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Abstract. – We investigate the performance of error-correcting codes, where the code word
comprises products of K bits selected from the original message and decoding is carried out
utilizing a connectivity tensor with C connections per index. Shannon’s bound for the channel
capacity is recovered for large K and zero temperature when the code rate K/C is finite.
Close to optimal error-correcting capability is obtained for finite K and C. We examine the
finite-temperature case to assess the use of simulated annealing for decoding and extend the
analysis to accommodate other types of noisy channels.

Error-correcting codes are of significant practical importance as they provide mechanisms for
retrieving the original message after possible corruption due to noise during transmission.
They are being used extensively in most means of information transmission from satellite
communication to the storage of information on hardware devices. The coding efficiency,
measured in the percentage of informative transmitted bits, plays a crucial role in determining
the speed of communication channels and the effective storage space on hard-disks. Rigorous
bounds [1] have been derived for the maximal channel capacity for which codes, capable of
achieving arbitrarily small error probability, can be found. However, existing practical error-
correcting codes do not saturate this bound and the quest for more efficient error-correcting
codes has been going on ever since.

A new family of error-correcting codes, based on insights gained from the statistical mechan-
ical analysis of Ising spin models, has recently been suggested by Sourlas [2], investigating the
use of statistical mechanics for constructing and investigating novel coding methods [3, 12].
However, the codes suggested and analyzed so far are of no practical significance as they
imply an infinite ratio between the length of the transmitted word and the original message.
Consequently, they had little impact on the design and the understanding of practical codes.
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In this letter we extend the framework suggested by Sourlas to accommodate practical codes,
where the ratio between the transmitted and the original message is finite and arbitrarily
close to the bound presented by Shannon [1]. We analyze the performance of these codes
using methods adopted from the statistical mechanics of diluted spin systems and validate the
analytical solution by comparing it to results obtained by numerical solutions.

In a general scenario, a message represented by anN -dimensional binary vector ξ is encoded
by a vector J0 which is then transmitted through a noisy channel with some flipping probability
p per bit. The received message J is then decoded to retrieve the original message.

We will consider a family of codes, suggested originally by Sourlas [2], in which the encoded
message is of the form: J0

i1,i2...iK
= ξi1ξi2 . . . ξiK . The original message is then retrieved by

exploring the ground state of the related Hamiltonian

H = −
∑

〈i1,...iK〉

A〈i1,...iK〉 J〈i1,...iK〉 Si1 . . . SiK − F
∑
k

Sk , (1)

where S is the N -dimensional binary vector of dynamical variables and A is a sparse tensor
with C unit elements per index setting the rest of the elements to zero, which determines the
components of the transmitted code word J0. The last term on the right is required in the
case of sparse or biased messages and will require assigning a certain value to the additive field
F , which can be related to the prior belief in the Bayesian framework.

Codes of this type have been studied by Sourlas [2, 3], by mapping them onto known
problems in statistical mechanics such as the SK [4] (K = 2) and Random Energy [5] (K→∞)
models. However, these studies [2,3] have been carried out in the case of extensive connectivity,

where the ratio between the number of bonds C∼
(
N − 1

K − 1

)
, and the number of sites used for

encoding K is infinite, corresponding to the case of a vanishing code rate which is of limited
practical significance. In this letter we will examine the case where the code rate R = K/C is
finite, defining α ≡ 1/R.

Since the first part of the Hamiltonian (eq. (1)) is invariant under the transformation
Si → Siξi and J〈i1,...iK〉 → J〈i1,...iK〉ξi1ξi2 . . . ξiK , it would be useful to decouple the vectors
S and ξ, obtaining a similar expression to (eq. (1)) apart from the last term on the right
which becomes F

∑
k Skξk, retaining pattern dependence. Note that we have three types of

random variables, the corruption process, the original message and, most importantly, the
selection of code bits represented by the tensor A. These infinitely large sets of random
variables justify the assumption of self-averaging free energy and enables us to use the tools
of statistical physics.

For calculating the partition function Z(J , ξ,A) = Tr{S} exp[−βH] we invoke the replica
method following ref. [6]. We use an integral representation of the δ-function to enforce the
restriction, of C bonds per index, on the tensor A:

δ

 ∑
〈i2,i3...iK〉

A〈i,i2...iK〉 − C

 =

∮ 2π

0

dZ

2π
Z−(C+1) Z

∑
〈i2,i3...iK〉

A〈i,i2...iK〉 , (2)

giving rise to a set of order parameters qα,β,...,γ = (1/N)
∑N
i=1 Zi S

α
i S

β
i . . . S

γ
i , where α, β . . .

represent replica indices. The averages over J and ξ are taken with respect to the probability
distributions

