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Abstract� Low
density parity
check codes with irregular constructions have been

recently shown to outperform the most advanced error
correcting codes to date� In

this paper we apply methods of statistical physics to study the typical properties of

simple irregular codes� We use the replica method to �nd a phase transition which

coincides with Shannons coding bound when appropriate parameters are chosen� The

decoding by belief propagation is also studied using statistical physics arguments� the

theoretical solutions obtained are in good agreement with simulations� We compare

the performance of irregular with that of regular codes and discuss the factors that

contribute to the improvement in performance�

PACS numbers� ����	
c ����	
n 	���	
q

�� Introduction

Error�correction mechanisms are essential for preventing loss of information in

transmissions through noisy environments� They are of increasing technological

importance with applications ranging from high capacity storage media to satellite

communication� The surprising fact that error�free communication is possible if the

information is encoded to include a minimum amount of redundancy was discovered

by Shannon in ��� ��� Shannon proved that a message encoded at rates R �message

information content�code�word length� up to the channel capacity C can be decoded

with vanishing average error probability PE � 	 as the length of the message increases

M � �� This theorem was then progressively re�ned by Gallager and others �see ���
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and references therein� to say that the average over messages and codes of the error

probability is bounded by

PE � e�ME�R�� ���

where E�R� is the error exponent that is greater than zero for rates up to the channel

capacity C�

These proofs were presented in a non�constructive form by assuming encoding

processes by ensembles of unstructured random codes and impractical decoding methods

like maximum likelihood or typical set decoding ��	� No encoding�decoding scheme that

is practical and attains the coding bound has been found to date�

The most successful code in use to date is the Turbo code �
	� However� the current

performance record is owned by an irregular low�density parity check code �LDPC��

more speci�cally an irregular Gallager code �	 y� This code was �rst proposed by

Gallager in ���� ��� �	� and were all but forgotten soon after due to technical limitations

of the time� Recently a variation of the original proposal by Gallager named MN code

has been proposed by MacKay and Neal ��� �	� they showed that this code has good

performance� what attracted renewed interest to LDPCs� Since then LDPCs have been

reconsidered in a variety of architectures ���� ��	� Some of which reported close to

optimal performance ���� ��	�

Representing a message by a binary vector � � f�� �gN � the LDPC encoding process

consists of producing the binary vector t � f�� �gM de�ned by t � GT s �mod ���

where all operations are performed in the �eld f�� �g and are indicated by �mod �� and

GT is a M � N generator matrix� The transmission is then corrupted by noise� that

we assume to be a binary vector � � f�� �gM � and the received vector takes the form

r � GT ��� �mod ��� The decoding process is performed by applying a suitable parity�

check matrix to the received message to produce the syndrome vector z � Ar �mod ���

The parity�check matrix A de�nes the code structure and can be represented by a

bipartite undirected graph with check and bit nodes� This gives rise to the classi�cation

of LDPCs to regular �those forming regular graphs� and irregular codes�

The parity�check matrix for Gallager codes is a concatenation A � �C� j C�	 of two

very sparse matrices� with C� �of dimensionality �M �N�� �M �N�� being invertible

and the rectangular matrix C� of dimensionality �M �N��N � The generator matrix

of a Gallager code is G � �I j C��
�
C�	 �mod ��� where I is the N �N identity matrix�

implying that AGT �mod �� � � and that the message itself is set as the �rst N bits in

the transmission� The syndrome vector is then z � Ar � A� �mod �� from which the

noise can be estimated and subtracted from the received message� For a MN code the

generator matrix has the formGT � C��
n
Cs �mod ��� where Cn is anM�M invertible

matrix and Cs is M �N � The matrix applied by the decoder is given by Cn producing

y See http���www����jpl�nasa�gov�public�JPLtcodes�html for JPL�s � imperfectness� contest�
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z � Cnr � Cs� �Cn� �mod ��� from which the most probable message vector can be

predicted�

Although Gallager and MN codes can be analysed by the same methods of

information theory 	
�� they represent di�erent physical systems with di�erent

properties� In this paper we will restrict the analysis to irregular MN codes� the analysis

of Gallager codes will appear elsewhere�

Statistical physics has rst been applied to the analysis of error�correcting codes in

the seminal work of Sourlas 	��� which has been recently extended to the case of nite

code rates 	��� ���� Similar methods have been recently applied to the case of Turbo

codes 	�
� and regular MN codes 	��� ���� providing a detailed description of the system�s

phases and capabilities for various parameter choices� Here we analyse irregular MN

codes using the standard replica calculation to nd a free energy that is a measure of

the likelihood of typical solutions to the decoding problem� given an ensemble of code

matrices Cs and Cn �code construction�� channel and message models �noise level and

