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Previous contrast discrimination experiments have shown that luminance contrast is summed across ocular (T. S. Meese,
M. A. Georgeson, & D. H. Baker, 2006) and spatial (T. S. Meese & R. J. Summers, 2007) dimensions at threshold and
above. However, is this process sufficiently general to operate across the conjunction of eyes and space? Here we used a
“Swiss cheese” stimulus where the blurred “holes” in sine-wave carriers were of equal area to the blurred target (“cheese”)
regions. The locations of the target regions in the monocular image pairs were interdigitated across eyes such that their
binocular sum was a uniform grating. When pedestal contrasts were above threshold, the monocular neural images
contained strong evidence that the high-contrast regions in the two eyes did not overlap. Nevertheless, sensitivity to dual
contrast increments (i.e., to contrast increments in different locations in the two eyes) was a factor of È1.7 greater than to
single increments (i.e., increments in a single eye), comparable with conventional binocular summation. This provides
evidence for a contiguous area summation process that operates at all contrasts and is influenced little, if at all, by eye of
origin. A three-stage model of contrast gain control fitted the results and possessed the properties of ocularity invariance
and area invariance owing to its cascade of normalization stages. The implications for a population code for pattern size
are discussed.
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Introduction

An important property of mammalian vision is neuronal
convergence. As one moves up the visual hierarchy, visual
mechanisms are imbued with increasingly elaborate
properties owing to their feeds from arrays of lower order
mechanisms, each selective for different regions along
the dimension(s) of interest. Physiologists and anatomists
see this at all levels of the visual system, including the
retina (photoreceptors to retinal ganglion cells), the
projection to V1 (LGN cells to simple cells), within V1
itself (simple cells to complex cells), intermediate areas
such as MT (velocity tuning and pattern cells), V4 (spatial
form), IT/LO (texture and objects), and so forth.
For those who study human spatial vision using contrast

detection and contrast discrimination tasks, the brain’s
ubiquitous neuronal convergence poses two puzzles. First,
why is the benefit of increasing the area of a sine-wave
grating so slight at detection threshold (Robson &
Graham, 1981)? Second, why is that benefit completely
abolished when the task is raised above threshold,

becoming one of contrast discrimination (Legge & Foley,
1980)?

Orthodoxy

Early models of spatial vision implied that in spite of
neuronal convergence elsewhere in the system, there is no
benefit from neuronal convergence beyond V1 receptive
field size for contrast detection and discrimination tasks
(Legge & Foley, 1980). The standard model proposed that
beyond the size of receptive fields in V1 (È2 cycles of
sine-wave grating), the benefit of grating area at detection
threshold is merely probabilistic: the greater the number
of independent mechanisms excited by the stimulus, the
greater the probability of detection. This interpretation of
spatial summation has been influential, but there is no
direct psychophysical evidence to support it; only the
circumstantial evidence that the relevant data are consis-
tent with the levels of summation predicted by probability
summation (Meese & Williams, 2000; Robson & Graham,
1981). We refer to this as the first dogma of spatial vision.
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An important study that extended the investigation of
spatial vision above threshold was conducted by Legge
and Foley (1980). They compared contrast discrimination
thresholds for small and large grating areas but found no
difference once the pedestal contrast was well above
threshold. They suggested that the benefit of area is lost
above detection threshold because the noise among the
detecting mechanisms becomes correlated, thereby nulli-
fying the statistical advantage of the selection process
(e.g., a MAX operator). However, Legge and Foley (1980)
manipulated the area of both the target and the pedestal,
leaving open the possibility that the process of area
summation remains operative for the target but is nullified
by extra suppression from the pedestal, which also
increases in size (Bonneh & Sagi, 1999; Meese, Hess, &
Williams, 2005). Therefore, we refer to the belief that
there is no area summation of signal contrast well above
detection threshold (Cannon & Fullenkamp, 1988; Legge
& Foley, 1980; McIlhagga & Pääkkönen, 1999; Swanson,
Wilson, & Giese, 1984) as the second dogma of spatial
vision.

Probability summation, signal selection,
and the MAX operator

The term “probability summation” is used widely in the
spatial vision literature, though here we offer an alter-
native term: “signal selection,” which has greater neutral-
ity regarding the neural underpinning. For example, when
a signal line wins out probabilistically (by responding
above “threshold”), it is self-selecting from the competing
signal lines. Similarly, we conceptualize the MAX
operation as the system selecting one of several signal
lines (channels), either for decision making (Pelli, 1985)
or further transmission (Riesenhuber & Poggio, 1999).
The MAX operator is of particular interest in neuro-

science (Finn & Ferster, 2007; Lampl, Ferster, Poggio, &
Riesenhuber, 2004) because it provides a method by
which various stimulus invariances can be achieved
(Riesenhuber & Poggio, 1999, 2002). In conjunction with
stimulus selectivity from linear summation (Ghose &
Maunsell, 2008), this has been central to models of object
and shape recognition in V4 and higher levels of the
visual hierarchy (Cadieu et al., 2007; Kouh & Poggio,
2008). The MAX operator has also attracted interest in
psychophysics. For example, when it is performed over
independently noisy input lines (Pelli, 1985), the process
has properties similar to the probability summation model
of Sachs, Nachmias, and Robson (1971) and the vector
magnitude model of Quick (1974). Thus, the MAX
operator is a viable implementation of signal selection
and represents a contemporary treatment of probability
summation (Pelli, 1985; Tyler & Chen, 2000), even though
it does not involve summing probabilities directly (Tyler
& Chen, 2000). Nevertheless, owing to the widespread use
of the term “probability summation,” we shall treat it

interchangeably with the term “signal selection,” in this
paper at least.

Challenges to orthodoxy

In spite of the success of the early models of spatial
vision and probability summation (Bergen, Wilson, &
Cowen, 1979; Legge & Foley, 1980; Robson & Graham,
1981; Sachs et al., 1971; Wilson, McFarlane, & Phillips,
1983), challenges have been raised to the orthodox
positions on both area (spatial) probability summation
and the loss of area summation above threshold (the first
and second dogmas of spatial vision). We outline these
challenges in the next two subsections.

Signal combination for contrast at threshold

Probability summation (signal selection) models are
often approximated using a Minkowski metric with a
Minkowski exponent of about 4 (Robson & Graham,
1981; Tyler & Chen, 2000; Watson, 1979). However, care
is needed with this implementation (Pelli, 1985; Tyler &
Chen, 2000). For example, Meese and Summers (2009)
showed that when placed in a spatial pooling model it
failed (badly) to predict the combined results of the level
of summation and the slope of the psychometric function.
As eluded earlier, a further problem is that although
probability summation is consistent with the weak levels
of summation that it is proposed to explain (Robson &
Graham, 1981) otherVvery differentVprocesses also
predict similar levels of summation. For example,
Rovamo et al. presented a series of studies that proposed
spatial integration by a matched filter (Luntinen, Rovamo,
& Näsänen, 1995; Näsänen, Tiippana, & Rovamo, 1998;
Rovamo, Luntinen, & Nasanen, 1993; Rovamo, Mustonen,
& Nasanen, 1994; Rovamo, Ukkonen, Thompson, &
Nasanen, 1994; see also Manahilov, Simpson, & McCulloch,
2001). The fits to their data were very good, though their
analysis did not displace the orthodox account. In a more
recent study, Foley, Varadharajan, Koh, and Farias (2007)
performed area summation experiments and a detailed
mathematical analysis and concluded that multiple recep-
tive fields are summed after each being subject to an
accelerating contrast-response nonlinearity and retinal
inhomogeneity. However, Minkowski summation remained
a valid interpretation of their results. Meese and Summers
(2007) proposed a similar arrangement to Foley1 (see
also Meese, 2004, 2010; Meese et al., 2005) but also
provided supporting evidence from the slope of the
psychometric function. Using this additional constraint
(and the “Swiss cheese” stimuli described below), they
showed that their area summation results were not
explained by a MAX rule or Minkowski summation with
exponents in the conventional “probability summation”
range of 3 or 4. This was elaborated further by the detailed
analysis and experiments of Meese (2010) and Meese and
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Summers (2009), who proposed an overall transducer
exponent of about 2 (around “threshold”) prior to
summation of contrast over area. Finally, several studies
have investigated contrast summation for strips of grating
across parafoveal retinal regions, where sensitivity is more
homogeneous than in the fovea (Manahilov et al., 2001;
Mayer & Tyler, 1986; Meese & Hess, 2007). All of these
studies found higher levels of summation than the earlier
study of Robson and Graham (see Meese & Hess, 2007 for
a review) suggesting that contrast detection involves a
process more potent than signal selection, at least in some
circumstances.
Overall then, current evidence dispels the first dogma of

spatial vision and favors a strategy involving the linear
sum of contrast over area, following an accelerating
relation between signal contrast and performance (Meese,
2010; Meese & Summers, 2007, 2009). This form of
summation is sometimes referred to as “physiological
summation,” though we prefer the term “signal combina-
tion” as this makes it distinct from the alternative MAX
rule (signal selection), which, in principle, could have a
physiological implementation at an early sensory stage
(Finn & Ferster, 2007; Lampl et al., 2004).

