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AbstractA Bayesian procedure for the retrieval of wind vectors over the ocean using satellite borne scat-terometers requires realistic prior near-surface wind �eld models over the oceans. We have imple-mented carefully chosen vector Gaussian Process models; however in some cases these models aretoo smooth to reproduce real atmospheric features, such as fronts. At the scale of the scatterometerobservations, fronts appear as discontinuities in wind direction. Due to the nature of the retrievalproblem a simple discontinuity model is not feasible, and hence we have developed a constraineddiscontinuity vector Gaussian Process model which ensures realistic fronts. We describe the gen-erative model and show how to compute the data likelihood given the model. We show the resultsof inference using the model with Markov Chain Monte Carlo methods on both synthetic and realdata.
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2 Modelling Frontal Discontinuities in Wind Fields1 IntroductionKnowledge of the current state of the atmosphere is critical for the prediction of its future evolution.The problem of estimating the current state of the atmosphere is important in meteorology (Daley,1991). Observations of the current state of the atmosphere are sparse, particularly over the oceans.Recently scatterometers have been used to infer wind vectors over the ocean (O�ler, 1994). Ascatterometer is a satellite-borne microwave radar that measures the ratio of the power transmitted(toward the Earth's surface) to the power received (from scattering at the Earth's surface). Theretrieval of wind �elds from scatterometer observations over the oceans is non-trivial since thephysics of the scattering mechanism by small waves at the ocean surface is not perfectly understood.Thus statistical models, such as the current operational model Cmod4 (Sto�elen and Anderson,1997), are used for wind retrieval. The wind retrieval is often an ad-hoc procedure and frequentlyreferred to as disambiguation. This term is used because there are typically two to four valid localwind vector solutions given a single noisy scatterometer observation. This ambiguity is the sourceof the requirement to impose constraints on the fronts it is possible to identify.We propose a Bayesian method for retrieval, which can be seen as an application of the classicalmethods for the solution of inverse problems (Tarantola, 1987). The aim is to obtain p(U; V j�o),the conditional probability of the wind vector �eld, (U; V ), given the satellite observations, �o.Using Bayes' theorem: p(U; V j�o) = p(�o j U; V )p(U; V )p(�o) : (1)Once the �o have been observed, p(�o) is a constant and thus we can write:p(U; V j�o) / p(�o j U; V )p(U; V ); (2)and p(�o jU; V ) gives the probability of the scatterometer observations given a proposed wind �eld.Further details of the approach can be found in (Nabney et al., 1998), the overarching approachbeing similar to that in (Long, 1993). In this paper the prior model for wind �elds, p(U; V ), is ofconcern.2 Prior Wind Field ModelsThe prior wind �eld models, p(U; V ), should be able to represent all the possible wind �elds whichcan be observed in the atmosphere, however it should also penalise very unlikely wind �elds, andminimise the possibility of retrieving physically unreasonable wind �elds. The main constraintthat we can use to specify the prior model is a smoothness constraint.2.1 Smooth wind �eldsFigure 1 shows two examples of our best estimates of what the real wind �eld is like at the scale ofour scatterometer observations. The wind vectors are taken from a Numerical Weather Prediction(NWP) model (Haltiner and Williams, 1980) which uses a set of simpli�ed di�erential equationsand parameterisations to forecast the future evolution of the atmosphere given an initial state.Due to the nature of the model, which is discretised (either over a grid or in terms of spectralcoe�cients), these wind �elds are over-smooth with respect to reality, but form our best estimates.Since the main use of scatterometer winds will be for initialisingNWP models, it seems appropriatethat our prior model should re
ect the scales represented in NWP models.We use a vector Gaussian Process model to represent the smooth wind �elds. The model is basedon the decomposition of a vector �eld into purely divergent 
ow (from the velocity potential) andpurely rotational 
ow (from the stream function), known as Helmholtz' theorem (Daley, 1991). We
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Figure 1: Two typical smooth wind �elds from February 1998.do not give details here, the full development can be found in (Cornford, 1998). Essentially a scalarmodi�ed Bessel covariance function (Abrahamsen, 1997) based Gaussian Process was applied toboth the stream function (	) and velocity potential (�) rather than directly to the wind vectorcomponents. The wind vector components can be written in terms of derivatives of the streamfunction and velocity potential, and thus the covariance functions for the wind vector componentsare computed in terms of second order derivatives of the stream function and velocity potentialcovariances (Cornford, 1998). This allows control over the ratio of divergence to vorticity in theresulting wind �eld, and automatically produces valid, positive de�nite, joint covariance matricesfor the wind vector components. By controlling the length scales, process variance, smoothnessand noise variance a very 
exible model for wind �elds is produced with the additional bene�t ofbeing able to control the ratio of divergence to vorticity through the relative magnitudes of thevariances of the stream function and velocity potential.
