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1 IntroductionIn the last few years much progress has been made in the analysis of the dynamics of supervised learning inlayered neural networks, using the strategy of statistical mechanics: by deriving from the microscopic dynamicalequations of the learning process a set of closed laws describing the evolution of suitably chosen macroscopicobservables (dynamic order parameters), in the limit of an in�nite system size (e.g. [1, 2, 3, 4, 5]. A recentreview and more extensive guide to the relevant references can be found in [6]. A preliminary presentation ofsome of the present results was given in [7]. The main successful procedure developed so far is built on thefollowing four cornerstones:� The task to be learned by the network is de�ned by a (possibly noisy) `teacher', which is itself a layeredneural network. This induces a canonical set of dynamical order parameters, typically the (rescaled)overlaps between the various student weight vectors and the corresponding teacher weight vectors.� The number of network inputs is (eventually) taken to be in�nitely large. This ensures that 
uctuationsin mean-�eld observables will vanish, and creates the possibility of using the central limit theorem.� The number of `hidden' neurons is �nite. This prevents the number of order parameters from beingin�nite, and ensures that the cumulative impact of their 
uctuations is insigni�cant.� The size of the training set is much larger than the number of weight updates made. Each examplepresented to the system is now di�erent from those that have already been seen, such that the local �eldswill have Gaussian probability distributions, which leads to closure of the dynamic equations.These are not ingredients to simplify the calculations, but vital conditions, without which the standard methodfails. Although the assumption of an in�nite system size has been shown not to be too critical [8], the otherassumptions do place serious restrictions on the degree of realism of the scenarios that can be analyzed, andhave thereby, to some extent, prevented the theoretical results from being used by practitioners.Here we study the dynamics of learning in layered neural networks with restricted training sets, where thenumber p of examples (`questions' with corresponding `answers') scales linearly with the number N of inputs,i.e. p = �N with 0 < � < 1. In this regime individual questions will re-appear during the learning processas soon as the number of weight updates made is of the order of the size of the training set. In the traditionalmodels, where the duration of an individual update is de�ned as N�1, this happens as soon as t = O(�). Atthat point correlations develop between the weights and the questions in the training set, and the dynamics isof a spin-glass type, with the composition of the training set playing the role of `quenched disorder'. The mainconsequence of this is that the central limit theorem no longer applies to the student's local �elds, which arenow indeed described by non-Gaussian distributions. To demonstrate this we trained (on-line) a perceptronwith weights Ji on noiseless examples generated by a teacher perceptron with weights Bi, using the Hebb andAdaTron rules. We plotted in Fig. 1 the student and teacher �elds, x = J �� and y = B �� respectively,where � is the input vector, for p = N=2 examples and at time t = 50. The marginal distribution P (x) forp = N=4, at times t = 10 for the Hebb rule and t = 20 for the Adatron rule, is shown in Fig. 2. The non-Gaussian student �eld distributions observed in Figs. 1 and 2 induce a deviation between the training- andgeneralization errors, which measure the network performance on training and test examples, respectively. Theformer involves averages over the non-Gaussian �eld distribution, whereas the latter (which is calculated overall possible examples) still involves Gaussian �elds. The appearance of non-Gaussian �elds leads to a completebreakdown of the standard formalism, based on deriving closed equations for a �nite number of observables:the �eld distributions can no longer be characterized by a few moments, and the macroscopic laws must nowbe averaged over realizations of the training set. One could still try to use Gaussian distributions as large �approximations, see e.g. [9], but it will be clear from Figs. 1 and 2 that a systematic theory will have to giveup Gaussian distributions entirely. The �rst rigorous study of the dynamics of learning with restricted trainingsets in non-linear networks, via the calculation of generating functionals, was carried out in [10] for perceptronswith binary weights. The only cases where explicit and relatively simple solutions can be obtained, even forrestricted training sets, are those where linear learning rules are used, such as [11] or [12].In this paper we show how the formalism of dynamical replica theory (see e.g. [13]) can be used successfullyto predict the evolution of macroscopic observables for �nite �, incorporating the in�nite training set formalism3



as a special case, for � ! 1. Central to our approach is the derivation of a di�usion equation for the jointdistribution P [x; y] of the student and teacher �elds, which will be found to have Gaussian solutions only for� ! 1. For simplicity and transparency we restrict ourselves in the present paper to single-layer systemsand noise-free teachers. Application and generalization of our methods to multi-layer systems [14] and learningscenarios involving `noisy' teachers [15] are presently under way.Our paper is organized as follows. We �rst derive a Fokker-Planck equation describing the evolution ofarbitrary mean-�eld observables for N ! 1. This allows us to identify the conditions for the latter to bedescribed by closed deterministic laws. We then choose as our observables the joint �eld distribution P [x; y], inaddition to (the traditional ones) Q and R, and show that this set fQ;R; Pg obeys deterministic laws. In orderto close these laws we use the tools of dynamical replica theory. Details of the replica calculation are givenin an Appendix, so that they can be skipped by those primarily interested in results. We summarize the �nalreplica-symmetric macroscopic theory and its notational conventions, discuss some of its general properties, andshow how in the limit �!1 (in�nite training sets) the equations of the conventional theory are recovered. Wethen apply our general theory to various di�erent speci�c choices of learning rules. One of these, (on-line andbatch) Hebbian learning, provides an excellent benchmark test for our theory, since for this simple rule exactsolutions are known, even for the regime of restricted training sets [12]. We �nd that our theory is fully exactfor batch execution, and that it succeeds in predicting exactly the evolution of several macroscopic observables,including the generalisation error and moments of the joint �eld distribution for student and teacher �elds,in the on-line case (although here full exactness is di�cult to assess, and not a priori guaranteed). For non-Hebbian error-correcting learning rules, such as on-line and batch versions of Perceptron learning and AdaTronlearning, no exact solutions are known at present with which to confront our theory; instead we here compare thepredictions (with regard to the evolution of training- and generalization errors and the joint �eld distribution)of the full theory, as well as of a number of simple approximations of our equations, with the results of carryingout extensive numerical simulations in large (size N = 10; 000) neural networks. We �nd, surprisingly, thateven the simplest of these approximations, which does not require solving any saddle point equations and takesthe form of a fully explicit non-linear di�usion equation for the joint �eld distributions P [x; y], describes thesimulation experiments remarkably well. Employing the more sophisticated (and thereby more CPU intensive)approximations, or, at the other end of the spectrum, a numerical solution of the full macroscopic theory, leadsto increasingly accurate quantitative predictions for the evolution of the relevant macroscopic observables of thelearning process, with deviations between theory and numerical experiment which are of the order of magnitudeof the �nite size e�ects in the simulations. We close our paper with a discussion of the strengths and weaknessesof the approach used, and an outlook on future work on the dynamics of learning with restricted training sets,involving the present and possibly other formalisms.2 From Microscopic to Macroscopic Laws2.1 De�nitionsA student perceptron operates the following rule, which is parametrised by a weight vector J 2 <N :S : f�1; 1gN ! f�1; 1g S(�) = sgn [J � �] (1)It tries to emulate the operation of a teacher perceptron, which is assumed to operate a similar rule, characterizedby a given (�xed) weight vector B 2 <N :T : f�1; 1gN ! f�1; 1g T (�) = sgn [B � �] (2)In order to improve its performance, the student perceptron modi�es its weight vector J according to aniterative procedure, using examples of input vectors (or `questions') �, drawn at random from a �xed trainingset ~D � D = f�1; 1gN , and the corresponding values of the teacher outputs T (�).We will consider the case where the training set is a randomly composed subset ~D � D, of size j ~Dj = p = �Nwith � > 0: ~D = f�1; : : : ; �pg p = �N �� 2 D for all � (3)4



We will denote averages over the training set ~D and averages over the full question set D in the following way:h�(�)i~D = 1j ~Dj X�2 ~D�(�) and h�(�)iD = 1jDj X�2D�(�) :We will analyze the following two classes of learning rules:on�line : J(m+1) = J(m) + �N �(m) G [J(m)��(m);B ��(m)]batch : J(m+1) = J(m) + �N h� G [J(m)��;B ��]i~D (4)In on-line learning one draws at each iteration step m a question �(m) 2 ~D at random, the dynamics is thusa stochastic process; in batch learning one iterates a deterministic map. The function G[x; y] is assumed to bebounded and not to depend on N , other than via its two arguments.Our most important observables during learning are the training error Et(J) and the generalization errorEg(J), de�ned as follows:Et(J) = h�[�(J ��)(B ��)]i~D Eg(J) = h�[�(J ��)(B ��)]iD : (5)Only if the training set ~D is su�ciently large, and if there are no correlations between J and the questions� 2 ~D, will these two errors will be identical.We next convert the dynamical laws (4) into the language of stochastic processes. We introduce the prob-ability p̂m(J) to �nd weight vector J at discrete iteration step m. In terms of this microscopic probabilitydistribution the processes (4) can be written in the general Markovian formp̂m+1(J) = Z dJ 0 W [J ;J 0] p̂m(J 0) ; (6)with the transition probabilitieson�line : W [J ;J 0] = h� �J�J 0� �N � G �J 0 ��;B ����i~Dbatch : W [J ;J 0] = � �J�J 0� �N h� G �J 0 ��;B ���i~D� (7)We make the transition to a description involving real-valued time labels by choosing the duration of eachiteration step to be a real-valued random number, such that the probability that at time t precisely m stepshave been made is given by the Poisson expression�m(t) = 1m! (Nt)me�Nt : (8)For times t � N�1 we �nd t = m=N + O(N� 12 ), the usual time unit. Due to the random durations of theiteration steps we have to switch to the following microscopic probability distribution:pt(J) = Xm�0�m(t) p̂m(J) : (9)This distribution obeys a simple di�erential equation, which immediately follows from the pleasant propertiesof (8) under temporal di�erentiation:ddt pt(J) = N Z dJ 0 �W [J ;J 0]� �[J�J 0]	 pt(J 0) : (10)So far no approximations have been made, equation (10) is exact for any N . It is the equivalent of the masterequation often introduced to de�ne the dynamics of spin systems.5



2.2 Derivation of Macroscopic Fokker-Planck EquationWe now wish to investigate the dynamics of a number of as yet arbitrary macroscopic observables 
[J ] =(
1[J ]; : : : ;
k[J ]). To do so we introduce a macroscopic probability distributionPt(
) = Z dJ pt(J)� [
�
[J ]] (11)Its time derivative immediately follows from that in (10):ddtPt(
) = N Z dJdJ 0 � [
�
[J ]]�W [J ;J 0]��[J�J 0]	 pt(J 0)= N Z d
0 Z dJdJ 0 � [
�
[J ]] � �
0�
[J 0]� �W [J ;J 0]��[J�J 0]	 pt(J 0)This then can be written in the standard formddtPt(
) = Z d
0 Wt[
;
0]Pt(
0) (12)where Wt[
;
0] = R dJ 0 pt(J 0)� �
0�
[J 0]� R dJ � [
�
[J ]]N �W [J ;J 0]��[J�J 0]	R dJ 0 pt(J 0)� �
0�
[J 0]�If we now insert the relevant expressions (7) for W [J ;J 0] we can perform the J -integrations, and obtain resultsgiven in terms of so-called sub-shell averages, which are de�ned ashf(J)i
;t = R dJ pt(J)� [
�
[J ]] f(J)R dJ pt(J)� [
�
[J ]]For the two classes of learning rules at hand we obtain:Wonlt [
;
0] = N �h� h
�
[J+ �N �G[J � �;B � �]]ii ~D�� [
�
[J ]]�
0;tWbatt [
;
0] = N �� h
�
[J+ �N h�G[J � �;B � �]i ~D ]i�� [
�
[J ]]�
0;tWe now insert integral representations for the �-distributions. The observables 
[J ] 2 <k are assumed to beO(1) each, and �nite in number (i.e. k � N):�[
�Q] = Z d
̂(2�)k ei
̂�[
�Q] (13)which gives for our two learning scenario's:Wonlt [
;
0] = Z d
̂(2�)k ei
̂�
 N �he�i
̂�
[J+�N �G[J ��;B��]]i ~D�e�i
̂�
[J ]�
0;t (14)Wbatt [
;
0] = Z d
̂(2�)k ei
̂�
 N �e�i
̂�
[J+�N h�G[J ��;B��]i ~D]�e�i
̂�
[J ]�
0;t (15)Still no approximations have been made. The above two expressions di�er only in at which stage the averagingover the training set occurs.In expanding equations (14,15) for large N and �nite t we have to be careful, since the system size N entersboth as a small parameter to control the magnitude of the modi�cation of individual components of the weight6



vector, but also determines the dimensions and lengths of various vectors that occur. We therefore inspect moreclosely the usual Taylor expansions:F [J+k]� F [J ] = X̀�1 1̀! NXi1=1 � � � NXi`=1 ki1 � � � ki` @`F [J ]@Ji1 � � � @Ji` :If we assess how derivatives with respect to individual components Ji scale for mean-�eld observables such asQ[J ] = J2 and R[J ] = B �J , we �nd the following scaling property which we will choose as our de�nition ofsimple mean-�eld observables:F [J ] = O(N0); @`F [J ]@Ji1 � � � @Ji` = O �jJ j�`N 12 `�d� (N !1) (16)in which d is the number of di�erent elements in the set fi1; : : : ; i`g. For simple mean-�eld observables we cannow estimate the scaling of the various terms in the Taylor expansion. However, we will �nd that for restrictedtraining sets not all relevant observables will have the properties (16). In particular, the joint distribution ofstudent and teacher �elds will, for on-line learning, have a contribution for which all terms in the Taylor serieswill have to be summed, giving rise to an additional term �[J ;k] 1. The latter type of more general mean-�eldobservables will have to be de�ned via the identitiesF [J+k]� F [J ] = �[J ;k] +Xi ki @F [J ]@Ji + 12Xij kikj @2F [J ]@Ji@Jj + X̀�3O � jkjjJ j� !̀ (17)F [J ] = O(N0); �[J ;k] = O �jkj2=jJ j2� (18)(in the assessment of the order of the remainder terms of (17) we have used Pi ki = O(pN jkj)). Simplemean-�eld observables correspond to �[J ;k] = 0.We expand our macroscopic equations (14,15) for large N and �nite times, restricting ourselves from nowon to mean-�eld observables in the sense of (17,18). One of our observables we choose to be J2. In the presentproblem the shifts k, being either �N � G[J ��;B ��] or �N h� G[J ��;B ��]i~D, scale as jkj = O(N� 12 ). Consequently:e�i
̂�
[J+k] = e�i
̂�
[J ]8<:1� i
̂ �� [J ;k]� iXi ki @@Ji (
̂ �
[J ])� i2Xij kikj @2@Ji@Jj (
̂ �
[J ])�12 "Xi ki @@Ji (
̂ �
[J ])#29=;+O(N� 32 ) :This, in turn, givesZ d
̂(2�)k ei
̂�
 N �e�i
̂�
[J+k]�e�i
̂�
[J ]�= �N8<:X� @@
� 24��[J ;k] +Xi ki @
�[J ]@Ji +12Xij kikj @2
�[J ]@Ji@Jj 35�12X�� @2@
�@
� Xij kikj @
�[J ]@Ji @
� [J ]@Jj 9=; � [
�
[J ]] +O(N� 12 ) :1We are grateful to Dr. Yuan-sheng Xiong for alerting us to this important point.7



It is now evident, in view of (14,15), that both types of dynamics are described by macroscopic laws withtransition probability densities of the general formW???t [
;
0] = (�X� F�[
0; t] @@
� + 12X�� G�� [
0; t] @2@
�@
�) � �
�
0� + O(N� 12 )which, due to (12) and for N !1 and �nite times, leads to a Fokker-Planck equation:ddtPt(
) = � kX�=1 @@
� fF�[
; t]Pt(
)g+ 12 kX��=1 @2@
�@
� fG�� [
; t]Pt(
)g : (19)The di�erences between the two types of dynamics are in the explicit expressions for the 
ow- and di�usionterms: F onl� [
; t] = limN!1* Nh��[J ; �N � G[J ��;B ��]]i~D + �Xi h�iG[J ��;B ��]i~D @
�[J ]@Ji+ �22N Xij h�i�jG2[J ��;B ��]i~D @2
�[J ]@Ji@Jj +
;tGonl�� [
; t] = limN!1 �2N * Xij h�i�jG2[J ��;B ��]i~D �@
�[J ]@Ji ��@
� [J ]@Jj � +
;tF bat� [
; t] = limN!1* N��[J ; �N h� G[J � �;B � �]i~D] + �Xi h�i G[J � �;B � �]i~D @
�[J ]@Ji+ �22N Xij h�i G[J � �;B � �]i~Dh�j G[J � �;B � �]i~D @2
�[J ]@Ji@Jj +
;tGbat�� [
; t] = limN!1 �2N * Xij h�iG[J ��;B ��]i~D h�jG[J ��;B ��]i~D �@
�[J ]@Ji ��@
� [J ]@Jj � +
;tEquation (19) allows us to de�ne the goal of our exercise in more explicit form. If we wish to arrive at closeddeterministic macroscopic equations, we have to choose our observables such that1. limN!1G�� [
; t] = 0 (this ensures determinism)2. limN!1 @@tF�[
; t] = 0 (this ensures closure)In the case of having time-dependent global parameters, such as learning rates or decay rates, the latter conditionrelaxes to the requirement that any explicit time-dependence of F�[
; t] is restricted to these global parameters.2.3 Choice and Properties of Canonical ObservablesWe next apply the general results obtained so far to a speci�c set of observables, 
 ! fQ;R; Pg, which aretailored to the problem at hand (note that we restrict ourselves to J2 = O(1) and B2 = 1):Q[J ] = J2; R[J ] = J �B; P [x; y;J ] = h�[x�J ��] �[y�B ��]i~D (20)with x; y 2 <. This choice is motivated by the following considerations: (i) in order to incorporate the standardtheory in the limit �!1 we need at least Q[J ] and R[J ], (ii) we need to be able to calculate the training error,which involves �eld statistics calculated over the training set ~D, as described by P [x; y;J ], and (iii) for �nite �one cannot expect closed macroscopic equations for just a �nite number of order parameters, the present choice8



