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The recognition of faces and of facial expressions is an important evolutionary skill, and
an integral part of social communication. It has been argued that the processing of faces
is distinct from the processing of non-face stimuli and functional neuroimaging
investigations have even found evidence of a distinction between the perception of faces
and of emotional expressions. Structural and temporal correlates of face perception and
facial affect have only been separately identified. Investigation neural dynamics of face
perception per se as well as facial affect would allow the mapping of these in space,
time and frequency specific domains.

Participants were asked to perform face categorisation and emotional
discrimination tasks and Magnetoencephalography (MEG) was used to measure the
neurophysiology of face and facial emotion processing. SAM analysis techniques
enable the investigation of spectral changes within specific time-windows and
frequency bands, thus allowing the identification of stimulus specific regions of cortical
power changes. Furthermore, MEG’s excellent temporal resolution allows for the
detection of subtle changes associated with the processing of face and non-face stimuli
and different emotional expressions.

The data presented reveal that face perception is associated with spectral power
changes within a distributed cortical network comprising occipito-temporal as well as
parietal and frontal areas. For the perception of facial affect, spectral power changes
were also observed within frontal and limbic areas including the parahippocampal gyrus
and the amygdala. Analyses of temporal correlates also reveal a distinction between the
processing of faces and facial affect. Face perception per se occurred at earlier latencies
whereas the discrimination of facial expressions occurred within a longer time-window.
In addition, the processing of faces and of facial affect was differentially associated
with changes in cortical oscillatory power for alpha, beta and gamma frequencies.

The perception of faces and facial affect is associated with distinct changes in
cortical oscillatory activity that can be mapped to specific neural structures, specific
time-windows and latencies as well as specific frequency bands. Therefore, the work
presented in this thesis provides further insight into the sequential processing of faces
and facial affect.

KEYWORDS: Magnetoencephalography  (MEG);  Face perception;  Facial
Expressions; Synthetic Aperture Magnetometry (SAM)
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Chapter 1 The neuroscience of face perception

The recognition of faces, or face-specific perception, is an evolutionarily important
skill, which allows us to distinguish stranger from family, friend from foe. In addition,
appropriate interpretation of the facial expression of emotion is an integral part of social
communication. Expressions are emotion specific and satisfactory interpretation of
these allows us to gauge the feelings and responses of others and to respond
accordingly. An inability to interpret emotional expressions correctly or a tendency to
respond differentially to different emotions underpins a range of behavioural disorders
such as alexithymia or unipolar and bipolar depression.

There has been much research into the neural substrates of face perception per se
and key sites such as the fusiform gyri or the superior temporal sulcus have reliably
been identified. In addition, further research has implicated additional sites in the
perception of emotional expressions of faces, including subcortical regions such as the
amygdala, hippocampus and parahippocampal gyrus (see section 1.4).

A range of models, both structural and functional have been developed from
such findings, and these models are used to direct and inform research in the area of

face perception and in the perception of emotional facial expressions.

1.1.  Models of face processing

1.1.1. Structural Models of Face Processing

1.1.1.1. Bauer (1984): Two-Route Model of Face Processing

Bauer (1984) proposed a two — route model for face perception, which refers both to
two neuroanatomical visual processing streams and to two cognitive pathways.
Evidence in support of the two-route model has been taken from patient observations.
Prosopagnosic patient LF was unable to recognise familiar faces from photographs, yet
he showed greater autonomic skin responses when the photograph was shown with
reference to the correct name. Bauer interpreted the greater SCR as a measure of
unconscious (covert) recognition of the familiar face, which is separate from conscious

(overt) face recognition. He proposed that such a dissociation between overt visual
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recognition and autonomic arousal in response to familiar faces points towards two

separate or independent processing routes with a distinct neuroanatomy. According to
his model, overt face recognition occurs in the “ventral visual — limbic pathway”, and
covert recognition occurs in the “dorsal visual — limbic pathway” (Figurel-1a). The
ventral visual — limbic pathway proceeds from the visual association cortex via the
inferior longitudinal fasciculus to the temporal lobe and subsequently to the adjoining
limbic system, with the target structure being the amygdala. This pathway subserves
emotion, memory and learning functions that are more modality — specific to vision.
The dorsal visual — limbic pathway involves projections from the visual association
cortex to the superior temporal lobe, then to the inferior parietal lobe, with extensive
reciprocal connections to the cingulate gyrus, and subsequent connections to the
hypothalamus. This dorsal pathway was responsible for complex attentional functions,

emotional arousal and orientation to stimuli of motivational significance (Figurel-1b).

Figurel-1a: Schematic representation

£ 4hn wifcann Hauhin oxictan in tha wiaht

Hip = hlppocampus, Am y 0
(Taken from Bear (1983) Archives of Neurology, 40, 195-202)

lustration removed for copyright restrictions

“ - ‘W / / COIFIrCCtIoNS toT OO Ay lly
ny ez (Taken from Bauer (1984), Neuropsychologla 22 457-
J}‘M
469)
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The two — route model and the “ventral visual = and “dorsal visual — limbic pathway”

owe much to the account of the two visual pathways first described by Mishkin &
Ungerleider (1982) and later by Milner & Goodale (1993).

Prior to Bauer (1984), Bear (1983) applied Mishkin & Ungerleider’s work to propose a
model for the representation of emotions and their hemispheric specialisation, with
evidence largely drawn from observations of patients with temporal lobe epilepsy. Bear
described two sensori-limbic connective pathways, one being the dorsal visuo-limbic
structure, responsible for surveillance, attendance and arousal and a second one being a
ventral system, responsible for stimulus identification, learning and emotional response.
Arguing that the right hemisphere was dominant for emotions, Bear drew a clear
distinction between the emotional functions of the dorsal and ventral visuo — limbic
pathways in the right hemisphere. In Capgras delusions, damage seems to occur to the
secondary affective pathway to face recognition (which they named “dorsal”).

Bauer’s account of the two-route model has received some criticism, as it has
been stated that his model falls short of distinguishing between the dorsal and ventral
pathways with respect to visual processing per se, hence enabling the notion of
autonomic recognition via the dorsal visual pathway.

The notion of there being a neuroanatomical underpinning to the two cognitive
routes seems, however, problematic as the functions of the proposed neuroanatomical
pathways have yet to be fully developed. According to Young (1998 p44) “... even
though they can be usefully combined, psychological and neurological hypotheses ...

have some degree of independence from each other”.

1.1.1.2. Haxby (2000): A Model of the Distributed Human Neural System for

Face Perception

The model proposed by Haxby, Hoffman & Gobbini (2000) has some elements in
common with the cognitive model put forward by Bruce & Young (1986) (see section
1.1.2.1). However, Haxby et al. suggest that the perception of expressions, of eye gaze
and of facial speech share a common representation of the changeable aspects of faces,
and that such a representation is different to that of facial identity and the recognition of
facial identity. It appears to extend the cognitive model as it suggests that different face
perception processes like the recognition of facial expressions, involve the integration

of areas that are responsible for the visual configuration of the face with regions that are
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responsible for inferring the meaning of such representations i.e. emotions and their
significance. Therefore, like the Bruce & Young model it appears to have a branching
structure, which highlights the distinction between representations of invariant aspects
of faces (which initiate the recognition of unique identity) and representations of
changeable aspects of faces (which initiate the perception of information regarding
social communication). In addition, it also poses a hierarchical structure, as the
existence of a core system is suggested which aids the visual analysis of faces and is
different from an extended system that is responsible for processing the information,
which is gathered from faces. Three bilateral regions comprise the core system - the
inferior temporal cortex provides input for the lateral fusiform and the superior temporal
sulcus. Neural systems, which mediate the processing of, for instance, emotions — such
as the amygdala or inferior frontal areas, should be considered as extensions to the face

processing system (Haxby et al. 2000) (Figurel-2).

[lustration removed for copyright restrictions

e eXTemucy Sy St arvpudssoror— -
(Taken from Haxby, Hoffman & Gobbini (2000) Trends in Cognmvc bucnnes, 4,223-233)

The functional roles of these separate regions are still somewhat unclear and will be
discussed further in the next section. In short, it seems likely that there are degrees of
separation, so, for instance, does it appear as if the lateral fusiform gyri play a more

dominant role in the processing of facial identity, and only a supportive role in the
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processing of emotional expressions, whereas the role of the superior temporal sulcus is

more concerned with the processing of changeable aspects of faces (e.g. expressions).

1.1.2. Functional Models of Face Perception

1.1.2.1. Bruce and Young (1986): A Functional Model of Face Recognition

To clarify what needs to be understood in terms of face processing / face recognition,
Bruce & Young (1986) proposed a functional model which aimed to explain the
perceptual and cognitive processes involved in face recognition, and the model is
considered to be reliant upon interactions of numerous different functional components
(see figure 1-3). The involvement of specific brain areas, however, was not considered.
According to Bruce & Young there are at least seven different and distinct types if
information that can be revealed from faces, e.g., pictorial, structural, visually-derived
semantic and identity-specific semantic information, as well as information regarding
name, emotional state and facial speech.

The cognitive model needs to take into account that functional components
different to the ones involved in the recognition of facial identity - which is the main
aim of their model - are at work when it comes to the discrimination of facial
expressions of emotions. As indicated by Bruce & Young, expression codes do not
appear of great importance in the recognition of faces, and they insinuate that distinct
functional components are involved in the generation of facial expressions. They
describe facial expressions as a product of facial processing and propose suggestions

regarding the procedures that generate such codes.
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face recognition.
(Taken from Bruce & Young (1986) British Journal of Psychology, 77, 305-327)

In accordance with the model, face recognition occurs along a single sequential
pathway. In an initial stage the seen face is encoded using descriptions that are viewer —
centred (angle of profile, lighting). These descriptions can be analysed by separate
systems, independently for expressions, facial speech and information about gender, age
and race. In the second stage, the seen face, if familiar, will initiate its representations in
the Face Recognition Units (FRU), and subsequently activate information held at a third
stage, the Person ldentity Node (PIN), which store semantic and autobiographical
information for familiar people. The final stage is the retrieval stage, here names of
persons are saved independently of biographical details.

The system proposed is a hierarchical and branching organisation, mainly concerned
with the recognition of identity and thus may use somewhat different organisational
principles to a system that is used to identify emotional expressions or to recognise
emotions. The role of functional models in understanding emotional recognition is less
advanced. However, a later model of face perception incorporates the role played by

facial emotions in somewhat more elaborate manner.
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1.1.2.2. Ellis & Young (1990) Two-Route Model to Face R;ec‘og'rﬁfidn.y" . .

Ellis & Young (1990) adapt Bauer’s (1984) model but take into account the described
limitations by re-defining the model as incorporating two routes to face — recognition.
One route subserves the visual recognition of face (as described by Bruce & Young
1986; above), and a separate route subserves-an affective component that contributes to
familiar face recognition.

This can be achieved in two separate ways: (i) by duplication of the FRU
Module, one existing in the visual pathway, and one existing in the affective pathway;
or (ii) by proposing a single route up to FRU, which then divides into separate pathways
one leading to the PIN and one to the affective response (see also Figurel-3).

Ellis & Young (1990) used the model to explain the Capgras syndrome by
demonstrating that patients suffering from the condition were able to recognise familiar
faces but did not produce the autonomic response to these faces as has been observed in
prosopagnosic patients and healthy controls (see Bauer 1984). Hence, contrary to
prosopagnosic patients who cannot recognise familiar face but show an autonomic
response to the presentation of photographs, patients suffering from Capgras Syndrome
can recognise familiar faces by sight but do not show an affective response associated
with it.

Ellis & Young state that the dorsal pathway is capable of some form of visual
recognition, and that the dorsal limbic structures are able to contribute specific affective
responses to familiar stimuli. Still, it lacks a clear description of exactly how the dorsal
pathway explains face recognition, but since it appears that the affective response must
be ‘attached’ to a particular face, the face must be recognised first.

It could also be stated that neither Mishkin & Ungerleider (1982) nor Milner & Goodale
(1993) attributed the dorsal visual pathways with the capacity for object or particularly

face recognition.

1.1.2.3. Breen, Caine & Coltheart (2003): Cognitive Model of Face Processing

Breen, Caine & Coltheart (2003), in agreement with Bauer (1986) and Ellis & Young
(1990) state that, in an unimpaired brain, the ventral visual pathway mediates face

recognition. It is carried out by ventral temporal lobe structures, a view consistent with

Mishkin & Ungerleider (1982) and Milner & Goodale (1993). An affective component
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of face recognition is provided by connecting ventral limbic structures, most
prominently, the amygdala. When interference to normal face processing occurs, as in
prosopagnosia, disruptions are most likely to be in the ventral pathway.

Breen, Caine & Coltheart propose a model which matches that of Ellis & Young
(1990) but suggest that the model bifurcates after the FRU Module is reached (see
figure 1-4). [t then divides into two pathways, one leading directly to the PINs and a
second one leading directly to the affective response. The stronger the emotional
relationship is with the person whose photograph is presented, the stronger is the

activation of the affective response.

[lustration rem oved for copyright restrictions

(Taken from Breen, Caine & Coltheart’(l()i)()) Cognitive Psychology, 17(1/2/3) 3571y

. N P —

1.2.  Non-human neurophysiological studies of face perception

Single — unit recordings in monkeys provide evidence for distributed mechanisms being

implicated in the processing of complex visual objects (e.g. Tanaka et al. 1991), and

face — selective cells have been described as being ‘scattered’ throughout the temporal

lobe of the macaque, with a relative concentration in the superior temporal sulcus (STS)

(e.g. Gross et al. 1972, Perrett et al. 1992, Baylis, Rolls & Leonard 1987). Perrett et al.

(1992) identified five different types of cells within the temporal cortex of the macaque
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that respond maximally to different facial characteristics, e.g. full face, profile, back of

head, head up or head down). Other cells have been observed to respond selectively to
one individual, regardless of pose or expression.

Discrepancies, however, are to be expected with respect to human observations
in terms of ‘location’ of face-specific cells, and a face selective region analogue to the
human ‘fusiform face area” (FFA) has never been identified in the macaque.

A recent paper by Tsao et al. (2003) investigated the responses to faces and
other visual stimuli in macaques, but also in human volunteers. They reported that in
alert, fixating rhesus macaques, discrete face — selective cortical patches were observed
within the lower region of the (STS) and in area TE (inferior temporal visual cortex).
Smaller face — specific regions were also observed within upper regions of the anterior
middle temporal sulcus, bilaterally. These regions appeared statistically robust and also
responded to line drawings of faces.

Using the same face stimuli with human volunteers, activation was reported
within two face — specific patches, the fusiform gyrus (bilaterally) and the left inferior
temporal gyrus and the right superior temporal gyrus. Tsao et al. also tested the
responses to macaque faces. In the macaques, patches selective for macaque faces
responded more than twice as strongly to monkey faces, were larger than those for
human faces and spread posteriorly into area TEO (posterior part of infero-temporal
cortex). In humans, activation to macaque faces was observed in the same areas as for
human faces.

The face specificity of the human FFA and of the macaque STS — TE area led to
some speculation as to whether these areas could be regarded as homologous. Tsao et
al. therefore computationally deformed the macaque face patches onto a human flat map
and observed that their location was indeed quite close to that of the human FFA (Tsao
et al. 2003). They concluded that humans and macaques share a strikingly similar neural
architecture for the processing of different visual objects, particularly faces. Thus,
evidence from non — human recordings can lead to hypothesise of the involvement of

sub-processes, which may advance our understanding of human face processing.

1.3.  Human brain studies of face perception

Research on emotional communication has suggested that emotions are asymmetrically

organised in the brain. A first suggestion claims right hemisphere dominance for the
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processing of all emotional stimuli (Bowers, Bauer & Heilman 1993). A number of

neuropsychological investigations seem to provide some support for this argument
(Bowers et al. 1985, Bowers et al. 1991, Bowers et al. 1993, Etcoff 1984). A study by
Anderson et al. (2000), comparing the evaluation of facial expressions in patients
suffering from either right temporal or left temporal lesions, found that only those with
damage to the right hemisphere were significantly impaired in the evaluation of facial
expressions. No evidence of impairment was apparent in patients with left temporal lobe
lesions. A second suggestion states that left and right hemispheres make qualitatively
different contributions, supporting the notion of affective dimensional specialisations
such as negative versus positive valence (e.g. Silberman & Weingartner 1986) or
approach versus withdrawal tendencies (e.g. Davidson 1992, Davidson et al. 1990).
This is evidenced by lesion studies, as patients with right hemisphere lesions tend to be
impaired more severely when performing expression evaluation tasks, with particular
difficulties on unpleasant emotions. In contrast, left hemisphere lesions seem to cause
greater difficulties with pleasant emotions (e.g. Silberman & Weingartner 1986).
Alternatively, electrophysiological measures demonstrate that left anterior brain
regions are more involved in the approach — related affective expressions (happiness,
pleasant surprise and anger) and right anterior regions are more involved with emotions
of avoidance and withdrawal (sadness, fear and disgust) (Davidson 1993, Davidson et
al. 1990, Tomarken & Davidson 1994). However, similar dissociations have not been
reported for facial expressions so far. Anderson et al. (2000) reported that 25% of right
temporal lobe lesion patients showed impaired evaluation of fearful faces, yet the
appraisal of anger was unimpaired in that patient group. They claim that anger falls into
the domain of attack — related approach behaviours and thus take this as support for
Davidson’s approach — avoidance behaviour model (rather than a negative versus
positive distinction per se). A third suggestion states that independent emotions are
supported by defined neural substrates (e.g. Adolphs et al. 1994, Calder et al. 1996).
Evidence here is centred around findings that lesions of the human amygdala cause a
corresponding impairment in the perception of facial expressions, in particular of fear
(e.g. Adolphs et al. 1994, Broks et al.1998, Calder et al. 1996), and that the amygdala
has been observed to be active when healthy controls view facial expressions of fear but
also happiness (e.g. Breiter et al. 1996, Morris et al. 1996, Whalen et al. 1998).
Anderson et al. (2000), in addition, observed impaired ratings of happiness in a sample

of patients with right temporal lobe lesions, thus indicating that right temporal lobe
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lesions could either be associated with deficits in the ability to process facial

expressions of particular affective valence, or that lesions to the right temporal lobe do
not exclusively lead to impairments for withdrawal related expressions such as sadness,

but also to approach related ones as in happiness.

1.4.  Neural correlates of face-perception and facial affect

The role of the right hemisphere in face perception has been highlighted by behavioural
(c.g. Campbell 1978; Levy, Heller, Banich & Burton 1983), neuropsychological and
functional imaging studies (e.g. Sergent, Ohta & MacDonalds 1992; Puce et al. 1995,
1996; Kanwisher, McDermott & Chun 1997). So, for instance, have right handed
volunteers been found to judge faces as happier when the smile appeared in their left
visual field (LVF), which suggests that information is judged more saliently when
received by the right hemisphere (e.g. Levy, Heller, Banich & Burton 1983). There is
also evidence for a dissociation between facial recognition (memory) and facial
expression perception and the neural substrate underlying these processes (e.g. George
etal. 1993; Sergent, Ohta & MacDonalds 1992).

Facial familiarity perception and unfamiliar face matching is linked to the right
hemisphere (Young et al. 1993a), yet facial working memory has been linked to the left
hemisphere (Mclntosh et al. 1996) and facial recognition memory has been associated
with left hippocampus activity (Kapur et al. 1995).

The effect facial expressions of emotions have within social interactions is likely
to have a biologically ‘pre-wired” neural basis, as it operates almost automatically, fast
and repeatedly (Wild, Erb & Bartels 2001). Wild, Erb & Bartels (2001) put forward
several suggestions as to why this might be, one being that there exists a functional
network in which a direct input from higher visual areas such as the fusiform gyrus,
projects to medial temporal, orbitobasal and dorsofrontal and insular cortices and the
basal ganglia. Functional imaging and clinical studies support this notion (e.g. Borod et
al. 1986; Ojemann, Ojemann & Lettich 1992; Allison et al. 1994; Morris et al. 1996;
Sprengelmeyer et al. 1996; Kanwisher, McDermott & Chun; Lane et al. 1997, Phillips
etal. 1997; Young 1997). Some of the results outlined above have led to the proposition
that the processing of emotional faces preferentially engages the right hemisphere.
Studies investigating facial expressions of emotions, however, have generated

inconsistent results. Young et al. (1993) demonstrated the involvement of both

26



hemispheres, whereas Adolphs et al. (1996) reported evidence only for right hemisphere

activation in lesion patients, with a bias for negative emotions. Using functional
Imaging to investigate activation to positive and negative emotional expressions, Gur,
Skolnick & Gur (1994) and George et al. (1996) reported the involvement of the right
hemisphere, Sergent, MacDonald & Zuck (1994) found activation within the cingulate
cortex bilaterally, and the right anterior cingulate and bilateral frontal areas (inferior
frontal cortex) have been observed by George et al. (1993).

As mentioned above there appear to be several regions which are proposed to
play crucial roles in the perception of faces and facial expression. The role of some of
these will now be briefly described. A summary table is provided (see Appendix1)
outlining the spatial correlates of the processing of facial affect particularly those of

happiness and sadness.

1.4.1. Occipito-temporal complex including lateral fusiform gyrus

Face — specificity has been observed in the fusiform gyrus by Halgren et al. (1994a) and
Allison et al. (1994) using intra-cranial recordings. Sergent & Signoret (1992a) using
PET, in addition reported activation within the lingual, parahippocampal gyrus, and
anterior temporal cortex.

Furthermore, Sergent, MacDonald & Zuck (1994), Haxby et al. (1994),
Courtney et al. (1996), Dolan et al. (1996) - all using PET — confirmed the involvement
of ventral occipito-temporal regions and also implicated the right lateral occipital
complex in the processing of faces and facial expressions.

Studies using fMRI have identified areas within ventral occipito-temporal
cortex, the middle occipital gyri, the superior temporal and lateral occipital sulci for
faces and scrambled images (e.g. Puce et al. 1996, Clark et al. 1996) but did not reach
significant conclusions regarding lateralisation effects.

Using MEG, Lu et al. (1991) presented photographs of faces for 300ms and
compared activity patterns generated to those generated by photographs of birds. They
revealed early bilateral activity at about 150ms in inferior or occipito-temporal junction.
Later components were not face — specific. Halgren et al. (1995b) attempted to localise
face — specific activity by subtracting face responses from responses made to scrambled
faces and reported an equivalent current dipole (ECD) in the right posterior fusiform

gyrus with the maximum latency being at 166ms (to 256ms).
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Halgren et al. (1995) also found strongest responses to photographs of faces in right

occipito-temporal areas at a latency of 166ms, and reported activity of less intensity in
responses to scrambled and schematic faces.

Confirmation for the above findings was also reported by Sams et al. (1997) and
Swithenby et al. (1998). The latter reported the involvement of the right occipito-

temporal regions in face — specific processing at latencies of about 140ms.

1.4.2. Superior temporal sulcus & inferior temporal cortex

Cell recordings in human and non — human animals render the temporal cortex
surrounding the amygdala as an important site for the analysis of facial emotions
(Hasselmo, Rolls & Baylis 1989; Ojemann, Ojemann & Lettich 1992).

Single neuron studies of the macaque have indicated the existence of a dissociation for
face-selective cells in the temporal cortex. The superior temporal sulcus (STS) seems to
be involved more in the processing of static images of changeable aspects of faces, e.g.
facial expressions, or in facial movement. Involvement of the inferior temporal cortex
however was observed when the perception of identity was studied.

In humans, activation has been observed in posterior regions of the STS in response to
still pictures of faces (Haxby et al. 1999; Kanwisher, McDermott & Chun 1997,
Halgren et al. 1999; Hoffman & Haxby 2000; Chao et al. 1999a, 1999b). Blair et al.
(1999) reported evidence for the right inferior and middle temporal gyri being areas

critical for the analysis of facial expressions of sadness.

1.4.3. Amygdala and limbic areas

In non-human primates and in rats, conditioning studies have provided much evidence
for a dominant role of the amygdala in the processing of fear (LeDoux 1992; LaBar et
al. 1998). Patients with bilateral damage to the amygdala have shown impairments in
the recognition of negative emotion al expressions such as anger and fear (Calder et al.
1996; Adolphs et al. 1994). In studies investigating emotional expressions - with
humans - responses within the left amygdala have consistently been reported to the
presentation of fearful faces (Phillips et al. 1997; Breiter et al. 1996; Morris, Ohman &
Dolan 1998; Whalen et al. 1998).
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Work with psychopathic patients has put forward the suggestion that the

amygdala may also be implicated in the processing of facial expressions of sadness, as it
has been observed that selective autonomic responses were reduced in psychopathic
patients compared to healthy controls (Chaplin et al. 1995; Blair et al. 1997).
Psychopathic patients are hypo-responsive to facial expressions of sadness, and an
amygdala dysfunction has been associated with this condition. Hence, Blair et al. (1999)
regard it plausible that the amygdala may be involved in the processing of facial
expressions of sadness, and report activation within the left amygdala in response to the
presentation of facial expressions of sadness. A left lateralisation effect to facial
expressions has also been reported by Morris et al. (1996) and Morris, Ohman & Dolan
(1998), though to fear, and their interpretation of lateralisation proposed that it might
reflect the modulation of amygdala activity by a left hemisphere system, similar to those
mediating language.

The amygdala is also a candidate structure for the processing of (facial
expressions of) anger. This is because of links to the amygdala, which plays a central
role in the processing of threatening stimuli (Blair et al. 1999). Using PET, Blair et al.
investigated the role of the amygdala in response to facial expressions of sadness and
anger and reported activation within the left amygdala for expressions of sadness but
not anger. Patients with damage to the amygdala do not consistently report difficulties
with the recognition of sadness expressions, hence it might be that the amygdala
responds either to a minimum of fear and sadness, or that an intact amygdala - though
not a prerequisite for the recognition of sadness - appears necessary for the activation of
the automatic response to this expression (Blair et al. 1999).

Functional imaging studies have also reported the involvement of the amygdala
in response to facial expression of happiness; yet, patients with damage to the amygdala
have not been reported as showing impaired performance with respect to happiness
expressions on recognition tasks.

The involvement of the amygdala to several different emotions has lead
researchers to consider a more general role of the amygdala in emotional processing.
Generally it now seems accepted that the amygdala plays a role in emotional learning
(e.g. Breiter et al. 1996; Davis 1986; LaBar et al. 1995; LeDoux 1998; Whalen et al.
1998). Thus, facial expressions of, e.g. sadness and anger, may act as unconditioned

stimuli for behaviour patterns. In primates, as well as in humans, it has been observed
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that newborns show fear of novel objects to which their mothers have expressed fear

(transfer of valence information) (e.g. Mineka & Cook 1993).

1.4.3.1. Limbic dysfunction and emotional disorders

Abnormal neuronal firing patterns to emotional stimuli and subsequent difficulties in
the perception and discrimination of emotional information have been observed in
patients suffering from psychological disorders, such as depression or schizophrenia
(Phillips et al. 2003b). A detailed review of these findings would go beyond the scope
of this thesis and the interested reader is advised to seek out the following review papers
for reference: Phillips et al. 2003a, Phillips et al. 2003b. Lawrence et al. (2004)
observed that patients suffering from BD showed lateralised increases in activation
within subcortical regions in response to facial expressions. Within the left amygdala,
caudate nucleus and putamen, as well as the ventral prefrontal cortex signal increases
could be observed in response to positive facial expressions (mild happiness) and also to
mild and intense fear expressions. Bipolar patients also showed increased activation
within the uncus and amygdala in response to facial expressions of mild happiness, and
within the left hippocampus for facial expressions of mild sadness (Phillips et al. 2003a;
Phillips et al. 2003b; Lawrence et al. 2004). Since regions such as the thalamus, caudate
and the putamen have been reported to show increases in activation in BD patients in
paradigms utilizing stimuli other than facial expressions, Lawrence et al. (2004) suggest
that these areas might be implicated in the pathophysiology of bipolar depression.
Patients suffering from major depressive disorder showed increased responses
within the putamen to expressions of mild sadness (compared to BD patients) as well as
activation within the left hippocampus and the parahippocampal gyrus to expressions of
mild sadness. Despite a general observation of “emotional blunting” (Lawrence et al.
2004; Elliot et al. 2004), increases in activation were observed to mildly sad facial
expressions, indicating a bias towards the processing of negative emotional information
(possibly unaffected by the what seemed to be general emotional blunting). In the
Lawrence et al. (2004) study, amygdala activation (decreases or increases) were not
observed (at all) to negative facial expressions (fear and sadness), thus it is assumed that
other regions responsible for the processing of emotional information would have been

recruited in addition instead.
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1.4.4. Cingulate cortex

The anterior cingulate cortex (ACC) is part of the limbic system and has been
implicated in sensory motor, cognitive and emotional processing (for a more detailed
review see e.g. Critchley et al. 2003). The cingulate cortex integrates input from various
sources, including representations from cognitive and emotional networks (connections
of the affective subdivision include the amygdala, anterior insula and OFC; Devinsky,
Morrell & Vogt (1995)) and influences activity in other brain regions by modulating
cognitive, emotional, visceral and endocrine responses (Bush, Luu & Posner 2000). A
guiding principle about ACC function is that cognitive and emotional information are
processed separately. Hence, the ACC can be divided into an anterior and a posterior
part, on grounds of different functions. The anterior part of the ACC is concerned with
‘executive’ functions (cognitive subdivision), whereas the posterior part of the ACC is
referred to as ‘evaluative’ (affective subdivision) (Vogt, Finch & Olson 1992). Studies
using two differing stroop-like inferences have demonstrated that point. The ‘Counting
Stroop’ led to activation within the cognitive subdivision whereas the ‘Emotional
Stroop’ led to activation within the affective subdivision of the ACC. The emotional
Stroop-task shares surface similarities with the conventional Stroop-task as for both
tasks the task-relevant part is the identification of the colour of the ink in which the
word is written. In the emotional Stroop-task, the words presented, however, have either
a neutral or an emotional meaning (e.g. Compton et al. 2003; Critchley et al. 2000;
Whalen et al. 1998). Hence it emerged that the type of information to be processed can
determine the recruitment of activity selectively in differing regions of the ACC.
Drevets & Raichle (1992) and Mayberg et al. (1999) have reported evidence in support
of a reciprocal suppression model (operating within the ACC). FMRI signal decreases
were reported in the affective subdivision when dealing with the cognitively demanding
neutral part in both tasks, e.g. the word reading, word counting and button pressing
components; and it was also observed that limbic structures such as the amygdala and
insular cortex showed decreased activity during these task components. In addition, the
affective division of the ACC (as well as other structures of the ‘emotional network’)
was (were) suppressed during the neutral part of the task, and conversely, was the only
part that showed significant activation during the interference part of the task. This

leads to the suggestion of the ACC having a specific role in the processing of more
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complex emotional information (evaluation of emotional valence) (Bush, Luu & Posner

2000).