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Figure 2: The area of the North Atlantic over which the prior model is de�ned together withan example of the ECMWF model winds for midnight 25/04/95In this work we consider a sector of the North Atlantic from 52:5�W; 40�N to 10�W; 60�N (Figure2) since this is the most reliably observed ocean region. In order to set the parameters in the wind�eld prior a large amount of data from the European Centre for Medium range Weather Forecasting(ECMWF) was used; this consists of gridded analysis data on a regular 2.5 degree latitude-longitudegrid. The surface wind �eld1 for a small region of the North Atlantic is extracted from the global,1The standard vector component wind �eld measured at 10 m above the ocean surface



4 Modelling Frontal Discontinuities in Wind Fieldsgridded data set. The British Atmospheric Data Centre2 performed the interpolation from themodel grid to the regular grid using software provided by ECMWF. An example wind �eld isshown in Figure 2. In order to obtain reliable climatological estimates of the parameters in thewind �eld model (in particular the mean parameter) three complete years of data from 1995, 1996and 1997 were used.Data before 1995 was not used in order to take advantage of the revisions made to the ECMWFmodel surface wind parameterisations in 1994, which increased model 10m wind speeds. The windpatterns in the North Atlantic show strong seasonal periodicity. Generally, winds are strongerduring the winter season than during the summer season. It is also possible that the characteristiclength scales of features change through the seasons. In order to account for this a separate priorwind �eld model was developed for each month, using the three years data. Since ECMWF analysethe incoming synoptic data (including wind observations) every six hours, there are roughly 360sample wind �elds for each month, which were used to estimate (or sample) the parameters of theprior wind �eld models.
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Figure 3: Two simulated wind �elds using Gaussian Process parameters for January.In this work we consider the maximum a posteriori probability values of the parameters of the wind�eld model (that is the parameters of the covariance functions on the stream function and velocitypotential). We placed very loose priors over the parameters based on expert knowledge of theatmospheric system. This is possible because our model has physically interpretable parameters.The smoothness parameter in the modi�ed Bessel covariance function was found to be � 2:5 forall months, suggesting the wind �elds were once di�erentiable (Adler, 1981). With this value,the modi�ed Bessel covariance function simpli�es to a polynomial-exponential covariance functionwhich has the form: C(r) = E2�1 + rL + r23L2� exp�� rL�+ �2 (3)where r is the separation distance of two points, L is a characteristic length scale parameter, E2 isthe energy (process variance) and �2 is the noise variance. This form is much quicker to compute.Under this model we can write:p(U; V ) = p(U; V j �) = 1(2�)n2 det (Kuv) 12 exp��12(U; V )0K�1uv (U; V )� (4)where (U; V ) is an observed wind �eld, Kuv is the covariance matrix de�ned by (Equation 3) andthe dependence on the parameters of the Gaussian Process, � = fL;E2; �2g is made explicit.Simulations from this prior model can be seen in Figure 3. In most cases this prior model issu�cient. However it does not capture the full range of possible wind �elds. There is a class ofatmospheric feature which are not well represented by this model.2See http://www.badc.rl.ac.uk/
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(b)Figure 4: Two typical frontal wind �elds from February 1998. The approximate location of thefronts, as determined automatically using the model described herein, is also shown.The most di�cult atmospheric features to include in the wind �eld model are surface fronts. Frontsare generated by complex atmospheric dynamics and are marked by large changes in the surfacewind direction and temperature. Figure 4 shows two examples of `real' fronts as observed by theNWP model and interpolated to the scatterometer observation locations. Since both the NWPmodel and the interpolation procedure will act as smoothers, the `true' wind �eld is probablymore discontinuous. In order to account for such features, which appear discontinuous at our(scatterometer) observation scale, we have developed a model for vector Gaussian Processes withconstrained discontinuities. The generative model for a wind �eld including a front is taken to bea combination of two vector-valued Gaussian Processes with a constrained discontinuity.
