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This thesis was focussed on theoretical models of synchronization in relation to cortical dynamics as
measured by magnetoencephalography (MEG). Dynamical systems theory was used in both
identifying relevant variables for brain coordination and also in devising methods for their
quantification. We presented a method for studying interactions of linear and chaotic neuronal sources
using MEG beamforming techniques. We showed that such sources can be accurately reconstructed in
terms of their location, temporal dynamics and possible interactions.

Synchronization in low-dimensional nonlinear systems was studied to explore specific correlates of
functional integration and segregation. In the case of interacting dissimilar systems, relevant
coordination phenomena involved generalized and phase synchronization, which were often
intermittent. Spatially-extended systems were then studied. For locally-coupled dissimilar systems, as
in the case of cortical columns, clustering behaviour occurred. Synchronized clusters emerged at
different frequencies and their boundaries were marked through oscillation death. The macroscopic
mean field revealed sharp spectral peaks at the frequencies of the clusters and broader spectral drops at
their boundaries. These results question existing models of Event Related Synchronization and
Desynchronization.

We re-examined the concept of the steady-state evoked response following an AM stimulus. We
showed that very little variability in the AM following response could be accounted by system noise.
We presented a methodology for detecting local and global nonlinear interactions from MEG data in
order to account for residual variability. We found crosshemispheric nonlinear interactions of ongoing
cortical rhythms concurrent with the stimulus and interactions of these rhythms with the following AM
responses.

Finally, we hypothesized that holistic spatial stimuli would be accompanied by the emergence of
clusters in primary visual cortex resulting in frequency-specific MEG oscillations. Indeed, we found
different frequency distributions in induced gamma oscillations for different spatial stimuli, which was
suggestive of temporal coding of these spatial stimuli. Further, we addressed the bursting character of
these oscillations, which was suggestive of intermittent nonlinear dynamics. However, we did not
observe the characteristic -3/2 power-law scaling in the distribution of interburst intervals. Further,
this distribution was only seldom significantly different to the one obtained in surrogate data, where
possible nonlinear structure was destroyed.

In conclusion, the work presented in this thesis suggests that advances in dynamical systems theory in
conjunction with developments in magnetoencephalography may facilitate a mapping between levels
of description in the brain. This may potentially represent a major advancement in neuroscience.
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Chapter 1. Theoretical frameworks for the binding problem and related
coordination phenomena in the brain.

1.1 Prologue.
Maybe the foremost challenge for contemporary neuroscience rests in the integration of

findings coming from different levels of description within the brain and especially the
neuronal, the network and the systems level. The integration of experimental findings from
distinct subdisciplines such as single and multi unit electrophysiology, metabolic and
neuroelectric neuroimaging techniques crucially depends on a generic theory of brain
function, which has to account for the communication between levels of description. In the
past two decades or so, this problem has been central to many subfields in neuroscience and a
lot of effort has been put into integrating current knowledge into theoretical frameworks.
Next, the most prominent of these frameworks will be introduced and discussed in the context

of the binding problem and the general issue of coordinated brain activity.

1.2 The binding by convergence approach.
One of the key problems in contemporary neuroscience is how local sensory information

corresponding to distinct stimulus features is integrated into a global coherent percept.
Extensive research in the last century has argued the case of ‘local’ and ‘modular’ neuronal
processing. This refers to strictly localized neurons, which seem to respond to specific
stimulus characteristics preferentially; hence they are reactive to a specific range of stimulus
parameters. The latter properties are commonly known as receptive fields and these are
thought to be the fundamental functional units in sensory processing. This has been
particularly observed for the early stages of the visual system, especially the primary visual
cortex, (see the classical work of Hubel and Wiesel, for instance Hubel and Wiesel, 1962,
1968, 1972, Hubel 1982). Using mostly methodologies related to single cell
electrophysiology, orientation (Hubel and Wiesel, 1968), direction (DeValois ef al.., 1982,
Livingstone, 1998) and even spatial frequency (Albrecht et al., 1982, Foster et al., 1985)
‘selective’ neurons have been found. The apparent ‘modular’ processing mode of these
neurons was attributed to specific cellular properties or to specific input of these neurons and
thus the somatotopically-organized pattern of afferent pathways. The idea of an ever-
increasing degree of convergence of specific afferents into more and more specialized
neurons has led to the formulation of the single cell doctrine. Followers of this doctrine have
claimed that this mechanism of convergence is iterated many times in a perceptual system that
exploits a serial processing hierarchy (for instance Felleman and Van Essen, 1991). Hence the

neurons at the top of the hierarchy would receive highly specific afferents and would only
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respond to a highly specific stimulus, such as one’s grandmother (see figure 1). This idea of
specifically tuned neurons has been meanwhile expanded to much higher levels of cognitive
processing and hence to almost any area of brain function such as object (e.g. Kobatake and
Tanaka, 1994) and face recognition (e.g Perret , Rolls and Caan, 1982 ) and even working

memory (for a review see Goldman-Rakic, 1995).

Figure 1. Schematic representation of the ‘binding by convergence’ approach. Many ‘low- level’,
neurons with specific response properties, converge on a fewer ‘higher’ level neurons, which respond only
to a certain combination of features. Note that the processing stream is strictly serial, feed forward and
there are no connections between processing levels.

Immediately an obvious processing problem becomes apparent. If specific and thus
distributed neurons (or even brain areas) respond to specific stimulus features, how does this
information get integrated into o coherent pattern or percept? This is the core of what is
referred to as the binding problem (von der Malsburg, 1981 and 1999, Singer, 1999 and
2001). This problem of course is not specific to the visual system. Similar problems arise not
only in all other sensory systems but also in the motor system, where several muscle groups
have to be coordinated to produce a coherent movement. At a higher level of processing, such
as multisensory perception, cognition or sensorimotor coordination for example, this problem
is even more apparent: sensory systems can code for several stimuli or stimulus
characteristics simultaneously. The integration of this information practically means a
disambiguation of these distinct codes, which has to occur rapidly so that action can be taken.
The latter also entails that the sensory and motor codes have to be integrated, so that smooth
and coherent sensorimotor behavior can be generated. However, these multimodal sensory
and motor representations seem to be spatially distributed and have highly distinctive and
specific response patterns. How can this information be integrated? The answer that the
binding by convergence approach provides, is that there will always be a more specialized
processing unit; call it a neuron or an area, where all this information will converge. This

leads us to the idea of the central processor, an entity that combines all the pieces of
12




information and makes ‘sense’ of it. This argument reduces to another version of the older
‘Cartesian Theatre’ notion, where the sensory systems deliver a performance to a central
‘homunculus’ structure, which is the centre of the mind, or the ‘seat of the soul’ (Descartes,

1644).

There are further conceptual difficulties with the implementation of this approach. One major
disadvantage is the difficulty of dealing with new representations and thus learning. The
acquisition of a new concept automatically implies the possible combinations with all other
already preexistent concepts. For example, as a child grows and acquires new concepts, the
amount of representations would grow exponentially because of a combinatorial explosion. A
modular representation mode is also not efficient in terms of information processing; huge
problems arise when attempting to represent the degree of similarity or difference among such
distributed informational items or for constructing new concepts from separated items of

information. (Wickelgren, 1999)

Several empirical facts about the brain are also quite difficult to reconcile with the binding by
convergence approach. For instance, there are about 10'® connections in a human brain (as
opposed only 10'" neurons), that have a very specific multilevel spatial structure (see chapter
4). What is more, quantitative anatomical connectivity studies in the macaque have shown
that there are about as many feedback as feed forward connections (Koetter and Stephan,
2003). This strongly questions models of serial and convergent processing. The huge amount
of connections and the sophistication in the connectivity patterns strongly supports a very

different view of the brain, namely that of a recurrent, distributed network.

Indeed, single cell studies have demonstrated a non-modular response properties and thus
neurons that respond to several stimuli or stimuli combinations (see Sakurai, 1999 and
references therein). This is consistent with the notion of overlapping receptive fields or
possibly sparse coding (Wickelgren, 1999, Sakurai 1999) that are ubiquitorious in the
mammalian brain (Young and Yamane, 1992, Foldidk, and Young, 1995, Rolls and Tovee,

1995).

The composition of the previous observations and conceptual arguments leads to the
conclusion that the functional units of information processing in the brain, the receptive fields
are very likely to reflect dynamic population codes (Sakurai, 1999) rather than isolated single
neuron codes. Thus the receptive fields can be viewed as emergent network properties rather

than deterministic properties of a hard-wired serial network hierarchy. Several processing
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advantages arise through adoption of this notion of network representation (Wickelgren, 1999

and Sakurai, 1999). The next two sections will consider two such approaches.

1.3 Dynamic binding and the temporal correlation hypothesis.
This section, an approach to feature binding often referred to as the temporal correlation

hypothesis will be discussed. This framework was first proposed by von der Malsburg (von
der Malsburg ,1981 and 1999) and then operationalized by Wolf Singer’s group. Singer
(1999, 2001) proposes some kind of dynamic binding that involves processes of neuronal
synchronization. He suggests that ‘synchronicity serves as a tag of relatedness most likely
because it causes a joint increase of the saliency of the synchronized responses, which in turn
favours their joint evaluation (binding) at subsequent processing stages.” Two
complementary binding mechanisms are proposed, which are sequentially iterated in a
multistage processing system. Salient feature conjunctions corresponding to common stimulus
features are implemented by specific ‘conjunction’ units and less ordinary, novel or
contextual information is coded by dynamic grouping of the responses of distributed (feature
detecting) neurons by means of spike synchronization. It is important to note, that the
grouping criteria are specific to the level of processing. For early processing stages such as
early vision they could just adhere to simple principles, such as co linearity or continuity of
contours, at higher levels of processing the criteria can become more abstract, such as
symmetry or pattern coherence for instance. This claim rests on two fundamental empirical
observations about neuronal synchronization: the universal nature and the temporal precision
of synchronous neuronal discharge and the greater sensitivity of neuronal mechanisms to
synchronous as opposed to asynchronous input. The dynamic assembly ‘code’, which is
dependent on processing level specific grouping criteria, enhances the probability of joint
processing of the outputs of the synchronized neurons at subsequent levels of processing. Ata
next level of processing either a specific ‘conjunction’ unit or further dynamic grouping takes
place in order to disambiguate these dynamic codes. The (perceptual or cognitive) grouping
criteria, according to which neurons get to be dynamically bound, become more abstract, as
one goes further up in the processing hierarchy. Dynamic grouping is especially advantageous
when distributed representations have to be mapped on one another. This is particularly
important in sensorimotor coordination. If these distributed representations are formed by
synchronous discharges in both the sensory and the motor processing stream, a bottleneck
problem can be easily circumvented, since these representations use the same format of

‘code’.

At the microscopic neuronal level, there is meanwhile considerable evidence for the coding of

global stimulus features in terms of consistent interneuronal timing rather than modulation of
14




the neuronal rate coding (Singer and Gray, 1995, Roelfsema et al., 1997, Singer, 1999,
Singer, 2001, Engel and Singer, 2001). That is, neurons tend to exhibit synchronized

responses when coding for the same stimulus or holistic stimulus feature.

Stimulus or task specific synchronization processes could be also shown at higher levels of
description of cortical networks (Varela er al., 2001). There is meanwhile also considerable
evidence for synchronization subserving large-scale integration in the form of transient and
task- specific interactions between brain areas during various perceptual and cognitive tasks
(Sarnthein ef al., 1998, Rodriguez er al., 1999, Tallon-Baudry and Bertrand, 1999, review in
Varela et al.., 2001).

Although, the temporal correlation approach is clearly more advantageous than the classical
notion of ‘binding by convergence’, there are several problems and unclarified aspects in this
theoretical framework. First of all, Singer’s main argumentation concentrates on the idea that
synchronization may help increase the salience of responses at a subsequent level of
processing. This assumes that in every processing instance a multilevel process has to take
place, even for simple stimuli. Most importantly, this approach does not explain what the
actual neuronal substrate of this information processing might be. Saying that synchronized
responses are more likely to be grouped at a subsequent level of processing does not solve this
problem; it essentially postpones it until the next level of processing, which may eventually
be more appropriate for the coding of a certain stimulus. The question that arises then is a
very central one, not only to neuroscience but also to any science that deals with complex,
multilevel systems. How can we tell, which level of processing is the most appropriate in a

given experimental situation?

Most importantly, this framework does not include any description of the temporal or spatial
dynamics of these synchronization processes and thus the dynamics of the putative
representations. Thus, such an approach does not exploit the advantages of the population or
network codes (see Sakurai, 1999). However, it is exactly the dynamic properties of
population codes that underpin the adaptive and context sensitive nature of perception and

cognition.

Finally, temporal correlations and especially long-term and stable correlations are not
particularly efficient in terms of information theory (Friston, 2000a). This is purely because of
poor and inflexible information transfer. However, transient and dynamic correlations are

efficient and can be context sensitive. Thus, there is the additional possibility of coding of
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some stimulus feature at the same processing stage. This ‘code’ can be implemented in terms
of a collective but specific global network state (for example Freeman, 1992) such as a
distributed cell assembly code. This state would result from a stimulus specific reorganization
of the pattern of interactions in a given neuronal network. These global states are
multidimensional and can exhibit complex spatial and temporal dynamics. Such transient
network states can be sufficiently complex ‘informational’ entities in their own right, so that a

‘next’ level of processing may not be required.

The main value of Singer’s approach lies perhaps not in a detailed account of the mechanisms
underlying information processing but in the important general insight, that the stress in
contemporary neuroscience should be placed on collective and dynamical neuronal behaviour

rather than on specific and rigid properties of single neurons.

1.4 Beyond temporal correlation: metastability and coordination dynamics in complex
nonlinear systems.

This theoretical framework is largely based on dynamical systems and deterministic chaos
theory. In this section, solely the main concepts will be illustrated in a geometrical qualitative
fashion. Furthermore, specific arguments in support of the validity of this approach as a
framework for brain function and thus considering the brain as a complex nonlinear system
will be provided in chapters 3 and 4. As in all novel theoretical frameworks, there is still a
lack of consistency in the nomenclature and significant confusion may arise through the use
of related but distinct concepts and a battery of interrelated terms. Often a single term is
associated with somewhat different meanings and regularly different terms are used to refer to
the same concept. This requires some clarifications, which will be briefly undertaken in this

section.

The most fundamental concept therein is maybe the one of state space (see figure 2 for an
illustration of the Lorenz attractor). The dimensionality of the state space is defined by the
variables indispensable for the description of the system, also referred to as degrees of
freedom or state variables. For a given set of initial conditions (for each one of the state
variables), the system is said to follow a trajectory in the M multidimensional state space. An
attractor is a subpartition of the state space where a lot of such trajectories will eventually
converge lo if the system evolves for a sufficiently long time. One core characteristic of
chaotic system is the sensitivity to initial conditions. Thus different initial conditions may
give rise to different long-term behaviour. The set of initial conditions that gives rise to a
certain attractor (and thus a certain pattern of system dynamics) are referred to as basins of

attraction. The geometric representation of an attractor also gives an intuitive impression
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about the effective dimensionality of the system, which just corresponds to the geometric
dimensionality of the manifold. Chaotic systems (see chapter 3), display complex geometric
shapes that exhibit fractal (non integer) dimensionality, and are often referred to as strange
attractors. The geometrical (hyper) surface of such an attractor is often referred to as the
manifold. Possible subdivisions of the manifold are refereed to as attractor wings or
submanifolds. The parameters that govern the dynamics of the evolution of the state variables
are called control parameters. Critical qualitative changes in system behaviour as such a
control parameter is varied occur through bifurcations, which result in a change in the
stability of the current system dynamics and thus give rise to qualitatively different system
behaviour. This can be conceptualised geometrically as an abrupt change from one basin of
attraction to another, giving rise to qualitatively different long —term behaviour (different state
space attractors). These abrupt changes in system dynamics are called phase or state

transitions and are per definition bound to a slow change of the control parameters.

However, it must be stressed that changes in system dynamics are not necessarily bound to
changes in the control parameters. From Figure 2 it is easy to see that the system may occupy
different wings of the attractor manifold and ‘switch’ between them even without any changes
in the control parameters. This apparent ‘switching’ behaviour is referred to as chaotic
intermittency (Manneville and Pomeau, 1979). In geometrically more complex manifolds that
include many subpartitions a restless wandering of the system between these attractor wings

is referred to as itinerancy (Tsuda, 1991, Kaneko and Tsuda, 2003, Tsuda and Umemura,
2003). Using this geometrical representation of dynamics, it is easy to conceptualise that such

complex manifolds can pertain to interacting subsystems of a more global system.




Figure 2. The Lorenz attractor is defined by a system of 3 coupled ordinary differential equations,
describing the evolution of the x,y and z variables in time:

dx/dt sigma (y-x)
dy/dt ¥ho x -y - xz
dz/dt =y - beta z

where x,y, z are the state variables and sigma, rho and beta are the control parameters.

After the system has evolved for a sufficiently long time (transients are outlived) it tends to confine itself in
a certain subpartition of the state space, called the attractor. The geometrical structure of the dynamics is
often referred to as manifold. One can clearly see a subdivision of this manifold in two subpartitions.
These are usually refereed to as attractor wings or sub manifolds.

Overall, the dynamical approach views the brain as a complex multiscale system and
considers brain function to be the product of a large assembly of coupled nonlinear dynamical
subcomponents exhibiting transient and unstable coordination dynamics (Kelso, 1995,
Friston, 2000b,Bressler and Kelso, 2001). From this perspective the brain is in an unstable
(often referred to as metastable) regime due to the struggle of forces mediating Sfunctional
integration on one hand and functional segregation of inputs on the other (Friston, 1997,
Friston, 2000c¢, Bressler and Kelso, 2001). The former refers to a high degree of integration
in the system with information exchange between subcomponents. This is characterized by
high interdependency between so-called, collective variables; these are the relevant
observables that capture the dynamics of the coordination between system subcomponents
(Kelso, 1995, Bressler and Kelso, 2001). Such a collective variable can be for example the
phase difference between two system subcomponents, as we shall see in greater detail and
specific model systems in chapters 3 and 4, so that phase synchronization is the relevant mode
of interaction. The other extreme case of coordination dynamics is functional segregation

and thus low interdependency between system subcomponents and autonomous or self-

sustained behaviour.

Because of the huge amount of different nomenclature in the literature and the often very
different meanings attributed to the terms ‘complexity” and ‘metastability” and a significant

conceptual overlap of these notions a short clarification of these notions is in place.

It must be stressed that both metastability and complexity refer to the same underlying
dynamical state of affairs, namely a spatially extended dynamical system that ‘lives’ near a
subtle balance between functional integration and functional segregation, but still they reflect
different aspects of it. Metastability often appears in the framework of deterministic chaos and
refers to a dynamic instability leading to what appears to be erratic switching between
qualitatively different system behaviours, whereas complexity often appears in the context of
information theory and refers to a composite emergent spatial pattern of the interactions

between system subpartitions.
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A first account of complexity is motivated from information theory. Complexity is defined as
a compomise state of affairs, which lies between integration and segregation (Tononi, Sporns
and Edelman, 1994 and 1996, Sporns and Tononi, 2002). Complexity is attributed to an
underlying sparseness of connections between subcomponents in a system (Sporns and
Tononi, 2002). A highly interconnected system, exhibits high degrees of integration and thus
strong interdependency between system subcomponents but no local specificity. On the other
hand a very poorly connected system exhibits locally specific behaviour but very little
integration and thus weak interdependency between system subcomponents. A sparsely
connected system on the other hand is somewhere in the middle of these two cases and
exhibits specific patterns of integration and segregation. The emergent entities of specific
integration are defined as the subset of elements that exhibit stronger mutual interactions than
with the rest of the system elements. Tononi, Sporns and Edelman have proposed a
quantification of this type of complexity, which essentially is a multivariate generalization of
mutual information (Tononi, Sporns and Edelman, 1996). According to this notion,
complexity is the emergent formation of specific spatial subgroupings of elements, to
subserve diverse functions; therefore these are referred to as functional clusters. Complexity
is a measure of this emergent spatial clustering behaviour. According to Sporns and Tononi
2002: ‘Complexity captures the extent to which a system is both functionally segregated
(small subsets of the system tend to behave independently) and functionally integrated (large
subsets tend to behave coherently)’. Complexity can be quantified as the difference of two
terms: the sum of the shared information between each individual element and the rest of the
system minus the total amount of integration. Thus, complexity is greater if single elements
are highly informative about the system to which they belong, while not being excessively

similar.

The subtle and inherently unstable equilibrium arising in the struggle between those forces of
integration and segregation can be approached from a different dynamic point of view,
namely its stability (linear stability analysis in deterministic chaos theory, see Appendix 1).
The term metastability as originally introduced in the field of neuroscience by the work of
Scott Kelso (see for instance Kelso, 1995) refers to a situation where global states of
coordination are not perfectly stable (and thus do not form an attractor in state space) but
there is a tendency for the system to remain in a particular ‘neighbourhood” of the state space.
The notion of metastability is very much related to chaotic intermitiency (see Manneville and
Pomeau, 1979) and itinerancy (Kaneko 1990, Tsuda, 1991, Kaneko and Tsuda, 2003, Tsuda

and Umemura, 2003) and more specific examples would be given throughout this work. As
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we shall see later on, the term intermittency usually refers to local long-term dynamics with
switching between (often) no more than two possible dynamic states where as itinerancy
refers to intermittent global dynamics with partial attraction to specific neighbourhoods,
causing a restless wondering of the system from one subpartition of the state space to the next
one. The quintessence of metastability is that there is a certain attraction to a stable state of
coordination so that the system spends a lot of time in the neighbourhood of these stable
states. However unexpectedly (and without change in the underlying control parameters) and
in irregular intervals the system leaves the particular state of coordination to switch to a
different state (often to a different neighbourhood in state space). Abrupt state transitions
leading to qualitatively different global behaviour are common in such a dynamical scenario
and can contribute significantly to a flexible and context sensitive information coding (Friston
1997 and 2000b, Bressler and Kelso 2001). Friston refers to this state of affairs as Type I
complexity (Friston 2000b) in order to contrast it to Type I Complexity. The latter refers to
complex behaviour that occurs locally in a distributed system. Such behaviour can be
captured for example by analysis of a univariate time series of a relevant observable (e.g. one
EEG electrode trace). Type II complexity refers to a situation where global states of
coordination are not perfectly stable (and thus do not form an attractor in state space) but
there is a tendency for the system to remain in a particular ‘neighbourhood’ of the state space.

The term Type II complexity can thus be used interchangeably with the term metastability.

Nevertheless, as Friston himself remarks, the distinction between Type I and I complexity is
predominantly a question of scale (Friston 2000b). Intermittency and thus dynamic instability
can arise in a local system (or subsystem), when its control parameters are sfatic. However, if
the same system provides input to another local system, its input constitutes a dynamic control
parameter for the second system in which a similar dynamic instability can arise. However,
what could be considered as dynamic control parameter at a Jocal scale could be viewed as a
state variable on a more global scale. Thus this distinction is clearly dependent on where one
places the boundaries of a system, a question that is not trivial for complex and spatially

continuous systems such as the brain.

However it must be emphasized, that in simpler cases where such systems can be defined, for
example the olfactory system, this approach yields very interesting empirical results and
theoretical insights. Part of the classical and ingenious work of Walter Freeman is centred on
explaining olfaction in terms of a multidimensional global attractor system, exhibiting many
mutually interactive subpartitions (Freeman, 1992). The discrimination and categorization of

odours is achieved through chaotic itinerancy through the submanifolds of the global system
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dynamics. These submanifolds are thought to represent some sort of self-organized and
dynamic memory constructs. This is a consequence of reinforcement learning and is due to
the modification of synapses. That is the system has the pofential (in terms of specific basins
of attraction) 7o express certain dynamic patterns, which can be conceived as local interrelated
neighbourhoods of a more global dynamical behaviour (in terms of submanifolds of a given
attractor). According to the type of odour present in the olfactory input at a given time (and
thus the set of initial conditions, which define a basin of attraction), the system continuously
wanders through the state space and temporarily resides in a certain subdivision thereby
expressing the categorization (in terms of similarity) of a certain odour. Thereby the system
reconstructs a certain multidimensional dynamic state, which is very distinct for every odour
and thus it comprises the relations between all the subpartitions of the system in euclidian
feature space. Thus according to this model, the perception of odours is a process of
categorization according to differences in multidimensional feature space. It must be noted
that the implementation of this categorization process is using the chaotic construct model of
Freeman (see for example Freeman and Barrie, 1994) is a self-organized dynamical process,
that does not rely on any storage of particular bits of information in terms of representations,
percepts or memory engrams, it just depends on the connectivity in the underlying network,
that may or may not have undergone use dependent modification and the dynamics
conditional upon it. Crucially, such a chaotic system can naturally create or destroy
information (in terms bifurcations that give rise to stable or unstable states). A further
extremely important aspect of this model of a global, multidimensional complex system is
that it is inherently unstable and thus small changes in the stimulus or in the system itself can
cause the system to engage in qualitatively different behaviour; that is the system can encode
information in real time. Thus Freeman’s conception of the olfactory system is one of a global
pattern forming system that has a complex manifold subdivided into special neighbourhoods
of dynamic behaviour. This clearly adheres to type I complexity as defined by Friston
(Friston, 2000b) but is also consistent with a global, multicomponent system, which can

exhibit type I complexity.

Although the main ideas within the supporters of the dynamical approach revolve around the
same theme, there are some differences in their views, which will be shortly discussed.
Furthermore, the relation of the dynamical approach to neuronal synchronization will be

addressed.

Maybe the most influential notions behind the dynamical framework come from the field of

synergetics, first proposed by the German physicist Herman Haken (e.g. Haken, 1983) and
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then ingeniously applied and operationalized in the in the field of neuroscience by Scott Kelso
and coworkers (see Haken, Kelso and Bunz, 1985 for a classical example of synergetic model
applied to of human finger coordination and Kelso, 1995 for a number of theoretical and
empirical explorations). This approach deals with complex systems that are inherently
unstable. Such systems have a large number of degrees of freedom but their dynamics can be
specified by a few collective variables or order parameters. The latter are defined as such by
their ability to capture the dynamics of the interactions between subcomponents in a system.
The core idea in synergetics is that the dynamics of a complex system can be specified by the
utility of a few relevant collective variables. Because of the inherent instability of the system,
it often undergoes non-equilibrium state transitions, which constitutes the core condition for
pattern formation. Such macroscopic patterns are constantly created and destroyed by the
system that continuously evolves in its coordination dynamics; that is the dynamics of system
interdependencies, which are specified by the collective variables. This approach will be
followed and exemplified many times throughout this work, since it constitutes its core
ideological basis of dealing with neuroimaging data, which essentially provide a macroscopic
description of an immensely complex system with microscopic and mesoscopic levels of

description.

Friston and co-workers, although clearly adhering to the same framework, follow a somewhat
different approach that explicitly addresses a mesoscopic rather than a macroscopic level of
description. In the labile brain series, Friston proposes a full account of the taxanomy of
cooperative brain behaviour and therefore of neural coding based on what he calls a
fundamental equivalence (Friston, 2000a). The latter suggests that observing the relevant
neuronal transients of two or more interacting systems provides the same information as a
detailed, description of the system at microscopic levels. Thus by just knowing the recent
history of inputs and outputs of a given neuronal system one can infer the essential function of
the system. This can be achieved by using a system identification approach using Voltera
Kernels. Thus the Voltera kernels are a polynomial, series of a time dependent parameters,
which specify of how the input of a neuronal system is transformed in to an output. The
kernels themselves inform about the function, which has been performed by the system. In a
system with many subcomponents, these Voltera kernels (corresponding to neuronal
transients) correspond to dynamic descriptions of the effective interactions. Thus the stress
here is on the diversity of different interactions at a mesoscopic level as opposed to the global
patterns controlled by a few collective variables at a macroscopic level as with synergetics.
The Voltera kernels can be estimated from input output data using system identification

techniques. This approach yields very informative results when applied to neural modelling
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data but is less successful when applied to real neuroimaging data. The main reason for this is
simply that most of the neuroimaging techniques provide macroscopic data and thus they do
not provide direct access to system input and outputs. In other words, complex networks like
the brain it is difficult to know, what the input and what the output is or more generally what
is considered to be the system and where the borders the systems are. Many times what
constitutes an input to a certain brain area is an output of another area. Macroscopic
measurements provide the sum of such inputs to a certain area and it is therefore difficult to
trace these inputs back to specific brain areas that provided them as outputs. Thus during a
typical neuroimaging experiment it is hard to say, that area A has made the transformation X
of the activity that it received from area B. Most of the time, the only definitive statement one
can make is that area A and B seem to be interacting in the X dynamic fashion. This is a

fundamental limitation, which Friston himself discusses extensively in (Friston, 2000a).

Maybe the most important implication of Friston’s work is making explicit the idea of
dynamic neuronal transients as the core entities of any effective neural code. Friston stresses
the fact that any framework looking at information processing or even collective behaviour in
the brain has to be a dynamic one, because neuronal networks always operate on the basis of
their recent history of inputs and almost never isolated in time. Thus the neuronal moment is
not an instant but a transient. Instantaneous codes and synchronous codes such as spike
coincidences or spike cross correlations can be therefore considered merely as special cases of

neuronal transients.

The second major distinction that Friston introduces is between synchronous and
asynchronous codes (Friston, 2000a) and stresses the fact that asynchronous codes are more
important and more salient than synchronous codes. According to this formulation, the most
effective and the most salient regime of brain coordination is a nonlinear (asynchronous)
coupling between nonlinear subcomponents. According to this view synchronous codes are
linear and therefore essentially not dynamic. It should be noted that, synchronization as
described by Friston, is essentially limited to the special cases of stable linear resonance
phenomena involving processes that operate at the same frequency, such as the interactions,
which can be captured by cross correlation techniques applied to spike trains or cross spectral
analysis applied to EEG /MEG signals. Friston (2000a) then refers to a certain subtype of
synchronization, namely cross frequency synchronization as ‘asynchronous’ and thus
‘nonlinear’ and claims that such asynchronous interactions are more salient than synchronous

interactions in real brain coordination.

23




It has meanwhile become clear that several different types of synchronization may occur in
nonlinear and even chaotic systems (Pikovsky, Rosenblum and Kurths, 2001). There is a vast
amount of literature on synchronization in nonlinear systems (review in Boccaletti ef al.,
2002) and some of these ideas have been also been applied to brain dynamics more
specifically (Breakspear,2002, Stam and Van Dijk, 2002, Stam, van Walsum, and
Micheloyannis, 2002, Breakspear, Terry and Friston, 2003, Stam et al., 2003, Breakspear,
Williams, and Stam, 2004). This literature will be extensively reviewed in chapter 3and 4. In
spatially extended nonlinear systems processes of synchronization and desynchronization may
even govern global system behaviour, which can be generally viewed as a process of pattern

formation (see chapter 4 and references therein).

Hence synchronization of nonlinear systems is far from being just a trivial stable linear
resonance process. Therefore, the original distinction between asynchronous and
synchronous coupling introduced by Friston cannot be upheld in the face of the new findings
in nonlinear science. However the most important implication in Friston’s original
argumentation is a methodological one. Linear and stable synchronization processes, i.e.
similar to rigid resonance, of the type that is encountered in systems that are driven by strong
forcing, are not particularly useful and moreover they are not commonly observed in the
brain. Linear methods can only capture the linear parts of a certain interaction. Consequently,
the latter are not of particular use for the study of brain function and of even lesser utility to

the theory of brain coordination.

To sum things up, from the perspective of the dynamic approach, the brain evolves through a
succession of global states determined by its coordination dynamics (Bressler and Kelso,
2001). These involve the emergent formation of transient functional clusters, which however
are unstable in time, which means that even small and local system changes can lead to the
dissolution o these functional groupings and the emergence of new groupings. There can be
both local-interareal and global-intraareal constraints in the form of dynamic interactions and
these will eventually determine the expression of global patterns. These global patterns
constitute a real time collection of diverse salient informational entities, the functional
clusters. Furthermore, these patterns also provide information about the relations between
these clusters. Thus in every instant in time, information processing can be characterized as a
self-organized global brain state, that exhibits local specificity and a certain pattern of
interactions due to local and global constraints. However, these constraints are also dynamic

and tend to reside near unstable equilibria, enabling flexible switching between different
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global states according to small perturbations in the given internal or external context. The
most fascinating aspect of this framework is its universality: both neuronal and behavioural

processes exhibit phenomenology that can be accounted for. In the brain this involves

nonlinear, nonstationary, transient and intermittent signal behaviour. What is more, these
phenomena are scale invariant and thus can be observed at a neuronal, network and brain area
level. Furthermore, these brain phenomena are consistent and probably causal to the
dynamic, flexible, context sensitive and most of all adaptive nature of human cognition and

behaviour.

1.5 The need for a general framework of brain function
This literature review stresses the point of how important a certain ideological framework is.

This does not only apply to the interpretation of the experimental data but also in the guidance
as to what experiments and what measures are to be used so that meaningful information with

respect to brain function can be extracted.

The ‘binding by convergence’ approach does not attempt to explain the dynamics of
perception and cognition, furthermore it does not provide with any concrete neuronal
mechanisms that can account for the holistic, coherent and context dependent nature of

information processing in the brain.

The temporal correlation approach clearly builds on a robust neurophysiological foundation
and profits on marked empirical support. Although, this approach postulates synchronization
as a dynamic binding mechanism, it does not provide any accounts for synchronization
dynamics. Furthermore, although synchronization clearly plays a role in neuronal
coordination, this approach does not specify how this relates to higher levels of organization
in the brain such as large-scale neural networks and interareal coordination. Without such a
formulation, there can be no relation to the resultant patterns of perception, cognition and

behaviour, which are bound to be related to large-scale brain phenomena.

Although, the dynamical approach is currently still far from the status of a solid and formal
theoretical framework, it seems to be the only approach, which is naturally concordant with
the inherently dynamic, context sensitive and flexible nature of the brain and the mind. Kelso
gives an extremely succinct but exact description for this state of affairs; he calls it a dynamic
isomorphism of brain and mind (Kelso, 1995). Thus both brain and mind share the same

dynamic principles and exhibit the same dynamic patterns.
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Furthermore, the dynamic framework of all others can directly provide abstract but
nevertheless sufficiently formal models of communication between different levels of brain
organization, which in turn can be used for specifying which (of the many existent)
experimental variables are of interest in the first place. It may additionally provide insights
into how such variables should be measured and how these measurements are to be
interpreted. These somewhat rhetoric formulations will become more clear in chapters 3 and

4, where we will examine such abstract models in more detail.
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Chapter 2: Assessing interactions of linear and nonlinear neuronal sources
using MEG beamformers.

2.1 Background.

One of the most active areas of research in contemporary neuroscience deals with the issue of
functional connectivity and neural integration. At the microscopic level progressively more
evidence has accumulated for distributed and transient cell assembly coding (Sakurai, 1996,
Sakurai, 1998, Sakurai, 1999, Singer, 1999, Singer, 2001, Engel and Singer, 2001 , Roelfsema et
al, 1997) with the possibility of partially overlapping cell assemblies contributing to different
processes simultaneously at different frequencies (Sakurai, 1996, Sakurai, 1998, Sakurai, 1999)
or even encoding information by manipulating the timing of their peak responses rather than the
level of their mean activity (Roelfsema et al., 1997, Singer, 1999, Singer, 2001, Engel and
Singer, 2001). In particular, the latter phenomenon was proposed as a universal binding
mechanism applicable to all levels of description of cortical networks and is referred to as the
synchronization hypothesis in the neurophysiological literature (Roelfsema et al., 1997, Singer,
1999, von Stein et al., 2000, Singer, 2001, Engel and Singer, 2001, Varela et al., 2001). At the

macroscopic level of large-scale cortical networks, signals of interest such as the

Electroencephalogram (EEG) and Magnetoencephalogram (MEG) are of an oscillatory nature
and thus the phenomenon relevant to the coordination of the timing of the network’s responses is
phase synchronization (Varela et al., 2001). Certainly, there is considerable experimental
evidence in support of synchronization subserving large-scale integration in the form of transient
and task- specific interactions between brain areas during various perceptual and cognitive tasks.
This has been mostly demonstrated by coherence or phase synchrony analysis of scalp EEG
recordings (Sarnthein et al., 1998,Rodriguez et al., 1999, Tallon-Baudry and Bertrand, 1999,
review in Varela er al, 2001). A second dynamical approach to functional connectivity (Kelso,
1995 Friston 2000c) considers the changes in dynamic emergence and disruption of synchronous
and asynchronous (Friston, 2000a) coupling between brain regions as the substrates of the neural
code. In this model the brain evolves through a succession of global states determined by its
coordination dynamics (Bressler and Kelso, 2001). From this perspective, the brain is in a
metastable regime due to the interplay of forces mediating functional integration on one hand and
functional segregation of inputs on the other (Kelso, 1995, Friston 2000c¢,Bressler and Kelso,
2001), where abrupt state transitions' seem to be functionally significant (Kelso, 1995, Friston,

1997, Friston 2000b, Bressler and Kelso, 2001). In fact, such transient, mostly nonlinear,

' commonly referred to as phase transitions in dynamical systems theory
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interdependences between brain areas have been demonstrated only recently in scalp EEG
(Breakspear and Terry, 2002a, Breakspear and Terry, 2002b) and MEG sensor recordings (Stam
et al., 2003). Interestingly, nonlinear interdependence was more pronounced in MEG sensor data
as compared to EEG scalp recordings (Stam ez al., 2003). Nevertheless, virtually all of the results
at the macroscopic level described above were obtained by analysis of EEG/MEG sensor level
data and therefore hindered by dispersion of the source signal in sensor space. This is particularly
problematic when interdependencies are to be investigated (Nunez et al., 1997, Nunez et al.,

1999, Lachaux et al., 1999).

Ideally, in order to study neuronal interactions one has to go beyond the sensor level: first
neuronal sources have to be identified and then their temporal activity has to be estimated before
possible interdependencies can be investigated. In order to do this it is necessary to produce a
solution to this inverse problem through the use of an appropriate assumption set. In this paper
we use a variation of a nonlinear minimum variance beamformer (Robinson and Vrba, 1999)
based on the assumption that no two distinct neuronal sources are perfectly linearly related (Van
Veen et al., 1997). Throughout this paper the terms correlation and coherence will be used to

denote such strictly linear relationships between time series.

It has recently been demonstrated that MEG beamformers identified frequency specific and
spatially selective task related changes in neuronal spectral power, which were spatially
coincident with BOLD (Blood Oxygen Level Dependent) - fMRI responses for the same task
(Singh et al., 2002, Barnes et al., 2003). Similarly, Hall ef al., 2005 have recently shown that
beamformer estimates of human visual cortical gamma band activity concur spatially, temporally
and functionally with local field potential recordings and BOLD-fMRI in the primate. This
empirical evidence gives some initial confidence in the assumptions behind the beamformer.
Most importantly, the temporal resolution of the MEG recordings is preserved in such
reconstructions and the time series of specific regions of interest, usually referred to as a ‘virtual
electrodes’, can be examined. Since MEG beamformer techniques have been shown to provide
reliable estimates both of the spatial location and the time courses of activity of neuronal sources,
a natural question would be whether these methods are suitable for the study of neuronal
interactions. A pioneering technique of imaging coherent brain sources using MEG beamformer
methods was introduced recently (Gross et al., 2001). Nonetheless, there is a potential pitfall in
this approach, namely that the MEG beamformer methodology is based on the underlying
assumption that no distinct neuronal sources are perfectly linearly related (Van Veen et al., 1997,

Robinson and Vrba, 1999, Sekihara er al., 2002). In fact, both deterioration of the ‘virtual
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electrode’ signal intensity and temporal distortion in the presence of high, long-lasting, source
correlations have been reported in the literature (Sekihara et al., 2002). One mitigating factor is
that we typically use beamformer analysis over relatively long time periods (seconds). From an
information-theoretical point of view, such long-term cortico-cortical correlations are not
efficient in the healthy brain (Friston, 2000a) because context-dependent information transfer is
necessarily more transitory. Furthermore empirical studies show that neuronal synchrony seems

{o be a very transient phenomenon (see Singer, 1999 and Varela er al., 2001 for a review).

