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.ilWe apply methods of Statisti
al Me
hani
s to study the generalization performan
eof Support Ve
tor Ma
hines in large dataspa
es.1.1 Introdu
tionMany theoreti
al approa
hes for estimating the generalization ability of learningma
hines are based on general, distribution independent bounds. Sin
e su
h boundshold even for very unfavourable data generating me
hanisms, it is not 
lear a priorihow tight they are in less pessimisti
 
ases.
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2 Support Ve
tors and Statisti
al Me
hani
sHen
e, it is important to study models of nontrivial learning problems for whi
hwe 
an get exa
t results for generalization errors and other properties of a trainedlearning ma
hine. A method for 
onstru
ting and analysing su
h learning situationshas been provided by Statisti
al Me
hani
s. Statisti
al Me
hani
s is a �eld ofTheoreti
al Physi
s whi
h deals with a probabilisti
 des
ription of 
omplex systemsthat are 
omposed of many intera
ting entities. Tools originally developped to studythe properties of amorphous materials enable us to 
ondu
t 
ontrolled, analyti
alexperiments for the performan
e of learning ma
hines for spe
i�
 types of datadistributions when the numbers of tunable parameters and examples are large.While often statisti
al theories provide asymptoti
 results for sizes of the trainingdata sample that are mu
h larger than some intrinsi
 
omplexity of a learningma
hine, in 
ontrast, the so 
alled 'thermodynami
 limit' of Statisti
al Me
hani
sallows to simulate the e�e
ts of small relative sample sizes. This is a
hieved by takingthe limit where both the sample size and the number of parameters approa
hesin�nity, but an appropriate ratio is kept �xed.Starting with the pioneering work of Elizabeth (4) this approa
h has beensu