(involving the order parameter function P [x; y;J ]) represents e�ectively an in�nite number 2. In subsequentcalculations we will, however, assume the number of arguments (x; y) for which P [x; y;J ] is to be evaluated(and thus our number of order parameters) to go to in�nity only after the limit N !1 has been taken. Thiswill eliminate many technical subtleties and will allow us to use the Fokker-Planck equation (19).The observables (20) are indeed of the general mean-�eld type in the sense of (17,18). Insertion into thestronger condition (16) immediately shows this to be true for the scalar observables Q[J ] and R[J ] (they aresimple mean �eld observables, for which the term (18) is absent). Veri�cation of (17,18) for the functionP [x; y;J ] is less trivial. We denote with I the set of all di�erent indices in the list (i1; : : : ; i`), with nk givingthe number of times a number k occurs, and with I� � I de�ned as the set of all indices k 2 I for which nkis even (+), or odd (�). Note that with these de�nitions ` =Pk2I+ nk +Pk2I� nk � 2jI+j+ jI�j. We thenhave: @`P [x; y;J ]@Ji1 : : :@Ji` = (�1)` @`@x` Z dx̂ dŷ(2�)2 ei[xx̂+yŷ]*"Yk2I �nkk e�i�k[x̂Jk+ŷBk ]#"Yk=2I e�i�k [x̂Jk+ŷBk]#+ ~DUpon writing averaging over all training sets of size p = �N (where each realization of ~D has equal probability)as h: : :isets, this allows us to conclude�@`P [x; y;J ]@Ji1 : : :@Ji` �sets= O �N� 12 jI�j�Since 12`�jIj+ 12 jI�j = 12 [`�jI�j�2jI+j] � 0, the average over all training sets of the function P [x; y;J ] isfound to be a simple mean-�eld observable in the sense of (16).The scaling properties of expansions or derivations of P [x; y;J ] for a given training set ~D, however, neednot be identical to those of its average over all training sets hP [x; y;J ]isets. Here we have to use the fact that ~Dhas been composed in a random manner, as well as the speci�c form of the shifts k in P [x; y;J+k] that occurfor the two types of dynamics under consideration:P [x; y;J+k]� P [x; y;J ] = Z dx̂ dŷ(2�)2 ei[xx̂+yŷ] 1p pX�=1 e�ix̂J ����iŷB��� he�ix̂k��� � 1iAll complications are caused by the dependence of k on the composition of the training set ~D, and wouldtherefore have been absent in the � ! 1 case. This dependence will turn out to be harmless in the case ofbatch learning, where k = �N h�G[J ��;B ��]i~D is an average over ~D, but will have a considerable impact in thecase of on-line learning, where k = �N �G[J ��;B ��] is proportional to an individual member of ~D. Working outthe relevant expression for on-line learning givesP [x; y;J+konl]� P [x; y;J ] = Z dx̂ dŷ(2�)2 ei[xx̂+yŷ] 1p pX�=1 e�ix̂J ����iŷB��� ����� he�i�x̂G[J ��;B��] � 1i�[1����;� ] � i�x̂N (� � ��)G[J ��;B ��] + �2x̂22N2 (� � ��)2G2[J ��;B ��] +O(N� 32 )��= 1p Z dx̂dŷ(2�)2 ei[xx̂+yŷ]e�ix̂J ���iŷB�� �he�i�x̂G[J ��;B��] � 1i+ i�x̂G[J ��;B ��] + 12�2x̂2G2[J ��;B ��]�+Xi konli @@JiP [x; y;J ] + 12Xij konli konlj @2@Ji@Jj P [x; y;J ] +O(N� 32 )2A simple rule of thumb is the following: if a process requires replica theory for its stationary state analysis, as doeslearning with restricted training sets, its dynamics is of a spin-glass type and cannot be described by a �nite set of closeddynamic equations. 9



We conclude that, at least for the purpose of the expansions relevant to on-line learning, P [x; y;J ] is a mean�eld observable in the sense of (17,18), with the non-trivial contribution of (18) given by�[J ;konl] = 1p ��[x�J ����G[J ��;B ��]]�[y�B ��]� �[x�J ��]�[y�B ��]+� @@x [G[x; y]�[x�J ��]�[y�B ��]]� 12�2 @2@x2 �G2[x; y]�[x�J ��]�[y�B ��]�� (21)Note that limN!1N�[J ;konl] = O(�3=�), so that for small learning rates or large training sets this non-trivialterm will vanish. Working out the relevant expression for batch learning, on the other hand, givesP [x; y;J+kbat]� P [x; y;J ] = Z dx̂ dŷ(2�)2 ei[xx̂+yŷ] 1p pX�=1 e�ix̂J ����iŷB������1� i�x̂p G[J ���;B ���] + O(N� 32 )�� 1�=Xi kbati @@JiP [x; y;J ] + 12Xij kbati kbatj @2@Ji@Jj P [x; y;J ] +O(N� 32 )Here the term �[J ;kbat] is absent. In fact also the quadratic contributionPij kbati kbatj : : : in the above expansionwill turn out to be of insigni�cant order in N . For the purpose of the expansions relevant to batch learning,P [x; y;J ] is apparently a simple mean �eld observable in the sense of (16). This could have been anticipated,since one should ultimately obtain the batch learning equations upon expanding those of on-line learning forsmall learning rate �, and retaining only the leading order �1 in this expansion.2.4 Derivation of Deterministic Dynamical LawsHaving de�ned our order parameters Q, R and fP [x; y]g, from this stage onwards the notation h� � �iQRP;t willbe used to denote sub-shell averages de�ned with respect to these order parameters, at time t. With a modestamount of foresight we de�ne the complementary Kronecker delta �ab = 1��ab, and the following key functions:A[x; y;x0; y0] = limN!1�hh ���0(� ��0)�[x�J ��]�[y�B ��]�[x0�J ��0]�[y0�B ��0] i~Di~D�QRP;t (22)B[x; y;x0; y0] = limN!1* 1N Xi6=j hh ���0(�i�j�0i�0j)�[x�J ��]�[y�B ��]�[x0�J ��0]�[y0�B ��0] i~Di~D+QRP;t (23)C[x; y;x0; y0;x00; y00] = limN!1�hhh ���00��0�00 (� ��00)(�0 ��00)N �[x�J ��]�[y�B ��]�[x0�J ��0]�[y0�B ��0]�[x00�J ��00]�[y00�B ��00] i~Di~Di~D�QRP;t(24)We will eventually show in a subsequent section that (23) and (24) are zero. The function (22), on the otherhand, will contain all the interesting physics of the learning process, and its calculation will turn out to be ourcentral problem.In Appendix A we show that for the observables (20) the di�usion matrix elements G???�� in the Fokker-Planck equation (19) vanish forN !1. The Fokker-Planck equation (19) now reduces to the Liouville equationddtPt(
) = �P� @@
� [F�[
; t]Pt(
)], describing deterministic evolution for our macroscopic observables: ddt
 =F [
; t]. These deterministic equations we will now work out explicitly.10



On-Line LearningFirst we deal with the scalar observables Q and R:ddtQ = limN!1�2��h(J ��)G[J ��;B ��]i~D�QRP;t + �2 �hG2[J ��;B ��]i~D�QRP;t�= 2� Z dxdy P [x; y] x G[x; y] + �2 Z dxdy P [x; y] G2[x; y]ddtR = limN!1 ��h(B ��)G[J ��;B ��]i~D�QRP;t = � Z dxdy P [x; y] y G[x; y]These equations are identical to those found in the � ! 1 formalism. The di�erence is in the function to besubstituted for P [x; y], which here is the solution of@@tP [x; y] = limN!1��� @@x �hhG[J ��0;B ��0](� ��0)�[x�J ��]�[y�B ��]i~Di~D�QRP;t+ �22N @2@x2 �hhG2[J ��0;B ��0](� ��0)2�[x�J ��]�[y�B ��]i~Di~D�QRP;t+1� �h�[x�J ����G[J ��;B ��]]�[y�B ��]� �[x�J ��]�[y�B ��]i~D+� @@x [G[x; y]h�[x�J ��]�[y�B ��]i~D]� 12�2 @2@x2 �G2[x; y]h�[x�J ��]�[y�B ��]�i~D�QRP;t�(where we have inserted (21)) = 1� �Z dx0 P [x0; y]�[x�x0��G[x0; y]]� P [x; y]��� @@x Z dx0dy0 A[x; y;x0; y0]G[x0; y0] + 12�2 Z dx0dy0 P [x0; y0]G2[x0; y0] @2@x2P [x; y]+12�2 @2@x2 Z dx0dy0 B[x; y;x0; y0]G2[x0; y0]Anticipating the term B[: : :] to be zero (as shown in Appendix B) we thus arrive at the following set of coupleddeterministic macroscopic equationsddtQ = 2� Z dxdy P [x; y] x G[x; y] + �2 Z dxdy P [x; y] G2[x; y] (25)ddtR = � Z dxdy P [x; y] y G[x; y] (26)ddtP [x; y] = 1� �Z dx0 P [x0; y]�[x�x0��G[x0; y]]� P [x; y]��� @@x Z dx0dy0 A[x; y;x0; y0] G[x0; y0] + 12�2 Z dx0dy0 P [x0; y0]G2[x0; y0] @2@x2P [x; y] (27)
11



Batch LearningFor Q and R one again �nds simple equations:ddtQ = limN!1(2��h(J ��)G[J ��;B ��]i~D�QRP;t + �2N *Xi h�iG[J ��;B ��]i2i~D+QRP;t)= 2� Z dxdy P [x; y] x G[x; y]ddtR = limN!1 ��h(B ��)G[J ��;B ��]i~D�QRP;t = � Z dxdy P [x; y] y G[x; y]Finally we calculate the temporal derivative of the joint �eld distribution:@@tP [x; y] = limN!1�� � @@x �hhG[J ��0;B ��0](� ��0)�[x�J ��]�[y�B ��]i~Di~D�QRP;t+ �22N @2@x2 �hhhG[J ��0;B ��0]G[J ��00;B ��00](� ��0)(� ��00)�[x�J ��]�[y�B ��]i~Di~Di~D�QRP;t�= � �� @@x [G[x; y]P [x; y]]� � @@x Z dx0dy0 A[x; y;x0; y0]G[x0; y0]+12�2 @2@x2 Z dx0dy0dx00dy00C[x; y;x0; y0;x00; y00]G[x0; y0]G[x00; y00]Anticipating the term C[: : :] to be zero (to be demonstrated in Appendix B) we thus arrive at the followingcoupled deterministic macroscopic equations:ddtQ = 2� Z dxdy P [x; y] x G[x; y] (28)ddtR = � Z dxdy P [x; y] y G[x; y] (29)ddtP [x; y] = � �� @@x [G[x; y]P [x; y]]� � @@x Z dx0dy0 A[x; y;x0; y0] G[x0; y0] (30)The di�erence between the macroscopic equations for batch and on-line learning is merely the presence (on-line)or absence (batch) of those terms which are not linear in the learning rate � (i.e. of order �2 or higher).2.5 Closure of Macroscopic Dynamical LawsThe complexity of the problem is fully concentrated in the Green's function A[x; y;x0; y0] de�ned in (22). Ourmacroscopic laws are exact for N !1 but not yet closed due to the appearance of the microscopic probabilitydensity pt(J) in the sub-shell average of (22). We now close our macroscopic laws by making, for N !1, thetwo key assumptions underlying dynamical replica theories:1. Our macroscopic observables fQ;R; Pg obey closed dynamic equations.2. These macroscopic equations are self-averaging with respect to the disorder, i.e. the microscopic realisa-tion of the training set ~D.Assumption 1 implies that all microscopic probability variations within the fQ;R; Pg sub-shells of the J -ensemble are either absent or irrelevant to the evolution of fQ;R; Pg. We may consequently make the simplest12



self-consistent choice for pt(J) in evaluating the macroscopic laws, i.e. in (22): microscopic probability equipar-titioning in the fQ;R; Pg-subshells of the ensemble, orpt(J) ! w(J ) � �[Q�Q[J ]] �[R�R[J ]] Yxy �[P [x; y]�P [x; y;J ]] (31)This new microscopic distribution w(J) depends on time via the order parameters fQ;R; Pg. Note that (31)leads to exact macroscopic laws if our observables fQ;R; Pg for N ! 1 indeed obey closed equations, and istrue in equilibrium for detailed balance models in which the Hamiltonian can be written in terms of fQ;R; Pg.It is an approximation if our observables do not obey closed equations. Assumption 2 allows us to average themacroscopic laws over the disorder; for mean-�eld models it is usually convincingly supported by numericalsimulations, and can be proven using the path integral formalism (see e.g. [10]). We write averages over alltraining sets ~D � f�1; 1gN , with j ~Dj = p, as h: : :i�. Our assumptions result in the closure of the two sets(25,26,27) and (28,29,30), since now the function A[x; y;x0; y0] is expressed fully in terms of fQ;R; Pg:A[x; y;x0; y0] = limN!1*R dJ w(J ) hh�[x�J ��] �[y�B ��] (� ��0) ���0 �[x0�J ��0] �[y0�B ��0]ii~D ii~DR dJ w(J ) +�The �nal ingredient of dynamical replica theory is the realization that averages of fractions can be calculatedwith the replica identity�R dJ W [J ; z]G[J ; z]R dJ W [J ; z] �z = limn!0 Z dJ1 � � � dJn hG[J 1; z] nY�=1W [J�; z]izSince each weight component scales as J�i = O(N� 12 ) we transform variables in such a way that our calculationswill involve O(1) objects: (8i)(8�) : J�i = (Q=N) 12��i ; Bi = N� 12 �iThis ensures ��i = O(1), �i = O(1), and reduces various constraints to ordinary spherical ones: (��)2 = � 2 = Nfor all �. Overall prefactors generated by these transformations always vanish due to n ! 0. We �nd a newe�ective measure: Qn�=1 w(J�) dJ� !Qn�=1 ~w(��) d��, with~w(�) � � �N��2� � hNRQ� 12�� ��iYxy � hP [x; y]�P [x; y; (Q=N) 12�]i (32)We thus arrive atA[x; y;x0; y0] = limN!1n!0 Z nY�=1 ~w(��)d��� ��(�0 ��)���0� �x�pQ�1 ��pN � � �y� � ��pN � � �x0�pQ�1 ��0pN � � �y0� � ��0pN ��~D�~D �� (33)In the same fashion one can also express P [x; y] in replica form (which will prove useful for normalizationpurposes and for self-consistency tests):P [x; y] = limN!1n!0 Z nY�=1 ~w(��)d����� �x�pQ�1 ��pN � � �y� � ��pN ��~D�� (34)Finally we will have to demonstrate that the two functions B[: : :] and C[: : :], as de�ned in (23,24), do indeedvanish self-consistently, as claimed. To achieve this we again express them in replica form:B[x; y;x0; y0] = limN!1n!0 Z nY�=1 ~w(��)d�� 13



