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First Year Qualifying Report: Neural Networks for ExtratingWind Vetors from Satellite Satterometer Data 2AbstratThe ERS-1 Satellite was launhed in July 1991 by the European Spae Ageny into a polar orbitat about 800 km, arrying a C-band satterometer. A satterometer measures the amount of radarbak satter generated by small ripples on the oean surfae indued by instantaneous loal winds.Operational methods that extrat wind vetors from satellite satterometer data are based on theloal inversion of a forward model, mapping satterometer observations to wind vetors, by theminimisation of a ost funtion in the satterometer measurement spae.This report uses mixture density networks, a prinipled method for modelling onditional proba-bility density funtions, to model the joint probability distribution of the wind vetors given thesatellite satterometer measurements in a single ell (the `inverse' problem). The omplexity ofthe mapping and the struture of the onditional probability density funtion are investigated byvarying the number of units in the hidden layer of the multi-layer pereptron and the number ofkernels in the Gaussian mixture model of the mixture density network respetively. The optimalmodel for networks trained per trae has twenty hidden units and four kernels. Further inves-tigation shows that models trained with inidene angle as an input have results omparable tothose models trained by trae. A hybrid mixture density network that inorporates geophysialknowledge of the problem on�rms other results that the onditional probability distribution isdominantly bimodal.The wind retrieval results improve on previous work at Aston, but do not math other neuralnetwork tehniques that use spatial information in the inputs, whih is to be expeted given theambiguity of the inverse problem. Current work uses the loal inverse model for autonomousambiguity removal in a prinipled Bayesian framework. Future diretions in whih these modelsmay be improved are given.
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First Year Qualifying Report: Neural Networks for ExtratingWind Vetors from Satellite Satterometer Data 71 IntrodutionThis report investigates a partiular inverse modelling problem within the �eld of the geophysialsienes. It is one of inferring wind vetors that desribe wind speed and diretion over the oeansurfae, from satellite satterometer data (measured from the environment), and aims to solve thisproblem using advaned statistial models alled neural networks.In this setion the work of other authors in the area is introdued along with a general bakgroundto satellite satterometry.1.1 The geophysial problemNumerial Weather Predition (NWP) models are tools used by oeanographers, meterologists,geophysiists and many other sientists to foreast the future state of the atmosphere. Initial ondi-tions for the NWP model are important, as they are essential for aurate preditions. The initialondition of the NWP model is the urrent state of the atmosphere desribed by the parametersof the model inluding wind speed and wind diretion. Depending on the ontext, wind vetorsmay be de�ned in polar oordinates (s; �) or Cartesian oordinates (u; v). The wind vetors areinferred, by an inverse model, from satterometer data olleted from spae borne satellites. Suhsatterometers provide fast and aurate global overage of the world's oeans, providing an upto date `piture' of the urrent state of the winds over the oean. The performane of the NWPmodel is then dependent on the quality of the initial onditions whih are in turn dependent onthe quality of the model used to infer the model parameters, whih depends on the quality of themeasurements olleted by the spae borne satterometers. Therefore new or improved methodsfor solving the inverse problem are of interest to a wide range of sientists and add value to thequality of weather foreasts.1.2 Measurement aquisitionThe ERS-1 Satellite was launhed in July 1991 by the European Spae Ageny into a polar orbitat about 800 km, arrying a C-band satterometer. The satterometer has a mirowave radaroperating at 5:3 GHz, and measures the amount of bak satter generated by small ripples on theoean surfae of about 5 m wavelength (Robinson, 1985). The satterometer has three independentantenna whih point, on a horizontal plane, in three diretions, 45Æ, 90Æ, 135Æ, with respet to thesatellite propagation and are referred to as fore, mid and aft beam antennae respetively. Thesatellite samples a swathe of oean surfae approximately 500 km by 500 km. This swathe isdivided into nineteen traks, where eah trak is approximately 25 km wide. Eah measurementell is approximately 50 km by 50 km and so there is some overlap between adjaent traks. Eahtrak is identi�ed by the inidene angle of the mid beam with respet to the loal vertial, whihvaries from 18Æ to 45Æ, and is numbered from 1 to 19 respetively (see Figure 1). The odd numberedtraks are referred to as traes, whih are identi�ed as trae 0 to trae 9 where trae 0 is the innermost trae with respet to the satellite (has the smallest inidene angle). As the satellite passesover the oean surfae, eah ell is illuminated by the footprint of eah antenna; fore, mid andaft beam respetively, and a measurement vetor for eah ell is olleted, (�of ; �om; �oa). This isreferred to as the normalised radar ross subsetion, denoted by �o and has units of deibels.
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Figure 1: Relationship of the ERS-1 satellite antennas and the oean surfae. For simpliity,only nine non-overlapping satellite traks are shown.1.3 BakgroundThere is a unique set of wind vetors, alled the noisy ambiguity set, whih is identi�able froma single satterometer measurement. This set shows an inverse mapping exists and is multi-valued (Long and Mendel, 1991).Muh e�ort has been applied to understanding the satterometer measurement spae. An empir-ial forward model (alled the Geophysial Transfer Funtion (GTF)) has been developed thatdesribes the mapping from wind speed and diretion to the satterometer spae. The �rst model,Cmod2, was alibrated by the RENE-91 ampaign of the oast of Norway (OÆler, 1994). TheGTF has been further alibrated to the now operational model Cmod4 (Sto�elen and Anderson,1997b).Sto�elen and Anderson (1997) show that satterometer measurements lie lose to a three di-mensional manifold de�ned by Cmod4 in measurement spae, and are largely dependent on twogeophysial parameters, wind speed and diretion. In general the measurements lie within 0:2 dBof the manifold (orresponding to an unertainty in wind vetor rms error of 0:5 ms�1), whih islose to the instrumental measurement noise level.Ambiguity in wind diretion arises from noise on the observation and it beomes diÆult to distin-guish if winds are blowing toward or away from the antenna. This is illustrated in Figure 2, a skethof a two dimensional slie through the manifold de�ned by Cmod4 at a roughly onstant speed.If the observations were noiseless then they would fall on the surfae of the manifold, somewhereon the solid blak line. The areas of ambiguity would only exist where the blak lines rossed fora few wind diretions. Now onsider adding noise to the observation. The observation is plaedsomewhere near the surfae of the manifold in the gray area. Theoretially a noisy observationan ome from one of the two surfaes of the manifold to whih it is normal to. Thus, thereis no way to distinguish whih is the orret solution, and it follows that there are at least twopossible solutions for the wind diretion for that observation. Any method of inversion will havemulti-valued solutions for wind diretion given a single observation.
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modelFigure 2: A two dimensional sketh of the satterometer measurement spae. The two dimen-sional slie is taken through the measurement manifold at onstant wind speed. Fora noisy observation there are at least two solutions in wind diretion.Most inversion methods whih extrat wind vetors from satterometer data are based on loalinversions of a GTF. These methods invert the GTF by �nding a triplet on the measurementmanifold that is losest to the observed measurement triplet by minimising some ost funtionthat desribes the distane between the observed and approximated measurements (Sto�elen andAnderson, 1997). Following inversion, the `best' solutions are hosen by omparison to a NWPbakground wind �eld. A heuristi �lter is then applied over the wind �eld to smooth and re-move non-geophysial strutures within the wind �eld (Sto�elen and Anderson, 1997a). Thesemethods suessfully invert the measurements and show that satterometer measurements anprovide higher resolution wind �elds than those generated at the European Centre for Mediumrange Weather Forasting (Emwf). These methods are not autonomous sine they rely on NWPwinds for seletion of the initial wind �elds.Thiria et al. (1993) used neural networks to model wind diretion and speed diretly from sim-ulated satterometer data. The model onsisted of two neural networks. One network modelledwind speed, the other, a lassi�ation network with thirty six bins representing ten degree inter-vals, modelled wind diretion by interpreting the outputs of eah bin as probability. The inputs tothe neural network took neighbourhood information from the eight surrounding ells of a nine bynine grid, where the entre ell was the measurement of interest. This was found to improve theperformane by seventeen perent, showing that a spatial ontext may well be an important onsid-eration in the inverse model. Another interpretation of this improvement is that this on�gurationmay provide additional wind diretion disambiguation skill to the network.The network for modelling wind diretion has inputs of spatial information (the same as those usedfor the wind speed network) and the wind speed estimate. Wind speed as an input improves theposition of the solution on the measurement manifold (the shape of Figure 2 is strongly dependenton wind speed). Taking speed as an additional input was found to improve performane of diretionestimation. Simulated data was used beause ERS-1 was not fully operational and the resultsshowed neural networks to be a promising avenue of investigation for a solution to this inverseproblem.Cornford et al. (1997) applied a feed forward neural network to model wind speed and a mixturedensity network (see setion 2.1) with kernels of irular normal densities (Bishop and Nabney,1996) to model the full onditional probability density of the wind diretion given the satterometermeasurements, �o. Two on�gurations of mixture density networks were onsidered for modelling



First Year Qualifying Report: Neural Networks for ExtratingWind Vetors from Satellite Satterometer Data 10wind diretion. In the �rst on�guration the kernels were free to move, while in the seond theentres and varianes of the kernels were �xed. A ommittee of the diretion networks (made upof members from the two on�gurations just mentioned) was also onsidered. Additional to thesatterometer triplet measurement (�of ; �om; �oa), inidene angle was also inluded as an input tothe networks. The wind speed model performed within the designed spei�ation of the instrumentof 2 ms�1, the results being omparable to the inverted Cmod4 model (Sto�elen and Anderson,1997), although the model had some diÆulty in learning the transfer funtion at high and lowwind speeds. For wind diretion, the models learnt the inherent ambiguity in the problem, but didnot perform as well as the inverted Cmod4 model. However, these results are enouraging, for theommittee of networks the solution for diretion (to within 20Æ) was orret roughly 75% of thetime when onsidering the two most likely solutions. Ambiguity removal was not addressed in thiswork.Following the methods of Thiria et al. (1993), Rihaume et al. (1998) ontinued to address theinverse problem by training the networks using data olleted from the ERS-1 satellite. There is adediated transfer funtion for wind speed and wind diretion for eah trae. The results reportedshow performane to be better than the methods proposed by wind retrieval systems based on theCmod4 GTF. Ambiguity removal is ahieved by using a NWP bakground wind to initialise thesystem, and then applying a three by three ell spatial �lter over the wind �eld to minimise theglobal wind variane within the spatial �lter. The results show wind �elds that are onsistent, andompare favourably wind �elds retrieved from the same measurements by the European Centre forMedium range Weather Forasting.1.4 The NEUROSAT projet at the Neural ComputingResearh Group (NCRG)The Neurosat projet is onerned with applying neural network approahes to problems insatellite remote sensing to extrat wind vetors from satellite satterometer measurements takenover the oean. There are three distint areas of researh, although the boundaries are not distint:� Solving the forward model, the mapping of (u; v)! �o, by building the probabilisti modelP (�o j u; v).� Solving the inverse model, the mapping of �o ! (u; v), by building the probabilisti modelP (u; v j �o).� Autonomous ambiguity removal. Prediting wind �elds without referene to NWP modelwinds. Both heuristi and Bayesian methods are applied to this problem.This report ontributes towards the Neurosat projet by investigating the feasibility of buildingthe inverse model by using the mixture density network framework of Bishop (1994). GuillaumeRamage, a fellow researh student, has investigated the forward model (Ramage, 1998). DanCornford and Ian Nabney oversee the projet, and have written several publiations about mod-elling wind speed/diretion and generating wind priors. For further information see Cornford andNabney (1998)11Available from http://www.nrg.aston.a.uk/Papers/



