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Error-
orre
ting 
ode on a 
a
tus: a solvable modelR. Vi
ente1, D. Saad1 and Y. Kabashima21 The Neural Computing Resear
h Group, Aston University, Birmingham B4 7ET, UK2 Department of Computational Intelligen
e and Systems S
ien
e, Tokyo Institute ofTe
hnology, Yokohama 2268502, Japan(re
eived ; a

epted )PACS. 89.90+n { Other areas of general interest to physi
ists..PACS. 89.70+
 { Information Theory.PACS. 05.50+q { Latti
e theory and statisti
s; Ising problems.Abstra
t. { An exa
t solution to a family of parity 
he
k error-
orre
ting 
odes is provided bymapping the problem onto a Husimi 
a
tus. The solution obtained in the thermodynami
 limitre
overs the repli
a symmetri
 theory results and provides a very good approximation to �nitesystems of moderate size. The probability propagation de
oding algorithm emerges naturallyfrom the analysis. A phase transition between de
oding su

ess and failure phases is foundto 
oin
ide with an information-theoreti
 upper bound. The method is employed to 
ompareGallager and MN 
odes.

The theory of error-
orre
ting 
odes 
on
entrates on the eÆ
ient introdu
tion of redundan
yto given messages for prote
ting the information 
ontent against 
orruption. The theoreti
alfoundations of this area were laid by Shannon's seminal work [1℄ and have been developingever sin
e (see [2℄ and referen
es therein). One of the main results obtained in this �eld isthe 
elebrated 
hannel 
oding theorem stating that there exists a 
ode su
h that the averagemessage error probability PE , when maximum likelihood de
oding is used, is upper boundedby PE < e�M E(R), where M is the length of the en
oded transmission and R = ( messageinformation 
ontent )=M is the 
ode rate. The exponent E(R) is positive for 
ode rates belowthe 
hannel 
apa
ity, 
orresponding to the maximal mutual information between the re
eivedand the transmitted signals, and vanishes above it. For rates R below the 
hannel 
apa
ity,
ommonly termed Shannon's bound, the error probability 
an be made arbitrarily small.The 
hannel 
oding theorem is based on unstru
tured random 
odes and impra
ti
al de-
oders as maximum likelihood [2℄ or typi
al sets [3℄. In the last �fty years several pra
ti
almethods have been proposed and implemented, but none has been able to saturate Shannon'sbound. In 1963 Gallager [4℄ proposed a 
oding s
heme involving sparse linear transformationsof binary messages that was forgotten soon after, in part due to the su

ess of 
onvolutional
odes [2℄ and the 
omputational limitations of the time. Gallager 
odes have been re
entlyredis
overed by Ma
Kay and Neal (MN) that independently proposed a 
losely related 
ode [3℄.This almost 
oin
ided with the breakthrough dis
overy of the high-performan
e turbo 
odes [5℄.Typeset using EURO-TEX



2 EUROPHYSICS LETTERSVariations of Gallager 
odes have displayed performan
e 
omparable (and sometimes superior)to turbo 
odes [6℄, qualifying them as state-of-the-art 
odes.Statisti
al physi
s has been applied to the analysis of error-
orre
ting 
odes as an alternativeto information theory methods yielding some new interesting dire
tions and suggesting newhigh-performan
e 
odes [7℄. Sourlas was the �rst to relate error-
orre
ting 
odes to spin glassmodels [8℄, showing that the Random Energy Model (REM)[9, 10, 11℄ 
an be thought of asan ideal 
ode, 
apable of saturating Shannon's bound at vanishing 
ode rates. This workwas extended re
ently to the 
ase of �nite 
ode rates [12, 13℄ and has been further developedfor analysing MN 
odes of various stru
tures [14, 15, 16℄. All of the analyses mentionedabove, as well as the re
ent turbo 
ode analysis [17℄, relied on the repli
a approa
h under theassumption of repli
a symmetry. It is also worthwhile mentioning a di�erent approa
h, usedin the analysis of 
onvolutional 
odes [18℄, of employing the transfer-matrix formalism andpower series expansions. However, to date, the only model that 
an be analysed exa
tly is theREM that 
orresponds to an impra
ti
al 
oding s
heme of a vanishing 
ode rate.In this letter we present an exa
t analysis to the performan
e of Gallager error-
orre
ting
odes based on a generalisation of Bethe latti
es known as the Husimi 
a
tus [19℄. Wesolve the model re
overing results obtained by the repli
a symmetri
 theory and �nding thenoise level that 
orresponds to the phase transition between perfe
t de
oding and a de
odingfailure phase, this appears to 
oin
ide with existing information-theoreti
 upper bounds. Weexperimentally show that the solution a