message bias��

We show that three types of solutions emerge depending on the parameters provided�

successful errorless decoding �number of incorrect bits less than O�N��� imperfect

decoding �number of incorrect bits of order N� and complete failure �number of correct

bits less than O�N��� We also show� as in 	��� ���� that the line separating errorless

and complete failure phases can coincide with the coding limit� this fact itself is not

particularly surprising as the statistical physics analysis relies on the same kind of

arguments used in the original coding bounds� using averages over ensembles of codes

and maximum likelihood decoding� The main di�erence here is that the matrices in the

ensemble have some structure�

The statistical physics approach can be regarded as complementary to that of

information theory� it enables one to attain a more complete picture by analysing the

decoding problem in the innite message limit and by looking at global properties of the

free energy� It allows for a transparent analysis of the possible performance of di�erent

codes characterised by di�erent choices of construction parameters� and has already

resulted in new practical high performance codes 	����

In this framework� Bayes�optimal decoding generally corresponds to nding the

global minimum of a TAP free energy 	��� ��� which is very costly if the landscape has

multiple local minima� A practical decoding algorithm that has been used in LDPCs

is the scheme known as belief propagation� broadly used by the Bayesian inference

community 	��� ���� Belief propagation is equivalent to solving iteratively a set of

coupled equations for nding extrema �local or global� of the TAP free energy 	��� ��� ����

This method is very sensitive to the presence of local minima and can be easily trapped

in sub�optimal solutions�
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In this paper we study the dependence of the free energy surface on the noise level

and the message bias� this allows us to study the solutions which exist in each one of

the cases and to detect the emergence of suboptimal solutions that will interfere in the

practical decoding dynamics�

This paper is organised as follows� Section � presents irregular MN codes� while

the statistical physics analysis is outlined in Section �� the relations between the belief

propagation approach and statistical physics are discussed in Section � and employed to

examine the decoding performance in Sections � and 	� Concluding remarks are given

in Section 
�

�� Irregular MN codes

Although the best irregular LDPCs found so far are de�ned in q�ary alphabets ���� we

will restrict the current analysis to the binary alphabet f�� �g�

We suppose that the binary messages S comprise independent bits sampled from

the prior distribution P �S� � ���p� ��S��p ��S���� where ��S� stands for the Dirac�s

delta distribution� We also assume a simple memoryless Binary Symmetric Channel

�BSC� with binary vectors � having independent components sampled from a similar

prior distribution of the form P �� � � �� � f� ��� � � f ��� � ��� From now on we will

reserve the symbols � and � for the actual message and noise� using S and � for denoting

random variables in the message and noise models�

The goal is then to �nd the Bayes�optimal estimate bSj � argmaxSj
TrSi��j ��P �S� � j

z�� the matrices Cn and Cs are also given� but were omitted for brevity�

One can use Bayes formula to incorporate the prior knowledge on message and noise

and write the adequate posterior probability�

P �S� � j z� �
�

Z
� fCsS �Cn� � z �mod ��gP �S�P �� �� ���

where the indicator function is � fAg � � if A is true and � otherwise�

The matrices are chosen at random in such a way that Cn is invertible over the �eld

f�� �g and a row m in Cs and Cn contains Km and Lm non�zero elements respectively�

In the same way� each column j of Cs contains Cj non�zero elements and each column

l of Cn contains Dl non�zero elements�

Parity�checks for the signal and noise bits are speci�ed by the matrices Cs and

Cn respectively� The system can be mapped onto a bipartite graph represented by

�Cs j Cn� �adjacency matrix in the graph theory jargon�� to say� each one of the M

rows lists the bit nodes connected to a check node and each one of the N �M columns

lists the checks conveying information about the particular bit node� Therefore� the sets

fKmg
M
m�� and fLng

M
n�� give the order of check nodes� fCjg

N
j�� and fDlg

M
l�� the order of
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bit nodes� Clearly this sets must obey the relations�

NX

j��

Cj �
MX

m��

Km

MX

l��

Dl �
MX

m��

Lm� ���

standing for the number of edges in the signal and noise graphs respectively�

The information rate of the code is given by R � H��p� M�N � where H��p� �

�p log
�
�p�� �	� p� log

�
�	� p� is the binary entropy of the source�

Alternatively one can write R � H��p�K�C� where�

K �
	

M

MX

m��

Km C �
	

N

NX

j��

Cj �
�

To simplify the calculations we change� as in the original work by Sourlas �	
�� the

representation of the variables� replacing the eld f�� 	g by f�	g and modulo � sums

by products� Moreover� we restrict our analysis to the case of irregular bit nodes �sets

fCjg
N
j�� and fDlg

M
l��� and regular check nodes �xed K and L�� The case with regular

bit nodes and irregular check nodes is the basis for high performance codes studied in