First Year Qualifying Report: Neural Networks for ExtratingWind Vetors from Satellite Satterometer Data 111.5 The aims of this researh projetProbabilisti models provide a general model for unertainty in the natural world. Our aim is tobuild a loal (that is, for a 50 km by 50 km ell in a trae) probability model that desribes theprobability of a set of wind vetor omponents, (u; v), given a satellite satterometer observation,�o, expressed as P (u; v j�o). In geophysial terms this is alled an inverse model. The probabilitymodel is implemented using a Mixture Density Network (MDN) framework, whih provides aprinipled method for modelling onditional probabilities (Bishop, 1994). Furthermore, a hybridMDN will be developed that inorporates the geophysial knowledge inherent in the problem,namely the relationship between ambiguous wind diretions. This is ahieved by �xing the relativeambiguous wind diretions within the MDN framework.Mixture density networks failitate the investigation of omplexity of the mapping from satterom-eter data to wind vetor omponent spae (�o ! (u; v)) and the omplexity of the onditional jointprobability distribution (P (u; v j �o)) itself. This investigation attempts to answer the followingquestions:� How diÆult is it to model speed and diretion simultaneously by diretly mapping to thewind omponent spae?� Can the inidene angle be used as input to the MDN? That is do models trained over alltraks of the swathe perform as well as those models trained on eah trak within the swathe(and do not take inident angle as an input)?� Is the onditional probability distribution of the Cartesian wind vetors, (u; v), bimodal ormore omplex?� Is the noise on the Cartesian wind vetor omponents Gaussian?� How well do the hybrid MDN models ompare with standard MDN models of similar om-plexity?1.6 Report outlineIn this setion, the introdution to the �eld has been desribed, and the aims of this projet setout.In Setion 2 the reader is introdued to the mixture density network, and the tehnial details ofits onstrution. The data pre-proessing is desribed before the experimental details are outlined.The results of the experiments are presented and disussed with referene to summary measuresused within the meteorologial ommunity.In Setion 3 the results are analysed and disussed with referene to the omplexity of the mapping,and the onditional probability distribution. The results are then ompared with other publishedresults in the �eld.Finally, in Setion 4 the onlusions of this projet are presented. On-going work is desribedfollowed by potential future work whih indiates how the models might be improved.



First Year Qualifying Report: Neural Networks for ExtratingWind Vetors from Satellite Satterometer Data 122 Methods and resultsIn this setion the methods and results of experiments to build an inverse model that maps the satel-lite satterometer data diretly to wind vetor omponent spae are presented. The models employthe mixture density network framework (and inludes a hybrid mixture density network spei�-ally designed to model the diretional ambiguity), whih is prinipled method to model ompliatedonditional probability density funtions.2.1 Theory of mixture density networksMixture Density Networks (MDNs) provide a framework for modelling onditional probabilitydensity funtions, denoted p(tjx) (Bishop, 1994; Bishop, 1995). The distribution of the outputs, t,is desribed by a parametri model whose parameters are determined by the output of a neuralnetwork, whih takes x as its inputs. The general model is desribed by the equationsp(tjx) = MXj=1 �j(x)�j(tjx) (1)and MXj=1 �j(x) = 1: (2)Here �j(x) represents the mixing oeÆients (whih depend on x), �j(tjx) are the kernel distribu-tions of the mixture model (whose parameters also depend on x), and M is the number of kernelsin the mixture model. There are various hoies available for the kernel funtions, but for thepurposes of this report the hoie has been restrited to spherial Gaussians of the form:�j(tjx) = 1(2�) 2�j (xn) exp��ktn � �j(xn)k22�2j (xn) �; (3)where  is the dimensionality of the target spae t. This is a valid restrition beause in priniplea Gaussian Mixture Model (Gmm) with suÆiently many kernels of the type given by (3) anapproximate arbitrarily losely a density funtion of any omplexity providing the parametersare hosen orretly (MLahlan and Bashford, 1988). It follows then that for any given valueof x, the mixture model (1) an model the onditional density funtion p(tjx). To ahieve thisthe parameters of the mixture model2 are taken to be general ontinuous funtions of x. Thesefuntions are modelled by the outputs of a onventional neural network that takes x as its input.It is this ombination of a Gmm whose parameters are dependent on the output ofa feed forwardneural network that takes x as its inputs that is referred to as a Mixture Density Network (MDN)and is represented shematially in Figure 3.By hoosing enough kernels in the mixture model and a neural network with suÆiently manyhidden units the MDN an approximate as losely as desired any onditional density, p(tjx)(Bishop, 1994). The neural network element of the MDN is implemented with a standard Multi-Layer Pereptron (MLP) with single hidden layer of tanh units and an output layer of linear units.The output vetor from the MLP, Z, holds the parameters that the de�ne the Gaussian mixture2Choosing a spherial Gaussian kernel determines the parameters to be the mixing oeÆients and the varianesand entres (or means) of the kernel funtions.



First Year Qualifying Report: Neural Networks for ExtratingWind Vetors from Satellite Satterometer Data 13model. A single row of the parameter vetor, for the nth pattern, takes the following form:[�1;n; �2;n; � � � ; �j;n; � � � ; �M;n| {z }M mixing oeÆients ;�11;n; �12;n; � � � ; �1;n| {z }1st kernel entre ; � � � ; �j1;n; �j2;n; � � � ; �j;n| {z }jth kernel entre ; � � � ;�M1;n; �M2;n; � � � ; �M;n| {z }Mth kernel entre ; � � � ;�21;n; �22;n; � � � ; �2j;n; � � � ; �2M;n| {z }M widths ℄: (4)Where the total number of outputs from the MLP is ( + 2) �M , as ompared with the usual outputs for a MLP network used in the onventional manner. In the style of Bishop (1994)outputs of the MLP are denoted by zi. These outputs undergo some transformations to satisfythe onstraints of the mixture model. The �rst onstraint is thatMXj=1 �(x) = 1 (5)and 0 6 �(x) 6 1 for j = 1; : : : ;M: (6)The outputs of the MLP whih orrespond to the mixing oeÆients, z�j , are onstrained usingthe `softmax' funtion: �j = exp(z�j )PMi=1 exp(z�i ) : (7)This mapping ensures that the mixing oeÆients always sum to unity. The variane of the kernelrepresents a sale parameter and always takes a positive value. The variane parameters of thekernels are represented by exponentials of the orresponding outputs of the MLP, z�j :�2i = exp(z�j ): (8)The entres of the Gaussians represent a loation in the target spae and an take any value withinthat spae. They are therefore taken diretly from the outputs from the MLP, z�jk :�jk = z�jk (9)
x
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Figure 3: The struture of a Mixture Density Network. The inputs x are feed through a neuralnetwork. The outputs of the neural network, Z, de�ne the parameters of the Gmm



First Year Qualifying Report: Neural Networks for ExtratingWind Vetors from Satellite Satterometer Data 14In order to optimise the parameters in a MDN, an error funtion is required that provides anindiation of how well the model represents the underlying generating funtion of the training data.The error funtion of the mixture density network is motivated from the priniple of maximumlikelihood (Bishop, 1995). The likelihood of the training data set, fx; tg, may be written as:L =Yn p(xn; tn)=Yn p(tnjxn)p(xn); (10)where the assumption has been made that eah data point has been drawn independently fromthe same distribution, and so the likelihood is a produt of probabilities. Generally one wishesto maximise the likelihood funtion. However, in pratie, it is usual to minimise the negativelogarithm of the likelihood funtion (termed the negative log likelihood). These are equivalentproedures, sine the negative log likelihood is a monotoni funtion. The error funtion E isde�ned as the negative log likelihood:E = � lnL = �Xn ln p(tnjxn)�Xn p(xn): (11)The seond term in (11) is onstant beause it is independent of the network parameters and anbe removed from the error funtion. The error funtion beomes:E = �Xn ln p(tnjxn): (12)Comparing (12) with (1), we substitute (1) into (12) and derive the negative log likelihood errorfuntion for the mixture density network:E = �Xn ln� MXj=1 �j(xn)�j(tnjxn)�: (13)In order to minimise the error funtion the derivatives of the error E with respet to the networkweights must be alulated. Providing that the derivatives an be omputed with respet to theoutput of the neural network, the errors at the network inputs may be alulated using the bak-propagation proedure (Bishop, 1995). By �rst de�ning the posterior probability of the jth kernel,using Bayes theorem: �j(x; t) = �j�jPml=1 �l�l (14)the analysis of the error derivatives with respet to the network outputs is simpli�ed. The ompu-tation of the error dervivative is further simpli�ed by onsidering the error derivatiave with respetto eah training pattern, n. The total error, E, is de�ned as a sumation of the error, En, for eahtraining pattern: E = NXn=1En; (15)where En = � ln� mXj=1 �j(xn)�j(tnjxn)�: (16)



