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SUMMARY

Cold-formed steel members provide substantial savings due to their high strength-to-
weight ratio. As a result, they have become very popular in the construction of
industrial, commercial, and agricultural buildings. An important advantage of cold-
formed steel is the greater flexibility of cross-sectional shapes and sizes available to
the structural steel designer. However, the lack of standard optimised shapes makes
the selection of the most economical shape very difficult. This task is further
complicated by the complex and highly nonlinear nature of the rules that govern their
designs. In this thesis, standard algorithms are used to carry out the optimisation of
cold-formed steel purlins such as zed, channel and sigma sections, which are assumed
to be simply supported and subjected to a gravity load.

The optimisation problem of the cold-formed steel sections is a highly nonlinear
problem in which the objective function is a nonlinear function of the multi-design
variables and the constraints are also nonlinear inequality. The constraints of the
optimisation problem in the cold-formed steel section consist of strength, deflection
and stability requirement as well as the practical geometric constraint of the design
variables. For zed, channel and sigma section, the local buckling, distortional
buckling and lateral-torsional buckling are considered respectively herein. Currently,
the local buckling is based on the BS 5950-5:1998 and EN 1993-1-3:2006. The
distortional buckling is calculated by the direct strength method employing the elastic
distortional buckling which is calculated by three available approaches such as
Hancock (1995), Schafer and Pekoz (1998), Yu (2005). In the optimisation program,
the lateral-torsional buckling based on BS 5950-5:1998, AISI and analytical model of
Li (2004) are investigated. For the optimisation program, the programming codes are
written for optimisation of channel, zed and sigma beam. The full study has been
coded into a computer-based analysis program (MATLAB)

Keywords: cold-formed steel section, optimisation, standard algorithms, zed-shape

purlin, channel-shape purlin, sigma-shape purlin
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NOMENCLATURE

Roman Characters

bet, boz, begr
Betem

¢
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Ceff
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D
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fe

Ja
Info
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L, I

¥

Lyl

effective area of the cross section (mm?)
gross area of the cross section (mm?)
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Chapter 1

1 INTRODUCTION
LEEL

1.1 OVERVIEW OF COLD-FORMED S

Cold-formed steel products are made by bending a flat sheet of steel at room
temperature into a shape that will support more load than the flat sheet itself. Cold-
formed steel has been produced and widely used as corrugated sheets for farm
buildings, industrial and commercial buildings, sheeting and cladding, and secondary
structural members to support. Trapezoidal sheeting is usually fixed to the members
in order to enclose the building. The shapes of the cross-section of the members are

mostly that of zed, channel or sigma.

Cold-formed steel members have been increasingly used recently in various buildings
because of advantages such as lightness, high strength and stiffness, fast and easy
erection, economy in transportation and handing. Although not yet so evident in the
UK, in other parts of the developed world there is an extremely rapid development in
use of cold-formed framing systems for houses and other low-rise construction
(Davies, 2000). In USA, It has been reported that about 500 homes were built in light
gauge steel in 1992, increasing to 15,000 in 1993 and 75,000 in 1994. By 2002 the

increase had reached to a further five-fold.

The increases use of higher-strength steel has inevitably led to reduction in the
thickness of the section and therefore, considerations of the local. stability has lead
logically to the development of the highly stiffened section with more folds and rolled
in stiffeners. Consequently, design procedures are becoming more complicated and

engineers will experience difficulty if they try to obtain results by hand calculation. In



addition, the optimum cross section should also be considered in terms of the increase

of the load capacity of the members and saving materials.

1.2 BACKGROUND OF PROJECT

Cold-formed steel members provide substantial savings due to their high strength-to-
weight ratio. As a result, they have become very popular in the construction of
industrial, commercial and agricultural buildings. An important advantage of cold-
formed steel is the greater flexibility of cross-sectional shapes and sizes available to
the structural steel designer. Through cold-forming operations, steel sheets, strips or
plates can be shaped easily and sized to meet a large variety of design options. Such a
large number of design possibilities create a very important challenge in choosing the

most economical cold-formed shape in the design of steel structures.

