Incorporating Curvature Information
into On-line Learning

Magnus Rattray T and David Saad *

Neural Computing Research Group, Aston University
Birmingham B4 TET, UK.

tratiray@aston. ac. uk

isoadd@aston.ac.uk

Abstract

We analyse the dynamics of a number of second order on-line learn-
ing algorithms training multi-layer neural networks, using the methods
of statistical mechanics. We first consider on-line Newton’s method,
which is known to provide optimal asymptotic performance. We deter-
mine the asymptotic generalization error decay lor a soft committes
machine, which is shown to compare favourably with the result for
standard gradient descent. Matrix momentum provides a practical ap-
proximation to this method by allowing an efficient inversion of the
Hessian. We consider an idealized matrix momentum algorithm which
requires access to the Hessian and find close correspondence with the
dynamics of on-line Newton's method. In practice, the Hessian will
not be known on-line and we therefore consider matrix momentuim vs-
ing a single example approximation to the Hessian. In this case good
asymptotic performance may still be achieved, but the algorithm is
now sensitive to parameter choice because of noise in the Hessian esti-
mate. On-line Newton's method is not appropriate during the transient
learning phase, since a suboptimal unstable fixed point of the gradi-
ent descent dynamics becomes stable for this algorithm. A principled
alternative is to use Amari's natural gradient learning algorithm and
we show how this method provides a significant reduction in learning
time when compared to gradient descent, while retaining the asymp-
totic performance of on-line Newton's methad.

1 Introduction

On-line learning is & popular method for training multi-layer feed-forward
neural networks, especially for large systems and for problems requiring rapid
and adaptive data processing. Under the on-line learning framework, network
parameters are updated according to only the latest in a sequence of training
examples. This is to be contrasted with batch methods which utilise the entire

183

184 Rattray and Saad

training set at each learning iteration. On-line methods can be beneficial in
terms of both storage and computation time, and also allow for temporal
changes in the task being learned.

The most basic on-line learning algorithm for models which are differen-
tiable with respect to their parameters is stochastic gradient descent. Given
some differentiable error function, the network weights are adapted in the
negative gradient direction of this error calculated according to only the cur-
rent, randomly drawn, training example. Under the batch learning framework
(and in other optimization problems) it is well known that curvature infor-
mation can be used in order to speed up learning (see, for example, Bishop,
1995). Typically this curvature information is in the form of some estimate
of the Hessian matrix or its inverse, as required for Newton-type algorithms
(unless otherwise stated, we define the Hessian as the matrix of second deriva-
tives of the error averaged over the entire training set). Pre-multiplying the
standard gradient with the inverse Hessian and annealing the learning rate
appropriately provides asymptotically optimal performance when emulating
stochastic rules, equalling even the best batch algorithm (Amari, 1998). How-
ever, determining the Hessian on-line is difficult as we only have access to a
single training example at any one time. Even if the Hessian can be esti-
mated on-line, inverting it will be computationally costly when our network
is large. This is particularly undesirable when we consider that computational
efficiency is one of the principle reasons for using on-line methods.

Despite these difficulties a number of algorithms have been proposed which
estimate curvature information on-line. For example, Le Cun et al (1993)
describe an on-line method for determining eigenvalues of the Hessian, which
allows an appropriate learning rate to be used for gradient descent at late
times. Orr & Leen (1994, 1997) have recently introduced an on-line maftrix
momentum algorithm in order to invert an estimate of the Hessian on-line.
This latter method is particularly interesting since the inversion is replaced
by a matrix-vector multiplication which can be carried out by an efficient
back-propagation step. On-line versions of other second order methods are
also available (for a review, see Bishop, 1995).

A. different approach has recently been proposed by Amari (1998), who
.has introduced a natural gradient learning algorithm inspired by ideas from
information geometry. When learning to emulate a stochastic rule with some
probabilistic model this learning algorithm has the desirable properties of
asymptotic optimality (for a sufficiently rich model) and invariance to repa-
rameterizations of our model distribution. This latter property is achieved by
viewing the parameter space of the model as a Reimannian space in which
1oca,]. distance is defined by the Kullback-Leibler divergence. This method
requires knowledge of the input distribution and the inversion of a large ma-
brix (t.h(? Fisher information) but in some cases the algorithm can be exe-
cuted w:h!;h'relatwely low cost (Yang & Amari, 1998). The natural gradient
method is intended to provide improved performance during both transient

Incorparating Curvature Information into On-line Learning 185

and asymptotic stages of learning and we will see that this is certainly true
for the examples presented here. ‘

In this paper we model the dynamics displayed by some of the above learn-
ing algorithms using a recently developed statistical mechanics framework.
This framework allows accurate modelling for on-line learning in two-layer
networks with large input dimension and provides a compact and easily in-
terpretable description of the learning process (Bichl & Schwarze, 1995: Saad
& Solla, 1995).

We first solve the dynamics for an idealized on-line version of Newton’s
method which uses knowledge of the exact Hessian. In this case we show
how unstable transient fixed points, which can appear in gradient descent
training of multi-layer networks with over-lapping receptive fields, can become
attractive fixed points in this case. This highlights a significant limitation
for Hessian based algorithms, which is easily explained by examining the
behaviour of the algorithm close to the fixed point. As expected, asymptotic
performance is shown to be significantly better than for standard gradient
descent and we provide some generic asymptotic results in terms of task
complexity and non-linearity.

As we have already said, the true Hessian will not be known in general
and must somehow be estimated if we wish to obtain optimal asymptotic
performance. An efficient inversion method is also required. We therefore
consider Orr & Leen's matrix momentum algorithm: firstly we show how the
inversion is achieved for an idealized algorithm in which the true Hessian is
known and secondly we examine the efficacy of using a rather erude on-line
estimate of the Hessian.

Matrix momentum still suffers from the problem that previously transient
fixed points become stable. By using an alternative matrix pre-multiplier
which is guaranteed positive definite one can avoid this problem. A number
of possibilities exist, yet these alternatives do not really have any principled
Justification outside the asymptotic regime (for example, Orr (1995) uscs the
linearized Hessian, as do Gauss-Newton methods). A more principled choice
is to use natural gradient learning (Amari, 1998). We model the dynamics of
this algorithm and show how performance is much improved over standard
gradient descent in all phases of learning.

2 Statistical mechanics framework

A statistical mechanics framework is used to obtain a compact description of
the learning dynamics, which is exact for large input dimension N and pro-
vides an accurate model of mean behaviour for realistic N' (Biehl & Schwarze,
1995; Saad & Solla, 1995; Barber et al, 1996). We consider a mapping from
an N dimensional input space £ € R onto a scalar, realized through a model
0{J,€) = 3K g(J; - €) which defines a soft committee machine, where we

186 Rattray and Saad

choose activation function g(z) = erf(z/v2), J = {Jih<ick is the set of
input to hidden adaptive weights for the K hidden nodes and the hidden to
output weights are set to one. The activation of hidden node i under pre-
sentation of the input pattern £ is denoted zj' = J; - €. This configuration
preserves most properties of general multi-layer networks and can be extended
to accommodate adaptive hidden to output weights (Reigler & Biehl, 1995).

