
Error-Corre
ting Codes That Nearly Saturate Shannon's BoundIdo Kanter1 and David Saad21 Department of Physi
s, Bar-Ilan University, Ramat-Gan 52900, Israel.2The Neural Computing Resear
h Group, Aston University, Birmingham B4 7ET, UK.Gallager-type error-
orre
ting 
odes that nearly saturate Shannon's bound are 
onstru
ted usinginsight gained from mapping the problem onto that of an Ising spin system. The performan
e ofthe suggested 
odes is evaluated for di�erent 
ode rates for both �nite and in�nite message length.89.90.+n, 02.50.-r, 05.50.+q, 75.10.HkEÆ
ient information transmission plays a 
entral rolein modern so
iety, taking a variety of forms, from tele-phone and satellite 
ommuni
ation to storing and retriev-ing information on disk-drives. Error-
orre
ting 
odesare 
ommonly used in most methods of informationtransmission to 
ompensate for noise 
orrupting the dataduring transmission; they require the use of additional in-formation transmitted together with the data itself. Theper
entage of informative transmitted bits, determinesthe 
oding eÆ
ien
y and subsequentally the speed of
ommuni
ation 
hannels and the e�e
tive storage spa
eon hard-disks. In his seminal paper of 1948, Shannon [1℄derived the 
hannel 
apa
ity, providing bounds on the
ode-rate for whi
h 
odes, 
apable of a
hieving perfe
tretrieval for a given noise level, 
an be found. The sear
hfor eÆ
ient, pra
ti
al error-
orre
ting 
odes that satu-rate Shannon's bound resulted in several pra
ti
al 
odes,most of whi
h are still below Shannon's bound. Here wepropose a new approa
h based on insight gained from thestudy of Ising spin-systems with low-
onne
tivity multi-spin intera
tions. Adapting our method to Gallager'serror-
orre
ting 
odes [2℄ one obtains 
odes that nearlysaturate the limits set by Shannon.In a typi
al s
enario, a message 
omprising N binarybits is transmitted through a noisy 
ommuni
ation 
han-nel; the re
eived string di�ers from the transmitted onedue to noise whi
h may 
ip some bits. We identify the
ipping rate - f 2 [0 : 1℄ - in a binary symmetri
 
han-nel as the fra
tion of bits that 
hange their value from0 to 1 or from 1 to 0. We fo
us on this noise modelas it 
an be easily interpreted within the framework ofIsing spin systems; however, other noise types may alsobe 
onsidered, and may be more realisti
 in some s
e-narios. The re
eiver 
an 
orre
t the 
ipped bits only ifthe sour
e transmits M(f)>N bits; the ratio betweenthe original number of bits and those of the transmittedmessage R � N=M 
onstitutes the 
ode-rate for unbi-ased messages. Shannon [1℄ derived the 
hannel 
apa
ityand provided bounds on the maximal 
ode rate R
, fora given 
ip rate f and 
ode bit error probability pb, forwhi
h 
odes, 
apable of a
hieving perfe
t retrieval, exist.The maximal 
ode rate equals the 
hannel 
apa
ity andis given expli
itly [3℄ byR
 = (1�H2(f))=(1�H2(pb)) ; (1)

where H2(x) = �x log2(x) � (1� x) log2(1� x).Shannon's theory is non-
onstru
tive, and the manygood algorithms that have been introdu
ed over the years(e.g., BCH, Reed-Muller and Reed-Solomon 
odes, for areview see [4℄) fall short of saturating Shannon's bounds,although they may provide 
lose-to-optimal performan
ein spe
i�
 s
enarios. Even the performan
e of the 
el-ebrated turbo 
ode [5℄ is somewhat below Shannon'sbound.One error-
orre
ting 
ode whi
h re
ently be
ame pop-ular is the Gallager 
ode (and its variations) [2,6{8℄,whi
h was abandoned shortly after its introdu
tion dueto the limited 
omputational abilities of the time. Inthis method, representing a spe
ial 
ase of parity-
he
k
odes, the transmitted message 
omprises the originalmessage itself and additional bits, ea
h of whi
h is de-rived from the parity of a sum of 
ertain message-ve
torbits. The 
hoi
e of the message-ve
tor elements used forgenerating single 
ode-word bits is 
arried out a