Area summation of contrast operates at and above
detection threshold

Recent evidence has also dispelled the second dogma of
spatial vision: area summation of contrast does take place
above detection threshold after all. In addition to the
threshold work described above, Meese and Summers (2007)
measured dipper functions (contrast discrimination func-
tions, or TvC curves) using a large pedestal (22.5 cycles of
2.5 c/deg grating). Their targets were contrast increments
applied to either (i) the entire pedestal or (ii) multiple
patches across the pedestal, which we refer to as a “Swiss
cheese” stimulus (owing to the holes; see forward to
Figure 2). With this arrangement, the sum of carrier
contrast over area for the pedestal increments was twice
that of the Swiss cheese increments. Crucially, Meese and
Summers (2007) found that sensitivity to full pedestal
increments (in terms of carrier contrast) was also nearly
twice that of Swiss cheese increments, and that this
happened along the entire dipper function. This provided
the first clear evidence for an area summation process for
luminance contrast that operates well above detection
threshold in the central visual field (but see also Bonneh &
Sagi, 1999; Levi & Klein, 2000; Meese, 2004; Meese
et al., 2005; Wilkinson, Wilson, & Ellemberg, 1997).
Furthermore, the results were predicted by a contrast gain
control model involving linear spatial summation across
multiple classical receptive fields and countersuppression
from those same receptive fields (Meese & Summers,
2007; Wilkinson et al., 1997). Not only did this model
account for the novel result described above, but also
Legge and Foley’s (1980) orthodox result that dipper
handles converge when the contrast area of both the target

and the pedestal are increased. (We consider this in more
detail in Appendix B.)

Binocular summation operates at and above detection
threshold

Another form of contrast summation is that which takes
place between the eyes, usually referred to as binocular
summation. Binocular summation of contrast at threshold
can be substantial (a factor of 1.7; Baker, Meese,
Mansouri, & Hess, 2007; Baker, Meese, & Summers,
2007; Georgeson & Meese, 2005; Meese, Challinor, &
Summers, 2008; Meese, Georgeson, & Baker, 2006;
Meese & Summers, 2009; Rose, 1980; Simmons, 2005).
Certainly, it can be significantly greater than the factor of
¾2 (3 dB) predicted by models of the ideal observer
(Campbell & Green, 1965) and quadratic summation
(Legge, 1984; see Meese & Summers, 2009) implying
that performance-limiting noise is placed beyond binoc-
ular summation. In a binocular masking experiment
analogous to the area summation experiment in the
previous subsection, Meese et al. (2006) measured
summation across eyes for patches of grating at and
above detection threshold. Their pedestals were binocular
patches of 1 c/deg grating (5 cycles) and target increments
were presented to either one eye or both. For the binocular
increment, they found that sensitivity was almost a factor
of two greater than for the monocular increment over the
entire dipper function. This provided good evidence that
binocular summation of contrast takes place for the entire
suprathreshold range, just like area summation.

Preliminary outline of the current work

A natural question arises from the studies above. Given
that summation of contrast extends across area (Meese &
Summers, 2007) and eyes (Meese et al., 2006), might it
extend across the conjunction of area and eyes? That is,
can visual signals from different areas in different eyes be
combined? In fact, this has been confirmed around
detection threshold by Meese and Summers (2009), but
they did not consider pedestal masking. Here we extend
the inquiry to suprathreshold vision by measuring contrast
discrimination functions for a wide range of pedestal
contrasts (i.e., we measured dipper functions). The logic
of the stimulus design and its relation to our two previous
studies with dipper functions is outlined in Figure 1. Note
that within each of the three studies the pedestal is
constant across conditions, only the configuration of the
target varies. We consider this further in the Discussion
section.
For the experiment here (Figure 1c), contrast increments

were presented to one eye in one location, the other eye in
the other location, or both of these. For convenience, we
refer to the first two conditions as single increments, and
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the third one as a dual increment. Note that in no
condition in Figure 1c is there a pedestal or target
increment in the same eye that extends across space, or
the same spatial location that goes to both eyes.

Questions, predictions, and preview of results

Here we ask whether the contrast integration process is
generally indifferent to eye of origin, as found by Meese
and Summers (2009) at detection threshold. Or will it be
that when the experiment is extended above threshold, the
emerging sensory evidence for different pedestal stimuli
in the two eyes will restrict the target integration to eye of
origin? If the first hypothesis is correct, then the dipper
function for dual increments should sit above that for
single increments across the entire range of pedestal
contrasts. If the second hypothesis is correct, then the
two dipper functions should converge once the pedestal
contrast is above its own detection threshold. We
addressed this issue here to further our understanding of
the organizing principles of early spatial vision. Our

results are consistent with the first outcome, indicating an
area summation process that cares little, if at all, about eye
of origin. Our results are well described by a three-stage
model of contrast gain control.

Methods

Equipment

Stimuli were viewed through Cambridge Research
Systems (CRS) ferro-electric (FE-1) shutter goggles and
displayed on a Clinton Monoray monitor with a frame rate
of 120 Hz using a CRS ViSaGe stimulus generator. The
mean luminance of the display viewed through the
goggles was 20 cd/m2. The shutter goggles allowed
different stimuli to be presented to the two eyes by
interleaving across frames with a refresh rate of 60 Hz.
Using this method, the contrast of the entire stimulus
(pedestal plus target) was controlled by look-up tables
independently for each eye. Gamma correction was
performed to ensure linearity over the full range of
stimulus contrasts. Observers sat at a viewing distance of
51.5 cm with their head in a chin and headrest fixating a
dark square point (4.8 arcmin) placed in the center of the
display throughout the experiment. The experiment was
controlled by a PC.

Stimuli

The two different types of Swiss cheese stimuli are
shown in Figure 2. The carrier was a horizontal sine-wave
grating in sine phase with the center of the display and
had a spatial frequency of 2.5 c/deg. It was contrast
modulated (multiplied) by a circular raised cosine func-
tion with a central plateau of 8 deg, and a blurred
boundary of 1 deg, giving a full-width at half-height of
9 deg. A “raised-plaid” envelope was used to modulate
this stimulus further. The plaid was the sum of two sine-
wave grating components with orientations of T45- and a
spatial frequency of 0.5 c/deg, each with contrasts of 0.5.
This gave minima and maxima of j1 and 1, respectively.
The envelope was then “raised” by adding 1 to each point
and dividing by 2 throughout, giving minima and maxima
of 0 and 1. Thus, the equation for the modulator was

env¼

1þ

cosð2:½ f x cosðEÞ þ f y sinðEÞ� þ 8Þ=2þ

cosð2:½ f x cosðjEÞ þ f y sinðjEÞ� þ 8Þ=2

0
BBBB@

1
CCCCA

=

2;

ð1Þ

Figure 1. Schematic illustration of the stimulus design logic for
investigating contrast summation (a) across eyes (Meese et al.,
2006), (b) across area (Meese & Summers, 2007), and (c) across
the conjunction of eyes and area (the work here). The filled
square (red) and circular (green) symbols represent pedestal and
target contrasts, respectively. The different columns denote the
component pair and the compound condition for each of the three
experiments (a–c). Within each quad of icons, the different rows
and columns denote stimuli presented to different eyes and
different spatial locations, respectively. In (a), the same target
was presented at both spatial locations but to different eyes. In
(b), the same target was presented to both eyes but to different
spatial locations. In (c), the target was presented to different eyes
and different spatial locations. Note that in the experiment here,
trials were counterbalanced across location and eye.
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where f is spatial frequency (= 0.5 c/deg), E is orientation
(= 45-), and7 is phase. There were two different phases of
modulation: cosine phase (7 = 0-; Figure 2a) and negative
cosine phase (7 = 180-; Figure 2b). These stimuli were
given the nominal labels of “white” and “black” checks,
respectively, as a reference to the magnitude of the
modulator at the center of the display (unity and zero).
Note that there are 7.07 cycles of carrier grating for

every two checks (i.e., one cycle of a vertical cross-
section through the envelope). Note also that the physical
sum of the two stimuli in Figure 2 is equal to the carrier
grating without the modulation by the raised plaid.
Stimulus contrast is expressed as Michelson contrast

in % of the carrier (i.e., c = 100[(Lmax j Lmin)/(Lmax +
Lmin)]) or in dB re 1% (= 20log10(c)). Pedestal contrast
was controlled by manipulating the carrier contrast (c) of
the pedestals in each eye (the pedestal contrast was always
the same in the two eyes). Target contrast was controlled
by applying a contrast increment to the carrier of either
one (single increment) or both eyes (dual increment).
Even though the pedestals in the two eyes were very

different (see Figure 2), the dichoptic pedestal appeared as a
fairly uniform patch of grating with about 24 cycles of the
carrier. Although there was sometimes a sense of luster in
the stimulus when the target increments were very large
(e.g., at the beginning of a session), observers confirmed
that this was not the case at and around the contrast
increment threshold, where the stimuli appeared uniform.