Training examples are of the form (£", (*) where p labels each example and
components of the independently drawn input vectors £€* are uncorrelated
and come from a Gaussian distribution with zero mean and unit variance.
The corresponding output ¢# is given by a corrupted teacher of a similar
configuration to the student except for a possible difference in the number
M of hidden units: ¢* = £)L, g (B, - €*) + p#, where B = {Bp}1cncn is
the set of input to hidden adaptive weights and p# is Gaussian output noise
with variance 2. The activation of hidden node n under presentation of the
mput pattern £ is denoted y# = B,, - €*. Where possible, we will use indices
i,J, kL. .. to refer to units in the student network and n,m, ... for units in
the teacher network.

The error made by a student with weights J on a given input § is given
by the quadratic deviation

K M 2
6. = 51008~ P =3[Soted - S o -] . @)

which is proportional to the log-likelihood of the data under a Gaussian noise
model. Performance on a typical input in the absence of noise defines the gen-
fil.‘&limtion error €,(J) = (€ (¢, ()¢} lo=0 through an average over all possible
mput vectors €,

Tl{e activations are distributed according to a multivariate Gaussian with
covariances: (zizx) = J; - Jy = Qy, (i) = Ji - Bp = Rin, and (Yn¥Ym) =
Bn-By, = T,,,,, measuring overlaps between student and teacher vectors. An-
gled brackets denote averages over inputs. The covariance matrix completely
describes the state of the system, in the limit, of large N, enabling us to write
down a closed set of ordinary differential equations for the evolution of each
one of the overlaps under standard gradient descent (Saad & Solla, 1995).
In addition, the generalization error may be written exclusively in terms of
the 0\'?’5:1-1&])8 so that these equations of motion are sufficient to describe the
evolut.{on of the generalization error. The equations, representing an exact
a.n‘alytm&l solution for the average case, can be integrated numerically to ob-
tain a solution of the dynamics. In the following sections we will show how

flus framework can be generalized to describe the dynamics for a number of
second order learning algorithms.

Incorporating Curvature Information into On-line Learning 187

3 On-line Newton’s method

The Hessian cannot be determined on-line in practice and on-line Newton's
method is therefore mainly of theoretical interest. However, we consider this
idealized algorithm here so that we can better understand algorithms like ma-
trix momentum, which seek to emulate the performance of on-line Newton's
method.

3.1 The Hessian

We define the Hessian to be the matrix of second derivatives of the training
error with respect to the weights, averaged over all training examples. We
will consider an unlimited number of examples, in which case this is simply
the second derivative of the generalization error. The Hessian is made up of
K? blocks H = [H;;] which can be determined as described in appendix A,

de o,
“_ =] (1 + 5,;,)'{—)@1‘" + ZJJJg 1 + 5‘))(1 + 6",)8(.»,);1'!}@&‘!
e
AT U ; I3 M.‘_
0B+ 8) 9(3 Sl 2Bl 0+) g,
¢, '
__ 3.1
3 BB o

The generalization error can be written in closed form as a function of ¢,
R and T (Saad & Solla, 1995) in which case the above expression is also in
closed form (the generalization error and derivatives are given in appendix B3).
Each block of the Hessian takes the form of an identity matrix added to
outer products of weight vectors and it is straightforward to show that cach
block of the inverse will also be of this general form. Inversion can be carried
out by partitioning and we show how to calculate the inverse for K = 2 in
appendix A.1 (this result can easily be generalized to larger K). Each block
of the inverse Hessian can then be written in the following form,

Hl-'kl = a1 + SG“‘ST} , (3.2)

where S = (J,,...,Jx, By, ..., Bar), au is a scalar coefficient and ©% is an
M + K dimensional square ma,tnx (these only depend on the order parameters
Q, Rand T).

3.2 Equations of motion

Given the inverse Hessian, an on-line version of Newton’s method is defined
by the following weight update at each iteration,

JEH = J# - ﬁH—le 5(€".C) (3.3)

188 Rattray and Saad

where the learning rate n has been scaled with the input size N and may
depend on « in general. The weights to hidden node i are then updated as
follows,

K
= S HE (3.4)
j=1

where 8!' = g'(2!') [Tt 9(yh) — Tier 9(a5) + 2");

In the large N limit the order parameters change according to a completely
deterministic trajectory. Using the methods developed in (Saad & Solla, 1995)
it is straightforward to write down a coupled set of differential equations
describing this trajectory,

dR—in _

o f(RQLT).

dQsp

% 190(R, Q. T) +n°ha(R, Q, T, 0%) (3.5)

where we have defined a new time variable & = p/N to be the normalized
number of patterns presented so far. This is the same general form as for
standard gradient descent (explicit expressions for f, g and h are given in
appendix C.1). All the effects of stochasticity are contained within the n*
term, which is analogous to a “diffusion” term in the language of stochastic
dynamics. This term is proportional to the variance of the input distribu-
tion and contains an additive contribution proportional to the noise variance.
The terms linear in 7 contribute effects due to motion on the mean error
(generalization error) surface. Although it is these “drift” terms which decide
most qualitative features of the learning dynamics outside the asymptotic
regime, the diffusion term limits increases in the learning rate and is of key
importance for determining the appropriate maximal and optimal learning
parameters (West & Saad, 1997; Saad & Rattray, 1997, this volume).

3.3 Integrating the dynamics

The learning dynamics for gradient descent have been well studied and we
give a brief description of the main features here, before discussing on-line
Newton’s method (Saad & Solla, 1995; Saad & Rattray, this volume). The
order parameters are initialized randomly, with overlaps between different
vectors (R, and Qigy) taking small values of O(1/v/N) while the student
norms Qi are O(1). We choose values corresponding to N ~ 10¢ but different
11hnr.ial conditions just lead to changes in the learning time-scale, with learning
times growing logarithmically with N (Biehl et al, 1996). The overall shape
of the learning curve and the optimal and maximal learning rates in each
phase are not affected by the choice of initial conditions. Finite size effects

have been studied by Barber et al (1995), showing that the picture described
here holds for much smaller N.

