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Abstract

This thesis described the research carried out on the development of a novel hardwired
tactile sensing system tailored for the application of a next generation of surgical robotic
and clinical devices, namely a steerable endoscope with tactile feedback, and a surface
plate for patient posture and balance. Two case studies are examined and presented in this
thesis. The first is a one-dimensional sensor for the steerable endoscope retrieving shape
and ‘touch’ information. The second is a two-dimensional surface which interprets the
three-dimensional motion of a contacting moving load. These cases demonstrate that the
outcome of this research can be used to retrieve information from a distributive tactile
sensing surface of a different configuration, and can interpret dynamic and static
disturbances. This novel approach to sensing has the potential to discriminate contact and
palpation in minimal invasive surgery (MIS) tools, and posture and balance in patients.
The distributive tactile sensing method is a method which is demonstrating advantage
over conventional approaches as the high robustness and low complexity of construction.
It is beneficial to many applications requiring evaluation of contact over large surface
areas with few sensing points. The methods is able to output information requiring that
interpreting IT tool and this has great potential in medical applications. In this work the
function is produced in hardwired form.

The hardwired technology uses an embedded system based Field Programmable Gate
Arrays (FPGA) as the platform to perform the sensory signal processing part in real time.
High speed robust operation is an advantage from this system leading to versatile
application involving dynamic real time interpretation as described in this research.

In this research the sensory signal processing uses neural networks to derive information
from input pattern from the contacting surface. Three neural networks architectures
namely single, multiple and cascaded were introduced in the investigation in attempt to
find the optimum solution for discrimination of the contacting outputs. These
architectures were modelled and implemented into the FPGA. With the recent
introduction of modern digital design flows and synthesis tools that essentially take a
high-level sensory processing behaviour specification for a design, fast prototyping of the
neural network function can be achieved easily. This thesis outlines the challenge of the
implementations and verifications of the performances.

Keywords
Distributive Tactile Sensing, Neural Network FPGA Implementation, Activation
Function
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ADC: Analogue to Digital Converter
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Nomenclature

I : Actual beam length

ig: Incremental length along beam

ag: Acceleration due to gravitational force (9.81 ms™?)
EI: Flexural rigidity

E: Elastic modulus

I: Moment of inertia

v: Vertical deflection

Mjg: Bending moment

t, : Targeted output

I : Total number of training set

7 : Incremental number from training set

G: Gain of strain gauge amplifier

k. : Resistance to voltage configuration factor
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L : Total number of outputs from neural network

x, : Input to neural network

g, Input to activation function

7, : Output from activation function

y, : Computed output from neural network

Q, : Normalizing factor of input layer

Y, : Normalizing factor of output layer

o' : Weight of input layer
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g”** : Maximum stability range for Padé approximation

p : Convergence rate

P: Shape index (refer to equation 3.17 & 3.18)

o : Normalised range for activation function (Gradient, Polynomial and Padé scheme)
Q: Global de-normalisation of Polynomial Scheme

¥, ¥, z : Displacement in Cartesian coordinate made by the swing



Glossary of Terms

X',Y': Length of the plate
¥',y': Index of length of the plate
¢, : Plate thickness

v : Poisson’s ration

¢ : Angle between legs
w . Angle between axis and the leg

1,: Length of the pendulum leg

I' : Length between the load and the axis of the pendulum



Definitions of Terms

Single Neural Network: A feed forward multi-layered perceptron (FFMLP) neural
network. All of the output node(s) are connected to the hidden nodes to allow the output(s)

to be computed concurrently.

Multiple Neural Network: A neural network which uses multiple separate single neural

networks to compute outputs(s) concurrently but separately.

Cascaded Neural Network: A neural network in which separate networks are used to
determine each output individually, but in cascade, such that the inputs to the next
network consisted of the sensor inputs and the output(s) computed by the previous

stage network(s).

Gradient Scheme Approximation: Piecewise approximation which uses series of linear

gradient to approximate Hyperbolic tangent response.

Polynomial Scheme Approximation: Piecewise approximation which uses series of

polynomial equations to approximate Hyperbolic tangent response.

Fully Parallel Design: A digital neural network design which duplicates fully the explicit

computational nature of the FFMLP neural network within a digital representation.

Hybrid Design: A digital neural network design that combines some elements of
concurrency while ‘folding’ the design to allow hardware re-use such that sequences of
data are passed through major subcomponents. The design is used to equip

implementation of optimised neural network architecture.

Cascaded Design: A digital neural network design incorporating a hybrid-based design,

used for implementing a cascaded neural network.



CHAPTER 1

Introduction

1.1 Overview and Achievements of the Research

his thesis describes a research project examining novel versatile distributive tactile
Tsensing systems. The research described focuses on the design of an efficient
automated data interpretation system that is able to output its interpretation directly to
describe the nature of contact with the tactile surface. The work integrates an advanced
system on a chip technology (SOCT), an artificial neural network (ANN) and distributive
tactile sensing technology to produce working systems. The design of two example
systems is described. The first is a one-dimensional sensor for a steerable endoscope
retrieving shape and ‘touch’ information. The second is a two-dimensional surface which
interprets the three-dimensional motion of a contacting moving load. These cases
demonstrate that the outcome of this research can be used to retrieve information from
distributive surface of a different configuration, can interpret dynamic and static
disturbances, and that this technology has the potential to discriminate contact and

palpation in minimal invasive surgery (MIS) tools, and posture and balance in patients.
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The distributive tactile sensing technique used in this research relies on the coupling of
sensory data through the deformation response of a contacting surface. It has distinct
advantages over other types of tactile sensing, particularly in terms of the way the sensor
and the sensory processing topology leads to a minimum of required sensing elements.
The sensory processing relies on an interpretation tool such as an artificial neural network
to interpret the measured pattern into contact information. The whole system has
similarities with the biological tactile systems, in which the sensory element detecting the
deformation would be receptors, and the interpretation algorithm would be the perception
function of the brain (refer to Figure 1.1). It is the interpretation function that derives the
output information from the contacting disturbances through previously specified
descriptors. It thus relates simultaneous coupled sensors to form a description of an event.
As with the biological brain, this function needs to be taught by means of a learning
process. The better the interpretation tool is trained, the more accurately the system can

infer the different contact conditions.

Aston Universi ty

Hlustration rem oved for copyright restrictions

Figure 1.1: Analogy between biological and artificial tactile sensing.

Conventionally, the interpretation algorithms of neural network are run as software
intelligent properties using a PC workstation processor. But this approach has only a

tenuous relationship with real-time applications, as the algorithms use highly parallel
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computations. In this research the algorithm has been exploited and implemented into
digital hardware using the field programmable gate array (FPGA) chip type Xilinx
Virtex-1I 2XCV3000 of an embedded system. The embedded system is a development
board from Nallatech specifically created for fast prototyping of a design to produce

digital functions for specific purposes.

The embedded system employed is a one step System on a Chip technology, a technology
which integrates both software and hardware Intellectual Property (IP). This system uses
more than one design methodology on a single integrated chip (IC) for the purpose of
defining the functionality and behaviour of the proposed system (Nekoogar & Nekoogar,
2003). The development board consists of an analogue to digital converter (ADC), a
digital to analogue converter (DAC), a clock FPGA for clock management and the main
FPGA to which the digital interpretation algorithm design i1s programmed. The
implementation process still follows the routine design flow of an FPGA, but with the
emergence of new design tools such as the Xilinx digital signal processing toolbox and
Matlab Fixed Point Blockset (Xilinx System Generator, 2006), modelling of the topology
can be done using high level design as an enhancement to the traditional way. This
requires programming using a machine language, such as the very high speed integrated
circuit hardware description language (VHDL), which lacks clarity during simulation.
The Xilinx System Generator (XSG) tool is used to rapidly generate the high level design

to the level which will be used for synthesis and implementation.

The idea of going hardwired is useful in many ways in this research. Compactness, high-
speed operation, low-power consumption, low cost, robust operation (Barranco, Andreou,
Indiveri & Shibata, 2003) and extensibility of function are all factors which have also
motivated this research to explore the implementation of the devised system, facilitating
the needs of tactile sensing in MIS and balance and posture measurement of patients. The
implementation of the hardwired distributive approach presented in this research is
flexible in many ways, and has widespread applicability beyond the functions described

in the current thesis. The ease with which the system can be programmed (and re-
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programmed even after deployment), combined with its high speed operation makes the
system suitable for exploitation in other applications involving hardwired distributive

sensing.

1.2 The Rationale of using the Hardwired System for the
Applications

At this point it is useful to highlight that the hardwired distributive tactile approach to
sensing in this research was able to output descriptors to sense a description of contacting
loads and disturbances as set of high level descriptors. The findings of the current
research demonstrate that the system can be used successfully to discriminate, a)
conditions of different profiles (including force distribution) of a subject generating
contacting forces (case A of Figure 1.2), and b) behaviour and posture of a quasi-steady
subject making fast and continuous contact disturbance with response to its three

dimensional motion (case B of Figure 1.2), with satisfactory accuracy.

Establishing high measurement accuracy was not the prominent issue during this research,
as the outputs evaluated represent enough discrimination for classification. In other words,
regardless of the presence of a small relative error in each evaluated output used for
discriminating a particular condition, for a biological system it is the contacting force
transients derived from these collective outputs that provides usable measure of state or
description. With this consideration in mind, and the advantage of having minimal
sensory elements, the method used is clearly appropriate for the two biomedical devices
mentioned earlier, namely flexible digit with tactile feedback sensing, and human balance

disorder and posture.
In a biological working environment there is a significant contrast with measurement

systems applied in manufacturing environments. In the case of the latter, the structural

environment and the used of materials of consistent properties and behaviour would
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imply that values measured between each workpiece have relevance and can approach
high level of precision. In the biological environment, tissues and patients exhibit similar
but different properties and behaviours such that single valued measurements have little
relevance to the output required. The output usually relates to a description from which a
prognosis can be derived. As a result, in this research, the emphasis has been on
interpreting multisensor data to automatically formulate a descriptive parameter of

meaning.

The operational efficiency and simplicity (in terms of design, which translates into
reduced cost) of the system has produced several advantages, including the potential of

the flexible digit to become disposable.

Tactile sensing
(Distributive method)

Signal
processing tool
{(Neural Network)

igital Hardwired
(FPGA)

Casc A Case B

1 D Sensing Interpretation of dynamic motion (2
elements D sensing elements)

Figure 1.2: Diagram to illustrate the flow of the research.

1.2.1 Accuracies in Biological Working Environment

From the biological working environment, given the valuable notion of biological system
and patient and the fact that the expression of condition is not necessarily pronounced, it
is only possible to approach high accuracies in the discrimination of different categories.

Therefore, given that states are not purely ‘black or white’, one can expect that automated
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measurement systems will not approach 100% accurate. Generally, accuracies above

90% considered acceptable in clinical environment.

1.3 Statement of the Problems

1.3.1 The Endoscope in Minimal Invasive Surgery

Minimal Invasive Surgery (MIS), such as endoscopic and laparoscopic surgery, is
increasing in frequency throughout the world. This is in part due to new technology,
enabling surgeons to operate on previously inaccessible small scale structures. MIS has
distinct advantages, such as reduction of trauma and lower risk of inflammation. In turn
this means increasing the comfort level for the patient and (usually) reduced
postoperative pain and fast recovery, reducing hospitalisation. However conventional
endoscopes (see Figure 1.3) and laparoscopes have limitations. One issue is that feedback
from contact at the operating site is poor. There is no ability to identify desirable
information such as point of contact, discrimination between soft and hard tissue, and the
detection of edges. This limitation has motivated the current research, aiming to introduce

tactile sensing feedback into the endoscope system.

Figure 1.3: A typical steerable flexible endoscope.
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1.3.2 The Need for a Tactile Endoscope

The concept of providing tactile feedback (such as touch and tool force information) for
endoscopes and laparoscopes presents an ongoing challenge. In minimal access
procedures a common process that would benefit from tactile information is the control
of contact against the surface of the lumen whilst carrying out navigation and palpatory
diagnosis. For example, during endoscope navigation a range of tactile feedback such as
the sense of the point of contact of the digit, the discrimination between hard and soft
contact, and the identification of edges (in conjunction with visual perception through the
end of the endoscope), should allow the clinician to achieve greater control and better
perception of position targets as compared with current methods. Similarly, diagnostic
methods would benefit by adding in palpation (where a form of tactile perception would
enable greater control of the action against the surface), to existing use of ultrasound
imaging. In all such cases the key requirement relevant to the current research is the need
to use the outer structure of the digit or tool as a means of providing tactile sensory

feedback.

1.3.3 Previous Research and Progress Designing a Tactile

Endoscope

Although previous research has attempted to design a useful tactile endoscope, much of
this effort has been devoted to the improvement of the tips of the endoscopic grasper —
another class of endoscope (Dargahi, Parameswaran & Payandeh, 2000; Najarian,
Dargahi & Zheng, 2006). Most importantly, these methods rely on array processing
techniques as the means of deriving tactile sensing feedback. Only a few previous
studies have examined the possibility of a flexible tactile endoscope, which would
translate information from the contact between the structural body of the digit and the

surface using a distributive sensing method. The past work closest to the current research,
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which formed the basis for this thesis, is that undertaken by Ma, Brett, Wright and
Griffiths (2004), Tam, Brett, Holding, and Griffiths (2004) and Tam (2005).

Earlier research by Tam, Brett, Holding, and Griffiths (2004) involved the design of a
flexible digit constructed from sealed flexible bellowed PVC tubes (refer to Figure 1.4),
to mimic the function of a flexible tactile endoscope. The sensor elements were strain
gauges that were distributed and embedded along the cantilever sensing elements. A
neural network algorithm was used as the sensory processing tool, and was conducted
using PC-based workstations hosting Matlab and the Matlab real-Time Workshop,
Matlab XPC Target software. The workstations were equipped with interface boards, data
acquisition cards DAQ, sensor signal amplifiers and associated circuits. This system
provided valuable trails information, particularly in the static evaluation of the sensor
networks and algorithms, and the relatively low frequency control algorithms required for
the activation of the flexible digit. However, this laboratory-based system was not
intended for clinical tool development. The real-time performance of the system was
limited and could not take advantage of the high fidelity tactile sensing system. One
means of addressing limitations is the implementation of tactile sensing algorithms in an
application-specific processing system. A range of implementation technologies can be
evaluated. One of these is the use of a conventional microprocessor and microcontrollers
executing embedded software. Another is the implementation of reconfigurable
computing designs involving either (i) a field programmable gate array (FPGA) based
application-specific logic, or (ii) a system-on-chip (SOCT) solution in which the FPGA
implements both the application-specific hardware portion of the design and the software
portion of the design (which executes on a processor embedded in the same FPGA). The

current research utilised this last approach.
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FredBrl  Phidoorvind Dartifion Bellowrerd Tribing

Freed End Crenderl

Caniilzers Sergr slomeny

Figure 1.4: Flexible digit and details of the construction.

1.3.4 Future Benefits

The benefit that can be gained from the design and implementation of a successful tactile
endoscope emerges through its ability to complement existing functionality of the
conventional device. Such a system could be used to improve the power efficiency of the
master-slave robotic system used in MIS (Tavakoli, Patel & Moallem, 2004), if it is to be
incorporated into the larger system (see Figure 1.5). However, with the introduction of
the hardwired tactile endoscope, even more prominent benefits could emerge. This high
performance tool should be more robust in real-time operation than that the conventional
method employed using a PC processor. In this way the new system could assist
endoscopic surgery by using a more reliable skilled robotic-based approach (RBA). The
term ‘skilled’ here refers to the ability of the RBA to sense the force on the tool, and thus
compel the operation to be performed in closed loop manner. The RBA can assist a
surgeon to conduct surgical operations automatically using the actuator, but the
manoeuvrability of the tool should still be governed and controlled based on real-time
tactile feedback information. This will facilitate haptic feedback. Another benefit from
the new system is that the functions can be extended so that they perform all the signal
processing parts of the operation, including the actuation controller and video streaming,
in a single chip (refer to Figure 1.5). Compactness can be achieved and thus cost reduced
as less space is required in the operation room. On one related example, Lawrence and

Valentine (2006) have outlined a guideline for planning consideration for MIS operating
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room. The average size of a traditional operating suite has been 11.22m?. In MIS-
compatible environments, a room needs to be 18.3 to 19.7m>. The extra space is required
to accommodate additional equipment such as touch screens or voice-activated systems

for light, environment and sound control, and computer-assisted surgery equipment.

Aston University

lustration rem oved for copyright restrictions

Figure 1 5: Master-slave system for an endoscopic surgery.

1.3 Dynamic Tracking using Hardwired Distributive

Tactile Sensing

To demonstrate broader application of the hardwired approach, the embedded signal
interpretation system was integrated into a different configuration of distributive sensor.
Rather than a one-dimensional version of a cantilever beam structure, a two-dimensional
plate was used as the tactile elements. The objective was to interpret the displacement
motion exhibited by a standing human subject. This demonstrated that by using the same

embedded subsystem, the tactile system could gather and output the different, relevant

descriptions tailored to the contrasting application. This also showed that viability and

versatility of the hardwired approach to the system.
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One prospective application of this system in medical research is for examining patient
balance and posture. Assessment of balance and posture is important in health settings as
it provides clinicians with the means to perform early stage diagnosis for people, and to
monitor response to therapy. Balance disorders are a serious medical issue suffered by
millions of people (Hausdorff, Rios & Edelberg 2001) which can lead to injury or pre-
mature death. Individuals with chronic fatigue syndrome (CFS) and the elderly are
among the populations with increased likelihood of suffering balance problems
(Hausdorff, Rios & Edelberg, 2001; Fuller, 2000). Individuals® sense of balance also

tends to decline with age, with an associated increased risk of falls.

Conventionally, dynamic posturography (DiFabio, Emasithi, & Paul, 1998; Johansson,
Magnusson, Fransson & Karlberg, 2001) has been established as an important tool for
understanding balance in a clinical setting. The dynamic posturography system is
comprised of a force platform that evaluates somatosensory and visual influences on
posture and equilibrium. This function can be exploited by performing a sensory test
organisation (SOT) (DiFabio & Faudriat, 1996; Chaudhry, et al., 2005), which provides
information about the individual’s ability to integrate the visual, proprioceptive, and
vestibular components of balance. During an examination the plate is normally used for
measuring the horizontal shear information and to qualify the centre of gravity sway or
postural stability under each of the SOT conditions. These are used to reflect the overall
coordination of these components to maintain standing posture. DiFabio and Faudriat
(1996) used the force platform (EquiTest, Neurocom Inc., Clackamas, OR) to obtain
pediatric strategy scores (PED-SS) and strategy scores (SS) for assessing balance in
children. The scores are obtained from the peak-to-peak amplitude of the horizontal shear
force given out by a transducer under the centre of the platform. The patient stands on the
platform facing a visual surround. The platform and visual surround moves
simultaneously with the patient’s body sway. Chaudhry, Findley, Quigley, Bukiet, Ji,
Sims, and Maney (2004) used similar platform as DiFabio and Faudriat (1996), to
measure a postural stability index score (PSI). The measurement is based on the

maximum anterior-posterior (A-P) sway angles during SOT trials. Maeda, Nakamura,
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Otomo, Higuchi and Motohashi (1998) and Matsuo, Narita, Senda, Hasebe and Ohtsuki
(2006) both used a GS-10 Anima gravicorder for assessments and Nadapalan, Smith,

Jones and Lesser (1995) used the Sway Weigh machine (Raymar).

rsity

lllustration rem oved for copyright restrictions

Figure 1.6: Dynamic tracking schematic diagram.

A tactile sensing system would be useful in the creation of new type of platform, such
that shown in Figure 1.6. This would be similar to the force platform used for dynamic
posturography, but designed to provide more useful output information with automatic
interpretation, such as a direct determination as to whether a patient requires a balance
intervention or whether an intervention has been effective. Reducing the number of
sensor elements is also one of the advantages of such a design. The conventional force
platform has five transducers — four used to measure the vertical force and one directly

under the centre of the platform used to measure horizontal shear force.

1.4 Direction of the Research

The present research was largely driven by the need for a tactile endoscope, which in turn
generated interest in the devising of a hardwired distributive sensing method. Previous

work by Ma, Brett, Wright and Griffiths (2004), Tam, Brett, Holding, and Griffiths (2004)
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and Tam (2005) have formed basis for this research, and these designs were extended t
focusing on the exploitation of the signal processing system. The idea of a flexible dig
was then adopted as the primary investigation. Similar to Ma, Brett, Wright and Griffitt
(2004) the investigation of the structure of the digit and type of sensing elements that ca
be utilised to derive tactile sensory feedback focused on modelling the cantilever sensin
element of the flexible digit using a cantilever beam. Note that probably the most cruci
component of this research has been the development of a specific purpose embedde

signal processing function.

1.5 Principal Aims

The principal aims of this research are as follows.

1. To devise an efficient method of implementing a hardwired interpretation topolog
for distributive tactile systems such as an FPGA chip.

2. To assess different arrangements of neural network architectures for the purpose ¢
deriving the best solution to the interpretation tool for distributive sensing.

3. To demonstrate the feasibility of introducing a distributive tactile sensing system in
tactile endoscope as a flexible digit, using an FPGA chip.

4. To perform real time measurements using the tactile system reflecting the tactil
flexible digit. To then validate this process using outputs obtained by simulation.

5. To demonstrate the versatility of the method in higher dynamic applications such a
the discrimination of three-dimensional motion from a dynamic contacting surface

This is representative of measurement of balance and posture ability of patients.

In view of these aims, the research has demonstrated the versatility of the FPGA chi
interpretation system through the successful development and testing of two application
of the distributive tactile sensing system. The studies also illustrated that a cascaded AN]

architecture could achieve overall accuracy of better than 94%, when interpreting loadin
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parameters such as load magnitude, load width and shape of an object positioned al
the operating range of a one-dimensional sensing system such as for the tip of a steer:
endoscope. In contrast, single ANN architectures achieved overall accuracy of better t
85%. In a contrasting application involving a two-dimensional tactile system, all of
ANN architectures were implemented; Cascaded, Multiple and Single. All have showi
be adequate when interpreting three-dimensional Cartesian components of motion ¢
contacting distributing load with an overall accuracy greater than 93%. In both of
applications the frequency between of complete sample cycles of the sensors readi
was configured to be 15.625KHz. If the switching frequency is too fast exceeding
optimum switching frequency of the multiplexor, the output magnitude can be impai
However if too low will lead to the switching frequency becoming sluggish. Typ
problem arise will be undersampling of data if dynamic measurement is considered.
frequency use in this research was found to be sufficient in the applications studied.
this rate the sample period is much less than the time constants associated v
mechanical disturbances, and there is potential for interim system computatic

functions such as data integrity checks and use of an error reduction method.

1.6 Contribution

The major contributions of this research are:

1. A new type of signal interpreter implemented in an FPGA was introduced and use:
assist the function of a mechanical sensing system. The integrated functions are cap:
of robust real time measurement.

2. An efficient approach of implementing the mathematical topology of the sig
interpreter such as the neural network was introduced. The technique was used
optimise the usage of the FPGA digital resources, such as the gate count and the dig
multiplier. This issue is particularly important if other functions such as the chair
interpretation of information and the control system are to be embedded into the s:

chip.
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o]

3. Fast chip programming method were employed in this research in order to re
programming time. Traditionally programming involves the use of VHDL mac
language which is more complex.

4. To facilitate efficient distributive tactile sensing methods with the efficient hardw
signal processing to generate a more powerful system that is capable of sensing dyn:
cases.

5. Because of the user-friendly techniques and tools introduced, the current rese
acts as a means to bridge multi-disciplinary areas of research.

6. The research has opened a new way of research investigation on the use of hardw

tactile sensing techniques specifically in medical applications.

1.7 Thesis Layout

This thesis is comprised of seven chapters, covering a background of the literatur

description of the studies undertaken, presentation of the results and a conclusion.

Chapter 2 reviews different types of tactile sensing systems, analysing their advante
and disadvantages, and discussing their application in the current project. This cha
provides justification of the type of tactile sensing to be used throughout the research,
focuses on the implementation of the sensory processing algorithm. Different way:
implementing the interpretation algorithm into the hardware, and other implementai
issues are also reviewed. The second part of this chapter reviews the endoscope and
need for tactile sensing feedback in this tool. A brief history of early endoscope des
and use is presented, concluding with a discussion of the conventional endosc
currently used in medical procedures. The functionality and limitation of the devic

explained based on substantial references from previous theory and research.

Chapter 3 describes the experimental structure constructed to demonstrate the feasibi

of introducing distributive tactile sensing system into a flexible digit. Different types
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neural networks were investigated and tested. The performance and accuracy of «
network is compared and measured. The proposed neural networks are used for
implementation process into an FPGA as discussed in Chapter 5. Chapter 3 also pres
the algorithms used for interpreting the loading condition as a continuous output.

selected algorithm was then adopted for implementation.

Chapter 4 is dedicated to the study of the activation function of the neural networks
the design of the solution to hardware implementation. This chapter initially discusses
rationale for the selection of the type of implementation hardware used in the projec
then goes on to detail the various techniques used to approximate the actual activa

function. They are discussed, compared and the implementation described.

Chapter 5 is an implementation chapter. The various types of neural networks propc
in Chapter 3 are implemented. The significance of the various techniques, in terms
their ability to approximate the activation proposed in Chapter 4, are also discussec
terms of their implementation into the neural network. All of the results are validated

simulations. The findings of the real time visualisation are also presented in this chapte

Chapter 6 discusses the adoption of the hardwired distributive sensing technology
interpretation of motion (surge, sway and heave displacement) from a dynamic swing
this chapter the mathematical model of the surface platform and the swing are deriv
The different types of neural network architectures are simulated and implemented.

results are compared and discussed.

Chapter 7 presents the conclusions generated by the current work and discusses possi

future directions for this research.
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CHAPTER 2

Background of Studies

2.1 Introduction

his chapter reviews the theoretical and empirical research that formed the bas
Tthe current project. It provides an overview of tactile sensing systems, and exai
methods of implementing such sensing capacities into the proposed designs as
embedded software or hardware. This chapter also reviews the challenges of working
the conventional endoscopy tools that justifies the rationale of the project, namel

application of tactile sensing in the device. This chapter is composed of three sections

I Section 2.2 reviews various forms of tactile sensing, including related previous
relevant to the current research. This section also provides an introduction t
concept of distributive technique for tactile sensing and discusses Justifications f

use.

[\

Section 2.3 focuses on the signal processing aspects of distributive tactile sensing
reviews different possible methods of implementing the system, including

software and hardware solutions.
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3. Section 2.4 explores the chosen application for this system (as described in Chapter 1),
the endoscope. This section begins by providing a brief history of the endoscope, then
discusses the function of the tool, and finally describes current research which is aiming
to improve its functionality. These sections provide a basis for the proposed rationale of

this research, namely to provide a tactile sensing element for an endoscope.

2.2 Artificial Tactile Sensing

Artificial tactile sensing can be defined as a method of measuring a spatial pressure
distribution when a force is exerted perpendicular to a predetermined sensory area of a
sensing medium. This basic definition is consistent with Harmon (1982), who first
described tactile sensing as a continuous variable sensing of force (or simply touch) in an
array. However, with the emergence of profound signal processing tools such as artificial
intelligent algorithms, interpretation of a range of other contact properties (thus
enhancing the information derived from contact) also becomes feasible. In other words,
using an advanced signal processing tool for sensing data can then enable interpretation
of that data as high level contact information (e.g., the profile of the contacting object).
Nicholls and Lee (1989) highlight a range of contact parameters, such as size, shape,
position, roughness, stiffness, and thermal properties, which may be inferred by such a
system. Thus the detail and range of sensory processing which can be achieved was

crucial to this research.

2.2.1 Types of Artificial Tactile Sensing

There are many different types of artificial tactile sensing systems (Tongpadungrod,
2002), but the most relevant to this research are the array and distributive sensing
approaches. In the current context array tactile sensing can be defined as a method of

sensing which uses a finite arrangement of sensing elements (usually in a complex array),
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to infer contact information. This system uses sensory processing in which the topology
relies explicitly on the series information of the isolated sensors. The sensory processing
usually involves with reconstructing of data first before interpretation. In contrast,
distributive tactile sensing can be defined as a method of sensing which relies on
coupling effect of sensing elements to produce patterns of information through the
deformation response of a contacting surface. This pattern of information can be directly
used by the sensory processing for interpretation of state data. Thus there is advantage of
discarding the data reconstruction process as applied in the array. In either of the cases
the application can be in the form of a single- (linear) or a multiple- (usually two)
dimensional axis sensing system. Usually the sensing elements used are integrated with
the contacting surface or the substance. The operational speed of the sensing depends on
the complexity of the sensor, which inherently affects the performance of signal

conditioning, and the performance of the signal processor.

This section will analyse the two different types of sensing techniques and their sensory
processing methods. In the context of this literature, understanding the topology of the
different methods is important, as this will help identify and categorise the different types

of tactile sensing methods which have been implemented.

2.2.1.1 Array Tactile Sensing

The array sensing approach is currently the most common means of constructing tactile
sensing devices. In a two-dimensional surface application, illustrated in Figure 2.1, the
arrangement of the sensors usually involves positioning them in arrays of A x B. In some
constructions the type of sensor used (e.g., a pressure sensor), requires the sensory
elements to be in direct contact with the load, but in many cases they are integrated with
the contacting surface. The contacting surface is usually in the form of a substrate in
which the main purpose is to protect the sensing elements from wearing out. However,

regardless of the different scenarios of sensor setting, the concept of signal processing is
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the same. In detail, the processing of sensor data is based on the information from
isolated sensing elements in the array. Each of the sensing elements is taken into account
and used for the reconstruction, thus allowing the sophisticated signal processing to
reconstruct 2D and 3D images or other high level contact properties. The resolution of
the array technique depends on the number of sensing elements, as they respond to
contact independently. During contact only a few sensing elements at and around contact
points are stimulated by contact, yet for the processing all of the data from the complete
set of sensing elements has to be consistently delivered into the sensory processing unit.
In most cases, due to the large number of sensing elements, a powerful multiplexor with
high number of channels is employed to acquire the data. A common cost of high
multiplexing is longer time required to acquire the complete sample of data signals,
which hence affects the operation time of the sensory processing. Evidently faster
computer processing is required to incorporate the processing of sensory data, especially

when dynamic measurement is involved.
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Figure 2.1: The schematic diagram to show array tactile technique.

