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SUMMARY .

The technique of growing human leukaemic cells in
diffusion chambers was developed to enable chemicals to be
assessed for their ability to induce terminal
differentiation. Chambers were constructed using 0.45um
filters and contgined 150ul of serum-free HL-60 cells at a
density of 1x10" cells/ml. The chambers were implanted
into CBA/Ca mice and spontaneous terminal differentiation
of the cells to granulocytes was prevented by the use of
serum-free medium. HL-60 promyelocytic leukaemia cell
growth, in a lucite chamber with a Millipore filter, was
optimised by use of a lateral incision site. Under these
conditions there was an initial growth lag of 72 hours and
a logarithmic phase of growth for 96 hours; the cell
number reached a plateau after 168 hours of culture in

vivo.

The amount of drug in the plasma of the animals and in
chambers that had been implanted for 5 days, was
determined after a single ip injection of equitoxic doses
of N-methylformamide, N-ethylformamide, tetramethylurea,
N-dibutylformamide, N-tetramethylbutylformamide and
hexamethylenebisacetamide. Concentrations of both TMU and
HMBA were obtained in the plasma and in the chamber which
were pharmacologically effective for the induction of
differentiation of HL-60 cells in vitro, that is 12mM TMU
and 5mM HMBA. A 4 day regime of treatment of animals
implanted with chambers demonstrated that TMU and HMBA
induced terminal differentiation of 50% and 35%,

respectively, of the implanted HL-60 cells to
granulocyte-like cells, assessed by measurement of
functional and biochemical markers of maturity. None of

the other agents attained concentrations in the plasma
that were pharmacologically effective for the induction of
differentiation of the cells in vitro and were unable to
induce the terminal differentiation of the cells in wvivo.

Key Mords : Differentiation, diffusion chamber, in vivo
HL-60.
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We shall not cease from exploration,
And the end of all our exploring,
Will be to arrive where we started,

And know the place for the first time.

T.S. Elliot (1942).
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SECTION 1 INTROD ION

1.1.The Search for New Chemotherapeutic Strategies.

A number of__in vitro systems have been used to examine
the potential of a variety of agents to induce the
terminal differentiation of malignant cells. Few attempts
have been made to conduct such experiments under
conditions of appropriate drug pharmacokinetics_in vitro,
and fewer have utilised an_in vivo assay of drug-induced
differentiation. It is, therefore, still unclear whether
drug-induced differentiation is only an in vitro
phenomenon as it has only been tentatively suggested to
occur in vivo. The work presented in this thesis is the
development and characterisation of an_in vivo diffusion
chamber system and the study of terminal differentiation
of HL-60 promyelocytic leukaemia cells under conditions of
known drug pharmacokinetics to determine whether

differentiation can be induced in vivo.

The approach to the treatment of cancer involves a

20



multifaceted attack utilising different treatment
modalities including surgery, irradiation, chemotherapy
and immunotherapy. The first option, surgery, is only
applicable when the tumour is easily accessible but may
present a problem in ensuring that all the tumour cells
are removed during the operation. Radiotherapy has
produced good remissions in some cancers but is almost as
toxic to normal cells as malignant cells causing severe
side-effects including myelotoxicity. In addition,
radiotherapy is only successful in oxygenated tissues
where free radicals can form from oxygen and the centres
of many solid tumours are necrotic, éoorly vascularised
and hypoxic therefore containing a large number of

radiation-resistant cells (Prestayko, 1984).

Chemotherapy as an effective treatment for some forms of
malignant disease has gradually gained acceptance over the
past 40 years. The early discovery that the nitrogen
mustards could occassionally bring about regression of
lymphomas and leukaemias (Gilman & Philips, 1946) was the
starting point for the expansion of research into cancer
chemotherapy which has led to the development of many
different classes of anti-cancer chemicals. The ideal
cytotoxic drug would kill cancer cells selectively,
completely sparing the host tissues (McElwain, 1978).
Since drugs used in cancer chemotherapy interfere with the
biosynthesis of DNA, RNA and protein they are toxic to all

cells both normal and malignant (Prestayko, 1984). Their

21



apparently selective action depends on many different
factors among which are the dosage, timing and route of
administration, the high rate of cell 1loss from many
tumours (Iverson, 1967) and the capacity of some normal
tissues to proliferate more rapidly than the tumours and
thus repair drug-induced damage before the tumour can do

so (Baserga, 1965).