ordingto a predetermined random set-up and may be repre-sented by a produ
t of a randomly generated matrix andthe message-ve
tor in a manner explained below. De
od-ing the re
eived message relies on iterative probabilisti
methods like belief propagation [6,9℄.It has been shown that by using Gallager-type methodsand spe
i�
 
hoi
es of the en
oding/de
oding matrix itis possible to improve the maximal pra
ti
ally a
hievable
ode-rate [6,8℄ although results are still somewhat belowShannon's 
apa
ity. The root of the problem is the in-evitable tradeo� between improving the 
ode's 
orre
tive
apabilities and the need for a pra
ti
al and reliable iter-ative de
oding pro
ess, guaranteed to 
onverge from anyinitial 
ondition (i.e., that will not require additional,typi
ally unavailable, information about the message it-self). This goal is a
hieved by understanding the physi
al
hara
teristi
s of the problem and devising a new methodbased on this insight. As Gallager-type methods form thebasis of our proposal we will now explain expli
itly theversion we employ - the MN 
ode [6℄.In the MN 
ode one 
onstru
ts two sparse matri
esA and B of dimensionalities M�N and M�M respe
-tively. The matrix A has K non-zero (unit) elementsper row and C(= KM=N) per 
olumn while B has L perrow/
olumn. The matrix B�1A is then used for en
odingthe message s1



t = B�1A s (mod 2) :The re
eived message 
omprises the transmitted ve
tor
orrupted by the noise ve
tor n: r = t + n (mod 2) :De
oding is 
arried out by employing the matrix B toobtain: z = B (t+n) = As+Bn (mod 2) ; and requiressolving the equation[A;B℄ � s0n0 � = z (mod 2) ;where s0 and n0 are the unknowns. This may be 
arriedout using methods of belief network de
oding [6,9℄, wherepseudo-posterior probabilities, for the de
oded messagebits being 0 or 1, are 
al
ulated by solving iteratively aset of equations for the 
onditional probabilities of the
odeword bits given the de
oded message and vi
e versa.For exa
t details of the method used and the equationthemselves see [6℄.Most studies of Gallager-type 
odes have been 
arriedout via methods of information theory (e.g., [6℄). The�rst link between a spe
ial 
ase of Gallager's method,where B = I the identity matrix, and the realm of physi-
al spin-systems was established by Sourlas [10℄ by map-ping the problem onto that of a Hamiltonian system,repla
ing the original Boolean variables by binary oneswhi
h are analogous to spins in Ising-type systems withmulti-spin intera
tions. For this simple 
ase the systemis des
ribed by the HamiltonianH = � Xhi1;i2:::iKi Ji1;i2;:::;iK ŝ0i1 ŝ0i2 :::ŝ0iK (2)where fŝ0ig are the binary dynami
al variables (�1),used in the de
oding pro
ess. The tensor Ji1;i2;:::;iK =�ŝi1 ŝi2 :::ŝiK with probabilities 1�f and f 
orrespond-ingly, represents the re
eived 
odeword 
orrupted bynoise during transmission, ŝ being the binary representa-tion of the original Boolean message ve
tor s; the 
hoi
eof indi
es i1; i2; :::; iK 
orresponds to the non-zero rowelements of the matrix A. Under a gauge transforma-tion this model is mapped onto an Ising spin systemwith ferromagneti
 bias; �nding the ground state of theHamiltonian is 
losely related to �nding the Bayes op-timal posterior under a 
ertain noise level [10℄. Thismapping onto Hamiltonian spin-systems, suggested bySourlas for highly 
onne
ted systems, was re
ently ex-tended to parti
ular forms of sparse matri
es A (whereB = I) as well as to 
ertain B matri
es [11℄. In thisextended framework, K and L represent the number ofmulti-spin intera
tions among the signal and noise 
om-ponents respe
tively.Our method uses the same stru
ture as the MN 
odesand builds on insight gained from the study of physi
alsystems with symmetri
 and asymmetri
 [12℄ multi-spinintera
tions and from examining a spe
ial 
ase of Gal-lager's method [10,11℄. These theoreti
al studies indi-
ate that one may obtain superior 
apabilities, in terms

of the a
hievable 
ode rate, by 
hoosing high K and Lvalues; however, they 
ome at the expense of poor de
od-ing performan
e as the 
orresponding basins of attra
tionshrink rapidly with the in
reasing K and L values, mak-ing it essential to have high initial overlap between theoriginal message and the dynami
al variables for the it-erative de
oding pro
ess to 
onverge su