In the first section of this paper we describe a simulation study and examine the effects of
transient source correlation on the spatial and temporal performance of the MEG beamformer. In
the second section we show that for a typical time window of beamformer analysis the
interdependencies of the simulated sources are preserved. In the third section we simulate two
interacting nonlinear oscillating systems representing neuronal sources and show that the MEG
beamformer method in conjunction with a phase synchronization detection method based on

Mutual Information are suitable for characterizing the phase interdependencies of these systems.

2.2 Methods.

2.2.1 Simulation of transiently correlated sources.

Two distant dipolar neuronal sources were simulated over 100 epochs (see Table 1 for
coordinates). The time courses of the simulated dipoles consisted of uncorrelated (one
predominantly at 20Hz, the other at 40Hz) and correlated signal segments (predominantly at 20
Hz, see figure 1, the top panel shows the two time courses superimposed). Both sources were of
2nAm peak amplitude with additive Gaussian (6 = InAm) white noise. The correlation

coefficient between the two correlated signal segments was 1= 0.666 (p< 0.01, N=687).

Forward solutions of the induced magnetic field in the sensor space, the lead field, were
calculated using a single sphere model (Sarvas, 1987) and 3" order gradiometer configuration
(151 channel OMEGA MEG system, CTF Systems Inc., Canada). Sensor white noise at
10fTesla/NHz over a 0-80Hz bandwidth was added to the signals.

2.2.2 Adaptive beamformer techniques.

Adaptive beamformer techniques are spatial filtering methods for localizing sources of brain
electrical activity from EEG/MEG sensor recordings. As the details of these techniques are
beyond the scope of this paper, we will only concentrate on some essential qualitative

characteristics of the beamformer techniques. Detailed and formal descriptions of the method can
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be found in (Van Veen ef al., 1997, Robinson and Vrba, 1999, Sekihara ef al,, 2002, Barnes and
Hillebrand 2003, Hillebrand et al., 2005) and experimental imaging applications in (Singh ez al.,
2002 and Singh et al,, 2003). MEG data is collected over a number of epochs, each containing a
stimulus or task window and a rest period. Some time and frequency range within each epoch is
used to define a covariance time window (Tcov). The choice of covariance window ultimately
determines the spatial filter properties of the beamformer (Barnes and Hillebrand, 2003). For
each possible source a weight vector or spatial filter is calculated. The output of this spatial filter,

when applied to the MEG data, gives an estimate of the electrical activity, y(t), termed the

virtual electrode output, given by:
. -1 .
y®= (L} C'L,) 'L C" m(t) =W, m(1), [1]

where m(t) is a column vector of N MEG channels at a single time instant t, W, is a weight

vector for the source 8. Lg is the lead field vector for source 6 and C is the data covariance matrix

computed over time window Tcov.

A contrast window consisting of a pair of time (or time-frequency) segments, say Tactive and
Tpassive, can be defined, and for each voxel in a pre-defined source space, a statistical parameter
can be computed from measures of spectral power change across all pairs of contrast windows.

We used the standard pseudo-t measure from the CTF SAM software, given by:

active passive
T = Po - Po

6 n " >
active assive
Ng™ + Nj

[2]

where P refers to average source power and N is an estimate of the power of the projected
sensor noise (Vrba and Robinson, 2001). A volumetric Statistical Parametric Map (SPM) can
subsequently be obtained by estimating this index of change in neuronal activity (equation 2) for

each voxel in the source space sequentially (using a grid of Smm in this study).
The sources were first spatially localized by the beamformer formulation using an approximately
1.4s long covariance time window, which in this case contained transient correlated source

activity amounting up to 23% of its total length The following contrast time windows were used

30




for the localization of the sources (see figure 1): Tactive (0.0 to 0.87s) and Tpassive (-0.5 to
0.0s).The spatial location of the two sources was estimated from the two largest peak values of

the SPM in the 0-80Hz-frequency range (see figure 2 and table 1).

Moving Covariance Time window (Tcov)
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Figure 1. Parameterisation of transient source correlation: The time courses of the simulated sources
consisted of a segment of white noise in both simulated dipoles (time: -0.55 to 0.0s), then a segment of noisy
different frequency oscillations (20 Hz and 40 Hz dipole 1 and 2 respectively; time: 0.0 to 0.55s) and finally a
segment of noisy 20 Hz oscillations in both dipoles (time: 0.55 to 1.1s). The progressive shift of the covariance
time window by 10% of its length across the data allowed for a parameterisation of the relative duration of
the correlated source activity with respect to the length of the covariance time window. The bottom two panels
show the time courses of the two simulated sources and the top panel shows their superimposed time courses.

Since the covariance window completely determines the spatial filter (equation 1), an easy way to
parameterize the effect of transiently correlated source activity is to introduce a segment of
bivariate data containing correlated source activity and then just move the covariance window
across the data allowing for increasingly longer correlated segments. The next step was therefore
to estimate the time series of electrical activity in the two voxels while varying the relative
duration of correlated source activity with respect to the total duration of the covariance time
window (Tcov). For this purpose the beamformer was formulated over a 0.6s long moving
covariance time window. Tcov was progressively shifted by 10% of its length across the data
towards the segment containing correlated source activity and thus allowed for a parameterisation

of correlated source activity with respect to the duration of the covariance time window (see
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figure 1). Note that each of the covariance time windows represents a new beamformer spatial
filter because a new set of beamformer weights is determined. The time series of the two voxels

at the same location was then computed for each new set of weights.

2.2.3 Measures of temporal performance of the beamformer.

Two summary measures were computed for the quantification of the beamformer estimates as a

function of the relative duration of correlated source activity:

1. A reliability measure corresponding simply to the mean correlation coefficient between
the simulated time series and its beamformer estimate (the virtual electrode time series)

across 100 epochs.

P P P
1 Nepochs pX @S[U.Slm,j - z esz’.}‘ z Slm'_f
7 i i

- (3]
I Nepochs Z,‘ » , p 2 , P
S e} (S, | |+ 2o} ~(Som,

2

where i is an index for data points, /= 1.....p , p the total number of data points in each epoch of

data, j is an index for epochs of data, j= 1...Nepochs, and Nepochs is the total number of epochs

of the dataset, sim, is the simulated time series and es?;; is the estimated time series of the
virtual electrode. Here est; is given by the virtual electrode output at the SPM maximum see

equation [1].

2. A pointwise relative error measure between the simulated time series and its beamformer

estimate. We used the relative difference measure (RDM- see Meijs et al., 1989).

4
. 2
\/Z (est, —sim,)
i=1

P

)
! Z:(simu)2

i=]

1 Nepuchs

RDM = ———
Nepochs

The symbols and indices are the same as in equation {3]. The mean correlation coefficient and the

RDM were computed separately for each source.




2.2.4 Reconstruction accuracy of source interactions.

When the reconstruction of the time series of true sources is imperfect, this can have a larger,
supralinear, effect on measures of source interactions, since these measures are based on a pair of
such reconstructed time series. Since the temporal performance of the beamformer is likely to
deteriorate in the presence of long-lasting correlations, it would be useful to know the degree of
deterioration in measures of signal interdependency as a function of the relative duration of
correlated source activity. In order to parameterize this effect, relative difference measures

(RDM _interaction, see bellow), were computed for three relevant measures of signal
interdependency for beamformer reconstructions corresponding to different durations of source
correlations. Details of the measures of signal interdependency (i.e. coherence and
synchronization indices) employed are provided in the following section; however the RDM

measures for the interactions were generally defined as follows:

p
2
] Nepochs Z (Mreconst if - Mtrue’j )
. . i=1
RDM interaction = ——— (5]

Nepochs ; 4 )
' (Mtrue,)”
|2 (Mire,

with i, p, j and Nepochs defined as above, Mirue,, is the true measure of signal interdependency

(as calculated between the simulated signals) and Mreconsir, is the reconstructed measure of

signal interdependency (as calculated for the virtual electrode outputs of the beamformer). We
used 3 signal interdependency measures here, the coherence function, defined as the average
value over a broad frequency band (0-80Hz), the synchronization index at 20 Hz (based on
narrow band filtered data, here a 10 Hz wide band pass filter centred at 20 Hz was used) and the
synchronization index between sourcel and 2 at 20 and 40 Hz respectively (the data was band

pass filtered using a 10 Hz wide filter centred at 20 and 40 Hz respectively).

2.2.5 Measures of signal interdependency.

All of the following measures discussed were applied to the virtual electrode time series.




2.2.5.1 Coherence estimation.

: 2 : . .
Coherence as a function of frequency (79 h(f)) is estimated as the magnitude-squared cross
a,

spectrum divided by the power spectra of both time series, that is

Ga,b (f) ?
G, ()G, ()

7= [6]

where G, ,(f)is the cross-spectral density functions of time series recorded in virtual electrodes

a and b and Ga (f),é,, (f) are the auto spectra of the time series in virtual electrodes a and b.

Coherence is an indirect measure of phase concentration: it evaluates the strictly linear
relationships between a pair of signals at a given frequency. If coherence ~1 this indicates a
perfect linear relationship, if coherence~0, then no linear relationship can be assumed for the

signals in question.

2.2.5.2 Phase synchronization analysis.
This section comprises a brief review of the broader topic of phase synchrony. Recently two

methods for detection of phase synchrony in brain signals were proposed independently (Tass ef
al., 1998, Lachaux ef al., 1999, for a comparison see Van Quyen e/ al., 2001). The second one is
based on convolution with Morlet wavelets, whereas the first one involves narrow band filtering
and utilizes the analytic signal concept (Gabor, 1946) and thus the Hilbert transform, in order to
obtain uniquely defined estimates of the instantaneous phase and instantaneous amplitude. In
Tass ef al.. 1998, the variable of interest is the univariate instantaneous phase difference of paired
signals and a synchronization index (SI) is proposed on the basis of either Shannon Entropy or
conditional probability. In this study we adopted a very similar approach but we treated the
bivariate instantaneous cyclic phases (the instantaneous phases of the signals were wrapped in the

interval [0 27], that is ¢, mod 21 and ¢, mod 2m) of paired signals as the variables of interest

and calculated a phase synchrony index based on Mutual Information (MI). A similar method
was proposed for detecting phase locking from experimental data but it was not applied

specifically to brain signals (Palus, 1997).
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The Shannon Entropy of a given univariate probability of a distribution of the phase angle in a
given time series can be easily estimated using histogram based methods (Van Quyen et al,

2001) according to:

Nbins

H(g) ==Y pl¢,)In p(g,) [7]
k=1

where Nbins is the number of bins in the histogram and p(g, ) is the relative frequency of

finding the phase in the k-th bin. The number of bins was determined as the cubic root of the
number of data points in the distribution. The binned distribution was then evenly spaced

between its maximum and minimum.

The joint entropy can be estimated analogously as:

Nbins  Mbins

H(¢k9¢/):_z zp(¢k’¢[)lnp(¢k9¢l)ﬂ (8]

k=1 I=1

where Nbins= Mbins are the number of bins in the univariate phase distributions 4, .4,
respectively and  p(#,,4,) is the relative joint frequency of finding the phase ¢, and phase ¢, in

the k-th and I-th bin respectively.

Mutual Information (M1) between the instantaneous phases of two signals is then:
M1(¢k>(/)l):]_](¢k)+H(¢/)_H(¢k’¢I) (9]

We used a histogram-based method to assess Mutual Information. With this method the maximal
Ml is a function of the number of chosen histogram bins. The MI measures we present here have
been normalized by the maximal possible MI.

Explicitly:

MI
MI '

max

ST =

SIe [0, 1] [10]

(O8]
(93]




where MI is the observed Mutual Information and M7 ;.= In (Nbins).

In this way we obtain a synchronization index, S/, between 0 and 1, where SI = 0 represents no

synchronization and S/ =1 represents perfect synchronization.

An important feature of the synchronization index based on MI is that it can identify

interdependence between phase at different frequencies and thus n: m phase locking %according to

Ing, —mp,| <c [11]

where $: @ are the instantaneous phases of the two frequency signals, ¢ is a constant and n, m
are integers defining the frequency ratio of the signals. If the analysis is done across the entire
combination space in terms of all possible cross frequency interactions, n and m can be explicitly
set to the mean frequency of the frequency range on which the analysis is being conducted.
Explicitly, if two signals of interest are narrow band filtered at two different frequency ranges,

say range; = /i 10 f, for signal 1 and range,= £, to f, for signal 2 and ¢, and ¢, are the

instantaneous phases of the narrow band filtered signals 1 and 2 respectively, then [11] can be

used in the following way:

'ﬂ;ﬂm—ﬁ;ﬂ@Sc [12]
Thatis, n= l—i-fi and m = tzri

The products n¢, and me,are then substituted in place of the instantaneous phase angle values
(4, and ¢,) in equations [7]- [10] and then the cross frequency, high-order synchronization index

SI is computed for every possible frequency combination.

2.2.5.3 Assessment of event-related changes in measures of signal interdependency.
In most experimental cases it is useful to assess an (event-related) modulation in some signal

quantity during the experimental condition (‘active state’) with respect to some baseline (‘passive
state’) rather than just the raw values. Although the distinction between ‘active’ and ‘passive’

states is clearly an oversimplification, since there are no true ‘passive’ brain states, we used this




distinction for simplicity, while we would practically expand this terminology to denote a more
general distinction between different brain states, defined as states that are subject to differential
experimental manipulation. In our study the white noise signals segment was chosen as baseline.
The epoch-wise differences of ‘active state’ and ‘passive state’ in coherence and in the phase
synchronization index based on MI described above were then subjected to non-parametric
permutation testing, implicit in which was a correction for multiple comparisons. The ‘event-
related’ differences were then thresholded at a given significance level (in this paper alpha=0.01

unless otherwise stated) and only significant results are displayed.

2.2.6 Simulation of interacting nonlinear oscillators.

Phase synchronization is essentially a nonlinear phenomenon defined as the adjustment of the
rhythms of two or more self-sustained oscillating systems due to weak interaction (Pikovsky,
Rosenblum and Kurths, 2001). Self-sustained oscillators are systems that have their own
independent and autonomous oscillatory activity. In other words, in order to study
synchronization, one has to measure systems whose parameters and nature of coupling are
known. We accomplish this by simulating two coupled Rossler systems (identical to those in
Tass ef al., 1998) as active neuronal sources at distinct locations using the same spatial
coordinates as in the simulation study above. The main point in this particular part of the study
implementing the Rssler oscillators as neuronal sources was nof to parameterize the effect of the
correlation between them, but test if interactions between nonlinear systems could be identified
under realistic measurement conditions. The Rossler systems are defined by a system of 6

ordinary differential equations:
/?,}],2:_a)],ZWLZ—Zl,2+§l,2+g(/¥2‘}_/’{l,2)a
Wi, = 0y, X T 0.15 v,

z, = 02+ z,(x, —10). [13]

where the parameters o, =1.015, @, = 0.7 &, represent the natural frequencies of the two systems

and govern their initial frequency mismatch (50 = |w1-m,]); £ is the parameter governing the

coupling strength of the two systems and £, , are two Gaussian delta correlated noise processes.

2 n: m phase locking refers to high order, cross frequency phase synchronization, where and n and m are integers and
determine the ratio of frequencies of the two synchronized processes (see Pikovsky et al., 1999 and Pikovsky,
Rosenblum and Kurths, 2001).
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The integration of the above systems was realized in MATLAB using the Runge-Kutta technique.
The step of integration was set to 21/1000. We varied the coupling strength & and obtained phase
synchronization indices based on MI for two levels of coupling, namely &= 0.0 or ‘no coupling’
corresponding to autonomous oscillation and £= 0.17 or ‘moderate coupling’. From a dynamical
systems point of view, this constellation corresponds to a linear, symmetrical, bi-directional
coupling of two non-identical nonlinear systems.

The solutions of the y,, oscillatory variables of the Rossler systems were then resampled at

1250Hz for a total duration of 1s and their forward solutions were computed over 100 epochs.
Sensor white noise at 10fTesla/VHz over a 0-80Hz bandwidth was added to the signals.
Subsequently we applied the same methods described above in order to obtain the beamformer

reconstruction of the spatial location and the time series of the Rdssler systems.

Additionally, in order to study the spectral and temporal dynamics of the Rassler systems as
reconstructed in the virtual electrode time series, multiresolution time-frequency analysis was
performed using Morlet wavelets. Then the average spectral power across epochs was plotted for

both virtual electrode time series.

Although the Rossler systems do not directly relate to ‘brain-like’ models, we chose to
implement them because they possess the essential and universal features and mechanisms of
coordination of oscillatory behavior (Pikovsky, Rosenblum and Kurths, 2001). Two of the basic
features shared by interacting Rossler systems and interacting neuronal networks are that both
show nonlinear and nonstationary oscillatory time courses and their interactions near equilibrium
(after initial transients have died off) are specified by a two-opponent gradient interplay.
Specifically, both neural and abstract (model) oscillators express characteristic frequencies
forcing them to autonomous oscillation on one hand and bi-directional coupling of their

instantaneous activities obliging them to cooperation and integration on the other.

2.3. Results.

2.3.1 Spatiotemporal performance of the beamformer in the presence of correlated source
activity.
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The results of the simulation of transiently correlated sources are summarized in Table 1 and
Figures 2 and 3. Figure 2 shows the results of the spatial localization of the sources and

coordinates are given in

Figure 2. Localization of the transiently correlated sources by the beamformer. The beamformer was
formulated over a covariance time window that contained transient correlated source activity over
23% of the total duration. The image shows the SPM of the pseudo-t measure as in equation [2] over
a bandwidth of 0-80Hz using the contrast time windows Tactive (0.0 to 0.87s) and Tpassive (-0.5 to

0.0s), see figure 1.

Simulated cortical { Coordinates of simulated * Coordinates of estimated
sources | sources (mm) source focation (mm) and
: associated peak T -values of the
SPM
Source 1 12,5,2] 12,5,2] T=27.2
Source 2 [-1.8,4.3,0.34] {-2,4.5,0.5] T=13.8

Table 1. Coordinates of simulated sources and estimated source location. T denotes the pseudo-t
values as in equation [2], calculated over a bandwidth of 0-80Hz using the contrast time windows
Tactive (0.0 to 0.87s) and Tpassive (-0.5 to 0.0s). Note the close correspondence between the
coordinates of the simulated sources and the coordinates of the estimated source locations given the
Smm grid.




Table 1. As is evident, although the sources were highly correlated over 23% of the duration of
the covariance window, the localization errors are negligible (given the Smm grid spacing).
Figure 3 shows a qualitative description of the temporal performance of the beamformer in the
presence of correlated source activity. Examples of the reconstructed time series, the ‘virtual
electrode’, (shown in blue) are plotted together with the simulated time series (shown in red) for
low, medium and very high correlation levels (from top to bottom). It is evident that the

beamformer can tolerate duration of transient correlations as high as 30% of the

Normalised
source strength A

Source 1 Source 2
< > ]. 00ms

Figure 3. Temporal performance of the beamformer in the presence of transient source correlation. From top
to bottom, low (10 % of the covariance time, A and B), moderate (30 %, of the covariance time, C and D ),
and high duration (90 % of the covariance time, E and F), of correlated source activity. The simulated time
series for the two simulated sources is shown in red; the corresponding reconstructed virtual electrode time
series is plotted in blue. Note the accurate reconstruction of the source time series for low (A and B) and
moderate (C and D) duration of correlated source activity. At very high durations of correlated source activity
(E and F) the temporal performance of the beam former deteriorates and the signal intensity is clearly

reduced.

covariance window over 100 epochs. Nevertheless the effects of temporal distortion
demonstrated for long-term, high correlations in Sekihara ef al., 2002 are also evident in the
bottom panel. At high durations of source correlation, here 90% of the covariance time window,
the temporal resolution of the beamformer deteriorates and the reconstructed source intensity is

clearly reduced. These results are quantified in Figures 4 and 5 by means of reliability and
40




relative error plots. In Figure 4 the reliability measure of the temporal performance of the
beamformer is displayed. It is quite evident that the reliability of the beamformer estimates, that
is the correlation between simulated data and the beamformer estimates, drops monotonically
with the relative duration of the source correlation with respect to the covariance window but it is

nevertheless quite reasonable for beamformer formulations including less than 40% correlated

activity in the covariance window. Figure 5 shows the Relative Difference Measure (RDM) as a
function of relative duration of the source correlation. This plot is consistent with the reliability
plot since for durations of source correlations higher than 40% of the covariance window, there is

a steep increase of the RDM.
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Figure 4. Reliability measure (see methods, equation [3]) of the beamformer as a function of the relative
duration of correlated source activity with respect to the length of the covariance time window and the mean
correlation coefficient between the simulated sources (the mean is taken across 100 epochs). Note the
monotonic decrease of the reliability measure with increasing durations of correlated source activity. The
reliability measure is nevertheless reasonable for beamformer formulations including less than 40%
correlated activity in the covariance window.
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Figure 5. Relative Difference Measure (see methods- RDM, equation [4]) as a function of the relative duration
of transient source correlation with respect to the total duration of the covariance time window and the mean
correlation coefficient between the simulated sources. Note the monotonic increase of the RDM measure with
increasing durations of correlated source activity. The RDM measure is relatively low for beamformer

formulations including less than 40% correlated activity in the covariance window.
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Figure 6. Relative difference measures of the interaction measures (these are the errors of the
interdependency reconstruction, see methods, RDM _interaction in equation [5]) as a function of the relative
duration of source correlation with respect to the length of the covariance time window. The y-axis shows the
errors for three measures of source interdependence, that is the coherence error, the synchronization index
error at 20 Hz (abbreviated as SI at 20 Hz) and the synchronization index at 20 and 40Hz (abbreviated as SI
at 20 and 40Hz). Note that the errors are relatively small for shorter durations of source correlation, however
they increase monotonically for durations of source correlation, which exceed 40% of the covariance time
window. This consistent with the reliability and RDM measures of the temporal performance of the
beamformer in figures 4 and S.
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2.3.2 Reconstruction accuracy of simulated source interactions.
Figure 6 demonstrates the results of the relative different measures of the interaction metrics,
which is the interaction errors, as a function of the relative duration of source correlation.
Essentially two of the three measures, the relative difference measures for coherence and the
synchronization index at 20 and 40 Hz (see methods) show similar behaviour, they increase
almost monotonically with increasing durations of source correlation. Source correlations that
extend over 40% of the time window of beamformer analysis are associated with higher errors in
the measures of source interactions. However the errors are relatively small for shorter durations
of source correlation. The error measure for the synchronization index (SI) at 20 Hz is originally
high, it decreases for moderate durations of source correlations and then increases again for
longer durations. The initial high values are possibly due to the fact that the sources are not
synchronized at 20 Hz to begin with, so the absolute values of the SI are very small. Hence small
errors in the reconstructed time series will cause large errors in the SI. Eventually, as larger

portions of the signal become synchronized the error seems to be reasonably sized and then with

increasing source correlation the errors are similar to the 20 and 40 Hz case.

2.3.3 Reconstruction of signal interdependencies by the beamformer.
Since both the spatial localization and the temporal reconstruction of the simulated sources were
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Figure 7. Significant coherence and phase synchrony changes of the virtual electrodes at 20 Hz over the time
window 0.55-1.00s. The simulated sources contain correlated 20 Hz noisy oscillations for this particular
segment of data (Figure 1, time: 0.55 to 1.1s). The segment of data that contains white noise in both sources
serves as baseline (compare Figure 1, time: -0.55 to 0.0s). The coherence analysis quantifies the increase of the

linear relationship between the two simulated sources at 20Hz. The phase synchrony analysis also correctly

identifies the increase of the 1:1 phase interdependence between the two sources.
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very good for moderate durations of transient source correlation the next step is to explicitly raise
the question whether source interdependencies are preserved in the beamformer estimates. For
this purpose the beamformer was formulated over a time window, which contained a fransient
source correlation for 20% of the covariance time window. The time series of the sources were
reconstructed and then coherence and phase analysis was performed on the particular segment of
data containing correlated, noisy 20Hz oscillations as the ‘active state® (Figure 1, time: 0.55 to
1.1s) and the white noise data as baseline (Figure 1, time: -0.5 to 0.0 s). Figure 7 shows an
estimate of the statistically significant coherence and phase synchrony index changes between the
reconstructed time series as a function of frequency. Coherence analysis identifies correctly the
presence of a significant change in the linear relationship between the two sources at 20Hz. Note
the ‘frequency leakage’ to neighboring spectral bins at 15 and 24 Hz due to the small number of
data samples in the cross-spectral analysis. The phase synchrony index change metric based on
Mutual Information is shown on the same figure. The analysis correctly identifies the 1:1 phase

interdependency at 20 Hz.

Frequency (Hz)

Phase Synchrony Index change

Frequency (Hz)
Figure 8. Detection of possible high order n: m synchronization. The figure represents the cross frequency
phase synchrony analysis between the time courses of a two simulated neuronal sources. The x and y axes
represent frequency in the first and second source respectively. The colour code represents a significant event-
related change in the phase synchrony index in some ‘active’, experimental state with respect to some baseline
(see methods section) as a function of the frequency of the two sources. Warm colours (e.g. red) indicate an
increase; cold colours (e.g. blue) indicate a decrease of the phase synchrony index with respect to baseline.
Here the phase synchrony analysis is done on the particular segment of simulated data that contains 20 Hz
and 40 Hz noisy oscillations in source 1 and 2 respectively (Figure 1, time; 0.0 to 0.55s). The segment of data
that contains white noise in both sources serves as baseline (Figure 1, time: -0.55 to 0.0s). The analysis
correctly identifies an increase of the phase synchrony index with respect to the baseline between 20 Hz
oscillations in the first source and 40 Hz oscillations in the second source.

44




Figure 8 shows the results of phase synchrony analysis for a segment of simulated data that
contains 20 Hz and 40 Hz noisy oscillations in source 1 and 2 respectively (Figure I, time: 0.0 to
0.55s) with respect to white noise data serving as a baseline (Figure 1, time: -0.5 to 0.0 s). Since
the simulated sources are periodic and stationary, a 1:2 stable relationship exists between their
phases. The analysis of the virtual electrode time series accurately reconstructs this relationship

suggesting that nonlinear high order phase interdependencies can be detected in the estimated

time series.

2.3.4 Reconstruction of interacting Rossler systems and their interdependence

Figure 9 illustrates the results for the simulation of two Réssler systems serving as neuronal
sources. For clarity of illustration of the effects of coupling on the amplitudes and phases of the
Rossler systems, the original time series (the direct solutions of the integration) are shown here
and not the reconstructed virtual electrode time series. Essentially, the reconstructed time series
exhibit the same spectral and phase changes in the transition from ‘no-coupling’ to the
‘moderate-coupling’ as the original solutions except for the presence of additional strong

simulated white noise that was projected from the sensors. Nonetheless the time-frequency and
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Figure 9A. Direct solutions (the x1,2 oscillatory observables) of the integration of the Rossler systems for no

coupling (left) and moderate coupling (right) between the two systems. Note the decrease in amplitude from

the uncoupled to the coupled case and the appearance of consistent timing between the peaks.

phase analysis described below concerns the reconstructed virtual electrode time series.




Figure 9A shows the direct solutions of the integration of the Rossler system. On the left, the x;>
oscillatory observables are plotted for the ‘no coupling® case and thus the autonomous oscillation
and the respective x; » time series for the ‘moderate coupling” case are plotted on the right. Note
the decrease in amplitude from the uncoupled to the coupled case and the appearance of
consistent timing between the peaks. It is obvious that in the ‘no-coupling’ case the two systems
exhibit autonomous oscillation with different principal frequencies. Also note the approximately
stable time lag of the peaks for the two signals in the ‘moderate coupling’ case. This suggests a

regime of phase synchronization between the systems.
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Figure 9B. Average wavelet time—frequency plots for the virtual electrodes time series corresponding to the
two systems. The colour code represents signal amplitude of the virtual electrode time series. The time —0.5 to
0.0s corresponds to autonomous oscillation and thus no coupling between the systems and 0.0 to 0.5s
corresponds to moderate coupling between the systems. Note the marked overall decrease in amplitude in the
coupled case with respect to the autonomous case. In the case of moderate coupling between the systems the
only visible peak lies at approximately 30-32 Hz in both systems and corresponds to a ‘compromise’ beat
frequency lying somewhere in between the frequencies of the two systems in the autonomous case.

Figure 9B shows the average wavelet time-frequency plots for the virtual electrode time series
corresponding to the two systems. The time —0.5 to 0.0s corresponds to autonomous oscillation
and thus no coupling between the systems and 0.0 to 0.5 s corresponds to moderate coupling
between the systems. Note the marked overall decrease in amplitude in the coupled case with
respect to the autonomous case. In the case of moderate coupling between the systems the only
noticeable peak lies at approximately 30-32 Hz in both systems and corresponds to a
‘compromise” frequency lying somewhere in between the frequencies of the two systems in the

autonomous case.
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Figure 9C shows the results of the phase synchrony analysis of the two virtual electrode time
series corresponding to the two Réssler systems. The ‘no coupling® time during which the
systems oscillate autonomously (-0.5 to 0.0s) served as baseline. The phase synchronization
index increases significantly between the two systems at 28-35 Hz in the coupled case indicating
phase and frequency locking of the two systems at these frequencies. Additionally the phase
synchronization index decreases between the 30-35 Hz oscillations in the first virtual electrode
and the 25-30 Hz oscillations in the second virtual electrode, which correspond to the main
frequencies of oscillation in the uncoupled case as evident in Figure 9B. These results portray the
transition to synchronization in the form of adjustment of both the phases and the frequencies of
the coupled systems. The transition to synchronization in this case is not smooth as it is reflected
in the concurrent considerable spectral power drop observed in the time frequency plots.
Coupling of the systems forces them to adjustment of their rhythms. However, due to the great
initial frequency detuning of the two systems this ultimately leads to an additional dissipation of
energy. This spectral power drop bears striking phenomenological resemblance to an event
related decrease in the spectral power of ongoing brain rhythms as recorded by EEG/ MEG,
known as ERD (Event Related Desynchronization, Pfurtscheller and Lopes da Silva, 1999).

ol

Frequency (Hz)
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Phase Synchrony Index change
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Figure 9C: The results of the cross frequency phase synchrony analysis of the two virtual electrode time series
corresponding to the two Réssler systems. The x and y axes represent the estimated virtual electrode time
series for systems 1 and 2 respectively. The colour code represents a significant change in the phase synchrony
index with respect to baseline as a function of the frequency of the two sources. Warm colours (e.g. red)
indicate an increase; cold colours (e.g. blue) indicate a decrease of the phase synchrony index with respect to
baseline. Here the ‘no coupling® time, that is the time when the two systems oscillate autonomously (see figure

8A, time: -0.5 to 0.0s) serves as baseline. The phase synchrony index increases significantly with respect to

baseline at 28-35 Hz in the coupled case (figure 8A, time: 0.0 to 0.5s) indicating phase and frequency locking
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of the two systems at these frequencies. Additionally the phase synchrony index decreases between the 30-35
Hz oscillations in the first virtual electrode and the 25-30 Hz oscillations in the second virtual electrode, which
correspond to the main frequency of oscillation in the uncoupled case as evident in the spectrograms. These
results portray the transition to synchronization in the form of adjustment of both the phases and the

frequencies of the coupled systems.

2.4 Discussion.

In this paper we have shown that MEG beamformers can accurately reconstruct the spatial
location and the time series of simulated neuronal sources that exhibited a transient correlation.
In our simulation study the reconstruction of the time series was not affected if the duration of the
transient correlation in source activity did not exceed 30 to 40 percent of the total duration of the
covariance time window, that is the period over which the beamformer weights are computed. At
longer durations, effects of temporal distortion and signal cancellation were observed, a finding
which is consistent with previous literature (Van Veen ef al., 1997, Gross et al., 2001, Sekihara et
al., 2002). This would suggest that if the beamformer is formulated using covariance time
windows that are long relative to the duration of any transient linear (and zero phase lagged)
interactions, it could provide us with accurate estimates of both the spatial and temporal aspects
of neuronal source activity. The trade off is that the longer the covariance window, the smaller
the portion of stimulus related activity relative to baseline state, and hence a decrease in overall

SNR resulting in a loss of spatial resolution (Van Veen ef al., 1997, Gross et al., 2001).

In our simulations we have shown that even source coherence, corresponding to correlation in the
frequency domain, is preserved and can be assessed using the beamformer methodology. In
addition, a method for detecting phase synchronization in the time series of neuronal sources was
introduced. The method is based on Mutual Information and is a modification of previously
proposed methods (Tass et al., 1998, Pikovsky et al., 2000, Van Quyen ef al., 2001). It allows for
detecting and quantifying both simple and high order n: m phase locking and returns a
synchronization index that can be assessed statistically by non-parametric permutation testing.
Using the beamformer methods in conjunction with this approach, both frequency and high order
n: m phase locking between simulated periodic, oscillatory sources could be correctly quantified.
Our approach to the detection of phase synchronization of neuronal sources is comparable to a
method proposed recently in Tass et al., 2003. The main difference of the two methods lies in the
algorithm for the reconstruction of neuronal sources from MEG sensor data: our approach is

based on adaptive beamformer techniques, whereas in Tass e al., 2003, Magnetic Field
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Topography (loannides et al., 1990) is utilized for the estimation of cerebral current source

density from sensor data.

Current thinking in theoretical neuroscience considers brain function to be the product of a large
assembly of coupled nonlinear dynamical subcomponents exhibiting transient and inherently
metastable dynamics (Kelso, 1995, Friston, 1997, Friston, 2000a , Friston, 2000c, Friston, 2000b,
Bressler and Kelso, 2001). Recent fascinating developments in nonlinear science have provided a
more specific framework for understanding coordination phenomena and especially
synchronization in weakly coupled nonlinear oscillating systems (Rosenblum et al., 1996,
Pikovsky ef al., 1999, Pikovsky et al., 2000, Pikovsky, Rosenblum and Kurths, 2001), stressing
the significance along with the universality and scale invariance of phase synchronization in the
coordination of oscillatory activity. As a first step towards investigating coordination phenomena
of brain sources, in this study we simulated two coupled nonlinear Rossler oscillators,
reconstructed their activity using beamformer methods and looked at their phase
interdependencies. By doing so we wanted to test whether the interactions of such nonlinear
systems serving as neuronal sources can be detected by the beamformer methods in conjunction
with the phase synchronization analysis described above. The prediction was that by increasing
the coupling of the systems, phase synchronization3 would occur, which would result in an
increase of the M1 based synchronization index. By introducing a large initial frequency
mismatch between the systems, and thus making the synchronization transition less smooth
(Pikovsky, Rosenblum and Kurths, 2001), we were aiming to imitate conditions that are more
likely to occur in real mesoscopic and macroscopic cortical network interactions. Macroscopic
cortical networks can oscillate at quite distinct frequencies (Pfurtscheller and Lopes da Silva.
1999) and might even exhibit nonlinear high-order, cross-frequency (n: m) synchronization
(Schack et al., 2002). Another important prediction was that although the phases of the two
systems may be bounded and interdependent, the amplitudes might still be chaotic in time and
not strongly interdependent, especially since the systems were expected to undergo a ‘rough’
synchronization transition. In our simulation study, with just two coupled nonlinear oscillating
brain sources, we replicated these predictions for phase synchronization of chaotic oscillators
reported previously in a totally different context (Rosenblum ez al., 1996, Pikovsky et al., 1999,
Pikovsky et al., 2000, Pikovsky,R osenblum and Kurths, 2001). These interactions of nonlinear

3 Phase synchronization in chaotic systems: The phases of the systems are bounded for some region of the system
parameters and strongly interdependent, whereas the amplitudes may remain chaotic in time and independent.
Complete Synchronization in chaotic systems: both phase and amplitudes are bounded and the systems follow an
identical trajectory in state space. For an exhaustive discussion see Pikovsky er al., 1999 Pikovsky, Rosenblum and
Kurths, 2001.
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oscillating systems could be identified by a combination of the beamformer methods and our

phase synchrony analysis based on Mutual Information.

Recently, it has become increasingly clear that phase synchronization is not by far the only
relevant or quantifiable nonlinear coordination phenomenon in the brain. One major conceptual
problem is that phase synchronization is a phenomenon which can be observed between so called
‘phase coherent’ oscillators, that is oscillators that exhibit more or less a singular approximate
periodicity, so that phase can be clearly defined (Boccatelli er al., 2002). The Rossler attractors
display such a phase coherent behavior but this not typical for healthy brain signals, which tend
to exhibit multiple and sometimes interrelated periodicities. The phase synchronization approach
is strictly speaking only valid if applied to narrow- band filtered signals, which in the optimal
case will be centered on one of the present system periodicities. Of course several problems arise,
which are related to the choice of filtering parameters and the possibility of partial destruction of
otherwise present nonlinear structure, which might involve more than one periodicity. Several
authors have stressed the importance of generalized synchronization (first described by Rulkov.,
1995) as a putative mode of interaction in the brain and have proposed methods for quantification
of this phenomenon (Stam and van Dijk, 2002, Breakspear and Terry 2002a, Quiroga et al., 2002,
Stam ef al., 2003, David ef al., 2004). Generalized synchronization refers to a more general class
of nonlinear interdependence between dynamical systems, in which trajectories in one system can
be directly mapped to a second system by means of a deterministic functional relationship.
Various methods have been developed to quantify this phenomenon; most of them involve time-
delay embedding algorithms with the reconstruction of a multidimensional state space. The
majority of these methods take advantage of the fact that the local structure, the relationships
between neighboring data points in state space, will be functionally related in two interacting
systems, if such a direct mapping function exists. The main benefit of these methods over the
ones quantifying phase synchronization is a conceptual one. These methods do not require an
arbitrary partition of the signal in to frequency bands and can therefore quantify a broader range
of coordination phenomena, especially metastable and nonstatic nonlinear phenomena, which
cannot be captured by phase synchronization based metrics. These phenomena arise through
transient and weak coupling and seem to be very important from a theoretical point of view
(Friston 1997 and 2000c). In fact, a study testing the performance of several interdependence
measures, found generalized synchronization metrics to be more sensitive than phase
synchronization metrics, especially when the coupling was weak (David et al., 2004).

Nevertheless both kinds of metrics seem to be qualitatively equivalent in realistic measurement
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conditions (Quiroga et al., 2002) and seem to be comparable in terms of their ability to capture
nonlinear components in a certain interaction (David er al., 2004). The disadvantages of the
generalized synchronization based methods is that they require long computation times, they are
sensitive to noise and to nonstationarity of the data, they involve several parameters for the time-
delay reconstruction and most importantly, their computation requires a large number of data
samples which limits their effective temporal resolution. Methods quantifying phase
synchronization on the contrary can potentially offer very good temporal resolution, which can be

of great importance considering the transient nature of real brain interactions.

In summary, we have presented a general framework for the identification of macroscopic
interactions across active brain regions. MEG beamformer methods in conjunction with phase
synchronization analysis based on Mutual Information provide accurate spatial and temporal
descriptions of the simulated interactions between linear and nonlinear neuronal sources. The
practical utility of these methods will be established through applications to experimental

Neuroimaging data.




Chapter 3: Synchronization dynamics in low dimensional nonlinear
systems.

3.1. Why study cortical synchronization and related oscillatory phenomena?

A vast amount of experimental evidence has been collected over the last two decades in
support of the functional role of macroscopic cortical oscillations, which in all probability
result from collective synchronization phenomena occurring at the microscopic level.
Specifically, stimulus, event -and task- related changes in the ongoing cerebral rhythms in
terms of spectral power of macroscopic integral signals such as the EEG and MEG have been
the main focus of research. These commonly, frequency-specific spectral power changes
referred to as Event Related Desynchronization (ERD) and Event Related Synchronization
(ERS) for power decreases and power increases respectively seem to be fairly universal as
they were found to be contingent and to co vary with functional changes in almost every area
of human behaviour (reviews in Pfurthsheller and Lopes Da Silva, 1999 and Basar et al.,
2001) including perception (Tallon-Baudry e? al., 1996 and 1998 Keil er al., 1999, Fell et
al.,2003 ), memory (Klimesch ,1996 and 1999, Burgess and Gruzelier, 2000, Jensen and
Tesche,2001, Klimesch er al., 2001, Raghavachari ez al., 2001, Sauseng ef al., 2002, Jensen
et al., 2002, Tesche and Karhu, 2002) language processing (Krause ef al., 1996 and 1999,
Pulvermiiller e al., 1995 and 1997 , Karrasch,1998, Rohm ef al., 2001), movement (Neuper
and Pfurtscheller,1996, Pfurtscheller et al., 1997, Pfurtscheller, Neuper, Krausz, 2000) and
motor control/ movement imagery (Leocani, Magnani, Comi, 1999). Furthermore recent
advances in Magnetoencephalography (MEG) have made it possible to spatially map the

cortical sources underlying these phenomena (Singh er al., 2002).