Chemotherapy has, however, improved the survival of
patients with a wide variety of malignancies, particularly
leukaemias (Catovsky, 1984), Hodgkins' and non-Hodgkins'
lymphoma (Longa & DeVita, 1984), ovarian and cervical
cancer (Sausville & Young, 1984), testicular cancer
(Williams & Stoter, 1984) and breast cancer (Loprinzi &
Carbonne, 1984). Unfortunately, only a few responses have
been achieved using chemotherapy for lung cancer (Hansen &
Rorth,1984), colorectal cancer (Smith & Goldberg, 1984)

and head and neak cancers (Taylor, 1984).

The use of combination chemotherapy has also frequently
been proved successful for some malignancies (Frei, 1972.,
Alexanian et al, 1972). Effective combinations, in terms

of therapeutic gain, can emerge from :

a)adequate manipulation of growth Xkinetic properties -
based on simultaneous or sequential treatment with drugs
that exert maximum lethal effects at different stages in

the cell cycle. For example, vincristine arrests cells in

22



mitosis and bleomycin kills cells optimally in mitosis.
Therefore, if vincristine was administered first to enrich
the fraction of cells in mitosis, and bleomycin was given
some time later when the mitotic index was increased then
the effects of bleomycin would be enhanced. This schedule
has been used as effective chemotherapy in the treatment

of some solid tumours (Spigel & Coltman, 1974).

b)selective use of drugs that elicit less than additive
toxic effects while providing at least additive
therapeutic effects. Skipper (1974) has shown that animal
models can be used as effective screening systems to

predict potentiation of toxic effects.

c)biological synergy- such as the clinically effective
synergistic pairs of vincristine and prednisolone,
melphelan and prednisolone and synergistic pairs noted in
experimental animal systems such as cyclophosphamide and

Cis-platinum, MeCCNU and CCNU (Goldin, 1973).

A fourth category exists in which miscellaneous
pharmacological properties are exploited, such as the
"rescue" effect elicited Dby citrovorum factor after

methotrexate therapy (Bertino et al, 1972).
Classical anti-tumour chemotherapy generally relies upon

cytodestruction as a means of removing the malignant cells

from the body but this also seriously damages any rapidly

23



proliferating normal cells and tissues, in particular the
bone marrow, causing leukopaenia, thrombocytopaenia and
anaemia, the lining of the gastrointestinal tract and the
basement cell membrane of the skin (Prestayko, 1984).
Alopecia occurs with many chemotherapeutic regimes but is
reversible on cessation of treatment. Other side-effects
include allergic responses, phlebitis, neurological,
pulmonary, hepatic and dermatological toxicity depending
on the drug or combination administered. Long term
complications include the destruction of the germ cells in
the gonads, skeletal alterations and the induction of new
tumours as many of the drugs used in cancer chemotherapy
appear to be carcinogenic themselves (Dorr & Fritz,

1980).

New concepts for cancer chemotherapy are now required
which do not involve general cytodestruction of all
proliferating cells if significant advances are to be made
in the treatment of the disease. One such approach would
be to increase the selectivity of the drugs for the
malignant cells. As early as 1904, it was proposed that
antibodies might somehow serve to deliver chemically
coupled toxic agents to particular tumour cells to produce
a "magic bullet"(cited by Ehrlich). The aim was to improve the
selectivity of cytotoxic anti-tumour drugs, targetting
their anti-tumour activity by 1linkage to a monoclonal
antibody. The immunotoxin should then kill target tumour

cells and no other cells with high specificity (Collier &
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Kaplan, 1984). Immunotoxic drugs have been produced by

conjugating monoclonal antibodies to cytotoxic drugs

including methotrexate (Garnett et al, 1983) and
daunomycin (Gallego et al, 1984) which are cytotoxic to