First Year Qualifying Report: Neural Networks for ExtratingWind Vetors from Satellite Satterometer Data 15Eah of the derivatives of En are onsidered with respet to the outputs of the networks and theirrespetive labels for the mixing oeÆients, z�j , variane parameters, z�j and entres or positionparameters z�jk. The derivatives are as follows:�En�z�j = �j � �j ; (17)�En�z�j = ��j2 �ktn � �jk2�2j � �; (18)�En�z�jk = �j��jk � tk�2j �; (19)where a full derivation is given in Appendix A.2.2 Mixture density network implementationThis algorithm is onveniently implemented in the Netlab3 toolbox for Matlab. The followingtoolbox funtions are of interest to the readermdn reates a data struture to model a MDN. This struture om-prises of the feed forward network struture (an MLP) and astruture for the mixture model parameters.mdninit initialises the weights of the network. Uses the target data t toinitialise the biases for the output units of the network after ini-tialising the other weights randomly with a Gaussian prior. Thebiases are initialised by the parameters of a model of the unondi-tional density of t. These parameters are omputed using tool boxfuntion gmminit, whih uses the k-means algorithm to omputethe parameters of the unonditional model of t.mdnfwd forward propagates the inputs through the model. The output isan array of strutures ontaining a mixture model for eah inputpattern.mdnerr omputes the error of the model for a set of inputs and targets.mdngrad omputes the error gradient of the model using the results of (17),(18) and (19) and bak propagating these results through the net-work using the tool box funtion mlpbkpmdnpak/unpak paks the weights of the network into a vetor: this is required touse the optimisation routines.sg implementation of the saled onjugate gradients algorithm, whihis a general purpose optimisation algorithm.All the MDNs trained in this projet were optimised using the Saled Conjugate Gardient (SCG)algorithm. A demonstration programme demmdn1 is available from the web site whih gives aworked example of training a MDN on the `toy problem' desribed by Bishop (1994).3Available from http://www.nrg.aston.a.uk/netlab/



First Year Qualifying Report: Neural Networks for ExtratingWind Vetors from Satellite Satterometer Data 162.2.1 Training mixture density networks with `fast mdn'Initial experiments took some time to train (between a few days to one week depending on theomputer) and so some time was spent during this projet developing a fast mdn Netlab im-plementation of MDNs. The fous of this work was re-engineering the omputation of the errorderivatives with respet to the neural network outputs, so that the omputation was arried outin parameter spae (4). The neessary expressions for the derivatives are ontained in AppendixA. The details of the software re-engineering are given in Evans (1998)4. In summary the trainingtime is dereased by a fator of sixty for the example provided in the tehnial report. The inversemodel training time dereased from a few days to a few hours for networks without inidene angleas input. Dereased training time means that problems with larger data sets an be trained ina realisti time frame. For this projet it was also possible to train networks that take inideneangle as an input and have a training data set size of ten thousand examples.2.2.2 Putting mixture density networks into a geophysial ontextThe aim of this subsetion is to show how aMDN may be employed to model the inverse mappingfrom satterometer data, �o, diretly to the wind vetor omponent spae, (u; v). In Subsetion2.1 the inputs and targets of the MDN are labelled as x and t respetively. In the ontextof this appliation, eah input pattern for the MDN, x, will be satterometer data (the triplet(�of ; �om; �oa)), or satterometer data and inidene angle (the input vetor (�0f ; �0m; �0a; �)) if theMDN is being trained over all traes. Modelling the wind vetor omponents diretly impliesthat the targets of the MDN, t, are the Cartesian wind vetor omponents (u; v). The generaldesription of the MDN, (1), is then re-expressed using geophysial parameters for a partiularwind vetor omponent as p(u; vj�o) = MXj=1 �j(�o)�j(u; v j �o): (20)This projet uses data sets generated from real world proesses, and so assumptions made in themodelling proess need to be validated. There are three main assumptions made about the dataset in our approah:� The noise on the targets in (u; v) spae is Gaussian and spherially symmetri.� The theory in Subsetion 2.1 assumes that the inputs, x, are noiseless. It is therefore assumedthat the inputs, �o, are noiseless. This a reasonable assumption based on the quality ofthe �o measurements olleted from the ERS-1 satellite (measurements are within 0:2dbof the Cmod4 manifold, whih orresponds to an unertainty in wind vetor rms error of0:5ms�1) (Sto�elen and Anderson, 1997) when ompared to the errors on numerial weatherpredition target winds.� For omputation of the error funtion (13) it is assumed that all data is independently drawnfrom the same distribution. The seletion of the data ensures that this ondition is met.2.3 Data pre-proessingBefore training the MDN the data was pre-proessed to reate training, validation and test datasets. A data set omprises of pairs of input and target patterns.4Available from http://www.nrg.aston.a.uk/Papers/



First Year Qualifying Report: Neural Networks for ExtratingWind Vetors from Satellite Satterometer Data 172.3.1 Data desriptionThe input data, �o, is supplied by the European Spae Ageny (ESA), and is labelled by longi-tude, latitude and time. The data is then proessed at Ifremer where quality ontrol is applied(inluding sea ie mask �lter to remove observations taken over sea ie) to remove low quality ob-servations. The target data is omputed from an Emwf foreast by taking a 250 km by 250 kmgrid of 10m model winds and interpolating in spae and time to the satellite observation position.Philippe Rihaume (working as part of the Neurosat team) seleted the data from the NorthAtlanti regions (1995-96). This data set was then sub-sampled to make training, validation andtest data sets. The test data set is generated to have a distribution in wind speed lose to adistribution of naturally ourring wind speeds. The training and validation data sets have a windspeed distribution that are an equal ombination of uniform distribution over wind speed and adistribution lose to that of naturally ourring wind speeds. The wind speed ranges from 4 ms�1to 24 ms�1 inlusively. For eah measurement in the data set there is a orresponding fore, midand aft satterometer measurement, inidene angle, azimuth angle, wind speed and meteo winddiretion. It is this data that is referred to as `raw' data in the sope of this projet. Beforedesribing the pre-proessing applied to the raw data, some new terminology is needed for thedi�erent methods of measuring wind diretion (all in degrees):� Meteo wind diretion is the angle in whih the wind is oming from. Therefore a meteo winddiretion of zero degrees desribes a wind oming from the north toward the south. Thiswind diretion will be referred to as mdir (see Figure 4).� Vetor wind diretion is the angle of the diretion in whih the wind is blowing. Therefore avetor wind diretion of zero degrees desribes a wind blowing toward the north. This winddiretion will be referred to as vdir (see Figure 4).� Relative wind diretion is the angle of wind diretion relative to the antenna azimuth anglefrom the vetor wind diretion. This wind diretion will be referred to as rdir (see Figure4).All angles given in this doument are quoted in degrees, and a lokwise diretion from theirreferene point. Wind speed and diretion are resolved into wind vetor omponents, and theinput data is pre-proessed by a simple linear resaling.For eah trae (trae 0 to trae 9) there are three data sets. The training set has three thousandexamples, whilst the test and validation set have one thousand examples eah. There is also a dataset that ontains data from all traes, and inludes inedene angle as an input. This training sethas ten thousand examples whilst the validation and test set have �ve thousand examples.2.3.2 Pre-Proessing the wind dataThe data set desribes the wind in terms of wind speed and wind diretion. To model the windvetor diretly, the data is transformed into relative wind vetor omponents (ur; vr).The wind diretion is transformed from meteo diretion, mdir, to vetor diretion , vdir, by adding180Æ, and taking the modulus with respet to 360Æ. This maintains the onvention of wind diretionin the range [0Æ; 360Æ). Beause of the nature of the orbit of the satellite, measurements are takenin two diretions (running from north to south, and from south to north). These diretions areenoded in the satilite azimuth angle, '. The vetor wind diretion is transformed relative to theazimuth angle by subtrating the azimuth angle from vetor wind diretion, vdir, and taking themodulus with respet to 360Æ. The wind diretion is now relative to the azimuth angle, and the
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Figure 4: The relationship between the wind diretion angles, mdir, vdir, and rdir used inpre-proessing.relative wind vetor omponents an be resolved. To ensure that a geophysial referene of zerodegrees for north is maintained rdir is subtrated from 90Æ before either sin or os are applied.The transformation is summarised below:1. Compute vdir: vdir = mdir + 180Æ (mod 360Æ):2. Compute rdir: rdir = vdir � ' (mod 360Æ):3. Compute ur: ur = s os(90Æ � rdir):4. Compute vr: vr = s sin(90Æ � rdir):2.3.3 Pre-proessing the satterometer dataThe input data, �o, is pre-proessed by a linear transformation to a zero mean unit varianeGaussian distribution. The mean and variane for the resaling are taking from the whole inputdata set. For input data that also ontains the inidene angle, �, we pre-proess this input bytaking the osine of the inedene angle. This insures that the input is in the range [�1; 1℄.2.4 Diret appliation of mixture density networksThe previous subsetions in this setion have desribed the tehnial detail of how an MDN isimplemented, an overview of the implementation of the MDN framework within Netlab and howthe input and target data is pre-proessed. This theory is now applied to modelling the mappingof satterometer data to wind vetor omponents.



First Year Qualifying Report: Neural Networks for ExtratingWind Vetors from Satellite Satterometer Data 19The networks are trained by minimising the negative log likelihood error funtion de�ned by (13):E = � NXi=1 ln� MXj=1 �j(�oi )�j(ui; vi j �oi )� (21)where �o represents either the three or four dimensional input vetors, (�of ; �om; �oa) and(�of ; �om; �oa ; os(�)) respetively. The network training was regularised by the early stopping teh-nique (Bishop, 1995).In Subsetion 1.5 the areas of investigation were outlined. The �rst is to investigate the omplexityof the mapping between �o and (u; v) spae. This omplexity is modelled by the MLP withinthe MDN struture. The seond, the omplexity of the (u; v) spae, is represented by the numberof kernels in the mixture model of the MDN. The third is to train networks with and withoutinidene angle as an input to the network. The following network on�gurations were trained toinvestigate the areas of interest:� For models without inidene angle as an input:{ Train a model for eah trak (0 to 9) and with 10; 15; 20; 25 hidden units in the MLP.{ For eah model train with two and four entres.� For models with inidene angle as an input:{ Train models with 50 and 35 hidden units in the MLP.{ For eah model train with 2; 4; 5; and 12 entres.The results of these experiments are presented in Subsetion 2.6.2.5 Inorporating geophysial knowledgeIn this subsetion we desribe a modi�ation to the MDN struture in order to inorporate theknowledge that ambiguities in wind diretion exist in the mapping from �o to (u; v) spae. We allthis the hybrid mixture density network model. This is �rst and foremost of sienti� interest, butalso, if suessful, will redue the model omplexity by reduing the number of model parameters.The following expression for MDN with two kernels an be derived from (1):p(tjx) = �(x)�1(tjx) + (1� �(x))�2(tjx): (22)As already established the ambiguity in wind diretion arises from the fat that there are aliassolutions for the wind diretion; that is, it is not known for ertain from the �o data in whih oftwo diretions the wind is blowing. This alias is at approximately 180Æ. The ambiguity is enodedwithin theMDN framework by two spherial Gaussian kernels with diametrially opposed entres.One kernel is free to move (its parameters are determined during training), whilst the seondmirrors the �rst by taking the negative mean (whih is equivalent to an ambiguous diretion of180Æ in (u; v) spae). The entres of the kernels (whih orrespond to wind vetors in (u; v) spae)always represent the ambiguity within the mapping. The noise model for eah kernel is assumedto be the same; that is, the variane of the free Gaussian is the same as that of the mirroringGaussian. The mixing oeÆients, then, determine the `responsibility' that eah kernel has for the