* **���0 24 1N Xi6=j �i�j�0i�0j35 � �x�pQ�1 ��pN � � �y� � ��pN � � �x0�pQ�1 ��0pN � � �y0� � ��0pN �+~D+~D +� (35)andC[x; y;x0; y0;x00; y00] = limN!1n!0 Z nY�=1 ~w(��)d��� ������00��0�00 (� ��00)(�0 ��00)N � �x�pQ�1 ��pN � � �y� � ��pN �� � �x0�pQ�1 ��0pN � � �y0� � ��0pN � � �x00�pQ�1 ��00pN � � �y00� � ��00pN ��~D�~D�~D �� (36)At this stage the physics is over, what remains is to perform the summations and integrations in (33,34,35,36)in the limit N !1. Full details of this exercise are given in Appendix B, where we show that (35) and (36) areindeed zero, and where we derive, in replica symmetric ansatz, an expression for the Green's function (33). Itturns out that to calculate this Green's function A[: : :] one has to solve two coupled saddle-point equations ateach time-step, one scalar equation relating to a spin-glass order parameter q, and one functional saddle-pointequation relating to an e�ective single-spin measure.3 Summary of the Theory and Connection with �!1 FormalismIn this section we summarize the results obtained so far (including the replica calculation in Appendix B) ina compact way, and we show that our general theory has the satisfactory property that it incorporates thestandard formalism developed for in�nite training sets (with Gaussian joint �eld distributions P [x; y] at anytime) as a special case, recovered in the limit � !1. In addition we provide a proof of the uniqueness of theRS functional saddle-point equation and show that it can be found as the �xed-point of an iterative map.3.1 Summary of the TheoryDynamic Equations for ObservablesOur observables are Q = J2, R = J � B, and the joint distribution of student and teacher �elds P [x; y] =h�[x�J ��]�[y�B��]i~D . For N !1 these quantities obey closed, deterministic, and self-averaging macroscopicdynamic equations. One always has P [x; y] = P [xjy]P [y] with P [y] = (2�)� 12 e� 12y2 . We de�ne hf [x; y]i =R dxDy P [xjy]f [x; y], with the familiar short-hand Dy = (2�)� 12 e� 12 y2dy, and the following four averages (thefunction �[x; y] will be given below):U = h�[x; y]G[x; y]i V = hxG[x; y]i W = hyG[x; y]i Z = hG2[x; y]i (37)For on-line learning our macroscopic laws areddtQ = 2�V + �2Z ddtR = �W (38)ddtP [xjy] = 1� Z dx0P [x0jy] [�[x�x0��G[x0; y]]��[x�x0]]� � @@x �P [xjy] [U(x�Ry)+Wy]�+12�2Z @2@x2P [xjy]� � �V�RW�(Q�R2)U� @@x �P [xjy]�[x; y]� (39)For batch learning one has: ddtQ = 2�V ddtR = �W (40)ddtP [xjy] = � �� @@x [P [xjy]G[x; y]]� � @@x �P [xjy] [U(x�Ry)+Wy]�14



�� �V�RW�(Q�R2)U� @@x �P [xjy]�[x; y]� (41)Note that the batch equations follow from the on-line ones by retaining only terms which are linear in thelearning rate. From the solution of the above equations follow, in turn, the training- and generalization errors:Et = h�[�xy]i Eg = 1� arccos[R=pQ] (42)We note, �nally, that the �rst conditional moment x(y) = R dx xP [xjy] of P [xjy] of the joint �eld distributionobeys a simple equation, which is obtained from (39) and (41) upon multiplication by x, followed by integrationover x: ddt [x(y)�Ry] = �� Z dx P [xjy]G[x; y] + �U [x(y)�Ry] (43)where we have also used the built-in property R dx P [xjy]�[x; y] = 0 for all y.Saddle-Point Equations and the function �The function �[x; y] appearing in the above equations (generated by the Green's function A[: : :]) is expressedin terms of auxiliary order parameters. These come about in the replica calculation of Appendix B, wherethe order parameters are de�ned through Dirac � functions in their integral representation. The �rst auxiliaryorder parameter is a spin-glass type order parameter q = hhJ i2i~D=Q, with R2=Q � q � 1. The second, de�nedsimilarly for the joint probability P [x; y] is the function �[x; y] (for details see Appendix B). The latter isnot necessarily normalised and in what follows it is useful to consider the e�ective measure M [x; y] which isrelated to �[x; y] through a simple transformation (equation (146)). The measure M [x; y] is non-negative andcan be always normalized such that R dx M [x; y] = 1 for all y 2 <, as emphasized in our notation by writingM [x; y] ! M [xjy]. The auxiliary order parameters are calculated at each time-step by solving the followingtwo coupled saddle-point equations:h(x�Ry)2i+ (qQ�R2)(1� 1� ) = �1+q�2R2=Q1�q � Z DyDz �hx2i? � hxi2?� (44)P [X jy] = Z Dz h�[X�x]i? (45)in which hf [x; y; z]i? = R dx M [xjy]eBxzf [x; y; z]R dx M [xjy]eBxz B = pqQ�R2Q(1�q) (46)After q and M [xjy] have been determined, the key function �[x; y] in (37,39,41) is calculated as�[X; y] = �Q(1�q)P [X jy]��1Z DzhX�xi?h�[X�x]i? (47)or, equivalently: �[X; y] = �pqQ�R2P [X jy]��1Z Dz z h�[X�x]i? (48)Finding a saddle-point problem for an order parameter function, rather than a �nite number of scalar orderparameters, introduces the possibility of a proliferation of saddle-points. In the next section we will show thatthis does not happen: the solution of the functional saddle-point problem is unique, and can even by founditeratively by executing a speci�c non-linear mapping.
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3.2 Uniqueness and Iterative Calculation of the Functional Saddle-PointThe uniqueness proof is more easily set up in terms of the original order parameter function �[x; y], rather thanthe new (normalised) measure M [xjy] (see Appendix B). For a given state fQ;R; Pg and a given value forq 2 [R2=Q; 1] we have to �nd the functional saddle-points of the functional 	[�], de�ned as:	[�] = � Z DyDz log Z dx e� x22Q(1�q)+x[Ay+Bz]+��1�[x;y] � Z DydxP [xjy]�[x; y] (49)Our proof will carry the existence of the various integrals as an implicit condition for validity. To reducenotational ballast we de�new(x; y; z) = e� x22Q(1�q)+x[Ay+Bz]+��1�[x;y]R dx0 e� x022Q(1�q)+x0[Ay+Bz]+��1�[x0;y] ; hf [x; y; z]i? = Z dx w(x; y; z)f [x; y; z]Note: w(x; y; z) =M [xjy]eBxz= R dx0 M [x0jy]eBx0z. The function w(u; v; z) obeys�w(u; v; z)��[u0; v0] = ��1�[v�v0] [�[u�u0]w(u; v; z)� w(u; v; z)w(u0; v; z)]The functional saddle-point equation is obtained by requiring the �rst functional derivative of 	[�] with respectto �[u; v] to be zero for all u; v 2 <, where�	��[u; v] ����� = e� 12 v2p2� �Z Dz w(u; v; z)� P [ujv]� (50)Clearly, if the function �[x; y] is a saddle-point, then also the function �[x; y]+�(y) for any �(y). This degree offreedom is irrelevant because such terms �(y) will drop out of the measure h: : :i?. Furthermore, one immediatelyveri�es that transformations of the form �[x; y]! �[x; y] + �(y) leave the functional 	[: : :] (49) invariant. Nextwe calculate the Hessian (or curvature) operator H [u; v;u0; v0;�], using (50):H [u; v;u0; v0;�] = �2	��[u; v]��[u0; v0] ����� = e� 12 v2p2� Z Dz �w(u; v; z)��[u0; v0]= �[v�v0] e� 12 v2�p2� Z Dz [�[u�u0]w(u; v; z)� w(u; v; z)w(u0; v; z)] (51)H [u; v;u0; v0;�] is non-negative de�nite for each �, and thus the functional 	 is convex, since for any function�[u; v] for which the relevant integrals exist we �ndZ dudvdu0dv0 �[u; v]H [u; v;u0; v0;�]�[u0; v0] = 1� Z DvDz �h�2[u; v]i? � h�[u; v]i2?� � 0The kernel of H [u; v;u0; v0;�], for a given `point' � in �-space, is determined by requiring equality in the aboveinequality, i.e. for each v; z 2 < : h[�[u; v]� h�[u; v]i?]2i? = 0 so @@u�[u; v] = 0For each � the kernel of the second functional derivativeH [x; y;x0; y0;�] thus consists of the set of all (integrable)functions �[x; y] which depend on y only.We now �nd that, if �0[x; y] and �1[x; y] are both functional saddle-points of 	[�], then �1[x; y]��0[x; y] =�(y) for some function �(y). In other words: apart from the aforementioned irrelevant degree of freedom, thesolution of the functional saddle-point equation (45) is unique. To show this, consider two functions �0[x; y]16



and �1[x; y] which are both functional saddle-points of 	, i.e. corresponding to solutions of (45). De�ne a pathf�tg through �-space, connecting these two functions:�t[x; y] = �0[x; y] + t f�1[x; y]� �0[x; y]g ; t 2 [0; 1]Integration along this path will bring us from �0 to �1. Thus for any functional L[�] one hasL[�1]� L[�0] = Z �1�0 dL[�] = Z dudv Z �1�0 d�[u; v] �L��[u; v]= Z dudv [�1[u; v]��0[u; v]] Z 10 dt �L��[u; v] �����tFor the functional L[�] we now choose a functional �rst derivative of 	[�], i.e. L[�] = �	=��[x; y] for somex; y 2 <. Since both �0 and �1 are saddle-points one �nds L[�0] = L[�1] = 0. ThusZ dudv [�1[u; v]��0[u; v]] Z 10 dt �2	��[u; v]��[x; y] �����t = 0Multiply both sides by �1[x; y]��0[x; y] and integrate the result over x; y 2 <:Z 10 dt Z dudvdxdy [�1[u; v]��0[u; v]]H [u; v;x; y;�t] [�1[x; y]��0[x; y]] = 0One concludes (since the Hessian is a symmetric non-negative operator):for all t 2 [0; 1]; u; v 2 < : Z dxdy H [u; v;x; y;�t] [�1[x; y]��0[x; y]] = 0The function �1[x; y]��0[x; y] is in the kernel of H j�t for any t 2 [0; 1]. The kernel of H was already determinedto be the set of all integrable functions which depend on y only, whatever the point � where one chooses toevaluate H . Hence �1[x; y]��0[x; y] = �(y) for some function �(y). Finally, the remaining freedom in choosinga function � is eliminated by our normalisation R dx M [xjy] = 1 (for each y), so that the solution M [xjy] isindeed truly unique.Next we will show how for any given value of the scalar order parameter q and the observables fQ;R; Pg(and thus of B), for which the relevant integrals exist, the unique solution M [xjy] of the functional saddle-pointequation (45) can be constructed as the stable �xed-point of the following functional map:for each y 2 < : M`+1[xjy] = P [xjy]�RDz hR dx0 eBz(x0�x)M`[x0jy]i�1��1R du P [ujy]nRDz �R dx0 eBz(x0�u)M`[x0jy]��1o�1 (52)Clearly all �xed-points of this map correspond to normalised solutions M [xjy] of a functional saddle-pointequation (45), of which there can be only one. Thus we only need to verify the convergence of (52), whichcan be done most e�ciently using an appropriate Lyapunov functional. Note that the functional (49) can bewritten as 	[M jy] = � Z Dy ~	[M jy] + terms independent of M [: : :]with ~	[M jy] = Z Dz log Z dx M [xjy]eBxz � Z dxP [xjy] logM [xjy] (53)For any given y 2 < we will show (53) to be a Lyapunov functional for the mapping (52), i.e. ~	[M jy] isbounded from below and monotonically increasing during the iteration of (52) with stationarity obtained only17



when M [: : :] is the (unique) �xed-point of (52). First we prove that a lower bound for ~	 is given by the entropyof the conditional distribution P [xjy]:for any M [: : :] and any y 2 < : ~	[M jy] � � Z dx P [xjy] logP [xjy] (54)The proof is elementary (using Jenssen's inequality):~	[M jy] = Z Dz log�Z dx P [xjy]eBxz+logM [xjy]�logP [xjy]�� Z dx P [xjy] logM [xjy]� Z Dz Z dx P [xjy] fBxz + logM [xjy]� logP [xjy]g � Z dx P [xjy] logM [xjy]= � Z dx P [xjy] logP [xjy]Secondly we show that (53) indeed decreases monotonically under (52) until the �xed-point of (52) is reached. Todo so we introduce the short-hand notations �`(x; y; z) = Bxz+logM`[xjy]�logP [xjy], hf [x]i = R dx P [xjy]f [x],and v`(x; y) = �Z Dz e�`(x;y;z)he�`(x0;y;z)i�1��1The iterative map can now be written asM`+1[xjy] = M`[xjy]v`(x; y)R du M`[ujy]v`(u; y)This gives for the change in ~	[: : :] during one iteration of the mapping, again with Jenssen's inequality:~	[M`+1jy]� ~	[M`jy] = Z Dz log�R dx M`+1[xjy]eBxzR dx M`[xjy]eBxz �� Z dxP [xjy] log�M`+1[xjy]M`[xjy] �= Z Dz�log he�`(x;y;z)v`(x; y)ihe�`(x;y;z)i �� hlog v`(x; y)i� log�hv`(x; y) Z Dz he�`(x;y;z)he�`(x0;y;z)i�1ii�� hlog v`(x; y)i= �hlog v`(x; y)i = hlog Z Dz e�`(x;y;z)he�`(x0;y;z)i�1i� log Z Dz he�`(x;y;z)ihe�`(x0;y;z)i�1 = 0Finally we round o� our argument by inspecting the implications of having strict equality in the above inequality.Equality can only occur if at both instances where Jenssen's inequality was used in replacements of the formhlog(X)i � loghXi the relevant stochastic variable X was a constant. In our problem this gives the twoconditions @@z he�`(x;y;z)v`(x; y)ihe�`(x;y;z)i = 0; @@xv`(x; y) = 0If the second condition is met, the �rst immediately follows. Working out the second condition gives, incombination with the property that P [xjy] is normalised:Z Dz M`[xjy]eBxzR dx0 M`[x0jy]eBx0z = P [xjy]18



Thus we have con�rmed that ~	[M`+1jy] = ~	[M`jy] if and only if M`[: : :] is the (unique) �xed-point of (52).As a consequence of the above we may now write the normalised solution of our functional saddle-pointequation (45) in terms of repeated execution of the mapping (52) following an an in principle arbitrary initiali-sation: for all y 2 < : M [xjy] = lim`!1M`[xjy]; M0[xjy] = P [xjy]This property simpli�es the numerical solution of our equations drastically.3.3 Fourier Representation and Conditionally-Gaussian SolutionsThere are two potential advantages of rewriting our equations in Fourier representation. Firstly, after a Fouriertransform the functional saddle-point equation (45) will acquire a much simpler form. Secondly, in those caseswhere we expect P [xjy] to be of a Gaussian shape in x this would simplify solution of the di�usion equations(39,41). Clearly, P [x; y] being Gaussian in (x; y) is not equivalent to P [xjy] being Gaussian in x only. Theformer requires @2@y2 Z dx xP [xjy] = @@y (Z dx x2P [xjy]� �Z dx xP [xjy]�2) = 0;which only will turn out to happen for � ! 1. A Gaussian P [xjy] with moments which depend on y in anon-trivial way, on the other hand, is found to occur also for � <1, provided we consider simple learning rulesand small �. To avoid ambiguity we will call solutions of the latter type `conditionally-Gaussian'.We introduce the Fourier transformsP̂ [kjy] = Z dx e�ikxP [xjy] M̂ [kjy] = Z dx e�ikxM [xjy] (55)The transformed functional saddle-point equation thereby acquires a very simple formP̂ [kjy] = Z Dz M̂ [k+iBzjy]M̂ [iBzjy] (56)Note that, in contrast to the original equation (45), the transformed equation (56) need not have a unique solu-tion (it could allow for solutions corresponding to non-integrable functions in the original problem). Consider,for instance, the transformation M̂ [kjy] ! _M [kjy] = e 12k2=B2M̂ [�kjy]with the property (veri�ed by a simple transformation of variables):Z Dz _M [k+iBzjy]_M [iBzjy] = Z ik=B+1ik=B�1 Dz M̂ [k+iBzjy]M̂ [iBzjy]If M̂ [k], which by de�nition cannot have poles, is su�ciently well behaved, a simple deformation of the inte-gration path (via contour integration) leads to the statement that if M̂ [kjy] is a solution of (56), then so is_M [kjy].Transformation of the dynamical on-line equation (39) for P [xjy] (from the which the batch equation (41)can be obtained by expansion in �) gives:ddt log P̂ [kjy] = 1� (Z dk0 P̂ [k0jy]P̂ [kjy] Z dx02� eix0(k0�k)�i�kG[x0 ;y] � 1)� i�k(W�UR)y+ �kU @@k log P̂ [kjy]� 12�2k2Z � i�k "V�RW�(Q�R2)UpqQ�R2P̂ [kjy] #Z Dz z M̂ [k + iBzjy]M̂ [iBz] (57)19