Stimulus conditions

The experiment measured contrast-masking functions
(dipper functions) over a range of pedestal contrasts from
0% to 32%. The two eyes were always presented with
different phases of modulation (i.e., one eye saw “white”
checks, while the other eye saw “black” checks; see Figures 2
and 3). In different conditions, contrast increments of the

Figure 2. Swiss cheese stimuli (pedestals and targets). One phase of checks (we use the nominal labels of “white” and “black”) was used
as the pedestal in one eye, and the other phase of checks was used as the pedestal in the other eye. Contrast increments of the carrier
were applied to either the left eye alone, the right eye alone (single increments), or both eyes (dual increment). Stimulus conditions were
counterbalanced across eyes. The central crosses here are an aid to free fusion of these sample stimuli (see Discussion section). In the
experiments, a small square fixation point was used instead.

Figure 3. One-dimensional cross-sections of the Swiss cheese
contrast modulation (spatial envelopes) for each of the three
dichoptic stimulus conditions from Figure 1c (two single incre-
ments and one dual increment). The figure shows “white” and
“black” checks in left and right eyes, respectively, though in the
experiment this was counterbalanced across eyes. Note that the
contrast modulation always varied from zero to unity and that
the binocular sum of the dichoptic pedestals was a uniform
carrier (i.e., there was no destructive interference between the
signals in the two eyes). The carrier contrasts (not shown) of the
targets and pedestals were varied by the observers (using a
staircase method) and experimenters, respectively.
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carriers were applied to either (i) the “white” checks only,
(ii) the “black” checks only, or (iii) both “black” and “white”
checks (Figure 3), and the conditions were counterbalanced
across eye. The first two conditions are referred to as “single
increments” and the third condition as a “dual increment.”
Thus, there were 6 different conditions in total: 2 eyes �
(2 single increments + 1 dual increment). Our interest was in
a comparison between single and dual increments after
collapsing across eye.

Procedure

The level of target contrast (the contrast increment of the
carrier) was selected by a three-down one-up staircase
procedure (Wetherill & Levitt, 1965) and a single
condition was tested using a pair of randomly interleaved
staircases (Cornsweet, 1962). The target contrast always
began well above detection threshold, and in an initial
stage of data collection, a large step size was used
(12 dB). After the first reversal, the step size was reduced
to 3 dB and data collection continued for a further twelve
reversals. These last twelve reversals constituted the test
stage for each staircase. We used a two-interval forced-
choice (2IFC) procedure where one interval contained
only the pedestals and the other contained the pedestals
plus target increment(s). The onset of each 100-ms test
interval was indicated by an auditory tone and the
duration between the two intervals was 400 ms. Observers
were required to select the interval containing the target
using one of two buttons to indicate their response.
Correctness of response was provided by auditory feed-
back, and the computer selected the order of the intervals
randomly. For each run, data from the test stages (above)
were collapsed across the two staircases and thresholds
(75% correct) and standard errors were estimated by probit
analysis (Finney, 1971). Individual estimates for each
psychometric function were based on around 100 trials.
Experimental “contrast blocks” were repeated twice. A

contrast block consisted of a set of “mini-blocks” for each
of ten pedestal contrasts (including 0%). A mini-block
consisted of an experimental session for each of the six
pedestal and test configurations described above. The order
of pedestal contrasts and the order of conditions within
each mini-block were determined using a random number
generator.
After collapsing across eye, thresholds for each increment

type (“black” increment, “white” increment, dual incre-
ment) were averaged across four estimates (,400 trials).
Staircases started with target contrasts that were sufficiently
high for the stimulus condition (“white,” “black,” or dual)
to be easily identifiable at the beginning of each mini-block.
Before data collection began (and consistent with much

of our earlier work), the following rejection and replace-
ment criterion was set to lessen the impact of unreliable
estimates of threshold. If the standard error of a threshold
estimate within a mini-block was greater than 3 dB

(estimated by probit analysis), the data for that condition
were discarded and the mini-block was rerun.

Observers

Three undergraduate optometry students performed the
experiment as part of their course requirement. They were
YR, PP, and ASP. The observers had at least 1 h of
practice at the tasks before formal data collection began.
All observers wore their normal optical correction and had
normal stereopsis, as assessed by random dot stereograms.

Results

A preliminary analysis of the results confirmed that for
all three observers, sensitivity of the two eyes was very
similar, and so data were collapsed across eye. Dipper
functions are shown for the average of the three observers
in Figure 4. Sensitivities to contrast increments of the

Figure 4. Dipper functions averaged across three observers for
each of three conditions (È1200 trials per point). Contrast incre-
ments were applied to either “black” checks alone (solid squares),
“white” checks alone (open squares), or both “black” and “white”
checks simultaneously (solid circles). (See Figure 2 for the
meaning of the stimulus terminology.) Error bars show T1 SE
across observers. Curves show the fit of the three-stage model of
contrast gain control described in the text. The RMS error of the fit
was 0.85 dB. See Appendix A for a full list of parameter values.
Note that on each axis, a step of 6 dB is equivalent to a factor of 2.
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“black” checks (solid squares) and “white” checks (open
squares) were very similar (see Figure 2 for the meaning
of stimulus terminology). When the contrast increments
were applied to both the “black” and “white” checks
simultaneously (in different eyes), the form of the dipper
function was unchanged but displaced downward (solid
circles). The level of contrast summation across the
“black” and “white” increments (the contrast differences
from Figure 4, expressed in dB) is shown for each of the
three observers and their average in Figure 5.
Essentially, contrast summation was found across the

conjunction of eyes and space at all pedestal contrasts.
There was little or no systematic effect of pedestal
contrast, and summation typically fell within the bounds
of 3 dB and 6 dB (dashed horizontal lines in Figure 5; i.e.,
between factors of ¾2 and 2). Thus, at threshold and
above, summation is consistently higher than quadratic
(3 dB, or ¾2)Va figure often associated with binocular
summation (e.g., Campbell & Green, 1965). The high

levels of binocular summation across all pedestal contrasts
here (average of 4.8 dB) are only fractionally less than
that found in an earlier experiment (5.1 dB), where grating
stimuli were spatially superimposed in the two eyes
(Meese et al., 2006).

Three-stage model of contrast gain control
Model motivation and design

Here we fitted our results with a three-stage model of
contrast gain control inspired by previous results on
binocular summation and spatial summation at threshold
and above. The model builds on the findings and con-
straints reported in four previous studies (Meese, 2010;
Meese et al., 2006; Meese & Summers, 2007, 2009) in
a logical and simple way. It extends our previous two-
stage model of binocular summation and contrast gain
control (Meese et al., 2006) to include the area summation
and spatial filtering of Meese (2010) and Meese and
Summers (2007). However, in what order should the
various stages be placed? Meese (2010) provided
evidence at threshold for contrast summation within linear
filter elements (i.e., individual receptive fields) followed
by a nonlinearity and then summation across filter
elements (i.e., area summation). Meese and Summers
(2009) tested 62 formally different models of ocularity
and spatial summation against their threshold data and
concluded that contrast summation takes place across eyes
before area. They also identified transducer-like non-
linearities before and after the binocular summation stage,
and also at the output stage. In sum, previous work at
threshold suggests an alternating cascade of three trans-
ducers and two summation stages all placed after an initial
stage of linear filtering (Meese, 2010; Meese & Summers,
2007, 2009). Here, we retain the two stages of summation
and the three stages of contrast transduction but raise
the application of the model above threshold by convert-
ing the transduction stages to contrast gain control. This
is consistent with the gain control in the pre- and post-
binocular summation stages of Meese et al. (2006) and the
gain control at the spatial summation stage of Meese and
Summers (2007). It is also broadly consistent with ideas
about contrast normalization (divisive inhibition) at the
single-cell level (e.g., Heeger, 1992; Kouh & Poggio, 2008;
Ringach, 2010). We will consider the purpose of the first
two stages of gain control in the next subsection and in
part 3 of the discussion. The third stage of gain control
(the output stage) is needed to fit quantitative aspects of
the dipper functions (see next section but one). However,
as we have argued before (Baker, Meese, & Georgeson,
2007; Meese et al., 2006), this final stage is probably best
treated as a numerical convenience rather than an explicit
process of divisive inhibition, at least until it is better
understood (see also the Internal noise in the model section
and Appendix B).