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+Figure 5: A graphical description of the frontal model.The generative model is developed to maintain a simple but physically realistic representation.Initially the frontal position and orientation are simulated. They are given by the angle clockwisefrom north (�f ) that the line of the front makes and a point on that line (xf ; yf ). The curvatureof the front is then de�ned by a distance orthogonal to a point on the line of the front, df (this istypically taken to be the central point on the front with respect to the region within which the frontfalls). This implies the front is a simple parabola within the region being considered, an assumptionwhich, although restrictive, �ts well with observations. The change in the angle of the wind acrossthe front is ���f and is simulated from a distribution, given later, covering the range [0; �). Thisangle is related to the vertical component of vorticity (�) across the front through � / cos (�f=2)



6 Modelling Frontal Discontinuities in Wind Fieldsand the constraint �f 2 [0; �) ensures cyclonic vorticity at the front. The angle behind and aheadof the front may be asymmetric which is accounted for by �f 2 [0:5; 0:8). The wind speed (sf ) isthen simulated at the front. Since there is generally little change in wind speed across the front onevalue is simulated for both sides of the front. These components �f = (�f ; xf ; yf ; df ; �f ; �f ; sf )de�ne the line of the front and the mean wind vectors just ahead of and just behind the front(Figure 5): m1a = (um1a; vm1a) = (sf sin (�f + (1� �f )�f ) ; sf cos (�f + (1� �f )�f )) ; (5)m1b = (um1b; vm1b) = (�sf sin (�f � �f�f ) ;�sf cos (�f � �f�f )) : (6)A realistic model requires some variability in wind vectors along the front. Thus we use GaussianProcesses with a non-zero mean (m1a or m1b) along the line of the front. In the real atmospherewe observe a smaller variability in the wind vectors along both sides of the front compared withregions away from fronts. Thus we use the same Gaussian Process along the front (GP1), asthat used in the wind �eld away from the front (GP2) but with larger length scales and smallervariances. The values of the GP1 parameters are set using expert prior knowledge. The same GP1parameters are used along both sides of the front, with di�erent means. The winds just ahead ofand behind the front are assumed conditionally independent givenm1a and m1b, and are simulatedat a regular 50 km spacing. The �nal step in the generative model is to simulate wind vectorsusing GP2 in both regions either side of the front, conditionally on the values along that side of thefront. This model is 
exible enough to represent fronts, yet has the required constraints derivedfrom meteorological principles, for example that fronts should always be associated with cyclonicvorticity with discontinuities at the model scale in wind direction but not in wind speed. To makethis generative model useful, we need to be able to compute the data likelihood, which is thesubject of the next section.3 Gaussian Processes with Constrained Discontinuities
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Figure 6: The simpli�ed model for a frontal discontinuity. The region is partitioned into thefrontal domain, D1, and the domain in which the wind vectors are observed, D2.We consider data from two domains D1 and D2 (Figure 6), where in this case D1 is a curve inthe plane which represents the front and D2 is a domain that gives the area ahead of or behindthe front. Consider n1 random variables, Z1, at points x1 along the curve D1, and assume theseare generated under GP1 (a Gaussian Process which depends on parameters �1 and has meanm1 = m11). In practice we choose n1 to be around 10. The model shows no sensitivity to thevalue of n1 provided that the spacing of points along the line is less than a tenth of the lengthscale of the Gaussian Process along the front. We are interested in determining the likelihood ofthe random variables Z2 observed at n2 points x2 in D2 under GP2 which depends on parameters�2, conditionally on the `constrained discontinuities' at the front, as represented by the meanm1.We evaluate this by calculating the likelihood of Z2 conditionally on the n1 values of Z1 from GP1