Incorporating Curvature Information into On-line Learning 189

As gradient descent learning begins, the order parameters quickly con-
verge to a transient fixed point, the symmetric phase, which is characterized
by close similarity of all student-teacher overlaps. This fixed point is unstable,
however, and small differences in the initial conditions diverge exponentially
(hence the logarithmic scaling of learning time with N). Once the student-
teacher overlaps diverge sufficiently the system leaves this transient fixed
point and the order parameters converge towards their asymptotic values (or
possibly to another transient fixed point first). There will always be at least
one transient fixed point as long as K > 2 (unless the learning rate is cho-
sen too large for successful learning), even if the teacher is a perceptron. For
matched teacher and student (M = K) Ry, — Ti and Qe — Ty asymptoti-
cally (for appropriately ordered indices) as long as the learning rate is chosen
well. In the absence of noise and for K > M asymptotic convergence is expo-
nential as long as the learning rate is fixed and not too large. For unrealizable
learning (noisy and/or with K < M) the learning rate should be annealed
inversely with a for optimal asymptotic performance (Leen et al, 1997) in
which case the generalization error also converges according to an inverse
power law (if the prefactor for the learning rate decay is not too small).

In fig. 1(a) we show the evolution of the generalization error under gradi-
ent descent for various learning rates, for & noiseless, architecturally matched
learning scenario (K = M) and an isotropic teacher (Tam = Onm). A scaled
learning rate &@ = an is used, which reflocts the scaling invariance of squar
tions (3.5) for small and allows us to meaningfully take the n — 0 limit.
The plateau in generalization error is due to the symmetric phase described
above and dominates the learning time.

In fig. 1(b) we plot the corresponding results for on-line Newton's method.
The system never leaves the symmetric phase in this case and it appears that
the symmetric fixed point is now stable to perturbations. We have not found
any situation for large or small 7 in which the system Jeaves this fixed point
(for a variety of learning scenarios). It is easy to see why on-line Newton's
method will make any fixed point stable when the Hessian is non-gingular (this
is exactly the effect of Newton's method, which diagonalizes the linearized
dynamics). However, the symmetric fixed point is characterized by a singular
Hessian, in which case this simple picture no longer holds. We have studied
the K = M = 2 case analytically for small learning rate, in & similar analysis
to that of Saad & Solla (1995) for gradient descent. In this limit the student
weight vectors are assumed to lie in a subspace gpanned by the teacher weight
vectors. The system is then completely determined by the student-teacher
overlaps. Exploiting symmetries observed in the dynamics (Rin = [bin +
S(1 — 6;,)) we have a further simplified two dimensional systern, which' we
study by a linear expansion around the symmetric fixed point. For gradient
descent a single positive eigenvalue results in the eventual divergence of R and
S. The picture is different for on-line Newton 's method however and here we
find that both eigenvalues are negative, resulting in a stable fixed point. This

160 Rattray and Saad

0.186¢ 0.15 .

il

M

€& | (a) & | (b)
0.1 0.1
N e,
0.08 o, 0.05
\\‘ ------------------------------------

% 700 200 300 % 500 1000 1500 2000

a

Cre

Fig. 1: We compare the performance of gradient descent (a)
and on-line Newton's method (b) for a two hidden node net-
work loarning from examples generated by a two node isotropic
toachor (T = 6um) in the absence of noise. Curves show the
generalization error for learning rates 1 = 2 (dash-dotted line),
n = 1 (dashed line) and n — 0 (solid line) against a scaled
time variable & = an. Initial conditions are Qyz € UJ[0,0.5],
Qigier Rin € U[0,1079).

analysis exemplifies the usefulness of the order parameters approach, since
n stochastic approximation analysis would be made difficult by the singular
Hessian at this fixed point (this is equally true for standard gradient descent).

[t is not guaranteed that diffusion terms will not make this fixed point
unstable, although in our case this does not appear to be the case (it is
difficult to study the finite % situation analytically since the fixed point can
no longer be determined exactly in this case). This corresponds with what one
might expect, given that diffusion does not aid escape from the symmetric
phase for standard gradient descent (West & Saad, 1997). We note here that
the iuclusion of noise would require a consideration of second order terms (as
in the asymptotic annealing analysis described below), but for low noise levels

these terms will only become relevant within the immediate neighbourhood
of a slightly shifted fixed point.

3.4 Asymptotic performance

In the previous section we found that on-line Newton's method is susceptible
to trapping in a transient, suboptimal fixed point. However, in the presence
of noise, optimal asymptotic performance will be achieved if on-line Newton's
method is used at late times with learning rate 1/a. The asymptotic dynamics
for gradient descent with an annealed learning rate has recently been solved

Incorporating Curvature Information into On-line Learning 1491

under the statistical mechanics formalism and the optimal generalization error
decay is known in this case (Leen et al, 1997). Here we extend those results
to on-line Newton's method.

Asymptotically for an isotropic realizable task (K = M, Tym = Ténm) we
can examine a four dimensional system by defining Ry, = Rby, + S(1 - Bin)
and Qi = Qb + C(1 — &), as this avoids degeneracy in the dynamical
equations (the initial conditions, which would break this symmetry, becoma
negligible asymptotically). This approach allows general results in terms of
K and T. We defineu = (R—-T,Q - T.,S, C)" to be the deviation from the
asymptotic fixed point. If the learning rate decays according to some power
law then the linearized equations of motion around this fixed point are given

by,

du =nMu+n’b, (3.6)
do

where nM is the Jacobian of the equations of motion to first order in 7
while the only non-vanishing second order terms are proportional to the noise
variance. The asymptotic equations of motion can be determined using the
asymptotic expression for the inverse Hessian (see appendix A.4). A more
detailed account will be provided elsewhere (Rattray & Saad, 1998) and here

we just provide the solution to the above equation with 1 = no/a,
u(a) = a’VXV'b, (3.7)

where V=MV is a diagonal matrix whose entries A; are eigenvalues of M
and we have defined the diagonal matrix X to be,

X9 - — n [l g x| (3.8)
! 1+ Ao La

with annealing beginning at « = ae. We find two degenerate cigenvalues
Ao = —1, As4 = —2 and by substituting equation (3.8) into a first order
expansion of the generalization error it is straightforward to ghow 1 = 1 to
be optimal, as expected. In this case the modes corresponding to Ayz do not
contribute to the asymptotic generalization error and we find a particularly
simple decay law which is independent of T,

€y = G—QE . (3.9)

2

In fig. 2 we compare the prefactor of the optimal generalization decay
(€, ~ €g0? /) for on-line Newton's method with the gradient descent m.sulm
from (Leen et al, 1997). The result for gradient descent is not exactly linear
in K, but quickly approaches a linear scaling &s K increases (see fig. 2(a)). .In
fig. 2(b) we show how performance differs most when T becomes‘ small, whll‘c
the optimal gradient descent decay approaches the result for on-line Newton's

9 Rattray and Saad

80, —-‘
€ . €16 (b) !]
0 (‘d.) .° I €.JK 05
60 °.°° 1.4 0.1
,o°'°a° 1.2 1 10 100
40 .a.e" q
0.8)
20 Lo JPPeTi
e 0.6
0 10 20 30 40 045 10 20 30 40 50
I T

Fig. 2: Prefactor for the asymptotic decay of the generalization
arror (€, ~ €0 /a): (a) shows the prefactor for T =1 as a func-
tion of K for optimal gradient descent (circles) and on-line New-
ton’s method (crosses) while (b) shows how the prefactor for opti-
mal gradient descent (large K) decays towards 0.5 as T increases,
which is the prefactor for on-line Newton’s method. Adapted from
(Rattray et al, 1998).

method for large T This can be explained by examining the asymptotic ex-
pression for the Hessian, shown in equation (A.13). For large T the diagonals
of the Hessian are O(1/v/T) and equal (for large N) while all other terms are
at most O(1/T), so that the Hessian is proportional to the identity mabrix in
this limit and Newton'’s method is effectively equivalent to gradient descent.
However, for small T the diagonals are O(T?) while the off-diagonals remain
finite, so that the Hessian is dominated by off-diagonals in this limit.