P
(
J〈i1,...iK〉

)
= (1− p) δ

(
J〈i1,...iK〉−1

)
+ p δ

(
J〈i1,...iK〉 + 1

)
,

P (ξi) =
1 + ρ

2
δ (ξi − 1) +

1− ρ

2
δ (ξi + 1) , (3)
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respectively, where 0 ≤ p, ρ ≤ 1 are small coefficients representing the channel noise (flip
probability) and pattern bias (or sparsity), respectively. As a first approximation we will
assume replica symmetry [6]; one step replica symmetry breaking will be employed later on
for the spin-glass phase where its effect is most crucial and the validity of the approximation
will be examined by numerical methods. We use the following representation for the order
parameters and the related conjugate variables [6]:

qα,β,...γ = a

∫
dx π(x) tanhl(βx) and q̂α,β,...γ = b

∫
dy π̂(y) tanhl(βy) , (4)

where l is the number of replica indices, a =
[
(K − 1)! N1−K C

]1/K
and b = [(K − 1)!]−1/K ·[

N C1/K
]K−1

are normalization coefficients, and π(x) and π̂(y) represent probability distri-
butions related to the integration variables. Throughout the letter, integrals with unspecified
limits will denote integrals over the range (−∞,+∞). One then obtains an expression for the
free energy per spin expressed in terms of the probability distributions π(x) and π̂(y):

1

N
〈lnZ〉J,ξ,A =

C

K
ln coshβ +

C

K

∫ [ K∏
l=1

dxl π(xl)

]〈
ln

1 + tanhβJ
K∏
j=1

tanhβxj

〉
J

−

− C

∫
dx dy π(x) π̂(y) ln [1 + tanhβx tanhβy]− C

∫
dy π̂(y) ln coshβy +

+

∫ [ C∏
l=1

dyl π̂(yl)

]〈
ln

2 coshβ

 C∑
j=1

yj + Fξ

〉
ξ

. (5)

One should also point out that although the parameters x and y have been derived from
the somewhat artificial set of conjugate variables they have been shown to have a physical
meaning [7]: π(x) representing the spin field distribution when a single connection is removed
from the system, and π̂(y) is the cavity field distribution.

The saddle point equations, obtained by varying eq. (5) with respect to the probability
distributions, provide a set of relations between π(x) and π̂(y):

π(x) =

∫ [C−1∏
l=1

dyl π̂(yl)

] 〈
δ

x− C−1∑
j=1

yj − Fξ

〉
ξ

,

π̂(y) =

∫ [K−1∏
l=1

dxl π(xl)

] 〈
δ

y − 1

β
tanh−1

tanhβJ
K−1∏
j=1

tanhβxj

〉
J

, (6)

from which the magnetization M , constituting our performance measure, can be calculated:

M =
1

N

〈
N∑
i=1

ξisign 〈Si〉T

〉
ξ

=

∫
dhsign(h)

∫ [ C∏
l=1

dylπ̂(yl)

]〈
δ

h− C∑
j=1

yj − Fξ

〉
ξ

, (7)

where the subscript T denotes thermal averaging. The magnetization M represents our
performance measure, denoting the normalized mean overlap between the dynamical vector
sign〈S〉T and the original message ξ.

This set of equations may be solved numerically for general β, K and C. However, in the
limit of β→∞ they can be simplified significantly and analytical results may be obtained. To
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simplify the treatment we will consider only the case of unbiased patterns where F = 0; the
case of biased patterns will be examined in future publications. We obtain the solutions

π(x) =

∫ [C−1∏
l=1

dyl π̂(yl)

]
δ

x− C−1∑
j=1

yj

 ,
π̂(y) =

∫ [K−1∏
l=1

dxl π(xl)

]
〈δ [y − sign (J x1 . . . xK−1) min (|J |, x1, . . . , xK−1)]〉J . (8)

The general solution of these equations may result in probability distributions which comprise
both singular (delta functions) and regular (continuous) distributions [8]. However, as the
replica symmetric solution already represents an approximation (as in fact do higher-order
replica symmetry-breaking steps), we will choose the simplest self-consistent set of solutions
which will be validated later on by numerical solutions using different methods [7].

