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The performance of Gallager's error-correcting code is investigated viamethods of statistical physics. In this method, the transmitted codewordcomprises products of the original message bits selected by two randomly-constructed sparse matrices; the number of non-zero row/column elements inthese matrices constitutes a family of codes. We show that Shannon's channelcapacity is saturated for many of the codes while slightly lower performanceis obtained for others which may be of higher practical relevance. Decodingaspects are considered by employing the TAP approach which is identical tothe commonly used belief-propagation-based decoding.
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The ever increasing information transmission in the modern world is based on reliablycommunicating messages through noisy transmission channels; these can be telephone lines,deep space, magnetic storing media etc. Error-correcting codes play a signi�cant role in cor-recting errors incurred during transmission; this is carried out by encoding the message priorto transmission and decoding the corrupted received code-word for retrieving the originalmessage. In his ground breaking papers, Shannon [1] analyzed the capacity of communica-tion channels, setting an upper bound to the achievable noise-correction capability of codes,given their code (or symbol) rate, constituted by the ratio between the number of bits inthe original message and the transmitted code-word.Shannon's bound is non-constructive and does not provide a recipe for devising optimalcodes. The quest for more e�cient codes, in the hope of saturating the bound set byShannon, has been going on ever since, providing many useful but sub-optimal codes.One family of codes, presented originally by Gallager [2], attracted signi�cant interestrecently as it has been shown to outperform most currently used techniques [3]. Gallager-type codes are characterized by several parameters, the choice of which de�nes a particularmember of this family of codes. Current theoretical results [3] o�er only bounds on the errorprobability of various architectures, proving the existence of very good codes under somerestrictions; decoding issues are examined via numerical simulations.In this Letter we analyze the typical performance of Gallager-type codes for severalparameter choices via methods of statistical mechanics. We then validate the analyticalsolution by comparing the results to those obtained by the TAP approach and via numericalmethods.In a general scenario, a message represented by an N dimensional Boolean/binary vector� is encoded to the M dimensional vector J0 which is then transmitted through a noisychannel with some 
ipping probability p per bit (other noise types may also be consideredbut will not be examined here). The received message J is then decoded to retrieve theoriginal message.One can identify several slightly di�erent versions of Gallager-type codes. The one used2



in this Letter, termed the MN code [3] is based on choosing two randomly-selected sparsematrices A and B of dimensionality M�N and M�M respectively; these are characterizedby K and L non-zero unit elements per row and C and L per column respectively. The�nite, usually small, numbers K, C and L de�ne a particular code; both matrices are knownto both sender and receiver. Encoding is carried out by constructing the modulo 2 inverseof B and the matrix B�1A (modulo 2); the vector J0=B�1A � (modulo 2, � in a Booleanrepresentation) constitutes the codeword. Decoding is carried out by taking the product ofthe matrix B and the received message J = J0+� (modulo 2), corrupted by the Booleannoise vector �, resulting in A�+B�. The equationA� +B� = AS +B� (1)is solved via the iterative methods of Belief Propagation (BP) [3] to obtain the most probableBoolean vectors S and � ; BP methods in the context of error-correcting codes have recentlybeen shown to be identical to a TAP [4] based solution of a similar physical system [5].The similarity between error-correcting codes of this type and Ising spin systems was �rstpointed out by Sourlas [6], who formulated the mapping of a simpler code, somewhat similarto the one presented here, onto an Ising spin system Hamiltonian. We recently extended thework of Sourlas, that focused on extensively connected systems, to the �nite connectivitycase [5].To facilitate the current investigation we �rst map the problem to that of an Isingmodel with �nite connectivity. We employ the binary representation (�1) of the dynamicalvariables S and � and of the vectors J and J0 rather than the Boolean (0; 1) one; the vectorJ0 is generated by taking products of the relevant binary message bits J0hi1;i2:::i= �i1�i2 : : :,where the indices i1; i2 : : : correspond to the non-zero elements of B�1A, producing a binaryversion of J0. As we use statistical mechanics techniques, we consider the message andcodeword dimensionality (N and M respectively) to be in�nite, keeping the ratio betweenthem R = N=M , which constitutes the code rate, �nite. Using the thermodynamic limitis quite natural as Gallager-type codes are usually used for transmitting long (104�105)3