Figure 5. Summation of contrast across eyes and area for each of
three observers (open symbols) and their average (solid circles).
The fine and coarse dashed lines indicate quadratic summation
(3 dB; a factor of ¾2) and perfect linear summation (6 dB; a factor
of 2) of the amplitudes of the contrast increments, respectively.
Contrast summation for YR and ASP and the average of the three
observers were each significantly greater than 3 dB according to a
sign test (n = 10, p G 0.001). This analysis fell slightly shy of
significance for PP (n = 10, p = 0.055). The average summation
for a pedestal contrast of 0% was 4.1 dB. The average summation
for pedestal contrasts above 0 dB was 4.7 dB. The average
summation across the entire dipper function was 4.8 dB. Note
that, on each axis, a step of 6 dB is equivalent to a factor of 2.
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The decisions about where to put the nonlinear trans-
ducers, the gain controls, and the summation stages were
all driven by previous results, as described above.
However, there are some model details for which our
existing data do not provide strong constraints (e.g.,
pooling over filter phase at Stage 2). Thus, the specific
model shown here is done in the spirit of demonstrating a
plausible visual arrangement that can account for our
results. Nonetheless, after trying many different variants
of the model, we were unable to find a simpler one that
maintained all of the properties of the current one. We
provide an overview of two of these properties next.

Overview of two key model properties

The first stage of gain control is placed before/at the
binocular summation stage and is needed to normalize
sensitivities of the two excitatory monocular channels to
achieve ocularity invarianceVthe property that a pattern’s
suprathreshold contrast looks similar with one eye and
two (Baker, Meese, & Georgeson, 2007). The second is
placed before/at the area summation stage and normalizes
sensitivity to different areas to achieve area invarianceVthe
property that a pattern’s suprathreshold contrast looks
similar when it changes in size (Cannon & Fullenkamp,
1991a; Meese & Summers, 2007). The third stage is
needed to refine the fits to the dipper functions but does
not affect summation across eyes or space. We will
elaborate on these requirements in the discussion.
An overview of the model parameters and other model

details follows, but readers could skip to the discussion
without loss of continuity. A schematic outline of the
model is shown in Figure 6, and full details are described
in Appendix A.

Model parameters: Three fixed and five free

The spatial filters were those used by Meese and
Summers (2007). They were Cartesian separable log
Gabor filters matched to the spatial frequency and
orientation of the carrier (see Meese, 2010 for the
equation). The initial filter response exponent (m) was
set to 1.2, consistent with previous studies (Meese et al.,
2006; Meese & Summers, 2009) and so that the level of
conventional binocular summation is greater than quadratic
(m = 2) but less than perfectly linear (m = 1). This is
followed by the Stage 1 gain control of Meese et al.
(2006; S = 1) and then binocular summation. The analysis
of Meese and Summers (2009) demanded an intermediate
exponent (r) between these stages. This was set to 1.67
here so that the overall exponent before area summation
was mr = 2, consistent with energy detection and previous
models of psychophysical results (Klein & Levi, 2009;
Meese, 2010; Meese & Summers, 2009; Petrov, Dosher,
& Lu, 2005) and single-cell physiology in V4 (Ghose &
Maunsell, 2008). This second stage of gain control is
accompanied by area summation. For convenience, this

was performed over the entire stimulus region, though the
true spatial extent might be somewhat less than this
(Meese, 2010; Meese & Summers, 2007, 2009).
The exponents (p and q) at the third stage of gain

control are used as a final control of the steepness of the
log–log slope of the upper limb of the masking function
(the dipper handle). The exponent p also influences the
shape and position of the “dip.”
Stage 3 is followed by performance limiting additive

Gaussian noise with standard deviation A. If the model
were stochastic, then the observer (the “decision maker”
in Figure 6) would choose the 2IFC interval that
produced the greater response. In the deterministic
version of the model (used here), threshold is the contrast
needed for the response difference across 2IFC intervals
to equal k. This parameter is linearly related to A and does
not represent an additional degree of freedom in the
model. (We shall return to the placement of noise in the
section after next.)
Overall, there were five degrees of freedom in the

model. In general, four parameters control the basic shape
and position of dipper functions (Legge & Foley, 1980).
The equivalent parameters here were Z, k, p, q. The fifth

Figure 6. Schematic outline of the three-stage contrast gain
control model used for the experiment here (the fit is shown in
Figure 4). Arrows denote divisive inhibition. Not shown is (i) the
attenuation surface that precedes the spatial filtering and repre-
sents retinal inhomogeneity (see Appendix A for details) and (ii)
the location of performance limiting noise, which is discussed in
the text. Abbreviations and parameters: GC, gain control, Li, Ri,
left and right eye contrasts at the ith corresponding retinal point;
S, B, Z, saturation constants; m, r, p, excitatory transducers; q,
suppressive transducer; @ linear summation of input lines. See
Appendix A for full list of parameter values.
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free parameter (B) was needed to condition the second
stage of gain control. These parameters have little or no
effect on the level of summation, which is an emergent
property of the model’s architecture. The fixed parameters
were m, r, and S, plus the filter parameters, which were
not critical in this study.
In a refinement to the model, we arranged that the

saturation constant of the second stage of gain control (B)
was suppressed by the excitatory component of that stage
(and this is the version of the model used in Figure 4).
This had the advantage of improving the area invariance
property of the model without introducing extra parame-
ters (see forward to Figure 7 in the discussion). However,
we were able to achieve a good fit to the data here
without this refinement in place (RMS error = 1.0 dB;
not shown).
The five parameters were adjusted by a simplex

algorithm to fit the averaged data (Figure 4). The RMS
error of the fit was 0.85 dB. Note that model curves and
data are very similar for the two different phases of check
(“black” and “white”), and that these are displaced
upward from the dual increment condition.

Phase interactions

For completeness, we have included four phases of filter
(with 90- offsets between them). We pool across filter
phase in the suppression pathway at Stage 1, consistent
with the analysis of dichoptic masking performed by
Baker and Meese (2007). We have included excitatory
summation across filter phase at Stage 2 but before spatial
pooling, as this allows the higher order mechanisms to
retain the bandwidths of the early mechanisms (Wilson,
Wilkinson, & Asaad, 1997). However, the locus of phase
pooling across half-wave rectified filters (Baker & Meese,
2007; Georgeson & Meese, 2007; Read, Parker, &
Cumming, 2002) is not well constrained by the experi-
ments here and the details of this stage might need to be
revised in the light of further evidence.

Internal noise in the model

In the implementation of the model here, we placed
the limiting additive noise just before the decision maker.
This late position was motivated by Birdsall’s theorem
(Klein & Levi, 2009; Lasley & Cohn, 1981), which states
that performance-limiting noise will “linearize” subse-
quent monotonic nonlinearities (such as the contrast
transduction at Stage 3) when measuring performance.
This poses a problem because other work concludes that
the limiting noise for contrast detection is placed after
the exponent product mr but before area summation
(Meese, 2010; Meese & Summers, 2007, 2009).
However, the final stage of gain control can be interpreted
in several ways (Baker, Meese, & Georgeson, 2007;
Meese & Summers, 2009). For example, it might not

represent transduction and divisive suppression, but
intrinsic uncertainty at threshold and the loss of uncer-
tainty associated with the pedestal above threshold
(Meese & Summers, 2009; Pelli, 1985). Multiplicative
noise might also be relevant at this stage, particularly
above threshold (Georgeson & Meese, 2006; Kontsevich,
Chen, & Tyler, 2002; Lu & Dosher, 2008). However,
for the sake of brevity and simplicity, we have not
attempted to develop such model variants hereVthe
arrangement in Figure 6 with late noise is perfectly
adequate for the results in Figure 4 (see also Appendix B).

Figure 7. Behavior at the output of each of the three stages in the
model. (a) Contrast responses to monocular and binocular
gratings. The responses are arbitrarily normalized to the response
for a full binocular grating at contrast detection threshold. (b)
Responses to two different sized gratings (the “half” grating was a
full grating halved down the middle). (c) Difference (in dB) between
the two curves in (a). (d) Difference (in dB) between the two curves
in (b). Ocularity invariance is achieved for moderate contrasts and
above at the output of Stage 1, but at low contrasts, there is a
binocular advantage. Area invariance is achieved for moderate
contrasts and above at the output of Stage 2, but at low contrasts,
there is an area advantage. There is no area advantage at the
output of Stage 1 as this precedes area summation.
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Model behavior for other pedestal experiments

As described earlier, our aim was to produce a model
that could fit the data here but was motivated by previous
results. Therefore, we might hope that our three-stage
model of contrast gain control will also provide a good
account of other relevant data sets. In Appendix B, we
show that it is consistent with the results from Legge and
Foley (1980), Meese (2004), Meese et al. (2006), and
Meese and Summers (2007).