Although the optimal learning rate decay for gradient descent is inversely
proportional to e, the prefactor is strongly problem dependent. This is not
so for on-line Newton's method, for which n = 1/« is always optimal. We
also note that if the prefactor is chosen too small in gradient descent, the
generalization error will follow a slower power law decay.

In fig. 3 the approach to the asymptotic decay is shown for an example
of realizable learning (K = M = 2) with an isotropic teacher and noise
variance 02 = 0.01. The optimal decay law is shown by the dot-dashed line in
fig. 3(a) while the solid line gives the generalization error for on-line Newton's
method, initialized after the symmetric phase at a; = 180 (before this point
gradient descent is used with 5 = 1). The learning rate is annealed from
some gpyropriate constant (we choose n; = 0.1) according to the following
prescription,

- 3.10)
! I+ (a—a)n (

Incorporating Curvature Information into On-line Learning 193

We see how losses incurred due to trapping during the symmetric phase result
in a rather late approach to the final, optimal decay. If the learning rate is
simply chosen equal to 1/« then the approach is much slower.

4 Matrix momentum

A heuristic which is sometimes useful in batch learning is to include a mo-
mentum term in the basic gradient descent algorithm (for a discussion, see
Bishop, 1995). For on-line learning with momentum we have,

JeH = gk g :r YRS O RN TR (4.1)

where 8 = ¢'(z}') (M, g(y¥) — £I5, g(=}) + p#]. This is the same as for stan-
dard gradient descent except for the inclusion of a term proportional to the
previous weight update.

On-line momentum has been considered previously but has not been found
to be particularly useful, except perhaps in smoothing the asymptotic trajocs
tory of the weights (Roy & Shynk, 1990; Weigerinck et al, 1994; Orr, 1996).
However, by choosing an appropriate matrix momentum parameter one may
obtain close to optimal asymptotic performance (Orr & Leen, 1994, 1997). Be-
fore introducing matrix momentum it will be nseful to consider the dynamics
of standard momentum for large N.

4.1 Standard momentum

Equation (4.1) defines a second order process, in which weights from the two

previous iterations are required for each update. We define an f!quivale;:t first
. .-

order process by introducing a new set of variables U = NIY~J(),

le+‘
! N
Qe - Bt snster. (42)

We can now proceed along the lines of (Saad & Solla, 1995) in order to derive
a set of first order differential equations describing the evolution of a set of
order parameters. In this case we need & new Gaussian field 2/ = () - £ and
a new set of order parameters: (zz) = £ Q% = Cip, (zgn) = S4B = Din,
and (z;z) = J;- % = Ey. We identify two possible scaling for 7 and f3 which
result in different dynamical behaviour.

o Do+ Bor,

e If we choose ~ O(1) and § ~ O(1/N)) the above prescription results
in an increasingly fast time scale for the new order parameters as N
increases. This can be incorporated as an adiabatic elimination and we
find that the dynamics of R and Q is simply equivalent to gradient
descent with an effective learning rate of nuy = 1/(1 — f) in this case.

194 Rattray and Saad

o More interesting dynamics is observed if we choose ~ O(1/N) and 1-
f ~ O(1/N) (Priigel-Bennett, 1997). In this case the order parameters
all evolve on the same time-scale. If we definen = k/N and 8 = 1—/N
then taking v — co and k — oo simultaneously while keeping their
ratio finite results in dynamics equivalent to gradient descent with an
effective learning rate of ey = k/7.

The above limits are related to those discussed by Weigerinck et al (1994)
and their results are consistent with the above observations. The latter scal-
ing proves most appropriate for matrix momentum and is rigorously justified
without resorting to adiabatic elimination. This is therefore the scaling dis-
cussed in the following sections.

4.2 Idealized matrix momentum

Orr & Leen suggest the use of a matrix momentum parameter 8 so that
the learning rate rescaling described in the previous section results in on-line
Newton’s method. If the Hessian is known this can be achieved by setting,
kH kn
Y it _ M 4.3
B N 1= (4.3)
where 7, Is a scalar which may depend on a. Making k large one might then
expect an effective matrix learning rate,

nﬂn’ = ??Q' H-“l] (4'4)

as required for on-line Newton’s method. However, there are two problems
with this result: it has not been shown that the limiting behaviour described
for standard momentum holds for a matrix momentum parameter and we do
not have on-line access the Hessian. In this section we address the first issue
by solving the matrix momentum dynamics for an idealized situation in which
the Hessian is known. In the following section we consider an approximation
based on using only the latest training example to estimate the Hessian.

Substituting the above definitions into equations (4.2) using the definition
of the Hessian given in equation (3.1) and following the methods of Saad
& Solla (1995) we find a coupled set of differential equations for the order
parameters as N — oo, which are given in appendix C.2.

In fig. 3(a) we compare the asymptotic performance of idealized matrix
momentum to on-line Newton’s method for a two-node network learning an
lSOtl‘OpiC‘ task in the presence of noise (o2 = 0.01). Both methods become
trapped in the symmetric fixed point, as explained in the previous section, O
\ve use gradient descent initially and after the symmetric phase we use matrix
momentum with 7, annealed according to equation (3.10). The dashed lines
show results for k = 00L k=01and k=2, in descending order of height

Incorporating Curvature Information into On-line Learning 195

(the final dashed line is almost obscured by the solid line). As & increases,
the trajectory converges onto the on-line Newton's method result {solid line),
as desired, and we approach the optimal asymptotic decay law (dot-dashed
line). Matrix momentum therefore provides an efficient approximation to on-
line Newton's method when the Hessian is known. In the next section we
consider a realizable algorithm which uses an approximation to the Hessian.