We now determine the conditions for equation (57) to have conditionally-Gaussian solutions. If P [xjy] isGaussian in x we can solve the functional saddle-point equation (45) (whose solution is unique), and �nd theresulting pair of measuresP [xjy] = e� 12 [x�x(y)]2=�2(y)�(y)p2� M [xjy] = e� 12 [x�x(y)]2=�2(y)�(y)p2� (58)�2(y) = �2(y) +B2�4(y) (59)with their Fourier transforms P̂ [kjy] = exp ��ikx(y)� 12k2�2(y)� and M̂ [kjy] = exp ��ikx(y)� 12k2�2(y)�. Inser-tion of these expressions as an Ansatz into (57), using the identityZ Dz z M̂ [k + iBzjy]M̂ [iBz] = ikB�2(y)P̂ [kjy]and performing some simple manipulations, gives the following simpli�ed equation:�ik ddtx(y)� 12k2 ddt�2(y) = 1� �Z dup2� e� 12 [u�ik�(y)]2�ik�G[x(y)+u�(y);y] � 1�� i�k fWy + U [x(y)�Ry]g�12k2��2Z + 2�U�2(y) + 2��2(y) �V�RW�(Q�R2)UQ(1�q) �� (60)From this it follows that conditionally-Gaussian solutions can occur in two situations only:�!1 or @3@k3 Z dup2� e� 12 [u�ik�(y)]2�ik�G[x(y)+u�(y);y] = 0 (61)The �rst case corresponds to the familiar theory of in�nite training sets (see next section). The second caseoccurs for su�ciently simple learning rules G[x; y], in combination either with batch execution (so that of (61)we retain only the term linear in �) or with on-line execution for small � (retaining in (61) only � and �2 terms).The latter cases will be dealt with in more detail later.3.4 Link with the Formalism for Complete Training SetsThe very least we should require of our theory is that it reduces to the simple (Q;R) formalism of completetraining sets [2, 3] in the limit �!1. Here we will show that this indeed happens. In the previous section wehave seen that for �!1 our driven di�usion equation for the conditional distribution P [xjy] has conditionally-Gaussian solutions, with R dx xP [xjy] = x(y) and R dx [x� x(y)]2P [xjy] = �2(y). Note that for such solutionswe can calculate objects such as hxi? and the function �[x; y] (47) directly, givinghxi? = x(y) + zB�2(y) �[x; y] = x� x(y)Q(1�q)[1+B2�2(y)]with �2(y) = �2(y)+B2�4(y) and B =pqQ�R2=Q(1�q). The remaining dynamical equations to be solved arethose for Q and R, in combination with dynamical equations for the y-dependent cumulants x(y) and �2(y).These equations reduce to:ddtQ = ( 2�hxG[x; y]i+ �2hG2[x; y]i (on�line)2�hxG[x; y]i (batch) ddtR = �hyG[x; y]i (62)1� ddt �x(y)�Ry� = [x(y)�Ry]h�[x0; y0]G[x0; y0]i (63)20



12� ddt ��2(y)�Q+R2� = h(x0�Ry0)G[x0; y0]i � �2(y)Q(1�q)�1�+ h�[x0; y0]G[x0; y0]i ��2(y)� Q�R2Q(1�q)�2(y)� (64)with one remaining saddle-point equation to determine q, obtained upon working out (44) for conditionally-Gaussian solutions: Z Dy �[x(y)�Ry]2 +�2(y)	+ qQ�R2 = �2 qQ�R2Q(1�q)+1�Z Dy �2(y) (65)We now make the Ansatz that x(y) = Ry and �2(y) = Q�R2, i.e.P [xjy] = e� 12 [x�Ry]2=(Q�R2)p2�(Q�R2) ; (66)Insertion into the dynamical equations shows that (63) is now immediately satis�ed, that (64) reduces to�2(y) = Q(1�q), and that as a result the saddle-point equation (65) is automatically satis�ed. Since (66) isparametrized by Q and R only, this leaves us with the closed equationsddtQ = ( 2�hxG[x; y]i + �2hG2[x; y]i (on�line)2�hxG[x; y]i (batch) ddtR = �hyG[x; y]i (67)These are the equations found in e.g. [2, 3]. From our general theory for restricted training sets we thus indeedrecover in the limit � ! 1 the standard formalism (66,67) describing learning with complete training sets, asclaimed.4 Benchmark Tests: Hebbian LearningIn the special case of the Hebb rule, G[x; y] = sgn[y], where weight changes �J never depend on J , one canwrite down an explicit expression for the weight vector J at any time, and thus for the expectation values of ourobservables. We choose as our initial �eld distribution a simple Gaussian one, resulting from an initializationprocess which did not involve the training set:P0[xjy] = e� 12 (x�R0y)2=(Q0�R20)p2�(Q0�R20) (68)Careful averaging of the exact expressions for our observables over all `paths' f�(0); �(1); : : :g taken by the ques-tion/example vector through the training set ~D (for on-line learning), followed by averaging over all realizationsof the training set ~D of size p = �N , and taking the N !1 limit, then leads to the following exact result [12].For on-line Hebbian learning one ends up with:Q = Q0 + 2�tR0r 2� + �2t+ �2t2 � 1�+ 2�� R = R0 + �tr 2� (69)P [xjy] = Z dx̂2� e� 12 x̂2[Q�R2]+ix̂[x�Ry]+ t� [e�i�x̂ sgn[y]�1] (70)For batch learning a similar calculation3 gives:Q = Q0 + 2�tR0r 2� + �2t2 � 1�+ 2�� R = R0 + �tr 2� (71)P [xjy] = e� 12 [x�Ry�(�t=�) sgn[y]]2=(Q�R2)p2�(Q�R2) (72)3Note that in [12] only the on-line calculation was carried out; the batch calculation can be done along the same lines.21



Neither of the two �eld distributions is of a fully Gaussian form (although the batch distribution is at leastconditionally Gaussian). Note that for both on-line and batch Hebbian learning we haveZ dx xP [xjy] = Ry + �t� sgn[y] (73)The generalization- and training errors are, as before, given in terms of the above observables as Eg =��1 arccos[R=pQ] and Et = RDydxP [xjy]�[�xy]. We thus have exact expressions for both the generaliza-tion error and the training error at any time and for any �. The asymptotic values, for both batch and on-lineHebbian learning, are given by limt!1Eg = 1� arccos" 1p1 + �=2�# (74)limt!1Et = 12 � 12 Z Dy erf �jyjr��+ 1p2�� (75)As far as Eg and Et are concerned, the di�erences between batch and on-line Hebbian learning are con�nedto transients. Clearly, the above exact results (which can only be obtained for Hebbian-type learning rules)provide excellent and welcome benchmarks with which to test general theories such as the one investigated inthe present paper.4.1 Batch Hebbian LearningWe compare the exact solutions for Hebbian learning to the predictions of our general theory, turning �rst tobatch Hebbian learning. We insert into the equations of our general formalism the Hebbian recipe G[x; y] =sgn[y]. This simpli�es our dynamic equations enormously. In particular we obtain:U = 0; V = hx sgn(y)i; W =p2=�For batch learning we consequently �nd:ddtQ = 2�V ddtR = �p2=�ddtP [xjy] = � �� sgn(y) @@xP [xjy]� �yr 2� @@xP [xjy]� �(V�Rr 2� ) @@x �P [xjy]�[x; y]�Given the initial �eld distribution (68), we immediate obtain V0 = R0p2=�. From the general propertyR dx P [xjy]�[x; y] = 0 and the above di�usion equation for P [xjy] we derive an equation for the quantityV =hx sgn(y)i, resulting in ddtV = �=�+ 2�=�, which subsequently allows us to solveQ = Q0 + 2�tR0r 2� + �2t2 � 1�+ 2�� R = R0 + �tr 2� (76)Furthermore, it turns out that the above di�usion equation for P [xjy] meets the requirements for havingconditionally-Gaussian solutions, i.e.P [xjy] = e� 12 [x�x(y)]2=�2(y)�(y)p2� ; M [xjy] = e� 12 [x�x(y)]2=�2(y)�(y)p2�provided the y-dependent average x(y) and the y-dependent variances �(y) and �(y) obey the following threecoupled equations:x(y) = Ry+ �t� sgn(y) ddt�2(y) = 2�2t�2(y)�Q(1�q) �2(y) = �2(y)+B2�4(y)22



The spin-glass order parameter q is to be solved from the remaining scalar saddle-point equation (44). Withhelp of identities like hxi? = x(y) + zB�2(y), which only hold for conditionally-Gaussian solutions, one cansimplify the latter to�2t2� + � Z Dy �2(y) + (qQ�R2)(��1) = � �2 qQ�R2Q(1�q)+1�Z Dy �2(y)We now immediately �nd the solution�2(y) = Q�R2; �2(y) = Q(1�q); q = [�R2+�2t2]=�QP [xjy] = e� 12 [x�Ry�(�t=�) sgn(y)]2=(Q�R2)p2�(Q�R2) (77)(this solution is unique). If we calculate the generalization error and the training error from (76) and (77),respectively, we recover the exact expressionsEg = 1� arccos2664 R0+�tq 2�rQ0+2�tR0q 2�+�2t2 � 1�+ 2� �3775 (78)Et = 12 � 12 Z Dy erf 24 jyj[R0+�tq 2� ]+ �t�q2[Q0�R20+ �2t2� ] 35 (79)Comparison of (76,77) with (71,72) shows that for batch Hebbian learning our theory is fully exact. This isnot a big feat as far as Q and R (and thus Eg) are concerned, whose determination did not require knowingthe function �[x; y]. The fact that our theory also gives the exact values for P [xjy] and Et, however, is lesstrivial, since here the disordered nature of the learning dynamics, leading to non-Gaussian distributions, is trulyrelevant.4.2 On-Line Hebbian LearningWe next insert the Hebbian recipe G[x; y]= sgn[y] into the on-line equations (38,39). Direct analytical solutionof these equations, or a demonstration that they are solved by the exact result (69,70), although not ruled out,has not yet been achieved by us. The reason is that here one has conditionally Gaussian �eld distributions onlyin special limits. Numerical solution is in principle straightforward, but will be quite CPU intensive (see also asubsequent section). For small learning rates the on-line equations reduce to the batch ones, so we know that in�rst order in � our on-line equations are exact (for any �, t). We now show that the predictions of our theoryare fully exact (i) for Q, R and Eg, (ii) for the �rst moment (73) of the conditional �eld distribution, and (iii)for all order parameters in the stationary state. At intermediate times we construct an approximate solution ofour equations in order to obtain predictions for P [xjy] and Et.As before we choose a Gaussian initial �eld distribution. Many (but not all) of our previous simpli�cationsstill hold, e.g. U = 0; V = hx sgn(y)i; W =p2=�; Z = 1(Z did not occur in the batch equations). Thus for on-line learning we �nd:ddtQ = 2�V + �2 ddtR = �p2=�The previous derivation of the identities ddtV =�=�+2�=� and V0 = R0p2=� still applies (just replace the batchdi�usion equation by the on-line one), but the resultant expression for Q is di�erent. Here we obtain:Q = Q0 + 2�tR0r 2� + �2t+ �2t2 � 1�+ 2�� R = R0 + �tr 2� (80)23



Comparing (80) with (69) reveals that also for on-line Hebbian learning our theory is exact with regard to Qand R, and thus also with regard to Eg. Upon using V =�t=�+Rp2=�, the on-line di�usion equation simpli�esto ddtP [xjy] = 1� �P [x�� sgn(y)jy]�P [xjy]�� �yr 2� @@xP [xjy] + 12�2 @2@x2P [xjy]� �2t� @@x �P [xjy]�[x; y]�Multiplication of this equation by x followed by integration over x, together with usage of the general propertiesR dx fP [xjy]�[x; y]g = 0 and R dx xP0[xjy] = R0y, gives us the average of the conditional distribution P [xjy] atany time: x(y) = Z dx xP [xjy] = Ry + �t� sgn[y]Comparison with (73) shows also this prediction to be correct.We now turn to observables which involve more detailed knowledge of the function �[x; y]. Our resultfor x(y) and the identity hxi? = B�1 @@z log M̂ [iBzjy] allow us to rewrite all remaining equations in Fourierrepresentation, i.e. in terms of P̂ [kjy]=R dx e�ikxP [xjy] and M̂ [kjy]=R dx e�ikxM [xjy]:ddt log P̂ [kjy] = 1� he�i�k sgn(y)�1i� i�kyr 2� � 12�2k2 � ik�2t�P̂ [kjy]pqQ�R2 Z Dz z M̂ [k+iBzjy]M̂ [iBzjy] (81)with log P̂0[kjy] = �ikR0y� 12k2(Q0�R20), and with the two saddle-point equationsP̂ [kjy] = Z Dz M̂ [k+iBzjy]M̂ [iBzjy] (82)�2t2�2 + Z DyZ dx P [xjy][x�x(y)]2 + (1� 1� )(qQ�R2) = �2Q(1�q)+ 1B2 �Z DyDz @2@z2 log M̂ [iBzjy] (83)Since the �elds x grow linearly in time (see our expression for x(y)) the equations (81,83,82) cannot have propert!1 limits. To extract asymptotic properties we have to turn to the rescaled distribution Q̂[kjy]= P̂ [k=tjy].We de�ne v(y) = (�=�) sgn(y)+�yp2=�. Careful integration of (81), followed by inserting k! k=t and bytaking the limit t!1, produces:log Q̂1[kjy] = �ikv(y)� i�2k� Z 10 du limt!1 tpqQ�R2 Z Dz z M̂ [uk=t+iBzjy]Q̂1[ukjy]M̂ [iBzjy] (84)with the functional saddle-point equation̂Q[kjy] = Z Dz M̂ [k=t+iBzjy]M̂ [iBzjy] (85)The rescaled asymptotic system (84,85) admits the solutionQ̂[kjy] = e�ikv(y)� 12k2 ~�2 ; M̂ [kjy] = e�ikx(y)� 12 k2~�2twith the asymptotic values of B, ~�, ~� and q determined by solving the following equations:~� = B~�2 ~� = �2� limt!1 tpqQ�R2 B = limt!1 pqQ�R2Q(1�q)�2=�2 + ~�2 + (1���1) limt!1(qQ�R2)=t2 = 2B2~�2 limt!1Q(1�q)=tInspection shows that these four asymptotic equations are solved bylimt!1 ~� = �=p�; limt!1 q = 124



so that limt!1 P̂t[k=tjy] = e�ik����1 sgn(y)+yp2=��� 12 �2k2=� (86)Comparison with (69,70) shows that this prediction (86) is again exact. Thus the same is true for the asymptotictraining error.Finally, in order to arrive at predictions with respect to P [xjy] and Et for intermediate times (withoutrigorous analytical solution of the functional saddle-point equation), and in view of the conditionally-Gaussianform of the �eld distribution both at t=0 and at t=1, it would appear to make sense for us to approximateP [xjy] and M [xjy] by simple conditionally Gaussian distributions at any time:P [xjy] = e� 12 [x�x(y)]2=�2�p2� ; M [xjy] = e� 12 [x�x(y)]2=�2�p2�with the (exact) �rst moments x(y) = Ry+�t��1 sgn(y), and with the variance �2 self-consistently given bythe solution of: �2 = �2+B2�4 B = pqQ�R2Q(1�q) ddt�2 = �2� +�2+ 2�2t�2�Q(1�q)��2 + �2t2� + (qQ�R2)(��1) = ��2 �2 qQ�R2Q(1�q)+1�The solution of the above coupled equations behaves as�2 = Q�R2 + �2t=�+O(t3) (t! 0)�2 = (Q�R2)[1+O(t�1)] (t!1)for short and long times, respectively (note Q�R2 � t2 as t!1). Thus we obtain a simple approximatesolution of our equations, which extrapolates between exact results at the temporal boundaries t=0 and t=1,by putting �2 = Q�R2+�2t=�with Q and R given by our previous exact result (80), one obtainsEg = 1� arccos� RpQ� Et = 12 � 12 Z Dy erf � jyjR+�t=��p2 � (87)We can also calculate the student �eld distribution P (x) = RDy P [xjy], givingP (x) = e� 12 [x+ �t� ]2=(�2+R2)2p2�(�2+R2) "1�erf R[x+ �t� ]�p2(�2+R2)!#+e� 12 [x��t� ]2=(�2+R2)2p2�(�2+R2) "1+erf R[x� �t� ]�p2(�2+R2)!# (88)In �gure 3 we compare the predictions for the generalization and training errors (87) of the approximatesolution of our equations with the results obtained from numerical simulations of on-line Hebbian learning forN = 10; 000 (initial state: Q0 = 1, R0 = 0; learning rate: � = 1). All curves show excellent agreement betweentheory and experiment. For Eg this is guaranteed by the exactness of our theory for Q and R; the agreementfound for Et is more surprising, in that these predictions are obtained from a simple approximation of thesolution of our equations. We also compare the theoretical predictions made for the distribution P [xjy] with theresults of numerical simulations. This is done in �gure 4, where we show the �elds as observed at time t = 5025



in simulations (N = 10; 000, � = 1, R0 = 0, Q0 = 1) of on-line Hebbian learning, for three di�erent values of�. In the same �gure we draw (as dashed lines) the theoretical prediction (73) for the y-dependent average ofthe conditional x-distribution P [xjy]. Finally we compare the student �eld distribution P (x), as observed insimulations of on-line Hebbian learning (N = 10; 000, � = 1, R0 = 0, Q0 = 1) with our prediction (88). Theresult is shown in �gure 5, for � 2 f4; 1; 0:25g. In all cases the agreement between theory and experiment, evenfor the approximate solution of our equations, is quite satisfactory.5 General Approximation SchemesAll three approximation schemes presented in this section aim at providing alternatives to calculating thee�ective measure M [xjy] at each time step from the functional saddle-point equation. Since this calculationcannot (yet) be done analytically, it constitutes a signi�cant numerical obstacle in working out the predictionsof our theory. Each scheme preserves both normalisation and symmetries of the probability density P [x; y] andits marginals, as well as the relation R dx P [xjy]�[x; y] = 0 for all y. In the �rst two approximation schemes, alarge � expansion and a conditionally-Gaussian saddle-point approximation, all Gaussian integrals representingthe disorder in the problem can be done analytically; this leads to a signi�cant reduction in CPU time whensolving our equations numerically (especially the large � approximation is extremely simple and fast, as it doesnot even involve a saddle-point equation for q). We only work out the equations for on-line learning; the batchlaws follows as usual upon expanding the equations in powers of � and retaining only the linear terms.5.1 Large � ApproximationOur �rst approximation scheme is obtained upon taking into account the �nite nature of the training set (i.e.the disordered nature of the dynamics) in �rst non-trivial order. The amount of disorder is e�ectively measuredby the parameter B, or, equivalently, by the deviation of the value of the spin-glass order parameter q from itsnaive value R2=Q. Putting B = 0 in the saddle-point equation (45) immediately gives limB!0M [xjy] = P [xjy],so we write M [xjy] = P [xjy] [1 + X̀>0B`m`[xjy]]; Z dx P [xjy]m`[xjy] = 0 (89)Upon inserting (89) as an ansatz into the saddle-point equation (45) , one easily shows thatM [xjy] = P [xjy] e� 12B2[x�x(y)]2+ 12B2[x2(y)�x(y)2]+O(B3) (90)with the abbreviations x(y) = Z dx P [xjy]x x2(y) = Z dx P [xjy]x2(the second O(B2) term in the exponent of (90), being independent of x, just re
ects the normalisation re-quirements). This result enables us, in turn, to expand the function �[x; y] which controls the non-trivialterm in our di�usion equation for P [xjy]. Note that from the de�nition of B it follows that Q(1� q) =12B�2[p1+4B2(Q�R2)�1], which gives �[x; y] = x� x(y)Q�R2 +O(B2)With this expression we can write our approximate equations in explicitly closed form (i.e. without any remain-ing saddle-point equations). The relevant scalar functions becomeU = hG[x; y][x�x(y)]iQ�R2 V = hxG[x; y]i W = hyG[x; y]i Z = hG2[x; y]i (91)For on-line learning we �nd: ddtQ = 2�V + �2Z ddtR = �W (92)26