In practice sensory processing of an array usually relies on reconstructing of signal from
discrete measurement of the sensing elements to provide information of contact in a map
like form. In the process, it usually uses an inverse of a closed form solution. In most

cases to aid the reconstruction, an interpolation algorithm can be used (Fearing, 1990) to
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recover a continuous response. Alternatives to the discrete signal reconstruction solution,
such methods based on the Gaussian distribution (Stone, 1997; Stone & Brett, 1997), and
the Fourier series (Provancher, 2003) can also be used. However, usually such methods
are computationally extensive and result in low bandwidth operation. In some cases the
information from the reconstructed pattern can then be utilised for pattern recognition and
classifiers, as demonstrated by Tseng, Liou and Lee (1999) and Kim, Engel, Liu and

Jones (2005). Alternatively, fuzzy logic can also be used for discrimination purposes (Li
& Shida, 1997).

Much of the previous research in this field has used tactile array techniques, often
addressing the static evaluation of the profile of a contacting object. Kolesar, Reston,
Ford and Fitch (1992) use a monolithic silicon-integrated circuit coupled to piezoelectric
polyvinylidene fluoride (PVDF) film. The integrated circuit incorporates 25 sensor
electrodes arranged symmetrically in a 5 by 5 matrix. The signal conditioning and
processing system is comprised of an electrical multiplexing circuit, and direct coupling
of the PVDF material with a matrix of identical high-input impedance MOSFET
amplifier, in order to measure the pseudosteady-state response of the sensor for an
orthogonally applied load. With the aid of computer software a three-dimensional plot
was implemented. In this example, the sensing elements are exposed to direct contact

with the measured object.

In another prominent paper in this field, Harrison and Hillard (2000) present an
application oriented system which uses pressure sensors incorporated into a plantar
sensor. This is used as a platform device to measure responses from the 32 by 64 matrix
of sensors. The signal processing is model based in the form of a discrete forms equation.
The algorithm was then implemented in computer software such as Matlab for image
reconstruction. The sensors were used to detect foot shapes. Benhadj and Dawson (1995),
although having the same objective, use a different approach by designing a non-
contacting tactile sensor for a pneumatic proximity-to-tactile sensing device. Essentially

the system uses an array of up to a 32 by 32 matrix of pressure sensors to provide a
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continuous variable output of two-dimensional sensing data. The sensing plane of the
device incorporates a corresponding line array of air jets, which develop air cushion when
striking a target of interest and produce back pressure as the basis for target detection and
recognition. The rationale of this process is to prevent the sensor surface from making
direct contact with the measured object. The advantage of such a system is that it would
eliminate problems such as wear and damage that may be caused to the sensing plane.
The signal processing uses computer-based processing which constructs the two-

dimensional sensor information into a two-dimensional image.

Other research has been directed towards robotic applications. Fearing (1990) uses an
array of 8 by 8 capacitive sensors for the construction of a cylindrical tactile sensor to
detect force from touch. Here a closed form solution was used to reconstruct the sensing
information. An interpolation technique aided the recovery of the location and magnitude
of the centre of pressure from discrete measurements. The key feature of this sensor is
that it is encapsulated in a cylindrical finger with a hemispherical tip. Work by Howe
(1994) involved designing an array sensor with robot fingers for control and manipulation
purposes. The most common use of such applications is for detecting changes in texture
and properties of the contacting object. Hellard and Russell (2002) have been working on
the design of a robotic gripper. The sensor is fabricated from urethane foam and an array
of surface mounted IR emitters and detectors. The foam layer forms an optical cavity
above the emitter/detector array of 7 by 7 elements of sensors. The optical devices are
mounted on a circuit board below the layer of polymer foam. Compression applied to the
surface of the cavity causes a change in its optical properties. The signal processing is
based on the sensor model and was implemented in a microcontroller. For visualisation

the processed data was plotted using a host computer.

Note that in many applications involving array techniques, the resolution of the
measurement usually relies heavily on the number of sensor elements in the array, as they

respond to contact independently. The recent developments in micro- and
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nanotechnology fabricating miniaturised sensing elements (such as that of Engel, Chen

and Liu (2003), may lead to increased resolution of array sensors.

2.2.1.2 Distributive Tactile Sensing

One common issue when implementing the array tactile sensing approach is the high
numbers of sensing elements required to obtain satisfactory resolution. Although it is
always possible to increase the number of sensors, a common drawback is the large
number of wires needed for reading the data (Nilsson, 2000), and high signal
computational effort in order to obtain satisfactory solutions. Other disadvantages of this
technique are the high cost of fabrication and maintenance, and high power consumption.
There is always a trade off between complexity, resolution and the cost of signal
processing in the array. An alternative means of realising tactile sensing is by
implementing a technique called distributive tactile sensing. This concept was first
introduced by Stone and Brett (1995), and was then demonstrated by Stone and Brett
(1996), Brett and Stone (1997) and Stone (1997) in the context of research on innovative
medical devices. This method is an important tool for sensing for the research currently
being undertaken by the Clinical Biomedical Engineering research group at Aston

University.

Distributive tactile sensing emphasises the integration of a minimal number of sensing
elements into a deforming contact structure. Crucially, the structure provides a non-linear
coupling medium between sensors. The arrangement of the sensing elements can be
arrayed (but usually in a small array), or distributed (positioned) over the prospective
active region of the contacting surface prior to loading tests. However, with the
introduction of an optimisation technique based on genetic algorithms (Tongpadungrod,
2002) the process will systematically search for the optimal position for the sensing

elements for robust performance. In contrast to the typical arrangement of an array sensor,
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the positioning of the sensing elements in distributive sensing array is as shown in Figure

2.2, such that the sensor positions look more arbitrary.

— A flat surface
O
O O
o Data Information
o Signal State of
O >| conditioning l:> interpretation
O

Sensory Processing

(O Sensing elements

Figure 2.2: A schematic diagram depicting the distributive tactile technique.

The essence of the distributive approach is the presence of a surface or intermediate
substance on which the object makes contact, and from which the sensor can detect the
movement. This element is a necessity within the construction of this system. This
scenario is analogous to human tactile perception, where the receptors in the dermis are

enclosed by a layer of epidermis (the skin), see Figure 2.3.

Skin surface

Aston University

Hlustration rem oved for copyright restrictions

Figure 2.3: Human skin on the finger tip (figure taken from Johansson and Vallbo, (1983)).
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In the distributive approach, the derivation of contact information relies on the relative
information obtained from each of the individual sensor elements, in order to produce a
‘signature’ or ‘pattern’ of sensory data. The deformable surface provides a coupling
effect between the sensors; thus even if a physical contact occurs in such a way that it
falls in between the sensors, the sensors still can detect and produce a unique formation
of sensory data. In contrast to the array technique, the resolution of the measurement does
not primarily depend on the number of sensing elements, but rather on the interpretation
algorithm (Brett & Li, 2000). Thus this system can have a higher spatial resolution than
an array sensor of the same number of sensing elements. With this sensing method a
minimal sensing element will be needed. No multiplexing of sensing data will be required
for acquiring data, but even if required, employing a conventional type of multiplexor
would be sufficient as only a small number of channels will emerge. Thus there is a high
tendency for the data to be processed concurrently when using distributive sensing.
Moreover, due to the lower complexity of the sensor, the signal processing of the
distributive will not be as subtle as when using an array. With an appropriate signal
processing interpreter system, a high performance tactile sensing method with high

bandwidth operation can be achieved.

In the distributive approach, the signal processing takes place by using the pattern of
sensor information directly, in order to interpret high level contact properties. No
reconstruction of the sensing data is required. Pattern recognition tools (such as the
artificial intelligent algorithm) offer the best solutions to the task of interpreting the
sensing pattern into touch and contact information. With the prospect of this new
distributive sensing system, applications to interpretative tasks will not only be limited to

static functions, but also to dynamic disturbances.

Distributive sensing can be applied to either a one-dimensional or a two-dimensional
context, as with the array system. Stone and Brett (1996) used distributive sensing for
measuring gripping force distribution of a soft object for control and manipulation

purposes. A thin aluminium alloy was used, as were strain gauge sensors arranged in
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array, in order to measure the strain in the substrate. The essence of this work was to
determine the contact location of the object.

In their 1997 paper Brett and Stone present the details of their investigation into a new
method for measuring forces and tactile information. This work was conceptualised as a
contribution to the sense of touch already used by surgeons, by implementing small
number of sensing elements. The sensing system they describe is a one-dimensional
system comprising of a beam in which one end is fixed and the other end is supported by
a spring. Eight strain gauge sensors are used, arranged in single dimension array. The
signal processing used is a Feed-Forward Multi Layered Perceptron (FFMLP) neural
network. The method is compared to the closed form method and the Gaussian
distribution, with the researchers concluding that the neural network offers the advantage
of sufficiently high bandwidth, equivalent to the response of the human tactile sensing
system, and with moderate accuracy. In related research, Ma and Brett (2002) conducted
work on loading parameters, namely interpretation of load magnitude, load position and
load width on a beam with both end simply supported. The sensors used were eight
proximity sensors arranged in a single array. Signal processing and interpretation
employed the neural network method similar to the previously described project, but here
the emphasis was on enhancing the tool for the purpose of improving the accuracy of the

measurement. For this aim the FFMLP neural network was arranged in cascade form.

In the more application oriented work, Ma, Brett, Wright and Griffiths (2004) adopted the
above idea for use in a novel tactile endoscope, using distributive tactile sensing as a
means of deriving contact information such as load magnitude, load position, load width
and load shape. The design meets the criteria for invasive surgical environment, as
ideally invasive devices should be of low complexity and low cost, with a view to
producing disposable units. In the demonstration by these researchers, the system
required only four strain gauge sensors, and their positions were optimised by employing
the technique introduced by Tongpadungrod (2002). In more recent work, Cowie, Webb,
Tam, Slack, and Brett (2006) has furthered the research by Ma, Brett, Wright and
Griffiths (2004) by replacing the strain gauges sensors with Fibre Bragg Grating (FBG)
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sensors. From the off-line measurements it was concluded that FBG based sensors were
more appropriate than the strain gauges in this context. The only drawback yet crucial for
implementing onto real time application is the incapability of the FBG approach to offer
simple process for delivering on-line deflection measurement. A complicated signal
processing mainly comprised of spectrum analyser device will be required to measure the
changes of stress and strain. This signal output will be in frequency domain and will
require a system to convert thus to adapt it onto the signal processing hardware. For this
thesis, strain gauges are chosen as preferred sensing element due to their abundance, low

capital cost and availability of amplification equipment.

The study of the effectiveness of interpretation algorithms made a leap forward through
the work of Tongpadungrod (2002), who presented a technique using genetic algorithms
to optimise the position of the sensing elements. Proximity sensors were used to detect
the deflection of the substrate prior to the load placement along a one-dimensional
sensing system. In the work, the researcher also used genetic algorithms as an
interpretation tool. Compared to the FFMLP, the performance obtained by the
interpretation based on genetic algorithm was poorer, as this method relies heavily on the

agreement between the simulation of the surface behaviour and measurement.

Research on two-dimensional systems can be found in Stone (1997) and Brett and Li
(2000). Stone (1997) designed a two-dimensional device in his thesis, which aimed to
determine the position and magnitude of an object placed on the substrate. The surface in
that system was made from a plastic material. The deformation induced by any contacting
object was measured using five proximity sensors. The placement of the sensors was
optimised based on analysing the response plot obtained from the surface model. All
signal processing (FFMLP neural network) in the work described in Stone and Brett
(1997) and Stone (1997) was run on 486 PC workstations. Similar research was
performed by Brett and Li (2000), but with the objective of investigating the
effectiveness of the method, by studying the insensitive area on the surface prior to an

applied load. Five infrared-sensing elements were incorporated on plastic surface to
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detect small deflections of the surface. The signal processing part (FFMLP neural

network) was run by software on 586 PC workstations.

2.3 Hardwired Tactile Sensing

Most of the research in the literature on sensory processing incorporates sensory
processing algorithms using PC-based workstations. Usually computer software was used
in these studies to serially compute the interpretation algorithm. However, such
algorithms are essentially running in parallel in terms of their dataflow, and thus they are
well suited to parallel processing approaches. Although some work has been done on
hardware implementation of such algorithms (e.g., Hellard & Russell, 2002), this
approach has never been applied to neural network-based distributive tactile sensing,
particularly into an FPGA. Research which has attempted to implement tactile sensory
processing into an FPGA was by Nagy, Szolgay and Szolgay (2004). In their research the
FPGA was used as a platform for implementing an emulated Cellular Neural Network
Universal Machine (CNN-UM) — another class of artificial neural network used for
solving the state equation of a micro electromechanical tactile sensor. However, this
research only emphasised solving the transient of the differential equation using a
realistic input parameter. Implementation of this system into a real case for measurement
has never been achieved. This research did produce useful information, in that it
demonstrates the reliability of the tool when handling complex (parallel) implementation,
while maintaining a speed of operation superior to that of a PC. From the experiments
undertaken it was deduced that using the FPGA is 12 times faster than using a Pentium
IV 3GHz processor when obtaining the solution. This research realised the
implementation of a hardwired neural network for sensory processing, but also
maintained low processing complexity and higher bandwidth. Although there are various
types of hardwired implementation of the neural network (Barranco, Andreou, Indiveri &
Shibata, 2003), this research focuses on an implementation using the field programmable
gate array chip (FPGA) as a platform for processing the sensory interpretation algorithm.

The rationale for this selection will be presented in Chapter 4.
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2.3.1 Research on the FPGA Implementation of Neural Networks

The need to implement neural networks as a means of hardwired sensory interpretation
for tactile sensing is clear from the above review of the literature. However, to date few
researchers have chosen to take this direction, although much work has been undertaken
implementing neural networks in general, mainly focusing on, a) the application and b)
investigating the optimal techniques of implementing. This work thus provided a great

deal of experimental data and many techniques that were useful for the current research.

In recent years various techniques and architectures have been developed for the
implementation of artificial neural network into FPGAs. Some designs implement the full
algorithm directly, including the non-linear activation function, and use parallel
processing to maintain speed at the cost of using extensive FPGA resources. One
example of such research is work by Arroyo Leon, Ruiz Castro, and Leal Ascencio
(1999), who successfully implemented an artificial neural network (FFMLP) on an FPGA
chip type Altera’s EPF10K20RC240-4, and accommodated parallel processing of three
neurons and the non-linear activation function. Research by Galindo Hernendez, Leal
Ascencio and Aguilera Galicia (1999) extended that of Arroyo Leon, Ruiz Castro, and
Leal Ascencio (1999) by focusing on the application of the system and visualisation
using computer software such as LabView. The system was used to estimate biomass and
product concentration in the biochemical growth of a pigment. The complete design
consumes 98% of the available gates of the device. However, the major disadvantage of
such a design is the resource limitation of high logic density FPGAs. It can thus be
understood why earlier implementations, such as that of Cox and Blanz (1992) used
arrays of almost 30 FPGA Xilinx XC3000 chip to map simple multilayered perceptrons
(FFMLP).

In another example of such architectures, time-division multiplexing has been introduced

by two research groups, Ossoinig, Reisinger, Steger and Weiss (1996) and Izeboudjen,

Farah, Titri, and Boumeridja (1999). Here a single shared multiplier per neuron is applied,
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but at the expense of speed (particularly when evaluating the activation function). Using
this method Izeboudjen, Farah, Titri, and Boumeridja (1999) have mapped an MLP
neural network for the XOR problem with the network on a single Xilinx FPGA chip
type XC4020. Ossoinig, Reisinger, Steger and Weiss (1996) have fabricated four Xilinx
4013 and a Xilinx 4005H FPGA chip on to a board. It follows that there is an ongoing
need for a fast, accurate, and relatively resource efficient implementation suitable for an
FPGA-based implementation. Consequently, the current research seeks to address this
need by devising an architecture which is a hybrid between parallel and serial
computation for a neural network. This research thus aims bring about a balance between

the digital resources requirement and the expanse of operation timing.

In the current research addressed the used of MLP (also known as feed-forward
multilayered perceptron neural network FFMLP). This selection was based on earlier
work such as that carried out by Brett and Li (2000), Tongpadungrod (2002), Ma and
Brett (2002), Brett, Wright and Griffiths (2004) and Tam (2005). The FEMLP neural
network has been successfully implemented in several tactile sensing systems, tailored

especially for output discrimination.

2.3.2 Implementation Issues

For all of these techniques, it is the nonlinear activation portion of the neural network
which triggers the most difficulties during the implementation (Beiu, Peperstraete,
Vandewalle & Lauwereins, 1994). This part has a strong influence on the accuracy and
performance of the application, and may constitute the most computationally extensive
aspect of the implementation. The conventional way to overcome the activation function
computation problem is by using medium-granularity look up tables, such as the sigmoid
look up table (Galindo Hernendez, Leal Ascencio and Aguilera Galicia, 1999; Marchesi,
Orlandi, Piazza & Uncini, 1992; Ossoinig et al., 1996). However, such an approach leads
to a high demand on memory by the FPGA devices to give satisfactory accuracy. Various

techniques have been proposed, such as that of Tang and Kwan (1992), who use an
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adaptive-slope sigmoidal activation function. Chen and Chang (1996) have introduced an
adaptive generalised hyperbolic tangent function with two free parameters, the slope and
the saturation level. Hikawa (2000; 2003) has also presented an activation function using
a three valued function, improved by using a piecewise-linear function. However, all of
these methods are unique and are designed for the specific purpose of the neural network
implementation. Evidently, there is a need to devise a suitable digital activation function

to suit the neural network architecture in this research.

2.4 The Endoscope

One of the focused studies of the work is the steerable flexible endoscope with tactile

feedback information. This section reviewed the history and research of the endoscope.

2.4.1 History of the Endoscope

The first endoscope was invented by Philippe Bozzini in 1806 and was demonstrated in
Vienna (Miller, 1986). This instrument was called a “Lichtleiter”, which means light
conductor. It was a simple silver tube which was illuminated by light generated by a
candle. In 1853, Antoine Jean Desormeaux made an improvement on the design by
replacing the light source with a turpentine and alcohol mix. The light being focused on
the field of view remained no greater than the tube diameter, and he was the first surgeon

to use the Lichtleiter of Philippe Bozzini on a patient.

From this point onwards there was continuous development of the endoscope, but a major
improvement in the design was made after the electrical light was invented by Edison in
1891. When smaller bulbs became available this meant that internal light was available

for the endoscope. Another major enhancement was made when Wolf produced the first
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flexible scope in 1930, but this was based on a conventional lens system (Hopkins, 1976).
In 1941 the design of the endoscope was improved again by adding manoeuvrability of
the distal tip. However, it was not until 1970s that endoscopic and laparoscopic
examination and surgery began. In 1984 the first laparoscopy cholecystectomy was
performed. Four years afterwards the first operation involving the use of a video-
laparoscopic cholecystectomy was performed (Lindberg, 2002). This was the beginning

of the era of minimal invasive surgery.

2.4.2 Recent Achievements in Endoscopic Research

Work related to the development of the endoscope continues. The aim of most of this
research is to obtain better feedback and improve perception. For example Yamauchi et al.
(2002), has been attempting to improve the field of view (FOV). In this research the
quality of visualisation was enhanced by introducing a dual-view with image shift
capability. The technique uses a wide view method, which improves the FOV up to 120
degrees, and image shift controlled zoom view (for manipulating surgical tools within it),
in total giving a variable zoom FOV from 40 degrees to 120 degrees. This approach also
allows two views to be observed at one time. Other research by Smithwick, Seibel and
Vagners (2001) have resulted in the introduction of a different class of endoscopes. The
Single Fibre Scanning Endoscope (SFSE) technique is based on a combination of a
resonating optical fibre and a single photo-detector. This approach produces a large field

of view and high resolution images from a small flexible package.

A further challenge to the classical endoscopy operation is disorientation resulting from
the limited field of vision, which can lead to surgical error and fatigue. This issue creates
a tough barrier for the novice and may lead even an expert to inadvertently commit
serious surgical errors. Some research has been undertaken seeking to prevent such
complications and optimise training. One technique is to aid navigation is the use of a 3D

model based system that shows a single perspective view of the patient and the
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endoscope model (Yamashita, Yamauchi, Mochimaru, Fukui & Yokoyama, 1999). This
virtual endoscope has a viewing cone with a simulated light to indicate the viewing
direction and visual field in real time. The system’s three clipping planes automatically
follow the endoscope and help keep the surgeon aware of the actual position of the
endoscope. Another improvement was the introduction of an intra body navigation
system that can directly measure and visualise the three-dimensional position of the tip
and the trace of an ultrasound endoscope (Tamura et al., 2002). The proposed system can
identify the 3 Dimensional location and direction of the endoscope probe inserted into the

body, in order to furnish endoscopic images.

Another area of interest to researchers is the development of a semi-autononomous
endoscope (Menciassi, Park, Lee, Gorini, Dario & Park, 2002). This research involved
the manufacture of a semi-autonomous robot which was specifically designed for
colonoscopy. The project focused on two problems: the generation of an effective and
reliable advancement of endoscopic tool (to going forward) use in the colon, and the
possibility of steering the robot in order to overcome acute intestinal bends. A self-
propelled device was introduced which generates “internal” forces and which does not
require any external pushing actions. These would improve the colonoscopy procedure in
terms of patient pain reduction, making advancement easier, and improving diagnosis as

a whole.

2.4.3 Towards a Tactile Endoscope

The key aim of endoscopic surgical operations is that the surgeon should acquire as much
information from the tool tip as possible, but with maximum safety, particularly during
tissue manipulation. However, examination of the literature clearly demonstrates that, to
date, the only information to guide the surgeon during the operation is in the form of
visual feedback. One solution is to enhance the sensor information from the endoscope,

to enable it to provide tactile feedback. Research in this direction has been undertaken by
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Dargahi, Parameswaran, and Payandeh, (2000) for another class of endoscope, the
endoscopic grasper. In Dargahi, Parameswaran and Payandeh (2000), the authors focused
on enhancing the output information available, to provide not only the magnitude of the
applied force, but also the position. The prototype sensors in this system consist of three
layers. The top layer is made of micromachined silicon with a rigid tooth-like structure.
The bottom layer is made of Plexiglass serving as a substrate. The middle layer is
composed of Polyvinylidene Fluoride (PVDF). This work was extended by Najarian,
Dargahi and Zheng (2006) to measure stiffness. Takashima, Yoshinaka, Okazaki and
Ikeuchi (2005) used a different approach, designing a new tactile sensor system which
measures tactile force by means of image processing. The system uses an infrared (IR)
cut pattern installed in the tip of an endoscope to measure 3D information. However, the
technique relies heavily on software to convert the image into a measure of the tactile
force. Related research described in this chapter (and also discussed in later chapters)
includes work by Brett and Stone (1997), Stone (1997), Ma, Brett, Wright and Griffiths
(2004), Tam, Brett, Holding and Griffiths (2004) and Tam (2005).

2.5 Summary

This chapter reviewed two types of tactile sensing, namely the array and the distributive
methods. Both techniques seek to measure and interpret contact properties on a
predetermined sensory area of a sensing medium. However, there are problems with each
due to the high complexity of the array, the high cost of realising the sensing system, and
the inadequateness of both methods in real time application (particularly when
implemented using a PC workstation). The current research sought to address these issues
by exploiting the distributive tactile approach, and introducing the concept of going
hardwired using an FPGA chip for the sensory processing unit. The adaptive hardwired
information interpretation scheme should complement the distributive method, producing

a novel distributive tactile sensing system. This system embraces speed of interpretation
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with constructional simplicity, which is useful for another application (described later in

the thesis) of tactile sensing involving dynamic interpretation.

The second part of the chapter reviewed an application for the novel distributive tactile
sensing system. This section presented a literature review which clearly leads to the
proposed research, and highlights the importance of creating a tactile endoscope. To
address this aim previous research points to the use of the distributive type of sensing.
This is mainly due to its less complicated construction, use of a smaller number of
sensors, and the fact that it is simpler to fabricate. There are some designs available
which have attempted to move in this direction, but they have never been tested on real
time applications. The present research, which involved the development of the design, is

described in the following chapters.
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CHAPTER 3

Distributive Tactile Digit
(The foundation of the study)

3.1 Introduction

he research described in this chapter addressed several different objectives. The
Tﬂrst aim was to demonstrate the principle of distributive tactile sensing. Secondly,
the work described in this section investigated the performance and sensitivity of the
sensing technique when applied to a fluid driven flexible digit, using the closest
approximation cantilever rig as a case study. Finally, this chapter provides details of a
preliminary study of the implementation of the embedded real time sensory signal
processing and measurement system. The overarching purpose of this chapter is to
describe the development of a sensing system able to interpret the state of the contact

condition using as few sensors as possible.
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In this research the first procedure was to define the optimal distributed positions for the
sensing elements which are to be incorporated along the constructed cantilever rig. The
method of configuration of the sensors locations obtained by Ma, Brett, Wright and
Griffiths (2004) is adopted in here. This technique, which was first introduced by
Tongpadungrod (2002), uses a genetic algorithm to derive the optimum position of the
sensors along the beam to provide the highest discrimination of pattern or signature
deduced from the types of loading conditions. The discrimination of the different loading
conditions is achieved using an interpretation tool such as the neural network algorithm.
Generally, upon training, the tool takes the pattern of signals from the distributed sensor
elements and interprets them into information. The purpose of this procedure is to search
and gather information as to the different loading conditions’, different profiles of width
and shape of different force, at different applied position along the total length of the
beam. When using this procedure the aim is to incorporate the interpretation algorithm
into a continuous sensing measurement system, to provide consistency to the distributive

tactile sensing.

This research first demonstrates the use of a feed-forward multi-layered perceptron
(FEMLP) neural network in order to evaluate different loading conditions along the
operating length. The outcome is then compared for different classes of neural networks,
radial basis function (RBF) neural networks. Influencing this judgment is the need to
obtain a network model which is efficient in both the performance and computational
cost. These criteria are important for embedding the signal processing system into an
FPGA, and will be explained further in Chapter 5. The selected class was then used for
the evaluation of a wider range of loading conditions and its performance was analysed.
Finally, the class was then employed for development into a different arrangement of
neural networks. The outcome of this process was then be used for developing the

hardware sensing system.
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3.2 The Flexible Digit: Overview

The fluid pressure driven flexible digit (discussed in Chapter 1, see Figure 1.4), was
constructed by sealed flexible bellowed PVC tubes, having differential stiffness across
the cross-section due to a cantilever structure attached along the length of the bellowed
tubing. This structure acts both as a sensing element and forms the neutral axis at the
surface of the tube. The application of pressure causes curvature of the tube at a constant
radius. The prototype digit consisted of two chambers each actuated by a separate
pressure supply and mounted in series. The bending moment exerted by the internal
pressure is related to the area of the cross-section of the tube and its distance from the

neutral axis, and therefore there is the allowance for a service conduit at the neutral axis.

3.3 The Test Rig: The Cantilever

An experimental rig was constructed using a cantilever beam to approximate the function
of the cantilever sensing element of the digit. The rig consisted of a straight mild steel
beam with a dimension of 228.6mm (9 inches) of length 75, 12.7mm width and thickness
of 0.4mm), with a fixed support at one end only (refer to Figure 3.1). This is similar to the
flexible digit where the root and tip of the digit are analogous to the fixed and free end of
the cantilever respectively. However, unlike the driveable flexible digit, the cantilever
beam is only used for the measurement of un-actuated operations. That is, there is no
other driving force acting on the beam to create deflection other than load applied for
measurement. The investigation of tactile sensing with the presence of both external
forces and actuation is beyond the scope of this research. However, the outcome of this

investigation has direct relevance to the more general case.
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Figure 3.1: A cantilever model with length /; and load D applied at the tip (diagram not to scale).

3.4 Simulation Model of Beam Deflection

The mathematical model of the cantilever beam is now described. The objective of the

modelling is to study and predict the deflection behaviour by means of computer

simulation. The model was first verified by comparing the simulation output with the real

deflection of the beam. The model can thus be used to validate the sensor outputs.

3.4.1 Beam Theory

Gere (2002) has shown that the beam equation for the intermediate case (which has the

most relevance to the current research) can be expressed by;

DagiB2 . _ )
—W(Ja'—[ﬁ) (OS[BSCI)
(3.1
Da.a’
- 61(;:] (3i,—a) (a<i,<1,)

Where v is the vertical deflection when the load is at position a along the incremental

length iz of the beam, and where D is the load weight, g, is the acceleration due to
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gravitational force, and EI is the flexural rigidity. £ is the elastic modulus of the beam

and 7 is the second moment of inertia.

For the case D applied at the tip of the beam (or iz = ), (3.1) becomes;

. 3
Dang
3E]

Vv =

(3.2)

Differentiating v of (3.1) will yield the slope 8 for the intermediate case;

Dagi/;? . .
YT (2a-iy) 0<i, <a)
O =v'= (3.3)
Da}’,a2 P
Y (a<iy<1y)

The second derivative of vertical deflection v, has the relation to the bending moment AZ3,
by the expression shown below;
v M,

. (3.4)
oi,)  EI

Further differentiating (3.3) and incorporating (3.4), the bending moment can be obtained

for the intermediate case;

i .
Da,a(1--+ (0<iy, <a)
a
0 (a<i,<1,)
To verify the mathematical models, deflections (v) obtained from measures taken during
experiments were compared to the computed results of equation (3.1). In the experiment,

loads of 10g, 13g, and 23g were applied at the tip of the beam and deflections were

recorded at seven different positions along the length of the beam 7,. Comparative plots
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Figure 3.3: Beam with configuration of sensors locations (bottom view).

