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Thesis SummaryThis thesis describes the Generative Topographic Mapping (GTM) | a non-linear latent variablemodel, intended for modelling continuous, intrinsically low-dimensional probability distributions, em-bedded in high-dimensional spaces. It can be seen as a non-linear form of principal component analysisor factor analysis. It also provides a principled alternative to the self-organizing map | a widely estab-lished neural network model for unsupervised learning | resolving many of its associated theoreticalproblems.An important, potential application of the GTM is visualization of high-dimensional data. Sincethe GTM is non-linear, the relationship between data and its visual representation may be far fromtrivial, but a better understanding of this relationship can be gained by computing the so-calledmagni�cation factor. In essence, the magni�cation factor relates the distances between data points,as they appear when visualized, to the actual distances between those data points.There are two principal limitations of the basic GTM model. The computational e�ort required willgrow exponentially with the intrinsic dimensionality of the density model. However, if the intendedapplication is visualization, this will typically not be a problem. The other limitation is the inherentstructure of the GTM, which makes it most suitable for modelling moderately curved probabilitydistributions of approximately rectangular shape. When the target distribution is very di�erent tothat, the aim of maintaining an `interpretable' structure, suitable for visualizing data, may come incon
ict with the aim of providing a good density model.The fact that the GTM is a probabilistic model means that results from probability theory andstatistics can be used to address problems such as model complexity. Furthermore, this frameworkprovides solid ground for extending the GTM to wider contexts than that of this thesis.Keywords: latent variable model, visualization, magni�cation factor, self-organizing map, principalcomponent analysis2
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Chapter 1IntroductionThe amount of data being recorded and stored throughout society is steadily growing. This is largelydue to the increased use of modern technology in general and computers in particular. Satellites inorbit are generating vast amounts of data in terms of imagery and geodesic data. Transactions on theglobal �nancial markets, via computerized systems, generate complex time series data. With increasedcompetition, companies are building sophisticated customer databases in attempts to analyze currentand future markets. In micro-biology, we now access the large quantity of data stored in the DNA ofliving organisms.However, without means and methods that can aid analysis, much data becomes useless. Humanobservers often �nd it hard spotting regularities when looking at raw data, e.g. tables of numbersand symbols or large numbers of similar images. We therefore need computers to aid us, not onlyin the gathering and storing of data, but also in the analysis and processing of it. In particular, ifthe computer can be used to summarize data visually, humans are often capable of interpreting suchgraphical summaries intelligently.1.1 Scope of this thesisThis thesis is concerned with computational methods for �nding `interesting' structures in sets of data,with little or no need of human intervention or guidance. A number of such methods has been knownfor quite some time. A key feature of many of them is that they involve some sort of dimensionalityreduction, from the, typically high-dimensional, data space to a low-dimensional model space de�nedby the method used. When visualization is the ultimate aim, the model space is typically chosen tobe two-dimensional. In this thesis, both the data space and the model space are taken to be subsetsof <1. Moreover, we will restrict our interest to global structures, i.e. continuous low-dimensionalmanifolds embedded in high-dimensional continuous spaces. For a long time, models with this scopewere restricted to model only linear structures, i.e. hyper-planes, in the data space. We will direct ourinterest to models where the relationship between model and data space is non-linear, as illustratedin the right half of �gure 1.2.An important reason why the linear models for long were dominating is their computational e�-ciency. However, the arrival of fast, inexpensive computers has, in the last two decades, changed thepicture dramatically. This has combined with discoveries of new computational algorithms and todaywe are tackling problems which twenty years ago would have been considered untractable. Many ofthese new algorithms have been inspired by models of the processing going on in the human brain.10



CHAPTER 1. INTRODUCTION

Figure 1.1: An example of data which, although living in a 2-dimensional space, is approximately1-dimensional. Any good method for reducing the dimensionality of this data must be able to dealwith the fact that it is non-linearly embedded in the 2-dimensional space.In particular, there has been a lot of interest in generic algorithms that can `learn' an underlyingstructure from a �nite set of examples, in a fashion similar to human learning. For many problemsthis is highly desirable, since a human observer may easily discover regularities in a set of examples,but will �nd it much harder to describe how he or she made this discovery. Consider, for example, theset of points shown if �gure 1.1: most human observers would, when asked to comment on this data,immediately point out that the points appear to be distributed, approximately, along a curved line.However, it is unlikely that anyone of them would be able to provide a description of how they arrivedat this conclusion, which would be su�ciently exact to translate into computational algorithm.This has motivated the development of algorithms that, to a certain extent, try to mimic theprocesses that takes place in the human brain, in terms of discovering and exploiting underlyingstructures of �nite data sets. These algorithms have become known under the common name ofneural networks [Haykin, 1994]. In parallel, similar algorithms have grown out of the research intostatistical pattern recognition [Duda and Hart, 1973], and the strong links between these two �eldsare today widely appreciated [Bishop, 1995, Ripley, 1996].To return the focus to the problems we are interested in, our underlying assumption is that althoughwe observe a large number (D) of data variables, these are being generated from a smaller number (L)of hidden, or latent, variables, as illustrated by �gure 1.2. Models based on this assumption are calledlatent variable models [Bartholomew, 1987, Everitt, 1984] and have evolved, initially from psychology,to become established statistical models for data analysis. When both latent and observed variablesare real valued and the relationship between them is linear, the resulting model is traditionally knownas factor analysis [Bartholomew, 1987, Lawley and Maxwell, 1971] and will be further discussed inthe next chapter. To allow the relationship between the latent and the data space to be non-linear,we consider a non-linear, parameterized mapping from the latent space to the data space. This willmap every point in the latent space to a corresponding point in the data space. If we assume thatthe mapping is smooth, these points will be con�ned to an L-dimensional, curved manifold in theD-dimensional data space. If we then de�ne a distribution over the latent space, this will induce acorresponding distribution over the manifold the data space, establishing a probabilistic relationship11
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Figure 1.2: A non-linear latent variable model, where the latent variables, x1 and x2 are mapped,by the non-linear, parameterized mapping y(x;W), to a low-dimensional, curved manifold, S, in thedata space de�ned by t1, t2 and t3.between the two spaces. The challenge will be to adapt the parameterized mapping so as to �t thedensity model in the data space to a set of training data.Assuming we have been able to �t our model, we can then relate points in the data space to pointson the curved manifold, which in turn correspond to points in the latent space. This way, we can givepoints in the high dimensional data space a representation in the low-dimensional latent space, andprovided the data space has no more than three dimensions, we can visualize this representation.The introduction of non-linearity will o�er the possibility of modelling a much richer `family' ofstructures, compared to what we can achieve with linear models. However non-linearity also bringspotential problems. Since real data is typically corrupted by noise, there is a risk that a non-linearmodel captures not only systematic non-linearities in a set of data, but also random artifacts due tonoise. Another problem, if we consider visualization of high-dimensional data, is that the relationshipbetween the data and its `representation' in the model is not as straightforward when using a non-linear model as when using a linear model. Although these potential problems should not stop usfrom making use of non-linear models, we must be aware of their presence and try to resolve them,as far as possible.1.2 Overview of this thesisIn chapter 2, we review a number of models proposed for �nding and exploiting structure in high-dimensional data sets. These models are divided into three categories:� projection models, which are based on the notion of `projecting' points in the data space ontothe model space,� generative models, where points in the data space are considered to have been generated bypoints in the model space, and� other models, which do not belong to either of the above categories.12



CHAPTER 1. INTRODUCTIONThe most important of the projection models is linear principal component analysis (PCA) [Jolli�e,1986]; the other models discussed in that category can all, in some sense, be regarded as non-linearvariants of PCA. Correspondingly, the section on generative models is headed by factor analysis (FA),which, traditionally has been regarded as the generative counterpart of PCA, followed by non-lineargenerative models. The �nal section on other models is primarily concerned with the self-organizingmap (SOM) [Kohonen, 1995], a widely researched neural network model which is strongly related tothe generative topographic mapping (GTM), introduced in chapter 3.The chapter on the GTM describes its architecture, the associated training algorithm and howit can be used for visualization of data. It goes on to discuss the relationship to some of the othermodels from chapter 2, in particular the SOM.In chapter 4, we try to investigate the relationship between latent space and data space, de�nedby the nonlinear mapping, by evaluating the `stretching' of the manifold forming the image of thelatent space in the data space. This will allow us to extract additional information from our model,in terms of how points in the latent space are related to the corresponding points in the data space,information which can be merged with visualized data. A method along these lines has been proposedfor the SOM, but has been restricted by the fact that the original SOM model does not de�ne anexplicit manifold in the data space. However, we will see how the method proposed can also be usedwith certain, more recent versions of the SOM, provided certain conditions are met.Chapter 5 addresses the issue of parameter selection and its relationship to model complexity.Two principal methods for �nding suitable parameter values are discussed: cross-validation and ap-proximate Bayesian maximum a-posteriori, the latter of which o�ers di�erent variants. While bothmethods can be used o�ine, by simply evaluating the appropriate score for di�erent parameter valuesand then choose those with the best score, the Bayesian methods can also, to some extent, be usedin an online setting, where appropriate parameter values are found during training, thereby o�eringdramatic savings in terms of computation. The methods are evaluated using synthetic data.Directions for future work are suggested in chapter 6, in some cases accompanied by some provi-sional results. These include potential ways of dealing with known limitations of the GTM model asit stands today, as well as possibilities for it to be used in contexts di�erent to that of this thesis, e.g.data with categorical variables, incomplete data, and mixtures of GTM models. Finally, chapter 7gives a concluding discussion.The reader who is only interested in the GTM model can skip chapter 2, and go directly tochapter 3, skipping section 3.4. Subsequent chapters are independent of each other, but assume thatthe reader has read the chapter on the GTM. Section 4.4 discusses magni�cation factors for thebatch version of the SOM model (BSOM); for readers unfamiliar with this model, it is described insection 2.3.1 and further discussed in section 3.4.1.1.2.1 Publications on the GTMThis thesis gathers and complements the material in earlier publications on the GTM:� EM Optimization of Latent-Variable Density Models, presented at Neural Information ProcessingSystems (NIPS), Denver, Colorado, 1995, chapter 3,� GTM: A Principled Alternative to the Self-Organizing Map, presented at the International Con-ference on Arti�cial Neural Networks (ICANN), Bochum, 1996, chapter 3,� GTM: A Principled Alternative to the Self-Organizing Map, presented at NIPS, 1996, chapter 3,13



CHAPTER 1. INTRODUCTION� Magni�cation Factors for the SOM and GTM Algorithms, presented at the Workshop on Self-Organizing Maps (WSOM), Helsinki, 1997, chapter 4,� Magni�cation Factors for the GTM Algorithm, presented at the IEE International Conferenceon Arti�cial Neural Networks, Cambridge, 1997, chapter 4,� GTM: The Generative Topographic Mapping, published in Neural Computation, 1998, chapter 3,and� Developments of the GTM Algorithm, to appear in Neurocomputing, chapter 6.The chapter numbers given refer to the chapter of this thesis where the main content of the corre-sponding paper can be found. These papers are all authored by C. M. Bishop, M. Svens�en and C. K.I. Williams, and are also listed with further details in the bibliography.Before moving on, we now introduce some notation and conventions used throughout the rest ofthis thesis.1.3 Notation and conventionsIn the mathematical notation, the convention will be that an italic typeface indicates scalar values,e.g. tnd; x; �, while bold typeface indicates vectors and matrices, the former using lower case symbols,e.g. t; k, and the latter using upper case symbols, e.g. X;�. Note, however, that exceptions to thisconvention do appear.Our aim is to build a model of a probability distribution in <D, based on a �nite set of inde-pendently drawn samples from this distribution, t1; : : : ; tn; : : : ; tN . We will denote this data set T;typically, we organize the samples into a N �D matrix, where row n contains sample tn, and T willalso be used to denote this matrix. Individual elements in this matrix or, equivalently, elements ofsample tn, will be denoted tnd. As we will see, a key assumption about T is that the samples areindependent, identically distributed, commonly abbreviated i.i.d.Also in the low-dimensional model space (<L) we will be working with a �nite set of points,x1; : : : ;xk; : : : ;xK , which may or may not be in one-to-one correspondence with the points in T. Weuse X to denote this set of points as well as the corresponding K � L matrix. These points will mapto a corresponding set of points, y1; : : : ;yk; : : : ;yK in the data space, denoted Y, which also denotesthe corresponding K �D matrix.Thus, D denotes the dimensionality of the data space, L the dimensionality of the latent space,N the number of data points and K the number of latent points. As far as it is possible, withoutcompromising clarity, matching indices will be used, so that d is used as index over the dimensions ofthe data space, k is used as index over latent points, etc.At various occasions we will make use of the identity matrix I (a diagonal, square matrix with onesalong diagonal and zeros elsewhere). Normally, the size of I will be given implicitly by the context,so in the equation A = B+ Iwhere A and B are M �M matrices, I is understood to also be M �M .Unless indicated otherwise, summations will start from 1, and we will use the abbreviationN;KXn;k = NXn KXk :We will also use abbreviations 1-D, 2-D, etc. for 1-dimensional, 2-dimensional, etc.14



Chapter 2Modelling Low-dimensionalStructureThe problem of �nding low-dimensional representations of high-dimensional data is not new and aconsiderable number of models have been suggested in the literature. The rest of this chapter willreview some of those models, broadly categorized into� projection models,� generative models and� other models.Projection models are, loosely speaking, based on `projecting' the data, e.g. by orthogonal pro-jection, on the model | �tting those models corresponds to minimizing the distances between dataand its projection. Generative models try to model the distribution of the data, by de�ning a densitymodel with low intrinsic dimensionality in the data space. The borders between the three categoriesare not clear cut and, as will be seen in the following sections, there are models that �t in more thanone category.2.1 Projection modelsThe traditional meaning of projection is the orthogonal projection of a point in <D, onto a hyper-plane, <L � <D , where L � D. This is also the method of projection used in principal componentsanalysis (PCA), the most commonly used of the projection models described here. The fact that PCAde�nes a linear, orthogonal model space gives it favourable computational properties, but it is alsoits main limitation. Therefore, a number of models have been suggested that allow for non-linearity,either by using a combination of locally linear models, which together form a non-linear structure,or through the use of a globally non-linear model. However, before coming to these models we �rstconsider standard linear PCA.2.1.1 Principal component analysisPrincipal components analysis [Jolli�e, 1986] takes a data set, ft1; t2; : : : ; tNg, in a given orthonormalbasis in <D and �nds a new orthonormal basis, fu1; : : : ;uDg, with its axes ordered. This new basis is15



CHAPTER 2. MODELLING LOW-DIMENSIONAL STRUCTURE

Figure 2.1: The plot shows a data set of 500 points, plotted as shaded dots, � , drawn at randomfrom a correlated Gaussian distribution. The two arrows represent the principal components, scaledby the square root of the corresponding variance times two | 2uip�i, i = 1; 2, in the terminology ofequation (2.1).rotated in such a way that the �rst axis is oriented along the direction in which the data has its highestvariance. The second axis is oriented along the direction of maximal variance in the data, orthogonalto the �rst axis. Similarly, subsequent axes are oriented so as to account for as much as possibleof the variance in the data, subject to the constraint that they must be orthogonal to preceedingaxes. Consequently, these axes have associated decreasing `indices', �d, d = 1; : : : ; D, correspondingto the variance of the data set when projected on the axes, which we hence refer to as variances. Theprincipal components are the new basis vectors, ordered by their corresponding variances, with thevectors with the largest variance corresponding to the �rst principal component1. Figure 2.1 showsan example for a 2-dimensional data set.By projecting the original data set on the L �rst principal components, with L < D, a new dataset with lower dimensionality can be obtained. If the principal components are �rst scaled by thecorresponding inverse variances, the variables of the new data set will all have unit variance | aprocedure known as whitening or sphering [Fukunaga, 1990, Ripley, 1996].The traditional way of computing the principal components is to compute the sample covariancematrix of the data set, S = 1N � 1 NXn (tn � t)(tn � t)T; t = 1N NXn tn;and then �nd its eigen-structure SU = U�: (2.1)U is a D � D matrix which has the unit length eigenvectors, u1; : : : ;uD, as its columns and � is1There seems to be some disagreement regarding the terminology in the literature | sometimes it is the new variablesobtained by projecting the data set on the new (scaled) basis vectors that are referred to as the principal components,and there are also examples where it is the variances. 16



CHAPTER 2. MODELLING LOW-DIMENSIONAL STRUCTUREdiagonal matrix with the corresponding eigenvalues, �1; : : : ; �D , along the diagonal. The eigenvectorsare the principal components and the eigenvalues are the corresponding variances.An alternative method for computing the principal components, which is claimed to be more robust[Ripley, 1996], is to compute the singular value decomposition (SVD) [Strang, 1988, Press et al., 1992]of the N �D matrix, T, containing the data set, so thatT = V�UT; (2.2)where V is a N �D matrix with orthogonal columns, U is a D �D orthogonal matrix and � is adiagonal matrix with the singular values of T along the diagonal. As the notation suggests, U and �have the same values in (2.1) and (2.2).An important property of the principal components is that they constitute the unique set of vectors,up to scaling, that minimizes the reconstruction error,EL = NXn ktTn � (tTn ÛL)�UTLk2; (2.3)where ÛL and �UL are D�L matrices with the (scaled) principal components u1; � � � ;uL (1 � L � D)as their columns, such that �UTLÛL = I. EL is the sum of the squared distances between the datapoints and their projections on the L principal components, summed over the data set. Thus, it is adecreasing function of L, equal to zero when L = D. Under this formulation, PCA is known as theKaruhnen-Lo�eve transform, and it suggests an alternative way of �nding the principal components,by minimizing (2.3). This approach has formed the basis for non-linear extensions, known as auto-associative networks or auto-encoders, discussed in section 2.1.3 below.Mixtures of PCASince PCA only de�nes a linear subspace, it will be sub-optimal when the underlying structure in thedata is non-linear. However, even if we have reasons to assume that the data we are dealing with isnot overall linear, it may still be reasonable to assume that in local regions of the data space, a linearapproximation is su�cient. How good such an approximation will be, will depend how strong the non-linearity in the data is and how small we choose our local regions. Based on this assumption, there hasbeen a number of suggestions for combining a number of local PCA models, to approximate a globallynon-linear structure. Kambhatla and Leen [1994] partitions the data space using vector quantizationand then performs `local' PCA on the data points assigned to each vector quantizer. Bregler andOmohundro [1994] takes a more elaborate approach, �nding an initial model using K-means and localPCA, which is then re�ned using the EM-algorithm [Dempster et al., 1977] and gradient descent.Hinton et al. [1995a] suggest an iterative scheme where data points are assigned, initially e.g. by usingK-means, to the PCA component which reconstructs them best, local PCA is performed and thenpoints are re-assigned. This is repeated until no points have their assignment changed. They alsosuggest a `soft' version of this algorithm, further discussed in [Hinton et al., 1997], where data pointsare `softly' assigned to PCA components, based on the corresponding reconstruction errors. However,all these algorithms have some degree of arbitrariness associated with them.Recently, a new, probabilistic formulation of PCA has been proposed by Tipping and Bishop[1997a]. It derives PCA as a latent variable model, and can be regarded as a special case of factoranalysis. It de�nes a generative model, which allows for mixtures of PCA to be constructed within the framework of probability theory. Further discussion of this model is deferred to section 2.2.2,following the introduction of the factor analysis model.17



CHAPTER 2. MODELLING LOW-DIMENSIONAL STRUCTURE2.1.2 Principal curves and surfacesPrincipal curves and surfaces have been suggested as non-linear generalizations of principal componentanalysis. In contrast to the mixture models discussed above, principal curves and surfaces representsingle, global models.Principal curvesIntuitively, a principal curve [Hastie and Stuetzle, 1989, Hastie, 1984] is a smooth, one-dimensionalcurve that passes through the `middle' of a probability distribution, or a cloud of data points, in aD-dimensional space. More formally, a principal curve is a parameterized curve, f(x), that respectsthe de�nition of self-consistency, f(x) = E[tj�f (t) = x]; (2.4)where t is a random variable in the data space and �f (t) is the `projection' of t on the curve de�ned byf(�). This says that for any point x, f(x) equals the average of the probability mass that is projected onx under the projection index �f (�), which in the principal curve and surface models is the orthogonalprojection.For a �nite data set, this de�nition must be modi�ed, so Hastie and Stuetzle [1989] use a scatter-plot smoothing procedure, which replaces the averaging of continuous probability mass with a smooth-ed average over data points projecting in the same region on f(�). This leads to the following procedurefor �nding principal curves:1. Set the initial principal curve, f , equal to the �rst principal component and for each data point,tn, n = 1; : : : ; N , compute its orthogonal projection on f , xn.2. Compute a new value for each point on the curve, f(xn), by a smoothed average over data pointsprojecting in the neighbourhood of xn.3. Project the data points (numerically) on the new curve.4. Repeat steps 2 and 3 until convergence.As noted by Hastie and Stuetzle, the size of the neighbourhood used in step 2 can have a signi�-cant impact on the �nal shape of the curve. In essence, the size of the neighbourhood controls thesmoothness of the curve. Hastie and Stuetzle set the neighbourhood, measured by the number ofneighbouring data points it includes, to an initial size which is then gradually decreased during theiterative �tting procedure until it reaches a desired value. Similar use of weighted averaging over ashrinking neighbourhood appears in the �tting procedure for the self-organizing map, discussed insection 2.3.1. The algorithm above is the �rst example of the iterative two-step �tting proceduresassociated with many of the non-linear models that will be discussed below.Hastie and Stuetzle [1989] show that f(�), restricted to come from a smooth class of curves, mini-mizes E[kt� �f (t)k2];which is the expected distance between t and its projection on the curve �f (t), taken over the dis-tribution of t. This is analogous with the property (2.3) of principal components, emphasizing therelationship between the two models. 18