The basic problem of an economic design is to achieve the least expensive
construction that satisfies the design requirements. One of the conditions required for
the low cost of erected structure is that the weight of the material should be kept to a
minimum, which is associated with a maximum structural efficiency. It has been
shown by numerous investigators that for a given loading system, the maximum
efficiency can be obtained when all the possible modes of failure (overall and local
instabilities, yielding of material, etc.) occur at the same time(Yu WW,1985). In
practice, such ideal conditions may not be easily obtained due to unavoidable
limitations such as pre-selected shapes and specific dimensional limitations. However,
it can be shown that in some cases there may be a possible mode of failure which will
result in a maximum efficiency within the practical limitations. The efficiency of the

use of high grade steel depends on the type of failure mode. Under certain conditions,



such as long columns having large slenderness ratios, the failure mode is usually
dominated by overall elastic buckling. For sections that have an un-stiffened
compression flange with an unusually large width-to-thickness ratio, the failure is
usually dominated by local buckling in the elastic range. In such cases, the use of
high-strength steel may not result in an economic design because the performance of
structural members under these conditions may be the same for different grades of
steel. For this reason, the use of high-strength steel in these cases may not be justified
as far as the overall cost is concerned. Therefore, this project focuses on finding out

the optimum shapes of cross section, which satisfy the design requirements.

1.3 AIMS OF THE THESIS

Cold-formed steel is widely used as structural steel for building. The most common
applications of cold-formed steel members are used as purlins or rails, the
intermediate members between the main structural frame and the corrugated roof or
wall sheeting. These members normally work as simple beam subjected to the
concentrated load or the uniformly distributed load. Thus, the primary aim of this
thesis is to investigate the behaviour of cold-formed steel purlins and to find a suitable
design method for the designers amongst the current methods. The main task is to
develop a programme to optimise the simply supported purlin sections subjected to
the uniformly distributed transverse load based on the conservative and more accurate

design method.

Furthermore, the purpose of this thesis is not only to focus on the optimisation of

channel, zed and sigma simply supported purlin, but the programme in this study is



used as basic programme to develop the general open access codes used in MATLAB
to optimise different kinds of cold-formed steel section. The remaining task for
MATLAB users is to define the constraints and objective function of the optimisation

problem.

The main aim can be further subdivided into the five sub-sections listed below:

1. To investigate the mechanism of failure of the purlin subjected to the uniformly
distributed load, understanding the essential factors in improving the strength

capacity of the section.

2. To explore the current effective design approaches for cold-formed steel purlin,
identifying the advantages, disadvantages and limitations of these approaches in
order to help the structural designer to use the most accurate method in the

individual situation.

3. To find the optimum shape of the cross section, in order to inspect the influence
of the dimension of each element in the section that plays an integral role in the

preliminary optimisation stage.

4. To illustrate the robust optimisation tool of the programming language
MATLAB, understanding fully the algorithm structure of the optimisation
programme and its applicability in the optimisation of simply supported cold-

formed steel purlin.

5. To focus on improving the more precise analysis as well as design method

applied to the popular cross sections such as channel, zed beams and the new



proposed sigma section. The numerical optimisation results of those section

shapes are presented here.

1.4 ORDER OF PRESENTATION

Chapter 1

Provides an introductory overview of cold-formed steel structures and its
applications in structure of the building and the importance of optimisation in the

design of sections.

Chapter 2

The findings of recent research about the optimisation of cold-formed steel
members are presented herein: a literature review of the failure mode of cold-formed
steel members, the current design methods, as well as a discussion of the advantages

and disadvantages of these methods.

Chapter 3

Describes the optimisation problem in cold-formed steel structures and
presents the application of the robust optimisation tool of the programming language
MATLARB in optimising cold-formed sections. An overview of the standard algorithm

optimisation is demonstrated.

Chapter 4

In this chapter, the discussion about the constraints of optimisation problem in
terms of geometry and strength of the section is described in detail. Furthermore, the

different calculation methods are presented to find out the more accurate and



conservative method for the structural designer, which can be used in the optimisation

programime.

Chapter 5 and 6

The behaviour of the simply supported channel beam and zed beam is
investigated under uniformly distributed transverse loading. The numerical results of
the global optimum dimension of those sections are illustrated under a global curve of
optimum dimension with the different spans of the beam and the various intensity of

the loading.