The foremost consequence of this line of research was a resulting concept -change with
respect to the notion of brain activity in neuroelectric and neuromagnetic imaging studies.
Explicitly, the signal plus noise concept implicit in the Event Related Potential (ERP)
literature was at least to some extent replaced with a more plausible concept of brain function,
namely the notion of event related modulation of the ongoing cortical activity in terms of
event related rearrangement of the phases of ongoing rhythms into resonant frequencies
(Basar, 1980 and 1992) or frequency specific power changes (Pfurtscheller and Lopes Da
Silva, 1999). Although ERP research has been applied successfully to many different
experimental paradigms and especially in the case of sensory evoked potentials it has

additionally proven clinically very useful (chapter 5 and references therein), there are some
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fundamental theoretical difficulties implicit in the ERP concept. Some of these problems will

be discussed next.

The ERP concept implies that in the absence of a stimulus or an experimental task demand,
there is no relevant activity in the brain area under consideration, apart from random neuronal
discharges. The latter can be therefore considered as noise and therefore discarded by signal
averaging. According to this concept, stimulus (or task-) specific neurons are recruited in a
given location and at a specific time. The spatial and temporal summation gives rise to a
specific signal of a fixed latency and polarity. This leads to the notion of signal averaging, and
thus averaging across trials to ‘increase’ the signal to noise ratio. Thus, the assumption is that
the exact same process will occur on every trial, so that averaging the signal across trials
would enhance the contribution of time locked (or phase locked) components. Hence, the
implicit assumption is that the brain activity, which precedes the stimulus, does not in any
way influence the activity following the presentation of a stimulus. To summarize, the ERP
concept is based on these two core assumptions:
1. There is no ongoing activity in the brain, which is not due to the stimulus other than
noise
2. After the presentation of a stimulus, specific additional activity is generated, which is

superimposed on the ongoing brain ‘noise’, without the former interacting with the

latter in any way.
Clearly, these assumptions are simplifications of brain function. The first one is perhaps
justified for early sensory processing occurring in the peripheral nervous system and to some
extent in the spinal cord and subcortical nuclei. There, the main functional objective is secure
information transfer and feature-detecting mechanisms might be at play. The ordered and
strictly anatomically separated structure of afferent nerve fibres supports this view. Thus
peripheral coding may well utilize, the ‘labelled line” or serial processing mode, discussed in
chapter 1. However, even in the simplest cortical systems such as the olfactory, this strict
anatomical separation of projections is not given (Freeman, 1975 and 1992, Freeman and
Barrie, 1994). Quite, the opposite is actually the case, a series of vastly divergent and
recurrent projections transmit the information to every part of the cortical structure. This
functionally corresponds to spatial and temporal integration. Thus the objective of the
cortical networks seems to be a very different one, namely to integrate information. The
second assumption is also largely unjustified. Cortical networks are never silent, as is
sometimes the case in peripheral networks. This perhaps ensues from the divergent
anatomical connectivity. Therefore, there is always ongoing ‘spontaneous’ network activity,

which has been even documented to be dynamically more complex than the activity during
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the presence of a stimulus (Freeman, 1992). This is a clear statement against the notion of
spurious noisy ongoing activity, the fundamental assumption of the ERP concept. The fact,
that the ongoing activity has a complex dynamic structure, taken together with the robust
findings of stimulus and task specific modulations of the ongoing activity, also clearly
contradicts the second assumption behind the ERP concept, namely that ongoing and stimulus

related activity do not interact.

The classical work of Basar and coworkers (Basar 1980, 1992, Basar and Schurmann, 2001)
considers evoked potentials as superpositions of induced rhythms or as resonance phenomena
in the brain. Indeed several studies, suggest that the stimulus locked responses, might be
attributed to either phase locking of ongoing (‘induced’) cortical rhythms (Basar et al., 1997,
Quiroga et al., 2000, Basar and Schurmann, 2001) and even multiple, spatially distributed
generators (Makeig ef al., 2002). These papers show that the ‘evoked” response represents a
rearrangement (Makeig uses the term partial phase resetting) of the phases of non-phase
locked ‘induced’ rhythms. Thus, the time-locked, so called ‘evoked’ activity could be just a
(somewhat artificial) subpartition of the overall cortical response, which results from signal
averaging. The evoked response may therefore accurately reflect basic neurophysiological
properties of the cortical response to a sensory stimulus, such as the underlying anatomical
network wiring but may be deprived (because of the averaging process) of any additional

specific information regarding the nature of this response.

In addition, a lot of evidence at the microscopic level points to a role of synchronization
between neurons to achieve perceptual binding, which gives rise to macroscopically
measurable oscillations (Gray and Singer, 1995, Koenig, Engel, Singer,1995, Traub et al.,
1996, Nase et al., 2003). Thus certain macroscopic patterns of oscillatory activity can be
regarded as functional ‘modes’ of the brain dynamics. This view will be illustrated with
experimental data from the visual modality in chapter 6. ERP’s in contrast are not related to
any coordination phenomenon grounded at the microscopic level and thus the axioms of
Neuroscience, rather they are empirical observations contingent with certain behavioural
tasks. Further, ERD/ERS phenomena typically display very large effect sizes (the changes are
in the order of 50-300% of the baseline signal). In contrast ERP’s are an order of magnitude

smaller then the raw signal and exhibit relatively small modulations.

Finally, on a more intuitive psychological note, the ongoing ‘spontaneous’ activity of the
cortex is a reflection of some intrinsic action (self-organization). It is almost trivial to say, that

the perception of a stimulus is a function of the state of the brain at the time of perception,
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which varies from time to time and from individual to individual and is furthermore subject to
learning. However, according to the ERP concept, this spontaneous activity would not
influence the perception of a certain stimulus. This rules out any context or learning effects,

something that is incongruent with the marked context sensitivity of perception and memory.

Thus a number of arguments support the idea of ongoing cortical activity providing the
internal ‘context’ of a stimulus. This ongoing activity can be specifically modulated by the
stimulus, in the sense of a reorganization process. These ‘induced’ changes in ongoing brain
rhythms were often operationalized in terms of the task and frequency specific spectral

changes (ERD/ERS, Pfurtscheller and Lopes Da Silva, 1999).

Nevertheless as commonly encountered in the field of functional neuroimaging the origin and
the nature of such macroscopic, functional activity is fuzzy, resulting in a definition of
activity in phenomenological terms. The reason for that is that functional neuroimaging
techniques such as the EEG and MEG measure the integral activity of many thousands of
interconnected neurons constituting large-scale networks, however very little is known about
the function and the underlying dynamic patterns of these networks. The names ERD and
ERS imply that these phenomena might be caused by processes of desynchronization or
synchronization in the pool of interconnected neurons at the microscopic level resulting in
cither decreases or increases of the macroscopic mean field (Lopes Da Silva and Pfurtsheller,

1999, Pfurtscheller and Lopes Da Silva,1999).

Although this simple model is plausible and intuitive at first sight, it fails to explain central
issues about the very nature of these macroscopic oscillatory phenomena. As a result a lot of
interesting dynamic phenomena of ERD/ERS have remained unexplained. One crucial issue
refers to the debated frequency invariance vs. frequency specificity dichotomy. The original
concept of frequency invariant ERS and ERD corresponding to ‘cortical idling’ for instance
(Klimesch, 1996, Pfurtscheller, Stancak and Neuper, 1996, Pfurtscheller, and Lopes Da Silva,
1999, Pfurtscheller, 2001) and ‘cortical activation’ (e.g. Pfurtscheller, and Lopes Da Silva
1999, Pfurtscheller, 2001) respectively seems to be an oversimplification, since ERS
phenomena in the theta (4-7 Hz) range and the broad gamma range (30-70 Hz) seem to be
contingent with states of cortical activation. In fact gamma power increases (ERS) were
observed during tasks that require visual short term memory (Tallon —Baudry et al., 1998),
object recognition, (Tallon —Baudry and Bertrand, 1999), language processing (Pulvermueller
1995, 1997) and theta ERS’s were consistently observed and even functionally modulated by

task demands in the field of memory research (Klimesch, 1996 and 1999, Jensen and Tesche,
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2002, Jensen et al., 2002). Thus increases of power in the gamma and theta ranges are
compellingly contingent with cognitive, perceptual and linguistic tasks. Even the legendary
example of ‘cortical idling’ the occipital alpha rhythm, was recently found to covary and
increase in terms of its spectral power with increasing task demands during a working

memory task (Jensen et al,, 2002) and a phonological encoding task (Krause ef al., 1996).

Furthermore, a considerable paradox arises when comparing experimental evidence from
microscopic (invasive recordings) and macroscopic levels (scalp EEG or MEG). ERS cannot
be a correlate of cortical idling especially if it reflects synchronization of neurons at the
microscopic level, since the latter is considered to subserve perceptual or cognitive binding
(see chapter 1 and references therein). However, as we have seen above this is a commonly
held view and used in the interpretation of experimental results. Some explanations have been
attempted in terms of the frequency specificity of ERS and ERD; for instance an ERS in the
alpha band may be interpreted as cortical idling whereas an ERS in the gamma range may
imply cortical activation. Although this general statement is true it does not provide any
theoretical insights why this should be the case. A theoretical model (Lopes DaSilva et al.,
1976) using a simulated neuronal network showed that the power of the signal increases with
the number of the oscillators whereas the frequency decreases. Thus for lower frequencies
higher signal power is to be expected. Based on this interpretation a further dichotomy is
introduced in terms of the frequency content of the power changes: high amplitude low
frequency oscillations are seen as the product of a spatially extensive ‘idling’ network in
contrast to spatially-circumscribed, high frequency oscillations interpreted as a specific
‘activated’ network (Pfurthscheller and Lopes Da Silva, 1999). However, at least in the case
of theta oscillations, the latter is clearly not the case; theta oscillations are evidently
contingent with sustained attention, memory and cognition. Furthermore, concurrent ERD and
ERS phenomena have been reported for the broad alpha band (Klimesch et al., 2000). Based
on the interpretations illustrated above, this finding implies simultaneous synchronization and

desynchronization within the same cortical rhythm, which was deemed as a paradox.

To conclude, neither the relation between neuronal synchronization and desynchronization
and macroscopic ERD/ERS patterns nor the temporal dynamics of the ERD/ERS phenomena
are sufficiently elucidated by existing models to allow data interpretations beyond

phenomenology.
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3.2 Why study synchronization in abstract models of nonlinear systems?

It is clear that although ERD and ERS phenomena are very reactive with respect to virtually
almost every behavioural paradigm and thus extremely motivating to neuroimaging research,
basic characteristics and dynamic patterns of ERD and ERS still constitute a ‘black box’.

The reason for that is that understanding ERD and ERS beyond the phenomenological level is
ultimately tightly bond to the understanding of the dynamics and the functional organization

of the underlying large —scale neuronal network.

Considering the diversity of neurons, neurotransmitters, synaptic mechanisms at the
microscopic level and the complexity of network architectures at a mesoscopic and
macroscopic level, one can almost say, that understanding large-scale network function is a

challenging enterprise.

Nonetheless, recent developments in nonlinear science have provided substantiation for the
universality and scale invariance of the dynamics and the mechanisms underlying
synchronization phenomena in a range of physical, engineering and biological nonlinear
systems (a comprehensive review can be found in Pikovsky, Rosenblum and Kurths, 2001).
Furthermore, coordinative phenomena such as synchronization of nonlinear systems can now
be adequately understood in terms of a simple two-opponent gradient interplay between
forces subserving integration on one hand and forces subserving autonomous oscillation on
the other. The universality and scale invariance of these mechanisms provides us with the
motivation to abstract ourselves from the complexity and diversity of a realistic description of
a large-scale cortical network and just concentrate on the essential mechanisms, directly

responsible for a network’s dynamics.

Thus the justification for the use of abstract models of coupled systems for the study of
synchronization in the brain is mainly centred on the established nonlinear nature of brain
systems and thus the capability to exhibit chaotic dynamics. A brief (and by far non
exhaustive) depiction of a few fundamental facts to support this nonlinear approach to brain
dynamics is in order. Nonlinearity seems to be a universal feature in the brain and can be
encountered at all levels of description. Firstly, on a microscopic scale the main phenomena
related to neural transmission and thus to collective neural behaviour are evidently nonlinear.
The interplay of two opponent biophysical gradients governs transmembrane ion flow; the
osmotic gradient causing ion diffusion and the electric gradient of charged particles. Reversal
potentials resulting from the voltage sensitive nature of ion channels ensure unstable and

highly nonlinear equilibrium dynamics for transmembrane ion fluxes. Subsequently, neuronal
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firing, thus the effective output signal of a neuron, is determined by a sigmoid-shaped
relationship between soma membrane potential and mean firing rate (Freeman 1975, 1992,
Freeman and Barrie, 1994, Breakspear and Terry, 2002a). At the next level of description and
thus that of a neural assembly the input to output conversions are again distinctly nonlinear.
Thus the mean local field of a population of neurons (reflecting the collective local neural
activity, which is approximated by the recorded EEG in the vicinity) is nonlinearly
(sigmoidally) related to the mean pulse density as estimated from multiple intracellular
recordings (Freeman, 1992). The above introduce nonlinear terms into all major models of ion
channels, single neural firing and population activity (Breakspear 2004). On a macroscopic
level of description involving the integral activity of large-scale neuronal aggregates, such as
reflected in human EEG, the evidence for weak nonlinearity has been consistent (see
Breakspear and Terry, 2002a, Stam et al., 2003, Breakspear, 2004 and references therein). To
conclude, both from a phenomenological and a theoretical point of view (Friston 2000a, b,
chapter 1), the brain can be regarded as a global system consistent of interacting nonlinear

systems.

The above motivate the study of coupled nonlinear systems. In this chapter we examine
synchronization dynamics in the simplest case possible that of two mutually coupled
nonlinear oscillators. This study might potentially provide us with insights about generic
mechanisms and dynamic patterns associated with synchronization phenomena in nonlinear
systems in general. This approach also yields insight about potential metrics of quantification
of such synchronization dynamics. Hence, the logic for studying synchronization phenomena
in simpler systems is centred on the idea that the mechanisms and the dynamics of the
collective coordination process will be universal and also primarily causal for the appearance
of macroscopic order in the brain (or in fact any other complex system). Therefore all the fine
detail regarding the constituent microscopic units of a system become secondary. In addition,
even the simplest coupled (nonlinear) dynamics give rise to extraordinarily rich and complex
synchronization behaviours; consequently their study is justified in its own right. In this
chapter we will therefore focus on the essential mechanisms and associated dynamics within
generic synchronization processes. In the next chapter, we will extend the study to more
complex systems that have an explicit spatial structure in order to study the resultant
collective patterns. This approach may facilitate the understanding of macroscopic
spatiotemporal patterns in the brain, such as ERD and ERS. In chapter 6, we will test some of
the predictions of these models with experimental MEG data. The next section of this
chapter, introduces some basic concepts of nonlinear dynamics and chaos theory, which are

essential for the description of chaotic synchronization.
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3.3 Chaos theory
3.3.1 Basic geometric concepts

In chapter 1, the basic concepts of dynamical systems and chaos theory were introduced, to
facilitate understanding of the theoretical frameworks. Here a more detailed description will

be undertaken.

The central characteristic of chaotic systems is the sensitivity upon initial conditions in the
state space. Recall from chapter 1, that the set of initial conditions for a given system has a
value for each state variable (degree of freedom). Thus for a multivariate system, one speaks
of a ‘cloud’ of initial conditions. The sensitivity of chaotic systems on these initial conditions,
means that trajectories (evolutions of the system when started form a certain set of initial
conditions) that are initiated in nearby points in this M dimensional state space (nearby
implies a small Euclidian distance in state space) will eventually diverge and disembark at

very different parts of the state space.

If the system is asymptotically converging to a certain part of the statespace (and thus a
certain dynamic pattern) then one speaks of an attractor. This means that on long-term (thus
after initial transients have died off) the dynamics will be concentrated or attracted to a certain
subpartition of the state space. This is referred to as an attractor. Thus the system does not
explore the whole state space but ‘contracts’: it confines itself to a certain subpartition. In fact
this entails a dimensional reduction, the system has on the long-term fewer effective degrees
of freedom than at the time it originated (then the degrees of freedom are equal to the
dimensionality of the state space and not the dimensionality of the attractor). The state space
is organized in terms of basins of attractions (see figure 1). The latter correspond to
subpartitions of the state space that will give rise to a long-term behaviour, which leads to a
certain attractor. Different basins of attraction give rise to different attractors, or otherwise
stated, if the system is initiated in two points in state space that belong to different basins of
attraction, its behaviour will converge onto different attractors. The basin boundaries have
often-complex (fractal), geometrical shapes thus often the surfaces are intertwined. This
geometric representation is very illustrative for the notion of sensitivity to initial conditions.
Because of the interwined basins of attraction, nearby points can give rise to extremely
different long-term behaviours (attractors). Actually, the more these surfaces are interwined in
the M dimensional state space and thus the basin boundaries are fractal, the more ‘chaotic’ the
system will be. A quantitative measure of sensitivity to initial conditions, the Lyapunov

exponent exploits exactly this fact, namely the divergence of nearby trajectories.
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Figure 1. Basins of attraction. If a trajectory is started in any point within a basin of attraction (displayed
as dotted contours) it will end up (in the long term) in a certain attractor (shown as grey surfaces within
solid contours). However, trajectories started from different basins of attraction will end up in different
attractors. Note, that neighbouring sets of initial conditions as shown in red, will diverge on the long term
as shown by the blue arrows.

It should be noted, that the existence of attractors is not given. The opposite can also be true.
Thus a system, can diverge in its long-term behaviour, and would not settle down to a certain
pattern of dynamics. This is the notion of a repellor, which is an antonym for attractor.
Essentially, the absence of an attractor means that the system is expanding, thus its
dimensionality increases, until it occupies the entire state space. The other (theoretical)
possibility is that the system is conservative, thus it neither grows nor contracts. One speaks

then of neutrally stable behaviour.

Attractors and repellors can be considered in all possible dimensions depending each time on
the degrees of freedom of the system under study. In figure 2, a 2-D representation is shown,
the leftmost panel shows an attracting point, also known as stable fixed point and spiral point.
Here we can see a trajectory spiralling into the stable fixed point. On the middle panel a
repellor or unstable point is shown, here a trajectory spirals out of the unstable point. The
rightmost panel shows a so-called saddle point. Here we have an unstable steady state
solution (e.g. a point or a cycle) that repells in some directions of the state space and attracts
‘1 others. Saddles are extremely important in organizing the state space in terms of basin
boundaries. For example in figure 2 we can see that the middle part of the state space is
attracting and the outer parts are repelling. The repelling directions form a complex
geometrical structure called the unstable manifold, which is invariant upon the system
dynamics. The attracting directions form a complex invariant manifold called the stable

manifold. Trajectories cannot cross these boundaries. Therefore, the invariant manifold, which
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is formed in the presence of such saddles, is called a separartix. The basin boundaries are

o TR

B
Figure 2. Fixed (equilibrium) points in a 2-D state space. On the left panel, we can see a stable fixed point
(a point attractor), and a trajectory that spirals on to it. In the middle, an unstable point is shown. The
trajectory spirals out as it is repelled by it. On the right a saddle point is shown, here the inset forms the
basin boundaries for each one of the four attractors in state space. This can thus be considered a
separatrix as it organizes the state space. The main characteristic of a saddle point, is that it attracts in

some direction of the statespace and it repells in others, thus in terms of linear stability analysis ( see
Appendix 1) we have a negative and a positive eigenvalue.

formed by the insets of saddle points.

The stability of attractors of a given dynamical system can be formally assessed using linear
stability analysis with the calculation of Lyapunov exponents. Lyapunov exponents are
generally defined as the exponential rate of divergence of two trajectories initiated at two
neighbouring points (sets of initial conditions). Chaotic systems exhibit positive Lyapunov
exponents meaning that two (initially) nearby trajectories will exponentially diverge. For
reasons of limited space linear stability analysis and Lyapunov exponents are presented in

Appendix 1.

Next some forms of attractors in different dimensions will be presented. Figure 3 shows some
examples of non-chaotic attractors. On the top left, we can see the meanwhile familiar point
attractor. The dynamics here is reduced to an asymptotically stable and constant motion. On
the top right, we can see a limit cycle attractor. Essentially, this corresponds to a harmonic
oscillation. On the bottom right, we can see a 2-D torus. Motion along the two main radii of
the torus corresponds to a 2-frequency periodicity and is contingent on a rational ratio (n: m)
of these two frequencies. The two radii correspond to the two frequencies involved. This 2
frequency behaviour is often referred to as n: m phase locking if we are considering two
interacting systems or mode locking if we are considering two subcomponents of the same
system. The motion of such a system (or two coupled systems) is essentially periodic, with
period 2 and thus nonchaotic. Another possible motion here is quasiperiodic, which
corresponds to an irrational frequency ratio. The trajectory of the system in this case fills the

entire surface of the torus.




We should also comment upon the fact that these nonchaotic attractors can exist in nonlinear
systems for a range of control parameters. However, when varying control parameters
transitions to chaos can occur. This will be shown schematically in the example of the logistic
map. For example, slow variation of a control parameter can lead to a phase (or state)
transition, which can occur through a so-called Hopf bifurcation. The latter can lead the
system form a point attractor to a limit cycle. A subsequent Hopf bifurcation can lead the
system to a second limit cycle at a harmonic frequency and thus motion on a 2-D torus.
Eventually, a succession of such bifurcations can lead to chaos. This commonly known as the
period doubling route to chaos (originally discovered in the logistic map, see May, 1974 and
1976). In other systems, which tend to exhibit 2-D tori attractors, the appearance of a third
frequency often leads the transition to chaos. This is referred to as the quasiperiodic route to

chaos (Ruelle and Takens, 1971).

Non-chaotic attractors

Point attractor,d=0 Limit cycle, d=1, e.g. harmonic
oscillator.

Torus,d=2, 2 commensurate
frequencies, motion along the main
radii of torus, e.g. n:m phase
locking.

Quasiperiodicity:
incomommensurate frequencies,
torus surface is filled

Figure 3. Nonchaotic attractors in 0,1 and 2 D. Note that d refers to the topological dimensionality of the
geometric object.

Figure 4, shows a state space plot of a chaotic Réssler system. This is probably the simplest
system, which can produce chaotic behaviour. The attractor here appears less regular and has
a more complex geometrical structure than the ones shown in figure 3. Such chaotic attractors
are often referred to as strange attractors, thus geometrical objects whose dimensionality is

noninteger but fractal.

The Rossler system is of the general form:
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X =—(Y +2).
Y =X +aY. 1]
Z=b+XZ-cZ

where X,Y,Z are the 3 state variables and a,b and ¢ are the control parameters. For a range of
parameters and initial conditions, the typical attractor is obtained. Here we used a=0.45,b=2.0
and ¢=4.0. The presence of the third equation introduces a quadratic nonlinearity. This
effectively imposes a constraint on the system, which introduces a folding of the flow
apparent on figure 4. However, the bottom part of the attractor still resembles a limit cycle
oscillator. Stretching and folding behaviour is fairly typical for chaotic systems. Stretching
results in divergence of trajectories while folding causes mixing — ultimately these
phenomena are due to sensitivity to initial conditions. In the Réssler attractor, stretching and
folding is largely confined to trajectories radiating outward from the saddle focus at the centre
of the disk (see figure 4). It follows that the motion is phase coherent (Boccaletti et al., 2002),
which is to say that there is very little divergence, even though trajectories are thoroughly
mixed radially. Coherence in the phase space is reflected in the power spectrum by the
presence of sharp rather than broad peaks. The Rssler chaotic attractor can be considered as
a prototype of a low dimensional chaotic flow, which exhibits such a phase coherent

behaviour and will be widely used in our simulations.

Folding of the
flow

Saddle focus

Bottom part of
attractor (disk)
approximates

limit cycle

Figure 4.The Rissler strange attractor described in equation [1].
3.3.2 Bifurcations and phase transitions

In general, a bifurcation represents the sudden appearance of a qualitatively different solution
(state) for a nonlinear system as some parameter is slowly varied. The phenomena associated
with bifurcations are called phase (or state) transitions. These are particularly important in
dissipative (non —equilibrium) complex systems and in the theory of synergetics (Haken,

1983). A bifurcation implies that the long-term dynamics (the attractor of a system) changes
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abruptly as a parameter is s/lowly varied. This enables flexible switching between very
different behaviours. Complex systems are thought to ‘live’ close to such unstable equilibria,
where phase transitions are common (Haken, 1983). Figure 5 shows a so-called bifurcation
diagram for the logistic map. This is just a plot showing the system state variable that
undergoes qualitatively different behaviour as a function of the relevant control parameter.

The logistic map is a discrete, recursive, iterated map of the form:
Xp+) = AXp(1 - Xp) (2]

Where n represents the number of iterations, X, is the value of X at the nth iteration, and A is
a control parameter. Despite the simplicity of this equation, which essentially involves one
variable (X), one parameter (A) and a quadratic nonlinearity, the logistic map can generate
quite complex behaviour. Figure 5 shows, that to begin with (for low values of A~2.9), X is a
constant, this implies the presence of a point attractor. After a while an abrupt change, takes
place with emergence of two symmetric values of X and thus a limit cycle oscillation. This is
called a Hopf bifurcation, and it is a universal dynamic mechanism, which characterizes the
phase transition from a point attractor (the fixed point becomes unstable) to a limit cycle. 1f
A is varied further and around A~3, a second Hopf bifurcation takes place, with the
appearance of another limit cycle (another frequency). This happens once more, with the
appearance of a third frequency and then at a critical value of A, the behaviour seems to
become apparently random. As a matter of fact, this behaviour is not random but deterministic
and chaotic. This is signifies the transition to chaos. If A, is further varied windows of

periodic behaviour seem to be randomly interleaved with periods of chaos.

Figure 5. The bifurcation diagram of the logistic map. Note the abrupt changes in the behaviour of X as A
is slowly varied. These are called phase transitions and rely on certain dynamical mechanisms, referred to
as Hopf bifurcations (see text for details).
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3.3.3 Periodic Vs Chaotic oscillations

An important feature of chaos is its aperiodicity. Thus a trajectory in a chaotic system, never
exactly repeats it self. On the other hand, there is a certain structure in the chaotic time series;
it is not random. As a result, chaotic oscillation, can be placed somewhere in between periodic
and noisy oscillation. This becomes very clear in a visualization of chaotic Vs a periodic time
series, such as in Figure 6. In panel A, the regular oscillation comes from a Rossler system
with adjusted parameters, so that it produces limit cycle behaviour, here the time course of the
x variable is plotted. On the right hand side (B), we have the typical time course of a chaotic
Réssler attractor. Note the difference in the peak amplitudes. This leads to the difficulty of
defining a period, since the system never repeats itself completely. However, note that there is
some regularity in the behaviour, one can think of an average periodicity. In C and D the
respective 3 D plots, are shown for a periodic limit cycle oscillation (C) and chaotic
oscillation (D). These are essentially the plots of variables X against Y as a function of time.
In C one can clearly see, how after an initial transient the system gets ‘trapped’ in a stable
harmonic oscillation. In D, the system still exhibits somewhat regular behaviour but it seems
to be reinjected in close vicinity to the limit cycle but never quite on the limit cycle it self.
This general property of chaotic systems is known as recurrence. In this particular case, the
phase coherent Rossler attractor the system recurs to a more or less regular orbit, which on its
side implies, that on average there should be a characteristic periodicity. As a consequence, a
sharp peak in the power spectrum of the system can be observed. Actually, the existence of
such an average ‘period’ enables such chaotic systems o synchronize their phases, as we shall

see in the next section.
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Figure 6. Periodic (A and C) and chaotic (B and D) oscillations. Parameters for limit cycle behaviour (A
and C) according to the equations in {1] are a=0.2, b=0.2, c=2.5. For chaotic behaviour (B and D) the
parameters were a=0.45, b=2, c=4. In both cases the systems were set off with the same initial conditions
[X=0; Y=10.01; Z=—-0.01}.

3.4 Synchronization of mutually interacting chaotic oscillators
3.4.1 Phase and Frequency of a chaotic oscillator

Synchronization of chaotic systems seems counterintuitive at least at first glance. This is
essentially because the frequency of a chaotic system is constantly changing and therefore
phase cannot be unambiguously defined. It is difficult to imagine synchronization between
systems, whose frequency varies and thus the growth of the phase decelerates and accelerates
continuously. Nonetheless, as we have seen in the previous section, chaotic systems are
characterized by some degree of periodicity. Strictly speaking, one should speak of recurrence
rather than periodicity, due to the fact that the system never repeats itself exactly but it may
well return to points neighbouring to ones previously visited by a trajectory. Thus one can
intuitively conceive an approximate period and frequency of a chaotic process if the latter is
observed for a sufficiently long time to capture such a recurrent behaviour. If the frequency
and thus the phase of a chaotic system can be defined then chaotic systems can be
synchronized in terms of phase and frequency locking as in linear/noisy systems. The latter is

meanwhile established and in fact phase synchronization of chaotic systems is a very active
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research area. Here, we will briefly examine the basis on which this is possible. More
comprehensive and detailed treatments can be found in Rosenblum et al, 1996, Pikovsky,

Rosenblum and Kurths, 2000 and 2001.

The definition of the phase in (autonomous) periodic systems is a basically one of a neutrally
stable and uniformly growing variable. This is demonstrated in figure 7.

Let’s consider an autonomous periodic system in polar coordinates by creating two new
variables, the amplitude and the phase of the oscillator. The radius of the cycle corresponds to

the amplitude A. The phase ¢ can be defined as a cyclic variable that rotates uniformly in the

direction of motion in the system, namely the cycle.

¢ =2aN, [3]
where N=1,2,3,... is an integer that specifies the number of times the system has rotated by
2 or a full cycle.

The rotation of the phase on the cycle is uniform in time for a periodic system (it grows by

27 on every complete rotation), thus the first time derivative is constant

dg/dt =c (4]

The velocity of the phase rotation is defined as the angular frequency o and is a function of

the period 7, that is the time between two subsequent rotations along the cycle.

o =27/T [5]

Thus from dynamical systems point of view, the phase growth corresponds to a trajectory
along the motion of the system. In the case of a harmonic oscillator this is a limit cycle and
the growth is uniform. This means that perturbations along the cycle are neutral to the system,
thus phase can be considered stable. All, perturbations transversal to the motion and thus
amplitude perturbations are however unstable (thus the system undergoes a relaxation back to

the cycle).

As we can see from [4], the evolution of the phase in autonomous harmonic oscillators
generally corresponds to a zero Lyapunov exponent in the direction of the motion, and
evolution of the amplitude (in transversal direction to the motion), corresponds to a negative

Lyapunov exponent (see Appendix 1). From this it becomes clear, that the notion of phase
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may well be generalized to chaotic systems. There the phase can be defined as the growth

along the direction of the flow and all other directions are defined as amplitude.

relaxation @

S /‘ perturbation
A Velocity of motion, o=d¢/dt = 27/
{ o T = const (in periodic oscillators)
Q]
K )

Figure 7. Schematic representation of the motion of an autonomous harmonic oscillator in polar
coordinates. The motion is confined on a cycle, whose radius is the amplitude (indicated by a blue A) and
the angle is the phase (indicated by a red ¢). The rotation of the phase is uniform along the cycle and its
velocity corresponds to the angular frequency 0= 27/ T, where T is the period of the oscillation.
Perturbations in the phase direction, which is the direction of motion are thus neutrally stable (no
relaxation required) .In contrast, perturbations of the amplitude (transversal to the direction of motion)
are unstable and lead to relaxations back to the limit cycle.

In [5] we observe that the angular frequency and thus the velocity of the phase rotation
depends on the period T. The latter is invariant for periodic systems but in chaotic systems it
varies. This implies that the equality in [4] does not hold anymore, and thus the phase growth
s not uniform: there can be accelerations and decelerations. However, chaotic systems do
exhibit some kind of repeatability (recurrence), thus one can consider the times between two
subsequent similar events as instantaneous periods T;. Thus, we can conceptualise phase as
variable that grows uniformly by 27 on every ‘cycle’. This ‘cycle’ can be viewed as an
instantaneous period, defined as the time passed between two maxima of a system observable,
or the time elapsed between two subsequent piercings of a Poincare secant surface (Pikovsky,
Rosenblum and Kurths, 2001). Thus we can use the return times (the times between
subsequent crossings of the Poincare section) as a measure of the instantaneous periods.
Ofcourse it should be also noted that the return times and thus the instantaneous periods,
crucially depend on the choice of the Poincare section , which is trasversal to the flow.
Therefore the instantaneous periods depend on the amplitude. However, often the
construction of an appropriate Poincaré map can facilitate the definition of phase as a variable
that grows by 27 at each return time and thus between two subsequent pearcings of the

Poincare secant surface. Similarly to [3] we have:

1—1

¢ =2r——"—+27N, t,<t<t,, [6]
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where N=1,2,3,... is the number of piercing of the Poincar¢ surface, is the time of the n-th
crossing and so on. We observe that if the denominator of the first term is zero and thus
subsequent instantaneous periods are equal, the phase becomes equal to 27V and thus [6] is
reduced to [3] meaning that the above general definition holds for periodic systems, where the
instantaneous periods are all equal. Furthermore, because the Poincare surface is transversal
to the flow, the phase defined in this way corresponds to a rotation along the flow and thus to

a zero Lyapunov exponent.

From the above definition follows that an average period can be defined, which is equal to the
total time elapsed divided by the total number of crossings of the Poincare surface or simply

equal to the average return time:

tmm 1 S
Tp:—]-\[_lzﬁzlﬂ—lﬂ—l [7]

i=1

where 7, is the total time elapsed, i=1...N, denotes the 1% to the N™ crossing, the subscript

1ota

p indicates that this period is dependant on the choice of the Poincaré section.

The average frequency is then:

]
Ve T (8]
P
Thus even with this nonunique definition of phase on board one can examine if a chaotic
sytem can be synchronized in terms of adjustment of its average frequency.
Following Pikovsky, Rosenblum and Kurths, 2001, one can write the following two
formalisms for the Poincaré map for amplitude,
An+l = M(An) [9]
and phase dynamics,
-@«zo)(An)za)o +F(A,) [10]

dt

where M is a transformation that defines the Poincaré map ,w(4n) is the instantaneous
angular frequency , o, denotes the time averaged angular frequency and F(4,) denotes some

diffusion (variance) in the velocity of phase rotation.. The latter can be expressed as

‘effective’ noise of purely deterministic origin.
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This means that the phase will diffuse according to the perturbations of the amplitude, which
is chaotic and governed by positive Lyapunov exponents transversal to the flow. Two
important remarks are in place. Firstly, it is clear that the phase diffusion will broaden the
spectral peak of the system and the degree of this diffusion will be proportional to the width
of the spectral peak. The latter can be used as an indicator of whether a system is likely to
exhibit a coherent phase. Thus in the case of the Rossler system described above the spectral
peak is narrow and thus phase synchronization is easily achieved. For systems exhibiting a
broader spectral peak, such as the Lorenz system for instance, phase synchronization is not
smooth (Pikovsky, Rosenblum and Kurths, 2001 and Boccaletti et al., 2002). Note that the
phase diffusion discussed here is of purely deterministic origin, namely it corresponds to the
positive transversal Lyapunov exponents. Secondly, equation [10] is very similar to the one

obtained in linear systems in the presence of noise:

4 _
L=, 44, [11]

where &, is a stationary random process.

There the phase diffuses according to the strength of the noise. The only difference is that in
chaotic systems the ‘noise’ is not of stochastic origin and may be (more or less) bounded

depending on the system under consideration.

To conclude, one should note that there clearly are limitations of this approach. Most
importantly, many systems do not exhibit a phase coherent attractor, therefore an appropriate
Poincaré section, one that transversally intersects all the trajectories, cannot be found. This
concerns predominantly systems with multiple frequency ranges. On the other hand, often one
can decompose these systems into different subsystems, which then exhibit a more or less
phase coherent behaviour. This is sometimes particularly helpful in the case of multistable
systems such as the brain. As a consequence the global behaviour can be treated as an
interaction between modes. Alternatively, if one wishes to treat the system dynamics as a
whole, one should adopt a more general approach (beyond phase synchronization), within the

framework of generalized synchronization (Rulkov et al., 1995).

Despite its limitations the approach discussed in this section leads to an extremely important
conclusion: synchronization of noisy and chaotic systems can (under certain conditions) be
treated in the same way (Rosenblum et al., 1996, Tass et al., 1998). In both cases the
detection of synchronization can be formulated in a statistical sense, namely exploiting the
appearance of a preferred value in the distribution of the phase difference. Note, that this does

not in effect eliminate the distinction between interactions of deterministic and stochastic
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origin. These issues can be addressed through the use of appropriate surrogate data, where all
possible nonliniarities have been destroyed. This approach will be illustrated in chapter 5.
Another important issue relating to the generalization of the concept of phase to autonomous
chaotic oscillators is that, similar to the case of periodic oscillators, the phase of these
oscillators is free (neutrally stable) and can be therefore easily adjusted. Consequently, phase
synchronization may be an efficient mechanism for emergence of macroscopic order in

multidimensional systems. This issue will be addressed in a forthcoming section.

3.4.2 Synchronization of chaotic systems

Synchronization phenomena in chaotic systems were first reported by Fujisaka and Yamada
11983 but did not attract much attention until the early 90’s.The study of synchronized chaos
was grounded by a pioneering paper by Pecora and Carroll (1 990) and since then there is an
ever-growing growth of both empirical findings and theoretical insights. This enormous
amount of significant literature cannot be done justice here. A comprehensive and formal
review of the field is not only a challenge in its own right but is also beyond the scope of this
thesis. The interested reader should refer to Boccaletti et al., 2002 for a comprehensive formal
review of the field and related generalizations. A recent book by Pikovsky, Rosenblum and
Kurths (2001) provides the reader with both qualitative and formal accounts for a range of
synchronization phenomena and underlying dynamic mechanisms. The scope of the following
sections will be merely to introduce the basic concepts in the field of synchronization in
chaotic systems by virtue of simple numerical simulations and to emphasize qualitative
differences between different forms of synchronization and mechanisms of coupled dynamics.
We will be particularly focussing on phenomena and mechanisms that we consider to be of
direct relevance to collective behaviours occurring in the brain. The discussion will be centred
on identifying (whenever this is possible), which regimes of synchronization may be feasible
in the brain and under what circumstances they may occur. The main concept is that neuronal
networks may exhibit a range of synchronization phenomena, which might subserve different
functions. An intriguing possibility is that different synchronization regimes may not be
mutually exclusive but complementary modes of collective brain behaviour. In case of
dynamic, time-varying coupling parameters (as this is very much expected in the brain)
different synchronization regimes may even reflect transient and successive stages of global

spatiotemporal coordination dynamics.

3.4.3 Symmetry condition: Synchronization of identical systems

The simplest case of coordination comes about with the interaction of identical systems.

Although, this state of affairs is very unlikely to be observed in any real experimental
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situation it is very important theoretically, since it constitutes the limit of coordination
behaviours and will be discussed below.