CHAPTER 2. MODELLING LOW-DIMENSIONAL STRUCTUREWebb [1996] proposes an alternative model for doing non-linear PCA which is based on the self-consistency condition (2.4), but where the orthogonal projection on the curve2 has been replacedby a more general mapping. Thus, this model forms a link between the principal curve model andthe auto-associative neural network model discussed in section 2.1.3. Tibshirani [1992] proposed analternative de�nition of the principal curve, transforming it into a generative model, which will befurther discussed in section 2.2.4.Principal surfacesPrincipal surfaces are discussed by Hastie and Stuetzle [1989] as an extension of the principal curve,which allows the model space to be two-dimensional. The de�nition is based on self-consistency,analogous with the one for principal curves, and Hastie and Stuetzle [1989] report that they haveimplemented a corresponding principal surface algorithm, using two-dimensional surface-smoothers inplace of the scatter-plot smoothers. However, many of the theoretical results obtained for the principalcurve model no longer hold in the case of principal surfaces.An alternative de�nition of principal surfaces is proposed by LeBlanc and Tibshirani [1994], whichcombines ideas of principal curves and multi-adaptive regression splines (MARS) [Friedman, 1991].The resulting model de�nes a low-dimensional, piecewise linear structure, which is built in a incre-mental fashion. An important di�erence compared to many of the other models considered here isthat dimensionality of the model is determined as part of the procedure �tting the model to data.This is based on minimizing the distance between data points and their projections onto the principalsurface and consists of two main steps: the �rst which grows the model, the second which prunes it.A part of both these steps is what LeBlanc and Tibshirani call model re-�tting, which is similar to the�tting procedure for principal curves, alternating between projection on and adaption of the surface.2.1.3 Auto-associative feed-forward neural networksAn alternative and rather di�erent approach to non-linear PCA is the use of auto-associative networks[Kramer, 1991], also known as auto-encoders. These are feed-forward neural networks which aretrained to implement the identity function, i.e. to map a vector to itself, through a `bottleneck',encouraging it to �nd and exploit an underlying, simpler structure in the training data. Figure 2.2shows a schematic picture of an auto-associative network, where a D-dimensional data vector is fed asinput and target, but the mapping goes via an L-dimensional space (the model space), with L < D.If all the units in this network are taken to be linear, in which case any intermediary layers betweeninputs and targets and the bottleneck layer can be removed, and the network is trained using the sum-of-squares error function, this training corresponds to the minimization of the reconstruction error inequation (2.3). This will result in the network performing standard PCA with L principal components[Baldi and Hornik, 1989]. In fact, it can be shown that this will also be the case for a network witha single bottleneck layer of non-linear units [Bourlard and Kamp, 1988]. However, if we instead use anetwork with intermediary layers of non-linear units before and after the bottleneck layer, this allowsthe network to �nd non-linear structures in the data, which we can interpret as a form of non-linearPCA. Another interesting implication is that if we allow the number of units in the intermediary layersto exceed D, we could also consider letting L > D and �nd more principal components than there aredimensions in the data.2This model readily extends to more than one non-linear component, but for simplicity we refer to the resultinglow-dimensional structure as a curve. 19
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TargetInputFigure 2.2: An auto-associative network that maps a D-dimensional input vector to itself, through aL-dimensional bottleneck layer, L < D, possibly preceded and followed by layers of non-linear units.Zemel and Hinton [1994] develop an alternative formalism in the context of auto-encoders, whereeach hidden unit instead represents a quantization vector, with the auto-encoder implementing avector quantizer. In this model, there are no intermediate layers between input and target layers andthe bottleneck layer, and the units in the bottleneck layer, of which there are typically many morethan there are inputs, form their activations as soft-max transformations [Bridle, 1990] of their netinput. However, each hidden unit also has a adjustable location in a low-dimensional implicit space.During training, the parameters of the model are adjusted to reconstruct the input vector on thetargets, while driving the activations of the hidden units towards forming a Gaussian bump in theimplicit space. This means adjusting the position of each hidden unit, both in the input space and inthe implicit space, so that units which have nearby locations in the implicit space respond to nearbyvectors in the input space.2.1.4 Kernel based PCAKernel based methods, most prominently represented by the non-linear support vector machine [Cortesand Vapnik, 1995], o�er promise for non-linear extensions to many methods based on the inner product,or dot product, of vectors. Using the kernel based methods, we can consider mapping two vectors inthe input space to a high (maybe even in�nite) dimensional feature space and then compute the innerproduct of the resulting vectors in the feature space. The relationship between vectors in the inputspace and their images in the feature space need not be linear. The important point, however, is thatthe image vectors are actually never computed explicitly; all that is computed is their inner product,using a so-called kernel function.Sch�olkopf et al. [1996] describe a method for doing non-linear, kernel based PCA. It corresponds todoing ordinary linear PCA, but doing it in the implicitly de�ned feature space. As with auto-encoders,this has the interesting implication that we can �nd more principal components than observed vari-ables. Another implication, which makes this method less interesting compared with the other modelsdiscussed here, is that, in general, we cannot get hold of the actual principal components. We cancompute the projection of a new point in the data space onto the principal components, but it is di�-cult to explore the relationship in the other direction, i.e. how variance along the principal componentsis re
ected in the input space. 20
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Figure 2.3: The plot shows the data set from �gure 2.1, but here the noise on the horizontal variablehas been scaled up. Consequently, the the �rst principal component, shown as the lower grey arrowwith hollow head, is approaching the horizontal axis, while the vector corresponding to one-factor FAmodel, although a�ected by the increasing noise, stay closer to the 45-degree line, representing thecovariance between the data variables.2.2 Generative modelsThe projection models discussed in the previous section aim at �nding low-dimensional manifolds inthe space of the data, such that the distance between data and its projection on the manifold is small.The generative models that are to be discussed in the sections to come, try to model the densityfunction that is assumed to have generated the data, under a set of constraints that restricts the setof possible models to those with a low intrinsic dimensionality.2.2.1 Factor analysisTraditionally, factor analysis (FA) [Bartholomew, 1987, Lawley and Maxwell, 1971] has been the`generative cousin' of PCA; in fact, the two techniques are sometimes confused. The key di�erence isthat where PCA is focusing on variance, FA focus on covariance. Covariance between a set of observedvariables is seen as an indication that these variables are, if only to a certain extent, functions of acommon latent factor. The e�ect of this di�erence becomes apparent when the observed variables aresubject to signi�cantly di�erent noise levels. While PCA will try to capture all variance in the data,including variance due to noise a�ecting only individual variables, FA will focus on the covariance,regarding additional variability in the observed variables as noise. Figure 2.3 illustrates this for atwo-dimensional data set.FA has, just like PCA, a long history, dating back to the beginning of the century. It was devel-oped by psychologists with the aim to explain results from cognitive tests in terms the underlyingorganization of mental abilities. Since then, a number of variants have been suggested, di�ering pri-marily in their estimation procedures for the model parameters. Due to this diversity, and maybealso to its origin, FA was for a long time looked at with some scepticism, as lacking a solid statisticalfoundation. A method for maximum likelihood estimation of the parameters in the FA model was21



CHAPTER 2. MODELLING LOW-DIMENSIONAL STRUCTUREproposed by Lawley [1940], but this method had a number of practical disadvantages and it was notuntil when J�oreskog [1967] proposed an alternative maximum likelihood method that FA got a wideracknowledgment as a useful statistical tool.Rubin and Thayer [1982] developed an Expectation-Maximization (EM) algorithm [Dempster et al.,1977] for parameter estimation in the FA model, and recently a variant of the Wake-Sleep algorithm[Hinton et al., 1995b, Dayan et al., 1995], was proposed for FA [Neal and Dayan, 1997]. This algorithm,which shares some features with the EM algorithm of Rubin and Thayer [1982], is motivated bylocalized learning, in turn motivated by neuro-biological considerations.The factor analysis modelFactor analysis represents an observed D-dimensional continuous variable, t, as a linear function ofan L-dimensional continuous latent variable and an independent Gaussian noise process,t = Wx+ e+ �: (2.5)Here W is a D-by-L matrix de�ning the linear function, e is a D-dimensional vector representingthe noise or individual variability associated with each of the D observed variables, and � is a D-dimensional vector representing the mean of the distribution of t. To keep the notation simple we willassume, without any loss of generality, that the data sets we consider have zero mean, so that � canbe omitted.We also assume that x has a zero mean Gaussian distribution and, from the notational pointof view, it also is convenient to assume that the latent variables are all independent and have unitvariance, p(x) = � 12��L=2 exp��12xTx� : (2.6)Finally also assuming that x and e are uncorrelated results in a conditional distribution over t whichis also Gaussian,p(tjx;W;	) =  DYd 2�	dd!�1=2 exp��12(t�Wx)T	�1(t�Wx)� ; (2.7)where 	 is a D-by-D diagonal matrix, with element 	dd representing the variance of ed, the individualvariance of td.From (2.5) and (2.6) follows that, E[ttT] = WWT +	: (2.8)This manifests the fundamental assumption of many latent variable models, that the conditionaldistribution of the observed variables given the latent variables is independent, i.e. the dependence onthe common latent variables explain all covariance between observed variables.Equation (2.8) is the starting point for many of the algorithms proposed for parameter estimationin the FA model. For a given set of training data, ft1; t2; : : : ; tNg, we compute its sample covariancematrix, S = 1N NXn tntTn ; (2.9)22



CHAPTER 2. MODELLING LOW-DIMENSIONAL STRUCTUREwhere we have assumed that the data set has zero mean, and then seek parameters, W and 	, thatsatisfy the equation S = WWT +	:Here, however, we will review the EM algorithm of Rubin and Thayer [1982], to make a connectionto the EM-algorithm derived for the non-linear generative model described in the next chapter.An EM algorithm for factor analysisThe Expectation-Maximization (EM) algorithm [Dempster et al., 1977] is a general algorithm formaximum likelihood estimation in parameterized models from incomplete data. It works in two steps:in the E-step, it computes expected values of the missing parts of the data or the su�cient statisticsthereof, given the observed data and a current value of the model parameters. In the M-step, it usesthese expectations for the missing data to estimate new values for the parameters. It has been provedthat, alternating between these two steps is guaranteed to increase the likelihood unless already at a(local) maximum [Dempster et al., 1977, Bishop, 1995].In our case, we are given a set of observed data, ft1; t2; : : : ; tNg, but we are missing the corre-sponding fx1;x2; : : : ;xNg, from which the data set is assumed to have been generated by (2.7); ifthese were known, estimation of W and 	 would be straightforward. However, by Bayes' theorem,using (2.6) and (2.7), we can write the posterior distribution over x given a data point tn asp(xjtn;W;	) =(2�)�L=2jMj1=2 exp��12(x�M�1WT	�1tn)TM(x�M�1WT	�1tn)� ; (2.10)which is an L-variate normal distribution with posterior covariance matrixM�1 = (I+WT	�1W)�1:Now, assume for a moment that we know xn, n = 1; : : : ; N , and further that the data points in Thave been drawn independently. We can then write the complete-data log-likelihood, using (2.6) and(2.7), as` = NXn ln p(tn;xn)= �N2 ln j	j � 12 NXn (tr[xnxTn ] + tr[	�1(ttT � 2WxntT +WxnxTnWT)]) + constant terms:(2.11)We do not know xn and xnxTn , but using (2.10) we can compute their corresponding expectations(the E-step), hxni = M�1WT	�1tn and (2.12)hxnxTn i = M�1 + hxnihxniT; (2.13)resulting in an expected complete-data log-likelihood,h`i = �N2 ln j	j � 12 NXn (tr[hxnxTn i] +tr[	�1(ttT � 2WhxnitT +WhxnxTn iWT)]) + constant terms: (2.14)23



CHAPTER 2. MODELLING LOW-DIMENSIONAL STRUCTUREThe hxni, n = 1; : : : ; N , are referred to as factor scores, although there also other de�nitions of thisterm [Mardia et al., 1979].We can maximise h`i with respect to W and 	 (the M-step) by computing the correspondingderivatives, using results on matrix derivatives [Fukunaga, 1990, appendix A], and substituting forhxni and hxnxTn i, yielding the update formulaefW = S	�1W(I+WT	�1S	�1WM�1)�1 and (2.15)e	 = diag(S� fWM�1WT	�1S); (2.16)where S is de�ned in (2.9). Note that we use the old values, W and 	, to compute hxni and hxnxTn i,while we use the updated value, fW, in (2.14), when deriving (2.16).If we study (2.15), we see that it can be re-written as follows:fW = S	�1W(I+WT	�1S	�1WM�1)�1= 1NTTT	�1WM�1(M�1 +M�1WT	�1S	�1WM�1)�1= 1NThXiThXXTi�1; (2.17)where T is a D �N matrix containing the data points tn, n = 1; : : : ; N , as its columns, hXi is theL�N matrix containing the corresponding posterior mean estimates from (2.12), andhXXTi = 1N NXn hxnxTn i;with hxnxTn i de�ned in (2.13).We can compare (2.17) with the least squares solution of the linear equationsfWhXi = Tfor fW, fW = ThXiT(hXihXiT)�1:This solution ignores the covariance structure of the posterior distribution over x and is thereforeincorrect, but it highlights the intuitive idea. We are alternating between estimating posterior meanpoints, for a given W, and then estimating fW to map these back to the corresponding data points.2.2.2 Principal components revisitedRecently, Tipping and Bishop [1997b] proposed a probabilistic formulation of PCA (PPCA), in theform of a FA model with an isotropic noise model, i.e. 	 = �2I. They formulate an EM algorithm,similar to the one of reviewed above, and show that the maximum-likelihood estimate of W corre-sponds to (an arbitrary permutation of) the L principal eigenvectors of the covariance matrix, S,scaled by their corresponding eigenvalues3This brings PCA into the family of generative models, which in turn opens up a whole range ofpossibilities. In particular, Tipping and Bishop [1997a] show how to construct mixtures of principalcomponent analyzers, which are �tted to data using a simple extension of the EM algorithm for basicprobabilistic PCA.3To be precise, they show that W = UL(�L � �2I)1=2R, where �L is a diagonal matrix containing the L largesteigenvalues of the sample covariance matrix S, UL contains the corresponding eigenvectors and R is an arbitrary L�Lorthogonal rotation matrix. 24



CHAPTER 2. MODELLING LOW-DIMENSIONAL STRUCTURE2.2.3 Non-linear factor analysisIn some sense, all generative non-linear models presented in the following sections can be seen asvariants of non-linear factor analysis. However, it is only the model by Etezadi-Amoli and McDonald[1983] which is explicitly proposed as a non-linear factor analysis model; it follows earlier models byMcDonald [1967, 1962].This model treats the observed variables as lower order polynomial functions of the latent variables,T = �(X)W +E;where X is an N � L matrix which rows corresponds to factor scores, W is an L � D matrix ofadaptable weight parameters, E is an N �D matrix of residuals, and, for a two-factor model (L = 2)using second order polynomial, �n = [xn1; xn2; x2n1; x2n2; xn1xn2];where �n denotes the nth row of �(X) ; this can be extended to more factors and higher orderpolynomials.As with the EM algorithm for FA presented in section 2.2.1, computing W and E would bestraightforward if the elements of X where known. As this is not the case, McDonald [1979] also adoptsan iterative scheme, which is a direct extension of a �tting method for linear factor analysis [McDonald,1979], alternating between estimating W and E and adapting elements of X, using gradient descent.However, Etezadi-Amoli and McDonald does not de�ne any prior or posterior distribution over x atany stage so this is not generative model.2.2.4 Principal curves revisitedThere also exists a generative variant of the principal curve model [Tibshirani, 1992], which wasmotivated by the observation of Hastie and Stuetzle [1989] that the original principal curve model isnot a generative model, in the sense that if t = f(x) + e;where e represents Gaussian noise and x is uniform on some closed interval, then f(�) is generally nota principal curve for p(t). The reason for this becomes clear from the illustration in �gure 2.4 | theoriginal principal curve should pass through middle of the data that projects orthogonally onto it, butwhen the generating curve is bent, the corresponding probability mass (shaded in the �gure) is goingbe greater on the outside than the inside of the generative curve, so the resulting principal curve endsup with a wider radius than the generating curve.Tibshirani de�nes a principal curve as a triplet hp(x); p(tjx); f(x)i, where R p(tjx)p(x)dx = p(t),and f(x) is a curve, parameterized over a closed interval, which satis�es the self-consistency property,(2.4). p(tjx) is de�ned N (f(x);�(x))4, where �(x) is aD-dimensional vector representing independentvariances, whereas p(x) is left unspeci�ed. Given a set of i.i.d. data points, the resulting log-likelihoodfunction becomes ` = NXn log Z p(tnjx)p(x) dx: (2.18)4To be precise, Tibshirani de�nes p(tjx) to come from a parametric family, but only discusses the concrete casewhere it is Gaussian, which is also the case which is relevant in the context of this thesis.25



CHAPTER 2. MODELLING LOW-DIMENSIONAL STRUCTURE

Figure 2.4: The solid curve represent a generating curve which is convolved with a Gaussian noisedistribution, represented by the circle, which has its mean on the curve, represented by �. The dashedcurve represents the corresponding principal curve, which falls outside the generating curve.Drawing on a theorem by Lindsay [1983], Tibshirani states that, with f(x) and �(x) kept �xed,the maximum likelihood estimate for the mixing density p(x) is discrete with at most N points ofsupport; we denote these points, x1; x2; : : : ; xK , with K � N . Then, (2.18) becomes` = NXn log KXk p(tnjx)�k ; (2.19)where �k = p(xk). This is just the log-likelihood function for a Gaussian mixture with centres f(xk),variances �dk = �d(xk) and mixing coe�cients �k, k = 1; : : : ;K, which can be maximized using (e.g.)the EM algorithm. As noted by Tibshirani [1992], this function has its maxima, equal to in�nity,when there is a one to one matching between centres and data point and the variances are driven tozero; moreover, any curve passing through all data points will reach this maximum, and hence thereis a uniqueness problem.To force the centres of the Gaussian mixture to follow a smooth 1-dimensional curve, Tibshiraniintroduces a cubic spline smoother, which plays the role of a regularizer of the log-likelihood function,` = NXn log KXk p(tnjx)�k + � Z (f 00(xk))2 dx: (2.20)The resulting model is a regularized Gaussian mixture, where � controls the degree of regularization,which can be trained using the EM algorithm, with a modi�ed M-step. This will also have to involve�nding new positions for the support points of the discrete mixing distribution, x1; x2; : : : ; xK , forwhich Tibshirani uses a one-step Newton-Raphson procedure. This will not maximise, but increasethe log-likelihood, and so it corresponds to a generalised EM (GEM) algorithm [Dempster et al., 1977].2.2.5 Density networks`Density Networks' [MacKay and Gibbs, 1997, MacKay, 1995] is the label attached to a fairly generalframework, proposed to extend the applicability of feed-forward neural networks [Bishop, 1995], suchas the multi-layer perceptron, to the domain of unconditional density modelling. These have alreadyproved highly successful for conditional density modelling, e.g. in pattern classi�ers and non-linearregression models. As such, they have been trained using methods known as `supervised learning',where data is split into inputs and targets; for each input datum there is a corresponding target thatthe model should try to match. In unconditional density modelling, there is no such division of data26



CHAPTER 2. MODELLING LOW-DIMENSIONAL STRUCTURE| the model tries to model the joint distribution of all data variables and must by itself discover anystructure in the data that can aid the modelling. The associated training procedures are thereforeknow as unsupervised learning.MacKay [1995] merges the theory of feed-forward neural networks with that of latent variablemodels by regarding the inputs of the network, x, as latent variables, for which he prescribes a priordistribution p(x). This results in a corresponding distribution over the outputs of the network, thenature of which depends on the network. With a simple linear network with linear outputs, a Gaussiandistribution over the latent variables and an axis-aligned Gaussian noise model in the target space,this simply becomes a factor analysis model. If the outputs are fed through a soft-max function, inwhich case the resulting variables can be interpreted as conditional probabilities of class membership,we have obtained what is known as a latent trait model [Lazarsfeld and Henry, 1968]. It capturesthe idea of a sparse distribution in a categorical space dependent on a continuous underlying variable,which is manifested in correlations between the categorical variables. MacKay [1995, 1996] shows howsuch models can be used for discovering structure in protein data. Using more complex networks inthese models, with non-linear units between inputs and outputs, will allow more complex structuresto be discovered.To �t these models to data, MacKay [1995] employs a conjugate-gradient optimization routine [seee.g. Press et al., 1992], where the gradient is computed by averaging over the posterior distributionover the latent space given the data.2.2.6 The Elastic netThe elastic net algorithm was originally proposed by Durbin and Willshaw [1987] as a heuristic methodfor �nding good approximate solutions to the travelling salesman problem (TSP). The TSP consistsof �nding a tour of minimal length that makes a single visit to each of the cities in a given set; it isknown to be NP-complete [see e.g. Papadimitriou and Steiglitz, 1982]. The elastic net algorithm takesa geometrical approach, starting with a set of points, Y = fykg; k = 1; : : : ;K, distributed evenly on aloop, initially shaped as a circle and centered on the mean of the set of points, T = tn; n = 1; : : : ; N ,representing the cities under consideration. The points on the loop are then moved in steps towards`cities' to which they are close, while trying to minimize the distances to their nearest neighbours onthe circle, as illustrated in �gure 2.5. Gradually, the trade-o� between these two forces is shifted sothat closeness of some point on the loop to each point representing a city becomes dominating.Durbin et al. [1989] reformulated the algorithm and showed that it can be interpreted as a maximuma posteriori (MAP) estimate over the distribution of possible tours, speci�ed by a prior favouring shorttours, p(Y) = KYk expn� 
V kyk � yk+1k2o ; (2.21)where the indices of the y-points are counted modulo K, and a likelihood factor computed from thedata, p(TjY) = NYn 1K KXk � 12�V 2�D=2 exp�� 12V 2 ktn � ykk2� : (2.22)The prior, (2.21), is a K-dimensional, correlated Gaussian, encouraging the points in Y to follow alocally 1-D structure. The likelihood factor, (2.22), is a product of N independent distributions, eachconsisting of a mixture of K Gaussians, with centres yk and common variance V . 
, in (2.21), controlsthe trade-o� between the prior and likelihood factors.27
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Figure 2.5: The right half of the �gure shows a schematic illustration of an elastic net model, drawnas a dashed loop with � representing the points yk, and data points (`cities', tn) plotted as �. Tothe left is a blow-up, where arrows represent the forces acting on the yk-points, which arises from theprior p(Y) (2.21) and likelihood p(TjY) (2.22).Utsugi [1997, 1996] discusses a generalization of the elastic net model, with a prior that imposesa 2-D structure on the Gaussian mixture model, and relates it to the self-organizing map, discussedbelow. This model has some similarities with the model proposed in the next chapter, and will befurther discussed there (section 3.4.2).2.3 Other models2.3.1 The Self-organizing mapThe Self-Organizing Map (SOM) [Kohonen, 1995] is a neural network architecture for unsupervisedlearning which shares many features with the models discussed so far, despite having rather di�erentmotivation. Since it was proposed by Kohonen [1982], it has had considerable success in a wide rangeof applications, and has been the subject of signi�cant research e�orts. Nevertheless, the SOM is stilllacking a sound theoretical foundation and is generally motivated by heuristic arguments.The inspiration for the SOM came from observations of self-organization taking place in the sensorycortex of the human brain. Bilateral connections between nearby neurons encourage spatial orderingof sensory input to be re
ected in the 2-D spatial ordering of neurons | neighbouring neurons willtypically be activated by similar stimuli. A typical SOM model is depicted in �gure 2.6; it consists ofa set of nodes (sometimes referred to as `neurons') arranged in a regular lattice in a (typically) 2-Dspace; associated with each node, k, is a so called reference vector, wk, which lives in a D-dimensionalspace. Given a D-dimensional set of data, the SOM is trained using the following algorithm:1. Initialize the reference vectors, w0k, e.g. setting them equal to random samples drawn from thedata.2. For each iteration, i, select a data point, tn, either at random or cycling through the data points,and �nd the node with the closest reference vector; that is, �nd node kn such thatkn = argmink ktn �w(i�1)k k2:28
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Figure 2.6: A schematic illustration of the self-organizing map | the lower part of the �gure shows thenodes, drawn as circles, arranged in a rectangular 2-D lattice. Each node is mapped to a correspondingreference vector in the data space, illustrated as black discs in the upper part of the �gure. Asindicated, the ordering of the reference vectors should re
ect the ordering of the nodes.
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CHAPTER 2. MODELLING LOW-DIMENSIONAL STRUCTURE

Figure 2.7: The left and right plots show a Gaussian and `top hat' neighbourhood function, respec-tively, for a 1-D SOM. Nodes are plotted as �, except for the node on which the neighbourhoodfunction is centred (kn), which is plotted as 4.3. Update the reference vectors so thatw(i)k = w(i�1)k + �(i)h(i)(k; kn)(tn �w(i�1)kn )where �(i) is a learning rate and h(i)(�) is the neighbourhood function.4. Repeat step 2 and 3 while decreasing the value of � and the width of the neighbourhood function.The neighbourhood function h(i)(k; kn) typically take values between 0 and 1, is unimodal, sym-metric and centred on kn; common choices are the unnormalized Gaussian and the `top-hat' function5,illustrated in �gure 2.7. The intended e�ect of the neighbourhood function is encourage the referencevectors of nodes which are near each other on the map, to be near each other in the data space. As thewidth of the neighbourhood function gradually decreases, so does the in
uence nodes have on theirneighbours.There is no theoretical framework for how to choose starting values and decrementing schedulesfor �(i) and h(i)(�), but there are simple rules of thumb which usually give reasonable results [Kohonenet al., 1995].The Batch SOMMost of the training algorithms discussed so far are batch algorithms, meaning that each update of themodel parameters is based on all data points, whereas the original version of the SOM is a so calledonline algorithm, which makes a separate update for each data point, taken one at a time. There isalso a batch version of the SOM algorithm (BSOM):Initialize the reference vectors, wk e.g. using random samples from the data.repeatfor each data point, tn, doFind node kn such that kn = argmink ktn �wkk2.end forUpdate all the reference vectors using:w(i)k = NXn h(i)(k; kn)tnPNn0 h(i)(k; kn0) : (2.23)until convergence5Also called the `bubble' neighbourhood function. 30