Chapter 7

This chapter contains a full investigation of the behaviour of the sections with
and without stiffener in which the numerical optimisation results are presented. The
importance of the stiffener in the web of sigma section in increasing the strength
capacity of the section is studied and optimised in order to get the best shape in terms

of geometry and strength capacity.

Chapter 8
The optimum results for each kind of section in this study are provided, to

provide sufficient information for industrial designers and manufacturers to find the
proper nominal dimensions. A conclusion and suggestions for future research are

provided.



Chapter 2
2 LITERATURE REVIEW

2.1 COLD-FORMED STEEL SECTION

2.1.1 Definition

In construction, steel members are used quite a lot as the main structural support
members. There are two main families of structural members. One is the familiar
group of hot-rolled sections which are normally used to carry heavy loads. Other
members are called cold-formed steel members which are built up of plates. The cold-
formed steel sections are less familiar in steel construction, but nowadays, it is
growing very quickly. It is composed of sections of cold-formed from steel sheets,
strips, plates, or flat bars in a roll-forming machine or by press brake or bending brake
operations. Cold-formed steel has been produced and widely used as corrugated
sheets for agricultural farm buildings, industrial and commercial buildings, sheeting

and cladding, and secondary structural members to support.

2.1.2 Characteristics of cold-formed steel section

In general, cold-formed steel structural members provide the following advantages in

building construction (Yu, 1985):

= As compared with thicker hot-rolled sections, cold-formed light members can be
manufactured for relativc_ly light loads and/or short spans;

= Unusual sectional configurations can be produced economically by cold-forming
operations and, consequently, favourable strength-to-weight ratios can be
obtained;

= Nestable sections can be produced, allowing for compact packaging and shipping;



= Load-carrying panels and decks can provide useful surfaces for floor, roof, and
wall construction, and in other cases, they can also provide enclosed cells for
electrical and HVAC conduits;

= Load-carrying panels and decks not only withstand loads normal to their surfaces,
but they can also act as shear diaphragms to resist force in their own planes if they

are adequately interconnected to each other and to supporting members.

Compared with other materials such as timber and concrete, the cold-formed steel

structural members have the following qualities:

= Lightness;

= High strength and stiffness;

= Ease of prefabrication and mass production;

= Fast and easy erection and installation;

= Substantial elimination of delays due to weather;

= More accurate detailing;

= Non-shrinking and non-creeping at ambient temperature;
= Uniform quality;

= Economy in transportation and handling.

However, because cold-formed members are usually thin-walled, special care must be
given to design. Compared to classical hot-rolled sections, they are characterized by

some peculiarities, e.g.:

= Large width to thickness ratios;

» Singly symmetrical or unsymmetrical shapes;



= Un-stiffened or partially un-stiffened parts of sections, which can lead to
complicated buckling problems;

= Combined torsional and flexural buckling;

= Local plate buckling;

= Distortional buckling;

= Interaction between local and global buckling;

= Fire resistance.

Also, connections must be designed with care because of the thinness of the members
that can lead to local failures. For these reasons, dedicated specifications have been
published in the United States first, followed by Europe, Australia and other countries

to cover these important questions.

At this moment, cold-formed steels are made through cold forming of a thin plate
which is normally from 1.2mm to 6.4mm thick and has a yield stress in the range of

280 to 550N/mm>.

2.2 METHOD OF FORMING

Three methods are generally used in the manufacturing of cold-formed sections, such
as cold roll forming shown in Fig. 2.1, press brake operation shown in Fig. 2.2, and
bending brake operation (Yu, 1985). The method of cold roll forming has been widely
used for production of building components as individual structural members for roof,
floor and wall panels. The machine used in the cold roll forming consists of pairs of
rolls which progressively form strips into the final required shape. A simple section
may be produced by a few pairs of rolls. However, a complex section may require

more sets of rolls. The speed of the rolling process ranges from 6 to 92m/min. At the



end, the completed section is usually cut to required lengths by an automatic cut-off

tool without stopping the machine.

Fig. 2.1: Cold roll forming machine.

For the press brake operation, the section is normally a simple configuration to be
produced relatively wider such as roof sheets and decking units. The equipment used
in a press brake operation consists essentially of a moving top beam and a stationary
bottom bed on which the dies applicable to the particular required product are
mounted. Simple sections such as angles, channel or Z-section are formed by press
brake operation from sheets, strips, plates or bars in not more than two operations.