messages, where �nite size corrections are likely to be negligible. To explore the system'scapabilities we examine the HamiltonianH = X<i1;::;iK;j1;::;jL>D<i1;::;iK ;j1;::;jL> ���1 ; J<i1;::;iK;j1;::;jL>� Si1 : : : SiK�j1 : : : �jL�� Fs� NXi=1 Si � F�� MXj=1 �j : (2)The tensor product D<i1;::;iK ;j1;::;jL>J<i1;::;iK;j1;::;jL>,where J<i1;::;jL> = �i1�i2 : : : �iK�j1�j2 : : : �jL, is the binary equivalent of A�+B�, treatingboth signal (S and index i) and noise (� and index j) simultaneously. Elements of thesparse connectivity tensor D<i1;::;jL> take the value 1 if the corresponding indices of bothsignal and noise are chosen (i.e., if all corresponding indices of the matrices A and B are1) and 0 otherwise; it has C unit elements per i-index and L per j-index representing thesystem's degree of connectivity. The � function provides 1 if the selected sites' productSi1 : : : SiK�j1 : : : �jL is in disagreement with the corresponding element J<i1;::;jL>, recordingan error, and 0 otherwise. Notice that this term is not frustrated, as there areM+N degreesof freedom and only M constraints from Eq.(1), and can therefore vanish at su�ciently lowtemperatures. The last two terms on the right represent our prior knowledge in the case ofsparse or biased messages Fs and of the noise level F� and require assigning certain valuesto these additive �elds. The choice of �!1 imposes the restriction of Eq.(1), limiting thesolutions to those for which the �rst term of Eq.(2) vanishes, while the last two terms, scaledwith �, survive. Note that the noise dynamical variables � are irrelevant to measuring theretrieval success m = 1N DPNi=1 �i sign hSii�E� : The latter monitors the normalized meanoverlap between the Bayes-optimal retrieved message, shown to correspond to the alignmentof hSii� to the nearest binary value [6], and the original message; the subscript � denotesthermal averaging.Since the �rst part of Eq.(2) is invariant under the transformations Si!Si�i, �j! �j�jand J<i1;::;jL>!J<i1;::;jL>�i1 ::�iK�j1�j2::�jL=1, it would be useful to decouple the correlationbetween the vectors S, � and �, �. Rewriting Eq.(2) one obtains a similar expression apartfrom the last terms on the right which become Fs=�Pk Sk �k and F�=�Pk �k �k.4



The random selection of elements in D introduces disorder to the system which is treatedvia methods of statistical physics. More speci�cally, we calculate the partition functionZ(D;J) = TrfS;� g exp[��H] averaged over the disorder and the statistical properties ofthe message and noise, using the replica method [5,7,8]. Taking �!1 gives rise to a set oforder parameters q�;�;::;
 = * 1N NXi=1Zi S�i S�i ; ::; S
i +�!1r�;�;::;
 = * 1M MXi=1 Yj ��j ��j ; ::; � 
j +�!1 (3)where �, �; :: represent replica indices, and the variables Zi and Yj come from enforcing therestriction of C and L connections per index respectively [5]:�0@ Xhi2;::;iKiD<i;i2;::;jL> � C1A = I 2�0 dZ2� ZPhi2;::;iKiD<i;i2;::;jL>�(C+1) ; (4)and similarly for the restriction on the j indices.To proceed with the calculation one has to make an assumption about the order pa-rameters symmetry. The assumption made here, and validated later on, is that of replicasymmetry in the following representation of the order parameters and the related conjugatevariables q�;�::
 = aq Z dx �(x) xl ; bq�;�::
 = abq Z dx̂ b�(x̂) x̂l (5)r�;�::
 = ar Z dy �(y) yl ; br�;�::
 = abr Z dŷ b�(ŷ) ŷl ;where l is the number of replica indices, a� are normalization coe�cients, and �(x); b�(x̂); �(y)and b�(ŷ) represent probability distributions. Unspeci�ed integrals are over the range[�1;+1]. One then obtains an expression for the free energy per spin expressed in terms ofthese probability distributions1N hlnZi�;�;D = Extrf�;b�;�;b�g�CK Z " KYk=1 dxk �(xk)# " LYl=1 dyl �(yl)# ln "1 + KYk=1xk LYl=1 yl#� C Z dx dx̂ �(x) b�(x̂) ln [1 + xx̂]� CLK Z dy dŷ �(y) b�(ŷ) ln [1 + yŷ] (6)5