ddtP [xjy] = 1� Z dx0P [x0jy] [�[x�x0��G[x0; y]]��[x�x0]]� � @@x �P [xjy] [U(x�Ry)+Wy]�+12�2Z @2@x2P [xjy]� � �V �RWQ�R2 � U� @@x �P [xjy][x�x(y)]� (93)From the solution of the above equations follow, as always, the training- and generalization errors Et =RDydx P [xjy]�[�xy] and Eg = ��1 arccos[R=pQ]. The resulting theory is obviously exact in the limit �!1,by construction.5.2 Conditionally-Gaussian ApproximationOur basic idea here is a variational approach to solving the functional saddle-point problem (valid for any �), i.e.to carry out the functional extremisation only within the restricted family of conditionally Gaussian measuresM [xjy] (which, together with q, characterises the saddle-point):M [xjy] = e� 12 [x�x(y)]2=�2(y)�(y)p2�Note that this does not imply the stronger statement that P [xjy] itself is taken to be of a conditionally-Gaussian form (as in the case of the approximation used for on-line Hebbian learning). Extremisation of theoriginal replica-symmetric functional 	[q; fMg] within the conditionally-Gaussian family of functions results inthe requirement that the two y-dependent moments x(y) and �2(y) be given byx(y) = Z dx xP [xjy]; �2(y) = Z dx x2P [xjy]� x2(y) = �2(y)+B2�4(y)Now we can again calculate all relevant averages which involve the e�ective measure M [xjy] exactly. In partic-ular:hxi? = x(y) + zB�2(y) B = pqQ�R2Q(1�q) �[x; y] = e� 12 [x�x(y)]2=�2(y)�(y)p2�P [xjy] (x� x(y))�2(y)Q(1�q)�2(y)For on-line learning this results in the following approximated theory:U = Z DyDu�u�2(y)G[x(y)+u�(y); y]Q(1�q)�(y) �V = hxG[x; y]i W = hyG[x; y]i Z = hG2[x; y]i (94)ddtQ = 2�V + �2Z ddtR = �W (95)ddtP [xjy] = 1� Z dx0P [x0jy] [�[x�x0��G[x0; y]]��[x�x0]]� � @@x �P [xjy] [U(x�Ry)+Wy]�+ 12�2Z @2@x2P [xjy]� ��2(y) �V�RW�(Q�R2)U�p2�Q(1�q)�5(y) ��2(y)�(x�x(y))2� e� 12 [x�x(y)]2=�2(y) (96)The remaining order parameter q is calculated at each time-step by solvingh(x�Ry)2i+ (qQ�R2)(1� 1� ) = �2 qQ�R2Q(1�q)+1�Z Dy �2(y)From the solution of these equations follow the training- and generalization errors Et = RDydx P [xjy]�[�xy]and Eg = ��1 arccos[R=pQ]. 27



5.3 Partially Annealed ApproximationIn order to construct our third and �nal approximation we return to an earlier stage of the derivation of thepresent formalism, and rewrite the functional saddle-point equation in a form where the replica limit n! 0 hasnot yet been taken, i.e.for all x; y : P [xjy] = RDz Mn[xjy]eBz[x�x(y)] hR dx0 Mn[x0jy]eBz[x0�x(y)]in�1RDz �R dx0 Mn[x0jy]eBz[x0�x(y)]�nwith x(y) = R dx xP [xjy]. In our full (quenched disorder) calculation we �nd ourselves with the e�ectivemeasure M [xjy] = limn!0Mn[xjy]. In contrast, an alternative calculation, whereby the quenched average overall training sets would have been replaced by an annealed average over all training sets, would have led usto the value n = 1 rather than n = 0: M [xjy] = M1[xjy]. We can now de�ne in a natural way an annealedapproximation of our theory upon replacing the complicated n = 0 functional saddle-point equation (45) by themuch simpler n = 1 version: P [xjy] = RDz M [xjy]eBz[x�x(y)]RDz R dx0 M [x0jy]eBz[x0�x(y)]The z-integrations can immediately be carried out, and the resulting equation solved for M [xjy], giving:M [xjy] = P [xjy] e� 12B2[x�x(y)]2R dx0 P [x0jy] e� 12B2[x0�x(y)]2 ; (97)Averages involving the e�ective measure M [xjy] are thus written explicitly in terms of P [xjy], and we are leftwith the following approximate theory:U = h�[x; y]G[x; y]i V = hxG[x; y]i W = hyG[x; y]i Z = hG2[x; y]i (98)ddtQ = 2�V + �2Z ddtR = �W (99)ddtP [xjy] = 1� Z dx0P [x0jy] [�[x�x0��G[x0; y]]��[x�x0]]� � @@x �P [xjy] [U(x�Ry)+Wy]�+ 12�2Z @2@x2P [xjy]� � �V�RW�(Q�R2)U� @@x �P [xjy]�[x; y]� (100)with �[X; y] = 1Q(1�q) Z Dz8><>:R dx P [xjy] e� 12 [B(x�x(y))�z]2� 12 [B(X�x(y))�z]2(X � x)hR dx P [xjy] e� 12 [B(x�x(y))�z]2i2 9>=>;As always, B =pqQ�R2=Q(1�q). The remaining spin-glass order parameter q is calculated at each time-stepby solvingh(x�Ry)2i+ (qQ�R2)(1� 1� ) = �2(qQ�R2) 12 + 1B �Z DyDz z(R dx P [xjy] e� 12 [B(x�x(y))�z]2xR dx P [xjy] e� 12 [B(x�x(y))�z]2 )From the solution of the above equations follow the training- and generalization errors Et = h�[�xy]i andEg = ��1 arccos[R=pQ]. It should be emphasised that the present approximation is not equivalent to (andshould be more accurate than) a full annealed treatment of the disorder in the problem; the latter would havea�ected not only the equation for M [xjy] but also the saddle-point equation for q (hence the name partiallyannealed approximation). 28



6 Non-Hebbian Rules: Theory versus SimulationsHenceforth we will always assume initial states with speci�ed values for R0 and Q0 but without correlationswith the training set, i.e. P0[xjy] = e� 12 [x�R0y]2=(Q0�R20)p2�(Q0 �R20)This implies that the student could initially have some knowledge of the rule to be learned, if we wish, butwill never know beforehand about the composition of the training set. We will inspect the learning dynamicsgenerated upon using two of the most common non-Hebbian (error-correcting) learning rules:Perceptron : G[x; y] = sgn(y)�[�xy]AdaTron : G[x; y] = jxj sgn(y)�[�xy] (101)Note that in the case of AdaTron learning the cases � � 1 and � > 1 give rise to qualitatively di�erent behaviourof the �rst term in the di�usion equation (39). For � < 1 the learning process, aiming at the situation wherexy > 0 never occurs, remedies inappropriate student �elds by slowly moving them towards (but not immediatelyacross) the decision boundary. For � > 1 the adjustments made to the student �elds could move them well intothe region at the other side of the decision boundary. The case � = 1 is special, in that changes to the student�elds tend to move them precisely onto the decision boundary. The student �eld distribution consequentlydevelops a �-peak at the origin, in perfect agreement with what can be observed in numerical simulations (seee.g. the graphs referring to on-line AdaTron learning with � = 1 in �gures 1 and 2):� = 1 : ddtP [xjy] = 1� ��(x) Z dx0 �[�x0y]P [x0jy]� P [xjy]�[�xy]�+ : : :In fact the same occurs for all � � 1: about half of the probability weight of P [xjy] will in due course becomeconcentrated in an increasingly thin ridge along the decision boundary x = 0. This is illustrated in �gure 6,for � = 12 . Since such a singular behaviour (although in principle accurately described by our equations) willbe di�cult to reproduce when solving the equations numerically, using �nite spatial resolution, we will in thispaper only deal with the case of � > 1 for AdaTron learning.6.1 Large � and Conditionally-Gaussian ApproximationsOur �rst approximated theory (the large � approximation) is very simple, with neither saddle-point equations tobe solved nor nested integrations. As a result, numerical solution of the macroscopic equations is straightforwardand fast. In �gures 7 (on-line perceptron learning) and 8 (on-line Adatron learning) we compare the resultsof solving the coupled equations (91,92,93) numerically for �nite values of �, plotting the generalisation- andtraining errors as functions of time, with results obtained from performing numerical simulations. As could havebeen expected, the large � approximation under-estimates the amount of disorder in the learning process, whichimmediately translates into under-estimation of the gap between Et and Eg (which is its �ngerprint). It is alsoclear from these �gures that, although at any given time the quality of the predictions of this approximation doesimprove when � increases (as indeed it should), and although there is surely qualitative agreement, reliablyaccurate quantitative statements on the values of the training- and generalisation errors are con�ned to theregime �t � �. Yet, surprisingly, the agreement obtained is very good, even for �t > �. Apparently the presentapproximation does still capture the main characteristics of the (non-Gaussian) joint �eld distribution. This isillustrated quite clearly and explicitly in �gures 9 and 10, where we compare for a �xed time t = 10 the studentand teacher �elds as measured during numerical simulations (for N = 10; 000, drawn as dots in the (x; y) plane)for the p = �N questions �� in the training set ~D, to the theoretical predictions for the joint �eld distributionP [x; y] (drawn as contour plots). We will not at this stage attempt to explain the surprising e�ectiveness of thelarge � approximation for small values of � (note that �gures 7 and 8 even suggest an increase in accurateness29



as � is lowered below � = 1). This would require a systematic mathematical analysis of the non-linear di�usionequation (93), which we consider to be beyond the scope of the present paper.The conditionally-Gaussian approximation again involves no nested integrals, and its equations can thereforestill be solved numerically in a reasonably fast way, but it does already require the solution (at each in�nitesimaltime step) of a scalar saddle-point equation to determine the spin-glass order parameter q. Approximations ofthis type work extremely well for the simple Hebbian learning rules, as we have seen earlier. However, numericalsolution of the coupled equations (94,95,96) shows quite clearly that for the more sophisticated non-Hebbianrules such as Perceptron and AdaTron, which are of an error correcting nature (i.e. where where changes aremade only when student and teacher disagree), the conditionally-Gaussian approximation is less accurate thanthe previously investigated large � approximation, in spite of the fact that the latter involved much simplerequations. Apparently the generally non-Gaussian nature of the conditional distribution P [xjy], and therebyof the measure M [xjy], is of crucial importance. It is not good enough to try getting away with allowingthe y-dependent averages x(y) and variances �(y) to be non-trivial functions. With conditionally-Gaussianmeasures M [xjy] it turns out that generating the right width of the conditional distributions P [xjy] inevitablyintroduces tails for P [xjy] which spill into the xy < 0 region, which are found to be absent in error-correctinglearning rules such as Perceptron and Adatron. This picture is consistent with �gures 9 and 10, where we canobserve that for any �xed value of the teacher �eld y the remaining marginal distribution for x is generally notsymmetric around its (y-dependent) average. We conclude that the conditionally-Gaussian approximation isgenerally inferior to the large � approximation. We will not waste paper by producing large numbers of graphsto illustrate this explicitly and comprehensively, but we will rather draw the conditionally-Gaussian predictionstogether with those of the other approximations and of the full theory, by way of illustration.6.2 Partially Annealed Approximation and Full EquationsThe partially annealed approximation and the full theory are both expected to improve upon the large �approximation (note that the partially annealed approximation can be seen as an improved version of the large� approximation, similar in structure but valid also for small �, i.e. large B). Although the partially annealedapproximation does not involve a functional saddle-point equation to be solved (which improves numericalspeed), it shares with the full theory the appearance of nested (Gaussian) integrals, namely those appearing inthe function �[x; y] and in the saddle-point equation for q. Thus, solution of both the full theory and of thepartially annealed approximation involves a signi�cant amount of CPU time (avoiding standard instabilities ofdiscretised di�usion equations sets further limits on the maximum size of the time discretisation, dependenton the �eld resolution [17]), which implies that we have to reduce our ambition and restrict the number ofexperiments to a few typical ones.We will thus investigate two examples, both with � = 1: on-line Perceptron learning with � = 12 , and on-line AdaTron learning with � = 32 . We solve numerically the full equations of our theory, i.e. the macroscopicdynamical laws (38,39) with the order parameters calculated at each time step by solving (44,45), and showin �gure 11 the training and generalisation errors as functions of time together with the corresponding valuesas measured during numerical simulations, with systems of size N = 10; 000. In addition, we plot in thesame picture, for comparison, the training- and generalisation errors obtained by numerical solution of thethree approximated theories as derived in the previous section. In comparing curves we have to take intoaccount that those describing the large � approximation were generated upon solving the di�usion equationwith a signi�cantly higher numerical �eld resolution (�x = 0:015) than the others (where we used �x = 0:05),because of CPU limitations. A restricted �eld resolution is likely to be more critical at large times, wherethe probability weight in the xy < 0 region, responsible for the residual error and for the non-stationarityof the dynamics, is highly concentrated close to the decision boundary x = 0. Especially for large times, weshould therefore expect the full theory, the conditionally-Gaussian approximation, and the partially annealedapproximation to all three perform better in reality than what is suggested by the numerical solutions of theirequations as shown in �gure 11. This is particularly true for AdaTron learning, where even for � > 1 (wherewe do not expect to observe a �-singularity) the �eld distributions still tend to develop a jump discontinuityat x = 0. It turns out that the curves of the full theory and those of the partially annealed approximation are30



very close (virtually on top of one another for the case of Perceptron learning) in �gure 11; apparently for thelearning times considered here there is no real need to evaluate the full theory.Finally, we show in �gure 12 for both the full theory and for the simulation experiments the two distributionsP�(x) = R dy P [x; y]�[�y] for the student �elds, given a speci�ed sign of the teacher �eld y (and thus a giventeacher output), corresponding to the same experiments. Note that P (x) = P+(x) + P�(x). The pictures in�gure 12 again illustrate quite clearly the di�erence between learning with restricted training sets and learningwith in�nite training sets: in the former case the desired agreement xy > 0 between student and teacher isachieved by a qualitative deformation of P [xjy], away from the initial Gaussian shape, rather than by adaptationof the �rst and second order moments.Our restricted resolution numerics obviously have di�culty in reproducing the discontinuous behaviour ofP�(x) near x = 0 for on-line Adatron learning (as expected), which explains why in this regime the simplestlarge � approximation (which can be numerically evaluated with almost arbitrarily high �eld resolution) appearsto outperform the more sophisticated versions of the theory (which CPU limitations force us to evaluate withrather limited �eld resolution), according to �gure 11.We conclude from the results in this section that our full theory indeed gives an adequate description of themacroscopic process, and that the partially annealed approximation is almost equivalent in performance to thefull theory. As mentioned before, the conditionally-Gaussian approximation performs generally poorly (except,as we have seen earlier, for the simple Hebian rule). Which of the remaining three versions of our theory to usein practice will clearly depend on the accuracy constraints and available CPU time of the user, with the fulltheory at the higher end of the market (in principle very accurate, but almost too CPU expensive to work outand exploit properly), with the large � approximation on the lower end (reasonably acurate, but very cheap),and with the annealed approximation as a sensible compromise in between these two.7 DiscussionIn this paper we have shown how the formalism of dynamical replica theory (see e.g. [13]) can be successfullyemployed to construct a general theory which enables one to predict the evolution of the relevant macroscopicperformance measures for supervised (on-line and batch) learning in layered neural networks, with randomlychosen but restricted training sets, i.e. for �nite � = p=N where weight updates are carried out by samplingwith repetition. In this case the student nodes local �elds are no longer described by (multivariate) Gaussiandistributions and the traditional and familiar statistical mechanical formalism consequently breaks down. Forsimplicity and transparency we have restricted ourselves to single-layer systems and realizable tasks.In our approach the joint �eld distribution P [x; y] for the student and teacher local �elds is itself taken to bea dynamical order parameter, in addition to the conventional observablesQ and R representing overlaps betweenthe student-student and student-teacher vectors respectively. The new order parameter set fQ;R; Pg, in turn,enables one to monitor the generalization error Eg as well as the training error Et. This then results, followingthe prescriptions of dynamical replica theory4, in a di�usion equation for P [x; y], which we have evaluated bymaking the replica-symmetric ansatz in the saddle-point equations. This di�usion equation is generally foundto have Gaussian solutions only for �! 1; in the latter case we indeed recover correctly from our theory themore familiar formalism of in�nite training sets (in the N!1 limit), providing closed equations for Q and Ronly. For �nite � our theory is by construction exact if for N!1 the dynamical order parameters fQ;R; Pgobey closed deterministic equations, which are self-averaging (i.e. independent of the microscopic realizationof the training set). If this is not the case, our theory can be interpreted as employing a maximum entropyapproximation.We have worked out our equations explicitly for the special case of Hebbian learning, where the availabilityof exact results, derived directly from the microscopic equations, allowed us to perform a critical test of thetheory. For batch Hebbian learning we demonstrate explicitly that our theory is fully exact. For on-line Hebbian4The reason why the replica formalism is inevitable (unless we are willing to pay the price of having observables withtwo time arguments, and turn to path integrals) is the necessity, for �nite �, to average the macroscopic equations overall possible realizations of the training set. 31



