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Resonant two-wave mixing in photorefractive
materials with the aid of dc and ac fields
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A recently predicted resonant effect for the enhancement of two-wave mixing in photorefractive materials is
investigated. The resonance occurs when the frequency of the applied ac field agrees with the eigenfrequency
of the excited space-charge wave. Experimentally a clear resonance is found, as predicted by the theory,
for high dc electric fields, but the resonance is smeared out for lower fields. A modified theory, taking into
account the second temporal harmonic of the space-charge wave, shows good agreement with the experimental
results.  1997 Optical Society of America
It was shown by Huignard and Marrakchi1 and
Réfrégier et al.2 that the interaction between two
incident waves can be significantly enhanced by ap-
plication of dc voltage and detuning of one of the
waves. The enhancement was maximum when the
moving interference wave was in resonance with
the space-charge wave, which is an eigenwave of
the system.3 A nonresonant excitation employing
an applied ac voltage was shown by Stepanov and
Petrov4 to lead to similar enhancement. More re-
cently, a new kind of resonant interaction5 – 7 was
proposed that, instead of detuning, relies on applied
dc and ac f ields. It was shown in Refs. 5–7 that
the resonance took place when the frequency of the
applied ac f ield agreed with the eigenfrequency of
the space-charge wave. The purpose of this Let-
ter is to investigate experimentally this new reso-
nant mechanism and to introduce corrections to the
model of Ref. 7 that will lead to good agreement be-
tween the experimental and the theoretical results.

The experimental arrangement for two-wave mixing
is shown schematically in Fig. 1. A frequency-doubled
diode-pumped Nd:YAG laser sl ­ 532 nm; TEM00
power, 500 mW) was used as the light source. A vari-
able beam splitter controlled the intensity ratio of the
two beams, which were incident upon the (110) face
of a bismuth silicate (BSO) crystal with an interbeam
angle of 1.4±, thus producing fringes with approxi-
mately 20-mm spacing. Both incident beams were lin-
early polarized normal to the (110) face of the crystal.
The external fields were applied across the (001) faces.
The crystal dimensions were all 10 mm, mirrors M3
and M4 were mounted upon piezoelectric translators,
0146-9592/97/241852-03$10.00/0
and, for frequency detuning, sawtooth voltages of oppo-
site polarity were applied to these translators with an
amplitude sufficient to cause an optical phase change
of 2p between the beams. The modulation depth of
the interference pattern, m, was equal to 0.1 (corre-
sponding to an input intensity ratio of ,100), and a
photodetector was used for monitoring the intensity
of the weak signal beam. The total intensity of the
beams in all the experiments was I0 ­ 5 mW cm22.

According to the predictions of the simple model
referred to above, the maximum of the new resonance
occurs at the same frequency as that of the resonance
obtained when the optical beams are detuned. Hence
in our f irst set of experiments we measured the gain
as a function of detuning. The results are shown
in Fig. 2 for three different values of the applied dc
field. The corresponding theoretical curves were
obtained with the theoretical approach of Réfrégier
et al.,2 with the following parameters: density of

Fig. 1. Experimental arrangement: M1–M4, mirrors.
 1997 Optical Society of America
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Fig. 2. Two-wave mixing gain as a function of detuning
frequency for different values of the dc electric field. Solid
curves, theoretical values; points, experimental values.

acceptors NA ­ 1.6 3 1021 m23, density of donors
ND ­ 1.22 3 1025 m23, photoionization con-
stant s ­ 2.0 3 1025 m2yJ , electron mobility
m ­ 1.2 3 1026 m2yV s, recombination constant
g ­ 1.6 3 10217 m3ys, effective electro-optic coefficient
reff ­ 1.05 3 10212 myV , and static permittivity
er ­ 56. Note that reff is much smaller than that
usually given s,4 3 10212 myVd to account for losses
and optical activity that were not taken into account in
the theory.

In the next set of experiments an ac field of Em ­
3 kV cm21 was used instead of detuning, and three
values of the applied dc f ield were chosen, E0 ­
3, 5, 7 kV cm21. As predicted by the theory7 the
gain was found to vary in an oscillatory manner as
a function of time with the same period as that of
the applied ac field. In the actual experiment the ac
frequency was slowly changed, leading to a variation in
the amplitude of the measured gain. The envelope of
this gain function as a function of applied frequency is
shown in Fig. 3(a), in which the curves simply connect
the points at which the gain was maximum. It can
be seen that for the highest dc field there is a clear
resonance occurring at 2.2 Hz that agrees very well
with the frequency, yielding resonance for the detuning
case. However, for E0 ­ 5 kV cm21 there is no longer
a single peak, and the curve appears hardly to vary for
the lowest field, E0 ­ 3 kV cm21.