In animals, lesions within the ACC are associated with apathy and emotional
instability (Tow & Whitty 1953), in humans, with striking personality changes
including lack of distress, and emotional liability (Corkin, Twitchel & Sullivan 1979).
Activity within the anterior cingulate cortex has been found in a number of studies
investigating emotional expression (e.g. George et al. 1993; Sergent, MacDonald &
Zuck 1994; Lane et al. 1997).

A study investigating the recognition of happy and sad facial expression
(Phillips et al. 1998a) revealed the involvement of the left anterior cingulate gyrus as
well as bilateral posterior cingulate gyri (BA23/30/31) in response to happy faces.
The involvement of the anterior cingulate cortex in response to sad as well as angry
faces has been reported by Blair et al. (1999) who interpret their finding of anterior
cingulated involvement in response to anger in terms of greater attentional demands

when processing angry expression or frightening stimuli.

1.4.5. Frontal areas

The role of the medial prefrontal cortex and the orbitofrontal cortex (OFC) in emotional
behaviour has previously been highlighted by Rolls (1990).

Inferior frontal areas have also been associated with the judgement of the
emotional content of facial expressions (Sprengelmeyer et al. 1998; Nakamura et al.
1999). Phillips et al. (1998) observed that patterns of activation within the medial
frontal cortex bilaterally, and within the right dorsolateral prefrontal cortex (BA46) in
response to happy faces differed in healthy and psychiatric populations (see section
5.3.1). Hornak, Rolls & Wade (1996) have reported the involvement of the orbitofrontal
cortex in the processing of facial expressions in general and suggested it may play a
mediating role in the processing of angry expressions in particular. They observed that
patients with damage to the OFC showed impairments in the recognition of emotional
expressions. An investigation by Blair et al. (1999) could substantiate these claims as

they reported activation within in the right orbitofrontal cortex for anger expressions.
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1.4.5.1. Davidson’s model of brain asymmetry

The relatively clear evidence of a right hemisphere bias in the comprehension of
emotional information has led to the claim that all aspects of emotional processing are
favoured by the right hemisphere. This however was disputed by findings that claimed a
hemispheric asymmetry in the processing of emotional information with the right
hemisphere preferentially processing negative emotional information and the left
hemisphere processing positive emotional information. This has become known as the
Valence Hypothesis (Silberman & Weingartner 1986; Gainotti 1972). Evidence for this
has been claimed by the observation that left hemisphere damage was associated with
patients showing emotionally volatile behaviour, are prone to depression and crying.
This has been termed catastrophic reaction. In patients with right hemisphere damage,
on the other hand, inappropriate cheerfulness, lack of awareness to their disability and a
proneness to laughter have been observed, this has been termed euphoric — indifference.

Tucker (1981) however, reversed the attribution of emotion to each hemisphere,
as he offered that the observed behaviour was not a function of the intact hemisphere,
but instead reflected the emotional one of subcortical areas on the damaged side that
were released from cortical inhibition because of the lesion.

In addition, frontal lobe function has been associated with differential emotional
responses. 60% of patients with left frontal lobe lesions were reported to fulfil the
criteria of major affective disorder, with the increases in severity of the disorder being
related to the more anterior regions (Lipsey et al. 1983). According to Davidson (1993)
evidence for the asymmetry in frontal lobe activity has been observed in studies on
negative affect using disgust, fear and sadness, which report findings of relatively
greater activation in the right frontal lobe than the left. Positive affect in contrast was

linked to greater activation of the left frontal lobe.

1.4.6. Additional cortical arcas

Complex emotions and emotional expressions have been reported to involve structures
such as somatosensory regions, particularly of the right hemisphere. According to
Adolphs (1999) the interpretation of complex emotions and emotional expressions can
be achieved by simulation of the perceived emotion, drawing upon the recruitment of

somatosensory cortices and subsequently sensing that emotion.
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A lesion analysis conducted by Adolphs et al. (1996 p7682) revealed that “...damage

which includes the right inferior parietal cortex results in expression recognition
impairments that correlate for most negative emotions, especially fear and sadness”.
Blair et al. (1999) found that right inferior and middle temporal gyri mediated responses
to sad facial expressions, whereas Dolan et al. (1997) reported enhanced activity in
these structures during perceptual learning of faces. Morris, Ohman & Dolan (1998)
stated that the inferior and middle temporal gyri received greater contribution from the
amygdala during the processing of fearful faces.

Adolphs et al. (1996) proposed that an extended neural system within the right
hemisphere would need to be recruited for the successful processing of facial

expressions.

1.4.7. Is there a fusiform face area (solely responsible for the processing of

faces)?

FMRI studies have indicated that there is indeed an area within the lateral fusiform
gyrus (known as the fusiform face area) specialised in the processing of face stimuli
(e.g. Kanwisher et al. 1994; Kanwisher, McDermott & Chun 1997; Puce et al. 1995a;
1995b; Yovel & Kanwisher 2004). This area responds selectively and differentially to
faces compared to houses or scrambled control stimuli. Puce et al (1995b) observed that
for faces compared to scrambled images fusiform regions within the right hemisphere
were more consistently activated, and showed larger volumes of activation, than
corresponding areas within the left hemisphere. Other studies have shown that the
region known as the FFA preferentially responds to faces compared to cars or butterflies
(e.g. Allison et al. 1994), flower or common objects (McCarthy et al. 1997). However,
Gauthier et al. (1999) present evidence that processes relying on ‘expertise’ rather than
pure face processing per se also recruit the fusiform. Therefore, the role of a face-
specific area is debateable (see chapter 3).

There appears to be sufficient evidence that indicates dissociable neural
substrates that differentially respond to distinct emotional expressions (e.g. Adolphs et
al. 1996). Aspects of the temporal organisation of such systems have not been receiving
adequate attention so far. More recent developments in functional imaging methods

which address the temporal development of emotional networks will allow to establish,
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for instance, the order in which networks or separate components of networks can be

accessed, and in what capacity face processing systems differ from

systems that enable the detection and discrimination of facial expressions of emotions.

1.5.  Temporal sequence of face perception and facial emotion processing

The investigation of temporal aspects of face processing has concentrated mainly on
EEG and therefore studies examining event-related potentials (ERPs). To aid
understanding of EEG and ERP findings a nominal trace of an ERP component is
included for illustrative purposes (see FigureA).

Halgren et al. (1994a) conducted a study in which implanted electrodes were
used to obtain recordings from occipital, temporal and parietal regions as well as from
the limbic system (amygdala, hippocampal formation and posterior cingulate gyrus) of
patients who were awaiting epilepsy elective surgery. They performed a declarative
memory task in which patients were presented with unfamiliar faces. In addition to
early components, N75-P105, most probably generated in visual cortical areas 17 and
18 (located in and around the lingual gyrus), and components N130-P180-N240
generated in the basal occipito-temporal cortex (fusiform gyrus, areas 19 and 37),
Halgren et al. also demonstrated a N310-N430-P630 sequence for responses to faces,
which was largest in the hippocampal formation and the amygdala, but was probably
locally generated in many sites including the lingual gyri, lateral occipito-temporal
cortex, middle and superior temporal gyri, temporal pole, supramarginal gyrus, and

posterior cingulate gyrus.
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‘E FigureA: The EEG recording contains a
signal that is extremely revealing about
information processing in the brain. This
signal can be obtained by time-locking the
recording of the EEG to the onset of events
such as a person reading a word or watching
a face appear on a screen. The resulting

] activity is called an event-related potential

5 ¢ (ERP), and consists of ERP components,
which are positive and negative-going

Py fluctuations that can be seen in any ERP

¥ ONESED waveform. These components are named by
their polarity (N for negative; P for positive)

Amplitude in microvolts

N30 = large negative reflection in reponse
to stimulus
P60 = large positive reflection in response
ta stimulus

They proposed that during the N310, faces might be multiply encoded for form
and identity (inferotemporal), emotional (amygdala), recent declarative mnestic
(hippocampal formation) and semantic (supramarginal and superior temporal cortices)
properties. These multiple characteristics may be contextually integrated across
inferotemporal, supramodal associations, and limbic cortices during the N430, with
cognitive closure following during the P630.

Allison et al. (1994) using subdural strip electrode recordings in patients who
they presented with grey scale photographs as well as control images found face-
specific responses bilaterally in central fusiform regions and in the inferior temporal
gyrus with maximal latencies at about 200ms. Some electrodes that showed face —
specificity also showed an earlier, non face — specific peak at 150ms.

Swithenby et al. (1998) stated that face — specific processing is broadly consistent
across all task and sub — tasks, i.e. image categorisation, image comparison or emotional
identification. This pattern of activation suggests that the activity is mainly automatic
(i.e. not under conscious control) and cannot be dominated by the initial classification of
the image as a face. In addition, they also point out that even though there is a reported
dominance of the right hemisphere (right occipito-temporal cortex) over the left
hemisphere, inspection of the raw signals indicate that similar processes are also evident
in the left occipito-temporal regions, at similar latencies. The face — specific responses

are compatible with predominantly bottom — up processing triggered by all objects that
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meet some previous face — classification criteria. This seems harmonious with the

structural encoding stage of the face — processing model by Bruce & Young (1986).

Swithenby et al.’s task involved a very short exposure time (100ms) that
encourages parallel processing. Given the fact that other studies have mostly used
longer exposure times, led to the suggestion that this may prompt different processes.
This may also explain why the latencies reported here (140ms) are somewhat shorter as
those reported in previous studies. The fact that MEG is preferentially sensitive to
superficial tangentially oriented cells means that face — specificity will be observable
when there are dominant contribution from appropriately oriented and distributed “face
cells”. The dipole model leaves open questions as to the probable coexistence of other
sources within neighbouring cortical regions, individual variability and structural
complexity of the brain’s geometry and also the probability that the activity is relatively
widespread.

Streit et al. (1997,1999), using MEG, observed that the processing of emotional
expressions elicited stronger responses than a face detection task in the STS at a latency
of 140-170ms, and in addition, at a later latency of 220ms the involvement of the right
amygdala was reported in response to facial emotional expressions. Hence, it has been
suggested by Haxby et al. (2000) that these regions interact during processing stages of
emotions.

An investigation by loannides et al. (2000) looked into ways of inferring
coupling between brain regions associated with cognitive tasks. By recording MEG data
and using magnetic field tomography (MFT) and determining mutual information (MI)
between established areas of interest they found that activation in the fusiform gyrus
follows early processing within primary and association visual areas and is similar for
both, complex objects and faces. They observed a face — specific latency interval at 100
— 200ms when comparing directly the activation within the FFG to faces to that of
objects (see also Liu, Harris & Kanwisher 1999). loannides et al. (2000) claimed that
face — specificity in terms of their M1 analysis revealed only feed-forward mechanisms
in the right hemisphere and they therefore suggest the existence of an early, automatic
face — specific process. In an emotion recognition task they reported the main region of
high average MI within the left hemisphere at latencies between 110 — 160ms. Within
the right hemisphere linked activity period segments extended from 70ms to 200ms

Scalp electrode studies have demonstrated activity that is specific to faces, and

the earliest latencies at which face — specificity has been reported ranges from 154ms
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for repeated black and white drawings, to 180ms — to repeated presentation of black and

white photographs (Seeck & Griisser 1992).

1.6.  Frequency variation in cortical activity in face and emotional

processing

Investigating frequency specificity to emotional and facial stimuli, a study by
Ponomarenko et al. (2003) revealed that depending on the behavioural state of an
animal, various oscillatory patterns within the amygdala could be observed. In states of
emotional arousal, increases in theta frequency have been reported in basolateral areas
as well as in the perirhinal cortex of rats (Collins, Lang & Pare 1999; Pare & Gaudreau
1996; Pare, Collins & Pelletier 2002). In addition, beta and gamma oscillations were
observed within the pre-piriform gyri.

Ray & Cole (1985b) attempted to investigate the effects of attention, emotion
and cognition on EEG frequencies and recording sites. They asked their participants to
remember sad and happy memories from the past and to imagine future ones, and they
also presented their participants with slides showing positive and negative emotional
content. Ray & Cole (1985b) observed that the different tasks reflected the differential
involvement of parietal areas, observed at “middle frequencies” (including alpha).
Significant main effects for emotional valence were observed in temporal and parietal
areas, with increased beta in response to the positive than the negative conditions, in
particular in right hemisphere regions. They concluded that differences in beta
frequencies seem to reflect cognitive and emotional dimensions of a task, and that it
would thus be useful to measure beta involvement in cognitive and emotional
processing.

Nishitani (2003) conducted a study in which responses to pleasant and
unpleasant human and primate baby faces were quantified in temporal spatial and
frequency domains. They reported findings for MEG and MRS data. Their results
revealed five main sources of activation, the middle frontal, hippocampal, superior
temporal, inferior parietal and occipital areas in both hemispheres. To unpleasant faces
significant peaks were revealed in occipital areas (e.g. BA19) at latencies of 160ms, in
the superior temporal gyri (BA22) at latencies of about 214-223ms (left and right), in
the middle frontal gyri (BA9/46) at latencies of 271ms and 236ms, in the hippocampal

areas at 404ms and 43 Ims and for the inferior parietal lobules for latencies of 417ms
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and 476ms. Pleasant stimuli were observed to evoke responses in the same areas. The

Temporal Spectral Analysis (TSE; Salmelin & Hari 1994) (for quantification of event-
related suppression or enhancement of rhythms as a function of time) revealed that theta
amplitudes in both hemispheres seem to have increased during the presentation of
unpleasant stimuli more than during the presentation of positive ones. The TSE curves
with the most prominent peak in event-related synchronisation (ERS) (see section 2.5)
were obtained for theta frequencies in hippocampal regions of the right hemisphere.
Largest effects in terms of event-related desynchronisation (ERD) (see section 2.5) were
observed for alpha TSE curves at 400ms in response to pleasant and unpleasant stimuli
equally. The observation of preferential increased ERS in hippocampal regions to
unpleasant stimuli for theta rhythms is thought to reflect excitatory postsynaptic
potentials (Nishitani 2003).

The involvement of the parietal areas, and more precisely, their functional
aspects in affective processing were investigated by Schutter, Putman, Hermans & van
Honk (2001) using a selective attention paradigm including angry and neutral faces.
They reported significant correlations between selective attention to angry faces and
right parietal beta, and observed that increases in right-sided baseline beta activity
reflected greater avoidant responses to angry faces. Van Honk et al. (1998, 2001)
observed that increased levels of cortisol as well as elevated depression were linked to
the avoidance responses to angry faces. Reduced depressions scores, elevated mood and
vigilant attention to angry faces, on the other hand were linked to approach domains of

behaviour Davidson (2000).

1.7. Summary and rationale

As has been shown in this introduction the processing of faces is thought to be regarded
as distinct from the processing of objects and other non-face stimuli. Different models
have been put forward that link the processing of faces and also variable aspects of
faces such as facial expression to distinct structures within the brain (see 5.7. and 1.1.2;
see also Appendix1). In addition, temporal aspects have been outlined that again
attempt to differentiate the neural sequence of activation related to the processing of
faces and also that of facial affect.

Therefore, this thesis aims to further elaborate on the issues involved in the

processing of faces per se and also in the processing of facial affect. For these reasons,



several experiments are to be carried out, first investigating the processing of faces per

se (see chapters 3 and 4, experiments 1 and 2), to establish findings of ‘pure face
processing module’ and to elaborate on neural networks involved in the processing of
faces in space, time and frequency. Secondly, the processing of facial affect is to be
investigated to see if and how the processing of facial affect differs from that of face
perception per se (see chapters 5 and 6, experiments 3 and 4). In doing so the following
questions will be addressed: Is there indeed a specialised area within the brain solely
responsible for the processing of faces, or can the processing of faces and other objects
or indeed the processing of facial affect be linked to the same areas but is differentially
processed in time and frequency domains?

The use of magnetoencephalography (see chapter 2) with its precise temporal
resolution allows the exploration of the timing of basic neural processes at the level of
cell assemblies. Its improved spatial resolution allows sufficient overlap to compare the
findings of MEG investigations to those of fMRI. Therefore it is a suitable technique to
investigate the detailed and refined processes involved in face perception and the

perception of facial affect.
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Chapter 2 Magnetoencephalography — an introduction to the

methods

This chapter will outline the principles of magnetoencephalography, as this technique,
or tool, was chosen to investigate face perception, and the perception of facial emotional
expressions in this thesis. The chapter will state, in brief, the methodological aspects
and ‘physics’ of magnetoencephalography, but the main focus will be placed on the
ways in which biomagnetic data can be interpreted. The appropriateness and
effectiveness of MEG for the investigation of cognitive and emotional processes will in
this way be assessed. If the technical aspects go beyond the scope of this chapter,

references to relevant readings are provided.

2.1.  Introduction: What is Magnetoencephalography (MEG)?

Magnetoencephalography is an entirely non-invasive technique for functional brain
mapping that localises and characterises electrical activity of the central nervous system
by measuring the associated magnetic fields that derive from the brain. Within the
nervous system, neuronal current flows generate associated magnetic fields, and by
measuring the intercellular currents of the neurons, information can be obtained about
the brain’s spontaneous activity or its activity in response to a stimulus. MEG provides
excellent temporal resolution in the millisecond time-range and spatial discrimination
within 2-5mm. It is therefore able to image neurological function, and to measure the
activity of the brain in real time, hence allowing the ‘observation of the brain in action’.
MEG data can be used to identify function (by using localisation procedures based upon
MRI scans) within the healthy and un-healthy brain. Hence, MEG and MRI can be
fused into a composite image of function and anatomy, thus allowing considerable
clinical potential.

Neuromagnetic investigations aim to identify active brain areas. Two aspects,
however, complicate this: (1) there is no unique solution to the inverse problem (see
section 2.3.2), thus, appropriate assumptions about the source and volume conductor
models need to be made (see section 2.3.2.1); and (2) due to the multitude of
simultaneously active brain regions weak signals are usually masked by the strongest
signals (e.g. Hari 1991). How these problems can be overcome in order to capitalise

utilization of MEG methods will be addressed.
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2.1.1. Physiological source of MEG signals

Electric and magnetic field changes are due to post-synaptic neuronal currents of a large
number of synchronously active, or well-aligned pyramidal cells, which consist of

dendrites, cell bodies and axons. The numerous connections between the brain parts are
mediated by nerve fibres, which are connected to dendrites and cell bodies via synapses

(see Figure2-1).

lustration removed for copyright restrictions
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lonic exchange between the cell and its surroundings produces an equilibrium between
diffusion processes, and electrical forces establish a negative potential of approximately
—70mV within the cell. Stimulation of cells by means of chemical electrical or
mechanical stimulation leads to alterations to the cell’s transmembrane potential, finally
resulting in cell depolarisation, or hyperpolarisation, at the cell’s synapses (Pinel 1997;

Wikswo 1989). Asa cell is conductive, depolarisation, or hyperpolarisation, cause
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current flows within the cell (i.e. intra-cellular current) as well as a return current

outside the cell (extracellular current).

Dendritic currents, which arise due to depolarisation and hyperpolarisation, flow
roughly perpendicular to the cortex. Due to the convoluted nature of the cortex and the
site of cell stimulation, the flow of currents to the scalp surface can either follow a
tangential or radial progress (Figure2-2). These currents can be measured on the scalp
or outside the head, providing they conform to the assumption that the head can be
modelled by a spherical conducting medium. Due to symmetry, magnetic fields are
produced only by currents generated by tangential cells (Figure2-3) (Hamaildinen et al.

1993; Hari 1993; Vrba & Robinson 2001).

lustration removed for copyright restrictions

(Takenvfrom Vrba & Robinson 2001)
current

(Taken from Vrba & Robinson 2001)

2.1.1.1. Action potentials (AP) and postsynaptic potentials (PSP)

The net current flow in the cortex is as a result of pyramidal cell orientation
perpendicular to the cortical surface. MEG signals are thus mainly caused by currents in
the walls of the cortical fissures.

Action potentials (AP) and postsynaptic potentials (PSP), excitatory PSP, seem
to be possible sources of the recorded MEG signal (see Figure2-4). The leading and

trailing edges of a propagating AP can be described by two opposite current dipoles that
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form a current quadrupole, whereas a PSP produces a dipolar field. Quadrupolar fields
diminish more rapidly, as a function of distance, hence AP fields are relatively weaker
than PSP fields, and, in duration, are only a fraction of that of a PSP. It is therefore
assumed that PSPs not APs are the main contributors to the MEG signal (Hari 1993).
The current associated with one PSP produces a dipole moment, and it is possible to
calculate its size (for equation and detail refer to e.g. Himaéldinen et al. 1993). For
example, a typical dipole moment corresponds to activation of an area of 2-5¢cm’. This
necessitates concerted activation of tens of thousands of neurons, but during
spontaneous rhythmic activity much wider areas may be firing synchronously (Hari

1993).

lustration removed for copyright redtrictions
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2.2. Data acquisition

2.2.1. Measurements

Magnetic signals can be measured using induction coils that are composed of loops of

wire. Spontaneous or evoked magnetic fields generating from the brain induce a current
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in these coils and, in turn, a magnetic field in a special device called superconducting

interfering device (SQUID) is produced. When a time-varying magnetic flux passes
perpendicular to the coil, it induces a time-varying electrical current within the wire (see
Hdmildinen et al. 1993). Electric currents within the brain generate weak magnetic
fields that are picked up by a superconducting flux transformer. Subsequently, the
signal is perceived by a SQUID.

Superconducting coils have little or no electrical resistance; hence the amount of
current induced in the coil can track even the smallest changes in the magnitude of the
impinging magnetic flux. For simplicity, the SQUID can be thought of as a very low
noise device for transducting magnetic fields, or currents, into a voltage. A SQUID acts
as a low-noise, high-gain, current-to-voltage converter that provides the system with
sufficient sensitivity to detect neuromagnetic signals of only a few femto Tesla in
magnitude (Baillet, Mosher & Hari 2001; Hari & Forss 1999). A SQUID can be used as
a magnetometer by operating it within a flux-locked loop. The sensitivity of the SQUID
to magnetic fields can be enhanced by further coupling it to a superconducting pick-up
coil, having greater area and number of turns than the SQUID inductor, alone. This
pick-up coil is termed a “flux transformer”. The SQUID and induction coils of
biomagnetometers are generally maintained in a superconducting state by immersion
within a liquid helium bath contained in an insulated cryogenic vessel known as a dewar
(for detail see Romani 1987).

Magnetometers and gradiometers, both are detectors used for biomagnetic
measurements. SQUID magnetometers (as outlined above) are sufficiently sensitive to
detect neuromagnetic signals of only a few femto Tesla in magnitude. In order to allow
for an increase in the usage of MEG for clinical purposes, e.g. epileptic surgery,
magnetometer based MEG systems have been developed in order to reliably measure
from deeper sources (http:/www.4dneuroimaging.com/About4D/Experience.html).
Gradiometers allow the measuring of weak signals when the signal source is close to the
detection coils (http://www.tristantech.com7prod_biomagnet.html). The usages of axial
gradiometers combined with SQUID designs attempts to increase and maximise the
signal to noise ratio in order to improve the quality of the recorded signal particularly in

demanding urban environments (http://www.ctf.com/products/meg/ctf/overview.html).
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2.3.  The inverse and forward problems

2.3.1. The forward problem

The forward problem is concerned with the computation of what the output of the
gradiometer (see 2.2.1) would be if a certain region of cortex were active. This requires
certain simplifications and assumptions, for instance that neural activity is modelled as a
set of dipolar current sources, and the head is modelled by a volume conductor. The
magnetic field in the sensors can be computed, using volume-conducting theory based
on the Biot & Savart Law. The relationship between the magnetic field contributions
and its source current element is what is known as the Biot-Savart Law

(http://www.aston.ac.u.uk/lhs/research/nri/meg/intro/forward.shtml#volumeconductor)

(for more details see the above link).

The calculation of the electrical potential or the magnetic field outside the head, given a
particular distribution of current inside the head, is know as the forward problem. The
solutions to the forward problem depend on a source model of the properties of the
current sources (e.g. location, orientation, and amplitude), and a head model of the
electromagnetic properties of the brain, skull and other tissues as electrically conductive

media (Kutas, Federmeier & Sereno 1998).

2.3.1.2. Methods of forward solutions

2.3.1.2.1. Head models — spherical head models

The spherical head model is based on the assumptions that the head consists of a set of

nested concentric homogenous spherical shells representing brain, skull and scalp.

2.3.1.2.2. Head models — realistic head models

Although the spherical head model works well indeed, the heads of human beings are
anisotropic, inhomogeneous and not spherical, thus contradicting the assumptions of the
spherical head model approaches. Therefore, the use of anatomical information obtained
from method such as MR or CT allows for improvements. To solve the forward

problem, surface boundaries are first extracted for brain, skull and scalp and are
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subsequently included in boundary element methods (BEM) in order to calculate the

forward field (Kutas et al. 1998). This method, although it indicates an improvement to
the methods relying on spherical head models, still assumes homogeneity and isotrophy
within the regions of the head, thus assuming that the conductivity within one shell
(brain, skull and scalp) are constant. This led to the development of the three
dimensional finite element methods (FEM), which appear able to measure the entire
head volume at several millimetre resolution, thereby accounting for fluid-filled spaces,
local inhomogeneities and anisotropies arising from white matter fibre tracts (George et
al. 1995; Kutas et al. 1998). Hence, FEM would provide a rather powerful approach to

solving the forward problem.

2.3.2. The inverse problem

The deduction of neuronal currents from measured external electrical potentials or
magnetic fields is what is known as the inverse problem. Helmholtz (1853) was
amongst the first to show that no unique reconstruction seems to exist for a current
density distribution in a volume conductor for a given electrical potential distribution in
the surface of a conductor. Consequently, there is no unique solution known to
overcome the inverse problem (e.g. Williamson & Kaufman 1990; Himildinen et al.
1993; Hari, Levaenen & Raji 2000). Suggestions that would allow limiting the number
of potential solutions, thereby forming reasonable estimates of source configuration
include imposing anatomical and, or, neurophysiological constraints. Some assumptions
about the source have to be made to address the inverse problem. Consequently, the
validity of the modelling assumptions determines whether or not a solution to the
inverse problem can be regarded as correct, or not. Several techniques have been

applied to the inverse problem, and some will be briefly outlined below.

2.3.2.1 Methods of inverse source solution

2.3.2.1.1. Dipole fitting techniques — current dipole model

If a small area of activated cortex is centred at a particular location, and the observation
point is some distance away, the primary current distribution can be established or

approximated by an equivalent current dipole. However, as brain activity does not really
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exist in terms of current dipoles, the dipole model is only a convenient representation

for coherent activation of larger numbers of pyramidal cells (Baillet, Mosher & Leahy
2001). The popularity of the dipole model is due to the fact that primary current sources
can always be broken down into smaller parts, which then represent equivalent current
dipoles. Here, however, the problem arises that too many small regions and thus their
dipoles would be required to represent a large region of coherent activation, in which
case they would be better represented by a multipolar model (Baillet et al. 2001). In
addition, the dipole model presumes that one or a few dipoles are able to describe
collected data. The procedure to obtain these dipoles involves varying the position and
the moment of a dipole until the squares of differences between the measured data and
the forward solution of the assumed dipole are minimal (for detail see Baillet et al.
2001).

Shortcomings of algorithms for the calculation of dipoles, however, may result
in the dipole position estimated corresponding to local minima, thus, a different position
resulting in smaller minima would have led to a more adequate description of the data.
Additionally, the non — uniqueness of the inverse problem would require an a priori
estimate of the number of dipoles. This estimate could be based on anatomical or
physiological information. Furthermore, decisions would also need to be made
regarding the nature of the dipole, i.e. would a moving, a fixed or a rotating dipole

describe the data best.

2.3.2.1.2. Deviation scan

The deviation scan method is similar to a dipole fit method, but is repeated for a number
of locations. On each location a measure is calculated accounting for the possibility that
a single dipole in that location could account for the measured MEG (or EEG) signal.
The results for the deviation scan are independent, however, hence adding new
information and consequently can be used to verify the dipole fit. The difference
between the measured and forward calculated field need to be determined for each
location, resulting in the square of the inverse of the lowest deviation in the used time
range. The larger this result appears to be, the more likely is it that a dipole at this
location describes the measured activity adequately. The deviation scan can offer
information about the location and number of successively active centres. An advantage

of this method is that a global minimum will always be found, i.e., if a deviation scan

48



shows a “hot spot” that coincides with the location of a single dipole fit, the assumption
that a dipole that a dipole in that location can be measured can be seen as confirmed.
Yet, if several sources are generated simultaneously, results of the deviation scan might
be misleading, i.e. if a global maximum, and thus a more “smeared”, or widespread
pattern would be revealed by the deviation scan, one would need to consider that the
underlying dipole model may be wrong (see Huiskamp 2001, Hamildinen et al. 1993).
In sum, the deviation scan could be seen as providing a confidence interval for a single

equivalent dipole.