More formally, the dynamic evolution of a global system comprising of two coupled
subsystems with 7 degrees of freedom each thus x" and )" can be expressed by a system of

coupled differential equations of the general form:

dxn n n i

— = f,(x")+h(x",y") [12]
dt

dyn

RCA— n + h n’Xn

" L")+ Ay

The functions f; and f; specify the form of the local dynamics in terms of point attractors,
limit cycles, tori or strange attractors as governed by intrinsic local parameters. The function h
is considered extrinsic to the local dynamics and specifies the form of the coupling between x"
and ). The simplest case arises when the system is symmetric and thus the transformations
X"y or y'—x" leave the system dynamics invariant. Obviously, the extreme case of
coordination in the symmetric case corresponds to identical evolution of the two subsystems

in time, and thus

X () =) L]

The latter has been termed identical synchronization (IS), however the term complete
synchronization (CS) is also widely used. The identity function in [13] has been referred to as
the synchronization manifold (SM). SM in the case of identical systems is often supported on
the invariant symmetry manifold, which has a simple geometry, namely that of a (hyper)
plane. The synchronization manifold represents motion of the system confined on this
hyperplane. Thus for identical systems the synchronization manifold coincides with the
symmetry manifold. It is useful to differentiate between directions of motion, which are
restricted to the symmetry manifold (these are commonly referred to as tangential) and those
that are not confined on the symmetry manifold (referred to as transverse). This is illustrated
schematically in figure 8 (adapted from Breakspear, 2004), which shows a two dimensional
invariant plane (N), which we can think of as the symmetry manifold, and a one-dimensional
transverse subspace T. In the case of two coupled 3-D systems (such as the Rdssler
attractors) the symmetry manifold would correspond to the hyperplane x; = x5, ,,=y2, z/=z2.
Motion confined on the plane is tangential or normal (N) to the manifold. The motion on this
plane in figure 8 corresponds to a stable limit cycle. Here two trajectories originated from
different points on this plane converge on a limit cycle. The Lyapunov exponents (see
Appendix 1) associated with this motion are referred to as tangential; in this case they will be

negative since the trajectories converge. Perturbations tangential to N will decay
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exponentially and converge back onto the limit cycle. Thus, in the case of two coupled
systems, such motion would represent synchronous periodic oscillation. However, if the
tangential exponents were positive then synchronous chaotic motion would be observed on
the symmetry manifold and thus identical (chaotic) synchronization (IS). The stability of IS
(or the synchronization manifold) would be determined by the rransverse Lyapunov
exponents. The direction T depicts transverse directions to the symmetry manifold. In panel a,
transverse perturbations are attracted to the manifold (the transverse Lyapunov exponents
would be negative) and thus the motion on the symmetry manifold is stable. In panel a, the
scheme implies stable synchronous periodic oscillations. In panel b however, transverse
perturbations point away from the symmetry manifold (the transverse Lyapunov exponents
are positive), which means that synchronized motion on the symmetry manifold will become

unstable.

We can see that the above geometrical criteria for the stability of synchronous dynamics are
very powerful. Perturbations of the dynamics can therefore be expressed in terms of
Euclidean distances from the synchronization manifold. In case of a stable chaotic
synchronization manifold and thus identical synchronization the Euclidean distances will
decay exponentially. In case of an unstable manifold the perturbations will increase

exponentially and thus the synchronization manifold will become unstable.

We illustrate this with an example of two coupled Rdssler systems:

12 =@ ¥, 2t Ev,te(x,, — Yo ), [14]
l/./x‘z =0, 11,z+0'15V/1,2’

z, = 02+z,(x, —10).
where the parameters @, , govern the initial frequency mismatch of the two systems, € is
the parameter governing the coupling strength of the two systems and £, , are two Gaussian

delta correlated noise processes. In the case of two mutually coupled

73




()

&

(b)

st S
L

A

/ A 4

Figure 8 (from Breakspear, 2004). Schematic representation of tangential and transverse dynamics. In
both panels the motion is confined on the vertical plane (N) and corresponds to an attracting limit cycle.
Any perturbations on the N manifold are refered to as tangential and will exponentailly decay. Thus in
both cases the tangential Lypunov exponents are negative. Perturbations vertical to N here denoted as T
and curved arrows are referred to as transverse perturbations. These are likely to affect the stablity of
the N manifold. In panel a these perturbations are in converging direction to the manifold, meaning that
they will eventually decay and the manifold will remain stable. This imples a negative transverse
Lyapunov exponent. Thus in this case the limit cucle is an attractor in the full state space. In panle b the
opposite is the case, the transverse perturbations will increase and eventually the manifold will become
unstable. Thus here a positive transverse Lyapunov exponent can be implied. This means that the limit
cycle is a saddle on the full state space.

Rossler systems these are firstly the coupling strength parameter € which forces the systems to
uniform synchronization behaviour and secondly an antagonistic parameter 6w which refers
to the initial frequency mismatch between the natural frequencies @, > of the coupled
systems, which forces the systems to autonomous oscillation close to their natural frequency
and thus to lower levels of interdependence of the systems’ output.

A few words with respect to the nature of the coupling are in order here. In terms of equation

[12] the coupling term 4 is a function of the instantaneous difference and thus
ho=e(x, = 1) [15]

hy=e(x, = 1)

This means that the coupling aims to reduce the difference between the two variables but it
vanishes when their instantaneous values are equal, namely when y, = x, This constellation

is referred to as diffusive coupling. Thus the coupling term in equation [14] is symmetric and
diffusive. The latter form of coupling is very common in a variety of physical systems

(Pikovsky, Rosenblum and Kurths, 2001) and is therefore of primary interest here.
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First, we consider a case of identical systems and thus 6w = @;.@2= 0 . The coupling
parameter ¢ is set to 0.15. The resultant dynamics are displayed in figures 9 and 10.
Figure 9 qualitatively describes the interaction of the two systems. Panel A shows the

superimposed time courses of the y,, variables. We observe almost coincidence of their time

courses. This is further seen in the instantaneous difference y, — x, plotted in panel B. The
latter does not significantly deviate from 0 (taking into account the stochastic noise
components). This plot can be considered as a univariate approximation of the Euclidian
distance, which additionally involves the differences of the y and z variables. Panel C depicts
a scatterplot of the y,Vsthe y, variable. This plot can be considered as a linear subspace of
the symmetry manifold, which in the case here is a hyperplane defined by ¥, — ¥, ¥, —¥»;
and z, —z,.

We observe that the motion is confined on the diagonal y, = x,. For the sake of
completeness and consistency with subsequent sections, we also present the phase dynamics

here. Panel D and E depict the time course and the distribution of the instantaneous cyclic

phase difference of the y, , variables respectively. The phases are obtained from the Hilbert
transform (see chapters 2 and 5 and references therein) of the y,, variables and the phase

difference is wrapped modulo 2n. Here the phase difference is essentially constantly 0, when
disregarding some of the wrapping artifacts giving peaks around 0 and 2r. This becomes clear
if the phase is ‘unwrapped’ and thus not defined on the circle [0 2x] but on the full line (not
shown here).

Figure 10 depicts the state space portrait for the two-coupled systems; we observe almost
complete overlap. Thus, we conclude, that the two systems are in a regime of identical

synchronization (IS).
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Figure 9. Almost identical synchronization.Linearly coupled identical Rossler systems as in [14], the

frequency mismatch S is 0 and the coupling strength ¢ is 0.15. Panels from top to bottom: A.

superimposed time courses of the Y, , variables, B: difference Y,

- ¥,,C: 7, VS yx,, D: time course of

cyclic instantaneous phase difference 8¢ of x1,2 variables mod 2n. The phase of each signal was extracted

by means of the Hilbert transform (see chapters 2 and 5 and references therein) E: Distribtion of

instantaneous phase difference 6¢ mod 27 in radians.
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Figure 10. State space portrait of coupled systems in almost identical synchronization shown in figure 9.

Note the almost identical evolution.
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As previously illustrated, the stability of IS can be assessed in terms of the Lyapunov
spectrum (see Boccaletti ef al., 2002, Breakspear, 2004) and more concretely in terms of the
transverse Lyapunov exponents. These are the ones that correspond to the directions x1-x2,
yl-y2 and z1-z2. A positive transversal exponent would mean that any perturbations along the
corresponding direction will increase exponentially and thus the particular subspace of the
synchronization manifold will become unstable. One can also think of the transverse
Lyapunov exponents as the slopes of the instantaneous differences, such as the one plotted in
figure 9B. If the slope is zero (the instantaneous difference remains flat) then a negative

transverse Lyapunov exponent can be assumed.

The symmetry condition allows a powerful detailed study of the stability of coupled dynamics
in geometrical terms. Indeed work by Pecora and Carroll and others has demonstrated that
even for systems with complex spatial structure, analytical master stability functions can be
derived (Pecora and Carroll, 1998). Generally, the stability of the synchronized state is a
function of the coupling strength; stronger coupling generally ensures stability of the
synchronization manifold in symmetric linearly coupled systems. However, exceptions exist
when the coupling occurs through only one variable (Boccaletti et al., 2002) or in the case of
nonlinear coupling (Breakspear, 2002). The study of the dynamics of identical
synchronization has shed also some light on desynchronization phenomena, common in
coupled chaotic systems. In the symmetry condition, these are generally due to positive
transverse Lyapunov exponents. They give rise to so-called ‘blow out’ bifurcations (Ott and
Sommerer, 1994). In these cases the coupled dynamics are no longer confined on the
synchronization manifold but become abruptly independent in a much higher dimensional
space. Interestingly blow out bifurcations can be found above the critical coupling strength for
which the transverse Lyapunov exponents are not positive. It has been shown, that these
desynchronization bifurcations are due to unstable periodic orbits of low order (period ~1 and
—2), which are dense on the chaotic manifold. Thus, although a trajectory converging on the
chaotic attractor may have an (average) negative transverse Lyapunov exponent, it may
briefly ‘shadow’ the orbit of a nearby unstable periodic orbit embedded on the attractor. This
gives rise to desynchronous bursts of intermittent character, thus involving a collection of
time scales (Pikovsky and Grassberger, 1991, Rulkov and Sushchik, 1997, Maistrenko et al.,
1998, Heagy et al, 1998, Breakspear, 2002 and 2003).
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These effects can be studied by slowly decreasing the coupling parameter of the system in
[14]. The transition to identical synchronization occurs through such a state, which is often
referred to modulational intermittency (Pikovsky, Rosenblum and Kurths, 2001) or on-off
intermittency (N. Platt, Spiegel and Tresser, 1993). This illustrated in figure 11. The coupling
parameter ¢ is set to 0.08 this time. We observe intermittent dynamics indicating a transverse
instability. This can be indeed observed in panel B in terms of the instantaneous difference of
the variables x1, 2.Epochs of IS are irregularly disrupted by brief epochs of
desynchroniozation and thus perturbations from the synchronization manifold. This can be

indeed observed in panel C, now the
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Figure 11. Modulational intermittency before the transition to identical synchronization. The figure has
the same format as figure 9. The coupling parameter ¢ is set to 0.08. We can see that periods of identical
synchronization are alternated with brief periuods of desynchronization. These are eviden as increases of
the instantaneous difference plotted in pannel B. In panel C we see that the coupled systems are no longer
confined on the synchronization manifold. The phase differencve is however relatively stable.

system is not confined along the diagonal but shows irregular perturbations away from it.
However on average, the attractors (the long term dynamics) of the two systems almost
completely overlap as evident in figure 12, which shows the state spaces of the coupled
systems. As discussed above, the apparent irregular switches between IS and
desynchronization are not random but may be due to unstable periodic orbits of higher order,
and may therefore exhibit complex temporal structure. Similar bursting behaviour will be

explored in chapter 7 with the example of MEG data during a visual experiment. Intermittent
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behaviour in general has several advantages in terms of coordination dynamics in the brain;

they will be discussed later with the example of intermittent phase dynamics.

Couplad systams sa «0.00¢=0.08
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Figure 12. The state space portraits of the two coupled systems in intermittent identical synchronization
shown in figure 11. Note the almost perfect coincidence of the attractors despite the intermittent bursts
shown in figure 11B.

3.4.3 Breaking the symmetry: Phase, lag and generalized synchronization of
nonidentical systems.

Until now we have considered synchronization of identical systems in terms of the
synchronization manifold, which was supported on the invariant symmetry manifold.
However, it is difficult to imagine that the symmetry condition will be met in the brain and
thus that any two interacting neuronal systems will be identical. Actually, there is quite
compelling evidence that this symmetry is not given. Such ‘broken symmetry’ conditions in
the brain are thought to arise through a multitude of factors including asymmetric anatomical
coupling between and within brain areas, differences in ‘characteristic’ oscillation frequencies
of coupled neuronal networks, delays in neurotransmission in extended networks and
differences in dentritic integration times (see Bressler and Kelso, 2001 for a comprehensive
discussion of broken symmetry in brain dynamics). Furthermore, scale specific symmetry
relations maybe the hallmark of the multiscale nature of the brain. Thus at microscopic levels
of coordination — e.g. within cortical columns- a higher degree of symmetry might exist than
at microscopic levels and thus interactions between such cortical columns (Mountcastle,
1997). The latter line of arguments will be pursued in chapter 4. For the current purposes we
need only establish that broken symmetry conditions are especially relevant for the brain and

thus the nature of the resultant coupled dynamics is of particular importance.
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The broken symmetry condition can be understood in the general context of coupled
dynamics and thus equation [12]. Recall that the functions f; and f3 specify the form of the
local dynamics. In the symmetry condition we dealt with the special case of  fo =/ and thus
the two systems expressed the identical (autonomous) local dynamics. Also recall that this
was the basis for the existence of an invariant set; the symmetry manifold, on which the
(identical) synchronization manifold was supported. Breaking the symmetry means that f;
and f; are no longer equal. Based on the geometrical framework underlying the concept of the
synchronization manifold, research was centered on how the latter was effected by symmetry
breaking. Two main scenarios seem to have been notable: small and large departures from
symmetry lead to qualitatively different dynamics sometimes referred to as weak and strong
generalized synchronization respectively (Pyragas, 1996). In the first case and especially
when the synchronous dynamics are strongly stable (when the coupling is strong) a small
symmetry breaking ‘lifts’ the resultant synchronization manifold smoothly “off” the symmetry
manifold (Josic,1998, Kocarev et al. 2000). However, the synchronization manifold may still
be attracting and hence synchronization will still occur (Kocarev and Parlitz, 1996,

Breakspear, 2004). The trajectories of the two-coupled, nonidentical systems x"and y" will no

longer be identical but will be instead related by a differentiable one-to-one functional

relationship,
xX"()=w(y" (1) [16]

Equation [16], simply states that there exists a smooth one to one correspondence between in
the systems x"and y” at each time point £. Thus there is a deterministic function ¥, which

maps the first system to the second one. This regime was first studied in unidirectional
coupling (driver-response) schemes and is referred to as generalized synchronization (GS,
Rulkov ef al. 1995). The existence of y implies that the evolution of one system can be
predicted by knowledge of the evolution of the second system. At weaker coupling strengths
and thus less stable dynamics the dynamics, the synchronization manifold may become
nondifferentiable (Hunt ef al. 1997). The complex geometry of the synchronization manifold
may mix features of the individual coupled nonidentical attractors or change strongly with
only small modifications of asymmetry (see Breakspear, 2004 and references therein). This
result has the important implication that stability of the synchronization manifold can not be
assessed by virtue of tangential or transverse Lyapunov exponents, since there will be no
unigque tangential and transverse directions at every point on the manifold. However, the
complex geometrical manifold y will remain continuous. This means that neighborhoods in

one system can be mapped into neighborhoods of the other. As we have seen in chapter 2, this

property was exploited in several methods in order to detect nonlinear interdependence (see
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Shiff er al., 1996, Breakspear and Terry, 2002a, Stam and Van Dijk, 2002). It is important to
note that the latter detection exploits the similarity of local neighborhoods in isochronously

occurring points in two systems to infer some interaction. Thus it does not specify the nature

of the functional relationship in ¥, rather than it just postulates that such a relationship may

exist.

We illustrate this state of affairs qualitatively in two interacting Rdssler systems [14] when
the frequency mismatch parameter de is no longer zero and thus the systems are nonidentical.
Here w; =1 and w>=0.85 and thus dw is set to 0.15. If the coupling parameter is set below the
threshold range for identical synchronization here ¢ =0.3 a different pattern of synchronized
behaviour results. Intermittent behaviour is no longer present but IS is not detectable either.
Figure 13 illustrates the results. We can see that the two systems are not confined on the
diagonal and their transversal variables do not approach zero. Thus we do not observe IS.

Panel B shows the instantaneous difference and thus the transverse variable.
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Figure 13.Nonidentical coupled systems possibly exhibiting generalized synchronization. Same format as
figure 9. Panel B and C show the characteristic deviations of the synchronization manifold from the
symmetry manifold. The instantaneous difference in B is of the same order as the signals them selves.
Panels D and E show that phase synchronization is also present and supported on a more general
synchronization manifold.

We can see that it is in the same order as the oscillatory variables of the attractors. However
non-random structure is evidently present in the scatterplot shown in panel C. Thus the
synchronization manifold is no longer supported on the symmetry manifold. Figure 14 shows
the state space portraits of the coupled systems, this is consistent with panel C in figure 13:
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nonidentical attractors, which however seem to be related, are observed. A look at panels D
and E in figure 13 shows a bounded phase difference. Nevertheless, the classical notion of
phase synchronization in chaotic systems implies that the amplitudes of the synchronized
systems are not correlated, whereas the phases of the two systems are strongly interdependent
(Rosenblum ef al., 1996). However, this is not the case here, as there seems to be strong
correlation between the amplitudes of the interacting systems (panel C). Thus neither identical
nor phase synchronization is observed in this case. Therefore generalized synchronization
(GS) may be assumed (GS is not formally quantified). Interestingly, we see that in this
particular situation the phase synchronization manifold seems to be supported on a more
general manifold (panel C), or in other words the latter subsumes the former.

Several central comments are in order. Generalized synchronization is extremely relevant to
coordination dynamics in the brain by virtue of the fact that it is a likely resultant form of
dynamic interdependence when interacting systems are nof identical. Strong generalized
synchronization bearing marked resemblance with IS may result with small departures from
symmetry as this may occur in microscopic networks of functionally interrelated neurons such
as within a cortical column(chapter 4 and references therein). The synchronization manifold
then may simply be a smooth displacement of the symmetry manifold and thus collective
activity may reflect to a great extent merely an amplification of the behaviour of individual
units. The latter may prove useful for achieving an effective signal to noise ratio in order to
warrant successful neural transmission. Thus at the level of the cortical column this strong
interdependence may underpin secure message transfer. However, excessive stability of such
states may lead to self-sustained identical synchronization and be spread to a large array of
units. This stereotype behaviour can then no longer be considered useful in terms of
information processing since the entropy of the signal will remain low both in the temporal
and spatial domain (Breakspear, 2002). Such states are typical of epilepsy and in fact metrics
of generalized synchronization have shown increases before and during the onset of seizures
in the EEG of epileptic patients (for instance Altenburg et al., 2003). Perhaps on the opposite
end of the continuum, a loss of synchronization can have dramatic consequence to memory
and cognition. Using metrics based on the concept of generalized synchronization, Stam et
al., 2002 and Pijnenburg et al., 2004 have found an overall decrease in gamma and beta band
synchronization in the EEG of cognitively impaired Alzheimer patients. These two
observations taken together show how important an ‘appropriate’ level of synchronization is

for normal brain function.

As discussed above, a weaker form of generalized synchronization may come about when the

coupling is not strong and the coupled systems are rather dissimilar. In this case the
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synchronization manifold is not just a shifted version of the symmetry manifold but it may be
a mixture of the effects of the two contributing attractors. Therefore, this kind of
interdependence is inherently more integrative. Such a state of affairs, namely weaker
coupling and larger departures from symmetry are likely to occur at mesoscopic scales in the
brain for instance including interactions of neurons between cortical columns (chapter 4 and
references therein). Thus it is interesting to explore the idea that weak generalized
synchronization (together with phase synchronization as we shall see below) may be one of
the common modes of coordination at such scales. This will be a sufficient way to produce a
common signal (the synchronization manifold), which is a mixture of the dynamics of the
contributing systems and not merely an amplification of the individual system dynamics (such
as the synchronization manifold supported on the symmetry manifold). By small manipulation
of the symmetry breaking parameters, macroscopic order may arise through mixing of nearby
elements in to novel emergent structures and thus yield clustering behaviour. The latter will
be illustrated extensively in chapter 4 by means of numerical simulations of spatially
extended nonlinear systems. The symmetry breaking condition may also yield a multitude of
interesting dynamic behaviours and phenomenology, which constitute global bifurcations.
These include among others the emergence of periodic behaviour by increasing the coupling
strength of chaotic systems a phenomenon known as chaos destroying synchronization and
oscillation death by virtue of increased coupling (Pikovsky, Rosenblum and Kurths, 2001).
Furthermore, these phenomena often lead to metastable intermittent behaviours, which are
particularly favourable in terms of information processing and stability of the brain states.
This will be next discussed using the example of phase synchronization in nonidentical

systems.
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Figure 14 shows the statespace of the coupled systems plotted in figure 13. We observe that the systems
exhibit different but related long term attractors. Note, the difference between form of synchronization
shown here and identical synchronization as shown in figure 10.Although no identical synchronization
exists the two systems seem to exhibit some form of general interdependence.

83




In section 3.41 we have already suggested that in some cases an appropriate phase can be
defined for a chaotic system. We have also seen that the synchronization occurs through the
adjustment of the average frequency of the interacting systems. The existence of a mean
period of oscillation and a bounded distribution of instantaneous periods around the mean has
the consequence that the instantaneous phase difference between two interacting systems is
bounded .The main implications of this approach is that chaotic systems can be treated in the
same way as noisy systems: synchronization can be defined in a statistical sense, thus as a
process with some mean value and an amount of phase diffusion about that mean (equations
[10] for chaotic and [11] for noisy systems). As we have already seen in chapter 2, the

sufficient condition for phase synchronization is:

op =[ng, —me,Jmod2x <c [17]

where #; ‘ @, are the instantaneous phases of two systems k and 1, ¢ is a constant and »n, m are

integers defining the frequency ratio of the systems. The instantaneous phase difference 09 is

wrapped in the interval [0 27].
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Figure 15. Phase synchronization of nonidentical chaotic systems for low coupling strengths. Same format
as figure 9. The phase difference of the two systems is bounded(panel D) and its distribution is normal
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around a prefered value of 1.5 radians(panel E). At the same time the amplitudes of the systems are not
strongly related (panels A and C).

Rosenblum er al., 1996 have shown for the first time that phase synchronization of mutually
coupled chaotic systems is possible by itself and thus unaccompanied by identical or
generalized synchronization. The hallmark of phase synchronization in chaotic systems seems
to be that although the phase difference of two coupled systems is bounded, the amplitudes
may remain chaotic and uncorrelated. Phase synchronization in nonlinear systems is of
theoretical importance because it represents the weakest form of interdependence; it does not
require adjustment of the systems” manifolds but merely adjustment of their time scales on
average.

Two theoretical points make phase synchronization relevant for the brain. As we shall see
below phase synchronization can occur in the presence of very weak couplings even between
considerably dissimilar systems. Thus phase synchronization requires neither similarity of the
interacting systems nor strong coupling to come to pass. In addition, phase synchronization
between dissimilar systems and weak couplings is often intermittent, which might prove of
adaptive importance for brain function. Further, interacting systems exhibiting phase
synchronization can demonstrate lag, generalized and identical synchronization with

increasing levels of coupling (Boccaletti e al., 2002).

We briefly illustrate the typical phenomenology related to phase synchronization with the
system in [14] in figures 15 and 16. The systems are not identical, @/ =1 and w,=0.9 and thus
ow is setto 0.1. The coupling parameter is set to ¢ = 0.105. Panel A in figure 15 shows the

x1,2 variables. We observe little relation between the amplitudes but some regularity in

Coupled systems 6w =0.10 £=0.105




Figure 16. State space of phase synchronized nonidentical systems plotted in figure 15. Note that the

systems are not supported on a common manifold.

the relation of the time scales of the two systems. The instantaneous amplitude difference in B
is of the same magnitude as the variables themselves and thus the synchronization manifold is
not supported on the symmetry manifold. This is evident also in C where we see that the
system is not confined on the main diagonal and the correlation between the amplitude of the
variables is lower than 0.01. However there is some ellipsoid structure here corresponding to
the adjustment of the time scales. The latter is observed in panel D, which shows a bounded
phase difference as a function of time. Panel E shows the distribution of the phase difference.
We observe a narrow normal distribution centred around 1.5 radians. Thus phase
synchronization is observed in the absence of amplitude correlation. The state space plots of
the two coupled systems are shown in figure 16. We see that the systems exhibit different
attractors; even a weak form of a relationship is difficult to infer. In other words, the
interacting systems seem to preserve their overall differences in terms of long-term dynamics
but at the same time merely adjust their phases. This weak interaction can be captured in the
spectrum of Lyapunov exponents, where the onset of phase synchronization is marked by a
(previously zero) Lyapunov exponent becoming negative (Rosenblum et al., 1996). This
exponent corresponds to the direction in state space related to the phase difference. A negative
exponent means that perturbations along the direction of the phase will exponentially decay
and thus the phase difference will remain bounded. We should note the difference to the case
of identical synchronization. In identical synchronization strong criteria were imposed on the
transverse Lyapunov exponents to ensure stability of synchronization. Here the adjustment of
merely one of the previously zero Lyapunov exponents (corresponding to the direction of the

flow and thus of the phase) to negative values is sufficient to ensure stability.

It should be noted that phase synchronization occurs also in identical systems for low levels
of coupling, however then it is supported on the symmetry manifold. Thus substantial

correlations of the amplitudes will be expected even at low levels of coupling.

If the detuning of the systems in terms of the frequency difference éw is increased phase
synchronization may become unstable. This can be understood in terms of equation [10],
where this would correspond to a growing phase diffusion term of deterministic origin. For a
range of parameters intermittent phase synchronization occurs. This illustrated in figure 17.
The two systems exhibit a regime of intermittent oscillations and apparent silence, a
phenomenon known as on-off intermittency (Platt, Spiegel and Tresser, 1993). Similar to the

case of modulational intermittency, which occurred for low coupling in identical systems,
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here the instantaneous difference varies as a function of time. The instantaneous difference
mimics the time course of the variables and is close to zero, only when the amplitude in both
systems diminishes. This is not a simple short-lived digression from the symmetry manifold.
Indeed, in panel C we observe a less regular synchronization manifold. In panel D we see that
the phase difference remains stable for longer epochs but this is interrupted by irregularly
occurring short desynchronization bursts. The distribution of the phase difference still shows
a preferred value but the entropy of the distribution is now larger. Figure 18 shows the state
space for the coupled systems. Note that the typical Rossler attractors have collapsed and we
observe a structural change resulting to a remnant of the chaotic dynamics. This is often
referred to as a chaotic ruin (Boccaletti et al., 2002). Thus the strong coupling between
dissimilar oscillators that causes the instability of the phase also causes the dissipation.
Oscillation death a consequence of the strong coupling and the frequency detuning contributes

to the dynamic ‘shrinkage’ of the coupled systems.

Two aspects of these interactions are of main interest here. The first one is related to the
implications of intermittent phase dynamics for the stability and the information capacity of a
given interaction. The second aspect relates to the observation of oscillation death (or

quenching), which is observed during desynchronised epochs.

Firstly, the behaviour of the phase difference is very important. It captures the hallmarks of
what Kelso referes to as metastability (Kelso, 1995, Bressler and Kelso, 2001). The phase
difference is the collective variable, which specifies the interaction between the two systems.
In the case of intermittent dynamics the phase difference alternates between periods of
stability and periods of instability. Thus the phase difference is stable in relative terms
(metastable). Thus for the same configuration of control parameters the coupled system will
be asymptotically confined on the phase synchronization manifold. However, departures from
the manifold will occur and will ensure for entropy. As previously discussed, this iterant type
of behaviour may be useful for brain systems because of the need for context sensitivity and
constant updating of information. Thus the intermittent wondering of the system off the phase
synchronization manifold (and thus the epochs of phase desynchronization) might constitute
some search process and the reinjection to the manifold might subserve some ‘updating’
process. Moreover, the importance of intermittency in such an ‘updating’ process manifests
itself in extensive network of coupled elements: synchronization may lead to formation of
clusters; spontaneous desynchronization may lead to dissolution of these clusters and
formation of different clustering configurations. If synchronization is too stable, then these

configurations will be rigid and thus non adaptive. Thus intermittent behaviour of phase
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synchronization is deemed functional by virtue of its instability (metastability). The latter

however also ensures higher entropy (uncertainty) of the signal.
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Figure 17. Intermittent dynamics in strongly coupled nonidentical systems. Same format as figure 9. Note
the bursting oscillations in the two coupled systems (panel A). Also note that the instantaneous amplitude
difference is itself bursting (panel B). However the phase difference for the coupled systems is bounded
for long periods of time, which are alternated by periods of phase desynchronization (panet C) . These
desynchronizing bursts seem to occur irregularly and coincide with amplitude minima(panel A).
However, on the whole the phase difference distribution is normally distributed and peaks around 1
radian, suggesting phase synchronization.

It has been proposed (Breakspear, 2002 and 2004,) that a signal composed of epochs of
alternating phase synchronization and desynchronization has a very high information capacity
(Galtin, 1972). Simply stated, synchronous epochs ensure secure message transfer and
desynchronous epochs warrant sufficient message entropy. Thus intermittent phase dynamics
maybe beneficial both in terms of its adaptive and flexible nature and also because of its high
information capacity (Breakspear, Terry and Friston, 2003, Breakspear, Williams and Stam,
2004). Intermittent synchronization and desynchronization and spatial clustering behaviour
has been indeed observed in realistic models of coupled cortical columns (Breakspear, Terry

and Friston, 2003). Furthermore, evidence for unstable synchronized clusters in the spatial

88




and temporal domain has been obtained in scalp EEG recordings (Breakspear, Williams and
Stam, 2004). Unstable and rapidly fluctuating synchronization levels have also been
experimentally observed in spontaneous MEG activity (Stam ef al., 2003) and task-related

EEG recordings (Stam, van Walsum and Micheloyannis, 2002).

The second interesting observation here refers to the phenomenon of oscillation death or
‘quenching’. This phenomenon of amplitude deterioration often occurs in situations where
diffusive coupling is introduced between inherently dissimilar systems. In the case presented
here the dissimilarity is expressed in terms of frequency detuning. The phenomenon of
oscillation death was observed in a number of diverse physical and biological systems. It
seems to be a particularly frequent phenomenon in coupled oscillatory systems that exhibit a
continuous spatial coupling pattern in the presence of spatial gradients in the natural
frequency (Pikovsky, Rosenblum and Kurths, 2001). The biophysical mechanism of the
phenomenon is simple. The mismatch of the frequency of coupled elements leads to an ever-
growing phase difference. On the other hand the (diffusive) coupling tends to reduce the

phase difference.

Coupled systems §w» =0.33,e=0.35
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Figure 18. State space of coupled systems exhibiting intermittent phase dynamics , see figure 17 and text.
Note that the typical Réssler attractors have collapsed and we observe a structural change resulting to a
remnant of the uncoupled dynamics. This is often called a chaotic ruin. The synchronization manifold is
difficult to define in this case.

The only way these things can be compromised, so that an energetic (short wavelength)
catastrophe can be avoided, is for the amplitude to strongly diminish, in which case the phase
cannot be defined. This results in the appearance of space-time defects (Pikovsky, Rosenblum
and Kurths, 2001). The appearance of oscillation death through such space-time defects can
be viewed as a mechanism for effective ‘restarting” of the system. Ermentrout and Koppel
(1984) have shown that oscillation death occurs in mammalian intestine at the border of
functional clusters of smooth muscle tissue. The clusters are defined as muscle tissue

segments, which show the same characteristic frequency of excitation. An oral to aboral
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frequency gradient is utilised to achieve peristaltic motion. Thus the frequency gradient has to
be maintained despite the local coupling of the smooth muscle cells occurring through direct
electrical contacts (gap junctions). Oscillation death is a mechanism that helps maintaining
this gradient in the presence of coupling. In chapter 4 we will argue that maybe similar
gradients are at play in the brain, in order to achieve functional separation (possibly again
through a characteristic distribution of frequencies) in the presence of strong influences
towards integration. Oscillation death may therefore contribute to the separation of dynamic
synchronized clusters. It should be also stressed that oscillation death does not only occur at

specific parameter configurations but for a wider range of parameters.

3.4.4 Succession of qualitatively different synchronization regimes with increasing
coupling

Phase synchronization of chaotic systems seems to be one of the most common forms of
interaction; it can be observed for a range of control parameters and it is possible for
relatively dissimilar systems and weak couplings strengths. Meanwhile a series of related
phenomena have been reported, for reasons of limited space we will not present detailed
examples. However a depiction of how these phenomena relate to each other and how they

depend on the coupling strength may be useful.

When the coupling is not sufficiently strong or the frequency detuning (or any other
parameter contributing to symmetry breaking) is relatively large with respect to the coupling
strength, phase synchronization in the sense of equality in equation [17] may not be possible.
The common denominator in these situations is the existence of a rather broad distribution of
time scales in the behaviour of the coupled system. This reminds us of section 3.4.1 and the
distinction of phase coherent and non-coherent attractors of individual systems. For instance a
Lorenz attractor exhibits a broader distribution of time scale sand it is thus difficult to
synchronize perfectly and thus so that the phase difference with some driving force remains
stable. In such cases the phase difference shows periods of rather bounded acceleration and
deceleration excursions. Furthermore phase slips of 21 may occur but the phase difference
remains relatively bounded when defined not on the full line bit on the circle {0 27]. Note that
this is not the same as intermittent phase dynamics where epochs of stable phase difference
and epochs of apparently random behaviour were alternated. Here the phase difference is
never quite stable but because it remains bounded, the distribution of the phase has a preferred
value. This regime has been termed imperfect phase synchronization (IPS). For a discussion

see Boccaletti ef al., 2002 and references there in. In broader sense IPS may be considered as

90




another case of relative coordination (Kelso, 1995) other than the one arising from

intermittency.

A second phenomenon related to phase synchronization of nonidentical systems occurs when
the coupling is increased but is not sufficient to instate generalized or identical
synchronization. Then the interesting phenomenon of lag synchronization occurs (Rosenblum
et al., 1997). This can be considered as a compromise situation between phase and identical
synchronization. Essentially, in lag synchronization a signal x,(t) is approximately equal to a

shifted version of another signal x, with some time lag 7:

x, (t +7) = x, () [18]

Thus if one plots the two signals against each other one will obtain concentration along a
straight line as in the case of identical synchronization. The phase difference will be constant
but different than zero corresponding to some phase lag. Thus the lag synchronization (LS)
manifold can be considered to be an (asymmetrically) shifted version of the symmetry
manifold. Rosenblum et al., 1997 proposed a method of detection of LS from data using a
similarity metric. As we have seen in the previous section phase synchronization of
nonidentical systems was accompanied by a change of one of the previously zero Lyapunov
exponents that corresponded to the autonomous phases of the system. In phase
synchronization one of these exponents becomes negative. When a second exponent becomes
negative with increasing coupling either (strong) generalized or almost identical
synchronization will occur. The regime of lag synchronization is situated somewhere in-
between these two states. The transition from phase to lag synchronization occurs through a
regime of intermittent lag synchronization. Analogously to intermittent IS here epochs of lag
synchronization are alternated with epochs of unbounded errors in the similarity metric
(Boccaletti et al., 2002). An example of this will be shown in chapter 7 in the context of on-

off intermittency.

To sum up, the interaction of nonidentical chaotic systems may result in a number of
qualitatively different but interrelated synchronization phenomena. Which particular form of
synchronization will occur crucially depends on the coupling parameter. For low levels of
coupling phase synchronization occurs, with increasing coupling lag, generalized and almost
complete synchronization may occur. The degree of total interdependence increases with the
coupling (provided the systems are not too dissimilar to be synchronized). The transition
regions between these regimes may be pinpointed by intermittent dynamics of the phase
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difference, the amplitude at a certain lag or the combined amplitude and phase dynamics.
Thus, once more we note that for a range of parameters intermittent coordination dynamics
(metastability) are present. It is tempting to postulate that time dependent coupling
parameters, as they may occur in the brain in terms of neuromodulators stemming from
arousal systems (Breakspear, Terry and Friston, 2003) or indeed common influences of third
parties on to two interacting sites, may provide us with brain dynamics, which exhibit such a
rich spectrum of synchronization phenomena as the ones depicted here. Furthermore, these

phenomena once expressed may subserve different functions.

To conclude, we have seen that inherently dissimilar systems, (thinking back to the breaking
symmetry condition) can exhibit synchronization but they require higher coupling strengths
and dissipate energy to do so. However, this is due to their tendency to preserve their
autonomous dynamics. The coordination scenarios, which arise, are likely to involve
intermittent coordination dynamics. If such processes were to occur in the brain, they may
often concur with energy dissipation (oscillation death) and could be thus captured as
amplitude changes in metabolic and electric measures of mean neuronal activity. Oscillation
death when occurring on the basis of intermittent phase dynamics might be a phenomenon
related to resetting the subtle equilibrium dynamics between different oscillatory processes

(segragation) and inherent structural coupling (functional integration).

3.4.5 Chaos destroying synchronization and structural changes in attractor morphology

An interesting situation arises, when distinctly dissimilar chaotic systems are strongly coupled
in terms of diffusive coupling (equation [15]). An example is illustrated in figure 19A. The
systems are initiated with frequency detuning 0w=0.30 and the coupling strength is set to &
=0.35. The coupling is transiently introduced between roughly around 300 and 900 time units
(shown by red vertical lines on the top panel). The bottom panel shows the phase difference
defined on the real line (unwrapped). We observe that the phase difference remains constant
during the coupling, while before and after the coupling it accelerates due to the frequency
detuning. However the most striking effect is a decrease of the mean power and a
regularization of the oscillation. Panel B on the right shows a detail of the time around which
the coupling is switched on. Before the introduction of the coupling the systems exhibit
independent chaotic oscillations. After the coupling is switched on an abrupt transition occurs,
which leads to a state of almost periodic synchronous oscillation in both systems. Thus the
systems are synchronized but no longer chaotic. This phenomenon is known as chaos
destroying synchronization (Pikovsky, Rosenblum and Kurths, 2001) and seems to occur

through a global bifurcation, where several Lyapunov exponents become abruptly negative
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resulting to low dimensional periodic dynamics (Boccaletti e al., 2002). Similar phenomena
can be observed when chaotic systems are driven by a periodic force of a sufficiently different

characteristic frequency (not shown here).

This phenomenon may be of considerable theoretical interest. In many experimental
paradigms in traditional neurophysiology, ‘driving’ stimuli are presented. These stimuli
(either visual or auditory) are periodic and often seem to be faithfully transmitted to the
brainstem nuclei as such (for example Rees and Moller, 1987). It has been also repeatedly
argued that similar behaviour occurs even at higher processing stages, namely at the cortical
level. Hence, the sensory cortex is thought to closely follow the periodic dynamics inherent in
the stimulus in terms of a steady state response (for example see Picton ef al., 1987). One
should note the similarity of this scenario to the theoretical example of chaos destroying
synchronization given above. Thus if these regular stimuli give rise to a strong periodic input
from the brain stem to the sensory cortex, this may under circumstances cause a
‘regularization’ of the previously ‘irregular’ spontaneous activity in the cortex. Thus by
introducing salient and artificially regular stimuli, one may enforce stable periodic dynamics
upon the sensory cortex, which however may be uncharacteristic for the spontaneous cortical
dynamics. This will be illustrated with the example of the auditory steady state response in

chapter 5.
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Figure 19 A (left) and B right. Chaos destroying synchronization. See text for details.
3.5 Concluding remarks

In this chapter we have examined the simplest case of dynamics governed by a two opponent
gradient interplay of forces subserving integration on one hand and forces seeking segregation
o the other (Friston, 2000 b, ¢). In the simple models of coupled chaotic oscillators we

examined here, the coupling was the force seeking functional integration of the dynamics and
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the frequency detuning (the non-identity of the oscillators) was the force that tended to keep
the dynamics segregated. Although we realize the limitations of this simple approach, we are
intrigued by the rich diversity of dynamics that can be generated by such simple models. Even
in such simple models, a variety of qualitatively different synchronization and
desynchronization behaviours occur. Here an attempt is made to specify which mechanisms
and which of the synchronization/desynchronization regimes may underlie the generic process
of functional integration and segregation (Friston 2000, b, ¢). This is clearly a difficult but
nevertheless extremely important step towards understanding the exact dynamic substrates of
functional integration and segregation (Breakspear, 2004). The work presented here is by no
means exhaustive nor conclusive, which is not surprising considering that the literature
centred on this issue is limited to a few pioneering papers, that have been published in the
recent couple of years (Breakspear, 2002 and 2004, Breakspear, Terry and Friston, 2003,
Stam et al., 2003, Breakspear, Williams and Stam, 2004). However the stress in this work will
be on identifying patterns of phenomenology, specifically related to these dynamic scenarios,
so that these can be tested using experimental data arising from macroscopic brain signals.
Intermittent bursting, oscillation death and chaos destroying synchronization are key
phenomena occurring in abstract models of coupled chaotic oscillators exhibiting complex
synchronization dynamics. These will be further pursued in simulations of spatially extended
systems in chapter 4 and also potential links to experimentally observed MEG data will be

attempted in chapters 5, 6 and 7.
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Chapter 4. Event Related Synchronization and Desynchronization and their
relation to macroscopic spatiotemporal patterns in complex systems.