More complicated sections may take several operations.

“‘“‘\"//-m CONTROL

!

3 PUNCH

BACK GAGE PRESSURE

WORKPIECE ggp ol

Fig. 2.2: Press brake machine.
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2.3 OPTIMISATION OF COLD-FORMED STEEL MEMBERS

Cold-formed steel members provide considerable savings due to their high strength-
to-weight ratio. They are very popular in the steel construction of industrial,
commercial, and agricultural buildings. An essential advantage of cold-formed steel is
the greater flexibility of the cross sectional profiles and sizes available to the
structural steel designer. Steel sheets, strips or plates can be shaped easily and sized to
meet a large variety of design options through the cold forming operations or press

brake operation.

However, this flexibility, in addition to the complex behaviour that dominates cold-
formed members design, makes the selection of the most economical section for the

particular situation more difficult.

Through structural engineering and computational journals, there are few papers on
the optimisation of cold-formed steel structures. The optimisation of cold-formed
steel using the computational neural network model has been performed by Karimm
and Adeli (1999), but only applied for the Z-shape beam with un-stiffened flange
based on the AISI specification. El-Kassas and Mackie (2001) demonstrate the
potential of using neural networks to optimise a cold-formed steel channel, lipped
channel and hat shape. Nagy (2000) used the genetic algorithm to obtain the optimum
shape of trapezoidal sheeting profiles. Tian and Lu (2004) introduced a combined
theoretical and experimental study on the minimum weight and associated optimal
geometric dimensions of an open-channel steel section subjected to the axial
compressive load. The result obtained using nonlinearly constrained optimisation

method are compared with those estimated from a simple-minded optimisation

11



procedure that assumes the simultaneous occurrence of all failure modes including
yielding, flexural buckling, torsional flexural buckling, and local buckling. Lu (2003)
employed the genetic algorithm to optimise the Zed, Channel and Sigma section
based on the Eurocode 3. Recently, Lee (2004) used the Micro Genetic Algorithm to
find the optimum cross-section of simply supported cold-formed steel channel beams
under uniformly distributed loading. The Micro Genetic Algorithm is one of the
improved forms of Genetic Algorithm, to reduce iteration and computing resources by

using small populations.

The optimisation problem in structural engineering can be defined mathematically as

(Fletch, 1987):

C.(x)=0(=1,...m,) 2.1)
C.(x)<0(=m,,,....,m) (2.2)
Z=F({X}) > min. (2.3)

where {X } the vector of the design variables such as material, topology, configuration
or geometric layout, and cross-sectional design variables, C, (x)are the equality and

inequality constraints, m are the number of inequality and equality constraints.
Z =F({X}) is the objective function and may represent the weight, the cost of
structure or any other criterion. The aim of the optimisation problem is to find the
design variables in the design space under the constraints, which minimise the
objective function. In the practice, the design variables of the optimisation problem in

structural engineering are discrete variables. Many mathematical linear and non-linear
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programming methods have been developed for solving these optimisation problems.
However, no single method has been found to be entirely efficient and robust for all
different kinds of engineering optimisation problems. With these methods, if there is
more than one local optimum in the problem, the result will depend on the choice of
the starting point, and the global optimum cannot be guaranteed. Furthermore, when
the objective function and constraints have multiple or sharp peaks, gradient search

becomes difficult and unstable (Adeli et al, 1993).

Currently, there are two robust methods of optimisation which have been used to
optimise cold-formed steel members such as the Neural Network and the Genetic
Algorithm method. Each method has different advantages and disadvantages which

will be described in the following part.

2.3.1 Neural network

Neural networks are artificial intelligence algorithms for cognitive tasks, such as
learning and optimisation. Neural networks are of interest because of their ability to
learn, to make decisions, and to draw conclusions from examples without knowledge
of underlying rules. The motivation for neural networks came from attempts to
simulate the processes of the human brain, and so to enhance the capabilities of the
computer. In terms of internal construction, a neural network is made up of a large
number of interconnected processing units (called nodes) that seek to emulate the
human neuron. Each node receives input from other nodes to which it is connected,
carries out a process, and transmits the output to other nodes. The most popular type

neural network is the multilayer perception network (Kassas, 2001).
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Commonly, the network is arranged in at least three layers of nodes as shown in Fig.