learning, on the other hand, proving or disproving full exactness requires solving a non-trivial functional saddle-point equation analytically, which we have not yet been able to do. Nevertheless, we can prove that our theory isexact (i) with respect to its predictions for Q, R and Eg, (ii) with respect to the �rst moments of the conditional�eld distributions P [xjy] (for any y 2 <), and (iii) in the stationary state. In order to also generate predictionsfor intermediate times we have constructed an approximate solution of our equations, which is found to describethe results of performing numerical simulations of on-line Hebbian learning essentially perfectly.No exact benchmark solution is available for non-Hebbian (i.e. non-trivial) learning rules, leaving numericalsimulations as the only yardstick against which to test our theory. Motivated by the need to solve a functionalsaddle-point equation at each time step in the full theory, and by the presence of nested integrations, wehave constructed a number of systematic approximations to the original equations. We have compared thepredictions of the full theory and of the three approximation schemes with one another and with the resultsobtained upon performing numerical simulations of non-linear learning rules, such as Perceptron and AdaTron,in large perceptrons (of size N = 10; 000), with various values of learning rates � and relative training setsizes �. One of the approximations, a conditionally-Gaussian saddle-point approximation in the spirit of theparticular approximation that was found to work perfectly for Hebbian learning, turned out to perform badlyfor general non-Hebbian rules. The other two approximations, the large � approximation and the partiallyannealed approximation, each have their speci�c usefulness; the former is extremely simple and fast, whereasthe latter is overall more accurate, but more expensive in its CPU requirements (so that in practice its trueaccurateness cannot always be realised). Yet, the large � approximation still works remarkably well, even forsmall �, in spite of it being so simple that it can be written as a fully explicit set of equations for Q, R andthe joint �eld distribution P [x; y] only. The observed accuracy of these simple equations in the small � regimesuggests that for �! 0 the leading term in the di�usion equation for P [xjy] is the �rst term in the right-handside, which re
ects the direct e�ect of pattern recycling, and which indeed has not been approximated.We believe that our theory o�ers an e�cient tool with which to analyse and predict the outcome of learningprocesses in single-layer networks. In particular, for those who are primarily interested in the progress and theoutcome of learning processes there is no real need to understand the full details of the derivation; one cansimply adopt the macroscopic laws (or one of the two appropriate approximations, to save CPU time) as astarting point, and just apply them to the learning rules as hand. In the applications worked out in this paper(Hebbian learning, Perceptron learning and AdaTron learning) our formalism has been found to be either exactor an excellent approximation. It is not realistic to expect that simpler theories can be found with a similarlevel of accuracy. While putting the �nishing touch to this manuscript a preprint was communicated [18] inwhich the authors apply the cavity method to the present problem. They manage to keep their theory relativelysimple by restricting themselves to batch learning and to gradient descent learning rules, and by applying theirtheory only to a linear learning rule. Here also the present theory would have been both simpler and exact. Afully exact theory for both on-line and batch learning and for arbitrary learning rules can be constructed [19]using a suitable adaptation of the generating functional methods as in [10], but in describing transients it willbe more complicated than the present one, as it will be built around macroscopic observables with two timearguments (correlation- and response functions) and will take the form of an e�ective single weight process withcoloured stochastic noise and retarded self-interactions. It will, however, be interesting to see the connectionbetween the generating functional theory and the present dynamical replica formalism.The present study opens up new possibilities for considering unrealizable learning scenarios, either due tostructural limitations or due to noise, which require some sort of regularization. The examination of regular-ization techniques in such scenarios, which is of great practical signi�cance, was out of reach so far as theycome into e�ect only where the error-surface is �xed by having a �xed example set. It turns out that the caseof noisy teachers can be studied with an appropriate extension of the present formalism [21], involving a jointdistribution of three rather than two �elds (namely those of student, `clean' teacher, and `noisy' teacher). Gen-eralization to multi-layer networks (with a �nite number of hidden nodes) is also straightforward [20], althoughnumerically intensive. At a more fundamental level one could explore the e�ects of (dynamic) replica symmetrybreaking (by calculating the AT-surface, signaling instability of the replica symmetric solution with respect toreplicon 
uctuations), or one could improve the built-in accuracy of our theory by adding new observables tothe present set (such as the Green's function A[x; y;x0; y0] itself). Last, but not least, our theory would simplify32
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A Di�usion Matrix Elements of the Macroscopic Fokker-Planck Equa-tionHere we show that for the observables (20) the di�usion matrix elements G???�� in the Fokker-Planck equation(19) vanish for N ! 1. Our observables will consequently obey deterministic dynamical laws. Calculatingdi�usion terms associated with Q[J ] and R[J ] is trivial:2664GonlQQ[: : :]GonlQR[: : :]GonlRR[: : :] 3775 = limN!1 �2N Z dxdy P [x; y] G2[x; y]24 4x22xyy2 35 = 02664GbatQQ[: : :]GbatQR[: : :]GbatRR[: : :] 3775 = limN!1 �2N 26666664 4�R dxdy P [x; y] xG[x; y]�22�R dxdy P [x; y] xG[x; y]��R dxdy P [x; y] yG[x; y]��R dxdy P [x; y] yG[x; y]�2 37777775 = 0We next turn to di�usion terms with one occurrence of P [x; y;J ]. Here we repeatedly build on the cornerstoneassumption that all �elds J�� and B�� are of order unity (which is clear from numerical simulations, and will besupported self-consistently by the equations resulting from our theory), in combination with two simple scalingconsequences of the random composition of ~D, as N !1:� 2 ~D : 1p X�02 ~D ���0 = p�1 +O(p�2) 1p2 X�2 ~D X�02 ~D[1����0 ] j� ��0j = O(N 12 ) (102)For on-line learning we �nd:"GonlQ;P [x;y][: : :]GonlR;P [x;y][: : :] # = � limN!1 �2N @@x �hh G2[J ��;B ��] � 2J ��B �� � (� ��0)�[x�J ��0]�[y�B ��0] i~Di~D�QRP;t= ��2 @@x limN!1� 1N hh [1����0 ]G2[J ��;B ��] � 2J ��B �� � (� ��0)�[x0�J ��0]�[y0�B ��0] i~Di~D+ G2[x; y] � 2xy � hh ���0�[x�J ��]�[y�B ��] i~Di~D �QRP;t= ��2 @@x limN!1�O(N� 12 ) +O(N�1)�QRP;t = 0For batch learning we �nd:" GbatQ;P [x;y][: : :]GbatR;P [x;y][: : :] # = � limN!1 �2N @@x Z dx0dy0P [x0; y0]G[x0; y0] � 2x0y0 �� �hh G[J ��;B ��](� ��0)�[x�J ��0]�[y�B ��0] i~Di~D�QRP;t= ��2 @@x Z dx0dy0P [x0; y0]G[x0; y0] � 2x0y0 � limN!1� G[x; y]hh ���0�[x�J ��]�[y�B ��] i~Di~D+ 1N hh [1����0 ]G[J ��;B ��](� ��0)�[x�J ��0]�[y�B ��0] i~Di~D �QRP;t34



= ��2 @@x limN!1�O(N�1) +O(N� 12 )�QRP;t = 0The di�cult terms are those where two derivatives of the order parameter function P [x; y;J ] come into play.Here we have to deal separately with four distinct contributions, de�ned according to which of the vectors fromthe trio f�; �0; �00g are identical. For on-line learning we �nd:GonlP [x;y];P [x0;y0][: : :] = limN!1 �2N @2@x@x0�hhh G2[J ��00;B ��00](� ��00)(�0 ��00)�[x�J ��]�[y�B ��]�[x0�J ��0]�[y0�B ��0] i~Di~Di~D�QRP;t= �2 @2@x@x0 limN!1� NG2[x; y]�[x0�x]�[y0�y] hhh ���00��0�00�[x�J ��]�[y�B ��] i~Di~Di~D+ G2[x0; y0] hhh ���00��0�00(� ��0)�[x�J ��]�[y�B ��]�[x0�J ��0]�[y0�B ��0] i~Di~Di~D+ G2[x; y] hhh ���00��0�00(� ��0)�[x�J ��]�[y�B ��]�[x0�J ��0]�[y0�B ��0] i~Di~Di~D+hhh ���00��0�00G2[J ��00;B ��00] (� ��00)(�0 ��00)N �[x�J ��]�[y�B ��]�[x0�J ��0]�[y0�B ��0] i~Di~Di~D �QRP;t= �2 @2@x@x0 � limN!1�O(N�1) +O(N� 12 ) +O(N� 12 )�QRP;t + Z dx00dy00G2[x00; y00] C[x; y;x0; y0;x00; y00]�= �2 Z dx00dy00G2[x00; y00] @2@x@x0 C[x; y;x0; y0;x00; y00]Similarly:GbatP [x;y];P [x0;y0][: : :] = limN!1 �2N @2@x@x0�hhG[J ��0;B ��0](� ��0)�[x�J ��]�[y�B ��]i~Di~D hhG[J ��;B ��](� ��0)�[x0�J ��0]�[y0�B ��0]i~Di~D�QRP;t= �2 @2@x@x0 limN!1��G[x; y]hh���0�[x�J ��]�[y�B ��]i~Di~D + hh���0G[J ��0;B ��0]� ��0N �[x�J ��]�[y�B ��]i~Di~D���G[x0; y0]hh���0�[x0�J ��]�[y0�B ��]i~Di~D + hh���0G[J ��;B ��]� ��0N �[x0�J ��0]�[y0�B ��0]i~Di~D��QRP;t= �2 @2@x@x0 limN!1�nO(N�1) +O(N� 12 )onO(N�1) +O(N� 12 )o�QRP;t = 0For batch learning all di�usion matrix elements of (19) vanish in a straightforward manner. For on-line learningall di�usion terms vanish provided we can prove that the function C[: : :] of (24) is zero. This is indeed the casewithin the present theory, as will be veri�ed in the Appendix B.B Replica Calculation of the Green's FunctionThe main objective of this Appendix is to calculate the Green's function A[: : :], with which we obtain ourmacroscopic dynamic equations in explicit form. We �rst carry out the disorder averages, leading to an e�ectivesingle-spin problem. The integrations are done by steepest descent, giving a saddle-point problem for replicatedorder parameters at each time step. In the saddle point equations we then make the replica symmetry (RS)ansatz, so that the limit n ! 0 can be taken. In addition we show that the two functions B[: : :] and C[: : :] doindeed vanish, as claimed. 35



B.1 Disorder AveragingThe fundamental quantities A[x; y;x0; y0], B[x; y;x0; y0], C[x; y;x0; y0;x00; y00], and P [x; y], which control themacroscopic equations can be written as8>>>>><>>>>>: P [x; y]A[x; y;x0; y0]B[x; y;x0; y0]C[x; y;x0; y0;x00; y00]
9>>>>>=>>>>>; = limN!1n!0 � ���Z Y� (� �N�(��)2� � �NRpQ�� ���� d�� Yx�y�� �P [x�; y�]�P [x�; y�; pQ��pN ]�) � �x�pQ�1 ��pN � � �y� � ��pN �8>>>>>>>>>><>>>>>>>>>>:

1(�0 ��)���0� �x0�pQ�1��0pN � � hy0� � ��0pN ih 1N Pi6=j �i�j�0i�0ji ���0� �x0�pQ�1��0pN � � hy0� � ��0pN i1N (� ��00)(�0 ��00)���00��0�00� �x0�pQ�1��0pN � � hy0� � ��0pN i � �x00�pQ�1��00pN � � hy00� � ��00pN i
9>>>>>>>>>>=>>>>>>>>>>; +~D+~D+~D +�We next use the de�nition of P [x; y;J ], introduce integral representations for the �-distributions involvingP [x; y], and obtain8>>>>><>>>>>: P [x; y]A[x; y;x0; y0]B[x; y;x0; y0]C[x; y;x0; y0;x00; y00]

9>>>>>=>>>>>; = limN!1n!0 Z Y� (� �N�(��)2� � �NRpQ�� ���� d�� Yx�y� eiN��[x�;y�]P [x�;y�]d�(x�; y�))� * ***e�iNP�Px�y� ��[x�;y�]h�[x��pQ����000pN ]�[y��� ��000pN ]i~D� �x�pQ�1 ��pN � � �y� � ��pN �
� 8>>>>>>>>>><>>>>>>>>>>:

1(�0 ��)���0� �x0�pQ�1��0pN � � hy0� � ��0pN ih 1N Pi6=j �i�j�0i�0ji ���0� �x0�pQ�1��0pN � � hy0� � ��0pN i1N (� ��00)(�0 ��00)���00��0�00� �x0�pQ�1��0pN � � hy0� � ��0pN i � �x00�pQ�1��00pN � � hy00� � ��00pN i
9>>>>>>>>>>=>>>>>>>>>>;+~D+~D+~D +�The summations involving (x�; y�) automatically lead to integrals, which can be performed due to the �-distributions involved. We de�ne new conjugate functions P̂�[x; y] viaXx�y� ��[x�; y�]f [x�; y�] ! Z dx00dy00 P̂�[x00; y00]f [x00; y00]We write averages over the training set explicitly in terms of the p = �N constituent vectors f��g. Finally weintroduce integrals representations for the remaining delta-distributions, and obtain the following expressions36



(at this stage we will have to separate the various structurally di�erent cases):P [x; y] = Z dx̂dŷ(2�)2 ei[xx̂+yŷ] limN!1n!0Z Y� 8<:� �N�(��)2� � �NRpQ�� � ��� d��eiN R dx00dy00 P̂�[x00;y00]Pt[x00;y00] Yx00y00 dP̂�[x00; y00]9=; 1p pX�=1*e� i�P�P� P̂�(pQ�����pN ;� ���pN )�i[x̂pQ�1���+ŷ� ���]=pN+� (103)( A[x; y;x0; y0]B[x; y;x0; y0] ) = Z dx̂dx̂0dŷdŷ0(2�)4 ei[xx̂+x0x̂0+yŷ+yŷ0] limN!1n!0Z Y� 8<:� �N�(��)2� � �NRpQ�� � ��� d��eiN R dx00dy00 P̂�[x00;y00]P [x00;y00] Yx00y00 dP̂�(x00; y00)9=; 1p2 pX�6=�=1*8<: (�� � ��)1N Pi6=j ��i ��i ��j ��j 9=; e� i�P�P� P̂�[pQ�����pN ;� ���pN ]�i[x̂pQ�1���+ŷ� ���+x̂0pQ�1���+ŷ0� ��� ]=pN+� (104)C[x; y;x0; y0;x00; y00] = Z dx̂dx̂0dx̂00dŷdŷ0dŷ00(2�)6 ei[xx̂+x0x̂0+x00x̂00+yŷ+y0ŷ0+y00ŷ00] limN!1n!0Z Y� 8<:� �N�(��)2� � �NRpQ�� � ��� d��eiN R dx00dy00 P̂�[x00;y00]P [x00;y00] Yx00y00 dP̂�(x00; y00)9=; 1p3 pX���=1 ������*(�� ���)(�� ���)e� i�P�P� P̂�[pQ�����pN ;� ���pN ]�i[x̂pQ�1���+ŷ� ���+x̂0pQ�1���+ŷ0� ���+x̂00pQ�1���+ŷ00� ���]=pN+�(105)The averages over the training sets h: : :i� in (103,104,105) will now be done separately. First we de�ne somerelevant objects: D[u; v] = *e� i�P� P̂�(pQ����pN ;� ��pN )�i[upQ�1��+v� ��]=pN+ � (106)Ej [u; v] = *pN�j e� i�P� P̂�(pQ����pN ;� ��pN )�i[upQ�1��+v� ��]=pN+ � (107)Eij [u; v] = *N�i�j e� i�P� P̂�(pQ����pN ;� ��pN )�i[upQ�1��+v� ��]=pN+ � (i 6= j) (108)As we will see, all are of order O(N0) as N !1. We next use the permutation invariance of our integrationsand summations with respect to pattern labels. First we calculate the �rst training sets average occurring in(103):1p pX�=1�e:::�� = *e� i�P� P̂�(pQ����pN ;� ��pN )+ p�1� *e� i�P� P̂�(pQ����pN ;� ��pN )�i[x̂pQ�1��+ŷ� ��]=pN+ �37