urately approximates Gallager 
odes of moderatesize. We also show that the probability propagation (PP) de
oding algorithm emerges naturallyfrom this framework allowing for the analysis of the pra
ti
al de
oding performan
e. Finally,we summarise the di�eren
es between Gallager and MN 
odes, whi
h are somewhat obs
urein the information theory literature but be
ome expli
it in this framework.We will 
on
entrate here on a simple 
ommuni
ation model whereby messages are repre-sented by binary ve
tors and are 
ommuni
ated through a Binary Symmetri
 Channel (BSC)where un
orrelated bit 
ips appear with probability f . A Gallager 
ode is de�ned by a binarymatrix A = [C1 j C2℄, 
on
atenating two very sparse matri
es known to both sender andre
eiver, with C2 (of dimensionality (M �N)� (M �N)) being invertible; the matrix C1 isof dimensionality (M �N)�N .En
oding refers to the produ
tion of an M dimensional binary 
ode word t 2 f0; 1gM(M > N) from the original message � 2 f0; 1gN by t = GT � (mod 2), where all operationsare performed in the �eld f0; 1g and are indi
ated by (mod 2). The generator matrix is G =[I j C�12 C1℄ (mod 2), where I is the N �N identity matrix, implying that AGT (mod 2) = 0and that the �rst N bits of t are set to the message �. In regular Gallager 
odes the numberof non-zero elements in ea
h row of A is 
hosen to be exa
tly K. The number of elementsper 
olumn is then C = (1�R)K, where the 
ode rate is R = N=M (for unbiased messages).The en
oded ve
tor t is then 
orrupted by noise represented by the ve
tor � 2 f0; 1gM with
omponents independently drawn from P (�) = (1 � f)Æ(�) + fÆ(� � 1). The re
eived ve
tortakes the form r =GT � + � (mod 2).De
oding is 
arried out by multiplying the re
eived message by the matrix A to produ
ethe syndrome ve
tor z = Ar = A� (mod 2) from whi
h an estimate b� for the noise ve
tor
an be produ
ed. An estimate for the original message is then obtained as the �rst N bits ofr + b� (mod 2). The Bayes optimal estimator (also known as marginal posterior maximiser,MPM) for the noise is de�ned as b�j = argmax�jP (�j j z). The performan
e of this estimator
an be measured by the probability of bit error pb = 1 � 1=M PMj=1 Æ[b�j ; �j ℄, where Æ[; ℄ isKrone
ker's delta. Knowing the matri
es C2 and C1, the syndrome ve
tor z and the noise