Modelling Frontal Discontinuities in Wind Fields 7along the front and marginalising out Z1:p(Z2j�2;�1;m1) = Z 1�1 p(Z2jZ1;�2;�1;m1)p(Z1j�1;m1) dZ1: (7)From the de�nition of the likelihood of a Gaussian Process (Cressie, 1993) we �nd thatp(Z2jZ1;�2;�1;m1) = 1(2�)n22 jS22j 12 exp��12Z�2 0S�122 Z�2� ; (8)where S22 = K22j2 �K 012j2K�111j2K12j2; Z�2 = Z2 �K 012j2K�111j2Z1:To understand the notation consider the joint distribution of Z1 and Z2, and in particular itscovariance matrix (assuming that both Gaussian Processes are generated under GP2):K = �K11j2 K12j2K21j2 K22j2� (9)where K11j2 is the n1 � n1 covariance matrix between the points in D1 evaluated under the co-variance for GP2, K12j2 = K 021j2 the n1 � n2 (cross) covariance matrix between the points in D1and D2 evaluated using �2 and K22j2 is the usual n2 � n2 covariance for points in D2. Thus wecan see that S22 is the n2�n2 modi�ed covariance for the points in D2 given the points along D1,while the Z�2 is the corrected mean that accounts for the values at the points in D1, which havenon-zero mean.We remove the dependency on the valuesZ1 by evaluating the integral in (Equation 7). p(Z1j�1;m1)is given by: p(Z1j�1;m1) = 1(2�)n12 jK11j1j 12 exp��12 (Z1 �m1)0K�111j1 (Z1 �m1)� (10)where K11j1 is the n1�n1 covariance matrix between the points in D1 evaluated under the covari-ance given by �1. Completing the square in Z1 in the exponent, the integral (Equation 7) can beevaluated to give:p(Z2j�2;�1;m1) = 1(2�)n22 1jS22j 12 1jK11j1j 12 1jBj 12 � (11)exp�12 �C 0B�1C �Z20S�122 Z2 �m10K�111j1m1��where: B = (K 012j2K�111j2)0S�122 K 012j2K�111j2 +K�111j1C 0 = Z20S�122 K 012j2K�111j2 +m10K�111j1The algorithm has been coded in Matlab and can deal with reasonably large numbers of pointsquickly. With n1 = 12 and n2 = 200 for a two dimensional vector-valued Gaussian Process basedon a covariance function given by (Equation 3), computation of the log likelihood takes 4.13 secondson a SGI Indy R5000.The mean value just ahead and behind the front (Equation 6) de�ne the mean values for theconstrained discontinuity (i.e. m1 in Equation 11). Conditional on the frontal parameters thewind �elds either side are assumed independent (Figure 7):p(Z2a;Z2bj�2;�1;�f ) = p(Z2aj�2;�1;�f )� p(Z2bj�2;�1;�f ) (12)where we have performed the integration (Equation 7) to remove the dependency on Z1a andZ1b. Thus the likelihood of the data Z2 = (Z2a;Z2b) given the model parameters �2;�1;�f issimply the product of the likelihoods of two Gaussian Processes with a constrained discontinuitywhich can be computed using (Equation 11). Since the relation between �f and m1a or m1b isdeterministic we can use either without ambiguity.
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Figure 7: The simpli�ed model for a frontal discontinuity. The combination of two GaussianProcesses with constrained discontinuities produces the full wind �eld model.4 Testing the ModelTo ensure the model we have proposed is useful in practical applications we have tested the modelat several stages. Early work (Cornford et al., 1999) tested a simpli�ed model, which allowedonly symmetric, straight fronts on simulated data. Markov Chain Monte Carlo sampling was usedto infer the posterior distribution of the frontal parameters p(�f jZs) conditional on some dataZs = (Zs2a;Zs2b) simulated from the simpli�ed model. It was shown that when the samplingprocedure was initialised `reasonably' close to the values used in the simulation the Markov Chainsconverged to the expected values. In this paper we perform a similar test on the more generalmodel, where the initialisation is made without any knowledge of the generating parameters. Wethen show results on real data.4.1 Simulated data
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(b)Figure 8: (a) An example simulated frontal wind �eld. The wind �eld generated by the modelis show together with the `true' position of the front (dashed line). Also shown is themodal frontal position after sampling (thick solid line) which plots almost over thetrue frontal position. The mean wind vectors just ahead of and behind the front arealso shown in the lower right of the plot. (b) The constrained discontinuity in winddirection from our model, for the same simulation.