CHAPTER 2. MODELLING LOW-DIMENSIONAL STRUCTURENote that the learning rate parameter � is no longer present. Obviously, the for-loop and thesubsequent update in the batch algorithm will be computationally more intensive than their onlinecounterparts, steps 2 and 3, but this is usually compensated by a much faster convergence, countedin number of iterations.Problems with the SOMAlthough the SOM has been subject of a considerable amount of research and applied to a wide rangeof tasks, there are still a number of problems that remain unresolved [Kohonen, 1995].1. The SOM does not de�ne a density model in the data space. Attempts has been made toformalize the relationship between the distribution of reference vectors and the distribution ofthe data, but has only succeeded under very restricted conditions [Ritter and Schulten, 1986,1988].2. The training algorithm does not optimize an objective function | in fact, it has been proved[Erwin et al., 1992] that such an objective function cannot exist.3. There is no general guarantee the training algorithm will converge.4. There is no theoretical framework based on which appropriate values for the model parameterscan be chosen, e.g. initial value for the learning rate and width of the neighbourhood functions,and subsequent rate of decrease and shrinkage, respectively.5. It is not obvious how SOM models should be compared to other SOM models or to models withdi�erent architectures.6. The mapping from the topographic space to the data space in the original SOM is only de�nedat the locations of the nodes.Probabilistic versions of the SOMPoints 2{5 above, all stem from the �rst point and would largely be resolved in a probabilistic setting.This has inspired the search for re-formulations of the SOM within the framework of probability theoryand statistics. Indeed, the model presented in the next chapter has been proposed as a principledalternative to the SOM [Bishop et al., 1997b, 1996b], and a related model based on the elastic nethas also been proposed along those lines [Utsugi, 1997, 1996]. A rather di�erent approach is taken byLuttrell [1994], who derives the SOM as a special case in a more general framework based on foldedMarkov chains.Here we review a latent variable based approximation to the SOM, developed for modelling radarrange pro�le data [Luttrell, 1995]. The data is assumed to follow a low-dimensional manifold (1-D forradar range pro�le data), so Luttrell devises the following probabilistic model:p(t) = Z p(tjy(x))p(x) dx; (2.24)where p(tjy(x)) is assumed to be Gaussian with mean y(x) and the prior distribution over the latentvariable, p(x), is assumed to be uniform over a �nite interval X .The model is �tted using maximum-likelihood, by gradient ascent. The gradient of the log-likelihood function involves the term, p(xjt), which, using Bayes' theorem, can be written asp(xjt) = p(tjy(x))p(x)p(t) : (2.25)31



CHAPTER 2. MODELLING LOW-DIMENSIONAL STRUCTURELuttrell approximates (2.25) by the formulap(xjt) � �(x� x(t));where x(t) is the point on X minimizing kt�y(x)k (c.f. the projection index of principal curves) and�(�) is chosen based on prior knowledge of the data.He then suggests the following training algorithm:1. Select a random data point, tn, and �nd the value x(tn) that minimizes ktn � y(x)k2. Adjust y(x) so that y(x) ! y(x) + ��(x � x(t))(tn � y(x)):3. Repeat step 1 and 2 till convergence.Since the necessary calculations cannot be done analytically, x is quantized into a discrete set ofnon-overlapping `bins' over the interval X , each with its own y(x). Following this `discretization',steps 1 and 2 above will correspond approximately to steps 2 and 3 of the SOM algorithm, with�(x�x(t)) playing the role of the neighbourhood function. Thus, the training algorithm of the SOMcan be seen as an approximation to maximum-likelihood training of a latent variable model.2.3.2 Multidimensional scalingGiven an N�N matrix of `distances', D, between N points, multidimensional scaling (MDS) [Mardiaet al., 1979, Ripley, 1996] gives a corresponding set of N points, X = fx1;x2; : : : ;xNg, in an L-dimensional space, such that the distances between points inX re
ect those given in D. The `distances'need not be Euclidean distances, but can be more general, e.g. distance measures for categoricalvariables or subjective measures of similarity, in which case they are often called dissimilarities.These dissimilarities are the only information about the data that is required, so indeed the data doesnot even need to have an explicit form. However, in the context that we are interested in, where thedata has an explicit representation as a set of points in <D, for which the Euclidean distance is theobvious dissimilarity measure, it can be shown that MDS corresponds to PCA. More precisely, the setof points found by MDS, X, corresponds (up to scaling and rotation) to the projection of the data onits �rst L principal components. In this form, MDS is known as principal coordinate analysis.The Sammon mappingThe Sammon mapping [Sammon, 1969] represents a particular form of MDS [Ripley, 1996] | thebasic idea is the same, but the Sammon mapping pays more attention to smaller distances, therebyachieving a varying resolution in the new representation of the data. Regions with a dense populationof data points, between which distances are small, will be `magni�ed' in the new representation. Toformalize, given a set of `distances' between N data points6, the Sammon mapping tries to �nd theset of points fxng, n = 1; : : : ; N , in <L that minimizesNXj<i = �dtij � dxij�2dtij ; (2.26)6We assume that these distances are symmetric and that the distance from a point to itself is zero.32



CHAPTER 2. MODELLING LOW-DIMENSIONAL STRUCTUREwhere dtij denotes the distance between ti and tj and dxij is the distance between xi and xj . This isa non-linear problem so iterative, numerical optimizations schemes must be used.The name `mapping' is somewhat misleading, since the Sammon mapping does not provide anymapping that can be utilized to �nd a point in the model space corresponding to a new point in thedata space. This has led to the use of parametric neural network models to learn the mapping fromthe data space to the low-dimensional space, using (2.26) as an error function [Lowe and Tipping,1996, Kraaijveld et al., 1995].2.4 DiscussionThis chapter has reviewed a number of models intended for capturing low-dimensional structure indata living in high-dimensional spaces, or at least provide a low-dimensional representation of thisdata. A striking fact is that three of the `non-generative' models that we have considered | PCA andthe original versions of the principal curve and the SOM | has been re-interpreted or reformulatedfor the purpose of bringing them into the family of generative models. The attraction of this type ofmodel stems from the fact it �ts into the much wider framework of probability theory and statistics.They can therefore directly make use well-founded theory for �tting models to data, combining models,treatment of incomplete data, etc.In the next chapter we propose a generative latent variable model for modelling non-linear, contin-uous probability distributions with low intrinsic dimensionality, embedded in high-dimensional spaces.Although similar models have been discussed in this chapter, these di�er in scope or su�er practicalor theoretical limitations.� In the generative principal curve model, the number of latent points, K, depends on the numberof points in the data set used for training, N ; in practice, it will almost always be the casethat K = N . This is likely to cause computational di�culties when tackling larger data sets.Moreover, it is di�cult to see how this model could be extended to online learning.� The density network model has been proposed in fairly general terms, but in practice it has sofar only been applied to categorical data.� The original elastic net model was proposed for �nding good, heuristic solutions to the travellingsalesman problem. This is re
ected in the structure of the model and that there are typicallymany more mixture components than there are data points (`cities'). The data is assumed tobe free of noise and so, in a successfully trained model, there is a mixture component positionedat each data point. A generalised elastic net model will be discussed in the next chapter.� In the latent variable model proposed by Luttrell [1995] to give a probabilistic interpretationof the self-organizing map, the posterior distribution over the latent variables is approximatedusing a function which is based on prior knowledge of the data, but such prior knowledge maynot always be available. As we will see, this approximation is in fact not necessary.
33



Chapter 3The Generative TopographicMappingThis chapter presents the generative topographic mapping (GTM) | a novel non-linear latent variablemodel | along with examples that illustrate how the GTM works and its potential applications. Thereis also a discussion on the relationship between GTM and some of models presented in the previouschapter, in particular the self-organizing map.The underlying idea of the GTM is the same as that of factor analysis and probabilistic PCA |we are seeking an `explanation' to the behaviour of a number of observed variables (data variables),in terms of a smaller number of hidden, or latent, variables. In contrast to FA and PPCA, the GTMallows for a non-linear relationship between latent and observed variables.3.1 The GTM ModelThe GTM de�nes a non-linear, parametric mapping y(x;W) from an L-dimensional latent space(x 2 <L) to a D-dimensional data space (y 2 <D) where normally L < D. y(x;W) could e.g. bea multi-layer perceptron [Bishop, 1995], in which case W would denote its weights and biases; aswe shall see later, by making a careful choice of how we implement y(x;W), signi�cant savings canbe made in terms of computation. For now, we just de�ne it to be continuous and di�erentiable.y(x;W) maps every point in the latent space to a point in the data space. Since the latent spaceis L-dimensional, these points will be con�ned to an L-dimensional manifold non-linearly embeddedin the D-dimensional data space. Figure 1.2 showed a schematic illustration where a 2-dimensionallatent space was mapped to a 3-dimensional data space.If we de�ne a probability distribution over the latent space, p(x), this will induce a correspondingprobability distribution in the data space. Strictly con�ned to the L-dimensional manifold, thisdistribution would be singular, so we convolve it with an isotropic Gaussian noise distribution, givenby p(tjx;W; �) = N (y(x;W); �)= � �2���D=2 exp(��2 DXd (td � yd(x;W))2) (3.1)where t is a point in the data space and ��1 denotes the noise variance. This can be thought ofas smearing out the manifold, giving it a bit of volume, and corresponds to the residual variance of34



CHAPTER 3. THE GENERATIVE TOPOGRAPHIC MAPPING
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t2Figure 3.1: The basic idea of the GTM | points on a regular grid in the low-dimensional latent space(left) are mapped, using a parameterised, non-linear mapping y(x;W), to corresponding centres ofGaussians (right). These centres will lie in the low-dimensional manifold, de�ned by the mappingy(x;W), embedded in the (potentially) high-dimensional data space.the PPCA model (section 2.2.2) | it allows for some variance in the observed variables that is notexplained by the latent variables.By integrating out the latent variable, we get the probability distribution in the data space ex-pressed as a function of the parameters � and W,p(tjW; �) = Z p(tjx;W; �) p(x) dx: (3.2)This integral is generally not analytically tractable. However, by choosing p(x) to have a particularform, a set of K equally weighted delta functions on a regular grid,p(x) = 1K KXk �(x� xk); (3.3)the integral in (3.2) turns into a sum,p(tjW; �) = 1K KXk p(tjxk ;W; �): (3.4)An alternative approach, used by Bishop et al. [1996a] and MacKay [1995], is to approximate p(x)with a Monte Carlo sample. If p(x) is taken to be uniform over a �nite interval, this becomes similarto (3.4).Now we have a model where each delta function centre (we will from now on refer to these aslatent points) maps to the centre of a Gaussian which lies in the manifold embedded in the dataspace, as illustrated in �gure 3.1. Note that as long as y(x;W) is continuous, the ordering of thelatent points will be re
ected in the ordering of the centres of Gaussians in the data space. What wehave is a constrained mixture of Gaussians [Hinton et al., 1992, Williams, 1994], since the centres ofthe mixture components can not move independently of each other, but all depend on the mappingy(x;W). Moreover, all components of the mixture share the same variance, ��1, and the mixingcoe�cients are all �xed to 1=K.Given a �nite set of i.i.d. data points, ft1; : : : ; tNg, we can write down the likelihood function for35



CHAPTER 3. THE GENERATIVE TOPOGRAPHIC MAPPINGthis model, L = NYn p(tjW; �) = NYn " 1K KXk p(tnjxk;W; �)# ; (3.5)and maximise it with respect to W and �. However, it is normally more convenient to work with thelog-likelihood function, ` = NXn ln 1K KXk p(tnjxk ;W; �)! : (3.6)We could employ any standard non-linear optimization technique [see e.g. Press et al., 1992] forthe maximization, but having noted that we are working with a mixture of Gaussians, we may insteaduse the EM algorithm [Dempster et al., 1977, Bishop, 1995]. In the last chapter, section 2.2.1, wesaw how an EM-algorithm could be used to �t a factor analysis model to a data set, where the keystep was to compute the expectations of su�cient statistics of the latent variables, the values of whichwere missing. When �tting a mixture of Gaussians, which is maybe the most common example ofthe application of the EM-algorithm [see e.g. Bishop, 1995], the problem would be easily solved if weknew which data point was generated by which mixture component; unfortunately, this is usually notthe case and so we treat these `labels' as missing variables.3.2 An EM algorithm for the GTMGiven some initial values for W and �, the E-step for the GTM is the same as for a general Gaussianmixture model, computing the responsibilities,rkn = p(xkjtn;W; �) = p(tnjxk;W; �)p(xk)Pk0 p(tnjxk0 ;W; �)p(xk0 ) ; (3.7)assumed by the kth component of the Gaussian mixture for the nth data point, for each possiblepair of k and n. rkn corresponds to the posterior probability that the nth data point was generatedby the kth component. As the prior probabilities, p(xk), were de�ned to be �xed and equal (1=K)in (3.3), these will cancel in (3.7). Note that, since the mixture components correspond to pointsin the latent space, the distribution of responsibilities over mixture components correspond to adistribution over the latent space, forming a connection to the EM-algorithm for FA. In the M-step,these responsibilities will act as weights in the update equations for W and �. In essence, we will tryto move each component of the mixture towards data points for which it is most responsible.So far, we have not speci�ed the form for y(x;W), but only stated that it could be any parametric,non-linear model. For the GTM, we normally choose a generalised linear regression model, where yis a linear combination of a set of �xed basis functions,yd(x;W) = MXm �m(x)wmd; (3.8)We could consider a wide range of basis function, but for the rest of this thesis, we will use a combi-nation of� MNL non-linear basis functions, in the form of non-normalised, Gaussian basis functions,� L linear basis functions, for capturing linear trends in the data, and36



CHAPTER 3. THE GENERATIVE TOPOGRAPHIC MAPPING� one �xed basis function, that allows the corresponding weights to act as biases.Thus, we get �m(x) = 8>><>>: expn�kx��mk22�2 o if m �MNL,xl if m = MNL + l, l = 1; : : : ; L1 if m = MNL + L+ 1 = M , (3.9)where �m, m = 1; : : : ;MNL, denotes the centres of the Gaussian basis functions and � their commonwidth, and xl denotes the lth element of x. Note that, throughout the rest of the this thesis, theGTM models used in experiments are understood to have linear and bias basis functions, and thesewill not be explicitly mentioned. It will be convenient to write (3.8) in matrix form asY = �W; (3.10)where Y is a K � D matrix of mixture component centres, � is a K �M matrix with elements�km = �m(xk), and W is a M �D matrix containing the weight and bias parameters.We now derive the M-step for this model as follows: using (3.1), (3.7) and (3.8), we can calculatethe derivatives of (3.6) with respect to wmd, yielding@`wmd = N;KXn;k rkn� MXm0 �m0(xk)wm0d � tnd!�m(xk); (3.11)where rkn are the responsibilities computed in the preceding E-step, and setting these derivatives tozero we obtain an update formula for W. A detailed derivation is found in appendix A. Similarly,calculating the derivatives of (3.6) with respect to � and setting these to zero, we obtain1� = 1ND NXn KXk rknky(xk ;fW)� tnk2: (3.12)Here, fW corresponds to the updated weights, which means that we must �rst maximise with respectto the weights, then with respect to �. The update formula for � is the same as for general Gaussianmixtures and has an intuitive meaning. We set ��1, which is the common variance of the Gaussianmixture, to the average weighted distance between mixture components and data points, where theweights are given by the responsibilities.Using (3.10), the M-step for W can be written on matrix form as�TG�W = �TRT (3.13)where T is the N �D matrix containing the data points, R is the K �N responsibility matrix withelements de�ned in (3.7), and G is an K �K diagonal matrix with entriesgkk = NXn rkn: (3.14)(3.13) can be seen as a form of generalised least squares [Mardia et al., 1979]. To draw the parallel withthe M-step for the factor analysis model in (2.17), we are setting W to map the weighted, non-linearrepresentation of the latent variables, G�, to the targets formed by the weighted combination of datapoints, RT.We can now also see the advantages of having chosen a generalized linear regression model, asthis part of the M-step is reduced to a matrix inversion and a few matrix multiplications. A di�erent37



CHAPTER 3. THE GENERATIVE TOPOGRAPHIC MAPPINGmodel, where the log-likelihood depended non-quadratically on the adjustable parameters, would haverequired non-linear, iterative maximization, at each iteration computing a new log-likelihood, whichis generally the most costly part of the algorithm1. Note that, since �TG� is symmetric and oftenpositive de�nite, we can utilize fast Cholesky decomposition for the matrix inversion, with the optionof resorting to singular value decomposition (SVD) [Press et al., 1992, Strang, 1988], if the matrixproves to be singular. There are two possible ways this can happen: G may contain one or more zerosalong its diagonal, which means that the corresponding mixture components take no responsibility atall. This is very unlikely to happen as long there are signi�cantly less mixture components than datapoints. The second possible cause is rank de�ciency in �, which may occur if we choose the basisfunctions very broad or very narrow, or use more basis functions than latent points. Normally, therewill be no di�culty avoiding such choices of basis functions and the rank of � can be checked priorto �tting the GTM to data.In addition, we could impose a degree of weight regularization, leading to the equation(�TG�+ �I)W = �TRT (3.15)where � is the regularization parameter and I is an identity matrix of the same dimensions as �TG�.This correspond to specifying an isotropic Gaussian prior distribution over W,p(W) = � �2��W=2 exp���2 kWk2� ; (3.16)with zero mean and variance ��1, where W denotes the total number of elements in W. From (3.11)and (3.16), it follows that � = �=�. Apart from ensuring a fast matrix inversion, the use of weightregularization gives us one handle on the model complexity through the real valued parameter �. Theissue of model complexity and parameter selection will be further discussed in chapter 5.3.2.1 InitializationThe only remaining issue is to choose appropriate initial values for W and �. For W, one possibilityis to use random samples drawn from a Gaussian distribution, N (0; &), where & is chosen so thatthe expected variance over y equals the variance of the training data. An alternative, which is oftenbetter, is to initialize the weights so that the L latent variables map to the L-dimensional hyper-plane spanned by the L �rst principal components of the data set we are trying to model. A PCAinitialization only requires the weight of the linear basis functions, so weights of the non-linear basisfunctions can be set to zero, or alternatively, to very small random values, resulting in a `semi-random'initialization. Whether we use random or PCA-based initialization, it is reasonable to initialize theweight vector corresponding to the bias basis function so as to match the mean of the training data.For �, our choice to some extent depends on how we choose W. If W is initialized randomly � isset to the reciprocal of the average squared distance between the centres of the resulting Gaussianmixture and the points in our data set, which correspond to the update formula in (3.12) with allresponsibilities being equal. If, on the other hand, W is initialized using PCA, � is set so that itsinverse (the variance in the data space) equals the larger of� the length of the (L + 1)th principal component, i.e. the largest variance orthogonal to theL-dimensional hyper-plane to which the Gaussian mixture is initially mapped,� half the average minimal distance between the mixture components.1In such a case it might be better to only a partial M-step, increasing, but not necessarily maximising the likelihood,corresponding to a generalised EM (GEM) algorithm [Dempster et al., 1977]38



CHAPTER 3. THE GENERATIVE TOPOGRAPHIC MAPPINGThis is motivated by the idea that the initial � should be small enough to explain the varianceorthogonal to, as well as the variance within, the initial manifold.3.2.2 Summary of the GTM algorithmWe now summarize the sequence of steps for constructing a GTM model:Generate the grid of latent points fxkg, k = 1; : : : ;K.Generate the grid of basis function centres f�mg, m = 1; : : : ;M .Select the basis function width �.Compute the matrix of basis function activations, �, from (3.9).Initialize W, randomly or using PCA.Initialize �.If desired, select a value for �.Compute �, �kn = ktn ��kWk2.repeatCompute R from (3.7) using � and �.Compute G from (3.14) using R. )E � stepW = (�TG�+ �I)�1�TRT, where � may be zero.Compute �, �kn = ktn ��kWk2.Update � according to (3.12), using R and �. 9>=>;M � stepuntil convergenceNote how the squared distances required to update � in the M-step gets `re-used' when calculatingthe responsibilities in the following E-step. Next, we look at an example of how this algorithm works.Example 3.1 (Curved line in 2-D) Figure 3.2 shows how a GTM with a 1-dimensional latentvariable `learns' to model a data set which is intrinsically 1-dimensional but has been non-linearlyembedded in a 2-dimensional data space. The data set was generated by picking 59 equidistant pointsin the interval [0:15; 3:05] as the x-coordinates. The y-coordinates were then computed as the functiony = x+ 1:25 sin(2x). Finally, spherical Gaussian noise with standard deviation 0:1 was added to thedata. As can be seen in �gure 3.2, this results in a data set with a distribution which is more densearound the bends of the curve and sparser towards the ends, as expected. The initial con�gurationfor the GTM was found using principal components.3.3 VisualizationAn important potential application for the GTM is visualization. To see how this works, note that aGTM, for which we have found suitable parameter values W� and ��, by (3.1) and (3.3), de�nes aprobability distribution in the data space conditioned on the latent variable, p(tjxk), k = 1; : : : ;K.We can therefore use Bayes' theorem, in conjunction with the prior distribution over latent variable,p(x), given in (3.3), to compute the corresponding posterior distribution in latent space for any givenpoint in data space, t, as p(xkjt) = p(tjxk;W�; ��)p(xk)Pk0 p(tnjxk0 ;W�; ��)p(xk0 ) :As can be seen, this is exactly the calculation of responsibilities in (3.7), where again the p(xk) cancel.39
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Figure 3.2: The GTM learning process | the plots show the density model in data space at iteration0 (the initial con�guration), 1, 2, 4, 8 and 15. The data points are plotted as � while the centres ofthe Gaussian mixture are plotted as '+'. The centres are joined by a line according to their orderingin the latent space. The discs surrounding each '+'-sign represent two standard deviations' width ofthe noise model (2p��1). Note that the �nal density model re
ects the distribution of the trainingdata. 40
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*

Figure 3.3: The �gure shows a schematic illustration of a 1-D GTM in a 2-D data space, together witha data point, plotted as *. The manifold of the GTM is bent, so that the two mixture componentsthat are closest to the data point are not close to each other on the manifold. This result in bi-modaldistribution of responsibilities over the mixture components, illustrated in the �gure with a shadingof mixture components `proportional' to the responsibility they take.Provided that the latent space has no more than two, or possibly three, dimensions, we can plotp(xkjt) against xk . If we want to visualize whole sets of data, we must resort to less rich descriptions.Two possibilities are, for each data point tn, to plot� the mode of the posterior distribution in latent space,xmoden = argmaxxk p(xkjtn);which we call the posterior-mode projection, or� the mean of the posterior distribution in latent space,xmeann = KXk xkp(xk jtn);consequently called the posterior-mean projection.Whatever we choose, we must bear in mind that summarizing descriptors, such as the mode and themean, can give misleading results, e.g. in case the posterior distribution is multi-modal. A schematicillustration of how such a situation may arise is given in �gure 3.3, for a 1-D GTM. In fact, plottingboth the mean and the mode and comparing them can give an indication of multi-modality. Oursecond example demonstrates how the GTM can be used for visualization of data.Example 3.2 (3-phase pipe 
ow data) In this example we use synthetically generated data, sim-ulating non-intrusive measurements by gamma-densitometry, from a pipeline transporting a mixtureof gas, oil and water [Bishop and James, 1993]. The fractions of gas, water and oil vary, and the 
owin the pipe takes one of three possible con�gurations.The construction for data collection is illustrated in �gure 3.4. Six pairs of 
-beams, where the twobeams in each pair have di�erent wave length, are sent through the pipe, and from measurements of41
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1Figure 3.4: A cross-section of the pipe, showing the location of the 
-beams used for collecting themeasurements in the 3-phase data. Note that the vertical beams are displaced relative to the centreof the pipe, because all con�gurations considered are left-right symmetrical. (see �gure 3.5).
oil homogeneous mixgaswaterFigure 3.5: A cross-section view of the three di�erent con�gurations of 
ow in the pipe, showing, leftto right, homogeneous, annular and strati�ed 
ow.their attenuation, the path lengths through water and oil can be computed. With six pairs of beams,this data set is twelve-dimensional. However, for any given 
ow-con�guration, there are only twodegrees of freedom in the data: the fractions of oil and water (the fraction of gas being redundant, asthe three fractions must sum to one). Hence, even if this data lives in a twelve-dimensional space, itis really con�ned to a two-dimensional subspace.The existence of multi-phase 
ow con�gurations complicate matters somewhat. The three di�erentcon�gurations of 
ow are illustrated in �gure 3.5. For the homogeneous 
ow, which is simply ahomogeneous mix of oil, water and gas, only one 
-beam would be required to determine the fractionsof oil and water | data points collected for this con�guration all lives (approximately) in a two-dimensional plane in the data space, and hence the measurements from the di�erent 
-beams providethe same information. For the annular con�guration, the relationship between the measurements andthe fractions of water and oil is no longer linear, but all data points taken from this 
ow con�gurationstill lives on a single curved manifold. This not the case with the strati�ed (or laminar) con�guration|as the three fractions change, the vertical 
-beams change from passing only through oil to passing onlythrough water (say). This cause discontinuities, and consequently data points from this con�guration42
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Figure 3.6: Shown, left to right, are the posterior-mean projection of the data in the latent space of thePCA-initialised GTM, prior to training, the corresponding plot after having trained the GTM, and,rightmost, pairs or posterior-mean and -mode projections for the trained GTM, joined by lines, for100 randomly drawn data points. The three di�erent types of 
ow are plotted as + (homogeneous),� (annular) and � (strati�ed). In all the plots, latent points are plotted as shaded �. In left plot, �represent posterior mode points, with the class label given by the connected posterior mean point.are spread over a number of separate two-dimensional manifolds. The three classes join at the threepoints, corresponding to pure 
ows of oil, water or gas.The data generating model includes a noise process, modelling errors in the measurements arisingfrom photon statistics. In a real setting, the noise level would be governed by the time spent tocollect each data point, called the integration time. The data set discussed here was generated so asto correspond to an integration time of 10 seconds.A GTM model was �tted to a set containing samples from all three classes. It had a 20-by-20square grid of latent points in two-dimensional space. It utilized, apart from bias and linear basisfunctions, 81 Gaussian basis functions with their centres located on a 9-by-9 square grid in the latentspace. Both grids were centred on the origin in the latent space. The basis functions had a commonwidth of 2 times the shortest distance between two neighbouring basis functions. The model wasinitialized using PCA and trained for 40 iterations of the training algorithm, imposing a Gaussianprior on the weights with inverse variance � = 0:1.The left panel in �gure 3.6 shows the posterior-mean projection of the training data in the latentspace with the initial con�guration found using PCA; the middle panel shows the corresponding plotafter training. The separation of the three di�erent classes has increased; in particular, the data pointsbelonging to the laminar class has been distributed over a number of distinct clusters. The right panelshows a plot of posterior-mean and -mode for a few of the data points, with the mean and modecorresponding to the same data point connected by a line. The rather large distances between meanand mode in some cases suggest that the corresponding distributions may be multi-modal, or at leastskewed. This is not completely unexpected, as the GTM is modelling a rather complex distributionspread over a number of separated two-dimensional manifolds, some of which are curved, using asingle `elastic' manifold.3.4 Relationship to other modelsIn the previous chapter we discussed a number of models which all have a similar aim to the GTM.In this section we discuss the relationship between the GTM and some of these models, giving special43