4.1. Objectives

We have seen in the previous chapter that even the coordination of merely two coupled
nonlinear systems can produce a multitude of distinct synchronization regimes and associated
phenomenology. In this chapter we will investigate coordination phenomena in
multidimensional systems, which exhibit an explicit spatial structure. The scope of this work is
not so much to review the existent body of literature but rather to focus on specific
configurations relevant to the functional organization of the brain. The main objective here is to
identify the relationship between spatiotemporal macroscopic patterns formed through specific
interactions in the system to the observed changes in the mean field signal. Thus, essentially we
will attempt to address yet another inverse problem: Can the changes in the mean field signal
tell us anything about the coordination process that is occurring in the underlying network?
Explicitly, we are very much interested to test the ERD/ERS model (Pfurtscheller and Lopes Da
Silva, 1999). Event related desynchronisation (ERD) and synchronisation (ERS) are thought to
reflect processes of desynchronization/synchronization of interconnected neurons at the
microscopic level resulting in decreases or increases of the macroscopic (MEG/EEG measured)
mean field respectively. Therefore, according to this model, a power decrease is interpreted as a

loss of synchronization and a power increase as an increase in local synchronization.

4.2 Basic axioms of synergetics and pattern forming systems
The basic theoretical framework we adhere to is synergetics (Haken, 1983). The field was

founded by the German theoretical physicist Hermann Haken and deals with complex systems,
defined as systems with several interacting subcomponents, which ‘live’ far from thermal
equilibrium and therefore often undergo (non-equilibrium) phase transitions. The latter
framework applies to a multitude of physical systems but also subsumes all biological systems
including brain and behavioural systems (Kelso, 1995). Perhaps the most central concept in
synergetics is the one of circular causality. The latter states that macroscopic variables are
formed through interactions of microscopic system subcomponents, but when created they in
turn specify the behaviour of the global system and thus constrain the activity of each and every
microscopic subcomponent. Hence, we identify two main characteristics in this framework:
there are more than one (at least two) levels of description: a microscopic one and an emergent
macroscopic level. However, no level is more important than another because they are mutually
interactive in terms of circular causality. Thus interactions in the microscopic level give rise to a
lower dimensional macroscopic order state (often these states are spatiotemporal patterns),

which is in turn specified by only a few variables, termed as collective variables or order
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parameters. Once such macroscopic patterns are formed, they are goverened by the order
parameters and they in turn influence and constrain the activity of individual subcomponents at
a microscopic level. Thus, the system exhibits self-organization by virtue of circular causality
and the concurrent existence and interaction of multiple levels of description. One of the
simplest forms of such a self-organization will be demonstrated in a network of globally
coupled oscillators (termed as Kuramoto self-organization, see Kuramoto, 1975, 1984 and
Strogatz, 2000). The beauty of synergetics is that in a complex system with an infinite number
of degrees of freedom, only a few order parameters are sufficient to entirely specify the system.
Thus the system undergoes a dimensional reduction through interaction. Therefore if one can
specify the collective variables, the ones that specify the interactions of system subcomponents,
one can specify the system. As a control parameter is varied slowly, such systems undergo
abrupt changes in their behaviour; these are referred to as phase transitions. By virtue of the
fact that such systems ‘live’ far from equilibrium, phase transitions are common for a range of
parameters, and thus the resultant macroscopic activity continuously changes. This results to

spatiotemporal pattern formation.

The scope of our work will be to explore some potential collective variables that lead to
macroscoscopic patterns and how they change with respect to global system parameters. Since
the brain is a multiscale system, we should identify scale-specific order parameters and see how
they may contribute to the macroscopic patterns. Explicitly, we view ERD/ERS as macroscopic
spatiotemporal patterns resulting from neuronal interactions in a spatially-extended, multiscale
network and we want to know the collective variables and the resultant coordination dynamics,
which may have produced these patterns. We also, address the viability of the model for
microscopic and mesoscopic levels of description and discuss possible models of interpretation

of macroscopic mean field signals.

4.3. The brain as a multiscale system
There are two characteristics that are sufficient for synergetic coordination dynamics to come

about in an arbitrary system: the system has to be nonlinear and its units have to be coupled
(Jirsa and Haken, 1996). The brain clearly fulfils both of these criteria. A third common
characteristic of synergetic systems is complexity, a hallmark of which is the existence of
multiple spatial and temporal scales. The brain is perhaps the prime example of a highly ordered
multiscale system. Furthermore, temporal and spatial scales are not independent; for each
spatial scale there are characteristic temporal scales. There are at least three discernible levels of
brain organization; they are very much reflected in the spatial differentiation of the brain
(Breakspear, Terry and Friston, 2003, Breakspear, 2004 and Breakspear and Stam, 2004).

These are a microscopic level, which involves coordination of neurons that belong to the same
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functional unit, such as the cortical column (Mountcastle, 1997 and 2003). The next level, to
which we will refer to as mesoscopic, involves interactions between neurons belonging to
different functional units, thus interactions of neurons between cortical columns. The
interactions at the mesoscopic and microscopic levels produce a ‘macroscopic’ signal reflecting
the collective activity of many cortical columns. This macroscopic signal is thought to reflect
the collective activity happening at the level of a brain area. We should stress, that here we use
the term ‘macroscopic’ for the activity of a functional brain area rather than the activity of the
entire brain system. Such a definition of macroscopic activity is helpful in the interpretation of
brain signals such as the EEG and the MEG, which probably arise at this level. However, we
understand that ‘functional® brain activity may well involve the coordination of several brain
areas and subcortical regions. Thus the macroscopic signal arising from a brain area may reflect

only a part of the total brain activity subserving a certain function.

The differentiation into the above levels of description essentially comes about through the
interplay of two key factors, which in terms of synergetics can be considered as control
parameters for the activity occurring at the macroscopic level: the connectivity pattern between
neurons and the (spatiotemporal) patterning of the ‘inputs’ that these neurons receive through
afferents. We regard these parameters as indispensable for the description of collective
dynamics and we will next describe how they can be operationalized in terms of abstract

modelling of coupled systems.

4.3.1 Microscopic and mesoscopic levels of description and network control parameters
We define the microscopic level, as the one that concerns the most elementary functional unit.

The cortical column is most likely to embody this role in the vertebrate brain. According to
Mountcastle (1997, 2003) the basic unit of the neocortex is the minicolumn. Neurons within one
minicolumn possess a common embryological origin and develop in unison. As a consequence,
neurons in minicolumns possess a certain set of properties in common, responsible for their
collective activity. Minicolumns are linked into columns, which contain a limited number of
minicolumns. Columns seem to vary in size by a factor of one to two in brains, which vary in
total surface area by several orders of magnitude. Empirical evidence suggests that cortical
columns are modular, thus for instance in primay visual cortex, they may code for a certain
orientation of a bar stimulus (e.g. Hubel and Wiesel, 1962). In the somatosensory cortex
columns may code for place or modality of a tactile stimulus (Mountcastle, 1997). Following
Mountcastle (1997) ‘A cortical column is a complex processing and distributing unit that links a
number of inputs to a number of outputs via overlapping internal processing chains’.
Mountcastle’s generalization after reviewing evidence from a range of brain regions and

associated behaviors is that ‘the effective unit of operation in such a distributed system is not the
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single neuron and its axon, but groups of cells with similar functional properties and
anatomical connections’.

Simply put, at the microscopic level of a cortical column, nearby neurons tend to receive the
same afferents and also tend to receive synchronized input. The latter deems global collective
behaviour more likely. Indeed spike synchronization was observed in orientation columns
experimentally (Gray and Singer, 1989) and theoretically (Cuirtikli and Lansner, 2001) . In
the latter theoretical study, a realistic model of an orientation column was fed with a drifting
bar stimulus. Synchronization between neurons in different minicolumns was observed and
depended on the existence of horizontal connections. Interestingly, synchronization also
occurred between minicolumns that were not mutually connected, stressing the effect of the

collective network state on the individual elements.

Synchronization between individual neurons is known to give rise to mean field oscillations at
well defined and discrete frequency ranges (Gray and Singer, 1995, Konig , Engel and Singer
1995, Traub, Whittington, Stanford, and Jefferys, 1996).

Quantitative studies of cortical connectivity (e.g. Braitenberg and Schiiz, 1998, Hellwig,
2000) have shed some light on the dependence of the strength of neuronal connections on the
spatial separation between the neurons. Following Hellwig (2000), who studied connectivity
of neurons in primary visual cortex in the macaque, the strength of connectivity falls nearly
exponentially as a function of distance: connection probabilities range from 50% to 80% for
directly adjacent neurons and from 0% to 15% for neurons 500 um apart. The latter scale
exceeds somewhat the upper size limits of a cortical column. Thus, connectivity within
minicolumns and to some extent within columns can be considered dense. However,
connectivity between columns is sparse and of nearest neighbour type. The latter is also true
for larger spatial scales for example considering the connectivity between cortical areas (e.g.
Young, 1992, Sporns and Tononi, 2002). With the risk of oversimplifying things, one may
say that cortical connectivity is roughly local at all spatial scales, excluding the microscopic
scale of the cortical column, where the connectivity may be roughly considered as global.
Clearly, these anatomical facts reflect some fundamental functional difference, which will be

discussed with the example of numerical simulations.
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To conclude, the above suggest that at least two network scales can be distinguished,
microscopic and mesoscopic. The control parameters we consider indispensable for the
description of a network dynamics are merely two: the connectivity pattern and the dynamic
diversity of its units. This is illustrated schematically in figure 1. The microscopic level of
cortical columns can be abstractly modelled as a globally coupled network of nearly identical

oscillators. With ‘nearly identical’ we state that the dynamic diversity in the autonomous

Two levels of description

Microscopic

Mesoscopic

Figure 1. Schematic representation of the two levels of network descriptions that contribute to the
generation of macroscopic signals. The microscopic level refers to interactions within a cortical column.
The units are homogeneous (cell properties, inputs), as indicated by green circles and the coupling is
global, thus each unit interacts mutually with all other units in the array (indicated by the arrows). The
mesoscopic level refers to interactions between cortical columns. The units here are not homogeneous
(neurons have different phenotypes and receive different inputs) and the coupling is local, thus each unit
interacts only with its nearest neighbours.

(isolated) constituent units in the array will be limited. Here this will be modelled by means
of a globally coupled network of chaotic oscillators exhibiting similar characteristic
frequencies. The mesoscopic level can be modelled as a lattice of nonidentical chaotic
oscillators where only nearest neighbours interact. The lack of identity in the oscillators
implies that the constituent units are markedly diverse in terms of their autonomous dynamics.
The latter is modelled by employing differences in the characteristic frequencies of each unit.
The sensitivity of each unit to initial conditions and the difference in the average time scale
grants a certain dynamic diversity to the mesoscopic array. Although, reducing the dynamic
diversity to merely difference in the characteristic timescale is a simplification of the real
network diversity, we consider it an appropriate one. It follows partly from the fact that
neurons in different cortical columns are likely to receive different afferent signals at different
times and moreover the internal processing of the inputs will vary between cortical columns
(Mountcastle, 2003). This may result to expression of different preferential frequencies of

oscillation in the mean field, a notion close to that of ‘resonant’ or characteristic frequencies.
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Frequency gradients have been indeed experimentally observed along the sesorimotor strip,
indicating that discrete areas may generate distinct rhythms upon sensory stimulation or
voluntary movement (Neuper and Pfurtscheller, 2001). Furthermore, it is meanwhile well
documented, that several distinct alpha rhythms may coexist in the spontaneous EEG (Basar
et al, 1997, Nunez, Wingeier and Silberstein, 2001). Moreover, a mean field signal arising

from a mesoscopic level typically extends across several frequency ranges.

4.3.2 Microscopic level: Mean field coupled network of nearly identical oscillators

An array of globally coupled Réssler oscillators was simulated according to:

Z,‘:_wiwl’_z"’_é:i
w'l.::a),.;(,.+0.]5w,+gk}’ (1]
2, =02+z(y,—-10)

Where i=1... N, is an index specifying the number of the oscillator in the array, & are additive

Gaussian noise components, @ is the characteristic frequency of the oscillator, & is the

. & . . . .
coupling constant and ¥ = —Z w , ,is the instantaneous mean field. A linear gradient

i=1

for the characteristic frequency can be introduced as:

o =0 +06({-1) [2]

h

Where o, and o, are the characteristic frequencies of the I*and i " oscillator respectively.

From [1] we observe that the oscillators are coupled through the / variable by the

instantaneous mean field. This is equivalent to global (all to all) coupling (Pikovsky,
Rosenblum and Kurths, 2001).

The first dynamic scenario of interest is when nearly identical oscillators are weakly coupled.
For the first simulation we used the following parameters, N =10;

w, =10; & =0; & =0.3.Thus the oscillators are not (frequency) detuned and weakly

-

coupled; however note that the stochastic £ component is different for each one of the units.
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Given the sensitivity to initial conditions the latter means that the individual systems are

nearly but not quite identical.

Homogenous elements transient coupling

Figure 2. Power Vs time pattern across the array of ten mean-field coupled oscillators. The oscillators are
not detuned but have different additive noise components. The right diagonal axis indicates the number of
the unit in the array, the left diagonal axis indicates time and the vertical axis indicates the squared
amplitude of each system. The coupling is introduced between 100 and 200 = thus roughly between 300
and 600 time units. Two main effects are observed: the array appears more coherent and uniform during
the coupling time and the power increases.

Figure 2 shows the results of the numerical integration of [1]. The integration was performed
using the Runge Kutta technique with a step of 2 7/1000. The left diagonal axis shows the
time and the right diagonal shows the number of the unit in the array. The vertical axis shows
the squared amplitude of each unit at each time. The coupling is transiently introduced
between roughly 300 and 600 time units (100-200 m). We observe two main effects: the power
pattern in the array appears to be more regular and ‘coherent’ during coupling and also the
power increases in most of the units (units 5 and 10 show somewhat irregular behaviour). As
stressed in the beginning of this chapter, the main interest here is not primarily to study the
details of the coordination effects, rather than to identify the main collective variables
contributing to the observed macroscopic patterns and see whether they can be characterized
by some parameter of a signal with low spatial resolution, such as the mean field signal,
which is an instantaneous spatial ensemble average. Next we examine the synchronization
index between all possible combinations of the units in the array. This ‘interaction’ matrix can

inform as to which units are ‘effectively’ coupled. For simplicity here we use a
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synchronization index based on mutual information of the instantaneous phases as in chapter
2. This is a means to quantify merely phase synchronization although here stronger

interdependencies are to be expected such as strong generalized or identical synchronization.
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Figure 3. Interaction matrices for the array during the time of no coupling (left) and moderate coupling
(right). Axes x and y specify the pair of systems tested for interaction and the colour bar indicates the
strength of the (phase) synchronization index (see text for details).

Figure 3 shows the interaction matrix for two time windows: on the left we examine the time
before the coupling is introduced (0-100 ©) and on the right the time during coupling (100-
200 7). We observe only spurious and weak synchronization indices for the time when the
coupling is absent. When the coupling is introduced pronounced synchronization sets in
between almost all units. Nevertheless, note the asymmetries present, especially unit 5 and 10,
which are not synchronized with the rest of the array. Units 5 and 10 exhibit a very interesting
phenomenon, namely the emergence of two additional frequencies in their power spectra;
these are shown in figure 4. This genuine nonlinear effect is probably due to a bifurcation and
is related to the size of the array and is in itself very interesting, however it will not be

discussed in detail here.
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Figure 4. Power spectra of the individual units of the array in |1] for the precoupling (blue) and coupling
time (red). Note that the transition to synchronization is accompanied by emergence of the same spectral
peak for all systems after the coupling. This is also the peak frequency of the mean field signal (see figure
5). However note that for systems 5 and 10 complex behaviour oceurs with the emergence of two
additional modes in the spectrum.

Thus for this coupling strength we observe partial synchronization in the array; nevertheless
the bulk of the units in the array are mutually synchronized. What we observed here is similar
to the well-known Kuramoto transition expected in arrays of globally coupled phase
oscillators (Kuramoto, 1975 and 1984, Strogatz, 2000). Qualitatively this can be described as
follows. Below a critical coupling strength there is no synchronization between the units and
thus the mean field is practically zero. However, if the coupling strength is sufficiently large
to synchronize merely two oscillators, the mean field will increase. By virtue of the fact that
the units are globally coupled and thus dependent on the mean field, increases in the latter
will “pull” further units towards the synchronization region. This effect will be potentated
further with increasing numbers of in-phase units. The synchronization region can be
considered as a (spatially) global synchronization manifold, which in many cases is manifest
in the frequency domain for a range of coupling strengths. If the coupling strength exceeds
some critical value, all of the units will be eventually synchronized. It can be shown both

analytically and numerically that the synchronized solution is stable (see Strogatz, 2000) and
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thus the array undergoes a transition from quasiperiodic to synchronized motion. This
essentially constitutes an extreme dimensional reduction, since the degrees of freedom are
essentially reduced to those describing the singular motion on the global synchronization
manifold. For very small coupling strengths, no synchronization is observed and the motion
in the array is quasiperiodic, thus each system rotates with is own ‘characteristic’ frequency.
If the coupling strength is somewhat larger but does not exceed the critical value, then clusters
of synchronized units are observed. This effectively means again a dimensional reduction,
however less extreme as in the case of complete synchronization of the array. In this case
there is coexistence of several synchronization (sub) manifolds. The mechanism of emergent
and self-sustained synchronization through the mean field is fairly universal and has been
termed as Kuramoto self-organization (Kuramoto, 1975 and 1984). This phenomenon has
been widely studied both analytically and numerically in phase, linear weakly nonlinear and
recently also in chaotic oscillators (see Pikovsky, Rosenblum and Kurths, 2001, Boccaletti et
al., 2002 and Strogatz, 2000 for extensive reviews and formal treatment). Although the nature
of the constituent units of a given system may contribute some differential variability, the
global system behaviour and the main effects related to the transition to synchronization are
similar across a range of different system classes, as long as the coupling is global. In
oscillator models the completely synchronized solution implies motion at a compromise
frequency, which roughly approximates the average characteristic frequency of the oscillators

in the array.

A few conceptually important remarks are in order. In any globally coupled system, and for a
range of coupling strengths, there exists a stable solution for either partial or complete
synchronization of the array. The synchronization manifold in turn attracts the individual
units and constrains their dynamic range. This is a prime example of circular causality in
terms of synergetics, where an emergent macroscopic parameter, here the frequency of the
mean field, specifies global system behaviour. This has the important consequence that no
unit can be observed in isolation, since their behaviour is at least partially specified by the
mean field. Thus in terms of cortical columns in the brain (which can be approximated by
globally coupled arrays), the rationale of sampling individual neurons and then attributing
functional ‘receptive field” properties to them is not theoretically feasible. If anything, these
receptive fields reflect collective network modes, such as the global synchronization manifold
shown in this simulation. Recently Breakspear, Terry and Friston, 2003 have studied
biologically plausible models of coupled cortical columns. For varying coupling strength they

could observe effects of partial and complete array synchronization. Partial array
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synchronization, i.e. clustering, was contingent with intermittent phase dynamics. Complete

array synchronization was contingent with identical synchronization.

Undoubtedly, there is a multitude of interesting coordination effects arising in such networks
many of which can be readily observed even in simple simulations as the ones shown here.
The work of Breakspear, Terry and Friston, 2003 and Breakspear, Williams and Stam, 2004,
Breakspear and Stam, 2004 provide prime examples of the applications of the concepts of
spatially extended nonlinear systems to realistic brain models. However, we will not extend
this discussion further in this direction since our main objective here is not to study the nature
of coordination phenomena in systems, which are known (or predefined) but examine the
inverse problem. Namely, if one does not know the system (in terms of a comprehensive
model) but only has access to gross (mean field -like) observable, what can one infer about

the collective process.

The mean field signal of the system in [1] is computed as the instantaneous spatial average of

the solution of the  variable across all of the systems in the array. Thus let y,() be the

solution for the y state variable of the i-th oscillator, then the mean field signal mf is:

mf (1) = ;—Z 7.(1) 3]

where 7 is time, and 7 and N are as in equations [1-2].

This is shown in figure 5. Thus the emergence of synchronization in the array is accompanied
by a regularization of the mean field signal and an increase of its amplitude (top panel). Itis
instructive to examine the power spectrum of the mean field signal before and after the onset
of the coupling. This is shown in the middle panel of figure 5, where we observe a power
increase at a very discrete frequency. The existence of a spurious spectral peak in the mean
field prior to the onset of the coupling is due to the inherent similarity of the systems in the
array. The bottom panel of the figure shows a moving FFT spectrogram of the mean field
signal. During the coupling time we observe a very discrete and temporally sustained
frequency peak. Recall that from the interaction matrices in figure 3, we know that almost
complete synchronization has occurred in the array and frequency analysis of the individual
oscillators shows convergence towards a singular frequency (see figure 4), identical to the one
in the spectrum of the mean field signal. Therefore the global synchronization manifold can
be observed through the emergence of a singular and discrete spectral peak in the mean field
signal. Thus when tackling the inverse problem, one can claim that if there is a power increase

at a discrete frequency in the spectrum of the mean field signal this may denote the onset of
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synchronization in the array. Note that this is in essence the ERD/ERS model (Pfurtscheller
and Lopes Da Silva, 1999).
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Figure 5. Mean field signal of the integration of the system in [1] shown in figures 2 and 3 and 4. The units
in the array are not detuned and globally coupled at a moderate coupling strength. The top panel shows
the mean field signal as the spatial ensemble average. The coupling is introduced between 100-2007
indicated by the red bars. We observe an oscillatory patterning and an increase in the amplitude. The
middle panel shows the power spectrum of the signal before (blue) and after the coupling (red). We
observe an emergence of a discrete spectral peak during coupling and a small, possibly spurious peak
before the coupling. The bottom panel shows a moving window FFT spectrogram of the signal. Time and
frequency are on the x and y axes respectively, the colour code indicates spectral power. We observe that
during the coupling the activity is sustained at a discrete frequency.

However, we see that two fundamental assumptions in the model, which may generate this
behaviour, are not feasible for the large scale networks, which supposedly generate the
macroscopic mean field signals: the homogeneity of the units and the global coupling. The
EEG and MEG are believed to be generated by summed postsynaptic currents arising from
thousands and even millions neurons, stretching across entire centimetres of cortical surface
(Nunez, Wingeier and Silberstein, 2002). Thus many thousands of cortical columns are
sampled by a single macroscopic electrode or sensor. As discussed previously, under these
circumstances the cortical units contributing to the macroscopic signal can be considered
neither homogeneous nor globally coupled. Quite the opposite is true; the units of interest are
inhomogeneous and predominantly coupled to their nearest neighbours. However, the clear

cut one to one mapping of microscopic synchronization resulting to a power increase at a
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discrete frequency is only given when these assumptions hold. This is however only the case
for the microscopic level of description. Neurons that belong to the same cortical column may
well generate mean field signals, which have more or less singular frequencies. Next we shall
see that the relaxation of the homogeneity and the connectivity assumptions (from global to
nearest neighbour coupling) destroys this mapping completely and might even reverse it in
the sense that microscopic synchronization may even result in power decreases in the mean

field signal.

4.3.3 Mesoscopic level: Locally coupled networks of nonidentical oscillators
An ideal and comprehensive model of the generation of macroscopic patterns, would involve

a combination of the globally coupled network of identical units at small distances and a
nearest neighbour model of nonidentical units at larger scale. However the complexity
involved in the simulation of such nonlinear models with embedded spatial and temporal
scales and long computation times make this quite a prohibitive task. The reader can refer to
Jirsa et al., 2002, Wright et al., 2003 and Breakspear, Terry and Friston 2003, Breakspear and
Stam, 2004 for excellent examples of continuum and discrete multiscale neuronal models
respectively. We have seen in the previous section that globally coupled nearly identical
oscillators can generate mean field signals with fairly discrete characteristic timescales
(frequency content). Thus, one can consider a mesoscopic model, where the elementary units
have different characteristic time scales, which can be thought to emerge through the
interactions in the (globally-coupled) microscopic network. Thus the simplest possible
model, describing the emergent mesoscopic level is one of nonidentical locally coupled
elements.

Here we used a lattice of nonidentical (frequency detuned) Rossler oscillators:

X =0y, -2+,
v, =0 +0.15y, + ey, +v,_ —2y,)
z,=02+z,(x —10)

[4]

Where /=1... N, is an index specifying the number of the oscillator in the array, £, are additive

Gaussian noise components, @ is the characteristic frequency of the oscillator and & is the
coupling constant. Note that the coupling here is linear and of diffusive type, thus it is
proportional to the instantaneous difference of the activity in the i-th unit with its nearest

neighbours. For simplicity, we did not use a parametric boundary condition and thus the first
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and last unit were not coupled. As with the mean field model, a linear gradient for the

characteristic frequency is introduced as:

o, =w +353G-1) ]

1

Where o, and o, are the characteristic frequencies of the I®and i ™ oscillator respectively.

The parameters used where N=10; @, =1; & =0.05; £ =0.15.

Figure 6 shows the power Vs time pattern across the units in the array, which is formatted
analogously to figure 2. In contrast to figure 2, we observe that during the coupling time the
power in the array is redistributed between two maxima at the edges and a big power drop off
in the middle. This pattern implies some sort of clustering behaviour. On the whole the power
seems to be somewhat reduced during the coupling time. Figure 7 shows the interaction

matrices, which are formatted exactly as with figure 3.

Locally coupled elements with frequency gradient

1000

v@

C}){

Figure 6. Lattice of locally coupled Réssler oscillators (see equation [4]) with a linear frequency detuning
(equation [5]) with parameters N=10, &, =1;56=0.05,e=0.15. The format of the figure is similar to

figure 2. Here the left diagonal axis indicates the unit in the lattice, the right diagonal axis is time and on
the vertical axis squared amplitude is plotted. Coupling is introduced between 100-2007 (roughly 300-600
time units). We observe that during the coupling time the power in the array is reordered in to two power
maxima at the edges of the array and a large power drop in the middle.
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Figure 7. Interaction matrices for the lattice shown in figure 6. Same format as figure 3. Here we observe
that during the coupling time several phase synchronized clusters are formed, see text for details. The
frequencies of the 3 synchronized clusters are different, as this can be seen in figure 8 , that shows the
spectra of the individual units. The three synchronized clusters are also evident as distinct peaks in the
power spectrum of the mean field signal in figure 9.

We observe that during the coupling time several clusters are formed. Units 1, 2 and 3 for
instance are strongly interactive between them but less interactive with the rest of the
elements. The same goes for units 8, 9 and 10. A smaller and weaker cluster also seems to
exist in the middle of the lattice involving units 5, 6 (and partly unit 4). Units 1,2 and 3 for
instance are strongly interactive between them but less interactive with the rest of the
elements. The same goes for units 8, 9 and 10. A smaller and weaker cluster also seems to
exist in the middle of the lattice involving units 5, 6 (and partly unit 4). Note that the units
that are not physically coupled are effectively strongly interactive, such as units 1 and 3 and
units 8 and 10. This is a genuine self-organization effect arising through the dynamic
interaction of the whole lattice; the position and extent of the clusters results from the nearest
neighbour connectivity. Thus the formation of clusters can be viewed as a reduction of the
effective degrees of freedom in the system. It is important to note that the relevant
coordination phenomenon here is indeed phase synchronization, which makes the phase
difference the relevant collective variable (order parameter) at the mesoscopic level. The

latter can be seen by sampling two of the possible pairs of interaction.

Figure 9 shows the effective interaction between units 1 and 3. Note that these units are not
physically coupled but both of them interact with unit 2. From the amplitude difference shown
in B and the scatterpot of the amplitudes shown in C it is obvious that there is little correlation

between the units; thus neither identical nor (strong) generalized synchronization is observed.
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However as evident in panel D, the phase difference, which decelerates before the coupling
(according to the frequency gradient) is introduced, remains bounded for the entire duration of
the coupling. This is of also reflected in the phase difference distribution shown in E, which

shows a preferred value around 5 radians. Thus phase synchronization is observed.
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Figure 9. Effective interaction between elements 1 and 3. Note that these elements are not physically
coupled. Panel A shows the two time courses superimposed; the coupling is introduced between roughly
300-600 time units. B shows the amplitude difference. Note that is different form zero and fluctuates. C
shows the scatter plot of the x variables. Note the low correlation coefficient, no systematic relationship is
evident. D shows the time course of the phase difference wrapped mod 27 . Buring the coupling time
(roughly between 300-600 time units) the phase difference remains bounded. This is also evident in the
phase difference distribution shown in E, which shows a preferred value around 5 radians. Thus
imperfect phase synchronization is observed.

Figure 10 shows the interaction between elements 4 and 5 and is formatted exactly as Figure
9. Note the intermittent amplitude dynamics shown in A and B and the lack of correlation
between the amplitudes in C. In E we observe that the phase difference is bounded for most
of the coupling time (roughly between 300-600 time units) but occasionally (probably)

intermittent phase slips occur as evident in D. Another interesting effect is the marked

110



Coupled systems 4&5 do =0.00 e=0.10

A
00
B
00
i C
=gl 15 10 0 H5 0 5 10 15 0
° phase difference x1-x2 [rad]
At
P
E

Figure 10. Interaction of units 4 and 5. Same format as figure 9. Note time intermittent phase difference

dynamics in panel C and oscillation death in panels A and B during the coupling.

decrease in amplitude during the coupling time. This is consistent with the intermittent phase
dynamics. This phenomenon is oscillation death and the phase slips observed here are

attempts of the global system to ‘reset’ the phase difference by minimizing the amplitude.

The latter is evident from the temporal coincidence of the phase slips in panel C with local
amplitude minima in panel A. Thus the observed phenomenology here is intermittent phase

synchronization accompanied by quenching.

Coming back to the global behaviour in the lattice, we would like to examine the differences
between the emergent clusters more closely. The main effect regards the frequencies of the
synchronization processes in the 3 clusters, which are slightly different. This can be seen in
figure 11, which shows the spectra of the individual units; the two strong edge clusters exhibit

singular peaks with 0.17Hz (unit 1,2,3) and 0.23Hz (units 8,9,10). The weaker cluster in the
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middle exhibits frequencies around 0.17-0.19Hz. We can see that the units within the clusters
adjust their frequency during the coupling time; at the same time the units belonging to
different clusters express different frequencies. These also correspond to the three main
spectral peaks that can be observed in the mean field signal in figure 12. Interesting effects
can be observed for the units in the middle of the cluster, namely units 4, 5, 6 and to a lesser
extent the marginal units 3 and 7. Apart from the main frequencies these units display an
appearance of a second spectral peak. This is particularly evident for unit 4. These two
frequencies are likely to represent two competing modes of behaviour for the units in the
middle of the lattice. While the units adjacent to the proximal end of the lattice (i.e. unit 3)
exhibit a stronger peak in the lower frequency and a lesser peak in a higher frequency, the
situation is inversed abruptly in unit 4 where the exact opposite is the case. Thus the higher
frequency peak is more pronounced. In unit 5 a singular peak occurs at a somewhat higher
frequency. The latter is preserved in unit 6 but an auxiliary peak occurs here. In units 5 and 6
and 7 the units tend to approach slowly the (higher) frequency of the distal cluster but this is
not possible. At the same time, oscillation death occurs for the units exhibiting the competing
frequency modes. Thus the two edge clusters are clearly defined by high power at a certain
frequency and the middle part of the lattice seems to reflect a cluster boundary with possibly
extremely complex dynamics, which involve the abrupt creation and destruction of frequency
modes. The latter constellation is very important from a theoretical point of view. The two
edge clusters maintain their separation in terms of frequency by virtue of these abrupt
boundaries. Thus oscillation death, supported by local intermittent phase synchronization and
the lack of global synchronization in the array contribute to the segregation of separate

entities.

This clustering behaviour may shed some light to the phenomenology observed in the power
Vs time pattern in figure 6. There we have two power maxima, which correspond to the two
stronger clusters at the edges of the lattice. The big power drop, which coincides with the
weaker cluster, reflects a region of oscillation death. Thus the units in the middle of the lattice
are dynamically ‘pulled’ towards the frequencies of the two edge clusters (which introduces
an ever growing phase difference between the edge elements of the middle cluster ,units 4 and
6) but the presence of the diffusive coupling tends to reduce this phase difference. As a result
the amplitude has to decrease, so that the phase difference can be reset. Thus oscillation death
here marks the cluster boundaries: as a consequence the synchronization processes in the two

main clusters become more distinct.
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Figure 11. Power spectra of the y variables of the individual units n the lattice of locally coupled oscillators
defined in [4-5]. The power is plotted in blue for the coupling time and red for the precoupling time. See
text for details.

In terms of synergetics we arrive at the following generalization. The collective variable, the
one that specifies the interactions of the elements in the system, at the mesoscopic level is the
phase difference. The emergent macroscopic order parameter is the frequency difference of
the synchronization process berween the clusters. Note how the order parameters in both
mesoscopic and macroscopic levels are relational rather than physical observables. This is the
hallmark of synergetic systems. The frequency difference of the synchronization process
between the clusters keeps the cluster elements segregated by continually accelerating their
phase difference. This is another typical example of synergetic behaviour, once a macroscopic
order parameter is formed; it in turn specifies the behaviour of the system and constrains the
behaviour of the individual units. However, if the frequency difference (the order parameter at
a macroscopic level) changes, then the phase difference (the order parameter at the
mesoscopic level) between elements originally placed in different clusters may stabilize and
thus the clusters can change or entirely new clusters may emerge. Such changes in the
collective variables are expected whenever a control parameter (here either the coupling
strength or the distribution of characteristic time scales) changes and may give rise to a phase
transition. Another possibility for change in the clustering is intermittent behaviour in the
presence of fixed control parameters. In that case we would observe an intermittent behaviour
in the order parameters of the system, thus either the phase difference of the individual
elements at a mesoscopic level or the order parameter at a mesoscopic level. In the simulation

shown here the clusters are fairly stable for the entire duration of the coupling.
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In many experimental cases, we do not have access to the mesoscopic level and only
macroscopic system observables are available. In this simulation the parameter of interest (the
macroscopic order parameter) would be the frequency difference of the clusters. This brings
us back to central question, we attempt to address here. Can we use the mean field signal to
learn something about the underlying collective process? We should look for the answer by
observing the macroscopic order parameter, which is in the frequency domain. The mean

field signal for this simulation is computed according to equation [3] and displayed in figure

12.
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Figure 12. Mean field signal of the lattice of coupled oscillators in |4-5]. On the top panel the time course
of the mean field signal is plotted. The coupling time is indicated by red bars (roughly between 300- 600
time units). The middle panel shows the power spectra for the signal before (red) and during (blue) the
coupling. In the bottom panel a moving window FFT spectrogram is shown. The x and y axis depict time
and frequency respectively and power is indicated by the colour bar. Note the emergence of 3 distinct
power peaks in the spectrum during coupling and the marked power drop in the middle. These
correspond to the emergent clusters shown in figures 7 and 10 and the drop reflects the oscillation death
at the cluster boundaries. The time course of the clusters can be seen in the spectrogram of the mean field
signal, and suggests that they are stable. The mean field signal captures the essential coordination

phenomena occurring in the array.
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The signal appears more structured during the coupling and on the whole does not seem to
increase in amplitude as we had seen in the case of the globally coupled array. The transition
from no coupling to coupling is accompanied by the emergence of three accentuated peaks in
the spectrum of the signal (plotted in the middle panel of the figure) and a marked power drop
between the two main peaks. The power drop here is highly frequency specific and reflects
the boundary between the clusters shown in figure 7 and 11, whereas the discrete peaks
correspond to the 3 synchronized clusters. The bottom panel shows a spectrogram of the
signal, which exhibits two clear peaks during the coupling. The lower frequency component
shows a somewhat periodic fluctuation in its power but remains discrete in frequency,
whereas the higher frequency component is fairly sustained in time. The frequency difference
between the components seems fairly stable. Hence, the mean field signal captures the
essential coordination phenomena occurring in the array, the formation of synchronized
clusters and oscillation death occurring at the boundary. The order parameters for the array
emerge in the frequency domain and can thus be extracted from the mean field using standard

spectral methods

4.4 Discussion
Some remarks are in order here with respect to the relation of synchronization processes and

macroscopic power changes. As we have seen in the simulation above, the power of the array
does not increase during the coupling, despite the presence of synchronization between the
units. Quite on the contrary, a fairly significant power drop occurs, which is evident as a
broadband power decrease in the spectrum of the mean field signal. This power drop is due to
spatial clustering and reflects the boundary of the synchronized clusters, which are evident as
distinct and fairly discrete power increases in the spectrum of the mean field signal. However,
the clustering process is in essence partial and specific synchronization, with the emergent
formation of simultaneously active alliances of interacting units, which become however
themselves segregated through the emergence of a collective order parameter, the frequency
difference. This kind of process is typical for complex systems in terms of an interplay
between functional integration and segregation. Here we used a simple, abstract model, which
only vaguely resembles the characteristics of cortical connectivity; nevertheless such complex

behaviour was spontaneously generated.

Furthermore, even in this simple model the relation between synchronization processes
occurring at lower levels of description and the macroscopic power changes in the mean field

signal is not straightforward. Most of all we have seen that power decreases are not
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necessarily due to desynchronization; quite on the contrary they may well reflect the
‘boundary’ of highly specific and complex synchronization phenomena. Such synchronization
phenomena do not necessarily result to marked power increases but can give rise to
accentuations of very discrete power peaks, which are clearly distinct for the different
clusters. Thus the claim implicit in the ERD/ERS nomenclature (Pfurtschller and Lopes Da
Silva, 1999) that power increases are de to synchronization and decreases are due to
desynchronization cannot be supported even in this simple model. This may help reconcile
some of the discrepancies, found in the neuroscience literature. At microscopic levels of
description, synchronization processes have been documented to underlie task-related
integration of information (for a review Singer, 1999). According to the ERD/ERS model
(Pfurtscheller and Lops Da Silva, 1999), increases in power in the mean field are to be
expected, if microscopic synchronization is to occur. However, at the macroscopic level for
similar tasks very often decreases in power are reported and interpreted as desynchronization.
If one follows, the two literatures one gets the impression that at a microscopic level,
synchronization is a synonym for activation, while in the literature dealing with the
macroscopic level synchronization is a synonym for idling while desynchronization is a

synonym for activation.

The critical point is that power increases are synonymous to synchronization only if the
underlying network is a globally coupled network of identical elements, as we have seen in
the previous section. However, this assumption may only be realistic when considering
microscopic scales in the brain. For the spatial scale at which macroscopic signals are
generated in the brain this assumption is violated: the functional units are inhomogeneous and
(predominantly) locally coupled. Even the simplest possible model allowing for diversity of
the units and local coupling such as the one presented here, does not allow the direct mapping

of a power increase to synchronization and a power decrease to desynchronization.

Furthermore, using this simple model we have seen that power increases and decreases in the
mean field can be found in quite neighbouring frequencies; explicitly power drops ‘surround’
the peaks. This may shed some light on another intriguing phenomenon in the literature, the
existence of concurrent ERD and ERS in the same cortical rhythm, typically reported for the
broad alpha band (Klimesch ef al., 2000). The typical findings are alpha power increases in
very circumscribed frequencies, embedded in a broadband power decrease. These findings are
deemed paradoxical because of the assumptions implicit in the ERD/ERS model, which

interprets the concurrent power changes of opposite sign as simultaneous synchronizations



and desynchronizations. In our simple model such patterns of power changes emerge as a

signature of specific functional clustering processes.

The formation of frequency specific clusters marked by oscillation death is an intriguing
possibility for macroscopic spatiotemporal brain dynamics. The number and the size of the
synchronized clusters may vary dynamically, especially if the control parameters are
themselves time varying. According to Breakspear, Terry and Friston, 2003, ascending and
diffuse neuromodulatory systems are consistent with this role in the brain, namely acting as
dynamic coupling parameters. These when incorporated in a biologically plausible network of
cortical columns give rise to intermittent phase synchronization and desynchronization, which
leads to a dynamic reshaping of the form and size of the clusters. The latter is synonymous to
a dynamic modulation of the effective dimensionality of the global system. The line of work
presented here may eventually help to extend some of these observations with respect to the
phenomenology observed at the macroscopic level and thus facilitate the connection to the
EEG/MEG literature. Here we have seen that synchronized clusters may give rise to discrete
spectral components and may be surrounded by large boundaries, where oscillation quenching

Is observed.