In this research the sensing elements used were strain gauge sensors (steel Smm x 1.8mm
strain gauge). These sensors were chosen for their abundance, low capital cost and
availability of amplification equipment. At specific points during the measurements, they
detect deflection changes by means of stress or strain changes. The stress or strain
changes then alter the resistive property of the sensor’s material proportionally (i.e., the
resistance changes proportionally as well). As the maximum resistance change delivered

from each of the 120 Q strain gauges due from the deflection will not be higher than 0.1%

under a typical maximum strain £ =10 (strain is dimensionless), the sensors were
embedded back-to-back on the beam to provide a half bridge sensing configuration.
There are several advantages of using such configuration. First, this configuration
increases the sensitivity of the circuit, as the resistive resulting will be doubled as both
gauges will be active. Secondly, error due to offset from un-steady temperature changes
will be minimised by the balanced potential difference due to the temperature induced
resistance changes (Fraden, 1996). The effect of temperature changes in strain
measurement is always an issue in strain/stress measurement using strain gauge sensors.
An unsteady temperature leads to significant error and variable measurement. This
problem leads to constraints on the ability to perform the real time measurements using

the system.
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3.6 Sensory Data Output

The output of the bridge was in the range 0 - 10mV. To make the signals more useful,
they need to be signal conditioned so that the output range is increased and the signal-to-
noise ratios are improved. To do this, the voltage from every part of the bridge is
amplified into the more significant voltage readings required for the process. For this
procedure, a prototype circuit (as shown in Figure 3.4) comprising a Wheatstone bridge
and differential amplifier were used. The amplifier is an instrumentation amplifier type
AD624 (see Appendix 1 for technical specification). By introducing trimming resistors to
the input resistance of the differential amplifier circuit, the gain per channel can be
adjusted to give feasible ranges for the measurements. A low-pass filter with cut-off

frequency of 25Hz was added to the output to remove any high frequency distortion.

Figure 3.4: The prototype strain gauge amplifier with a low pass filter.
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3.7 State of Interpretation Algorithms

A variety of transformation algorithms can be used to interpret the pattern of data output
from the sensing elements in order to generate describing indices of load distribution. In
this research the scheme involved the use of an artificial neural network. The technique
was inspired from the bioelectrical network operation of the brain, as formed by neurons
and their synapses (McCulloch and Pitts, 1943). This system has the ability to learn how
to interpret data based on so-called learning stage. But the most important reason for
using such a technique rather than most other methods is that there is no need to derive
the inverse function of the closed form solution relating to the variables being measured
(refer to Chapter 2). The output of the model is then less affected by the computational
errors. A second advantage of this system is that it uses very sophisticated modelling
techniques capable of modelling extremely complex functions. This is advantageous in
complex situations where the contacting surface responses to an applied load cannot be
accurately derived. Furthermore, since artificial neural networks have a parallel structure,

real time measurement can be achieved.

3.7.1 Artificial Neural Networks (ANN): An overview

An artificial neural network is composed of a network of relatively simple processing
elements (PE), such that the global behaviour of the network is determined by the layered
connections between the processing elements and the parameters of those elements. A
typical artificial neural network structure is depicted in Figure 3.5. There are two types of
processes involved in the use of an artificial neural network. The first is the training
process, also called the learning stage, where the network is trained and reconfigures
itself in terms of the inputs for targeted output patterns. The second procedure is the
testing process, where information from the inputs are fed into the network and processed
to evaluate the approximated results. This activity is sometimes called the measuring

stage.
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Input Layer Hidden Layer Output Layer

Figure 3.5: An artificial neural network processing structure.

3.7.2 Feed-Forward Multilayered Perceptron FEMLP

Although there are various types and classes of artificial neural networks available, the
current research employed the most common form, namely the feed-forward multilayered
perceptron neural network (also known as the FFMLP neural network). This selection
was based on earlier work such as that carried out by Brett and Li (2000),
Tongpadungrod (2002), Ma and Brett (2002), Brett, Wright and Griffiths (2004) and Tam
(2005). The FFMLP neural network has been successfully implemented in several tactile
sensing systems, tailored especially for output discrimination. In this network, each
neuron in one layer has direct connections to the neurons of the subsequent layer. Thus
the neurons propagate the information in one direction only, forward, from the input layer
to the output layer, via the hidden layer (i.e., there are no cycles or loops in this network).
It is in the hidden layers where the activation functions are applied to the receiving

neurons.
The role of the activation functions in the hidden layers is to introduce nonlinearity into

the network. Without nonlinearity, the hidden layers will not make nets more powerful

than just plain perceptrons, or matrix computation. The reason is that a composition of
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linear functions is again a linear function. It is its nonlinearity (i.e., the capability to
present nonlinear functions) that makes the FFMLP neural network so powerful. Almost
any nonlinear transfer function can be used, but functions such as the sigmoidal and the
hyperbolic tangent are preferred and commonly employed. Transfer functions such as the
sigmoid function gives a threshold of '0" and saturates at the value “1” when the inputs are
- o and + oo respectively. In contrast transfer functions such as the hyperbolic function
saturates at ‘-1’ and ‘+1° when the inputs are - co and + oo respectively, hence the value of
the outputs of the hidden nodes are bounded between [-1,1]. The advantage of using such
functions is (because of their simple derivative criteria which importantly contribute for

fast computation during training), the differentiation of the sigmoid function is f(1- f),

and the differentiation of the hyperbolic tangent is (1— f), where fdenotes the primary

function. This criterion is thus best suited for a training scheme such as back-propagation

(BP), in which the topology is based on the chain rule.

In the research, the activation function employed the hyperbolic function. This function
was chosen for its better numerical conditioning. An output that produces both positive
and negative values tends to yield faster convergence of training than functions that

produce only positive values, such as the sigmoid function (Bishop, 2003).

3.7.3 Back-Propagation Training

A variety of learning techniques can be used to train an FFMLP neural network, in the
current research the back-propagation training method was selected. Back-propagation is
advantageous because the trained system generally tends to provide reasonable answers
even when presented with inputs that it has never seen before (Tongpadungrod, 2002). In
principle the technique is simply accomplished by computing the intrinsic error made by

the net’s (or interpreted output y;) with reference to the targeted outputy, (refer to Figure

3.6), and using this to adjust the network parameters dedicated to the task. The training

process is performed iteratively. A prerequisite to the success of the training of the
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network is when the error converges to within a specified threshold. This process is
usually established from off-line. A typical routine process follows the flow diagram

shown in Figure 3.6, where 7 is the sequential of the total number output set data T used
for the training, y(x";®) is the output vector computed from the net, and 17 is the targeted

set output vector.

Initializing all data, i.e Traning
data Weights and Biases
¥
Define Desire
output,

v
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Output yix)
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Figure 3.6: The FFMLP neural network back-propagation training flow process.
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The objective during training is to minimise the error between the interpreted output and
the target output by searching for the appropriate weights and biases (parameters). In the
current research mean square error (equation (3.6)) was used for the back-propagation
training. Equation (3.6) can also be regarded as the negative log-likelihood (Bishop,

2003).

1 . T T2
Emean square error = EZH y(x ,C’)) =1 ||- (36)
r=i

Both the error function and the activation function have to be differentiable for the delta
chain topology to work. The error of the output layer is computed first and then the result
is propagated towards the input layer. This is the essence of the back-propagation
technique. The delta errors with respect to each layer are used for updating the weights
and biases parameters using an optimiser function. The gradient decent or scale conjugate
gradient can be used as optimiser functions; in this research the scale conjugate gradient
was used. Although it requires more mathematical computations, this optimiser is
substantially more powerful than other common optimisers such as the simple gradient
decent (refer to Bishop, 2003; Nabney, 2004). The update parameters are then brought
back for error re-computation. This process repeated until the decision is made to stop the
training, before the network goes into over-training. Over-training is when the network
starts to approximate the training input very well, but by doing so it thus inherently
incorporates a large generalisation error. On the other words the network tends to
memorise rather than to learn. More information on generalisation errors and means of

dealing with them can be found in Section 3.8.3.
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3.8 Neural Network Setup and Optimisation

This section explains the preliminary empirical research which was needed to establish
distributive sensing for the discrimination of load parameters. This discussion covers how
the inputs from the sensor outputs and the load parameter outputs used for training the
neural network were obtained, and how sensor output was verified and validated for the
experiment. This section also demonstrates the optimisation of the neural network prior
to each application, and the analysis of the performance. The advantage of optimising the

neural network is that it leads to the network having reduced complexity.

3.8.1 Neural Network Inputs and Outputs

One of the capabilities of neural networks is their ability to learn from experience. For a
neural network such as the FFMLP this is a supervised type of training, where a set of
input data and the corresponding target outputs have to be delivered into the training
scheme. In this case the outputs are the load and load position derived by placing four
different loads (6g, 9g, 11g and 13g) at specific points along the range of the beam. In
practice, the input (deflection) was measured by the half-bridge strain gauge circuit, with
the output being fed via an analogue to digital converter (ADC) to an embedded signal
processing system. The processed signals representing the deflection were recorded from
the digital to analogue converter (DAC) output of the embedded system. The
configuration used is depicted in Figure 3.7. Further details concerning the design of the
embedded signal processing system, including algorithm implementation, quantification

issues, and real-time performance are covered in Chapter 5.

Embedded system
Rttt et A
Sensing Sj : :
ignal . Hardware « | Scope
> > - ADC | > DAC | p
Elements Conditioner | Processor :

_____________________________________

Figure 3.7: System setting for input measurement.
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Usually the operating voltage range of the ADC and DAC of an embedded system is
between -1V and +1V. This met the requirement that, in practice, the input and the target
output variables of the neural network should be bounded within the normalised values of
-1 and 1 (unity normalisation) (Bishop, 2003). No pre-processing or linear rescaling of
the input variables is required with this setup. But pre-adjustment of the gain of the
instrumentation amplifier is necessary to produce sensor output of not more than 0.90V
from maximum deflection, and not less than -0.90V from no deflection, thus producing a
common range from the four sensing elements. The +0.10V off-set voltage used here is
to provide a safe margin from the threshold range and the ADC part of the device. Post-
processing is then applied to the outputs. For the load, the maximum load was encoded
into a normalised value of 0.9. Rescaling of 6g, 9¢g, 11g and 13g loads was done by
dividing the loads by 14.44 (maximum load/0.9). This yield normalised loads D as 0.42,
0.62, 0.76 and 0.9 respectively.

3.8.2 Verification of the Sensor Inputs

In this research verification of sensor output was done by employing the bending
moment, represented by equation, (3.5). The sensor outputs were obtained by placing a
single load D (6g, 9g, 11g and 13g) to points along the beam /. Each load had a 12.7¢cm
width dimension and was placed from the tip towards the root at every interval of
6.35mm, starting 6.35mm from the tip. The load placements covered 60% of the range
from the tip. This range, which was also used as the working range has been found to be
adequate to reflect the real operating range of a tactile endoscope for retrieving
information during tissue manipulation and diagnosis operation (Ma, Brett, Wright and
Griffiths, 2004). Sensor readings from sensor 1, sensor 2, sensor 3 and sensor 4 were
recorded and the plots are displayed as Figures 3.8-3.11. For this process the beam length
was normalised into unity, so that the value ‘1’ represents the maximum length at the tip
and ‘0’ is the fixed end (root). Normalisation was done by dividing every position by

total length Ip. Verification was undertaken by comparing the actual results from the
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sensor outputs obtained, and the results in relation to theoretical bending moment

obtained by simulation.

It follows that the relationship between the change of resistance from strain and stress,
and the voltage out from the sensors, for the case with Wheatstone bridge of
configuration discussed earlier can be shown by the expression below (Graham, 2006;

Figliola and Beasley, 2006);

our

AR
LV, +V, (3.7)
Ry N

G
kQ
Where V,,, is the voltage out, G is the gain of the strain gauge amplifier used, &, is the
resistance to voltage configuration factor (for example for the case of half bridge, 72, kg

is 2), AR, /R, is the ratio of change of resistance form deflection to the resistance of the

strain gauge, Vey is the excitation voltage and V4 is the voltage offset.

However, it was noted that the AR, /R, has a relation with the bending moment shown

AR, _ G,/'}/le (3.8)
R, El '

Where G/ is the gauge factor, and y is the distance from the neutral axis (in this case, the

half height of the beam cross section). Incorporating (3.8) into (3.7) yields an expression

relating voltage out V.. with the bending moment, Mp as shown below;

G, M
out kg—]%j—/i Vex + Vr;_[/' (39)
9]

Knowing all the variables parameters in (3.9), the actual sensor output can be verified.

By examining Figures 3.8-3.11 it is clear that the readings obtained by the experiment

and the simulation are in agreement. These demonstrate that the sensor outputs are valid.
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3.8.3 FFMLP Learning Strategy and Optimisation

To demonstrate the first application of the neural network, a total of I' = 76 sets of data

obtained from the previous measurements were used to train the neural network to

discriminate loading condition load D along position i, (where i, is the normalised
operating range). For training purpose neural network toolbox from Netlab package1
(Nabney, 2004) was employed throughout the research. The ultimate goal of prudent
training is to minimise both training error and generalisation error. However with only
training data available, generalisation error can still be estimated by reserving some data
for validating and testing. Then, overtraining can be prevented by choosing a network
with low estimated generalisation. Another means of preventing over-fitting is to reduce
the complexity of the network by removing some of the unnecessary weights (nodes). In
practice this was achieved by optimising the number of inputs and hidden nodes to be
used. A two-layered FFMLP neural network was trained off-line using the process
explained in Figure 3.6. In this procedure, the total T" training set data was first randomly
permuted, S0% of which was used solely for training, 25% for validating and 25% for
testing. An example of convergence of errors from the training between validation,

testing and training obtained from the experiment is shown in Figure 3.12.

For the optimisation involved three cases: a two sensor case utilising information from
sensors | and 2: a three sensor case utilising sensor information from sensors 1,2 and 3;
and a four sensor case utilising sensors 1, 2, 3 and 4. Each of the cases was simulated
with a different number of hidden nodes starting from 4 to 25, in steps of 1 for 50
iterations. The maximum number of hidden nodes used in the optimisation process and
through which the decision was drawn was influenced by the objective of implementing
the sensing processor system into hardware, such that the amount of extensive
mathematical computation that can be implemented acts as a constraint. Early stopping

regularisation was applied to avoid over-fitting.

" Netlab package developed by I. T. Nabney is a neural network toolbox for simulation of the neural
network algorithm for use in research and development. It has a library of more than 150 Matlab functions
and script for the most common neural network algorithms.
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number of hidden units. The weights are denoted by @!”and '}, where j is the “source”

of the connection and i the “target”.

The neural network defined by equation (3.10) was generalised as follows:

M N
v =Y 0P O (@Px)+b") + b G.11)
k=1

J=1

Where 5! and b are the offset biases and f is the activation function defined by:

£(z) = tanh(z) (3.12)

3.10 FFMLP Neural Network Simulation

Equation (3.11) was modelled directly using Matlab and Simulink as shown in Figure
3.14. The model was implemented using two inputs and six hidden nodes, and the sets of
weights and bias parameters derived from the training. This network retains the dataflow
concurrency implicit in the neural network structure and is comprised of three main

components: the input integral function where the inputs are multiplied by the weight

') and summed with the offset biases b\ ; the 'tanh’ function f for the activation
transfer function; and the output integral function where the activation function outputs

are multiplied with the second set of weight a)f’, before they are summed with the

. 23
second set of biases b'*'.
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RBEF is its two-stage training procedure, which is considerably faster than the method
used to train the FFMLP. However, despite this advantage, following an investigation of
the implementation issues for this research, this class of network was deemed to be
inadequate in terms of the amount of digital resources required (compared to the

FEMLP).

3.11.1 RBF Topology

The feed-forward RBF can be described by the expression in equation (3.13), where x,,
is the inputs from the sensors, @, and b, are the weights and biases of the output layer,
and ¢, is the radial basis function which is defined by equation (3.14) where C, is the
vector determining the centre of basis function, and &, is the width parameter. Both C,
and o, are the weight parameter of the input layer. y, is the output of the network.
| X-C, %, as shown in equation (3.14), denotes the square of the Euclidean distance

between two vectors.

M
y, = Za)quﬁ/ (x,)+, (3.13)
=1
Where;
=Gy
6, (X)=e 7 (3.14)

Similar to FFMLP, the purpose of training is to minimise the error between y; and ¢; by
searching for the best parameter values for the weights and biases. In this case these are

C,and o, from the first layer and @, and b, from the second layer.
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3.11.2 RBF Simulation

The network was trained for two inputs with six hidden nodes and two outputs as for the
FFMLP discussed previously, using frainrbf command of Netlab toolbox. Together with

the acquired trained weight parameters,C ,, o, ,®, and b,, equation (3.13) and (3.14)

were implemented directly using Simulink Matlab. The configuration of the design
presented in Simulink block diagram form is shown in Figure 3.16. The network
comprises three main components; the input function integral, the transfer function and
the output integral. The purpose of the input function integral is to evaluate the width
factors and the squared norm matrix of dimension j = 6 by computing the trained

parameters C, and o, and the input information from the sensors. The transfer function

used is the Gaussian function for activation. For the output integral the output from the

activation functions are multiplied with the second set of weights w; before they are
summed with the second set of biases 5. . In Figure 3.16 the green block denotes the

sensory input, the cyan blocks of the input integral function denote the nodes operation
for the squared norm matrix, the cyan blocks of the output integral function denote the
nodes operation of w, and the output from the activation function. In addition, the red
block denotes the Gaussian activation function, the blue blocks denote the operation of
the width factors and the light blue blocks denote the block storing train parameters

C,.w, and b, . The grey block denotes all the summing operations.

The RBF neural network model was simulated using the same data as applied to the MLP
case, with associated results as shown in Figure 3.17. From the figure it was deduced that
for the standard six hidden nodes, the approximation exhibited lesser accuracy than the
MLP. The result shows that the position approximation for the minimal load of 6g
exhibits deterioration with an error of up to 0.1. The error deteriorates further with a

higher load condition, as with 13 g the error is up to 0.45.
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3.11.3 The Resource Requirements of the Radial Basis Function

The complexity of the interconnected PE of the neural network is usually defined by the
total number of neurons being used. The number of neurons is in direct relation to the
computational cost to run the network. The computational amount associated with each
neuron is, however, significantly different for different classes of neural networks. In this
section a comparison is made between the FFMLP and the RBF used in this study. The
objective of the research was to draw a conclusion as to which class would be more

feasible to be for the current project.

Accuracy: Figures 3.18 and 3.19 show the relative error of the FFMLP and the RBF
obtained from the results of section 3.11 and 3.12.2. The result generated by the RBF
with seven hidden nodes was also included for the comparison. The figures reveal that
the RBF with six hidden nodes (blue line) is distinctly worse than the FFMLP with SiX
hidden nodes (red line). In terms of load error, the RBF exhibited a maximum error of -
0.015, whereas the FFMLP rate was -0.006. The FFMLP works well for position, with a
maximum error of 0.01, but the RBF is worse with a maximum of 0.4. The accuracy of
the RBF can be improved by adding extra hidden nodes. For example, in the seven
hidden node case, for load error the maximum error improves to -0.007 and for position

the error is 0.04.

Computational: With the exception of the activation function, the total multiplication and
addition was counted and compared between the two classes. For the RBF, in the input
function integral, each subsystem operation (cyan blocks) denoted by sum(C*C) and
sum(X*C) has three multipliers and one adder. Whereas sum(X*X) has two multipliers
and one adder, resulting in 38 multipliers and 13 adders. The summing blocks SUM and
N2 (both in grey) have 12 additions. The inverse constant gains (blue) have the total of
six multiplications. In the output integral, each nodes’ operation (denoted by Al and A2)
required six multiplications and one addition. Also, two addition bias operations are

required. These give a total of 56 multiplications and 29 additions. For the FFMLP, in the
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This data is presented in Table 3.1. For the input, pre-adjustment to the gain was done to
condition the signal acquired from the four sensors. The sensory data output prior to
every trial of measurement for each loading case is presented in Appendixes 2. There
were a total of 143 sets of data I", available for the training. The data set was randomly
permuted. The network was trained and optimised using the information from four input

sensors. During the training, 50% from the data set was chosen for the training stage, 25

% for validation and 25% for testing.

M

H

Figure 3.20: Load tests configuration.

LOAD Width Shape

(DY | (D) W) | ) S (S)

‘e /Normalised /mm /Normalised /Shape /Normalised
Al 23 0.9 50.8 0.9 rectangular 0.45
B |19 0.744 38.1 0.675 rectangular 0.45
Cc|12 0.470 25.4 0.45 rectangular 0.45
DI 8 0.313 25.4 0.45 rectangular 0.45
E |11 0.431 12.7 0.225 rectangular 0.45
F| 9 0.352 12.7 0.225 rectangular 0.45
G| 6 0.235 12.7 0.225 rectangular 0.45
H| 16 0.626 25.4 0.45 triangular 0.9

The neural network assessed up to now is termed a Single neural network. This term will
be used throughout this thesis. An alternative way of realising the neural network is by

using a Multiple or Cascade architecture. Both of these architectures employ the same

Table 3.1: Normalised loading data.
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class of neural network, but separate the networks in order to determine each parameter
individually. In the Multiple architecture all of the networks share the same number of
sensor inputs (see Figure 3.21). In the Cascade type however, the input to the subsequent
network(s) is the same input as to the previous network(s), but with extra input from the
output of the previous network(s). This is why it is called a Cascaded neural network.
Figure 3.22 shows the proposed arrangement of the Cascade network. There are four
external inputs (from the four sensors) to the network. These are the sole inputs to neural
network A. In the case of neural networks B, C and D, there is an additional one, two and
three inputs respectively. The additional input, which is complementary to the sensory
signal received by neural network B, is the discriminated load d computed by neural
network A. Similarly, the two additional inputs received by neural network C are the
discriminated load d and discriminated position i, discriminated by neural networks A
and B respectively. Finally, the three additional inputs received by neural network D are
the discriminated load d, discriminated position 7,, and discriminated width w computed
by neural networks A, B and C respectively. Load was selected as the primary parameter
because it has the most influence on the deformation of the beam. In practice, due to the
time delay in the operation of each of the neural networks, i, can only evaluated by
neural network B when d is completely computed by neural network A, w can only
evaluated by neural network C when i,, is completely computed by neural network B, and
s can only evaluate when position w is completely computed by neural network C.
Therefore the external inputs to the Cascaded nets B, C, D have to be delayed to prevent

acceleration of the algorithm.
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Figure 3.22: Cascade chain of neural networks to determine load parameters.
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3.12.1 Training, Optimisation and Testing of a Cascade Neural

Network

The training and optimisation of the Multiple architectures follows directly the method
exercised for the Single network, but with each of the parallel single-output networks
trained independently. The training and optimisation procedure has also been applied to
the Cascade architecture, but utilising fraining by-parts procedure. Specifically, the
training involved first optimising the neural network A, using solely the input from the

sensory data x,. During the optimisation, network A is repeatedly trained with varying

hidden nodes, starting with 4 to 25 in steps of | in order to search for the optimum
number for the hidden nodes (i.e., nodes which generate the minimum generalisation
error throughout the training). In each of the training stages, minimum number of 50
iterations (each having 50 cycles) was used to avoid over training and over-fitting. The
weights @ and biases b parameter corresponds to the optimised hidden nodes were
recorded and used for the testing. Using equation (3.11) with the determined optimised
number of hidden nodes and the corresponding weights @ and biases b, a single output
vector of load d was obtained. The evaluated output, together with the sensor input, was
then used for optimising and training neural network B using the same procedure. The
process was repeated for neural networks C and D. The graphs showing the optimisation
of Single, Multiple and Cascaded neural network utilising N = 4 inputs from the sensors

are attached in the Appendixes 3.

The optimal number of hidden nodes for the Cascaded neural networks A, B, C and D
were five, five, five and six respectively. For the network using the multiple architecture
the optimised number of hidden nodes for the neural networks A, B, C, D were five, nine,
eleven and five. The performances of the simulated Multiple and Cascaded networks
were compared to the performance obtained by the 4:16:4 neural network. Figures 3.23
to 3.25 depict the comparative results for load, load position, load width and load shape
discrimination between the different arrangements. The graphs show the performance

defined by average percentage error i of the load parameters against the actual position
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along the beam. The average percentage error u at any specific point along the range is
defined by the sum of all percentage errors 7 exhibited by the load parameters at that

specific point, divided by the total number of measurements being made at the point
(equation (3.15)). The percentage error at that specific point is the absolute error between
the actual load parameter 7, and the computed load parameter output y, divided by the
load actual parameter ¢, and multiplied by 100 (equation (3.16)). For the position and
width percentage error however, adjustment to equation (3.16) was done so that the
actual reference would be based on the actual length of the operating range. This was
defined as the local error, which is more useful for the operator (such as the surgeon) to

interpret.

A
Z nz/,i,,,,w,.v(ip)

/’ld,[",,w,s(ip) = —I'T*'_ (3.15)

Where, A is the total number of measurements at the point:

1 ,BII,W§ - yd,lm,w,s l

771/,1", WY = l OO (3 . ] 6)

p.3
The average, minimum, and maximum errors for load-magnitude, load-position and load-
width are also shown in Figures 3.23 to 3.25. Figure 3.23 is the comparison between
4:16:4 (load output), the 4:5:1 Multiple network and the 4:5:1 Cascade network for the
load output. Figure 3.24 is the comparison of 4:16:4 (position output), the 5:9:1 Multiple
network and the 5:5:1 Cascade network for the position output. Figure 3.25 is the
comparison of 4:16:4 (width output) with the 6:11:1 Multiple network and the 6:5:1
Cascade network for the width output. Finally, Figure 3.26 is the comparison of 4:16:4
(shape output) with the 7:5:1 Multiple network and the 7:6:1 Cascade network for shape
output. Load magnitudes were computed to mean accuracies of better than 0.85%
(4:16:4), 0.58% (Multiple) and 0.58% (Cascade); load-positions to mean accuracies of
better than 2.19% (4:16:4), 1.02% (Multiple) and 0.63% (Cascade) and over the working
range; load-width to mean accuracies of better than 4.29% (4:1 6:4), 3.54% (Multiple) and

0.63% accuracy (Cascade) and load-shape to mean accuracies of better than 9.02%
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3.14 Summary

This chapter has explained the development of a distributive tactile sensing system
intended to be used for the flexible digit. This chapter has demonstrated that using a
distributive sensing system with as few as four sensing elements is adequate for
evaluating the load magnitude, load position, load width and load shape when applied on
the digit (beam). This section of the thesis has explained some of the important factors
which influenced the realisation of the system, such as signal conditioning of the sensor
output. This is necessary to enable the interpretation tools to generate reliable information,
especially if real time measurement is to be considered. The interpretation tool uses an
artificial intelligence neural network. From previous research three possible architectures
were proposed, namely a Single neural network used for evaluating the output parameter
concurrently, and the Multiple and the Cascade neural network. The results of empirical
assessments revealed that the Cascade performs better than the Multiple and then the
Single neural network types, but with the expense of computational time and a high
training cost. The Multiple has shown overall better accuracies than the Single, but with
the expense of more complex network. Thus more favours are given to the Single and
Cascade for implementation.

The implementation of these neural networks was done using Matlab Simulink computer
software and all of the measurements were done off-line. The Simulink simulations were
done for the models with explicit mathematical functions. The benefit of these
experiments is that they provided a benchmark study for the implementation of the
interpretation algorithm in a hardware distributive sensing processing. That is, from the
steps described in this chapter the proposed arrangements of the neural networks were
established for development into the hardware version. The importance of the activation
function was also studied. Evidently, this will give rise to an implementation problem for
the neural network. More information on the implementation process will be provided in
Chapter 4. Information about the optimum configuration of the network (hidden nodes)
and the training parameters that can be directly adopted into the specific hardware circuit

is provided in Chapter 5.
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CHAPTER 4

Developing an Implementation Friendly Activation
Function for an Embedded System Solution

4.1 Introduction

here are various ways of implementing the neural network discussed in the previous
Tchapter. In the current research the decision was made to implement the network as
an embedded system employing an FPGA as the main programmable hardware chip. The
advantages of this type of implementation are higher speed and the capacity for free stand
alone operation. With the recent introduction of modern design flows and synthesis tools
that essentially take a Matlab Simulink digital signal processing model as a high-level
behaviour specification for a design, fast prototyping of neural network function can be
achieved easily. However, this approach relies on the ability of the high level tool to
capture and synthesise the mathematical expressions in the signal processing algorithm

and of the FPGA to have sufficient resource to accommodate the synthesised design.
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Difficulties arise due to the limited nature of the mathematics functions that most FPGAs
synthesis tool can offer. Particularly difficulties arise in the case of the non-linear
activation function (i.e. the transfer function which introduce nonlinearity to the neural
networks, hence making the multilayered network more powerful (refer to Section 3.7.2)).
This chapter describes the design of novel implementation-friendly digital activation
functions which will be used to implement the neural networks into an embedded
application-specific system. The primary focus of this work was the analysis of the
selected activation function, the hyperbolic tangent (tanh), which is a function with an
exponential argument functions that can not be synthesised directly and the mathematical
representations are tedious if expressed using a conventional approximation such as the
Taylor series expansion (Avci and Yildirim, 2003). This chapter then described research
on devising salient techniques based on approximations of the actual characteristic and
response, with the aim of generating an implementation-friendly solution to replace the
‘non-implementable’ explicit activation function. The conventional method is to use a
Look-Up Table LUT, but that approach requires massive resources for comparatively
small accuracy. Four methods were developed and implemented using a Xilinx
XtremeDSP FPGA development board. These were the Gradient and the Polynomial
scheme approximations, the Padé approximation and the Look-Up Table (LUT) based
approximation. These methods were compared in terms of their performances,

complexity of their designs, and efficiency with respect to hardware resources required.

4.2 Implementation System Overview

4.2.1 FPGA

An FPGA (Field Programmable Gate Array) is a general purpose semiconductor device
that contains programmable logic components and programmable interconnections
(Brown & Rose, 1996). In other words, it is a programmable chip with high density and

memory elements (such as flip-flop), allowing the designer to program the duplicated
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functionality of their complex combinatorial functions design, such as decodes or even
polynomial mathematic functions. In general, FPGAs may be slower, have less ability to
handle complex designs and draw more power than their Application-Specific Integrated
Circuit (ASIC) counterparts. However, because of the important advantages they provide,
such as flexibility and ability to be re-programmed (even after deployment) in the field to

fix ‘bugs’ and lower non-recurring engineering cost', they were selected for this research.

Because of their quick turnaround in terms of design and production time, FPGAs have
become a focus of much attention. This has led to an increase in the density and
complexity of the programmable devices, and the flexibility offered by such devices prior
to their application. Current achievements include the development of a fast platform
FPGA on which to implement a design, with a pre-engineered high performance

hardware platform to quickly verify functionality.

