EUROPHYSICS LETTERS 5 May 2000
Europhys. Lett., (), pp. (2000)

Error-correcting code on a cactus: a solvable model
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Abstract. — An exact solution to a family of parity check error-correcting codes is provided by
mapping the problem onto a Husimi cactus. The solution obtained in the thermodynamic limit
recovers the replica symmetric theory results and provides a very good approximation to finite
systems of moderate size. The probability propagation decoding algorithm emerges naturally
from the analysis. A phase transition between decoding success and failure phases is found
to coincide with an information-theoretic upper bound. The method is employed to compare
Gallager and MN codes.

The theory of error-correcting codes concentrates on the efficient introduction of redundancy
to given messages for protecting the information content against corruption. The theoretical
foundations of this area were laid by Shannon’s seminal work [1] and have been developing
ever since (see [2] and references therein). One of the main results obtained in this field is
the celebrated channel coding theorem stating that there exists a code such that the average
message error probability Pg, when maximum likelihood decoding is used, is upper bounded
by Pp < e M E(F) where M is the length of the encoded transmission and R = ( message
information content )/M is the code rate. The exponent E(R) is positive for code rates below
the channel capacity, corresponding to the maximal mutual information between the received
and the transmitted signals, and vanishes above it. For rates R below the channel capacity,
commonly termed Shannon’s bound, the error probability can be made arbitrarily small.

The channel coding theorem is based on unstructured random codes and impractical de-
coders as maximum likelihood [2] or typical sets [3]. In the last fifty years several practical
methods have been proposed and implemented, but none has been able to saturate Shannon’s
bound. In 1963 Gallager [4] proposed a coding scheme involving sparse linear transformations
of binary messages that was forgotten soon after, in part due to the success of convolutional
codes [2] and the computational limitations of the time. Gallager codes have been recently
rediscovered by MacKay and Neal (MN) that independently proposed a closely related code [3].
This almost coincided with the breakthrough discovery of the high-performance turbo codes [5].
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Variations of Gallager codes have displayed performance comparable (and sometimes superior)
to turbo codes [6], qualifying them as state-of-the-art codes.

Statistical physics has been applied to the analysis of error-correcting codes as an alternative
to information theory methods yielding some new interesting directions and suggesting new
high-performance codes [7]. Sourlas was the first to relate error-correcting codes to spin glass
models [8], showing that the Random Energy Model (REM)[9, 10, 11] can be thought of as
an ideal code, capable of saturating Shannon’s bound at vanishing code rates. This work
was extended recently to the case of finite code rates [12, 13] and has been further developed
for analysing MN codes of various structures [14, 15, 16]. All of the analyses mentioned
above, as well as the recent turbo code analysis [17], relied on the replica approach under the
assumption of replica symmetry. It is also worthwhile mentioning a different approach, used
in the analysis of convolutional codes [18], of employing the transfer-matrix formalism and
power series expansions. However, to date, the only model that can be analysed exactly is the
REM that corresponds to an impractical coding scheme of a vanishing code rate.

In this letter we present an ezact analysis to the performance of Gallager error-correcting
codes based on a generalisation of Bethe lattices known as the Husimi cactus [19]. We
solve the model recovering results obtained by the replica symmetric theory and finding the
noise level that corresponds to the phase transition between perfect decoding and a decoding
failure phase, this appears to coincide with existing information-theoretic upper bounds. We
experimentally show that the solution accurately approximates Gallager codes of moderate
size. We also show that the probability propagation (PP) decoding algorithm emerges naturally
from this framework allowing for the analysis of the practical decoding performance. Finally,
we summarise the differences between Gallager and MN codes, which are somewhat obscure
in the information theory literature but become explicit in this framework.

We will concentrate here on a simple communication model whereby messages are repre-
sented by binary vectors and are communicated through a Binary Symmetric Channel (BSC)
where uncorrelated bit flips appear with probability f. A Gallager code is defined by a binary
matrix A = [Cq | C2], concatenating two very sparse matrices known to both sender and
receiver, with Ca (of dimensionality (M — N) x (M — N)) being invertible; the matrix Cj is
of dimensionality (M — N) x N.