First Year Qualifying Report: Neural Networks for ExtratingWind Vetors from Satellite Satterometer Data 20probability mass of the given ambiguity within the model. Expressed within the MDN frameworkthe model beomes (for the nth observation):p(tnjxn) = �(xn)�(tnjxn) + (1� �(xn)) (tnjxn); (23)where the kernels are de�ned by diametrially opposed spherial Gaussians:�(tnjxn) = 12��2(xn) exp��ktn � �(xn)k22�2(xn) �; (24) (tnjxn) = 12��2(xn) exp��ktn + �(xn)k22�2(xn) �: (25)The target data is two dimensional and therefore the dimension parameter  in the Gaussian model(22) is two. The error for a pattern n is de�ned as a negative log likelihood funtion and is derivedfrom (13): En = � ln��(xn)�(tnjxn) + (1� �(xn)) (tnjxn)�: (26)The training of the network is idential in priniple to the general Netlab MDN framework.Speial modi�ations are needed to ompute the funtion whih maps the outputs of the MLP tothe parameters of the mixture model and the gradient of the error funtion with respet to theMLP outputs. The mixing oeÆients are no longer onstrained by the softmax rule, but by thesimpler logisti funtion: � = 11 + exp(�z�) : (27)To train the hybrid arhiteture, the derivative of the gradient of the error funtion with respetto the outputs of the MLP is required. Two posterior probabilities are de�ned with respet toeah kernel, for the free kernel: � = ���� + (1� �) ; (28)and for the mirrored kernel:  = (1� �) ��+ (1� �) : (29)Then the derivatives of the error funtion with respet to the network outputs are:�En�z� = � � �; (30)�En�z� = � ��2�ktn � �k2�2 � �+ 2�ktn + �k2�2 � �� ; (31)�En�z�k = ���� tk � �k�2 �� � tk + �k�2 ��: (32)(33)This on�guration redues the number of mixture model parameters by M( 2 +1). The full detailof the derivation is presented in Appendix B. Software for implementing this arhiteture is odedin Matlab and designed to integrate into the Netlab toolbox (this implementation inspired thegeneral fast mdn implementation). The ode was tested for aurate implementation using themethods detailed in Evans (1998).



First Year Qualifying Report: Neural Networks for ExtratingWind Vetors from Satellite Satterometer Data 21Arhitetures with the same number of hidden units and input dimensions were trained to omparewith the networks trained in Subsetion 2.4. For these experimentts the number of kernels is alwaystwo (it is possible to have multiple `entre pairs'). The network arhitetures trained are as follows:� For models without inidene angle as an input:{ Train a model for eah trae (0 to 9) and with 10; 15; 20; 25 hidden units in the MLP.� For models with inidene angle as an input:{ Train models with 35 and 50 hidden units in the MLP.2.6 ResultsIn total twelve networks were trained for eah trae (and so a total of one hundred and twentynetworks) and ten networks were trained over all traes. Eah network had the same seed inthe random number generator when initialised. The results are presented in tabular form, usingsummary statistis ommonly used in the meteorologial ommunity; the Figure of Merit, anevaluation of how well the preditions ompare to the instrument spei�ations of �2 ms�1 forwind speed and �20Æ for wind diretion; vetor Root Mean Square (RMS) error, a measure of howlose the preditions are to the target; and performane at 20Æ (denoted perf. � 20Æ), a measureof the perentage of predited diretions within 20Æ of the target wind diretions (Cornford etal., 1997; Rihaume et al., 1998). The tehnial details of these summary measures are detailedin Appendix C. The reported results are omputed using the test set, whih was not used whenhoosing the model omplexity, and so the results are unbiased with respet to the data set. Theresults are based on wind vetor preditions that are derived from a simple ambiguity removalalgorithm. The two most likely wind vetors are inferred from the MDN (for models with morethan two kernels the position of the two most probable modes, found by a SCG optimisationstarting from the positions of eah kernel, are inferred as the two most likely wind vetors) andthen ompared to the target wind vetors. The predited wind vetor losest to the target windvetor is hosen as the disambiguated wind vetor. The summary methods are then applied.Tables 1, 2, and 3 present the summary results for networks trained per trae. Over all tables,there is a general trend of inreasing performane from trae 0 to trae 9, whih is to be expetedbeause wind vetors are harder to model for the innermost traes of the swathe. Table 1 presentsmodel performane as measured by the FoM evaluation funtion. An FoM result greater thanone indiates the the model is performing to the instrument spei�ations. Inspetion of Table1 shows that the models are lose to this threshold, and all the models exept for one meet thespei�ation for trae 9. The performane also exhibits trends over model omplexity, where formodels with two kernels (inluding the hybrid on�guration) the measure ontinually improvesfor inreasing omplexity, and for models with four kernels the maximum performane is ahievedwith twenty hidden units in the MLP. The results in Table 2 and Table 3 are strongly orrelatedto the results in Table 1. For vetor RMS errors the urrent operational model Cmod4 returnswind vetor RMS errors of 3 ms�1 when ompared to Emwf winds (Sto�elen and Anderson,1997b). The results presented here show higher values than 3 ms�1, but follow the same trendsas those in Table 1, the lowest vetor RMS error being 3:11 ms�1. The results in Table 3 for perf.� 20Æ show similar trends to those for FoM and vetor RMS error. Our results are omparablewith the results of Cornford et al. (1997), where the orret solution, within 20Æ, is found morethan 70% of the time from the two most probable aliases.Table 4 presents the results of networks trained over all traes. Model performane is similar to theMDNs with thirty �ve hidden units in the MLP. In addition, the model performane for MDNs



