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We apply methods of Statistical Mechanics to study the generalization performance
of Support Vector Machines in large dataspaces.

1.1 Introduction

Many theoretical approaches for estimating the generalization ability of learning
machines are based on general, distribution independent bounds. Since such bounds
hold even for very unfavourable data generating mechanisms, it is not clear a priori
how tight they are in less pessimistic cases.
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2 Support Vectors and Statistical Mechanics

Hence, it is important to study models of nontrivial learning problems for which
we can get exact results for generalization errors and other properties of a trained
learning machine. A method for constructing and analysing such learning situations
has been provided by Statistical Mechanics. Statistical Mechanics is a field of
Theoretical Physics which deals with a probabilistic description of complex systems
that are composed of many interacting entities. Tools originally developped to study
the properties of amorphous materials enable us to conduct controlled, analytical
experiments for the performance of learning machines for specific types of data
distributions when the numbers of tunable parameters and examples are large.
While often statistical theories provide asymptotic results for sizes of the training
data sample that are much larger than some intrinsic complexity of a learning
machine, in contrast, the so called thermodynamic limit’ of Statistical Mechanics
allows to simulate the effects of small relative sample sizes. This is achieved by taking
the limit where both the sample size and the number of parameters approaches
infinity, but an appropriate ratio is kept fixed.

Starting with the pioneering work of Elizabeth (4) this approach has been
successfully applied during the last decade to a variety of problems in the context
of neural networks (for a review, see e.g. (9; 13; 7)). This chapter will deal with
an application to learning with Support Vector Machines (SVMs). A somewhat
more detailed analysis which was designed for readers with a Statistical Physics
background, can be found in (2).

1.2 The basic SVM setting

We will restrict ourselves to SVM classifiers. They are defined (for more expla-
nations, see the introductory chapter to this book) by a nonlinear mapping ®(-)
from input vectors x € RN into a feature space F. The mapping is constructed
from the eigenvectors ¢;(x) and eigenvalues A; of an SVM kernel k(x,y) via
B(x) = (VM (x), VA2 (x), . ..).

The output y of the SVM can be represented as a linear classification

NF
sen (2(x) - w) =sgn | 3 VA (1

in feature space, where for simplicity, we have set the bias term equal to zero. For
a realizable setting, the weights w;, j = 1,..., N are adjusted to a set of example
pairs {(y1,X1), ..., (Ym.Xn)} by minimizing the quadratic function %||w||> under
the constraints that y(®(x) - w) > 1 for all examples.
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1.3 The learning problem

We assume a simple noise free scenario, where the generation of data is modelled
teacher-student within the so called teacher-student framework. Here, it is assumed that some clas-
framework sifier (the teacher) which has a similar representation as the machine of interest,

gives the correct outputs to a set of randomly generated input data. The general-

ization error can be measured as the probability of disagreement on a random input
between teacher and student machine. In our case, we choose the representation

yi = sgn Z\//\_ijwj(Xi) : (1.2)

All nonzero components are assumed to be chosen independently at random from
a distribution with zero mean and unit variance. We will also consider the case,
where a finite fraction of the B; are 0 in order to tune the complexity of the rule.
Finally, the inputs x; are taken as independent random vectors with a uniform
probability distribution D(x) on the hypercube {—1,1}". We are interested in the
performance of the SVM averaged over these distributions.

We will specialize on a family of kernels which have the form k(x,y) = K (%)
where, for simplicity, we set K(0) = 0. These kernels are permutation symmetric
in the components of the input vectors and contain the simple perceptron margin
classifier as a special case, when K (z) = z. For binary input vectors x € {—1, 1},

eigenvalue the eigenvalue decomposition for this type of kernels is known (5). The eigenfunc-
decomposition tions are products of components of the input vectors, i.e. ¢;(x) = 2-N/2 HjeSi xj,
which are simple monomials, where S; C {1,...,N} is a subset of the compo-

nents of x. For polynomial kernels, these features have also been derived in (11).
The corresponding eigenvalues are found to be \; = 2V/2 3" k(e,x)1;(x), with
e=(1,...,1)7. They depend on the cardinality |S;| of the set S; only. For |S;| =1,
the eigenfunctions are the N linear functions z;, j = 1,...,N. For |S;| = 2, we
have the N(NN — 1)/2 bilinear combinations x;x; etc. The behaviour of the eigen-
values for large input dimension N is given by \; ~ ]\/'2\1;1'\ KUS:D(0). KO denotes
the [-th derivative of the function K. The rapid decrease of the eigenvalues with
the cardinality |S;| is counterbalanced by the strong increase of their degeneracy
which grows like n g, = (\55\2\) ~ NIl /|S;]!. This keeps the overall contribution of
eigenvalues 3 ¢, Ainjs,| for different cardinalities [ of the same order.