2.3.2.1.3. Multiple signal classification (MUSIC)

Multiple Signal Classification (MUSIC) was developed in the array signal processing
community and subsequently adopted for EEG and MEG source localisation (Mosher,
Lewis & Leahy 1992). In its approach it resembles a dipole fit, or dipole sources, most
prominently with fixed orientations, but it can also be extended to moving dipole
methods. It works by searching for sources independent of each other in time, 1.e. at
each location it tests for the presence of a source, and if a source is found present, a
generalised 3 by 3 by 3 matrix is generated, sufficient for the computation of the dipole
orientation (Mosher et al. 1992; Baillet et al. 2001). Once all the sources are found,
time-dynamics are established, i.e. the resulting signal space is used to examine whether
the existence of dipoles is plausible at various time—independent locations. If activity
cannot be assigned to sources at fixed locations it is considered noise, and thus
excluded. If several synchronously active sources are responsible for the recorded
signals then the results of the MUSIC procedure may have to be considered misleading,
i.e. this approach is limited by the fact that it is likely to fail when source are strongly
correlated (Sekihara et al.1994; Mosher et al. 1992). In order to improve the method, the
recursively applied and projected (RAP) MUSIC approach was developed (for details
see Baillet et al. 2001; Mosher et al. 1992).

2.3.2.1.4. Low-resolution brain electromagnetic tomography (LORETA)

This inverse solution method computes a dense 3-D distribution where electric sources

are located at each grid point in the brain in terms of current density values (A/mz). The
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strength and direction of the activity at each of these grid points determine the electric
and magnetic field that can be measured (Pascual-Marqui, Michel & Lehman 1994).
One characteristic of the LORETA linear solution is the proposition that activity at any
voxel must be as similar as possible to the average activity of its neighbouring voxels.
This property corresponds to the fact that neighbouring neurons show more highly
synchronised activity than neurons that are far apart. The intention of LORETA
therefore is to find the smoothes possible solution that can be applied to establish the
optimal and unique 3-D distribution that localises the observed electrical activity in the
brain. The smoothness constraint, however, results in relatively low spatial resolution;
hence in the LORETA method a “blurred-localised image” of neuronal activity is
produced (Pascual-Marqui et al. 1994, p.50). Thus, a low-resolution tomography of
electrical activity at every moment in time is so generated, with the advantage of high
time-resolution of the electric-magnetic signal being maintained. Hence, LORETA
contains sufficient information for the approximate (blurred) determination of a 3-D
source, without the need for any precise a-prior information or constraints.

Experimental evidence in support of LORETA localising neuronal activity with
low errors has been reported by, e.g., Haalman & Vaadia (1998), Menendez et al.
(2001), Pascual-Marqui (1997), Pascual-Marqui et al. (2002), Phillips et al. (2002) and
Sukov & Barth (1998).

Limitations of LORETA are its spatial resolution, yet this could be improved by
combining LORETA and information derived from MRI images. Instead of using a
spherical model, real head shape models would be advantageous. A further shortcoming
relates to the use of analyses that rely on averaging signals across participants, given the
differences in brain and head shapes, and intra-individual functions. This applies to

cognitive tasks, or cognitive processing in particular.

2.3.2.1.5. Distributed source models

Distributed source models do not make any assumptions as to the number of sources
that could be underlying the electrical, or magnetic signals recorded. The basis of this
approach is given by the fact that a volumetric grid of possible locations could first be
produced, subsequently analysed and thus result in an estimated configuration of neural

activity that matches the observed one. Examples of distributed source approaches are
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the minimum norm estimate and beamforming methods such as synthetic aperture

magnetometry (Hari & Forss 1999).

2.3.2.1.5.1. Minimum-norm estimations and minimum-norm least-square

inverse approaches

Minimum Norm Estimation (MNE) approaches are based upon the assumption that
source configurations using the least energy as well as minimising the differences
between measured and observed fields are able to account for the measured data. This
also implies the assumption, or constraint, that the source configurations lay on the most
superficial layer of the source space (Hillebrand et al. 2004).

The MNE is a source reconstruction technique that aims to localise electrical
activity on the human cortex for recordings of magnetic fields outside the head. The
standard approach minimises the current density distribution of an underlying dipole
moment, i.e. a vector field is calculated on a predetermined grid, where each vector
represents a current dipole. As there are, generally, more source locations than sensors,
a problem is inevitable. The standard minimum norm approach considers the current
density distribution with the minimal norm a possible solution. A major disadvantage of
this method is that the reconstructions appear rather smeared (Pascual-Marqui 1999).

The minimum-norm least square inverse approach looks for an inverse solution
that minimises the residual error, such that the sum of squares of the differences
between the measured and predicted field patterns has minimum power among all the
least square solutions (Wang 1993). It requires a-priori assumptions for defining the
source space in which a set of dipoles approximates the primary current distribution.
Additionally, assumptions are also made as to the imaging space being in the same
location as the true source space produced by the magnetic field. This, however, is not
always possible, due to, for instance, co-registration errors. The MNLS approach
requires many sensors in order to obtain an adequately detailed image of the
reconstructed source. However, the source reconstruction approach using MNLS is
biased towards the solutions that occur nearest to the sensors (due to the minimum
norm constraints). Also, for a discrete source the solution appears to be ‘spread out’
resulting in a blurred image of a point source, and consequently leads to difficulties in

interpreting the data (Hari 1991).
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2.4.  Synthetic Aperture Magnetometry

2.4.1. Why choose SAM?

In the past, the analysis of MEG data has been concerned mainly with averaged evoked
response paradigms, assuming that brain activity is time-locked to external events.
While the averaging of MEG (and EEG) signals enhances signal-to-noise ratio, thus
permitting quantitative measures of specific brain activity to be reproducible, only a
small portion of the brain is accessible to this method. The primary and sensory motor
areas activate synchronously with external events; yet, areas implicated in the
processing of higher cognitive functions have more inconsistent latencies. Therefore,
averaged signal of time-variable events would not be able to accurately reproduce the
character of their sources (Vrba & Robinson 2001). Partly due to these reasons and
because of the development of whole-head MEG sensor arrays, three dimensional
source estimation methods have been applied more widely. One such method is
Synthetic Aperture Magnetometry (SAM), which is appropriate for the analysis of non-
averaged MEG signals and provides exceptional spatial resolution without a-priori
specification of the number of active sources (Vrba & Robinson 2001; Cheyne, Barnes
Holliday, & Furlong 2000).

SAM attempts to explain only parts of the data that it could explain. SAM is an
adaptive, minimum variance beamformer technique, analogue to those used for
achieving high selectivity from radio antenna arrays (Vrba 1997). Beamformers
construct a spatial filter for a selected point in space (target voxel) such that the filter
output is a linear combination of the measurements over time, with a weight vector
being represented for each target voxel also. The weight vector is determined by
minimising the source strength power. The SAM beamformer is four-dimensional as it
is sensitive to both voxel location and source orientation, thus, exhibiting better spatial
resolution than conventional beamformers (Vrba & Robinson 2001). Since signal to
noise ratio decreases with increasing source depth, the influence of uncorrelated noise
projected by the beamformer also increases. Therefore it would be advantageous to use
the ratio of the estimated source power to the estimated projected (uncorrelated) noise
power for constructing images of source power over large areas of the brain (Van Veen,

Van Drongelen, Yuchtman, & Suzuki 1997). Differences in source power are calculated
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2.4.2. Advantages of beamforming approaches

Beamformer techniques are performed on the data’s co-variance matrix, and can thus be
used to localise event-related desynchronisation (ERD) and event-related
synchronisation (ERS) (further described in section 2.5). There is no need for averaging,
thus, brain responses that are poorly time locked to the stimulus presentation can be
studied. This is particularly advantageous for the investigation of higher cognitive
functions. The beamformer removes signals that are not from the target location thereby

increasing the signal-to-noise ratio for the region of interest.

2.4.3.  Group MEG imaging

2.4.4.2. Why do group studies

Group studies are performed when “typical” characteristics of a population are
to be investigated in order to establish qualitative aspects of normal functional anatomy
or processing, while allowing for the fact that in some volunteers this effect might not
be observed (Friston, Holmes & Worsley 1999). Such inference could be regarded as
sufficient when trying to characterise generic aspects of human functional processing.
Knowing that such characteristics are typical is more useful than not knowing this fact.
However, when the aim is to make inferences at the population level, studying
participants from that population could give rise to the problem that activation could be
assumed significant across a group when, in fact, it might be due to only a couple of
participants within the sample. Therefore, Friston, Holmes & Worsley (1999) proposed
that inferences about an individual or a group, require the computation of average
activation to the within—subject variability. To make an inference about the population
from which an individual has come, average activation has to be compared to the
variability of that activation over participants. In addition, group studies are
advantageous if the research interest is concerned with higher cognitive functions. In
such tasks, activation is likely to be more widely distributed across the volunteer’s
brain, and individual signals could be relatively weak. Hence, to infer some spatial
characteristics to a functional task, the results obtained for individual participants need

to be considered as part of a group.
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2.4.5.  Spatial Normalisation

2.4.5.1.What is spatial normalisation and what does it achieve?

Spatial normalisation is the registering of participants’ brain images to a template brain
image for statistical investigation. Inter-subject averaging to allow determination of
group results, using, for instance, statistical parametric mapping (SPM), requires the
images to be transformed into some standard stereotactic space (e.g. Friston, Ashburner,
Frith, Poline, Heather & Frackowiak 1995). When warping a series of images to match
a template, however, it is inevitable that volumetric differences will be introduced into
the warped image. For example, if the temporal lobe of a volunteer has half the volume
of that of the template, then its volume will be doubled during spatial normalisation.
This will provide a potential confound for group studies. In addition, many sulci are
common to all brains, but this is not the case for all. Generally, the primary sulci, which
are formed earliest and tend to be quite deep, are the ones that are the most consistently
present. Later developing ones are much more variable. Hence, parts of some sulci can
be objectively matched, whereas others simply cannot (Ashburner & Friston 2001).
Classical voxel-based-morphometry (VBM) assumes that the warps were sufficiently
smooth hence; these volume changes could be ignored. Advances in normalisation
techniques now allow for high-resolution warps.

There is a near infinite number of ways in which the shapes of brains can differ
among populations. Thousands of parameters would be required to precisely describe
the shape of a brain at the resolution that a typical structural MRI is capable of.
Smoothing the data by e.g. 20mm will make the tests more sensitive to regional
differences in structures of about 20mm extent. Additionally, smoothing helps to
compensate for inexact spatial normalisation (Ashburner & Friston 2001)

(for more detail see Friston, Ashburner, Frith, Poline, Heather & Frackowiak 1995).

2.4.5. Group SAM

Using SAM, SPMs are generated for each individual, yet, neither statistical inferences
can be inferred nor assumptions be drawn as to how this data relates to groups or
samples of population (see Section 2.4.4.2.). Hence group statistics need to be

investigated, and this can be achieved using Group SAM.
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Once SPMs are obtained for several participants, these can be averaged to reveal

shared brain responses to a particular task. This is particularly advantageous when
investigating cognitive task as here brain responses might be fairly weak or widely:
distributed across the cortex (see Section 2.4.4, and Friston, Holmes & Worsley 1999),
thus detection might be enhanced when generated across a number of participants. In
order to determine group results, the individual SAM images need to be spatially
normalised (see above). This can be achieved using SPM99. Once each individuals
SAM data is normalised, t images of group averages are created. These can be
visualised using mri3dx, using a template brain (Singh, Barnes, Hillebrand, Forde &

Williams 2002).

2.4.6. Statistical non-Parametric Mapping

Statistical non-Parametric Testing (SnPM) is a method to provide statistical
interference, or support for the interpretation of tomographic data. It is a nonparametric
alternative to SPM, based on permutation test theory. Permutation tests quantify those
results that have not been expected (“surprise outcomes”) in terms of probability, and
establish significance levels for these. Permutation tests may require weak distributional
assumptions, concerned with degrees of exchangeability. Non-parametric approaches
work on the basis of randomisation testing, i.e. group differences can, for instance, be
tested against 1500 permutations (randomly chosen group configurations), the multiple
comparison problem implicit in the standard voxel-by-voxel hypothesis testing
framework is inherently accounted for (for detail see Nichols & Holmes 2002; Holmes
et al. 1996).

Using SnPM, analysis can be performed at voxel level using a multiple-subject
single condition design. Here, tests can utilize both, the unsmoothed T-statistic and a
pseudo-T-statistic. Analyses can also be performed at cluster-level, to assess whether
the size of clusters are significant. Using non-parametric permutation testing, cluster-
level inferences estimate whether a large connected cluster of moderately high t-values
may still reach statistical significance against the null hypothesis due to size, even if no
individual voxels reach statistical significance. Spatial resolution however is being
traded in against sensitivity.

The cluster—level analysis proceeds in the following way: a t-map is being

generated at each permutation iteration and then thresholded at a certain value (primary
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threshold). Subsequently, the largest connected clusters, which exceed this threshold,

are determined, generating the permutation statistic. At the end of the permutations, a
cluster-size threshold can be set to infer the probability of finding a connected cluster
greater than the set threshold. By chance this would be less than 0.05. Within the
unpermuted t-map, clusters, which appear to be spatially larger than the set threshold,
are hence significant at p < 0.05. Variance smoothing with a Gaussian kernel width of
20mm is commonly used in our laboratory (for details see Singh, Barnes & Hillebrand

2003).

2.4.7. Time Frequency Representations

To obtain information that cannot readily be seen in the raw signal, mathematical
transformation can be applied to extract additional information in time and frequency
domains. The most popular used transformation is the Fourier Transform (FT). Other
transforms that have successfully been applied are Hilbert Transform, Short-Time
Fourier Transform (STFT), Wigner Distributions and Wavelet Transform (WT). Each
of these techniques has their own area of application, their advantages and
disadvantages. The FT and WT, for instance, can be regarded as reversible transforms.
When the time localisation of a spectral component is of interest, and often it is
beneficial to know time intervals of particular spectral components, Time Frequency

Representations (TFR), such as WT are needed.

2.4.7.1. Fourier Transform

When using FT, signals get decomposed to complex exponential functions of different
frequencies. These individual signals still represent the ONE original signal, but now
correspond to different frequency bands. In a 3-D representation, the time by frequency
by amplitude interactions would be able to show which frequency exits at which time

(for detail see http://users.rowan.edu/~polikat/ WAVELETS/WTpartl.html).

Here, however, a first drawback has to be mentioned, namely that of Heisenberg’s
Uncertainty Principle - it seems impossible to accept that something can be at a same
time, a particle (an entity confined to a small space) and a wave (spread out over a large
region of space (Capra 1983). Thus, strictly speaking, we cannot, know exactly what

frequency exists at what time-instance, but only what frequency-bands, or spectral
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components, exist at what time-intervals. This represents a problem of resolution (for

detail see http://users.rowan.edu/~polikar/WAVELETS/WTpart1.html).

2.4.7.1.1. Short Time Fourier Transforms (STFT)

STFT represents a revised version of FT. The difference between FT and STFT is that
in STFT the signal is decomposed into signals so small that they can be assumed to be
stationary. Hence instead of a time — function, a window function (w) is chosen. The
width of w represents the segment of the signal, which is assumed stationary. In a
nutshell, the STFT of a signal is FT of the signal multiplied by the window function (for
detail see http://users.rowan.edu/~polikar/ WAVELETS/WTpart!.html).

STFT obtains peaks, which correspond to different frequency components, but
unlike in FT the peaks are located at different time—intervals. Hence it can be
established what frequency components are present within the signal and where they
are located in time. Yet, the problem of resolution remains. As the STFT window is
finite, the frequency resolution gets poorer. The time-resolution gets better when the
time windows get narrower, yet at the expense of the frequency resolution. An
alternative was found in wavelet transforms (WT), which appears able to solve the
resolution problem at least to some extent

(http://users.rowan.edu/~polikat/ WAVELETS/WTpart].html).).

2.4.7.1.2. Wavelet Analyses: Continuous Wavelet Transform (CWT)

CWT was developed to overcome some of the shortcomings of STFT as outlined above.
The transformation procedure is similar to that of STFT, i.e. a signal is multiplied by the
function (wavelet). The transform is computed separately for different segments of the
time-domain signal.

Wavelet means small wave, and the smallness refers to the condition of the window
function being of a finite length. Wave also refers to the condition of the function being

oscillatory (for details see http://users.rowan.edu/~polikar/ WAVELETS/WTpartl .html).
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2.4.8. Problems of sulcal and gyral sources

It has often been stated that MEG is insensitive to the detection of activation in deep-
seated structures, and also to the detection of sources of radial orientation (e.g. Hari
1993). This has been attested by the observation that magnetic fields tend to drop when
the distance to the electrical activity increases. In addition, as mentioned before it has
also been observed that when using a spherical head model, currents of radial origin do
not produce a magnetic field (Helmholtz 1856). However, it has been demonstrated that
deeper sources can be detected (e.g. Tesche 1996) although the accuracy has been
traded in. Research by Hillebrand & Barnes (2003), based on realistic cortical structures
indicates that the sensitivity of MEG is not limited by source orientation, i.e. radial
sources could be detected, and that source depth is not a limiting factor with respect to
sensitivity and accurate detection as long as there is sufficient signal to noise ratio.
Thus, the recording of longer epochs or more trials would prove advantageous if the

regions of interest in a functional imaging study are deeper-seated structures.

2.5. Data Interpretation

2.5.2. ERS and ERD

As outlined earlier, SAM can be applied to non-phase-locked data. It therefore renders
itself suitable to investigate cognition-related changes in oscillatory power (Basar et al.
2001; Singh et al. 2002).

When performing specific tasks, e.g. sensory, motor or cognitive tasks, task
related changes would occur in specific frequency bands, in appropriately localised
areas of the brain. These changes in oscillatory power correspond to either decreases of
power in a specific frequency band, or increases, and are hence known as Event —
Related Desynchronisation (ERD) and Event — Related Synchronisation (ERS),
respectively (Pfurtscheller & Lopes da Silva 1999).

These changes can either be phase — locked to the stimulus onset, or time — but
not phase — locked to the stimulus. ERD and ERS are generated by changes in one or
more parameters that control the oscillations of neuronal networks, and reflect changes

in activity of local interactions between main neurons and inter-neurons that control the
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frequency component of the ongoing EEG or MEG. Thus, ERD and ERS are highly

frequency band specific, and the frequency band of interest needs to be stated when
referring to ERD and ERS (Pfurtscheller & Lopes da Silva 1999).

The observation that certain events can block, or desynchronise, ongoing (alpha)
activity was first reported by Berger in the 1930s. He noticed that these changes were
time — locked to the event, but not phase — locked, hence, linear methods such as
averaging would not have been able to detect these changes (Pfurtscheller & Lopes da
Silva 1999).

ERD is connected to increased activation in a given cortical area, and is thought
to be related to task-related, or transient, uncoupling of this area from a larger cortical
network. ERS, on the other hand, seems to be linked to reductions in activation of task-
irrelevant areas, possibly associated with inhibition (Neuper & Pfurtscheller 2001).

A disadvantage when describing ERD and ERS within the data is the fact that
these phenomena are highly variable between participants (Singh et al. 2002). Studies
by Singh et al. (2002) investigating cognitive tasks, such as letter fluency and biological
motion have reported significant oscillatory power changes, which can be described as
task — related ERD. Here the question may be raised as to why a cortical area is
described as being ‘active’ when in response to a given task oscillatory power
decreases? Singh et al. argued that consistency across different functional imaging
modalities (e.g. use of metabolic imaging techniques as in fMRI and PET) with respect
to the detection of “active’ areas requires the acceptance of increases in local
haemodynamic responses might reflect local increases in mean neuronal activation.
Hence, a link is suggested to exist between ERD and increases in neuronal activity as
indicated by increases in the Blood — Oxygenated Level Dependant (BOLD) response.

Studies that look into neuronal modelling and simulations have suggested that
increases in the mean level of neuronal activation in specific areas may result in
decreases of oscillatory power, i.e. ERD, in particular at low frequencies, yet,
simultaneous increases in oscillatory power, i.e. ERS, may also be observed in high
frequencies (Pfurtscheller & Lopes da Silva 1999).

However, increases in cortical power have been observed in for instance gamma
frequencies where bursts of increased activity have been reported in response to the
successful perception of ambiguous figures (e.g. Tallon-Baudry et al. 1997, Rodriguez
et al. 1999). The debate regarding the phenomena of ERD and ERS will be considered

throughout and re-visited in the general discussion (see section 7.2.1).
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2.5.1.1. Quantification of ERD and ERS in time and space

The signals recorded by EEG and MEG can be quantified and subsequently be
displayed relative, as percentage, to the power of the same EEG / MEG derivations
recorded during a reference or baseline period (i.e. before the occurrence of the event):
ERD % = (A — R) / Rx100 (A is the power in the frequency band after the event,
whereas R is the power in the frequency band before the event).

Event — related changes in EEG and MEG signals need time to develop (and recover);

this seems particularly true for alpha (Pfurtscheller & Lopes da Silva 1999).

2.6.  Relationship to other functional imaging techniques

2.6.1. EEG

2.6.1.1. Relationship to EEG measurements

There appear to be more similarities than difference when comparing EEG to MEG.
However, the generated maps in MEG and EEG do differ and it has also been suggested
that EEG maps may indeed reveal additional source of cortical activity (Cohen & Cuffin
1983). EEG measures the difference in voltage or potentials between electrode sites
across the scalp, using a reference electrode to provide for a comparison point that
allows comparison to a potentially electrically silent point.

The differences in conductivity of brain tissue, skull and scalp are thought to
significantly influence scalp-recorded electric signals, yet they do not affect the
recorded magnetic field as intensely as they disturb EEG pattern. Hence, scalp
potentials are untrue reflections of the brain’s electrical currents, or events; yet,
magnetometers measure the absolute magnitude of the magnetic field without the need
for a reference point (e.g. Himéildinen & Sarvas 1989; Hari 1993). Thus, an advantage
of MEG over EEG is the fact that the neuromagnetic signal can penetrate the skull and
scalp without distorting the signal. Therefore, the spatial resolution is higher in MEG
than it is in EEG.

A further difference lies in the fact that MEG and EEG measure different

neuronal population. In EEG, dipoles oriented in any directions can be measured, yet
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EEG recordings are more sensitive to radially oriented dipoles (even in the presence of
tangentially oriented sources) (Cohen & Cuffin 1983). MEG signals on the other hand
are more sensitive to tangentially oriented sources, or dipoles, as in the spherically
symmetric volume conductor a radially oriented dipole does not produce a magnetic
field outside the volume conductor (DeMunck 1989). When tangential current sources
are however located close to the surface of the brain, MEG-based dipole modelling is an
adequate tool for locating the sources. Therefore, the simultaneous recording of EEG
and MEG would allow for the studying of deep and radial sources as well as the
localising of tangential components of brain activity (Huotilainen et al. 1998).

EEG, compared to MEG, has a low spatial resolution, which is thought to be due
to activity being recorded at few cortical sites. However, MEG and EEG seem to have
comparable temporal resolution. 1t is difficult to see how EEG could complement the
MEG methodology. However, as noted above, the reduced sensitivity observed to radial
sourced in MEG does not provide a problem for EEG recordings, where these can be
assessed effectively with EEG. In addition, MEG recordings cannot be undertaken on
people who have metal implants, who can however take part in EEG investigations. An
increased user-friendliness in EEG operations (particularly acquisition) and advances in
its transport possibilities allow for a more mobile application for ambulatory (clinical)

as well as research purposes (Rippon 2006 in press).

2.6.2. fMRI and PET

As stated before, MEG provides a direct measure of neuronal activity by estimating the
magnitude and direction of the current flow. In contrast, fMRI and PET are based on
correlates of neuronal activity such as the haemodynamic or metabolic changes and are
thus more secondary consequences to the changes observed in cortical neural activity.
This implies the assumption that the local metabolic changes are indirectly related to the
increases in neuronal function. Therefore, fMRI and PET are thought to be slow and
indirect measures of electrical activity. These techniques are also thought to be
somewhat more invasive. FMRI subjects participants to high static magnetic fields and
a small alternating radio-frequency field, whilst using a large coil to detect weak radio
signals arising from the head. PET, on the other hand, requires the injection of
radioactive tracers into the participants’ bloodstream. The blood oxygenation level

dependant in fMRI is the method for visualising the haemodynamic change, using the

62



level of blood oxygen as an indicator of increases in activity. The BOLD signal

increases when the oxygenation of the blood decreases (Aine 1995).

The spatio-temporal resolution of the fMRI signal needs to establish whether the
BOLD signal reflects the changes of blood flow in large vessels or in the finer mesh
structures of the vascular network. This is important, as it would have implication for
the spatial resolution of fMRI. Oxygenation levels in large veins could reflect activity
that originates from large areas of brain. If this is the case, average activity would be
represented over these areas, resulting in the neural resolution being relatively poor.
Evidence has been reported by Engel et al. (1997) who localised the fMRI signal with a
precision of 1.1mm, thereby suggesting that the signal seems to arise from vessels that
serve a small region of the brain.

The temporal resolution of the fMRI signal is not ideal for the accurate
resolution of neural response in the sub-millimetre range, given that they are secondary
phenomena during which many cortical responses take place. The temporal resolution
of fMRI compared to MEG is approximately 1s, although fMRI data can be collected at
50ms to 100ms time-intervals. For PET, the temporal resolution is in the tens of seconds
range.

Comparing fMRI and PET to MEG again highlights some of the advantages of
MEG, such as its non-invasiveness, its direct measurement of electromagnetic
responses, its excellent temporal resolution, and its adequate spatial resolution.
However, the spatial resolution does not match that of fMRI and PET, but advances in
the application of beamformer techniques have lead to improvements in spatial
resolutions. Drawbacks, however, are the non-uniqueness of the inverse problem, and
the fact that the MEG signal can be easily contaminated by noise. The latter, however,

can be overcome by the use of magnetically silent environments.
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2.7.  Applications of MEG to face perception research

MEG allows the precise location of neuronal activity. While morphological observation
of the brain has progressed with MRI to the point of viewing cerebral changes directly
in full detail, the functional observation of brain activity is still incorrect and imprecise.
Besides classical EEG, methods of functional observation such as single photon
emission CT (SPECT), positron emission CT (PET) and fMRI — only detect neuronal
activity indirectly from changes in blood flow, metabolism or synaptic activity.

Neuronal activity may correlate generally with those factors but discrepancy is likely. It
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has been shown in chapter | that models and theories exist that not only link the

processing of faces and facial affect to specific regions within the brain (see section
1.4.7 and 1.4.8) but also to latencies (see section 1.5). Less evidence exists which

associates the processing of faces to specific frequency bands.

As has been shown in chapter 2, MEG can provide precise temporal resolution that
allows the exploration of the timing of basic neural processes at the level of cell
assemblies. The application of MEG to (low) sensory processing has shown its
usefulness in the investigation of spatial, temporal and frequency specific information.
Application of the technique to higher level cognitive processes such as language
processing and the processing of visual stimuli such as faces (e.g. Sams et al. 1997; Liu,
Harris & Kanwisher 2001) has provided some insight as to the advances that can be
drawn from the investigating the temporal characteristics associated with the processing

of face.

The detailed processes that characterise face perception and the processing and
identification of facial emotions require assessments that allows for the quantification of
subtle differences that occur in space, time and specific frequency bands. SAM does not
rely on a-priori assumptions about the number of active sources (as do dipole methods),
it does not rely on signal averaging and is able to analyse non-phase locked stimuli.
Using SAM, task-related changes of spectral power can be obtained in terms of
frequency specific increases or decreases of event-related spectral power. Therefore,
MEG and SAM were selected to investigate face perception (chapters 3 and 4) and
facial affect (chapters 5 and 6).
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Chapter 3 Does the processing of faces differ from that of houses?

3.1. Introduction

3.1.1. Is face processing special?

Faces are special visual stimuli and the nature of the neural substrates associated with
their processing is the subject of considerable debate. A central issue concerns whether
there are domain specific mechanisms dedicated to face processing alone (e.g.
Kanwisher, McDermott & Chun 1997) or whether the processing of faces is merely
reliant upon more domain-general mechanisms which are also capable of processing
non-face objects (e.g. Gauthier et al. 1999; Tarr & Gauthier 2000).

Evidence from neurological patients indicates the existence of a double
dissociation for face and object recognition, and functional imaging data from healthy
controls augments these claims (Kanwisher et al. 2000). A number of studies have thus
sought evidence for the differential processing of faces and control stimuli. Haxby et al
(1994) and Sergent, Ohta & McDonald (1992) have found occipito-temporal regions
such as the fusiform gyrus are active selectively to faces, and Puce et al. (1996);
McCarthy et al. (1996) and Kanwisher, McDermott & Chun (1997) reported activation
within the fusiform as being at least twice as large in response to faces than to letter
strings or non-face objects. Face-selective responses have been described in ERP
studies (Bentin et al. 1996), in MEG studies (Liu et al. 2000), and in studies employing
intracranial recordings (Allison et al. 1999; McCarthy et al. 1999; Puce, Allison &
McCarthy 1999). This evidence seems on the one hand quite compelling, but it has also
been argued that apparently face specific mechanisms are not face specific per se but
specific for making fine-grained discrimination between visually similar exemplar
categories (e.g. Kanwisher et al. 2000; Gauthier et al. 2000).

Houses can be seen as similarly complex non-face objects, which are
encountered with equal regularity as faces. A number of studies have been carried out
investigating processing differences related to the processing of these stimulus

categories. These will now be considered.
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3.1.1.1. Face and house processing

3.1.1.1.1. Spatial correlates of face and house processing

Several neural regions have been implicated in the processing of faces, most
importantly the fusiform gyri, the superior temporal gyri, the inferior occipital gyri,
inferior frontal gyri, lingual gyri and the amygdala (Joseph 2001; Blonder et al. 2004).
The ‘Fusiform Face Area’ (FFA) (Puce et al. 1995a; Kanwisher, McDermott & Chun
1997) has been identified in numerous studies as responding most strongly to faces
(Allison et al. 1994; Courtney et al. 1996; Haxby et al. 1991; 1994; Kanwisher,
McDermott & Chun 1997; McCarthy et al. 1997; Puce et al. 1995; 1996). Others,

however, have argued that the FFA’s role is concerned with expertise in recognising
distinctions between subordinates in a class (e.g. Gauthier et al. 1999; 2000; Blonder et
al. 2004). Another theory argues that the processing of faces is accomplished by a
distributed network incorporating the whole ventral temporal cortex and thus cannot be
confined to anatomically segregated regions (Ishai et al. 1999). Chao et al. (1999a) who
investigated the processing of faces and non-facial control stimuli reported activation to
facial stimuli (human and animal) within the lateral fusiform gyrus bilaterally and in the
right posterior superior temporal sulcus relative to pictures of houses.