4.2.2 Design Methodology and Logic Synthesis

Recent developments in digital logic synthesis have greatly automated the process of
devising an application-specific FPGA, when implementing a particular algorithmic
function. Traditionally, such functions were developed using a hardware description and
synthesis language such as VHDL (Very High Speed Integrated Circuit Hardware
Description Language) that provides arguably poor support for capturing concurrency at
a behavioural level. The emergence of synthesis tools based on concurrent extensions of
the C programming language, such as Handel-C, facilitate the explicit capture of
concurrent behaviour, such as that exhibited by neural networks (Pandya, Areibi &
Moussa, 2005). However, such languages currently still have limited mathematical
synthesis capability and only tenuous links to simulation models, such as Matlab

Simulink. This problem has been overcome by the recent introduction of synthesis tools

' Also known as NRE, which refers to as the one-time cost of researching, designing, and testing a new
product.
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from Xilinx that take Matlab Simulink digital signal processing as a high-level behaviour
specification for the design, and facilitate the direct synthesis of an appropriate digital
logic circuit (using VHDL as an intermediate language, see Figure 4.2). The model can
then be simulated (using bit and cycle-true simulation) using Simulink and compiled into
a VHDL source using the Xilinx System Generator tool (Xilinx System Generator, 2006).
The VHDL design is optimised for synthesis and implementation using Xilinx Virtex,

Virtex-E, Virtex-I1, or Spartan-11 FPGA.

4.2.3 Xilinx VirtexIl Xtreme DSP Development Board

In this research the XtremeDSP Development board from Nallatech was introduced as a
targeted embedded system in an attempt to provide a complete development solution. The
system was comprised of a PCI motherboard with a USB interface for standalone
operation, and a daughter board (see Figure 4.1) featuring dual-channel high-performance
ADCs and DACs, which use an AD6644ADC and an AD9772DAC respectively, a user
programmable Virtex-1I 2XCV3000 FPGA comprised of three million gates, and an
internal programmable clock management from Virtex-1I XC2V80 FPGA. The ADC and
the DAC can operate with 65Msample/s and 165MSample/s respectively and both have a
14 bit accuracy. In practice, FPGAs can be configured through the USB with the help of
FUSE software’.

As the system is fully supported by the Xilinx Blockset and the Xilinx system generator,
modelling and implementation of a system architecture can be completed relatively
quickly and easily. The Xilinx Blockset is a collection of Simulink blocks that can be
used to create and simulate designs with the Simulink environment, whereas the Xilinx

system generator is the tool used to automatically generate the corresponding VHDL

? FUSE System Software originally developed by Nallatech, provides configuration, control and
communications functionality between host systems and FPGA hardware. This enables developers to
design complex processing systems, with seamless integration between software, hardware and FPGA
applications.
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code used for the synthesis and implementation into a Virtex-1I 2XCV3000. Both
elements support bit true and cycle true modelling of hardware, thus bridging the gap

between high level system design and actual implementation in Xilinx FPGA.

1 1s the
grammable
er FPGA
2 ADC 2 DACs
inputs outputs

Figure 4.1: The Xtreme DSP development kit.
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2rsity

Hlustration rem oved for copyright restrictions

Figure 4.2: FPGA design flow.
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4.3 Development of an Implementation Friendly Algorithm

In recent years, various techniques and design architectures have been developed for the
implementation of neural networks into FPGAs. The aim of these projects is usually to
optimise the neural network design and the usage of digital resources prior to their
implementation using an FPGA. Other than the manipulation of the original linear PE
processing architecture to facilitating resource re-use, attention should also be given to
the function of the non-linear activation elements, as this will constitute the most
computationally expensive component of the network. The traditional solution is to use a
LUT utilising the EPROM of the chip, or to adopt and implement a Taylor series function,
resulting in fully digital arithmetic neurons. A more radical solution is to use another
function to replace the hyperbolic tangent function. Such research was undertaken by
Guarnieri and Piazza (1999) in which an adaptive spline was used as the activation
function. This resulted in the need to modify the training algorithm in order to adapt the
feed-forward algorithm which incorporates the proposed activation function. Similar
problem will also encounter if Field Programmable Analogue Array FPAA is used to
generate nonlinear continuous function other than the hyperbolic tangent for the
activation function. In this current research, however, a more effective approach is
proposed, namely by approximating as close as possible the function of the hyperbolic
tangent. The advantage of this method is that a general training tool can always be used,
as this will be compatible with the feed-forward function used in this project. This section
of the thesis presents the details of the pre-studies undertaken and the development of

digital hyperbolic tangent activation functions.

4.3.1 The Hyperbolic Tangent

The preliminary research described in this chapter is that which was undertaken to
investigate methods of implementing the hyperbolic tangent. The hyperbolic tangent is a

nonlinear function which has properties that resemble those of the trigonometric function.
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The function can be defined as:
anh(g) = SB(@) (4.1

cosh(g)
And can be generalised into:

2

tanh(q) = & (4.2)

e +1

The graph of tanh(g) is sketched in Figure 4.3. It exhibited approximately linear
behaviour within the g range -0.5 to 0.5. Beyond this range it starts to behave in a much
more nonlinear way and its starts to saturate to -1 and 1 as g is increased beyond -3.5 and
3.5 respectively. But the most important characteristic of this system for the current
project is that tanh(g) is an odd function, (tanh(—g) = —tanh(g)). The graph of tanh(g)
shown that it is symmetric with respect to the origin. Thus the polarity of the function

compel directly by the polarity of the input variable.

HYFERBOLIC TANGENT
1 —

tavdhop)

s
~t
™

6 -4

q

Figure 4.3: The hyperbolic tangent, tanh(g) (graph obtained using Mathcad).
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The aim of these analyses was to approximate the function in the positive g plane. A
range of techniques were evaluated, including piecewise method of approximation such
as the Gradient and Polynomial schemes, continuous method of approximation such as
the Padé approximations, and a digital hardware generating function which is based on

the employment of Look-Up Tables (LUT).

4.3.2 Mathematical Function Method for Approximation

4.3.2.1 Gradient Scheme Approximation

The Gradient scheme approximates the positive ¢ plane by a series of linear equations

having gradients g and vertical-axis intercept i* . The scheme divides the positive g range

into n segments (note this term is also used to denote segments in Polynomial and Padé
approaches). The total segment is approximated by a set of piecewise equations as shown

in (4.3).

fg)y=gq+if for 0<g<gl

12(q@)=gyq+i5 for ql<q<q2
f(q) = i tanh (CI’)\ = ftoz (q) : (4 ")

f(@)=g,q+if for gn—1<g<gsat
foa(@=1 for q>gsat

Where gsat (which can also be denoted as gn) can be chosen where the output starts to
saturate to ‘1°. For a better approximation, the number of segments can be increased

within the region of highest nonlinearity as shown in Figure 4.4.
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higher number of orders used for each of the piecewise polynomials offers a better

approximation.

f@=a,q’+ +aq +ag+a, for 0<g=gl

fH(@=a,q" ++ang’ +a,gta,  for gl<q=q2
fl@)= : (4.4)

-f)"l(q):anpqp_i_“‘_i_aiﬂqz+anlq+an0 fOl" qn_1<qsqsa[

foa(@) =1 for g>gsat

Where p is integer (e.g. 1, 2, ...,3) denoting the order, and n is the number of segment.

4.3.2.3 Padé Approximation

As an alternative to the piecewise approach, the research also explored ways of devising
continuous method for approximation. Padé approximation for hyperbolic tangent (Baker
and Graves, 1981) is adopted into the current research. The truncated expression is shown
by equation (4.6) which uses fourth order for the numerator and the denominator [4,4]
(Agnon, Madsen, & Scheffer, 1999). Equation (4.6) is simulated and compared to
equation (4.2) incorporating fourth order Taylor series expansion to approximate the
exponential ¢’/ (Avci and Yildirim, 2003) as shown by equation (4.5). The graphs are
shown in Figure 4.5(a). The performances are also compared to a hyperbolic tangent
tanh(g) and the percentage errors are shown in Figure 4.5(b). It was revealed that
approximation incorporating Taylor series expansion has shown higher error ofupto 2.3
9%. The Padé is better than 0.25 % error. Obtaining high accuracy of approximation is

crucial in this process.

5 4q° 164"
e =14+2g+ Z! L84 16g (4.5)
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l+—g>+—q"
{ 9 945
pade(q) = 7 1 q (4.6)
1+—q* +—q"
9 63
12 25
. — Y% error pade
1 e 2 | %error taylor
v//'
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0 —taylor |
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Figure 4.5: (a) Comparison between hyperbolic approximation (equation 4.2) using Taylor series expansion,
Padé approximation and hyperbolic tangent denoted in the figure by taylor, pade and tanh respectively. (b)
Percentage error comparison between approximation (equation 4.2) using Taylor series expansion, Padé
approximation denoted in the figure by % error taylor and % error pade respectively.

Second important factor, the Padé approximation offers fewer mathematical operations
than Taylor’s series expansion, offering a significant advantage for digital design. It was
therefore decided to use the Padé approximation for continuous approximation over the
Taylor. However, to overcome the problem of synthesising operations, such as division,
which was awkward to implementation hardware, equation (4.6) was converted into a

regression form, equation (4.7).

! :1+aq2 +bq4 —lm(cq2 +dq4) (4.7)

m+1

Where:

a:%,b:%45 ,c:% andd:%3.

Note that to simplify equation (4.6), the common zero ¢ from the numerator was

excluded from the regression equation (4.7), but was computed later to retrieve the final



Chapter 4. Developing an Implementation Friendly Activation Function for an Embedded System
Solution

result. Equation (4.7) was simulated using Matlab and Simulink. Analysis of the results,

(Figure 4.6) shows that the regression from the Padé approximation was stable only in the

, where the maximum stability range (denoted by g™y is

absolute range 0 < }c” B $q/7adg

1.4,
% 10°
5 0
q=-15 g=-1.4
“ 11y
0 1 T
5 ’ - - o -2 - : - -
a0 A0 100 150 200 0 50 100 150 200
15
. 0B q=0.5 1 = 1 g=1
T 04 ] =
= ' -
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0 - - : 0 : —
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2 5
qg=1.4 g=15
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Figure 4.6: Regression Padé approximation for various inputs g
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4.3.2.3.1 Solution to Instability

A. Inversing method

Investigation showed that a radical but effective method of improving the stability range
of the regression Padé (4.7) is to compute the inverse of equation (4.7), as shown in
equation (4.8). The outcome of the analysis can be observed in Figure (4.7), which shows

the simulation of the regressive inverse Padé, equation (4.8) with different input g. It can

be observed that (4.8) was stable over an increased range of 0< |g|<2.8.

h,. =1+cq’ +dg’ ~h, (ag® +bg*) 4.8)

m

It follows that Equation (4.8) is more robust and covers more range than (4.7). The only
disadvantage of computing the inverse of the Padé approximation is the need to invert the

result, which is again, achieved using the regression formula:

inv, ., =l—inv, (z-1) 4.9)

ml

For inputs over \2.8& the value of tanh starts to saturate towards ‘1°. Therefore the

computation was simplified by introducing an if then else’ condition into the Simulink
model to set the output to ‘17 if the input is more than 2.8 or ‘-1” if the input is less than -

2.8.
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Figure 4.7: The regression inverse Padé approximation for various g inputs.

B. Rho p stability factor

Alternatively, an investigation in the current research also discovered that by introducing
the convergence rate p to the denominator of the Padé equation (4.6), the stability range
of the equation can be improved. Also, the numerator and the denominator can be
computed separately as in equation (4.10), where only the denominator requires

regression (4.11).

pade(q) = 29 = 4y (4.10)

Blgy — p+B@-p

Where if
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1
dig) =——— 4.11
D B - R

The regression to the denominator will be:

= L -d, w (4.12)

P p

d

By setting the convergence rate p to 4, stability was improved to O<lq 1<3.3 as shown in

Figure 4.8.
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Figure 4.8: Padé Regression using p =4.

[t follows that by increasing the value of p the maximum stability range of the Padé

approximation also increased. The only disadvantage of using the convergence rate
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method is that by introducing higher values of p there was sluggish convergence with

smaller input. This is shown in Figure 4.9 for increasing p of 1.0, 2.0, 3.0 and input g.

120 Q=1
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80 - -
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0 e 0
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Figure 4.9: Padé responses with p =1.0, 2.0 and 3.0 for various sizes of for input g.

4 4 Simulation of the Activation Functions

Equations (4.3), (4.4) and (4.10) were modelled and simulated with Simulink Matlab to
maintain the concurrent behaviour of the algorithms, using the Matlab real number
system to maintain accuracy. The objective of the simulation is to provide benchmark

studies, thus providing an intermediary concurrent implementation picture between real
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number modelling (conducted here) and bit true cycle modelling (in later sections) as
provided by the Xilinx Blockset and the Xilinx system generator, hence assisting the

implementation of the algorithms.

Figure 4.10 shows the designed model of the Gradient scheme approximation with nine

segments. The gradients g and intercepts i are shown in Table 4.1. The design is mainly
comprised of nine subsystems f on which each performs the single piecewise
computation of equation (4.3). An ABS and a Threshold Blockset is also introduced in
the design to optimise the computation when handling the approximation for the case
when input is negative. The ABS function was used to remove any negative sign carried
with the input (making it absolute), before being further computed into each of the
designs, whereas the Threshold was used to retrieve the sign of the input (such as ‘-1 if
the input was negative and ‘+1° if positive). The obtained sign was then multiplied by the

output from the scheme’s core-process to retrieve the actual sign nature of output.

Figure 4.11 shows the designed model of the Polynomial scheme using two piecewise
polynomials for the approximation in the ¢ range of -3.5 and 3.5. The equations were
derived using Matlab Polyfit toolbox. Table 4.2 tabulates the values of the coefficients
and constants needed to form the equations described. Similar to the Gradient, these
equations are computed by the two f subsystems of the design. Again, ABS and
Threshold units were introduced to allow the Polynomial functions to be defined for

positive input only, thus simplifying the design.

Figure 4.12 shows modelling of the Padé approximation algorithm, implementing the p

method for increasing stability range. Here p is 4, sufficient to achieve stability
approximation within the ¢ range of 13.3‘ (sufficiently to exhibit saturation of an output
‘1"). For the Padé, however, the ABS and Threshold technique is inferior but may be

useful during digital implementation stage (discussed in 4.5.2.3.3). Moreover, the cost of

the implementation of this technique is not significant.
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Figure 4.10: The gradient scheme design with Simulink MATLAB.

B T e e

Range/ q, £n i
0 R -
1 0.5 0.93046 0.00767
2 1 0.59805 0.1793
3 1.2 0.35986 0.4039
4 1.5 0.23741 0.552
5 1.8 0.1381 0.7001
6 2.05 0.082 0.8001
7 245 0.0441 0.8783
8 3.15 0.0154 0.9498
9 4.0 0.0034 0.9862

Table 4.1: Gradient and i-intercept constants for the nine segments gradient scheme.
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Figure 4.11: The polynomial scheme design with Simulink MATLAB.

W

Range / Gn A Ay Ao
/n 0 - - -
POLY 1 1.75 -0.31247 1.07571 -0.00139
POLY2 3.50 -0.02557 0.16192 0.74118

Table 4.2: Coefficients of the 2™ order polynomial algorithm.
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Figure 4.12: The Padé design with Simulink MATLAB.



Chapter 4. Developing an Implementation Friendly Activation Function for an Embedded System
Solution

=
I

=
™~
T

=
T
g
£

output/ f{g)
o

tanh

0.6}k —— gs -
. —— poly

08r —e— pade |7
—— LT

14 0 1 2 3 4

input / &
Figure 4.13: Comparison between the Gradient and Polynomial schemes, Padé approximation and LUT
approach (denoted in the figure by gs, poly, pade and LUT respectively) and tanh implemented using
Simulink MATLAB.

The relevant performances are shown in Figure 4.13. This figure also shows the
performance of the Look-Up Table approximating the hyperbolic tangent: this was
implemented using Look-Up Table Blockset of Simulink. These are compared to the
actual tanh. The results demonstrate the superiority of the devised techniques (the Padé,
the Gradient scheme and the Polynomial scheme) in comparison to the Look-Up Table
approach. Approximating as close as possible to the real tanh is crucial in this research as
the training of the neural network will be off-line, that is using explicit number system.

The tanh used in the training will be the actual function of the tanh itself.
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4.5 Experimental Activation Function Design

To ensure absolute consistency between the algorithms and the target FPGA
implementation, the algorithms were then modelled using design and simulation tools
that are compatible with hardware synthesis and modern design flows. Specifically, the
designs were created using the Xilinx (Matlab/Simulink) DSP Toolbox and the Matlab
fixed-point Blockset, and were simulated using Matlab Simulink running a bit true cycle
simulation. The algorithms were designed to take advantage of the inherent concurrency
in the algorithm’s dataflow to enhance performance and minimise problems due to
latency. Normalisation was applied to the linear parts of the algorithms and wordlength
constraints were applied to all parts of the operations. The procedure was complied with

the normalisation of the feed-forward neural network topology.

4.5.1 Normalisation of Neurons and Synapses for Digital

Operation

Optimisation of the digital operations of the neural network is done by normalising all the
variables (signals) in the design by adjusting the trained parameters. Inherently,
normalising the trained parameters will impose the synapse mathematical operations,
which involve using digital multiplication and addition, to produce outputs with numbers
of not more than the normalised values of ‘1°. The wordlength of all of the normalised
variables can be sufficiently set to be 14 bits wide with 13 bits for fractional accuracy, as
in practice, though the Xilinx multiplier and adder is able to process numbers of up to 64
bits accuracies (Appendix 4), the ADC and DAC are constraint to 14 bits signed input
output (1 bit for the signed and 13 bits for the fractional). Having higher than 14 bits for
the multiplier and adder is unnecessary and would have only consumed higher pipelines

for design.
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The input and the output integral takes inputs in the range of (-1 < xi <1) from the

Analogue to Digital interface. The output f(g,) from the activation function will be in

the range of -1 < f(g,) < 1.

Recall the notations in equation (3.10), normalisation of the signals were done by
dividing signal input x, by the normalising factor X, g, by the normalising factor 0,
7, by the normalising factor R, and y, by the normalising factor Y, , such that shown in
equation (4.13).
_ X . q. _ v, _ :
X = q,-=—’;r_,»=~L;y,=& (4.13)

X, Q, Rj. Y,
Where X, denotes normalised x,, g,denotes normalised ¢, 7; denotes normalised 7,

y, denotes normalised y, . Substitute (4.13) into equation (3.11) to yield generalised

normalised expression of the neural network;

- M a)l(/_z) e b/m 14
— - . . a
y1 = Y[ ] Y,
where, 7, =T L2 (4.14(5))
J
N a)(l) b“)
and 7, =y —- X, %, +— (4.14(c))

In matrix form the overall equation (4.14) can be represented into expressions as follow;
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From (4.14(a)) into (4.15(a)) as shown below;

oA,
1
o,
7 0
q, 0)
1 21 X,
9| | &
G
m
Ve
1
| Ou

X2
@)
O]
a)z,z Xz
o,
) 2)
J.k
2z
M
Dy 2
2
Ou

6V
a)l,.’\’

)

oy

0,

X,

XN

m
Dy N

Q M

Xy

From (4.14(b)) into (4.15(b)) as shown below;

iy

]

N

L

1

—7(0,9)

R,
1

_/(Qz >qz)

R,

M

| : _
”k_f (O +qus)

From (4.14(c)) into (4.15(c)) as shown below;

[}

Ll

<

oy
R,
Y,
()
@y
R,
Y,
(2)
w
1
R,
Y

S

-~

L 9w

(4.15(2))

(4.15(b))

(4.15(c))
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But it was noted that from the conditions of the ADC and the activation function, the

signals are limited to maximum of ‘1’implying X, =R, =1, and thus X, =x,and 7, =r,.

But for O, and Y, the single vectors need to be computed using the expressions below;

0 = (i ceﬂ}a)jf,{]) + ceﬂ\b_j”} (4.16)
=]
M

v, =Y ceillw?)]) + ceilp| (4.17)
J=1

Where ‘ceil’ is a function used to rounds the elements to the nearest integers towards
infinity (terms used to describe the function is commonly used in mathematical program

such as Matlab, see Appendix 5 for Matlab program).

Thus equation (4.15(a)), (4.15(b)) and (4.15(c)) can be simplified into;

B M a)l(2> b(z) o _ N
y = Z }; 7 +—’Y” where, r, = f(g,0,) and g, :; Q x, +§~ (4.18)
i = J J

And the general normalised expression of the FFMLP can then be rewritten into;

M N
v, =2 WS W x, + B0 )+ BPYY, (4.19)
J=1 k=1
Where
1) (1) (2) 2
) @ - BWM = b/_ W = @, . 8(2) — bl( ) (4 20)
k > J >y > ! ’
0, Q, Y, Y
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4.5.2 Development of Digital Activation Function

4.5.2.1 Architectural Overview

All of the activation function designs consist of three major system operations, namely
the ABS system, the Main activation process system and the Sign retriever system (see
Figure 4.14). All can accept and process normalised signed signals, having 14 bits wide
with 13 bits for fractional accuracies. The Main activation process system stores the
algorithm required for each scheme and is responsible for mathematical computation of
the signal. It is also where the de-normalisation of the input to the activation function is

performed.

signed Main activation signed
14 bits

5 ABS sl process Sign 1"’“ $
GS, Pade, Poly and ' retriever
LUT 7y

¥ Enable/Reset

b
L

Figure 4.14: The proposed architectural flow design for the activation function.

4.5.2.2 ABS System

The ABS system is designed to extract the ‘sign nature’ of the input signal and convert it
into its absolute magnitude. The function mimics the dual operations provided by the
ABS and Threshold Blockset in the Simulink Matlab design from Section 4.4. An ABS
function can be computed by multiplying the input values by its own sign obtained from
the threshold function (which generates a Boolean output). In this design, however, a
preferable technique was suggested, thus minimising the higher usage of the digital

hardware multiplier. This was done by using a simple technique following the signed
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two’s compliment number operations, as will be explained in this section. Only a single
Xilinx Relation Blockset, two Additions, five Inverters and two Registers were used (see

Figure 4.15). Importantly no multiplication is needed.

0.0001220703125

N o
:1 \ | oot 2
@—J. wen: 7 .
Ireerter Adder 4 1** path condition
a pi not H  Regster o
o ash Inverter d;
e fe ?\ - R el TR T B ettt dieeti sl e 2 ------
Constart Relation
L} not E
=2 2"path condition
[nverter -
Regster
() |
SIGNALOUt1 Inverter

Figure 4.15: The ABS system.
Figure 4.15 shows the configuration of the ABS system design in the Xilinx Matlab
environment. When the system receives a normalised signal ¢, its polarity is tested by

the ‘less than zero’ Blockset. If the input number is negative, the blockset will give a
Boolean output of *1°, if otherwise the output will be ‘0>. The Boolean output is useful in
two ways. First, for enabling and resetting purposes in the following operations. Second it
provides a feeding-out to the Sign retriever system as a control signal to retrieve the true

sign nature of the signal after it has undergone the main activation process operation.

Technically, if g, <0, the 14 bits signed binary number of input g, will be inverted and

then added to the 14 binary bits with constant value of 27 (e.g. .0000000000001 binary).

This will result removal of negative sign if it was carried by g,. But if g,20, the
operation will activate the second path of the process, whereby the inverted binary of ¢,

will be re-inverted. There will be no change to the output since the signal will undergo

the inversion process twice. The operations of the second Inverter Blockset of the 2™
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path condition’ and the Add Blockset of the ‘1% path condition’ are controlled by the
enable port which takes the conditional signal (see Figure 4.15). Registers connected in
series with the two paths are used to reset the subsystem by a control from the reset port.
The operation is completed by summing both outputs using the digital adder. In the
experiment, Constant Blocksets and Xilinx Adder Blocksets all have an accuracy of a

signed 14 bits wide with 13 bits for fractional point.

4.5.2.3 Main Activation Process System

4.5.2.3.1 The Gradient Scheme

The absolute normalised signal ‘ij]from the ABS system has a relationship with its

normalised factor, Q/ and the actual absolute magnitudelqj\, as expressed in equation

g9,=q,0 (4.21)

=J

Note that in the following sections the modulus signs are omitted from the equation for
simplicity of explaining derivations.

A. Normalization of Gradient scheme

Normalisation of the Gradient scheme is done by substituting equation (4.21) into (4.3),
to yield:

ﬁ(qj):glanj+i§ fOl’ O<Z]—J'Qj£ql
flg,)= ; (4.22)
fi(q,)=8,q,0,+if for qn=1<q,Q; <gsal

| Sonlg,) =1 for g ,0,>qgsat
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Thus producing a new gradientG,, where G, = g O

="

fi(g;,)=Gg, +if for 0<g, s%»

J

— . 1 _ 2
fE(qJ') - G2qj +lzg Jor %j <94 <4 Qj,

fg,)= (4.23)

f(a)=G,g +if  for q”—/ <7, <94
QJ Qj

fulap=1 for 3,>%%),

By following the proposed normalised algorithm explained by equation (4.23), no extra

effort will be required to de-normalise the computed g, - De-normalisation was done

automatically and internally when g, was multiplied with the new set gradient G, , which

n?

carried within it the information of the actual normalised factor Q,. The advantage is

that no extra multiplier is require.
B. The Main Activation Process of Gradient

The Gradient Scheme has two main functional parts: the Comparator which comprises 10
comparator sub-units and the Data Processing which has nine Gradient operation sub-
units and one Enabled threshold sub-unit (responsible for executing a ‘1’ when the signal

g, lies beyond gsat/Q, ). Each sub-unit of the Comparator is connected to the

corresponding Gradient operation sub-units or Enabled threshold sub-unit. Each Gradient
operation sub-unit is dedicated to a unique range with a unique gradient operation
coefficient and constant. Table 4.3 shows the relative figures dedicated to their

corresponding ranges (0 < g, < gsat/Q,)and the bits required for the experiment. Here
p g, j q p

the value of O, is 3.
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Figure 4.16: The Gradient design for the activation function used for the nine segments operation.

C. The Comparator

Each of the comparator sub-units (comparator] to comparator9) in Figure 4.16 employed
two digital Relation Blocksets for ‘greater than’ and ‘less than and equal to’ for
arithmetic comparison, and a digital Logical Blockset ‘“AND’ for logical function (see
Figure 4.17). comparator]0 employed one digital Relation Blockset, and a digital Logical

Blockset. The constants shown are needed for specifying range shown in equation (4.23).

Constant

Logical
Constantt Relationall

Figure 4. 17: An example of Comparator building blocks.
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D. The Gradient Operation Sub-Unit

When signal g, is received by the Main process activation system, all the comparators

sub-units will test the magnitude concurrently. The outputs form a column vector of 10
clements. But from that, only one will execute a high state output of Boolean ‘1’ signals.
For g, < qsat/Qj the signal will be used to activate the corresponding gradient
Multiplier and the Adder, hence enabling computation with the corresponding coefficient

G, and constant ¥ (see Figure 4.18).

e e )
e Multplier q J-)
S 1
enable

hyverter

Figure 4. 18: The Gradient operation sub-unit. (Arrow in the output indicates the output still need to
undergone next arithmetic process)

A register was used in each of the n'™ rows to reset the operation. Resetting is important
to make sure that no overlapping information of the previous output data and the new

output occurred throughout the process.
All of the digital Multipliers and Adders Blocksets were 14 bits wide with 13 bits

fractional accuracies in order to provide maximum accuracy for all the normalised values.

All the multiplier and adders in each of the rows had an enable port.
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Range/ Accuraccy/bit G/2noj Accuracy/bit ;& Accuracy/bit

ql/Q; "

0 Binary - Binary - Binary

pt pt pt
1 0.167 14 13 2.79 14 11 0.00767 14 13
2 0.333 14 13 1.79 14 12 0.1793 14 13
3 0.4 14 13 1.08 14 12 0.4039 14 13
4 0.5 14 13 0.71 14 13 0.552 14 13
5 0.6 14 13 0.41 14 13 0.7001 14 13
6 0.633 14 12 0.25 14 13 0.8001 14 13
7 0.817 14 13 0.13 14 13 0.8783 14 13
8 1.05 14 12 0.05 14 13 0.9498 14 13
9 1.333 14 12 0.01 14 13 0.9862 14 13

Table 4.3: The constants used for the gradients and the horizontal-axis intercept for the nine segments
design (with Q; =3).

4.5.2.3.2 The Polynomial Scheme

A. Normalisation of the Algorithm

Normalisation of the polynomial equations Is necessary to ensure that there are no
mathematical operations (multiplication and addition in the Main Activation Process of
the polynomial) involving solutions of numbers beyond the normalised values ‘1°. A
technique was designed to normalise the equations globally and give rise to the advantage

of using the very less multipliers in retrieving the actual magnitude.

Consider the polynomials as a piecewise equation;

a}zq_,2 ta,q; Tdy for OSC/, <ql

flg,)= (4.24)

2
Upd,; a9, T dy for ql<q; <gsal

Butif ¢, =g,0,, and substitutes into g , will yield equations as below;

f( ) all(zl—/Q/)z+a11(‘7/Q»/)+a10 f()}’ OSC—[}Q} <q] (4 25)
q,)= U _ , ” :
7 an(@,0,) a4y (3,0)) v ay,  for ql<q,Q; <gsat
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Because the coefficient a,, is greater than ‘1” (as presented in Table 4.2), it was used as a
normalised coefficient factor for normalising each of the coefficients present.
Dividing all coefficients in the equations by the normalised coefficient factor a,, and the

squared value of the normalised factor Qand rearranging the equations gives:

@y +Q1 @) +—20 ”Q a0} for osa,-<%j
flg,)= ‘ (4.26)
Ay — 2 gsat
L L% (qj) 11Q nQ j]a“Q for /Q A Qj

Similar to the Gradient, the range of each of the equations also changed for the

normalised factor Q;. Finally equation (4.26) generalised as:

polyl _norm

[Azijz +4,49, + 4,10 for O <q, <0, (4.27)

[A2Za_/2 + AZ]?»/ + AZO ]Q Af()r O-l < qj < O-.\‘al

poly2 _norm

Where

- :%}, o, = /Qj,
/ /Q A, = /HQ,” (4.28)
= Y, 0= Y 0

And the global de-normalisation factorQ of the polynomial scheme is a”Qj.2

N

I\)
[}
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In the current implementation, the normalised factor @, is 3, thus producing new

parameters for the polynomial as shown in Table 4.4.

w

n Range/ Bit A Bit A Bit A Bit Q Bit
2 nl n0 -
qn/ Q; i J
0 Bmary Binary Binary _ Binary Binary
Pt

pt Pt - pt pt

9.681 141 10

1 0.583 14] 13 | -0.2905 | 14| 13 0.333 14 13 | -0.0013 | 14| 1
2 1.1667 141 12 | -0.0238 | 14| 13 0.0502 | 14| 13 | 0.6890 | 14| 1

3
3 9.681 14 | 10

Table 4.4: The normalised coefficients and normalised arbitrary constant of Polynomial scheme (with Q=3)

B. The Main Activation Process of Polynomial

Three comparator sub-units and two polynomial operation sub-units were used in the
Comparator and Data Processing of the polynomial scheme (see Figure 4.19). Connected
in row to the first comparator was a polynomial operation sub-unit design having the

algorithm for polyl _norm, and connected to the second comparator was the sub-unit
having the algorithm of poly2 _norm (see equation (4.27)). Connected to the third

comparator was the Enable threshold sub-unit.