�	���

�� Equilibrium theory

To assess the performance of irregular MN codes we compute� using standard techniques�

the free energy of the system f � �limN��
�

N
hln Zi where Z is the normalisation in

���� The average h���i is performed over the matrices Cn and Cs� the messages � and

the noise � and will provide information about the typical performance of these codes�

In the �	 representation� the syndrome vector z � Cnr � Cs� � Cn� �mod ��

becomes J�� �
Q
j�� �j

Q
l�� �l� where � � hi�� � � � � iKi and � � hl�� � � � � lLi are sets of

indices corresponding to the non�zero elements in one of the M rows of Cs and Cn

respectively�

The prior distribution over the message bits Sj � f�	g becomes P �Sj� �

�	 � p� 	�Sj � 	� � p 	�Sj � 	�� while for the noise bits 
l � f�	g one has P �
l� �

�	� f� 	�
l � 	� � f 	�
l � 	��

The code construction is specied by the tensorA�� � f�� 	g that determines the set

of indices �� which correspond to non�zero elements in a particular row of the matrix

�Cs j Cn�� To cope with non�invertible Cn matrices one can start by considering

an ensemble with uniformly generated M �M matrices� The non�invertible instances

can then be made invertible by eliminating a � � O�	� number of rows and columns�

resulting in an ensemble of �M�����M��� invertibleCn matrices and �M�����N���

Cs matrices� As we are interested in the thermodynamical limit we can neglect O�	�

di�erences and compute the averages in the original space of M �M matrices� The

averages are then performed over an ensemble of codes generated as follows�
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�i� sets of numbers fCjg
N
j�� and fDlg

M
l�� are sampled independently from distributions

PC and PD respectively�

�ii� tensors A�� are generated such that
P

��A�� � M �
P
f��j��gA�� � Cj andP

f��l��gA�� � Dl� where f� � j � �g stands for all sets of indices that contain

j�

The indicator � in �	� can be replaced by a more tractable function that is

E�S� � �A� � 
� if the dynamical variables S and � satisfy J�� �
Q
j�� Sj

Q
l�� �l and

E�S� � �A� � � otherwise� This function has the form�

E�S� � �A� � lim
���

exp

��
���

X
��

A��

�
�J��

Y
j��

Sj
Y
l��

�l � 


�
�
	

� � ���

The priors over message and noise take the form of external elds in the statistical

physics framework and can be written in an exponential form with the normalisation

incorporated in the partition function Z�

P �S� � � � exp

�
Fs

NX
j��

Sj � Fn

MX
l��

�l

�
A � ���

the elds are then Fs � atanh�
� 	p� and Fn � atanh�
� 	f��

As in �
�� 
��� the partition function becomes�

Z � lim
���

TrS�� exp

�
��
�
X

��

A��

�
J��

Y
j��

Sj
Y
l��

�l � 


�
A �

Fs

�

NX
j��

Sj �
F�

�

MX
l��

�l

�
A
�
� � ���

Performing the gauge transformation Sj �� �jSj and �l �� 	l�l one obtains�

H � �
X
��

A��

�
Y
j��

Sj
Y
l��

�l � 


�
A � Fs

�

NX
j��

�jSj �
F�

�

MX
l��

	l�l� ���

The resulting Hamiltonian represents a multi�spin ferromagnet in a random eld�

the disorder is transformed as J�� �� 
 under the gauge transformation� and therefore�

is trivial and there is no frustration in the system� The di�erent phases that will appear

are then due to competition between the local elds and ferromagnetic interactions�

Due to the structure of ��� all the thermodynamics is obtained in the zero temperature

limit unlike the Sourlas� code case where optimal decoding must be carried out at nite

temperatures �
�� 
�� 		� 	�� 	�� 	���

The free energy f�p� f� 
�PC �PD� � �limN��
�

N
hln ZiA���� can be determined

using the replica method along the same lines as reported in �
�� 
�� 
��� but for

the irregular case it also depends on the probability distributions PC and PD used to

generate the ensemble of codes� The auxiliary variables q������m � N��P
j ZjS

��
j � � �S�m

j
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and r������m � M��P
l Yl�

��
l � � � ��ml � and their conjugates bq������m and br������m � emerge

from the calculation� The replica symmetry assumption is enforced by using the ans�atze�

q������m �
Z
dx ��x� xm bq������m �

Z
dbx b��bx� bxm �	�

and

r������m �
Z
dy��y� ym br������m �

Z
dby b��by� bym� �
��

The expression for the free energy then follows�

f�p� f� ��PC �PD� � Extrfb����b���g�� ln � �

�

� �
Z �� KY

j��

dxj��xj�

�� � LY
l��

dyl��yl�

�
ln

	

