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Summary

The 19 channel Neuromagnetometer system in the Clinical Neurophysiology Unit at
Aston University is a multi-channel system, unique in the United Kingdom.

A bite bar head localisation and MRI co-registration strategy which enabled accurate
and reproducible localisation of MEG data into cortical space was developed. This
afforded the opportunity to study magnetic fields of the human cortex generated by
stimulation of peripheral nerve, by stimulation of visceral sensory receptors, and by
those evoked through voluntary finger movement.

Initially, a study of sensory-motor evoked data was performed in a healthy control
population. The techniques developed were then applied to patients who were to
ungergo neurosurgical intervention for the treatment of epilepsy and / or space
occupying lesions. This enabled both validation of the effective accuracy of source
localisation using MEG as well as to determine the clinical value of MEG in pre-
surgical assessment of functional localisation in human cortex.

The studies in this thesis have demonstrated that MEG can repeatedly and reliably
locate sources contained within a single gyrus and thus potentially differentiate
between disparate gyral activation. This ability is critical in the clinical application of
any functional imaging technique; which is yet to be fully validated by any other ‘non-
invasive’ functional imaging methodology.

The technique was also applied to the study of visceral sensory representation in the
cortex which yielded important data about the multiple cortical representation of
visceral sensory function.
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subjects. Co-ordinates within the given temporal window were averaged. The
temporal window was centred on consistent peaks of activation seen in all six
subjects. 146

Figure 3.36 Magnetic field waveforms (Top) following left median nerve stimulation in
control subject 1. Waveforms from channels 1 and 2 are shown in black and
those from channels 7 and 15 are grey. Number array (Lower left) represents the
magnetometer array with dipole localisation at 19 milliseconds shown in black
and the 22.7 millisecond dipole in grey. The MRI (Lower right) shows the co-
registered localisations for the confidence volumes derived by Monte Carlo
analysis. The colours correspond to those used in the neighbouring images and
the arrow depicts the predicted central sulcus. 148
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Figure 3.37 Dipole localisations across a temporal sequence for right posterior tibial
nerve data for control subjects 1 and 3. Latencies of dipole fits are indicated in
the graph legends. The position of the central sulcus in relation to the closest
placed confidence volume is indicated by arrows on the x-y axis. The relative
size of the confidence volumes at each latency is represented by the size of the
data icon in the graph. 150

Figure 3.38 Dipole localisations across a temporal sequence for left posterior tibial
nerve data for control subject 4 and 5. Latencies of dipole fits are indicated in the
graph legends. The position of the central sulcus in relation to the closest placed
confidence volume is indicated by arrows on the x-y axis. The relative size of the
confidence volumes at each latency is represented by the size of the data icon in
the graph. 151

Figure 3.39 Hemisphere asymmetry was estimated by the subtraction of the mean
Talairach co-ordinates of right and left median nerve trials. 1562

Figure 3.40 fMRI subtraction image showing an area of high image signal over the left
post central gyrus. The time course plot of signal intensity calculated from this
area is shown on the right . 154

Figure 3.41 Plates a) and b) show the final subtraction images from two MR slice
levels with a clear area of high activity seen over the left post central gyrus in
each slice. Plates ¢) and d) show phase contrast venugrams from the same two
MRI slices which clearly show the presence of a large vein in close proximity to
the fMRI activation sites. 155

Figure 3.42 Subject 4. Co-registration of fMRI activity (blue/pink) with the smallest
MEG confidence volume following right median nerve stimulation (green). 156

Figure 3.43 Subject 4: Left plate shows confidence volumes achieved from right and
left median nerve stimulation with the position of the central sulci indicated by
arrows. Right plate shows MEG (green) and fMRI (blue/red) co-registration, both
positioned over the post central gyrus. 157

Figure 3.44 Giblins SEP morphology 158

Figure 3.45 Figure from Talairach and Tournoux (1988) showing the location of the
Rolandic fissure from 20 brains stereotactically localised using the normalised
proportional grid. 164

Figure 3.46 The sigmoidal shape of the upper portion of the central sulcus in control
subject 6 was localised as the hand area from MEG measurements. 166

CHAPTER 3 TABLES

Table 3-1 Latencies and baseline to peak amplitudes (femtoTeslas; 10-15 Tesla) of
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