Since J = ±1, we choose an integer distribution of the form π̂(y) = p+δ(y−1) + p0δ(y) +

p−δ(y+1) and the corresponding distribution π(x) =
∑C−1
l=1−C T[p±,p0;C](l), where

T[p+,p0,p−;C](l) =
∑

{k,h,m ; k−h=l ; k+h+m=C−1}

(C − 1)!

k! h! m!
pk+ ph0 p

m
− . (9)

One then solves the closed set of equations for p±, p0, and ψ± =
∑C−1
l=1 T[p±,p0;C](±l) itera-

tively [6].
We first consider the case of K,C→∞ (but K,C � N). Three different solutions emerge,

corresponding to the paramagnetic, ferromagnetic and spin-glass phases. The paramagnetic
solution (M = 0), which is valid also for general β, K and C, is of the form π̂(y) = δ(y),
π(x) = δ(x); it has the lowest possible free energy −fpara = α but its entropy spara =
(1− α) ln 2 is positive only for α ≤ 1, corresponding to R ≥ 1 which is irrelevant for the case
of error-correcting codes. The ferromagnetic solution (M = 1), characterized by asymmetric
distributions for both π̂(y) and π(x) has a free energy −fferro→α(1−2p) with a vanishing
entropy sferro→0 as K→∞, indicating a unique solution in this limit.

The spin-glass solution has been calculated for both replica symmetric and the one-step
replica symmetry-breaking (frozen spin glass, where the n replica are divided into groups
of m identical solutions) ansätze. The former reduces to the paramagnetic solution, which
is unphysical for α > 1, while the latter yields π̂1RSB(y) = δ(y), π1RSB(x) = δ(x) with
m = βg(α)/β and βg obtained from the root of the replica symmetric entropy [9, 5] sRS =
α [ln cosβ − β tanhβ] + ln 2 = 0. This implies a frozen state below Tg = 1/βg with a free
energy −f1RSB = (α/βg) ln cosβg + 1/βg ln 2. One of the major results of this paper is the
phase transition between the ferromagnetic and the spin-glass phases, depicted by the curved
line in fig. 1a. This transition marks the critical value αc for which error-free transmission
can be obtained, given a flip rate p, constituting the maximal channel capacity. It can be
calculated by equating f1RSB and fferro to obtain

Rc =
1

αc
= 1 + (p log2 p+ (1− p) log2(1− p)) , (10)

thus retrieving Shannon’s maximal channel capacity.
This result seems to advocate the use of high values for K and C for obtaining high channel

capacity. However, this result alone has little practical relevance without considering the
decoding method used. Since simulated annealing and related methods may be the most
natural approaches to the decoding task, we will examine the finite β solutions to eqs. (6).
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Fig. 1. – Phase diagrams for the case K,C→∞ as a function of the flip rate p. (a) For the zero-
temperature case (β→∞) we retrieve Shannon’s maximal channel capacity represented by the phase
transition between the ferromagnetic (F) and the spin-glass (SG) phases. (b) For finite temperatures
we obtain different transition boundaries, shown here for α = 3, which collapse to the critical flip
probability pc (Shannon’s limit) as T→Tg; the dotted line represents Nishimori’s temperature Tn.

For the case K,C→∞ one can obtain solutions for finite temperatures, as long as 1−2p�
O
(
K−1/2

)
, by exploiting the fact that x =

∑C−1
l=1 yl ≈ (C−1) 〈y〉 in the case of C→∞,

where 〈y〉 ≡
∫

dy y π̂(y). The solution obtained for 〈y〉 suggests scaling the temperature
with (lnK)/K and the emergence of a non-trivial ferromagnetic solution with 〈y〉 = 1−2p at
βc = lnK/2αK(1−2p). One can also obtain an expression for the free energy in the various
phases as well as the phase diagram shown in fig. 1b for α = 3 and different flip probabilities
and temperatures. From fig. 1b we see that the transition boundaries collapse to Shannon’s
limit as T→Tg which coincides with Nishimori’s temperature [10] for this flip rate. This is
not surprising as the average spin alignment M in these systems calculated at Nishimori’s
temperature provides an upper bound for the achievable alignment [11,12] (although the fact
that Shannon’s limit is achievable also in this case is significant).

The free energies for the ferromagnetic, paramagnetic and spin-glass phases at this point,

− fferro = α (1− 2p) , − fpara = (α ln coshβ + ln 2) /β

and − f1RSB = (α ln coshβg + ln 2) /βg , (11)

suggest a paramagnetic-to-ferromagnetic transition at temperatures of O(1), while the fer-
romagnetic solution emerges at 1/βc. This indicates the existence of high-energy barriers
of O(1/βc) ∼ O(K/ lnK) between the ferromagnetic and the paramagnetic phases at the
transition point, which will require a prohibitively long time to allow for the transition itself,
thus preventing the annealing process from converging to the global minimum (1). Although
these expressions (eqs. (11)) have been obtained for K,C→∞, we may expect the energy
barriers for finite K and C values to be small.