Blonder et al. (2004) conducted a study to investigate further the role of the FFA
with respect to the processing of facial stimuli. They presented participants with
photographs of human and dogfaces, and of houses, using scrambled images as control
conditions. Stronger activation to both face conditions compared to houses was found in
lateral fusiform gyri, in BA37 (bilaterally), in middle and inferior occipital gyri, in
BA18 and BA19 (bilaterally). Significant responses to human faces only were recorded
in parahippocampal / amygdala regions. However, in the medial fusiform gyrus, in
BA19, the most significant response was recorded to houses, and then to dogfaces. No
significant activation could be found for the human face stimuli. In addition, significant
responses to houses but to none of the face stimuli were recorded in the posterior
cingulate and in parahippocampal/medial fusiform areas (BA19 and BA37)
(*“Parahippocampal Place Area” - Epstein & Kanwisher 1999), as well as the lingual /
medial fusiform areas (BA19), the superior occipital gyrus (BA19) and the posterior
cingulate (BA30).
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Thus, the lateral fusiform regions appear to be sensitive to facial stimuli but as

activation within this region was also reported to house stimuli, it cannot be ascertained
that the lateral fusiform regions are selective to faces only. A further study that used
face and house stimuli to differentiate the neural processing mechanisms of face and
object recognition reported activation in the right lateral fusiform gyrus in response to
faces, but bilateral regions within the medial fusiform gyrus and the parahippocampal
gyrus were also activated to a stronger degree in response to houses than faces
(Serences et al. 2004). Serences et al. used a perceptual switching paradigm, i.e.
participants saw the image either as a face turning into a house or vice versa. When
participants noticed the change in the perception of the stimulus, the BOLD response
showed an intriguing pattern with regards to its time-course. When a switch occurred
from the (non-preferred) house stimuli to the (preferred) face stimuli, the BOLD
response within right lateral fusiform areas increased, whereas the BOLD signal
decreased within these areas when the switching went into the opposite direction, i.e.
when the preferred face stimuli turned into house stimuli. In addition, the shifting of
attention between the house and face stimuli was associated with stronger BOLD
responses in the right superior frontal sulcus and precentral gyrus, as well as within the
medial superior parietal lobule including the cuneus, bilaterally within the precuneus
cortex and the intraparietal sulcus, and within the left lingual and fusiform gyri
(Serences et al. 2004). These findings are in line with previous research that has
associated the processing of house stimuli with increases in activation (BOLD) in
parietal and superior frontal regions (e.g. Ishai et al. 2000; Sala et al. 2003).

A further investigation of face and house recognition yielded preferential
activation to houses within the collateral sulcus and the transverse occipital sulcus
whereas the presentation of faces led to activation within the posterior fusiform gyrus,
the inferior occipital gyrus and the superior temporal sulcus (Mukamel et al. 2004).
They again used fMRI and conducted a region of interest analysis based on previous
findings by e.g. Kanwisher et al. (1997), Ishai et al. (1999), Hasson et al. (2003),
Epstein & Kanwisher (1999) and Maguire et al. (2001). Thus, assumptions as to the
location of activated sources need to be considered when interpreting their findings, as
well as the possibility of activation within areas that have not been included in their

analytical approaches.
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3.1.1.1.2.Temporal sequence of face and house processing

It is possible that face versus house processing could be differentiated in the
temporal domain. Eimer (2000b), using ERP techniques, reported a longer latency
response to house than to face stimuli, 200ms as compared to 150ms.

Ishai et al. (1999, 2000) investigated the differential effects of face and non-face
(i.e. house and chair) stimuli on patterns of neural activity in occipital and temporal
regions. They observed activity across a distributed network including the fusiform gyri,
inferior occipital and midoccipital gyri as well as inferior temporal regions. In addition,
they reported significantly different responses to houses, faces and chairs. Houses
showed greater activation (BOLD responses) in ventral temporal regions such as the
medial fusiform, and in dorsal occipital regions, whereas faces revealed significantly
larger BOLD responses in lateral fusiform gyri. Using the data collected by Ishai et al.
(1999), Mechelli et al. (2004), using dynamic causal modelling (DCM), reported
additional activation to face, house and chair stimuli relative to scrambled control
images within superior and inferior parietal areas. In addition, they also reported
intrinsic connections from V3 to parietal areas as well as to more category-responsive
areas (e.g. for faces — lateral fusiform, for houses — medial fusiform); and also from the
parietal areas to the category responsive areas (for details see Mechelli et al. 2004).

As evidenced in ERP studies, it is predicted that the main effects of activation,
i.e. changes in cortical oscillatory power, will be observed within the first 500ms
following stimulus onset, with peaks of amplitude change to faces occurring at
approximately 200ms (equivalent to the face-specific N170). Differences in amplitude
at the face-specific latencies (e.g. 150-200ms as in Eimer 2000b) for faces compared to
houses were reported for temporal sites only; at occipital sites such differences did not
reach significance. Thus, the longer time window was included to investigate if such
amplitude differences would occur at later stages, due to the lesser salience of house
compared to face stimuli. In addition, Pierret, Peronnet & Echallier (1994) reported
positive effects at occipito-temporal sites for latencies of 240 to 450ms, as well as
negative effects at posterior sites for latencies of 500 to 700ms in response to objects
that differed in size.

The differential processing of face and house stimuli has not been widely
explored in terms of frequency specificity. The networks involved incorporate relatively

widespread cortical areas, so it is predicted that variations could be seen in the beta
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waveband (Von Stein and Sarnthein 2000). Rodriguez et al. (1999), however, point out

that gamma phase-synchrony might also be involved in such a task which, as the basic
process may involve discrete areas of localised activation, but additional task demands
may require larger-scale links “gamma-phase synchrony (and desynchrony) which
could be viewed as a mechanism that subserves large-scale cognitive integration”
(Rodriguez et al. 1999 p433). They first observed an induced-gamma response as
showing increased synchrony to (perceived) Mooney faces (compared to non-perception
Mooney faces, i.e. those seen as meaningless shapes) at latencies of approximately 200
to 260ms. These findings as well as the observations by Tallon-Baudry et al. (1998) of
gamma increases in response to the perception of a gestalt-like stimulus would lead to
the prediction of (differential) involvement of gamma frequencies in the perception of
face, but also house stimuli.

To investigate whether or not there are specialised regions and mechanisms that
are differentially involved in the processing of faces and objects, we carried out a study
in which stimuli of faces and houses were used as well as scrambled versions of each to
allow comparison. Given previous literature it emerged that the majority of studies
favoured Region of Interest (ROI) approaches. To improve on this, i.e. to rule out the
non-detection of potentially active areas, the following investigation aimed to explore
the contributions, or activation across the whole of the brain. However, the results from
previous findings were used to guide our hypotheses. It was predicted that the
presentation of faces as well as houses will lead to activation within occipito-temporal
regions (e.g. Ishai et al. 1999), including the lateral fusiform and inferior occipital gyri
for faces (e.g. Chao et al. 1999a, b; Blonder et al. 2004), whereas for houses compared
to faces differential patterns of activation within the temporal but also within parietal
areas are anticipated. In addition, differential patterns of oscillatory power are predicted,
with face specific processing taking place within 0 to 200ms — as indexed by the face
specific N170 — whereas object processing of complex non-face stimuli such as houses
would be predicted to occur within a time-window of 0 to 500ms as suggested by the

findings of e.g. Pierret et al. 1994.
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3.2. Method

3.2.1. Materials and Participants

Stimuli were selected from the Ekman and Friesen (1976) series of Pictures of Facial
Affect, which contains black and white photographs of facial expressions of 10 actors
(six female). The photographs have been digitally altered to depict only the contour of
the face, i.e. hair, ears etc. are removed. The images selected for the current
investigation comprised neutral expressions only. As ten neutral expressions (six
female, four male) were too few to bear sufficient power all ten face stimuli were
repeated six times, yielding 60 face stimuli. Fifteen stimuli of houses were chosen,
taken from the same set of house stimuli as used by Ishai et al. (1999, 2000). These
were repeated four times, also yielding 60 house stimuli. In addition, scrambled
versions of each stimulus type were used. To create scrambled control images, pixels
were randomly chosen and reassembled using Adobe Photoshop CS. For stimulus
display Presentation software (http://nbs.neuro-bs.com/presentation/download) was

used.

Nine healthy participants (four female, all right handed) gave consent to take part in the
investigation. The average age of the participants was 28.2 years (range 24 to 37). The
Aston University Human Sciences Ethics committee approved the study. Participants
were seated within a magnetically shielded room, and viewed, through a mirror, a
monitor, placed outside the shielded room, on which the stimuli were presented. The

distance between the participants and the monitor was approximately 2m.

3.2.2. Experimental Paradigm

On each trial, participants were asked to fixate on a white circle for 1500ms before a
target stimulus was presented for 200ms. The fixation point then returned and was
followed by a second image also presented for 200ms. Participants were instructed to
indicate as soon as they knew whether or not the two stimuli presented were identical or
not by pressing the appropriate button on a response box. For stimuli to be regarded
identical, the two faces had to be of the same identity, or the two houses had to be

exactly the same. The pairs presented contained face and face stimuli, house and house
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over the entire brain at Smm resolution to localise power changes in response to the face
stimuli and the control stimuli. Positive values are interpreted as relative increases in
power, also referred to as ERS, or increases in event related spectral power (ERSP) and
negative values are interpreted as relative decreases in power, also referred to as ERD,
or decreases in event related spectral power (ERSP).

Using SPM99 (Friston et al. 1995), the Magnetic Resonance Image (MRI) of
each participant was spatially normalised to a template space. The resultant
normalisation parameters were applied to the volumetric SAM images.

Thus, all SAM images (nine participants, five frequency bands, two time-
windows and six comparisons: face vs. baseline; house vs. baseline; scrambled vs.
baseline; face vs. house; face vs. scrambled, house vs. scrambled) were then in the same
three-dimensional coordinate space allowing group analyses (Singh et al. 2002).

To test specific predictions regarding the differential activation of face
compared to non-face stimuli, direct comparisons are drawn between faces and houses
and faces and scrambled images, as well as indirect comparisons of faces to baseline.
Using SnPM (Holmes et al. 1996; Nichols & Holmes 2002), analyses of significance
were performed at voxel level and at cluster level using a multiple subject single
condition design. Variance smoothing was performed using a Gaussian kernel (¢ =
20mm). Using non-parametric permutation testing, cluster-level inferences estimate
whether a large connected cluster of near significant t-values may reach statistical
significance. Voxel level inferences were estimated additionally. Spatial resolution
however is being traded in against sensitivity (for details see Nichols & Holmes 2002;
Singh, Barnes & Hillebrand 2003).

For the visualisation of the results on a template brain, SPM was used as well as

mri3dX (http://www/aston.ac.uk/Ihs/staff/singhkd/mri3dX/). In all figures the left side

of the brain is displayed on the left side of the image, and coordinates provided are
stated in Talairach & Tournoux (1988) version. In the figures presented, increases in
cortical power are indicated by colourscale of red — orange — yellow, with yellow
regions being the most significantly active areas. Decreases in cortical oscillatory power
are indicated by a colourscale of blue — pink — white, with white regions being the most
significantly active areas (see colour bar on page 74, FigureB).

To investigate the time course and frequency specificity of the obtained
activation within significant regions, time-frequency representations (TFRs) were

generated using Morlet wavelet analysis (Tallon-Baudry et.al. 1997). The wavelet
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faces condition. TFRs were generated for each individual and to infer group effects,

these were averaged.

Significant increases in cortical power were demonstrated for the right angular gyrus
within the right parietal lobe for beta, within the 0 to 500ms time-window (see figure 3-
10). The Mann Whitney Group TFRs for a voxel placed within this region revealed
prominent increases in cortical oscillatory power at latencies of approximately 150 to
250ms, for frequencies of 14 to 19Hz. A further increase in cortical power was evident
between 300 and 400ms for frequencies of 17 to 19Hz. It is also apparent that from
approximately 600ms, the most prominent observations are decreases in cortical
oscillatory power. Figure3-15 also shows Mann Whitney TFRs for two participants to
illustrate individual differences but also common patterns in time frequency analyses.
Participant 1 shows an increase in cortical oscillatory power at almost identical latencies
(150 to 250ms) but at somewhat higher frequencies (17 to 23Hz). Participant 2 shows
the most prominent increases in cortical power at somewhat earlier latencies, 100 to
200ms, and again at higher frequencies (22 to 26Hz) than is evident in the group
representations. In addition, increases in cortical power are also shown (although of less

signal strength) at latencies of 300 to 400ms for frequencies of 15 to 18Hz.
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3.4. Discussion

The aim of this investigation was to contrast the activation and the relative changes in
oscillatory cortical power induced by the presentation of different kinds or categories of
perceptual stimuli compared to that of faces. These were houses and faces, and
scrambled variations of either to provide for a control condition. Analyses were
performed for two time-windows, 0 to 200ms and over a longer time-window of 0 to
500ms. The detailed reporting and discussion of purely house specific findings and
patterns of oscillatory power changes related to the processing of houses was considered

to be beyond the scope of this thesis.

3.4.1. Summary of results

In summary, the comparison of faces to houses, scrambled control images and a pre-
stimulus baseline condition revealed significant increases in cortical power at different
frequency bands and across different time-windows. These were shown most markedly
in parietal and occipital regions but temporal regions were also involved in the
processing of these visual stimuli. To a lesser extent, frontal regions as well as limbic
and posterior regions were recruited in the processing of faces as compared to control
stimuli. An overall bias for the right hemisphere was evident.

Within the 200ms time-window, the comparison of faces to houses revealed
significant increases in cortical oscillatory power within the right parietal lobe, most
noticeably within the angular and the postcentral gyri for beta (see figure3-2). For
gamma, right occipital-temporal regions, such as the cuneus and precuneus cortices and
BA19 showed significant increases in cortical oscillatory power (see figure3-3). Across
the 5-40Hz frequency range, significant increases in cortical oscillatory power were
evident within the right superior temporal gyrus and the right inferior frontal gyrus (see
figure3-4).

The comparison of face to scrambled control images revealed significant

increases in cortical oscillatory power within the right inferior parietal lobule and BA40,
the angular gyrus and also for the right occipital lobe and cuneus cortex in beta (see
figure3-5). For gamma, significant increases in cortical oscillatory power were evident
in the right parietal lobe and the postcentral gyrus as well as within sub-gyral regions of

the left temporal lobe (see figure3-6).
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To assess the responses evoked to faces per se, comparisons were also drawn

between faces and a pre-stimulus baseline period. Here, left limbic and temporal regions

(inferior temporal gyrus) showed increases in cortical power in beta (see figure3-7). For
gamma, occipital regions of both hemispheres showed increases in occipital areas,
notably, the cuneus cortex and BA18 as well as the lingual gyri (see figure3-8).

Within the 500ms time-window, faces compared to houses revealed increases in

cortical oscillatory power in right posterior / occipital regions such as the right inferior
occipital gyrus for alpha (see figure3-9), and increases in oscillatory power for parietal
areas bilaterally, but also within the right angular gyrus and within sub-gyral regions of
the temporal lobe in beta (see figure3-10). For gamma, a network of cortical areas
including precuneus cortex and BA7 of the right parietal lobe but also postcentral gyri
of both hemispheres as sub-gyral regions of the right occipital lobe, the cingulate gyrus
and the limbic lobe showed increases in cortical oscillatory power. In addition, left

inferior frontal gyrus revealed decreases in cortical oscillatory power (see figure3-11).

The comparison of faces to scrambled control stimuli revealed increases in
cortical oscillatory power within the right middle occipital gyrus for alpha (see figure3-
12). For beta, increases in cortical oscillatory power were demonstrated within the right
superior temporal gyrus, as well as the left and right inferior parietal lobule (see figure3-
13). For gamma, sub-gyral regions of the right parietal lobe, the postcentral gyrus, the
right superior temporal gyrus and sub-gyral regions within the left frontal lobe showed

increases in cortical oscillatory power (see figure3-14).

3.4.2. Interpretation of Results

3.4.2.1. Differences in the processing of face and house stimuli — Are faces

special but houses are not?

This investigation yielded support for the involvement of face specific regions such as
the right superior temporal sulcus (figures 3-4 and 3-13), right occipital areas (figures 3-
3, 3-5 and 3-9), left and right lingual gyri (figures 3-5 and 3-8) as well as left inferior
temporal regions (figure 3-9). This supports other research reporting face specific
regions associated with occipito-temporal areas such as the lateral fusiform gyrus, but
also with the superior temporal gyrus and frontal areas (Clark et al. 1996; McCarthy et
al. 1997; Haxby et al.1999).
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Levy et al. (2001) have linked the specialisation in face processing to a central

field bias, as, for instance, the identification of facial expression is thought to require a
detailed scrutiny of the face to allow for such subtle task. Houses and buildings, on the
other hand, are much larger objects, and their low level features (edges, corners)
possibly are not centred, and thus occupy more peripheral field locations (Levy et al.
2001). Additionally, the processing of houses has been linked to increases in activation
(BOLD) in the more medial regions of the fusiform gyrus, but it has also been claimed
that the processing of houses or object categories per se involves the ventral temporal
cortex in a much broader sense (e.g. Ishai et al. 1999). ‘Building-selective’ voxels have
also been established in areas adjacent to the PPA (e.g. Aguirre, Zarahn & D’Esposito
1998; Ishai et al.1997).

The processing of faces compared to houses did appear to be related to more
specialised and segregated regions and this might be linked to the different recognition
goals associated with the categories of houses and faces (see figures 3-7 & 3-13). The
recognition of faces at an individual level is learnt from an early age, as it is a crucial
aspect of social interactions. Thus, the development of face-specific modules would
indeed be plausible. The recognition of houses, on the other hand, could be regarded
somewhat different, as spatial information is of prime importance here (see e.g. figures
3-9 & 3-11). How does my house differ from my neighbours may be of importance, but
how the other houses in the street differ from one another may not be vital. For objects,
however, there is no need to differentiate or discriminate between different categories of
e.g. chairs, thus, they are recognised at a “higher entry level” (Gauthier 2000b, p.2).

A lack of object-specific processing areas for both stimulus categories has
previously been reported by Farah & Aguirre (1999). They conducted a meta-analysis
and looked separately at the activation patterns associated with words, objects and
faces. They showed that the maxima of each individual stimulus set yielded activity
within wide areas of cortex for each stimulus condition. One reason for such widespread
activity, and the lack of specialisation (segregation) can be seen in the tasks that were
performed in the studies included in Farah & Aguirre’s meta-analysis. The cognitive
content of such tasks as well as their complexity might have led to interactions between
cognitive processes and thus thwarted the subtraction methods (or direct comparisons)
used in these studies (Friston et al. 1996, Zarahn et al. 1997 cf. Farah & Aguirre 1999).
This leads to more general methodological issues that have to be addressed in order to

make full sense of neuroimaging data.
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3.4.3. Methodological considerations in functional neuroimaging research

3.4.3.1. Task demands

The observed dominance of the right hemisphere in the processing of face and house
stimuli was also observed by Ishai et al. 1999; 2000 who reported that the processing of
visual percepts lead to increased responses in the right hemisphere. Parietal involvement
would arise from the visuo-spatial nature of the task, where holistic processing is
required to carry out the required comparison.

In addition, the observed frontal involvement could be associated with the
‘working memory’ type requirements of the task. Participants had to keep in memory a
first image and then compare it to a subsequent image to assess whether or not these
were identical. In previous functional imaging experiments, one-back memory tasks had
been linked to increases in activation in the prefrontal cortices as well as in posterior
parietal areas (Braver et al. 1997; Carlson et al. 1998; Cohen et al. 1997 & Jonides et al.
1997). Thus, the differential involvement in frontal areas in this investigation (see
figures 3-4 & 3-11) might be linked to the concept of working memory (e.g. Baddeley
1996). Information needs to be kept in the cognitive system (e.g. short-term-memory) to
allow the comparison of the second visual percept (i.e. the second face) to the first one
(as the first face no longer exists in the immediate visual environment) (Baddeley &

Della Salla 1996, Druzgal & D’Esposito 2001).

3.4.3.2. Intersubject variability

One issue that has to be addressed when attempting to interpret group data from
functional imaging experiments is that of individual differences and variability in the
shape and size of the brains of the individual participants. Patterns of activation in some
cytoarchitectonic locations may be mapped differently in the standard brain that is used
to infer group effects. Thus, each participant could have their own face and house
specific areas, yet these precise locations within the larger visual recognition areas
might differ from person to person thus complicating group interpretation (Farah &

Aguirre 1999). Hence, inconsistencies observed between previous literature and the
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current investigation could be due to the marked individual differences between

participants (see figures 3-15 & 3-16).

3.4.3.3. Direct versus indirect comparisons of visual stimuli

The observation drawn from this investigation of the apparent lack of a clear-cut
distinction between the areas involved in the processing of face, houses and control
stimuli would need further investigation. Here, it might have been useful to include, in
more detail, the patterns of cortical activity observed by comparing houses to a pre-
stimulus baseline as well as to the scrambled control images. House versus baseline
conditions revealed the activation of left and right parietal and occipital areas, 1.e.
similar areas to those established for face versus house conditions. This again indicates
that the processing of houses may not necessarily rely on a distinct neural module
responsible for house recognition. Indeed, Ishai et al. (1997) observed that activation
patterns to faces, for example, extended into regions also maximally responsive to
houses, hence showing a widely distributed network associated with the processing of
face and house stimuli. This has led Gauthier (2000b) to suggest that a house-processing
module may still exist; yet it may also be involved in processing a face. Thus, it is
possible that overlapping patterns of cortical activity exist for different stimulus
categories, alongside category specific areas. Ishai et al. (1997) and Haxby et al.
(2000b) propose that the extrastriate visual areas are topologically organised into
continuous representations for objects, rather than having a number of modules
dedicated to a single category.

In addition, it could be argued that the same areas (and extrastriate areas seem a
reasonable candidate structures) might be suitable for different processing strategies,
e.g. encoding subtle difference between two similar classes of visual stimuli that could
then be associated with activation within the same region. Differences, however, might
be evident in time and frequency domains. The current investigation showed that
increases in cortical activity seem to be present across different frequency bands for a
number of neural correlates of face and house processing. Here, frequency-specific
increases in cortical oscillatory power were evident for parietal regions, which were
associated with beta frequencies, whereas occipito-temporal regions were linked to

gamma frequencies.
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3.5. Conclusion

Despite the claim of numerous previous researchers of there existing different neural
networks for different object categories, this study demonstrates a

substantial amount of overlap in cortical regions activated in response to different
objects, in this case faces and houses. Therefore, instead of focusing on the strongest
responses within one area to a category, relevant weaker responses (in category-related
areas or different neural structures) also need to be considered as playing a part in the
distribution of cortical representations to objects or categories (Hanson, Matsuka &
Haxby 2004). Bartels & Zeki (2004 pp75), providing a similar argument, pointed out
that findings from neuroimaging investigations do not *“...show the non-involvement of
areas and that positive results [obtained] are only of a correlational nature.” Faces and
houses alike are linked to distinct processing hypotheses. Faces are thought be
processed by areas implicated in expert discrimination of visual stimuli, and houses are
linked to areas in which the processing of spatial information is associated with houses.
Yet, for both category-specific regions experiments have found activation to other
stimuli. Thus, it has been suggested that the same voxels might be recruited by a chair, a
house, a car or a face as long as they share the same processing requirement.

The debate concerned with the “exact” spatial location of object (house) and face
processing might remain a “great puzzle” (Haxby et al. 2000b). Maybe the ventral
temporal cortex or the extrastriate visual areas are indeed ‘responsible’ for the
processing of these different stimuli, and how processing is distinguished is not so much
to do with the ‘location’ of activity but with the neural interactions between these
different areas. Houses and faces could indeed be processed within the same regions,
and maybe the identification of the stimulus as a house or a face is associated with
different cortical oscillatory patterns or latencies. If, for instance, a face appears to
induce activity within a house-selective region, it might be that inhibitory processes are
‘at work’, signalling a No-Go or “No need to respond as a face” type of reply. In this
investigation, however, it should be noted that increases in cortical oscillatory power
were observed almost exclusively, so there is no clear evidence of inhibitory processes
as indexed by event related desynchronisation. However, the distinctiveness offered by
combining findings in the time, space and frequency domains suggests that this could be
a more fruitful approach to attempt to identify the potentially specialised cortical

correlates of face processing. It may further the investigation of neurobiological and
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neuropsychological issues associated with object processing, and in particular with the

processing of faces.
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Chapter 4 An MEG investigation of the ‘Face Inversion Effect’

4.1. Introduction

Faces are very complex stimuli and it is therefore assumed that, possibly, faces are more
difficult to recognise than objects (Farah et al. 1995). It has been suggested that the
perception of faces is special as face recognition processes are thought to be
qualitatively different from other object recognition processes. It has been proposed that
face processing relies upon the processing of “holistic representations’ of face
components, whereas object recognition is thought to be based upon the processing of
representations that are decomposed into constituent parts (Eimer 2000a; Diamond &
Carey 1986; Farah et al. 1991). According to the holistic processing hypothesis, upright
faces are encoded as wholes, and not decomposed into individual features, thus they are
processed configurally. Inverted faces on the other hand are processed analytically, like

objects (Itier & Taylor 2004).

4.1.1.  Are faces special? Effects of fuce inversion on face processing

Face processing is underpinned by a multiple component neural system, which is able to
process whole faces as well as face parts. It is thought that the selective activation of
face specific neural networks at the earlier stages of the visual processing stream allows
for the possibility of increasing the efficiency of face processing by restricting
consequent stages to a particular class of internal models i.e. that of faces. A number of
face processing models incorporate components that enable early structural face
encoding, using physiognomic features as input and gaining an integrated, although not
fully identified, output representation (Bruce & Young 1986; Moses, Ullman &
Edelman 1993; Rhodes 1995).

In healthy participants, behavioural studies have shown that face recognition
appears severely impaired when face stimuli are presented upside-down, i.e. inverted
(Diamond & Carey 1986). Numerous behavioural studies have demonstrated such
difficulties, and a few functional imaging studies have investigated the neural substrates
underlying the face inversion effect. These have suggested that the inversion effect
might result from a disruption of configural processing (Leube et al. 2003), as it has

previously been assumed that configural cues strongly influence the recognition of
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upright, but not inverted, faces (Valentine 1988; Tanaka & Farah 1993; Murray, Young
& Rhodes 2000).

4.1.2. Investigations of the neural substrates of face inversion

4.1.2.1. ERP studies

The neural correlates of the face inversion effect, or configural face processing, are
associated with a right hemisphere processing dominance, as the right hemisphere
shows more pronounced face inversion effects (e.g. Farah et al. 1995; Leehey, Carey,
Diamond & Cahn 1978). This has also been indicated in studies on split-brain monkeys
(e.g. Vermeire & Hamilton 1998), in investigations on humans using event-related
potentials (e.g. Rossion et al.1999) and in functional imaging studies (e.g. Aguirre,
Singh & D’Esposito 1999; Haxby et al. 1999; Kanwisher, Tong & Nakayama 1998).
Single unit recordings in monkeys (Perrett et al. 1988; Perrett et al. 1998) and scalp
recordings from humans (Jeffreys 1989) have revealed comparable response amplitudes
for the face specific N170 component to upright and inverted faces. Perrett et al. (1982)
observed that in the macaque, cells within the temporal cortex are sensitive to the
configuration of face components. Thus, when facial features were rearranged in target
stimuli, activity in face specific neurons decreased.

ERP studies on the face inversion effect revealed that the face specific N170 is
present for inverted faces too. Thus, rather than being involved in holistic face
recognition processes only, it is assumed to reflect the perceptual encoding of face
components also (Bentin et al. 1996). However, longer response latencies to inverted
faces for the N170 component have been reported when participants were required to
perform face discrimination tasks (e.g. Rossion et al. 1999; Rossion et al. 2000, Eimer
2000a). Rossion et al. (1999), for example, reported that in a delayed matching task, the
N170 component was delayed and larger to inverted faces. At occipito-temporal areas,
significant latency differences were observed with mean latencies for upright faces
(156ms for right hemisphere (RH), and 157ms for left hemisphere (LH)) being smaller
than mean latencies for inverted faces (167ms for both, right and left hemispheres).
With respect to amplitude, significant differences were observed for occipito-temporal
sites, with amplitudes for upright faces (-3.53 uV for RH and -2.9uV for LH) being
smaller than those observed for inverted faces (-6.03uV for RH and —5.1uV for LH).

100



Eimer (2000a) also reported a small (approximately 8ms) but robust delay in latencies

when processing inverted faces. He quantified the N170 as taking place between 150ms
and 200ms post-stimulus. Significant differences were obtained at temporal sites, with
latencies to upright faces (170ms for RH and 167ms for LH) being smaller than those
for inverted faces (177ms for RH and 175ms for LH).

Eimer (2000b) argued that the delay might in fact indicate a “difference’ face
specific component, reflecting the successive stages of face-processing, on the one
hand, the perceptual analysis and the structural encoding, on the other and, following on
from the previous, the classification and identification of individual face stimuli. Thus,
the latency differences are interpreted as due to the involvement of different neural
generators.

The observed increases in amplitude and latency have been linked to increases
in the level of difficulty when processing inverted faces. George & Hole (1995) have
argued that the processing of inverted faces is more difficult, and thus leads to sustained
attentional ‘processing negativity’. Such delays are thought to be due to insufficient
configural information provided by upside down faces (Rossion et al. 1999; Eimer
2000a).