First Year Qualifying Report: Neural Networks for ExtratingWind Vetors from Satellite Satterometer Data 22with twelve kernels is worse than the other kernel on�gurations, reeting that there is a limit tothe omplexity an MDN an have to model this problem.For omparison between networks with and without inidene angle as an input, results are pre-sented by trae for networks that take inidene angle as an input. The results are generated byusing the test sets for models trained by trae and adding the respetive inidene angles to theinput patterns. Again, the summary results are presented in Tables 5, 6, 7. These tables also showa general trend of improving performane, whih is smoother than the networks trained individu-ally per trae. However the best model trained with inidene angle is worse than those trainedby trae.Visualisation of the onditional probability density funtion modelled by the MDN is of interest.Mesh and ontour plots give a good visualisation of the probability density funtion. Severalmodel arhitetures have been seleted to represent the range of models trained, and to show howthe distribution varies for hanging kernel on�gurations. An arbitrary wind vetor (that gives agood graphial visualisation of the distribution) was hosen from trae 9 test data (for informationthe omponents are (�14:6; 1:4)). Figures 5, 6 and 7 are for networks trained per trae andrepresent kernel on�gurations of two, two hybrid and four respetively. Figures 8, and 9 are fornetworks trained with inidene angle as an input and are for MDNs with �ve and twelve kernelsrespetively. These plots show that the onditional probability distribution is generally bimodal,loser inspetion of Figures 8 and 9 also shows that the modes are not neessarily Gaussian.In this setion the tehnial detail of MDNs has been explained inluding a hybrid MDN arhi-teture that models the ambiguity inherent in the mapping from satterometer spae to wind vetorspae. An overview of the software used to train the MDNs has been given by using the Netlabtoolbox for Matlab, where fast mdn was developed. The data soure and pre-proessing has beendesribed before it is presented to a MDN for training. Using summary tools used within the me-teorologial ommunity the results have been ompiled into several tables in order to ompare theperformane of the partiular network arhitetures. In the next setion the results are analysedand disussed with respet to the aims laid out in setion 1.5.
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(b)Figure 5: Conditional probability distribution plots, for a model with 2 kernels and 25 hidden units.
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(b)Figure 6: Conditional probability distribution plots, for a hybrid model with 2 kernels and 25hidden units.
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FoM - results for networks trained per traeMDN arhiteture trae trae trae trae trae trae trae trae trae trae average0 1 2 3 4 5 6 7 8 9 over swatheTwo hybrid Kernels, 10 Hidden Units 0.76 0.80 0.79 0.82 0.83 0.83 0.87 0.81 0.89 1.02 0.84Two Kernels, 10 Hidden Units 0.82 0.75 0.80 0.78 0.84 0.79 0.79 0.81 0.85 0.93 0.82Four Kernels, 10 Hidden Units 0.88 0.86 0.92 0.97 0.92 0.95 0.99 1.02 1.02 1.19 0.97Two hybrid Kernels, 15 Hidden Units 0.90 0.83 0.83 0.90 0.90 0.88 0.88 0.86 0.95 1.03 0.90Two Kernels, 15 Hidden Units 0.90 0.83 0.81 0.88 0.88 0.87 0.87 0.84 0.95 1.08 0.89Four Kernels, 15 Hidden Units 0.95 0.91 0.87 1.00 0.91 0.87 1.00 0.94 1.02 1.13 0.96Two hybrid Kernels, 20 Hidden Units 0.93 0.83 0.85 0.90 0.87 0.89 0.89 0.89 0.97 1.07 0.91Two Kernels, 20 Hidden Units 0.92 0.84 0.82 0.85 0.88 0.88 0.89 0.90 0.97 1.07 0.90Four Kernels, 20 Hidden Units 0.93 0.92 0.86 0.98 0.93 0.98 1.02 1.00 0.99 1.16 0.98Two hybrid Kernels, 25 Hidden Units 0.89 0.82 0.86 0.91 0.91 0.91 0.91 0.91 0.98 1.06 0.92Two Kernels, 25 Hidden Units 0.93 0.85 0.84 0.92 0.89 0.93 0.93 0.95 0.97 1.07 0.93Four Kernels, 25 Hidden Units 0.88 0.88 0.87 0.99 0.86 0.97 1.00 0.95 0.97 1.17 0.95Table 1: FoM results - for networks trained per trae. Results in bold fae indiate best results per olumn.
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Vetor RMS error - results for networks trained per traeMDN arhiteture trae trae trae trae trae trae trae trae trae trae average0 1 2 3 4 5 6 7 8 9 over swatheTwo hybrid Kernels, 10 Hidden Units 4.71 4.29 4.36 4.29 4.27 4.14 4.09 4.26 3.90 3.50 4.18Two Centres, 10 Hidden Units 4.25 4.43 4.22 4.45 4.08 4.26 4.42 4.24 4.09 3.74 4.22Four Centres, 10 Hidden Units 4.27 4.16 3.77 3.73 4.06 3.68 3.74 3.60 3.52 3.11 3.76Two hybrid Kernels, 15 Hidden Units 3.90 4.17 4.19 3.93 3.88 3.95 4.01 4.06 3.70 3.44 3.92Two Centres, 15 Hidden Units 3.90 4.09 4.10 4.04 3.91 3.96 3.95 4.05 3.66 3.28 3.90Four Centres, 15 Hidden Units 3.86 4.00 4.16 3.66 4.00 4.31 3.54 4.01 3.52 3.25 3.83Two hybrid Kernels, 20 Hidden Units 3.83 4.17 4.03 3.96 4.04 3.95 3.96 3.98 3.63 3.34 3.89Two Centres, 20 Hidden Units 3.81 4.04 4.13 4.07 3.90 3.93 3.86 3.86 3.61 3.31 3.85Four Centres, 20 Hidden Units 3.94 3.84 4.08 3.71 3.89 3.63 3.48 3.67 3.63 3.17 3.70Two hybrid Kernels, 25 Hidden Units 3.97 4.24 3.99 3.94 3.86 3.87 3.92 3.87 3.61 3.36 3.86Two Centres, 25 Hidden Units 3.79 4.00 3.99 3.82 3.89 3.76 3.77 3.65 3.61 3.28 3.76Four Centres, 25 Hidden Units 4.20 3.97 4.16 3.67 4.24 3.70 3.63 4.14 3.94 3.15 3.88Table 2: Vetor RMS error results - for networks trained per trae. Results in bold fae indiate best results per olumn.
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Performane � 20Æ - results for networks trained per traeMDN arhiteture trae trae trae trae trae trae trae trae trae trae average0 1 2 3 4 5 6 7 8 9 over swatheTwo hybrid Kernels, 10 Hidden Units 61.60 66.30 67.40 69.90 70.10 72.90 69.60 69.60 73.60 80.30 70.13Two Centres, 10 Hidden Units 64.40 67.10 67.10 69.50 73.20 73.70 69.50 70.30 74.10 78.10 70.70Four Centres, 10 Hidden Units 71.00 70.30 72.60 74.40 74.70 75.70 75.40 75.00 77.60 81.90 74.86Two hybrid Kernels, 15 Hidden Units 66.10 68.80 67.50 72.50 72.90 74.20 71.00 72.00 74.90 79.00 71.89Two Centres, 15 Hidden Units 69.30 68.50 70.70 72.80 74.40 75.10 73.10 72.90 75.80 79.40 73.20Four Centres, 15 Hidden Units 72.50 71.00 72.30 75.00 76.20 75.10 76.00 74.80 77.40 81.10 75.14Two hybrid Kernels, 20 Hidden Units 68.30 67.20 69.20 72.60 72.50 74.00 72.20 72.10 75.70 81.20 72.50Two Centres, 20 Hidden Units 69.10 69.10 69.50 72.60 73.80 75.80 74.20 74.80 77.60 81.10 73.76Four Centres, 20 Hidden Units 72.30 71.40 71.80 74.20 76.10 75.70 75.30 74.70 76.50 81.00 74.90Two hybrid Kernels, 25 Hidden Units 67.20 67.70 69.80 72.30 73.00 75.00 72.00 71.40 75.80 80.60 72.48Two Centres, 25 Hidden Units 69.20 69.50 70.70 73.60 73.70 75.10 73.60 74.10 75.90 79.50 73.49Four Centres, 25 Hidden Units 71.60 69.10 72.50 74.40 75.40 76.50 75.70 74.80 76.90 81.70 74.86Table 3: Performane � 20Æ - for networks trained per trae. The results are omputed using the wind diretion obtained by the `perfet' am-biguity removal algorithm desribed in the text. Results in bold fae indiate best results per olumn.
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Performane summary for networks trained with inidene angle as an inputMDN arhiteture FoM RMS Errors Perf � 20ÆTwo Hybrid Kernels, 35 Hidden Units 0.85 4.18 73.54Two Kernels, 35 Hidden Units 0.88 4.03 73.28Four Kernels, 35 Hidden Units 0.96 3.83 76.96Five Kernels, 35 Hidden Units 0.96 3.84 76.66Twelve Kernels, 35 Hidden Units 0.80 5.13 74.82Two Hybrid Kernels, 50 Hidden Units 0.82 4.33 71.10Two Kernels, 50 Hidden Units 0.89 4.02 74.58Four Kernels, 50 Hidden Units 0.96 3.86 77.08Five Kernels, 50 Hidden Units 0.97 3.84 77.14Twelve Kernels, 50 Hidden Units 0.82 4.87 75.32Table 4: Performane results over the whole swathe - for networks trained with inidene angleas an input. These results are generated with the test data set of 5000 examples.Results in bold fae indiate best results per olumn.
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FoM - results by trae, for networks that take inidene angle as an inputMDN arhiteture trae trae trae trae trae trae trae trae trae trae average0 1 2 3 4 5 6 7 8 9 over swatheTwo hybrid Kernels, 35 Hidden Units 0.80 0.79 0.82 0.86 0.86 0.88 0.88 0.90 0.92 0.97 0.87Two Kernels, 35 Hidden Units 0.81 0.81 0.82 0.88 0.88 0.91 0.93 0.92 0.93 0.99 0.89Four Kernels, 35 Hidden Units 0.88 0.84 0.84 0.94 0.92 0.89 0.92 0.95 0.93 1.12 0.92Five Kernels, 35 Hidden Units 0.79 0.90 0.89 0.97 0.92 0.98 0.96 0.98 1.00 1.04 0.94Twelve Kernels, 35 Hidden Units 0.60 0.71 0.79 0.92 0.85 0.81 0.80 0.85 0.90 0.99 0.82Two hybrid Kernels, 50 Hidden Units 0.79 0.77 0.79 0.84 0.85 0.87 0.88 0.87 0.90 0.97 0.85Two Kernels, 50 Hidden Units 0.80 0.81 0.83 0.89 0.88 0.92 0.91 0.94 0.95 1.02 0.90Four Kernels, 50 Hidden Units 0.85 0.85 0.87 0.99 0.91 0.96 0.98 0.97 0.99 1.04 0.94Five Kernels, 50 Hidden Units 0.84 0.89 0.84 0.98 0.95 0.97 0.99 1.00 0.99 1.05 0.95Twelve Kernels, 50 Hidden Units 0.63 0.75 0.84 0.87 0.83 0.80 0.82 0.85 0.82 0.89 0.81Table 5: FoM results - by trae, for networks trained with inidene as angle as an input. Results in bold fae indiate best results per olumn.
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Vetor RMS error - results by trae, for networks that take inidene angle as an inputMDN arhiteture trae trae trae trae trae trae trae trae trae trae average0 1 2 3 4 5 6 7 8 9 over swatheTwo hybrid Kernels, 35 Hidden Units 4.41 4.45 4.23 4.12 4.05 3.94 3.98 3.94 3.81 3.65 4.06Two Kernels, 35 Hidden Units 4.28 4.28 4.13 3.97 3.93 3.81 3.74 3.84 3.69 3.46 3.91Four Kernels, 35 Hidden Units 4.22 4.33 4.08 4.11 4.01 4.40 4.10 4.08 3.94 3.30 4.06Five Kernels, 35 Hidden Units 4.91 4.09 3.85 3.88 4.12 3.62 3.75 3.71 3.56 3.45 3.89Twelve Kernels, 35 Hidden Units 7.89 5.38 4.75 4.08 4.36 4.93 5.24 4.77 4.43 4.05 4.99Two hybrid Kernels, 50 Hidden Units 4.54 4.60 4.38 4.17 4.12 4.00 3.99 4.03 3.86 3.72 4.14Two Kernels, 50 Hidden Units 4.33 4.27 4.13 3.99 3.92 3.77 3.79 3.75 3.69 3.49 3.91Four Kernels, 50 Hidden Units 4.28 4.16 4.03 3.74 4.21 3.90 3.75 3.94 3.69 3.45 3.91Five Kernels, 50 Hidden Units 4.33 4.16 3.99 3.74 3.85 3.70 3.65 3.68 3.69 3.54 3.83Twelve Kernels, 50 Hidden Units 7.08 5.16 4.33 4.78 4.90 5.18 5.12 4.67 4.84 4.39 5.04Table 6: Vetor RMS error - by trae, for networks trained with inidene as angle as an input. Results in bold fae indiate best results per olumn.
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Performane at 20Æ - results by trae, for networks that take inidene angle as an inputMDN arhiteture trae trae trae trae trae trae trae trae trae trae average0 1 2 3 4 5 6 7 8 9 over swatheTwo hybrid Kernels, 35 Hidden Units 61.60 63.60 69.50 71.70 71.80 73.90 71.00 72.00 74.50 79.10 70.87Two Kernels, 35 Hidden Units 63.50 64.20 68.20 71.70 72.40 75.30 71.80 73.10 74.30 79.00 71.35Four Kernels, 35 Hidden Units 66.90 66.30 71.30 73.50 77.00 74.90 74.30 75.60 75.70 80.50 73.60Five Kernels, 35 Hidden Units 63.70 69.00 71.40 74.20 76.20 76.40 75.00 75.80 77.10 79.30 73.81Twelve Kernels, 35 Hidden Units 63.10 69.10 71.20 73.40 75.10 74.40 74.20 74.80 77.50 79.90 73.27Two hybrid Kernels, 50 Hidden Units 58.50 60.50 66.80 70.70 70.80 73.00 71.20 72.20 74.60 79.00 69.73Two Kernels, 50 Hidden Units 62.80 66.10 69.20 72.30 73.30 76.20 73.60 74.40 76.30 79.60 72.38Four Kernels, 50 Hidden Units 65.80 68.10 71.00 73.30 76.80 76.80 75.90 74.70 77.80 79.60 73.98Five Kernels, 50 Hidden Units 65.00 68.10 71.20 74.00 76.90 76.20 75.00 75.40 76.60 79.20 73.76Twelve Kernels, 50 Hidden Units 64.60 68.40 71.40 74.10 77.10 75.80 73.30 72.50 75.00 76.20 72.84Table 7: Performane � 20Æ - by trae, for networks trained with inidene as angle as an input The results are omputed using the winddiretion obtained by the `perfet' ambiguity removal algorithm desribed in the text. Results in bold fae indiate best results perolumn.
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(b)Figure 8: Conditional probability distribution plots with inidene angle, for a model with 5kernels and 50 hidden units.
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First Year Qualifying Report: Neural Networks for ExtratingWind Vetors from Satellite Satterometer Data 323 Analysis and disussionThe aims of this projet are to investigate the underlying data generator that desribes the mappingfrom satellite satterometer data to wind vetors, �o ! (u; v), using a mixture density network.In Setion 2 the methods and results of training the MDNs, with and without inidene angle asinputs, were presented. Also the struture of the MDN was modi�ed to investigate modelling theinherent ambiguity in the wind diretion. In this setion the results of the experiments in Setions2 are analysed and disussed.3.1 Analysis of the inverse modelsBoth the omplexity of the mapping �o ! (u; v) and of the probability density funtion P (u; v j�o)are of interest. These properties are represented by theMLP andGmm strutures within theMDNframework. The mapping �o ! (u; v) is modelled by the MLP, whose omplexity is ontrolledby the number of units in the hidden layer. The omplexity of P (u; v j �o) is modelled by theGmm, whose omplexity is ontrolled by number of kernels in mixture. There are two kinds ofmodel to ompare: those whih have been trained without inidene angle as an input (trained fora spei� trae) and those that take inidene angle as an input and are general models over thewhole swathe. The results are presented by plotting the FoM and vetor RMS results over all thetraes. This format helps to highlight trends in the results.3.1.1 The omplexity of the mapping �o ! (u; v)In order to investigate the omplexity of the mapping �o ! (u; v) the MDN arhitetures weretrained with the MLP struture having ten, �fteen, twenty and twenty �ve units in the hiddenlayer. Also networks were trained with di�erent kernel on�gurations (to investigate the omplexityof P (u; v j �o)), whih may also a�et model performane, and so omparisons in this subsetionare made by kernel on�guration, over the number of units in the hidden layer of the MLP.For two kernels, Figure 10 shows that inreasing the number of hidden units improves the modelperformane. Figure 11, shows similar results, but for the hybrid MDN on�guration: Again,inreasing the number of units in the MLP improves the performane of the model, but in thisase the improvement is not as distint as for those on�gurations with two free kernels. Theresults of MDNs with four kernels are plotted in Figure 12, and show that the model performanedoes not signi�antly improve by inreasing the number of units in the hidden layer of the MLPover the range trained.For models with two kernels there is a orrelation between inreasing the number of units in theMLP and improving model performane. The best models have twenty �ve units in the hiddenlayer of the MLP. For models with four kernels the results show that the best performane isahieved by a MLP with twenty hidden units (see Figure 12). The model performane for a MLPwith twenty �ve hidden units is worse than that of twenty hidden units. There are two explanationsfor this. Firstly the omplexity of theMLP with twenty �ve hidden units is suÆient to over�t thetraining data, dereasing the models ability to generalise, or, seondly beause of the omplexityof the MLP, the MDN beomes stuk in a loal minima in the error surfae, and the network failsto �nd the weights that give optimum generalisation.ForMDNs with a hybrid kernel on�guration, the results suggest that theMLP is reahing a limitin its ability to model the mapping �o ! (u; v), given the Gmm on�guration. The improvementin performane does not hange signi�antly for hidden units of twenty and twenty �ve. Comparing
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FirstYearQualifyingReport:NeuralNetworksforExtratingWindVetorsfromSatelliteSatterometerData36