Encoding refers to the production of an M dimensional binary code word ¢ € {0,1}M
(M > N) from the original message & € {0,1}" by t = GT¢ (mod 2), where all operations
are performed in the field {0,1} and are indicated by (mod 2). The generator matrix is G =
[I| C;'Cq] (mod 2), where I is the N x N identity matrix, implying that AGT (mod 2) = 0
and that the first IV bits of ¢ are set to the message £. In regular Gallager codes the number
of non-zero elements in each row of A is chosen to be exactly K. The number of elements
per column is then C' = (1 — R)K, where the code rate is R = N/M (for unbiased messages).
The encoded vector ¢ is then corrupted by noise represented by the vector ¢ € {0,1}M with
components independently drawn from P({) = (1 — f)d({) + f6(¢ — 1). The received vector
takes the form » = GT¢ + ¢ (mod 2).

Decoding is carried out by multiplying the received message by the matrix A to produce
the syndrome vector z = Ar = A¢ (mod 2) from which an estimate 7 for the noise vector
can be produced. An estimate for the original message is then obtained as the first N bits of
r + 7 (mod 2). The Bayes optimal estimator (also known as marginal posterior mazximiser,
MPM) for the noise is defined as 7; = argmax, P(7; | z). The performance of this estimator
can be measured by the probability of bit error p, = 1 — 1/M Z]Ai1 0[7;; ¢;], where 6[;] is
Kronecker’s delta. Knowing the matrices C2 and C4, the syndrome vector z and the noise
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Fig. 1. — First step in the construction of Husimi cactus with K = 3 and connectivity C = 4.

level f it is possible to apply Bayes’ theorem and compute the posterior probability
1
P(r|=z)= ZX [z = AT (mod 2)] P(T), (1)

where x[X] is an indicator function providing 1 if X is true and 0 otherwise. To obtain the
MPM one has to compute the marginal posterior P(7; | 2) = >_,,; P(7 | ), which in general
requires O(2M) operations, and thus becomes impractical for long messages. To solve this
problem one can use the sparseness of A to design algorithms that require O(M) operations
to perform the same task. One of these methods is the probability propagation algorithm (PP),
also known as belief propagation, sum-product algorithm (see [20]) or generalised distributive
law [21].

The connection to statistical physics becomes clear when the field {0, 1} is replaced by Ising
spins {£1} and mod 2 sums by products [8]. The syndrome vector acquires the form of a
multi-spin coupling J, = Hjez:(u) ¢j where j =1,--- M and p=1,---,(M — N). The K
indices of nonzero elements in the row p of A are given by L(u) = {ji, - ,jkx}, and in a
column [ are given by M(1) = {u1,---, pc}-

The posterior (1) can be written as the Gibbs distribution [14, 15]:

1
P(r]J) = 5 lim exp[=BH;(rs)] 2)
M-N M
Ho(m;T) = =Y | [ m-1 _EZTj‘
k=1 JEL () j=1

The external field corresponds to the prior probability over the noise and has the form
F = atanh(1l — 2f). Note that the Hamiltonian itself depends on the inverse temperature
B. The disorder is trivial and can be gauged as J, ~ 1 by using 7; — 7;(;. The resulting
Hamiltonian is a multi-spin ferromagnet with finite connectivity in a random field h; =
B~1F(;. The decoding process corresponds to finding zero temperature local magnetisations
m; = limg_, o (7;)3 and calculating estimates as 7; = sgn(m;).

In the {£1} representation the probability of bit error, acquires the form

1 1 &
m=g5 - m;@ sgn(m;), (3)

connecting the code performance with the computation of local magnetisations.

A Husimi cactus with connectivity C is generated starting with a polygon of K vertices with
one Ising spin in each vertex (generation 0). All spins in a polygon interact through a single
coupling J,, and one of them is called the base spin. In figure 1 we show the first step in the
construction of a Husimi cactus, in a generic step the base spins of the n—1 generation polygons,
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numbering (C' — 1)(K — 1), are attached to K — 1 vertices of a generation n polygon. This
process is iterated until a maximum generation nmax is reached, the graph is then completed
by attaching C' uncorrelated branches of nmax generations at their base spins. In that way
each spin inside the graph is connected to exactly C polygons. The local magnetisation at the
centre m; can be obtained by fixing boundary (initial) conditions in the 0-th generation and
iterating recursion equations until generation nmax is reached. Carrying out the calculation
in the thermodynamic limit corresponds to having nmax ~ In M generations and M — oc.