The perception of gestalt-like figures is linked to increases in synchronisation
within the gamma band. This has been associated with the rhythmic synchronisation of
neuronal firing (within the gamma range) that is necessary for the binding of spatial and
temporal sub-processes, which allows the perception of a coherent image (Tallon-
Baudry & Bertrand 1999). Rodriguez et al. (1999) showed participants upright and
inverted Mooney faces and reported ‘induced’ gamma responses, i.e. increases in
synchronisation, at latencies of approximately 230ms. These were significantly larger to
the upright Mooney faces than to the inverted ones, which were reported to be perceived
as meaningless percepts. Thus, phase-synchrony seems to differ between the perception

of upright (meaningful) and inverted (meaningless) perceptual stimuli.
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4.1.2.2. fMRI investigations

Sekuler et al. (2004) observed that similar, i.e. occipito-temporal regions were
involved differentially when participants performed a face discrimination task, using
both upright and inverted face conditions. The paradigm used by Sekuler et al involved
the presentation of a face stimulus embedded in noise followed by two face stimuli, and
it had to be guessed which of the two faces was presented previously. Sekuler et al.”s
(2004) results showed that processing upright and inverted faces differs quantitatively,
not qualitatively, as information is extracted more efficiently from upright faces,
perhaps as a by-product of orientation — dependant expertise.

Leube et al. (2003) further investigated the face inversion effect, and, drawing
on previous findings of the superior temporal lobe being involved in face processing
(Haxby, Hoffiman & Gobbini 2000) as well as spatial processing (Karnath, Ferber &
Himmelbach 2001), hypothesised the involvement of superior temporal areas in the
processing of the more configural properties of faces. Leube et al. (2003) reported
stronger signal changes for upright faces (compared to inverted faces) in the right
superior temporal gyrus (BA2) and in the right insular cortex (BA21). They also
reported activation of a face-specific right hemisphere network comprising right lingual
(BA18), right inferior occipital (BA19) and right fusiform (BA37) gyri. Similar results
have also been reported by Haxby et al. (1999) who described decreases in neural
responses within superior temporal areas in response to inverted (compared to upright)
faces. Leube et al. (2003) concluded that the involvement of right temporal gyri and the
right insular cortex may reflect the configural (i.e. holistic) processing of faces, as
activation within these areas was absent when faces were inverted.

In summary, upright faces are encoded into memory holistically (i.e. without
explicitly represented parts), inverted faces are not - they appear to be represented with
the same degree of part decomposition as non-face objects such as house. The inversion
of faces has been related to the slowing down of facial encoding, as well as to enhanced
activity, related to an increase in the level of difficulty of facial processing (Rossion et
al. 1999).

As there is some inconsistency regarding the spatial mapping of the face
inversion effect, it is aimed to establish if there are functionally and anatomically
distinct systems for the perception of upright versus inverted faces, as suggested by

neurological studies, or whether similar regions are involved in the processing of
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upright and inverted faces as has been shown in functional imaging studies. The

processing of faces is predicted to lead to activation within face-specific regions such as
the extrastriate visual areas and occipito-temporal regions. The involvement of temporal
regions, as observed in previous fMRI investigations, is to be explored.

As previously described, the use of virtual electrodes in those areas indicated by
SAM as differentially activated offers the possibility of generating TFRs to investigate
timing differences. However, the reported delays of the face specific N170 (see section
4.1.2.1) appear to be quite subtle. SAM analyses are performed on two different time-
windows, 0 to 200ms to investigate the face-specific N170, and across a larger time-
window of 0 to 400ms to allow for delayed activity to inverted faces.

Additional, frequency specific measures can be obtained. Given the findings by
Rodriguez et al. (1998) with upright and inverted Mooney faces, the involvement of

gamma frequencies is predicted (see also chapter 3).
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4.2. Method

4.2.1. Materials and Participants

Stimuli were selected from the Ekman and Friesen (1976) series of Pictures of Facial
Affect, which contains black and white photographs of facial expressions of 10 actors
(six female). The photographs have been digitally altered to depict only the contour of
the face, i.e. hair, ears etc. are removed. The images selected for the current
investigation comprised happy and sad expressions for all ten individuals, plus
corresponding neutral expressions, generating a total of 30 facial stimuli in the upright
condition. As this did not suffice, each of these facial stimuli was repeated three times,
yielding a total of 90 upright facial stimuli. Identical photographs were used in the
inverted and upright conditions. Using Adobe Photoshop CS the photographs were
simply rotated by 180 degrees. Ninety inverted facial stimuli were thus used. A similar
paradigm was used by Eimer & Holmes (2002). For stimulus display Presentation

software (http:/nbs.neuro-bs.com/presentation/) was used.

Nine healthy participants (eight female, one left-handed) gave consent to take part in the
investigation. The average age of the participants was 29 years. Due to movement, head
localisation failed for two participants resulting in usable data for seven participants (six
females; one left handed, average age 27years). The study was approved by the Aston
University Human Sciences Ethics committee. Participants were seated within a
magnetically shielded room, and viewed, through a mirror, a monitor, placed outside the
shielded room, on which the stimuli were presented. The distance between the

participants and the monitor was approximately 2m.

4.2.2. Experimental Paradigm

On each trial, participants were asked to fixate on a white circle for 1500ms before a
stimulus was presented for 500ms. The stimulus was either an upright face or an
inverted face depicting a happy, sad or neutral expression. The fixation point then
returned followed by a second image being presented for 500ms, again the stimulus
being an upright or an inverted face of the above mentioned valence. Upon a delay a cue

(red circle) indicated that the participant should make a button-press response,
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13Hz; 13-25Hz; 25-40Hz and 5-40Hz) and time-windows 0 to 200ms and 0 to 400ms

over the entire brain at Smm resolution to localise power changes in response to upright
and inverted stimuli. Positive values are interpreted as relative increases in power, also

referred to as ERS, or increases in ERSP and negative values are interpreted as relative

decreases in power, also referred to as ERD, or decreases in ERSP.

Using SPM99 (Friston et al. 1995), the MRI of each participant was spatially
normalised to a template space. The resultant normalisation parameters were applied to
the volumetric SAM images.

Thus, all SAM images (seven participants, five frequency bands, two time-
windows and three comparisons: upright vs. baseline; inverted vs. baseline; and upright
vs. inverted) were then in the same three-dimensional coordinate space allowing group
analyses (Singh et al. 2002). Using SnPM (Holmes et al. 1996; Nichols & Holmes
2002), analyses of significance were performed at voxel level and at cluster level using
a multiple subject single condition design. Variance smoothing was performed using a
Gaussian kernel (o = 20mm). Using non-parametric permutation testing, cluster-level
inferences estimate whether a large connected cluster of near significant t-values may
reach statistical significance. Voxel level inferences were estimated additionally. Spatial
resolution however is being traded in against sensitivity (for details see Nichols &
Holmes 2002; Singh, Barnes & Hillebrand 2003).

For the visualisation of the results on a template brain, SPM was used as well as

mri3dX (http://www/aston.ac.uk/lhs/staff/singhkd/mri3dX/). In all figures the left side

of the brain is displayed on the left side of the image, and coordinates provided are
stated in Talairach & Tournoux (1988) version. In the figures presented, increases in
cortical power are indicated by colourscale of red — orange — yellow, with yellow
regions being the most significantly active areas. Decreases in cortical oscillatory power
are indicated by a colourscale of blue — pink — white, with white regions being the most
significantly active areas (see colourbar page 74, FigureB).

To investigate the time course and frequency specificity of the obtained
activation within significant regions, time-frequency representations (TFR) were
generated using Morlet wavelet analysis (Tallon-Baudry et al. 1997). The wavelet
method was chosen as it provides a better compromise between time and frequency
resolution than Moving Window Fourier Analysis. Once the TFRs for each participant

were generated, averages were computed by averaging the TFRs of all participants.
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4.3. Results

SAM analyses were performed for two time-windows, 0 to 200ms and 0 to 400ms,
across the following frequency bands: theta (2-8 Hz), alpha (8-13Hz), beta (13-25H2),
gamma (25-40Hz) and across a wide frequency range of 5-40Hz. Unless otherwise
stated the results reported are significant at voxel level. A table of results detailing
pseudo-t statistics, coordinates and region showing changes in cortical power are

included in Appendix3.

4.3.1. Direct comparisons: upright versus inverted facial stimuli

To investigate the differences between the processing of upright and inverted faces,
group analysis were performed using GroupSAM.

These revealed changes in oscillatory power within occipital and temporal regions (e.g.
right middle occipital gyrus, cuneus, BA7 as well as middle and superior temporal gyri)
predominately within the 0 to 200ms time-window and within the right hemisphere. For
occipital regions, power changes could be observed for alpha frequencies (8-13Hz) and
across a wide frequency rage of 5-40Hz. Within temporal regions, theta (2-8Hz) and
beta (13-25Hz) frequencies were engaged. Left and right frontal as well as parietal areas
also showed increased involvement in the processing of upright versus inverted faces.
For the 200ms time window, power changes could be observed predominately in left
frontal areas, whereas this pattern seems more bilateral across a longer time-window of
400ms. Left parietal areas, particularly, were engaged during the longer time-window of
0 to 400ms, whereas right parietal areas seemed more engaged for the 0 to 200ms time-
window.

Subsequent statistical inferences using SnPM did not yield significant results.
However, to explore processing for upright versus inverted faces further, time-
frequency representations were generated, using Mann-Whitney wavelets. A virtual
electrode was placed within the right middle occipital gyrus, and TFRs generated for
each individual. For Mann Whitney TFRs upright faces were included in the analyses as
active stimuli and inverted faces as passive stimuli, i.e. the activity for inverted faces
was “subtracted” from that of upright faces. These were then averaged to allow

inferences about group data (Figure4-2).
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4.4. Discussion

4.4.1. Summary of Results

This study aimed to investigate the face inversion effect in terms of its spatio-temporal
and potentially frequency-specific dynamics. Latency delays, particularly at occipito-
temporal sites were predicted in response to inverted faces and it was explored whether
oscillatory patterns would show differential involvement to upright and inverted facial

stimuli.

4.4.1.1. Direct comparisons: upright faces versus inverted faces

Direct comparisons of cortical oscillatory power to upright versus inverse faces,
revealed no significant signal changes using non-parametric permutation testing
(SnPM). TFRs using Mann Whitney wavelets were generated based on results obtained
from group SAM analyses, and revealed changes in cortical oscillatory power within
right occipital and right parietal areas. The Mann Whitney TFRs indicated a change in
synchronous activity from increases in cortical power, or synchrony, within the first
200ms to decreases in cortical power at later latencies, 200 to 400ms (see figure4-2).

These observations were investigated further and significant patterns in cortical
oscillatory power were established. For upright and inverted faces, comparisons were
made between the 0 to 200ms and a 200 to 400ms time-window, for alpha frequencies

and across a broad frequency band of 5 to 40Hz. At alpha frequencies differential

increases in cortical oscillatory power were evident at the hemispheric level, with
networks in both hemispheres showing increases in synchrony for the processing of
upright faces (see figure 4-3), whereas inverted faces were associated with changes only
within the right hemisphere (see figure 4-4). Occipital and temporal regions are
implicated in the processing of upright as well as inverted faces; yet parietal areas are
recruited in addition, when processing upright faces (see figures 4-3 & 4-4).

A similar pattern in terms of hemispheric asymmetry was observed for 5-40Hz.
Temporal and occipital regions show increases in cortical power when processing
upright and inverted faces, but in addition, increases in synchrony in parietal areas is

observed when processing upright faces (see figure 4-5 & 4-6). Furthermore, the
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processing of inverted faces revealed decreases in cortical oscillatory power in right

frontal areas (see figure 4-6).

Thus, similar patterns and dynamics of cortical oscillatory power could be
established for the processing of upright and inverted faces, with the exception of
desynchronisation observed for right frontal areas in the inverted condition only. To
investigate the potential differences in cortical oscillatory power for upright and

inverted faces further, indirect comparisons were also explored.

4.4.1.2. Indirect comparisons

Comparing upright faces to baseline within a short 0-200ms time window, ERS could

be observed in two different frequency bands. For alpha (8-13Hz), significant voxels
were demonstrated in the left posterior lobe, and the cerebellum (see figure4-13),
whereas across a wider frequency range of 5-40Hz power increases were evident within
right occipital regions e.g. lingual gyrus and BA18 (see figure 4-15). For the same
comparison over a longer time window, 0 to 400ms, however, ERD could be observed
in different frequency bands. For beta (13-25Hz), event-related decreases were evident
in left and right parietal areas, precuneus regions (see figure 4-7), whereas for gamma
(25-40Hz) power decreases could be seen in the right middle occipital gyrus and the
postcentral gyrus (see figure 4-10). Hence, processing upright faces leads to increases in
event-related spectral power in posterior areas at alpha frequencies and in occipital areas
at 5-40Hz at early latencies (0 to 200ms), but to decreases in event-related spectral
power at beta frequencies in bilateral parietal areas and at gamma frequencies in right
occipital and parietal areas at longer latencies (0 to 400ms).

When comparing inverted faces to baseline, a similar pattern in terms of power

changes could be established. For the 200ms time window, ERS could be observed in
alpha in the right middle temporal gyrus, BA39 (see figure 4-14). Across a wider
frequency range of 5-40Hz, ERS was evident in the right middle temporal gyrus as well
as within right occipital regions, e.g. lingual gyrus (see figure 4-16). In addition, ERD
was shown in the left superior frontal gyrus (see figure 4-17). Across the 400ms time
window, ERD was observed for beta and gamma frequencies. For beta, left and right
occipital as well as right parietal areas showed decreases in cortical oscillatory power
(see figure 4-8), whereas in gamma significant decreases in cortical synchrony could be

observed within left and right temporal regions (see figure 4-11). Hence, the processing

122



of inverted faces shows a similar pattern of cortical power changes, with increases in

cortical power being evident at early latencies (0 to 200ms) for alpha frequencies in
right temporal areas and for 5 to 40Hz in temporal as well as occipital areas, and
additionally, ERD was revealed for the left superior frontal gyrus. At later latencies (0
to 400ms) decreases in cortical oscillatory power were evident for beta in temporal,
parietal and occipital areas, and for gamma in bilateral temporal regions.

In summary, the processing of upright and inverted faces showed increases in
spectral power at alpha and broad range frequencies and decreases in event-related
spectral power at beta and gamma frequencies. However, in addition to occipital and
parietal areas, which are recruited in both conditions the processing of inverted faces
also relies upon temporal structures and revealed decreases in cortical oscillatory power

within left frontal areas.

4.4.2. Interpretation of Results

4.42.1. Overall differences between upright and inverted faces

Similar brain regions are involved in the processing of upright and inverted faces, yet
inverted faces have been shown to evoke larger activity (Linkenkaer-Hansen et al. 1998;
Rossion et al. 1999). Given the observation that t-values were generally larger in the
inverted face condition (with the exception of the 0 to 400ms time-window at the 25-
40Hz frequency band) (see tablest and 2 in Appendix3), it could be argued that
enhanced activation i.e. enhanced changes in cortical oscillatory power in response to

inverted faces could be found in this investigation also.

4.4.2.2. Lateralisation effect and spatial considerations

The observation of a right hemisphere bias, as well as the involvement of the
aforementioned face-specific regions and of temporal areas (see figures 4-5, 4-6, 4-10,
4-14, 4-15, 4-16) has also been reported in studies investigating the face inversion
effect, e.g. Aguirre, Singh & D’Esposito (1999); Haxby et al. (1999) and Kanwisher,
Tong & Nakayama (1998). Leube et al. (2003) stated that the neural correlates of the
face inversion effect are likely to be located in the right hemisphere. In addition, Haxby
et al. (1999) reported small decreases in neural activity for inverted faces in the superior

temporal areas. Decreases in cortical synchrony within temporal regions were reported
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within the longer time-window (see figure 4-11), therefore corresponding to the
observation from fMRI. The involvement of right parietal areas (precuneus areas and
postcentral gyri) (see figures 4-7 & 4-8) has also been reported by Itier & Taylor (2004)
who found ERP face inversion effects largest for parietal and temporal sites, in children
as well as in adults (Taylor et al. 1999; 2001a). Thus, the current investigation was able
to replicate some of the spatial correlates of upright and inverted face processing as
established using fMRI and EEG. This investigation also revealed significant decreases
in cortical oscillatory power within the left superior frontal gyrus in the inverted face
condition. Decreases in the left middle frontal gyrus were also reported in the previous
investigation on differential processing of faces and houses and was thought to be

related to task demands (see section 2.5.1).

4.42.3. Temporal considerations

In ERP studies (e.g. Rossion et al. 1999; Eimer 2000a) it is argued that the face-specific
N170 is delayed when faces are presented upside down. In this investigation, ERS was
observed for upright faces, as well as inverted faces, in occipito-temporal areas within
the 0 to 200ms time-window. The evidence, however, for delayed responses to inverted
faces is less conclusive in the current investigation. Activation in face-specific regions,
which are expected to be implicated in the processing of upright, though not necessarily
inverted faces (Haxby et al. 1999), is evident in both conditions (compared to baseline)
within the shorter time window of 0 — 200ms. Average TFRs indicated similar patterns
of activation for upright and inverse conditions. Thus, Mann Whitney wavelets were
generated to further assess differential patterns of oscillatory power changes with more
precise emphasis on timing information (see figures 4-2, 4-9 & 4-12). However, the
patterns of cortical power changes were similar for upright and inverted faces.

The ERS in occipito-temporal regions observed for the 0 to 200ms time-
window, could be reasoned to be due to visual processing which categorises the stimuli
as faces per se, taking place within 200ms. This appears to be common to the processing
of upright as well as inverted faces. Therefore, it is consistent with the observation that
inversion does not modify the low-level features of a face (e.g. Kanwisher et al. 1998;
Rossion et al. 1999). Studies by Allison et al. (1999), McCarthy et al. (1999) and Puce,
Allison & McCarthy (1999), investigating intra-cortical ERPs to upright and inverted

faces, revealed a face-specific component in ventral occipito-temporal areas at latencies
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of 200ms (N200), which they thought reflects the pre-categorical perceptual analysis of

faces. Thus the results of the current investigation seem in line with findings linked to

the categorical analysis of faces being identified at latencies below 200ms.

4.4.2 4. Theoretical assumptions and potential implications for models of face

processing

4.42.4.1. Face-specific processing modules

Rossion et al. (1999) stated the processing of inverted faces would proceed more slowly
and would require more neural activity — in particular within the right occipito-temporal
regions. The delayed and, to some extent, the larger amplitude of the N170 in, for
instance Rossion et al.’s study, as well as enhanced ERS to inverted faces in this
investigation, appear to be linked to an increase in processing resources. Therefore,
explanations have been put forward, proposing that the altering of processing strategies
might be due to a loss of configural face information when processing inverted faces.
This is also assumed to be associated with an increase in difficulty of the task or in
recognising and categorising an inverted face as a face. An alternative explanation for
the observation of amplitude increase when processing inverted faces has been put
forward by Haxby et al. (1999). They stated that face inversion might not significantly
decrease neural activity within face-selective regions, but increases the responses in
ventral extrastriate regions that would also respond to other visual categories such as
houses. And indeed, similarities between the patterns of cortical oscillatory changes
observed in the present and in the previous study (see chapter 3) are to be noted. Thus,
the larger amplitude observed for inverted faces may be due to recruiting additional
processing resources in object perception systems. If this is the case, then maybe the
processing of upright and inverted faces does indeed involve, maybe not necessarily two
distinct processing systems, but complementary ones. Therefore, in order to process
inverted faces, neural networks or areas are involved in addition to the ones recruited
for (upright) face processing. In this case, then, faces can be regarded as being
processed by a somewhat specialized, face-specific module, whereas inverted faces may
seem to be processed more in terms of object-recognition modules (see also Haxby et al.

1999, Moscovitch & Melo 1997). Thus, faces are indeed a special source of visual



stimuli recruiting their own face-specific neural networks, as long, it seems, as they

remain upright and thus can be perceived holistically and categorically.

4.42.4.2 Face Expertise

Similar neural mechanisms seem involved in the processing of inverted and upright
faces. Although it is possible that different populations of neurons lead to these
responses for upright and inverted faces, it is equally possible that both types of stimuli
lead to activation of the same, expertise related mechanisms (Tarr & Gauthier 2000;
Gauthier et al. 2003). According to Perrett, Oram & Ashbridge (1998) it is probable that
due to the levels of expertise in the processing of upright faces, more neurons in the
temporal cortex would respond more selectively to upright (compared to inverted)
faces.

Furthermore, Perrett et al. (1998), investigating the effects of orientation on
perception in monkeys, proposed that different numbers of cells would code for the
various face views of face parts, thus leading to differential timing of activity in cell
populations when processing upright and inverted faces. A normal, i.e. upright face
would therefore recruit a larger amount of cells than those faces whose configurations
had been altered. The recruitment of neural networks bilaterally in upright compared to
unilateral activation when processing inverted faces could be a demonstration of this
(see figures 4-3 & 4-4). The advantage for processing upright faces may, hence, simply
be a by-product of relative expertise. In support, researchers have shown that perceptual
learning can be quite specific (e.g. Gauthier et al.1998). Greater expertise in the
processing of upright than inverted faces would thus lead to greater processing

efficiency.

4.4.2.5. Methodological considerations in functional imaging research

4.4.2.5.1. Stimult and task demands

By presenting identical stimuli in two different orientations, the observation of
differential activation is assumed to be due to orientation, or face perception per se
rather than differences in the low-level features present in the stimuli (Kanwisher et al.

1998). Farah et al. (1995b) pointed out that inverted faces are an ideal (non-face)
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control stimulus, as it keeps constant virtually all physical stimulus parameters (e.g.

spatial frequency, complexity, inter-item similarity). Yet, a large body of evidence
suggests the existence of a face inversion effect. No significant changes in cortical
oscillatory power were observed for the fusiform gyri in this investigation at group level
inferences; yet, it was reported at individual level. This might have been due to the fact
that the task involved here was a facial expression discrimination task, rather than a
pure face detection task. Similar observations have also been made by Kanwisher et al.
(1998).

Rossion et al. (1999) compared patterns of activation when performing a one-
back memory task and a passive-viewing condition, using inverted and upright faces.
They noted that in a passive viewing condition, the observed inversion effects were
large and evident in all participants whereas in the one back memory task these effects
were rather small and evident only in six out of ten participants. Thus, the apparent
‘lack’ of an inversion effect observed in this investigation might have been due to the
task demands as participants performed a one back memory task where the task-specific
feature was in fact the emotional expression. Thus, configural processing mechanisms
may have been used to process upright as well as inverted faces, as the focus of the task
was not the orientation but the emotional content of the stimulus (i.e. the perception of
emotional expression may be dependent upon configural or feature encoding, regardless
of orientation?).

The investigation of inversion on the categorization and the processing of facial
expressions, however, were not pursued in this thesis for several reasons. There is
conflicting evidence regarding the effects of face inversion on the recognition and
judgment of facial expression. McKelvie (1995), for instance, observed that expressions
are more difficult to identify on inverted faces when they are based on configurational
information. Behavioural data showed that the identification of happy faces was equally
good for faces in upright and inverted orientation; yet, the recognition accuracy for sad
faces was reduced following the inversion of the face stimuli. Other studies, using, for
instance, the Thatcherised faces, have revealed that participants failed to recognize the
grotesque facial expressions (Thompson 1980). This has been put down to the fact that
there may be a reduction in the ability to detect, or extract, relevant emotional
information from inverted faces, i.e. the decoding of emotional information seems to be
working best when faces are in their upright orientation, presented in the way that they

are most commonly encountered. In addition, there would not have been sufficient
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statistical power as indexed by the amount of trials to warrant the investigation of

separate facial expressions in an inverted orientation. This, however, could be addressed
in a further experiment, with increased numbers of trials in each emotional condition.

In addition, the stimulus set chosen necessitated the repeated use of the stimuli
available, and in previous studies using ERPs a greater positivity to repeated items than
to items presented for the first time had been observed (Taylor et al. 2001a). Thus, the
increases in synchronous activity observed, might also be due to the repetition of the
stimulus material. Itier & Taylor (2004) have observed the involvement of prefrontal
areas during short (but not long) lags in continuous recognition tasks. In their study
orbital-frontal areas at latencies of approximately 250ms to 400ms best modelled these
effects. Thus, the involvement of frontal regions for inverted faces (200ms window, see
figure 4-17, or figure 4-6) might have been due to the engagement of working memory
systems in order to perform the task. The observed delay in the inverted face condition
may, however, be taken as further evidence for the increase in task difficulty related to
the processing of inverted faces. Here, behavioural measures such as reaction time (RT)
would have been useful in elucidating the effects of inversion on RT. In a future study,
the experimental design would not rely on a cued response paradigm but a RT paradigm

instead.

4.4.2.5.2. Analyses protocols

Given that the “difference’ in patterns of cortical changes between upright faces and
inverted faces are very subtle indeed, it may need to be considered that the way in
which the data has been analysed may not have been the most appropriate. The majority
of previous studies have looked at ERP measures and obtained fairly reliable and
consistent latency differences for the processing of upright versus inverted faces, with
inverted faces showing significant delays in processing latencies (Eimer 2000b; Rossion
et al. 1999; Schweinberger et al.1997; see introduction). However, the delays in
latencies reported have also been quite subtle, and as the analysis window investigated
here comprised 0 to 200ms (given the times mentioned for inverted and upright face
processing lie within this window) it is possible that latency differences in cortical
oscillations have been missed. Here it would have been advantageous to look at
overlapping time windows and chose very wide frequency bands to allow sufficiently

short time windows, e.g. 0 to 50ms, 25 to75ms, 50 to 100ms, 75 to 125ms etc.
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Therefore, perhaps it was not viable to expect confirmation of such results using SAM,

and as the TFRs that were generated to allow the inspection to temporal evolution of
cortical signals as well as frequency specific components, are guided by the findings
from the SAM analysis, it could be argued that the lack of differentiation in the TFRs is
to be traced back to the possibility of SAM being an unsuitable method of analysis in

this case.

4.5. Conclusion

Evidence from ERP studies proposed that there are different ERP components involved
in the structural encoding of face components, the timing of which are affected by
stimulus properties (such as inversion) and attention.

The current investigation allowed the replication of some face-specific patterns
of cortical activity being localized to extrastriate visual areas such as the lingual gyri,
middle occipital gyri and temporal areas. Thus, MEG and SAM seem indeed able to
substantiate findings from fMRI in terms of spatial characteristics of face processing
and face inversion. In addition, the processing of inverted faces also yielded some
findings that have been reported for the processing of objects in published studies (and
of houses in a previous study in this series of investigations). Hence, the processing of
upright and inverted faces may involve separate, yet not entirely exclusive and distinct
‘mechanisms’, but potentially involves complementary networks. The increased
involvement of temporal regions for the processing of inverted faces compared to the
processing of upright faces might hint at such differential engagement, and at the
additional recruitment of specialized areas in order to allow sufficient processing of
components when encountered in inverted orientation.

The observation of signal changes in cortical oscillatory power in a short time
window of 0 to 200ms for upright and for inverted faces can be seen as partially
supporting findings from ERP studies. Reasons for probable discrepancies between the
current investigation and previous studies for delayed peak activations in the inverted
faces condition are considered to be due to the differences in methodology as well as
analyses techniques and protocols. This study also investigated the frequency specific
dynamics in a novel and therefore hypothesis-generating manner. Similar frequency
bands were engaged in the processing of upright as well as inverted face condition,

notably, alpha, beta, gamma and a 5 to 40 frequency range. Frequency-specific
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processing patterns were associated with response latency differences, as alpha and

broadband (5 to 40Hz) frequencies were linked to short time-windows and beta and
gamma frequencies to longer time-windows. The observation of a larger involvement of
increases in synchronous power in the shorter time-windows might be due to the
coupling of networks, as the desynchronisation observed for the latter time windows
could thus be regarded as the active decoupling of neural assemblies.

In summary, this study substantiated some previous findings particularly in the
spatio-temporal domains of face processing and specifically the face inversion effect. It
has been possible to add some insight into the frequency-specific components that are
involved in the face inversion effect. It was shown that the face inversion phenomenon
might indeed have neural correlates that can be mapped in space, in time and in

frequency domains.

130



Chapter 5 Investigation of the processing of facial emotional

expressions using MEG

5.1. Introduction

5.1.1. Spatial correlates of facial affect

[t is now accepted that there are regions of the brain, which are relatively
specialised in the processing of facial stimuli. Foremost are regions within the
extrastriate visual cortex (e.g. fusiform gyri) and the superior temporal gyri (e.g.
Allison, Puce & McCarthy 2000; Haxby, Hoffman & Gobbini 2000), and the amygdala
(e.g. Adolphs 2002) has also been implicated in face processing. In addition,
psychological investigations with brain-damaged patients (e.g. Hornak, Rolls & Wade
1996; Young et al. 1993b) have provided some insight into the neural processing of
affective expressions, and support has been gained from functional imaging
methodologies, such as PET (e.g. Morris et al. 1996) and fMRI (e.g. Kanwisher,
McDermott & Chun 1997).

Additionally, studies with non-human primates revealed that neuronal firing in
inferior frontal areas (e.g. Wilson et al. 1994), extrastriate visual areas (e.g. Hasselmo et
al. 1989) and the amygdala is modulated when stimuli depicting facial expressions of
emotions or conveying emotionally significant information are presented (e.g. Brothers,

Ring & Kling 1990; Nishijo et al. 1988).

5.1.1.1. Amygdala

The role of the amygdala in emotional processing has been investigated widely
(see LeDoux 1996). In humans, activation within the amygdala has mostly been
reported in response to the processing of emotions related to fear or threat (e.g. Adolphs
et al. 1994; Breiter et al. 1996), and Aggleton (1992) observed a general reduction of
emotional responses following amygdalar lesions. It is now known that the amygdala
acquires low-level inputs from sensory specific areas of the thalamus, higher-level
information from sensory-specific cortical areas, and sensory independent information
from the hippocampal formation. These connections enable the amygdala to process the

emotional significance of information, as well as complex situations. The wide-ranging
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anatomical connections including re-entrant projections to visual cortices suggest that

the amygdala might be involved in neuro-modulation of sensory processing and
response coordination (Morris, Ohman & Dolan 1998). Hence, the amygdala appears to
play an important role in the appraisal of emotional meaning, and in controlling
behavioural responses (LeDoux 1996, Amaral et al. 1992).