  KY
j��

xj
LY
l��

yl

�A
 C

Z
dx ��x� dbx b��bx� ln �
  xbx�  � L

Z
dy ��y� dby b��by� ln �
  yby�

�
X
C

PC�C�
Z �� CY

j��

dbxj b��bxj�
��� ln

��e�Fs CY
j��

�
  bxj�  e��Fs
CY
j��

�
� bxj�
��

�

� �
X
D

PD�D�
Z �

DY
l��

dbyl b��byl�
� �

ln

�
e�F�

DY
l��

�
  byl�  e��F�
DY
l��

�
� byl�
�

�

�
�

where � � M�N � C�K�

The system�s states are obtained by the extremization above� resulting in the saddle�

point equations �

b��bx� � Z K��Y
j��

dxj ��xj�
LY
l��

dyl ��yl� 	

��bx �
K��Y
j��

xj
LY
l��

yl

�� � �
��

b��by� � Z KY
j��

dxj ��xj�
L��Y
l��

dyl ��yl� 	

��by �
KY
j��

xj
L��Y
l��

yl

�� �
��x� �

X
C

C

C
PC�C�

Z C��Y
j��

dbxj b��bxj�
�
	

�
x � tanh

�
Fs
 

C��X
l��

atanh �bxl�
��

�

�

��y� �
X
D

D

D
PD�D�

Z D��Y
l��

dbyl b��byl�
�
	

�
y � tanh

�
F�� 

D��X
l��

atanh �byl�
��

�

�

The exact meaning of the �elds �� b�� � and b� were presented in �
�� ��� and will be

further discussed in the next section�

Due to ��� the estimate for the message is bS � sgn�hSi����� where the average is

thermal with Hamiltonian ��� in the zero temperature limit� The decoding performance

can be measured by

m �



N

� NX
i��

bSi
i�
����A

�
Z
dh ��h� sgn�h�� �
��



�

where� as in ����

��h� �
X
C

PC�C�
Z CY

j��

dbxj b��bxj�
�
�

�
h � tanh

�
Fs� 	

CX
l��

atanh �bxl�
���

�

� ��
�

Solutions can be found easily for the case where Fs � � �unbiased messages� and

the code constructions are generated by distributions PD�D� and PC�C� that vanish for

� � C�D � � �codes with at least two checks per bit� For K�L � � one �nds just two

types of solutions� a ferromagnetic state with magnetization m � ��

��x� � ��x� �� b��bx� � ��bx� �� ����

	�x� � ��y � �� b	�by� � ��by � ���

and a paramagnetic state with m � ��

��x� � ��x� b��bx� � ��bx� ����

	�x� � h��y� tanh�
F���i� b	�by� � ��by��
For other parameter choices� suboptimal ferromagnetic states with � � m � � can

also be found by solving the saddle�point equations ���� numerically

The paramagnetic and ferromagnetic free energies can be easily computed by

inserting ���� and ���� in ���� to give fpara � � ln � � � ln � � cosh F�� and

fferro � � �� � �f� F� respectively One can instantly obtain a phase transition

occurring at the critical code rate for the BSC Rc � � �H��f�� that is valid for every

code construction under the restrictions K�L � �� Cj � � and Dl � � This is the

same phase transition as the one described in ���� The critical code rate saturates the

channel capacity and therefore Shannon�s coding limit

It is important to stress that the coding bound can only be attained in the case of

unbiased messages For biased messages �Fs �� �� the paramagnetic state ���� is not

a solution for the saddle�point equations ���� and the thermodynamical transition can

only be obtained numerically and must be bellow the Shannon�s bound as can be shown

by a simple upper bound proposed in ���

The upper bound is based on the fact that each bit of the syndrome vector

z � Cnr � Cs�	Cn� �mod �� is a sum �or product� depending on the representation

adopted� of K message bits with bias p with L noise bits with �ip rate f  The

probability of zi � 	� is p�z �K�L� � ��� �� 	 �� � �p�K�� � �f�L� The maximum

information content in the syndrome vector is then MH��p
�
z � For the decoding process

one has MH��p
�
z � � NH��p� 	MH��f�� resulting in the bound R � H��p

�
z ��H��f�

Shannon�s bound is recovered for unbiased patterns p�z � ���� while for biased patterns

the attainable rates must be bellow Shannon�s bound as H��p
�
z � � �

The main question that remains to be addressed is the accessibility of the various

states by a practical decoding algorithm In particular� we will focus on the belief
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propagation decoding process� In this practical scenario the energy landscape may

be dominated by the basin of attraction of paramagnetic or suboptimal ferromagnetic

states even when the ferromagnetic state is the global minimum� degrading the practical