2.3:

= Aninput layer that receives input values.

= An output layer that reports the final answer.

=  One or more hidden layers between the input and output layers.

Before using the network, it needs to be adequately trained using a carefully selected
and large set of solved examples (sets of given input and output values) that
effectively cover the range of variables likely to be encountered. The network uses
these examples to adjust the weight of its inter-node links so that the error in the
output is minimised. A technique called the back propagation is most widely used
technique in this optimisation process to improve the network’s accuracy, though
conjugate gradient methods and genetic algorithms have been also used. In the back
propagation technique, the error found at the output layer is propagated back through
the network to the input layer, and subsequently, this process of calculating the error
and the propagating it back is repeated until the error is reduced to a specific low
value, and once this has been achieved, training is considered to be complete, the
inter-node link weights are registered and kept unchanged and the networks is
considered ready to handle new problems. The neural network training and operation

stages are illustrated in the Fig. 2.4.

Neural networks possess a number of advantages which can be summarised as

follows:

14



=« Neural networks can learn by training from a series of examples (without
knowledge of underlying rules) to produce meaningful solutions to problems.

«  Data presented for training neural networks can be theoretical data, experimental
data, empirical data based on good and reliable past experience, expert
knowledge or a combination of these.

=« Neural networks can encapsulate a great deal of knowledge in a very efficient
manner, and can take account of factors that are not easily quantifiable (non-

numeric) such as ease of construction, failure mode and availability.

However, the data using in training neural network is based on the good and reliable
experience, expert knowledge. Therefore, the results of optimisation problem depend

on a lot of experience of user. That is the limitation of neural network method.

Aston University

ustration removed for copyright restrictions

Fig. 2.3: Neural network with one hidden layer (El-Kassas, 2001).
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Fig. 2.4: Flow chart for the neural network training and operation stages.

2.3.2 Genetic algorithms

The Genetic Algorithms (GA) were invented by John Holland (1960) and developed
by Holland and his students and colleagues at University of Michigan. GA is a search
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technique used in computer science to find approximate solutions to optimisation and
search problems. Genetic algorithms are a particular class of evolutionary algorithms
that use techniques inspired by evolutionary biology such as inheritance, mutation,
natural selection, and recombination (or crossover). Genetic algorithms are typically
implemented as a computer simulation in which a population of abstract
representations (called chromosomes) of candidate solutions (called individuals) to an
optimisation problem evolves toward better solutions. Traditionally, solutions are
represented in binary as strings of Os and 1s, but different encodings are also possible.
The evolution starts from a population of completely random individuals and happens
in generations. In each generation, the fitness of the whole population is evaluated,
multiple individuals are stochastically selected from the current population (based on
their fitness), modified (mutated or recombined) to form a new population, which
becomes current in the next iteration of the algorithm. GA performs a multi-
directional search by maintaining a population of potential solution and encourages
information formation and exchange between these directions. As compared to other

search and optimisation algorithms, GA has the following features:

= GA search a set of points in parallel, not only at a single point;

= GA does not require derivative information or other auxiliary knowledge. Only
the objective function and corresponding fitness affect the direction of search;

~ = GA use probability rules;

= GA provides a number of potential solutions to a given problem. The final choice
is left to user.

Holland’s GA is a method for moving from one population of chromosomes to a new

population by using a kind of natural selection together with the genetics inspired
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operators of crossover, mutation and inversion. The structure of the GA is shown in

Fig. 2.5:
General Evaluate Optimisation Yes Best
Initial = Objective Criteria .| Individuals
Population | Function met
3
T v No
Start Selection
Result

Crossover

Y
Mutation

Fig. 2.5: Structure of the GA.

However, there are several general observations about the generation of solutions via

a genetic algorithm:

= In many problems with sufficient complexity, GAs may have a tendency to
converge towards local optima rather than the global optimum of the problem;

= Operating on dynamic data sets is difficult, as genomes begin to converge early
on towards solutions which may no longer be valid for l.ater data;

= GAs cannot effectively solve problems in which there is no way to judge the
fitness of an answer other than right/wrong, as there is no-way to converge on the
solution.

= GA is used for solving an unconstrained optimisation problem. The constrained

optimisation should be transformed into an unconstrained problem by including a
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penalty function. Therefore, the optimum results depend on the penalty function

and maybe not unique values.

