another feed-forward neu-ral network); here we restri
t the derivation and the examples to thenoiseless 
ase although more general s
enarios where training examplesare 
orrupted by noise may also be 
onsidered. This provides a rathergeneral learning s
enario sin
e both student and tea
her 
an represent avery broad 
lass of fun
tions. Student performan
e is typi
ally measuredby the generalization error, whi
h is the student's expe
ted error on anunseen example. The obje
t of training is to minimize the generalizationerror by adapting the student network's parameters appropriately.We 
onsider a student mapping from an N -dimensional input spa
e � 2IRN onto a s
alar fun
tion �(J; �)=PKi=1 g (Ji��), whi
h represents a softCommittee ma
hine (SCM - Biehl and S
hwarze (1995)), where g(x)�erf(x=p2) is the a
tivation fun
tion of the hidden units; J � fJig1�i�Kis the set of input-to-hidden adaptive weights for the K hidden nodesand the hidden-to-output weights are set to one. The a
tivation ofhidden node i in the student under presentation of the input pattern�� is denoted x�i = Ji ���. This 
on�guration preserves most propertiesof a general multi-layer network and 
an be extended to a

ommodateadaptive hidden-to-output weights as shown by Riegler and Biehl (1995).Training examples are of the form (��; ��) where �=1; 2; :: labels ea
hindependently drawn example in a sequen
e. Components of the in-dependently drawn input ve
tors �� are un
orrelated random variableswith zero mean and unit varian
e. The 
orresponding output �� is givenby a tea
her of a similar 
on�guration to the student ex
ept for a pos-sible di�eren
e in the number M of hidden units: ��=PMn=1 g (Bn ���),where B�fBng1�n�M is the set of input-to-hidden adaptive weights fortea
her hidden nodes. The a
tivation of hidden node n in the tea
herunder presentation of the input pattern �� is denoted y�n = Bn � ��.Indi
es i; j; k and n;m refer to student and tea
her units respe
tively.



3The error made by the student is given by the quadrati
 deviation,�(J�; ��) � 12 [ �(J�; ��)� �� ℄2 = 12� KXi=1 g(x�i )� MXn=1 g(y�n) �2 : (1)This training error is then used to de�ne the learning dynami
s via a gra-dient des
ent rule for the update of student weights J�+1i = J�i + �N Æ�i ��,where Æ�i � g0(x�i )[PMn=1 g(y�n)�PKj=1 g(x�j )℄ and the learning rate � hasbeen s
aled with the input size N . Performan
e on a typi
al input de-�nes the generalization error �g(J)�h�(J; �)if�g through an average overall possible input ve
tors �.Expressions for the generalization error and learning dynami
s havebeen obtained in the thermodynami
 limit (N !1), and 
an be rep-resented by a set of ma
ros
opi
 variables (order parameters) of theform: Ji �Jk�Qik, Ji �Bn�Rin, and Bn �Bm�Tnm, measuring overlapsbetween student and tea
her ve
tors. The overlaps R and Q be
omethe dynami
al variables of the system while T is de�ned by the task.The learning dynami
s is then de�ned in terms of di�erential equationsfor the ma
ros
opi
 variables with respe
t to the normalized number ofexamples � = �=N playing the role of a 
ontinuous time variable:dRind� = � �in ; dQikd� = �  ik + �2 �ik ; (2)where �in � hÆiynif�g,  ik � hÆixk + Ækxiif�g and �ik � hÆiÆkif�g. Theexpli
it expressions for �in,  ik, �ik and �g depend ex
lusively on theoverlaps Q;R and T (Saad and Solla (1995a,1995b)). Equations (2), de-pend on a 
losed set of parameters and 
an be integrated and iterativelysolved, providing a full des
ription of the order parameters evolutionfrom whi
h the evolution of the generalization error 
an be derived.Typi
al plots of the learning dynami
s are presented in Fig.1. In this ex-ample the learning pro
ess prunes unne
essary nodes when the studentnetwork has ex
essive resour
es. A tea
her with M = 2 hidden units
hara
terized by Tnm=n Ænm is to be learned by a student with K=3hidden units. The initial values of the order parameters are Rin=0 forall i; n, Qik=0 for all i 6=k, while the norms Qii of the student ve
torsare initialized independently from a uniform distribution in the [0; 0:5℄interval. The time evolution of the various order parameters is shownin Fig. 1a-
 for �=1. The pi
ture that emerges is one of spe
ializationwith in
reasing �; asymptoti
ally the �rst student node imitates the �rsttea
her node (Q11=R11=T11) while ignoring the se
ond one (R12=0),the se
ond student node imitates the se
ond tea
her node while ignoringthe �rst one, and the third student node gets eliminated (Q33=0). Theo�-diagonal 
omponents Qik shown in Fig.1b indi
ate that the two sur-viving student ve