performance of the code�

�� Statistical physics and belief propagation

The decoding problem focuses on �nding a Bayes�optimal estimate �also known as

marginal posterior maximiser� MPM� b

S for the original message� given the code

structure� the syndrome vector J and prior probabilities p and f �

The Bayes�optimal estimator is de�ned as an estimator that minimises the posterior

average of some determined loss function� Using the overlap between message and

estimate as a loss function� the Bayes�optimal estimator that emerges is of the form
bSj � sgnhSjiP �Sj jJ � 	
��� The task of computing this estimator is usually very dicult

as no simple form is known for the posterior P �Sj j J � and an exponential number of

operations is required�

Figure �� Tanner graph representing the neighbourhood of a bit node in an irregular

MN code� Black circles represent checks and white circles represent bits�

The problem can be solved in practical time scales by applying the belief propagation

�BP�	
�� framework� In this framework� an approximation for the marginal posterior

probabilities P �Sj j J � can be computed iteratively in linear time� For that� a graphical

representation �belief network� for dependencies between check nodes �or evidence

nodes� and signal nodes can be constructed� By identifying proper substructures in

the belief network one can write a closed set of equations whose solutions provide

the approximation to the posterior probabilities� These substructures can be uniquely
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identi�ed with conditional distributions� For LDPCs these probability distributions are�

q
�S�
�j � P �Sj � S j fJ���Ms�j�n�g� bq

�S�
�j � P �J�� j Sj � S� fJ������g� ��	�

r
���
�l � P ��l � � j fJ���Mn�l�n�g� br

���
�l � P �J�� j �l � �� fJ������g�� ��
�

where Ms�j� n � �Mn�l� n �� denote the set of checks connected to the signal bit j

�noise bit l� excluding the check containing the bits in � �noise bits in ��� Using Bayes�

theorem� the posterior probabilities P�Sj j J � can then be written in terms of bq
�S�
�j and

a priori distributions P��S� �
��

The Gibbs weight appearing in Equation �	�� as observed in ��� �
�� is proportional

to P �J j S�P��S� and can be used to write update formulas for the distributions�

Introducing ms
�j � q

����
�j � q

����
�j and mn

�l � r
����
�l � r

����
�l � following the steps described

in �
� one can �nd the following set of equations�

ms
�l � tanh

�
� X
��Ms�l�n�

atanh�cms
�l� � Fs

�
� cms

�j � J�

Y
i�Ls���nj

ms
�i

Y
l�Ln���

mn
�l� ����

mn
�l � tanh

�
� X
��Mn�l�n�

atanh�cmn
�l� � Fn

�
� cmn

�j � J�

Y
i�Ls���

ms
�i

Y
l�Ln���nj

mn
�l� ����

where the set of signal bits �noise bits� in a check � ��� is represented by Ls��� �Ln�����

The notation Ls��� n l indicates all bits in check � excluding bit l� Greek letters run

from � to M and Latin letters run from � to N �

The estimate for the message is bSj � sgn�ms
j�� where m

s
j is computed as�

ms
j � tanh

�
� X
��Ms�j�

atanh�cms
�j� � Fs

�
� ����

The BP decoding dynamics consists of updating Equations ���� and ���� until a

certain halting criteria is reached� and then computing the estimate for the message

using equation ����� The initial conditions are set to re�ect the prior knowledge about

the message ms
�j��� � �� �p and noise mn

�l��� � �� �f �

The BP algorithm is known to provide the exact posterior when the Tanner graph

�see ��� and references therein� associated to the system has a tree architecture� A

Tanner graph is a bipartite graph where checks are represented by black circles� bits are

represented by white circles and an edge connects bits to their related checks�

When very sparse matrices are used� the probability for a loop in the related graph

in a �nite number of generations decays as ��N � where � � O��� ���� For �nite

systems one can expect that a limited neighbourhood of node has a tree structure�

When applying the thermodynamical limit N ��� the topology actually converges to

a tree and BP equations become exact� In Figure � we show a Tanner graph representing

the neighbourhood of a bit node in a large irregular MN code�
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Equations ���� and ���� can also be obtained by looking for extrema of the TAP

free�energy ��	
�
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Observe that the TAP free energy described above is not equivalent to the variational

mean��eld free energy introduced in ���� ��
� Here no essential correlations except those

related to the presence of loops are disregarded�

The meaning of the �elds introduced in the previous section can be understood by

�rst applying the gauge transformations ms
�j �� �jm

s
�j� dms

�j �� �jdms
�j� m

n
�l �� �lm

n
�l

and dmn
�l �� �ldmn

�l to the TAP free energy and introducing new variables x � ms
�j �bx �dms

�j� y � mn
�l and by � dmn

�l� If x� bx� y and by are interpreted as random variables

generated by the probability distributions �� b�� � and b� respectively� one recovers the