+ Z " CYk=1 dxk �(xk)dx̂k b�(x̂k)#*ln " CYk=1 (1 + x̂k) eFs� + CYk=1 (1� x̂k) e�Fs�#+�+ CK Z " LYl=1 dyl �(yl)dŷl b�(ŷl)#*ln " LYl=1 (1 + ŷl) eF� � + LYl=1 (1� ŷl) e�F� �#+� � CK ln 2� ;where h�i� and h�i� denote averages over the input and noise distributions of the formh�i� = X�=�1(1 + tanhFs2 ��;�1 + 1� tanhFs2 ��;1) (�) (7)and similarly for h�i� where Fs is replaced by F� .The free energy can then be calculated via the saddle point method. Solving the equa-tions obtained by varying Eq.(6) w.r.t the probability distributions �(x); b�(x̂); �(y) and b�(ŷ),is di�cult as they generally comprise both delta peaks and regular [8] solutions for the ferro-magnetic and paramagnetic phases (there is no spin-glass solution here as the system is notfrustrated). The solutions obtained in the case of unbiased messages (the most interestingcase as most messages are compressed prior to transmission) are for the ferromagnetic phase:�(x) = �(x� 1) ; b�(x̂) = �(x̂� 1)�(y) = �(y � 1) ; b�(ŷ) = �(ŷ � 1) ; (8)and for the paramagnetic phase:�(x) = �(x) ; b�(x̂) = �(x̂) ; b�(ŷ) = �(ŷ)�(y) = 1 + tanhF�2 �(y � tanhF� ) + 1� tanhF�2 �(y + tanhF� ) : (9)It is easy to verify that these solutions obey the saddle point equations. However, it isunclear a priori whether the contribution of other delta peaks or of an additional continuoussolution will be signi�cant and whether the solutions (8) and (9) are stable or not. Inaddition, it is also necessary to validate the replica symmetric ansatz itself. To address thesequestions we obtained solutions to the system described by the Hamiltonian (2) via TAPmethods of �nitely connected systems [5]; we solved the saddle point equations derived fromEq.(6) numerically, representing all probability distributions by up to 104 bin models and6



by carrying out the integrations via Monte-Carlo methods; �nally, to show the consistencybetween theory and practice we carried out large scale simulations for several cases, whichwill be presented elsewhere.The various methods indicate that the solutions may be divided to two di�erent categoriescharacterized by K=L=2 and by either K�3 or L�3, which we therefore treat separately.For unbiased messages and either K � 3 or L� 3 we obtain the solutions (8) and (9)both by applying the TAP approach and by solving the saddle point equations numerically.The former was carried out at the value of F� which corresponds to the true noise and inputbias levels (for unbiased messages Fs = 0) and thus to Nishimori's condition [9], where noreplica symmetry breaking e�ects are expected. This is equivalent to having the correct priorwithin the Bayesian framework [10] and enables one to obtain analytic expressions for someobservables as long as some gauge requirements are obeyed [9]. Numerical solutions showthe emergence of stable dominant delta peaks, consistent with those of (8) and (9). Thequestion of longitudinal mode stability (corresponding to the replica symmetric solution)was addressed by setting initial conditions for the numerical solutions close to the solutions(8) and (9), showing that they converge back to these solutions which are therefore stable.The most interesting quantity to examine is the maximal code rate, for a given corruptionprocess, for which messages can be perfectly retrieved. This is de�ned in the case of K;L�3by the value of R =K=C =N=M for which the free energy of the ferromagnetic solutionbecomes smaller than that of the paramagnetic solution, constituting a �rst order phasetransition. A schematic description of the solutions obtained is shown in the inset of Fig.1a.The paramagnetic solution (m = 0) has a lower free energy than the ferromagnetic one(low/high free energies are denoted by the thick and thin lines respectively, there are noaxis lines at m = 0; 1) for noise levels p > pc and vice versa for p� pc; both solutions arestable. The critical code rate is derived by equating the ferromagnetic and paramagneticfree energies to obtainRc=1�H2(p)=1+(p log2 p+(1� p) log2(1� p)) : (10)7



This coincides with Shannon's capacity. To validate these results we obtained TAP solutionsfor the unbiased message case (K =L=3, C =6). Averages over 10 solutions obtained fordi�erent initial conditions in the vicinity of the stable solutions are presented in Fig.1a (as+) in comparison to Shannon's capacity (solid line).Analytical solutions for the saddle point equations cannot be obtained for the case ofbiased patterns and we therefore resort to numerical methods and the TAP approach. Themaximal information rate (i.e., code-rate�H2(fs = (1+tanhFs)=2) - the source redundancy)obtained by the TAP method (3) and numerical solutions of the saddle point equations (2),averaged for each noise level over solutions obtained for 10 di�erent starting points in thevicinity of the analytical solution, are shown in Fig.1a. Numerical results have been obtainedusing 103�104 bin models for each probability distribution and had been run for 105 stepsper noise level point. The various results are highly consistent and practically saturateShannon's bound for the same noise level.The MN code for K;L � 3 seems to o�er optimal performance. However, the maindrawback is rooted in the co-existence of the stable m = 1 and m = 0 solutions, shownin Fig.1a (inset), which implies that from some initial conditions the system will convergeto the undesired paramagnetic solution. Moreover, studying the ferromagnetic solutionnumerically shows a highly limited basin of attraction, which becomes smaller as K and Lincrease, while the paramagnetic solution at m = 0 always enjoys a wide basin of attraction.As initial conditions for the decoding process are typically of close-to-zero magnetization(almost no prior information about the original message is assumed) it is highly likely thatthe decoding process will converge to the paramagnetic solution. This performance has beenobserved via computer simulations by us and by others [3].While all codes with K;L � 3 saturate Shannon's bound and are characterized by a�rst order, paramagnetic to ferromagnetic, phase transition, codes with K = L = 2 showlower performance and di�erent physical characteristics. The analytical solutions (8) and(9) are unstable at some 
ip rate levels and one resorts to solving the saddle point equationsnumerically and to TAP based solutions. The picture that emerges is sketched in the inset8