essfully applied during the last de
ade to a variety of problems in the 
ontextof neural networks (for a review, see e.g. (9; 13; 7)). This 
hapter will deal withan appli
ation to learning with Support Ve
tor Ma
hines (SVMs). A somewhatmore detailed analysis whi
h was designed for readers with a Statisti
al Physi
sba
kground, 
an be found in (2).1.2 The basi
 SVM settingWe will restri
t ourselves to SVM 
lassi�ers. They are de�ned (for more expla-nations, see the introdu
tory 
hapter to this book) by a nonlinear mapping �(�)from input ve
tors x 2 RN into a feature spa
e F . The mapping is 
onstru
tedfrom the eigenve
tors  j(x) and eigenvalues �j of an SVM kernel k(x;y) via�(x) = (p�1 1(x);p�2 2(x); : : :).The output y of the SVM 
an be represented as a linear 
lassi�
ationsgn (�(x) �w) = sgn 0�NFXj=1p�j j(x)wj1A (1.1)in feature spa
e, where for simpli
ity, we have set the bias term equal to zero. Fora realizable setting, the weights wj , j = 1; : : : ; NF are adjusted to a set of examplepairs f(y1;x1); : : : ; (ym;xm)g by minimizing the quadrati
 fun
tion 12 jjwjj2 underthe 
onstraints that y(�(x) �w) � 1 for all examples.
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1.3 The learning problem 31.3 The learning problemWe assume a simple noise free s
enario, where the generation of data is modelledwithin the so 
alled tea
her-student framework. Here, it is assumed that some 
las-tea
her-studentframework si�er (the tea
her) whi
h has a similar representation as the ma
hine of interest,gives the 
orre
t outputs to a set of randomly generated input data. The general-ization error 
an be measured as the probability of disagreement on a random inputbetween tea
her and student ma
hine. In our 
ase, we 
hoose the representationyi = sgn 0�Xj p�jBj j(xi)1A : (1.2)All nonzero 
omponents are assumed to be 
hosen independently at random froma distribution with zero mean and unit varian
e. We will also 
onsider the 
ase,where a �nite fra
tion of the Bj are 0 in order to tune the 
omplexity of the rule.Finally, the inputs xi are taken as independent random ve
tors with a uniformprobability distribution D(x) on the hyper
ube f�1; 1gN . We are interested in theperforman
e of the SVM averaged over these distributions.We will spe
ialize on a family of kernels whi
h have the form k(x;y) = K �x�yN �,where, for simpli
ity, we set K(0) = 0. These kernels are permutation symmetri
in the 
omponents of the input ve
tors and 
ontain the simple per
eptron margin
lassi�er as a spe
ial 
ase, when K(z) = z. For binary input ve
tors x 2 f�1; 1gN ,the eigenvalue de
omposition for this type of kernels is known (5). The eigenfun
-eigenvaluede
omposition tions are produ
ts of 
omponents of the input ve
tors, i.e.  i(x) = 2�N=2Qj2Si xj ,whi
h are simple monomials, where Si � f1; : : : ; Ng is a subset of the 
ompo-nents of x. For polynomial kernels, these features have also been derived in (11).The 
orresponding eigenvalues are found to be �i = 2N=2Px k(e;x) i(x), withe = (1; : : : ; 1)T . They depend on the 
ardinality jSij of the set Si only. For jSij = 1,the eigenfun
tions are the N linear fun
tions xj , j = 1; : : : ; N . For jSij = 2, wehave the N(N � 1)=2 bilinear 
ombinations xixj et
. The behaviour of the eigen-values for large input dimension N is given by �i ' 2NN jSijK(jSij)(0): K(l) denotesthe l-th derivative of the fun
tion K. The rapid de
rease of the eigenvalues withthe 
ardinality jSij is 
ounterbalan
ed by the strong in
rease of their degenera
ywhi
h grows like njSij = � NjSij� ' N jSij=jSij!. This keeps the overall 
ontribution ofeigenvaluesPjSij=l �injSij for di�erent 
ardinalities l of the same order.1.4 The approa
h of Statisti
al Me
hani
sThe basi
 idea to map SVM learning to a problem in Statisti
al Me
hani
s is tode�ne a (Gibbs) measure p�(w) over the weights w whi
h in a spe
i�
 limit is
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4 Support Ve
tors and Statisti
al Me
hani
s
on
entrated at the weights of the trained SVM. This is done by settingp�(w) = 1Z e� 12�jjwjj2 mYi=1�0�yi NFXj=1p�j j(xi)wj � 11A : (1.3)�(x) is the unit step fun
tion whi
h equals 1 for x � 0 and 0 else. Z normalizes thedistribution. In the limit � !1, this distribution is 
on
entrated at the minimumof jjwjj2 in the subspa
e of weights where all arguments of the � fun
tions are non-negative. This is equivalent to the 
onditions of the SVM quadrati
 programmingproblem. A di�erent approa
h has been dis
ussed in (3), where the Kuhn Tu
ker
onditions of the optimization problem have been dire
tly implemented into a Sta-tisti
al Me
hani
s framework. It will be interesting to see, if this method 
an alsobe applied to the generalization problem of SVMs.The strategy of the Statisti
al Me
hani
s approa
h 
onsists of 
al
ulating expe
-tations of interesting quantities whi
h are fun
tions of the weight ve
tor w overboth the distribution (1.3) and over the distribution of the training data. At theend of the 
al
ulation, the limit � !1 is taken. These averaging pro
edures 
an beperformed analyti
ally only in the limit where N !1 and m!1. They requirea variety of deli
ate and nontrivial manipulations whi
h for la
k of spa
e 
annotbe explained in this 
ontribution. One of these te
hniques is to apply a 
entrallimit theorem (valid in the 'thermodynami
 limit') for 
arrying out expe
tationsthermodynami
limit over the random inputs, utilizing the fa
t that the features  j are orthogonal withrespe
t to the 
hosen input distribution. This is the main reason, why we preferto work in high-dimensional feature spa
e rather than using the low dimensionalkernel representation. A review of the standard te
hniques used in the Statisti
alMe
hani
s approa
h and their appli
ation to the generalization performan
e of neu-ral networks 
an be found e.g. in (9; 13; 7)), a general review of the basi
 prin
iplesis (6).The results of our analysis will depend on the way, in whi
h the two limitsN ! 1 and m ! 1 are 
arried out. In general, one expe
ts that a de
ay of thegeneralization error �g to zero should o

ur only when m = O (NF), be
ause NFis the number of parameters of the data model. Nevertheless, when the mapping �
ontains a reasonably strong linear part, �g may drop to small values already on as
ale of m = �N examples. Hen
e, in taking the limit N ! 1, we will make thegeneral ansatz m = �N l, l 2 N and dis
uss di�erent regions of the generalizationperforman
e by varying l. Our model di�ers from a previous Statisti
al Me
hani
sapproa
h to SVMs (1) where the dimension of the feature spa
e grew only linearwith N .
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1.5 Results I: General 51.5 Results I: GeneralOne of the most basi
 and natural quantities whi
h result from the 
al
ulation is aso 
alled order parameter whi
h for the SVM is de�ned byR =Xi �ihwiBii (1.4)where �i := �i=2N , and h:::i denotes an average with respe
t to the distribution(1.3) and the distributions of the data and of the tea
her ve
tor. R is a weightedoverlap between the tea
her and SVM student weight ve
tors. This similaritymeasure between tea
her and student allows us to express the generalization errorby �g = 1� ar