10 e
€s €, i

107 |

107 “\»."\ \\.
o

10
10' 10° 10" 10

o

Fig. 3: The solid lines in (a) and (b) show the generalization er-
ror for annealed on-line Newton's method started after o = 180,
with gradient descent before this point, for a two hidden node net-
work learning from examples generated by a two node isotropic
teacher (Tum = 6am) corrupted by noise (o = 0.01). In (a) we
show the corresponding generalization error for idealized matrix
momentum (dashed lines) for & = 0.01, k = 0.1 and ko= 2 (in
descending order of height). The dot-dashed line gives the opti-
mal asymptotic decay. In (b) we show the generalization error for
matrix momentum using a single pattern estimate for the Hessian
with k = 0.1 (dashed), k = 0.5 (dot-dashed) and k = 3 (dot-
ted). Initial conditions are as in fig. 1 (order parameters specific
to matrix momentum are initialized to zero).

4.3 Single pattern approximation

In order to define a practical algorithm we need some a,ppmximatior? to ll;hc
Hessian which can be determined on-line. The simplest guch approximation
is to use a single training example in order to estimate the Hessian (Orr &
Leen, 1997). The single-pattern Hessian is written in appendix ’A.Q and the
equations of motion for matrix momentum using this approximation are given
in appendix C.3.

196 Rattray and Saad

In figure 3(b) we show the asymptotic performance of matrix momentum
using the single pattern approximation, for a two node network learning an
isotropic task in the presence of noise (02 = 0.01). Curves are shown for
k=01, k=05 and k = 3, with 7, chosen according to equation (3.10)
after a = 180. Ideally, we would wish for the curves to approach the on-
line Newton's method result (solid line) for large k. However, as k increases
fluctuations in the Hessian estimate (due to randomness in the inputs) be-
come important and the weight vector norms diverge, leading to divergence
of the generalization error (dotted line). For intermediate k (dot-dashed line)
the performance is asymptotically close to optimal and certainly provides a
significant improvement over gradient descent. Further work is required to
determine the optimal and maximal values of k and 7, analytically, using
methods from (Leen et al, 1997), but we have shown here that performance
is certainly strongly dependent on parameter choice. It would be interesting
to consider more sophisticated on-line approximations to the Hessian, which
might provide greater robustness.

5 Natural gradient learning

As we saw in the section 3, on-line Newton’s method does not guarantee con-
vergence to a minimum of the generalization error because the Hessian is not
always positive definite. A number of heuristics exist which ensure the ma-
trix pre-multiplier of the gradient is positive definite; for example Orr (1995)
suggests using the linearized Hessian (as in the Gauss-Newton method), or
one could add the identity matrix multiplied by some scalar parameter o
the Hessian (or its inverse), with the parameter reduced to zero asymptot-
ically. These methods do guarantee asymptotic optimality and convergence

to a minimum of the generalization error, but lack any principled motivation
during the transient phases of learning.

] A more l)rlincipied approach has recently been proposed by Amari (1998).
Natural gradient learning ensures asymptotic optimality, given a sufficiently
rich model, is invariant to reparameterization of our model distribution (de-
fined by the student in our case) and always converges to a local minimum
of l':lle generalization error if the learning rate is annealed appropriately. In-
variance to reparameterization is achieved by viewing the parameter (weight)
space of the model as a Reimannian space in which local distance is defined
by ';,he Kullback-Leibler divergence (Yang & Amari, 1997). The Fisher infor-
mation matrix then plays the role of a Reimannian metric in this space. The
natural gl-adient. learning rule is obtained by pre-multiplying the gradient of
the log-likelihood (of the most recent training example) with the inverse of

t.ln:;lm(zia.trix‘ which plays a similar role to the Hessian in on-line Newton’s
method.

Incorporating Curvature Information into On-line Learning 197

5.1 Fisher Information Matrix

Our model distribution is taken to be the student network with output cor-
rupted by zero mean Gaussian noise of variance o2, The error defined by
equation (2.1) is proportional to the log-likelihood of the latest training ex-
ample under this noise model. Each entry in the Fisher information matrix
G = [Giaspl, where 1 <ik < K and 1 <o, <N, is defined,

Gy L 96y (€,Cr) 9€3(€.6)
ks e OJis

4
Tm

(5.1)

C.l‘-zl ﬂ{rl]+."m>{pm‘£]

Here, the brackets denote an average over the input distribution and model
noise pm, which is taken from a Gaussian distribution with zero mean and
variance o2,. Amari (1998) has determined the Fisher information matrix for a
general two-layer network and for our particular choice of activation function
with a Gaussian input distribution we find G = A/o%, where A = [Ay] is
independent of the noise variance and is given by (Rattray et al, 1998),

2 ‘ | -
Au=— 1 (0 QuuaIT + 0+ QBT - QuiaT + 3l ())} '

)

3=

W
with A = (l <+ Q“)(l + Qkk) - Q?k
Recall the general form of the Hessian which was defined in equation (3.1).
The Fisher information is also written as the sum of an identity matrix
and outer products of weight vectors, but only student weight vectors and
student-student overlaps are required here. This is because the average In
equation (5.1) does not involve the teacher mapping. The Fisher information
matrix should therefore be easier to determine, as only the input distribution
is required. Also, although we require our noise model to be correct in order
to ensure asymptotic optimality for a sufficiently complex student network,
we will see that knowledge of the noise variance is not required.

If the input distribution is Gaussian, then the Fisher information is as de-
fined above. For K <« N inversion can be achieved efficiently by partitioning
(Yang & Amari, 1997) as described in appendix A.1 for the Hessian, Yang
& Amari also discuss methods for preprocessing the training examples when
the inputs are non-Gaussian, so that the pre-processed inputs approximate
a whitened Gaussian process. However, if the input distribution is far I’rufn
Gaussian then a different approach will be required for inversion. Hfzre we will
simply assume that the inputs come from a Gaussian distribution in order to
determine the efficacy of natursl gradient learning compared with standard

gradient descent.

198 Rattray and Saad

5.2 Dynamics

The weights to hidden node ¢ are updated as follows,

K
=3+ LY AGse (5.3)
i=1

where 8 = g'(f)(ZaL, g(y%) — £I<, 9(2%) + p#). Notice that the noise vari-
ance does not appear explicitly in the above expression, since the noise de-
pendence of the inverse Fisher information matrix and the log-likelihood have
cancelled. The derivation of the dynamics closely follows the result for on-line
Newton’s method and a full discussion will be given elsewhere (Rattray et al,
1998; Rattray & Saad, 1998).

Although our equations of motion are sufficient to describe learning for
arbitrary system size, the number of order parameters is IK(K — 1)+ KM
80 that the numerical integration soon becomes rather cumbersome as K and
M grow and analysis becomes difficult. To obtain generic results in terms of
system size we therefore exploit symmetries which appear in the dynamics
for isotropic tasks and structurally matched student and teacher (K = M
and 7" = Té,,,). In this case we define a four dimensional system via Q;; =
Qb + C(1 - &;) and Ry, = RSy, + S(1 = 6;,) which can be used to study
the dynamics for arbitrary K and 7. In (Rattray & Saad, 1998) we show how
the Fisher information matrix can be inverted for this reduced dimensionality
system and the resulting equations of motion are also given there.