When the Main Activation Process system receives signal g, from the ABS system, the

comparators test it and produce an output of single column with a three row vector. If

q, <3.5/Qj _ the active high from the Comparator n (where n = 1 or 2) enables the
corresponding mathematical operation of the polynomial operation sub-units. The signal
g, will be squared by digitally multiplying itself with its own magnitude to produce qu.
Concurrent to that process is the multiplication enabled control of A, with signal g, to
produce the 4, factor. Following this is the multiplication of the c_jj.z signal with

coefficient A,, to produce the A”Zc?jzfactor, and then summing all with the constant to

produce Anzcj}2 +A,q,+A4, , and hence complete the activated row mathematical
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operation. The enable controlled register is used on each of the rows to reset the operation.

Finally, all the (n+1) rows are digitally summed to produce a single normalised output
vector, before multiplying with the global de-normalised factor Q ; to retrieve the actual

signal magnitude.

@] |g,| Comparator Data processing .
St ey ==

! 3 2 polyl_norm :
X — { 4,85 !
: a : |, K
— Bra ©x b Pt 7 1
i T - azh ] b ;
! k=0 b - ! Multiplier .
! Constant Relation : . e b < - l
i ) L E—— b (ab)] Adder ’ ;
: 1 | 8998779296875 sl e PR |
: y B | EERE . 1342773438y qq. :
: elation | AMultiplier 40 |
! ] 10 |

i 1 . s 7
K Comparatorl ! et ‘
' 1 Inverter = i
reT - e Regster ~~ 7777 i

v

An‘;’_j poly2_norm

Relation

Comparator2

Constart

____________________________________________

Figure 4.19: The overall view of a Polynomial process design containing the algorithm for the activation
function (order two and two segments) - threshold enable controlled.

All of the constants of the parameters and coefficients of the Comparators and the Data
processing of polynomial operation have accuracies as depicted in Table 4.4. All the
multiplication and addition operators were implemented with 14 bits with 13 fractional
bits precision. Having higher than 14 bits for the multiplier and adder is unnecessary (due
to the constraint accuracy from the ADC) and would have only consumed higher

pipelines for design.




Chapter 4. Developing an Implementation Friendly Activation Function for an Embedded System
Solution

4.5.2.3.3. Padé Approximation
A. Normalisation of Padé Algorithm

Other than ensuring all computation was within the ‘0 to 1" range, the normalisation of
the Padé gives an advantage in terms of understanding what size of bits is required for
each of the arithmetic computations in the loop operation involved in the iterative process.
By substituting equation (4.21), into equation (4.6) incorporating p stability method

presented in Section 4.3.2.3.1;

1+a(7,0,)" +b(g,0)"

pade(q,Q;) = — - q,9) (4.29)
! ’ p+1+c(q]QJ)—+d(q]QJ)4_p ! !
Dividing all coefficients by Q7 to yield;
1 a _, a4
—r 54, th4,
_ 0, 9, _
Lt g %
Q} Q} Q/ Q]

Replacing all the coefficients by A7, B, C1, A2, B2 and C2 and yields;

Al+Blg? +Clg,
A2+ B2g] +C2G, —

den

pade(q,0,) = (q,9,) (4.31)
p p

Where p' is the normalised convergence rate, and together with Al, B]ﬁf, Cl@f, A2

B2§f and C2c7/4 areall <1. g,0, isthe global de-normalised factor for the Padé.
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B. Padé Main Activation Process system

The Main Activation Process system of the Padé approximation scheme has two
Comparator sub-units in the range of 0<g, ng/Qj and g, >qsa1‘/Qj , where gsat is

pade

where the maximum range of Padé to give stability (i.e. gsat = g™* =3.3, as depicted in

Section 4.4), and two Data Processing sub-units; the Padé operation sub-unit and the
enabled threshold sub-unit. The Padé operation sub-unit runs the complete algorithm of
the Padé (equation (4.29)). Figure 4.20 shows a core of the building design in the Padé
operation sub-unit, uses to perform the iterative operation of the num and den of equation

(4.31) (excluding the g, O, component).

Here g, is first squared by multiplying itself with its own magnitude to yield cf, and
further squared to produce c?f. The two multipliers have an accuracy of 14 bits wide for
the normalised output. The product of 6;“ and c7;.' are used for the num, (the numerator
operation), to directly compute the AH—B]cj}2 +C1§j4 and for den, (the denominator

operation) to directly compute 42+ b’2c7j2 +C2c}'j4, which is then used to compute the

regression of the Padé (see Figure 4.20). Upon completion of the regression iteration, the
Al+Blg,* +Clg "

output is multiplied with the output from num thus completing the - .
A2+ B2g,” +C2q,

operations.

All the multiplications and additions use the truncate technique and wrap for the overflow.
For the current implementation, the normalised factor ¢, and the stability factor p used
for the Padé are 3 and 4 respectively. The coefficient values for the normalised
coefficients A1, BI, C1, A2 B2 and C2 are [0.012 0.012 0.0011}and [10.012 0.049

0.0159] respectively. All were implemented using constant Blocksets of signed output 14

bits wide with 13 fractional bits.
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Figure 4.20: The Padé process sub-subsystem design for the activation function.

4.5.2.3.4. Look-Up Table

The look-up table design comprised 128 depth-increments and utilised the ROM in the
Xilinx DSP design environment. The output from the ROM was assigned to give signed
14 with 13 binary point bits. Other than the range, the comparator section of the Look-Up
Table is similar to the one used for the Padé. For the Look-Up Table, the signal is input to
the LUT ROM if the input is between 0 and 3.5. Above these values it forces the design

to output a ‘1
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4.5.2.4. Sign Retriever Subsystem

This is the system used to retrieve the actual sign of signal g, after computation in the

main process subsystem. The procedure is the inverse of the ABS subsystem, see Figure
421. If the received enable signal from the ABS subsystem is high, then the Adder's
output (the sum of the normalised signal with 14 binary bits and the 14 binary bits of the
213 constant) will be inverted using an enable controlled Inverter. If the enable signal is
‘0°, the inverted signal will be re-inverted by the enable controlled inverter. There will be
no change to the final sign magnitude of the signal in. To reset the two condition
processes, registers are assigned in series to each of the channels. The registers have reset
ports channelling the one delay latency of the inverted enable of the corresponding enable
controlled inverter. The output from the two registers is digitally added to complete the

whole operation.
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Figure 4.21: The Sign retriever subsystem.
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4.6 Results

The designs were synthesised and implemented for a target Xilinx Virtex-11 2XCV3000
FPGA. The FPGA equivalent gate counts for the schemes were as follows: Gradient
Scheme approximation 44k, Polynomial scheme approximation 28k, Padé approximation

33k, and Look-Up Table approach 74k.
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Figure 4. 22: Simulation of Xilinx DSP-based excitation function designs for Gradient and Polynomial
schemes, Padé approximation and LUT approach (denoted in the figure by gs, poly, pade and LUT
respectively).
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Figure 4.23: Error comparison for the Xilinx DSP-based excitation function designs for Gradient and
Polynomial schemes, Padé approximation and LUT approach (denoted in the figure by gs, poly, pade and
LUT respectively).

The simulation results for the Xilinx DSP-based excitation function designs for Gradient
and Polynomial schemes, Padé approximation and LUT approach are shown in Figure
4.22. An error comparison for these simulated designs is shown in Figure 4.23. The
performance differences between the Gradient Scheme approximation, the Polynomial
Scheme approximation, the Padé approximation and the Look-Up Table were compared

by evaluating the area under the absolute % error along the x-axis.

3

mean % error = % I ierror dx{ (4.32)

x=-3

The area of error evaluation exhibited by the Gradient Scheme, the Polynomial Scheme,
the Padé approximation and the Look-Up Table is 0.40%, 0.58%, 0.09% and 1.08%
respectively, demonstrating the relative superiority of the Padé, the Gradient scheme and

the Polynomial scheme.
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4.7 Summary

This chapter described the implementation of various activation functions as hardware
circuits in an FPGA. The performances were investigated, and it was revealed that the
activation functions of the Gradient and the Padé are appropriate to be employed in the
neural network implementation. The Gradient and the Padé, which used 44k and 33k
equivalent gates respectively, exhibited percentage errors of 0.4 and 0.09 respectively,
compared to 0.58 and 1.08 for the Polynomial and Look-Up Table. High accuracy of the
activation function is essential in the implementation of the neural network. This is
because the training was done offline with an explicit number system. Therefore, the
proposed activation function should be as close to the real activation function used in the
training, such as the hyperbolic tangent. However, the drawback of a highly accurate
activation function such as the Padé is the slower settling time. This is due to the iterative
nature of the scheme. To date, this has led to the Gradient scheme receiving more
attention in the following research, especially in terms of optimising the resources

required to run the scheme. This issue will be discussed further in Chapter 5.




CHAPTER 5

Distributive Tactile Sensing Embedded Solution

5.1 Introduction

This chapter is an implementation chapter, and as such describes the implementation
of different kinds of neural networks proposed for the distributive tactile sensing
system in Chapter 3 (the Single and the Cascade). This chapter charts various analyses of
their effectiveness. This section of the thesis discusses the attempt to design digital
architectures which comply with the topologies of the networks, and describes the
investigations conducted into the performance and sensitivity of the methods in real time
application. Three architectures are presented and investigated. The first is the Fully
parallel design, which implements directly the original parallel nature of the neural
network algorithm. This architecture produced the best performance, but was the most
resource hungry approach. It was used to incorporate the proposed activation functions

devised in this study. The second architecture is called the Hybrid design ‘folding” which
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is inherent from the Fully parallel design, but employs the use of re-useable hardware
techniques. It was shown that this approach is more effective than the first in that it
minimises the usage of resources. The key to the success of this method is the
introduction of memory functions which are used as computation optimisers. Both of
these architectures are designed specifically for the Single neural network. Finally, the
Cascade design was created to realise the functionality of neural networks which are
arranged in a cascaded form. The architecture essentially implements the Hybrid design
technique into a cascaded neural network. It was devised to provide both high accuracy
and improved functionality, but has the expense of time delays during the complete

operation.

For validation, all of the designs followed the three main processes in the general design
flow, namely functional simulation, post synthesis simulation and real time analysis.
Functional simulations are the simulations obtained from the explicit number system
model, and have already been discussed in Chapter 3. Post synthesis is the simulation of
the model represented by a bit true number system, and the real time analysis is
performed using real time measurements. The second of these provides a pre-study of the
performance of the output in real time, but the most important is the final real time
analysis, which provides proof of the principle of the approach. This chapter also
describes the design and implementation of the continuous function (as presented in

Chapter 3) into a hardware circuit.

5.2 Fully Parallel Design

The most common means of implementing a neural network is to fully adopt the parallel
computational function of the algorithm into a design, and program it directly into the
FPGA. This approach offers clarity in terms of understanding the network’s behaviour,
which is advantageous during troubleshooting of the simulated design. The operation is

also relatively quick. The major disadvantage of this approach is that it requires
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extremely high usage of hardware resources, especially the digital multiplier (refer to
Table 5.1). Mathematically, this is mainly due to the functions of the processing elements
(PE) of the neural network, as the paradigm consists of matrix computation where using
excessive multipliers and adders is inevitable if it is to be implemented in an authentic
way. In this section, salient methods of designing and implementing the Fully parallel
design are presented and discussed. The design is then used to realise the neural network
discussed in Section 3.10 (with two inputs, six hidden nodes and two outputs),
incorporating the proposed activation functions discussed in Chapter 4. The results of

these analyses are presented and comparisons drawn.

5.2.1 Input and Output Integral

The digital design of the input and output integral of the Fully parallel design mimics the
input and output integral designed with the explicit Simulink model (depicted earlier in
Figure 3.14). However, adjustments were made to the output integral to accommodate the
output layer part of the general normalised neural network equation (4.19). This was
mainly done for the purpose of de-normalisation, to retrieve the actual output. Figures 5.1
and 5.2 depict the interior architecture of the input and the output integral respectively,
with typical parameters. All of the digital mathematical operations involved only
normalised values of not more than one, hence providing an accuracy of 14 bits wide

with 13 fractional bits throughout.
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5.2.2 Simulation and Implementation

The trained weights and biases were normalised using the algorithm explained in Section

4.5.1, to yield a normalised factor of Q,and Y, vectors. The normalised weights and

biases and normalised factor Y, were stored in the constant blocks of the design,

employing the constant Xilinx Blockset — all of which were set to give accuracies 14 bits

wide with 13 bits for the fraction. The normalised factor Q, was incorporated into the

various proposed activation functions design, the Gradient scheme approximation, the
Polynomial scheme approximation, the Padé approximation and the Look-Up Table
approach. All of the networks with different activation functions were then simulated and
validated using a real time experiment. For fast prototyping of the neural network
functions, the designs were generated, synthesised and implemented (following the
implementation flow process discussed in Chapter 4), onto a Xilinx Virtex-II 2XCV3000
FPGA using a high-performance Nallatech XtremeDSP development board. The global
frequency of the clock was generated from the on-board crystal oscillator built on the
board to give a 64MHz operating frequency. The clock was also used to derive the
differential clock signals for both the DAC and ADC by means of a feedback pin. Table

5.1 describes the resources required by the FPGA for each of the neural network designs.

W
Gradient Scheme Polynomial scheme Padé Look-up Table

Occupied Slice 20% 18% 9% 18%

4 inputs LUTs 13% 14% 7% 5%
Bounded 10Bs 11% 11% 11% 11%
MULT18X18s 76% 61% 60% 34%

Peak memory 176 MB 172 MB 142 MB 137 MB

Total Gate count 353K 292K 263K 494K

Table 5.1 Hardware resources required from each neural network design.

The output for load magnitude and load position interpretations of the neural network
design with the Gradient scheme approximation, the Polynomial scheme approximation,

the Padé approximation and the Look-Up Table (LUT) were plotted as percentage errors




Chapter 5. Distributive Tactile Sensing Embedded Solution

against the actual length of the beam, with mean, minimum and maximum information
(refer to Section 3.12.1). Figure 5.3 (a) and 5.3 (b) are comprised of plots of the results
for the network outputs obtained by the bit true simulations for load magnitude and load
position respectively. 5.3 (a) and 5.3 (b) reveal that the mean percentage error obtained
using the Gradient scheme is better than 1.34% for load magnitude and 1.75% for load
position. For the Polynomial approximation the mean error is better than 0.97% for load
magnitude and 1.95% for load position. Performance is better using the Padé, which
gives errors of better than 0.81% for load magnitude and 0.87% for load position. In
contrast the scores were poor for the Look-Up Table, which produced errors of better
than 3.34% for load magnitude and 2.58% for load position. Figure 5.4 (a) and 5.4 (b) are
the plots of the validation results from the real time implementation for load magnitude
and load position. Figure 5.4 (a) and 5.4 (b) reveal that load magnitude and load position
errors respectively are better than 2.38% and 1.60% for the Gradient scheme, better than
1.69% and 2.05% for the Polynomial, better than 1.95% and 0.90% for the Padé
approximation, and better than 3.59% and 3.28% for the Look-Up Table.

From these error measurements it is clear that the network using the Padé scheme was the
most appropriate method of discriminating the loading parameters, followed by networks
using the Gradient and Polynomial scheme (which have comparable performances), and
finally the Look-Up Table approach. Errors produced by the network utilising the Look-
Up Table are significantly higher, with the greatest error produced being 3.5% in
comparison to the other schemes with maximum error rates of 2%. Improvements on
these scores can be made by introducing more increments to the depth of the ROM used
for the LUT, but this will require more of the FPGA’s resources, especially in terms of
the total gate count. However, overall all of the designs are still adequate for the flexible

tactile digit application.
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Figure 5.3: Error percentage measurement from bit true simulation for (a) load magnitude and (b) load
position.

- 141 -



Chapter 5. Distributive Tactile Sensing Embedded Solution

S EEEEe
'—s«—mean Gradientfunction ~ —=—mean Polynomial function;
4.5 + .
. —+--mean Pade function « mean LUT function
4
35 - . *
.
s 3 . .
E
o . .
R25
kel
3
a2
1.5
1
0.5 -
Q i t ; e i i i i {
@ < - ~ (324 o o N D wn N © < g ~ [s2] o 0 N
o — ~N ~N [s2d < < wn wn w ~ ~ @ @D @D o b - N
- - -~ — - - - - - e - - - - « o~ N N
«—root Length / mm end
10 e S -
~max Gradient function - min Gradient function
9 —max Polynomial function ~min Polynomial function
~maxPade function -min Pade function
8 —maxLUT function -min LUT function
7
5 6 T T T
= i i
[ :
X 5 — o -
. - T T T - ]
3 ‘ - T T
- 4 : T : \‘ i
; T T 1
- ; i i i
sl 2 T ] .
) : = - ¢ et H
= - 7 o LT S
VAR S - 47 1 + T L= = T i
e [ o $ T T 1
R - f - T =7 - | r I
1 - : I = | r = ! [—
Q T r i [ B o T r L
- = -~ E L r £ L oD B L & [ F E - E
0 : - - - i B T, A R TR TE s T i
@ ¥ - N 9 2 © 9 2 8 - ° 3 o5 w o ©O o
S - 9 8 ® § § b B e~ k2 22 8 5 &
—root Length / mm end

(a)

- 142 -




Chapter 5. Distributive Tactile Sensing Embedded Solution

L EREESCELILEEEEREREEEEE
4.5 ‘—s«—mean Gradient function ~ —s—mean Polynomial function!
4 - ' —+—mean Pade function « mean LUT function
N
£ 34
Q
X . .
=25+ .
k=l B
.‘u;;
o
a

= & °
«—root Length / mm
8 T TR
| —max Gradient function -min Gradient function
7 - - . —maxPolynomial function - min Polynomial function
—maxPade function -min Pade function
6 | . —maxLUT function ~min LUT function
: T T
ss51 C |
A | T T - T
S | i ! |
s4° ? - o % |
L2 : : : ! ! :
AN A IR S |
23! ‘ LoF o toT T l ;
‘ - T L= [ ]
- + oL I R S | I
2 | L A E o~ [ S - 1L =7
R ; | - R T T ;
= = L S A T L T
i ; = ! : - T F - T 7 _L_ ~
1z I T N L
F- - - - S T R N R R T R A A
T T T T S A S S -
0+ - P - i - P T T I T | oy } i
w < - ~ [sed o w o~ o un -~ oo} < by I~ o o [{o] o~
o ~— o~ o~ 52l < < wn w [{e} i~ r~ @ [} o o ~ -~ N
— — — -~ ~ -~ - ~ ~ — -~ - - — — N o~ o~ o~
«root Length / mm end

(b)

urement from the real time test for (a) load magnitude and (b) load

Figure 5.4: Error percentage meas
position.

- 143 -



Chapter 5. Distributive Tactile Sensing Embedded Solution

5.3 Multiplexor

One characteristic of neural networks is the high inter-connectivity of their architecture.
Although it is always possible to implement the whole algorithm directly into an FPGA
using the available resources, usually most embedded systems could simply not
accommodate the higher number of physical inputs. Even the system used here offers
only two ADCs (14 bit accuracy) type ADG6644, but offers a high sample period of
65MSPS. To overcome this limitation, an analogue multiplexor type maxim
MAX4518CPD (see Appendix 6 for technical specification detail), as shown in Figure
5.5, was employed to multiplex up to four channels and feed the time-division sequence
of analogue inputs into the embedded system’s ADC Input selection can be controlled
using two digital combinations of ‘low’ and ‘low’ for channel one, ‘low’ and ‘high’ for
channel two, ‘high’ and ‘low’ for channel three, and ‘high’ and ‘high for channel four.
This analogue multiplexor should not be operated with switching frequency of higher
than 10MHz in order to give optimum performance. Beyond this point the magnitude
starts to deteriorate, causing inaccuracy to the input signal. In practice, a controller was
designed in the main FPGA with user controllable sampling frequency and two user ports

from the development board were used to generate a two bit stream of switching input.

The advantage of controlling the input stream from the main FPGA itself is that the
multiplexor shares the same clock with the main processor, thus forcing the whole system
to operate synchronically. In the FPGA, the sequence of digitised sensors signals from
the ADC can be de-multiplexed digitally into the k inputs nodes (with each having a pre-
constant characteristic) to retrieve each channel’s information concurrently. The more
subtle means of achieving this was chosen in this research, namely by retaining the
sequential nature of the series of sensor input signals, but with the cost of using a
different computational flow process of the neural network to suit the serial inputs to the
network. This approach will reduce the time taken to retrieve the concurrent criteria of

the network.
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Figure 5.5: Two sets of multiplexors in parallel fabricated on a single circuit board.

5.4 Hybrid Design: Overview

Increasing the capability of the neural network to enable it to predict more output
variables implies that more output neurons need to be introduced into the network.
Consequently, the configuration of the hidden neurons of the system may have to be
enhanced to accommodate the likelihood of a higher number of hidden nodes in order to
give a better performance, by the optimisation of the learning process. Even the network
described in Section 3.12 requires 16 hidden nodes with an extra two inputs from sensors
to give an optimum solution for load magnitude, load position, load width and load shape
discriminations (4:16:4 network configuration). However, it is inevitable that introducing
more nodes means greater demand on FPGA resources. Yet, by adopting the
implementation technique used for the fully parallel design (described earlier), and
applying it to the 4: 16 : 4 network will result in an implementation that consumes an
extensively high number of digital multipliers. This will be a problem for the case here
where the available number of multiplier in the FPGA used is 96. An easy way to tackle
this problem is to deploy a more powerful FPGA which has more resources, as described

in Gadea, Cerda, Ballester and Mocholi (2000). The more practical way to deal with this
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issue is by manipulating the algorithm itself so that the processing function can be
optimised for that specific application.

There are number of ways to optimise the algorithm. The 'big hammer' approach is
simply to increase the design, and try to squeeze it into the FPGA. The serial approach
involves rewriting the original algorithm into a serial form of computation. In this chapter
a more subtle approach is proposed, that combines some elements of concurrency while
‘folding’ the design to allow hardware re-use such that a sequences of data are passed
through major subcomponents of the design. This process has the main objective during
of maintaining a performance equal to the parallel design, while reusing available
resources efficiently through a serial based technique. Specifically, the design was
created to suit the serial inputs fed into it and, without postponing the operation of de-
multiplexing them, follow the original concurrent neurons in the input layer. The
concurrent hidden nodes operation still applies, but the design optimises the usage of the
mathematical operation within each node. The system was extended to process 4 inputs,

16 hidden nodes and 4 outputs network.

5.4.1 Hybrid Design: the Rationale

From equations (5.1) and (5.2) it is obvious that a network having k input, j hidden nodes
and 7 output would require (N x M) + (M x L) multipliers. For example, a network having
4 inputs, 16 hidden nodes and 4 outputs will require a total of 128 multipliers, which is
beyond the digital multiplier resources of Virtex-I1 2XCV3000 FPGA (which has only 96
available multipliers). However, as the inputs were multiplexed and fed serially into the
processing system, each of the rows of weights (presented by equation (5.1)) can be
generated serially as well, so that both can be multiplied serially but synchronically. The
series outputs obtained from the product between the multiplexed inputs, the serial
weight elements, and the corresponding bias are summed together to produce a node

output of the input integral g (note that the signal is in normalised form) i.e. computation

as a sequence of step but ¢,, ¢, and ¢, are computed in parallel. Each operation on a
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single node in g, can be accomplished using only single reusable multiplier and an adder.

Note that also the ‘T’ outside the square bracket indicates the output is a column vector.

1 (1) 1 ) I serial )
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For the case of equation (5.2), elements in each of the columns of weights ¥ (as shown
by dashed line) are made serial. Each of these columns should generate elements
synchronically, thus to form an i row vector. This row vector then multiplied to the

corresponding concurrent pre-constant 7, obtained from g, after it undergoes
denormalisation to produce g, and the activation function. The multiplication operations

are performed concurrently. The outputs from the operations and the corresponding bias

are added together to produce each column of ¥, output (note also that this is the
normalised output y,). This process is repeated for L times thus enable to sequentially
generating the first, second, third and forth outputs. Each operation on a single y, can be

accomplished using only M number multiplier. These multipliers are reused for an
unlimited number of L outputs. Following this proposed idea for computation, for the
same configuration a network will require only 32 multipliers. Note that the ‘serial’

written outside the square bracket indicates that the output is a row vector.
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Where x is the inputs to the neural network, and r is the output from the activation
functions. N is the total number of inputs, M the total number of hidden nodes and L is

the total number of outputs.

5.4.2 Memory Blockset: Register and ROM

One of the most important ingredients for the Hybrid design is the memories, which are
used for holding and storing data and then executing them whenever they are needed. For
holding temporary or changing data (i.e. variables), Xilinx Register Blocksets can be
used. An initial value can be set to the block to specify the initial value in the register. For
permanent storing purposes, the Xilinx ROM Blockset, a single port read-only memory is
used to store the dedicated series of values (i.e. constants). These values are stored as
words, and all words have the same arithmetic type, bit width and fractional point
position. Each word is associated with exactly one address, and the address can be any
unsigned fixed point integer from 0 to d-1, where d here denotes the ROM depth (number
of words). The block has one input port for memory address and one output port for data

out.

- 148 -




Chapter 5. Distributive Tactile Sensing Embedded Solution

5.4.3 Modified Gradient Scheme Activation

The iterative nature of the regression formula used in the Padé scheme discussed earlier
imposes a delay and the need for careful supervisory timing. To complement the Hybrid
design, the activation function based on the Gradient scheme was used to create the
modified Gradient activation function. It was chosen for this application because of its
fast computation and the accuracy of the approximation the scheme can offer. One
characteristic of this scheme is its superposition approach, namely solving problems by
first breaking up the problem into selected ranges and proceeding through computation
from selecting the range. This gives flexibility in re-structuring the system into the more
practical digital architecture and facilitates the reusable technique, thus reducing the total
FPGA resource usage effectively. Figure 5.6 shows the proposed modified design flow
with the gradient scheme based on nine segments (refer to Table 4.1). The architecture
employs the ABS and Sign retriever system that were discussed in Chapter 4, and two
ROMs used for storing series values of the gradient G, and the intercept i, parameters.
Ten range comparators, including the one used for addressing the input out of the

range x,, , were built to produce a single dimensional output vector carrying the address

satl ?
of the corresponding gradient G,, and intercept ;¥ constants stored in the ROMs. These

constants were then used for the gradient multiplication and the offset addition
operations. Finally, the Sign retrieval operation is performed to generate the output of the
activation function. With this new architecture, the activation function needs only a
single multiplier to implement an unlimited number of segments. The design maintained
the concurrent behaviour and the same accuracy as the original design, but effectively

reduced the demand on the multipliers.
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Figure 5.6: Modified Gradient scheme design flow.

5.4.4 Multiplexer Input Selector

The analogue multiplexor (see Figure 5.5) needs signals to select the sensor inputs. In
practice, these signals are generated from specific-purpose building blocks designed in
the FPGA. The building blocks are comprised of a counter and slice functions. The
counter function is used as a primary element for controlling both the analogue
multiplexor (i.e. speed of switching and channel address) and the sampling rate of the

ADC. The counter also performs a frequency divider operation. The counter is used to
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deliver a cyclic counted bn bits output (i.e. 2° to 2”"™"), where bn here is an unsigned
finite number. Slice Blocksets are then used to extract a two bit stream from the
wordlength within the b» bit count value (for example the most and the second most
significant bit), before sending them to the gateways (headers) out of the embedded

system. More specifically, the most significant bit has a frequency of FPGA clock
frequency / 2", whereas the second most significant bit has FPGA clock frequency /

2”2 However, there are some important factors in play when selecting the appropriate
bn. First among these is the capability of the multiplexer device. Using an bn that is too
small leads to the switching frequency become too fast. If this is beyond the optimum
switching frequency of the multiplexor, the output magnitude can be impaired. However,
bn that is too high will lead to the switching frequency becoming sluggish. Considering
other applications such as the highly dynamic operation, this would lead to a problem of
undersampling, the multiplexor being under sample. A method to prevent this second

problem is the application of the Shannon sampling theorem (Bolton, 1999).

The problem of undersampling can also occur to the ADC if the value of b# is too small.
Since the ADC of the system was clocked using the same clock frequency of the main
FPGA, using an insufficiently high bn will mean that the ADC may acquire insufficient
sampled information. In practice, the bn was chosen to be 12, thus with a 64MHz FPGA
clock frequency, the clock is divided down by 2'"and 2'' to give 62.5KHz and
31.25KHz respectively for the two most significant counter bits. These two bits were
used as multiplexor addresser, giving the system to have four times 15.625KHz between
one complete channel switching. The factor was shown to be appropriate for the
applications throughout the current research (including the application described in
Chapter 6). Figure 5.7 shows the real time output of the two bit streams (generated from
the FPGA) dedicated to the channel switching of the analogue multiplexor. The red line
indicates the most significant bit, whereas the blue line is the least significant bit (second

most significant bit).
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Figure 5.7: Real time measurement of the multiplexor channel addresser sgnal (by digital PICO scope).