replica symmetric free energy ���� �see also ���
��

From the statistical physics point of view� belief propagation is one of many possible

ways to �nd minima of the TAP free energy� representing simple iterative �xed point

maps� The ferromagnetic state� corresponding to perfect decoding is the global minimum

up to Shannon�s limit in the case of unbiased messages �or very close to it in the case

of biased messages�� However� this equations are very sensitive to the presence of local

minima in the landscape and the convergence to the global minimum is only expected

if the initial conditions are set up within the basin of attraction of the ferromagnetic

state� which requires prior knowledge about the message sent what is not the case in

practical applications�

In the next sections we will try to address how the free energy landscape changes

with the parameters�

�� Error�correction� regular vs� irregular codes

Irregularity improves the practical performance of a MN code� We now illustrate this for

the simplest possible irregular constructions with a probability distribution describing
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Figure �� �a� Magnetization as a function of the noise level f for codes withK � L � �

and C � �� with message bias p � ���� Analytical RS solutions for the regular code

are denoted as � and for the irregular code	 with Co � 
 and Ce � �� denoted as ��

Results are averages over �� runs of the TAP�BP algorithm in an irregular code of

size N � ���� starting from xed initial conditions �see the text� 	 they are plotted as

� in the rightmost curve for comparison� TAP�BP results for the regular case agree

with the theoretical solutions and have been omitted to avoid overloading the gure�

�b� Free energies for the ferromagnetic state �full line� and for the failure state �line

with ��� The transitions observed in �a� are indicated by the dashed lines� Arrows

indicate the thermodynamical �T� transition� the upper bound �u�b�� of Section � and

Shannon�s limit�

connectivities of the signal matrix Cs chosen to be�

PC�C� � �� � �� ��C � Co� � � ��C �Ce�� ��	�

The mean connectivity is C � ����� Co � � Ce and Co � C � Ce
 bits in a group with

connectivity Co will be refered as ordinary bits and bits in a group with connectivity Ce

as elite bits� The noise matrix Cn is chosen to be regular�

To gain some insight on the e�ect of irregularity on solving the TAPBP equations

���� and ���� we performed several runs starting from the �xed initial conditions

ms
�j��� � �� �p and mn

�l��� � �� �f as prescribed in the last section� For comparison

we also iterated the saddle�point equations ���� obtained in the replica symmetric �RS�

theory� setting the initial conditions to be ���x� � ���p� ��x�ms
�j���� � p ��x�ms

�j����

and ���y� � ���f� ��y�mn
�l���� � f ��y�mn

�l����� as suggested from the interpretation

of the �elds ��x� and ��y� in the last section�

In Figure � �a� we show a typical curve for the magnetization as a function of

the noise level� The RS theory agrees very well with TAPBP decoding results� The

addition of irregularity improves the performance considerably� In Figure � �b� we show

the free energies of the two emerging states� The free energy for the ferromagnetic state

with magnetization m � � is shown as a full line� the failure state �in Figure � �a� with



��

magnetizationm � ���� is shown as a line marked with �� The transitions seen in Figure

� 	a� are denoted by dashed lines� It is clear that they are far below the thermodynamical

	T� transition
 indicating that the system becomes trapped in suboptimal states for

noise levels f between the observed transitions and the thermodynamical transition�

The thermodynamical transition coincides with the upper bound 	u�b�� in Section �

and is very close to
 but below
 Shannon�s limit which is shown for comparison� Similar

behaviour has already been observed in regular MN codes with K � � in ����

1 5 10 15 20 25
decoding iterations
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Figure �� Magnetization monitored during the TAP�BP decoding process as a

function of the number of iterations for N � ����� Elite nodes magnetization is

represented by �� Ordinary nodes magnetization is represented by �� The overall

magnetization is represented by �� The long dashed line shows the dynamics of the

regular code� The constructions employed have parameters K � L � �� C � 	�

Ce � 
� and Co � �� The noise level is f � ���	� and the message bias is p � ����

It is instructive to look how the magnetization of elite 	m
e
� and ordinary 	m

o
� nodes

evolve throughout the iterative decoding process� In Figure � we show this dynamics for

a regular and an irregular code at a noise level where the irregular code converges to the

ferromagnetic state while the regular code fails 	long�dashed lines�� One can see that the

magnetization of ordinary nodes follow that of the regular code in the �rst iterations


elite nodes are then corrected quickly achieving high magnetization values� These highly

reliable nodes then lead the correction of ordinary nodes 	around the �fth iteration�


producing successful decoding� From the decoding dynamics point of view irregular MN

codes can be qualitatively regarded as a mixture of low and highly connected regular

codes where elite nodes can tolerate higher noise levels while ordinary nodes allow for