1.4 The approach of Statistical Mechanics

The basic idea to map SVM learning to a problem in Statistical Mechanics is to
define a (Gibbs) measure pg(w) over the weights w which in a specific limit is
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4 Support Vectors and Statistical Mechanics

concentrated at the weights of the trained SVM. This is done by setting

m Nx
1 igiw?
paw) = 2e I TL 0 > /A e )y ~1] (13)
i=1 j=1

©(x) is the unit step function which equals 1 for > 0 and 0 else. Z normalizes the
distribution. In the limit 8 — oo, this distribution is concentrated at the minimum
of ||[w||? in the subspace of weights where all arguments of the © functions are non-
negative. This is equivalent to the conditions of the SVM quadratic programming
problem. A different approach has been discussed in (3), where the Kuhn Tucker
conditions of the optimization problem have been directly implemented into a Sta-
tistical Mechanics framework. It will be interesting to see, if this method can also
be applied to the generalization problem of SVMs.

The strategy of the Statistical Mechanics approach consists of calculating expec-
tations of interesting quantities which are functions of the weight vector w over
both the distribution (1.3) and over the distribution of the training data. At the
end of the calculation, the limit § — oo is taken. These averaging procedures can be
performed analytically only in the limit where N — oo and m — oo. They require
a variety of delicate and nontrivial manipulations which for lack of space cannot
be explained in this contribution. One of these techniques is to apply a central

thermodynamic limit theorem (valid in the ’thermodynamic limit’) for carrying out expectations

limit over the random inputs, utilizing the fact that the features ¢); are orthogonal with
respect to the chosen input distribution. This is the main reason, why we prefer
to work in high-dimensional feature space rather than using the low dimensional
kernel representation. A review of the standard techniques used in the Statistical
Mechanics approach and their application to the generalization performance of neu-
ral networks can be found e.g. in (9; 13; 7)), a general review of the basic principles
is (6).

The results of our analysis will depend on the way, in which the two limits
N — oo and m — oo are carried out. In general, one expects that a decay of the
generalization error €, to zero should occur only when m = O (Nx), because Nx
is the number of parameters of the data model. Nevertheless, when the mapping ®
contains a reasonably strong linear part, e, may drop to small values already on a
scale of m = aN examples. Hence, in taking the limit N — oo, we will make the
general ansatz m = aN'!, | € N and discuss different regions of the generalization
performance by varying [. Our model differs from a previous Statistical Mechanics
approach to SVMs (1) where the dimension of the feature space grew only linear
with V.

___ Smola, Bartlett, Scholkopf, and Schuurmans: Advances in Large Margin Classifiers 1999/09/24 17:34



1.5 Results I: General 5

1.5 Results I: General

generalization
error

scaling of number
of inputs

One of the most basic and natural quantities which result from the calculation is a
so called order parameter which for the SVM is defined by

R=> Ai(w;B;) (1.4)

where A; := \;/2", and (...) denotes an average with respect to the distribution
(1.3) and the distributions of the data and of the teacher vector. R is a weighted
overlap between the teacher and SVM student weight vectors. This similarity
measure between teacher and student allows us to express the generalization error
by €, = = arccos %. Here B = Y, A;{((B;)?) and ¢o = >, Ai((w;)?) denote
specific squared norms of the teacher and student weight vectors. Note that by the
specific form of €4, the teacher’s rule is perfectly learnt when the student vector
points in the same direction as the teacher irrespectively of the student vector’s
length. Furthermore, an analysis of the contributions coming from eigenvectors of
different complexities (i.e. cardinalities |.S;|) will give us an intuitive understanding
of the SVMs inference of the rule.

As a general result of our analysis, we find that if the number of examples is
scaled as m = aN',

m All high order components B; are completely undetermined, i.e. R™ :=
215151 Ai{wiB;) — 0, and also that @t = PR Ai{(w;)?) = 0, in the large N
limit.

This does not mean that the values of the corresponding weights w; are zero, they
are just too small to contribute in the limit to the weighted sums (1.4).

m All low order components are completely determined, in the sense that w; = ¢B;
for all ¢ with |S;| < I, where ¢ depends on « only. The only components which are
actually learnt at a scale [ are those for |S;| = 1.

To illustrate this behaviour for the simplest case, we study quadratic kernels of
the form K(z) = (1 — d)z? + dx, where the parameter d, 0 < d < 1, controls
the nonlinearity of the SVM’s mapping. The eigenvectors of lowest complexity are
just the N linear monomials ~ z;, and the remaining ones are the N(N — 1)/2
quadratic terms of the form x;x;. The learning curve is shown in Fig. 1.1, where
we have included results from simulations for comparison.

If the number of examples scales linearly with the input dimension, i.e. m = aN
(left side of Fig. 1.1), the SVM is able to learn only the linear part of the
teacher’s rule. However, since there is not enough information to infer the remaining
N(N —1)/2 weights of the teacher’s quadratic part, the generalization error of the
SVM reaches a nonzero plateau as a — oo according to €,(a) — €,(c0) ~ a~'. The
height of the plateau is given by ¢,(c0) = 7! arccos(d), which increases from zero
at d = 1, when the kernel is entirely linear, to €, = % at d = 0 when only quadratic
features are present.
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Figure 1.1 Decrease of the generalization error on different scales of examples, for
quadratic SVM kernel learning a quadratic teacher rule (d = 0.5, B = 1) and various
gaps v. Simulations were performed with N= 201 and averaged over 50 runs (left
and next figure), and N= 20, 40 runs (right).