essfully. Su
hinformation is 
learly unavailable in pra
ti
al s
enarios.One should emphasise that the basin of attra
tion shrinksdramati
ally. In the system suggested by Sourlas, for in-stan
e, the initial overlap (magnetisation in the physi
alsystem) m = 1=N PNi=1(2si � 1)(2s0i � 1) required inthe 
ase of K = 6 should be higher than 0:99 for a su
-
essful 
onvergen
e; this has been shown by numeri
alsimulations as well as by a mean-�eld 
al
ulation to bepresented elsewhere. On the other hand, highly robustiterative de
oding is obtained for low K and L valuesat the expense of sub-optimal 
apabilities (i.e., low endoverlap).The method presented here is based on 
onstru
tingthe matri
esA andB in a manner that 
orresponds to thegradual introdu
tion of higher 
onne
tivity sparse sub-matri
es, exploiting the ex
ellent 
onvergen
e propertiesof 
odes based on low K and L values with the superiorperforman
e of high-K 
odes. More spe
i�
ally, one aimsat starting with lowK and L values, in this 
aseK+L �3, so as to bring the system to high overlap values frompra
ti
ally any initial 
ondition; higher values of K andL, e.g. 3 < K + L � 5, may then be used for bringingthe system to a perfe
t overlap between the de
oded andthe original word.The pra
ti
al implementation of the en
oding is similarto that of the MN 
ode ex
ept that the 
omposed ma-trix used, [AjB℄, 
omprises randomly 
hosen sparse sub-matri
es of di�erent 
onne
tivities. The generated 
ode-word, 
onstru
ted by taking the parity of sums of mes-sage ve
tor bits sele
ted a

ording to the spe
i�
 
hoi
eof A and B, is then transmitted through the noisy 
han-nel. De
oding the 
orrupted 
odeword is 
arried out us-ing an iterative pro
ess identi
al to that of Ref. [6℄ and
an take two forms: a) A gradual introdu
tion of higher
onne
tivity sub-matrix 
omponents in the Hamiltoniansystem used for de
oding following the above des
ription,where end result at ea
h stage serves as an initial 
on-dition for the next. This is equivalent, from a physi
alpoint of view, to 
hanging the Hamiltonian as a fun
tionof time by gradually summing over more message bits inEq.(2). b) Using the 
omposed matri
es, in
luding a va-riety of sub-matri
es with di�erent 
onne
tivities, rightfrom the start. The latter, whi
h simply 
orrespond toa parti
ular 
onstru
tion of the matri
es A and B in theMN 
ode, has been used in most of our experiments dueto its simpli
ity, although the former has shown faster
onvergen
e at high noise levels. In both 
ases the ex-pli
it 
hoi
e of sites for generating a spe
i�
 