tors be
ome in
reasingly un
orrelated. The overlap
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Figure 1: Dependen
e of the overlaps and �g on the normalized numberof examples �, for K=3 and M=2: (a) the lengths of student ve
tors,(b) the 
orrelation between student ve
tors, (
) the overlap betweenvarious student and tea
her ve
tors, and (d) the generalization error.between student and tea
her ve
tors (Fig.1
) displays a small � behav-ior dominated by an undi�erentiated symmetri
 solution, followed bya transition onto the spe
ialization required to obtain perfe
t general-ization. The evolution of the generalization error is shown in Fig.1d.3 Optimal learning parametersOn-line methods are often sensitive to the 
hoi
e of learning parametersand in parti
ular the 
hoi
e of learning rate; if 
hosen too large thelearning pro
ess may diverge, but if � is too small then 
onvergen
e 
antake an extremely long time. The optimal learning rate will also varysubstantially over time and may require annealing asymptoti
ally. Mostexisting analyti
al results for de�ning optimal learning rates 
on
entrateon the asymptoti
 regime where the system may be linearized.The naive approa
h to learning rate optimization is to 
onsider thefastest rate of de
rease in generalization error as a measure of opti-mality. To �nd the lo
ally optimal learning rate one minimizes d�g=d�,



5using Eqs.(2), exploiting the fa
t that the 
hange in �g over time dependsex
lusively on the overlaps. The expression obtained for the lo
ally op-timal learning rate may be useful for some phases of the learning pro
essbut is useless for others (Rattray and Saad (1998)).A more appropriate measure of optimality is the total redu
tion in gen-eralization error over the entire learning pro
ess as in Saad and Rattray(1997). With this measure one 
an then de�ne the globally optimal learn-ing rate in a given time-window [�0; �1℄ to be that whi
h provides thelargest de
rease in generalization error between these two times:��g(�) = Z �1�0 d�gd� d� = Z �1�0 L(�; �) d� : (3)Sin
e the generalization error depends solely on the overlaps Q, R andT , whi
h are the dynami
al variables (T remains �xed here), we 
anexpand the integrand in terms of these variables,L(�; �) = Xin ��g�Rin dRind� +Xik ��g�Qik dQikd� (4)� Xin �in�dRind� � � �in��Xik �ik �dQikd� � �  ik � �2 �ik� :The last two terms in equation (4) for
e the 
orre
t dynami
s using setsof Lagrange multipliers �in and �ik 
orresponding to the equations of mo-tion for Rin and Qik respe
tively. Variational minimization of the inte-gral in equation (3) with respe
t to the dynami
al variables leads to a setof 
oupled di�erential equations for the Lagrange multipliers along witha set of boundary 
onditions. Solving these equations over the interval[�0; �1℄ determines ne
essary 
onditions for � to maximize ��g(�). Thetheory is 
ompletely general and may be employed for di�erent learn-ing parameters (e.g., regularization parameters as in Saad and Rattray(1998), site dependent learning rates), various learning s
enarios (stru
-turally unrealisable or where examples are 
orrupted by noise) and forobtaining optimal learning rules (Rattray and Saad (1997).4 Natural Gradient Des
entThe same theoreti
al framework may be used for examining novel train-ing methods. Natural gradient des
ent (NGD) was re
ently proposedby Amari (1998) as a prin
ipled alternative to standard on-line gradientdes
ent (GD). When learning to emulate a sto
hasti
 rule with someprobabilisti
 model, e.g. a feed-forward neural network, NGD has thedesirable properties of asymptoti
 optimality, given a suÆ
iently ri
hmodel whi
h is di�erentiable with respe
t to its parameters, and invari-an
e to re-parameterization of our model distribution. These properties



6are a
hieved by viewing the parameter spa
e of the model as a Rieman-nian spa
e in whi
h lo
al distan
e is de�ned by the Kullba
k-Leiblerdivergen
e. The Fisher information matrix provides the appropriatemetri
 in this spa
e. If the training error is de�ned as the negative log-likelihood of the data under our probabilisti
 model, then the dire
tionof steepest des
ent in this Riemannian spa
e is found by premultiplyingthe error gradient with the inverse of the Fisher information matrix; thisde�nes the NGD learning dire
tion.Studying the learning performan
e of NGD in the 
ase of isotropi
 tasksand stru
turally mat
hed student and tea
her (K =M and T = TÆnm)we determined generi
 behaviour in terms of task 