If we increase the number of examples to grow quadratically with N,i.e. m = aN?
(right side of Fig. 1.1), the generalization error will decrease towards zero with a
behavior ~ 1/« asymptotically, where the prefactor does not depend on d.

The retarded learning of the more complex components of the mapping @
generalizes to kernels which are polynomials of higher order z > 2. On the scale of
m = aN! examples, when [ < z, the generalization error decreases to a plateau as
a — oo which is given by

1
€g = —arccos (1.5)

Only at the highest scale m = aN?, we get an asymptotical vanishing of the
generalization error to zero as €, X %a_l.

1.6 Results II: Overfitting
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Figure 1.2 Learning curves for linear student and quadratic SVM kernels, all
learning a linear teacher rule (B = d). For a = 10, a finite size scaling is shown in
the inset.

Ag the next problem, we study the ability of the SVM to cope with the problem
of overfitting when learning a rule which has a much lower complexity than the
mapping ®. We model such a problem by keeping the SVM quadratic, but choosing
a data generating mechanism which is defined by a simple linear separation of
examples. This is achieved by setting |B;| = 1 for |S;| = 1 and |B;| = 0 for the
higher order components. Our results for the generalization error are shown in Fig.
1.2, where the number of examples is scaled as m = aN. Surprisingly, although the
complexity of the SVM is by far higher than the underlying rule, only a rather weak
form of overfitting is observed. The SVM is able to learn the N teacher weights B;
on the correct scale of m = aN examples. The asymptotic rate of convergence is
€g ~ a~2/3_ If we had used a simple linear SVM for the same task, we would have
learned the underlying concept only slightly faster at the rate e, ~ a™ .

We can compare these results with simple bounds on the expected generalization
error as described in section ?? of the introductory chapter. E.g., the expectation
of the ratio of the number of support vectors over the total number of examples m
yields an upper bound on ¢, (12). Calculating the expected number of support
vectors within the Statistical Mechanics approach yields an asymptotic decay
~ a~ /3 for this bound which decays at a slower rate than the actual €g.

1.7 Results III: Dependence on the input density
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8 Support Vectors and Statistical Mechanics

One can expect that if the density of inputs acts in a favourable way together
with the teacher’s concept, learning of the rule will be faster. We have modelled
such a situation by constructing an input distribution which is correlated with
the teacher weights B; by having a gap of zero density of size 2y around the
teacher’s decision boundary. In this case we expect to have a large margin between
positive and negative examples. The density for this model is of the form D(x) ~
0 (|3, VAB, i (x)] - 7).

For a quadratic SVM learning from a quadratic teacher rule, we observe a faster
decay of the generalization error than in the case of a uniform density. However,
on the linear scale m = aN (Fig. 1.1) the asymptotic decay is still of the form
€g(a) — €g(0) ~ a~'. A dramatic improvement is obtained on the highest scale
m = aN?, where the generalization error drops to zero like ¢, ~ a=3e=¢(o” In
this case, the mismatch between the true generalization error and the simple bound
based on the fraction of support vectors is much more striking. The latter decreases
much slower, i.e. only algebraically with a.

1.8 Discussion and Outlook

The present work analysed the performance of SV Machines by methods of Statisti-
cal Mechanics. These methods give distribution dependent results on generalization
errors for certain simple distributions in the limit of high dimensional input spaces.
Why do we expect that this somewhat limited approach may be of interest to
the machine learning community? Some of the phenomena discussed in this chapter
could definitely be observed qualitatively in other, more general approaches which
are based on rigorous bounds. E.g., the recently introduced concept of luckiness
(10; 8) applied to the case of the favourable density with a gap would give smaller
generalization errors than for a uniform density. This is because the margin (taken as
a luckiness function) would come out typically larger. Nevertheless, the quantitative
agreement with the true learning curves is usually less good. Hence, an application
of the bounds to model selection may in some cases lead to suboptimal results.
On the other hand, the power of the Statistical Mechanics approach comes from
the fact that (in the so far limited situations, where it can be applied) it yields
quantitatively exact results in the thermodynamic limit, with excellent agreement
with the simulations of large systems. Hence, this approach can be used to check
the tightness of bounds in controlled analytical experiments. We hope that it will
also give an idea how bounds could be improved or replaced by good heuristics.
So far, we have restricted our results to a noise free scenario, but it is straight-
forward to extend the approach to noisy data. It is also possible to include SVM
training with errors (resulting in the more advanced optimization problem with
slack variables) in the formalism. We expect that our analysis will give insight into
the performance of model selection criteria which are used in order to tune the
parameters of the SVM learning algorithm to the noise. We have already shown for
the noise free case that a very simple statistics like the relative number of support
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vectors can give a wrong prediction for the rate of convergence of the generaliza-
tion error. It will be interesting to see if more sophisticated estimates based on the
margin will give tighter bounds.
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