The Hamiltonian of the model has the form (2) where £(u) denotes the polygon u of the
lattice. Due to the tree-like structure, local quantities far from the boundary can be calculated
recursively by specifying boundary conditions. The typical decoding performance can therefore
be computed exactly without resorting to replica calculations [22].

We adopt the approach presented in [19] where recursion relations for the probability
distribution P, (7y) for the base spin of the polygon p is connected to (C — 1)(K — 1)
distributions P,;(7;), with v € M(j) \ p (all polygons linked to j but p) of polygons in
the previous generation:

1
Puk(Tk)zﬁTr{,.j}eXp B Tumk H 7, — 1]+ Fmy H H P,i(rj), (4)

FEL()\E veM(j)\rnjEL(1)\k

where the trace is over the spins 7; such that j € £(u) \ k.
The effective field Z,; on a base spin j due to neighbours in polygon v can be written as :

exp (—2%,;) = QQF%’ (5)

Combining (4) and (5) one finds the recursion relation:
Triryy oxp (8 e ™ + Sieeue + Toenon )]
Trir;y exp [+B\7u Iiecoonn ™+ 2Xjeciw(F + 2Zvemynu 53\1/]‘)71']

(6)

exp (_2*%#16) =
By computing the traces and taking 8 — oo one obtains:

Z,r = atanh |7, H tanh(F + Z Zyj) (7
JEL(w)\k veEM(j)\n
The effective local magnetisation due to interactions with the nearest neighbours in one branch
is given by m,; = tanh(Z,;). The effective local field on a base spin j of a polygon y due to C'—1
branches in the previous generation and due to the external field is z,; = F'+ ZueM(]’)\u Zyj;
the effective local magnetisation is, therefore, m,; = tanh(z,;). Equation (7) can then be
rewritten in terms of m,; and m,; and the PP equations [3, 12, 20] can be recovered:

mur =tanh [ F+ Y atanh () wr =T [[ mui (8)
veM(i)\n JEL(m)\k

Once the magnetisations on the boundary (0-th generation) are assigned, the local mag-
netisation m; in the central site is determined by iterating (8) and computing :

m; = tanh | F + Z atanh (m,;) (9)
veM(j)
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Fig. 2. — (a) Mean normalised overlap between the actual noise vector ¢ and decoded noise 7 for K = 4
and C = 3 (therefore R = 1/4). Theoretical values (O), experimental averages over 20 runs for code
word lengths M = 5000 (o) and M = 100 (full line). (b) Transitions for K = 6. Shannon’s bound
(dashed line), information theory upper bound (full line) and thermodynamic transition obtained
numerically (o). Theoretical (¢) and experimental (+, M = 5000 averaged over 20 runs) PP decoding
transitions are also shown. In both figures, symbols are chosen larger than the error bars.

The free energy can be obtained by integration as (8) represents extrema of the free energy
[15, 16, 23].

By applying the gauge transformation 7, — 1 and 7; — 7;(;, assigning the probability
distributions Py(z) to boundary fields and averaging over random local fields F'¢ one obtains
from (7) the recursion relation in the space of probability distributions P(z) [23]:

C—-1 R c-1
Pa@) = [T o Posa) (5 |e-Fc- Y 3
=1 =1

¢

K-1 K—1
/ H dzj P,_1(z;) § |z — atanh H tanh(z;) | |, (10)
j=1 =1

3
|

)
[

where P, (z) is the distribution of effective fields at the n-th generation due to the previous
generations and external fields, in the thermodynamic limit the distribution far from the
boundary will be Py, (z) (generation n — oc). The local field distribution at the central site is
computed by replacing C' — 1 by C in (10), taking into account C' polygons in the generation
just before the central site, and inserting the distribution Py (z). Equations (10) are identical
to those obtained by the replica symmetric theory as in [14, 15, 16].

By setting initial (boundary) conditions Py(z) and numerically iterating (10), for C' > 3 one
can find, up to some noise level f,, a single stable fixed point at infinite fields, corresponding
to a totally aligned state (successful decoding). At f, a bifurcation occurs and two other fixed
points appear, stable and unstable, the former corresponding to a misaligned state (decoding
failure). This situation is identical to that one observed in [14, 15, 16]. In terms of the
local fields distribution P,(z), the aligned state corresponds to a runaway wave travelling to
x(n) — oo with n being the time variable. The misaligned state corresponds to a stable wave
located at z(n) ~ O(1). Representing the distributions (10) by the first cummulants only, one
can obtain a rough approximation in terms of one dimensional maps showing a bifurcation at
some noise level fs, this approach will be further exploited elsewhere.