CHAPTER 3. THE GENERATIVE TOPOGRAPHIC MAPPINGattention to the relationship to the Self-Organizing Map, which has a long-standing position in thearea of unsupervised neural networks.3.4.1 The Self-organizing mapSince the GTM de�nes a density model in the the data space, many of the problems associated withthe SOM, which were discussed in section 2.3.1, are automatically solved [Bishop et al., 1996b, 1997b,1998b].� The GTM is trained by optimizing an objective function, namely the log-likelihood function in(3.6).� The EM-algorithm is guaranteed to converge to a (local) maxima of the log-likelihood function[Dempster et al., 1977, Bishop, 1995]. By appealing to the Robbins-Monro theorem [Robbinsand Monro, 1951, Fukunaga, 1990], sequential maximization schemes could also be guaranteedto converge, or we could consider using an online EM-algorithm [Titterington et al., 1985].� We can invoke the machinery of Bayesian statistics to derive methods for treating the parametersof the model, as will be described in chapter 5.� The likelihood provides a measure based on which a GTM model can be compared to othergenerative models.Another important feature of the GTM is that, if the mapping from the latent space to thedata space is taken to be smooth, the topographic ordering in the latent space will be preservedon the manifold in the data space2. This is a direct consequence of the fact the GTM de�nes acontinuous manifold in the data space, which is not the case with the original SOM model. To thisend, Ritter [1993] suggested the parameterized SOM (PSOM) model, where a parametric `surface'is constructed that passes through the reference vectors of a �tted SOM model, by associating abasis function with each node-reference vector pair. A more elegant solution, however, is the kernel-smoothed interpretation of the BSOM, by Mulier and Cherkassky [1995], which is discussed further inthe section on kernel smoothing below. However, both these models still su�er many of the problemsof the original version of the SOM, stemming from the fact that they do not de�ne generative models.We now investigate the relationship between the GTM and the SOM in a little bit more detail.Soft vs. hard assignmentIf we study the training algorithms for the GTM and the SOM, we can discover both similarities anddi�erences. An important dividing line is the way the two models handle the assignment of data pointsto mixture components or reference vectors. The SOM assigns each data point to a single referencevector, corresponding to `the winning node', whereas the GTM distributes the responsibility for adata point over a number of mixture components. This di�erence is analogous to that between the K-means algorithm [Linde et al., 1980] and the EM-algorithm for a conventional, K-component Gaussianmixture. A K-means model represents a data set using K mean points, �k, which are �tted to givena data set of N data points, ftng, using the following algorithm3:initialize �1; : : : ;�K , e.g. using K randomly drawn points from the data setrepeat2Note that this does not imply that the GTM is guaranteed to reveal any topographic ordering present in the data.3Note here the similarities with the training algorithm for the batch version of the SOM, discussed in section 2.3.1.44



CHAPTER 3. THE GENERATIVE TOPOGRAPHIC MAPPINGfor each data point, tn, doFind k such that k = argmink0 ktn � �k0k2 and assign tn to �k | tn 2 Tk.end forre-estimate the the mean points so that�k = 1Nk Xt2Tk t, where Nk in the number of elements in Tkuntil no data point has its assignment changed.The assignment of data points to mean points can be seen as a special case of the E-step in (3.7),where � ! 1 and all responsibility is assigned to a single mixture component. The re-estimation ofthe mean points correspond exactly to the M-step for updating a mixture of Gaussians | each meanpoint or mixture component is set equal to a weighted combination of the data points assigned to it.The di�erence lies in the weights of this combination. In the K-means case, each data point assignedto �k gets weight 1=Nk in the update formula, while all other data points get weight zero. For theGaussian mixture, the weights are given by the responsibilities, which are typically greater than zero.The GTM and the SOM di�er in exactly the same way, in terms of assignment of data points tolatent points or nodes. In terms of the update, however, both the GTM and the SOM di�er fromthe simple weighted averaging used by K-means and Gaussian mixtures, as well as from each other.As already pointed out, the GTM de�nes a constrained Gaussian mixture in the data space, so eventhough it has the same weighted average of data points used for the general Gaussian mixture astarget for its update, it can only try to �t this target as well as possible, while maintaining its overallsmooth, low-dimensional structure. The SOM uses the neighbourhood function to allow nodes toin
uence each other in the update of their corresponding reference vectors | in e�ect, each nodeis incorporating data points assigned to other nodes in the weighted average update of its referencevector. The weights assigned to data points of other nodes depends on the distances between thenodes in the latent space, and will usually di�er from the responsibilities used to calculate the updatetarget for the GTM, which are based on the distances between mixture components and data pointsin the data space. From this perspective, the use of the neighbourhood function in the SOM modelcan be seen as a way of trying to smooth or distribute the hard assignments of data points to referencevectors. In the GTM, there is no need for such arbitrary smoothing, since it uses soft assignments |responsibilities | calculated under a probabilistic model. Further insights can be gained by studyinghow the distribution of responsibilities evolve during training of a GTM model. Figure 3.7 shows grey-scale plots of the responsibility distribution over the latent space during di�erent stages of training,for a particular data point. The responsibility distribution starts o� being rather wide, to thengradually narrow with training. The e�ect of this process is similar to that achieved by shrinking theneighbourhood in the SOM model. The important di�erence is that in the GTM, this results as anautomatic consequence of the gradually improved �t of the model to the data, whereas the shrinkingof the neighbourhood in the SOM model has to be done `by hand', by the user.When comparing the GTM and the SOM, it is di�cult to describe the precise e�ects of thesedi�erent strategies of assignment, as they depend on many factors, only some of which are under thecontrol of the user. Figure 3.8 shows the same plot as in �gure 3.7, but for a di�erent data point. Frominitially having the same characteristics as the distribution in �gure 3.7, instead of getting narrowerthe single mode here splits into two. Whereas in the unimodal case, the hard assignment of the SOMcombined with neighbourhood smoothing could possibly be regarded as a reasonable approximation,it is clearly inappropriate in this bi-modal case. 45
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Figure 3.7: The four plots show the distribution of responsibilities over the latent space for a particulardata point from the pipe-
ow data set described in example 3.2, at the initial con�guration, found byPCA, and then after 2, 4 and 40 iterations of training.
Figure 3.8: The four plots correspond to those shown in �gure 3.7, showing the distribution of re-sponsibilities over the latent space at di�erent stages of training, but for a di�erent data point, wherethe distribution eventually splits over two modes.Kernel regressionA di�erent framework in which the relationship between the GTM and the SOM can be analyzed isthat of kernel regression. As noted by Haan and Egecioglu [1991], the update formula for the batchversion of the SOM (BSOM), wk = NXn h(k; kn)tnPNn0 h(k; kn0) ; (2.23)(where we here have dropped the time-step index (i)) can be written aswk = PKk0 Nk0h(k; k0)mk0PKj Njh(k; j) ;where mk = 1Nk Xt2Tk t; (3.17)is the mean of the set of data points assigned to reference vector k, denoted by Tk, and Nk denotesthe number of data points in Tk.Mulier and Cherkassky [1995] used this to show that, at any given iteration of the training algo-rithm, the BSOM model can be expressed using a kernel regression formulay(x) = KXk F (x;xk)mk (3.18)46



CHAPTER 3. THE GENERATIVE TOPOGRAPHIC MAPPINGwith mk de�ned as in (3.17) and F (x;xk) = Nkh(x;xk)Pj Njh(x;xj) ; (3.19)is the kernel function of node xk, and we have made the neighbourhood functions dependency onlocation in the topographic space explicit.Also the GTM model can, at any given iteration of the training algorithm, be written on the formin (3.18), with the kernel functionsF (x;xk) = �(x)(�TG�)�1�(xk)Tgkk; (3.20)where �(x) is a 1�M vector with elements �m(x), G and gkk are de�ned in (3.14), andmk = g�1kkRkT; (3.21)where Rk is the kth row of R | the responsibility matrix with elements de�ned in (3.7). Figure 3.9shows examples of this kernel, approximately centred in the latent space, during di�erent stages oftraining. Note that both kernel functions | (3.19) and (3.20) | sum to one. For (3.19) this followsdirectly from the formula, while for (3.20), it is easy to see that F� = �, where F = [F (xi;xj)],i; j = 1; : : : ;K; the result then follows from the fact the Mth column of �, which corresponds to thebias basis function, contains only ones (1's).Formulae (3.17) and (3.21) again re
ects the di�erence between the hard assignment of the SOMand the soft assignment of the GTM. If we study the kernel functions in (3.19) and (3.20), we seethat the SOM kernel will gradually get narrower during training, as a consequence of the shrinkingneighbourhood function. The GTM kernel, on the other hand, varies only with G, and typicallyretains its width during training, although peaks and troughs tend to become more pronounced.This is illustrated in �gure 3.9, and is a consequence of another important di�erence between theSOM and the GTM. For the GTM, the sti�ness of the manifold, which primarily depends upon thewidth of the non-linear basis functions, does not change during training. For the SOM model, the`manifold' starts o� being rather sti�4, to then gradually become more 
exible as the neighbourhoodfunction shrinks. This gradual softening, which is essential for the learning in the SOM, unfortunatelymakes the relationship between the user controlled parameters (e.g. the initial and �nal width of theneighbourhood, rate of shrinking, etc.) and a priori expectations about the resulting model ratherobscure. In the GTM, user controlled parameters are de-coupled from the learning process, andtheir impact on the �nal model is therefore easier to understand. Figure 3.10 shows examples of 2-Dmanifolds embedded in a 3-D space, generated from a GTM with a 2-D latent space, by randomlysampling weight parameters from the prior (3.16). The three plots correspond to increasing valuesof �; � will only a�ect the overall scale of the manifold, although we could consider allowing greatervariance for the weights of the linear basis functions, which would then consequently result in more`linear' manifolds.Computational considerationsAlthough the rapid development of computer technology has to some extent altered our perceptionof computational complexity, this issue cannot be ignored. To simplify the comparison, we here onlyconsider the batch version of the SOM (BSOM).4As have already been mentioned, the original SOM model does not de�ne a continuous manifold in the data space,but thinking of the reference vectors as spanning an elastic manifold helps the understanding.47
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Figure 3.9: The four plots show (right{left, top{down) the kernel (3.20), evaluated over the latent gridafter 0 (PCA initialisation), 2, 10 and 40 iterations of training, using the data set from example 3.2,with the centre of the kernel located approximately at the centre of the latent space.

Figure 3.10: Sample manifolds of increasing sti�ness. These manifolds were generated by �rst selectingthe relative width for the non-linear basis functions, � | 0.5, 1.0 and 2.0 for the left, middle and rightpanel, respectively | and then draw weight parameters randomly from the prior (3.16).48



CHAPTER 3. THE GENERATIVE TOPOGRAPHIC MAPPINGIf we study the steps for computing the statistics necessary to update the parameters (winningnodes or responsibilities), we see that the distance calculation between data points and mixturecomponents of reference vectors, respectively, is identical in both training algorithms. On top of that,the GTM has the additional cost of computing the responsibilities from these distances, but as thethe dimensionality of the data space increases, the proportional cost of this extra step decreases.When updating the parameters, the GTM requires a matrix inversion of an M �M matrix, whereM is the number of basis functions, followed by a set of matrix multiplications. The matrix inversionscales as O(M3), while the matrix multiplications scales as O(KND)5. The update of the SOMdepends on the form of the neighbourhood function. If it is continuous on the latent space, thenevery node will potentially be in
uenced by all other nodes and so the update will require O(K2ND)operations. Every time the width neighbourhood changes, determining the cross-in
uence betweennodes will require another O(K2) operations. If, on the other hand, the top-hat neighbourhoodfunction is used, each node will only in
uence nodes which are within the width of the neighbourhoodfunction, which can result in dramatic savings, especially when the neighbourhood is small. However,updates using the top-hat neighbourhood function is typically much less smooth than those obtainedwhen using e.g. a Gaussian neighbourhood function.Assuming that the BSOM is using a continuous neighbourhood function, the cost ratio for therespective update calculations will largely depend on the ratio between K and M . Normally, thenumber of basis functions in the GTM will be much smaller than the number of latent points. Whenapplied to the data used in example 3.2, a BSOM model with a corresponding grid of 20� 20 nodesand a Gaussian neighbourhood function converged in roughly the same time as the GTM used in theexample. However, using the top-hat neighbourhood function, the same BSOM model converged to a`comparable' solution (as judged by visually inspecting the resulting winning node plot for the data)in less than a third of that time. An additional factor that must be considered is the number of trialsrequired to �nd suitable parameter values, and to which extent such trials can be run and assessedwithout human supervision. As described in chapter 5, there are principled ways in which this can bedone automatically for the GTM.Various techniques could be used in both models to speed up the computations. One potentialsuch technique for the GTM, which retains all its desirable properties, is discussed in section 6.6.To summarize, with a top-hat neighbourhood function, a BSOM model will normally convergemore quickly than the corresponding GTM model (i.e. the number of latent points equals the numberof nodes). However, using a Gaussian neighbourhood function with the BSOM model, which typicallygives a smoother convergence, the di�erence in speed of convergence will depend on the ratio betweenK and M . In practice, we normally chose M < K=2 for the GTM, in which case the convergencerates are similar.3.4.2 A Generalised elastic net modelRecently, a generalization of the elastic net model was proposed by Utsugi [1997, 1996] as a probabilis-tic formulation of the SOM | a model which is closely related to the GTM. Recall that the elastic netmodel, as proposed by Durbin et al. [1989] (see section 2.2.6), is a Gaussian mixture with a prior thatencourages the mixture components to follow a locally 1-D, globally cyclic structure. This prior canbe extended to more general forms; Utsugi uses a discretized Laplacian smoothing prior [O'Sullivan,1991] that encourage the mixture components to follow a low-dimensional, rectangular structure, and5To be exact, the matrix multiplications scales as O(KMD +KND), but normally the number of data points, N ,exceeds the number of basis functions, M . 49



CHAPTER 3. THE GENERATIVE TOPOGRAPHIC MAPPINGwhich can relatively easily be modi�ed to more complex priors, e.g. to allow for (partial) `cuts' or`tears' in the manifold [Utsugi, 1996]. To formalize this, the model consists of a K-component Gaus-sian mixture with centres, wk, a common variance ��1 and equal mixing coe�cients �xed to 1=K.For the centres we de�ne the priorp(Wj�) = DYd � �2��j=2 (j�T�j+)1=2 exp���2 k�bwdk2� ;where W is the K �D matrix holding the centres, wk, as its rows, bwd is the dth column of W, �is a matrix representing a discretized smoothing operator on the latent (topological) space, j�T�j+denotes the product of the j positive eigenvalues of �T�, and � controls the degree of smoothingimposed. Utsugi gives examples using a second order smoother discretized on a lattice in a 1-D latentspace, �ij = 8><>: �2 if j(i� j) + 1j = 0;1 if j(i� j) + 1j = 1,0 otherwise. i = 1; : : : ; (K � 2); j = 1; : : : ;K;Given a data set, ft1; : : : ; tNg, we can write the penalized log-likelihood function as,` = NXn ln p(tnjW; �) + ln p(Wj�)We can maximise this using an EM-algorithm, where the E-step is identical to that of the GTM, whilein the M-step, we are solving �G+ ���T��W = RT;for W, where G, R and T are de�ned as for the GTM, equation (3.13). Comparing these twoequations highlights the key di�erence between the two models. The GTM consists of a constrained,rather than a regularized, Gaussian mixture. Alternatively, regularization can be seen as imposingsoft constraints on the mixture components, in contrast to the hard constraints enforced by the GTM.Another important di�erence, is that this elastic net model, due to its use of a discretized smoother,does not de�ne a mapping from the latent space to the data, and hence no explicit manifold in thedata space. A new point in the latent space which does not coincide with any point in the latticeof the smoother can therefore not be mapped to the data space, as is the case with the GTM. Insection 6.9 we discuss an alternative way of de�ning the mapping from latent to data space in theGTM, which imposes soft constraints on the mixture components, using a Gaussian process prior.The relationship of the generalised elastic net to the SOM is largely analogous with that of theGTM, discussed in the previous paragraphs. Utsugi [1997] shows how the Laplacian smoother alter-natively can be written in the form of a (discretized) kernel smoother.3.4.3 Principal curvesThe original principal curve algorithm, discussed in section 2.1.2, is in some ways closer to the SOMthan the GTM, in that� each data point is associated with a single point on the curve, namely its projection on thecurve, and 50



CHAPTER 3. THE GENERATIVE TOPOGRAPHIC MAPPING� for �nite data sets, the conditional estimates of the curve are smoothed over a neighbourhoodde�ned in the parameter space of the curve, corresponding to the neighbourhood function of theSOM.Note that the projections onto the curve change on a continuous scale in the parameter spaces, asthe curve adapts. The re-assignment of data points to the static nodes in the SOM can be seen as adiscretization of this process.The revisited version of the principal curve, discussed in section 2.2.4, is closer to the GTM and theelastic net model discussed in the previous section. It also generates a regularized Gaussian mixture,but uses a cubic spline smoother, and the number of components in the mixture equals the number ofdata points. Tibshirani [1992] suggests the possible extension of the revisited principal curve modelto structures of higher dimensionality, but goes no further.3.4.4 Density networksThe density networks model [MacKay and Gibbs, 1997, MacKay, 1995] is fairly general and theGTM model proposed here can be seen as a particular instance, with a particular form for the priordistribution in the latent space, given in (3.3), and the mapping from latent to data space beingimplemented using a generalised linear regression model which is optimized using the EM algorithm.As mentioned at the end of section 2.2.5, MacKay and Gibbs use a conjugate gradient routine for theoptimization. The gradient is computed by averaging over the posterior distribution over the latentvariables and since MacKay and Gibbs approximates this distribution over a �nite sample of pointsin the latent space, the computation of this distribution will be equivalent to the computation ofresponsibilities in the GTM.MacKay and Gibbs [1997] also discuss a hybrid Monte-Carlo approach [Neal, 1992] for modellingthe posterior distribution, which holds potential to resolve problems that arise as the dimensionalityof the latent space increase.3.4.5 Auto-associative networksThe most important di�erence between the auto-encoder and the GTM is that the former does notde�ne a distribution over the latent space (the space of the hidden units) and hence it is not agenerative model. However, the auto-encoder has the advantage of e�ectively dealing with latentspaces of higher dimension, since the E-step of the generative models, which computes a (discretized)distribution over the whole of the latent space, is replaced by a straightforward `projection' in thelatent space (the space of activations from the bottleneck layer), which is a single point, computedby the forward propagation from the input layer to the bottleneck layer. These projections are thenmapped, by the second half of the auto-encoder (bottleneck to targets), which corresponds to themapping from latent to data space in the GTM.This 2-stage view of the auto-encoder has provided inspiration for developments of generative latentvariable models, in which a recognition model, analogous with the input-to-bottleneck mapping, is usedto (approximately) model the conditional distribution over a set of latent variables, given a data set.This distribution is then mapped to the data space, in analogy with the bottleneck-to-targets mapping,resulting in a generative model in the data space. These ideas were �rst developed for latent classmodels, where the observed data consist of binary vectors, e.g. binary images [Dayan et al., 1995].More recently, also models for non-linear factor analysis and topographic maps have been suggestedwithin this framework [Ghahramani and Hinton, 1998, Hinton and Ghahramani, 1997].51
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Figure 3.11: A toy data set consisting of 1000 data points drawn at random from a distribution de�nedby two correlated Gaussians in 2-D.3.5 DiscussionThis chapter has introduced the basic GTM model. There are a number of ways in which this modelcan be generalized, extended or adapted. The important point, however, is that any such futuredevelopments can be carried out within the framework of probability theory. We have in this chapterleft a number of parameters of the GTM model unspeci�ed | in chapter 5, we will see how we can�nd suitable values for these using Bayesian methods. In chapter 6 several other suggestions will begiven on how the GTM model can be extended in a principled manner, providing further evidence ofthe bene�ts of using a generative, probabilistic model.We have also seen how the GTM can be used for visualization of data from the modelled distribu-tion, based on the posterior distribution over the latent space induced by a point in the data space.In chapter 4, we will see how we can use the fact that the GTM de�nes a continuous manifold in thedata space to further enhance its capabilities for visualization by the introduction of the magni�cationfactor.A potential problem with the GTM as presented in this chapter, is that it will be best suited tomodel continuous, low-dimensional distributions of roughly square shape. When this is not the case,the non-linear mapping will try to adapt in order to match the data as well as possible, but that mayin turn raise a con
ict between the interpretability and the quality of the density model.Example 3.3 (2 Gaussians in 2-D) Consider the data set shown in �gure 3.11, consisting of twocorrelated Gaussians in 2-D. Two GTM models were �tted to this data set, both having a 10�10 gridof latent points, but one had a rather 
exible mapping, with a 5� 5 grid of basis functions, whereasthe other had a minimal 2� 2 grid of basis functions; both had � = 1:0.Both models were trained using 60 iterations of EM, the �rst without using any weight regular-ization, the second using � = 0:1, and the resulting manifolds are shown in the top left and rightpanels of �gure 3.12; note that these have been plotted using a 30� 30 grid of latent points. In thebottom panels the corresponding density models are illustrated, together with a test set consisting of1000 points drawn independently from the same distribution as the training data. The more 
exiblemanifold has been curled up and folded as the training algorithm has tried to achieve an optimal �t52
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Figure 3.12: The left and right column shows the manifolds (top) and density models (bottom) of themore 
exible and the more sti� GTM models, respectively. The manifolds has been plotted using a30 � 30 grid of latent points. The density model plots shows contours of constant density, togetherwith a set of independent test data points, plotted as � .to the training data. The sti�er manifold has been too sti� to bend or fold and, as a consequence, theresulting density model is clearly inferior. The log-likelihood scores for the two models are shown intable 3.1.It should be noted that the experiment in example 3.3 was designed to demonstrate a point. Thedata consists of two separated clusters with ellipsoid shapes, and since we are �tting a 2-D model to2-D data, the non-linearity in the GTM will be used entirely to squeeze the single, inherently squareshaped manifold to �t two ellipsoid clusters. In this situation, warping the manifold as in the top-leftpanel of �gure 3.12 appears to be the most `pro�table' alternative for the training algorithm, in termsof the trade-o� between likelihood and the degrees of freedom available. A second important point tonote is that a more 
exible model will always �t better to training data, compared to a less 
exibleone, but this will not necessary generalise to independent test data, a problem known as over�tting,which will be further discussed in section 5.2. Indeed, if the 
exible model in the example had beeneven more 
exible, or if the training data set had been smaller, the scores in the test data column oftable 3.1 may have been reversed. 53