R. VICENTE et al. Error-
orre
ting 
ode on a 
a
tus. 3
τ j

k

µ

τFig. 1. { First step in the 
onstru
tion of Husimi 
a
tus with K = 3 and 
onne
tivity C = 4.level f it is possible to apply Bayes' theorem and 
ompute the posterior probabilityP (� j z) = 1Z� [z = A� (mod 2)℄P (� ); (1)where �[X ℄ is an indi
ator fun
tion providing 1 if X is true and 0 otherwise. To obtain theMPM one has to 
ompute the marginal posterior P (�j j z) =Pi6=j P (� j z), whi
h in generalrequires O(2M ) operations, and thus be
omes impra
ti
al for long messages. To solve thisproblem one 
an use the sparseness of A to design algorithms that require O(M) operationsto perform the same task. One of these methods is the probability propagation algorithm (PP),also known as belief propagation, sum-produ
t algorithm (see [20℄) or generalised distributivelaw [21℄.The 
onne
tion to statisti
al physi
s be
omes 
lear when the �eld f0; 1g is repla
ed by Isingspins f�1g and mod 2 sums by produ
ts [8℄. The syndrome ve
tor a
quires the form of amulti-spin 
oupling J� = Qj2L(�) �j where j = 1; � � � ;M and � = 1; � � � ; (M � N). The Kindi
es of nonzero elements in the row � of A are given by L(�) = fj1; � � � ; jKg, and in a
olumn l are given by M(l) = f�1; � � � ; �Cg.The posterior (1) 
an be written as the Gibbs distribution [14, 15℄:P (� j J ) = 1Z lim�!1 exp [��H�(� ;J )℄ (2)H�(� ;J ) = �M�NX�=1 0�J� Yj2L(�) �j � 11A� F� MXj=1 �j :The external �eld 
orresponds to the prior probability over the noise and has the formF = atanh(1 � 2f). Note that the Hamiltonian itself depends on the inverse temperature�. The disorder is trivial and 
an be gauged as J� 7! 1 by using �j 7! �j�j . The resultingHamiltonian is a multi-spin ferromagnet with �nite 
onne
tivity in a random �eld hj =��1F�j . The de
oding pro
ess 
orresponds to �nding zero temperature lo
al magnetisationsmj = lim�!1h�ji� and 
al
ulating estimates as b�j = sgn(mj).In the f�1g representation the probability of bit error, a
quires the formpb = 12 � 12M MXj=1 �j sgn(mj); (3)
onne
ting the 
ode performan
e with the 
omputation of lo
al magnetisations.A Husimi 
a
tus with 
onne
tivity C is generated starting with a polygon ofK verti
es withone Ising spin in ea
h vertex (generation 0). All spins in a polygon intera
t through a single
oupling J� and one of them is 
alled the base spin. In �gure 1 we show the �rst step in the
onstru
tion of a Husimi 
a
tus, in a generi
 step the base spins of the n�1 generation polygons,



4 EUROPHYSICS LETTERSnumbering (C � 1)(K � 1), are atta
hed to K � 1 verti
es of a generation n polygon. Thispro
ess is iterated until a maximum generation nmax is rea
hed, the graph is then 
ompletedby atta
hing C un
orrelated bran
hes of nmax generations at their base spins. In that wayea
h spin inside the graph is 
onne
ted to exa
tly C polygons. The lo
al magnetisation at the
entre mj 
an be obtained by �xing boundary (initial) 
onditions in the 0-th generation anditerating re
ursion equations until generation nmax is rea
hed. Carrying out the 
al
ulationin the thermodynami
 limit 
orresponds to having nmax � lnM generations and M !1.The Hamiltonian of the model has the form (2) where L(�) denotes the polygon � of thelatti
e. Due to the tree-like stru
ture, lo
al quantities far from the boundary 
an be 
al
ulatedre
ursively by spe
ifying boundary 
onditions. The typi
al de
oding performan
e 
an thereforebe 
omputed exa
tly without resorting to repli
a 
al
ulations [22℄.We adopt the approa
h presented in [19℄ where re
ursion relations for the probabilitydistribution P�k(�k) for the base spin of the polygon � is 
onne
ted to (C � 1)(K � 1)distributions P�j(�j), with � 2 M(j) n � (all polygons linked to j but �) of polygons inthe previous generation:P�k(�k) = 1N Trf�jg exp24�0�J��k Yj2L(�)nk �j � 11A+ F�k35 Y�2M(j)n� Yj2L(�)nk P�j(�j); (4)where the tra
e is over the spins �j su
h that j 2 L(�) n k.The e�e
tive �eld bx�j on a base spin j due to neighbours in polygon � 
an be written as :exp (�2bx�j) = e2F P�j(�)P�j(+) ; (5)Combining (4) and (5) one �nds the re
ursion relation:exp (�2bx�k) = Trf�jg exp h��J�Qj2L(�)nk �j +Pj2L(�)nk(F +P�2M(j)n� bx�j)�jiTrf�jg exp h+�J�Qj2L(�)nk �j +Pj2L(�)nk(F +P�2M(j)n� bx�j)�ji : (6)By 
omputing the tra
es and taking � !1 one obtains:bx�k = atanh24J� Yj2L(�)nk tanh(F + X�2M(j)n� bx�j)35 (7)The e�e
tive lo
al magnetisation due to intera
tions with the nearest neighbours in one bran
his given by bm�j = tanh(bx�j). The e�e
tive lo
al �eld on a base spin j of a polygon � due to C�1bran
hes in the previous generation and due to the external �eld is x�j = F +P�2M(j)n� bx�j ;the e�e
tive lo
al magnetisation is, therefore, m�j = tanh(x�j). Equation (7) 
an then berewritten in terms of bm�j and m�j and the PP equations [3, 12, 20℄ 
an be re
overed:m�k = tanh0�F + X�2M(j)n� atanh (bm�k)1A bm�k = J� Yj2L(�)nkm�j (8)On
e the magnetisations on the boundary (0-th generation) are assigned, the lo
al mag-netisation mj in the 
entral site is determined by iterating (8) and 
omputing :mj = tanh0�F + X�2M(j) atanh (bm�j)1A (9)
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Fig. 2. { (a) Mean normalised overlap between the a
tual noise ve
tor � and de
oded noise b� forK = 4and C = 3 (therefore R = 1=4). Theoreti
al values (2), experimental averages over 20 runs for 
odeword lengths M = 5000 (�) and M = 100 (full line). (b) Transitions for K = 6. Shannon's bound(dashed line), information theory upper bound (full line) and thermodynami
 transition obtainednumeri
ally (Æ). Theoreti
al (3) and experimental (+,M = 5000 averaged over 20 runs) PP de
odingtransitions are also shown. In both �gures, symbols are 
hosen larger than the error bars.The free energy 
an be obtained by integration as (8) represents extrema of the free energy[15, 16, 23℄.By applying the gauge transformation J� 7! 1 and �j 7! �j�j , assigning the probabilitydistributions P0(x) to boundary �elds and averaging over random lo
al �elds F� one obtainsfrom (7) the re
ursion relation in the spa
e of probability distributions P (x) [23℄:Pn(x) = Z C�1Yl=1 dbxl bPn�1(bxl) *Æ "x� F� � C�1Xl=1 bxl#+�bPn�1(bx) = Z K�1Yj=1 dxj Pn�1(xj) Æ 24bx� atanh0�K�1Yj=1 tanh(xj)1A35 ; (10)where Pn(x) is the distribution of e�e
tive �elds at the n-th generation due to the previousgenerations and external �elds, in the thermodynami
 limit the distribution far from theboundary will be P1(x) (generation n!1). The lo
al �eld distribution at the 
entral site is
omputed by repla
ing C � 1 by C in (10), taking into a