The predictions of the simple model can be seen to be
correct for the highest dc f ield, but the approximation
deteriorates as the dc f ield decreases relative to the
ac f ield amplitude, Em. Clearly some modifications
are needed. Let us recall at this stage the basic
assumption of the simple model. The space-charge
field was represented there by three terms:

Esx, td ­ 1y2fEs exps jkxd 1 E1 exp j skx 2 Vtd

1 E21 exp jskx 1 Vtdg 1 c.c., (1)

where k and V are the wave number and the fre-
quency of the space-charge wave, respectively, and
x is a coordinate along the direction of the external
electric field. ES , E1, and E21 represent the ampli-
tudes of the stationary interference pattern and of the
forward- and backward-moving space-charge waves,
respectively. In the f irst-order approximation5,7 E1
and E21 are proportional to sV 2 V1d21 and sV 1
V1d21, respectively, where

V1 ­ Vss1 1 jEM yE0d21, Vs ­ 2skmtrtdd21,

EM ­ 2skmtrd21 , (2)

td is the dielectric relaxation time, and tr is the elec-
tron lifetime. When EM ,, E0 (valid for the parame-
ters chosen), the backward wave can be shown to be
negligible except at very small frequencies. On the
other hand there are a vast number of higher-order
forward-moving waves owing to the nonlinearity of
the crystal. We obtain good agreement with our ex-
perimental results if we include just one additional
wave at the second temporal harmonic with ampli-
tude E2. Hence our assumption for the space-charge
wave is

Esx, td ­ 1y2fEs exps jkxd 1 E1 exp j skx 2 Vtd

1 E2 exp j skx 2 2Vtdg 1 c.c. (3)

The mathematical problem is then to solve the non-
linear partial differential equation derived in Refs. 5
and 8:
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with the aid of the above assumption [Eq. (3)]. In
Eq. (4), I, is the component of the light intensity in the

Fig. 3. (a) Experimental and (b) theoretical curves for
the maximum two-wave-mixing gain as a function of the
ac field frequency for different values of the dc f ield.
Em ­ 3 kVycm.
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crystal that varies with the x coordinate. Diffusion
of free electrons is neglected, and it is assumed that
the total external electric f ield is much smaller than
the maximum achievable space-charge field. The cal-
culations are rather laborious but quite straightfor-
ward. Following the same method as in Ref. 7 we
obtain the following expressions for the three unknown
amplitudes:
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It can be seen from Eqs. (5)–(7) that E1 is resonant at
V ­ Vs, the eigenfrequency of the space-charge wave,
provided that EM ,, E0 and Em is small in comparison
with E0. Since both E2 and Es are proportional to E1,
those amplitudes will also depend on V in a resonant
manner. However, there is an additional resonance of
E2 at V ­ Vsy2, as can be seen from Eq. (6). Owing
to the nonlinear coupling between E1 and E2, this
additional resonance causes the appearance of a low-
frequency peak in E1 and also an increase of the posi-
tion of the high-frequency peak as EmyE0 increases.

To compare this theory with the experimental
results, we need to calculate the envelope of the gain
function:

G ­ max
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æ!!!

. (8)

The theoretical curves for the parameters given above
can now be plotted [Fig. 3(b)]. There is no doubt
that the theoretical curves for the lower values of
the applied dc f ield show now the general features
of the experimental results, namely, the additional
low-frequency resonance and the shifting of the high-
frequency peak. Note that the values well below the
lower peak are inaccurate owing to neglect of the
backward-moving wave.

More-accurate theoretical results could be obtained
by addition of extra terms, that is, higher temporal
harmonics, to our assumed solution of Eq. (4), although
the amount of algebra would soon become prohibitive
for an analytical solution. What we have discussed so
far applies to the case in which the small modulation
assumption sm ,, 1d is valid. As the modulation
increases, the higher spatial harmonics would also
have to be taken into account, i.e., the space-charge
field should be, strictly speaking, assumed to be in the
form

Esx, td ­ 1y2
X̀

p, q­2`

Ep, q exp j spkx 2 qVtd 1 c.c.

(9)
Analytical solutions are no longer possible in this
case, but numerical methods might still work for a
truncated set. It may be worth mentioning here that,
in the high-modulation solution of Au and Solymar,9 for
the detuning resonance the numerical problems were
successfully solved for numbers of spatial harmonics
greater than 20.

The new resonance proposed in Ref. 5–7 has been
shown to behave according to theoretical predictions for
large applied dc f ields. Experimental results obtained
for lower dc fields have also been matched with a
modified theory.
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