os RpBq : Here B = Pi �ih(Bi)2i and q0 = Pi �ih(wi)2i denotegeneralizationerror spe
i�
 squared norms of the tea
her and student weight ve
tors. Note that by thespe
i�
 form of �g, the tea
her's rule is perfe
tly learnt when the student ve
torpoints in the same dire
tion as the tea
her irrespe
tively of the student ve
tor'slength. Furthermore, an analysis of the 
ontributions 
oming from eigenve
tors ofdi�erent 
omplexities (i.e. 
ardinalities jSij) will give us an intuitive understandingof the SVMs inferen
e of the rule.As a general result of our analysis, we �nd that if the number of examples iss
aled as m = �N l,s
aling of numberof inputs All high order 
omponents Bi are 
ompletely undetermined, i.e. R(+) :=PjSij>l �ihwiBii ! 0, and also that q(+)0 :=PjSij>l �ih(wi)2i ! 0, in the large Nlimit.This does not mean that the values of the 
orresponding weights wi are zero, theyare just too small to 
ontribute in the limit to the weighted sums (1.4).All low order 
omponents are 
ompletely determined, in the sense that wi = 
Bifor all i with jSij < l, where 
 depends on � only. The only 
omponents whi
h area
tually learnt at a s
ale l are those for jSij = l.To illustrate this behaviour for the simplest 
ase, we study quadrati
 kernels ofthe form K(x) = (1 � d)x2 + dx, where the parameter d, 0 < d < 1, 
ontrolsthe nonlinearity of the SVM's mapping. The eigenve
tors of lowest 
omplexity arejust the N linear monomials � xj , and the remaining ones are the N(N � 1)=2quadrati
 terms of the form xixj . The learning 
urve is shown in Fig. 1.1, wherewe have in
luded results from simulations for 
omparison.If the number of examples s
ales linearly with the input dimension, i.e. m = �N(left side of Fig. 1.1), the SVM is able to learn only the linear part of thetea
her's rule. However, sin
e there is not enough information to infer the remainingN(N � 1)=2 weights of the tea
her's quadrati
 part, the generalization error of theSVM rea
hes a nonzero plateau as �!1 a

ording to �g(�)� �g(1) � ��1. Theheight of the plateau is given by �g(1) = ��1 ar

os(d), whi
h in
reases from zeroat d = 1, when the kernel is entirely linear, to �g = 12 at d = 0 when only quadrati
features are present.
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6 Support Ve
tors and Statisti
al Me
hani
s
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Figure 1.1 De
rease of the generalization error on di�erent s
ales of examples, forquadrati
 SVM kernel learning a quadrati
 tea
her rule (d = 0:5; B = 1) and variousgaps 
. Simulations were performed with N= 201 and averaged over 50 runs (leftand next �gure), and N= 20, 40 runs (right).If we in
rease the number of examples to grow quadrati
ally withN , i.e.m = �N2(right side of Fig. 1.1), the generalization error will de
rease towards zero with abehavior � 1=� asymptoti
ally, where the prefa
tor does not depend on d.The retarded learning of the more 
omplex 
omponents of the mapping �generalizes to kernels whi
h are polynomials of higher order z > 2. On the s
ale ofpolynomialkernels m = �N l examples, when l < z, the generalization error de
reases to a plateau as�!1 whi
h is given by�g = 1� ar