Modelling Frontal Discontinuities in Wind Fields 9The model outlined above was tested on simulated data generated from the model. We generateda wind �eld Zs using known model parameters (e.g. Figure 8). We then investigated the samplingof model parameters from the posterior distribution:p(�2;�1;�f jZs) / p(Zsj�2;�1;�f )p(�2)p(�1)p(�f ) (13)where p(�2); p(�1); p(�f ) are prior distributions over the parameters in the Gaussian Processes andfrontal models. This brings out one advantage of the proposed model. All the model parametershave a physical interpretation and thus expert knowledge was used to set priors which producerealistic wind �elds. We could have used (Equation 13) to help set (hyper)priors using real data.The prior distributions for all parameters of both Gaussian Processes were Weibull with peaksat the maximum a posteriori probability values determined from real data and a `variance' thatconstrains the solutions to be physically realistic. In practice, due to the conditioning of theGaussian Processes away from the front on the value of the means along the front, the frontalparameters �f are the most important ones to retrieve. The prior distributions for the frontalparameters are:� (xf ; yf ) : uniform in the range of the observed data� df : Exponential, rate = 0.02� �f : Circular Normal (on [0; 2�)), mean = �=6, `variance' = �=3� �f : Circular Normal (on [0; �)), mean = �=2, `variance' = �=8� sf : Weibull, maximum at 12 ms�1, wide spread� �f : Uniform on [0:5; 0:9]These priors are essentially used to constrain the possible solutions to be physically realistic,particularly the prior over �f . During testing they were not found to have a signi�cant e�ect onthe parameters retrieved (other than the constraints we intended them to encode).Markov Chain Monte Carlo methods using the Metropolis algorithm (Neal, 1993) were used tosample from (Equation 13) using the Netlab3 library. Convergence of the Markov chain wasassessed using visual inspection of the univariate sample paths since the generating parameters wereknown, although other diagnostics could be used (Cowles and Carlin, 1996). A good initialisationis very important if the chain is to converge on a sensible time-scale.The initialisation of the frontal model is performed using `ad-hoc' methods. We compute thedivergence and vorticity (curl) of the wind �eld using �nite di�erence approximations (Haltinerand Williams, 1980) and use the maxima in the sum of the absolute values of the vorticity anddivergence to locate the line of the front. The values of the wind vectors in the regions ahead ofand behind this line are then used to set the other parameters in the model.The Metropolis algorithm was run for 50,000 iterations, with the Gaussian proposal variances,chosen by the user after several trial runs, being di�erent for di�erent parameters. This takesroughly 4 hours on a SGI Power Challenge R10000. We allowed a 10,000 iteration burn-in. Figure 9shows ten samples of the frontal position and mean winds taken from the simulation based on thewind �eld in Figure 8. It is clear that for the simulated data it is possible to infer sensible posteriordistributions of the model parameters. Real data, not generated under the model, presents a morerealistic test.4.2 Real dataIn this section we use real data, such as that shown in Figure 4, which is extracted from theECMWF numerical weather prediction model and interpolated to the scatterometer observation3Available from http://www.ncrg.aston.ac.uk/netlab/index.html.
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Figure 9: A sample from the posterior distribution of the Markov chain of the frontal param-eters after allowing a 10,000 step burn-in. The position of the front and the meanwinds just ahead of and behind the front are plotted for 10 equally spaced samplesfrom the remainder of the 50,000 sample chain.locations. The procedure used is the same as in the simulation testing, but this time we do notknow the `true' location of the fronts. Thus the validation of the model is performed visually andby comparing the likelihoods of the data under the frontal model and the smooth wind �eld model.Figure 4 also shows the results of running the algorithm on the two real examples. The fronts canbe seen to be in the expected positions.