CHAPTER 3. THE GENERATIVE TOPOGRAPHIC MAPPINGData SetModel Training TestFlexible -2052 -2087Sti� -2386 -2358Table 3.1: Log-likelihood scores on training and test data, for the 
exible and sti� GTM modelsdiscussed in example 3.3. Both training and test set contained 1000 data points.A potential solution to problems arising from the �xed, square shaped distribution is to relax theconstraint of �xed mixing coe�cients, and instead estimating these as part of the training procedure.The training algorithm could then, within given limits, choose the distribution of mixing coe�cientsthat gives the best �t to data, in e�ect choosing the distribution over the latent space. However,this is likely to have a signi�cant impact on the GTM as a model for visualization. The data inexample 3.3, may in such a model project only on the two opposite edges of the latent space. The�xed mixing coe�cients, on the other hand, are encouraging the training algorithm to make use of asmany mixture components as possible, given the constraints on the 
exibility of the mapping.If the ultimate goal is density modelling and a (single) GTM model indicates clusters in the data,it may be that a better density model can be obtained by using a mixture model, which may have aGTM as one or more of its components.
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Chapter 4Magni�cation FactorsThe concept of magni�cation factors initially arose in studies of the formation of topological mapsin the visual, auditory and somatosensory regions of the cortex of mammalian brains [see e.g. Suga,1991, Kaas et al., 1981]. It refers to how a region in a sensory space (e.g. a region of the retina in theeye) is being mapped to a, proportionally, much larger region of the cortex; the region in the sensoryspace is said to be `magni�ed'. It was naturally carried over to the biologically inspired SOM model,where it came to represent how the topological map was being (locally) stretched and compressedwhen embedded in the data space, in order to make the density of reference vectors `match' thedensity of the training data. More precisely, Kohonen [1995] uses the term `magni�cation factor'to mean \the inverse of the point density" of the reference vectors, and theoretical analysis of themagni�cation factor, in this sense, was carried out by Ritter and Schulten [1986, 1988]. We will usethe term `magni�cation factor' to refer to the stretching and compression of the manifold representingthe latent space, when embedded in the data space. Since the GTM density model consists of a setof equally weighted Gaussians with a common noise model, which corresponds to the regular gridof points in the latent space, the stretching and compression of the manifold will be driven by theobjective of the training algorithm, to make density model match the distribution of the training data.Since for the original version of the SOM, the topological map is represented in the data space onlyin term of a discrete set of reference vectors, the magni�cation factor, according to the de�nition usedhere, will only be available in a discretized form, as the ratio of distances between reference vectorsin the data space and distances between the corresponding distances between nodes on the map. Amethod, called the U-matrix method, was proposed by Ultsch and Siemon [1990], which visualizesdistances between reference vectors on the topological map; this method will be further discussed insection 4.2.The GTM, by contrast, de�nes a continuous manifold embedded in the data space, which allows usto derive methods for computing the magni�cation factor as a continuous function over manifold (andhence over the latent space), as will be discussed in section 4.3. As will be described in section 4.4,this method is also applicable to the batch version of the SOM, provided certain conditions are met.First, however, we give further motivation for the use of magni�cation factors.4.1 MotivationWhat does the locations of two points in the latent space tell us about the locations of the corre-sponding two points in the data space? Given the discussion in the previous chapter on the topology55
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Figure 4.1: An illustration of the U-matrix method. To the left is the topographic map, where thecircles represents nodes and the 3-D bars represent the distances between the corresponding referencevectors, shown as circles in the data space to the right.preserving properties of the the GTM, the answer may seem obvious: nearby points in the latent spacemap to nearby points in the data space. But how near is `nearby' and will this value be constantover the latent space? The answer to this last question is generally no. Since the mapping betweenthe latent space and the data space is non-linear, what is nearby will vary over the latent space. Infact, we have already seen an example of this | the toy data set used to demonstrate learning inthe GTM in example 3.1 is not uniformly distributed over the curve that it follows. Consequently,the GTM trained on this data will stretch the manifold in regions of low data density and compressit in regions of high density. This is re
ected in the bottom right plot of of �gure 3.2, showing theconverged model; the mixture components, that correspond to a uniform grid in the 1-D latent space,are spread out towards the end of the manifold and compressed together in the bends.Thus, it is clear that `nearby' is something relative which varies over the latent space, and this canhave important implications on how data is visualized in our model. Clusters of data which are wellseparated in the data space may appear much closer in when visualized in the latent space. However,if we �nd out how the manifold in the data space is being stretched or compressed, locally, thatshould give an idea of what nearby means at di�erent positions in the latent space. This could revealboundaries between clusters as regions where the manifold in the data space undergoes high stretch.4.2 The U-matrix methodThe uni�ed distance matrix (U-matrix) method [Ultsch and Siemon, 1990, Ultsch, 1993] provides anestimate of the magni�cation factor for the SOM by visualizing the distances between reference vectorsin the data space on the topographic map. The method is illustrated in �gure 4.1; the dx bar on themap represents the square distance between reference vectors a and b; similarly, the dy bar representsthe square distance between reference vectors a and c; the dxy bar, �nally, represents the averagedsquared distances between reference vector pairs a{d and b{c. Instead of using 3-D bars, distancescan be visualized using grey-scale or colour coding, as will be shown in the examples in section 4.5.56
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Figure 4.2: An illustration of the magni�cation factor for a 2-D latent space | the vectors �x1and �x2, forming a rectangle in the latent space (left) with area Ax, are mapped to �y1 and �y2,respectively, forming a parallelogram with area Ay in the data space (right)4.3 Continuous magni�cation factorsWe introduce the method for computing the magni�cation factor as a continuous function over latentspace by �rst looking at the special case were the latent space is two-dimensional. This is partlybecause this is the by far most common case, especially when the ultimate aim is visualization ofdata. More importantly, the two-dimensional case provides an intuitive understanding of the generaltreatment.We are interested in how a region in the latent space is being stretched (or compressed) whenmapped into the data space. More precisely, we want to �nd the areal ratio between an in�nitesimalrectangle in the latent space with area Ax, and its `image' in the data space with area Ay, as shownin �gure 4.2.As the �x's in the latent space go to zero, we can treat the mapping as linear around the point ofinterest, and we get the 1�D vectors �y1 and �y2 in terms of the partial derivatives of the mappingwith respect to the �rst and second dimension of the latent space, respectively.�y1 = @y@x1�x1 (4.1)�y2 = @y@x2�x2 (4.2)By standard geometrical arguments, the square of the area Ay can be written asA2y = k�y1k2k�y2k2 � (�y1�y2T)2 (4.3)The last term in (4.3) expresses the fact that we must consider the correlation in direction between�y1 and �y2 | if they were orthogonal to each other, this term would be zero, whereas if they wereparallel, it would equal the �rst term and Ay would be zero (the parallelogram folding to a line).57



CHAPTER 4. MAGNIFICATION FACTORSNow, by using (4.1) and (4.2), and after some re-arranging, we get the magni�cation factor asdAydAx = vuut
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2 � @y@x1 @y@x2 T!2: (4.4)The partial derivatives of the mapping y(x;W), with respect to the latent variable, x, are easilyobtained from (3.8), yielding @y@xl =  lW (4.5)where  l is an 1�M vector, containing the partial derivatives of the basis functions with respectto xl, which we get from (3.9) as lm = 8><>: ��m(x)(xl � �lm)��2 if m �MNL;1 if m = MNL + l;0 otherwise: (4.6)4.3.1 The General caseThe results obtained in the 2-D case can be extended to latent spaces of higher dimensionality, byconsidering the volumetric ratio between an in�nitesimal, L-dimensional hypercuboid in the latentspace, with volume Vx, and its image in the data space, with volume Vy. Again, with the sides ofthe hypercuboid in the latent space going to zero, we can regard the manifold embedded in the dataspace as locally linear, and so Vy is contained in an L-dimensional parallelepiped, as illustrated in�gure 4.3, the volume of which is given by the determinant of the matrix containing the sides of theparallelepiped as its rows. This matrix, which we denote with J, is the Jacobian of the mappingy(x;W), i.e. the partial derivatives of y with respect to x,Jld = @yd@xl (4.7)Using (4.5) and (4.6), we can write J as J = 	W; (4.8)where 	 is an L�M matrix with elements  lm, as de�ned in (4.6).In general, J is not square but L�D, re
ecting the fact that the L-dimensional parallelepiped liesembedded in the D-dimensional data space. In this form, the determinant of J is unde�ned, but wecan resolve this by �nding1 a D � L matrix, cM, with orthonormal columns that span the row-spaceof J and then compute bJ = JcM:Since the columns of cM are orthonormal and span the row-space of J, the lengths of and anglesbetween the row vectors of J and bJ are identical, and thus we would get the volume Vy by computingthe determinant of bJ, which is L� L.Eventually, we can compute this volume in a more e�cient way; since lengths and mutual anglesof the row vectors in J and bJ would be identical, it follows thatbJbJT = JJT:1Using Gram-Schmidt orthogonalization [see e.g. Strang, 1988]58
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Figure 4.3: An L-dimensional (L = 3) parallelepiped whose sides, �y1; : : : ;�yL, are given by thepartial derivatives of the mapping from latent to data space, with respect to the latent variables.From this and the properties of the determinant, we have(det(bJ))2 = det(bJ) det(bJ)= det(bJ) det(bJT)= det(bJbJT)= det(JJT); (4.9)and thus dVydVx = qdet(JJT) = qdet(	WWT	T): (4.10)It is easy to verify that this formula equals (4.4) if L = 2.An alternative derivationThese results can alternatively be derived using the theory of di�erential geometry [Bishop et al.,1997c,d]. Throughout this section, we will adopt the convention from di�erential geometry of summingover repeated raised and lowered indices. In this approach, we regard the Cartesian coordinate systemde�ned on the latent space, xi, to be mapped to a corresponding curvilinear coordinate system, �i,de�ned on the manifold embedded in the data space. We then consider the transformation from �i,at a point Py in the manifold, to an L-dimensional Cartesian coordinate system, �� = ��(�). The
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CHAPTER 4. MAGNIFICATION FACTORSsquared length element in these coordinates is then given byds2 = ���d��d��= ��� @��@�i @��@�j d�id�j= gijd�id�j ;where we have introduced the metric tensor, g, whose components are given bygij = ��� @��@�i @��@�j : (4.11)The volume element dVx in the latent space can be related to the corresponding element in thedata space dVy, through the determinant of the Jacobian of the transformation � ! �,dVy = LY� d�� = det(bJ) LYi d�i= det(bJ) LYi dxi = det(bJ)dVx; (4.12)where the Jacobian, bJ, is given by bJ�i = @��@�i : (4.13)If we study (4.11) and (4.13), we see that g = bJbJT;so by the properties of the determinant, det(bJ) = pdet(g);and, from (4.12), dVydVx =pdet(g) (4.14)We therefore seek an an expression for the metric tensor, in terms of the non-linear mappingfrom latent to data space. Again we consider the squared length element ds2 but this time in theD-dimensional Cartesian coordinate system of the data space, where we getds2 = �pqdypdyq= �pq @yp@xi @dyq@xj dxidxj= gijdxidxj ;and so we get the metric tensor g as gij = �pq @yp@xi @dyq@xj ;Using this, (4.14) and (4.7), we getdVydVx = pdet(g)= det��pq @yp@xi @dyq@xj �1=2= qdet(JJT);and so we have recovered (4.10). 60
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Figure 4.4: A 2-D illustration of the directions of stretch, given by vectors ŷ1 and ŷ2 in the data space(right), with corresponding vectors x̂1 and x̂2 in the latent space (left).4.3.2 The Direction of stretchSo far, we have only considered how to compute the areal2 magni�cation factor over the embeddedmanifold. However, when the manifold is more than one dimensional, stretching in one direction canbe o�set by compression in another direction | a 2-by-2 rectangle has an area of 4, but then so has a1-by-4 rectangle. We would therefore like to �nd not only the degree of areal magni�cation, but alsothe direction of any compression or stretching.Intuitively, we want to decompose the stretching of the manifold into its `principal directions', asillustrated in �gure 4.4. This involves �nding the single direction in the latent space along which we�nd the largest magnitude of the partial derivatives, and then repeat this procedure until we havespanned the latent space, with the additional constraint that each new direction must be orthogonalto all directions found so far.Put more formally, to �nd the directions of stretch at a point Py in the manifold, corresponding tothe point Px in the latent space, we want to �nd the eigenvalues and eigenvectors of the outer productmatrix of @y=@x1jPy ; : : : ; @y=@xLjPy , de�ned asLXl @y@xl ����TPy @y@xl ����Py :Note that this a D�D matrix, but it has rank L. All subsequent calculations in this sub-section areunderstood to be relative to the points Py and Px, so in the interest of clarity these indices will bedropped.As discussed in the previous section, the Jacobian J, de�ned in (4.8), has @y=@x1; : : : ; @y=@xL asit rows, so our desired outer product matrix can be expressed as JTJ. We can identify eigenvectorsŷl and eigenvalues �l, l = 1; 2; : : : ; L, such thatŷlJTJ = �lŷl: (4.15)2We will keep using terms like `area' and `areal', since a 2-D latent space is by far the most common case. However,the technique described also applies to cases where L > 2.61



CHAPTER 4. MAGNIFICATION FACTORSHowever, what we are really interested in are the corresponding vectors in the latent space, but sincey = xJ around the point of interest, we can write (4.15) asx̂lJJTJ = �lx̂lJ; (4.16)and since J is L�D and has rank L, it has got a right-inverse, and hencex̂lJJT = �lx̂l: (4.17)Thus we have identi�ed the directions and magnitudes of stretch in the latent space with the eigen-vectors and eigenvalues of JJT or, equivalently, the metric tensor g.4.4 Magni�cation factors for the BSOMThe techniques presented in the previous sections can also be applied to the batch version of theself-organizing map (BSOM), provided that the neighbourhood function used is continuous over thetopographic space. As discussed in section 3.4.1, the update formula for the reference vectors in thetraining algorithm for the BSOM can be re-written as a kernel regression formulayk0 = KXk F (xk0 ;xk)mk (3.18)where mk = 1Nk Xt2Tk t: (3.17)and F (x;xk) = Nkh(x;xk)Pj Njh(x;xj) : (3.19)If the neighbourhood function, h(�), is de�ned to be continuously di�erentiable | the non-normalizedGaussian, h(x;xk) = exp��kx� xkk22�2 � ; (4.18)will be used in the examples presented below | formulae (3.18){(3.19) de�ne a continuous mappingfrom the topographic space to the data space. The BSOM model therefore, just like the GTM, de�nesa continuous manifold in the data space, and thus we can apply the techniques described in section 4.3also to the BSOM model. The only di�erence compared to the GTM, is in the computation of thepartial derivatives with respect to the topographic variables, which we get, using (3.18) and (4.18), as@y@xl = Xk @F@xlmk= Xk xl � xlk�2 (F (x;xk)2 � F (x;xk))mk: (4.19)4.5 ExamplesWe now look at two examples of the techniques discussed in this chapter, which illustrate how theycan be used, and we compare them to the U-matrix technique.62
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Figure 4.5: Toy data generated from a regular grid in 2-D which is then fed through a tanh-functionalong the x-direction. The plot shows the data generating manifold plotted in grey and the datapoints plotted as � .Example 4.1 (A ridge in 3-D) The �rst example uses a toy data set, consisting of 400 data pointsdistributed over a 2-D ridge shaped surface in 3-D, shown in �gure 4.5. The data was generated froma regular, square grid in [�1; 1]2, which gave the x- and y-coordinates, whereas z = tanh(6x). Finally,Gaussian spherical noise with standard deviation 0:1 was added. As can be seen in �gure 4.5, thisresults in the data set being `stretched' over the tanh-function.A GTM with a 10 � 10 latent grid and 6 � 6 basis functions and a BSOM with 10 � 10 grid ofnodes were �tted to this data and magni�cation factors and the U-matrix were evaluated. The results,which largely agree with what we would expect from this data, are shown in �gures 4.6{4.8. Figure 4.6shows grey-scale plots of the logarithm of the areal magni�cation factor for the GTM and BSOM,with darker areas corresponding to regions of high stretch (low magni�cation). Note that althoughthe grid of latent points or nodes is 10� 10, the magni�cation factor has been evaluated on a 40� 40grid in the latent space | in principle, this grid could have arbitrarily �ne resolution. Overlayed onthe GTM plot is the posterior mean plot of the data; correspondingly, in the BSOM plot, each nodehas been labelled with the number of data points won by that node, whenever that number exceedszero. In �gure 4.7, ellipses show the magnitude and direction of stretch, evaluated at the positionsof the latent points/nodes for the GTM and BSOM; here the scale is linear and the plots have beenindividually scaled to avoid overlap between ellipses. Also this plot could be done at a �ner resolutionif desired. Figure 4.8, �nally, shows the U-matrix for the BSOM model.Example 4.2 (Leptograpsus Crabs) In the second example, we will look at a data set containingphysical measurements from two species of Leptograpsus rock crabs3 - blue and orange. This set wascompiled in order to provide a statistical sample based on which preserved specimen (which have losttheir colour) could be classi�ed. There are 50 male and 50 female of each of the two species, so in allthere are 200 samples.The data set is �ve dimensional; the measurements of each data vector correspond to the length ofthe frontal lip, rear width, length along mid-line, maximum width of carapace and body length. These3This data set was obtained from Prof. Brian Ripley's homepage, http://www.stats.ox.ac.uk/~ripley.63
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Figure 4.6: Plot of the magni�cation factor for a GTM (left) and a BSOM (right), trained on the toydata shown in �gure 4.5. Overlayed on the GTM plot is the posterior mean plot of the data, while onthe BSOM plot, each node has been labelled with the number of data points it `won'.

Figure 4.7: Plots showing the direction of stretch for the GTM (left) and the BSOM (right), corre-sponding respectively to the left and right plots in �gure 4.6.

Figure 4.8: The U-matrix plot of for the BSOM model trained on the toy data shown in �gure 4.5,for which the corresponding magni�cation factor is shown in the right panel of �gure 4.6.64
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Figure 4.9: Plot of the magni�cation factor for the GTM (left) and the BSOM (right), trained on thecrabs data. Overlayed on the GTM plot is the posterior mean plot of the data, while in the BSOMplot, each node has been labelled according to the dominating class among the data points assignedto them. O denotes blue male, M denotes blue female, C denotes orange female and, �nally, B denotesorange malemeasurements are all strongly correlated with the overall size of the crab, so the dominant underlyingvariable of this data set is size. To remove this e�ect, each data vector (sample) is normalized tounit mean. This seems reasonable if we assume that there are large and small specimens of males andfemales in both of the species. We must be aware, however, that there is a risk that this transformationmay remove a feature which could be relevant in distinguishing (e.g.) males from females, if on average,there is a di�erence in size between males and females. After having normalized the individual datavectors, the variables of the data set are normalized to zero mean and unit variance.As in the previous example, a GTM with 10 � 10 latent points and 4 � 4 basis functions and aBSOM with 10�10 nodes were �tted to this data. The results are shown in �gures 4.9{4.11, followingthe same `line of presentation' as in previous example. Figure 4.9 shows a grey-scale plot of thelogarithm of the areal magni�cation factor for the GTM and BSOM, again evaluated on a 40 � 40grid in the latent space. The GTM plot again shows the posterior mean projection of the data, whilein the BSOM plot, nodes has been labelled according to the dominating class among the data pointsassigned to them. Figure 4.10 shows ellipse-plots of the magnitude and direction of stretch, evaluatedat the positions of the latent points/nodes for the GTM and BSOM. Figure 4.11, �nally, shows theU-matrix for the BSOM model, with nodes labelled as in �gure 4.9.4.6 DiscussionThe examples given in the previous section suggests the magni�cation factor can indeed provide usefulinformation, such as regions of stretch in the manifold which separates di�erent regions in the dataspace. However, if the manifold takes a complex shape in the data space, the resulting magni�cationfactor plot may be rather di�cult to interpret.Recall the data set from example 3.3, which consisted of two Gaussians in 2-D | the manifold ofone of the two GTM models �tted to this data ended up having a rather complex shape, shown inthe top-left panel of �gure 3.12. Figure 4.12 shows the corresponding magni�cation factor, computedover a 30� 30 grid in the latent space. 65
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Figure 4.10: Plots showing the direction of stretch for the GTM (left) and the BSOM (right), corre-sponding respectively to the left and right plots in �gure 4.9.

Figure 4.11: The U-matrix plot of for the BSOM model trained on the crabs data, for which thecorresponding magni�cation factor is shown in the right panel of �gure 4.9; the nodes has beenlabelled as in �gure 4.9.
66
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Figure 4.12: The plot shows the magni�cation factor, plotted on a log-scale for the more 
exible GTMmodel discussed in example 3.3.One may ask the question whether the magni�cation factor can be used to detect a severelywarped manifold. Certainly, when the data lives in 2-D and has been normalized, a magni�cationfactor ranging from �6 to 2 on a log-scale is an indication that `something might be wrong', butthis probably does not generalize to less extreme examples. Another potential indicator may be tocompute the inner product of the vector ŷ, representing the principal direction of stretch at some pointPy in the manifold, and the corresponding vectors at other points in the neighbourhood of Py on themanifold. For a smooth manifold we would expect this inner product to be positive and signi�cantclose to Py. However this indicator may raise false alarms in regions of uniform stretch, which is whyone would also have to consider the ratios of magnitudes of stretch in the di�erent directions.In section 3.5, the introduction of adaptable mixing coe�cients was suggested as a potentialsolution to problems linked to the inherent square shape of the distribution of mixture components.It was then pointed out that this could a�ect GTM as a model for visualization, and this will alsoinclude the results can expect from the use of magni�cation factors. If density mass can be shiftedbetween regions on the manifold, the training algorithm will not have to stretch manifold as much aswould have been the case with �xed �xing coe�cients.
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Chapter 5Parameter SelectionAs is the case with all parametric models, constructing a GTM model will require us to choosevalues for a number of parameters, such as the number of latent points, the number and form of basisfunctions and the regularization coe�cient, and this choice is likely to have a signi�cant impact on the�nal model. Common sense will rule out certain combination of parameter values and intuition mayprovide additional `rules of thumb', but nevertheless it would be desirable to have principled methodsfor making these choices. In this chapter we try to address this problem, at least partially, by lookingat methods for �nding suitable values for �, � and �. These methods could also, in principle, be usedto choose values for other parameters in the model, such as the number of basis functions. We will�rst look at the roles of the parameters we are about consider and try to understand how di�erentchoices a�ect the model.5.1 Roles of di�erent parametersThe parameters we concentrate on in this chapter are:� � | the inverse noise variance,� � | the inverse variance of the prior over the weights1, and� � | the common width of the Gaussian basis functions (�).In the approach discussed so far, � is estimated together with W, using maximum-likelihood, while� and � are set prior to training, essentially by rules of thumb, and then kept �xed.Whereas W explicitly de�nes the shape of the manifold embedded in the data space, �, � and �will have an implicit e�ect, by a�ecting the way the parameters in W are adapted during the training;we therefore sometimes refer to these as hyper-parameters. In this chapter we will normally use theshorter `parameters' to refer to �, � and �, while the elements in W will normally be referred to as`weights'.During training, � will a�ect the smoothness of the manifold at a local level, by de�ning how muchnoise or independent variability is associated with the observed variables. As � increases, the variancedecreases and so we expect more of the variability in the data to be explained by the variabilityin the manifold. If � decreases on the other hand, corresponding to an increasing noise, more and1In this chapter we only consider an isotropic prior over the weights, i.e. � is a scalar, but the methods describedcan also be extended to deal with more general cases. 68