5.4.5 Hybrid Design: The Architecture

The hybrid design, with serial node operation of the concurrent matrix computation as
explained in Section 5.4.1 was implemented as an application-specific digital design.
Figure 5.8 provides a simplified diagram of the Hybrid design for 4 inputs, 16 hidden
nodes and 4 outputs. Single ADCs and DACs are needed to take the multiplexed four
input signal from the sensors and to serially output the processed signal containing
information for the four outputs. The design is still comprised of three main operations;
the input integral, the hidden activation and the output integral. The optimised weights

~

and biases adopted from Chapter 3 were normalised using the algorithm explained in

Section 4.5.1, thus producing (1 x 16) and (4 x 1) vectors for O and ¥, respectively.
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Figure 5.8: Hybrid neural network design for 4 multiplexed inputs with 16 hidden nodes and 4 outputs.

5.4.5.1 Input Integral Architecture

The input integral subsystem takes the multiplexed sensor signal x; and channels it into
16 j functional blocks, or nodes. Each of the nodes have a single digital multiplier, an
adder, and two registers. Figure 5.9 illustrates the configuration of a single node (or
neuron) of the input integral with the ROM and the shared controller, CONTROLLER 1
(see also Figure 5.8). The controller is a simple counter or sequencer, which is used to
generate addresses for executing the series of weights stored in all of the ROMs, and the
clock enable output which is used for resetting and enabling purposes for each of the

reusable operations. A total of 16 ROMs were required in the overall input integral
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subsystem to store the sets of normalised weights ¥, each of which contained four

signed (two’s compliment) constants in series (corresponding to each of the four inputs).
Each ROM was assigned to give an output accuracy 14 bits wide with 13 bits fractional

accuracy.

_______________________________________________

¥
-

- stz b1 )
AddSub e q. -
hult DOut
2n
Register
e

2

COUNTERT | - ~
RESET_Owt | - - —J
RESET_Out2 | - - |

ENABLE_DULZ - - -
CONTROLLER1

¥

Delay2

B 2

Delayl Node operator

Figure 5.9: One of the re-useable designs of the input integral.

When the first sensor signal x; arrives, a counter which controls the execution of the

weights ¥, sequence, produces the corresponding signal to the ROMs ordering them to

output the corresponding weights ¥, to the node operators. Digital multiplications are
performed concurrently between the first element of weight W}, and the first data x, in all
the j number of node operators. At each of the j nodes (as in Figure 5.9), the output from
the multiplication is then digitally added to the bias B; stored as an initial value in the
feedback register. The output from the addition is held temporarily in the register before
it is fed back to the input and added to the next multiplication output, x; and W;,. The
loop operations continue for & times to complete one cycle of the operation. The registers
with reset and enable ports are used to extract and hold the last information containing

the final values for (W ,x,)+ B,. This will create a steady output but reset to zero upon

completion of the operation, to allow the next operation to present new samples. The
register takes the reset and enables signals also from CONTROLLER 1. Because the
parameters and variables are normalised, all of the operations are completed within an

accuracy of 14 bits wide with 13 bits fractional accuracy.
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5.4.5.2 Activation Function: The modified Gradient Scheme

Figure 5.10 shows the configuration of one of the activation node operators in the
modified activation function subsystem. The node consists of five building functional

subsystems; ABS, Addresser, Memories, GRAD_ EQN and Sign retriever.

Dout _ S 3Dl

DOut | Din

@—F Din signal_out

P SIGNALOWY ——  Addresser
ABS

o east
=z 1'- -

Convert1

M_in DOut g{Din

- SIGNALIn DQut
GRAD_EQN | giqn retriever

¥

___________

Delay Memories

Figure 5.10: Modified Gradient scheme activation function.

The Addresser operating block takes signal from the ABS and generates the address of
the gradient and offset needed for the gradient operation. It also forwards the signal to the
gradient operation. The addresser consists of ten sub-units in parallel. Each contains a
comparator and a locator (operated by relational and logical blocksets), and adder
operator which is responsible for generating the addresser of the corresponding gradient
and offset. The output can be reset via a register controlled by a Boolean output from the

comparator and locator section.

The Memories consisting of g memory and i_memory blocks are ROMs which store the

sets of normalised gradient G, , as tabulated in Table 5.2, and offset /¥ for the operation,

as tabulated in Table 4.3. Before a signal is ready to be processed in the gradient block
operator, the g memory and i_memory blocks wait for the address input to the blocks.
The memory blocks output the corresponding constants when they receive an address

signal.

In the gradient operating subsystem GRAD_ EQN, the arrived signal is multiplied with

the corresponding normalised gradient and then added to the offset.
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G Segments
/7 o) 1 2 3 4 5 6 7 8 9

Snal g

nodes|// 0.0582 0.0374 0.0225 0.0148 0.0086 0.0051 0.0028 0.001 0.0002

) 0.1329 0.0854 0.0514 0.0339 0.0197 0.0117 0.0063 0.0022 0.0005

2 0.1551 0.0997 0.06 0.0396 0.023 0.0137 0.0073 0.0026 0.0006

3 0.1163 0.0748 0.045 0.0297 0.0173 0.0103 0.0055 0.0019 0.0004

4 0.0846 0.0544 0.0327 0.0216 0.0126 0.0075 0.004 0.0014 0.0003

5 0.1551 0.0997 0.06 0.0396 0.023 0.0137 0.0073 0.0026 0.0006

6 0.1551 0.0997 0.06 0.0396 0.023 0.0137 0.0073 0.0026 0.0006

7 0.0846 0.0544 0.0327 0.0216 0.0126 0.0075 0.004 0.0014 0.0003

8 0.093 0.0598 0.036 0.0237 0.0138 0.0082 0.0044 0.0015 0.0003

9 0.1551 0.0997 0.06 0.0396 0.023 0.0137 0.0073 0.0026 0.0006

10 0.0291 0.0187 0.0112 0.0074 0.0043 0.0026 0.0014 0.0005 0.0001

11 0.1551 0.0997 0.06 0.0396 0.023 0.0137 0.0073 0.0026 0.0006

12 0.0517 0.0332 0.02 0.0132 0.0077 0.0046 0.0024 0.0009 0.0002

13 0.0465 0.0299 0.018 0.0119 0.0069 0.0041 0.0022 0.0008 0.0002

14 0.1163 0.0748 0.045 0.0297 0.0173 0.0103 0.0055 0.0019 0.0004

15 0.1163 0.0748 0.045 0.0297 0.0173 0.0103 0.0055 0.0019 0.0004

16 0.0582 0.0374 0.0225 0.0148 0.0086 0.0051 0.0028 0.001 0.0002

Table 5.2: Normalised sets for gradients.

5.4.5.3 Output Integral Architecture

Figure 5.11 shows the simplified output integral design which performs the

(W,*r, + B*))Y, operation of the neural network. 18 ROMs were needed to store the

WU‘“ weights, the biases and the normalising factors. The ROMs take the signal from

CONTROLLER 2 (see also Figure 5.8), which is comprised of a counter. The ROM

should contain four signed numbers for each value of i to compute y, (see equation (5.2)) .

The design takes 16 j outputs concurrently from the activation subsystem and then

multiplies these concurrently with the set of W, weights from the ROMs (refer to

equation (5.2)). They are summed together before being added to the bias B and

multiplied with the normalising factor Y] to produce the output for load magnitude, y,.
Following this is the concurrent multiplication of the 16 outputs with the set of Wy

weights. They are summed together before being added to the bias B{” and multiplied

with the normalising factor ¥, to produce the output for load position, y, . When the
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operation is completed, the steady outputs from the activation subsystem which are

multiplied with the third set of weights W;f) added to the second bias B{* and multiplied

with the normalising factor Y, to yield the output for load width, y,. The operation is

repeated for y, , the load shape.
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Figure 5.11: Output transfer subsystem for the 16 nodes.

5.5 The Cascade Design

To facilitate the realisation of the cascaded neural network proposed in Section 3.12, the
project then introduced the Cascaded network design for the digital implementation.
Figure 5.12 shows the configuration of the digital cascade approach designed with Xilinx
Simulink Blocksets. The network architecture follows the topology shown in Figure 3.22

with four neural networks in cascade (NN_A, NN _B, NN _C and NN_D). These were
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constructed so that they determine the load parameters individually, those of load

magnitude, load position, load width and load shape respectively.
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Figure 5.12: Cascade Neural network design in Xilinx Simulink MATLAB.

Each of the neural networks in the cascade directly adopts the Hybrid design, but adjusts

the output integral to approximate a single output only. Therefore, because a)f) is a single
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dimensional vector, the ROM can be replaced by constant Blocksets to store the

normalised weights, biases and normalised factor Y, of the output integral.

Registers with reset and enable ports were introduced to the outputs of the first three
networks; NN_A, NN_B and NN_C, to extract the discriminated outputs for load, load
position and load width respectively. Generally, together with the sensor information,
these extracted outputs (load position, load width and load shape) were utilised as inputs
to the next network. To include the neural network outputs with the serial sensor inputs,
multiplexer subsystems comprised of digital multiplexors and counters input delays were
introduced (as shown in Figure 5.12). The purpose of this was to multiplex the original
input sensors and the relevant retrieved neural network outputs, hence creating an input
stream which carries within it the original sensor inputs and the evaluated output
information in order. In Figure 5.12, these multiplexer subsystems are introduced as
MULTIPLEXER 1 to multiplex sensor inputs with the retrieved discriminated load,
MULTIPLEXER 2 to multiplex sensor inputs with the retrieved discriminated load and
load position, and MULTIPLEXER 3 to multiplexed sensor inputs with the discriminated
load, load position and load width. In addition, it was necessary to balance the delays in
the networks so that, for each stage, a consistent set of sensor signal and computed neural
network outputs were delivered to each stage in the cascade. To do this the signal delays

shown in Figure 3.22 were built into the corresponding multiplexor rows.

However, as the sensor input stream to the cascade design should act as an information
carrier, it is necessary that the stream is eligible to take additional samples. In order to do
this, the previous bits stream shown in Figure 5.7 was modified to accommodate an extra
three “sample inputs” containing the computed neural network outputs of load magnitude,
position and width output. A clock enable with a predefined reset frequency was
introduced to reset the counter described in Section 5.4.4, to produce a two bit stream
with a cyclic pattern of 00 01 10 11 00 01 10 output. The new bit stream was recorded
and is represented in Figure 5.13. The blue line indicates the second most significant bit
and the red is the most significant bit. The response was obtained from the real time
measurement of the gateways of the FPGA. The bit stream was fed into the analogue

multiplexer — a typical output taken from the sensors is shown in Figure 5.14.
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Figure 5.13: Timing response of the modified bit stream (by digital PICO scope).
x=0ns
t i
i 1
I 4 t
L S3 S, S34 B
fe S22 o - -
S Slfs..z. R B
- e e el e
: el e2 e ed e5 eb c7:
{ t
. ) us
50 100 150 200 250 300 350 400 450 500

25Feb2006 11:49

Figure 5.14: Typical multiplexed sensors from the output of the multiplexer (by digital PICO scope).

S1, S2, S3 and S4 are the channels which are selected by the 00 01 10 and 11

combinations respectively. The channels contain signals from typical experimental sensor

readings of Sensor 1, Sensor 2, Sensor 3 and Sensor 4 respectively. The combinations of

the bit stream forced S1, S2 and S3 to be selected twice in a complete cycle, thus creating

seven elements in the cycle. Note that S1, S2 and S3 occur repeatedly in element €5, €6,

and e7 of the complete cycle. These elements provide a means to include the necessary
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signal into the input stream using a method of replacement. Specifically, the ‘unwanted’
S1, S2 and S3 samples of the elements €5, €6, and e7 were replaced by the discriminated
load magnitude, load position and load width data from the neural network which were
multiplexed into the stream at precise timing. For the computation of NN_B, element 5 is
replaced by load magnitude data created by multiplexing the stream with the evaluated
output fed from NN_A, thus producing a stream containing the cyclic input of Sensor 1,
Sensor 2, Sensor 3, Sensor 4 and evaluated load. A similar procedure is performed to
replace element e5 and e6 with the evaluated load and position, hence enabling NN_C to
take the required six inputs (Sensor 1, Sensor 2, Sensor 3, Sensor 4, evaluated load and
evaluated position data), and then compute for width W. Following this is the
replacement of elements e5, €6 and e7 with the evaluated load, position and width, hence
enabling NN_D to take the required seven inputs (Sensor 1, Sensor 2, Sensor 3, Sensor 4,

evaluated load, evaluated position and evaluated width).

In the input integral the presence of the unwanted data elements €5, 6 and €7 for NN_A,

element e6 and e7 for NN_B, and e7 for NN_D was cancelled by multiplying them with
zero (ground) before summing to completion the (Wj(k”x,()JrBﬁ”operations. For these

operations each ROM in the input integral of the NN_A, NN_ B and NN_ C is

rogrammed to store an extra 3, 2 and | series of compensated zeros respectively.
p

To test the system, real sensor signals were fed into the multiplexor. Figure 5.15
illustrates the real time measurement output from the multiplexing system with a direct
connection from the ADC to DAC via the FPGA of the embedded system. The readout of
the measurements shows the consistency of the digital magnitude and the analogue

reading (Figure 5.14).
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Figure 5.15: Typical multiplexed sensors from the output of the DAC of the FPGA (by digital PICO scope).

5.5.1 Network Optimisations

Two optimisation types were used in this research to obtain the optimised design
configuration for the cascade network. First there is the explicit number system of
optimisation (as used in Section 3.12.1), in which each network is trained and optimised
using the sensor inputs and the computed outputs produced by simulating the explicit
feed forward model. The configuration of the cascade network produced from the
optimisation is 4:5:1, 5:5:1, 6:5:1 and 7:6:1 for NN_A, NN_B, NN _C and NN_D
respectively. A second option is the bit true number system of optimisation. Here the
cascade network is optimised by the procedures exercised in Section 3.12.1, but taking
into account the use of the bit true feed forward model, (digital design) to simulate the
outputs. The second option is more appropriate for the real case scenario, as ideally (with
the exception of noise and assuming that the sensors are repeatable) the real time outputs
will be the outputs obtained by the bit true simulation. However, the drawback to this
approach is that it requires a high cost in terms of simulation time. The configuration of
the new cascade network produced from the bit true optimisation is 4:5:1, 5:5:1, 6:4:1
and 7:4:1 for NN_A, NN_B, NN_C and NN_D respectively. Note that from here onward

the first cascaded network (optimised using explicit models) will be known as Cascade
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design A and the second cascade network (optimised using bit-true models) will be know

as Cascade design B.

5.6 The Hybrid and the Cascade Designs: The Results

The Hybrid design and the Cascade designs A and B were simulated using bit true
simulation to represent their digital implementations. To study the error performances of
the simulations and real time measurements, all of the errors from the Hybrid, Cascade
design A and Cascade design B were computed following equations (3.15) and (3.16).
Figure 5.16 to Figure 5.19 were produced to illustrate the comparison between the Hybrid

design and the Cascade design A and B.
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Figure 5.16: Error percentage of load magnitude from the bit true simulation of the Hybrid, Cascade A and
Cascade B networks.
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Figure 5.19: Error percentage of load shape from the bit true simulation of the Hybrid, Cascade A and
Cascade B networks.

From Figure 5.16 it can be noted that the mean load percentage error for both Cascade A
and B tends to be almost steady throughout the beam at about 1.5%, although a small
increase at the tip is exhibited. For the Hybrid design almost steady error, at about 4%,
was also shown within the range of 45% to 80% of the beam from the root, however the
mean error for this design started to increase when in the range of 80% to 95%. Similarly,

however, the error was at its peak at the tip of the digit.

For the position data (refer to Figure 5.17), a similar response with respect to the load
mean error was exhibited by both Cascade A and B approximately 1.2%, such that the
errors of both were also at their peak at the tip of the digit. However, Cascade A tends to
overlap Cascade B with some degree of error difference of 0.5%. For the Hybrid design,
unsteady mean error was exhibited throughout the working range. The maximum mean
error scores were at their peak at 55%, 80% and at the tip. The mean error rates were
better at 45%, 70% and 92% of the beam. The odd behaviour noted here is due to the
effect of the sensor position, which has the most influence on the discrimination of load

position.
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For the width (refer to Figure 5.18), an almost steady mean error of about 1.5% was
exhibited by Cascade B throughout the working range, by the Hybrid of about 3.5%
between the range of 45 % to 89 %, and by Cascade A of about 2% between the range of
45% to 94%. Cascade A shows its highest mean error of rate of about 6% at the tip of
digit, whereas the Hybrid demonstrates its lowest at about 1.7%. Again Cascade A tended
to overlap Cascade B with some degree of error difference of about 1%. In terms of shape
(refer to Figure 5.19), the Hybrid and Cascade A tended to produce higher mean error
scores of about 14% towards the root of the working range. For Cascade B the mean error

was steady throughout and was better than the Hybrid and Cascade A.

By evaluating these results, it is clear that the mean error rates from the Hybrid are better
than 8.57% for load, 4.07% for load position, 5.54% for load width and 14.20% for load
shape respectively. For Cascaded network A, the mean error rates are better than 3.67%
for load, 3.63% for load position, 5.70% for load width and 13.91% for load shape.
Finally, for Cascade network B, the mean errors rates are better than 3.67% for load,
2.60% for load position, 2.49% for load width and 2.9% for load shape. Overall, these
results demonstrate the superiority of Cascade network B over the Hybrid design at
almost any point along the working range. Comparing Cascade networks A and B, the
two give the same accuracies for load at any distance along the working range (because
of having equal weights and biases parameters). However, for load position and width,
the error rates of Cascade network A started to increase, especially near to the tip of the
digit. The error then worsens for Cascade A for the shape discrimination at any way
along the range. On the basis of these findings it was concluded that optimisation using
bit true simulation is a more effective and influential strategy for the digital cascade
network. By considering the cost to obtain high accuracies from network complexities,

more favours are put on the Single and Cascade B for implementation.
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5.7 Implementation

To validate the designs, the single neural network from the Hybrid design and the
cascaded neural networks from Cascade network B were synthesised, implemented and
generated into a target part Virtex-11 2XCV3000, following the flow process as described
in Chapter 4. The design operated at a system clock frequency of 64MHz. The digital
resources required for the Hybrid and Cascaded design are tabulated in Table 5.3. Figure
5.20 to 5.23 show a comparison of the performance of the real-time Hybrid design and
Cascade network B when measuring load magnitude, position, load width and load shape

using signals from real sensors on the cantilever beam.

Hybrid Cascaded B
Occupied Slice 31% 39%
4 inputs LUTs 20% 24%
Bounded IOBs 7% 7%
MULT18X18s 51% 60%
Peak memory 218 MB 239 MB
Total Gate count 283 K 344 K

Table 5.3: Digital resources for the hybrid, and Cascaded design.
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Figure 5.20: Error percentage of load magnitude from real time tests using Hybrid and Cascade network B.
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Figure 5.21: Error percentage of load position from real time tests using Hybrid and Cascade network B.

- 168 -




Chapter 5. Distributive Tactile Sensing Embedded Solution

18 + R .
— max4:16:4 network
~ min 4:16:4 network
16 - . mean 4:16:4 network
-~ maxcascade network B
14 - - min cascade network B
—e— mean cascade network B -
12 - -+ T
5
510 - - T . -
x® b i
= — | H
58 _ -
= i - L
6 .
4 .
2 ¢
0 -

—root Length / mm

Figure 5.22: Error percentage of load width from real time tests using Hybrid and Cascade network B.
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Figure 5.23: Error percentage of shape from real time tests using Hybrid and Cascade network B.

Overall, Figure 5.20 to 5.23 display similar characteristic as Figure 5.16 to 5.19 for the

Hybrid and Cascade B design. Further analysis reveals that the mean error for the Hybrid

design the error is better than 7.71% for load, 4.78% for load position, 5.03% for load
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width and 15.83% for load shape. For the cascaded network, the mean errors are better
than 6.38% for load, 2.32% for load position, 2.78% for load width and 3.77% for load
shape.

The real time implementation results confirmed the selection of the cascaded technique
over the Single neural network. From the overall error measurement, it is clear that both
networks are more robust when discriminating load and load position. However, for the
width, the networks tend to produce a higher error for smaller widths. To see the values
for different widths, the local error equations (3.15) and (3.16) were used for evaluating
the width error. They can be modified into a global error equation by dividing the
numerator factor by the actual output (similar to load and shape error computation).
Figure 5.24 was produced in this fashion, showing the accuracies of different widths for
the two designs. It was noted that the Single neural network works well with widths
higher than 38.1mm, whereas for the Cascade this is 25.4mm. This finding demonstrates

the higher sensitivity of the Cascade.
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Figure 5.24: Width errors for different applied width.
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5.8 Implementation of Continuous Function for Neural

network Visualisation

The final research to be described in this chapter is the implementation of the continuous
function explained in Chapter 3 into the targeted FPGA. This enables the outputs of the
Cascaded B neural network to be visualised in real time. Two equations were presented
in Chapter 3, equation (3.17) and (3.18). However, the implementation uses equation
(3.18) because of its more implementation-friendly algorithm when compared to (3.17).
There are no iterations and no digital divisions involved, which are advantageous for the
digital design. Most importantly, there are no mathematical functions, such as
trigonometric, which are inevitably digital resource hungry. The only challenge to the

equation is to devise a technique to implement the mathematical power function, but with

minimal use of multipliers. This was achieved by applying the ‘folding’ technique.
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Figure 5.25: Digital design for the visualisation of the outputs.

Figure 5.25 shows the digital design used to realise equation (3.18). The design takes the
discriminated load magnitude d, load position i,, load width index C, and shape index P

from the outputs of NN_A, NN_B, NN_C and NN_D of the Cascaded network
respectively. A counter and a gain are used to generate a ‘ramp’ output of 0 to 0.8 with an

increment of 0.05. This incremental output provides input variables for computing the

equations. Two subsystems were designed to compute the (7, ~i Y and ~C". AsPis

an integer, the power computations can be accomplished by multiplying the inputs with
their outputs repeatedly for P times in sequence. Only a single multiplier is required in
each of the subsystems. A register with reset and enable properties is used to extract the
required output and bring it to the next process. The outputs from the two subsystems are
then multiplied before being fed into a lookup table which performs the exponential
function. The output is then multiplied with the load magnitude, d. Together with the
incremental inputs, the two synchronised outputs can be displayed using the x-y facility

of an oscilloscope. Figures 5.26 to 5.29 show typical outputs for loads C,B,Aand H
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(refer to Figure 3.20 and table 3.1) at the normalised position 0.5. The index P describing
the rectangular shape and triangular shape is six and two respectively. Note that the

probes used have x10 magnification.

Figure 5.26: Load C with d of 0.431.

Figure 5.27: Load B with ¢ of 0.744.
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Figure 5.28: Load A with d of 0.9.
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Figure 5.29: Load H with d of 0.626. Notice the slope of H is less sharp than C, thus discriminating the
triangular shape of H and the rectangular shape of C.
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5.9 Summary

This chapter has described the implementation procedures undertaken for the different
kinds of neural networks discussed in Chapter 3. The first implementation was that of the
Fully parallel design for a single neural network, incorporating the different proposed
activation functions devised in Chapter 4. Overall, it was found that the Padé approach
outperformed the Gradient scheme, the Polynomial approach and the Look-Up table.
However, because of the iterative nature of the regression formula used in the Padé
scheme, a faster, simpler topology such as that of the Gradient approach has influenced
the decision to use it. The Hybrid (folded) design was then introduced in order to solve
the problem of the high resource demand in the Fully parallel design. It was found that
the Hybrid (folded) can effectively reduce the digital resource demand, such as that of the
digital multiplier, by up to 75%. The modified gradient was used to complement this
function. With the advantages of the Hybrid design, implementation of the network
comprising cascaded neural networks can be accomplished. In this chapter two types of
training of cascaded networks were implemented, known as Cascaded network A and
Cascaded network B. These differed in terms of the way they were optimised. Cascaded
A utilises the explicit model of the feed forward neural network algorithm during training,
whereas the Cascaded B uses the bit true model. The results generated by the Hybrid, the
Cascade A and the Cascaded B were compared. Through simulation and implementation
(see Table 5.4) it was demonstrated that a cascade neural network with Cascaded B is the
most appropriate design for producing high accuracy, followed by Cascade A and then
the Hybrid design. However, the drawback of this system is the cost of the training. The
neural network with Cascade B demands a longer time period to accomplish simulation
in comparison to Cascade A and the neural network the with Hybrid design. The easiest
design to train is the Hybrid. This time cost issue is the problem with using Cascade B,
although in the context of the application which has been presented in Chapters 3 through
5, it was not a significant problem and is feasible for this technique to be employed.
However, it would be an issue if the number of data sets to be simulated was higher (such

as in the application in the next chapter, which uses up to more than 4000 input samples).
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W
Simulations Implementations
Load | Hybrid Cascade A Cascade B Hybrid Cascade B
magnitude 8.57% 3.67% 3.67% 7.71% 6.38%
position 4.07% 3.63% 2.60% 4.78% 2.32%
width 5.54% 5.70% 2.49% 5.03% 2.78%
shape 14.20% 13.91% 2.9% 15.83% 3.77%

Table 5.4: Mean error rates for load parameters test obtained form simulations and implementations. It is
important to note these performance are derived from the concurrent output of the neural networks.

To complement the neural network outputs, the continuous function explained in Chapter
3 was adopted to give real time visualisation using a scope. From the implementation it
has been shown that the visualisation is satisfactory, though the P index discriminating
the slope for different shapes still needs attention, due to problems implementing the

power function in digital design.




CHAPTER 6

Hardwired Tactile Sensing for a Dynamic System

6.1 Introduction

The application of the embedded distributive sensory processing system which has
been presented throughout the previous chapters was for the almost static case of
interpretation in a one-dimensional sensing context. In this chapter the system was
adopted for application into a dynamic interpretation setting using a different form of
distributive sensing incorporated to suit a two-dimensional sensing system. For this
process, a steel surface platform and a mechanical swing were built and used as test
objects. The platform was selected such that its dynamic response was sufficient to react
to the quasi-steady displacement of sinusoidal disturbances applied during experiment.
The fundamental natural frequency of the plate was computed to be 53Hz (Szilard, 1974).
The purpose of the swing was to create time variant disturbances prior to the motion of
the attached pendulum. Three proximity sensors with a distributed arrangement were

incorporated beneath the steel surface to measure deformation changes of the steel plate.
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However, in contrast to the previous application, acquiring the input/output data is not
straightforward. For this, a tool which can capture synchronically the motion and the
corresponding sensor output— the Vicon system needed to be used. With the aid of
computer software, the motion in terms of displacement in the translational of

X, v, Z direction in the configured reference volume exhibited by the swing can be

extracted. Together with the sensor information, they were used for the training of the
neural network. The aim of this chapter is to present the investigation into the sensitivity,
performance and the robustness of the general purpose embedded sensory processing
solutions when applied to such an application. As this approach can bring a solution to
high performance need, dynamic discrimination was not the issue. The results of the
experiment revealed that the system can identify the three dimensional motion of the
swing in contact with the surface. This demonstrates its potential for discriminating
motion in human subjects, with associated applications in sports, and posture and balance

measurement (DiFabio and Faudriat, 1996).

6.2 The Rig

6.2.1 The Surface Plate

A two dimensional surface rig was designed as shown in Figure 6.1. The objective of the
design was to provide a general-purpose platform that could be used for measuring the
activity or motion of a subject, when making a contact disturbance on the surface. The rig
was constructed using two surface steel plates (the outer and the inner plate) and a rigid
steel frame. Both plates have a thickness of 2.8mm. The outer plate rests on the steel
frame, which is made of hollow rectangular steel tubing of dimensions 910mm by
550mm. This is used to support the plate and raise it up to a suitable height of 60mm.
This outer plate is clamped to the frame along the long sides so that the position of the
plate is securely fixed. The advantage of this method is that the system is more rigid, and

thus more reliable in terms of producing repeatable sensing output. The drawback is that
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a sufficiently high operational load is needed to give good deflection sensitivity. The
inner plate has dimensions of 400mm by 800mm, and was used to mount proximity
sensors underneath. For the ease of reconfiguring the sensors, this plate is not physically
attached to the rest but was simply laid on the ground below the frame. The surface rig
can support the weight of a normal person, hence enabling a person of average weight to
stand on and produce a deflection of a range between 1 to 2mm, an operating range

suitable for the deflection sensors to detect.

Figure 6.1: The surface plate model with two opposite edges clamped and two edges simply supported.

6.2.2 The swing

A swing was designed and constructed as shown in Figure 6.2. The swing is comprised of
four legs, of which each pair form an ‘A’ shape frame. These are used as side frames. The
frames are bolted together using an axial steel rod with a fixed length of 350mm (which
also defined the length between the feet of the opposite frame). The axial road is used to
support a one directional movement load pendulum, which has a length of 480mm from
the centre to the axis of the axial. The pendulum is able to hold standard stackable metric

weights of Skg and 10kg. Each leg is 720mm in length. The angle between the legs and
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the height of the load are both adjustable to enable different configurations of the swing.
The feet are free to rotate, so that if the angle is altered they always sit flush to the surface
of the plate. In the experiments the width of the frames were fixed such that the distance
between the frame’ feet was 600mm, thus making the angle between the legs to be 49.25

degrees.

The objective of the swing is to generate translational movement of a load in three
perpendicular axes, namely forward/backward, up/down, left/right. The first refers to the

sway movement of the load in y direction, the second is the vertical displacement in z

direction, and the last is the lateral movement due to the wobbling of the swing in X
direction. In comparison to 3 and 7, ¥ will be much smaller in magnitude. The
rationale of the swing is to provide a pilot study for a system at a static position, but with
dynamic criteria such as that required when measuring the sway of a human subject. This
tool thus provided a means of studying the performance and sensitivity prior to the

motion.
In practice, the swing has a pendulum weight of 10kg, which means that the plate

deflection was relatively small. However, it was found that the sensing elements could

still detect this deflection without being swamped with noise.
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(2)

Figure 6.2: (a) The model and (b) the real version of the swing and the platform.
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6.3 Mathematical model

The mathematical models of the swing and the plate system were derived. In this research
the objective of the modelling is to provide a means for validating the sensor output used
for the training of the neural network, by verifying only the profile and characteristics
with the deflection output obtained by simulation. No verification on the exact magnitude
response is done here. The first reason for this is that there is no accurate transformation
model available from the sensor manufacturer that can be used to evaluate precisely the
actual deflection from the sensor output (which is in voltage). Secondly, the signal
conditioner system used in this research only produces the AC component, but filters out
the DC information (the reasoning for this will be explained in detail in Section 6.4.2).
Thus verification can only be done by comparing directly the profile and the
characteristic, for example how the output should behave if the angle of the pendulum is
at some displacement of the load, but inductively for the magnitude. With the
establishment of the surface and the swing model, four conditions were made to support

the validation hypothesis.