ount C polygons in the generationjust before the 
entral site, and inserting the distribution P1(x). Equations (10) are identi
alto those obtained by the repli
a symmetri
 theory as in [14, 15, 16℄.By setting initial (boundary) 
onditions P0(x) and numeri
ally iterating (10), for C � 3 one
an �nd, up to some noise level fs, a single stable �xed point at in�nite �elds, 
orrespondingto a totally aligned state (su

essful de
oding). At fs a bifur
ation o

urs and two other �xedpoints appear, stable and unstable, the former 
orresponding to a misaligned state (de
odingfailure). This situation is identi
al to that one observed in [14, 15, 16℄. In terms of thelo
al �elds distribution Pn(x), the aligned state 
orresponds to a runaway wave travelling tox(n)!1 with n being the time variable. The misaligned state 
orresponds to a stable wavelo
ated at x(n) � O(1). Representing the distributions (10) by the �rst 
ummulants only, one
an obtain a rough approximation in terms of one dimensional maps showing a bifur
ation atsome noise level ~fs, this approa
h will be further exploited elsewhere.The pra
ti
al PP de
oding is performed by setting initial 
onditions as m�j = 1 � 2f to
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odes Gallager MNdynami
al variables M N+M
onstraints M-N Munbiased messages 
oding for all K K =1,2Shannon's bound K!1 K� 3 and unbiased messages
orrespond to the prior probabilities and iterating (8) until stationarity or a maximum numberof iterations is attained [3℄. The estimate for the noise ve
tor is then produ
ed by 
omputingb�j = sign(mj). At ea
h de
oding step the system 
an be des
ribed by histograms of thevariables (8), this is equivalent to iterating (10) (a similar idea was presented in [3, 6℄). Belowfs the pro
ess always 
onverges to the su