In contrast to previous reports of preferential involvement of the amygdala in the
processing of emotions related to fear and threat, it is now assumed that the amygdala
may play a more generalised role in the processing of emotionally valenced stimuli, and
in particular to emotionally valenced faces (Breiter et al. 1996). Their study revealed
preferential amygdala activation in response to rapid presentation of fearful compared to
neutral faces in a fixed order, as well as in a counterbalanced experimental condition. In
the counterbalanced condition, however, there was also amygdala activation in response
to happy versus neutral faces.

Gur et al. (2002a) showed that the cognitive processing of facial expressions led
to an attenuation of the amygdala response, which seemed to be associated with the
engagement of the right prefrontal cortex (BA47). They considered whether the
amygdala response would be triggered by any presentation of emotional stimuli or
whether it only appears when the emotion conveyed is task relevant as Sprengelmeyer
et al. (1998) did not report amygdala activation in a task involving gender
discrimination. Gur et al. concluded that limbic responses to displays of facial emotion
did indeed appear to be modulated by the relevance of the emotional content of the
stimulus, in this case a face. In particular, the amygdala and the hippocampus were
activated when the participants’ task involved the discrimination of emotional valence
from faces. Wild et al. (2003), investigating the effects of emotional expression
presentation on facial mimicry, reported activation of the basotemporal lobes,
hippocampus and amygdala regions, in response to the presentation of happy faces.
Such response, however, seemed to be correlated with a priming effect caused by the
act of perception (and performance of assigned (congruent) facial movements) as
opposed to the valence of the stimulus. Hence, it is unclear whether the mere perception
of a face depicting a happy expression was indicative of involvement of limbic areas
like the amygdala.

Kesler-West et al. (2001) demonstrated activation within the right and left
amygdala and entorhinal cortices when comparing passive viewing of blocks of

scrambled to blocks of neutral faces. Gur et al. (2002b) also reported that the lateralised
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responses in the amygdala shifted from greater right-sided activity within the first block
to greater left-sided for the second block containing emotionally valenced stimuli. This
shift may reflect hemispheric differences in the time course of the amygdala response to
facial emotional expressions. Phillips et al. (2001) reported differences in the timing of
left and right amygdala responses to neutral and fearful stimuli, which were also linked
to a greater number of active voxels within the right hemisphere to neutral expression
whereas equal numbers of voxels were active in response to neutral and fearful

expressions in the left hemisphere.

5.1.2. Temporal correlates of facial affect

With respect to the timing of emotional face processing, combining information from
neuroimaging studies with the high temporal resolution offered by ERP studies,
Pizzagalli et al. (2002) noted that the cholinergic-mediated basal forebrain regions (e.g.
nucleus accumbens, sublenticular extended to amygdala) may become activated very
quickly and tune subsequent activity in visual cortices subserving face processing
through a mechanism of increased vigilance and (or) attention (Heimer 2000; Sarter &
Bruno 2000, LeDoux 2000). In their study Pizzagalli et al. demonstrated that affective
features conveyed by faces can influence structural face encoding, which occurs within
the fusiform gyrus within approximately 160ms post-stimulus.

Halgren et al. (1994a) conducted a study in which implanted electrodes were
used to obtain recordings from occipital, temporal and parietal regions as well as from
the limbic system (amygdala, hippocampal formation ad posterior cingulate gyrus) of
patients who were awaiting epilepsy elective surgery. They performed a declarative
memory task in which patients were presented with unfamiliar faces. In addition to
early components, N75-P105, most probably generated in visual cortical areas 17 and
18 (located in and around the lingual gyrus), and components N130-P180-N240
generated in the basal occipito-temporal cortex (fusiform gyrus, areas 19 and 37),
Halgren et al. also demonstrated a N310-N430-P630 sequence of responses to faces,
which was largest in the hippocampal formation and the amygdala, but was probably
locally generated in many sites including the lingual gyri, lateral occipito-temporal
cortex, middle and superior temporal gyri, temporal pole, supramarginal gyrus, and
posterior cingulate gyrus. They proposed that during the N310, faces might be multiply

encoded for form and identity (inferotemporal), emotional (amygdala), recent
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declarative mnestic (hippocampal formation) and semantic (supramarginal and superior

temporal sulcal supramodal cortices) properties. These multiple characteristics may be
contextually integrated across inferotemporal, supramodal associations, and limbic
cortices during the N430, with cognitive closure following during the P630.

Streit et al. (1999), using MEG, investigated which neural substrates correlate
with the recognition of facial emotions and revealed (selective) activation within the
right amygdala at a latency of about 220ms in a facial expression judgement task in two

(out of four) participants.

5.1.3. Frequency specific considerations regarding facial affect

With respect to the frequency specific processing of emotional information it has been
suggested from animal literature that amygdala oscillations show a unique pattern.
During wakefulness fast activities of low amplitude (delta) are evident, and during
emotional arousal, regardless of a positive or negative valence, theta oscillations have
been observed (Pare, Collins & Pelletier 2002). Ponomarenko et al. (2003) showed that
amygdala oscillations also include fast gamma frequencies (30 to 100Hz). In human
participants, frequency-specific assumptions regarding emotional information have

revealed asymmetries for frontal alpha (e.g. Davidson 2001).

5.1.4. Summary and hypotheses

The MEG investigation presented here aims to explore further the nature of activation
patterns involved in facial expression recognition. It is predicted that the presentation of
faces per se in comparison to scrambled control images will lead to relative changes in
cortical oscillatory power within face-specific regions like the occipito-temporal areas,
e.g. the fusiform and lingual gyri, and middle and superior temporal gyri. These changes
in event-related spectral power are predicted to occur within an earlier time-window (0
to 200ms) as indexed in the face-specific N170 component established in ERP studies
and as has been shown in the previous investigation in this thesis. In addition, frontal
and limbic structures are hypothesised to be implicated in the processing of facial
expressions. Here, differential involvement of left and right hemispheres is to be
explored within frontal and limbic structures.

Previous investigations within this thesis (see chapter3 section 3.4.2.1and

3.4.3.1. and chapter 4 section 4.4.2.2.) showed a rather marked right hemisphere
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dominance for face (and object) processing, yet, emotion-specific patterns of oscillatory
changes might be more distinct within left hemispheres. In addition, the processing of
facial affect is predicted to occur after initial face categorisation processes, i.e. within
the later, 0 to 400ms time-window. To obtain additional information about the time-
course of activation for the processing affective information from faces, time-frequency

representations will be explored.
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5.2. Method

5.2.1. Materials and Participants

Stimuli were selected from the Yale Face Database

(http://cve.edu/projects/yalefaces/yalefaces.html.), which contains 165 greyscale images

of facial expressions of 15 individuals. The stimulus set for the current investigation
comprised 12 images, six depicting happy and six depicting sad expressions, plus 12
scrambled versions of these images. Scrambling was performed using Delphi
programming software. The presentation of stimuli was conducted in a block design.
Block A consisted of the six happy facial expressions and their corresponding
scrambled images (Block As), block B consisted of the six sad facial expressions and
their respective scrambled images (Block Bs). Each block was repeated five times to
provide a sufficient amount of trials for each condition, in an AAs-BBs-AAs-BBs- ...
design. Thus the total amount of happy, sad or scrambled images participants were
presented with was 30. Stimulus presentation was enabled through a VSG system

(Cambridge Research Systems Ltd., England).

Six healthy participants (all female, one left-handed) gave consent to take part in the
investigation. The average age of the participants was 23.8 years. The study was
approved by the Aston University Human Sciences Ethics committee. Participants were
seated within a magnetically shielded room, and viewed, through a mirror, a monitor,
placed outside the shielded room, on which the stimuli were presented. The distance

between the participants and the monitor was approximately 2m.

5.2.2. Experimental Paradigm

Participants were instructed to fixate on a central fixation cross on the screen for the
stimulus — a face — to appear, and then to concentrate on the emotional content of the
picture, i.e. the facial expression displayed. The stimulus presentation occurred in
emotion-specific blocks consisting of six images, displayed for six seconds, each
followed by a blank period of six seconds. During this blank period participants were
asked to rate the emotional content to ensure attention was being paid to these

characteristics of the face. Blocks contained emotional stimuli of either happiness or
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sadness, which were alternated with blocks containing their respective scrambled
images of the same mean luminance. The presentation of each scrambled image again

was followed by a blank period (See FigureS-1).

Figure5-1: Schematic representation of the experimental design. Participants were presented with a
photograph showing an emotional expression, displayed for 6s. During the 6s blank period that followed,
participants were asked to rate the emotional state of the person displayed in the photographs.

5.2.3. Image Acquisition and Analyses

MEG signals were recorded with a third order gradiometer configuration using an
Omega 151-channel magnetometer (CTF Systems Inc., Canada). Activity was sampled
at 625Hz with an Anti-Aliasing Filter of 200Hz. Data were recorded in a single un-
averaged run, divided into 20 blocks of 72 seconds each, giving a total of 120 trials.

Following acquisition, raw data were passed through a 1Hz high and 100Hz low pass
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filter. DC corrections were performed by removing the DC offset, and trials containing
eyeblinks contaminating the signal were excluded.

Head localisation information was acquired by recording the position of head
localisation coils before and after the recording session. Following data acquisition, a 3-
D digitiser (Polhemus Isotrack) was used to digitise participants’ heads and allow co-

registration of each participant’s MEG and MRI data. This was achieved using Align

(www.ece.drexel.edu/ICVC/Align/align11.html), which matches the participant’s
digitised head-surface to the head-surface extracted from their individual, anatomical
MRI (Kozinska 1997).

To analyse the MEG data, Synthetic Aperture Magnetometry (SAM) was used
(see section 2.4.1.1.). SPMs were generated for predetermined frequency bands (2-8Hz;
8-13Hz; 13-25Hz; 25-40Hz and 5-40Hz) and time-windows 0 to 200ms; 0 to 400ms
over the entire brain at Smm resolution to localise power changes in response to the
stimuli of differing emotional content and the control stimuli. Positive values are
interpreted as relative increases in power, also referred to as ERS, or increases in ERSP,
and negative values are interpreted as relative decreases in power, also referred to as
ERD, or decreases in ERSP.

Using SPM99 (Friston et al. 1995), the Magnetic Resonance Image (MRI) of
each participant was spatially normalised to a template space. The resultant
normalisation parameters were applied to the volumetric SAM images. Thus, all of the
SAM images (six participants, five frequency bands, two time-windows and four
comparisons: happy versus sad; happy versus scrambled images; sad versus scrambled
images and all faces regardless of emotional expression versus scrambled images) were
then in the same three-dimensional coordinate space allowing group analyses (Singh et
al. 2002). Using SnPM (Holmes et al. 1996; Nichols & Holmes 2002), analyses of
significance were performed at voxel level and at cluster level using a multiple subject
single condition design. Variance smoothing was performed using a Gaussian kernel (o
=20mm). Using non-parametric permutation testing, cluster-level inferences estimate
whether a large connected cluster of near significant t-values may reach statistical
significance. Spatial resolution however is being traded in against sensitivity (for details
see Nichols & Holmes 2002; Singh, Barnes & Hillebrand 2003).

For the visualisation of the results on a template brain, SPM was used as well as

mri3dX (http://www/aston.ac.uk/lhs/staff/singhkd/mri3dX/). In all figures the left side

of the brain is displayed on the left side of the image, and coordinates provided are
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stated in Talairach & Tournoux (1988) version. In the figures presented, increases in

cortical power are indicated by colourscale of red — orange — yellow, with yellow
regions being the most significantly active areas. Decreases in cortical oscillatory power
are indicated by a colourscale of blue — pink — white, with white regions being the most
significantly active areas (see colourbar on page 74, FigureB).

To further investigate the time-course and frequency specificity of obtained
activation within the limbic lobe cluster, time-frequency representations (TFRs) were
generated using Morlet wavelet analysis (Tallon-Baudry et al. 1997). The wavelet
method was chosen as it provides a better compromise between time and frequency
resolution than Moving Window Fourier Analysis. Once the TFRs for each participant

were generated, mean TFRs were computed by averaging the TFRs of all participants.

139



5.3. Results

SAM analyses were performed for two time-windows, 0 to 200ms and 0 to 400ms,
across the following frequency bands: theta (2-8Hz), alpha (8-13Hz), beta (13-25Hz),
gamma (25-40Hz) and across a wide frequency range of 5-40Hz. A cluster analysis,
using SnPM, demonstrated significant power changes for three frequency bands, alpha
(8-13Hz), beta (13-25 Hz) and gamma (25-40Hz), in time windows, 200ms and 400ms.
A table of results detailing pseudo-t statistics, coordinates and region showing changes

in cortical power are included in Appendix4.

5.3.1. Face versus Control Images — Fuce specific comparisons

Within the 0 to 200ms time-window, SnPM revealed significant results at cluster level
for the 13-25Hz (beta) and for the 25-40Hz (gamma) frequency band for the comparison
of facial stimuli to scrambled images. For beta, the permutation distribution revealed a
maximum cluster size of 5159 voxels, with a critical threshold being calculated at 5.07.
With a primary threshold of 2, a significant cluster (cluster size = 1823; p<0.05) was
found within the left middle frontal gyrus (pseudo-t =-5.74; p < 0.05, thus significant at
voxel level also). Here, decreases in event-related spectral power were observed (see
Figure5-2 top). For gamma, the permutation distribution revealed a maximum cluster
size at 4175 voxels, with a critical threshold being calculated at 4.93. With a primary
threshold of 2, a significant cluster (cluster size = 5619; p<0.05) was found
encompassing the left temporal regions including fusiform gyrus, and BA37 (pseudo-t =
-4.17), the left culmen (pseudo-t = -3.85) as well as the left middle temporal gyrus
(pseudo-t = -3.78). In these areas decreases in event-related cortical power were
observed, and assumed to be reduced in the face relative to the scrambled images (see
Figure5-2 bottom). The culmen is the anterior prominent portion of the vermis of the
cerebellum, rostral to the primary fissure. TFRs were generated to explore theses power

changes further, see section 5.3.3.
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condition. The TFRs for the scrambled condition indicate decreases in cortical power
for frequencies of 36 to 38Hz within the first 200ms. Contrary, within the first 200ms of
the all faces condition signal increases are evident. However, the percentage signal
change observed in the TFRs indicates that the increases in power are less prominent
than the relative decreases in power. The percentage signal change shown in the
colourbars, indicate that the maximum signal increase for the all faces condition = 2, the
maximum power decrease in the all faces condition = -6).

Changes in patterns of cortical power were also explored further for a voxel
selected within the left middle frontal gyrus (coordinates = -36 45 30), which showed
significant decreases in event-related power with SAM. The reduction in cortical power
is evident in the low beta frequency band (13-16Hz) within the scrambled faces
condition. Contrary, the all faces condition revealed increases in cortical power across
the beta band at 0 to 200ms latencies. As before, the increases in signal power are less
strong, as the percentage of increases in signal change in the all face condition is
smaller than the decreases in signal power (maximum signal increase = 2, maximum
power decrease = -8) (Figure5-12). Thus, the decreases in cortical power observed in
SAM could be due to the decreases in cortical power observed in both conditions. Mann
Whitney TFRs or bootstrapping would have allowed a more effective interpretation.

Power changes are also explored for a selected voxel within the left superior
frontal gyrus (coordinates = 48 39 -27) for which SAM analysis revealed increases in
cortical power for the longer time-window of 0 to 400ms. Here, increases in cortical
oscillatory power are evident, and more prominent, in the all faces condition relative to
the scrambled images. Increases in cortical activity being most pronounced in the 16 to
20Hz band across 300ms, but also between 12 to 15Hz and 22 to 25Hz for 0 to 200ms.
Increases in cortical power are also evident in the scrambled condition although less
intense (see Figure5-13). As before, the percentage of signal change would indicate a
more prominent change in terms of decreases of cortical power. Here, however, they
appear within the scrambled faces condition, at somewhat later latencies (400 to

500ms).
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5.4. Discussion

5.4.1. Summary of Results

5.4.1.1. Face-specific findings

In summary, the current investigation revealed a decrease in cortical oscillatory power
when comparing face stimuli to scrambled images in left frontal regions for beta (13 to
25 Hz), as well as in left temporal regions including the fusiform gyrus, BA37, culmen
and the middle temporal gyrus for gamma (25 to 40Hz) within a time-window of 200ms
(see figure5-2). For the same comparison over a slightly longer time-window of 0 to
400ms increases in cortical oscillatory power in the left superior frontal gyrus in beta
(25 to 40Hz) were revealed (see figure5-3). Time frequency representations show that
decreases in cortical power within the shorter time window would be due to the changes
in event-related cortical power within the scrambled conditions (see figures 5-11, 5-12
& 5-13). Occipito-temporal areas showed decreases in cortical oscillatory power within
the gamma range, and frontal areas showed decreases within the shorter time-window in
beta, but increases in cortical power within a longer time-window.

The involvement of gamma frequencies for occipito-temporal regions was also
observed in chapter 3 and it was proposed that this was associated with the integration
of sub-processes to build coherent percepts (e.g. Tallon-Baudry & Bertrand 1999;
Rodriguez et al. 1999). This explanation can also be applied to the processing of

scrambled faces.

5.4.1.2. Emotion-specific findings

Comparing individual emotions to the scrambled control images for a time-window of 0
to 400ms, emotion-specific processes were demonstrated at different frequencies and
for different hemispheres. Increases in relative cortical power were demonstrated in
response to happy faces in the left frontal gyri for alpha and beta (see figure 5-4). In
addition, power increases were also detected in the right limbic lobe, including the
hippocampus and the amygdala, for gamma (25 to 40Hz) (see figure5-5). No significant
results were obtained for the shorter time-window, suggesting that the perception of a

face per se precedes the processing of emotional information. Frontal areas showed
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increases in cortical power at alpha and beta frequencies within the left hemisphere,
whereas the right limbic region revealed increases in cortical power at gamma

frequencies.

5.4.1.3. Temporal and frequency information differs in individuals

5.4.1.3.1. Amygdala

As mentioned previously, the recognition of facial expressions, in addition to being
mapped spatially, can also be mapped in terms of latency and frequency information.
Group TFRs (which are averaged individual TFRs) for the right amygdala revealed
increases in cortical power at distinct frequency bands, e.g. 36 to 38Hz (see figure 5-6).
The individual TFRs presented showed increases in cortical power at frequencies of 30
to 32Hz for participant A and at frequencies of 26 to 28Hz for participant B (see figure
5-7). Latency differences are less distinct. The group TFR shows a period of ‘sustained’
increases in cortical activity (from approximately 150ms to 300ms) whereas individual
representations show increases in cortical power that are less sustained, occurring
between 120 and 180ms for participant A, and at latencies of approximately 100 to
150ms for participant B. Thus, individual differences will need to be considered when
trying to make inferences about cortical networks involved in emotional processing.
Within the left amygdala, decreases in cortical power were observed, although they
were not statistically significant (see figure 5-6). Group TFRs show the most prominent
decreases in cortical oscillatory power at 35 to 38Hz, and similarities are seen in
individual participants’ data (see figure 5-7). However, the latencies at which the most
obvious power decreases occur differ slightly between the group data and the individual
representations. Group TFRs indicate peak latencies at approximately 150 to 180ms,
whereas the most pronounced signal decreases occur at about 110 to 120ms for
participant A and at 120 to 180ms for participant B. Itis possible that the lack of

statistically significant findings was related to the individual variability in this response.

5.4.1.3.2. Parahippocampal gyrus

Group TFRs for the left parahippocampal gyrus showed decreases in cortical

oscillatory power to ‘peak’ at latencies of approximately 150 to 250ms, for frequencies
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of 34 to 40Hz. This is mirrored in the data presented for one participant. Prominent
decreases in cortical activity occur at latencies of approximately 150 to 320ms, at
frequencies of 34 to 40 Hz, as in the group data. For the right parahippocampal gyrus,
the patterns of cortical activity seem to differ more notably between the group’s
representations and individual data. Group TFRs show decreases in cortical oscillatory
power at about 100ms and 250ms at frequencies of 34 to 37Hz. In addition, increases in
cortical oscillatory power are also observed, at about 50ms at 32 to 35Hz and at about
200ms at 33 to 37Hz. The most obvious observation within the individual’s TFR is an
increase in cortical activity at about 200ms for frequencies of 33 to 37Hz. This seems to
be almost the opposite of the group representation, yet could possibly be explained in
terms of signal strength. Although a more prominent decrease in cortical oscillatory
power is evident within the right parahippocampal gyrus, the z — statistics are smaller (z
=-0.5 group, z = 0 individual) than those for the observed increases in cortical power (z

= 0.8 group, z = 2.5 individual).

In summary, the processing of happy facial expressions is characterised by
asymmetrical activation in the amygdala and the parahippocampal gyri. Increases in
cortical power are observed in the right amygdala, and the left hippocampus and
decreases in cortical power are evident within the left amygdala and the right
parahippocampal gyrus. These asymmetries are within the gamma frequency band. The
amygdala and parahippocampal findings indicate latency differences, with

parahippocampal activity occurring somewhat later.

5.4.2. Interpretation of results

5.4.2.1. Activation for happy but not sad faces

Although significant power changes could be reported for the presentation of happy
faces, no detectable power changes were observed when presenting sad faces. This
finding, on the one hand, seems to stand in contrast to previous studies, which have
reported activation in response to negative emotional expressions, although it is notable
that these investigations were concerned mainly with fear or anger. No increase in
activation in response to sad faces, on the other hand, was also reported by Phillips et al.

(1998) using fMRI. They concluded that the lack of detectable signal increase in
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response to facial expressions of sadness might be due to the relatively complex nature
of sadness as an emotion (Power & Dalgleish 1997). In support, Morita et al. (2001)
stated that positive emotions such as happiness are recognised more easily than negative
emotions, and that differences in the detection of activation may be due to emotion
intensity rather than valence. Empirical evidence also exists claiming a processing
advantage of happy over other facial expressions (Kirita & Endo 1995; Ekman et al.

1982; Kirouac & Dore 1983).

5.4.2.2. Occipito-temporal regions including fusiform gyrus

The role of the occipito-temporal regions and in particular the role of the fusiform gyrus
in the processing of faces is well established.

The current study revealed decreases in oscillatory power in response to faces
(regardless of emotional expression) and scrambled control images, and hence
illustrates the involvement of these regions in the structural processing of faces
regardless of any social information that may be conveyed. The involvement of the
occipito-temporal areas is also evident in the processing of scrambled faces. The
decreases in cortical oscillatory power observed for the scrambled images are thought to
be due to the increased difficulty implicated in the processing of scrambled faces.
Increases in BOLD signal within occipito-temporal regions and the fusiform gyri in
response to face stimuli have been reported (e.g. Kanwisher, McDermott & Chun 1997,
Phillips et al. 1997; Kesler-West et al. 2004) and Singh et al. (2002) observed a
correspondence between increases in BOLD response and decreases in event-related
cortical power in a biological motion task. It is thus assumed that the decreases in
cortical power observed here are indicative of the processing of facial as well as

scrambled stimuli occurring within occipito-temporal regions.

6.1.1.2.1. Latency considerations

The significant power changes revealed here during a time-window of 0 to 200ms are in
line with results from evoked-response paradigms in which a face-specific response at
about 170ms post-stimulus onset has been reported (N170, see Eimer et al. 2000c;
Schweinberger, Sommer & Stiller 1994). Face specific responses were evident within

the 0 to 200ms time-window, and TFRs illustrate some decreases in cortical oscillatory
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power in the all faces condition. Here, decreases in cortical oscillatory power could be
observed at approximately 150ms for 25 to 27Hz frequencies, and at somewhat later
latencies of 180ms at higher frequencies of 36 to 40Hz. At the higher frequencies,
particularly, the signal decreases observed are, however, more prominent in the
scrambled faces condition, thus, the possibility of decreases in cortical oscillatory power
revealed by SAM, being indeed due to the signal power changes in the scrambled rather
than the all faces condition, needs to be considered. Here it would have been
advantageous to compare indirectly, the patterns of cortical oscillatory power changes
to all faces and scrambled images, by looking at each separately compared to their

respective prestimulus baselines.

5.4.2.3. Frontal areas

5.4.2.3.1. All faces versus scrambled control images

The findings in respect to the frontal areas need to be considered carefully. When
comparing all faces to scrambled control images over the 0 to 200ms time-window,
event-related decreases in cortical oscillatory activity were established in the beta
waveband (13 to 25Hz) in the left middle frontal gyrus. Using a somewhat longer time-
window of 0 to 400ms for the analysis, within the same waveband, event-related
increases in cortical oscillatory power were revealed in the left superior frontal gyrus.
These findings indicate that there seems to be a shift in the change of oscillatory
power from greater decreases in relative power in the shorter (200ms) time-window to
an increase in relative power changes in the longer (400ms) time-window. These
oscillatory changes are illustrated in the TFRs in Figures 5-11 to 5-13. In the 200ms
time window there is evidence of relative power reductions in the low beta band of 13
to 16Hz. These are, however, more prominent in the scrambled face condition than in
the all faces condition, in which increases in cortical oscillatory power seem to be
demonstrated at those frequencies.
The TER generated for the left superior frontal gyrus, on the other hand, shows
increases in signal power, and these are more pronounced in the all faces, compared to
the scrambled faces conditions. Particularly notable are the power increases at 16 to
18Hz, at latencies of approximately 100 to 300ms, but also at higher frequencies, 26 to

30Hz, at approximately 100ms. This could indicate that the processing of scrambled
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images is seen as the more complex component of the perceptual process, initially
associated with decreases in cortical oscillatory power. However, it could also be linked
to the uncoupling of these neuronal networks to allow synchronisation in later time-

windows.

5.4.2.3.2. Emotional expressions versus scrambled control images

In the emotion versus control condition involvement of the left middle and the left
superior frontal gyrus was observed in the 400ms time-window only. The association of
left frontal areas in the processing of emotional expressions has been documented (e.g.
Davidson’s model of approach / avoidance behaviour). In addition, Sergent, MacDonald
& Zuck (1994) and George et al. (1995), using fMRI and PET have pointed out that the
overt processing of facial emotions involves, amongst other structures, the inferior
frontal gyri. In support, a study by Dolan et al. (1996) using fMRI revealed activation
within the left inferior frontal gyrus in response to happy versus neutral faces. However,
activation within the left inferior frontal gyrus was also obtained when all faces
(regardless of emotional content) were compared to a control condition. The
involvement of medial frontal regions to presentations of happy faces was also reported
by Phillips et al. (1998).

The findings obtained in the current study substantiate Streit et al.’s (2000)
claim of a time-delay between the functions of structural decoding of faces per se and
the decoding of the somewhat more complex facial information that is conveyed in
facial expressions. Streit et al. (1999) reported neuromagnetic responses to facial
expressions between 180 and 300ms, and, furthermore, stated that little evidence existed
indicating that decoding of facial expressions would reliably begin earlier than 180ms
post-stimulus presentation. As no significant changes in oscillatory power could be
observed for the shorter time window of 200ms in the emotion versus control condition,
yet significant power changes occurred in the later, 400ms, time-window, this data
supports the notion of structural encoding occurring separately, and earlier, than the

decoding of facial expressions of emotions.
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5.4.2 4. Limbic Lobe including Amygdala and Parahippocampal Gyrus

Power increases were observed for the comparison of happy and scrambled images in
limbic regions including the amygdala and the parahippocampal gyrus. This finding
seems to be due to the emotional content of the stimuli presented, as it was not found in
the all faces versus scrambled condition. As before, indirect comparisons looking at
changes in cortical oscillatory power for happy and scrambled faces and their respective
baselines separately could have provided further insight into the conditions yielding the
patterns of cortical activity obtained. Different response patterns can be observed as
face-responsive neurons in the amygdala receive inputs from different groups of
neurons in the temporal cortex that respond to faces on the basis of features such as hair,
eyes or mouth. Hence face-selective neurons in the amygdala can respond differentially

according to facial emotional expressions.

5.4.2.4.1. Lateralisation effects in amygdalar activation

With humans, Gur et al. (2002a) reported activation within the amygdala and the
hippocampus when participants were asked to discriminate facial emotions. Gur et al.
(2002a) reported a shift from activation within the right amygdala in the first
experimental block to greater left sided activation in the second block. They explained
such shift in terms of hemispheric differences in the time course of the amygdalar
response to facial emotions (Phillips et al. 2001). A shift in terms of hemispheres could
also be observed in this current investigation, yet rather than being solely due to
different time courses it was associated with different frequency bands. The significant
power increase in the right hemisphere observed over the first 400ms for the gamma
waveband of 25 to 40Hz was further investigated by generating time-frequency
representations. In addition to increases in cortical oscillatory power in the right
hemisphere in two frequency bands, 26 to 28Hz and 36 to 38Hz, TFRs generated for a
corresponding voxel in the left hemisphere revealed a prominent reduction in oscillatory
power in a narrower frequency range of 35 to 38 Hz. The latency information, on the
other hand, revealed some similarities. Within the right hemisphere, changes in cortical
oscillatory power seemed present over a period from about 150 to300ms, whereas
decreases in cortical power were most prominent at about 150ms within the left

hemisphere. Further SAM analysis to investigate this switch of cortical activity showed
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a decrease in oscillatory power in comparable areas for the left hemisphere (limbic lobe,

parahippocampal gyrus), yet it failed to reach statistical significance.

5.4.2.42. Amygdala involvement in facial expressions recognition

Streit et al. (1999) stated that obtaining activation within the amygdala confirmed
reports about the role of the amygdala in the processing and evaluation of social and
emotional significance of incoming sensory information. Wild et al. (2003) found the
involvement of hippocampal and amygdalar regions in response to the presentation of
happy faces when also performing congruent mouth movements. In the present
investigation, only ‘viewing’ of the presented expressions was required, hence the
perception and potential experience of the emotion might suffice to recruit limbic areas
including the amygdala. Amygdala activity has also been observed in studies on facial
attractiveness (e.g. Aharon et al. 2001). Happy faces are considered to be more
attractive (Bartels & Zeki 2000; Senior 2003) thus the involvement of the amygdala in
response to happy faces might be due to its role in the appraisal of facial characteristics.
In addition, the amygdala is thought to be part of the neural system integrating emotion
and memory (LeDoux 1993b), a function of certain importance in facial expression
recognition. The middle region of the temporal cortex as well as the amygdala have
numerous anatomical connections to the areas involving the visual streams, thus, the
fact that the amygdala plays a noticeable role in the analysis of complex social stimuli -

such as complex facial configurations — can only be expected.