Stereopsis

We note that architecture related to our proposal
(Figure 6) might be extended for involvement in stereo-
psis (Read et al., 2002). For example, summation across
space and phase is withheld until Stage 2, so appropriately
wired outputs at Stage 1 could provide an appropriate feed
for local disparity detectors. However, binocular conver-
gence is not limited to the processes involved in stereo
depth (e.g., Peirce, Solomon, Forte, & Lennie, 2008) and
here we shall restrict our inferences and discussion to the
nonstereo domain of spatial vision.

Discussion

We shall summarize what we have found and then
précis each of the three main parts of the discussion in
reverse order.
We have demonstrated that the visual system is able to

combine image contrasts from different positions in the two
eyes across a wide range of base (pedestal) contrasts.
However, this counterintuitive result does not require
mechanisms that are specialized for this situation to explain
it. In essence, the model that we propose (Figure 6)
performs conventional binocular summation followed by
summation of a binocular representation that is fairly
uniform over space. This area summation stage is simply
indifferent to which eye the different parts of the surface
originated (Hess & Field, 1995; Huang, Hess, & Dakin,
2006; Mansouri, Hess, Allen, & Dakin, 2005; Meese &
Summers, 2009). Thus, we see our laboratory-based result
as an emergent property of the simple visual architecture
that we propose and not one that reveals a particular
computational goal or ecological need regarding dichoptic
stimulation. In the third part of the Discussion section, we
consider the general issue of why the system might be
arranged to achieve the extensive spatial integration that
we propose.
The second part of the Discussion section presents a

critical appraisal (of design issues), outlining why we but
not others (e.g., Chirimuuta & Tolhurst, 2005; Legge &
Foley, 1980) have found suprathreshold summation of
luminance contrast. However, a central component of the
study here involved presenting different stimuli to different

eyes and so we first briefly consider some technical details
of the long-standing issues of binocular fusion and rivalry.

Part 1: Fusion and binocular rivalry

Our conclusion regarding summation across area
requires that the dichoptic stimuli were presented to
corresponding retinal regions. If, for example, the two
images were horizontally misregistered by as much as one
check width (¾2 deg, equivalent to 3.5 carrier cycles), then
a substantial part of the stimulus would be binocular
checks, and increment summation would not be surprising
(Meese et al., 2006). However, in the experiments, we
used stereo goggles, which meant that the point of
convergence and accommodation were the same. This
provides natural viewing conditions and permits binocular
fusion with ease, particularly since we used a clearly
visible dark fixation point in the center of each eye’s
image. Furthermore, even though we presented different
stimuli to the two eyes, the cyclopean image appeared as a
uniform grating, at least when the pedestals were
detectable and the target contrast was close to increment
threshold (i.e., the contrasts in the two eyes were similar;
see Methods section). This can be verified by free-fusing
the “black” and “white” checks in Figure 2. So long as
steady fixation is maintained, the stimulus will appear as a
plain unmodulated grating. (This might take some practice
but is compelling when it is achieved. We found best
results using a short viewing distance [30–50 cm],
converging in front of the picture plane and holding
fixation very steady.) Observers reported that this is how
the stimulus appeared during the experiment. If the
images had been misregistered, then low-contrast regions
would have been visible. Thus, we think that binocular
misregistration of our dichoptic stimuli is not a critical
factor in these experiments.
A striking phenomenon that can arise when different

stimuli are presented to different eyes is binocular rivalry.
However, we also doubt that this was important here.
First, we used brief presentation times (100 ms), which are
probably too short for rivalry to initiate. Second, although
the images in the two eyes were different, the carriers
were identical. Thus, there was no conflict of local
features, other than their contrast, and evidence elsewhere
shows that mismatched dichoptic contrast is combined
effectively within the scheme that we propose (Baker,
Meese, & Georgeson, 2007). Third, the images appeared
as continuous gratings (as described above), suggesting
that rivalry was not a serious factor. Finally, our model
includes a pathway for interocular suppression (see
Appendix A), which contributes to ocularity invariance
(Baker, Meese, & Georgeson, 2007; Meese et al., 2006)
and dichoptic masking (Baker & Meese, 2007; Legge,
1979), is easily extended to include interocular cross-
oriented influences (Baker & Meese, 2007; Baker, Meese,
& Summers, 2007; Meese & Baker, 2009), and presum-
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ably operates in primary visual cortex (Moradi & Heeger,
2009). With additional temporal dynamics (not considered
here), this might also be responsible for at least some part
of binocular rivalry (Baker & Graf, 2009; Pearson, Tadin,
& Blake, 2007; Van Boxtel, Van Ee, & Erkelens, 2007;
Wilson, 2003). In other words, our model includes
architecture with sufficient flexibility to make it consistent
with current models of eye-based rivalry (see Baker &
Graf, 2009; Baker, Meese, & Summers, 2007 for further
discussion) and does not pose an obvious challenge to
that work.

Part 2: Design issues

The result here (suprathreshold summation of contrast
across eyes and space) is perhaps surprising in the light of
many previous studies where either empirical evidence for
suprathreshold summation has been lacking (Legge &
Foley, 1980; Legge, 1984; Maehara & Goryo, 2005; Meese,
2004), the levels of summation have been small (Bonneh
& Sagi, 1999; Meese, 2004), or variability across
observers has made interpretation difficult (Meese, 2004;
Meese et al., 2005). However, as we describe below,
there were several aspects of our stimulus design that we
think were important for revealing a robust summation
process.

Factor 1: Retinal inhomogeneity

It is well known that the retina is inhomogeneous,
becoming less sensitive away from the fovea (Foley et al.,
2007; Garcı́a-Pérez, 1988; Pointer & Hess, 1989; Robson
& Graham, 1981; Wilson & Bergen, 1979). For experi-
ments that extend the size of the stimulus by increasing
the area of a centrally placed patch of grating (e.g., Foley
et al., 2007; Meese & Summers, 2007; Rovamo et al.,
1993), this compromises the level of summation expected
and the power of the experiment. This problem with
retinal inhomogeneity does not arise with the stimuli used
here: a compound (the linear sum) of the two components
in Figure 2 is a stimulus with greater “contrast area”2 but
has the same diameter as each of its components. The
modeling by Meese and Summers (2007) considered
sensitivities to the two stimuli in Figure 2 and confirmed
that they should be equally detectable by a process that
sums over area, regardless of whether retinal inhomoge-
neity was included in the model (see also Meese, 2010).
The empirical finding that sensitivity is the same for the
“black” and “white” versions of the Swiss cheese stimuli
in Figure 2 confirms this expectation.

Factor 2: Noise

System components, be they biological or otherwise,
are inherently noisy. This means we should expect early

noise (that which arises before neuronal convergence), to
propagate through to the decision variable (Campbell &
Green, 1965; Kontsevich & Tyler, 1994; Tyler & Chen,
2000; Watt & Morgan, 1984). This is important for
conventional area summation experiments where the
diameter or width of the target grating is varied (Foley
et al., 2007; Meese et al., 2005; Robson & Graham, 1981;
Rovamo et al., 1993) because the noise level will also
increase with area (see Figure 6). Whether this will affect
performance depends on whether the dominant source of
noise is early or late. Conclusions on this have differed
with respect to stimulus area (Foley et al., 2007; Meese,
2010; Summers & Meese, 2007) and other factors
(Bowne, 1990; Itti, Koch, & Braun, 2000), though our
own work suggests that it is placed before area summation
(Meese, 2010; Meese & Summers, 2007). However, we
doubt that this presents a problem for the experiment here.
Our stimulus design prompts the simplifying assumption
that the visual system processes inputs from the same
retinal regions for all three stimulus conditions (the two
single increment stimuli, and the dual increment stimulus;
see also Meese, 2010). From this, it follows that the
neuronal noise sources are also the same across the
conditions, regardless of their placement in each model.
The alternative is to suppose that the observer can construct
a template similar to the target region (the Swiss cheese
modulator), and down-weight the contribution of noise
(and signal) from the less informative low-contrast regions
of the target. One way to investigate whether the visual
system employs this strategy would be to derive the
classification images (e.g., Solomon, 2002) for the stimuli
in Figure 2. Another method is to perform an identifica-
tion task at threshold (Watson & Robson, 1981). Meese
and Summers (2007) did this for binocular stimulation.
They found that observers could not distinguish between a
Swiss cheese stimulus (Figure 2a) and a full stimulus (i.e.,
a carrier without “holes”; the sum of Figures 2a and 2b)
for full field pedestal contrasts of either 0% or 25% when
the contrast increments were equally detectable. This
makes it seem unlikely that the observer uses a template of
the Swiss cheese when performing this task, and therefore,
we doubt that our conditions were confounded with
(substantially) different levels of noise.