Predited wind diretion hosen from the �rst two most probable aliases, performane at 20Æ (%)MDN arhiteture trae 0 trae 1 trae 2 trae 3 trae 4 trae 5 trae 6 trae 7 trae 8 trae 9 averageMDNtrae 72.3 71.4 71.8 74.2 76.1 75.7 75.3 74.7 76.5 81.0 74.9MDNinidene 63.7 69.0 71.4 74.2 76.2 76.4 75.0 75.8 77.1 79.3 73.8A-NNi 85.1 85.0 86.9 87.7 87.5 87.8 87.6 88.0 88.2 86.9 87.1Table 8: Comparing the diretion performane of the best MDNs with published results.
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(b) Vetor RMS errorFigure 13: Model performane by the number of kernels. For a network with thirty �ve unitsin the hidden layer, and trained with inidene angle as an inputspeed they obtained a RMS error of 1:8 ms�1 whih is within the design spei�ations of theinstrument (2:0 ms�1). The networks presented here have an wind speed RMS error of 2:0 ms�1when averaged over the swathe. Rihaume et al. (1998) give results for their neural networkapproah to wind vetor retrieval based on ERS-1 data (following an initial study by Thiria et al.(1993) whih was based on simulated satterometer data). For eah trae two networks are trained,one to model wind speed, denoted S-NNi (where i orresponds to the trae), and one to modelwind diretion, denoted A-NNi. Results are quoted for predited wind speed bias and RMS error,and wind diretion performane � 20Æ. The wind diretion results are quoted for the �rst, seond,third and forth alias preditions. The seond alias method is equivalent to the `perfet' ambiguityremoval method used in this projet, and provides a means of omparison. Table 8 shows the resultsfor perf. � 20Æ ofMDNtrae, MDNinidene, A-NNi. The A-NNi neural network performs betterthan both MDN networks when prediting diretion to the seond alias. However, we must notthat the imputs to the A-NNi network also ontain spatial information whih gives additionalambiguation skill to the A-NNi networks. The MDN networks a purely loal models, having nodisambiguation skill whatsoever, inverting eah satterometer measurement on a per-ell basis.Table 9 presents the wind speed bias and RMS error results. Comparing the biases it is interestingto note that A-NNi has only negatively biased results, where as the MDN models have bothpositively and negatively biased networks, and so are less biased over the whole swathe. The RMSerror results show that A-NNi, performs within the instrument spei�ation of 2 ms�1, whereasMDNinidene and MDNtrae both fall outside the measurement spei�ation for several of themiddle traes.The superior performane of S-NNi and A-NNi may be attributed to:� Larger data sets (the training set ontains 24; 000 pairs and the test set 5; 000 pairs). Largedata sets help to regularise the network during training, making it less suseptible to outliersin the data set.� The spatial information presented on the inputs may provide extra disambiguation skill. The
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Predited wind speed bias ( ms�1)MDN arhiteture trae 0 trae 1 trae 2 trae 3 trae 4 trae 5 trae 6 trae 7 trae 8 trae 9MDNtrae 0.0 -0.3 -0.1 0.0 -0.1 0.0 0.1 0.0 -0.1 0.1MDNinidene 0.0 -0.3 -0.1 0.0 -0.1 0.0 0.1 0.0 -0.1 0.1A-NNi -0.2 0.0 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 0.0 0.0Predited wind speed RMS ( ms�1)MDN arhiteture trae 0 trae 1 trae 2 trae 3 trae 4 trae 5 trae 6 trae 7 trae 8 trae 9MDNtrae 1.9 2.1 2.1 2.0 2.1 2.1 2.1 2.0 2.0 1.8MDNinidene 1.9 2.1 2.1 2.0 2.1 2.1 2.1 2.0 2.0 1.8A-NNi 1.6 1.6 1.5 1.6 1.6 1.6 1.6 1.6 1.6 1.7Table 9: Comparing the speed performane of the best MDNs with published results



First Year Qualifying Report: Neural Networks for ExtratingWind Vetors from Satellite Satterometer Data 39MDNs are trained with input from a single measurement.� The range of wind speeds used by Rihaume et al. (1998) is slightly greater, with a windspeed range of [3:5 ms�1; 25:0 ms�1℄. There are likely to be more training patterns in thewind speed ranges that are more diÆult to learn.� TheMDN networks may be getting stuk in loal minima on the error surfae during training.To visualise the alias results and the e�et of hoosing the two most likely solutions, four graphsare provided. The results are obtained from MDNinidene, using the test set with �ve thousandexamples. The Figure 19(a) shows the most probable predited diretion, where the true and aliassolutions an be seen. Figure 19(b) shows the de-aliased predition. The Figure 20(a) shows themost probable predited wind speed, Figure 20(b) shows the de-aliased predition, in eah asethe model is biased high for wind speeds approximately less than 7 ms�1, and biased low at windspeeds approximately greater than 20 ms�1.In this setion the results presented in Setion 2 have been disussed. It has been shown that MDNsmodel the mapping from satterometer spae diretly into wind vetor omponent spae with a highdegree of suess. The probability distribution P (u; v j�o) is generally bimodal, but the noise on thetargets is more omplex than the spherially symmetri Gaussian assumption that was �rst made.It has also been shown that the mapping (�o; �) ! (u; v) performs similarly to models trained bytrae. The best MDNs do not perform as well some other neural network methods, but they dohave the advantage of diretly mapping to (u; v) spae. In the next setion the onlusions of thisprojet are presented along with possible future avenues of investigation.
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(b) Vetor RMS errorFigure 14: Model performane by the number of kernels. For a network with �fty units in thehidden layer, and trained with inidene angle as an input
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(b)Figure 16: An example of P (u; v j �o) where the modes are non-Gaussian
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(b)Figure 17: Model performane, omparing networks whih take inidene angle as an input,by the number of kernels,
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0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

350

(a) Diretion preditions before de-aliasing 0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

350

(b) Diretion preditions after de-aliasingFigure 19: Satter plots of observed vs predited wind diretions
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(b) Speed preditions after de-aliasingFigure 20: Satter plots of observed vs predited wind speed



First Year Qualifying Report: Neural Networks for ExtratingWind Vetors from Satellite Satterometer Data 444 Conlusions and future workThe preeding two setions have demonstrated that MDNs an be applied to diretly model windvetor omponents from satterometer data. In this onluding setion, the aims of subsetion1.5 are re-visited, the �ndings of this projet reviewed, and on-going and potential future work isdesribed.4.1 ConlusionsThe overall aim of this projet is to assess the feasibility of diretly modelling the wind vetors(u; v) from satterometer data �o. The results presented in Setion 2 learly show that this methodis feasible. Further questions were posed onerning the omplexity of the mapping �o ! (u; v)and the omplexity of P (u; v j �o).� Investigating the mapping �o ! (u; v), it has been shown that a MDN that has a MLPwith twenty units in the hidden layer, and a Gmm with four kernels suessfully maps thisrelationship. A more ompliated model desribing the mapping (�o; �) ! (u; v) was on-sidered. This mapping is modelled using a MDN with a MLP with thirty �ve units in thehidden layer, and �ve kernels in the Gmm.� Considering P (u; v j �o), the hybrid MDN on�guration yields similar results to a MDNwith two free entres, and shows that the onditional probability distribution is generallybimodal with the two modes positioned diametrially opposite one another. The distributionof the noise on the wind vetors has been shown to be more omplex than the spheriallysymmetrial Gaussian noise model originally assumed. This is shown by the MDNs whihhave the ability to model more omplex (yet still dominantly bimodal) distributions thanthe one assumed by having four, �ve and twelve kernels. While the distribution is stillgenerally bimodal, it is heavier tailed than the Gaussian distribution assumed, and is notalways spherially symmetri.� Other work in the �eld solves the inverse problem by diretly modelling wind speed and winddiretion with two separate models. The models of this projet are similar in performaneto other loal methods (Cornford et al., 1997). These methods however do not ompare asfavourably with those methods whih take spatial information surrounding the ell of interestas part of their inputs (Rihaume et al., 1998).� The large number of MDNs trained in this projet was made possible by developing fastmdn that moved the omputation of the error gradient into parameter spae (the outputs ofthe MLP). This improved training time from a few days to a few hours for MDNs trainedby trae, and allowed MDNs with large data sets to be trained, suh as those that takeinidene angle as an input, in a realisti time frame.The �nal onlusions of this projet are that mixture density networks provide a prinipled frame-work within whih to model wind vetors diretly from satellite satterometer data, and the qualityof the results provide an enouraging path of investigation for novel disambiguation tehniques.4.2 On-going workThe ultimate aim is to build models that provide autonomous ambiguity removal from satellitesatterometer data, that is without referene to winds derived from numerial weather predition