osvuutPlj=1 K(j)(0)j!K(1) : (1.5)Only at the highest s
ale m = �Nz, we get an asymptoti
al vanishing of thegeneralization error to zero as �g � 0:500489z! ��1.1.6 Results II: Over�tting
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1.6 Results II: Over�tting 7
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Figure 1.2 Learning 
urves for linear student and quadrati
 SVM kernels, alllearning a linear tea
her rule (B = d). For � = 10, a �nite size s
aling is shown inthe inset.As the next problem, we study the ability of the SVM to 
ope with the problemof over�tting when learning a rule whi
h has a mu
h lower 
omplexity than themapping �. We model su
h a problem by keeping the SVM quadrati
, but 
hoosinga data generating me
hanism whi
h is de�ned by a simple linear separation ofexamples. This is a
hieved by setting jBij = 1 for jSij = 1 and jBij = 0 for thehigher order 
omponents. Our results for the generalization error are shown in Fig.1.2, where the number of examples is s
aled as m = �N . Surprisingly, although the
omplexity of the SVM is by far higher than the underlying rule, only a rather weakform of over�tting is observed. The SVM is able to learn the N tea
her weights Bion the 
orre
t s
ale of m = �N examples. The asymptoti
 rate of 
onvergen
e is�g � ��2=3. If we had used a simple linear SVM for the same task, we would havelearned the underlying 
on
ept only slightly faster at the rate �g � ��1.We 
an 
ompare these results with simple bounds on the expe
ted generalizationerror as des
ribed in se
tion ?? of the introdu
tory 
hapter. E.g., the expe
tationof the ratio of the number of support ve
tors over the total number of examples myields an upper bound on �g (12). Cal
ulating the expe
ted number of supportve
tors within the Statisti
al Me
hani
s approa
h yields an asymptoti
 de
ay� ��1=3 for this bound whi
h de
ays at a slower rate than the a
tual �g.1.7 Results III: Dependen
e on the input density
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8 Support Ve
tors and Statisti
al Me
hani
sOne 
an expe
t that if the density of inputs a
ts in a favourable way togetherwith the tea
her's 
on
ept, learning of the rule will be faster. We have modelledsu
h a situation by 
onstru
ting an input distribution whi
h is 
orrelated withthe tea
her weights Bi by having a gap of zero density of size 2
 around thetea
her's de
ision boundary. In this 
ase we expe
t to have a large margin betweenpositive and negative examples. The density for this model is of the form D(x) �� �jPip�iB� i(x)j � 
�.For a quadrati
 SVM learning from a quadrati
 tea
her rule, we observe a fasterde
ay of the generalization error than in the 
ase of a uniform density. However,on the linear s
ale m = �N (Fig. 1.1) the asymptoti
 de
ay is still of the form�g(�) � �g(1) � ��1. A dramati
 improvement is obtained on the highest s
alem = �N2, where the generalization error drops to zero like �g � ��3e�
̂(
)�2 . Inthis 
ase, the mismat
h between the true generalization error and the simple boundbased on the fra
tion of support ve
tors is mu
h more striking. The latter de
reasesmu
h slower, i.e. only algebrai
ally with �.1.8 Dis
ussion and OutlookThe present work analysed the performan
e of SV Ma
hines by methods of Statisti-
al Me
hani
s. These methods give distribution dependent results on generalizationerrors for 
ertain simple distributions in the limit of high dimensional input spa
es.Why do we expe
t that this somewhat limited approa
h may be of interest tothe ma
hine learning 
ommunity? Some of the phenomena dis
ussed in this 
hapter
ould de�nitely be observed qualitatively in other, more general approa
hes whi
hare based on rigorous bounds. E.g., the re
ently introdu
ed 
on
ept of lu
kiness(10; 8) applied to the 
ase of the favourable density with a gap would give smallergeneralization errors than for a uniform density. This is be
ause the margin (taken asa lu
kiness fun
tion) would 
ome out typi
ally larger. Nevertheless, the quantitativeagreement with the true learning 
urves is usually less good. Hen
e, an appli
ationof the bounds to model sele
tion may in some 
ases lead to suboptimal results.On the other hand, the power of the Statisti
al Me
hani
s approa
h 
omes fromthe fa
t that (in the so far limited situations, where it 
an be applied) it yieldsquantitatively exa
t results in the thermodynami
 limit, with ex
ellent agreementwith the simulations of large systems. Hen
e, this approa
h 
an be used to 
he
kthe tightness of bounds in 
ontrolled analyti
al experiments. We hope that it willalso give an idea how bounds 
ould be improved or repla
ed by good heuristi
s.So far, we have restri
ted our results to a noise free s
enario, but it is straight-forward to extend the approa
h to noisy data. It is also possible to in
lude SVMtraining with errors (resulting in the more advan
ed optimization problem withsla
k variables) in the formalism. We expe
t that our analysis will give insight intothe performan
e of model sele
tion 
riteria whi
h are used in order to tune theparameters of the SVM learning algorithm to the noise. We have already shown forthe noise free 
ase that a very simple statisti
s like the relative number of support
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1.8 Dis
ussion and Outlook 9ve
tors 
an give a wrong predi
tion for the rate of 
onvergen
e of the generaliza-tion error. It will be interesting to see if more sophisti
ated estimates based on themargin will give tighter bounds.A
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