Factor 3: Region of suppression

A third aspect of the design was that for each pedestal
contrast, the pedestal structure for the three stimulus
conditions was the same (opposite phase Swiss cheese in
each eye). This was intended to hold the overall level of
suppression approximately constant across conditions,
including interocular suppression (Baker & Meese, 2007;
Baker, Meese, & Georgeson, 2007; Ding & Sperling,
2006; Kontsevich & Tyler, 1994; Meese et al., 2006) and
lateral suppression (Cannon & Fullenkamp, 1991b;
Meese, 2004; Tolhurst, 2007; Xing & Heeger, 2000). As
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recognized elsewhere (Bonneh & Sagi, 1999; Meese, 2004;
Meese et al., 2005; Meese & Summers, 2007), it is important
that this is done so that the target region is not confounded
with (substantially) different levels of suppression.

Factor 4: Region of excitation

As we have just described, our experiment was designed
to try and clamp the contrast gain control, but this is not
necessarily sufficient to reveal the summation process. If
the region of suppression is fixed, but the observer is able
to adjust the region of excitatory integration to (approx-
imately) match the target (Meese, 2004), then, even when
the noise is fixed (see above), model behavior can be
counterintuitive: its performance can even decline as the
area of the signal grows (see Meese, 2004). This potential
problem is avoided if the observer’s integration regions of
excitation and suppression are both held constant. As
discussed above in the context of noise, we believe this is
achieved by the stimuli here: that excitatory integration
takes place over a constant retinal diameter regardless of
whether the target is a dual or single increment. This is
important for two reasons. First, it is likely to invoke the
use of the same detecting mechanism (or mechanisms) for
all the stimuli here, and therefore the same region of
suppression (see Factor 3: Region of suppression section).
Second, with this arrangement, it is arguable that the
summation process is revealed most effectively because the
benefit of signal integration is accompanied by a release
from dilution masking. Dilution masking is a theoretical
process that occurs when uninformative stimulus regions
(i.e., pedestal without target) are summed with informative
stimulus regions (i.e., pedestal plus target) on the numerator
of the contrast gain control equation. It is a different process
from each of those involved in conventional within-channel
(Legge & Foley, 1980) and cross-channel (Foley, 1994)
forms of masking. When the target covers the entire
pedestal, dilution masking cannot operateVthere is no
pedestal region without targetVand performance improves,
partly for this reason (see Meese & Summers, 2007).

Design conclusions: A novel approach

The average level of model summation across all pedestal
contrasts (Figure 4) was 5.32 dB (a bit less than a factor
of 2). This is slightly greater than the 4.8 dB found in the
experiment (though note the large variation across contrasts
and observers in Figure 5), suggesting that the true
summation process is fractionally less effective than in
our model. This could be because (1) the spatial extent of
summation was somewhat less than two full checks of the
modulator for the conditions here, (2) that observers were
able to perform some restricted exclusion of some of the
factors described above in the single increment conditions
(e.g., by using second-order mechanisms3), or (3) that very
small amounts of vertical image misregistration of the

carriers occurred. Nevertheless, we think that the experi-
ment here and those in Meese et al. (2006) and Meese and
Summers (2007) were successful in revealing substantial
levels of suprathreshold summation because (to a first
approximation) we avoided confounding influences from
each of the following factors: (i) retinal inhomogeneity,
(ii) internal noise, (iii) contrast gain control from the
pedestal, and (iv) the region of summation. We know of no
other attempts to prevent all four of these parameters from
co-varying with the independent variable of target area.

Part 3: What are the early stages of contrast
vision doing?
Contrast integration across eyes and space:
Signal combination or signal selection?

We have performed several previous experiments and
analyses at detection threshold that are closely related to the
suprathreshold experiments here (Meese, 2010; Meese
et al., 2006; Meese & Summers, 2007, 2009). In all cases,
we concluded that summation effects were too large to be
attributed to probability summation or a MAX operator
(signal selection) but were consistent with a signal
combination process. Unfortunately, similar formal analy-
ses are less powerful above threshold because (i) the slope
of the psychometric function is typically quite shallow for
contrast discrimination (e.g., Weibull " È 1.3; Meese et al.,
2006) and this means the data are less well constrained by
competing models (see Meese & Summers, 2007, 2009),
and (ii) results tend to be more variable above threshold
(e.g., see Figure 5) owing, at least in part, to the shallow
psychometric function (not shown). Nevertheless, in our
studies the typical levels of summation above threshold are
similar (or a little greater) than those at threshold, and gain
control models involving signal combination for the entire
contrast range provide a good, parsimonious account of the
results (Meese et al., 2006; Meese & Summers, 2007;
Figure 4). Given the need for neuronal convergence and
signal combination in models of pattern and object
recognition (e.g., Cadieu et al., 2007) and the evidence
for it from single-cell physiology (Pollen, Przybyszewski,
Rubin, & Foote, 2002), this conclusion is perhaps not
surprising. Nonetheless, it stands in the wake of a
substantial body of visual psychophysics that has been
influenced by the first and second dogmas of spatial vision
(see Introduction section) and has supposed otherwise.
We have not attempted a formal assessment of the

spatial extent of signal combination here, though the
relation between the spatial frequencies of the carriers and
modulators that we have used suggests that it extends over
at least 7 carrier cycles, equivalent to two checks of the
modulator (see Meese & Summers, 2007). Other work at
detection threshold suggests a minimum of 16 cycles
(Meese, 2010). No doubt, this figure will continue to be
revised in the light of further work.
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A possible heuristic for spatial integration

Meese and Summers (2009) performed similar experi-
ments to those performed here but restricted the inves-
tigation to threshold (i.e., pedestal contrast = 0%). In that
study, we concluded that binocular summation precedes
spatial summation in the system hierarchy (Figure 6; see
also Mansouri et al., 2005). Luminance contrasts in
common spatial frequency and orientation bands are
summed across eyes from corresponding retinal points to
produce a binocular image. For the results there and here,
our model proposes that this is followed by widespread
integration of contrast across area. Further work is needed,
but a system that does this with complete disregard for
underlying image statistics or structures seems unlikely.
A more plausible visual heuristic is to integrate over spatial
regions for which the local analysis is similar, or for
which the carrier and/or modulator change only smoothly
in the binocular image. An adaptive or matched filtering
process such as this might involve local comparisons of
image structure (Field, Hayes, & Hess, 1993; Kingdom,
Prins, & Hayes, 2003; Levi, Klein, & Chen, 2005;
Saarinen, Levi, & Shen, 1997) and spectrum (Abbey &
Eckstein, 2007; Georgeson & Meese, 1997, 1999; Meese
& Georgeson, 2005) under the control of second-order
binocular mechanisms (Dakin & Mareschal, 2000; Graham
& Sutter, 1998) that assess the envelope (Georgeson &
Schofield, 2002) and the carrier (Kingdom et al., 2003;
Motoyoshi & Kingdom, 2007; Motoyoshi & Nishida, 2004)
to search for boundary cues (Grigorescu, Petkov, &
Westenberg, 2004; Kawabe & Miura, 2004; Sillito, Grieve,
Jones, Cudeiro, & Davis, 1995) or other Gestalt-like cues
(Sayim, Westheimer, & Herzog, 2010), plausibly in V2
(Anzai, Peng, & Van Essen, 2007; Mareschal & Baker,
1998), with integration taking place at a later stage,
plausibly V4 (Arcizet, Jouffrais, & Girard, 2008; Desimone
& Schein, 1987; Pollen et al., 2002) or IT/LO (Köteles,
De Mazière, Van Hulle, Orban, & Vogels, 2008; Ostwald,
Lam, Li, & Kourtzi, 2008). For stimuli such as those found
here, where the carrier is constant and the contrast
modulation is not detected at the detection threshold of
the target (Meese & Summers, 2007), this heuristic would
demand blanket integration over the carrier, consistent with
our results. This is equivalent to constructing a (phase-
insensitive) template that is matched to the sum of the two
stimulus components in Figure 2 by summing lower order
(V1-like) filter elements (Rovamo et al., 1993; Watson &
Ahumada, 2005). This type of neuronal convergence could
be a plausible first step to solving the binding problem for
spatially extensive textures (Arcizet et al., 2008; Cant,
Arnott, & Goodale, 2009; Graham & Sutter, 1998; Köteles
et al., 2008; Roach, Webb, & McGraw, 2008; Webb,
Roach, & Peirce, 2008), depth gradients (Meese & Holmes,
2004; Summers & Meese, 2006), and other smooth image
structures (May & Hess, 2007a, 2007b). Of course, under
normal viewing conditions, images of the natural world
tend to have more similarities than differences between the

two eyes, and so perhaps it is not surprising that eye of
origin is largely irrelevant within the scheme that we have
proposed (Figure 6).