2.4 LOCAL BUCKLING BEHAVIOUR

2.4.1 Effective width approach

Local buckling is a failure mode involving plate flexure alone without transverse
deformation of the line or lines of intersection of adjoining plates. Local buckling of
thin-walled sections has been known for many years and has been well understood.
For such plate elements, local buckling is not the same as overall beam or column
buckling. Although the element begins to deflect out of its original straight or plane
shape, it does not fail when the initial buckling stress is reached. On the contrary, it
can still resist increasing compression stresses often well in excess of those at which

local buckling first appears.

The fundamental phenomenon of local buckling is illustrated in Fig. 2.6 which shows
local buckling behaviour in a cassette column with an intermediate stiffener in the
wide flange. As can be seen from Fig. 2.6, plate elements that are adequately stiffened
along both longitudinal edges tend to buckle into approximately square waves. For
economic design purpose, it is necessary to consider the post-buckled condition and

the primary analytical model of concept of effective width illustrated in Fig. 2.7.
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Aston University

llustration removed for copyright restrictions

Fig. 2.6: Buckling in a cassette section column (Davies, 2000).
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Fig. 2.7: Effective width of plane element stiffened along both edges.

Considering the element as the compression flange of some member (see Fig. 2.7), the
total compressive force is the area under this stress distribution curve, times the
thickness of the element. What is needed in design, really, is only this total
compressive force. It is convenient to replace the actual variable stress distribution

with a fictitious uniform stress distribution, of the same intensity of the edge stress,

o, asin the real element.
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In order to get the same total compression force in the fictitious as in the real
distribution, the areas under the two must be equal. This means adjusting the width of

each of the two fictitious rectangles b, /2 until the combined area of the two

rectangles is equal to that under the solid curve. This width is known as the effective

widthb,g, .

Once this effective width b, is known, structural members, such as beams or columns

can be designed simply by replacing the real width b of each compression element by

its effective width b, . Then, effective section properties, such as area, section

modulus and second moment of area can be calculated by using for each compression

element its effective width b, instead of its real width b.

2.4.2 Effective cross section

The effects of local buckling shall be taken into account in the determination of the
design strength and stiffness of the members. Using the concept of effective width of
individual elements to be prone to local bucking, the effective cross-sectional
properties can be calculated. The first step is to evaluate the effective width of the
compression elements of the section, based on the appropriate stress distribution over
the cross-section; the next step is to calculate the geometric properties of the effective
section, taking into account the shift of the neutral axis caused by disregarding the
ineffective parts of the section. In general, the resistance of a thin-walled effective
cross-section is limited by the design yield design stress at any part of the section,
based on an elastic analysis. Deviations from this rule are only permitted in special

cases.
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2.4.3 Design specification

Elastic local buckling is typically treated by ignoring any interaction between
elements (flanges and web). Each element is considered independently and classical
plate buckling equations based on isolated simply supported plates are generally used.
The result of this approach is that each element of the section is predicted to buckle at
a different stress. This approach, called the element model, can lead to rather

conservative predictions.

The critical stress of the each element is given by the well-known Von Karman

formula:

. 1°E 1.,
o, =k, 20-0%) (b) (2.4)

where b is the width of the considered element; k_ is the buckling factor which

depends on the type of element and of the stress distribution on the element. The

buckling factor k_ is equal to 4 for a stiffened element and to 0.43 for un-stiffened

element under uniform compression and is given in the different specifications for

non-uniform stress distributions;

For the determination of the design strength under local buckling, the effective width
and effective cross-section properties are generally used. The semi-empirical formula,

due to Winter (1947), is generally used in the specification:

if 2, <0.673 by =b

i£4,>0673  by=(-22 25)
’7“1: ’?'P
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where, the plate slenderness A_p is given by:

== o b |o
= ’ £ =1.052—- ’ £ 2.6
;Lr’ o, t | Ek, 26)

where o, is the maximum compressive stress in the plate element; o, is the critical

stress for elastic buckling of the plate element given by the well-known Von Karmen

formula.

A stiffened element on one side only is much less stable and can also be treated by an
analogous effective width approach. However, such un-stiffened elements rarely arise
in practice because lips usually restrain the free edges. The modern tendency is to use

compound lips (Davies,2000).