The first consequence is that distinct functional clusters may be sought in the frequency
domain. Thus if a power increase in the mean field signal is observed, this may be the result
of the formation of synchronized clusters, perhaps governed by an order parameter in the
frequency domain. Such power increases will be most likely in neighbouring networks with
close characteristic frequencies and thus in networks with dense intermediate range
connections and synchronized input. This maybe particularly relevant for early visual
processing. A vast amount of literature suggests that the perception of holistic stimuli is
related to oscillations of increasing power, which are however confined in the gamma
frequency range (Gray and Singer, 1989, Koenig, Engel and Singer 1995, Tallon-Baudry et
al., 1996, Tallon-Baudry and Bertrand, 1999). This seems to be particularly relevant for
primary visual cortex. Thus crudely put, for different stimuli or tasks requiring task specific
integration of information, one should expect clustering at different frequencies, evident as
peaks in the spectrum the mean field signal. This simple line of reasoning is followed in
chapter 6, where experiments in the visual system are performed and the data seem to support

this idea.

The second consequence relates to the origin of power decrease in complex perceptual and

cognitive tasks. It is possible that several synchronization processes may simultaneously
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occur in very different frequency ranges in the same local network. One may speculate about
the following constellation: the more specific the synchronization process is, thus the more
the need for functional segregation is pronounced in a certain area (for instance by virtue of
spatially and temporally discrete input to a given network), the smaller the functional clusters
will be. If the clusters are small they will give rise to small but discrete peaks in the mean
field signal. However, the cluster boundaries may be large, in order to enhance the separation
of the clusters. This may be instantiated by synchronized clusters whose emergent frequencies
are quite distant in the presence of strong coupling. Such strong coupling in the brain is
however local. Thus in a certain large-scale network, such a constellation may produce a very
pronounced power decrease and distinctive and highly frequency specific power increases.
The latter would have been interpreted as a prevailing ERD in the presence of ‘paradoxical’
ERS’s, implying that desynchronization had occurred. However, the underlying collective
process would have been a complex spatiotemporal dynamic process with formation of highly

specific functional clusters.

In biologically plausible, multiscale models such as in Brekaspear, Terry and Friston ,2003,
transient synchronization results in dimensional reduction. Desynchronization results in short-
lived dimensional explosion and is subsequently followed by a rearrangement of the spatial
pattern of synchronization into different clusters. The model presented here suggests that
intermittent dynamics in larger spatial scales may produce oscillation death, which as we have
seen is a mechanism of contrast enhancement but also may contribute substantially to a
‘resetting’ of the system by abruptly minimizing the input to the neighbouring collective
modes. Thus oscillation death on a global scale may contribute to the ‘updating’ of the
clustering process. This is a role very much consistent with the demands of complex cognitive

tasks, where marked power decreases are indeed often observed.

Finally, we are fully aware of the limitations of the simple models presented here. These are
very abstract and thus potentially important details of the biological systems are not
considered. Furthermore, the basic constituent unit used in this work exhibits very discrete
and sustained oscillatory behaviour, which may not be the case for many cortical networks,
which may consequently not exhibit discrete spectral peaks. The latter may question the
validity of the emergent order parameters. However, many of the synchronization phenomena
and fundamental mechanisms encountered in such simple models are universal and can be
demonstrated in realistic brain models (Breakspear, Terry and Friston, 2003, Breakspear and
Stam, 2004). Thus whether or not the predictions of these models will be useful for real

neurophysiological data is ultimately an empirical question. The generality of the predictions
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may contribute to their experimental testability, which is explored in chapter 6.Most
importantly, although models such as the ones described here are not biologically plausible,
they may provide us with general but helpful insights about the relationship of the mean field
signal to the underlying coordination phenomena and thus inform about the relation between
scales. The latter is extremely important for unifying large bodies of literature in
neuroscience. We have attempted to show that even such simple models help to disambiguate
pronounced discrepancies and paradoxes arising through a mere difference in the scale of

observation.




Chapter 5: Quantifying local and global nonlinear neural interactions from

magnetoencephalographic data: application to an auditory AM task.

5.1 Background and rationale

The steady-state auditory-evoked potential (SSAEP) (Rees et al., 1986, Kuwada er al., 1986,
Picton ef al., 1987) is the response to a periodic stimulus such as an amplitude modulation (AM)
that closely follows the frequency of the driving stimulus. The magnitude of the AM- following
SSAEP is proportional to the level of the stimulus, and this level-dependency has led to its use as
an index of hearing threshold in the calculation of “physiological audiograms”, used clinically
(John et al., 1998, John and Picton, 2000). The SSAEP magnitude is also proportional to the
modulation depth of the driving AM stimulus, and mirrors the psychophysically-defined temporal
modulation transfer function for AM, implying that it reflects the processes underlying AM
perception (Rees er al., 1986, Picton er al., 1987). Despite its proven clinical utility, the periodic
locking behaviour of the auditory cortex to the AM stimulus implied in the SSAEP concept is
distinctly unfavourable in terms of information processing. Any integrative information
processing, which is to be expected at the level of auditory cortex, would inevitably require some

form of signal transformation/modulation.

The classical method of measuring the SSAEP is by averaging responses over a large number of
very short epochs, usually the length of the period of the driving AM waveform, to maximise the
signal-to-noise ratio of the response (Picton et al., 1987, Ross et al., 2003, Pantev et al., 1996).
The assumptions behind averaging (and steady state techniques in general) are that the underlying
neural signal is stationary, time-locked to the stimulus and superimposed on white noise. In this
study we set out to test these assumptions by examining the continuous temporal dynamics of
dipole moments computed over a series of epochs. We investigate these dynamics both in terms
of the relative phase and amplitude relationships between the auditory cortices across

hemispheres and within hemispheres but across frequency bands.

The central query in this study relates to whether the AM following response indeed merely
entails a steady state response, both at intrahemispheric and interhemispheric levels. The concept
of the steady state response essentially implies an additive signal plus noise model, in which a

periodic response at the frequency of the AM stimulus is superimposed on a white noise
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background. Therefore, there shouldn’t be any interactions between the ongoing rhythms
(considered as independent additive noise) and the AM following response (considered as the
signal). In the case of binaural stimulation one would additionally expect, crosscorrelated
periodic activity in the two hemispheres due to the common driving signal (and thus at the AM
frequency) but no nonliniarities and no cross frequency interactions, which would imply a

genuine interaction between the two sites.

Thus testing these hypotheses is synonymous with detecting (or not) the presence of a nonlinear
structure in both local and global amplitude and phase dynamics. This is not a trivial undertaking,
since the nonstationarity the presence of instrument noise, finite data length and filtering are
factors often associated with the detection of spurious nonlinearity (Rapp et al., 1993,
Breakspear, 2002). We use two metrics based on mutual information to capture the interactions in
the slow amplitude and phase dynamics. Since mutual information is sensitive to both linear and
nonlinear interactions, the issue of detecting nonlinearity can be reduced to identifying

components of the interactions that cannot be explained by solely linear, stochastic processes.

5.2 Methods
5.2.1 ¥perimental Design

Participants
Three listeners (age range 25 — 49 years; two males) participated in the study. All were right

handed and none reported any hearing loss or neurological disorder.

Stimuli

MEG data were collected while listeners were presented with three different auditory stimuli.
The stimuli could be either a pure tone at 500 Hz, or a 500-Hz pure tone that was sinusoidally
amplitude-modulated with a modulation rate of 32 Hz. The amplitude modulation could be
presented to each ear identically (diotic AM) or with a 180-degree phase lag (3.14 radians)
between the modulation waveforms (dichotic AM). All stimuli had a duration of 4000 ms and
were gated on and off with 20 ms linear rise and fall times. The sounds were presented at a
comfortable hearing level, through echoless plastic tubing fitted with foam ear tips. Each
stimulus type was repeated 25 times, and the order of presentation was pseudo-random. During
stimulus presentation, subjects were asked to listen to the stimuli (although they were not

required to complete any task) and to fixate on a visual fixation point.
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5.2.2. Recordings, Dipole Analysis
Data collection was carried out using a CTF Omega 151 Channel MEG system (CTF Systems

Inc., Port Coquitlam, Canada). Participants wore an inflatable head cuff to minimise movement
during recording. Reference coils localised before and after the recording session enabled the
measurement of any head movement that occurred during recording; no subject moved more than
5 mm.

The data were recorded in 3™ order gradiometer mode (Vrba ef al., 1999), sampled at 625Hz and
low-pass filtered at 100Hz. A 50Hz comb filter was applied to remove the power line interference
and its harmonics. Recording epochs were 5.8 seconds in duration, with the onset of the stimulus
occurring 1.5 second after the start of the epoch. Stimulus duration was 4s and the inter-stimulus
interval was 2 s. The data were DC corrected based on the pre-trigger period within each epoch
and then averaged according to stimulus type. Digitised head shapes were co-registered onto
structural T1 MRI scans using surface matching techniques described elsewhere (Adjamian et al,

2004b).

The averaged data for diotic 32-Hz AM were filtered with a 4-Hz band-pass filter centred on 32
Hz. The filtered data were then modelled, using a reduced chi-square goodness of fit (Supek and
Aine, 1997), with two unconstrained spatiotemporal dipoles over the 4 second stimulus duration,
each manually seeded close to auditory cortex in the left or right hemisphere. Monte-Carlo
analysis was performed by fixing each dipole in turn and re-fitting the remaining dipole to the

averaged data with added noise (estimated from the anti-average).

We then projected the unaveraged data through these dipole models to give epoch-by-epoch time-
series estimates of the response to both the diotic and dichotic stimulus types. Therefore, for each
subject, with both diotic and dichotic AM, there were 25 x 5.8 second epochs of un-averaged data

for each dipole model.

5.2.3 Time frequency analyses
In order to observe time-frequency components not reflected in the time-domain average we

performed multiresolution wavelet analysis using Morlet wavelets on an epoch-by-epoch basis.
Mann-Whitney z-scores were computed for the epochwise differences in the two dimensional

(time, frequency) wavelet coefficients between pre-stimulus and stimulus states. For instance, a
z-score of 3 for a given time-frequency voxel in the stimulus phase would indicate that wavelet
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power was larger by 3 standard deviations than the average wavelet power of all the voxels in the

same frequency bin during the prestimulus phase.

5.2.4 Detection of signal interdependencies using the Hilbert transform.
The analysis described below was conducted on the epoch-by-epoch unaveraged data projected

through the dipole models as described in the previous section.
We were interested in the following cases:
1. the interactions of the AM following response with the ongoing rhythms at all possible
frequencies in the same hemisphere
2. the interactions of the AM following response between hemispheres
3. the interactions of the AM following response in one hemisphere with ongoing rhythms
in at all possible frequencies in the other hemisphere

4. the interactions of ongoing rhythms between hemispheres but in the same frequency

The raw dipole data were narrow band pass filtered between 30-34 Hz to extract the following
AM response. In order to extract all possible frequency components a 4Hz wide bandpass filter
was applied to the raw data stemming from the same or the contra lateral dipole data for a

frequency range between 2-62Hz in steps of 2 Hz.

The narrow band pass filtered data were convolved with the Hilbert transform to obtain uniquely
defined estimates of the instantaneous amplitude and phases of the signals. This approach is

based on the analytic signal concept (Gabor, 1946). The analytic signal /(¢) is a complex

function of time:

w(t) = s(t)+ js (1) = A(t) e’*"” .

where s (1) is an arbitrary signal where the function , §'(¢) is the Hilbert transform of s(t):

()= lPJ/.wjﬂar (2]
T o1

and P.V means that the integral is taken in the sense of the Cauchy principal value. The

instantaneous amplitude A (t) and phase ¢(7) are uniquely defined by [1].

The instantaneous amplitude A(t) is given by :
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A =|RE @) +3G(1)° [3]

and the instantaneous phase ¢(z):

s (1)
(1)

¢ (1) = arctan

The instantaneous amplitudes and phases obtained in [3] and [4] can be used to examine possible

signal interdependencies.

5.2.5 Detection of phase synchronization
In the case of the instantaneous phase, the coordination phenomenon of interest is phase

synchronization. The sufficient condition for the latter is that the instantaneous phase difference
of two synchronized systems remains bounded (see Rosenblum et al., 1996, Pikovsky,
Rosenblum and Kurths, 2001 and Tass ez al. 1998). In the general case of unequal frequencies we

have:

’n;ﬁk —m(/)1| <c (5]

where @, @, are the instantaneous phases of two systems k and /, ¢ is a constant and n, m are

integers defining the frequency ratio of the systems. The instantaneous phase difference 50 is

wrapped in the interval [0 2x].
o¢ =[ng, —me,]mod2xr [6]

In the special case of an equality, [5] states that the phase difference will be constant. In the more
general case, the phase difference will not exceed a given value and will hence remain bounded.
This corresponds to synchronization in a statistical sense and can be visualized by means of'a
histogram of the phase difference. If the distribution of the instantaneous phase difference is flat,
there is no preferred value for the phase difference, which is thus unbounded in the interval [0
2x]. If the distribution has a preferred (modal) value, this corresponds to synchronization in
statistical sense. The degree of synchronization in terms of a synchronization index can be
quantified by the entropy of the distribution of the instantaneous phase differences as in Tass et
al., 1998.Thus the broader the distribution is, the larger the entropy and the weaker the observed
synchronization. Although, this approach is very intuitive and efficient when dealing with

detection of synchronization between processes of the same frequency (thus when n=m), it is
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somewhat impractical when dealing with cross frequency n:m synchronization. In such a case,
the n:m ratio has to be picked up by trial and error (Tass et al.,, 1998). In this study we adopted a

very similar approach but we treated the bivariate instantaneous phases of paired signals (4, and
¢,) as the variables of interest and calculated a phase synchrony index based on Mutual

Information (see Hadjipapas et al.,, 2005 and chapter 2). The advantage of this method is that it
can be directly applied to all possible combinations of frequency ranges in the data, without
having to arbitrarily choose an n:m ratio. The procedure for calculating the synchronization index

(SI) follows:

The Shannon Entropy of a given univariate probability of a distribution of the phase angle in a
given time series can be easily estimated using histogram based methods (Van Quyen et al.,

2001) according to:

Nbins

H(g,) == Y p6,)np(4) (7]

where Nbins is the number of bins in the histogram and p(g, ) is the relative frequency of

finding the phase in the k-th bin. The number of bins was determined as the cubic root of the
number of data points in the distribution. The binned distribution was then evenly spaced

between its maximum and minimum.

The joint entropy can be estimated analogously as:

Nbis  Mbiny

H($8) ==, >.p@.¢)In p.4), (8]

k=1 1=1

where Nbins and Mbins are the number of bins in the univariate phase distributions ¢,,4,
respectively and  p(g,.¢,) is the relative joint frequency of finding the phase ¢, and phase ¢, in

the k-th and I-th bin respectively.

Mutual Information (MI) between the instantaneous phases of two signals is then:

M](¢k=¢/):H(¢k)+H(¢/)'H(¢k>¢/) [9]
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and is a measure of the statistical (linear and nonlinear) dependence between the two variables.
We used a histogram-based method to assess Mutual Information. With this method the maximal
MI is a function of the number of chosen histogram bins. The MI measures we present here have

been normalized by the maximal possible MI.

Explicitly:
MI
S/ =
M] N Sl e [0, ]] [10]

max
where M/ is the observed Mutual Information and M! .= In (Nbins).

In this way we obtain a synchronization index, S7, between 0 and 1, where S/= 0 represents no

synchronization and S7 =1 represents perfect synchronization.

An important feature of the synchronization index based on MI is that it can identify

interdependence between phase at different frequencies and thus n: m phase locking according to:
4n¢k—m(plléc [11]

where #x @ are the instantaneous phases of the two frequency signals, ¢ is a constant and n, m
are integers defining the frequency ratio of the signals. If the analysis is done across the entire
combination space in terms of all possible cross frequency interactions, n and m can be explicitly
set to the mean frequency of the frequency range on which the analysis is being conducted.
Explicitly, if two signals of interest are narrow band filtered at two different frequency ranges,
say range; = J, to f, forsignal I and range, = f, to f, forsignal 2 and ¢, and ¢, are the
instantaneous phases of the narrow band filtered signals 1 and 2 respectively, then [10] can be

used in the following way:

L+ fi + 1

Ef24¢k~‘22¢,3c [12)
X ) o+

That is, n = f_f;ﬁ and m = / 2]’_.

The products n¢, and mg, are then substituted in place of the instantaneous phase angle values
(¢, and ¢,) in equations [7]- [10] and then the cross frequency, high-order synchronization index
SI'is computed for every possible frequency combination.
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5.2.6 Detection of interdependencies between instantaneous amplitudes.
The instantaneous amplitudes obtained from [3] are often also referred to as envelopes. These

two terms will be used interchangeably in the context of this paper. The approach followed for
detecting interdependencies between the instantaneous amplitudes of a given pair of signals was
essentially the same as with instantaneous phases and thus using a metric based on MI. The
instantaneous amplitudes obtained from [3] were substituted in equations [7] - [10], in place of

the instantaneous phases to yield as a normalized measure of mutual information (Mlenv).

5.2.7 ivelope versus phase interdependence
It should be noted, that although the same statistical metric (Mutual Information) was applied to

both instantaneous phases and amplitudes, the two respective normalized indices SI and Mlenv
reflect very different properties of signal interdependency. The SI reflects a statistically stable
relationship between the phases of given signals at a certain frequency (or a pair of frequencies).
Thus, the SI can essentially capture the phase dynamics at a discrete time scales, namely the ones
that corresponds to the frequencies of the synchronization process. The SI is therefore (largely)
independent of any modulations in the signal amplitude. The envelope of a signal in contrast,
reflects amplitude modulations of the signal that occur at a range of slower time scales. Thus the
Mlenv can reflect a common modulation of the slow amplitude dynamics in two signals. Note,
that in contrast to the phase, the amplitude dynamics is not strictly restricted to a discrete
frequency range. Consequently, apart from the obvious distinction of measuring interactions
either in the phase or amplitude domain the two metrics also reflect different characteristic time

scales.

It should be also noted that amplitude and phase are treated as independent entities from a general
statistical signal processing point of view and thus without an explicit model of the process
generating the signals. This distinction is strictly speaking only true in the case of linear
stochastic processes. However, in many chaotic systems, frequency (corresponding to the mean
velocity of the phase rotation) and amplitude are interdependent (see Rosenlum et al., 1996,
Pikovsky, Rosenblum and Kurths, 2001 and chapter 3). The consequence of this is that the phase
is dependent on the amplitude and cannot be therefore clearly defined in the sense of the Hilbert
transform, which assumes a more or less uniform rotation of the phase (see Boccaletti e al.,
2002). This becomes particularly important in systems, which exhibit multiple interrelated
frequencies. Two such systems can exhibit a form of synchronization, which does not involve
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adjustment of their frequencies and phases but instead occurs in the form of a deterministic
mapping between their (combined amplitude and phase) dynamics. This phenomenon is referred
to as generalized synchronization (Rulkov er al.,, 1995) and methods based on explicit nonlinear
models of interaction have been proposed for its detection in experimental data, such as the
synchronization likelihood (see Stam and Van Dijk, 2002). Even though, the Mlenv metric is not
explicitly based on a model of the underlying data, it is likely that it will be sensitive to at least a

proportion of these generalized nonlinear interdependencies.

5.2.8. Detection of nonlinearity in signal interdependencies using surrogate data.
In order to detect nonlinear structure in the interaction metrics one can compare the observed

experimental data to surrogate data, in which possible nonlinear structure is fully destroyed,
whereas linear structure is preserved. In the case of testing for interactions in the same frequency
range but in different hemispheres we employed a multivariate algorithm for generating surrogate
data, which is based on randomisation of the phase of the Fourier transformed data (Prichard and
Theiler, 1994). Hence, for a given pair of experimentally observed time series, which are to be
tested for interdependence, the algorithm preserves borh the auto and cross correlation functions
in the time domain (corresponding to the spectral and cross spectral density functions in the
frequency domain) but destroys any higher order moments. Thus the surrogate data exhibit the
same auto and cross correlations, the same spectra and crossspectra as the original data and can
be therefore used to formulate the null hypothesis of a multivariate purely stochastic process.
Briefly, the algorithm is as follows: a given pair of experimental signals is transformed in the
Fourier domain using the discrete Fourier operator. Then for both Fourier transformed signals the
phase at each frequency is rotated by the same random value drawn from a uniform distribution
in the interval [0 27t]. Finally, the data is transformed back to the time domain using the inverse
Fourier transform. Rotating the phases by the same random variable essentially destroys possible
interdependencies between different frequencies both within and between signals. Thus in
operational terms, in case of the SI, the surrogate data stand for the null hypothesis of a purely
linear stochastic (resonance-like) synchronization process and in terms of the Mlenv they
represent the hypothesis of a linear correlation of the envelopes. In the case of testing interactions
between the two dipolar time series at different frequency ranges, there is no requirement to
preserve the crosscorrelation function. Hence, in these cases the phases of the two Fourier-
transformed dipole time series were rotated by different random numbers at each frequency bin
yielding (after applying the inverse FFT operator) two surrogate time series. These were then

filtered in two different frequency ranges and further processed in the same way as the real data.
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In order to test for interactions between different frequencies in the same dipole time series we
just rotated the phase of the Fourier-transformed dipole time series once for every frequency bin,
which yielded a single surrogate time series. The latter was then filtered in two different

frequency ranges and then processed in the same way as the real data.

Finally, one should consider the reliability of the procedure for generating surrogate data. It has
been shown that the FFT-based surrogate methods can lead to false positive rejections of the null
hypothesis when a non-gaussian amplitude distribution is not corrected for (Rapp es al., 1994).
Some numerical studies have shown that metrics of generalized synchronization were not
affected by non-gaussian amplitude distributions and thus did not result to false positive
detections of nonlinearity (Stam et al., 2003). However, whether or not a non-gaussian
distribution of amplitudes can give spurious detections of nonlinearity (assessed using different
signal statistics) has not yet been studied systematically. Therefore, employing conservative
inferential statistics over many experimental realizations is essential in order to detect any

nonlinear effects, genuinely due to the experimental paradigm.

5.2.9 Statistical comparison of signal interaction metrics between observed and surrogate
data

For each experimental trial and thus for any given pair of experimental signals of interest (inter or
intrahemispheric), 100 surrogates were constructed. Then both the true (observed) and surrogate
time series were band passed filtered and analysed in exactly the same way, to obtain SI and
Mlenv indices. This yielded a one-dimensional distribution of true SI and Mlenv values across
experimental trials and a two dimensional distribution (thus including the values for each
surrogate and epoch) of surrogate SI and Mlenv values. We wanted to test the hypothesis that
additional nonlinear interactions occur, which are not present in the surrogate data. This was
achieved by comparing the central tendency (mean/median) of the real with the surrogate
distribution. Thus the null hypothesis would be that the mean/median of the real data distribution
could infact be drawn from a distribution of means/medians of the surrogate data. The latter
distribution was generated as follows: for each real epoch of data 100 surrogate epochs were
generated resulting in a two dimensional distribution of size equal to the number of epochs for the
first dimension and to the number of surrogates for the second dimension. Next a random index
was assigned to the surrogate dimension and the mean/median across the epoch dimension was
taken. For instance a random index of 3 would mean that the 3 surrogate of each epoch was
chosen and the mean/median across all the epochs was computed. This was repeated 1000 times

giving rise to a randomised distribution of the means/medians. The latter served as a null
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distribution, whose one-tailed 95" confidence interval served as a significance level. Thus if the
true mean/median of the observed data was larger than the 95" percentile of the random

distribution of means/medians it was deemed significant.

5.2.10 Quantifying nonlinear interactions of envelope and phase dynamics in simulated
datasets

In order to test the methodology described in the previous sections we used it on interactions in

the phase and envelope domain, which were known to be nonlinear.

In order to test the phase synchronization metric we used two coupled Rossler systems:

X2 ==—Q W, =2, + Sia T E (X210 = X2
Wi, =0, ¥, +t 005w,
21,2 = O'2+Zl,2(/1/1,2 —-10) . [13]

where the parameters @, =1.00, @, = 0.7 , represent the natural frequencies of the two systems

and govern their initial frequency mismatch (8 = |®,-m5]); £= 0.18 is the parameter governing

the coupling strength of the two systems and &, , are two Gaussian delta correlated noise

processes.

The y variables of the Rossler systems are shown in figure 1, panel A. Although the systems are
diffusively coupled their interaction is not entirely linear, since the dynamics of the systems are
locally chaotic and nonidentical (the two systems are frequency detuned). Some evidence for
possible nonlinearity can be observed in the plot of the instantaneous phase difference in panel B.
The latter exhibits periods of stability, which irregularly alternate with periods of acceleration
and deceleration of the phase difference. Two distinct main plateaus indicating the presence of
synchronization are observed: early one occurring around 1.4 radians and a later one around 1.2
radians. The distribution of the phase difference shown in panel C is indeed not uniform but
indeed exhibits a bounded distribution with these two main peaks. The nonlinear nature of this
phase interdependence is quantified using the methodology described in the previous sections.
The results for the synchronization index (SI) analysis are shown in panel D. The observed SI
between the two systems, indicated by the red line is clearly larger than the 95 % confidence

interval of the distribution of mean SI in the surrogate data. In fact the true mean SI lies well
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outside the null distribution, which means that there is a nonlinear component in the phase

interdependence, which can not be explained by a purely linear cross correlation.
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Figure 1. Quantification of nonlinear phase synchronization. Panel A. Time courses of two interacting Rossler
systems, see text for details. Panel B. Time course of the phase difference of the systems in A. The phase
difference is bounded denoting synchronization. Note the existence of two distinct plateaus, which are
interrupted by periods of phase acceleration and deceleration. Panel C. Histogram of the phase difference
shown in B. Note the bounded distribution and the existence of two modal responses. Panel D. Distribution of
mean SI for the surrogate data. The 95" percentile serves as a confidence interval. The true mean is shown by
the red line. Note that the true mean lies well outside the null distribution
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Figure 2. Quantification of nonlinear envelope interactions. Panel A shows the two signals and the
corresponding surrogate data. Panel B shows the envelopes of the signals shown in A. Note the exponential
damping and amplification present in the real data but not in the surrogates. Panel C shows a scatterplot of
the envelopes of the signals plotted against each other. Note the clear nonlinear relationship present between
the envelopes of the signals and the random scatter plot of the surrogate data. Panel D show the results of the
analysis of the mutual information between the envelopes. The true median Mlenv shown as a red line lies
well outside the distribution of the medians in the surrogate data. This indicates that a truly nonlinear
relationship between the envelopes of the signals exists.

In order to test for nonlinear interactions in the envelope domain we used a somewhat more
artificial example. Two sinusoidal signals at different frequencies (20 and 32 Hz) were created.
The signals were modulated by either an exponential damping or an exponential amplification
function. The signals are shown in figure 2, panel A. For comparison surrogate data are plotted
below. Panel B shows the envelopes of the signals as extracted by the Hilbert transform. Notably
the exponential damping and amplification is present in the real data but not in the surrogates.
Panel C shows scatterplot of the envelopes of the signals shown in B plotted against each other.
A negative nonlinear relationship is clearly present between the envelopes of the true signals
whereas the scatter plot of the surrogate data appears to be random. Panel D shows the results of

the analysis of the mutual information between the envelopes. The true median Mlenv lies well
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outside the null distribution. This indicates that a part of the mutual information between the

envelopes cannot be explained by a purely linear Gaussian process.

The above give us some confidence that the methodology applied is indeed sensitive to nonlinear
interactions. The methodology was also tested against Gaussian noise to make sure that it is
specific to nonlinear interactions. The analysis was performed 1000 times and the rate of false

positive results was less than 5%.

5.3 Results

5.3.1 Results of dipole analysis for the time averaged AM following response.

The moments of the spatiotemporal dipole models of the averaged and band-pass filtered data for
the 32-Hz diotic AM stimulus are shown in Figure 3. For all participants, dipoles localized on, or
Just superior to the STP, in the region of primary auditory cortex .For all participants, the
magnitude of the dipole moment increases after the onset of the AM stimulus, reflecting the
increased power from the steady-state evoked response within the band-pass filter centred on
32Hz. This increase in magnitude fluctuates over the duration of the stimulus epoch reflecting the
influence of measurement system noise and possibly a non-stationary neuronal following
response. We used the same dipole locations for both conditions because similar magnitude
fluctuations are also seen in the dichotic condition. The same respective dipole location is used

for both the diotic and dichotic AM.

5.3.2 Time-frequency analysis of the response to an AM stimulus and interhemispheric
phase synchronization of the responses at the frequency of the stimulus

Figure 6 shows a time frequency plot of the signal arising from a source in auditory cortex for a
representative participant. The presentation of the AM stimulus (at time 0) is followed by a
power increase in the signal centred on the frequency of the AM stimulus (32 Hz), which
constitutes the following AM response. Additionally, stimulus-related increases in power also
occur at frequencies other than the ones inherent in the stimulus itself. These stimulus related
power changes in ongoing cortical rhythms are most apparent in the beta and (to a lesser extent)

alpha frequency bands.

In figure 4, a 500-ms portion of the narrow band filtered (30-34 Hz), but un-averaged, dipole
time-series in each hemisphere is shown. The two traces show the phase of the response for
diotic AM (top panel), and dichotic IAM (bottom panel). The phase difference is shifted by 180

degrees between the AM and [AM conditions. Figure 5 shows the distributions of instantaneous
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phase differences between the narrow band filtered dipole time-series shown in figure 4. The 0
and 180 degree modal responses in the interhemispheric phase difference distribution closely
reflect the intra-ear phase differences between the diotic and dichotic auditory stimuli

respectively.

Figure 3. Spatiotemporal dipoles for participant 3. The top MRI images show the location of the dipole in the
right superiori temporal plane, and the bottom MRI images the location of the dipole in the left superior
plane. The moments of the dipoles are shown next to the respective hemisphere. The onset of the sound is
denoted by the vertical white bar. Note the difference in dipole magnitude before and after the stimulus onset.

Relative phase locking between hemispheres
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Figure 4. Non time-averaged narrow band filtered (30-34 Hz) responses to the AM stimulus in both dipoles.
The top panel shows responses from each hemisphere in the diotic AM condition, and the bottom panel shows
responses from each hemisphere in the dichotic AM condition. The phase locking to the AM stimulus is
constant.

134




Diotic AM Histogram Dichotic 1AM Histogram
12000 . - . . . v 12000 . . . . . .
10000 . 10000 .
8000 1 8000 E
y &
§ 5
S 5000 1 8 000 ]
g g
[y
o e
4000 1 4000 .
) I I | ) lll III |
0 e | ]
0 1 2 3 4 5 § 0 1 2 3 4 5 6
Radlians Radians
A B

Figure 5. Distributions of relative phase differences wrapped in the interval § 2njbetween the res ponses in
Figure 4. Panel A shows the diotic stimulation condition and panel B shows the dichotic condition. In Figure 2,
responses for participant KDS are shown for 500 ms of the first epoch. The above histograms however are
calculated the phase difference for the whole 4 seconds of the modulation. The distributions of the phase
difference are consistent with phase synchronization in a statistical sense. Note that the phase synchronization
occurs at different phase lags for the diotic and dichotic case. The modal responses of the interhemispheric
phase difference at the frequency of the AM strongly reflect the phase differences inherent in the auditory
stimulation.
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Figure 6. Time frequency analysis (participant JS) in a virtual electrode at the source of the AM following
response, which is localised with Synthetic Aperture Magnetometry (SAM, see Robinson and Vrba 1999,
Barnes and Hillebrand, 2003), a beamformer method for localising the source of Mcti  vity that is
complimentary to dipole modelling. SAM provides a power-based metric of oscillatory change, rather than
amplitude change, thus permitting the additional observation of stimulus induced neuronal activity which is
not necessarily phase locked to the stimulus onset and therefore not observed in averaged data sets. SAM
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weights were derived for data in a 2-Hz wide frequency band centred on 32 Hz. The responses in the ‘active’
32 Hz epochs, and ‘passive’ Pure Tone epochs were calculated with Morlet flissian wavelets, and compared
using a Mann Whitney statistic (see methods). The Mann Whitney Z is shown on a colour scale, and displayed
in the colour bar. Note that the power of the signal increases at the frequency of the AM stimulus (around 32
Hz- the following AM response). Additionally, stimulus related increases in power occur are also seen in the
alpha and beta frequency ranges. These responses occur at frequencies, which are not inherent in the auditory
AM stimulation and therefore correspond to stimulus-induced power changes of the ongoing cortical rhythms.

5.3.3. Quantifying the variance of instantaneous envelopes in the AM following response
As it is evident in figures 2 and 3, the AM following response seems to exhibit variations in its
amplitude. These are best described as fluctuations in the instantaneous envelope of the signal.
The signal plus noise model inherent in the SSAEP literature assumes that these fluctuations are
purely due to superimposed Gaussian noise. Thus according to that data model, the envelope of
the AM following response should be flat and any fluctuations would just be due to random
noise. Thus the first step for examining this hypothesis will be to compare the variability of the
instantaneous envelopes of the following AM response against those arising from system noise
alone. The system noise condition essentially involved data acquisition identical to the
experimental condition but without a participant in the scanner. The system noise data was
subsequently treated in the exact same way as the experimental data. This enables to quantify
fluctuations in the envelope in the same frequency band as the AM following response, which are

merely due to system noise.

Both experimental and system noise data were filtered between 30-34 Hz (the frequency range
for the AM following response). Then the instantaneous envelopes were extracted using the
Hilbert transform. The standard deviation of the envelopes was computed for each epoch in each

dipole time series.
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Figure 7 shows the results for participant IEH (top panel) and system noise recording (bottom
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Figure 7. Bochwise standard de viations of instantaneous envelopes in 30-34 Hz narrow band filtered signals
for the two spatiotemporal dipoles for participant IH (top panel) and system noise (bottom panel) in nAm.
The average variability of the envelopes in the following AM response is four times larger than the one in
system noise.

panel). The average (across epochs) standard deviations for the following response for the left
and right dipole in participant IEH is 5.48 nAm and 4.4 nAm respectively. However, the
corresponding metrics for the system noise are only 1.04 and 1.01 nAm. Squaring the average
standard deviations for the AM following response gives the total variance of the envelope. The
ratio of the variances in the system noise condition and the following AM response gives us the
amount of envelope in the following AM response that can be explained merely by system noise.
In the case shown here only 3% of the variance of the instantaneous envelopes can be explained
by system noise for the left dipole and 5% for the right dipole. Thus more than 90% of the
variability in the instantaneous envelope of the following AM response cannot be explained by
the noise. Very similar results were observed for the two other participants; for participant KDS
the variance explained by system noise was less than 0.5%. The latter result suggests that the
signal plus noise model for the AM response clearly does not explain the observed data. Over 90
% of the variance in the continuous envelope dynamics are not due to system noise and must be

due to some neuronal process in the brain. In the next section we show that some of this
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variability may be due to interactions between the AM following response with ongoing rhythms
in the same or the contralateral hemispheres. We also show that cross-hemispheric interactions
occur during the presentation of the AM stimulus at frequencies independent of the sensory

stimulation.

5.3.4. Detection of local and global nonlinear interactions in continuous phase and envelope
dynamics

5.3.4.1 Interactions of following AM response with ongoing rhythms in the same
hemisphere.

Figure 8, shows the results for the envelope interaction between the following AM response and

the ongoing rhythms for the right hemispheric dipole time series, participant IEH. Panel A
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Figure 8. Results for the interaction between the instantaneous envelopes between the AM following response
and the ongoing rhythms in the right dipole time series, participant IEH. Panel A shows the summary of the
testing for interaction of the AM following response (30-34 Hz) with other frequencies in the same dipole time
series. The top plot corresponds to the mean Mlenv statistic across epochs and the bottom plot to the
associated p-value obtained from the null distribution of means in the surrogate data. The red horizontal line
indicates the p8.05 threshold. Note that each point in the summary graph was collected independently.
Significant interactions with the AM following response can be observed in the alpha and beta range. Panels B
and C show details for the interaction of the following AM response with the alpha band. Panel B shows the
random distribution of means in the surrogate data for the interaction of the following AM response with the
lower alpha band (7-11Hz). The red line indicates the true mean. Note that the true mean is well outside the
null distribution. Panel C shows the corresponding result for the higher alpha band (9-13Hz).
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shows the summary of envelope interactions of the following AM response(30-34Hz) with the
other frequencies in the same time series. The top plot in panel A corresponds to the true mean
Mienv and the bottom plot corresponds to the probability value that the true mean could be
obtained from the null distribution of means in the surrogate data. The results from testing of the
median Mlenv were generally consistent with the results for the mean, so that these are not
shown here. Note that each probability point in the summary plot was collected independently,
since the mean value for that particular interaction was tested against a random distribution of
mean Mlenv in the surrogate data. Significant interactions of the following AM response in the
alpha and beta band are observed. Panels B and C show details of the interaction of the following
AM response with the alpha rhythm in two subsequent frequency ranges in the alpha band,
namely 7-11 and 9-13 Hz. The results are deemed significant implying a nonlinear envelope
interaction. However testing the same frequency bands in the other two participants did not yield
significant results. The latter taken together with the fact that multiple comparisons are made
suggest that any conclusions based on such pattern of results should be drawn with great caution.
Nevertheless, the fact that subsequent frequency bins show similar behaviour and the fact that the
results for the lower alpha band (7-11Hz) are highly significant suggest that a type 1 error is
rather unlikely. In addition the fact that the analysis was conducted across epochs suggests a

systematic nonlinear effect.

Similar behaviour was observed for local interactions of the following AM response with
ongoing rhythms in the /eff hemisphere. Figure 9 shows the summary of results for participants
IEH and JS. The figure is formatted in the same way as figure 8A. Panels A and B show the
results for participants IEH and JS respectively. In both participants an interaction of the
following AM response with the ongoing alpha rhythm can be observed. In participant IEH there

is an additional interaction of the following AM response with the ongoing beta rhythm.
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Figure 9. Summary of results for the interaction of the left following AM response (30-34Hz) with ongoing
rhythms in the same dipole for participants IH (panel A) and § (panel B). The figure is formatted exactly
as figure 8A. The top plots show the mean Mlenv for the interaction and the bottom plots the associated p-
value. Note that in both participants a significant interaction of the following AM response with the ongoing
alpha rhythm can be observed. This result is consistent with the interactions in the right hemispheric dipole.
In participant IH there is an additional interaction of the following AM response with the beta band.

5.3.4.2 Interactions of following AM response with ongoing rhythms in the contralateral
hemisphere.

Figure 10 shows significant envelope interactions between the following AM response in the
right dipole time series and the ongoing beta rhythms in the left hemisphere for participants KDS
and IEH. Note that the interactions occur at somewhat different frequencies for the two
participants. For participant IEH there are additional interactions of the following AM response
with the beta rhythm. Interestingly, the beta rhythms in the two hemispheres are also mutually

interactive (next section).
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Figure 10. Interactions of the following AM response in the right dipole time series with the ongoing rhythms
in the left dipole time series. Panel A and B;summ ary results for participant KDS and IH respectively.
These panels are formatted in the same way as figure 8A. Note that in both participants there is a significant
crosshemisphereric interaction of the following AM response with ongoing beta rhythms, however this occurs
at somewhat different frequencies for each participant. Panels C and D show details of these interactions for
participant KDS and IH respectively. Panel C: there is a significant interaction of the AM following
response in the right dipole with the ongoing beta rhythm in the left hemispheric dipole (15-19Hz). Panel D,
participant IEH: a marginally significant interaction of the AM following response in the right dipole with the
ongoing beta rhythm in the left hemispheric dipole at a somewhat higher frequency (21-25Hz).

Notably, for participant IEH nonlinear n: m phase synchronization could be observed between the
AM following response and alpha and beta ongoing rhythms in the contralateral dipole (figure
I1). The same participant also showed crosshemispheric envelope interactions. However, for the

other two participants no such (phase-domain) interactions could be detected.
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Figurell. Nonlinear, crosshemispheric, n:m phase synchronization between the AM following response and
ongoing rhythms in the contralateral hemisphere(participant IH). P anel A shows the interactions of the
right hemispheric AM following response with the ongoing rhythms on the left. Panel B shows the
interactions of the left hemispheric following AM response with ongoing rhythms in the right hemispheric
dipole. ‘Mean SI’ indicates the mean synchronization index across epochs for cach frequency bin. The plot
below indicates the associated probability value. The red line indicates the p8.05 threshold. Significant
results are found between the beta band and the following AM response suggesting nonlinear n:m phase
synchronization.