CHAPTER 5. PARAMETER SELECTIONmore of the variance in the data will be regarded as noise, which will result in a smoother manifold.Eventually, if � becomes small enough, the manifold will simply collapse to a point at the sample meanof the data, with all the variance in the data being regarded as noise. The EM algorithm providesa maximum likelihood estimate of �, but these estimates can be overly optimistic, in the sense thatthey underestimate the noise level, and alternative estimates are discussed below.� controls the global smoothness of the manifold, since as the radially symmetric basis functiongets broader, they also get more correlated in their responses to points in the latent space. Nearbypoints in latent space will therefore map to increasingly nearby points in the space of basis functionactivations, and consequently to increasingly nearby points in the data space, resulting in increasinglysti�er manifolds; an example of this was shown in �gure 3.10. It will also be re
ected in the factthat, as � increases, at some point the matrix � become rank de�cient; taken to extreme, we endup with the same case as with small �, with the manifold collapsing to a point or, if we have alsoincorporated linear basis functions, a PCA-like solution. At the other extreme, as � gets small,the basis functions eventually become (numerically) completely uncorrelated, and the smooth non-linearity in the manifold `falls apart'; if � keeps decreasing the non-linearities may vanish, unless basisfunction centres coincide with latent points.�, �nally, controls the magnitude of the weights and hence the scale of the manifold. One couldargue that constraining the weights would seem unnecessary, since a model that did not get the overallscale right would not be a good model anyway. However, since we are working with �nite data sets,degrees of freedom that are not spent on capturing the underlying distribution will be used to �t noiseon the data.5.2 Parameter selection and generalizationWhen we are trying to train a model on a data set, we are normally not interested in �nding a modelthat perfectly �ts the data, but rather one that �ts the underlying distribution from which the datawas generated. Assuming we are successful, we would expect this model to also �t well to other datasets drawn from the same distribution | we say that the model has good generalization capabilities[Bishop, 1995].The issue of generalization is directly related to parameter selection, since our choice of parameterscontrols the 
exibility of the model. A su�ciently 
exible model will be able to �t any �nite dataset perfectly; a GTM with su�ciently many latent points (K � N) and 
exible enough mapping willplace a mixture component at each data point and set the common variance to zero yielding an in�nitelikelihood. For all other data sets, however, the likelihood under such a model will be zero. Sincewe assume that our data is generated from a systematic component and a random noise component,independently collected data sets are not expected to be identical. The perfect �t to training datais obviously an extreme example, but it highlights an important problem: a too 
exible model willnot capture the underlying distribution of a data set, but rather the structure of that particular dataset, with its associated noise and artifacts. This phenomenon is known as over�tting. On the otherhand, if the model is not 
exible enough, it may not be able to successfully model the underlyingdistribution | a situation correspondingly known as under�tting. In either case, the resulting modelis poor, so the challenge, within the framework we have worked in so far, would be to �nd a modelwhich is 
exible enough to capture the overall structure in the training data set, but not so 
exiblethat it also catches on to features speci�c to that particular set of data. Since the 
exibility of themodel is controlled by the parameters, this corresponds to �nding suitable values for these.69



CHAPTER 5. PARAMETER SELECTIONA di�erent approach to learning is taken in Bayesian statistics. The Bayesian viewpoint is that,rather than trying to �nd a single set of parameter values, we should work with a distribution overpossible values. Before we have seen any data, this distribution is speci�ed entirely from whatever priorknowledge is available, and is therefore called a prior distribution, or just prior. Once data arrives,we combine the likelihood of the data with our prior, using Bayes' theorem, to yield a posteriordistribution over parameter values. Typically, this posterior distribution will be narrower than theprior, since in the light of the data, certain parameter values will appear more likely than others. Thistreatment applies to all parameters | `ordinary' parameters, such as the elements of W in the GTM,as well as hyper-parameters, such as �, � and � | and the Bayesian framework naturally formalizesthe relationship between di�erent kinds of parameters through conditional probability distributions;thus we will see in the next section how the regularised log-likelihood function emerges from theconditional probability distribution over W, given �, �, � and the set of training data. We will alsosee how we can use the Bayesian machinery to infer suitable values for �, � and �, but �rst we considermore traditional methods.One method for parameter selection which we can use, provided we have su�cient amounts of data,is to partition the data available into one set that we use for �tting, or training, the model, called thetraining set, and one set that we use to evaluate the performance of the trained model, which we calla validation set. By training and evaluating models over a range of parameter values, we can �nd theparameter values that result in the best performance on the validation set. This is motivated by thebelief that this model is 
exible enough to model the common structure of the training and validationset, but not so 
exible that it also �ts noise and features speci�c to the training set. There are twoobvious drawbacks with this approach:� it relies on the availability of a su�ciently large set of data and� it requires signi�cant amounts of computation, which grows exponentially with the number ofparameters.What `su�cient' amounts of data of data is of course varies with the problem; in general, the morecomplex the underlying structure is, the more 
exible our model must be and, hence, the more datais required. One way to address a possible shortage of data is to use cross-validation.5.2.1 Cross-validationIf we have only limited amounts of data at our disposal, setting aside parts of that data as a validationset might be considered too costly | we would like to be able to use all data available for training.Cross-validation [Stone, 1974, Bishop, 1995] allows us to do just this, at the expense of increasedamounts of computation. The �rst step is to divide the data set into S disjoint, equally sized,subsets2. We set aside one of those subsets as a validation set and train the model on the union of theremaining S � 1 subsets and once trained we evaluate its performance using the validation set. Thisprocedure is repeated another S � 1 times, every time using a di�erent subset as validation set, asillustrated in �gure 5.1. In the end, we have S validation error measurements and by averaging overthese, we get the S-fold cross-validation error.As we increase S, our con�dence in the obtained error measure increases, since the trained modelshave been trained using larger amounts of training data. Obviously though, the amount of computationrequired also increases with S, so there must be a judged trade-o� between the con�dence we require2Actually, the subsets need not be equally sized, but normally they are chosen to be of roughly equal size; when thesets di�er in size, this should be corrected for when averaging the validation errors.70
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Figure 5.1: A pictorial illustration of cross-validation. Each row correspond to a di�erent division ofthe data into validation set (shaded) and training set (others).and the computational e�ort we can a�ord. Once we have found the parameter values that giveoptimum performance on independent (validation) data, we can re-train our model on all the data,using these values. For models where the dependency of the objective function on the adjustableparameters is non-quadratic, the use of cross-validation becomes somewhat questionable, since modelstrained on di�erent fractions of the data may converge to very di�erent local maxima3. It is then notclear that averaging these di�erent likelihood scores will actually tell us anything about the expectedperformance of models with the corresponding parameter setting.5.3 A Bayesian approachWe now return to the Bayesian methods which were brie
y discussed in the previous section. Ourprimary objective will be to derive an alternative method for estimating suitable values for the hyper-parameters �, � and �, but Bayesian methods can also be applied for discriminating between di�erentmodels in a wider sense, and could therefore be used e.g. to select the number of basis functions.The Bayesian methodology was introduced in the �eld of neural computing by MacKay [1991, 1992].The presentation in this section largely follows the review of Bayesian methods in Bishop [1995](sections 10.1 and 10.4).So far, we have regarded the training algorithm for the GTM as a maximization procedure, aimedat �nding the `best' single matrix of weights. Taking the Bayesian perspective, it instead becomesa part in a machinery for statistical inference, which produces a distribution over possible weightmatrices. This distribution will depend on the data we use for training, and so we write it p(wjT),which, using Bayes' theorem can be expressed asp(wjT) = p(Tjw)p(w)p(T) ; (5.1)where w denotes a vector of all the elements in W. p(Tjw) is the likelihood for w, in this contextsometimes also called the evidence, and de�nes a probability distribution over the space of the dataset T, conditioned on w. p(w) is the prior distribution over the weights, before having seen any data,and p(T) is a normalization constant that ensures that the posterior distribution over the weights3Note that this is the case for all the parameters in the GTM; the dependency of ` on W is only quadratic giventhe temporarily �xed responsibilities (which depend on W).71



CHAPTER 5. PARAMETER SELECTIONintegrates to one, p(T) = Z p(Tjw)p(w) dw: (5.2)From chapter 3, we know that the density function de�ned in the data space is a Gaussian mixturewith isotropic components; furthermore, one of our fundamental assumptions is that the data sets weuse for training consists of independently drawn points. Thus we can writep(Tjw) = 1ZT NYn KXk exp���2 ktn � y(xk ;w)k2� (5.3)= 1ZT expf�ST(w; �)g; (5.4)where ST(w; �) = � NXn ln KXk exp���2 ktn � y(xk ;w)k2� : (5.5)The reason for introducing the form in (5.4) will soon be clear. From (5.3), we can calculate thenormalization constant, ZT, asZT = Z NYn KXk exp���2 ktn � y(xk ;w)k2� dT= Z KXk1 : : : KXkN NYn exp���2 ktn � y(xkn ;w)k2� dT= KXk1 : : : KXkN Z exp(� NXn �2 ktn � y(xkn ;w)k2) dT= KN �2�� �ND=2 (5.6)where dT stands for dt1dt2 : : : dtN . After having written the product of sums as a sum of productswe use the fact the exponential is strictly positive, in order to swap the order of integration andsummation. This gives us a sum of KN ND-dimensional, independent Gaussian distributions, yielding(5.6) [see e.g. Bishop, 1995, appendix B]. For the time being, we assume that � is �xed at a knownvalue.Our choice of prior distribution over the weights, p(w), should re
ect any prior knowledge we mighthave regarding the distribution of the data we are trying to model. Most of the time, we have littlesuch prior knowledge, but we normally assume that the mapping from latent to data space shouldbe smooth. As discussed above, the most important parameter for controlling the smoothness of themapping is �, but because of �nite-size e�ects, the magnitude of the weights should be constrained, tomaintain the smoothness imposed by �. Here we follow MacKay [1992] and use a spherical Gaussianwhich, as well as constraining the weights as desired, has favourable analytical properties; thusp(w) = 1ZW expf�Sw(w; �)g; (5.7)where Sw(w; �) = �2 WXi w2i (5.8)72



CHAPTER 5. PARAMETER SELECTIONand hence Zw = Z p(w) dw = �2�� �W=2 : (5.9)Just as for �, we will assume for now that we know the value for �.Since the denominator in (5.1) is independent of w, we see from (5.4), (5.5), (5.7) and (5.8) that�nding the mode of p(wjT) corresponds to the maximization of the regularized log-likelihood function,as described in the previous chapter. However, if we want to make use of p(wjT) for further statisticalinference (such as inferring the distributions of �, � and �), we must also compute the normalizationconstant p(T). Unfortunately, the integration in (5.2) is not analytically tractable, so in order to makeprogress we must make some approximations. Again we will follow MacKay [1992] and approximatep(wjT) with a Gaussian distribution, which makes it easy to integrate. Some justi�cation for thisapproximation with the GTM can be found in the fact that if for each data point, there was a singlemixture component taking all the responsibility for that data point, this approximation would beexact. It is commonly the case for trained GTM models, that almost all the responsibility for a singledata point rests with a single mixture component, although a counter-example was shown in �gure 3.8.To obtain the Gaussian approximation we �rst note that the maximization of the regularizedlog-likelihood is equivalent to minimizing the error functionS(w; �; �) = ST(w; �) + Sw(w; �): (5.10)From (5.8) we see that Sw is quadratic in w, while ST, de�ned in (5.5), will also be approximatelyquadratic in w, if we assume that, for each data point, tn, the sum over k is dominated by a single term;this would consequently result in the corresponding mixture component taking all the responsibilityfor that data point, as discussed above. We therefore approximate S(w; �; �) by its second orderTaylor expansion in w, around its minimum, wMP, yieldingS(wMP; �; �) + 12�wTH�w;where �w = wMP �w and H is the matrix of second derivatives,Hij = @2S(w; �; �)@wi@wj ����wMP ;also known as the Hessian matrix. The linear term of the expansion vanishes since we are expandingaround a minimum.The Hessian is the the sum of two matrices, HT and Hw, resulting from ST and Sw, respectively.It is easily seen from (5.8) that Hw = �I; (5.11)where I is a W �W identity matrix. In appendix A, we derive two formulae for HT: one which isexact but computationally rather expensive, while the second is an approximation which is cheap tocompute. We then get the Gaussian approximation asp(wjT) = 1Z exp��S(wMP; �; �)� 12�wTH�w� ; (5.12)where the normalization constant can be evaluated [Bishop, 1995, appendix B] asZ = expf�S(wMP; �; �)g(2�)W=2jHj�1=2: (5.13)73



CHAPTER 5. PARAMETER SELECTION5.3.1 Estimation of �, � and �In (5.1) we omitted the dependencies on �, � and �, and in the discussion that followed � and � wereassumed to be known wherever they appeared. We now make these dependencies explicit and re-write(5.1) as p(wjT; �; �; �) = p(Tjw; �; �)p(w; �)p(Tj�; �; �) : (5.14)Here we have used the fact that the evidence factor is independent of �, while the prior is independentof � and �. Normally, we will only have a very vague idea about what values that would be suitablefor �, � and �, and the correct way of treating such unknown parameters in a Bayesian framework isto integrate them out, so thatp(wjT) = ZZZ p(wjT; �; �; �)p(�; �; �jT) d� d� d�:We therefore seek an expression for p(�; �; �jT) and using Bayes' theorem we getp(�; �; �jT) = p(Tj�; �; �)p(�; �; �)p(T) : (5.15)Here the normalization constant from (5.14) plays the role of the evidence factor and again we mustspecify a prior, this time for �, � and �; computing the the normalization constant, p(T), now involvesintegration over �, � and �.As with p(wjT) in equation (5.1), �nding the mode of p(�; �; �jT) only involves the prior andthe evidence factors. Therefore, one approach would be to try to �nd the mode, corresponding tothe most probable values for �, � and �, and then use these values. This can be motivated by anassumption that p(�; �; �jT) is sharply peaked around the mode, so thatp(wjT) = ZZZ p(wjT; �; �)p(w; �)p(�; �; �jT) d� d� d�� p(wjT; �MP; �MP)p(w; �MP) ZZZ p(�; �; �jT) d� d� d�= p(wjT; �MP; �MP)p(w; �MP)If we take p(�; �; �) to be uniform4 on the positive region of <3, �nding the mode of p(�; �; �jT)will correspond to maximising the evidence factor, p(Tj�; �; �), which we can re-write in terms ofquantities we have already evaluated,p(Tj�; �; �) = Z p(Tjw; �; �)p(w; �) dw= 1ZT 1Zw Z expf�S(w; �; �; �)g dw= ZZTZw (5.16)From (5.16), (5.13), (5.10), (5.9) and (5.6), we can write the logarithm of the evidence for �, � and �as ln p(Tj�; �; �) = �ST(wMP; �; �)� Sw(wMP; �)� 12 ln(jHj)+ W2 ln(�) + ND2 ln(�) � ND2 ln(2�)�N ln(K): (5.17)4Such a prior is called an improper prior [Bishop, 1995], since it cannot be normalized. This would cause di�cultiesif we wanted to compute p(T) in (5.15). 74



CHAPTER 5. PARAMETER SELECTIONOne obvious approach for �nding the mode of p(�; �; �jT), is simply to evaluate (5.17) over a gridof points in �-�-�-space. Although such a simplistic approach will be computationally demanding,it may still be more e�cient than cross-validation, and may also give clearer results. However, analmost certainly more e�cient approach would be to incorporate the parameter estimation as part ofthe training algorithm, by maximising (5.17) with respect to �, � and � during training.Online estimation of �, � and �We �rst consider maximization of (5.17) with respect to �, and so we want to evaluate the corre-sponding derivative. We start by re-writing the term involving the Hessian asln jHj = ln WYi (�i + �) = WXi ln(�i + �); (5.18)where �i are the eigenvalues of HT. From (5.17) and (5.8), we then getd ln p(Tj�; �; �)d� = �12 WXi w2i + W2 1� � 12 WXi 1�i + �; (5.19)which we can set to zero and then solve for �, yielding� = 
PWi w2i ; (5.20)where 
 = WXi �i�i + �: (5.21)If we assume that all �i are positive, the terms of this sum lies between 0 and 1, and the terms where�� �i will dominate. These terms correspond to directions in the weight space where the weights arerelatively tightly constrained by the data, so 
 can be interpreted as the number of well-determinedweights [Gull, 1989, Bishop, 1995]. The result in (5.20) is actually only approximate, since it has beenderived under the implicit assumption that the eigenvalues �i are independent of �, which generallyis not true, since H is evaluated at wMP, which depends on �.Next, we turn our attention to � and now we must decide which of two forms of HT we choose towork with. For the online estimation, we choose the approximate form, which is derived in appendix Aas a block-diagonal matrix with identical building blocks��TG�; (A.11)where G is de�ned in (3.14). This decision based on the following grounds:� the exact form of HT, given in (A.13) is expensive to compute, which makes it unattractive touse for online parameter estimation; the approximate form we compute anyway, as a step in thenormal training algorithm,� as can be seen from (A.11), the approximate form of HT depends linearly on �, which allowsfor an update formula for � in closed form. This would not be the case if we choose to workwith the exact form (A.13), and hence we would be forced to either make other approximations(e.g. assume that the dependency of the exact HT on � is approximately linear) or use costlynumerical optimization to update �. 75



CHAPTER 5. PARAMETER SELECTIONUsing the approximate form of the Hessian we getd�id� = �i� (5.22)and hence, using (5.18), d ln jHjd� = 1� WXi �i�i + �; (5.23)and so, setting the derivatives of (5.17) with respect to � to zero, using (3.12) and (5.23) we get� = ND � 
PN;Kn;k rknktn � ykk2 : (5.24)When 
 is zero this equals the EM-update for �, which would correspond to a case where no weightsare well-determined by the data. This uncertainty in the weight could then be taken to account forsome of the discrepancy between the data and the model. As 
 increases, however, an increasingfraction of any remaining deviation must be attributed to inherent noise on the data, as re
ected bya decreasing �.For � we are unfortunately unable to derive as elegant a solution, but since we are now down to asingle variable, we can a�ord searching over a grid of �-values, evaluating (5.17) at each point5, afterhaving trained the GTM model, re-estimating � and � online.For the practical implementation, we follow the approach taken by MacKay [1992] in applyingBayesian techniques to feed-forward neural networks, periodically re-estimating � and � during thetraining of W. More precisely, we take a three-level approach, as follows:for i = 1 to I doinitialize GTM using �irepeatrepeatoptimize W by EM, with � and � kept �xeduntil stop criterion W for is metre-estimate � and �, using (5.20) and (5.24), respectivelyuntil stop criterion for � and � is metrecord the log-evidence for �iend forThe stop criteria are typically chosen to be a threshold for the change in log-likelihood, combinedwith a maximum number of iterations allowed at each level. After we have found the value of �which gives the highest log-evidence, we simply use that to train our model, again estimating � and� online. By adopting this hierarchical scheme, �rst optimizing with respect to W, we hope that theapproximations we have used to derive the update formulae for � and � will be reasonable by thetime we start to apply them. This assumes that W will then be close to its optimum | the mean ofthe posterior of W | given the current values for �, � and �, and that most of the responsibility forany data point is assigned to a single mixture component.5.4 An Experimental evaluationIn this section we investigate empirically the selection of parameters by cross-validation and o�ineand online Bayesian methods. The data used was generated from a 20� 20 regular grid of points on5Numerical maximization of (5.17) with respect to � was also considered, but was empirically found to be unaccept-ably ine�cient. 76



CHAPTER 5. PARAMETER SELECTIONa curved 2-D surface in a 3-D space, generated by the functionz = (1:5x3 � x) + 0:25 cos(2y):x and y had a range of [�1; 1] and [�2; 2], respectively; giving one of the variables signi�cantly largerrange was a deliberate choice that ensured that the PCA initialization would provide a reasonablygood starting point for the GTM models to be trained. 20 training data sets were generated by addingrandom spherical Gaussian noise with standard deviation 0.2 (corresponding to � = 0:2�2 = 25) tothe grid points. A sample data set is shown, together with the data generating manifold, in the top-leftpanel of �gure 5.5. A separate test data set was created from a 32 � 32 grid on the same surface,again adding random noise.5.4.1 O�ine estimation of �, � and �For each of the 20 training data sets, a GTM with a 15 � 15 grid of latent points and a 5 � 5 gridbasis functions was initialized using PCA, trained with � and � kept �xed and then evaluated using� log-likelihood of the training set, measured by 10-fold cross-validation,� the log-evidence of the training set, (5.17), using either{ the exact (given by (A.13) and (5.11)) or{ the approximate (given by (A.11) and (5.11))form of the Hessian, and� log-likelihood of the test set.This procedure was repeated for all possible combinations of� � = 10i, i = �6;�5; : : : ; 5,� � = 2j , j = 0; 1; : : : ; 10, and� � = 2k, k = �5;�4; : : : ; 2.For �, this range was assumed to be su�cient and the empirical results supports this. For �, the lowerlimit was given by the variance in the data, whereas the upper limit was assumed to be high enough.The limits of � were given by the fact that for smaller or larger values, the matrix of activations ofthe given basis functions, �, became rank de�cient and hence deteriorated towards a PCA solution.As will be seen, the empirical evidence suggests that also these limits were su�ciently wide.Figure 5.2 show surfaces of constant log-likelihood on validation and test data, and constant log-evidence computed using the exact and the approximate form of the Hessian. The log-likelihoodscore computed by cross-validation appears to be very 
at around the maximum in the �-�-plane,and selects rather narrow basis functions combined with a higher degree of weight regularization andgreater noise variance. The log-likelihood score computed over the test set prefers the least regularizedcon�guration, whereas the log-evidence computed using the approximate form of the Hessian choosethe highest degree of weight regularization. The log-evidence scores appears to shun low-� regions,except at the extremes of �, where the � matrix tends towards rank de�ciency | this tendency doesnot show for the log-likelihood scores. Figure 5.3 give an alternative view of the results, includinghistogram-indicators of the maxima found for the di�erent data sets. The 
atness of the log-likelihoodscore computed by cross-validation is re
ected the large spread of the maxima found in the �-�-plane.77
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(a) Log-likelihood by cross-validation. The `clos-est', folded surface represents a log-likelihood of�3:20; the maximum value observed was �3:15,found at h�; �; �i = h102; 23; 2�2i. The two sur-faces behind represent log-likelihoods of �5 and�20.
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(b) Log-likelihood of test data. The innermostsurface, or shell, represents a log-likelihood of�2:70; the maximum value observed was �2:67,found at h�; �; �i = h10�1; 24; 20i. The two sur-faces on each side are part of the same surface,representing the log-likelihood value �3, and thefarthest surface represents a log-likelihood of �6.
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(c) `Approximate' log-evidence. The small, top,clove-looking shell represent a log-evidence of�1195; the maximum value observed was �1184,found at h�; �; �i = h101; 23; 22i. The nearestsurrounding surface represents a log-evidence of�1400 and the furthermost surface, a value of�2200.
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(d) `Exact' log-evidence. The innermost, tetra-hedron-looking shell represent a log-evidence of�1170; the maximum value observed was �1159,found at h�; �; �i = h101; 24; 20i. The nearestsurrounding surface represents a log-evidence of�1400 and the furthermost surface, a value of�2200.Figure 5.2: The surfaces are computed from averaged observations of the 20 di�erent training sets.The log-likelihood scores have been normalized by the number of data points. Note that the log-evidence plots are rotated 90� relative to the log-likelihood plots, as this was found to give the bestview of these results. 78
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Figure 5.3: The surface and contour plots show the average log-likelihood or log-evidence, computedover the 20 data sets, plotted against log10(�) and log2(�). Rows 1 to 4 correspond to log-likelihoodon validation data (1), ditto on test data (2), and log-evidence computed using the approximate (3)and exact (4) form of the Hessian. Columns 1, 2 and 3 correspond to �-values of 8, 16 and 32. Theplots also contain histograms with numerical labels of the optimal �-�-�-combinations found for the20 data sets. Note that the plots of the log-evidence are rotated 180� relative to the log-likelihoodplots. 79