essful de
oding state, above fs it 
onverges to thesu

essful de
oding only if the initial 
onditions are �ne tuned; in general the pro
ess 
onvergesto the failure state. In Fig.2a we show the theoreti
al mean overlap between a
tual noise � andthe estimate b� as a fun
tion of the noise level f as well as results obtained with PP de
oding.Information theory provides an upper bound for the maximum attainable 
ode rate byequalising the maximal information 
ontents of the syndrome ve
tor z and of the noise estimateb� [3, 16℄. The thermodynami
 phase transition obtained by �nding the stable �xed points of(10) and their free energies interestingly 
oin
ides with this upper bound within the pre
isionof the numeri
al 
al
ulation. Note that this predi
ted performan
e is impra
ti
al as it requiresO(2M ) operations for an exhaustive sear
h for the global minimum of the free energy. InFig.2b we show the thermodynami
 transition for K = 6 
ompared with the upper bound,Shannon's bound and fs values.The geometri
al stru
ture of a Gallager 
ode de�ned by the matrix A 
an be represented bya bipartite graph (Tanner graph) [20℄ with bit and 
he
k nodes. Ea
h 
olumn j of A representsa bit node and ea
h row � represents a 
he
k node, A�j = 1 means that there is an edge linkingbit j to 
he
k �. It is possible to show [24℄ that for a random ensemble of regular 
odes, theprobability of 
ompleting a 
y
le after walking l edges starting from an arbitrary node is upperbounded by P [l;K;C;M ℄ � l2Kl=M . It implies that for very large M only 
y
les of at leastorder lnM survive. In the thermodynami
 limit M !1 the probability P [l;K;C;M ℄! 0 forany �nite l and the bulk of the system is e�e
tively tree-like. By mapping ea
h 
he
k node toa polygon with K bit nodes as verti
es, one 
an map a Tanner graph into a Husimi latti
e thatis e�e
tively a tree for any number of generations of order less than lnM . It is experimentallyobserved that the number of iterations of (8) required for 
onvergen
e does not s
ale withthe system size, therefore, it is expe
ted that the interior of a tree-like latti
e approximatesa Gallager 
ode with in
reasing a

ura
y as the system size in
reases. Fig.2a shows that theapproximation is fairly good even for sizes as small as M = 100. Note that although thelo
al magnetisations mj for a loopy graph are not generally expe
ted to 
onverge to the values
omputed in a tree, sgn(mj) seems to do so. A thorough dis
ussion on this respe
t for somespe
i�
 graphi
al models 
an be found in [25℄.In [3℄ Ma
Kay and Neal introdu
ed a variation on Gallager 
odes termed MN 
odes. Themain di�eren
e between these 
odes is that for MN 
odes the syndrome ve
tor 
ontains alsoinformation on the original message in the form z = Cs�+Cn�. The message itself is dire
tlyestimated and there is no need for re
overing the noise ve
tor. Ma
Kay has formulated andproved a number of theorems simultaneously for both 
odes using the fa
t that if both messageand noise are sampled from the same distribution, these 
odes 
an be formulated as the same
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tus. 7estimation problem, i.e., �nding the most probable ve
tor x that satis�es z = Ax, given thematrix A and a prior distribution P (x). Using statisti
al physi
s, we previously analysed MN
odes [14, 15, 16℄. It is interesting to note that in spite of the similarity between the two
odes, there are some important di�eren
es in their dependen
e on the parameters K and C.In parti
ular, Shannon's bound is only attainable by Gallager 
odes if K ! 1, in 
ontrastto results obtained for MN 
odes. De
oding of unbiased messages is generally possible withGallager 
odes, but su

essful 
onvergen
e is only guaranteed (in the thermodynami
 limit)for K = 1; 2 in the MN 
odes. We outlined those di�eren
es in table I.To summarise, we solved exa
tly, without resorting to the repli
a method, a system rep-resenting a Gallager 
ode on a Husimi 
a
tus. The results obtained are in agreement withthe repli
a symmetri
 
al
ulation and with numeri
al experiments 
arried out in systemsof moderate size. The framework 
an be easily extended to MN and similar 
odes. Webelieve that methods of statisti
al physi
s are 
omplimentary to those used in the statisti
alinferen
e 
ommunity and 
an enhan
e our understanding of general graphi
al models beyonderror-
orre
ting 
odes. ***We a
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