= ep logD[0;0] D[x̂; ŷ]D[0; 0] (109)The prefactor ep logD[0;0], will turn out to take care of appropriate normalisation, and will drop out of the �nalresult for all four functions P [x; y], A[x; y;x0; y0], B[x; y;x0; y0] and C[x; y;x0; y0;x00; y00]. Secondly we evaluatethe training sets average of the expression for A[: : :] in (104):1p2 pX�6=� �(�� ���) e:::�� = p�1p �(�1 � �2) e:::��= p� 1p Xj *e� i�P� P̂�(pQ����pN ;� ��pN )+ p�2� *�je� i�P� P̂�(pQ����pN ;� ��pN )�i[x̂pQ�1��+ŷ� ��]=pN+ ��*�je� i�P� P̂�(pQ����pN ;� ��pN )�i[x̂0pQ�1��+ŷ0� ��]=pN+ �= ep logD[0;0]8<: 1N NXj=1 Ej [x̂; ŷ]Ej [x̂0; ŷ0]D2[0; 0] +O(N�1)9=; (110)(provided we indeed show that Ej [u; v] = O(N0) as N ! 1). Secondly, the training sets average of theexpression for B[: : :] in (104) is given by:1p2 pX�6=�* 1N Xi6=j ��i ��i ��j ��j e:::+� = p�1pN Xi6=j �(�1i �1j )(�2i �2j ) e:::��= p� 1pN Xi6=j *e� i�P� P̂�(pQ����pN ;� ��pN )+ p�2� *�i�je� i�P� P̂�(pQ����pN ;� ��pN )�i[x̂pQ�1��+ŷ� ��]=pN+ ��*�i�je� i�P� P̂�(pQ����pN ;� ��pN )�i[x̂0pQ�1��+ŷ0� ��]=pN+ �= ep logD[0;0]8<: 1N3 NXi6=j=1 Eij [x̂; ŷ]Eij [x̂0; ŷ0]D2[0; 0] +O(N� 32 )9=; = ep logD[0;0] �O(N�1)	 (111)(provided we indeed show that Eij [u; v] = O(N0) as N ! 1). Finally we also obtain for the training setsaverage in (105), in a similar fashion:1p3 pX�=1 pX�;� 6=�� 1N (�� ���)(�� ���) e:::�� = p�1p2N Xij ��1i �1j �2i �2j e:::�� + (p�1)(p�2)p2N Xij ��1i �2j �3i �3j e:::��=Xi6=j ��1i �1j �2i �2j e:::��:O(N�2) +�e:::��:O(N�1) +Xi6=j ��1i �2j �3i �3j e:::��:O(N�1) +Xi ��1i �2i e:::��:O(N�1)= D[0; 0]p8<:Xi6=j D[x̂00; ŷ00]Eij [x̂; ŷ]Eij [x̂0; ŷ0]:O(N�4) +O(N�1) +Xi6=j Ei[x̂; ŷ]Ej [x̂0; ŷ0]Eij [x̂00; ŷ00]:O(N�3)+Xi D[x̂00; ŷ00]Ej [x̂; ŷ]Ej [x̂0; ŷ0]:O(N�2))= ep logD[0;0] �O(N�1)	 (112)38



We now work out (107) and we show that it is of order N0. This is achieved by separating in the exponent theterms with site label i = j from those with site labels i 6= j, followed by expansion in powers of the (relativelysmall) i = j terms, and will involve the following two functions:F�1 [u; v] = *@xP̂�(pQ�� ��pN ; � ��pN ) e� i�P� P̂�(pQ����pN ;� ��pN )�i[upQ�1��+v� ��]=pN+ � (113)F�2 [u; v] = *@yP̂�(pQ�� ��pN ; � ��pN ) e� i�P� P̂�(pQ����pN ;� ��pN )�i[upQ���+v� ��]=pN+ � (114)Note that there is no need to calculate the auxiliary functions (108); we only need to verify their magnitude toscale as O(N0) for N !1.Ej [u; v] = �pN�je� i�P� P̂�(pQpN [Pi6=j ��i �i+��j �j ]; 1pN [Pi6=j �i�i+�j�j ])�i[upQpN [Pi6=j �1i �i+�1j �j ]+ vpN [Pi6=j �i�i+�j�j ]]� �= �pN�je� i�P� P̂�(pQpN Pi6=j ��i �i; 1pN Pi6=j �i�i)�i[upQpN Pi6=j �1i �i+ vpN Pi6=j �i�i]�e� ipQ�pN P� ��j �j@xP̂�(pQpN Pi6=j ��i �i; 1pN Pi6=j �i�i)� i�pN �j�jP� @yP̂�(pQpN Pi6=j ��i �i; 1pN Pi6=j �i�i)�e�i[upQpN �1j �j+ vpN �j�j ]+O(N�1)� �= �e� i�P� P̂�(pQpN Pi6=j ��i �i; 1pN Pi6=j �i�i)�i[upQpN Pi6=j �1i �i+ vpN Pi6=j �i�i]�1i 8<:pQ� X� ��j @xP̂�(pQpN Xi6=j ��i �i; 1pN Xi6=j �i�i) + 1��jX� @yP̂�(pQpN Xi6=j ��i �i; 1pN Xi6=j �i�i)+ upQ�1j + v�j +O(N� 12 ) �� �so that Ej [u; v] = �iupQ�1jD[u; v]� iv�jD[u; v]� i�pQX� ��j F�1 [u; v]� i��jX� F�2 [u; v] +O(N� 12 )= �ipQX� ��j � 1�F�1 [u; v] + u��1D[u; v]�� i�jX� � 1�F�2 [u; v] + v��1D[u; v]�+O(N� 12 ) (115)Repetition/extension of this argument, by separating in the exponent terms with two special indices (i; j) ratherthan one, and by subsequent expansion (whereby each term brings down a factor N� 12 ), immediately showsthat terms of the form hN�i�j e:::i� with i 6= j will be of order O(N0). This con�rms that Eij [u; v] = O(N0)and that (108) indeed scales as indicated. Note that the relevant combination of intensive terms in (110) canbe abbreviated as L[u; v;u0; v0] = 1N Pj Ej [u; v]Ej [u0; v0]:L[u; v;u0; v0] = �QX�� q��(f�g) � 1�F�1 [u; v] + u��1D[u; v]� � 1�F�1 [u0; v0] + u0��1D[u0; v0]��RX�� � 1�F�1 [u; v] + u��1D[u; v]� � 1�F�2 [u0; v0] + v0��1D[u0; v0]�39



�RX�� � 1�F�1 [u0; v0] + u0��1D[u0; v0]� � 1�F�2 [u; v] + v��1D[u; v]��X�� � 1�F�2 [u; v] + v��1D[u; v]� � 1�F�2 [u0; v0] + v0��1D[u0; v0]�+O(N� 12 ) (116)where we have used the built-in properties 1N � ��� = R=pQ and � 2 = N , and in which we �nd the spin-glassorder parameters q��(f�g) = 1N Xi ��i ��i (117)Let us �nally work out further the remaining fundamental objects D[: : :] and F�1;2[: : :]. The basic propertyto be used is that for large N the n+1 quantities fx� = �� ��=pN; y = � ��=pNg inside averages of the formh: : :i� will become (zero average but correlated) Gaussian variables, with probability distribution
P (x1; : : : ; xn; y) = det 12A(2�)(n+1)=2 e� 120B@ x1...xny 1CA�A0B@ x1...xny 1CA A�1 = 0BBB@ q11 � � � q1n R=pQ... ... ...qn1 � � � qnn R=pQR=pQ � � � R=pQ 1 1CCCAThis allows us to writeD[u; v] = det 12A(2�)(n+1)=2 Z dxdy e� 120B@ x1...xny 1CA�A0B@ x1...xny 1CA� i�P� P̂�(pQx�;y)�i[upQx1+vy] (118)

F�1;2[u; v] = det 12A(2�)(n+1)=2 Z dxdy @1;2P̂�(pQx�; y) e� 120B@ x1...xny 1CA�A0B@ x1...xny 1CA� i�P� P̂�(pQx�;y)�i[upQx1+vy] (119)Note that these quantities depend on the microscopic variables �� only through the macroscopic observablesq��(f�g).B.2 Derivation of Saddle-Point EquationsWe will now combine the results (109,110,111,112) and (116) with the expressions (103,104,105). We use integralrepresentations for the remaining delta functions, and isolate the observables q�� , by inserting1 = Z dqdq̂dQ̂dR̂(2�)n2+2n eiN [P�(Q̂�+R̂�R=pQ)+P�� q̂��q�� ]�iPiP�[Q̂�(��i )2+R̂��i��i ]�iP�� q̂����i ��iWe hereby achieve a full factorisation over sites in the relevant quantities (note: the objects D[: : :] and L[: : :]depend on the microscopic variables only via q��(f�g)):A[x; y;x0; y0] = Z dx̂dx̂0dŷdŷ0(2�)4 ei[xx̂+x0x̂0+yŷ+yŷ0] limn!0 limN!1 Z dqdq̂dQ̂dR̂ Y�x00y00 dP̂�(x00; y00)eiN [P�(Q̂�+R̂�R=pQ)+P�� q̂��q��+P� R dx00dy00 P̂�(x00;y00)P [x00;y00]]+�N logD[0;0]40



Yi �Z d� e�iP�[Q̂�(��)2+R̂��i��]�iP�� q̂������� L[x̂; ŷ; x̂0; ŷ0]D2[0; 0]and P [x; y] = Z dx̂dŷ(2�)2 ei[xx̂+yŷ] limn!0 limN!1 Z dqdq̂dQ̂dR̂ Y�x00y00 dP̂�(x00; y00)eiN [P�(Q̂�+R̂�R=pQ)+P�� q̂��q��+P� R dx00dy00 P̂�(x00;y00)P [x00;y00]]+�N logD[0;0]Yi �Z d� e�iP�[Q̂�(��)2+R̂��i��]�iP�� q̂������� D[x̂; ŷ]D[0; 0]Both can be written in the form of an integral dominated by saddle-points:A[x; y;x0; y0] = Z dx̂dx̂0dŷdŷ0(2�)4 ei[xx̂+x0x̂0+yŷ+yŷ0]limn!0 limN!1 Z dqdq̂dQ̂dR̂ Y�x00y00 dP̂�(x00; y00) eN	[q;q̂;Q̂;R̂;fP̂g]L[x̂; ŷ; x̂0; ŷ0]D2[0; 0]and P [x; y] = Z dx̂dŷ(2�)2 ei[xx̂+yŷ] limn!0 limN!1 Z dqdq̂dQ̂dR̂ Y�x00y00 dP̂�(x00; y00) eN	[q;q̂;Q̂;R̂;fP̂g]D[x̂; ŷ]D[0; 0]with 	[: : :] = iX� (Q̂� + R̂�R=pQ) + iX�� q̂��q�� + iX� Z dx00dy00 P̂�(x00; y00)P [x00; y00]+� logD[0; 0] + limN!1 1N Xi log Z d� e�iP�[Q̂��2�+R̂��i��]�iP�� q̂������Finally we use that fact that the above expressions will be given by the intensive parts evaluated in thedominating saddle-point of 	. We can use the expression for P [x; y] and its property R dxdy P [x; y] = 1 toverify that all expressions are properly normalised (no overall prefactors are to be taken into account). Weperform a simple transformation on some of our integration variables:q̂�� ! q̂�� � Q̂���� R̂� !pQR̂�and �nally we get A[x; y;x0; y0] = Z dx̂dx̂0dŷdŷ0(2�)4 ei[xx̂+x0x̂0+yŷ+yŷ0] limn!0 L[x̂; ŷ; x̂0; ŷ0]D2[0; 0] (120)P [x; y] = Z dx̂dŷ(2�)2 ei[xx̂+yŷ] limn!0 D[x̂; ŷ]D[0; 0] (121)in which all functions are to be evaluated upon choosing for the order parameters the appropriate saddle-pointsof 	 (variation with respect to q; q̂; Q̂; R̂ and fP̂g), which itself takes the form:	[: : :] = iX� Q̂�(1�q��) + iRX� R̂� + iX�� q̂��q�� + iX� Z dx00dy00 P̂�(x00; y00)P [x00; y00]+� logD[0; 0] + limN!1 1N Xi log Z d� e�i�ipQP� R̂����iP�� q̂������ (122)With D[: : :] given by (118), which depends on the variational parameters fP̂g and q�� only. The function L[: : :]is given by (116). The order parameters q�� have the usual interpretation in terms of the average probability41



density for �nding a mutual overlap q of two independently evolving weight vectors (Ja;Jb), in two systems aand b with the same realization of the training set (see e.g. [16]):�P (q)�� = * **� "q � Ja �JbjJajjJ bj#++ +� = limn!0 1n(n�1) X�6=� �[q � q�� ] (123)Note that upon applying the above procedure to the functions B[: : :] and C[: : :] in (104,105) we �nd againintegrals dominated by the dominant saddle-point of 	; here, in view of (111) and (112), the intensive parts arezero, and thus B[x; y;x0; y0] = C[x; y;x0; y0;x00; y00] = 0 (124)as anticipated earlier.B.3 Replica-Symmetric Saddle-PointsWe now make the replica symmetric (RS) ansatz in the extremisation problem, which according to (123) isequivalent to assuming ergodicity. With a modest amount of foresight we putq�� = q0��� + q[1����]; q̂�� = 12 i[r�r0��� ]; R̂� = i�; Q̂� = i�; P̂�[u; v] = i�[u; v]This converts the quantity 	 of equation (122) for small n intolimn!0 1n	[: : :] = ��(1�q0)� �R+ 12qr � 12q0(r�r0)� Z dx00dy00 �[x00; y00]P [x00; y00]+ limn!0 �n logD[0; 0] + limn!0 limN!1 1NnXi log Z Dz Z d� e�i�pQP� ��� 12 r0P� �2�+zprP� ��with the abbreviation Dz = (2�)� 12 e� 12 z2dz. We do the Gaussian integral in the last term, and expand theresult for small n:limn!0 1n	[: : :] = ��(1�q0)� �R+ 12qr � 12q0(r�r0)� 12 log r0 + 12r0 (r+�2Q)� Z dx00dy00 �[x00; y00]P [x00; y00] + limn!0 �n logD[0; 0] + const (125)Note that `const' refers to terms which do not depend on the order parameters to be varied, and will thus notshow up in saddle-point equations; such terms can, however, depend on time via quantities such as (Q;R). Atthis stage it is useful to work out four of our saddle-point equations:@	@� = @	@r = @	@� = @	@r0 = 0 : q0 = 1; r0 = 11�q ; � = RQ(1�q) ; r = qQ�R2Q(1�q)2These allow us to eliminate most variational parameters, leaving a saddle-point problem involving only thefunction �[x; y] and the scalar q:limn!0 1n	[q; f�g] = 1�R2=Q2(1�q) + 12 log(1�q)� Z dx0dy0 �[x0; y0]P [x0; y0] + limn!0 �n logD[0; 0; q; f�g]+ const (126)Finally we have to work out the RS version of D[u; v; q; f�g]:D[u; v;�; q; 1] = det 12A(2�)(n+1)=2 Z dxdy e� 120B@ x1...xny 1CA�A0B@ x1...xny 1CA+ 1�P� �(pQx�;y)�i[upQx1+vy] (127)42



with A�1 = 0BBB@ 1 � � � q R=pQ... ... ...q � � � 1 R=pQR=pQ � � � R=pQ 1 1CCCAThe inverse of the above matrix is found to beA = 0BBB@C11 � � � C1n 
... ... ...Cn1 � � � Cnn 

 � � � 
 b1CCCA C�� = ���1�q � d 
 = � RpQQ(1�q) +O(n)b = 1 +O(n)d = q�R2=Q(1�q)2 +O(n)With this expression, and upon linearising the terms in the exponents which are quadratic in x in the usualmanner with Gaussian integrals, we obtainD[u; v; q; f�g] = R dxdy e� 12x�Cx� 12 by2�
yPn�=1 x�+ 1�P� �[pQx�;y]�i[upQx1+vy]R dxdy e� 12x�Cx� 12 by2�
yPn�=1 x�= RDzDye�ivy=pb �R dx e� x22(1�q)+[zpd�
 ypb ]x+ 1��[pQx; ypb ]�n�1R dx e� x22(1�q)+[zpd�
 ypb ]x+ 1��[pQx; ypb ]�iupQxRDzDy hR dx e� 12(1�q) x2+[zpd�
 ypb ]xin (128)For the saddle-point problem we only need to calculate limn!0 �n logD[0; 0; q; f�g]:limn!0 �n logD[0; 0; q; f�g] = limn!0 �n �log Z DzDy �Z dx e� x22(1�q)+[zpd�
y=pb]x+ 1��[pQx;y=pb]�n� log Z DzDy �Z dx e� 12(1�q) x2+[zpd�
y=pb]x�n�= � Z DzDy log8<:R dx e� x22Q(1�q)+x[zpd�
y]=pQ+ 1��[x;y]R dx e� x22Q(1�q)+x[zpd�
y]=pQ 9=;with 
 and d evaluated in the limit n! 0. Equivalently we can de�neA = R=Q(1�q) B =pqQ�R2=Q(1�q) (129)which gives limn!0 �n logD[0; 0; q; f�g] = � Z DzDy log8<:R dx e� x22Q(1�q)+x[Ay+Bz]+ 1��[x;y]R dx e� x22Q(1�q)+x[Ay+Bz] 9=;Upon doing the x-integration in the denominator of this expression we can write the explicit expression for thesurface 	 to be extremised with respect to q and the function �[x; y], apart from irrelevant constants, in thesurprisingly simple form (with the short-hand (129)):limn!0 1n	[q; f�g] = 1���R2=Q2(1�q) + 12(1��) log(1�q)� Z dxdy �[x; y]P [x; y]+ � Z DzDy log Z dx e� x22Q(1�q)+x[Ay+Bz]+ 1��[x;y] (130)43