ode-word2



bit is 
arried out at random, in a similar fashion to mostGallager-type 
odes.The main question that should be addressed is the opti-mal 
hoi
e of sub-matrix 
onne
tivities. There are manypossibilities for 
hoosing K and L values for the di�erentstages and one should examine various possibilities beforearriving at the optimal 
on�guration. However, there area few guidelines one should follow: 1) Initial stages are
hara
terised by low K and L values; K values are 
ho-sen gradually higher, so as to support the 
orre
tion offaulty bits. 2) One should 
hoose the number of non-zero 
olumn elements as uniformly as possible, as thenumber of 
onne
tions per bit (spin) de�nes the 
orre
-tive input it re
eives (this is somewhat in 
ontrast to theapproa
h adopted for irregular Gallager 
odes in whi
h
olumn/row 
onne
tivity is taken from some distribution[7,8℄). 3) As in most of these systems both solutions, withm=�1, are equally attra
tive one should break the in-version symmetry. This may be a
hieved by adding someodd 
onne
tion values to the mainly even K+L valuesused initially; this assists in breaking the symmetry fromany initialisation of the iterative equations [6℄ with pra
-ti
ally no e�e
t on the basin of attra
tion. 4) To guar-antee the inversion of the matrix B, and sin
e noise bitshave no expli
it 
orrelation, we use a patterned stru
ture,Bi;k=Æi;k+Æi;k+5, for the B-submatri
es with L=2 andBi;k = Æi;k for L = 1. Other pra
ti
al points as well asa more detailed explanation of the physi
al insight lead-ing to the optimal 
hoi
e of 
onne
tion values and therelation to Sourlas's 
ode will be presented elsewhere.R N A K B L fN
 f1
 f
1=3 10000 N�N 1 N�3N 2 0.159 0.169 0.1743=4 N�N 3 3=4 N�3N 2 -0.1705=4 N�N 3 5=4 N�3N 11=4 30000 3=2 N�N 1 3=2 N�4N 2 0.204 0.210 0.2145N=2�N 3 N=2�4N 2 -0.2112N�N 3 2N�4N 11=5 36000 3N�N 1 3N�5N 2 0.235 0.239 0.24302N�N 3 2N�5N 1 -0.240TABLE I. The 
riti
al 
ip rates fN
 and f1
 obtained byemploying our method for various 
ode rates in 
omparison tothe maximal 
ip rate f
 provided by Shannon's bound. De-tails of the spe
i�
 ar
hite
tures used and their row/
olumn
onne
tivities are also provided.We 
on
lude this presentation with a demonstration ofthe method's 
apabilities for three di�erent 
ode-ratesR=1=3; 1=4 and 1=5. In ea
h of the 
ases we divided the
omposed matrix [AjB℄ to six sub-matri
es 
hara
terisedby spe
i�
 K and L values as explained in table 1; thedimensionalities of the full A and B matri
es are M�NandM�M respe
tively. Sub-matrix elements were 
hosenat random a

ording to the guidelines mentioned above.En
oding was 
arried out straightforwardly by using thematrix B�1A and the 
orrupted messages were de
oded

using the set of re
ursive equations of Ref. [6℄, using ran-dom initial 
onditions. In ea
h 
ase, T blo
ks of N -bitunbiased messages (where exa
tly 1=2 of the bits are 1)were sent through a noisy 
hannel of 
ip rate f (i.e., anexa
t fra
tion f of the 
odeword bits were 
ipped); bothbit and blo
k error-rates, denoted pb and pB respe
tively,were monitored. We performed at least T = 10000 tri-als runs for the smaller systems (N =10000; 12000) andT =1000�2000 runs for the larger ones (N=30000; 36000)for ea
h 
ip-rate value, starting from di�erent initial 
on-ditions. These were averaged to obtain the mean biterror-rate and the 
orresponding varian
e. In most ofour experiments we observed 
onvergen
e after less than100 iterations, ex
ept very 
lose to the 
riti
al 
ip rate.The main halting 
riterion we adopted relies on the sta-tionarity of the �rst N bits (i.e., the de
oded message)over a 
ertain number of iterations. The de
oding algo-rithm's 
omplexity is of O(N) as all matri
es are sparse.The inversion of the matrix B is 
arried out only on
eand requires O(1) operations due to the stru
ture 
hosen.
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/5FIG. 1. Bit-error rate pb as a fun
tion of the 
ip ratefor given 
ode-rates R = 1=3; 1=4 and 1=5. Results for ea
h
ode-rate appear as symbols adja
ent to a line representingShannon's theoreti
al bound; triangles and squares, representmean values obtained for small and large network sizes respe
-tively, 
orresponding to N=10000 and 30000 for R=1=3; 1=4,N=12000 and 36000 for R=1=5. Predi
ted 
ode-rate valuesin the N!1 limit appear as arrows on the x axis.In table 1 we present the typi
al ar
hite
tures used aswell as the maximal 
ip rate fN
 for whi
h not more thana single error-bit per blo
k have been observed on averagefor a parti
ular message length N , the predi
ted maxi-mal 
ip rate f1
 on
e �nite size e�e
ts have been 
onsid-ered (dis
ussed below) and Shannon's maximal 
ip ratef
 de�ned in Eq.(1). In all these 
ases one obtains, onaverage, perfe
t retrieval for noise rates that almost sat-urate Shannon's bound for the 
riti
al 
ip rate. Just for
omparison, the 
orresponding results reported in Ref.[8℄ for regular and irregular Gallager 
odes (R = 1=4),based on 10000 trials and N = 16000 report a 
riti
alvalue around f=0:160 in 
omparison to fN
 =0:204 andf1
 =0:210�0:211 reported here.3