Ocularity invariance, area invariance,
and texture/pattern coding

The perceived contrast of a herd of zebra does not
change with the arrival of more zebra (Cannon &
Fullenkamp, 1991a, 1991b; Legge & Foley, 1980; Meese
et al., 2005) or when you close one eye (Baker, Meese, &
Georgeson, 2007; Ding & Sperling, 2006; Legge & Rubin,
1981; Meese et al., 2006; Moradi & Heeger, 2009). We
use the terms area invariance and ocularity invariance to
refer each of these, respectively. However, these invari-
ances are at odds with what is needed at detection
threshold, where the system would benefit from signal
summation. Our specific proposal (Figure 6) has the
benefit of meeting each of these demands. Binocular and
spatial integrations enhance performance for weakly
visible stimuli, but contrast normalization by suppression
(gain control) achieves ocularity invariance (Stage 1) and
area invariance (Stage 2) for contrasts well above thresh-
old (see Figure 7). This might help explain why it has
been easier to demonstrate suprathreshold spatial pooling
for tasks in which the dependent variable was not contrast
(Dakin & Bex, 2002; Dickinson & Badcock, 2007; Jones,
Anderson, & Murphy, 2003; Levi & Klein, 2000;
Mareschal, Morgan, & Solomon, 2010; Parkes, Lund,
Angelucci, Solomon, & Morgan, 2001; Wilkinson,
Wilson, & Habak, 1998; Wilson & Wilkinson, 1998;
Wilson et al., 1997) than when it was (Kersten, 1984;
Legge & Foley, 1980; Levi & Klein, 2000; Morrone, Burr,
& Vaina, 1995; Nachmias, 2002).
Finally, note how the contrast response (signal trans-

duction) becomes steeper in Figure 7a as the signal
progresses through the model from left to right owing to
the cascading gain controls. A similar effect has been
observed at the single-cell level, where response accel-
eration becomes more pronounced moving from the LGN
through V1 to MT (Sclar, Maunsell, & Lennie, 1990; see
also Priebe & Ferster, 2008).

Why sum, when the benefits are cancelled
by countersuppression?

The unusual stimulus configurations used here and
elsewhere (Meese et al., 2006; Meese & Summers,
2007) were designed to reveal the suprathreshold oper-
ation of contrast summation across eyes and space.
However, for more conventional suprathreshold stimulus
arrangementsVsuch as when the diameter of a grating is
variedVthere is no sensitivity benefit with grating area
because of countersuppression from the gain controls
(Legge & Foley, 1980; Legge, 1984; Meese et al., 2006,
2005; see Part 2: Design issues section). This raises the
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question of what the summation process is intended to
achieve under normal viewing conditions. That is, why
bother to sum suprathreshold stimuli in the first place if
this operation is to be effectively nullified by counter-
suppression? One possibility (rather different from the
adaptive approach described in the previous section) is
that populations of variously sized contrast-energy mech-
anisms (Meese, 2010; Meese & Summers, 2009)
encode the spatial extents of luminance contrast patterns
(Figure 8). This could be achieved without confounding
the pattern’s contrast code (Heeger, 1992) if there were a
sufficiently large suppression field common to each
mechanism in the population. Figure 8 schematizes the
population responses to four grating diameters at a
contrast well above threshold. The four mechanisms
(green ellipses) pool excitatory inputs from many classical
receptive fields (small blue ellipses) but from different
sized regions of the retina. The four pooling mechanisms
respond equally well to the tiny stimulus (see asterisks in
Figure 8b), but as stimulus diameter increases, the
inhibition from the large suppression field (red) wins out
against the mechanisms whose excitatory pooling fields

are too small to benefit from extra excitation. Thus, the
pattern of responses across the population varies with
stimulus size (as required), but the peak strength of
response increases only with stimulus contrast (Cannon
& Fullenkamp, 1991a; Meese et al., 2005).

Model predictions for the physiology

Our scheme makes two intriguing sets of predictions.
First, the net contrast response of the population should
decrease with an increase in stimulus size once it exceeds
that which excites the smallest receptive field (Figure 8).
In fact, there is support for this prediction from fMRI
(Nurminen, Kilpeläinen, Laurinen, & Vanni, 2009; Press,
Brewer, Dougherty, Wade, & Wandell, 2001; Williams,
Singh, & Smith, 2003).
The second prediction has several parts and concerns

single-cell activity. When measuring receptive field size
using a single small oriented bar (or small patch of
grating), we predict that (1) various sized receptive fields
should be found (including large ones) at both threshold
and above. However, when varying the number of bars in

Figure 8. A population code for suprathreshold contrast area. (a) Different cortical contrast mechanisms pool over many classical
receptive fields from various sized regions on the retina (green ellipses) but are suppressed by contrast from a common large region (red
ellipse). (b) The response of each mechanism decreases with stimulus size (left to right) once the stimulus exceeds the size of its
excitatory region (asterisks denote response levels). The response of each mechanism increases with stimulus contrast (not shown), but
the distribution of activity across the population (asterisks) does not. This provides the basis for a contrast invariant size code. For
example, stimulus size is signaled by the label of the smallest excitatory mechanism that has the strongest response in the population
(green asterisks). The suppression field becomes effective only at moderate contrasts and above which means that stimulus size does
improve performance around detection threshold (not shown). However, for a contrast discrimination task above threshold, there is little or
no performance benefit from increasing stimulus diameter because of the counteracting effects of suppression (Meese et al., 2005). Note
that this restriction was not found for the experiments here because the Swiss cheese stimuli (Figure 2) allowed us to change contrast
area without changing the stimulus diameter (see Part 2: Design issues section).

Journal of Vision (2011) 11(1):23, 1–23 Meese & Baker 14

Downloaded From: https://jov.arvojournals.org/pdfaccess.ashx?url=/data/journals/jov/933479/ on 08/20/2018



a grating, (2) various sized receptive fields should be seen
only at low contrasts (around detection threshold). At
higher contrasts, as the number of bars is increased we
should expect (3) strong lateral inhibition (in the spatial
domain) for the cells with small excitatory regions, and
(4) no change in response for cells with large excitatory
regions. As far as we know, nobody has set out to test this
hypothesis and make the appropriate measurements from
the same population of cells. However, Desimone and
Schein (1987) and Pollen et al. (2002) did find cells in V4
that appear to conform to properties 1, 3, and 4. In
addition, several studies have reported that receptive field
sizes of some striate cells appear to shrink at higher
contrasts, which might relate to the third property (e.g.,
Cavanaugh, Bair, & Movshon, 2002; Kasamatsu, Miller,
Zhu, Chang, & Ishida, 2010).

Further comments

More generally, if the texture mechanisms we propose
(Figure 8) were also tuned to various spatial patterns (e.g.,
radiating or concentric contours; Ostwald et al., 2008;
Wilson & Wilkinson, 1998) and the suppression field
pooled over a wide range of pattern elements (e.g.,
different orientations), this scheme could form the basis
of a general-purpose module for encoding visual texture,
pattern, and form (Gallant, Conner, Rakshit, Lewis, &
Van Essen, 1996).
In spite of our conclusions about signal combination, we

do not claim that signal selection (e.g., the MAX operator,
or its approximation) is not involved in the visual
hierarchy. We expect, however, that it will be revealed
by psychophysical experiments that tap into signal invar-
iances (Cadieu et al., 2007; Riesenhuber & Poggio, 1999)
that are not also involved in signal combination. The
invariant responses of object and face mechanisms with
viewing angle might be a good example: there is no obvious
benefit to performing signal combination over multiple
viewpoints. Remarkably though, the equations and neuro-
nal circuitry needed for the conceptually very different
operations of signal combination and signal selection might
be quite similar, differing only in the detailed choice of
parameter values (see Kouh & Poggio, 2008).