The practical PP decoding is performed by setting initial conditions as m,; = 1 — 2f to
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TABLE I. — Gallager versus MN codes

Gallager MN
dynamical variables M N+M
constraints M-N M
unbiased messages coding  for all K K =12
Shannon’s bound K— x K> 3 and unbiased messages

correspond to the prior probabilities and iterating (8) until stationarity or a maximum number
of iterations is attained [3]. The estimate for the noise vector is then produced by computing
7; = sign(m;). At each decoding step the system can be described by histograms of the
variables (8), this is equivalent to iterating (10) (a similar idea was presented in [3, 6]). Below
fs the process always converges to the successful decoding state, above f; it converges to the
successful decoding only if the initial conditions are fine tuned; in general the process converges
to the failure state. In Fig.2a we show the theoretical mean overlap between actual noise ¢ and
the estimate 7 as a function of the noise level f as well as results obtained with PP decoding.

Information theory provides an upper bound for the maximum attainable code rate by
equalising the maximal information contents of the syndrome vector z and of the noise estimate
T [3, 16]. The thermodynamic phase transition obtained by finding the stable fixed points of
(10) and their free energies interestingly coincides with this upper bound within the precision
of the numerical calculation. Note that this predicted performance is impractical as it requires
O(2M) operations for an exhaustive search for the global minimum of the free energy. In
Fig.2b we show the thermodynamic transition for K = 6 compared with the upper bound,
Shannon’s bound and fs values.

The geometrical structure of a Gallager code defined by the matrix A can be represented by
a bipartite graph (Tanner graph) [20] with bit and check nodes. Each column j of A represents
a bit node and each row p represents a check node, A,; = 1 means that there is an edge linking
bit j to check u. It is possible to show [24] that for a random ensemble of regular codes, the
probability of completing a cycle after walking I edges starting from an arbitrary node is upper
bounded by P[l; K,C, M] < I?K'/M. Tt implies that for very large M only cycles of at least
order In M survive. In the thermodynamic limit M — oo the probability P[l; K, C, M] — 0 for
any finite [ and the bulk of the system is effectively tree-like. By mapping each check node to
a polygon with K bit nodes as vertices, one can map a Tanner graph into a Husimi lattice that
is effectively a tree for any number of generations of order less than In M. It is experimentally
observed that the number of iterations of (8) required for convergence does not scale with
the system size, therefore, it is expected that the interior of a tree-like lattice approximates
a Gallager code with increasing accuracy as the system size increases. Fig.2a shows that the
approximation is fairly good even for sizes as small as M = 100. Note that although the
local magnetisations m; for a loopy graph are not generally expected to converge to the values
computed in a tree, sgn(m;) seems to do so. A thorough discussion on this respect for some
specific graphical models can be found in [25].

In [3] MacKay and Neal introduced a variation on Gallager codes termed MN codes. The
main difference between these codes is that for MN codes the syndrome vector contains also
information on the original message in the form z = C;€ + C,,¢. The message itself is directly
estimated and there is no need for recovering the noise vector. MacKay has formulated and
proved a number of theorems simultaneously for both codes using the fact that if both message
and noise are sampled from the same distribution, these codes can be formulated as the same
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estimation problem, i.e., finding the most probable vector x that satisfies z = Az, given the
matrix A and a prior distribution P(x). Using statistical physics, we previously analysed MN
codes [14, 15, 16]. It is interesting to note that in spite of the similarity between the two
codes, there are some important differences in their dependence on the parameters K and C.
In particular, Shannon’s bound is only attainable by Gallager codes if K — oo, in contrast
to results obtained for MN codes. Decoding of unbiased messages is generally possible with
Gallager codes, but successful convergence is only guaranteed (in the thermodynamic limit)
for K = 1,2 in the MN codes. We outlined those differences in table I.

To summarise, we solved exactly, without resorting to the replica method, a system rep-
resenting a Gallager code on a Husimi cactus. The results obtained are in agreement with
the replica symmetric calculation and with numerical experiments carried out in systems
of moderate size. The framework can be easily extended to MN and similar codes. We
believe that methods of statistical physics are complimentary to those used in the statistical
inference community and can enhance our understanding of general graphical models beyond
error-correcting codes.
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