In the reminder of this paper we will therefore investigate the case of finite K and C when
β→∞ which is of considerable practical relevance. From the numerical solutions of eqs. (8),
obtained by solving iteratively the equations for p±, p0, and ψ±, we can plot the magnetization
and the free energy as functions of the flipping rate p for K = 2 . . . 6, shown in fig. 2a. The
results presented in fig. 2a for α = 2 enable us to assess the efficiency of codes based on

(1) The annealing process commences at high temperatures, where the system is typically in the
paramagnetic phase, and should be terminated below the transition temperature, allowing the system
to settle in the ferromagnetic solution.
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Fig. 2. – (a) The dependence of M on the flip rate p for K = 2 . . . 6; note the second-order phase
transition characterizing the K = 2 case in contrast to the first-order transition for K ≥ 3. Numerical
results for the cases of K = 2, 5 are consistent with the theoretical solutions. Inset: free energies
obtained for the ferromagnetic and the spin-glass solutions. (b) Critical code rate Rc as a function of
the signal-to-noise ratio in the case of a Gaussian channel (solid line); Shannon’s bound is represented
by the dashed curve.

different choices of K. We note that the case K = 2 shows a second-order phase transition
in contrast to the first-order phase transition characterizing the other cases; spinodal points
for higher K values are obtained for higher values of p, converging to p = 0.5 as K→∞. To
validate the replica symmetric ansatz and the discrete solutions assumed for the probabilities
π(x) and π̂(y), we also plotted numerical solutions obtained by employing a different method
based on the TAP approach for diluted systems [7]. The numerical results, showing the mean
and variance of 100 iterative solutions obtained after 30 and 10 iterations for the cases of
K = 2 and 5, respectively, show consistency with the theoretical solutions. Initial conditions
were chosen at random for the case of K = 2 and close to the theoretical solution for the case
of K = 5 to avoid getting stuck in glassy solutions. The M > 0 solutions after the phase
transition for K = 5 are an artifact of the spin-glass phase where an exponentially long time
is required before converging to the system’s ground state.

The free energies presented in the inset (including K→∞) show how the solutions are
dominated initially by the ferromagnetic phase until a certain value pc, in which the spin-
glass phase takes over (lower free energy). Solutions obtained after the phase transition for
K = 3 . . . 6, which seem to have lower free energies, are unphysical as the related entropies
become negative. Note that the values obtained for pc become almost identical for K > 3,
indicating a modest loss in corrective capabilities due to the use of small K values. The nature
of the solutions and of the phase transitions will be described elsewhere.

The analysis presented in this letter has been restricted so far to the case of Binary
Symmetric Channel, characterized by some flip rate probability p. The methods used here may
be also employed for analyzing general noisy channels and other encoding/decoding methods.
For instance, in the case of K,C→∞ (K,C � N), analyzing the capacity of a noisy channel,
whereby the encoded message is corrupted by a zero mean Gaussian noise, one obtains the
following expressions for the ferromagnetic and spin-glass free energies:

− fferro =α 〈J〉J = α 〈J tanhβnJ〉J and −f1RSB = α/βg 〈ln coshβgJ〉J+(ln 2)/βg, (12)

where βn is Nishimori’s temperature [10,11] for the particular type of noise examined. Equating
the free energies for the ferromagnetic and spin-glass solutions (eq. (12)), one obtains an
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expression for the critical code rate Rc, using the fact that at the critical point βg = βn

Rc =
1

αc
=

β2

ln 2

∂

∂β

[
1

β
〈ln coshβJ〉J

]∣∣∣∣
β=βn

. (13)

The dependency of the critical rate Rc on the signal-to-noise ratio (solid line), shown in fig.2b,
indicates a significantly lower critical rate than Shannon’s bound in this case (dashed line,
1/2 log(1 + v/σ2), where v/σ2 is the signal-to-noise ratio) due to the use of a binary code
while allowing the signal (and the noise) to acquire real values.

In this letter we examined an encoding scheme, analyzed previously by Sourlas for the
limited case of an infinite ratio between the connectivity C and the number of sites sampled
K, where the code rate R vanishes. Our study tackles the practical case of finite R, showing
that for zero temperature and K,C→∞, one retrieves Shannon’s bound for the channel
capacity. However, studying the solution for finite temperatures reveals high-energy barriers
which evolve in an annealing decoding schedule, separating the desired global solution from
those obtained earlier in the annealing process. Examining the solutions for low K and C
values shows that one may avoid these barriers with some modest loss in performance. The
results and the approximations taken have been validated by numerical solutions using other
methods. In addition, we extended the calculation to the case of Gaussian transmission noise,
obtaining an expression for the critical code rate; the deviation between the code rate achieved
by using Sourlas’s code and Shannon’s bound in this case may be explained by the use of binary
transmitted bits in comparison to the real-valued nature of the corruption process.

A refinement of our approximation as well as the study of different noise types and of biased
messages is under way. We also currently examine state of the art encoding/decoding schemes,
focusing on the efficiency of Gallager codes [13], which have recently been rediscovered [14]
and seem to have a significant practical potential.
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