Summary and conclusions

For 30 years, models of spatial contrast vision have been
constrained by the view that spatial pooling of luminance
contrast is absent for contrasts above threshold (Legge &
Foley, 1980). Our recent companion papers have chal-
lenged this view, concluding that a signal combination
strategy takes place across several grating cycles (Meese,
2010; Meese & Summers, 2007) and across eyes (Meese
et al., 2006) at threshold and above. The study here has

extended the inquiry by combining these two dimensions to
investigate the summation processes for suprathreshold
signals presented to different eyes and different spatial
(retinal) locations. Our results have confirmed that for sine-
wave carrier gratings, spatial pooling is indifferent to eye of
origin at threshold and above.
A three-stage model of contrast gain control fitted the

results, where the contrast responses of individual filter
elements were normalized before each of the signal
summation stages. This gave the model the properties of
ocularity invariance and area invariance above threshold,
consistent with human perception, while leaving the
benefits of signal summation intact at detection threshold.
We also argue that this arrangement could form the basis
of a population code for texture/pattern area.
An important step toward our conclusions and model

development was the design of a novel stimulus class (the
“Swiss cheese”; see also Meese & Summers, 2007, 2009,
and the related “Battenberg” stimulus used by Meese,
2010) that overcame several design limitations that appear
to have plagued previous studies. In particular, our
approach suggests that the retinal regions of spatial
integration and suppression were constant for the different
stimulus conditions used here. One important direction for
future work is to investigate the rules that control the reach
of these pooling regions for more complex (e.g., natural)
images.

Appendix A

Model details

The basic approach to the modeling here is the same as
that described in Meese (2010) and Meese and Summers
(2007, 2009).
Images had a contrast of 100% and were sampled with a

resolution of 10 pixels per carrier cycle (though this was
not critical) and multiplied by the attenuation surface
shown in Figure 2b of Meese (2010) to simulate the
effects of retinal inhomogeneity (Pointer & Hess, 1989).
The attenuated images were then filtered by Cartesian

separable log-Gabor filters (Meese, 2010) with spatial
frequency bandwidth of 1.6 octaves (full-width at half-
height) and orientation bandwidth of T25- (half-width at
half-height), though these parameters are not critical. The
filters had phases from the set: PHASE = {0-, 90-, 180-,
270-}, where elements are denoted: 6. The filters were
matched to the spatial frequency and orientation of the
stimulus carriers for left and right eyes and were half-
wave rectified.
With this formulation, the filter outputs were expressed in

percentage units and represented the spatial distribution of
filter-element (convolution kernel) responses across space
for stimuli with contrasts of 100%. The responses for
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specific contrast levels were then derived by multiplying this
pattern of filter responses by the Michelson contrast (0:1) of
the stimulus. This produced eight 2D arrays of contrast
responses (in %) given by: LPHASE, RPHASE.
The Stage 1 output of each of the four phase filters for

the left eye was derived as follows:

Stage1ð6; L;RÞ ¼ Lm6= Sþ
X

7ZPHASE

ðL7Þ þ
X

7ZPHASE

ðR7Þ
 !

;

ðA1Þ

where the first nonlinear contrast transducer exponent m =
1.2 (Meese & Summers, 2009). The pooling over phase on
the denominator is consistent with the dichoptic masking
results of Baker and Meese (2007) and is extended to
include phase pooling from the ipsiocular channel, but this
is not critical here.
An analogous operation was performed for the right

eye. This was followed by binocular summation:

Binð6Þ ¼ Stage1ð6; L;RÞ þ Stage1ð6;R;LÞ: ðA2Þ

The second stage of gain control included summation
across phase (6) and across n image locations (i) (i.e.,
each of the pixels in the image):

Stage2 ¼

X
i¼1:n

X
6ZPHASE

ðBinð6Þri Þ
" #

Bþ
X
i¼1:n

X
6ZPHASE

ðBinð6ÞiÞ
" # ; ðA3Þ

where the second nonlinear contrast transducer exponent
r = 2/m. The summation across area was critical for the
results here; the summation across phase was not.
Conceptually, we can envisage Equation A3 as follows.
After binocular summation (Equation A2), each filter
element is subject to nonlinear contrast transduction (r)
and is normalized by a large suppressive pool over area
and phase. The responses of all these mechanisms are then
summed.
In the simplest version of the model, B was a constant.

This achieved good fits to the data here (RMS error of
1.0 dB) but did not achieve complete area invariance
because even at the highest pedestal contrasts the denom-
inator term did not completely overcome the influence of
B. To solve this problem, we made B a function of the
numerator term thus:

B ¼ BV

1þ
X
i¼1:n

X
6ZPHASE

ðBinð6Þri Þ
" # : ðA4Þ

This improved the fit slightly (RMS error = 0.85 dB)
and improved the area invariance of the model (Figure 7)
without introducing any additional parameters.
The third and final stage of gain control is given by

Stage3 ¼ Stage2p

Zq þ Stage2q
; ðA5Þ

which is the output of the model and forms the decision
variable. The model equations were solved for target
contrast such that Stage3(Pedestals + Targets) j Stage3
(Pedestals) = k, where k is a free parameter that sets the
signal-to-noise ratio for detection and discrimination
thresholds.
A full list of model parameter values is shown in

Table A1.

Appendix B

The three-stage model of contrast gain
control generalizes over other results

Here we compare the predictions of our three-stage
model of contrast gain control with results from four
different types of pedestal masking experiment (including
this one). The parameter values are those used for the
fitting in Figure 4. In the bottom row only, data and
models have been slid within the axes to facilitate
comparisons.
The three-stage model of contrast gain control provides

a good account of the results from all four types of
experiment in Figure B1. The main weakness is the
overestimation in the level of area summation at low
pedestal contrasts when grating area is manipulated
(Figures B1g and B1h). This could be because the spatial
extent of summation in the experiment was less than that
in the model. However, another view anticipates this
shortcoming from previous work where we have argued

Fixed parameters Fitted parameters Value

S 1.0
BV 117:>2

Z 0.335
m 1.2
r 2/m

p 12.35
q 9.65
k 0.0585

Table A1. Parameters for the three-stage model of contrast gain
control. The radius of the stimulus (>) was a constant and equal to
126 (pixels).
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Figure B1. Psychophysical results and predictions from the three-stage model of contrast gain control for four different types of pedestal
masking experiment. (a, b) Summation across eyes and area (using Swiss cheese stimuli). (c, d) Summation across eyes (using
gratings). (e, f) Summation across area (using Swiss cheese stimuli). (g, h) Summation across area (using gratings). The data in (g) are
replotted from Legge and Foley (1980). The stimuli used in the model were the circular patches of grating used in a similar study by
Meese (2004) but with the areas used by Legge and Foley (1980). The stimulus conditions for each of the four rows are denoted by the
icons on the right (see also Figure 1 in the main body of the report). Tick marks represent contrast steps of 6 dB (a factor of 2).

Journal of Vision (2011) 11(1):23, 1–23 Meese & Baker 17

Downloaded From: https://jov.arvojournals.org/pdfaccess.ashx?url=/data/journals/jov/933479/ on 08/20/2018



that summation of grating contrast at threshold is limited
by the combined effects of nonlinear contrast transduction
and integration of early noise. As mentioned in the main
body of the report, this could have been addressed here by
placing limiting additive noise just before the area
summation stage in the model (Meese, 2010; Meese &
Summers, 2007, 2009). This would reduce the level of
model summation at threshold owing to the increase in
noise for the large stimulus condition (Meese & Summers,
2007). However, the effects of subsequent model non-
linearities would then be lost to the performance measures
owing to Birdsall’s theorem (Klein & Levi, 2009; Lasley &
Cohn, 1981). One plausible way out of this conundrum is
that the compression of the contrast responseVcontrolled
here by the late (Stage 3) transducersVis actually
controlled by late multiplicative noise, evident only above
threshold.
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Footnotes

1
There is an important difference between the models

proposed by Foley et al. (2007) and Meese and Summers
(2007). Meese and Summers proposed that noise prop-
agates from each of the preliminary (V1-type) receptive
fields, thereby increasing noise with summation area,
whereas Foley et al. proposed that noise was constant with
area. Both groups have presented evidence to support their
proposals. Foley et al. found that thresholds for a small
and a large grating patch were not affected by the choice
of interleaved or blocked experimental design (see also
Meese et al., 2005); if noise varies with stimulus size, the
interleaved design should degrade performance for one or
both of the two stimuli, depending upon attention strategy
(see Tyler & Chen, 2000). However, in a preliminary
report of a similar experiment with a greater number of
stimulus patches (six), Summers and Meese (2007) found
that performance was significantly worse for the smaller
patches using an interleaved design compared to a blocked
design. The reasons for these differences across studies are
not clear. However, if intrinsic uncertainty in Foley et al.’s

experiment dominated the extrinsic uncertainty inherent in
the interleaved design, then the design effect would be
diluted and difficult to measure.

2
By “contrast area,” we mean the spatial integral over

the stimulus region of local contrast. This is distinct from
contrast energy, which involves taking the square of local
contrasts before integration.

3
Our experiments involved the detection of first-order

increments of luminance contrast both at and above
threshold. However, because of the spatial modulation that
we used (Equation 1), our stimuli also contained second-
order components. These were discussed by Meese (2010)
and Meese and Summers (2007), who concluded that they
were probably of little or no importance for the type of
experimental results here.
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