omplexityK and non-linearity T (Rattray et al (1998)). An analysis of the transient, usingglobally optimal learning parameters reveals that trapping time in thesymmetri
 phase for the NGD optimized system s
ales as K2, 
omparedto a s
aling of K8=3 for optimal GD. Asymptoti
ally, NGD saturates theuniversal bounds on generalization performan
e and provides a signi�-
ant improvement over optimized GD, espe
ially for small T .However, in pra
ti
al appli
ations there will be an in
reased 
ost re-quired in estimating and inverting the Fisher information matrix as itrequires an average over the input distribution and a matrix inversion.An on-line matrix momentum algorithm (Orr and Leen (1994)) was in-trodu
ed in order to invert an estimate of the Hessian eÆ
iently on-line.We propose to use this method to 
ompute the inverse of the Fisherinformation matrix as required for NGD. This method is parti
ularlyeÆ
ient sin
e the inversion is repla
ed by a matrix-ve
tor multipli
ationwhi
h 
an be 
arried out by a ba
k-propagation step. Sin
e the trueFisher information matrix will not be known in general we use a singlestep approximation of it, whi
h 
an be determined on-line. We 
om-pared the eÆ
ien
y of the proposed matrix momentum NGD with thatof standard GD and true NGD in training two-layer networks. It turnsout to provide a signi�
ant improvement over gradient des
ent learningbut with some sensitivity to parameter 
hoi
e, due to noise in the Fisherinformation estimate (S
arpetta et al (1999)).5 Restri
ted Training SetsIn a realisti
 s
enario the number of training examples s
ales with thenumber of free parameters, and examples are therefore sampled withrepetition. This gives rise to 
orrelations between the network parame-ters and the training examples, whi
h 
learly a�e
t the learning pro
ess.One of the most signi�
ant aspe
ts of having a �xed example set is thedistin
tion between the two key performan
e measures: the training er-ror, measuring the network performan
e with respe
t to the restri
tedtraining set, and the test (generalisation) error, 
al
ulated for all pos-



7sible inputs sampled from the true distribution. The former may bemonitored in pra
ti
al training s
enarios, while the latter 
an only beassessed. Another important aspe
t of learning from restri
ted trainingsets whi
h have been 
orrupted by noise is the emergen
e of over�ttingand the need to employ regularization te
hniques (e.g., weight de
ay,early stopping - see Bishop (1995)).The fundamental di�eren
e between the in�nite and restri
ted trainingset s
enarios is that the joint probability distribution P (x;y) for thestudent and tea
her node a
tivations, whi
h is Gaussian in the former
ase, takes here a more general form, whi
h depends on the trainingpatterns and 
hanges dynami
ally during the learning pro
ess. In fa
t,we de�ne P (x;y) as one of the ma
ros
opi
 variables to be monitored
ontinuously, together with the overlaps R and Q (Coolen and Saad(2000)). To follow the dynami
s, one derives a set of 
oupled di�erentialequations des
ribing the evolution of the ma
ros
opi
 variables in thelimit N!1. This set of equations 
annot be 
losed in general; 
losureis obtained by invoking the dynami
al repli
a theory. The resultingequations 
an be solved numeri
ally with some simpli�
ations.The solutions des
ribe the dynami
s of both training and generalizationerrors (and the various overlaps, Coolen et al (2000), Xiong and Saad(2000)), provide insight to the link between the number of examples andthe breaking of internal symmetries as well as some asymptoti
 s
alinglaws. Our ability to provide analyti
al solutions is limited due to the
omplexity of the equations; however, su
h solutions are highly desirablefor deriving analyti
ally generi
 s
aling laws in both the symmetri
 phaseand asymptoti
ally, and to make a quantitative link between the noiselevel and the optimal regularization to be used.6 Con
lusionWe showed how the methods of statisti
al physi
s 
an provide insightinto the dynami
s of on-line learning as well as play an important rolein de�ning optimal learning parameters and in examining the propertiesof new learning algorithms. Several open questions remain, for instan
e,�nding prin
ipled methods for optimising the generalisation ability inthe 
ase of restri
ted training sets and the dependen
e of the length ofthe symmetri
 phase on the number of training examples.Referen
esAMARI, S. (1998): Natural Gradient Works EÆ
iently in Learning.Neural Computation, Vol. 10, 251{276.BIEHL, M. and SCHWARZE, H. (1995): Learning by Online GradientDes
ent. Jour. Phys. A, Vol. 28, 643{656.