CHAPTER 5. PARAMETER SELECTION5.4.2 Online estimation of � and �Essentially the same set-up was used to evaluate the methods for online estimation, except that � and� were set to initial values and then were re-estimated during training. Figure 5.4 shows the resultingplots of log-evidence, log-likelihood, � and �, plotted against log2 �. As can be seen, the results agreereasonably well with those obtained in the o�ine estimation experiments described above.Figure 5.5 shows an example of a model selected using this `semi-online' procedure (� = 1:0),together with the generating manifold and the sample data set used for training, and examples ofunder- and over-�tting models.5.5 DiscussionThe experimental results in the previous section suggest that all methods that have been consideredcan be used for parameter selection, although both log-likelihood computed by cross-validation andthe log-evidence computed o�ine using the approximate form of the Hessian over-estimate the noiselevel rather signi�cantly. From a practical point of view, online estimation of � and � combined withgrid search in �-space appear to be the most favourable alternative, requiring only a fraction of thecomputational e�ort for grid search in �-�-�-space.Taking a Bayesian perspective on the GTM, we no longer have one single manifold in the dataspace, but rather a distribution of manifolds, obtained by integrating over the posterior distributionover all parameters in the GTM (W, �, � and �). How should such a model be used for visualisationof data? There is no obvious answer to this question, but possible approaches are to use the manifoldscorresponding to the mean or the mode of the joint distribution over parameters (these would beidentical using the approximate Bayesian method described in this chapter). There are also moredi�cult questions that arise, which we so far have not addressed. One such problem is multi-modality| when we are using the Gaussian approximation of the posterior distribution in the weight space,we can only expect this to be true `locally'. If we are using symmetrical grids for the latent pointsand the centres of the basis functions, we know that there are identical modes in the weight space,corresponding to di�erent rotations and 
ips of the manifold. Moreover, we know that the EM-algorithm may �nd a local, rather than the global minima, and di�erent parameter settings anddi�erent initializations may result in di�erent local minima. However, if we assume that these di�erentminima are su�ciently distant from each other in the weight space, we can still hope that using theGaussian approximation should allow us to �nd values for �, � and �, appropriate for the particularmode under consideration.A possible solution to the problem of multiple modes of the posterior weight distribution wouldbe to �t a Gaussian at each mode and then form a weighted combination of these models, whichalso can be carried out within the Bayesian framework. However, this has important implicationsfor how we use the GTM; again, how do we use such a mixture of weights in visualization? As anexample, consider the posterior mean projection of a data point for a GTM with a symmetricallyaligned, square, 2-D latent space; if we combine the four modes corresponding to the four rotationsof the manifold, which obviously will �t the data equally well and hence should carry equal weight,we end up with a point in the centre of the latent space, and this is going to be the result regardlessof the location of the data point.A di�erent approach, that avoids using a Gaussian approximation for the posterior distributionof the weights, is to evaluate the necessary integrals numerically by using Monte-Carlo methods.However, also then ways of dealing with multi-modality and symmetries must be addressed, if the80
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CHAPTER 5. PARAMETER SELECTIONresulting GTM model is to be used for visualization.In principle, Bayesian methods could also be used for selecting other model parameters, such asthe number of basis functions and the number of latent points, but as the number of parametersincrease, grid search methods quickly becomes computationally infeasible. An alternative approach toimplementing the mapping from latent to data space that eliminates the basis functions is discussedin section 6.9.The number of latent pointsA parameter that we have only brie
y touched upon in the preceding discussion is the number ofpoints on the grid in the latent space. If this grid is intended to approximate a continuous, uniformdistribution, we obviously would want it to be as dense as possible, and in principle there is nothingpreventing us from using a very dense grid. This will result in a very large mixture of Gaussians,measured by the number of components, but the mixture is constrained and the number of degrees offreedom in the model depends on the number of adjustable parameters, which is independent of thenumber of latent points. In practice, however, using large grids in the latent space is computationallyprohibitive, both in terms of speed and memory usage, and so we must make a judged trade-o�between the computational e�ort we can a�ord and the `resolution' in the latent space.
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Chapter 6Extensions and Future DirectionsThis chapter discusses a number of possible extensions of the basic GTM model described in chapter 3,some of which have been discussed in Bishop et al. [1998a], and which may become subjects of futureresearch. For some cases, preliminary work has already been done, whereas others are currently onlyproposals. They all highlight the advantages of having chosen a model that �ts into the framework ofprobability theory.6.1 Relaxations in the GTM modelThere are several constraints governing the Gaussian mixture generated in the data space under theGTM model, when compared to a general Gaussian mixture. Apart from the constraints imposed onthe centres by the latent variable construction, the basic GTM model uses an isotropic noise modelwith the noise level being equal for all components. Moreover, the mixing coe�cients of the mixtureare kept �xed and equal (1=K). In principle, there is nothing preventing us from simply lettingeach component have a full covariance matrix of its own, possibly combined with variable mixturecoe�cients, �1; : : : ; �K , such that PKk �k = 1. In practice, however, this would lead to an explosionin the number of parameters and a model with far too much freedom, with associated problems suchas over�tting the training data, as discussed in section 5.2.A more realistic approach, which is also more in the spirit of the GTM, is to allow the variancesand the mixing coe�cients to be functions of the latent variable x. For �, one way to achieve thiswould be �(xk) = exp MXm �m(xk)wm�! ; (6.1)where �m(�) are basis functions that may or may not be identical with the basis functions used tocompute the centres. The exponentiation ensures that � is always positive. Similarly, a possibleway to compute the mixing coe�cients is to use the soft-max function [Bridle, 1990], also called thenormalized exponential, �(xk) = exp�PMm �m(xk)wm��PKk0 exp�PMm �m(x0k)wm�� ; (6.2)which guarantees that �(xk) 2 [0; 1] for all k and PKk �(xk) = 1. A complication with (6.1) and(6.2) is that we can no longer �nd update formulae in closed form, but must resort to numericaloptimization. 84
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W

OFigure 6.1: The within- and o�-manifold variances, labelled W and O respectively, illustrated fora 1-D GTM with the standard isotropic noise model. The curved line represents the manifold, the'+'-signs centres of mixture components, with the surrounding circles representing the noise model.
Figure 6.2: Illustration of a manifold-aligned noise model | as in �gure 6.1, the curved line representsthe manifold, the '+'-signs centres of mixture components, but the circles have been replaced by ellipsesaligned with the manifold, illustrating the new noise model.Assuming we model � and � as scalar functions of the latent variables1 we can incorporate thisinformation in visualization plots of data, showing (e.g.) how the noise on the data varies betweendi�erent regions of the data space.Another issue is whether we should use a spherical or a ellipsoidal, possibly axis-aligned, noisemodel. Alternative variants which cater for two cases of full covariance matrices are discussed insections 6.2 and 6.4 below. The use of an isotropic or an independent noise model is what di�erentiatesbetween probabilistic principal components analysis and factor analysis, respectively. A more generalnoise model will avoid skewing the structural model (the shape in the manifold, in the case of theGTM) in order to explain noise not catered for by a more restrictive noise model. However, if the noiseindeed is approximately isotropic, the spare degrees of freedom provided by the more general modelmay cause problems associated with over�tting. When we use an isotropic noise model, we implicitlyassume that any residual variance has the same scale on all observed variables. If assume that thefraction of noise is the same on all observed variables, | i.e. that observed variables with highervariance also are subject a higher level of noise | putting them on a common scale, by normalisingthem to all have unit variance over the training data, will meet the underlying assumption of theisotropic noise model.6.2 A Manifold-aligned noise modelA potential problem with the basic GTM is that the noise model may have to take on double roles,of possibly con
icting natures. The noise model is intended to take account of o�-manifold variance(see �gure 6.1), i.e. the fact that data points, because of noise, normally do not lie exactly on themanifold. However, since our prior distribution in the latent space consists of a �nite set of points,the noise model may also have to explain the within-manifold variance (see �gure 6.1), arising fromdata points that lie close to the manifold, but fall between mixture components.We would like to avoid this con
ict by allowing for greater variance within the manifold, which1This is not necessarily the case for �. 85



CHAPTER 6. EXTENSIONS AND FUTURE DIRECTIONSleads us to a Gaussian mixture with ellipsoidal components which are locally aligned with the manifold,as illustrated in �gure 6.2. Other models has been proposed along these lines [Williams et al., 1993,Hinton et al., 1995a, Simard et al., 1992], where variance along certain directions in the data spaceis less penalized than variance in other directions. These models require the use of full covariancematrices for the mixture components, but this does not mean we have to increase the number ofparameters in our model. Since we want the within-manifold noise to be locally aligned with themanifold, the corresponding covariance matrix for each component is determined by the derivativesof the mapping y(x;W) with respect to the latent variable x, computed at the location of the centreof the corresponding component. That is,Ck = ��1I+ �L LXl @y@xlk @y@xlk T;where Ck denotes the covariance matrix of the kh mixture component, @y=@xlk is de�ned in (4.5), �is a scaling factor equal to some multiple of the distance between neighbouring points in latent space,and we have added the �I term so that the resulting probability distribution does not become singular.We could instead consider letting each component have its own o�-manifold noise term, orthogonalto the within-manifold noise, rather than just adding isotropic noise.This modi�cation of the model requires that we, in the E-step, compute Mahalanobis distances,rather than square distances. Moreover, we generally lose the closed form update of the weights inthe M-step, since now also the manifold-aligned part of the covariance matrix depends on the weights.However, the original M-step may still be used as an approximation, since if we assume that themanifold is smooth, a con�guration where the centres have their `right' location will automaticallyget the noise model approximately correctly aligned. Unfortunately, with this approximate `M-step'the resulting algorithm is no longer an EM-algorithm and so there is no guarantee that this algorithmwill converge to a maximum of the log-likelihood function.We now return to the toy data set introduced in example 3.1. Figure 6.3 shows the result of tryinga modi�ed GTM model with 10 mixture components, which uses the manifold aligned noise justdescribed, on this data, with the exception that we use the M-step of the original training algorithm,ignoring the in
uence of the covariance matrices. The model is compared to a GTM with the samenumber of mixture components, but restricted to use the standard, spherical noise model. The plotsand the likelihood scores clearly show that the manifold-aligned noise model is superior here. However,when compared with a standard GTM that has 30 mixture components, that is no longer the case.One might think that the use of fewer mixture components should result in computational savings,but unfortunately, at least in this case, these savings are lost in the increased cost of the E-step.6.3 Mixtures of GTMsSince the GTM is itself a mixture model, an obvious and straightforward alternative to a single GTMmodel is to use a mixture of J GTM models. Computation of the mixing coe�cients for the GTMmixture, �̂j , can easily be incorporated into an EM-algorithm for simultaneously training all GTMmodels of the mixture, as �̂j = NXn PKjkj rkjnPJj0 PKj0kj0 rkj0n ; j = 1; : : : ; J: (6.3)This says that the posterior probability of the jth GTM model in the mixture equals its share of thetotal responsibility of the data. The E-step of the training algorithm will involve the whole mixture86
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Figure 6.3: The left plot shows a GTM with 10 latent points and a spherical noise model �tted tothe data from example 3.1; the log-likelihood for this model after training was �58:9. The middleplot shows a corresponding GTM, but with a manifold aligned noise model; the log-likelihood aftertraining was �48:3. The right plot, �nally, shows a GTM with 30 latent points and a spherical noisemodel �tted to the same data; the log-likelihood after training was �41:0.of GTM models, but for the M-step, each GTM model can be updated separately, unless we make useof global parameters, e.g. having a single value for �, shared by all GTM models in the mixture.An example where such a model might be appropriate is the 3-phase pipe 
ow data introducedin example 3.2. We know that data generated from di�erent 
ow con�gurations live on a number ofdi�erent 2-D manifolds, and the use of a mixture of linear models to visualize this data, by Bishopand Tipping [1996], has been shown to be successful.6.4 A Semi-linear modelNormally, we select the latent space of the GTM to have a low dimensionality | typically, we wouldchoose it to be 2-D. If we want to experiment with higher-dimensional latent spaces, although inprinciple straightforward, we would soon run into computational di�culties, since the number oflatent points would grow exponentially with the number of dimensions. MacKay and Gibbs [1997]address this problem for a density network model by re-sampling the latent space using hybrid Monte-Carlo methods [Neal, 1996, 1992]. This is a potentially useful approach, but it su�ers the problem ofstill being rather demanding in terms of computation.Here, we instead consider the use of a semi-linear model, obtained by combining a GTM modelwith a probabilistic PCA model (see section 2.2.2). This gives a model where the observed variablesdepend non-linearly on, say, 2 of the latent variables, while depending linearly on the remaining L�2.The `non-linear' latent variable are treated just like in the GTM model, essential by discretizing thelatent space, while for the `linear', or continuous, latent variables, the posterior distribution over thelatent space can be calculated analytically. We have already seen that the basic GTM model can beseen as a constrained mixture of spherical Gaussians; similarly, this semi-linear model can be viewed asconstrained mixture of probabilistic principal component analyzers, where the centres of the PPCAslie in the manifold de�ned by the non-linear mapping from latent to data space. In contrast to themanifold aligned noised model discussed above, this model will allow greater variance along certaindirections o� the curved manifold. To be more precise, the distribution in the data space would now
87



CHAPTER 6. EXTENSIONS AND FUTURE DIRECTIONSbe de�ned asp(tjW;V; �) = (2�)�D=2KjCj1=2 KXk exp��12(t� y(xk ;W))C�1(t� y(xk ;W))T� ; (6.4)where C = ��1I+VVTand V is a D�q matrix that de�nes the linear mapping from latent to data space, q being the numberof continuous latent variables.Tipping and Bishop [1997a] presents an EM-algorithm for general mixtures of PPCAs, which iseasily modi�ed to deal with this constrained case. The E-step di�ers only in that we must nowcompute the full Mahalanobis-distance, as indicated in (6.4), while in the M-step, we �rst update Wusing the standard M-step (3.13). We then use the updated weights, fW, to compute the weightedcovariance matrix, S = 1N N;KXn;k rkn(tn � y(xk ;fW))T(tn � y(xk ;fW)):Using the results of Tipping and Bishop [1997a], the maximum likelihood solution for V is given byeV = U(� � ��1I)1=2;where U is the D � q matrix whose columns is the q principal eigenvectors of S and � is a q � qdiagonal matrix containing the corresponding eigenvalues, �d, d = 1; : : : ; q. This result correspondsto the traditional way of computing principal components, discussed in section 2.1.1. For �, we get1~� = 1D � q DXd=q+1�d;which has the intuitive interpretation as the average variance `lost' when projecting the D-dimensionaldata on the q-dimensional subspace de�ned by the model.These update formulae for V and � require computing the covariance matrix S, which can be quitean e�ort if the dimensionality of the data space, D, is high. As noted by Tipping and Bishop [1997a],a better approach in such situations may be to take the latent variable perspective on PCA and usean EM-algorithm, similar to the one for factor analysis, discussed in section 2.2.1. Although thismeans using an iterative optimization scheme, the computational cost for each iteration only scalesas O(ND), compared to O(ND2) for the computation of S. Thus, provided that the EM-algorithmconverges quickly enough, this will be a computationally favourable alternative. The EM-algorithmfor PPCA is discussed in detail in Tipping and Bishop [1997b].To try this model, a toy data set of 400 data points was generated in a 3-D space. The �rst twovariables, x and y were drawn from a regular, rectangular grid, with x having range [�2; 2] and yrange [�1; 1]. The third variable, z, was computed from x and y with the formulaz = 0:5 sin(0:5�x) + y;so the z was linearly correlated with y. A semi-linear GTM with one non-linear latent variable, using10 latent points and 5 basis functions with width 1:0, and one linear latent variable was trained onthis data set, starting from a PCA initialization. The trained model, shown in �gure 6.4, capturesthe structure of the data well. However, the data was generated so as to ensure that the initializationwould map the continuous and discretized latent variables to the dimensions along which the dataexhibited linear and non-linear behaviour, respectively. Initialized the other way around, the modelfails to discover anything but linear structure in the data.88
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Figure 6.4: A demonstration of a semi-linear model trained on toy-data | the left plot shows the datagenerating manifold together with the data points plotted as � ; the middle plot shows the trainedmixture of 10 PPCAs, plotted as ellipsoids, with their centres lying in the 1-D manifold de�ned bythe GTM, which is plotted as a line; the right plot shows the same thing, but viewed along the `linear'direction of the manifold (not plotted), highlighting that the model does capture the non-linearity inthe data, which is included in this plot as � .6.5 Missing dataA potential problem with real data sets, not discussed so far, is that of missing data [Little andRubin, 1987]. Data values may be simply missing or may fall outside known possible ranges, andmust therefore be considered as being missing. If we have large amounts of data, we can simplydiscard data vectors with missing values, but if this is not the case, we would like to be able to useinformation in the observed values of incomplete vectors. There may be many reasons for the missingdata, but assuming that data is missing at random | that is, the `missingness' itself does provideany information2 | we can learn also from incomplete data.We want to deal with the missing values in the data just like we dealt with the missing (unknown)latent variables, and integrate them out. For that purpose, we split our data set into two parts |observed3, To, and missing Tm | and equation (3.1), then becomesp(tojW; �) = ZZ p(to; tmjx;W; �)p(x) dx dtm:Using the fundamental assumption of latent variable models, namely that data variables in t areindependent given the latent variables, we getp(tojW; �) = Z p(tojx;W; �)p(x) Z p(tmjx;W; �)p(x) dx dtm= Z p(tojx;W; �)p(x) dx:Thus we can deal with missing values by simply ignoring them, and carry out the calculations ofthe E- and M-step using only the observed values. Intuitively, for each data point, we are using theinformation it provides, while ignoring any `non-information'. Interestingly, the same way of dealingwith missing data has been suggested for the SOM [Samad and Harp, 1992].2A counterexample of this is a sensor that fails to give readings when these exceed a certain value.3Note that up till now, we have assumed there were no missing variables in t and we have referred to all the variablesin t as observed, in contrast to the latent variables which are unobserved. In this section, all the variables in t, some ofwhich may be missing, are referred to as data variables. 89



CHAPTER 6. EXTENSIONS AND FUTURE DIRECTIONS6.6 Incremental learningAs has been pointed out earlier, the GTM training algorithm discussed in chapter 3 is a batch algo-rithm, i.e. the update of the parameters is based on all the data. This means that we have to performthe E-step for the whole data set, which is normally computationally rather demanding, before wecan update the parameters, W and �. If instead we could do one iteration of EM for each datapoint, there is the possibility that the algorithm would converge more quickly, since the model willbe updated for each data point, rather than having to wait for the full E-step over all data points.Such an incremental form of EM is presented by Neal and Hinton [1998], who give examples of itsapplication to general Gaussian mixtures. Bishop et al. [1998a] show how it can be adapted for theGTM.Consider some stage of the standard GTM training algorithm, after an M-step, where we havethe `old' responsibility matrix, Rold, from the previous E-step and current parameters W and �. If,instead of doing a full E-step, we select a data point tn, which is the nth row of T, and compute thecolumn-vector, rnewn , with elements rkn as de�ned in equation (3.7) (although we keep n �xed), wecan revise the quantity RT in equations (3.13) or (3.15) to(RT)new = (RT)old + (rnewn � roldn )tn;where roldn is the nth column of Rold. Similarly, we can revise our estimate of G from (3.14) bygnewkk = goldkk + (rnewkn � roldkn );yielding Gnew. We then substitute (RT)new and Gnew for the corresponding factors in (3.13) or (3.15)and solve for W. Similarly, for �, equation (3.12) becomes1~� = 1� + 1D KXk (rnewkn � roldkn )ky(xk ;W)� tnk2:The M-step for a general mixture of Gaussians is relatively simple and hence can be computedquickly. For the GTM, the M-step consists of solving a set of linear equations and is therefore moredemanding in terms of computation. This may result in that savings made from faster convergenceare lost, because of the increased amount of computation required by more frequent M-steps. Thiscan easily be avoided by, rather than doing the partial E-step for just one data point at the time,doing it for batches of N̂ data points, where N̂ is chosen to be some suitable fraction of the totalnumber of data points. Neal and Hinton [1998] report substantial net gains in speed when applyingthis semi-batch algorithm to general mixtures of Gaussians.Neal and Hinton [1998] also discuss other variants of the EM-algorithm, including a freeze-EMalgorithm where a proportion of the responsibilities are being frozen (kept �xed) for a number ofiterations during which only responsibilities which are not frozen are recomputed. After a few iterationwith `frozen' E-steps, all the responsibilities are recomputed using the normal E-step. This varianthas the potential to be particularly useful in the context of GTM, which often uses a rather largenumber of mixture components (> 100). The plots of responsibility distributions in �gures 3.7 and3.8 suggest that, after only few iterations of `full' EM, up to 75% of the responsibilities can be frozen,to then be recomputed only every �fth iteration (say).Note that this incremental form of EM is not an online algorithm, since we are only recycling a�nite set of data points, for which we are keeping the old responsibilities. In a real online algorithms,data points arrive one at the time, the model is updated and then the data point is discarded. For the90



CHAPTER 6. EXTENSIONS AND FUTURE DIRECTIONSGTM, we could derive such an online algorithm, either by constructing a gradient descent algorithm,where the Robbins-Monro theorem [Robbins and Monro, 1951] will guarantee convergence, or we couldderive an online EM-algorithm [Titterington et al., 1985]. Not only would this allow us to use theGTM in a true online setting, but maybe more importantly, we could use it in tackling very largedata sets.6.7 A Memory-e�cient OSL-algorithmThe standard training algorithm for the GTM is rather demanding in terms of memory usage, since itneeds to store the K �N matrix, R, containing the responsibilities4. This may pose a problem whenapplying the GTM to large data sets or when computer resources are scarce. One way to resolve thiswould be to derive an online training algorithm, as discussed in the end of section 6.6 above.However, an alternative approach is to use a so called one-step-late (OSL) algorithm [Green, 1990].From (3.15) and (3.12) we see that the only reason that we need to maintain the responsibility matrix,R, is that we need both the responsibilities and the updated weights, fW, in order to update �. Toupdate W, we only need the quantities RT and G, which both are independent of the size of thedata set, and can be computed incrementally. As part of this computation, we would compute thesquared distances between mixture components and data points used to update �, but using the oldW. Thus we could obtain an EM-algorithm whose memory usage was independent of the size of thetraining set, where the update of � is one iteration behind the update of W. Green [1990] suggests asimilar algorithm for penalized maximum-likelihood estimation, where the penalization term at anygiven iteration is based on the parameters from the previous iteration. Using such an OSL estimateof � means that we lose the guarantee that the EM-algorithm will converge. However, it is easy to seethat both algorithms have the same �xed points, so if the OSL algorithm converges, it will convergeto a (local) maxima of the likelihood function. In practice, this algorithm appears to converge just asquickly and reliably as the original EM-algorithm.6.8 Discrete and mixed dataUp till now, we have assumed that the observed variables have all been continuous. In this section wedescribe how the GTM can be extended also to model discrete data and, more generally, data withboth discrete and continuous variables. The discrete variables may re
ect the underlying continuousstructure and can be of signi�cant, sometimes even indispensable, help in discovering this structure.Before considering such instances of mixed data, we �rst consider how to model discrete data, startingwith the binary case.For a binary variable, t, which takes on values f0; 1g, we assume it follows a binomial distribution,p(tjy) = yt(1� y)(1�t)where y is the mean of the distribution, which is modelled by the GTM using a logistic sigmoidfunction, so that y = 11 + exp(�w) ;4Typically, it would also maintain a matrix D of the same size, containing the squared distances between mixturecomponents and data points, but this can be avoided in a more elaborate implementation.91



CHAPTER 6. EXTENSIONS AND FUTURE DIRECTIONSwhere w is the M � 1 weight vector mapping from the basis functions to the binary data space. Notethat here there is no parameter �.Variables that are assumed to indicate membership of one of D mutually classes can be modelledusing D-dimensional binary vectors, where if a data point belongs to class d, the dth element of thecorresponding binary vector is set to 1, while all the other elements are set to 0; this is commonlyreferred to as a 1-of-D coding scheme. We can model the distribution of such binary vector with amultinomial distribution, p(tjy) = DYd ytdd ;which is analogous the binomial distribution if D = 2. The D-dimensional binary vector is modelledby the GTM using the soft-max function, which we used in section 6.1 to suggest a GTM model withvariable mixing coe�cients, yd = exp(�wd)PDd0 exp(�wd0) :Since the observed variables are assumed to be independent given the latent variables, we candeal with mixed data by simply multiplying the corresponding Gaussian, binomial and multinomialdistributions in the E-step. For the continuous variables the M-step will stay the same, but forbinary variables, we must use numerical maximization. This can be done e�ciently using iterativeleast-square (IRLS) methods [McCullagh and Nelder, 1989], or alternatively a general non-linearoptimization algorithm [Press et al., 1992]. In any case, it may turn out to be more e�cient to doonly a partial M-step, which increases but not necessarily maximizes the likelihood, resulting in ageneralised EM-algorithm.6.9 GTM using Gaussian processesIn the basic GTM model, the latent variables are mapped to the data space using a generalisedlinear regression model, consisting of a linear combination of a set of �xed linear and non-linear basisfunctions. As pointed out in section 3.2, this gives the computational advantage of an M-step in closedform. However, there are also disadvantages with this form of mapping | maybe most important,it require us to decide on a �xed number of basis functions. This will put a hard constraint on the
exibility of the mapping, which we then usually combine with a soft constraint, imposed by weightregularization. Alternatively we could constrain the mapping only using regularization, by specifyinga Gaussian process prior over the distribution of possible functions [Williams and Rasmussen, 1996].Consider a GTM model where we have removed the basis functions, and instead each latent point,xk, has a Gaussian mixture component with centre wk directly associated with it (like nodes andthe corresponding reference vectors in the SOM). Left like that, the model would simply be a K-component, general Gaussian mixture. However, now we specify a prior over the centres,p(W) = DYd (2�)�K=2jCdj�1=2 exp��12ŵTdC�1d ŵd�where ŵd is the dth (K � 1) column of W and the Cd are positive de�nite matrices; typically, it willnot be necessary to have separate matrices Cd for each dimension. This prior de�nes a distributionover all possible con�gurations of the centres, where some con�gurations, e.g. those where the centresare approximately ordered on a low-dimensional manifold, will be much more likely than others.92