‘ As was the case for standard gradient descent (see fig. 1(a)), the dynam-
ics is characterized by two major phases of learning. Initially, the order pa-
ran.wters are trapped in an unstable fixed point characterized by a lack of
differentiation between different teacher nodes, the symmetric phase. If the
teacher is deterministic then the generalization error eventually converges to
jzero exponentially, unless the learning rate is chosen too large. If the teacher
18 corrupted by noise then the learning rate must be annealed in order for
the generalization error to decay. As for on-line Newton’s method, the fastest
decay for natural gradient learning is achieved by setting the learning rate to
1/a t{l.l‘ld the analysis in section 3.4 is equally applicable to natural gradient
learning since the methods are asymptotically equivalent.

Unfortunately, even for standard gradient descent an analytical study of
the symmetric phase is only possible for small learning rates, which are often
far fron? optimal (Saad & Solla, 1995). Such an approach is not appropriate
fgr re.ahstzc learning rates and often gives misleading results since it is the
dlffust@ terms in the dynamics (quadratic in the learning rate) which set the
&}?Pé‘lopl‘latﬂ leg‘nixlg time scale. It is also unclear how to proceed for natural
f;}llz ﬁlin(tj lea‘rmng even in this limit, since the Fisher information is singular at
l;y thefn ;fl”:;clonmdt‘*md by S?»&d & Solla (1995) and the simplifications used

onger appropriate (Rattray et al, 1998). In order to compareé

Incorporating Curvature Information into On-line Learning 199

1

€

? 4 B B W .
.'“l
0.4 o
o Kt
“.'/ In*
0.2 K
10° 10
c) 10 100 1000
o] 5 10 15 20 25 10' o m
@ K

Fig. 4: In (a) the generalization error is shown for optimal natural
gradient learning (solid line) and optimal gradient descent (dashed
line) for K = 10 (we define & = 107%a). The inset shows the
optimal learning rate for natural gradient learning. In (b) the
time required for optimal natural gradient learning to reach a
generalization error of 107*K is shown as a function of K on a
log-log scale. The inset shows the optimal learning rate within the
symmetric phase. In both (a) and (b) we used T = 1, zero noise
and initial conditions R = 1073, Q = U[0,0.5] and S = ¢ = 0.
Adapted from (Rattray et al, 1998).

transient performance with gradient descent for larger Jearning rates we apply
a recent method for determining optimal time-dependent. learning rates under
the present formalism (Saad & Rattray, 1997, this volume). This allows us to
compare the methods at their optimal settings and to determine scaling laws
for learning time in terms of task complexity. We note here that the maximal
learning rate during the symmetric phase, above which good performance is
impossible, is typically close to the optimal value.

Fig. 4 shows results for the optimal learning rate dynamics. In fig. 4(a) we
compare the generalization error evolution with the gradient descent result for
K = 10, showing a significant reduction in learning time. The inset shows the
optimal learning rate for natural gradient learning in this case. Notice that we
do not consider the effects of noise in this example, since noise will usually be
of secondary importance during the symmetric phase, typically resulting in a
slightly lengthened and raised plateau. In fig. 4(b) we show the time required
to reach a generalization error of 107K as a function of K. This indicates a
scaling law of K2 for the length of the symmetric plateau (which dominates
the learning time) while the corresponding result for gradient descent is K%
(West & Saad, 1997). The inset shows that the optimal learning rate wi‘t.hm
the symmetric phase scales as K~ which contrasts with a value of K~¥ for
gradient descent. The escape time for the adaptive gradient learning rule
studied by West & Saad scales as K% which is also worse than for natural

200 Rattray and Saad

gradient learning.

Our results indicate a significant improvement over gradient descent, which
increases with task complexity. However, these results are for the specific case
of an isotropic, structurally matched teacher. Numerical studies suggest that
improvement can be expected over a larger class of problems but it seems
difficult to determine generic results without significantly restricting the class
of teacher mappings.

6 Conclusion

We have studied a number of second order on-line algorithms for training
multi-layer neural networks, using a statistical mechanics formalism which is
appropriate when the input dimension is much larger the the number of hid-
den units. The first algorithm considered is on-line Newton’s method, which
is obtained by pre-multiplying the gradient with the inverse Hessian. We find
that an unstable fixed point of the gradient descent dynamics becomes stable
under this learning rule, which is therefore only useful at late times. Asymp-
totically, this rule is known to provide optimal performance and we compare
the asymptotic decay of the generalization error with the result for gradi-
ent descent, for isotropic and structurally matched learning (K = M and

Tom = Téym). We find that the advantage of using curvature information is
most pronounced for small T,

In practice the Hessian can not be determined on-line and inversion is
expensive. Matrix momentum provides a practical approximation to on-line
Ne\i\-ton’s method, since it allows efficient inversion of the Hessian and can
be implemented using a very noisy approximation to the Hessian. We first
analyse the dynamics of idealized matrix momentum, using the true Hessian,
and find that the method converges onto the dynamics of on-line Newton’s
method in an appropriate limit. Using a single pattern approximation to
the Hessiap, we find that good asymptotic performance is possible but with
Some sensitivity to parameter choice, due to noise in the Hessian estimate.

Morg work is required to determine optimal and maximal parameters for this
algorithm.

Hessian based methods are inappropriate during the transient phases of

learfuug:, since they do not guarantee convergence to a minimum of the gen-
eruh:a.atzou error. A principled alternative is to use Amari’s natural gradient
lem".mng algorithm, which defines a Reimannian metric in the student param-
ztf’;r Sé)l‘:‘;ﬁ-(_\iuéeﬂﬂii-lysis of this algorithm points to a significant advantage
Lo Gadient ¢ s.ct,nt dun-ng the transients of learning, as well as optimal
yinptotic performance given g sufficiently rich model. We find improved
power law scaling of learning time against task complexi;;y‘
The natural gradient learning algorithm requires an inversion of the Fisher

informati ix whi .
ation matrix which can be achieved efficiently for Gaussian, or near-

Incorporating Curvature Information into On-line Learning 201

Gaussian, inputs (Yang & Amari, 1997). However, in some cases the inputs
will not be close to Gaussian and an efficient method of inversion will be re-
quired. Matrix momentum provides a possible inversion method and a natural
extension of the present analysis would be to study this case.

Acknowledgements

This work was supported by the EPSRC grant GR/L19232. We would like to
thank all the participants of the on-line learning themed week at the Newton
Institute for many useful and enlightening discussions.

Appendices
A The Hessian

We define each entry of the Hessian H = [Hqxp) where 1 < ik < K and

1 <a,ff<N,
o€ 0) o,
Hiorp = SR SR e DU Al
o < 0Jaddis [g OiaOs (A1)

with J; = [Jio). To calculate these derivatives we use the chain rule,

D6y _ 5~ 0Qu 06y |~ 0y 06y (A.2)

aJ; “jkk Odia 0Q 5 e Oy,

where

aQ.’-‘k - frj_‘q_ii'. = b8
9l bijJka + duedia g7, Ouba

Applying the chain rule twice provides us with equation (3.1} in the main
text.