Condition I: Providing that the operating range of the deflection is within the linear
range of voltage against the distance characteristic (see Figure 6.9) of the sensor, the

output from the sensor should always be directly proportional to the actual deflection.
Condition 2: Providing that the mathematical model of the surface and the experimental
measurement is verified, simulated deflection made from any range of forces (load)

subjective to the verification should also be true.

Condition 3: If the model of the swing is true, following Condition 2, the simulated

deflection made by the swing foot at any position on the plate should also be true.

Condition 4: Following Condition 3, regardless of the exact magnitude of the simulated

deflection, if Condition 1 is true and the profile and characteristic of the simulated
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surface deflection relative to the swing model is matched with the sensor signal response,

the validation of the sensor output should be true.

6.3.1 The plate model

The surface plate used in the investigation can be categorised as a rectangular plate with
edge conditions, specifically a rectangular plate with two opposite edges simply
supported and the other two edges clamped. Obtaining the deflection model of such a
plate involves derivation using the deflection for the case of simply supported plate.
Equation (6.1) shows the general expression of the simply supported surface plate

(Timoshenko & Woinowsky-Krieger, 1959) used to demonstrate the deflection @ of the
plate at any point in the coordinates of X'=%" and Y'= J' when a load D is applied at

coordinate X'=¢&, Y'=1n of the two dimensional system (see Figure 6.3(a) ).

Da’ & Bu¥' By B B,
W¢ =—— > [+, coth f, ——"—coth—"— —~—*=coth ~=*
SS ﬂ")P ;[ ﬁ/n ﬁ b b b b J
v, 755! (6.1
sinh ’B”’??~si|1h Py sin Tﬁ;—sin me. )
a a
m’sinh B,
M m”b b | o bl ] ot ot M
For which g = , y/'=b—=y fory'2n,and y/'=Yy" and replacing n by b—n for
a
y'<n
Et’
P=—>~T—
12(1-v7)

Where P here is flexural rigidity of the plate, E is elastic modulus, 7 is the surface

T

thickness and v is Poisson’s ration.
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Figure 6.3: Plate parameters for simply supported edges.

For the case of load D concentrated at a point A on the axis of the symmetry of the plate
(see Figure 6.3(b)), the general expression shown by equation (6.1) for the deflection of
the plate can be simplified into equation (6.2) (Timoshenko & Woinowsky-Krieger, 1959)

by substituting 1= b/2. The condition is considered to be more relevant for this situation.

Da* & a
Do = —— l+a tanha )sinh—2(b-2y'
S8 27Z'JP ;[( m m) b ( y)
. maE . mmx' (6.2)
o o sin ——=sin ——
—Zm(b-2y"Ycosh—(b-2y")] f’ Z
b b m” cosha,,
Where «,, = b = &
2a 2

The deflection of the rectangular plate representing the actual rig can be obtained by first
solving the problem on the assumption that all edges are simply supported, employing
equation (6.1) or (6.2). Then bending moments are applied along the tentative fixed edges
(where in this case is along +b/2 and —b/2). In other words, the contribution of a
deflection due to the action of the moment along the fixed edges should be removed.
Thus, by considering equation (6.2), superposing the deflection of a simply supported
plate and the deflection produced by moment distributed along the clamped edges, a new

deflection @, which meets the condition of the surface rig can be obtained, equation (6.3)

(Timoshenko and Woinowsky-Krieger, 1959). Note that the first sum in the expression

corresponds to the rig if the clamped is removed, whereas the second sum is the
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deflection due to the moment along the edges. Detail of the steps explaining the
derivation can be found in Timoshenko and Woinowsky-Krieger (1959) (page 180 to

191).

DV & a, -
[ ) [(I+a, tan m)smhi(b -2y ——=(b-2y
s =53 pl0 Z 2 (6-27)
mré . mm' mré . mn'
sin——2sin—— w© sm——-sm-—tan (a,)
coml(b 29))—4—4 =>4 4 1 (6.3)
m’ cosho,, ;m sinha, coshe, +a,

Verification of the plate model was undertaken by comparing the output deflection
obtained by the computer simulation with the deflection obtained by real measurement.

In the research the simulation was done using Matlab. For the real measurement a clock
gauge was used to measure the vertical changes of the point X'=¢ = 320mm on the

symmetry axis of the plate (with respect to Figure 6.3(b)). A range of loading magnitudes
was placed at the centre of the surface plate, and the measurements were taken by
recording the reading of the clock before and after the loading. The difference denotes the
deflection. Figure 6.4 shows the deflection obtained by the simulation and by real
measurement for a series of loads from Okg to 10kg with increments of lkg. By
comparing the results it is clear that the real deflection measurement is in close agreement
with the simulated deflection, though change of stiffness to the plate was occurred at 8kg
load applied. The real measurement shows an almost steady linear relationship between
the loads and the deflections. On this basis it was deduced that the model is true. Thus

Condition 2 is met.
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Figure 6.4: Comparative plots between the simulation and real measurement.

6.3.2 The Swing

The model of the swing is useful for verifying the serial pattern of the sensor outputs. The
target of the modelling process is to evaluate the normal forces response exerted by the
feet of the swing frame on the plate prior to the movement of the pendulum (see Figure
6.5). In the current research this model is derived from the mechanics of the physical
pendulum (Losonc, 2003), and the final expression are presented by equation (6.4) and

(6.5). (The detail explaining the derivation can be seen in the Appendix 7).

R siny — F I cosy

N, = 6.4
. 21, siny (64)
F I siny+F I cost
N, =T Y (6.5)
7 27, siny
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Where [, is the length of leg of the pendulum, 2y is the angle between the leg, and F

m

is tangential force. The force on the point of axis O, can be resolved into horizontal F,

and vertical F, components.

Figure 6.5: A diagram of'the pendulum from the side view.

Equation (6.4) and (6.5) was simulated in Matlab, with the assumption the system is
ideally symmetrical that the weight is distributed equally on each of the four feet. The
simulation also taking into account damping effect and other physical weights from the
swing such as the axial supports the load, and the rig. Figure (6.7) is produced to show
the sub-plot of the simulation responses for N, and N ,, with initial swing angle ¢,

of 30 degrees. It can be observed the response obtained from normal force N, is out of

phase from N , by 180 degrees.

Profile and characteristic remarks: Figure 6.7 shows the responses can be divided into
two parts. Firstly is region when ¢ is small (£~ 10”) where the responses are represented
by simple harmonic motion swing, labelled in the figure by region 4. The second is
region when ¢ is large (>~ 10”) where the responses are essentially simple harmonic

motion but show signal of more complex behaviour, labelled in the figure by region B. It

can be observed that in region A the system has demonstrated fully sinusoidal motion.
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For region B the responses are essentially sinusoidal but with a ‘twin peaks’ effect on
most of the regions of higher magnitude of forces (see circle dashed lined in the Figure

6.7).

These scenarios mainly caused by the resultant affect from horizontal force /. which
was produced from the swing (refer to Figure 6.5). When ¢ is small, response of forces
F, and F, will follow the simple harmonic motion of the pendulum inherently the

response of the normal forces (see equation (6.4) and (6.5)). If ¢ is large, non-linearity of
the pendulum motion adds another harmonic to the maximum and minimum amplitude of

force F_, causing the amplitudes to saturate or even producing twin peaks if ¢ is
sufficiently higher (see Appendix 7 for F,when ¢ was varied). For F, response still

maintain sinusoidal.

The effect from F, inherently contribute the behaviour and profile of response in region
B. Figure 6.6 shows simulation of the forces, F and F,,and N, implying measurement
was taken from point M2 (refer to Figure 6.5). In Figure (6.6), force F_ was negative and

this correspond to when the load swing beyond the axis (with respect to point M2), and
positive when otherwise. When the load swing beyond the axis, the additional harmonic

present in F_was cancelled by F,, thus resultant force on N),2 was almost sinusoidal
within this duration. When the load swings in the region before the axis, /, will not

cancelled the additional harmonic present in /. but instead will exaggerate the non-linear

behaviour. Thus the ‘twin peaks’ effect is created.
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Figure 6.6: Simulations of F, and £, and the resultant, with angle @,..., = 30 degrees, and damping & = 0.

BD /fP‘\\ T T T T ¢ T T T T
SN onsneon SN
oA VA ANA A AANNAR
- RIRTRTRTATRIRIRIRTRTRIAIS
- ooH | LI ) | f | J ]
= | by W
prd '11 l[ I,UJ! UJ ¥ :
il 1 ! ) ’ . . -
-V egion B >l region A N
g‘ 20 L i I L o ] 1 ] ]
= 0 2 4 3] 8 10 12 14 16 18 20
g time / s
z B0 ] . , g . . , .
SN % \ \ | {7 s I fﬁ“ E - 2 3 - R
40 —ll \\Ir( 'IT/ | l[ f ‘1! ]; ‘ii R \[ l “! { Ili?l f l‘! lll lll [| (][ ll / | / | f
= WA Y
[;:J o0 _1‘ 11 | [| | l | |1 || / i{ / ;‘Il | ||‘ / | 't,h ! ) .
S IRIRTRI R
o U U ‘ / X 7]
‘ region B v region A
o0 1 1 1 ] i L I | j
0 2 4 G & 1] 12 14 16 18 20

Figure 6.7: Results from simulation method using equation (6.4) and equation (6.5) with angle @, .., = 30

degrees and damping factor x of 0.05.
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6.3.3 Swing and Sensor Position

The position of the swing feet under the platform and the sensors are illustrated in Figure
6.8. Three sensors, SI, S2 and S3, were used and were positioned closely to the
symmetrical axis of the plate. To get the highest coupling effect from the swing, two
sensors, S1 and S3, were placed in line with the opposite feet of the frames, and one

sensor, S2, placed at the centre.

777777

& Foot location

2 Sensor location

7/

Figure 6.8: Position of the swing and the sensor on the two clamped edges surface plate (top view).

6.4 Experimental Setup

6.4.1 Sensor Setup

To measure the plate deflection, reflective sensors such as the Photo reflector SY-CR 102
were used. The sensor type is a non-contact sensor. It was selected for its low cost and
appropriateness for this application. The fast rise time and fall time (IKHz), make it the

most suitable for dynamic measurements such that of the swing.
Each sensor has two essential mechanisms; the photo emitting diode which emits the

infrared light, and the phototransistor which detects and measures the reflected light

intensity. The change of the intensity changes the output voltage. Both of these
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mechanisms are integrated into a compact package of dimensions 2.7mm by 3.2mm. In
the operation, when there is an activity made by the swing, the plate will be deflected.
The deflection changes the distance between the sensor and the plate, thus changing the
intensity of the reflected light. However, a suitable height setting has to be established so
that the reading will be consistent with Condition 1. This can be done by having an
operation range bounded within a linear region as shown in Figure 6.9. In the experiment
3M Scotchlite Reflective tape was attached along the point of detection to ensure

maximum reflection from the emitted light.

Operational
range

Sensor response (V)

0 5 10 15 20
Clearance (mm)

Figure 6.9: Photosensor characteristic.

6.4.2 Signal Conditioning

The objective of conditioning the signal from the sensor is to ensure that it is reliable,
repeatable and compatible with the ADCs of the embedded system. With a typical 10kg
swing, the output from the sensor is only able to produce a maximum excitation voltage
output in the range of 10mV to 60mV from the raw sensor, but a very high D.C offset
voltage (relative to the changes) which is in the range of 3.5V to 4.7V. The first

procedure in the signal conditioning process was to remove the DC offset and amplify the
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G, -v

in ref

signal to a suitable range, V, ) With the measurement made from the raw

7
sensors, a gain G of 10 for sensor S1 and S3, and 80 for S2, were used for the
amplifications. As for the first attempt, a differential amplifier circuit with the selected
gain configurations was designed to take the single ended inputs from the sensor and
difference it with the suitable reference input voltage to give a steady zero output. This is
relative to when the swing is not yet mounted on the platform. However, the technique
was very fiddly to set up and was also very susceptible to drift. Because of the gain even
an unsteady drifting voltage as small as 0.1V will be amplified to 1V, and worsens if G is
80. The problem can be solved by introducing a high precision reference voltage input,
but as it should have ‘adjustable criteria’, constructing such a reference input would be
intricate, especially when designing for multiple parallel sensors. An alternative solution
is to remove the large differential DC voltages through active filtering. A similar
technique has been used for the high-precision analogue front end of a portable ECG
application (analogue article, Appendix 8). An instrumentation amplifier, INA128, with a
unity gain was used to take the singled ended output from the sensor. A low pass filter
circuit was connected in cascade to the output, which extracted the DC offset and fed it
back to the reference port of the instrumentation amplifier circuit. The DC offset free
signal could then be amplified with the gain G using a separate amplifier circuit also
connected in cascade. However, to ensure the technique operated correctly, the filter
circuit should have a cut-off frequency significantly smaller than the frequency of the
swing, thus enabling the filter to extract the relevant DC voltage. In this operation a cut-
off frequency of 0.06Hz was used, a significant cut-off frequency for filtering the offset
of the 0.7Hz operation swing. Pre-calculation of the correct capacitor and resistor values
was required in relation to the targeted operation frequency of the swing. A resistor with
a value of 560kQ and a capacitor of 4.7uF were found to be suitable. The schematic
circuit diagram is shown in Figure 6.10. This technique was more effective than the first
attempts, as the output was more robust and reliable. This method is also consistent with
the essence of the current work in its aim to measure the dynamic movement. The only
disadvantage of this approach is that it is not appropriate for the measurement of still

deflection of the stationary load. Following the signal conditioner for amplification is the
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clipping circuit, which acts as the ADCs’ FPGA input voltage rail-to-rail protector.
Unlike the cantilever experiment, the plate can be considered a ‘heavy-duty’ mechanical
application which is more prone to unexpected excessive load, and thus can overshoot the
output easily. Upon the removal and amplification of the DC and the clipping circuit, the
inputs can then be multiplexed and fed into the ADC following the same routine

described in Chapter 5.
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Figure 6.10: A schematic diagram of the DC remover circuit.

6.4.3 The Vicon System Setup

As detailed in the previous chapter, in order to train the neural network, sets of inputs and
the corresponding outputs have to be introduced into the training process. For a static
case experiment such as the cantilever beam, the input/output relation can be easily
measured. But for dynamic measurement as required in this chapter, a computational aid
has to be used to capture the dynamic input from the sensor as well as the corresponding
physical dynamic response. Here, it was decided to use a Vicon system. Using this

system the movement of an object in three-dimensional space can be captured with
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theoretical accuracy of 0.5mm. The system consists of an array of twelve cameras which

are positioned around the volume where the object is positioned.

Each camera has a resolution of a 1.3 megapixel CCD array and a high quality lens —a
similar configuration to that of a digital camera. An array of LEDs surrounds the lens
and emits light at a fixed wavelength in the near infrared (NIR) band. The subject (a
person or object) is fitted with reflective markers in key areas of movement. For example,
a person has the markers fitted to their joints (such as knees, elbows, etc.). The light
from the LEDs is reflected off the markers onto the camera’s CCD array. A filter is
implemented in the camera which filters out all wavelengths of light except that of the
LEDs. This means that a monochrome image is left which only contains the marker

reflections.

Each camera sends the captured image back to a processing unit, which in turn sends the
signal to a high powered PC. The PC uses the images (along with calibration data), to
produce a calculation based on triangulation, which determines a single set of three-
dimensional coordinates for each marker from the twelve two-dimensional images. The
displayed markers can then be labelled and related such that a three-dimensional ‘stick
model” representation of the captured object is shown on the screen. The three-
dimensional coordinate of any marker at any point in time can then be found. This

coordinate data was used to provide a training dataset for the neural network.

The markers were positioned on the swing at key points such that a good quality three-
dimensional representation could be reproduced in the motion capture software. The

marker points were positioned at:

° Either end of the horizontal bar at the top of the A-frame.

J On each foot of the frame.

° The front, back, left and right sides of the lower face of the 10kg mass.
e The top face of the 10kg mass (three markers set in a triangle shape).
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The resulting 3D model of the swing is shown below (Figure 6.11), along with an image
of the swing in motion. The model depicts two extra markers not described above. These
are virtual markers and are calculated using software scripts from the position of the real
markers. Virtual marker 1 in the centre of lower surface of the 10kg mass was calculated
as the centre of the four markers placed around sides of the lower face of the mass.
Virtual marker 2 is on the pivot at the centre of the top horizontal bar (see Figure 6.11).
The coordinates of these virtual markers are used as the reference point for the swing

position in the training data for the neural network.

Virtual Marker 2
T Frame

7 Virtual Mérk’ér 1

10kg mass

Figure 6.11: Configuration of markers on the swing.

To generate training data the sensor outputs were captured by an ADC built into the
Vicon system, which is fully synchronised with the sampling rate of the cameras. The
cameras and sensor data were set to sample at 200Hz for 25 seconds, thus generating
5000 samples. FEach sample from the sensors had a corresponding set of three-

dimensional coordinates representing the position of the swing at that point in time.
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6.4.3.1 Verification of the Performance of the Vicon System

A control experiment was performed to verify the accuracy of the Vicon system. This
procedure involves capturing multiple sets of readings relative to the position of the
markers on the swing, and comparing the difference between them. To make the
measurement more effective, the error evaluation from independent trials is imposed by
considering the error measurements from different Vicon system calibrations. Two
readings were captured from each calibration. A total of six separate calibrations were
made to produce 12 readings. For each of the calibrations the error difference made by
the first and the second readings was evaluated. The readings for different calibrations are
depicted in Figure 6.12. The corresponding absolute errors with different configurations
are shown in Figure 6.13. It was found that the average of the errors (green dashed line)
is 0.585mm, which is in agreement with the theoretical figure of 0.5 mm. However, with
this level of accuracy attention has to be given to the ability of smaller motions to be
captured. This is because, for an example displacement of Smm, theoretical accuracy of
0.5mm will generate an uncertainty of 5%, producing a significant impact on the
accuracy of the measurement. Practically, one means to reduce the error is to obtain the
smaller motion from the components forming the larger motion — resultant displacement
of the motion. For this only a single capture is required. The components can then be

derived separately.
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Figure 6.12: Readings for different calibrations of the Vicon system.
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Figure 6.13: The absolute error from different calibrations.

6.4.4 Input Output Setup

Three output displacements were considered for the measurement; the displacement y of

the load in the direction of the swing, the z displacement of the height achieved by the

swinging load, and the X displacement from the side direction that occurs from the
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wobbling movement of the swing. In this process all of the displacements are captured
from the Vicon system, together with the sensor outputs. They are processed and saved.
The displacement outputs use metric units for measurement (in millimetres)i, therefore
post-processing was performed to make them appropriate for the training of the neural
network. First the outputs were offset to have mean of zero, before dividing them with
their corresponding maximum absolute amplitude, so that they are bounded between [-
1,1]. However, for the requirement of the FPGAs” ADCs and the safe margin from the
threshold range of the device, the magnitude can be bounded to [-0.7, 0.7] easily by
multiplying by a factor 0.7. No pre-processing was required of the sensor outputs, as the
adjustment of the gain G was already complete (Section 6.3.2). Typical real outputs from
sensors 1, 2, and 3 (blue line) and the outputs (red line) from the Vicon, displacements

X,y and Z used for training are shown in Figure 6.14. Notice that sensors 1 and 3 are

out of phase by 180 degrees, consistent with equations (6.4) and (6.5). The ‘twin peaks’
were present throughout the early periods of the swing, implying that the swing was
beyond the simple harmonic region. The profile and characteristics of the results are

consistent with those obtained by simulation, thus meeting Condition 4.
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Figure 6.14: Typical sensor outputs (blue) and vicon output (red) of the ¥, y and Z displacement,

6.5 Interpretation Tool

To calculate the displacement of the outputs X, y and z of the swing, the neural network

algorithm (as described in the pervious chapter) was used to interpret the sensor readings.
Here, the neural network, which is based on training using back-propagation, utilised an
average total of 4600 samples of data to achieve satisfactory convergence. To measure
the generalisation error, the data was split into three sections, one of which was used for
training (50% of the data), another for validating (25%) and final section was used solely
for the testing (25%). Similar to earlier training, early stopping regularisation was applied
to prevent the network from over-training. Optimisation of the network configuration,

such as the optimum number of hidden layers, also used a similar technique as described

- 199 -



Chapter 6. Hardwired Tactile Sensing for a Dynamic System

earlier, for example the tactic of training the network with varying numbers of hidden

nodes in order to detect the best performance.

Three different types of neural network arrangements, as introduced in Chapter 3, are
adopted and used here. The Single network is a network which relies only on the output

from three sensors for the evaluation of the three outputs ¥, y and z concurrently. The

Cascade network relies on the three sensor outputs, or other networks’ outputs, as part of
the input information as it evaluates each displacement individually. In this configuration,

the three sensors were fed into a single neural network to evaluate y displacement. The
evaluated y, together with the sensor outputs, were then used by the next neural network
to evaluate displacement x. The displacements X and y, and the set of outputs from the

sensors are used to evaluate displacement z .

Another type of arrangement added to the investigation and used for the implementation
is referred to as a Multiple network. The configuration is similar to that of the Cascade,
but it relies only on the sensor outputs and uses of set of three concurrent (but separate)
networks to evaluate x, y and z individually. The training of the Multiple is similar to
the Single, but was done individually for X, y and z. For the training of the Cascade
network the training by parts as described in Chapter 3 was adopted. However, the
training by parts of the network using the suggestive approach (as discussed in Chapter 5)
was not employed here. This is because optimisation was limited by the such higher
number of samples for the simulation of the bit true model system. The cost of the
simulations is very high. One solution is to reduce the sample time for the simulation,
thus changing the sample time of the model. However, such an approach may lead to
inconsistency in the actual model used in the implementation. Therefore the training
follows the training procedure performed for the Cascade A design (refer to Chapter 5).
Optimisation of the hidden nodes was undertaken for the three networks. It was found
that the Single network was more effective with 16 hidden nodes, thus producing a
configuration of 3 inputs, 16 hidden nodes, and 3 outputs. For the Multiple network, three

single networks were trained and optimised. The optimum configurations were 3 : 7 : 1,
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3:7:1and3:9:1 for the outputs x,y and z respectively. For the Cascade network,
the optimum configuration was 3 : 7 : | for the evaluation of output y,4 : 6 : 1 for output
x and 5:5: 1 for output z. Note that y was selected as the primary parameter because

it is the most influenced by the swing. Also, based on the simulated results obtained from

the Single and the Multiple networks, y is the output showing the best accuracy of

evaluation, followed by the x and z. Asoutput Z had the most un-linear characteristic it

was placed as the last output in the cascade.

For the implementation of the networks, the Hybrid design and the Cascade design
described in Chapter 5 could be used directly for the Single and Cascaded networks. For
the Multiple network the Hybrid design could be adopted and duplicated into three sets of
networks. All of the designs were updated for the correct number of hidden nodes. The
training weights and biases were fed into the constants and ROM Blocksets. The designs
were generated, synthesis and implemented on the same FPGA with a clock frequency of

64MHz. The resource requirement for the different designs is tabulated in Table 6.1.

Single Multiple Cascade
Occupied Slice 33% 48% 39%
4 inputs LUTs 21% 30% 24%
Bounded 10Bs 7% 14% 14%
MULTI18X18s 52% 76% 60%
Peak memory 218 MB 259 MB 233 MB
Total Gate count 285 K 414 K 336 K

Table 6.1: Digital resource requirements for Single, Multiple and Cascade design

6.6 The Results

The embedded models were tested independently in real time. On each of the tests the
Vicon system was calibrated to give the optimum solution during extraction of data. The

output displacements x,y and z, with the sensor data for each of the Single, Multiple

and Cascade designs were captured and processed. Figures 6.15 - 6.17 show the
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responses obtained from the experiment (blue line), the Vicon displacement (dark-green
line) and the relative errors (red line). The results suggest that the predicted response
tracks the Vicon outputs satisfactorily. To measure the performance accurately requires
computing the percentage error (equation (6.6)). The error was computed by dividing the
mean of the absolute relative error by the mean of the total displacement, and multiplying
by 100. The percentage errors with the relevant means parameters for the Single,
Multiple and Cascade designs are tabulated in Table 6.2. In terms of verification of the
results, percentage errors obtained from series of simulations utilising the captured sensor
output of the series independent tests were also computed using FPGA simulations and
Matlab simulations. The comparative results are shown in the form of bar charts in
Figures 6.18 to 6.20. The FPGA simulations correspond to the feed forward simulation
using the bit true number system models. The Matlab simulations used explicit number
system models. The simulations are similar to those in Chapters 3 and 5, except here the

actual sensor outputs captured by the Vicon system during the testing are used.

mean(abs(relative error)

x100 (6.6)

% error = -
mean(actual total displacement)
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Figure 6.15: Approximated (blue line) and vicon displacement (dark-green line) and relative error (red line)
of %,y and Z using the Single network.
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Figure 6.16: Approximated (blue line) and vicon displacement (dark-green line) and relative error (red line)
of X, ¥ and Z using the Multiple network.
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of %,y and Z using the Cascade network.

blue line) and vicon displacement (dark-green line) and relative error (red line)

Single | Mean absolute error/mm | Mean total displacement/mm Percentage error
X 0.3 8.9 33%
y 8.6 330.2 2.6 %
z 1.9 26.8 7.0 %
Multiple Mean absolute Mean total displacement/mm Percentage error
error/mm
X 0.1 8.9 1.5 %
y 5.1 324.4 1.6 %
z 0.9 24.4 3.5%
Cascade Mean absolute Mean total displacement/mm Percentage error
error/mm
X 0.3 9.0 32%
y 6.3 340.9 1.8 %
7 0.9 215 4.4 % B

Table 6.2: Mean absolute relative error, mean actual total displacement and the percentage error.
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SINGLE
MULTIPLE
OCASCADE

L

=
(M|

N

¥ % error

_x
w

0

1 2 3

Figure 6. 19: Percentage error for ) from testing and simulations.
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Figure 6.20: Percentage error for z from testing and simulations.

The results reveal that the performances of the three methods used for interpreting the
displacements in real time are satisfactory. The overall accuracies of the methods are not
lower than 97% to approximatex, 97.4% for y and 93% forz. For the z value, even
with the presence of uncertainty from the Vicon system (as explained in Section 6.4.3.1),
the interpretation is still acceptable. This is because the suggested method, taking the
resultant displacement and extracting from it the individual X, y and z components,
was followed. By doing so, the error in each of the components can be minimised.
Secondly, even if some error exists in the outputs, the high sample frequency of the
salient embedded sensory interpretation system is designed to be able to reject these. This
is the advantage of the technique. The generalisation and early stopping has proven to be

effective here.

It is also important to note during the tests, the initial angle of the swing ¢, .., was

relatively high (section 6.3.2) that this has lead the swing to experience simple harmonic
motion but show signal of more complex behaviour mainly in the early periods. With the
accuracies mentioned imply that the systems have shown their competency to predict

even with non-linear case.
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As all of these systems have been shown to be adequate for the application, the issue then
becomes which is the most appropriate. First the cost of training can be compared.
Obviously the Cascade network is the most intricate network to train, followed by the
Multiple network and than the Single is the most simple. In terms of the digital resources
requirement, the Multiple is the most resources hungry with gate count requirements of
414K, followed by the Cascade and the Single with 336K and 285K respectively. In
terms of accuracy, the Single is the least favoured network for the dynamic interpretation

in this application, followed by the Cascade and then the Multiple.

It was discovered that the Cascade had shown relatively higher error in this application in
comparison to the Multiple design. This is mainly due to the cascading technique of the
design. As the network is dependent on the output of the previous network, any
uncertainty presents with the sensor outputs signals will inherently causing errors to all of
the outputs computed in cascade. This justification is consistent since in real case
scenario, measurement involving dynamic motion will be more susceptible to noise. By
deduction, it is thus suggested that the Multiple is the most appropriate method for the
dynamic interpretation application, but with the expanse of high digital resources

required.

6.7 Summary

This chapter has demonstrated that the three architectures incorporating the designed
embedded sensory sensing system are all adequate for the application of motion
interpretation in real time, using a rigid and fixed steel surface as the distributive sensing
medium. The three types of architectures are the Single, Multiple and Cascade networks,
all of which have shown satisfactory results during their implementation, with overall
accuracies greater than 93%. With such accuracies, this method has the potential to be
extended for the more sophisticated discrimination of human motion, and potentially

types of gait, from the disturbance produced on the contact surface.
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CHAPTER 7

Conclusion and Future Research

7.1 Conclusion

Chapter | has broadly described some of the prospective applications of the
hardwired distributive tactile sensing system in medical devices. This chapter
addresses the main contributions of the current research, summarised as follows; Firstly
the formulation of a distributive sensing method for application to a single dimensional
system. This method benefits the development of a flexible digit with a minimal number
of sensing elements, which may well lead to the production of a low cost tactile
endoscope. The system having as few as four sensors was proven to produce satisfactory
results. Secondly is the formulation of digital activation friendly algorithms used for the
implementation of distributive tactile sensory processors, such as neural networks, into
hardware. This research provides empirical data reflecting various comparisons of the
proposed digital activation functions in terms of mathematical background, results and

performances. Thirdly is the demonstration of different designs of neural network
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architectures for hardware implementation. These architectures are also useful for those
researchers interested in implementing other tactile sensing systems, such as the array
method, which involves a neural network as pattern interpreter (see Figure 7.1). Fourthly
is the introduction of a fast and efficient means of prototyping designs into digital
hardware such as FPGAs. Following the proposed flow design allows easy
reconfiguration of the target design implemented onto the device, even after deployment.
And lastly is the study of a two-dimensional system for use with hardwired distributive
tactile sensing to interpret real time motion demonstrating versatility of the hardwired
approach as the interpreter function of distributive tactile sensor of different application

and configuration.

From this list of contributions it is clear that the projects undertaken have met the original

aims of this research.