sarcoma cells expressing the antigen but not to cells of
other normal or tumour tissue (Baldwin, 1984). The design
of drug-antibody conjugates is still at an early stage of
development and research is being directed towards the
selection of appropriate cytotoxic agents and the nature
of the drug-antibody linkage with respect to the use of
biodegradable and non-biodegradable bonds (Baldwin, 1984).
However, different monoclonals would be required for
different tumours and as tumours tend to be heterogenous,
not all the malignant cells might express the required
antigen (Hepner, 1984). There are, therefore, still many
problems to overcome before monoclonal-drug complexes may

be used routinely for therapy (Davis & Rao, 1984).

It has been suggested that the development of cancer
results from a breakdown in immunological surveillance
(Burnett, 1970, 1972). There are, therefore, several
objectives in immunotherapy including : a) to prevent or
reverse the immune supression caused by other modes of
cancer therapy, b)to restore immune responsiveness
compromised by the disease, c¢) to enhance immunity to the
tumour (Benjamini et al, 1983). Because chemotherapeutic
agents caused such undesirable side effects, it was

proposed that biological modulators, cytokines, be used in
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the treatment of cancer instead of cytotoxic agents
(Balkwill, 1987). The first of these, the interferons,
are a family of proteins produced by somatic cells in
response to a variety of stimuli, especially viral
infection. There are 3 types of interferon, alpha, beta,
gamma, and these are involved in antiviral and
immunoregulatory activity and are able to activate NK
cells so as to stimulate them to become cytotoxic and lyse
a variety of target cells, including tumour cells (Ortaldo
et al, 1983). The interferons have entered clinical
trials against infections such as hepatitis B virus and
certain respiratory viruses (Stiehm et al, 1982) and also
against some leukaemias including CML and hairy cell
leukaemia, and carcinomas (Balkwill, 1987). Promising
results have been obtained against the viral infections
but Phase 1II trials against gliomas, breast cancers, AML
and CML have shown very few responses (Weiss et al, 1984)
and it has been concluded that the alpha and beta
interferons have no significant anti-tumour activity.
Gamma interferon was shown to be more potent against
certain tumours in experimental animals and also has more
potent effects on cells in the immune system but has yet

to be tested in the clinics (Fleischmann et al, 1984). A

major drawback with the interferons is that they produce
side-effects, although they are natural products, the most
common being a flu-like syndrome including fever, loss of
appetite and painful joints - suggesting that some of the

symptoms of a viral infection may be due to interferons
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produced by the body's defences (Quesada & Gutterman,

1983).

More recently, another cytokine, tumour necrosis factor
(TNF), has been proposed for anti-tumour therapy. TNFs'
are secreted by macrophages and have cytolytic/cytotoxic
effects in tumour cells in culture and produce
haemorrhagic necrosis in tumours in experimental animals
(Fung et al, 1985., Tsjimoto et al, 1985). The TNFs' can
either kill cancer cells directly or can stimulate immune
cells to kill them. They also induce enhanced blood
vessel permeability and fluid loss and thus can kill solid
tumours by cutting off or markedly decreasing their blood
supply (Balkwill, 1987). Clinical trials using TNF are

currently in progress.

A third cytokine, interleukin 2 (IL-2), produced by T
lymphocytes is able to stimulate the proliferation of T
cells and also stimulates them to become NK cells which
are then able to recognise and distroy cancer cells
without damaging normal cells. IL-2 has recently entered
clinical trials in patients with advanced cancer
(Rosenberg et al, 1987., West et al, 1987). However,
severe side effects, particularly fluid retention and
cardiopulmonary stress were commonly observed and it was
concluded that further attempts must be made to increase
the therapeutic efficacy of this treatment and decrease

its toxicity.
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An alternative concept for cancer chemotherapy is the

induction of the differentiation of the malignant cells.