5.4.3. Theoretical Implications

Physiological findings revealing information regarding where and how processes in the
brain unfold in time have valuable implications for models of face processing, e.g. that
of Bruce & Young (1986). The Bruce and Young model indicates that the first stage in
the face processing sequence is concerned with the identification of the stimulus as a
face. In fact, Ellis et al. (1990) has argued that only an initial classification of a stimulus
as being a face would enable the activation of the face — processing system. The
structural encoding provides data for the next stage, the face recognition units (FRUs),
in which descriptions of familiar faces are contained. Within the Bruce and Young

model there are three structures associated with face identification. These are concerned
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with the interpretation of emotional expression, facial speech analysis and directed
visual processing. According to the model, this seems to imply that affective features of
a face seem to be extracted from faces only after completion of structural encoding,
which has been reported to take place at approximately 170ms post-stimulus onset
(Bentin et al. 1996; Sams et al. 1997; Eimer & McCarthy 1999; Streit et al. 1999).
Pizzagalli et al. (1999; 2002) claim that there exists evidence of face — specific activity
being modulated by affective information before 170ms, e.g. as early as 80 to 1 16ms,
i.e. preceding full face processing. In the current study, activation associated with face
processing occurred within the first 200ms post-stimulus onset, prior to processing
associated with emotional expressions, in concordance with the former group of
researchers.

The importance of the involvement of the amygdala in the perception and
recognition of emotions from faces has also been shown in a study by Schmolck &
Squire (2001) who studied patients with amygdala damage due to Urbach-Wiethe
disease. The impairment they observed in their patient sample led to the suggestion of
there being at least two factors involved in the processing of facial emotion. One, which
requires the ability to discriminate between facial emotions (measured by e.g. a
labelling task), and a second one, which relates to the ability to recognise the intensity
of facial emotions (as measured by assigning a rating of intensity to displayed
emotions). Thus, the ability to characterise amygdala activity during emotional
processing as demonstrated in this study has significance for an understanding of its role

in normal and abnormal affective functions.

5.5.  Summary

MEG data and SAM as an analysis technique can contribute to the investigation of the
mechanisms involved in face perception per se but also in the processing of emotional
expressions from faces. Spatial correlates for the perception of faces and facial
expressions as established in fMRI were found using MEG and SAM. Face specific
latency responses could be determined which would substantiate claims of the N170
component, and it has been shown that the perception of facial affect follows an initial
face categorisation process. Induced gamma oscillations in response to complex facial
configurations have been reported, and validate findings from previous investigations

(see chapters 3 and 4). In addition, this investigation has been able to demonstrate that
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limbic responses, in particular the amygdala, were detectable when processing facial
expressions of emotions, using MEG and SAM. Here differential involvement of the
left and right hemispheres was observed.

These intriguing findings prompted further investigations of facial affect incorporating
the more widely used and validated set of facial stimuli (i.e. the Ekman & Friesen’s
stimulus set of facial affect). The subsequent investigation included neutral faces as
control stimuli to overcome the potential confound that might be associated with

scrambled images being more ambiguous and thus difficult stimuli to process.
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Chapter 6 Effects of a discrimination task on facial processing

6.1. Introduction

6.1.1. Neural correlates of facial emotional processing
The viewing of faces and of photographs of faces can elicit emotions in the observer
(Wild et al. 2001). Dolan et al. (2000) pointed out that facial emotional expressions
supposedly possess innate salience — determined by evolution — thus are able to elicit

automatic spontaneous emotional responses.

6.1.1.1. fMRI investigations

Using fMRI, bilateral activation within the fusiform gyrus was reported by Breiter et al.
(1996) in response to happy and fearful faces. The involvement of temporal areas in the
processing of emotional information has been reported by e.g. Blair et al. (1999),
Breiter et al. (1996) and Dolan et al. (1996). In addition, Rapcsak, Comer & Rubens
(1993) stated that the right middle temporal gyrus seems to play an essential functional
role in the verbal labelling of emotional facial expressions. In response to facial
expressions, Sergent (1994) observed activation within the cingulate cortex, and George
et al. (1993) reported signal increases in anterior cingulate gyri. The presentation of
happy facial expressions has been associated with signal increases in posterior cingulate
areas (e.g. Kilts et al. 1995, 2003). The involvement of subcortical structures such as the
amygdala has been widely demonstrated in studies of emotional processing (e.g. Gur et
al. 2002a; Dolan 2002; Hyman 1998). Blair et al. (1999) reported activation within the
amygdala also in response to the presentation of sad faces.

Phillips et al. (1998) reported activation within both cingulate gyri (anterior
cingulate gyrus, BA24 on the left; and posterior cingulate gyri BA23, BA30 and BA31
bilaterally) in response to happy facial expression, and also within medial frontal
regions bilaterally, the left supramarginal gyrus (BA40), the right putamen and
dorsolateral prefrontal cortex (BA46) and the left caudate nucleus. Contrasting sad
facial expressions with neutral ones revealed activation within the left supramarginal
(BA40), the right dorsolateral prefrontal cortex (BA45) and the left middle occipital

cortex (BA18). The observed signal increase however appeared to be due to the
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presentation of neutral rather than sad faces (Phillips et al. 1998). Thus, Phillips et al.
(1998) concluded that there are dissociable neural substrates underlying the presentation

of facial expressions of happiness and sadness.

6.1.1.2. EEG and ERP studies

EEG investigations into positive and negative emotion processing have
persistently reported ERPs at left hemisphere electrodes in response to happiness or
positive emotions in general, and at right hemisphere electrodes in response to negative
emotions like sadness, anger, fear and disgust (e.g. Davidson et al. 1990b; Graham &
Cabeza 2001; Jones & Fox 1992). Ahern & Schwartz (1985) investigated lateralisation
effects for emotional processing using EEG, and observed differential involvement of
the hemispheres for positive and negative emotion. Left-hemispheric activation as
measured by decreases in alpha was observed for positive, right-hemispheric activation
for negative emotions.

Using LORETA, Pizzagalli et al. (2000) reported the involvement of bilateral
occipito-temporal regions (including lingual and fusiform gyri) extending into inferior
temporal gyri in response to emotion — eliciting faces. A study by Esslen et al. (2004)
reported findings of significant left hemisphere activation in response to different
emotional conditions (such as disgust, fear, anger, sadness, surprise and happiness), and
concluded that the processing of these basic emotions proceeds via both hemispheres.

Further EEG investigations using global analysis approaches such as LORETA -
e.g. Gianotti et al. (2003); Esslen et al. (2004) or Global Field Power - e.g. Eger et al.
(2003) have found emotion—related ERPs to peak at around 100ms followed by a later
component at approximately 140ms to 200ms. The ability to localise emotion — relevant
activity during time segments that discriminate between affective and neutral faces has
revealed dynamic patterns of neuronal activity for individual emotions. Esslen et al.
(2004) could thus demonstrate that each emotion indeed involved a limited number of
brain areas. All emotion conditions investigated engaged the orbital and lateral
prefrontal cortex (PFC). In addition, during happiness and sadness activation appeared
rather prominent in the temporal cortex, and in all conditions except fear, the cingulate

cortex was found active.



6.1.1.2.1. Time course of emotion specific processing

Face specific ERPs and MEG waveforms with latencies of 155ms to 190ms
have been reported by Jeffreys (1996), Bentin et al. (1996), Allison et al. (1994), Sams
et al. (1997) and Schendan, Ganis & Kutas (1998). More recently however, Liu, Harris
& Kanwisher (2002) reported findings of M100 and M170 components, which they
associated with successful face categorisation. The latter component was also found to
correlate with successful face identification. Aiming to map the time course of
emotional processing, Esslen et al. (2004) reported distinct latencies at which areas
implicated in emotional processing were active. For happy faces, an early time segment
of approximately 138ms to 205ms activation was found within left and right frontal
areas, and left and right temporal areas were found to be active at latencies of
approximately 240ms to 290ms. For sad faces, first effects were reported for
approximately 100ms to 125ms within left postcentral regions, the orbital and lateral
prefrontal cortices were active at latencies of approximately 140ms to 200ms, and
220ms to 260ms, respectively. In addition, activity was reported for bilateral ventro-
medial and orbito-frontal regions, right PFC, bilateral temporal areas, and the right
occipital cortex, bilateral frontal regions and the posterior cingulate gyrus for latencies
within 400ms. Davidson & Irwin (1999) assigned the PFC a crucial role in affective
working memory, thus the cognitive demand of the task may have elicited the later bout
of activation in Esslen et al.’s study.

In an emotion discrimination task in which the target emotion was surprise,
Krolak-Salmon et al. (2001) reported evoked potentials to faces at temporal sites
(bilaterally) at latencies of 150ms post-stimulus. At later latencies, 250ms to 500ms,
differential activation to emotional compared to neutral facial expressions was
observed. During an expression discrimination task, ERPs to the different facial
expressions were observed even later still, between 550 and 750 ms.

Nelson & Kestenbaum (1991) however, revealed a N400 and a late P700
component that varied as a function of target emotional expression. In a further study by
Kestenbaum & Nelson (1992) a P300 component was observed at parietal and left and
right temporal sites, which was greater to happy than to angry faces in adults (but

greater to angry faces than to happy ones in children).
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6.1.1.2.2. Frequency specific processing of emotion relevant information

The functional significance of individual frequency bands in relation to the processing
of emotional expressions has not been widely explored. The frontal asymmetry model
proposed by Davidson incorporates differential involvement of frontal alpha in the
processing of, for instance, expressions of happiness and disgust. Facial expressions of
disgust were associated with less alpha power at right frontal areas compared to
happiness expressions, which in turn were linked to less alpha power in left frontal areas
(Davidson 2001). Furthermore, Davidson, Ekman & Friesen (1990a) found that the
“Duchenne Smile” was related to greater left hemisphere activation in frontal and
anterior brain regions (at alpha frequencies). Greater right frontal activation (i.e. less
alpha power) was also reported during punishment conditions in a punishment versus
reward related task (Sobotka, Davidson & Senulis 1992). These decreases in alpha
power have since been taken as an indication of alpha activation, and reduced levels of
alpha activity have become known also as alpha blocking or desynchronisation, in
relation to tasks of behavioural and, or, emotional arousal or active task engagement.
They reported greater negativity within the right hemisphere (i.e. relative to left
hemispheric activation) in response to “happiness’ compared to ‘fear’ questions. An
investigation by Tomarken, Davidson & Henriques (1990) demonstrated that alpha
activity in frontal regions was associated with self-reported negative affect in response
to emotional stimuli (video-clips).

Ahern & Schwartz (1985) stated that other frequency bands are also functionally
related to emotional stimulation, and that increases in cortical power (usually linked to
increased emotional arousal) have been reported.

Delta frequencies, for instance, have been observed in situations of hostile
confrontation (e.g. Hoagland, Cameron & Rubin 1938; Hoagland, Cameron, Rubin &
Tegelberg 1938 — cf. Ahern & Schwartz 1985), theta frequencies have been reported in
response to hedonic stimulation of infants (e.g. Maulsby 1971 — cf. Ahern & Schwartz
1985) and beta frequencies have been linked to increased stress responses and
apprehension (e.g. Berkhout 1969 — c¢f. Ahern & Schwartz 1985). In addition, Rusalova
& Kostiunina (2003), using EEG to study the simulation of joy in a goal-achievement
situation, reported that beta activity correlated with emotional levels but also with

motivation, which also implicated alpha frequencies bilaterally. Ponomarenko et al.
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(2003) observed that, in rats, emotional arousal was associated with beta and gamma
oscillations within the pre-piriform cortex. Ahern & Schwartz (1985) also reported of a
“total power” frequency range (1 to 31Hz), which was associated with greater
involvement in tasks of emotional memory.

Ray & Cole (1985a, b) investigated attentional and emotional aspects in order to
map attentional, cognitive and emotional factors in terms of EEG frequency
representations. They asked participants to remember sad and happy events from the
past and to imagine future ones, but also showed pictures of positive and negative
emotional contents. They reported that parietal areas, for ‘middle’ frequency bands,
including alpha, reflected the difficulty of the task. Furthermore, a significant main
effect was observed for emotional valence in temporal and parietal areas with greater
beta activation for positive than negative conditions. They concluded that the
investigation of beta frequencies might prove useful in further studies of cognitive and
emotional processing.

Drawing comparisons between the patterns of cortical activation for the different
frequency bands, it has been noted that delta and total band power showed an activation
pattern opposing the one for alpha in response to positively and negatively valenced
questions, i.e. increases in power were observed. For theta and beta, increases in relative
as well as in absolute right hemisphere activation could be observed for the ‘excitement’
and ‘fear’ questions but not for ‘happiness’, ‘neutral” or ‘sadness’ ones. It has therefore
been argued that theta and beta frequencies might be associated more with general
arousal levels of particular emotions, rather than their positive or negative valence (Ray

& Cole 1985a, b).

6.1.2. Summary and hypotheses

Thus, the following investigation aimed to further characterise the temporal
sequence of cognitive and neural processes underlying the perception of facial
expressions, and to explore the functional specificity of the conventional EEG
frequencies as well as for a total band power (5-40Hz). Facial expressions of happiness
and sadness were chosen, as exemplars of positive and negative emotions. Sadness has
been ascribed a role of a regulator of emotional and social interactions since the display
of sadness expressions has been linked to inhibition of aggression and the elicitation of

altruistic behaviour (Eisenberg et al. 1989). In a PET study, Blair et al. (1999) presented
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neutral, sad and angry facial expressions of morphed intensity levels, and recorded
activation within left amygdala, right temporal pole BA38, right inferior temporal gyrus
BA20, and right middle temporal gyrus BA39, ACC BA38 in response 10 sad
expressions. Happiness on the other hand provided an interesting emotion to study due
to the observations of a happy face advantage in behavioural investigations. It has been
suggested that happy faces are more likely to be recognised by a different processing
strategy (Kirita & Endo 1995). In addition, the observation that young infants are
known to first discriminate happy faces from all other facial expressions (Barrera &
Maurer 1981) adds to the proposition that happy faces may be recognised in a different
way. Functional imaging studies that have included facial expressions of happiness have
reported the involvement of subcortical structures like the amygdala, but also the
anterior cingulate cortex and frontal regions. Thus, investigating happy and sad facial
expressions and using neutral expression as a comparison stimulus might reveal
dissociable neural substrates, responding differentially to these distinct emotions.

In this investigation, facial stimuli were chosen from the Ekman & Friesen series
of pictures of facial affect as they are the most widely used and most validated set of
facial expressions to date. Instead of employing a paradigm in which the rating of
emotional content was emphasised — as was the case in the previous experiment —a one
back memory task was chosen, allowing for the investigation of more explicit facial
emotional processing. Participants were asked to indicate whether the two facial
expressions presented were identical or not. Explicit processing of facial emotions has
been linked to increases in BOLD signal in temporal areas. The changes in
methodology are due to the discussion of the findings from the previous investigation
(see chapter 5, section 5.4).

It is hypothesised that face-specific areas such as occipito-temporal and occipital
areas including lingual and fusiform gyri are activated, in addition to emotion - specific
regions, in particular frontal and temporal regions as well as the cingulate gyri. Left and
right frontal areas are predicted to show differential patterns of activation. It is also
expected that face specific ERPs and MEG waveforms will be observed at latencies of
150 to 190ms (these have been used by Eimer 2000a-c to quantify the face-specific
N170) and that emotional, compared to, neutral expressions will be differentiated by
latencies as has been found by Esslen et al. (2004) and Krolak-Salmon et al. (2001).
Emotion specific EEG frequencies are to be explored, with frontal alpha frequencies

predicted to show differential involvement in the processing of happy and sad facial
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expressions. Gamma responses are predicted due to the complexity of the face stimuli
and the observations of Rodriguez et al. (1999) and Tallon-Baudry et al. (1997) (see
also chapter4), but also because they have been implicated in the previous studies of
face processing, with differential effects of gamma for the processing of faces and

houses in occipito-temporal regions (see chapter3).



6.2. Method

6.2.1. Materials and Participants

Stimuli were selected from the Ekman and Friesen (1976) series of Pictures of Facial
Affect, which contains black and white photographs of facial expressions of 10 actors
(six female). The photographs have been digitally altered to depict only the contour of
the face, i.e. hair, ears etc. are removed. The images selected for the current
investigation comprised happy and sad expressions for all ten individuals, plus
corresponding neutral expressions (as control stimuli). To obtain adequate amounts of
stimulus presentations and trials, each face was repeated three times, yielding a total of
90 facial stimuli, 30 in each expression condition. For stimulus display Presentation
software (http:/nbs.neuro-bs.com/presentation/download) was used. The presentation of

the stimuli proceeded in a randomised order.

Nine healthy participants (eight female, one left-handed) gave consent to take part in the
investigation. Due to movement, head localisation failed for two participants resulting
in usable data for seven participants (six females; one left handed, average age 27years).
The study was approved by the Aston University Human Sciences Ethics committee.
Participants were seated within a magnetically shielded room, and viewed, through a
mirror, a monitor, placed outside the shielded room, on which the stimuli were
presented. The distance between the participants and the monitor was approximately

2m.

6.2.2. Experimental Paradigm

On each trial, participants were asked to fixate on a white circle for 1500ms before a
target stimulus was presented for 500ms. The fixation point then returned followed by a
second image being presented for 500ms and a delay before a cue (red circle) indicated
that the participant should make a button-press response, indicating whether the two
facial expressions presented were the same or different. The pairs presented contained

faces of same or different emotional expressions (see Figure6-1).
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interpreted as relative decreases in power, also referred to as ERD, or decreases in
ERSP.

Using SPM99 (Friston et al. 1995), the MRIs of each participant was spatially
normalised to a template space. The resultant normalisation parameters were applied to
the volumetric SAM images.

Thus, all SAM images (seven participants, four frequency bands, three time-
windows and six comparisons: happy vs. neutral; sad vs. neutral; happy vs. sad; happy
vs. baseline; sad vs. baseline, neural vs. baseline) were then in the same three-
dimensional coordinate space allowing group analyses (Singh et al. 2002). Using SnPM
(Holmes et al. 1996; Nichols & Holmes 2002), analyses of significance were performed
at voxel level and at cluster level using a multiple subject single condition design.
Variance smoothing was performed using a Gaussian kernel (¢ =20mm). Using non-
parametric permutation testing, cluster-level inferences estimate whether a large
connected cluster of near significant t-values may reach statistical significance. Voxel
level inferences were estimated additionally. Spatial resolution however is being traded
in against sensitivity (for details see Nichols & Holmes 2002; Singh, Barnes &
Hillebrand 2003).

For the visualisation of the results on a template brain, SPM was used as well as

mri3dX (http://www/aston.ac.uk/lhs/staff/singhkd/mri3dX/). In all figures the left side

of the brain is displayed on the left side of the image, and coordinates provided are
stated in Talairach & Tournoux (1988) version. In the figures presented, increases in
cortical power are indicated by colourscale of red — orange — yellow, with yellow
regions being the most significantly active areas. Decreases in cortical oscillatory power
are indicated by a colourscale of blue — pink — white, with white regions being the most
significantly active areas (see colourbar on page 74, FigureB).

To investigate the time course and frequency specificity of the obtained
activation within significant regions, time-frequency representations were generated
using Morlet wavelet analysis (Tallon-Baudry et.al. 1997). The wavelet method was
chosen as it provides a better compromise between time and frequency resolution than
Moving Window Fourier Analysis. Time-Frequency Representations (TFRs) were
generated. Once the TFRs for each participant were generated, averages were computed

by averaging the TFRs of all participants.
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the neutral faces condition was “subtracted” from that observed for the happy faces

condition. The Mann Whitney TFRs generated for each individual were then averaged
to obtain group TFRs (see Figure6-8, top row).

For the group Mann Whitney TFRs increases in signal power are evident across
the whole 25 to 40Hz waveband. The most prominent increases in cortical oscillatory
power, however, can be seen at latencies of approximately 100ms to 200ms, for
frequencies of 26 to 28Hz (z-score = +2.5). The middle and bottom row of Figure6-8
show individual TFRs. For participant 1, the most prominent increase in cortical
oscillatory power can be seen in the later time windows, 100ms to 200ms, at
frequencies of 36 to 40Hz (z-score = +2.5). For participant 2, prominent increases in
cortical oscillatory power can be seen at latencies of approximately 20ms to 80ms, for
frequencies of 28 to 36Hz (z-score = +1), and a second burst of increases in cortical
synchronies is evident at 180ms to 220ms, for frequencies of 32 to 38Hz
(z-score = +2.4).

When comparing the average TFRs for the neutral and happy faces conditions
(see Figue6-7), to the Mann Whitney TFRs, it can be seen that the increases in cortical
oscillatory power observed in the averaged TFR for happy faces are also evident in the
averaged Mann Whitney TFR. Particularly notable is this increase in participant 2,
however, at latencies of 180ms to 200ms, and for frequencies of 32 to 38Hz. As the z-
scores indicate the increases in cortical power are the more prominent power changes,
thus the increases in cortical power evident in the group SAM and SnPM analyses are

due to power changes observed in the happy faces condition.
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were included in the analysis as the active condition, and sad faces as passive condition,

hence the spectral power observed in the sad faces condition was “subtracted” from that
observed for the happy faces condition. The Mann Whitney TFRs generated for each
individual were then averaged to obtain group TFRs (see Figure6-11, top row).

For the group TFR, the decreases in cortical oscillatory power are rather marked
for the 0 to 400ms across the whole alpha range. For latencies of approximately 200ms
to 380ms, power decreases are evident for 8 tol0Hz frequencies; at latencies of
approximately 50ms to 180ms decreases are more marked at somewhat higher
frequencies, 10.5 to 12.5Hz. Between 200ms and 300ms decreases in cortical oscillatory
power are also shown at frequencies of 11 to 13.5Hz. Although averaged (group) z-
scores are low, individual z-scores indicate significant differences. TFR for two
participants are illustrated in Figure6-11, see middle and bottom rows. For participant
1, the most prominent decreases in cortical oscillatory power are shown for latencies
between 180ms and 400ms,with peak decreases evident at around 250ms, for
frequencies of 8 to 11Hz (z-score = -2.0). For participant 2, decreases in cortical
oscillatory power are seen at latencies of 50ms to 250ms, at frequencies of 9 to 11Hz (z-
score = -2.5). Decreases in cortical oscillatory power are also evident at somewhat later
latencies of 300ms to 400ms, for frequencies of 11 to 12.5Hz.

When comparing the average TFRs (see Figure6-10) to the Mann Whitney
TFRs (see Figure6-11), the decreases in cortical oscillatory power observed in the
averaged TFR for happy faces are also evident in the averaged Mann Whitney TFR. For
higher alpha frequencies, 12 to 16Hz, the most notable decreases in signal power were
observed for the average TFR for happy faces condition. In the Mann Whitney TFR
these prominent decreases in cortical power can also be observed at somewhat lower

frequencies from 11 to 14Hz.
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6.4. Discussion

6.4.1. Summary of results

Increases in cortical power were revealed within the 0 to 200ms time-window for
bilateral occipital and right parietal areas for the processing of faces per se (see figures
6-2, 6-3 & 6-5). As before, changes in cortical oscillatory power within the shorter time
window could be linked to alpha and broadband frequencies (5-40Hz). This
substantiates the observations from the previous face processing chapters (see chapter 3
and 4).

In addition, the current investigation yielded results, which support the notion of
the involvement of frontal areas in the processing of emotional facial expressions.
Differential patterns of cortical oscillatory power were found for happy compared to sad
faces within the longer 0 to 400ms time-window, at alpha frequency. Decreases in
cortical oscillatory power within right frontal areas were observed (see figure 6-9).
TFRs indicated that the decreases in event-related spectral power are due to the
processing of happy (rather than sad faces) and most prominent decreases in cortical
power were observed within 100 to 300ms at higher alpha frequencies (10-12Hz) and
within 200 to 400ms for 8-13Hz. Hence, the processing of happy and sad faces is
differentiable at latencies that are longer than those that categorise faces per se.

Comparing happy facial expressions to neutral ones revealed increases in
cortical synchrony in the gamma frequency in right frontal areas (see figure 6-6), and
the comparison of happy faces to a prestimulus baseline showed decreases in cortical
oscillatory power in left frontal regions in beta and in right and left frontal regions
across a wide frequency band of 5 to 40Hz (see figures 6-12 & 6-13), all within the 0 to
200ms time-window. No significant activation could be reported to the presentation of
sad faces versus baseline, nor when comparing sad faces to neutral faces. This was also

shown in the previous investigation (see chapter 5).

6.4.2. Interpretation of results

Findings from neuroimaging as well as neuropsychological studies repeatedly show that
there is a right hemisphere bias, or dominance, for face processing (e.g. Gur, Skolnick
& Gur 1994; Adolphs et al. 1996), which has also been shown in the previous

investigations in this thesis. Additionally, the recognition of facial expressions is also
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thought to rely on the right hemisphere more so than the left hemisphere (Suberi &

McKeever 1977). In this study the right hemisphere was engaged to a greater extent,
indicating its involvement extends to the processing of emotional expressions,
regardless of their valence.

Damasio et al. (2000) stated that the orbital (frontal) cortex, mainly B11, is
involved in so called “as-if-body loop” mechanisms, i.¢. in situations during which
emotions are (self) generated in the absence of a natural emotion-inducing event. This
relates to the emotional contagion phenomenon (Wild et al. 2001). They reported
activation within the frontal operculum (including inferior frontal gyrus and BA47),
bilateral occipito-temporal areas and somatosensory cortex in response to happy faces.
Thus, the presence of emotive faces might, to a similar extent, evoke a transient
emotional state in the observer without the conscious attempt of inducing mood. Frontal
differences were also observed in this study. Left frontal regions demonstrated greater
ERD for happy versus baseline comparisons (see Fig. 6-12), and right frontal areas were
involved in the processing of happy faces compared to neutral as well as sad ones.
Differential involvement of occipito-temporal areas was not clearly demonstrated in this
study. Neutral faces compared to baseline revealed activation within occipito-temporal
areas only; yet, when contrasts between emotional expressions were assessed (e.g.

happy versus neutral) no statistical ditferences could be reported.

6.4.2.1. Task demands

A memory component has to be considered when interpreting the current results.
Participants were asked to indicate if the second face in a sequence was identical to the
previously seen one. In order to do this, information regarding gender and facial
expressions of the first face would need to be encoded (verbally) for subsequent
retrieval. Hence, the engagement of numerous cognitive processes, e.g. knowledge
retrieval, declarative memory, would indicate a test of higher cognitive functions rather
than (low level) emotion processing. Thus, the involvement of the frontal areas might
need to be considered also in relation to their role in tasks of working memory. In the
previous studies, frontal involvement was observed in response to the presentations of
faces (and control stimuli). Decreases in cortical power within left frontal regions were
reported in chapter 3 (see figure 3-11) and chapter 4 (see figure 4-17) and have been

linked to the performance of a working memory task. In response to facial expressions
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in a passive viewing paradigm, left frontal areas showed decreases as well as increases

in synchronous power for different comparisons (see chapter 5 figures 5-2 & 5-4). This
observation at this stage leaves open the question of the frontal activation being
primarily due to the emotional content of the stimulus or due to the task demands, and
will be revisited in the general discussion.

Activation within the precentral areas including premotor areas and BA6 have
been reported to unfamiliar versus familiar faces (e.g. Phillips et al. 1998b) and also to
fearful and happy faces (e.g. Morris et al. 1996; Morris, Ohman & Dolan 1998). Wild et
al. (2003) have argued that activation within precentral regions, which could also be
regarded as premotor areas, might be interpreted in terms of preparation stages for facial
reactions (to the facial expressions presented). In line with the “social display rules”
(e.g. Ekman & Friesen 1969) it is established that in social situations or settings, a
smiling face would be responded to with a smile and a sad face would be reciprocated
by lowering the corners of ones mouth. Thus, Ekman & Friesen (1969) argued that
these social display rules might have led to the recruitment of highly effective neural
networks that initiate socially appropriate reactions. As it seems to be easier to
reciprocate a smile than to sympathise with a sad face, these mechanisms might have
evolved more distinctively for responding to happy facial expressions which could be a
further reason for why it might be that cortical activity seems to be showing significant
changes more readily in response to happy facial expressions than to sad ones.

Emotional processing is not a function per se; it is an integration of several sub-
functions (Esslen et al. 2004), leading to what is known as an emotion (which can be
seen as an evaluation strategy, therefore making it likely that several diverse and diffuse
cortical and subcortical areas would be implicated in emotional processing). Results by
Schweinberger et al. (2003) indicate that seeing a face during a learning task
simultaneously activates many neurons in many different cortical areas, possibly
representing different features of the face, such as gender or expression.

An association of parietal areas to motivational and emotional factors might
explain parietal activation in response to neutral faces compared to baseline. Superior
parietal areas have also been linked to spatial attention and feature binding (e.g. Wild et
al. 2001) and Tovee (1998a) has claimed that it could be within this region that
ambiguous images are assembled into coherent concepts. Thus, drawing together the
information within the face 1o establish the emotional expression but also to allow

keeping its representation in memory or comparing it to a stored representation of the
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previous face could thus be related to the observed parietal activation. Schutter et al.

(2001) showed a significant relationship between parietal EEG (beta) activity and
attentional responses to angry faces. They linked their findings to the behavioural
dimensions of approach and withdrawal, first established by Davidson (1992). A study
by Lang, Bradley & Cuthbert 1998) also obtained activation within the parietal lobules
when comparing emotional to neutral stimuli.

Amygdala activation was not demonstrated in this investigation. A possible
reason for this could lie in the fact that the task employed involved an explicit face-
processing task. Critchley et al. (2000) observed that explicit processing of facial
expressions evoked increased BOLD signal in temporal regions, whereas amygdala
activation was observed in response to an implicit processing task, such as gender
discrimination. Thus, neuroanatomical dissociation between conscious and non-
conscious processing of emotional facial expressions was suggested, with explicit
processing evoking activity within the visual cortical areas (representing faces) and in
posterior (hippocampal) regions, which are associated with declarative memory.