EN 1993-1-3:2006 gives some comprehensive rules for the determination of effective
widths under different stress conditions. In principle, the effective widths of the
indivi.dua] plate elements may be combined to give an effective section and member
design completed using conventional techniques. However, this apparent simplicity
conceals a number of difficulties. As illustrated by Fig. 2.6, individual plate elements
do not buckle in isolation but interact with each other. Although some codes (e.g. BS
5950-5:1998) give an approximate treatment of this phenomenon, it can only be dealt

with accurately by a whole-section analysis.

Furthermore, Fig. 2.6 suggests that both the intermediate stiffener in the wide flange
and the compound lip stiffeners are “fully effective” so that they remain straight

during local buckling of the plate elements. With modern highly stiffened sections,
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this is often not the case. Stiffeners may be partially effective so that stiffener
buckling interacts with local plate buckling. EN 1993-1-3:2006 gives some design
rules for more general situations but these are complicated to use and not particularly
accurate (Kesti, Davies, 1999). Evidently, this is the situation where the design based

on an analysis of the whole section is to be preferred.

2.5 DISTORTIONAL BUCKLING BEHAVIOUR

2.5.1 Model for distortional buckling in column

Aston University

Nlustration removed for copyright restrictions

Fig. 2.8: Distortional buckling models (Hancock,1997).

Distortional buckling of compression members such as lipped channels usually
mmvolves rotation of each flange and lip about the flange-web junction in opposite
directions as shown in Fig. 2.88. The web undergoes flexure at the same half-
wavelength as the flange buckles, and the whole section may translate in a direction
normal to the web also at the same half-wavelength as the flange and web buckling
deformations. The web buckling involves single curvature transverse bending of the

web.
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A simplified analytical expressions for the distortional elastic buckling stress was
originally developed by Lau and Hancock (1997), as is shown in Fig. 2.89, which
were based on a flange buckling model in which the flange was treated as a
compression member restrained by a rotational and a translational spring. The

rotational spring stiffness k, represents the torsional restraint from the web and the

translational spring stiffness k, represents the restraint to translational movement of

the cross section.

In Lau and Hancock’s analysis (1997), it is shown that the translational spring

stiffness k, does not have much influence on the buckling mode under consideration
and the value of k_ was thus assumed to be zero. The key to evaluating this model is
to consider the rotational spring stiffness k, and the half buckling wavelength 4,

while taking account of symmetry. Lau and Hancock (1997) give a detailed analysis
in which the effect of the local buckling stress in the web and of shear and flange
distortion were taken into account in determining expressions for k, and 4. This
gave rise to a rather long and detailed series of explicit equations for the distortional

buckling stress. Not withstanding their cumbersome nature, these are now included in

the Australian code (AS/NZS 4600).

2.5.2 Model for distortional buckling in beam

Analytical expressions for the distortional buckling of thin-walled beams of general
section geometry under a pure bending moment about the major axis have been
developed by Hancock (1997). These analytical expressions were based on the simple

flange buckling model shown in Fig. 2.9, in which the flange was treated as a
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compression member with both rotational and translational spring restraints in the

longitudinal direction. The rotational spring stiffness k,and the translational spring
stiffness &, represent the torsional restraint and translational restraint from the web

respectively. In his analysis, Hancock again assumed the translational spring stiffness

k_ to be zero.

Aston University

lustration removed for copyright restrictions

Fig. 2.9: Analytical distortional buckling model (Hancock, 1997).

These beam models are, of course, directly analogous to the column model shown in
Fig. 2.89. The only significant difference lies in the stiffness of the rotational spring

and the necessary modifications to the design expressions for the rotational spring

stiffness k, and the buckling length 4 are given in Hancock's paper (1997). This then

leads to the similar equations for the critical stress for distortional buckling.