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Figure 10: Samples from the posterior distribution of the fronts and winds at the front for thewind �elds shown in Figure 4. The format is similar to Figure 9.Samples from the posterior distribution of the parameters of the frontal model can be seen inFigure 10. It can be seen that the distribution of the fronts is quite closely constrained by thedata. The winds either side of the fronts can be seen to take sensible values. Thus there is somehope that this algorithm might be applicable to the problem we really want to solve, that of theextraction of wind vectors from satellite scatterometer data.While the above exploratory analysis con�rms that the model parameters are identi�able and agreewith those set by expert judgement a more objective measure of model performance is needed. Wepropose to do this by comparing the log likelihoods of several real wind �elds under the frontalmodel (Equation 12) and the smooth model (Equation 4). In order to select frontal wind �elds, 575scenes (that is 500�500 km regions observed by the ERS-2 satellite) for the Northern Hemisphere



Modelling Frontal Discontinuities in Wind Fields 11in the month of February 1998 were examined and 45 scenes which probably included fronts wereidenti�ed. Both the smooth and frontal wind �eld models were applied automatically to the dataand the likelihoods of the wind �elds compared. To provide further comparison another 45 sceneswere selected randomly from the remaining 530 scenes. These are probably smooth wind �eldsand thus the likelihood of the data under the smooth wind �eld model should be greater.Table 1: Comparison of the likelihoods of the wind �elds which were assessed to be frontal andnon-frontal under both the frontal and smooth wind �eld models.Wind �eld type Mean log likelihood under Mean log likelihood underthe frontal model the smooth modelFrontal �357:3 �582:6Non-frontal �71:7 �74:2Table 1 shows that there is a signi�cant di�erence in log likelihood of the frontal versus non-frontalwind �elds under both frontal and smooth models. It is also clear that the mean di�erence betweenthe log likelihoods under the frontal model compared with the smooth model is much greater forfrontal wind �elds.5 DiscussionThe problem of the retrieval of wind �elds from scatterometer observations is a classic inverseproblem, in that we require a `regularising' spatial prior model for wind �elds. In general thesmooth Gaussian Process model, discussed in Section 2.1, is su�cient to represent the expectedvariability in observed wind �elds. However, when there are fronts present in the wind �eld it willbe important to incorporate the possibility of fronts in our wind �eld model if we are to retrieverealistic wind �elds.However the ambiguous nature of the winds retrieved from the scatterometer observations meansthat we must put strong constraints on the form a front can take. Desroziers and Lafore (1993) havesuggested a coordinate transform approach to the mapping of meteorological �elds in the vicinityof fronts, somewhat like the ideas of (Sampson and Guttorp, 1992), but this approach has limitedvalue in our application due to the ambiguous winds retrieved from the scatterometer. A front isessentially a curve along which there is a discontinuity in wind direction, but near continuity inwind speed. It is important that only cyclonic vorticity is observed at fronts and this constraintforms part of our model through setting Bayesian priors over the parameters of the frontal model.This minimises the risk of identifying fronts that are purely the result of ambiguity in the retrievalof winds from scatterometer observations (Sto�elen and Anderson, 1997).Testing the model on simulated data allows the assessment of the parameter identi�ability andsensitivity within the model. The results show that given a good initialisation the simpleMetropolissampling performs adequately on the problem. The `correct' parameters, used in simulating thedata, are retrieved for all runs where the initialisation works (it failed in 2 runs out of the 20attempted in the simulated data and 3 runs out of 45 in the real data). The initialisation failswhen the front crosses only a very small portion of the region or falls very close to the edge of theregion. There is considerable room for improving the initialisation routine, for instance the use ofrobust methods for 2D curve �tting might improve reliability. However, for the majority of wind�elds examined, the initialisation we have used was su�cient to obtain a sensible frontal wind �eldmodel.There is some correlation between the model parameters, but this is not severe, as evidenced bythe fact that each is well identi�ed and close to the `true' value when sampling from simulateddatasets.The model works well with the real data; however it is rather di�cult to quantify how well. It