Note that (130) is to be minimised, both with respect to q (which originated as an n(n�1) fold entry in amatrix, leading to curvature sign change for n < 1) and with respect to the function �[x; y] (obtained from then-fold occurrence of the original function P̂ , multiplied by i, which also leads to curvature sign change).The remaining saddle point equations are obtained by variation of (130) with respect to � and q. Functionalvariation with respect to � gives:for all x; y : P [x; y] = e� 12y2p2� Z Dz8<: e� x22Q(1�q)+x[Ay+Bz]+ 1��[x;y]R dx0 e� x022Q(1�q)+x0[Ay+Bz]+ 1��[x0;y]9=; (131)Note that P [x; y] = P [xjy]P [y] with P [y] = (2�)� 12 e� 12y2 , as could have been expected. Next we vary q, anduse (131) wherever possible:1���R2=Q2(1�q)2 � 1��2(1�q) = � Z DzDy8><>:R dx e� x22Q(1�q)+x[Ay+Bz]+ 1��[x;y] h x22Q(1�q)2 � x[y @A@q + z @B@q ]iR dx e� x22Q(1�q)+x[Ay+Bz]+ 1��[x;y] 9>=>;giving Z dxdy P [x; y](x�Ry)2 + (R2�qQ)( 1��1)= "2pqQ�R2 + Q(1�q)pqQ�R2#Z DzDy z 24R dx e� x22Q(1�q)+x[Ay+Bz]+ 1��[x;y]xR dx e� x22Q(1�q)+x[Ay+Bz]+ 1��[x;y] 35 (132)B.4 Explicit Expression for the Green's FunctionIn order to work out the Green's function (120) we need the function L[u; v;u0; v0] as de�ned in (116) which, inturn, is given in terms of the integrals (118,119). First we calculate the n! 0 limit of D[u; v; q; f�g] (128), andsimplify the result with the saddle-point equation (131):limn!0D[u; v; q; f�g] = Z DzDy e�ivy R dx e� x22Q(1�q)+x[Ay+Bz]+ 1��[x;y]�iuxR dx e� x22Q(1�q)+x[Ay+Bz]+ 1��[x;y]= Z dxdyP [x; y]e�ivy�iux (133)Next we work out the quantities F�1;2[u; v] of equation (119) in RS ansatz, using Gaussian linearizations:
limn!0F�1;2[u; v] = i limn!0 R dxdy @1;2�[pQx�; y] e� 120B@ x1...xny 1CA�A0B@ x1...xny 1CA+ 1�P� �[pQx�;y]�i[upQx1+vy]

R dxdy e� 120B@ x1...xny 1CA�A0B@ x1...xny 1CA= i limn!0 Z DyDz e�ivy Z dx eP�h� 12 x2�1�q+[zpd�
y]x�+ 1��[pQx� ;y]i�iux1pQ@��[pQx�; y]The replica permutation symmetries of this expression allow us to concludelimn!0F�� [u; v] = ��1F 1� [u; v] + (1���1)F 2� [u; v] (134)44



where F 11;2[u; v] = i Z dxdy P [x; y]e�ivy�iux@1;2�[x; y] (135)F 21;2[u; v] = i Z DyDz e�ivy �R dx e� x22Q(1�q)+x[Ay+Bz]+ 1��[x;y]@1;2�[x; y]� �R dx e� x22Q(1�q)+x[Ay+Bz]+ 1��[x;y]�iux�hR dx e� x22Q(1�q)+x[Ay+Bz]+ 1��[x;y]i2 (136)We can now proceed to the calculation of (116). First we note that the basic building blocks of (116) are mosteasily expressed in terms of the functionsG1[u; v] = 1�F11 [u; v] + uD[u; v] ~G1[u; v] = 1�F21 [u; v] (137)G2[u; v] = 1�F12 [u; v] + vD[u; v] ~G2[u; v] = 1�F22 [u; v] (138)With these short-hands we obtain, upon performing the summations over replica indices in (116):L[u; v;u0; v0] = �Q(1�q)G1[u; v]G1[u0; v0]�Q(1�q)(n�1) ~G1[u; v] ~G1[u0; v0]�Qq hG1[u; v] + (n�1) ~G1[u; v]i hG1[u0; v0] + (n�1) ~G1[u0; v0]i�R hG1[u; v] + (n�1) ~G1[u; v]i hG2[u0; v0] + (n�1) ~G2[u0; v0]i�R hG1[u0; v0] + (n�1) ~G1[u0; v0]i hG2[u; v] + (n�1) ~G2[u; v]i� hG2[u; v] + (n�1) ~G2[u; v]i hG2[u0; v0] + (n�1) ~G2[u0; v0]iand so limn!0L[u; v;u0; v0] = �Q(1�q) hG1[u; v]G1[u0; v0]� ~G1[u; v] ~G1[u0; v0]i�Qq hG1[u; v]� ~G1[u; v]i hG1[u0; v0]� ~G1[u0; v0]i�R hG1[u; v]� ~G1[u; v]i hG2[u0; v0]� ~G2[u0; v0]i�R hG1[u0; v0]� ~G1[u0; v0]i hG2[u; v]� ~G2[u; v]i� hG2[u; v]� ~G2[u; v]i hG2[u0; v0]� ~G2[u0; v0]iWith the Fourier transforms of the functions G[: : :], given byĜ1[û; v̂] = Z dudv(2�)2 eiuû+ivv̂ � 1�F11 [u; v] + uD[u; v]� G1[û; v̂] = 1� Z dudv(2�)2 eiuû+ivv̂F21 [u; v] (139)Ĝ2[û; v̂] = Z dudv(2�)2 eiuû+ivv̂ � 1�F12 [u; v] + vD[u; v]� G2[û; v̂] = 1� Z dudv(2�)2 eiuû+ivv̂F22 [u; v] (140)the Green's function A[x; y;x0; y0] (120) can now be written in explicit form asA[x; y;x0; y0] = �Q(1�q) hĜ1[x; y]Ĝ1[x0; y0]�G1[x; y]G1[x0; y0]i�Qq hĜ1[x; y]�G1[x; y]i hĜ1[x0; y0]�G1[x0; y0]i�R hĜ1[x; y]�G1[x; y]i hĜ2[x0; y0]�G2[x0; y0]i�R hĜ1[x0; y0]�G1[x0; y0]i hĜ2[x; y]�G2[x; y]i45



� hĜ2[x; y]�G2[x; y]i hĜ2[x0; y0]�G2[x0; y0]i (141)Finally, working out the four relevant Fourier transforms, using (133,135,136), gives:Ĝ1[x; y] = iP [x; y] � 1� @@x�[x; y]� @@x logP [x; y]� (142)Ĝ2[x; y] = iP [x; y] � 1� @@y�[x; y]� @@y logP [x; y]� (143)G1[x; y] = i�P [y] Z Dz �R dx0 e� x022Q(1�q)+x0[Ay+Bz]+ 1��[x0;y]@1�[x0; y]� e� x22Q(1�q)+x[Ay+Bz]+ 1��[x;y]hR dx0 e� x022Q(1�q)+x0[Ay+Bz]+ 1��[x0;y]i2 (144)G2[x; y] = i�P [y] Z Dz �R dx0 e� x022Q(1�q)+x0[Ay+Bz]+ 1��[x0;y]@2�[x0; y]� e� x22Q(1�q)+x[Ay+Bz]+ 1��[x;y]hR dx0 e� x022Q(1�q)+x0[Ay+Bz]+ 1��[x0;y]i2 (145)with P [y] = (2�)� 12 e� 12 y2 .Since the distribution P [x; y] obeys P [x; y] = P [xjy]P [y] with P [y] = (2�)� 12 e� 12y2 , our equations can besimpli�ed by choosing as our order parameter function the conditional distribution P [xjy]. We also replacethe conjugate order parameter function �[x; y] by the e�ective measure M [x; y], and we introduce a compactnotation for the relevant averages in our problem:M [x; y] = e� x22Q(1�q)+Axy+ 1��[x;y] hf [x; y; z]i? = R dx M [x; y]eBxzf [x; y; z]R dx M [x; y]eBxz (146)Instead of the original Green's function A[x; y;x0; y0] we turn to the transformed Green's function ~A[x; y;x0; y0],de�ned as A[x; y;x0; y0] = P [x; y] ~A[x; y;x0; y0]P [x0; y0]With these notational conventions one �nds that (141) translates into the following expression:~A[x; y;x0; y0] = Q(1�q) hJ1[x; y]J1[x0; y0]� ~J1[x; y] ~J1[x0; y0]i+Qq hJ1[x; y]� ~J1[x; y]i hJ1[x0; y0]� ~J1[x0; y0]i+R hJ1[x; y]� ~J1[x; y]i J2[x0; y0] +R hJ1[x0; y0]� ~J1[x0; y0]i J2[x; y] + J2[x; y]J2[x0; y0] (147)with J1[X;Y ] = @@X log M [X;Y ]P [X jY ] + X�RYQ(1�q)~J1[X;Y ] = P [X jY ]�1 Z Dzh @@x logM [x; Y ] + x�RYQ(1�q)i?h�[X�x]i?J2[X;Y ] = @@Y log M [X;Y ]P [X jY ] � RXQ(1�q) + Y � P [X jY ]�1Z Dzh @@Y logM [x; Y ]� RxQ(1�q)i?h�[X�x]i?It turns out that signi�cant simpli�cation of the result (147) is possible, upon using the following two identitiesto rewrite the functions J1[: : :], ~J1[: : :] and J2[: : :]:h @@x logM [x; y]i? = �Bz (148)h @@y logM [x; y]i? = @@y log Z dx eBxzM [x; y] (149)46



Identity (148) results upon integrating by parts with respect to x, whereas identity (149) is a direct consequenceof y dependencies occurring in M [x; y] only. Note that B = pqQ�R2=Q(1� q). To achieve the desiredsimpli�cation of ~A[x; y;x0; y0] we de�ne the following object:�[X; y] = �Q(1�q)P [X jy]��1 Z DzhX�xi?h�[X�x]i? (150)We can now, after additional integration by parts with respect to z, simplify the above expressions for J1[: : :],~J1[: : :] and J2[: : :] toJ1[X;Y ] = X�RYQ(1�q) � qQ�R2Q(1�q)�[X;Y ] ~J1[X;Y ] = J1[X;Y ]��[X;Y ]J2[X;Y ] = Y �R�[X;Y ]and consequently A[x; y;x0; y0] = P [x; y] ~A[x; y;x0; y0]P [x0; y0] (151)~A[x; y;x0; y0] = yy0 + (x�Ry)�[x0; y0] + (x0�Ry0)�[x; y]� (Q�R2)�[x; y]�[x0; y0] (152)with �[x; y] as given in (150).
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Figure 1: Student and teacher �elds (x; y) = (J ��;B ��) as observed during numerical simulations ofon-line learning (learning rate � = 1) in a perceptron of size N = 10; 000 at t = 50, using `questions'from a restricted training set of size p = N=2. Left: Hebbian learning. Right: AdaTron learning.Note: in the case of Gaussian �eld distributions one would have found spherically shaped plots.
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Figure 2: Distribution P (x) of student �elds as observed during numerical simulations of on-linelearning (learning rate � = 1) in a perceptron of size N = 10; 000, using `questions' from a restrictedtraining set of size p = N=4. Left: Hebbian learning, measured at t = 10. Right: AdaTron learning,measured at t = 20. Note: not only are these distributions distinctively non-Gaussian, they alsoappear to vary widely in their basic characteristics, depending on the learning rule used.
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Figure 6: Numerical simulations of on-line Adatron learning, with N =10;000, �=1 and �= 12 . Thescatter plots show the observed student and teacher �elds (x; y) = (J ��;B ��) at times t= 5 (upperleft), t=10 (upper right), t=15 (lower left) and t=20 (lower right), as measured during simulationsfor the data in the training set ~D, drawn as points in the (x; y) plane. Note the development overtime of an increasingly narrow `ridge' along the line x=0.
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Figure 7: Comparison between the large � approximation of the theory and numerical simulationsof on-line perceptron learning with N = 10; 000 and � = 1. Markers: training errors Et (circles)and generalisation errors Eg (squares); �nite size e�ects in the simulation data are of the order of themarker size. Lines: theoretical predictions for training errors (solid) and generalisation errors (dashed)as functions of time, according to the approximated theory. Training set sizes: � = 4 (upper left),� = 2 (upper right), � = 1 (lower left), and � = 0:5 (lower right).
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Figure 8: Comparison between the large � approximation of the theory and numerical simulationsof on-line Adatron learning with N = 10; 000 and � = 2. Markers: training errors Et (circles)and generalisation errors Eg (squares); �nite size e�ects in the simulation data are of the order of themarker size. Lines: theoretical predictions for training errors (solid) and generalisation errors (dashed)as functions of time, according to the approximated theory. Training set sizes: � = 4 (upper left),� = 2 (upper right), � = 1 (lower left), and � = 0:5 (lower right).
55



−4 −2 0 2 4
−4

−2

0

2

4

α=0.5

-4 -2 0 2 4
-4

-2

0

2

4

−4 −2 0 2 4
−4

−2

0

2

4

α=1

-4 -2 0 2 4
-4

-2

0

2

4

−4 −2 0 2 4
−4

−2

0

2

4

α=2

-4 -2 0 2 4
-4

-2

0

2

4

−4 −2 0 2 4
−4

−2

0

2

4

α=4

-4 -2 0 2 4
-4

-2

0

2

4

y

y

y

y
x xFigure 9: Comparison between the large � approximation of the theory and numerical simulations ofon-line Perceptron learning, with N = 10; 000 and � = 1. Scatter plots (left): observed student andteacher �elds (x; y)=(J��;B��) as measured at time t=10 during simulations, for the data in ~D, drawnin the (x; y) plane. Contour plots (right): corresponding predictions for the joint �eld distributionP [x; y], according to the approximated theory. Training set sizes: �=0:5; 1; 2; 4 (from top to bottom).56



−4 −2 0 2 4
−4

−2

0

2

4

α=0.5

-4 -2 0 2 4
-4

-2

0

2

4

−4 −2 0 2 4
−4

−2

0

2

4

α=1

-4 -2 0 2 4
-4

-2

0

2

4

−4 −2 0 2 4
−4

−2

0

2

4

α=2

-4 -2 0 2 4
-4

-2

0

2

4

−4 −2 0 2 4
−4

−2

0

2

4

α=4

-4 -2 0 2 4
-4

-2

0

2

4

y

y

y

y
x xFigure 10: Comparison between the large � approximation of the theory and numerical simulations ofon-line Adatron learning with N=10; 000 and �=2. Scatter plots (left): observed student and teacher�elds (x; y) = (J ��;B ��) as measured at time t = 10 during simulations, for the data in ~D, drawnin the (x; y) plane. Contour plots (right): corresponding predictions for the joint �eld distributionP [x; y], according to the approximated theory. Training set sizes: �=0:5; 1; 2; 4 (from top to bottom).57



0 2 4 6 8 10
t

0.0

0.1

0.2

0.3

0.4

0.5

E

0 2 4 6 8 10
t

0.0

0.1

0.2

0.3

0.4

0.5

E

Figure 11: Comparison between the full numerical solution of our equations, as well as the threeapproximations of the theory, and the results of doing numerical simulations of on-line learning withN = 10; 000 and � = 1. Markers: training errors Et (circles) and generalisation errors Eg (squares);�nite size e�ects are of the order of the size of te markers. Lines: theoretical predictions for trainingerrors (lower) and generalisation errors (upper) as functions of time, according to the theory. Thedi�erent line types refer to: full equations (solid), annealed approximation (dashed), conditionally-Gaussian approximation (dashed-dotted) and large � approximation (dotted) (note: the dashed andsolid curves fall virtually on top of one another). Left picture: Perceptron learning, with � = 12 . Rightpicture: AdaTron learning, with � = 32 .
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Figure 12: Comparison between the full numerical solution of our equations and the results of doingnumerical simulations of on-line learning withN = 10; 000 and � = 1. Histograms: conditional student�eld distributions P�(x) = R dyP [x; y]�[�y] as measured at time t = 5. Smooth curves: correspondingtheoretical predictions. Upper pictures: Perceptron learning, with � = 12 (left: P�(x), right: P+(x)).Lower pictures: AdaTron learning, with � = 32 (left: P�(x), right: P+(x)).
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