��

higher code rates�

�� The spinodal point

In the last section we gained some insight on how irregularity a�ects the practical

performance of codes� The dynamical decoding process shown in Figure � only provides

a qualitative explanation and does not seem to allow some simple analysis�

A possible alternative is to relate the observation that the system gets trapped

in suboptimal states �Figure �� to global properties of the free energy� The TAP	BP

algorithm can be regarded as an iterative solution of 
xed point equations for the TAP

free energy ����� which is sensitive to the presence of local minima in the system� One can

expect convergence to the global minimum of the free energy from all initial conditions

when there is a single minimum or when the landscape is dominated by the basin of

attraction of this minimum when random initial conditions are used�

To analyse this point we rerun the decoding experiments starting from initial

conditions ms
�j��� and mn

�l��� that are random perturbations of the ferromagnetic

solution 

ms
�j��� � ��� �s� ��m

s
�j��� � �j� � �s ��m

s
�j��� � �j�� ����

and

mn
�l��� � ��� �n� ��m

n
�l���� �l� � �n ��mn

�l��� � �l�� ����

where for convenience we choose � � �s � �n � � � ����

We performed TAP	BP decoding several times for di�erent values of � and noise

level f � For � � ����� we observed that the system converges to the ferromagnetic

state for all constructions� message biases p and noise levels f examined� It implies that

this state is always stable� The convergence occurs for any � for noise levels below the

transition observed in practice�

These observations suggest that the ferromagnetic basin of attraction dominates the

landscape up to some noise level fs� The fact that no other solution is ever observed in

this region suggests that fs is the noise level where suboptimal solutions actually appear�

namely� it is the noise level that corresponds to the spinodal point of the system� This

behaviour have already been observed for regular MN codes with K � � or K � L � �

���� ����

In ���� ��� we have also shown that MN codes can be divided into three categories

with di�erent equilibrium properties �i� K � � or L � �� �ii� K � �� K � L � �

and �iii� general L� K � �� In the next two subsections we will discuss these groups

separately�
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Figure �� Spinodal point noise level fs for regular and irregular codes� In both

constructions parameters are set as K � L � �� Irregular codes with Co � � and

Ce � �� are used� TAP�BP decoding is carried out with N � ���� and a maximum of

��� iterations	 they are denoted by 
 �regular� and � �irregular�� Numerical solutions

for the RS saddlepoint equations are denoted by � �regular� and � �irregular��

Shannon�s limit is represented by a full line and the upper bound in Section � is

represented by a dashed line� The symbols are chosen to be larger than the actual

error bars�

���� Biased coding� K � � or L � �

To show how irregularity a�ects codes with this choice of parameters we chooseK�L � ��

C
o
� �� C

e
� �� and biased messages with p � ���	 These choices are arbitrary but

can illustrate what happens with the practical decoding performance	 In Figure � we

show the transition from the decoding phase to the failure phase as a function of the

noise level f for several rates R in both regular and irregular codes	 Practical decoding


� and �� results are obtained for systems of size N � ���� with a maximum number

of iterations set to ���	 Random initial conditions are chosen and the whole process

repeated �� times	 The practical transition point is found when the number of failures

equals the number of successes	

These experiments were compared with theoretical values for f
s
obtained by solving

the RS saddlepoint equations 
��� 
represented as � and � in Figure �� and �nding

the noise level for which a second solution appears	 For comparison the coding limit is

represented in the same �gure by a full line	

As the constructions used are chosen arbitrarily one can expect that these transitions
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Figure �� Spinodal point fs for irregular codes as a function of the message bias p�

The construction is parametrised by K � L � �� Co � � and Ce � �� with C � �	�

TAP
BP decoding is carried out with N � 	��� and a maximum of 	�� iterations�

and is represented by �� while theoretical RS solutions are represented by �� The full

line indicates Shannon�s limit� Symbols are larger than the actual error bars

can be further improved� even though the improvement shown in Figure � is already

fairly signi�cant�

The analytical solution obtained in Section � for K � � or L � �� K � � and

unbiased messages p � ��	 implies that the system is bistable for arbitrary code

constructions when these parameters are chosen� The spinodal point noise level is then

f
s
� 
 in this case and cannot be improved by adding irregularity to the construction�

Up to the noise level f
c
the ferromagnetic solution is the global minimum of the free

energy� and therefore Shannon�s limit is potentially saturated� however� the bistability

makes these constructions unsuitable for practical decoding with a TAP�BP algorithm

when unbiased messages are considered�

The situation improves when biased messages are used� Fixing the matrices Cn

and Cs one can determine how the spinodal point noise level f
s
depends on the bias

p� In Figure  we compare simulation results with the theoretical predictions of f
s
as a

function of p� The spinodal point noise level f
s
collapses to zero as p increases towards

the unbiased case� It obviously suggests the use of biased messages for practical use of