5.3.4.3 Interhemispheric interactions between ongoing rhythms in the same frequency
range.

Figure 12 shows the summary of results for envelope interactions in the same frequency ranges
between the two hemispheres. For all participants interactions of the ongoing rhythms in the

alpha and/or the beta band can be observed. These interactions occur during the presentation of
the AM stimulus. Details of some of these interactions are shown in Figure 13. Participant [EH

shows significant crosshemispheric envelope interactions in the alpha band. Recall that the alpha

rhythm in the right dipole was found to be nonlinearly interacting with the AM following

response in the same hemisphere.
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Figure 12. Summary results for crosshemispheric envelope interactions in the same frequency for participants
IB, KDS and $ (f rom top to bottom). The format of the plots is the same as in figure 8A. For all
participants interactions of the ongoing rhythms (concurrent with the AM stimulus) in the alpha and/or beta
band are observed.

Thus alpha and beta rhythms cannot be considered as simple ‘brain’ noise, since they are not only
mutually interactive but also modulate the AM following responses both in terms of its slow

amplitude and phase dynamics. Furthermore in participant KDS the following AM response at
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30-34 Hz was found to exhibit distinctly nonlinear phase synchronization as shown in figure 14.
This would not be expected if the two auditory cortices were simply driven by the periodic AM
stimulus. The latter scenario would only give rise to a linear crosscorrelation. The finding of a
nonlinear phase synchronization taken together with the nonlinear envelope interdependencies in
the beta rhythm seems to reinforce the notion, that there is a genuine interaction between the two
auditory cortices during the presentation of the AM stimulus. However, such nonlinear phase

synchronization was not observed for the other two participants.

Although the data was not corrected for multiple comparisons, which may have introduced type |
errors, the pattern of the observed interactions, the fact that the statistics were conducted across
all experimental epochs and the extremely low probability values make the case that the

particular interactions illustrated here were genuine.
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Figure 13. Significant cross-hemispheric interactions in the envelope dynamies of the ongoing beta rhythms
during the presentation of the AM stimulus for participants KDS (left) and IH (right).
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Figure 14. Participant KDS. Summary of interhemispheric phase synchronization analysis. The top plot shows
the mean synchronization index across epochs for each frequency bin. The bottom plot indicates the
associated probability value. The red line indicates the p=0.05 threshold. Note the significant result at the
frequencies close to the frequency of the AM stimulation. This indicates the presence of nonlinear phase

synchronization between the two hemispheres.

5.4 Discussion

In this study we set out to test the concept of the steady state response following an AM stimulus.
The latter implies that a constant and invariant signal response follows the stimulus and any
variations in that response are due to noise, irrelevant to the processing of the stimulus (Picton et
al., 1987, Ross et al., 2003, Pantev et al., 1996). However, from information theoretical point of
view the concept of a steady state response of the auditory cortex to an AM stimulus is not
efficient, since a rigid, stable and periodic response that closely follows the stimulus simply
corresponds to signal transmission. Yet, accurate signal transmission is known to already occur at
the level of the inferior colliculus (Rees and Moller, 1987) and it is not consistent with the

putative role of the auditory cortex, which presumably involves some kind of integrative process.
Investigation of the instantaneous (non time- averaged) envelope dynamics of the following AM
response strongly suggested that the variability in the following AM response cannot be simply

due to noise. In fact system noise could only explain 3-5% of the total variance in the
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instantaneous envelopes. This indicated that the rest of the variance must be entailed in neuronal

processes, which somehow modulate the following AM response.

We found that the instantaneous phase dynamics of the AM following response were overall
indeed consistent with periodic locking to the stimulus. This was further supported by the fact,
that the modal response in the distribution of the interhemispheric phase difference (of the AM
following responses) strongly reflected the nature of the intraaural phase difference inherent in
the stimulus. Nevertheless, in one of the three participants (KDS) nonlinear phase
synchronization was observed indicating a genuine interaction between the two hemispheres,

which could not be simply due to common driving from the brainstem.

Further, we found instantaneous envelope interactions of the AM following response with the
ongoing alpha and beta rhythms in the same and the contralateral hemisphere. Interestingly, alpha
and beta rhythms in the two hemispheres were also found to be nonlinearly interactive in the
envelope domain. For one participant (IEH), additional nonlinear, high-order (n:m) phase
synchronization of the AM following response and the ongoing alpha and beta rhythms could be
detected. The crosshemispheric interactions of the ongoing rhythms during the presentation of
the AM stimulus, strongly suggest that both alpha and beta ongoing rhythms cannot be
considered simply as crosscorellated noise processes and thus discarded by means of signal
averaging. In addition, the fact that these ongoing rhythms modulate the AM following response
in the same or the contralateral hemisphere strongly suggests that they are relevant for the

processing of the AM stimulus.

The effects described above were not generally consistent across participants. One reason for this
may be the individual variability of the ongoing rhythms. The small number of participants and
the fact that the analysis was conducted in terms of partitioning the signal in predetermined
frequency bands may have contributed for the lack of consistency. Moreover, the presence of
strong nonlinear envelope interactions taken together with lack of strong nonlinear phase
synchronization is very intriguing and points to a potentially crucial fact about macroscopic brain
interactions. The instantaneous envelopes reflect slow amplitude dynamics across a range of time
scales and their interactions are not strictly confined to the time scale imposed by the narrow
band filter. Thus metrics of envelope interaction may reflect generalized interdependencies in the
signal, which are not confined to the frequency or phase domain. Such generalized

synchronization phenomena (Rulkov ef.al, 1995) are not only of particular theoretical interest
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but also methods exploiting this concept (for instance Breakspear and Terry, 2002a and Stam and
Van Dijk, 2002) have been successfully utilized to characterize brain coordination in health
(Breakspear and Terry 2002a, Stam, van Walsum and Micheloyannis 2002, Stam ef .al, 2003)
and disease (Stam ef .al, 2002, Altenburg ef .al, 2003). The main advantage of these methods is
that they do not necessarily depend on narrow band filtering and thus the arbitrary partitioning of
the signal in to frequency bands can be avoided; the latter may indeed remove undesired
individual variability in the frequency domain. The fact that the most pronounced interactions
reported here occur in the envelope domain may also advocate the notion that long-range
interactions between brain areas may not strictly occur at given frequencies and thus methods
based on generalized synchronization may prove more appropriate for their study. However, the
approach followed here is also justified when distinct frequency components are present in the
signal. These often indeed reflect ongoing brain rhythms, which can be considered as separate
semiautonomous entities. Nevertheless, narrow band filtering can attenuate otherwise present
interdependencies between frequencies. The latter may to some degree explain why we did not

find pronounced nonlinear phase synchronization.

Our results suggest that detections of nonlinear structure were rather rare. Some remarks for
possible causes for such rare detections are in order. In the study presented here we adopted an
approach to quantify nonlinear interactions specific to the experimental paradigm. Therefore the
inferential statistics were conducted across experimental epochs. We were testing that the mean
metric of interdependence across epochs could be distinguished from the distributions of means
in surrogate data. The latter were however constructed on the basis of all the experimental
epochs. Thus in order to be able to reject the null hypothesis nonlinear interdependence should
have been present in the majority of experimental epochs. Although this approach of testing
across experimental epochs is perfectly justified for the particular task, where experimental
epochs are expected to be homogeneous (and indeed there is evidence for stimulus specific
spectral changes, which are consistent across epochs), it may prove too rigorous for the detection
of nonlinear interdependence. The latter is supported by the literature, which suggests that
nonlinear interdependence occurs only in a very small number of epochs (Breakspear and Terry,
2002a). Breakspear and Terry (2002a) adopted an epoch-wise approach for detecting nonlinear
interdependence. The latter enables for the identification of ‘nonlinear’ epochs. These epochs can
then be further studied in more detail. This epoch-wise approach is entirely justified for the study
of spontaneous brain rhythms, where individual data epochs are not expected to be homogeneous

and such studies have indeed yielded some fruitful insights in the phenomenology of the human
147




alpha rhythm (Breakspear and Terry, 2002a). However, in our study we were interested to
quantify nonlinear interactions, which were strictly related to the particular stimulus. In this case
an epoch-wise approach may help identifying a higher proportion of nonlinear interactions
otherwise obscured by the epoch average. Nevertheless, such an approach will inevitably reduce

the task /stimulus specificity of the results.

Finally, an important conceptual issue has to be discussed in relation to the predominantly linear
patterns of interaction associated with the AM stimulus. The AM stimulus imposes a strong
periodic driving in the early auditory pathways. This has been well documented at the level of the
brain stem (Rees and Moller, 1987). Neurons in the inferior colliculus have been found to strictly
phase lock to the stimulus. These neurons however provide the main input to the auditory cortex.
The latter can be viewed abstractly as strong periodic forcing on the dynamics of the auditory
cortex, which may be abstractly conceptualized as a nonlinear oscillator. Such dynamic scenarios
often result in a regularization of the otherwise nonlinear dynamics. The latter become entrained
through the periodic driving and undergo a global bifurcation resulting to low dimensional
periodic dynamics. This phenomenon is known as chaos destroying synchronization (Pikovsky,
Rosenblum and Kurths, 2001, Boccaletti ef .al, 2002 and chapter 3). The latter may be indeed the
case for the AM following response. This is particularly obvious in the phase dynamics, which
seem to generally conform to periodic entrainment. However, the driving may not be strong
enough to completely entrain the amplitude dynamics, which may be captured in the
instantaneous envelopes. This effect reflects a fundamental property of oscillators: the phase of
an oscillator is much easier to adjust (it requires considerably less forcing) than the amplitude
(Pikovsky, Rosenblum and Kurths, 2001). The latter may explain why the slow amplitude
dynamics as reflected in the instantaneous envelopes exhibit nonlinear structure more frequently
than phase dynamics in the context of the particular task. The main consequence of the above is
that the overall periodic behaviour of the following AM response observed in this paradigm may
not be characteristic for the activity of the auditory cortex in real life situations but may instead
result purely as a consequence of strong forcing by an artificial, overly periodic stimulus. Such
stimuli however have limited ecological validity, since they are infrequent in the environment
and are even less characteristic for speech signals, which on the contrary exhibit complex spectral

and temporal structure.

In conclusion, we set to examine the concept of the steady state response following an AM

stimulus by studying the continuous phase and amplitude dynamics. We argued that the signal
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plus noise concept of the AM following response may be very unfavourable in terms of
information theory. We showed that only 3-5% of the variability of the AM following response
can be attributed to system noise. We presented a methodology for detecting local and global
nonlinear interactions in order to account for the residual variability. We found some evidence for
envelope interactions of the ongoing alpha and beta rhythms and the following AM response
within the same and the contralateral hemisphere. Furthermore, we found crosshemispheric
interactions of the ongoing alpha and beta rhythms, which were concurrent with the stimulus.
This strongly suggests that ongoing rhythms modulate the following AM response and are
therefore relevant for the processing of the stimulus. The results presented here, namely the
presence of nonlinear interdependencies in macroscopic brain signals are in agreement with
existing literature (Breakspear and Terry, 2002a, Stam e .al, 2003), despite the fact that very
different metrics of nonlinear interaction were employed. The findings presented here may extend
this literature by virtue of the fact that the nonlinear interactions reported in this study occur
between well-defined neuronal sources and within the context of a specific experimental

paradigm.



Chapter 6: The functional role of gamma oscillations in sensory coding- A
complex systems approach.

6.1 Background and objectives

The abstract models presented in chapter 4 suggested that functional clusters may be defined
in terms of phase synchronization between cortical columns at mesoscopic scales.
Furthermore, the synchronization processes in separate clusters occurred at different
frequency ranges, giving rise to frequency -specific power changes in the macroscopic mean
field signal. Therefore we hypothesize that spatial stimuli, which require integration of
activity across distributed cortical columns in primary visual cortex, would be accompanied

by the emergence of frequency-specific mean field oscillations.

Several authors have demonstrated a close relationship between neuronal spike
synchronization and induced gamma oscillations (30-60Hz) in the Local Field Potential
(LFP), which records the collective activity of thousands of neurons, and is often referred to
as the mean field (Gray and Singer, 1995, Koenig, Engel, Singer 1995, Traub et al., 1996,
Nase ¢t al., 2003). Consequently, if synchronization acts as a grouping mechanism at the
neuronal level, then we should expect a coherent mean field gamma oscillation in
macroscopic brain signals when encoding a global coherent pattern. The spatial frequency
(SF) of full-field gratings is such a holistic feature, since information from different parts of
the visual field, which is retinotopically represented in primary visual cortex, is needed to
infer the SF of the stimulus. Spatial frequency is fundamental feature of natural objects and
scenes since it captures the scale of contours. Thus one may expect that neurons coding for
contours of the same spatial frequency may synchronize their responses resulting in a mean
field oscillation in the gamma frequency range. However, the problem remains of how
distinct global neuronal representations of such patterns are distinguished assuming that

neuronal synchronization is always involved in their formation. The frequency of the mean
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field oscillation, that is the frequency (or frequency range) of the collective synchronization
process occurring at the microscopic neuronal level might provide such a differentiating
feature. In a complex system such as the visual brain, which potentially requires spatially
overlapping networks to be simultaneously active and thus synchronized in order to encode a
visual scene (Engel, Konig, Singer, 1991), network frequency could act as a highly effective
segregating variable. This idea is also consistent with the modelling work presented in chapter

4.

In order to test these hypotheses we reanalysed previously recorded MEG data during an
experimental paradigm, where the spatial frequency of the stimuli was parametrically varied

(Adjamian et al., 2004a).

6.2 Methods

6.2.1 Subjects/Materials and £ perimental procedures

Details of the methods employed were reported in an earlier paper (Adjamian et al., 2004a).
In short, seven subjects (three males, four females, aged (24 —47 years) participated in the
study after giving their informed consent. Subjects viewed a set of static horizontal black
Avhite square-wave grating patterns for 5 s (experimental condition or active period) followed
by 5 s of a uniform field of the same mean luminance (control condition or passive period).
Each sequence of active and passive states was repeated 20 times for each grating SF, starting
from 0.5 c.p.d., with increments of 1 ¢.p.d.up to 6 c.p.d. Each SF of the grating was presented
in separate recording sessions. The presentation of gratings was randomized in order to avoid

task familiarity and habituation of cortical neurons.

6.2.2 Recordings
MEG data were recorded using a 151 —channel! system, (CTF Systems Inc., a subsidiary of

VSM MedTech Ltd) using 3" order gradiometer configuration. The data were sampled offline
at 625 Hz and anti alias filtered at 100Hz. A 50Hz comb filter was applied to remove the

power line interference and its harmonics. Individual MEG data were then coregistered with
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each subjects anatomical MRI (Adjamian e al., 2004b), to prepare them for source

reconstruction procedures.

6.2.3 Source Reconstruction
We used synthetic aperture magnetometry (SAM, chapter 2, Van Veen et al., 1997, Robinson

and Vrba, 1999, Singh et al., 2002, Barnes and Hillebrand 2003, Singh, Barnes and
Hillebrand, 2003) to generate statistical parametric maps (SPMs’) of stimulus or event-related
changes in cortical oscillatory power (Pfurtscheller and Lopes Da Silva, 1999). We obtained
locations for region of interest, or virtual electrode, analysis (Barnes and Hillebrand 2003,
Singh, Barnes and Hillebrand, 2003) by looking at images of spectral power change between

active and passive states within the gamma band.

6.2.4 Analysis of the frequency response in the primary visual cortex

6.2.4.1 Induced response

The first step was to estimate the stimulus-related change in induced spectral power for a
given discrete frequency range (5 sec pattern vs. 5 sec blank). Here we used three frequency
ranges, gamma (30 to 60 Hz), lower frequency range (0 to 20Hz) and higher beta (20-30 Hz)
with a frequency bin size of about 2.5Hz. For each epoch the frequency bins were ranked in
terms of power change from active to passive state. These ranks were summed across epochs
to give a ranked distribution of power change for each stimulus. These rank distributions for
all possible pairs of different SF pattern stimuli were then compared by means of a chi-square

test.

The significance of the chi- square value was assessed by means of randomization testing.
Briefly, the true chi-square is computed once for any pair of experimental conditions, for
example 2 Vs 3 c.p.d. Then epochs from both conditions are pooled together in a large
distribution and random indices are assigned to obtain paired comparisons. This procedure is
repeated 1000 times resulting in distributions of chi-square values of these random
comparisons. This random distribution of chi-squared values gives the 95 % confidence

interval (one-tailed) from which the significance of the true chi-square value can be assessed.



6.2.4.2 ¥oked response

The virtual electrode time series was averaged across trials to give us the evoked response
time series for the pattern. Then the spectral analysis and the ranking method were applied as
described above with the sole difference that the rank distribution here just reflected a single
trial. For the randomisation testing we pooled the epochs of virtual electrode data from both
conditions into a large distribution and assigned random indices to make new pairs of random
conditions. The data was then averaged across trials for each condition, yielding two averaged
time series for each randomisation trial, on which the spectral and ranking procedure was
conducted in the same way as in true data. This procedure was repeated 1000 times to give a

chi-square distribution of the randomized data.

6.3 Results and Discussion

Detailed results of the source localization and time- frequency analysis were reported
previously (Adjamian ef al., 2004a). The main findings relevant to the current paper can be
summarized as follows. Gamma oscillatory power change in primary visual cortex was the
most robust finding being consistent across all subjects and all experimental conditions (see

figure 1for 3 c.p.d. pattern), although the recordings and the coregistration procedures were

conducted at different times.
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Figure 1. Eample of induced o scillatory change of the signal arising from the SPM peak voxel located in
primary visual cortex (V1) for one subject at 3 c.p.d. (S.W.). Mean spectral power across experimental
trials as a function of temporal frequency in the passive period (blank screen), is indicated by blue circles;
for the 3 c.p.d. pattern mean spectral power across trials is indicated by red squares, bars indicate 2

standard errors of the mean. Note the marked broadband increase in power in the gamma range, which
ranges from 20-60Hz.
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Oscillatory power in the gamma frequency range was clearly modulated by stimulus spatial
frequency. Stimuli with spatial frequencies of 2-3 c.p.d. consistently exhibited higher power

than stimuli of 0.5, 4, 5, 6 c.p.d. (see figure 2).

Figure 2. Adapted from Adjamian ef al, 2004a. € up-average (n =7) magnitude (in arbitrary units) of
oscillatory power in primary visual cortex as a function of stimulus SF and cortical response frequency.
The total amount of stimulus related power change in each frequency band was measured within an

anatomically defined region of interest encompassing the primary visual cortex. Maximal activity occured

within the gamma band (30-60 Hz) and when the static grating has a SF of 3 c.p.d.

From our time frequency analyses we noticed additional variation in the frequency range of
the gamma response with respect to different gratings, with stimuli of 2-3 ¢.p.d. exhibiting a
seemingly broadband response and 0.5-1 ¢.p.d. 5-6 ¢.p.d. exhibiting a more sharply tuned
response. A reasonable question, given the synchronization literature in animals, was whether
or not the different SF stimuli could be distinguished in terms of the frequency composition of
the induced response. Further, we were interested in whether the well-studied visual evoked
response [the response that is strictly time locked to the stimulus and is obtained through
signal averaging across experimental trials] would exhibit the same behaviour as the induced

response.
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We looked at the stimulus related spectral change in the signal arising from primary visual
cortex and tested, for each possible stimulus pair, whether these changes arose from the same

or different distributions (see methods and figure 3).
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Figure 3. Stimulus-related changes in the spectral distribution as a function of temporal frequency for 0.5
(blue circles), 3 (red squares) and 6 c.p.d. (green triangles) patterns for participant S.W. The x-axis
depicts the temporal frequency of the signal, the y-axis shows the rank for a given frequency bin, in terms
of the stimulus related spectral power change. Low ranks indicate larger changes and high ranks indicate
smaller changes. The bars indicate 1 standard error of the mean. Note the sharply tuned response for
the 0.5 c.p.d pattern peaking at 30-40 and 50- 55 Hz as opposed to a fairly broadband response for the 3
c.p.d, which peaks at 40-55 Hz.

Although the rank distributions of the frequencies of power change were variable across the
subjects, the significant differences in the gamma band (30-60Hz) between experimental
conditions involving different grating stimuli were consistent between subjects (figure 4A). In
contrast, frequency analysis of the evoked response showed no significant differences
between most of the experimental conditions (figure 4B). Neither did we find changes in
other frequency bands tested (20-30Hz and 0-20Hz) in either the evoked or induced
responses. The fact that we found minimal differences between the evoked responses across

runs, nor any differences in the other frequency bands also gave us confidence that the
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changes we observed had real functional relevance and were not simply due to inter-session

variability.
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Figure 4A. Significant differences between stimulus-related changes in the gamma frequency range (3060
Hz) for 3 subjects. Each large cell depicts a comparison between the gamma spectra due to two spatial
frequencies (x and y axes), filled in cells indicate a difference at the p<0.05 level. The 3 elements within
each cell represent each of 3 subjects (FM, SW and KDS respectively). Note that the significant differences
tend to be concentrated to comparisons between patterns of non-adjacent SF. Also note the consistency
between participants. Figure 4B. Significant differences between the evoked responses in the gamma
range (30-60 Hz), same scheme as 3A. Note, the infrequent significant differences, which are not
consistent between participants.

Interestingly, gamma power was higher for psychophysically more salient stimuli, 2-3 c.p.d.

( Adjamian et al.., 2004a), strongly suggesting larger-scale synchronization with the
recruitment of more neurons. However, as evident in figures 1 and 3, this increase in power
was also concomitant with a widened frequency range, a broadband response as opposed to
0.5 c.p.d., where the response seems to be fairly sharp tuned. This suggests that the
underlying synchronization is not homogeneous and smooth, as in the case of global coupling

of identical entities; this would give rise to cumulating power with increasing number of
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neurons at a discrete frequency. The presence of several concurrent modes in the frequency
spectrum rather suggests a more complex dynamic process, namely the interaction of distinct
already frequency locked processes. This would be consistent with the notion of overlapping
receptive fields of visual neurons (De Valois, Albrecht and Thorell, 1982 , Foster et al., 1985,
Bredfeldt and Ringach ,2002) whose degree of overlap may be higher at the peak of the
contrast sensitivity function , that is at 2-3 c¢.p.d. and lower at the side lobes of the function
(Campbell and Robson, 1958) . The scenario of synchronization between inhomogeneous
frequency modes would also be in agreement with the phenomenology, namely the marked
bursting behaviour of these oscillations, since such a dynamic scenario often results in
dynamic intermittency (Pikovsky, Rosenblum and Kurths, 2001, Rim et al., 2002). These

questions are addressed in chapter 7.

In conclusion, we found that induced gamma oscillations in primary visual cortex seem to
differentiate between different SF grating stimuli both in terms of their power and most
importantly in terms of their frequency composition. Interestingly, the evoked response did
not show the same behaviour. The stimulus-specific information was lost by signal averaging.
This implies a clear dissociation of evoked and induced gamma response. These results are
also consistent with predictions arising from the synchronization hypothesis (Gray, Koenig,
Engel and Singer, 1989, Engel, Konig and Singer, 1991, Engel ef al., 1992, Singer and Gray,
1995, Neuenschwander and Singer, 1996) and with experimental data from invasive
neurophysiology suggesting that induced gamma oscillations are related to neuronal
synchronization in perceptual processes involving feature binding (Gray and Singer, 1995,
Koenig, Engel, Singer 1995, Traub ef al., 1996, Nase ef al., 2003). Our results suggest that
magnetoencephalography can be potentially utilized for directly testing experimental
hypotheses, which are motivated by invasive animal neurophysiology, in human participants

using entirely non-invasive methodologies.
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Chapter7.Quantitative investigation of the bursting behaviour of visually
induced gamma oscillations.

7.1 Rationale

In this chapter we set out to investigate the bursting character of visually induced gamma
oscillations in the datasets analysed in chapter 6. Time frequency analyses of the signal
arising from primary visual cortex revealed marked bursting behaviour in the gamma range
during the presentation of the spatial pattern. This is illustrated with the example of the

response to a 3 c.p.d grating in figure 1.

Frgquemg [Hz)

EASSIE ' ' ACTIVE
Time [seconds]

Figure 1. Adapted from Adjamian et al., 2004a. Wavelet time—frequency analysis of the activity in the
SPM maximum located in primary visual cortex (participant SW).Statistically significant (bootstrapped at
P < 0.05) average (across trials) power increases and decreases are shown between the passive (left panel)
and active (right panel) states. Left panel indicates cortical activity during passive viewing of the control
stimulus and is used as the baseline for comparison of the active period (right panel). The stimulus was a
static grating with a SF of 3 c.p.d. Non-significant power changes are shown as zero values (eyan). Power
increases are mostly in the 2060 Hz range and are bursting across the active period.

This apparent bursting behaviour seemed to be consistent across subjects and experimental
conditions but was particularly pronounced in the case of a 3 ¢.p.d. stimulus (Adjamian et al,

2004a). For the 3 c.p.d stimulus, both the spectral power and the frequency spread of the
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spectral distribution in the response signal seemed to increase with respect to the responses to
the other stimuli (chapter 6). This may reflect a more pronounced overlap of the receptive
fields of visual neurons for 3 c.p.d. stimuli and suggests that the underlying synchronization
process might not simply correspond to frequency locking (see chapter 6 and references
therein). From a dynamical perspective, such behaviour may be conceptualised as an
interaction between inhomogeneous frequency modes (nonidentical oscillators). Such
interactions often result in dynamic intermittency (Pikovsky, Rosenblum and Kurths, 2001,
Rim er al., 2002). In chapters 3 and 4 we have seen, that often interactions of inherently
dissimilar oscillating systems exhibit a dynamic regime referred to as modulational or on-off
intermittency (Platt, Spiegel and Tresser, 1993). Qualitatively, the time frequency data (see
figure 1) seem to support this idea. However, as always under realistic measurement
conditions, with several and often unidentified noise sources one has to reject the hypothesis
that these stimulus induced modulations of the amplitude (or power) of the gamma
oscillations are just due to a noisy linear process. In other words we wanted to test whether
the slow modulations in the amplitude of the gamma oscillations in primary visual cortex had
a dynamical deterministic structure or alternatively if they just reflected random, noisy
fluctuations. As we have suggested in chapters 3 and 4, the former case, namely intermittent
dynamics arising through complex interactions may be adaptive in terms of metastability and
may reflect perceptual updating processes. In the next section we briefly present the
phenomenon of on-off intermittency and then we describe a method for testing the hypothesis
of deterministic bursting behaviour in noisy, experimental data. Finally, results are presented
for the data set under consideration.

7.2 On-off intermittency: phenomenology and quantification in abstract model systems

This phenomenon was first described in one-dimensional maps coupled to either chaotic or
noisy signals (Platt, Spiegel and Tresser, 1993). In essence this phenomenon reflects an
irregular behaviour that seems to switch between relatively long-lived, low signal-variability
periods of often-small amplitude (referred to as laminar phases) and relatively short-lived

periods of bursting oscillations of higher-signal amplitude and variability (Platt, Spiegel and
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Tresser, 1993, Platt, Hammel and Heagy, 1994 and Heagy, Platt and Hammel, 1994). Such
phenomena seem to abundant in nature, some examples involve solar cycles exhibiting
turbulent convection, stock market crashes, species that become almost extinct but yet survive
(Platt, Spiegel and Tresser, 1993) and earthquakes (Platt, Hammel and Heagy, 1994). It has
been suggested that in many cases such phenomena maybe observed in systems, where only a
few variables are measurable but many other ‘hidden’ variables may be implicated (Platt,
Spiegel and Tresser, 1993). Hence, such phenomena may be expected in macroscopic
systems composed of interacting subsystems. A good example comes from (Zhan, Wei, and
Lai, 2002), where two coupled nonidentical (somewhat detuned) R&ssler systems exhibiting
lag synchronization were studied. The transition to lag synchronization was characterized by a
transition from on-off intermittency to periodicity of the collective variable, which in this case
was the time-shifted difference of two corresponding system observables. This illustrated in
Figure 2 (adapted from Zhan, Wei, and Lai, 2002). As we have seen in chapter 3, lag
synchronization (Rosenblum er al., 1997) occurs when the coupling is relatively strong but is
not sufficient to instate generalized or identical synchronization. This can be considered as a
compromise situation between phase and identical synchronization. Essentially, in lag

synchronization a signal x,(t) is approximately equal to a shifted version of another signal x,

with some time lag ¢ :

x,(t+@)=x/(1)

Plotting the raw (non time-shifted) signals x,(¢), x,(/) would result in an ellipsoid distribution
around the straight line. If one plots the signals x, (1 +¢) and x,(¢) against each other one will

obtain concentration along a straight line as in the case of identical synchronization. This
corresponds to panel b in figure 2 for the simulation concerned. We see that the points are
concentrated mainly on the main diagonal but large deviations (wings) seem to exist as well.
The instantaneous difference between two systems operating in a regime of lag
synchronization is the relevant collective variable (Rosenblum et al., 1997) and should be

zero or at least constant. Thus if one plots the difference x,(r) — x,(f +¢) , one should obtain a

straight line. The corresponding plot in figure 2 is shown in panel c. We see that long periods
of zero difference are alternated with periods of marked excursions of the instantaneous

difference in a seemingly irregular manner. Thus here the coupling between the two systems
160



is not sufficient to achieve perfect lag synchronization and the dynamics observed
corresponds to intermittent lag synchronization. The hallmarks of on-off intermittency can be
seen in panel c. The instantaneous difference of the relevant system observables is
concentrated mainly around zero and remains there for long periods of time, indicating that
the systems are in lag synchronization. However, in a seemingly random way, large bursts of
oscillation of the instantaneous difference arise, indicating desynchronization of the coupled
systems. The intervals of constant difference and thus the intervals between subsequent bursts
are referred to as laminar phases and their duration is of particular importance. Thus the
essence of intermittent dynamics for a given observable can be captured by quantifying the
duration of these interburst intervals. This can be quantified by setting an arbitrary threshold
and considering everything above that threshold to be a ‘burst” and everything below to be an
interburst interval. Intermittency can be characterized by examining the shape of the
distribution of these interburst intervals. If there is a regular switching between lag
synchronization and desynchronization one should expect only one additional time scale, thus
there should be modal responses at one frequency and its harmonics. If however the switching
is irregular the durations of the interburst intervals will stretch across several time scales.
Heagy, Platt and Hammel, 1994 have shown that for a range of systems exhibiting on-off
intermittency the distribution of laminar phases has a typical -3/2 power law scaling. This is
consistent with panel d in figure 2, which show the log-log plot of the distribution of laminar
phases for the coupled Réssler systems. The power law distribution of the laminar phases
means that the switching of the interacting systems on and off lag synchronization occurs

across a range of interrelated time scales.
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Figure 2. Adapted from Zhan, Wei, and Lai, 2002. Intermittent lag synchronization of coupled
nonidentical Réssler systems, the coupling parameter is below the threshold for onset of lag
synchronization, see text for details. Panel a shows a scatter plot of the x observables of the two systems.
Panel b shows the scater plot of x1 vs a time- shifted version of x2. Note that the distribution is not entirely
confined on the main diagonal . Panel ¢ shows the time course of the amplitude difference between x1 and
a time shifted version of x2. Note that the difference irregularly switches between longer periods of almost
zero difference (laminar phases) and shorter bursts of departures from zero. This is characteristic of on-
off intermittency. Panel d shows a log-log plot of the distribution of the duration of the laminar phases
(interburst intervals in panel ¢). A typical -3/2 power scaling is observed.
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Figure 3. Adapted from Zhan, Wei, and Lai, 2002. Lag synchronization of coupled nonidentical Rossler
systems, the coupling parameter is above the threshold for onset of lag synchronization, see text for
details. Same format as figure 2. From panels b we observe that the systems are in lag synchronization,
the distribution is confined on the main diagonal (compare panel b in figure 2). In panel ¢ we observe that
the amplitude difference does not deviate much from zero (compare panel c in figure 2). However, there
are smaller fluctuations shown in the inset. The distribution of laminar phases shown in panel d is
periodic corresponding to the rotational period of a single Réssler system indicating lag synchronization
(compare panel d, figure 2).

In figure 3, similar plots are shown for a higher value of the coupling parameter and thus

when lag synchronization sets in between the interacting systems. The latter is evident in
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panel b where the scatter plot is confined on the main diagonal. The instantaneous difference
in panel ¢ shows very little departure from zero but on a smaller amplitude scale there are
small and seemingly regular fluctuations. This is in contrast with the irregular high amplitude
bursts in figure 2, panel ¢. The distribution of laminar phases has a periodic structure with
peaks corresponding to a single rotational period of one system and its harmonics. This is
again to be contrasted with the power law distribution in the case of intermittent lag

synchronization (figure 2, panel d).

To conclude, on-off intermittency is characterized by modulations of the switching times
between low variability laminar phases and high variability bursts, which stretch across a
range of time scales. The distribution of the laminar phases follows a typical -3/2 power
scaling law. Thus if one wishes to infer the presence of on-off intermittency, one needs to
study the distribution of experimentally observed laminar phases. However, the latter is the
case when the system under study is formally described as in the numerical examples of
coupled oscillators shown in the previous section. In noisy experimental data the system
generating the observed signal is not known and therefore a certain power law distribution of
interburst intervals is not sufficient to infer intermittency. This is further supported by
theoretical studies, which have shown that the presence of additive noise (as it is expected in
any realistic experimental situation) introduces ‘shoulders’ in the power law distribution and
can somewhat obscure the -3/2 scaling law (Platt, Hammel and Heagy, 1994). Nonetheless,
one can test the hypothesis that the distribution of interburst intervals observed in
experimental data cannot be explained by a solely linear, Gaussian process but may be of
some deterministic origin. The latter can be addressed by performing comparisons of the
distributions of the interburst intervals with surrogate data, where possible nonlinear structure
and therefore cross frequency interdependencies are explicitly destroyed (Theiler et al, 1992).

Our approach to this issue is illustrated in the next section.




7.3 Detection of deterministic bursting in noisy magnetoencephalographic data

The time series of the peak SPM voxels located in primary visual cortex were first band pass
filtered in the gamma frequency range (30-60 Hz) for a number of epochs collected during the
presentation of the pattern stimulus. Prior to filtering for each epoch phase shifted FFT
surrogates were constructed (Theiler er al., 1992). This approach was illustrated in greater
detail in chapter 5. The surrogate data have the same autocorrelation and spectral properties as
the real data but possible nonlinear structure is destroyed. This effectively removes possible
interdependencies between frequencies. The latter however is the main characteristic of on-off
intermittency: a power law distribution of time scales. Thus the phase shifted FFT surrogates
have the same autocorrelation functions and power spectra as the real data but lack any
nonlinear structure. Therefore they are used as a null hypothesis in which the fluctuations of
the interburst intervals of the gamma oscillations are due to linear, noisy processes.

The surrogate data were band pass filtered and processed further in the exact same way as the

real data.

An exemplar epoch is shown in figure 4. The top panel shows the real data filtered between
30 and 60 Hz, whereas the bottom panel shows the corresponding surrogate data. The typical
bursting behaviour of gamma oscillations is evident in the top panel with periods of high
amplitude bursts (‘on’ phases) irregularly interrupted by periods of low amplitude oscillation
(‘off *or laminar phases). Nevertheless, the comparison with the surrogate data plotted in the
bottom panel is compelling: the surrogate data also apparently exhibit ‘bursting’ behaviour.

We were interested to quantify the duration of the ‘off” phases or the interburst intervals.
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Figure 4. The top panel shows the band pass filtered time series of the SPM peak voxel located in the
primary visual cortex for participant F.M after the appearance of a 3 c.p.d pattern at time 0. The gamma
oscillations show typical bursting behaviour. The bottom panel shows the phase shifted FFT surrogate
time series filtered in the same range as the real data. Note the similarity of the real and surrogate time
series, which also appears as ‘bursting’.
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Figure 5. The data in figure 4 were rectified by taking the absolute values.
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Figure 6. The rectified data in figure 5 were transformed to z-scores (see text) and thresholded at z>3.
The thresholded z-scores are plotted here for the real data (top) and surrogate data (bottom). These
analysis aims to locate the local maxima in the signal and thus the ‘on’ bursting phases. The ‘off> phases
are the intervals between the maxima.

Therefore the data were first rectified by taking the absolute value of the time series (figure

5). The approach illustrated in the previous section, would suggest implementing an absolute
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threshold and consider everything below the threshold as ‘off” laminar phases. Nevertheless,
in a noisy and nonstationary signal an absolute threshold would not be appropriate especially
when multiple trials are to be used. Therefore we utilized a threshold in a statistical sense: for
every trial z-scores of the rectified data were computed based on the mean and the standard
deviation of the epoch time series. This would then help identifying local maxima in the
signal corresponding to “bursts’ or “on phases’. The threshold for a ‘burst’ was set to 3
standard deviations of the mean signal amplitude for each experimental epoch. Figure 6,
shows the thresholded data for an experimental epoch. Note that this signal begins to
resemble the one in figure 2, panel c. The intervals between the local maxima (z >3 standard
deviations of the mean) correspond to the ‘off> or laminar phases. One can see that the on and
off phases seem to switch irregularly. However, the surrogate data shown in the bottom panel
look surprisingly similar.

Finally, in order to quantify the duration of the ‘off” laminar phases, the time between
subsequent local maxima were calculated. Because we were primarily interested in the
bursting behaviour of gamma oscillations (30-60Hz), only durations longer than the lower
boundary of the gamma frequency range (here we used 1/30Hz = 0.0333s) were considered.
This is because durations smaller than 0.0333 s would essentially denote laminar phases
between adjacent signal maxima in the gamma frequency range itself (within the ‘bursts”)

rather than laminar phases between subsequent gamma ‘bursts’.
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Figure 7. Distributions of gamma interburst intervals pooled over all experimental trials for participant
F.M. viewing a 3 c.p.d. grating. Panel A shows the distribution of interburst intervals for the real data
on log-linear axes. Panel B shows the respective distribution for the surrogate data. The two distributions
look similar however note the roughly bimodal response in the real data, which is absent in the surrogates.
Also note that the real distribution has an upper limit of 0.6s corresponding to roughly 1.6 Hz . Further
note the difference in the normalized entropy of the two distributions. Panels C and show a log-log plot of
the probability density functions Vs the duration of the interburst intervals. Nearly linear relationship
can be observed for both the real and surrogate data, suggesting power law scaling of the laminar phases
distributions. The gradient of a linear least squares fit indicates different slopes for the real and surrogate
data distributions. The slope for the real data is —1.34 and thus consistent with observations of on-off
intermittency scaling in noisy data.
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The interburst intervals (which were computed epoch wise) were then pooled in a large
distribution for all experimental epochs. The Shannon entropy of the distribution was

calculated for real and surrogate data according to:

Nbins
H(l}aminar) - Z p ([Iaminur ) ln p ([Iaminar)

k=1

where the f

“laminar

denotes the laminar phases, Nbins is the number of bins in the histogram
and p(g, ) is the relative frequency of finding the given laminar phase in the k-th bin. The

number of bins was determined as the cubic root of the number of data points in the
distribution. The binned distribution was then evenly spaced between its maximum and
minimum. The entropy of a binned distribution increases with the number of bins. Therefore
the entropy needs to be normalized. Here we used a fraction of the observed entropy with

respect to the maximally possible entropy given the number of bins:

H (Z aminar)
Hnorm = I > ]{nm‘m € [O’ l]a

max

where H_ = In(Nbins).

max

Figure 7 shows the distributions of the interburst intervals (laminar phases) for both real and
surrogate data. Panel A shows the distribution of interburst intervals for the real data on Jog-
linear axes. And panel B shows the respective distribution for the surrogate data. Note that the
distributions are bounded from the left hand side, as values smaller than 0.033s are not
considered. The distributions are also bounded from the right hand side by the virtue of finite
data samples: here the largest possible lag must be smaller than 4.5s (the time of an
experimental trial). The seemingly exponential distributions observed are due to the fact that,
for a limited number of data samples, shorter intervals are more likely to be observed than
longer ones. The two distributions look similar at first glance; however note the roughly
bimodal response in the real data, which is absent in the surrogates. This suggests that the
gamma oscillations exhibit stronger modulations at mainly theta (periods around 0.15-0.25s)
and delta frequencies (periods around 0.4-.0.5s) than the expected distribution presented by

the surrogate data. Also, the real data distribution shows a higher limit of about 0.6s (1.67 Hz)
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where as the surrogate distribution has a much higher limit. Thus although interburst intervals
longer than 0.6s are expected and indeed observed in the surrogate data distribution, they are
completely absent in the real data. This implies that modulations of gamma at very low
frequencies (lower delta range) do not occur for this dataset. Further note the marked
difference in the normalized entropy of the two distributions. Here the entropy is lower in the

real than in the surrogate data.