First Year Qualifying Report: Neural Networks for ExtratingWind Vetors from Satellite Satterometer Data 45models. On-going work at Aston is investigating autonomous ambiguity removal within a Bayesianframework. Within this framework, we an use either the loal inverse models developed in thisprojet, or loal forward models (suh as those developed by Guillaume Ramage during his MSprojet). Continuing the work of this projet, an implementation is urrently being developedusing the loal inverse models.The Bayesian method is fundamentally di�erent to that of Rihaume et al. (1998). They expliitlyinorporate spatial information in the model onstrution, taking into aount orrelation betweenneighbouring ells. The Bayesian method has two stages. First the loal models are trained. Whentraining it is assumed that there is no spatial orrelation between the loal models. The seondstage is to apply Bayes' theorem and ombine the loal models with global wind prior models toimpose the spatial physial onstraints of wind �elds. Bayes' theorem an only be applied if it isassumed that for the forward model the probabilities, of the satterometer measurements, �oi , areindependent, onditional on the wind vetors, (ui; vi). This assumption further implies that themodels of Rihaume et al. (1998) annot be used in the Bayesian ontext presented here.The wind �eld, U; V , is represented by a density probability over a wind �eld (U; V ) onditionalon the satterometer measurements �o: P (U; V j�o): (34)Bayes' theorem is applied to (34) to express the posterior probability in terms of a global forwardmodel: P (U; V j�o) / P (�o j U; V )P (U; V ): (35)The global forward model is expressed as a produt of probabilities given by a loal forward model,assuming that they are onditionally independent:P (U; V j�o) /Yi P (�oi j ui; vi)P (U; V ): (36)Bayes' theorem is applied again to express the loal forward model in terms of the inverse model,this is alled the salled likelihood method (Williams, 1997):P (U; V j�o) /  Yi P (ui; vi j �oi )P (�oi )P (ui; vi) !P (U; V ): (37)Finally, the the loal satterometer measurements P (�oi ) are onstant for a given sene and theposterior probability distribution is expressed as:P (U; V j�o) /  Yi P (ui; vi j �oi )P (ui; vi) !P (U; V ): (38)Equation (38) de�nes a probability density whih has a dimension given by the number of windvetors in the wind �eld. The posterior is desribed by a ombination of three probability models:the loal onditional inverse model P (ui; vi j �oi ), the loal unonditional model P (ui; vi) and theglobal wind prior P (U; V ). These three models are implemented inMatlab using the loal inversemodels developed in this projet, loal unonditional models and the global wind prior of Cornford(1998). The parameter spae of the posterior distribution, the wind vetors (U; V ), is exploredusing Markov Chain Monte Carlo tehniques. These tehniques use stohasti methods to samplefrom the posterior distributions suh as (38). One the stationary distribution is found infereneis made on the model parameters (U; V ).



First Year Qualifying Report: Neural Networks for ExtratingWind Vetors from Satellite Satterometer Data 464.3 Potential future workThe results of this projet have raised as many questions as they have answered, and there is stillmuh to learn about the struture of the inverse mapping and the behaviour of MDNs. To �nalisethis report the remainder of this subsetion suggests possible avenues of work.4.3.1 Further investigation on the �o ! (u; v) mappingThere are many possible hanges to the MDN struture that might help improve the performaneof the model, two of the most promising are:� For MDNs with two free kernels and trained by trae. Training MDNs with an inreasingnumber of units in the hidden layer of theMLP until optimal performane is ahieved. Onethe optimal on�guration is established, a omparison an be made with the urrent resultsfrom MDNs with four kernels to establish how the assumption that the noise in the targetsis Gaussian and spherially symmetri a�ets model performane.� Further investigate the mapping (�o; �) ! (u; v) by reduing the number of hidden unitsin the MLP for MDNs taking inidene angle as an input, and �nd the point where modelperformane signi�antly redues. The extra number of hidden units in theMLP will give anindiation of the omplexity of the relationship between inidene angle and the measurementmanifold for eah trae.4.3.2 Further investigation of the struture of the probabilitydistribution P (u; v j �o)The results have shown that the noise on the targets in the urrent data set appears non-Gaussian,and dominantly bimodal. Improvements to the model struture by modifying the arhiteture ofthe MDN to model this distribution may be of bene�t:� Build a hybrid MDN with two free kernels and two mirroring entres. This will be a lessomplex model than a full model with four kernels and should be able to model the non-Gaussian modes more eÆiently than the hybrid MDN with two kernels.� The noise distribution on the targets appears to be heavier tailed than the Gaussian distri-bution originally assumed. This assumption ould be modi�ed by replaing the kernels witha heavier tailed distribution (suh as a t-distribution), and retrain MDNs with two kernels.4.3.3 Further work to improve generalisationThere is also potential work in improving the generalisation performane of theMDNs with respetto the quality of the training data and the training methods employed:� Outliers in the training set will a�et the ability of the MDN to generatlise. By arefullyremoving outliers from the training set (either manually or otherwise) and retraing theMDNswe expet to see an inrease in generalisation performane.



First Year Qualifying Report: Neural Networks for ExtratingWind Vetors from Satellite Satterometer Data 47� Cornford et al. (1997) showed that using ommittees of MDNs (with kernels of irularnormal densities) to predited wind diretion improved their results by roughly 5%. Giventhat there are severalMDNs trained in this projet, this method is a simple way of improvingthe results without the retraining the MDNs.� MDNs an get stuk in loal minima on the error surfae. By hanging the starting positionon the error surfae (by hoosing a di�erent seed in the random number generators) theMDNs may �nd a better loation on the error surfae with respet to generalisation.� The MDNs trained in this projet are unregularised. Regularisation ontrols the omplexityof neural networks during training, and making the generalisation performane less sensitiveto the initial model omplexity. Lars Hjorth, a fellowMS student, is developing a regularisedMDN framework. When he has ompleted his work, his framework ould be applied to thisproblem.� Little is known about the learning dynamis of the MDN. Investigation into the evolutionof the parameter vetor may well provide an insight into the way MDNs learn, and lead toimprovements that inrease the generalisation properties of these methods.In this �nal setion the onlusions of this projet have been drawn: It has been shown that MDNso�er a feasible framework in whih to diretly extrat wind vetor omponents from satellite sat-terometer data. There is on-going work, whih has been desribed, putting the loal inverse modelsof this projet into the larger ontext of autonomous disambiguation methods. Finally, there arestill many more questioned to be answered, a few have been proposed here, with a hope to inspireother researhers, and anyone who reads this thesis, to ontinue on this path of disovery.
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First Year Qualifying Report: Neural Networks for ExtratingWind Vetors from Satellite Satterometer Data 49A The gradient of the error funtion of a MDNThis appendix is provided to show the reader the detail of the derivation of the gradient of thenegative log likelihood of a mixture density network (the error funtion) with respet to the outputsof the feed forward network (whih is usually a multi-layer pereptron).A.1 The Error funtion and its partial derivativesThe negative log likelihood of MDN for the nth training pattern, where xn represents the nthinput pattern and tn represents the nth target pattern, is de�ned as:En = � ln� mXj=1 �j(xn)�j(tnjxn)�: (39)The jth kernel, �j , for the nth pattern, is de�ned as a spherial Gaussian of the form:�j = 1(2�) 2�j (xn) exp��ktn � �j(xn)k22�2j (xn) �: (40)The total error is the summation of the error of eah pattern:E = NXn=1En: (41)Beause of (41) the following analysis is on a per-pattern basis. For typographial larity refer-enes to the target and training data sets are removed where possible from (39) and (40) and arerepresented in the following form: En = � ln� mXj=1 �j�j�: (42)and �j = 1(2�) 2�j exp��ktn � �jk22�2j �: (43)The objetive is to ompute the derivatives of En at the outputs of the MLP network. Bak-propagation is used to ompute the errors at the inputs of the MLP (Bishop, 1994; Bishop, 1995).The derivatives of interest (using the terminology of Bishop (1994)) are,� The partial derivative with respet to the outputs orresponding to the mixing oeÆientsz�: �En�z�j : (44)



First Year Qualifying Report: Neural Networks for ExtratingWind Vetors from Satellite Satterometer Data 50� The partial derivative with respet to the outputs orresponding to the varianes or widthsz�: �En�z�j : (45)� The partial derivative with respet to the outputs orresponding to the entres or positionsin target spae z�jk: �En�z�jk : (46)In order to simplify the analysis and notation, the posterior probability of a point is de�ned. UsingBayes theorem: �j = �j�jPml=1 �l�l ; (47)where, 0 6 �j 6 1 8j; (48)MXj=1 �j = 1: (49)A.1.1 Computing the derivatives of the mixing oeÆientsThe mapping onstraints from the output of theMLP to the parameters of theGmm are onsideredwhen omputing the partial derivatives. Using the hain rule:�En�z�j =Xk �En��k ��k�z�j ; (50)then from (42): �En��k = �� 1Pmj=1 �j�j :�k��k�k= � �k�kPmj=1 �j�j 1�k ; (51)and substituting (47): �En��k = ��k�k : (52)Some are is needed when deriving ��k�z�j . Eah �k represents a mixing oeÆient for eah Gaussianin the mixture model. To ensure that the mixing oeÆients represent probabilities they mustalways sum to one, that is PMj=1 �j = 1. This is ahieved by using the `softmax' funtion on theoutput of the network suh that: �j = exp(z�j )Pml=1 exp(z�l ) : (53)Using the quotient rule for di�erentiation and onsidering the two ases for j = k and j 6= k wehave:



First Year Qualifying Report: Neural Networks for ExtratingWind Vetors from Satellite Satterometer Data 51� for the ase when j 6= k: ��k�z�j = Pml=1 exp(z�l ):0� exp(z�j ) exp(z�k )(Pml=1 exp(z�l ))2 ;= ��j�k; j 6= k: (54)� for the ase when j = k,��k�z�j = Pml=1 exp(z�l ): exp(z�j )� exp(z�j ) exp(z�k )(Pml=1 exp(z�l ))2= exp(z�j )Pml=1 exp(z�l ) � � exp(z�j )Pml=1 exp(z�l )�2 ;= �k � �2k; j = k: (55)
We an summarise (54) and (55) by��k�z�j = Æjk�k � �k�j 8><>: j = 1; 2; :::;mk = 1; 2; :::;mÆjk is the Kroneker delta funtion. (56)To ompute the �nal derivative, substituting (52) and (56) into (50) yields��k�z�j =Xk ��k�k�Æjk � �k�j�=Xk ��k�k �kÆjk +Xk �k�k �k�j= ��j + �j : (57)
beause Pk �k = 1 and Pk �kÆjk = �j .Then the �nal result is �En�z�j = �j � �j : (58)A.1.2 Computing the derivatives of the varianesThe term z�j refers to the variane of the Gaussian. When di�erentiating, we must be aware thatwe are di�erentiating with respet to the variane, �2j . Again, onsidering the mapping onstraintsbetween the outputs of the MLP and the model parameters, the hain rule is used to expand thepartial derivative: �En�z�j = �En��2j ��2j�z�j : (59)Di�erentiating (42) with respet to �2j yields:�En��2j = �" 1Pml=1 �j�j �(�j�j)��2j # ; (60)



First Year Qualifying Report: Neural Networks for ExtratingWind Vetors from Satellite Satterometer Data 52the kernel, �j , is de�ned as a Spherial Gaussian (43), expanding (60) gives:�j�j = �j 1(2�) 2�j exp��ktn � �jk22�2j �: (61)Completing the di�erentiation:�(�j�j)��2j = �j�� 12�2j 1(2�) 2�j exp��ktn � �jk22�2j �+ ktn � �jk22�4j 1(2�) 2�j exp��ktn � �jk22�2j ��= �j 1(2�) 2 �j exp��ktn � �jk22�2j �| {z }equation (61) �� 2�2j + ktn � �jk22�4j �
= �j�j2 �� �2j + ktn � �jk2�4j :� (62)

Combining (60) and (62):�En��2j = �" �j�j2Pml=1 �l�l�� �2j + ktn � �jk2�4j �#= ��j2 �ktn � �jk2�4j � �2j �: (63)The seond term in expression (59) is easily omputed:��2j�z�j = exp(z�j )= �2j : (64)Then substituting (63) and (64) into (59) the �nal derivative beomes�En�z�j = ��j2 �ktn � �jk2�2j � �: (65)A.1.3 Computing the partial derivative with respet to the kernel entresFor this derivative there is no onstraint (that is to say �jk = z�jk) applied on the output of theMLP as there is in the previous two ases. Therefore �En�z�jk is omputed diretly from (42):�En�z�jk = �" 1Pml=1 �l�l �(�j�j)�z�jk # : (66)Then di�erentiating �j (43) with respet to eah z�jk yields:
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��j�z�jk = � tk � �jk�2j � 1(2�) 2�j exp��ktn � �jk22�2j �= tk � �jk�2j �j : (67)Then substituting (67) into (66) yields the �nal result:�En�z�jk = �" �j�jPmj0=1 �j0�j0 tk � �jk�2j #= �j��jk � tk�2j �: (68)

A.2 Summary of resultsThe partial derivatives omputed with respet to the feed forward network outputs are summarisedbelow: �En�z�j = �j � �j ;�En�z�j = ��j2 �ktn � �jk2�2j � �;�En�z�jk = �j��jk � tk�2j �:



First Year Qualifying Report: Neural Networks for ExtratingWind Vetors from Satellite Satterometer Data 54B The gradient of the error funtion of the hybrid MDNIn this appendix the derivation of the hybrid MDN framework is analysed in detail. The MDNframework is modi�ed to enode the ambiguous diretions that exist in the inverse mappingB.1 The Error funtion and its partial derivativesThe error funtion of a hybrid MDN is some what simpler than the full MDN:En = � ln��(xn)�(tnjxn) + (1� �(xn)) (tnjxn)�; (69)�(tnjxn) = 12��2(xn) exp��ktn � �(xn)k22�2(xn) �; (70) (tnjxn) = 12��2(xn) exp��ktn + �(xn)k22�2(xn) �; (71)simpli�ed thus: En = � ln���+ (1� �) �: (72)De�ne the two posterior probabilities for eah point:The free entre: � = ����+ (1� �) : (73)and the hybrid entre:  = (1� �) ��+ (1� �) : (74)B.1.1 Computing the derivatives of the mixing oeÆientsUsing the hain rule: �En�z� = �En�� ���z� ; (75)taking the �rst term from (72):�En�� = �� 1��+ (1� �) (� �  )�= �� ���+ (1� �) �  ��+ (1� �) �: (76)



First Year Qualifying Report: Neural Networks for ExtratingWind Vetors from Satellite Satterometer Data 55Then simplifying by using posterior distributions= �� ���+ (1� �) �� �  ��+ (1� �) (1� �)(1� �)�= ���� � (1� �)�= ���� � (1� �)�= �� (1� �)� � ��(1� �) �; (77)
but as  = 1� �, the �nal solution is: �En�� = � � ��(1� �) : (78)The mixing oeÆient � is a probability, and therefore is onstrained by 0 6 � 6 1. The logistifuntion on the output of the MLP ahives this:� = 11 + exp(�z�) : (79)Calulating the seond term of (75),���z� = exp(�z�)(1 + exp(�z�))2= 1(1 + exp(�z�))� exp(�z�)1 + exp(�z�)�= ��1� 1(1 + exp(�z�))�= �(1� �): (80)
Combining (78) and (80) the result for the derivative with respet to network outputs for themixing oeÆients gives, �En�z� = � � �: (81)B.1.2 Computing the derivatives of the kernel varianes (widths)Using the hain rule: �En�z� = �En��2 ��2�z� ; (82)



First Year Qualifying Report: Neural Networks for ExtratingWind Vetors from Satellite Satterometer Data 56and di�erentiating (72) with respet to �2 yields:�En��2 = � � 1�� + (1� �) �(�� + (1� �) )��2 �= ������ 12�2 + ktn � �k22�4 �+ (1� �) �� 12�2 + ktn + �k22�4 �� 1��+ (1� �) = ���2�� �2 + ktn � �k2�4 �+ 2�� �2 + ktn + �k2�4 ��: (83)
The seond term in expression (82) is easily omputed:��2�z� = exp(z�)= �2; (84)and ombining (83) and (84) equation (82) is omplete:�En�z� = ���2�ktn � �k2�2 � �+ 2�ktn + �k2�2 � ��: (85)B.1.3 Computing the derivatives of the kernel entres (means)For this derivative there is no onstraint (that is to say �k = z�k ) applied on the output of the mlpas there is in the previous two ases. Therefore �En�z�jk is omputed diretly from (42):�En�z�k = � � 1��+ (1� �) �(�� + (1� �) )�z�k � ; (86)and, �(��+ (1� �) )�z�k = ��� tk � �k�2 �� (1� �) � tk + �k�2 �: (87)Combining (86) and (87) yields the �nal result:�En�z�k = ���� tk � �k�2 �� � tk + �k�2 ��: (88)B.2 Summary of resultsThe partial derivatives omputed with respet to the feed forward network outputs are summarisedbelow: �En�z� = � � �;�En�z� = ���2�ktn � �k2�2 � �+ 2�ktn + �k2�2 � ��;�En�z�k = ���� tk � �k�2 �� �tk + �k�2 ��:



First Year Qualifying Report: Neural Networks for ExtratingWind Vetors from Satellite Satterometer Data 57C De�nitions of the summary measures used in the resultsThis appendix gives the details of the tools used to analyse the performane of the inverse model,FoM and vetor root mean square error. These statistis are omputed after applying a simpledisambiguation proedure whih is detailed �rstC.1 Disambiguation for model appraisalThe following method of disambiguation permits the omparison of inverse model performane interms of the quality of retrieved wind vetors. The predited diretion, Dpred, and predited windspeed, Upred, are hosen using a simple de-aliasing algorithm. The observed wind vetor, Vobs(derived from the numerial weather predition model, and gives the best estimate of a `true' windvetor available), is ompared with the two most probable wind vetors inferred from the modelby measuring the Eulidean distane between eah inferred wind vetor and the observed windvetor. The predited wind vetor, Vpred, is hosen as the wind vetor with a minimum Eulideandistane from the observed wind vetor. The predited wind vetor is then resolved to omputethe predited diretion Dpred and the predited wind speed Upred.C.2 Figure of MeritThis measure was proposed by David OÆler of the UK Meteorologial OÆe and is beoming amore widely used statisti for omparing the performane of models within this �eld (Cornford etal., 1997; Rihaume et al., 1998). FoM = (F1 + F2 + F3)3 ; (89)where: F1 = 40jUbiasj+ 10Usd + jDbiasj+Dsd ; (90)F2 = 12� 2Urms + 20Drms�; (91)F3 = 4Vrms : (92)where U represents wind speed, D the wind diretion and V the wind vetor (u; v). Where theparameters are de�ned: Ubias = 1N NXi=1 Ures(i); (93)Ures = Upred � Uobs; (94)Usd =vuut� 1N NXi=1(Ures(i))2�� (Ubias)2); (95)
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Urms =vuut 1N NXi=1(Ures(i))2; (96)

Vres =qU2obs + U2pred � 2UobsUpred os(Dres); (97)and Dres = Dpred �Dobs: (98)C.3 Predited wind vetor root-mean-square errorThe predited wind vetor root-mean-square error is de�ned asVrms =vuut NXi (u2res(i) + v2res(i)); (99)where the residuals of ui; vi are: u2res(i) = (upred(i) � uobs(i))2 (100)and v2res(i) = (vpred(i) � vobs(i))2; (101)where the predited wind vetors are obtained using the method detailed in Subsetion C.1C.4 Performane at 20ÆPerformane at 20Æ (denoted perf. � 20Æ) is a statisti that measures the perentage preditedwind diretions that are within 20Æ of the target wind diretion. This statisti is used in work byThiria et al. (1993), Cornford et al. (1997) and Rihaume et al. (1998).