Array sensory signal
reconstruction tool

Pattern of sensory _D..

signal Pattern of sensory

@ signal

Hardwired sensory interpretation algorithm.
(Neural network)

v ’

Object profile 3 dimensional Other high level
and position  motion interpretation contacting property
interpretation

) ) Array tactile sensing
Distributive tactile
sensing

Figure 7.1: Diagram to illustrate the flow of the research and the flexibility of the technique in terms of
cooperating with other techniques, such as an array with neural network based signal processing.

The studies described in this thesis have explored and discovered effective means of
implementing neural networks into hardware for the purpose of developing a novel
hardwired distributive tactile sensing system. Two applications of the system have been
identified. The first is the use of this system in a flexible digit with tactile feedback,

which has the possibility of leading to a low cost but smart tactile endoscope. The second
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application is for the interpretation of sway, surge and heave dynamic information, useful
in clinical applications such as balance and posture assessment of patients. The main
benefit of the technique is high performance, compactness and flexibility in terms of
reconfiguring abilities. The technique devised has also shown many features which make
it applicable as a general purpose technique, useful for applications other than those in

the biomedical field.

The essence of the sensing technology explored in this thesis is distributive tactile
sensing, a type of sensing which is unique in terms of the way the sensors are constructed
and the topology of the sensory processing. This research has demonstrated that only a
minimal number of sensing elements is required for high accuracy. This technique thus
offers the possibility of a less complication system, particularly in terms of fabricating the

sensory elements, and is also more robust and has a low cost of construction.

The sensory processing involves in distributive tactile sensing is usually in the form of an
interpretation algorithm, used to directly interpret the pattern of signals from the sensory
elements into contact information. A clearly effective method used in this research is the
use of a supervised neural network. Two classes of supervised neural networks, namely
radial basis function (RBF) and multi layer perceptron (FFMLP) nets were presented, but
this research has chosen to use the FFMLP type net. This decision was made based on
information from previous research (refer to Chapter 2), and the empirical investigation
presented in Section 3.11.3. The investigation conducted as part of this project revealed
that the RBF tends to require more mathematical computation, particularly in terms of
multipliers and adders, than the FFMLP, with respect to the same number of hidden
nodes. With the network configuration of 2 inputs, 6 hidden nodes and 2 outputs for the
prediction of load magnitude along the position, the RBF required 56 multipliers and 29
adders, whereas the FFMLP requires only 24 multipliers and 26 adders. A design which
consumes a high number of mathematical operations, particularly multiplication, is a

serious issue when it comes to digital implementation. Most of the devices could not cope
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with a design requiring an excessive number of digital resources. In this research, the

FPGA used is a Virtex-11 2XCV3000 from Xilinx and offers only 96 digital multipliers.

Also note that in Chapter 3, the accuracy of the FFMLP was investigated, including
various network arrangements to infer loading condition, such as the magnitude and the
profile at various applied positions. By arranging the network in cascade (Section 3.12.1)
the mean errors improved to 0.58%, 0.58% and 0.85%, equivalent to than that obtained
by the multiple, but better than that obtained by the single neural network arrangement
for the evaluation of load. Other mean error rates for this network were 0.63%, 1.02%
and 2.19% for the evaluation of position, 0.63%, 3.54% and 4.29% for the evaluation of
width, and 2.61%, 2.95% and 9.02% for the evaluation of load shape. For this application,
it can be deduced that the extra input(s) obtained from the output(s) of the latter network
have improved the convergence of the training. This is mainly due to that these extra
inputs(s) carried useful information for the proceeding network to better adapt with the
problem. A similarity can be observed in a human during learning process. The more we

are provided with useful information, the more easily our brain can understand.

All of the results obtained from the implementation of the distributive tactile sensing
system in Chapter 3 were using computer simulations. Usually simulations are only
useful for the evaluation stage, when validating the proposed technology to be used in a
real system. In this case, the investigation of the system could not fully reflect the real
case scenario, which is if it was tested in a real application. Inevitably, the presence of
noise will significantly affect the ability of the interpretation tool to predict the result
correctly and reliably. Thus this factor will reduce the applicability of the analysis
generated by the simulation. As mentioned, this level of achievement is reported in
previous research such as (e.g. Ma, Brett, Wright & Griffiths, 2004; Tam, 2005).
However, the current research has gone further down this track, and has thus made this

research innovative.
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One of the primary challenges of the hardware implementation of the neural network was
to duplicate as close as possible the real function of the feed-forward neural network
topology into a digital representation, before its implementation into the FPGA. The idea
of implementing only the forward function of the network was based on the fact that the
neural networks used are of a supervised type. A supervised neural network requires
supervision in order to achieve its optimum network configuration, including the
parameters based on repeated training. However, although some of the work described in
the literature focused on implementing training, it can still be argued that this cannot fully
fulfil the aims of optimised neural network training. More importantly, even if the
training of a neural network using hardware had been achieved, it would not have
supported the high complexity of the training by parts of the cascaded neural network
proposed in the current research. The complete training of the cascade is composed of a
series of sub-training sessions of individual output. Important decisions related to the

purpose of optimisation have to be made in between the sub-training stages.

In this research, the training and optimisation of the neural network was still run as
software intelligent property using a processor such as a PC workstation. Having the
training offline provides the ability to make decisions about early stopping and
regularisation (as has been explained in Chapter 3) in order to prevent the network from
being over-trained. The problem of over-training is a generic issue in neural network
applications. Another advantage of this approach is that it allows the training to be
undertaken by a different training optimiser for the purpose of searching for an effective
training method. For example, if the problem of local minima is inevitable if using a
conventional backpropagation training method with a gradient descent optimiser, one can
employ another optimiser such that is based on scaled conjugates, fuzzy logic (Bezdek,
1992) or genetic algorithms (Fogel, 1994). Or if the training data is limited, another
training algorithm such as the Bayesian technique (Bishop, 2003) can be used (see Figure
7.2). In other words this approach can facilitate the implementation of the Hybrid neural
network, which has recently started gaining popularity (Giles, Sun and Zurada, 1998).

However, in the current research training using backpropagation with a scale conjugate
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optimiser was shown to be adequate, and thus was used throughout the application. Upon
training, the specific purpose testing model can be calibrated easily. Training using the
explicit number system will offer better accuracy than that of using the two’s

complement based number system training.

Offline training
Using BP/gradient scheme,
BP/scale conjugate,
BP/fuzzy logic,
BP/genetic algorithm,
or Bayesian technique,

A

Calibration

A

Specific purpose digital
testing model

: _ ' :
Contains parameter weights i Design
and biases Hlow into

Specific purpose digital
hardware for real time
testing

A 4

__________________________

Figure 7.2: Design flow of training/testing.

The duplication of the feed-forward algorithm also includes the activation function, such
as the hyperbolic tangent, which lies at the heart of the network problem. In this research
four approximation algorithms were presented to replace the actual hyperbolic tangent
function. These were the Gradient and Polynomial schemes, which represent piecewise
mathematical approximations, the Padé approximation, which represents continuous
mathematical approximation, and the Look-Up Table based technique. The models were
validated using bit true simulations. The findings revealed that the Padé generated an
error of 0.09% and a total gate of 33K, the Gradient produced an error of 0.4% and a total
gate of 44K, and the Polynomial had an error of 0.58% and a total gate of 28K. All of
these were shown to be more adequate than the conventional method, the Look-Up Table
(LUT), with an error of 1.08% and a total gate of 74K. The introduction of the
approximation functions was found to be an effective solution to the implementation

problem.
Three architecture-friendly designs were devised for the implementation of the FFMLP

neural networks, namely Fully parallel, Hybrid (folded) and Cascade (hybrid based)

designs. The fully parallel architecture takes the parallel computational of the neural
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network and implements it into an FPGA. This method was found to offer high
performance, but was also the most resource hungry approach. This architecture was used
to incorporate the various types of activation function designs, and then tested to evaluate
the basic loading parameters; load magnitude and load position. From the results it was
clear that all of the networks produced adequate accuracies, although the network using
the LUT exhibited a slightly higher error. However, the high resource demands of the
Fully parallel approach constrained the implementation of extra input, hidden and output
nodes. To solve the resource problem the Hybrid (folded) model was proposed. The
Hybrid (folded) is a design which mimics the concurrent behaviour of the actual network
topology, but employs the re-usable technique to optimise the use of mathematical
operations effectively. To facilitate the design, a modified gradient scheme is introduced
as an activation function. The previous gradient scheme was selected for modification for
its better digital-compliance algorithm in comparison to the Padé and the Polynomial.

The Hybrid was adopted for use in the design of the cascaded system.

The investigation on evaluating the best interpretation tool has gone further by comparing
two different optimisation types used to obtain the optimised feed forward models of the
cascade network. First there is the explicit number system of optimisation (as explained
in Chapter 3), in which each network is trained and optimised using the sensor inputs and
the computed outputs produced by simulating the explicit feed forward model. A second
option is the bit true number system of optimisation. Here the cascade network is
optimised by the procedures exercised earlier for the first option, but taking into account
the use of the bit true feed forward model, (digital design) to simulate the outputs. In the
context of the thesis, the first is referred to as Cascade network A, and the later is
Cascade network B. The Hybrid, Cascade A and Cascade B were verified using bit true
simulations. From the simulations the mean error for the Hybrid are better than 8.57% for
load, 4.07% for load position, 5.54% for load width and 14.20% for load shape
respectively. For Cascaded network A, the mean error rates are better than 3.67% for load,
3.63% for load position, 5.70% for load width and 13.91% for load shape. Finally, for

Cascade network B, the mean errors rates are better than 3.67% for load, 2.60% for load
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position, 2.49% for load width and 2.9% for load shape. On the basis of these findings it
was concluded that optimisation using bit true simulation is a more effective and
influential strategy for the digital cascade network. However by considering the cost to
obtain high accuracies from network complexities (between Single and Cascade A), more

favours are put on the Single and Cascade B for implementation.

The single neural network from the Hybrid design and the cascaded neural networks from
Cascade network B were successfully implemented into the Xilinx Virtex-11 2XCV3000.
The results were then analysed. In the context of application to single dimensional
system demonstrating for the almost static case of contact discrimination, the
implementation findings described in Chapter 5 confirmed the superiority of employing
the Cascade over the Hybrid (single network) in terms of accuracy. The drawbacks of the
cascade model are the high cost of training and slower output operation in comparison to

the single model.

In relation to the flexible digit application with tactile sensing feedback, the accuracy of
the method provided by the implementations means that it is adequate for clinical
evaluations. The accuracies can be verified by the work done by Ma, Brett, Wright and
Griffiths (2004). In that study the accuracies achieved for the evaluation of load
magnitude, load position and load shape are 7%, 6%, 6%, and 1%. In the current research
the error in relation to the loading parameters read from the real-time measurement (as
achieved by cascade B) are better than 6.4%, 2.3%, 2.9% and 3.8%. With these
accuracies, and with the consideration that the implementations are all digitisation-based,
implied the superiority of the technique devised from this research. Thus the system

considered to be sufficient to facilitate operator control in MIS.

The hardwired tactile sensing approach devised in this research is not limited to a specific
application. With the system allowing flexibility in terms of the ability to calibrate the
design, relative simplicity in terms of programming and re-programming of the FPGA

(even after deployment) and high performance, this approach is clearly feasible for other
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applications, such as the interpretation of motion from contact disturbance. This approach
was thus adopted for a dynamic tactile application and used for the interpretation of sway,
surge and heave motion of a pendulum. This investigation revealed that the system
demonstrating Single, Multiple and Cascade network configuration, had overall accuracy
rates of better than 93%. The hardwired sensing approach is thus competent to handle this
application, strongly implying that it can be used in upcoming research involving human

subjects.

From this research it can be concluded that the novel hardwired distributive tactile
sensing system is successful and will be beneficial for the two medical oriented
applications described in this thesis. The hardwired signal processing system developed
in this research has shown its proficiency at generating real-time interpretations with
satisfactory accuracies. It can be deduced that the output from the research has met the

hypothesis.

7.2 Future work

e To enhance the investigation of 1 D case by introducing a suitable means of actuation
control. This will demonstrate the hardwired distributive sensing with active actuation.
The study will more closely analogue to real cases such as the steerable endoscope. In the
current research (as detailed in Chapter 3) an experiment was performed using a
cantilever beam to mimic the sensing elements of the flexible digit system. However
actuation forces such as driving force, which could largely influence the deformation of
the medium, was not include in the study. Although it has been emphasised in the thesis
that the empirical results from the investigation have direct relevance to the later case
(with active actuation), it would be more appropriate if the investigation considered the
use of the actuated flexible digit.

e To integrate functions of the actuation controller and tactile feedback to demonstrate

haptic feedback in the flexible digit. Information from measurement (discrimination) and
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the actuation command can be used together to assist the closed loop control of the
system. If the digit presses too hard on a surface during maneuvering, excessive force
from contact will be fed back and used to prevent damage.

e To adopt the Fibre Bragg Grating sensor proposed by Cowie, Webb, Tam, Slack, and
Brett (2006). As described in this thesis the FPGA only takes and processes signals in the
voltage domain. Since the signal from the FBG is in the frequency domain, this could be
converted to voltage through the use of a frequency to voltage converter. But for the case
of the FBG, this process can not be implemented directly as the signal data output from
the FBG has to be processed using an algorithm to extract the relevant signal information.
Therefore the idea of incorporating FBG with the hardwired distributive tactile sensing
system is still receiving considerable attention.

e To apply the dynamic plate to human as the subjects such that as to discriminate
walking condition.

e To continue the work on exploiting the training algorithm using the FPGA. During
the period this research, the author has started designing the training tool for the FFMLP
targeted to be implemented on the same FPGA. The training tool would equip simple
neural network training specifically feasible for the Single neural network arrangement
used in the research. The biggest challenge of the work would be devising the digital

algorithm to facilitate the problem of over-fitting.
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7.3 Future Five Years of the Subject

This research has opened a new direction of investigation in the use of hardwired tactile
sensing, particularly in the area of medical applications. Hardwired tactile sensing will
gain popularity because of its user-friendly system capable of providing high
performance discriminative based measurements in real time, with high efficiency of

design and low cost fabrication.

In few years time, this tool will bring important solutions that may revolutionise many

industrial products involving tactile sensing.

End of Chapters
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Appendix 2

Sensor 1 Sensor 2 Sensor 3 Sensor4 Load

-0.9300
-0.9050
-0.8800
-0.8550
-0.8300
-0.8000
-0.7700
-0.7390
-0.7080
-0.6805
-0.6530
-0.6220
-0.5910
-0.5605
-0.5300
-0.8040
-0.7805
-0.7570
-0.7340
-0.7110
-0.6875
-0.6640
-0.6395
-0.6150
-0.5900
-0.5650
-0.5400
-0.5150
-0.4895
-0.4640
-0.4385
-0.4130
-0.5410
-0.5255
-0.5100
-0.4940
-0.4780
-0.4620
-0.4460
-0.4305
-0.4150
-(0.3990
-0.3830
-0.3665
-0.3500
-0.3335
-0.3170
-(3.3000
-0.2830
-0.2670
-0.3650
-0.3535
-(0.3420
-0.3320
-.3220
-03110
-0.3000
-0.2890
-0.2780
-0.2665
-0.2550
-0.2440
-0.2330
-0.2225
-0.2120
-0.2010
-0.1900
-0.1785

-0.9300
-0.8800
-0.8300
-0.7800
-0.7300
-0.6800
-0.6300
-0.5770
-0.5240
-0.4735
-0.4230
-0.3670
-0.3110
-0.2575
-0.2040
-0.8230
-0.7810
-0.7390
-0.6980
-0.6570
-0.6145
-0.5720
-0.5280
-0.4840
-0.4400
-0.3960
-0.3510
-0.3060
-0.2600
-0.2140
-0.1695
-0.1250
-0.5740
-0.5465
-0.5190
-0.4910
-0.4630
-0.4350
-0.4070
-0.3785
-0.3500
-0.3215
-0.2930
-0.2635
-0.2340
-0.2055
-0.1770
-0.1470
-0.1170
-0.0885
-0.3880
-0.3690
-0.3500
-0.3310
-0.3120
-0.2930
-0.2740
-0.2545
-0.2350
-0.2160
-0.1970
-0.1765
-0.1560
-0.1375
-0.1190
-0.0990
-0.0790
-0.0600

-0.9300
-0.8050
-0.6800
-0.5500
-0.4200
-0.3200
-0.2200
-0.1575
-0.0950
-0.0483
-0.0016
-0.0023
-0.0030
-0.0040
-0.0050
-0.8920
-0.7870
-0.6820
-0.5770
-0.4720
-0.3675
-0.2630
-0.1855
-0.1080
-0.0635
-0.0190
-0.0115
-0.0040
-0.0045
-0.0050
-0.0045
-0.0040
-0.6750
-0.6065
-0.5380
-0.4685
-0.3990
-0.3305
-0.2620
-0.1935
-0.1250
-0.0710
-0.0170
-0.0115
-0.0060
-0.0060
-0.0060
-0.0055
-0.0050
-0.0055
-0.4570
-0.4045
-0.3520
-0.3100
-0.2680
-0.2215
-0.1750
-0.1315
-0.0880
-0.0540
-0.0200
-0.0130
-0.0060
-0.0065
-0.0070
-0.0076
-0.0070
-0.0070

0.8877
0.8877
0.8932
0.8844
0.9031
0.9042
0.8910
0.8910
0.8932
0.8965
0.8998
0.8932
0.9064
09152
0.9075
0.7328
0.7317
0.7405
0.7306
0.7394
0.7416
0.7174
0.7383
0.7427
0.7427
0.7350
0.7372
0.7438
0.7383
0.7372
0.7284
0.73%4
0.4647
04669
04790
04735
04779
0.4801
0.4680
04757
0.4856
04779
0.4691
0.4735
0.4724
0.4680
0.4625
04592
0.4570
(.4680
03164
0.3087
0.3142
0.3208
03219
03241
0.3142
03120
03120
0.3065
0.3021
03131
03131
03164
0.3164
03175
03186
03175

0.9000
0.9000
0.9000
0.9000
0.9000
0.9000
0.9000
0.9000
0.9000
0.9000
0.9000
0.9000
0.9000
0.9000
0.9000
0.7435
0.7435
0.7435
0.7435
0.7435
0.7435
0.7435
0.7435
0.7435
0.7435
0.7435
0.7435
0.7435
0.7435
0.7435
0.7435
0.7435
0.4695
0.4695
0.4695
0.4695
0.4695
0.4695
0.4695
0.4695
04695
0.4695
0.4695
0.4695
0.4695
0.4695
0.4695
0.4695
0.4695
0.4695
0.3130
0.3130
0.3130
0.3130
0.3130
0.3130
0.3130
0.3130
0.3130
0.3130
03130
0.3130
0.3130
0.3130
0.3130
0.3130
0.3130
0.3130

Position

0.2250
0.2700
0.3150
0.3600
0.4050
0.4500
0.4950
0.5400
0.5850
0.6300
0.6750
0.7200
0.7650
0.8100
0.8550
0.1800
0.2250
0.2700
0.3150
0.3600
0.4050
0.4500
0.4950
0.5400
0.5850
0.6300
0.6750
0.7200
0.7650
0.8100
0.8550
0.9000
0.1350
0.1800
0.2250
0.2700
0.3150
0.3600
0.4050
0.4500
0.4950
0.5400
0.5850
0.6300
0.6750
0.7200
0.7650
0.8100
0.8550
0.9000
0.1350
0.1800
0.2250
0.2700
0.3150
0.3600
0.4050
0.4500
0.4950
0.5400
0.5850
0.6300
0.6750
0.7200
0.7650
0.8100
0.8550
0.9000

Width

0.9000
0.5000
0.9000
0.9000
0.9000
0.9000
0.9000
0.9000
0.5000
0.9000
0.9000
0.5000
0.9000
0.9000
0.9000
0.6750
0.6750
0.6750
0.6750
0.6750
0.6750
0.6750
0.6750
0.6750
0.6750
0.6750
0.6750
0.6750
0.6750
0.6750
0.6750
0.6750
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4560
0.4500
0.4500
0.4500
0.4560
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500

Shape

0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500




-0.5140
-0.5000
-0.4860
-0.4710
-0.4560
-0.4410
-0.4260
-0.4115
-0.3970
-0.3815
-0.3660
-0.3515
-0.3370
-0.3215
-0.3060
-0.2910
-0.2760
-0.2615
-0.2470
-0.4240
-0.4120
-0.4000
-0.3875
-0.3750
-0.3630
-0.3510
-0.3385
-0.3260
-0.3140
-0.3020
-0.2890
-0.2760
-0.2635
-0.2510
-0.2390
-0.2270
-0.2145
-0.2020
-0.2870
-0.2790
-0.2710
-0.2620
-0.2530
-0.2445
-0.2360
-0.2280
-0.2200
-0.2115
-0.2030
-0.1945
-0.1860
-0.1775
-0.1690
-0.1605
-0.1520
-0.1435
-0.1350
-0.7200
-0.7000
-0.6800
-0.6600
-0.6400
-0.6190
-0.5980
-0.5765
-0.5550
-0.5340
-0.5130
-0.4910
-0.4690

-0.5570
-0.5325
-0.5080
-0.4825
-0.4570
-0.4295
-0.4020
-0.3760
-0.3500
-0.3235
-0.2970
-0.2705
-0.2440
-0.2170
-0.1900
-0.1635
-0.1370
-0.1105
-0.0840
-0.4610
-0.4395
-0.4180
-0.3960
-0.3740
-0.3530
-0.3320
-0.3105
-0.2890
-0.2670
-0.2450
-0.2225
-0.2000
-0.1780
-0.1560
-0.1345
-0.1130
-0.0910
-0.0690
-0.3120
-0.2975
-0.2830
-0.2670
-0.2510
-0.2365
-0.2220
-0.2080
-0.1940
-0.1795
-0.1650
-0.1490
-0.1330
-0.1185
-0.1040
-0.0900
-0.0760
-0.0600
-0.0440
-0.7650
-0.7280
-0.6910
-0.6560
-0.6210
-0.5845
-0.5480
-0.5110
-0.4740
-0.4365
-0.3990
-0.3585
-0.3180
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-0.6900
-0.6300
-0.5700
-0.5030
-0.4400
-0.3740
-0.3080
-0.2445
-0.1810
-0.1205
-0.0600
-0.0340
-0.0080
-0.0070
-0.0060
-0.0060
-0.0060
-0.0060
-0.0060
-0.5710
-0.5190
-0.4670
-0.4125
-0.3580
-0.3065
-0.2550
-0.2020
-0.1490
-0.0985
-0.0480
-0.0275
-0.0070
-0.0065
-0.0060
-0.0055
-0.0050
-0.0060
-0.0070
-0.3880
-0.3525
-0.3170
-0.2795
-0.2420
-0.2065
-0.1710
-0.1355
-0.1000
-0.0670
-0.0340
-0.0215
-0.0090
-0.0080
-0.0070
-0.0070
-0.0070
-0.0070
-0.0070
-0.9180
-0.8250
-0.7320
-0.6420
-0.5520
-0.4620
-0.3720
-0.2825
-0.1930
-0.1155
-0.0380
-0.0235
-0.0090

0.4296
04318
0.4362
0.4416
0.4329
0.4395
0.4439
0.4340
0.4471
0.4384
0.4362
0.4329
0.4340
0.4285
0.4252
04219
04186
0.4285
04329
0.3472
0.3538
0.3593
0.3538
0.3604
0.3625
0.3691
0.3604
0.3571
0.3560
0.3549
0.3516
0.3483
0.3439
0.3527
0.3549
0.3560
0.3560
0.3549
0.2252
0.2285
02318
0.2362
0.2241
0.2252
0.2318
0.2417
(.2406
0.2406
0.2395
0.2439
02428
0.2439
0.2439
02417
02417
02439
02439
0.6251
0.6262
0.6240
0.6328
0.6119
0.6361
06174
0.5922
0.6054
0.6339
0.6328
0.6317
0.6273

0.4305
0.4305
0.4305
0.4305
0.43035
0.4305
0.4305
0.4305
0.4305
0.4305
0.4305
0.4305
0.4305
0.4305
0.4305
0.4305
0.4305
0.4305
0.4305
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0.2348
0.2348
0.2348
0.2348
0.2348
0.2348
0.2348
0.2348
02348
02348
0.2348
0.2348
02348
0.2348
0.2348
0.2348
0.2348
(0.2348
0.6261
0.6261
0.6261
06261
0.6261
0.6261
0.6261
0.6261
0.6261
0.6261
0.6261
0.6261
0.6261
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0.0900
0.1350
0.1800
0.2250
0.2700
0.3150
0.3600
0.4050
0.4500
0.4950
0.5400
0.5850
0.6300
0.6750
0.7200
0.7650
0.8100
0.8550
0.9000
0.0900
0.1350
0.1800
0.2250
0.2700
0.3150
0.3600
0.4050
0.4500
0.4950
0.5400
0.5850
0.6300
0.6750
0.7200
0.7650
0.8100
0.8550
0.9000
0.0900
0.1350
0.1800
0.2250
0.2700
0.3150
0.3600
0.4050
0.4500
0.4950
0.5400
0.5850
0.6300
0.6750
0.7200
0.7650
0.8100
0.8550
0.9000
0.1350
0.1800
0.2250
0.2700
0.3150
0.3600
0.4050
0.4500
0.49350
0.5400
0.5850
0.6300
0.6750

0.2250
0.2250
0.2250
0.2250
0.2250
0.2250
0.2250
0.2250
02250
0.2250
0.2250
0.2250
0.2250
02250
0.2250
0.2250
0.2250
0.2250
0.2250
0.2250
0.2250
0.2250
0.2250
0.2250
0.2250
0.2250
0.2250
0.2250
0.2250
0.2250
0.2250
0.2250
0.2250
0.2250
02250
0.2250
0.2250
0.2250
0.2250
0.2250
0.2250
02250
0.2250
0.2250
0.2250
0.2250
0.2250
0.2250
0.2250
0.2250
0.2250
0.2250
0.2250
02250
0.2250
02250
02250
0.4500
0.4500
0.4500
0.4500
0.4500
(0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500

0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
0.4500
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Appendix 5

clear all
load file containing vectors of the weights and bias obtained from optimization and training.
wl=demonetwork.wl;
bl=demonetwork.bl;
w2=demonetwork.w2;
b2=demonetwork.b2;
%%%6%0%0% %% %% %% %% %% %% %6%6%6%6%6%6%6%6 %% % %% % %6 % %6 %6 %6 %6 %6 %% % %6 %6 % % %6 %6 %6 %6 %
[mm m]=size(wl);
wA=[wl'bl',;
[G,H]=size(wA),
for h=1:H,
for g=1:G,
c(g,h)=ceil(abs(wA(g,h)));
end
end
x12=sum(c);
for i=1:m,
a(:,)=wl(:,i)/x12(1);
b(D)=b1(1)/x12(i);
end

n=length(b2);

wB=[w2' b2']";

[G1,H1]=size(wB);

for h1=1:H1,
for g1=1:Gl,
cl(gl,hl)=ceil(abs(wB(gl,h1)));

end

end
x22=sum(cl);
for j=1:n,

X(:)=wW2(:j)/x22());
y()=b2())/x22());
end

disp('your normalized wl: %% this will be the normalized of weightl, W1

Zisp(’your normalized bl:") %% this will be the normalized of biasi, B
gisp('normalized factor!: ') %% this will be the normalized factor Q

(12

Sils;)('your normalized w2: ') %% this will be the normalized of weight2,W2
Zi(isp('your normalized b2:') %% this will be the normalized of bias2, B2
gisp('normalized factor2: ) %% this will be the normalized factor Y

x22
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Appendix 7

The general equation representing the movement of the swing can be presented by the differential

expression in equation (1), where @ is the angle of the swing, # is time, a, is the gravitational acceleration,
and ]/) is the length of the pendulum. However, to reflect more closely the real scenario, a damping effect

was added to equation (6.4) to yield equation (2), where k is the damping factor. There are various ways to
solve equations (1) and (2), but the most convenient means is to use computer simulation. The variable of

interest in the preceding step is (¢) .

2

do 4, .
+—=-singp(t)=0 I
a1, 7 v
2 a,
40, KAP O G o) = 0 @
a1, d 1,

The primary work of the derivations is to evaluate the force by the bearing ‘O’ of the axial rod (see Figure

1) supporting the swinging. The force on the point of axis O, can be resolved into horizontal £ and

vertical F) components (equations (7) and (8)), by taking the effect of tangential force /° and the tensile

m

force FL_/) of the rod supporting the pendulum load (equation (6) and (5)). The tensile force FL,,/) is an

expression built from¢, . . (the initial angle of the swing), @(¢) (the angular time variant of from the
movement of the swing as shown in equation (2), which was solved by computational numerical method),
the load’s moment of inertia .J around axis O, equation (4), which was formed from ./v\_, the load’s

moment of inertia around its centre of gravity, equation (3)), and D is the total mass of the load.

Relative to the research work, these forces were exclusively used for resolving the total moment of the

system with reference to point M1 or M2 (see figure below). This has leads to obtaining the force exerted
by the feet (or the normal force N),, and /\/),2 ). For example, considering the swing has legs of distance
]p and the angle between them is 21/, the total moment of the system with reference to point M1 will be
the summation of the moment produced by the X and y components of the bearing force and the moment
produce by the ]\/),2 . Similarly, the total moment of the system with reference to point M2 will be the
summation of the moment produced by the X and y components of the bearing force and the moment

produce by the N . As the system is balance, the normal forces N,and N, can be evaluated as

expressed by (equations (12) and (13)).
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l

J = pA+B) )
‘ 12
J=(DI'")+J, )
Dag v 2 y 2
o = (J+2DI' " )cosp(t)—(2DI' )" )OS @, (1)) %)
J.Da,sin (1
m = M (())
J
Fo=F,sinp(t)=F, sinp(l) (7
F,=F, cosp()+ F, singp(l) ()
Z M, =N 21, siny = F.I siny —F I cosy =0 9)
ELMZ:-N”2%$nw+iiﬁﬂnw—ﬁﬂpamw:O (10)
F I siny —F.I cosi
.NH — yip / . x*p // (]})
' 21, siny
N, = F.I, siny + F.[, cosy 02

21, siny
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Fx, Fy, Ny2

N /3910 4

time/s

=0

damping x
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Initial swing angle @,

Fx, Fy, Ny2
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N /82104
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