of Fig.1b: The paramagnetic solution dominates the high 
ip rate regime (appearing as adominant delta peak in the numerical solutions) up to the point p1 (denoted as 1 in theinset) in which a stable, ferromagnetic solution, of higher free energy, appears (thin linesat m = �1). At a lower 
ip rate value p2 the paramagnetic solution becomes unstable(dashed line) and is replaced by two stable sub-optimal ferromagnetic (broken symmetry)solutions which appear as a couple of peaks in the various probability distributions; typically,these have a lower free energy than the ferromagnetic solution until p3, after which theferromagnetic solution becomes dominant (at some code rate values it is dominant directlyfollowing the disappearance of the paramagnetic solution). Still, only once the sub-optimalferromagnetic solutions disappear, at the spinodal point ps, a unique ferromagnetic solutionemerges as a single delta peak in the numerical results (plus a mirror solution). The point inwhich the sub-optimal ferromagnetic solutions disappear constitutes the maximal practical
ip rate for the current code-rate and was de�ned numerically (3) and via TAP solutions(+) as shown in Fig.1b.Notice that initial conditions for both TAP and the numerical solutions were chosenalmost randomly, with a very slight bias of O(10�12), in the initial magnetization. TheTAP dynamical equations are identical to those used for practical BP decoding [5], andtherefore provide equivalent results to computer simulations with the same parameterization,supporting the analytical results. The excellent convergence results obtained point out theexistence of a unique pair of global solutions to which the system converges (below ps) frompractically all initial conditions. This observation and the practical implications of usingthe K=L=2 code have not been obtained by information theory methods (e.g. [3]); theseprove the existence of very good codes for C=L�3, and examine decoding properties onlyvia numerical simulations.In this Letter we examined the typical performance of Gallager-type codes. We discov-ered that for a certain choice of parameters, either K � 3 or L � 3, one obtains optimalperformance, saturating Shannon's bound. This comes at the expense of a decreasing basinof attraction making the decoding process increasingly impractical. Another code, K=L=2,9



shows close to optimal performance with a very large basin of attraction, making it highlyattractive for practical purposes. The decoding performance of both code types was ex-amined by employing the TAP approach, an iterative method identical to the commonlyused BP method. Both numerical and TAP solutions are in agreement with the theoreticalresults. This study examines the typical performance of these increasingly important error-correcting codes, from which optimal parameter choices can be derived, complementing thebounds and empirical results provided in the information theory literature . Important as-pects that are yet to be investigated include other noise types, �nite size e�ects and thedecoding dynamics itself.Acknowledgement Support by the JSPS RFTF program (YK) and EPSRC grant GR/L19232(DS) is acknowledged.
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FIG. 1. Critical code rate as a function of the 
ip rate p, obtained from numerical solutionsand the TAP approach (N=104), and averaged over 10 di�erent initial conditions with error barsmuch smaller than the symbols size. (a) Numerical solutions for K=L=3, C=6 and varying inputbias fs (2) and TAP solutions for both unbiased (+) and biased (3) messages; initial conditionswere chosen close to the analytical ones. The critical rate is multiplied by the source informationcontent to obtain the maximal information transmission rate, which clearly does not go beyondR=3=6 in the case of biased messages; for unbiased patterns H2(fs)=1. Inset: The ferromagneticand paramagnetic solutions as functions of p; thick and thin lines denote stable solutions of lowerand higher free energies respectively. (b) For the unbiased case of K = L= 2; initial conditionsfor the TAP (+) and the numerical solutions (3) are of almost zero magnetization. Inset: Theferromagnetic (optimal/sub-optimal) and paramagnetic solutions as functions of p; thick and thinlines are as in (a), dashed lines correspond to unstable solutions.12