However, facial expression may be processed in an attention-independent
implicit way, which does not rely on the detailed cortical representation of the face but
implies limbic structures such as the amygdala and insula regions, or prefrontal cortex
(Critchley et al. 2000). In addition, Gur, Skolnick & Gur (1994) stated that the
involvement of the amygdala depends on the saliency of the affective component, and it
is possible that the cognitive nature of the task has restricted the recruitment of
subcortical structures implicated in emotional processing. In the previous task
participants engaged more directly with the emotional content of the stimuli presented,

which might have resulted in the observed activation of limbic structures.

6.4.2.2. Temporal considerations

Significant results in this study were reported for the shorter time-window of
200ms to a greater extent than for the longer time-window of 400ms for which
significant cortical power changes could be observed in the happy versus sad face
comparison.

As previously described (see section 6.1.1.2, also chapter 3), differential effects
for the processing of happy and sad facial expressions have been reported at latencies

shorter than 200ms. In this investigation, differential patterns of cortical oscillatory
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power were observed at such latencies for happy compared to neutral faces and a

prestimulus baseline (see figures 6-6 & 6-12). Differential changes in event-related
spectral power for happy and sad facial expressions, however, were observed at
latencies of 0 to 400ms (see figures 6-9 & 6-11).

It can therefore be substantiated that the categorization of a face takes place
prior to the discrimination of internal facial features such as emotional expression.
Hence this study seems to provide evidence for the Bruce & Young model, and is in line
with EEG and ERP (e.g. Eimer 2000c; Schweinberger et al. 1999).

The differential processing of facial expressions of happiness and sadness was
shown to take place at latencies between 100 and 400ms (see figure 6-11). This
coincides with the observations by Esslen and colleagues who reported bilateral ventro-
medial and orbito-frontal regions to be implicated in the processing of sad and happy
faces at latencies of 240 to 400ms (Esslen et al 2004).

The processing of happy faces compared to neutral ones or baseline revealed
significant changes in event-relates spectral power within the 0 to 200ms time-window,
which was previously found also by e.g. Krolak-Salmon et al. (2001).

Thus, it seems that the processing of facial emotions is linked to a number of
temporal components. The emergence of functional imaging studies with high temporal
resolution and improved spatial resolution as in MEG will help in teasing apart the
spatial and temporal dynamics associated with the processing of facial emotional

expressions.

6.4.2.3. Frequency considerations

The extended frontal oscillations observed in the current investigation ranged
across different frequency bands. Decreases in cortical synchrony were observed for
alpha when contrasting happy and sad facial expressions. This can be regarded as
providing support for the Davidson model of frontal asymmetry, as differential
involvement of alpha was observed for happy versus sad facial expressions. The TFRs
(see figure 6-11) indicate that greater decreases were observed for the happy face
conditions in the right hemisphere, which again can be linked to the asymmetry model
as no frontal alpha was reported for the left hemisphere. Additionally, the observation of
decreased cortical power for a broadband frequency of 5-40Hz (thus incorporating

alpha) in right frontal areas for happy versus baseline comparisons can be taken as
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further support for the Davidson model. Here, TFRs would have been helpful to assess
the role of frequencies. Furthermore, alpha blocking has been observed previously in
tasks of behavioural or emotional arousal or during active task engagement (see
Davidson 2001). Ray & Cole (1985a,b) linked task complexity to the involvement of
alpha frequencies in parietal areas, which were reported in this investigation also (see
figure 6-5). Therefore it remains to be seen whether the frontal involvements in this
investigation are due to the emotional content of the stimuli or to the task that
participants had to perform.

When comparing happy faces to a baseline, left frontal regions showed
decreases in oscillatory power for beta (see figure 6-12). Beta increases in frontal areas
were also shown in the previous investigation (see chapter 5) when contrasting happy to
scrambled control images. Previous reports have linked beta frequencies to more
general (rather than emotion-specific) arousal levels as right hemisphere beta failed to
reach significance for emotions of happiness (Ahern & Schwartz 1985). However, as
significant cortical power changes were observed in this investigation (and the previous
one) for beta frequencies in response to happy faces, a possible role for beta in the
processing of positive emotions (or particularly facial expression of happiness) is
suggested.

As mentioned previously, activation in parietal areas was established for a
rather wide frequency band of 5 to 40Hz for neutral faces versus baseline. This would
lend support to the fact that parietal beta activation might be linked to task demand
rather than emotion-specific processing. Schutter et al. (2001) obtained EEG beta
activation within the parietal lobe. Therefore, the findings reported here could be linked
to Schutter et al.’s investigation in terms of frequency specificity, as the beta

frequencies (13 to 25 Hz) fall into the frequency range of 5 to 40Hz.

6.4.3. Methodological considerations

The stimulus presentation in this investigation was randomised in order to avoid carry-
over effects. Presenting a whole block of facial expressions of sadness, or happiness, as
was done in the previous experiment, might have lead to habituation. A study by Breiter
et al. (1996), however, concluded that significant carry-over effects are rarely found in

emotional experiments that involve the presentation of facial expressions (only).
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In future investigations, however, slight changes to the methodology could

ascertain that carry-over effects can be ruled out by increasing the delay between
presentations of faces (increase 1S1), including runs of neutral faces prior to presentation
with emotional faces, using as control the average response to all neutral faces thus
balancing out carry-over effects into the neutral condition (similar to what was done
here).

In an investigation by Wild et al. (2003) the presentation of sad faces also did
not yield any emotion-related activity. They argued that the stimuli they had used might
not have been strong enough. As this is a second study which has failed to produce
significant changes in response to sad (compared to baseline or neutral expressions)
using two different stimuli set it is arguable whether a lack of activation is merely due
to an inappropriate stimulus set, or whether there is something more inherent in the
actual experience or recognition of facial expressions of sadness that leads to
dissociation or to differential patterns of cortical activity associated with it (compared to
the patterns of neural activity established in response to e.g. facial expressions of
happiness). It has previously been argued (see chapter5) that the complexity associated
with the emotion of sadness might have resulted in the lack of cortical power changes.
Only within a longer time-window of 400ms could significant activation be reported
when comparing happy to sad facial expressions. These were observed for the alpha
frequency band, within right frontal regions, and might reflect the activation pattern of
the happiness expression observed in the other comparisons. This possibility seems
substantiated by the findings from TFRs.

The lack of significant findings to facial expression of sadness and the
observation of Krolak—Salmon et al. (2001) regarding ERPs to emotional stimuli at
latencies post 500ms might have rendered the stimulus presentation time as too short.
However, findings of object recognition being remarkably fast and conscious awareness
of visual stimuli taking place at 200 — 300ms (Treisman & Kanwisher 1998) suggests
that a presentation duration of 500ms is long enough to allow assessment beyond that of
feature identification. In addition, there are numerous studies that have identified that
face recognition, and the recognition of facial expressions of emotions can take place
within 500ms (e.g. Esslen et al. 2004; Pizzagalli et al. 2000; Werheid, Alpay, Jentzsch
& Sommer 2005; Schutter, de Haan & van Honk 2004).



6.5. Conclusion

This investigation revealed a right hemisphere bias for face processing as has been
established in previous face processing studies (e.g. Adolphs et al. 1996; Gur et al.
2002a), as well as in the previous investigations within this thesis. When comparisons
were drawn between all faces regardless of their facial expressions, significant changes
in ERS were revealed in the right and left hemispheres. However, the processing of
emotional expressions also revealed a greater engagement of the right hemisphere.
Thus, the current findings can be spatially related to those observed in investigations
looking at the fMRI BOLD response, but do not necessarily confirm the observed left
hemisphere bias for emotional processing (see section 6.1.1.1.).

In terms of temporal characteristics of facial emotional processing, the current
investigation could substantiate some of the previous observations drawn mostly from
EEG / ERP studies. The face specific ERP / MEG waveforms that have been observed
to take place at latencies of approximately 155ms to 190ms (e.g. Jeffreys 1996; Liu et
al. 2002) could be confirmed, as the perception of faces regardless of emotional
expression yielded significant results in the 0 to 200ms time-window, indicating that
within this latency window the processing of a stimulus as being a face can indeed be
achieved. ERP studies investigating the processing of emotional expressions have
associated early time segments also with the processing of facial expressions. Esslen et
al. (2004), for instance, reported latencies of 138ms to 205ms for the processing of
happy facial expressions. In this current investigation, contrasting happy with neutral
expressions led to significant increases in cortical power associated with the processing
of happy face within the 0 to 200ms time-window. Some discrepancies that have been
observed for the processing of emotional versus neutral expressions, however, might be
due to differences in the methodologies used, as here comparisons are made between
evoked (ERP) and induced (MEG) responses.

The functional significance of frequency specific activation was also explored in
this study. It was found that decreases in right frontal alpha could be observed when
contrasting happy facial expressions to those of sadness. In previous investigations (e.g.
Davidson 2001) happiness conditions were linked to less alpha power within left frontal
regions. Comparing happy faces to baseline, however, revealed ERD within the left and
right frontal regions, thus, bearing resemblance to the observations by Davidson 2001.
Differences in the methodology, as well as the stimulus material used — verbal stimuli in

the Davidson study — might have led to the greater engagement of left hemispheres,
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whereas in this investigation the right hemisphere dominance for face processing needs
to be taken into consideration.

Alternatively, Tomarken, Davidson & Henriques (1990) linked increase in
frontal alpha to negative affective responses to emotional stimuli, thus the decrease in
frontal alpha might hence be linked to positive affective responses to emotional stimuli,
and the TFR (Figure6-5) indicated that the decreases in cortical oscillatory power were
due to the pattern of activation in the happy face condition. Beta frequencies were
engaged when processing happy faces compared to baseline, thus it could be assumed
that the emotional expressions in this comparison can be seen as the more attention-
arousing stimulus (see Rusovala & Kostiunina 2003).

In sum, the processing of facial emotional expressions can indeed be mapped in terms
of spatial, temporal and frequency specific information, as this study was able to add
temporal information as seen in EEG/ERP studies to the findings of similar neural
correlates as were established in functional neuroimaging studies, and in addition
explore the functional significance of specific frequency bands in relation to facial

emotional expression.



Chapter 7 General Discussion

7.1.  What do findings from MEG and SAM add to research on the
processing of faces and facial affect?

In this thesis, the suitability of MEG in the processing of faces (chapter 3 and chapter 4)
and for the processing of facial expressions of emotions (chapter 5 and chapter 6) was
assessed. It was shown that MEG and indeed SAM are able to reproduce findings
established with functional imaging techniques such as fMRI in the spatial domain, and,
additionally, confirmed the findings from EEG and ERP studies regarding the temporal
evolution of face processing and the processing of facial affect. Furthermore, insights
were gained regarding the roles of specific frequency bands in the processing of faces
and facial expressions. The findings reported are described in terms of either ERD or
ERS. These are stimulus- or task-related changes in the ongoing cerebral rhythms (see
also section 2.5). Their interpretation is influenced by the ongoing debate as to what
ERD, ERS, increases or decreases in ERSP actually represent. According to the
traditional belief, (increase in) alpha synchronisation is thought to reflect cortical
“idling” (Pfurtscheller et al. 1996a). However, event-related changes in alpha band
power have been associated with active information processing (see Klimesch et al.
1999), and Klimesch et al. (2000) showed that in a recognition memory task alpha
synchronisation within parieto-occipital areas co-occurred with induced alpha activity
showing widespread desynchronisation. Hence, we cannot assign either of these
phenomena to being associated with only inhibition or only (active) processing (see also
section 7.2.1).

In order to compare findings from fMRI to those derived in MEG studies, the focus so
far, has been on fMRI BOLD responses and MEG ‘evoked responses’. Singh et al.
(2002) demonstrated the correspondence of ERD & positive BOLD effects for cognitive
paradigms, and it is suggested that if oscillatory effects correspond to changes in the
overall level of activity altered metabolic needs and therefore BOLD responses would
be shown (Brookes et al. 2005). If, however, ERD and ERS primarily represent
desynchronisation & synchronisation without changes in neuronal firing rates, then they
could be fMRI silent. In either case, these neuronal responses would, and should alter
the metabolic state thus giving rise to BOLD effects. Using the same simple visual
paradigm in an MEG and an fMRI investigation, Brookes et al. (2005) reported alpha
ERD, gamma ERS and BOLD signals within the same areas of the visual cortex. Given
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that observed increases and decreases in ERSP represent deviations from the natural

resting state of the cortex, it could be assumed that the neuromagnetic effects indeed

present potential contributors to / for the BOLD effect.

7.1.1. Spatial correlates of face processing

7.1.1.1. Activation of face-specific areas and implication for models and theories

of face processing

This thesis showed that face-specific region i.e. temporo-occipitial areas, including the
fusiform and lingual gyri, middle occipital gyri as well as superior and middle temporal
gyri are implicated in the processing of faces (chapters 3 & 4) and facial expressions
(see chapter 5). Although activation within the fusiform gyrus was not observed in
every single experiment in this thesis to significance at group level, it was found at
individual levels, and also in group analyses at sub-threshold level. This might have
been due to the type of task employed. It has been shown that the involvement of the
fusiform gyri is found more consistently in tasks involving face identity, rather than in
studies incorporating the processing of facial affect. The paradigms in this thesis
required additional cognitive processes, and therefore the involvement of the fusiform
face areas might have been overridden by structures more involved in cognitive
processes, such as memory.

Despite the apparent lack of fusiform involvement in the responses to face
processing paradigms, the somewhat differential involvement of extrastriate visual areas
for faces compared to houses, inverted faces and other control images would none the
less suggest that there are indeed neural substrates that selectively process faces. These
might not necessarily be located within one particular area; hence the concept of a
fusiform face area being selectively responsive to faces was not fully supported by the
studies in this thesis. Direct replication of studies that have identified the FFA in fMRI
and MEG however, were not included.

Support for face-specific regions has led to the confirmation of there being more
specialised but also more segregated areas, which are thought to be due to the different
recognition goals associated with the processing of faces (rather than the processing of
houses, scrambled images or inverted faces). The additional recruitment of, for instance,
temporal and frontal areas, however, might also be linked to the increase in complexity

when processing, for instance, inverted faces.
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The observation of the involvement of middle and inferior occipital gyri seem to

be in line with the distributed neural system model proposed by Haxby et al. (2000a).
Spectral power changes within these regions within the 0 to 200ms time-window would
correspond to the proposed role of the occipital gyri in the initial or early perceptual
processes. The proposed subsequent involvement of the STS for the processing of facial
affect, and the apparent lack of cortical power changes observed within this area in
studies 3 & 4 (see chapter 5 & 6) might have been due to stimulus characteristics, as
was predicted that the intensity of the emotion presented would impact on the level of
cortical power changes observed. The emotional expressions used in these

investigations were of moderate intensity.

7.1.1.2. Activation of parietal and frontal areas

The extended involvement of parietal areas and of frontal regions in this series
of investigations would substantiate the claim that parietal areas are implicated in
memory processes, as their involvement has been reported in studies using N-back
memory tasks (Jansma et al. 2000; Krause et al 2000; Rami et al. 2001; Zurowski et al.
2002). In order to store, retrieve and subsequently match two images, working memory
and short-term memory processes needed to be recruited, and therefore the involvement
of purely face-specific areas might have been diminished. Alternatively, the decisions as
to whether the image presented matched the previous one might have been reached by
considering features other than the face-specific aspects of the stimuli, such as general
shape.

Parietal areas have been implicated in the processing of emotional and
motivational aspects, as well as in spatial feature binding, i.e. in turning an ambiguous
figure into a coherent concept (e.g. Tovee 1998a). This is confirmed by evidence of the

recruitment of parietal areas observed in studies 1 & 2 (see chapter 3 & 4).

7.1.2. Spatial correlates of facial affect - findings and implications

7.1.2.1. Frontal areas

The processing of facial expressions of emotions was associated with increases
in event-related spectral power in left and right frontal areas as well as with parietal

areas and limbic regions, e.g. parahippocampal gyrus and the amygdala (see chapter 5
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and 6). The involvement of frontal regions has been linked to emotional contagion

phenomena (Wild et al. 2001) as well as to the possibility of transient emotional states,
whereas premotor and parietal areas have been linked to preparatory processes for
‘facial reactions’. According to the social display rules (Ekman & Friesen 1969), it
would be regarded as much easier to reciprocate a smile than to react sympathetically to
a sad face. Therefore, it could be assumed that the evolution of mechanisms processing
happy faces might be somewhat more advanced than the mechanisms processing
emotions like sadness. This is in line with the suggestion that the survival relevant
functions of emotions like fear and disgust seem to possess a higher salience, and
structures like the amygdala are proposed to implement a rapid response ‘fear-module’.

Maybe the processing of positive emotions such as facial expressions of
happiness could be linked to a mood enhancing status, and, therefore, the evolution of
relevant processing mechanisms have become more adaptive than mechanisms involved
in the processing of sadness, or negative emotions more generally. In fact, differences in
the processing of facial expressions in patients with major depressive disorders (who
would be assumed to have a less well-adapted neural system for the processing of
negative (facial) emotions) and healthy controls have been observed (e.g. Lawrence et
al. 2004; Surguladze et al. 2004; Phillips et al. 2003a, 2003b). Differential processing
patterns for healthy and patient populations have been reported within the dorsal and
ventral prefrontal cortices with increases in activity in ventrolateral prefrontal cortex
being linked to the experience of major depressive episodes, and decreases in activity
within the dorsolateral prefrontal cortex which is associated with emotion regulation
(Phillips et al. 2003a, 2003b) (see also Chapter I, section 1.4.3.1.).

Such differential ‘adaptation’ of brain systems involved in the processing of
positive and negative emotions might also be linked to the lack of activation observed
when processing facial expressions of sadness in this investigation (as well as in studies
showing such lack of significant activity with healthy populations (e.g. Wild et al. 2001,
Phillips et al. 1998a). This aspect could be further investigated by looking at the
differences in the processing of emotive stimuli related to happiness and sadness, yet
avoiding complex cognitive components, such as the memory tasks might have
provided here. It would be possible to include physiological measurements such as heart
rate or galvanic skin response, as well as measures of psychological well being (e.g.
Hospital Anxiety & Depression Scale (HADS) (Zigmond & Snaith 1983), Beck
Depression Inventory (BDI), Beck et al. 1961).
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7.1.2.2. Limbic structures

The differential involvement of left and right limbic structures (i.e. amygdala
and parahippocampal gyrus) provided an interesting and intriguing finding. Asymmetric
signal changes in amygdala activity have been observed (e.g. Gur, Skolnick & Gur
1994). The observation of increases in event-related spectral power within one
hemisphere, but decreases in event-related power (at similar latencies and frequencies)
in the other hemisphere warrants further investigations, as well as highlights the issue as
to what exactly phenomena such as ERS and ERD can tell us about neural dynamics.

The failure to replicate this finding in experiment 4 (see chapter 6) has been
explained in terms of methodological differences between the two studies. In
experiment 3 (chapter 5) emotional stimuli were presented and viewed in a block-
design, emotional stimuli were presented for six seconds and participants had to actively
engage in the emotional content of the picture by providing (silent) ratings. Experiment
4 (chapter 6), however, employed a random display of emotional and neutral faces
presented for 200ms, and a one-back memory task. Thus, it could be argued that the
lack of subcortical (limbic) activation in chapter 6 was due to the task demand.

In sum, spatial correlates for the processing of faces, houses, inverted faces and
scrambled control images as well as facial expressions of emotions yielded findings
similar to those established with fMRI and in EEG studies using source localisation

techniques.

7.1.3. Temporal characteristics of face processing and facial affect

The investigation of the temporal dynamics for the processing of faces and facial affect
has aimed to confirm the occurrence of the face specific N170, as well as the effects of
facial affect upon it. Face-specific ERP and MEG waveforms have been identified at
latencies of 155 to 190ms (e.g. Eimer 2000a, 2000b, Schweinberger et al. 2002). In an
MEG investigation, the successful categorisation of faces has been linked toa M110
component, whereas the successful identification of a face has yielded the specific
M170 component (Liu, Harris & Kanwisher 2002). Face-specific changes in cortical

oscillatory power could be reported within the 0 to 200ms time-window (see chapters 3
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to 6), hence confirming above findings. TFRs indicate face-specific increases inevent-

related spectral powers occurring at 150ms to 250ms (e.g. chapter 3).

The processing of facial expressions of emotions has mostly been linked to
somewhat longer latencies between 250ms and 550ms (e.g. Krolak-Salmon et al. 2001)
and 300ms to 700ms (e.g. Kestenbaum & Nelson 1992). The processing of facial affect
in the current series could to some extent confirm these previous findings. The
processing of happy faces was associated with changes in cortical oscillatory power
within the 0 to 200ms time-window, whereas the processing of happy compared to sad
faces yielded significant results in the 0 to 400ms time-window. It could thus be
established that the processing of facial affect is linked to numerous temporal
components, and it was shown that MEG and SAM prove useful techniques indeed for
teasing apart the spatial and temporal dynamics of face processing as well as for the
processing of facial emotions.

The observation of face-specific processing taking part within a shorter time
window than the processing of facial affect seems to confirm the functional model of
face recognition by Bruce & Young (1986). This states that the face needs to be
identified as such first, before (other) face relevant information, e.g. gender, age, facial
expression, can be derived. Thus, only subsequent to the initial face classification at
latencies of 150ms to 200/250ms (see chapter 3 and 6) (or as indexed by face-specific
N170 in ERPs) can the processing of facial emotion take place, e.g. at latencies of 300
to 400ms (see chapter 5 and 6).

As mentioned before, Haxby et al. (2000a) ascribed the inferior occipital gyrus
the role of an initial processing module. Involvement of occipital areas (inferior and
lingual gyri) has been observed, within 0 to 200ms. This could possibly be regarded as
some indication for the role of the occipital areas in the initial stages of face

categorisation.

7.1.4. Frequency-specific changes in event-related spectral power for faces

and facial affect

There is relatively little evidence of frequency-specific characteristics of face processing
and for the processing of facial expressions. The perception of ambiguous figures, such
as Mooney faces has revealed fronto-parietal gamma synchronisation at latencies of 200

to 350ms (Rodriguez et al. 1999). Tallon-Baudry et al. (1995, 1996) have shown that
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the perception of coherence in stimulus arrangements is associated with increased
synchronisation of the visual cortices, and Engel et al. (1997) concluded that
synchronisation phenomena relevant for neural processing seem to occur particularly in
gamma frequencies. Evidence linking emotional processing to alpha (Ray & Cole
1985a, 1985b) and beta (Rusalova & Kostiunina 2003) frequencies had been reported.

The ability of MEG (and SAM) to measure stimulus-specific changes in event-
related spectral power for different frequency bands allowed further investigation of
these observations. Face processing per se was linked to changes in cortical power
within frontal areas for beta, and within more face-specific areas for gamma (see
chapter 3 and 4). The processing of facial affect, on the other hand, revealed activation
for alpha, beta and gamma frequencies (see chapter 5 and 6).

Extended frontal oscillations were observed for alpha and beta frequencies, and
alpha frequencies were also noticed for parietal areas. Alpha frequencies have been
linked to specific cognitive processes, such as memory functions (e.g. Klimesch 1997).
For alpha, increases in cortical oscillatory power were observed when contrasting happy
faces with scrambled control images, whereas decreases in cortical oscillatory power
were observed when contrasting happy and sad facial expressions. The former could be
linked to the observation of increased synchrony for alpha frequencies in successful task
performances, the latter to attentional efforts or arousal. Decreases in event-related
spectral power have been associated with increases in the BOLD signal (e.g. Singh et al.
2002), whereas increases in alpha synchrony have previously been linked to ‘cortical
idling” (Pfurtscheller et al. 1996a) (see also section 7.2.1 this chapter; section 2.5.1
chapter 2).

Beta frequencies have been linked to specific task related processing, and
increases in beta band activity within parietal areas have been observed when
processing angry compared to neutral emotions (Schutter et al. 2001). Schutter et al.
linked their observation of parietal beta in response to angry facial expressions to the
approach-avoidance domains established by Davidson (1992). Anger would be regarded
as approach behaviour and therefore the involvement of beta frequencies might be
linked to approach behaviours in general. In the current investigation, parietal beta
activation was reported in response to neutral faces, thus leaving open the association of
approach-related emotions and beta involvement.

Gamma has been associated with the integration of functionally discrete

activations as well as with internal representations in perception and memory (Tallon-
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Baudry et al. 1997). This “binding” phenomenon (i.e. the merging of separate features
into a single percept) is associated with coherent gamma band activity across the
cortical areas involved, and ‘bursts’” of gamma increases have been reported in response
to successful perception of ambiguous percepts (e.g. Tallon-Baudry et al 1997;

Rodriguez et al. 1999; Singer et al. 1990).

7.2.  Suitability of MEG for the processing of face and facial affect

As outlined above, the application of MEG and SAM revealed the involvement of
distinct cortical areas and networks in the processing of faces and facial affect, their
temporal characteristics and frequency specificities.

The observation of different cortical power changes (i.e. increases and decreases
occurring simultaneously, or within one frequency band for different comparisons) in
relation to the processing of faces and emotional expressions compared to control

stimuli is intriguing.

7.2.1. Debate surrounding ERD and ERS

The debate as to what precisely the increases and decreases in event-related
spectral power changes represent, and how they can be linked, or contrasted, to the
BOLD response remains. Initially (as previously mentioned, see 7.1.4.) increases in the
BOLD signal were linked to decreases in event-related spectral power, whereas
increases in even-related synchronisation at, for instance, alpha frequencies, were
related to cortical idling. As shown in this thesis, increases and decreases in event-
related spectral power can co-occur, and given the findings in chapter 3, increases in
cortical power can dominate the signal changes. Assuming that throughout the whole
experiment the brain had been idling, however, would prove nonsensical. Neuper &
Pfurtscheller (2001) observed increases in cortical oscillatory power as well as
decreases within the same frequency band. They concluded that the simultaneous
observation of ERD and ERS for specific frequency components reflects the activation
as well as deactivation (or inhibition) of cortical neuronal networks under certain
circumstances. Thus, changes in cortical oscillatory power not only reflect cortical
activation related to increases in energy demands (also expressed in enhanced blood

flow or enhanced glucose metabolism), but also processes of selective inhibition of
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those networks not specifically involved in the associated neural processes (Neuper &
Pfurtscheller 2001).

Alternatively, the concurrent observation of ERS and ERD has also been
observed by Rodriguez et al. (1999). Here, increases in cortical synchronisation in
response to the perception of an ambiguous figure were followed by a period of
desynchronisation thought to reflect the generation of a new dynamic neuronal
ensemble and thus a new cognitive state. In terms of temporal characteristics this
observation seems able to provide an explanation as the increases in synchrony, for
instance, for happy expressions were observed within the earlier time-window, and the
decreases in spectral power within the later time-window (see chapter 6, sections 6.3.4.
and 6.3.5.). However, the current investigations and those by Rodriguez et al. (1999)
still represent different stimulus comparisons, and were observed at different
frequencies. Here alpha instead of gamma frequencies as in the Rodriguez et al. (1999)
study were observed.

Therefore, in order to complement information that can be obtained (or has
already been obtained) separately in fMRI and MEG studies, it is important to look at
how MEG responses, i.e. increases and decreases in event-related spectral power can be
compared to the BOLD signal. Direct comparative studies using the same experimental
paradigms and populations should be conducted with fMRI and MEG to highlight the
nature of the relationship between the BOLD response and event-related spectral power
changes. In addition, the use of spatial information from fMRI investigations can
validate the spatial assumptions that have been used to solve the inverse solution in
MEG investigations.

In sum, the debate surrounding the relationship between the event-related
spectral power changes, ERD or ERS and the BOLD signal highlights the need to
establish and investigate brain dynamics in a four-dimensional fashion, rather than
looking at spatial, temporal and frequency correlates in isolation. As has been shown
here, MEG and SAM are able to integrate space, frequency and time, thus allowing the
research into the processing of faces and facial affect to be taken beyond the localisation

of areas associated with it.
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7.2.2  Methodological considerations when comparing findings from

different functional methodologies

The discrepancies observed between spatial correlates as established in fMRI and EEG /
ERP to those reported here are thought to be due to differences in methodology as well
as analyses procedures. In fMRI results are often based on region of interest approaches
and the involvement of brain areas other than those specified can be overlooked. EEG
methodologies have so far been associated with relatively low spatial resolution, which
is due to the recording of fewer electrode sites and the use of less precise source
localisation techniques. In addition, in EEG studies, signal averaging is used and
approaches such as MNLS approaches (see section 2.3.2.1 and 2.4.1) differ from the
beamforming approaches in their reliance upon phase-locked stimuli, the use of a priori

assumptions and signal source projections.

7.3. Conclusions

Cognitive and emotional processes are characterised by the functional integration of
many specialised brain areas, and the studying of event-related brain dynamics would
therefore offer a more refined picture of the brain processes underlying such processes.
Advanced imaging techniques such as MEG and analyses methods such as SAM begin
to show the underlying neural correlates of such integrations. Changes in event-related
spectral power will have to be considered as the critical link between the haemodynamic
response (fMRI) and temporal dynamics underlying neuronal activity (e.g. Murray et al.
2002). Additionally, growing evidence exists regarding the interactions between event-
related neural responses (as indexed by the ERPs) and ongoing brain oscillations (e.g.
Fries et al. 2001). Thus, the investigation of neural correlates of face processing and the
processing of facial affect using different methodologies (as indicated above, section 7.
2.1) would enhance our understanding of these processes. Several issues have arisen
when considering the findings within this thesis - such as the effects of varying the
cognitive load in tasks on face perception- and these would need to be addressed in
further studies of face processing. Incorporating stimulus materials that have shown to
evoke responses persistently within specific areas and using identical paradigms in

fMRI (for spatial domain), EEG (temporal domain) and MEG to verify space, time and
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frequency would allow an even more precise prediction of neural correlates for face

perception and the perception of facial affect.
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