8BISHOP, C. M. (1995): Neural Networks for Pattern Re
ognition. Ox-ford University Press, Oxford.COOLEN, A. C. C. and SAAD, D. (2000): Dynami
s of Learning withRestri
ted Training Sets. Phys. Rev. E., Vol. 62, 5444{5487.COOLEN, A. C. C., SAAD, D. and XIONG, Y. (2000): On-line Learn-ing from Restri
ted Training Sets in Multilayer Neural Networks. Euro-phys. Lett., Vol. 51, 691{697.MACE, C. W. H. and COOLEN, A. C. C. (1998): Statisti
al Me
hani
alAnalysis of the Dynami
s of Learning in Per
eptrons. Statisti
s andComputing, Vol. 8 55{88.ORR, G. B. and LEEN, T. K. (1994):Using Curvature Information forFast Sto
hasti
 Sear
h. in Cowan, Tesauro and Alspe
tor (Eds.): Ad-van
es in Neural Information Pro
essing Systems, NIPS Vol. 6, MorganKaufmann, San Mateo CA, 477{484.RATTRAY, M. and SAAD, D. (1997): Globally Optimal Rules for On-line Learning in Multilayer Networks. Jour. Phys. A, Vol. 30, L771{776.RATTRAY, M. and SAAD, D. (1998): An analysis of on-line trainingwith optimal learning rates. Phys. Rev. E., Vol. 58, 6379{6391.RATTRAY, M., SAAD, D. and AMARI, S. (1998): Natural GradientDes
ent for On-line Learning. Phys. Rev. Lett., Vol. 81, 5461{5464.RIEGLER, P. and BIEHL, M. (1995): Online Ba
kpropagation in TwoLayered Neural Networks. Jour. Phys. A, Vol. 28, L507{513.SAAD, D. (Editor) (1998): On-Line Learning in Neural Networks. Pub-li
ations of the Newton Institute, Cambridge University Press, Cam-bridge.SAAD, D. and RATTRAY, M. (1997): Globally Optimal Parametersfor On-line Learning in Multilayer Networks. Phys. Rev. Lett., Vol. 79,2578{2581.SAAD, D. and RATTRAY, M. (1998): Learning with Regularizers inMultilayer Neural Networks. Phys. Rev. E., Vol. 57, 2170{2176.SAAD, D. and SOLLA, S. A. (1995): Exa
t Solution for On-Line Learn-ing in Multilayer Neural Networks. Phys. Rev. Lett., Vol. 74, 4337{4340.SAAD, D. and SOLLA, S. A. (1995): On-Line Learning in Soft Com-mittee Ma
hines. Phys. Rev. E, Vol. 52, 4225{4243.SCARPETTA, S., RATTRAY, M. and SAAD, D. (1999): Matrix Mo-mentum for Pra
ti
al Natural Gradient Learning. Jour. Phys. A, Vol.32, 4047{4059.XIONG, Y. and SAAD, D. (2001): Noise, Regularizers and UnrealizableS
enarios in On-line Learning From Restri
ted Training Sets. submitted.