The probability density functions for both real and surrogate data were calculated and then
plotted as a function of the interburst intervals in terms of a log-log plot. In case of a power
law scaling this should yield a straight line, whose gradient would denote the power. A least
squares linear fit was performed on the logarithmic data. Panels C and D shows a log-log plot
of the probability density functions (PDF) Vs the duration of the interburst intervals for the
real and surrogate data respectively. No linear relationships could be observed for the real
data, a finding which is not consistent with power law scaling of the laminar phases
distributions. The surrogate data also exhibit a curvilinear relationship and a steeper fall off of
the PDF as a function of the duration of laminar phases. The gradient of a linear least squares
fit indeed indicates different slopes for the real and surrogate data distributions. The slope is
steeper for the surrogate data distribution and is estimated at —2.82 as opposed to —1.34 for the
real data. Figure 8 shows the PDF’s for real and surrogate data for another participant
(K.D.S.) and a 3 c.p.d. stimulus. The results are again inconsistent with power law scaling ,
nevertheless there are differences in the real and surrogate data distributions. This suggests

that the interburst intervals of gamma oscillations may not be purely due to noise.
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Figure 8. Log-log plots of the PDF’s (probability density function) Vs the duration of interburst intervals
for participant KDS and a 3 c.p.d. stimulus. The left panel shows the results for the real data and the right
panel shows the surrogate data. Note that the slopes of the linear fit are very different for the real data
and surrogate data and that the slope for the real data is close to —3/2 >. This is furthermore consistent
with the results for participant F.M. for the same stimulus.

7.4 Statistical comparisons between distributions of interburst intervals in the real and
surrogate data

We should note that the method described here is (at present) merely semi quantitative. This
is because it lacks a rigorous statistical inference of whether the distributions of interburst
intervals in real and surrogate data are different. However the latter is not a trivial question.
Current methods for the detection of on-off intermittency are based on a -3/2 power law
scaling of the distribution of laminar phases (Heagy, Platt and Hammel, 1994). The exact
exponent of the power law may be influenced by the presence of noise (Platt, Hammel and
Heagy, 1994). Given the fact that the experimentally observed distributions are inconsistent
with such a power law scaling, the only null hypothesis that remains to be tested is that the
observed interburst intervals can be entirely explained by a purely linear random process and
are thus purely due to noise. Thus the problem may be reduced to a deviation of the
distribution of the real data from the one obtained using surrogate data (Theiler et al, 1992).
For a given epoch of real data many samples of surrogate data can be generated and thus
facilitate the construction of a null-distribution. In chapter 5 we used this approach to test the
hypothesis that additional nonlinear interactions occur, which are not present in the null
distributions. The metric used there however, was exploiting the central tendency
(mean/median) of the distribution. In the case of the distributions of laminar phases, this
approach is possibly not adequate, since it is the whole shape of the distribution that is
different and not merely its central tendency. Approaches based on a chi-square comparison
of surrogate and real data may be more fruitful, since they quantify deviations of the real data
distribution from the expected surrogate data distribution. This is an explicit test of whether
the observed distribution of laminar phases significantly deviates from the one expected in a
signal with exactly the same linear statistics but where the phase relationships between

frequencies have been randomized.

For each experimental trial and thus for any given pair of experimental signals of interest, 100
surrogate data epochs were constructed. Then both the true (observed) and surrogate time
series were band passed filtered and analysed in exactly the same way, to obtain distributions
of laminar phases pooled across experimental epochs. This yields a distribution of truly

observed laminar phases across experimental trials and a 100 times larger distribution of
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laminar phases in surrogate data. The true and the surrogate distributions were then compared

by means of a chi square test adjusted for unequal sample size yielding a chi square
value y_  (Teukolsky, Vetterlling, and Flannery, 1992).

S (KT -K,S,)?
T +S,

A 2 —
X true

where the summation is for bin i=1..k, T, is the observed frequency of the true data for bin j,
S, is the observed frequency of the surrogate data for bin 7 (both surrogate and true data

distributions were binned in the same way) and K, and K, are scaling coefficients to adjust

for unequal sample size:

In this way, we are essentially testing the null hypothesis, that the true and surrogate
distributions could have been drawn from a common distribution. To assess the statistical
significance of the chi square test a randomisation procedure was undertaken: A randomly
assigned subsample of the same sample size as the true data was drawn from the surrogate
distribution and this was compared to the whole surrogate distribution to yield a chi square

value, y., ... This was repeated 1000 times to give a randomised distribution of chi square

values. The 95" percentile of this randomised distribution served as a (one-tailed) confidence

interval. Thus y.  was deemed significant if it was larger than the 95" percentile of the

randomized distribution.

7.5 Results of statistical testing and discussion

Figure 9 shows the results for participant F.M. and a 3 c¢.p.d stimulus. The true chi-square
72 was larger than 95 % of the chi-square values obtained by comparing a random
subsample of the surrogate distribution with the entire distribution. This implies that the

apparent bursting of the visually induced gamma oscillation for this particular stimulus may

not be entirely explained by a noisy Gaussian process and may be of a deterministic nonlinear




nature. In participant S.W. for the same stimulus a trend was observed (p=0.09, see table1),
however the latter was absent in participant K.D.S.

The analysis of the datasets for the signals associated with the other stimuli and participants
suggests that nonlinear bursting phenomena are rather infrequent. The results are summarized
in table 1. The results suggest that the hypothesis that the bursting behaviour of gamma
oscillations is purely due to a noisy linear process cannot be generally rejected; on the
contrary detections of nonlinear structure were rather rare. However, these findings are
consistent with previous observations that nonlinear phenomena can seldom be detected in
macroscopic brain signals such as the EEG (Breakspear and Terry, 2002a and references
therein). The approaches followed in Breakspear and Terry, 2002a is based on rejecting the
null hypothesis of a purely linear Gaussian process on an epoch-by-epoch basis. In that way
the percentage of ‘nonlinear’ epochs can be assessed. In the case of spontaneous rhythms (in
the absence of an experimental task) such as the ones studied in the above reference, there is
no reason why one should expect that individual epochs should be homogeneous. However in
our study a very specific stimulus was presented and the data also suggested that the
experimental epochs were homogeneous. Therefore all the epoch data were pooled in a large
distribution and the latter was then tested for nonlinearity. In addition, the statistics used here,
both the chi square comparisons and the randomisation testing are nonparametric and thus
fairly conservative. Although this approach is sensible for assessment of task related
nonlinear behaviour, it is statistically speaking very rigorous. Taken together with the fact that
nonlinear structure in brain signals seems to be infrequent (Breakspear and Terry, 2002a) the
latter may explain why most of the comparisons were deemed insignificant. Current work
focuses on developing an epochwise test for detecting nonlinear bursting phenomena. This

will enable to isolate nonlinear epochs and study them in greater detail.

Stimulus Participant Participant Participant

F.M. S.W. K.D.S
0.5 c.p.d. 42=3.193,p=0.88 | %> =6.178, p=0.52 | 7’ =27,759, p=0.03
I c.pd. v2=18.73,p=0.07 | %*=2.87,p=0.81 | y°=13.4,p=0.14
2 c.p.d. 12=15.76,p=0.11 | x*=7.42,p=0.45 |7 =16.69, p=0.06
3cpd. 12=21.68,p=0.04 | 7*=13.79,p=0.09 | %*=2.378, p=0.93
4 cp.d. +2=3.30, p=0.71 12 =12.45,p=0.18 | %*=5.66,p =0.56
5 c.p.d. 2=326,p=0.84 | ’=11.9,p=0.11 | %*=10.29, p=0.13
6 c.p.d. 42=5.19,p=0.52 | %*=4.90,p=0.68 |y°=18.47,p=0.07
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No of observations

Table 1. Results of the chi-square statistical analysis for all stimuli conditions and all participants. x*
stands for the true x* comparison and p is the probability value of % with respect to the random ¥
distribution.

¥ ? distribution for compatisons between random subsamples Vs the whole surrogate distribution
450 T T T T T T T T T

X % value for comparison of the true data Vs the whole sutrogate distribution

200 X 2. 21.658, No of randomization frials = 1000, p= 0.0470.
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¥ 2 values of comparisons between a surrogate subsample Vs the whole surrogate distribution

Figure 9. Results of chi-squared test between the real distribution of laminar phases and the distribution
in surrogate data (red line and text) for participant F.M viewing a 3 ¢.p.d. stimulus. The significance of
the chi square test was assessed using a randomisation procedure (see methods for details). A random
subsample of the surrogate data was taken 1000 times and compared with the whole surrogate

distribution. This yields a null distribution of chi-square values Ziun!ﬁm shown in the histogram. The 95th

percentile is utilized as a significance level for the true chi square value ¥, . (corresponding to the

comparison of the true distribution with the whole distribution of surrogates) shown as red line.

In conclusion, we examined the bursting behaviour of stimulus-induced oscillations in the
gamma range (30-60Hz). Motivated by the phenomenology of the data and the modelling
work presented in chapters 3 and 4 we wanted to test the hypothesis that this apparent
bursting behaviour may be a reflection of dynamic intermittency arising form interactions
between nonlinear subentities contributing to the same macroscopic signals. We presented a

quantitative approach for constructing the distribution of the interburst intervals based on
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identifying local maxima in the signal. The temporal structure of these signal maxima
strongly resembled the dynamic phenomenon of on-off intermittency (Platt, Spiegel and
Tresser, 1993). However, the distribution of these interburst intervals did not generally
conform to the -3/2 power law scaling characteristic for on-off intermittency (Platt, Spiegel
and Tresser, 1993). Inferential statistics utilized to compare the distribution of interburst
intervals in real and surrogate data indicated that the null hypothesis, namely that the bursting
behaviour of gamma oscillations is purely due to a noisy linear process could not be generally
rejected. On the contrary, rejections of the null hypothesis were the exception rather than the
rule. Therefore we have not found evidence in support of deterministic nonlinear dynamics

underlying the bursting character of visually induced gamma oscillations
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Chapter 8. Synopsis and general conclusions

8.1 Synopsis

The work presented in this thesis was centred on describing, quantifying and modelling large
scale coordination phenomena in the brain. The main ideological foundation was that
information processing and thus brain function crucially depends on complex coordination
phenomena at several spatial and temporal scales and the emergence of particular forms of

macroscopic order.

In chapter | we presented the most eminent theoretical approaches to the binding problem.
We adopted the view that the most promising approach rests within the field of coordination
dynamics in complex systems (Kelso, 1995, Friston, 2000 a,b,c Bressler and Kelso 2001).
The dynamical approach is naturally concordant with the inherently dynamic, context-
sensitive and flexible nature of the brain (Kelso, 1995). This approach uses the powerful
geometric formalisms of dynamical systems and deterministic chaos theories. The
quintessence of the approach is in the view of the brain as a global dynamical system, which
is comprised of sparsely connected, interacting nonlinear subsystems (Friston 2000a,b, Sporns
and Tononi, 2002). The complexity of the brain is a reflection of a constant interplay between
opponent forces subserving functional integration on one hand and functional segregation on
the other (Friston, 2000 b, ). The interplay of these opponent gradients gives rise to a self-
organized global coordination state, which consists of multiple simultaneously active separate
coordination entities, the functional clusters (Sporns and Tononi, 2002). The global state is
however inherently unstable (metastable) because of complex pattern of interactions between
the subsystems (Bressler and Kelso, 2001). These global states, which subsume several
functional clusters, are sufficiently complex entities to facilitate efficient information
processing. Furthermore, the temporal instability of the global and local coordination states
facilitates flexible switching to subsequent states (Friston, 2000b, Bressler and Kelso, 2001).
Although this approach provides very powerful concepts and formalisms, they may prove too
abstract to be utilized for the formulation of experimental hypotheses in functional
neuroimaging. Explicitly, the particular nature of interactions in the brain, the collective
variables of interest at different spatial scales and finally their relation to the macroscopically
measured signals such as the EEG and MEG are still largely unknown. These topics are

central to the rest of the thesis.
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In chapter 2 we examined methods for assessing interactions between macroscopic-brain
sources using non-invasive functional neuroimaging techniques such as the MEG. We argued
that it is perhaps equally important to know both, the location of the sources that generate
these macroscopic signals but also how these interact with each other in a given experimental
setting in real time. The knowledge of both the location and the pattern of interactions of
brain sources are vital if we want to employ the theoretical framework described above in
order to characterize the neural substrates of information processing. We showed that under
realistic measurement conditions the assessment of the location, the time courses and most
importantly the interactions between linear and nonlinear sources is possible within

reasonable limitations imposed by the beamformer methodology.

In chapter 3 we examined the nature of synchronization phenomena arising from the
interaction of low dimensional nonlinear systems in greater detail. Synchronization
phenomena have been observed at all levels of description in the brain and are empirically
closely linked to integrative and highly specific information processing (Varelaet al, 2001).
The study of synchronization phenomena in simpler systems was centred on the idea that the
mechanisms and the dynamics of the collective coordination process will be universal and
also primarily causal for the appearance of macroscopic order in the brain (or in fact any
other complex system). In other words, we were looking for specific dynamical substrates for
the key concepts of functional integration, segregation and metastability in terms of
synchronization and desynchronization processes. It had been previously suggested that
synchronization is synonymous to stable linear resonance (or crosscorrelation) and thus
cannot possibly facilitate information processing (Friston, 2000a). We have argued that this is
not the case. On the contrary, a multitude of synchronization phenomena arise through the
interaction of merely two coupled nonlinear systems. These phenomena are highly dynamic
and can be distinctly unstable and in fact, for a range of parameters, the collective dynamics
are intermittent (metastable). Furthermore, we have demonstrated that the introduction of
strong coupling between dissimilar chaotic systems or strong periodic forcing may be lead to

low dimensional periodic behaviour in the previously chaotic systems.

The latter phenomenon, known as chaos destroying synchronization may be relevant in the
context of strong driving sensory inputs of a periodic nature, widely used in sensory
paradigms. Thus the periodic structure of the stimulus may be reflected in the sensory input of
subcortical structures to the cortex and subsequently enforce low dimensional periodic

behaviour. This may however not be typical of the activity of the cortex in the absence of
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such strong and regular stimuli, which are also seldom found inthe environment. We tested

these ideas explicitly in chapter 5 using the steady state auditory evoked response.

We were mainly interested in two cases, that of identical (symmeiry condition) and that of
nonidentical (broken symmetry condition) interacting systems. In the first case we observed
the emergence of identical synchronization (Pecora and Carroll, 1990) or strong generalized
synchronization (Pyragas, 1996). The dynamics in the coupled systems remained chaotic but
were nearly identical. Thus the synchronization dynamics were confined to a subpartition of
the state space, the symmetry manifold (a hyperplane). We speculated that this extreme
dimensional reduction might play a role in enhancement of signal to noise ratio and hence
facilitate secure message transmission. This could be particularly useful for neuronal
interactions at microscopic levels and in particular in the context of early sensory processing.
However, this kind of interaction is not truly adaptive, since the synchronization dynamics are
confined on the symmetry manifold; for this reason there is no creation of information given
that the coupled system does not undergo a bifurcation (this kind of interaction corresponds to
total integration in the sense of Sporns and Tononi, 2002). In the case of nonidentical
systems, we observed two main classes of dynamic regimes that of phase synchronization
(Rosenblum et al., 1996) and generalized synchronization (Rulkov et al., 1995, Pyragas,
1996). These interactions do not constrain the coordination dynamics in a simple (hyper)
plane but exhibit more geometrically complex manifolds, which essentially comprise a
mixture of the dynamics in the interacting systems and consequently the synchronization
manifolds often become unstable. Hence in these cases there is true integration (this
corresponds to the notion of complexity (Sporns and Tononi, 2002), in the sense that the
systems preserve some autonomicity despite their interaction. This kind of interaction may be
important for information processing at mesoscopic and macroscopic scales in the brain,
where dissimilar modular structures need to transiently interact but still need to preserve their
autonomicity. Phase synchronization occurred for lower coupling strengths. Inherently
dissimilar systems, could exhibit synchronization but they required higher coupling strengths
and dissipated more energy to do so; crucially this phenomenon, often referred to as
oscillation death, occurred for an entire range of parameters. The latter is due to the tendency
of interacting systems to preserve their autonomous dynamics despite the presence of
relatively strong coupling. The coordination scenarios, which arose in the case of coupled
dissimilar systems, were likely to involve relative coordination dynamics such as intermittent
and /or imperfect phase synchronization. The metastable coordination dynamics in this case
often came about in the form of on-off intermittency (Platt, Spiegel and Tresser, 1993) of the

phase difference (the collective variable). Perhaps the most important consequence of the

177




observations above is that if such processes were to occur in the brain, they would concur
with energy dissipation and could be thus captured as amplitude changes in metabolic and
electric measures of mean neuronal activity. Oscillation death when occurring on the basis of
intermittent phase dynamics may be related to resetting the subtle equilibrium (metastable)
dynamics between different oscillatory processes (segregation) and inherent structural

coupling (functional integration).

In chapter 4 we extended the study to multidimensional nonlinear systems with an explicit
spatial structure. Such systems exhibit interactions between their subcomponents, which result
in the emergence of macroscopic order. The scope of this work was to explore, potential
scale-specific collective variables (that determine macroscoscopic pattern formation) and how
these change with respect to system control parameters such as the connectivity and
homogeneity of constituent units. Above all we were interested in the inverse problem: Can
the changes in a gross macroscopic observable such as the mean field signal tell us anything
about the coordination processes occurring in the underlying network? This issue is extremely
important for the analysis and interpretation of phenomenological patterns observed in
macroscopic MEG/EEG signals such as task-related power changes (ERD/ERS, Pfurtscheller
and Lopes Da Silva, 1999). We postulated that at least two levels of brain organization are
indispensable for the generation of a macroscopic brain signal: a microscopic level,
subsuming interactions of neurons (or minicolumns) within a cortical column, where the
connectivity is global and the constituent units are nearly identical and a mesoscopic level,
encompassing interactions of neurons befween cortical columns, where the connectivity is
local and the units are dissimilar. The mesoscopic level is more likely to contribute to the
mean field signal; however it may itself be considered ‘emergent” upon the interactions at the
microscopic level. The microscopic level was abstractly modelled as an array of nearly
identical, globally coupled oscillators and the mesoscopic level was abstractly modelled as a
lattice of locally coupled oscillators. In the case of the globally coupled network of nearly
identical elements (an abstract model of the interactions within a cortical column) introducing
the coupling resulted to the emergence of almost complete array synchronization. The latter
was consistent with the Kuramoto transition (Kuramoto, 1974 and 1985). The mean field
signal exhibited an amplitude enhancement, which was mainly due to a power increase at a
discrete frequency, the frequency of the collective synchronization occurring within the array.
The latter was consistent with an increase of the ‘signal to noise’ ratio of the entire array
through the onset of synchronization. In this case a microscopic synchronization process
mapped directly to a specific power increase at a discrete frequency range perhaps analogous

to the empirically observed ERS (Pfurtscheller and Lopes Da Silva, 1999). However, we
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pointed out that the core assumptions of the model: the homogeneity of the units and the
global nature of the coupling could be only justified for the microscopic and not the
mesoscopic level of description. Nevertheless, this result suggested, that at the level of the
cortical column, global synchronization processes may occur. These would result to the
emergence of a mean field existent at well-defined frequency ranges; the latter seems to be
supported by invasive neurophysiological data (Gray and Singer, 1995, Koenig, Engel, Singer
1995, Traub, Whittington, Stanford, and Jefferys, 1996). As a consequence, cortical columns

could be abstractly modelled as oscillators exhibiting characteristic frequencies.

We then looked at an array of locally coupled nonidentical oscillators. The latter was
conceived as an abstract model of a mesoscopic level, mainly pertaining to the interactions
between cortical columns. Introducing the coupling resulted in partial synchronization in the
array, with the formation of several synchronized clusters. The relevant collective variable at
the mesoscopic level was the phase difference between the units, since the coordinative
phenomenon that occurred was phase synchronization. The strength of the synchronization in
fact defined the clusters. Nevertheless, these clusters exhibited distinct frequencies, and in
effect the frequency difference between the clusters was the collective variable (the order
parameter) at a macroscopic level of description. That is, these clusters were detectable in the
mean field signal, in the form of distinct spectral peaks. Interestingly, the array as a whole did
not exhibit a marked power increase after the onset of synchronization; on the contrary a
power decrease was evident in the units, which were situated between the two stronger
clusters. This relatively broadband power decrease was also evident in the power spectrum of
the mean field signal and occurred at the boundary of the spectral peaks corresponding to the
synchronized clusters in the array. Closer inspection of this phenomenon revealed the
emergence of auxiliary frequency modes, intermittent phase synchronization between the
units concerned and oscillation death. We suggested that oscillation death contributed to the
separation of the clusters by minimizing their “extrinsic’ input and thus decreasing their
effective interaction. We suggested that this may be a generic contrast enhancement
mechanism. The presence of intermittent phase dynamics suggested that the form and number
of the clusters may (under circumstances) change without any change in the control
parameters. Thus intermittency in such models with a spatial domain implies the spontaneous
formation and dissolution of functional clusters. Recent work on realistic, multiscale models
of interacting cortical columns suggested that this is possible and furthermore made the case
for the adaptive role of intermittent phase synchronization and desynchronization
(Breakspear, Tery and Friston, 2003). Oscillation death in the presence of intermittent phase

dynamics can hence be conceived as a fundamental resetting (updating) mechanism. In terms
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of synergetics (Haken, 1983) such spatiotemporal intermittency should be evident in the
macroscopic order parameter. In our array this was the frequency difference of the clusters,

which could be inspected through time frequency analyses of the mean field signal.

Studying these abstract and rather simplistic models lead to somewhat general but still
important conclusions. Firstly, the mapping between synchronization occurring at
microscopic and mesocopic levels of description to macroscopic power changes in the mean
field signal is not straightforward. Synchronization does not always imply power increase (an
ERS according to the classical definition by Pfurtscheller and Lopes Da Silva, 1999).
Actually the adaptive form of synchronization involving the formation of functional clusters
in terms of the complexity framework (Sporns and Tononi, 2002, Breakspear, Terry and
Friston, 2003) may well be accompanied by specific power increases and decreases, where
the power decrease may be marked and of a broader frequency range, whereas the power
increases maybe fairly sharp. This may shed some light on the empirical observations of
marked power decreases (ERD’s) when integrative information processing is required.
Secondly, these results may also contribute to the understanding of concurrent power
increases and decreases that are common in the alpha frequency band, which is often
conceived as a unitary cortical rhythm (Klimesch ez al., 2000). Finally, these very simple
models may provide a way to explore the relation between coordination processes occurring

at smaller scales and integral macroscopic observables.

In chapter 5, we used a dynamical systems approach and applied it to analyze MEG steady
state auditory evoked response data. The classical method of measuring the steady state
response, the response that follows a periodic AM stimulus, is by averaging responses over a
large number of very short epochs, usually the length of the period of the driving AM
waveform, to maximise the signal-to-noise ratio of the response (Picton et al., 1987, Ross et
al., 2000, Pantev ef al., 1996). The assumptions behind averaging in the temporal domain
(and steady state techniques in general) are that the underlying neural signal is stationary,
time-locked to the stimulus and superimposed on white noise. Therefore any variation in the
envelope of the steady state response should be just due to effects of additive noise that is
irrelevant to the processing of the stimulus. We tested this hypothesis by measuring the
variability of the envelope of the (non time-averaged) following AM response and comparing
it to the variability of a system noise recording. We showed that only 3-5% of the variability
in the envelopes of the AM following response can be attributed to system noise. The rest of
the variability remained unaccounted for and had to arise from neuronal processes occurring

during the presentation of the stimulus. We suggested that inter and intra hemispheric
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interactions between the AM following response and ongoing brain rhythms may explain
some of the variability. The analysis of the phase and envelope interdependencies within the
same hemisphere but across frequencies provided some evidence for nonlinear envelope
interactions between the ongoing alpha and beta rhythms and the following AM response and
additional croshemispheric interactions of the alpha and beta rhythms concurrent with the
stimulus. There was also some evidence for crosshemisphric nonlinear phase synchronization
at the frequency of the AM stimulation signifying a genuine crosshemispheric interaction.
These results strongly suggested that ongoing cortical rhythms modulate the following AM
response and are therefore relevant for the processing of the stimulus and should not be
therefore discarded by means of signal averaging. Furthermore, the presence of nonlinear
interactions in macroscopic brain signals is in agreement with the literature (Breakspear and
Terry, 2002a, Stam et .al, 2003). These results may extend this literature by virtue of the fact
that the nonlinear interactions reported here occur at the source (and not the sensor) level and

within the context of a specific experimental paradigm.

In chapter 6, we tested the hypothesis that distinct holistic stimuli, requiring the integration of
activity in distributed neurons, would crucially depend on the formation of measurable
functional clusters. The abstract models presented in chapter 4 suggested that the clusters
would be defined as mutual synchronization of cortical columns at mesoscopic levels. The
synchronization process however should express distinct characteristic frequencies for each
stimulus pattern, so that distinct stimuli can be disambiguated. These emergent characteristic
frequencies should be apparent as distinct spectral characteristics in the macroscopic mean
field signal. Gamma oscillations (30-60Hz) have been suggested as mechanism for binding
together information from specialized neurons that code for specific stimulus features. While
the magnitude of gamma oscillations was found to increase in a multitude of tasks that require
feature binding both in animals and humans, their temporal dynamics, which are probably
closely linked to their function, have remained largely unexplained. We tested the hypothesis
whether the temporal frequency of these oscillations may facilitate differential coding of
distinct spatial stimuli. Using Magnetoencephalography (MEG) we studied responses to full-

field square- wave patterns of varying spatial frequency.

We used a nonparametric ranking method to assess stimulus related changes in the spectral
distributions across frequencies in the signal arising from a source located in primary visual
cortex. The analysis performed in both the induced and the evoked response in the following
three frequency ranges: gamma (30-60Hz), beta (20-30 Hz) and lower frequency range (0-

20Hz). By doing this we were explicitly testing the null hypothesis of whether the rank
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distributions of the stimulus related power changes may have arisen from the same
distributions for the different spatial stimuli. Stimulus related increases in gamma oscillatory
power in primary visual cortex was the most robust finding being consistent across all
subjects and all experimental conditions. For different spatial frequencies we found
significant differences in the spectral distribution of signal change in the induced (not strictly
time-locked to stimulus) gamma band (30-60Hz) oscillations arising from primary visual
cortex. Thus different spatial stimuli were accompanied by different temporal frequency
distributions in the signal. We did not however observe similar changes in the evoked (time-
locked) response or in induced frequency ranges outside the gamma band. These findings are
consistent with invasive animal neurophysiology relating microscopic neuronal
synchronization to mean field gamma oscillations. We showed for the first time that the
frequency distribution of gamma oscillations in the human brain is governed by the spatial
structure of visual stimuli. We speculated that the coding of spatial stimuli might be a process
of competition of coarsely tuned receptive fields instantiated by synchronized processes at

different frequencies.

Closer inspection of the temporal dynamics of the signal arising from primary visual cortex
revealed bursting oscillations in the gamma range (30-60Hz). Motivated by the results of the
modelling work (chapters 3 and 4 ), in chapter 7 we set out to test the hypothesis that this
apparent bursting behaviour may be a reflection of dynamic intermittency arising form
interactions between nonlinear subentities contributing to the same macroscopic signals.
Although the presence of dynamic intermittency can not be inferred from noisy signal
observables generated by a largely unknown system, we argued that one can test the
operational hypothesis, of whether the slow modulations in the amplitude of the oscillation
exhibited a deterministic nonlinear structure or alternatively they just reflected random, noisy
fluctuations. We presented a technique for assessing the distribution of the interburst intervals
based on identifying local maxima in the signal. For salient 3 ¢.p.d. stimuli the temporal
structure of these signal maxima strongly resembled the dynamic phenomenon of on-off
intermittency (Platt, Spiegel and Tresser, 1993). However, the distribution of these interburst
intervals did nor conform to the -3/2 power law scaling characteristic for on-off intermittency
(Platt, Spiegel and Tresser, 1993). Further, this distribution was only seldom different to the
one obtained by phase randomized FFT surrogates (Theiler et al., 1992), where possible
nonlinear structure was destroyed. Thus rejections of the null hypothesis of'a purely linear
noisy process underlying the bursting behaviour of gamma oscillations were rather rare.
Consequently, we could not provide support for deterministic nonlinear dynamics underlying

the bursting behaviour of these visually induced gamma oscillations
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8.2 General conclusions and implications
The work presented in this thesis examined collective coordination phenomena and their

relation to macroscopic neuroimaging signals such as the MEG recorded during sensory
paradigms. We adopted a theoretical framework based on dynamical systems theory. The
latter proved to be extremely valuable not only by providing novel conceptual insights and
motivating testable experimental hypotheses but also in the process of devising appropriate

methodology and interpreting experimental neuroimaging data.

The application of the dynamical approach to neuroimaging data discloses novel perspectives,
as it facilitates a direct link between microscopic, intermediate and macroscopic measures of
neuronal function, which are generally studied in isolation by distinct disciplines.
Furthermore, the findings presented here, when interpreted within the framework of a general
coordination theory of brain function, have direct implications for further research in a range
of diverse fields both in empirical and theoretical neuroscience. The main implication to be
drawn from this research is the following: predictions of the neuronal synchronization
hypothesis (with support from invasive studies in animals with intracellular and local field
recordings) in combination with predictions from the theory of coordination in nonlinear
systems can be used to formulate testable operational hypotheses considering the macroscopic
level of description of neuronal networks. These predictions are specific as to which patterns
can be expected in macroscopic brain signals and therefore have direct implications for which
variables would be of interest in these complex, integral measurements. These hypotheses can
be tested in human participants using non-invasive neuroimaging techniques in conjunction
with sophisticated signal processing methodologies. These predictions seem to be confirmed
by the phenomenological patterns observed in the experimental results. These seem to be in
accordance with well-documented findings regarding neuronal function, as studied in terms of
perception (visual psychophysics), neuronal receptive fields (single and multi unit recordings)
and networks of coupled neurons/dynamical systems (theoretical and computational
neuroscience). These results indicate not only, that new experimental possibilities arise for
functional neuroimaging but also that the relation between different levels of description in
the brain can be investigated by integrating all these related literatures. Functional
neuroimaging methodologies have the major advantage of directly studying brain function in
humans and not inferring it through animal models. Also they allow for complex behavioural
experimentation and accurate behavioural measurement (an objective ‘functional’
measurement of the brain), which is not possible in animal experiments. The latter

nevertheless, enable direct measurement of neuronal network function, which can then be
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modelled mathematically to illuminate possible mechanisms at work. Moreover large-scale
neural network modelling in conjunction with experimental data from neuronal, intermediate
and integral brain measurements can inform the relation between observed phenomenology
and function. Experimental data such as these presented here can help in both evaluating and
providing physiological constraints for such models and furthermore relating them to
behavioural or perceptual processes. We argue that the approach of combining these diverse
bodies of research is not only extremely useful but also seems to be technically feasible with
the methods available to us today. We consider that, the possible link that can be created
between invasive animal and non-invasive human literatures by application of these concepts

and the related methodologies may represent a major advancement in neuroscience.

Finally, we acknowledge that we are still far from a general and widely accepted theory of
coordination in the brain. In fact, still little is known about large-scale coordination dynamics
in the brain and their role in information processing. We are fully aware of the fact that the
work presented in this thesis is merely scratching the surface. However, the theoretical and
empirical studies presented here suggest that developments in the theory of synchronization in
complex nonlinear systems in conjunction with advancements in magnetoencephalography
can potentially provide powerful insights into brain function. Similar approaches may
contribute to extending the interpretation of neuroimaging data beyond phenomenology and

hence eventually justify the term ‘functional’ in functional neuroimaging.
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Appendix 1: Linear stability analysis and Lyapunov exponents

Linear stability analysis

The notions of attractors, repellors and saddles are derived from the classical notion of
(temporal) stability, as originally introduced by Lyapunov, and can be rigorously
classified by means of a methodological framework referred to as linear stability
analysis. The latter is described very briefly bellow in the simple cases of | and 2-D

to introduce the basic concepts.

Essentially, the notion of stability in the simplest case of a one-dimensional system is
related to behaviour of the time derivative. Thus, given the one dimensional
dynamical system:

y=f(x,0). (1]

the state equation will be a 1-D ordinary differential equation of the form:

dx/dr = f{x). (2]

Equilibria can be found where the time derivative is zero and thus

Ax) =0 ==> x*. 3]

where x* is the value of x where the time derivative f{x) is zero.

x* here corresponds to an equilibrium or a fixed point. This just implies that this point

in state space is invariant in time.

Stability is then determined by the sign of df(x)/dx evaluated at x* . The system vy, is
said to be stable if dffx )/dx <0, unstable if df{x )/dx > 0 (evaluated at x*).

Stable fixed points are also called point attractors, this essentially means that a
trajectory visiting this point will remain trapped in there for an infinite time, unless a
bifurcation takes place due to a change in system parameters. An unstable fixed point,
also called a repellor, means that a visiting trajectory will be almost instantaneously

repelled. System behaviour near such equilibria is generally given by:
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X = x* + (x0 - x*)e’t. (4]

where x0, is the initial condition of state variable x, and x* is the value of x near
equilibrium as in equation [3] and

A= df/dx (at x = x*). [5]

is the growth rate.

This general result is very informative because it captures the essence of chaotic
dynamics. The system which is initiated at x0, will (after initial transients have died
off) reach a certain equilibrium point x*. Depending on the sign of A, the growth rate,
the system will either exponentially move away from equilibrium (in case A is
positive indicating an unstable point) or it will exponentially move closer to

equilibrium (indicating a stable point).

It is easy to see, how this result may be extended to a 2-D system, e.g.
dx/dt = f(x). (6]
dy/dt = g(y).

Equilibrium points will be respectively at f= g =0 ==>x*, y*. We can then

calculate the Jacobian matrix J (the matrix of partial derivatives) at x*, y*.

The general form of the Jacobian matrix for an n- dimensional system (where n is the

number of differential equations and thus state variables) is:

9%, .
Sy )= 7]
K74 %, |
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) . . . . . .
where -?—‘ is the partial derivative of y, with respect to y,, and v is the is the
Zl /Yn

partial derivative of y, with respectto y,. The Jacobian is very useful, when

dealing with multidimensional systems, in terms of an estimation of Lyapunov

exponents.

In the case of a two dimensional system we only have two partial derivatives. Let
1. be the partial derivative of f with respect to x, and f, the partial derivative of f

with respect to y.

A useful matrix characteristic of the Jacobian is its determinant. In this case we

have:
detJ = figy - f,gx = M2 (determinant of J) [8]

The determinant is useful for formulating the so-called characieristic equation,
which is generally of the form det (J - &) = 0, where det denotes the determinant

of the matrix). In this case we have:

(fx - A)(gy - A2) =/ - 9]

A1, A2 denote the eigenvalues. Solutions are of the form: x = xoeM',y =yoe>‘2’ .
What we can see again is that if the eigenvalues are positive, the solutions of the
system are bound to diverge from the initial conditions in an exponential way in
two directions corresponding to the two state variables x and y. As we shall see
below, this is a very useful concept, with respect to the quantification of chaos
using Lyapunov exponents. The Lyapunov exponent is essentially a generalization
of an eigenvalue to a multidimensional system. For a multidimensional system

Lyapunov exponents can be estimated using its characteristic equation.
In the case where we have the simplest 2-D system:
dx/di=y.

dy/dr = -x.



This yields the eigenvalues &y = 1, k2 = -1, corresponding to a saddle point. This

means that the system will expand in the y direction but it will contract in the x

direction.

Volume expansion and contraction in chaotic systems

One of the core characteristics of chaotic systems is their ability to expand or
contract simultaneously in different directions in state space. This is the basis of
the typical stretching and folding behaviour. This behaviour can be quantified or
indeed predicted in terms of the eigenvalues or their generalizations the Lyapunov
exponents, which forecast not only whether the system will expand or contract on
average but also in which directions it will do so. This is illustrated in a simple
case where we only have a 2-D system, with state variables C and E, as shown in
the figure below. For simplicity let’s consider that the system is expanding in

direction E and contracting in direction C.

Schematic representation of the area involved in contraction and expansion in a 2 D system.

The rate of change, i.e. the time derivative in the expanding direction is given by

dE/dr = 0, E , where 4, > 0. [10]

In the contracting direction we can write in a similar way:

dC/dr = h», where 2, < 0. [11]

The state space area is simply given by:

A= CEsin B. [12]

The rate of change in state space area per time unit is thus:

dA/dr = CdE/dt sin © + EdC/dr sin 6 = CE(M + Az) sin © [13]
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The normalized quantity, and thus the fraction of the rate of change (fractional rate of

area expansion) in state space area divided by the total area is given by the sum of the

eigenvalues:

dA/dr 1 A=h + s [14]

Elegantly, the sum of the eigenvalues corresponds to the frace of the Jacobian. Thus

according to equation [9] in a 2-d system, we will have

trace)=f, + g@= A+ Xa [15]

This result can be generalized to higher dimensions in terms of the fractional rate of

volume expansion/ contraction, which will be generally of the form:

AVIdE/ V=2 + o+ ..n=$"2 [16]

where V is the state -space volume of initial conditions, =1..n, is the number of the

eigenvalues &, A

n

From [16] it becomes clear that the sum of the eigenvalues must be negative for an
attractor, as this would lead to a negative fractional rate of expansion (and thus a
contraction). For a conservative (non dissipative, Hamiltonian) system the sum of

eigenvalues should be zero. Note that the fractional rates are instantaneous quantities.
Lyapunov exponents

The above can be generalized to many dimensions using the Lyapunov exponents.
However, in many multidimensional chaotic systems, one observes a geometrically
non-uniform dimensional reduction: generally one can say that (hyper) spheres —as
initial conditions- evolve into (hyper) ellipsoids- as attractors-. Hence, trajectories in
such systems change both their direction and their magnitude continuously. Thus, a
fractional measure of expansion can only be predictive, when we average along the
trajectory. Thus Lypunov exponents (LE) can be considered as time averages of the
instantaneous eigenvalues and are always real; the units of LE for continuous systems

such as multidimensional flows are thus inverse seconds. As with eigenvalues, the
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volume expansion fractional rate (as in equation [16]) corresponds to the sum of the
(time averaged) Lyapunov exponents. There is one Lyapunov exponent per
dimension. The collection of all LE for a given system is referred to as spectrum of
Lyapunov exponents or simply Lyapunov spectrum. By convention, LEs are ordered
from largest to smallest, i.e. &1 > A, > A3 > ...A,. The requirement for chaos is that at
least one Lyapunov exponent is positive. This practically implies that A; > 0, and thus

at least the Largest Lyapunov exponent (LLE) should be positive.

In summary, Lyapunov exponents allow a quantification of chaos, based on the notion
that trajectories initiated in nearby points in state space will diverge exponentially on
the long term. Furthermore, Lyapunov exponents allow for predictions of the nature
of long-term system dynamics. In multidimensional space, additional information is
given by the spectrum of the Lyapunov exponents. These specify, the geometry of
system dynamics and can therefore predict the long-term behaviour of the flow (see
table below for an example in 3-D) in terms of point attractors, limit cycles, tori,
strange attractors and so on. Therefore Lyapunov exponents are extremely useful for

the study of chaotic systems.

Spectrum of Lyapunov exponents in 3-D flows (e.g Réssler and Lorenz models) and resultant
long term dynamics (attractors).

MO A3 Attractor

Neg neg neg equilibrium point (point attractor)

0  neg neg Limit cycle (stable period-1 oscillation)
0 0 neg 2-torus (two frequency periodicity)

Pos 0 neg strange (chaotic)
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