CHAPTER 6. EXTENSIONS AND FUTURE DIRECTIONSCombining the prior with the likelihood function of the training data results in a posterior distri-bution over the weights, which corresponds to a regularized log-likelihood function in the form` = NXn ln 1K KXk p(tnjwk; �)!+ ln p(W):We can use the EM-algorithm from section 3.2, where the E-step will stay the same while in theM-step, we solve (G+ ��1C�1)W = RT;with respect to W, where all quantities except C are the same as in the original M-step (3.13). Herewe have assumed that we use the same C for all dimensions. Again we have obtained an M-step inclosed form, but this time we need to invert a K �K matrix, K being the number of latent pointsor mixture components; the original M-step required the inversion of a M �M matrix, M being thenumber of basis functions, which is typically signi�cantly less than K.We specify our prior, p(W), by specifying C, using a so-called covariance function. Apart fromensuring that C is positive de�nite, we would like the covariance function to give a prior such thatcentreswi and wj are encouraged to stay close to each other in the data space, when the correspondingnodes xi and xj are close to each other in the latent space. The literature on Gaussian processes,or equivalently regularization networks [Girosi et al., 1995], provides a wide range of choice [Yaglom,1987]. For example, we can chooseCij = C(xi;xj) = � exp��kxi � xjk22�2 � ; (6.5)where � gives overall scale of C, and hence determining the overall degree of smoothing, while � de�nesa length scale in the latent space, corresponding to the scale on which di�erent mixture componentswill in
uence each other.The use of a Gaussian process to specify the mapping from latent to data space in the GTMis similar to the discretized Laplacian smoothing used by Utsugi [1997] in the generalized elasticnet model described in section (3.4.2). However, the resulting smoothing matrix, used by Utsugi,corresponds to a relatively simple covariance matrix5, which is rather in
exible and cannot cater fornew points in the latent space. From (6.5), we see that � provides continuous adjustable parameterthat controls the `resolution' of the smoother in the latent space. Moreover, for any new point in thelatent space, �x, we can compute the corresponding point in the data space�y = �wC�1Wwhere, using (6.5), �w = [C(�x;x1); : : : ; C(�x;xK)].In the revisited principal curve model, Tibshirani [1992] uses a cubic spline smoother in the M-step,which corresponds to the use of a Gaussian process with a particular choice of C.The principal advantage of using a Gaussian process rather than a generalised linear regressionmodel is that the 
exibility of the mapping can be controlled in a more elegant way, using � in (6.5);in the generalised regression model the 
exibility depends both on the width and the number of basisfunctions. Using Gaussian processes removes one model parameter (the number of basis functions)and may therefore facilitate the search for the right model complexity, as discussed in chapter 5,especially since both parameters that control the model complexity, � and �, are real valued rather5In fact, this matrix is only positive semi-de�nite, due to the presence of a linear null-space.93



CHAPTER 6. EXTENSIONS AND FUTURE DIRECTIONSthan discrete. We could consider a similar scheme to the one used in chapter 5, which is similar to thework of Utsugi [1997], or a full Bayesian treatment using hybrid Monte Carlo methods. The principaldisadvantage in using Gaussian processes is the increased amount of computation and memory storagerequired to do the matrix inversion; however, on a modern workstation, dealing with problems up tomoderate size (say, K � 1000) should be straightforward, and for larger problems there exist e�cientapproximate methods [Gibbs and MacKay, 1996]6.10 Altering the latent structureIn section 3.5 we discussed the inherent structural constraints built into the basic GTM model, andthe kind of undesirable result that may follow when these structural constraints are at odds with thestructure in the data. This is a potential problem whenever our prior knowledge about the underlyingstructure in the data is limited. However, there are also situations where we do have prior knowledgeabout the structure in the data which we can build into the GTM model, by chosing a latent spacewith a corresponding structure. As an example, consider the situation where we know that the datafollows a 1-D, smooth cyclic structure; we can then use the 1-D latent space [0; 2�] and trigonometricbasis functions sin(x) and cos(x).Building such prior knowledge into our model will aid the model �tting, since the space of possiblemodels that we are searching will be smaller (often much smaller) than if we had chosen a moregeneral model. This will also make it more likely that the �tted model really re
ects the underlyingstructure in the data.6.11 DiscussionThis chapter has presented a number of possible extension or variations of the basic GTM model.Apart from being interesting on their own merits, the more important result is that, together, theyhighlight the advantages of the GTM being a probabilistic model. This allows us to make use ofwell-established ideas from probability theory and statistics, in order to develop the GTM to tacklenew sorts of problems. Although one could imagine how to tackle the problems listed in this chapterinstead using a SOM model, such attempts would invariably have to made on an ad hoc basis.The variations of the GTM model discussed in this chapter have barely been tried out, and itremains to be seen whether they can become truly useful. Although they all carry some intuitiveappeal, there might be other, simpler ways to achieve the same goals, as exempli�ed to some extentby the experiment with the manifold aligned noise model, shown in �gure 6.3.
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Chapter 7Summary and ConclusionsIn this �nal chapter we summarize the work described in this thesis and try to draw some conclusions.We consider potential applications for the GTM as well as problems which are still unresolved. Wealso brie
y review independent work on the GTM, before coming to the �nal conclusions.7.1 Related modelsChapter 2 gave a review of some of the models that have been proposed for discovering and exploitinglow-dimensional structures in high-dimensional data sets. The GTM has drawn inspiration from manyof these models, and can be seen as an extension of more than one of them. Given the latent variableinterpretation of principal components analysis in section 2.2.2, it can be seen as a form of non-linearPCA, while generalizing the noise model to independent noise levels for the observed variables resultsin a non-linear form of factor analysis. However, in its current form, the GTM is limited to three,possibly four, non-linear principal components or factors. The new results on PCA also change ourview on the kernel based PCA described in section 2.1.4, but this method is still very di�erent fromthe GTM, since the corresponding latent space does not have an explicit representation.Considering the various principal curve and surface models, the GTM provides an alternative,generative model, which is readily applicable for modelling two- and three-dimensional distributions,and could potentially also be used with higher dimensional latent space, provided a more sophisticatedapproach is adopted for modelling the posterior distribution in the latent space, e.g. using hybridMonte Carlo methods.The relationship to the elastic net (sec. 2.2.6) and, in particular, its generalized form (sec. 3.4.2)can be directly understood via Gaussian process variant of the GTM, described in section 6.9, wherethe di�erence between the two models boils down to the choice of covariance function. This also formsa connection to the generative variants of principal curves (sec. 2.2.4).The relationship to the self-organizing map was discussed at length in section 3.4.1. In summary,the GTM can be seen as a principled alternative to the SOM, which circumvents many of its associatedtheoretical problems, without su�ering any signi�cant comparative drawbacks.7.2 The GTM and its applicationsThis thesis has primarily been concerned with establishing the GTM as a model for non-linear latentvariable density modelling and data visualisation. A more thorough investigation of its general ap-95



CHAPTER 7. SUMMARY AND CONCLUSIONSplicability still remains to be done. However, its strong links to PCA and the SOM give reasons foroptimism.PCA is a classical method for feature extraction, in terms of low dimensional representations ofdata, and has found application in data compression, image analysis, visualization and data pre-processing. Also the SOM has been subject to a wide range of application [Kohonen, 1995], withexamples such as categorizing messages in Internet newsgroups, recognizing topographic patterns inEEG spectra and production process control.The GTM may also �nd a role in exploratory and con�rmatory data analysis. As a related example,MacKay and Gibbs [1997] show how a density network model can be used for discovering correlationsin protein sequences.7.2.1 VisualisationThe GTM holds the potential of becoming a very powerful tool for visualisation of high dimensionaldata, capable of dealing with continuous as well as discrete and mixed data. Since it is a generativemodel, it is straightforward to incorporate the GTM into hierarchical, probabilistic visualisation mod-els, such as that suggested by Bishop and Tipping [1996]. The possibility to compute magni�cationfactors which can be visualised jointly with data further enhance this potential. The magni�cationfactor `adds a dimension' to the visual representation of data, and can thereby provide a betterunderstanding of the data. In particular, it can be used to discover clusters in the data.7.3 Open questionsThere are still a number of questions about the GTM that have so far not been touched upon, andfor which there are still no de�nite answers. These questions are not unique to the GTM | thecorresponding questions exist unanswered also for many of the other models discussed in this thesis.7.3.1 Dimensionality of the latent spaceHow do we choose the dimensionality of the latent space? Even for the linear PCA and FA models, itis usually not obvious how many principal components or factors should be used. In PCA, a commonpractice is to plot the eigenvalues of the covariance matrix of the data or, equivalently, the singularvalues of the singular value decomposition. If the variance in the data primarily is due to a linearcombination of L latent variables, only the L largest eigenvalues will be signi�cant, with the remainingL � 1 being very small. Hence, having computed and plotted these eigenvalues, one may be able tojudge, simply by eye, how many latent variables to use. The corresponding procedure for the GTMwould be to �t GTM models with increasing number of latent variables and then plot the inversenoise variance, �, against the number of latent variables. Assuming that the distribution of the datais intrinsically L-dimensional, we would expect to see a sharp rise in �, for the �rst L latent variables,where after the increase of � with L should be much slower. However, in PCA all the D eigenvaluesare available at a computationally moderate cost. This unfortunately not the case with the GTM. Ashas already been mentioned, the computational e�ort required to �t the model grows exponentiallywith the dimensionality of the latent space. Moreover, as discussed in chapter 5, the non-linearity inthe GTM can result in over�tting-problems, in which case the break in the increasing trend of � maynot be that obvious.
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CHAPTER 7. SUMMARY AND CONCLUSIONSAn important issue, when deciding on the number of latent variables to use, is the intended useof the GTM. If the purpose is visualisation of data, we may have to sacri�ce modelling all underlyingdegrees of freedom in the data, in order to be able to visualise it using a single, global model. Unlesswe want to employ additional visualisation techniques, we will be restricted to three, possibly four,latent variables. We can still hope that the GTM model will provide a model which is as good aspossible, given these restrictions, although it is not yet clear under which circumstances this willactually happen.7.3.2 Structural constraints of the GTMAs pointed out in section 3.5, the basic GTM model is best suited to model moderately curved,L-dimensional distributions of roughly rectangular shape. What happens when we apply the GTMunder di�erent circumstances? The objective of the training algorithm of the GTM is to maximisethe likelihood of the training data, subject to the constraints imposed by (e.g.) the number and thewidth of the basis functions and the degree of weight regularization, and this objective will alwaysbe the same. If the constraints imposed are too strong, e.g. if the manifold is too sti�, then theresulting GTM model is bound to be sub-optimal, at least as a density model. With more relaxedconstraints, on the other hand, we may end up with a signi�cantly better density model, but whichgives a `complex explanation' to an inherently simple structure, as in example 3.3. This is not to saythat the GTM is over�tting, capturing structure in the data which is due to noise | the problem isthat the structure in the data, although simple, is very di�erent from the inherent structure of thedensity model provided by the GTM. Of course, there are ways in which we could handle this speci�ccase (the two Gaussians in 2-D) | as pointed out in section 6.10, in situations where we do have priorknowledge about the structure in the data, we can build this knowledge into the GTM model, whichusually leads to more e�cient model �tting and better agreement between the �tted model and thedata generating mechanism. However, in general we cannot expect the GTM to be able to provide`interpretable' models of arbitrary low-dimensional distributions. Therefore, an important task will beto develop reliable diagnostics that can be used to detect folds and other undesirable sub-structuresin the manifold.7.3.3 The merits of being `principled'A recurring term used together with the GTM, especially when relating it to the SOM is `principled'.This is motivated by the fact that the GTM is derived from probabilty theory and statistics, whereasthe SOM is motivated only by heuristic and empirical arguments. However, are there any practicalgains to be made from this? Are the results obtained with the GTM normally (if at all) `better' thanthose obtained with the SOM? Is the choice of basis functions for the GTM any less arbitrary thanthe choice of neighbourhood functions for the SOM?No doubt, results obtained in terms of visualisation from GTM and the SOM are typically verysimilar, as we would expect given the many similarities between the two models. However, exceptfor simple toy examples it is typically very di�cult or even impossible to judge what is a `good'visualisation. With no other objective measure to discriminate between models, we ought to prefermodels which have a sound theoretical foundation to those which have not.It is also true that, as much as visualisation results vary for the SOM with varying choices of theneighbourhood function, as much will they vary for the GTM with varying choices of basis functions.However, if we are working with the SOM, we are left to little but rules of thumb for choosing97



CHAPTER 7. SUMMARY AND CONCLUSIONSour neighbourhood function; attempts to empirically �nd suitable parameters for the neighbourhoodfunction would be hampered by the fact that the SOM does not minimize an objective function, andhence we have no measure for comparison. For the GTM, the limitations are `only' practical | givenin�nite amounts of data and computing time, we will be able to construct an optimal model for anydistribution, given the constraints imposed by the particular GTM model we are using. Even thoughthis would not be possible in practice, a framework where such an objective is at least theoreticallyachievable, is clearly more desirable than one where it does not even exist. To quote Judea Pearl \ : : :we �nd it more comfortable to compromise an ideal theory that is well understood than to search fora new surrogate theory, with only gut feeling for guidance" [Pearl, 1988, page 20].7.4 Independent work on GTMAlthough the GTM is relatively `young', it has already inspired new work, also among independentresearchers1. Bishop et al. [1997a] use the GTM to model the emission density of a hidden Markovmodel, thereby extending the GTM to deal with time series data, where the assumption that thedata points are generated independently is no longer required. They show an example of how thismodel can be used to visualise time series data from a helicopter 
ight recorder, where di�erentregions in the latent space corresponds to di�erent modes of 
ying. Kiviluoto and Oja [1998] developa probabilistic, hybrid GTM-SOM model which they call the S-map; they give empirical evidencethat this model, under certain circumstances, has a stronger tendency to self-organize | that is,adapting so that the topological structure of the model re
ects the topological structure of the data| when starting from a random initialization. Pajunen and Karhunen [1997] show how the GTM canbe used to perform a non-linear form of independent components analysis (ICA) [Bell and Sejnowski,1995, Amari et al., 1996], also knows as blind source separation. This GTM based model can be usedto separate independent sources which have been non-linearly mixed, assuming that the probabilitydistributions of the sources are known and that the non-linear mixing function is smooth.A search on the Internet gave additional indications of the GTM being used as an unsupervisedvisualization technique for cloud type recognition, for risk prediction in pregnancy and for dimension-ality reduction of articulatory data.7.5 ConclusionsThe generative topographic mapping provides a method for modelling continuous, low-dimensional,non-linear structures in high-dimensional spaces. It provides a way of doing non-linear PCA or FA,although in practice it is still limited to a small number of principal components or factors. It formsa principled alternative to the SOM, resolving many of its inherent problems.As has been exempli�ed in this thesis, an important application for the GTM is visualisation ofhigh-dimensional data. The possibility of computing the magni�cation factor as a continuous functionover the latent space and incorporating this in visualisation plots, can make visualised data easier tointerpret.Since the GTM is a probabilistic model, it �ts into the framework of probability theory andstatistics. We can thus make use of established and well-founded theory to deal with issues such asselection of model complexity. Moreover, we bene�t from it when extending the GTM to deal withe.g. missing data and data which take discrete or mixed discrete-continuous values.1The GTM was proposed by Bishop, Svens�en, and Williams.98



CHAPTER 7. SUMMARY AND CONCLUSIONSSince there are examples where the GTM, when �tted to data with rather simple structure, endsup being rather complex, developing reliable diagnostics for detecting these situations will be animportant future task. Moreover, before it can fully be assessed, the GTM will need to be thoroughlytested in a wide range of real applications.Apart from this thesis and papers referenced herein, the work on GTM has also resulted in aMatlab eR implementation with associated documentation, which is freely available on the Internet,at http://www.ncrg.aston.ac.uk/GTM/.
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Appendix ADerivatives of the Log-likelihoodFunctionIn this appendix we derive formulae for the �rst and second derivatives, with respect to the weightparameters, W, of the error function in (5.5), corresponding to the negative, unregularized log-likelihood function; here we re-write it asST = � NXn ln 1K KXk p(tnjxk;W; �): (A.1)From (3.1) and (3.10), we getp(tnjxk;W; �) = � �2��D=2 exp(��2 DXd (tnd � �kwd)2) = pkn; (A.2)where �k is the kth row of �, wd is the dth column of W, and we have introduced pkn, in order tosimplify the notation. Thus, (3.7) now readsrkn = pknPKk0 pk0n (A.3)A.1 First derivativesDi�erentiating (A.1), using (A.2) and (A.3), along with standard rules for di�erentiation, we get@ST@wij = � NXn 1PKk0 � �2��D=2 expn��2 PDd (tnd � �k0wd)2oKXk � �2��D=2 exp(��2 DXd (tnd � �kwd)2)�(tnj � �kwj)�ki= �N;KXn;k pknPKk0 pk0n�(tnj � �kwj)�ki= �N;KXn;k rkn�(tnj � �kwj)�ki: (A.4)
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APPENDIX A. DERIVATIVES OF THE LOG-LIKELIHOOD FUNCTIONA.2 Second derivativesFirst, we introduce �ijkn = �(tnj � �kwj)�ki; (A.5)from which it follows directly that@�ijkn@wpq = ( ���kp�ki if j = q,0 otherwise, (A.6)and we see from (A.2) and (A.5) that @pkn@wij = pkn�ijkn: (A.7)Second, we di�erentiate rkn with respect to wpq , using (A.3) and (A.7), to get@rkn@wpq = @@wpq pknPKk0 pk0n= pknPKk00 pk00n �pqkn � pknPKk00 pk00n KXk0 pk0nPKk00 pk00n �pqk0n= rkn(�pqkn � KXk0 rk0n�pqk0n) (A.8)Finally, from (A.4), (A.5), (A.6) and (A.8), we get@2ST@wij@wpq = @@wpq � N;KXn;k rkn�ijkn= ( �PN;Kn;k rkn(�ijkn(�pqkn �PKk0 rk0n�pqk0n)� ��kp�ki) if j = q,�PN;Kn;k rkn�ijkn(�pqkn �PKk0 rk0n�pqk0n) otherwise. (A.9)If we study (A.9) we see that whenever rkn is close to one, (�pqkn �PKk0 rk0n�pqk0n) will be close tozero. For a trained GTM model, it is often the case that almost all the responsibility for a data pointrests with a single mixture component, in which case it would be reasonable to use the approximation@2ST@wij@wpq = ( PN;Kn;k rkn��kp�ki if j = q,0 otherwise, (A.10)which is a block-diagonal matrix with D identical M �M building blocks��TG�; (A.11)where G is de�ned in (3.14). If we combine this with Hw, given in (5.11), we get the building blocksof the full approximate Hessian as ��TG�+ �I;which we recognize (subject to a multiplicative factor �) from the left-hand side of the M-step equa-tion (3.15); thus, we have already computed this approximate form of the Hessian, as part of thenormal training algorithm. 108



APPENDIX A. DERIVATIVES OF THE LOG-LIKELIHOOD FUNCTIONA.2.1 Computing the exact HessianTo turn the formulae from (A.9) into a computational algorithm we expand the expression rkn�ijkn(: : : )using (A.5), to getrkn�ijkn(�pqkn � KXk0 rk0n�pqk0n) = rkn�(tnj � �kwj)�ki �(tnq � �kwq)�kp � KXk0 rk0n�(tnq � �k0wq)�k0p!= �2rkn(�ki�kp(tnj � ykj)(tnq � ykq)� �ki(tnj � ykj)zpqn ) (A.12)where zpqn = KXk0 rk0n(tnq � yk0q)�k0p:Using (A.11) and (A.12), the formulae from (A.9) can now be put into matrix form,HjqT = ( �T(�G� �2(Qjq � (Dj �R)(Dq �R)T))� if j = q,��2�T(Qjq � (Dj �R)(Dq �R)T)� otherwise, (A.13)where HjqT is the M �M sub-matrix of the data Hessian, HT corresponding to the weights of yj andyq, Qjq is a K �K diagonal matrix with entriesqjqkk = NXn rkn(tnj � ykj)(tnq � ykq);Dj is a K �N matrix with entries djnk = (tnj � ykj);and R is the responsibility matrix from (3.13), with � denoting component-wise multiplication.A.2.2 Exact vs. approximate formClearly, computing the exact Hessian as well as using it in further computation, will require muchmore computation, compared to the approximate form. It would therefore be useful to be able toassess the penalty we pay in terms of inaccuracy when using the approximate form, and judge thatagainst computational savings. A simple approach for estimating �, � and � discussed in section 5.3,would be to evaluate the logarithm of the evidence for �, � and �, given in (5.17), over a grid in�-�-�-space. This includes the logarithm of the determinant of the Hessian,ln jHj = ln WYi (�i + �) = WXi ln(�i + �); (A.14)where �i is the ith eigenvalue of HT. Figure A.1 shows ln jHj plotted against log10 � during di�erentstages of training on the arti�cial data from section 5.4. A problem with the exact Hessian is that isnot guaranteed to be positive de�nite; in fact, it is generally the case that the eigen-decompositionresults in a small number of non-positive eigenvalues. For the plots in �gure A.1, terms with �i � 0have been excluded from the sum in (A.14). It can happen that also the approximate Hessian haszero eigenvalues, although this is uncommon, which is then treated the same way.109
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Figure A.1: The plots show PWi ln(�i + �) against log10 �, where the dashed line shows results fromusing the approximate Hessian while the solid line shows results obtained using the exact form. Thefour plots correspond (top-down, left-to-right) to results evaluated after 0 (i.e. after initialization, butbefore training has started), 5, 15, and 50 iterations of training.
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APPENDIX A. DERIVATIVES OF THE LOG-LIKELIHOOD FUNCTIONData set K N M D size(H) Method TimePipe 
ow 400 1000 84 12 1016064 Exact 99516(example 3.2) Apprx 11Crabs 100 200 39 5 38025 Exact 72(example 4.2) Apprx 1Synthetic 225 400 28 3 7056 Exact 270(section 5.4) Apprx 2Table A.1: Comparison of the time (measured in ticks | 3 ticks per second) required for computingthe exact and approximate forms of the Hessian, using some of the data sets described earlier in thisthesis. The notation is the same as has been used before, i.e. K is the number of latent points, Nis the number of data points, M is the number of basis functions and D is the dimensionality of thedata.In section 5.3, we also discuss methods for estimating the hyper-parameters �, � and � duringtraining. For this purpose, we make use of a quantity, 
, interpreted as the e�ective number of weightparameters and de�ned as 
 = WXi �i�i + �:Figure A.2 show 
 plotted against log10 �, during di�erent iterations of training for the same data setwhich were used to produce the plots in A.1. Again, terms corresponding to non-positive eigenvalues,�i, have been excluded.As can be seen, there seems to be rather signi�cant discrepancies between the exact and approxi-mate value for ln jHj whereas the di�erences for 
 are smaller. The di�erences for both ln jHj and 
appear not to change very much with training, which is somewhat unexpected, since we would expectthem to decrease as a consequence of improved �t to data.Table A.1 contains a comparison of the computational e�ort required for the exact and approximateform of the Hessian, for the some of the data sets described in this thesis. Note that the computationale�ort required does not only depend on the size of the Hessian, but also the size of the data set andthe number of latent points involved. Although this comparison is far from exhaustive, the �gures intable A.1 clearly shows that computing the exact Hessian is much more expensive than computingthe approximate form (which we have computed anyway, so the actual cost is 0). Moreover, in a lot ofthe subsequent calculation using the approximate Hessian, we really only need to compute with oneof the identical blocks from the diagonal, which will result in additional savings.
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Figure A.2: Plots of 
 against log10 � at 0 (i.e. after initialization, but before training has started), 5,15, and 50 iterations of training. The dashed line shows results from using the approximate Hessianwhile the solid line shows results obtained using the exact form.
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