. _Differentiation in Neoplasia

Neoplasia has been suggested to be a disease of
aberrant cell differentiation in which the malignant cells
have somehow been blocked at an immature stage but have
retained the ability to proliferate continuously (Markert,
1968). He showed there were three characteristics that
were important for malignancy : persistent cell division,
adhesive properties of the cell membrane which would allow
the cell to metastasise and specific patterns of cellular
metabolism. Neoplasms were therefore produced when these
various normal cell properties were abnormally combined or
were in excess. Proliferation of normal stem cells with
an infinite life-span is usually followed by
differentiation of some of the daughter cells to a more
mature phenotype which are incapable of further cell
division and have a finite life-span, with a controlled
balance between the differentiation and self-renewal of
the stem cell (Buick & Pollak, 1984). It has been

suggested that the origin and evolution of malignancy
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required genetic changes that uncoupled the normal balance
between proliferation and differentiation, and
subsequently suggested that such malignancy was reversible
(Sachs, 1985). Evidence has been obtained with various
types of tumours including sarcomas (Sachs, 1978), myeloid
leukaemias (Sachs, 1978) and teratocarcinomas (Stewart &
Mintz, 1981) that malignant cells have not lost the genes
which control normal growth and differentiation. This
preservation of these normal genes was first shown in
sarcomas by the finding that it was possible to reverse in
cultured cells the malignant to non-malignant phenotype
with a high frequency in cloned sarcoma cells (Rabinowitz
& Sachs, 1968). It was suggested that normal cells
contain potent tumour suppressor genes which are either
missing or not expressed in malignant cells. The
relationship between apparently dominant transforming
oncogenes and suppressor genes has been discussed by
Stanbridge (1985). Oncogenes are thought to arise from
normal cellular genes (proto-oncogenes) by mutation,
chromosome translocation or gene amplification which
results in their continuous expression. Generally, it is
thouéht that oncogenes have roles in the maintenance of
cell proliferation in the malignant state - paralleling
the functions of the proto-oncogenes in normal cell
proliferation. The erb-B oncogene encodes a protein
resembling a part of the EGF receptor (Downward et al,
1984). Likewise, fps, abl and src oncogenes encode

protein tyrosine kinases (Hunter & Cooper, 1985) and the
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product of the sis oncogene is homologous to one chain of
PDGF (Doolittle et al, 1983). These oncogenes are able to
transform cells which results in sustained proliferation
in vitro and the ability to transform cells in vivo.
However, a single activated oncogene does not appear to be
sufficient for complete transformation of normal cells to

malignant cells. Land et al (1983) have demonstrated that

cooperation between the myc and ras oncogenes is

sufficient to convert normal cells to malignant cells.

It has also been suggested that "oncogeny is blocked
ontogeny" which means that cancers are caused when the
cells are arrested in the foetal-embryonic stages of
development (Potter et al, 1968). Blocked ontogeny would
result in continued proliferation of the stem cells and
daughter cells with no differentiation, which would result
in a neoplasm. Interestingly many cancer cells do, in
fact, possess certain characteristics of foetal-embryonic
cells including isoenzymes and embryonic antigens.
Alkaline phosphatase has been found to be present in
carcinomas of the genital tract and stomach and is present
in normal tissue in the placenta; glutaminase has been
found to be present in AH-130 and 2C-18 hepatomas and in
mammary carcinomas and is normally located in foetal liver
(Stein et al, 1978). Carcinoembryonic antigen has been
found to be associated with cell membranes in foetal and
tumour tissue of the digestive tract and the antigen

alpha-fetoprotein was found to be present in 60% of
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hepatocarcinomas and 70% of teratocarcinomas and is
produced normally by the foetal liver during development

(Strong, 1980).

The reversal of malignancy is, therefore, a viable
approach to the treatment of cancer as tumour cells both
in vitro and in vivo have been induced to differentiate

with a variety of agents as will now be described.

1.2.1Induction of tumour cell differentiation in vitro

Differentiation has been induced in several different

malignant cell lines_ in vitro. Human colon carcinoma

(PLD-1) cells have been induced to differentiate to a more
mature phenotype by N,N-dimethylformamide (Christensen et
al, 1985). These cultures were examined ultrastructurally
using electron microscopy and differentiation was assessed
by an increased frequency of desmosomes; a direct
correlation i