A.1 Inversion by partitioning

The Hessian is defined in equation (3.1) and using the block form it is naturrf,l
to calculate the inverse by partitioning. We will consider the simplest multi-
layer student with X = 2, although it would be straightforward to iteratively
partition for larger K. We write,

X Y
Hz(}?,.g) H“:(YTZ), (A.3)

Each block in the inverse can be determined from the following identities,
X = (D-EF'ET),
Y ~(FE™X)T,

I

202 Rattray and Saad

Define S = (J,,JQ‘BI,BQ, ..., By) where M is the number of hidden nodes
in the teacher. Each of the above block matrices takes the same general form;
for example let,

D=d(I+S®ST), F=f(I+S¥ST) (A.5)

where & and W are 24 M dimensional square matrices while d and f are scalar
coefficients. The exact expressions can be found for each block by comparing
terms with equation (3.1). The expressions in equation (A.4) can be calculated
by repeated application of the following two identities,

DF =df (1+8S(@+ ¥ +aC¥)ST) (A.6)
dD™' = (I-S(I+%C)~'as™) | (A7)

where non-bold 1 is the 2 + M dimensional identity matrix. Here, we have
defined C to be the covariance matrix, or matrix of order parameters:

C=s8"s = (}?T i) , (A8)

with Qaxa = [Qu, Raxn = [Rin) and Thxpr = [Toml-

The exact expressions for X, Y and Z are not presented here as they
are rather cumbersome. In fact, we never require explicit expressions in our
implementation and we find it simpler to solve equations (A.4) as a sequence
of transformations using identities (A.6) and (A.7). For all K the inverse
Hessian takes the same general form described by equation (3.2).

A.2 Single pattern approximation

Under the single pattern approximation we no longer average the expression
In equation (A.1) over inputs. Each block in the unaveraged Hessian is defined,

8*€)(€.¢) -
ron &€ (5 ' ()

2_9(z5) = Y- 9um) - p] + g’(ri)g’(zk)) :
’ (A.9)

we could have derived equation (3.1) directly by averaging the

above quantity over inputs. However, expanding in terms of the generalization
error provides a much simpler expression.

Notice that

A.3 Asymptotic Hessian

For realizable rules J — B as

ymptoticall ian i implified.
Instead of using the definitiq p y and the Hessian is much simp

n in equation (3.1) it is simpler to start from the

Incorporating Curvature Information into On-line Learning 203

unaveraged Hessian in equation (A.9), replace every J by a B and average
over the inputs and noise. In this case we find for each block,

Halsen = (o'(w)g (ue) € €7) (A.10)

e’

Recall that g(z) = erf(z/+/2) and the inputs come from a Gaussian distribu-
tion with zero mean and unit variance, in which case,

2 d .
Hy = p / \/% €€ exp [—%&T(I + BB +]31-13,1)51 . (A.11)

Completing this Gaussian integral and using the fact that BIBy, = Téum for
an isotropic teacher we find,

boo 2 ({_2BBI
YT oa/1+2T 14+21) "

How = 2 _ B,B? + BkB;{
T (14 7) 14T '

(A.12)

A.4 Asymptotic Inversion

For realizable rules we can invert the Hessian asymptotically for any K. The
asymptotic form for each block of H can be written,

Hy = (a6 +b) I+ (¢ +d) BB} + d ByBY (A.13)
where,
I J AU NP
T aviv2l w(1+T)’ r1+T)"

4 4 2

R ———

= - N d = ;
CTEIOTT? w(i+2n)t (U +T)?
Block (i, k) in the inverse of H is then given by,
H._l = Etsk - -——'b—"""“) I+ i ITanB: ' {A14)
i a = ala+DbK) o]

Substituting these expressions into the definition of an inverse and uﬂi'ng the
orthogonality of the teacher weight vectors we obtain a matrix equation for
the K dimensional square matrix I = ([},

[= priX (A.15)

=) (%)

- (e (el) (9):

where,

o

Il

o

—

o

~

o]
3

204 Rattray and Saad

Here, we have defined e,, to be a /' dimensional row vector with a one in the
nth element and zeros everywhere else, u is a row vector of ones and I is the
K dimensional identity. Solving for I'™ we find,

1 (e, " e, .
() e(). a6
where,
0 = (K(d*T — be) — ac d?T — be — ad)
d’T —bc—ad (d*T'(a+Db) — 2abd — b%c)/(a + bK)
A = a(a+DbK)+a’T(c—2d) + aT(K — 1)(cb — d?) .

B Derivatives of the generalization error

Saad & Solla (1995) calculate the generalization error,

Qe) (Tam)
=7 |Sersin g + 2 e\ e

Rin
- 22&1(‘5111(—?‘/_%)} (B.1)
We require the following derivatives,
e 2 — 6 ir $ Rin
0Qu ,/(1 Q)1+ Qu) - Q% TUH QNS S04 1)1+ Qu) - B,
o b Qi B.2
(1 + Qi) ? \/(1+Qii}(1+Qﬁ)——Q2 ’ (B.2)
0%, 8t654(1 + o) (B.3)
0Q1u0Rm ~ w((1 + Tom)(1+Qj) — R2,)%
_H,‘?.?_EL_ 2616nm Rjm (B.4)
OR;m0R;, — ;r((l + o) (1 + Q) — R2,)3 ‘
_ 0%,
0Q110Qs

= G =2)((1+ Qu)drsbrj + (1 + Qi) Bkibr = 2Q(;x-ﬁcr + 8jru(1 = 651)))
2m((1+ Q3)(1 + Qu) - Q%)3
sl 30 M

2?r 1+Qn) (1+Qll)(1+QJJ))2
0315‘]&63: Z l + QJJ (1 + T;m) - 2R2
2?r 1+ QJJ 2 Jn __________‘____—__'"'

(T+ Tan)(1 + Qy5) - R2,)2

o ——L)—‘S!M____l_ﬁ;__+ 2054 (1 = &5r)(1 + Qrr)

2 B.5)
L0+ Qw0+ 0 - 20T Tk 0+ oy - @2F)

Incorporating Curvature Information into On-fine Learning 205

C Equations of motion
In this appendix we provide the large N equations of motion for each al

gorithm. In each case we define a new time variable o = /N to be the
normalized number of patterns presented so far.