Figure 1 shows results obtained for 
ode-rates R =1=3; 1=4 and 1=5 and various 
ip rates; results for ea
h
ode-rate appear as symbols adja
ent to a line represent-ing Shannon's theoreti
al bound for the given 
ode-rateand noise level. Triangles and squares, represent meanvalues obtained for small and large network sizes respe
-tively; varian
es are smaller than the symbol size. Onenotes the existen
e of �nite size e�e
ts, manifested in thedi�eren
e between the results obtained for di�erent sys-tem sizes. Predi
ted 
ode-rate values in the N!1 limit,derived below, are represented as arrows on the x axis.The results 
learly show that in all the 
ode-rates exam-ined our method 
omes very 
lose to saturating Shan-non's bound.
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FIG. 2. The blo
k magnetisations pro�le for R = 1=5,f = 0:236; 0:237 (solid and dashed lines respe
tively) andN = 12000; 36000, showing the sample magnetisation m vs.the fra
tion of the 
omplete set of trials. A total of 1000-10000trials (for larger and smaller systems respe
tively) were re-arranged in a des
ending order a

ording to their magneti-sation values. The fra
tion of perfe
tly retrieved blo
ks in-
reases with system size (thi
k lines). Inset - log-log plots ofmean 
onvergen
e times � for R = 1=3 and N = 10000 (4),R = 1=4, N = 10000 (2) and N = 30000 (�), R = 1=5 andN = 36000 (Æ). The f1
 values were 
al
ulated by �ttingexpressions of the form � / 1=(f1
 � f) through the data(dashed lines for the larger systems).The results shown so far are based on �nite-N simula-tion results. However, as Shannon's bound itself is basedon in�nitely long messages, one 
annot expe
t to sat-urate the bound 
ompletely for �nite-N messages. Toassess the 
riti
al 
ip rate a
hievable by our method inthe limit of in�nitely large systems, f1
 , we monitor two
riti
ality indi
ators: a) The dependen
e of the blo
k er-ror distribution on the system size - the transition fromperfe
t(pB(f) = 1) to no blo
k retrieval (pB(f) = 0), asa fun
tion of the 
ip-rate f , is expe
ted to be
ome astep fun
tion (at f1
 ) as N !1. If the per
entage ofperfe
tly retrieved blo
ks in the sample, for a given 
iprate f , in
reases (de
reases) with N one 
an dedu
e thatf <f1
 (or f >f1
 ). b) Convergen
e times as a fun
tionof f - 
onvergen
e times near 
riti
ality usually diverge

as 1=(f1
 � f); by monitoring average 
onvergen
e timesfor various f values and extrapolating one may dedu
ethe 
orresponding 
riti
al 
ip rate.In Fig.2 we ordered the samples obtained for R = 1=5,f=0:236; 0:237 (solid and dashed lines respe
tively) andN = 12000; 36000 a

ording to their magnetisation; re-sults with higher magnetisation appear on the left andthe x axis was normalised to represent fra
tions of the
omplete set of trials. One 
an easily see that the fra
-tion of perfe
tly retrieved blo
ks in
reases with systemsize (thi
k lines) indi
ating that f < f1
 . Repeatingthe same exer
ise for higher f values we obtained anestimate of f1
 reported in table 1. In the inset one�nds log-log plots of the mean 
onvergen
e times � forR=1=3; 1=4; 1=5 and di�erent N values, 
arried out onperfe
tly retrieved blo
ks with less than 2 error bits. Theoptimal �tting of expressions of the form � / 1=(f1
 �f)through the data provides another indi
ation for the f1
values, whi
h are 
onsistent with those obtained by the�rst method.To 
on
lude, we have shown that through a su

essive
hange in the 
onne
tion values, while keeping the 
on-ne
tivity low (� 5), one 
an boost the performan
e ofmatrix based error-
orre
ting 
odes, getting ever 
loserto saturating the theoreti
al bounds set by Shannon. It isquite plausible that the performan
e reported here maybe improved upon by �ne tuning the 
hoi
e of ar
hite
-ture, whi
h is 
urrently under way. Moreover, it is highlylikely that several ar
hite
tures will provide similar per-forman
e in the thermodynami
 limit; it would be worth-while to examine their �nite size behaviour above andbelow saturation whi
h is of great pra
ti
al signi�
an
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