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(b)Figure 11: The modal position for the fronts and winds at the front for the wind �elds shown inFigure 4. (a) Shows a wind �eld which was thought to contain a front but for whichthe smooth model has a similar log likelihood (log likelihood; smooth = �77:4,frontal = �68:6). (b) A wind �eld in which there was thought to be no front, butthe log likelihood suggests there may be (log likelihood; smooth = �123:2, frontal= �90:9).would have been useful to have observations of surface temperature and humidity since thesevariables can also be used, in a more straightforward manner (Hewson, 1998), to locate fronts.Using meteorological expertise it can be stated that subjectively the frontal model puts the frontsin the right place with the correct parameter values.Table 1 shows that the model can distinguish between frontal and non-frontal wind �elds. Forfrontal wind �elds the mean log likelihood under the frontal model is much larger than the loglikelihood under the smooth model. For non-frontal wind �elds the log likelihoods of both modelsare very similar.By comparing the log likelihoods of wind �elds which were believed a priori to contain fronts andthose which were believed not to contain fronts, under both the frontal and smooth wind �eldmodels, we have shown that the frontal model has a larger log likelihood (is more probable) if afront is present (see Table 1). The log likelihood of the frontal wind �elds (i.e. the �rst row) issmaller for both models because frontal wind �elds exhibit greater variability than smooth wind�elds even away from the front, and both models prefer smooth wind �elds (the frontal model alsocontaining just one `clean' front). The reason that the log likelihood of the frontal model is smallerfor frontal wind �elds than smooth wind �elds (comparing the left column) is thought to be theresult of the smoothing inherent in the ECMWF model wind �elds, which has a large e�ect on thewind �eld near the front and thus does not �t the frontal wind �eld model proposed. When usedas part of an algorithm based on the scatterometer observations, which contain much more spatialdetail, the log likelihoods (under the frontal model) should be similar for frontal and non-frontalwind �elds.The reason that the mean log likelihood of the frontal model is greater than that of the smoothmodel is thought to be related to the mean used in the frontal model. This extra parameter givesa more 
exible model, which given a �xed data set is likely to have a larger likelihood. We alsoobserve that the change in wind direction across the fronts, �� �f , is very small when the frontalmodel is use with a non-frontal wind �eld.Figure 11 shows two example wind �elds with the modal posterior positions of the fronts from (a)the frontal and (b) the non-frontal scenes. These examples show that it may be possible to usethe relative log likelihoods to determine whether a frontal model is plausible for a given wind �eld.In Figure 11(a) we �nd that the log likelihoods under both the smooth and frontal models are



Modelling Frontal Discontinuities in Wind Fields 13similar, despite the wind �eld being subjectively classi�ed as frontal. Further inspection revealsvery weak evidence for a front within the wind �eld, supporting the conclusion that there reallyis no front present. Figure 11(b) shows an example where the likelihoods are quite di�erent underthe smooth and frontal model suggesting the presence of a front. Close examination shows that afront appears to be present in the upper right hand corner.One outstanding problem with the frontal model is that two matrices of size n� n at best, wheren is the number of observations, require inversion during the computation of the likelihood. Thismeans that the determination of the likelihood is rather slow (see Section 3). In practice we wouldlike to run the retrieval procedure in real time, thus sampling may not be appropriate in theoperational framework. Since the main use for the retrieved wind �elds will be as initial conditionsfor a numerical forecast of the future state of the atmosphere, it is most important to retrievethe modal wind �eld. Thus we could use some form of optimisation algorithm (such as simulatedannealing) to determine the mode with greater speed. Advances in data assimilation in numericalweather prediction may make sampling more appropriate at some time in the future.
6 ConclusionsThe frontal model we have developed, based on the concept of constrained discontinuities in vectorGaussian Processes, gives a parsimonious yet realistic model for frontal wind �elds. When run inthe generative mode realistic wind �elds are produced, which strongly resemble real frontal wind�elds. Care must be taken when comparing these with wind �elds obtained from numerical weatherprediction models since these are discrete and over smooth representations of the atmosphere.However their use with scatterometer data, which is believed to contain �ner spatial detail, couldbe used to enhance our understand of the near surface wind �eld at fronts. The frontal modelshould also enable the more accurate retrieval of wind �elds in the presence of fronts.The concept of a constrained discontinuity in Gaussian Processes may also have other uses, suchas the automatic recognition of fronts (Hewson, 1998) or motion detection in arti�cial vision. Thekey point is the ability to constrain the discontinuity so that only realistic features are part of theprior model. This will minimise the identi�cation of `incorrect' fronts resulting from ambiguity inthe retrieval of winds from local scatterometer observations.Future work might go on to consider the application of a reversible jump (Green, 1995) step in theMCMC sampling procedure to allow inference on the probability of a front being present althoughit seems unlikely that mixing will be improved and likely that convergence may be delayed. Thuswe believe at present that we can compare the log likelihoods of the smooth and frontal wind �eldmodels and choose the smooth model if the log likelihood of the smooth model is su�ciently largeor greater than � 90% of the log likelihood of the frontal model. Ongoing work is attempting toresolve the issue of front identi�cation.The results so far indicate that the frontal model proposed will form a useful component in theautomatic wind retrieval system we envisage for the scatterometer observations.
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