MN codes with parameters K � � or L � �� K � � under TAP�BP decoding�

For biased messages with K � � or L � �� K � � the qualitative picture of the

energy landscape di�ers from the unbiased coding presented in ���� ���� In Figure �

this landscape is sketched as a function of the noise level f for a given bias� Up to

the spinodal point f
s
the landscape is totally dominated by the ferromagnetic state F �

At the spinodal point another suboptimal state F � emerges� dominating the decoding
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Figure �� Pictorial representation of the free energy landscape as a function of the

noise level f � Up to the spinodal point fs there is only the ferromagnetic state F � At

fs another state F
� appears dominating the decoding dynamics� The thermodynamical

critical noise level fc indicates the point where the state F � becomes the global

minimum�

dynamics� At f
c
the suboptimal state F � becomes the global minimum� The bold

horizontal line represents the region where the ferromagnetic solution with m � �

dominates the decoding dynamics� In the region represented by the dashed line decoding

dynamics is dominated by suboptimal m � � solutions�

���� Unbiased coding

For the remaining parameter choices� namely general L� K � � and K � L � �� it was

shown in ���� ��	 that unbiased coding is generally possible yielding close to Shannon
s

limit performance� The free energy landscape of the K � � was shown to behave in a

similar way to the one depicted in Figure � while the landscape of the case K � L � �

and unbiased messages shows a di�erent behaviour where some regions include three

stable states plus their mirror symmetries�

In the same way as in the K �  case the practical performance is de�ned by the

spinodal point noise level f
s
� The addition of irregularity also changes f

s
in these cases�

In the general L� K � � family we illustrate the e�ect of irregularity by the choice of

L � �� C
o
� � and C

e
� ��� In Figure � we show the transitions observed by performing

�� decoding experiments with messages of length N � ���� and a maximal number of

iterations set to ��� �� for regular and � for irregular�� We compare the experimental

results with theoretical predictions based on the RS saddle�point equations ���� ��

for regular and � for irregular�� Shannon
s limit is represented by a full line� The
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Figure �� Spinodal point noise level fs for regular and irregular codes� The

constructions are of K � � and L � �� irregular codes are parametrised by Co � �

and Ce � ��� TAP	BP decoding is carried out with N � 
��� and a maximum of


�� iterations � they are denoted by � regular� and � irregular�� Numerical solutions

for RS equations are denoted by � regular� and � irregular�� The coding limit is

represented by a line� Symbols are larger than the actual error bars�

improvement is modest� what is expected since regular codes already present close to

optimal performance� Discrepancies between the theoretical and numerical results are

due to �nite size e�ects�

We also performed a set of experiments using K � L � � with C
o
� 	 and C

e
� ��

the same system size N � 
��� and maximal number of decoding iterations 
��� The

transitions obtained experimentally and predicted by theory are shown in Figure ��

�� Conclusions

We showed that in the thermodynamic limit MN codes are equivalent to a multi�spin

ferromagnet submitted to a random �eld� A replica calculation shows that a phase

transition from an errorless ferromagnetic� phase to a failure either paramagnetic or

suboptimal ferromagnetic� phase occurs as the noise level increases� The phase transition

line can be analytically obtained in the case where constructions with K�L � 	� a

minimum of two checks per bit and unbiased messages p � ���� are used� It coincides

with Shannon�s coding limit and is independent of the code construction�

For other parameter choices the transition only can be obtained numerically and

coincides with a simple upper bound� being necessarily below Shannon�s limit�

The practical decoding using belief propagation is shown to attain inferior
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Figure �� Spinodal point noise level values fs for regular and irregular codes�

Constructions are of K � � and L � �� irregular codes are parametrised by Co � �

and Ce � �� TAP�BP decoding is carried out with N � 	


 and a maximum of 	



iterations� they are denoted by � regular� and � irregular�� Theoretical predictions

are denoted by � regular� and � irregular�� The coding limit is represented by a

line� Symbols are larger than the actual error bars�

performance to Shannon�s limit due to the collapse of the ferromagnetic basin of

attraction when new states emerge at the spinodal point noise level f
s
� Irregularity

increases f
s
thus improving the code�s performance� We show that the maximal noise

level corrected by an MN code agrees with the replica theory prediction for the spinodal

point noise level f
s
�

This framework is currently being employed for optimising code constructions

�recently studied in ����	
 as well as for �nding alternatives to the TAP�BP decoding

scheme and for analysing the eect of using inaccurate priors�
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