C.1 On-line Newton’s Method

d R{ K K K . M4 K)
daﬂ =0 o | ben+ Y Rjn {Z CHINEDY (")}f;,ﬂﬁkm]

k=1 i=l I=1 me 4]
M+ K K M+ K
ik -~ ik
p=K+1 =1 me= K41

dQ i K iy K . M4 K "
—= 7 Z Qip | Pir + E er [Z 9;: Y + Z e}md’km]
k=1

da j=1 1=1 m=K 1

Mtk K MiK
+ S R [Z Okt S e::;,m,.]] |

n=K41 Je1 me K41
K e K . Mi{(.
Ui L Orp | Yri + Z Qji [L Of Yt + L E‘);,n@wn] (C.1)
k=1 =1 i=1 me il
M+ K K M+ K L& &
+ Z R,"n [@;’E 'U’)H + Z (‘9;’,\“ ¢k1n] + 1 L 2_, Oy Ut
n=K+1 fez] e 540 kwr] =)

Here, © is defined by equation (3.2) and we have defined ¢y, = (Bmdie)s
i = (6zk) ey and vy = (8i6x) (¢)- The explicit expressions for ¢, Pk, Vik
depend exclusively on the overlaps (, R and 7" and are given in (Saad & Solla,
1995; Saad & Rattray, this volume).

C.2 Idealized Matrix Momentum

For matrix momentum using the true Hessian we find,

dQy diy

dak = Euy+ Eyi, "&-a—?— = Dy,
% = knalbiz + 6xz) + K02 (6:bu) — kZ(ﬂa‘jCkJ + agsCij + by g + big Eji)

j
-k Z{Cikam + G Dim)
dD;, " Z T
o = knaliyn) — kD (04 Djn + bijRyn) > cimTim
i

P by Qi) ~ kY chom B (C.2)

do = Cu+Ena(bez) —k Y (ax;Eij + bisQis) e Il

j m

206 Rattray and Saad

where angled brackets denote averages over inputs, or equivalently averages
over the field variables {2}, {y.} and {z}. We have defined,

o€,
ai; = (14 6)
i (J aQ:J
by = (1+6y) |01 +64)E + 3 D2l
ij = ij ™ Wk ke S A R aQanM - knBQuaRLn)
Cin = Z(1+5)E A +> Dk O
in Lk IkaRmaQ“ o maRmaka

where &;; (with two indices) represents a Kronecker delta. The fields are dis-
tributed according to a multivariate Gaussian with the order parameters as
covariances and all averages can be calculated in closed form, as described in
(Saad & Solla, 1995; Saad & Rattray, this volume). The second derivatives of
the generalization error are given in appendix B.

C.3 Single Pattern Matrix Momentum

For matrix momentum using a single pattern approximation to the Hessian
we find,

Qi _ ARy,
T = Ey + Ey | do = Din,
dCy .
T = k(08—)2+ (nabk — D)) + K2{(mabi —) (b — B8))
aDy, dEy
do o k((’?ufs‘ - ¢i)?}n}) _&Yi = ik + k((naék - d‘k)xt') . (03)

Again, the brackets denote averages over inputs, or fields, and we have defined

o = zg" () [E; g("-'}) En U(Jn) - ,0] +gl (i) Z'.? %9 (:63) All averages can
carried out explicitly to provide a closed set of equations of motion. The
[oliowmg identities are required (vecall that g9(z) = erf (z/V/2)),

e Ny p-ixTC g d Ty _ >k ,;dk 14T
f IC{(QW}" glz;) e~ +dTx g(\/fi_.{__(_/r)e dTcd (C.4)

d .
f]Clz;ar)n 9(x;) g(y) @ -3x"C'x

where Cis an n x n, symmetric
X can be brought downy

li

2 Cix
&*’CS‘“(\/T\/HE:)

matrix. Factors involving the components of
from the exponent of the integrand by differentiation.

References

Amari, S. (1998). Natural

gradient works effici ‘i ing. | Computa-
tiom, 10, 2512976 s efficiently in learning. Neura, P

Incorporating Curvature Information into On-line Learning 207

Barber, D., Saad, D., Sollich, P. (1996). Finite-size effacts in online learning of
multilayer neural networks. Europhysics Letters, 34, 151-156.

Biehl, M., Schwarze, H. (1995). Learning by online gradient descent. Journal of
Physics A, 28, 643-656.

Biehl, M., Riegler, P., Wahler, C. (1996). Transient dynamics of online learning in
two layered neural networks. J. Phys. A, 29, 4769-478(.

Bishop, C. M. (1995) Neural networks for pattern recognition. Oxford University
Press, Oxford, UK.

LeCun, Y., Simard, P. Y., Pearlmutter, B. (1993). Approximation by superpositions
of a sigmoid function. Advances in Neural Informalion Processing Systems 5, ed.
C.L. Giles, S.J. Hanson and J.D. Cowan (San Mateo, CA: Morgan Kaufmann) .

Orr, G. B. (1995). Dynamics and Algorithms for Slochastic Search. PhD. Disserta~
tion, Oregon Graduate Institute of Science and Technology.

Leen, T.K., Orr, G.B. (1994). Optimal stochastic search and adaptive momen-
tum. Advances in Neurel Information Processing Systems 6, ed J. D. Cowan, G.
Tesauro and J. Alspector (San Francisco, CA: Morgan Kaufmann)

Orr, G. B., Leen, T. K. (1997). Using curvature information for fast stochastic
search. Advances in Neural Information Processing Systems 9, ed M. C. Mozer,
M. L. Jordan and T. Petsche (Cambridge, MA: MIT Press)

Rattray, M., Saad, D. (1998). An analysis of on-line learning training with optimal
learning rates. Phys. Rev. E in press.

Rattray, M., Saad, D., Amari, S. (1998). Natural gradient descent for on-line learn-
ing, unpublished.

Riegler, P., Bichl, M. (1995). Online backpropagation in two layered noural net-
works. J. Phys. A, 28, L507-L513.

Roy, S., Shynk, J. J. (1990). Analysis of the momentum LMS algorithm. IEEE
transactions on acoustics, speech and signal processing, 38, 2088-2008.

Saad, D., Rattray, M. (1997). Globally optimal parameters for on-line learning in
multilayer neural networks. Phys. Rev. Lett., 79, 2578 -2681.

Saad, D., Rattray, M. (1998). Optimal on-line learning in multilayer neural net-
works in this volume.

Saad, D., Solla, S. A. (1995). Exact solution for online Jearning in multilayer neural
networks. Phys. Rev.Lett., 74, 4337-4340 , Online learning in soft committe
machines. Phys. Rev. E, 52, 4225-4243.

West, A. H. L., Saad, D. (1997). On-line learning with adaptive back-propagation
in two-layer networks. Phys. Rev. E, 56, 3426-3445.

Wiegerinck, W., Komoda, A., Heskes, T. (1994). Stochastic dynamics of learning
with momentum in neural networks. J. Phys. A, 27, 4425-4437.

Yang, H. Y., Amari, S. (1998). The efficiency and the robustness of natural gradient

descent learning rule. Advances in Neural Information P rocessing Systems 10,
ed M. I. Jordan, M. J. Kearns and . A. Solla (Cambridge, MA: MIT Press).