Hancock provided distortional buckling formulae for channel columns based upon a

simple flange buckling model where the flange is treated as a thin-walled compression

members undergoing flexural torsional buckling. The rotational spring stiffness £,

represents the flexural restraint provided by web which is in pure compression, and

translational spring stiffness k_represents the resistance to translational movement of

the section in the buckling mode. As a result of the compressive stress in the web, the

26



model included a reduction in the flexural restraint provided by the web. In the

Hancock model, it is assumed that the value of the translational spring stiffness k_is

zero so that the flange is free to translate in the x direction in the buckling mode. The

equation for the rotational spring stiffness k, is given in Lau & Hancock:

5 EF _Lug( wa i i
*5.46(h+0.061) Et* \ B+ A '

where A is the half- wavelength of the distortional buckle given by:

I bzh 0.25
A=48| X 2.8
[ 27 J 2

An analytical method for the prediction of short half-wavelength distortional buckling
has recently been presented by Hancock(1995). The method is similar to that of Lau
& Hancock for compression members, but involves modified torsional restraint

stiffness, k, at the flange/web corner. The modified torsional restraint stiffness is

calculated on the basis of an assumed elastic distortional buckling stress, f,,', of the

lip/flange component, and the compressive stress distribution in the web element. The
section in which the compressive lip/flange component torsionally restraints the web
element, i.e. develop negative torsional restraint stiffness, typically have large web
slenderness ratios, i.e. 2/t >150, and tend to fail by flange/web distortional buckling.
However, it is also possible to observe experimentally flange/web distortional
buckling of sections which have low positive torsional restraint stiffness values. The
procedure used to calculate the assumed elastic distortional buckling stress and the

resulting torsional restraint stiffness is given below:
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Fig. 2.10: Lip-flange component geometric properties.

4, =1(b+c) 2.9)
- 2
y———c /2 (2_10)
b+c
. ya
x=b /2+bc (2.11)
b+c
f3
Jp=50+0) (2.12)
I =b—ri+£c—3+br_2+cr(c12—;)2 (2.13)
¢ 13 12 " ‘
AL S s tet(b-x) 2.14
ny=l—2—+ﬁ+br(x—bl2) +cr( -x) (2.14)
Im,=br(bz’z—;)(—;)+ct(c!2—;)(b—;) (2.15)
Step 1
Y
B=x (XX (2.16)
Af

I bzh 0.25
A, :4.8( *;f ) if A <A, then A, =4 (2.17)



Q= _g_(fxsz +0.039J,4,%)
|
1

2 o
a, =q(1j+gyb19f}

a, =q[allﬂ, —%Iwzbzl

fa'= - {(a+a,)* \/(a:] +a,)" ~4a,} smaller positive value
A
oo 2EF oy hA’
? 5.46(h+0.06/1d) Et* (12.564,% +2.192h* +13.394 K
Step 2
If k, > 0then

k
a = %(J,fb’ +0.039J 4, )+ 5 ;E

1 1

a3 ZT?(QIIM.- —%]Mzbz]

1

fy'= % {(a+a,)t J (@, +@,)’ —4a,} smaller positive value
s
If k, <Othen

z 2E1 -
* 5.46(h+0.064,)

_n 2 2 k,
o —E(I#b +0.039J 4, )+ME

a =q[a,1j-;-1w2b2)

Ta'= _zg_ {(a,+a,)t J(Tx, +a, )2 —4a,} smaller positive value
s

(2.18)

(2.19)

(2.20)

2.21)

(2.22)

| e

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

29



Strength curve 1

For f,'>22f,

L=1 (2.31)
For f,'<2.2f
Jaa' Ja'
=f [=-11-0.22 |==- 2.32
o -em .
Strength curve 2

For f,,'>3.18/,

F=il (2.33)
For f,,'<3.18f,

&) 1_0.25[.&1}"‘6 »

& f”{f;] [ 7 239

Nominal moment resistance

If k, > Othen

M, =S.f (2.35)
If ké < 0Othen
M =S.f (2.36)

where S, is section modulus of the full unreduced section for the extreme compression
fibre; S, is section modulus of the effective section calculated as stress f, in the
extreme compression fibre, with k, =4 for the stiffened flange, and f = f, for the
edge stiffener; 4, is distance between restraints which limit rotation of the lip/flange

component about the flange/web corner.
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2.6 LATERAL-TORSIONAL BUCKLING BEHAVIOUR

2.6.1 Recent study in lateral-torsional buckling

The lateral-torsional buckling is characterized by the mode of rigid body movements
of the whole member in which individual cross-sections rotate and translate but do not
distort in shape. It is well known that long beams with low lateral stiffness and low
torsional stiffness are very prone to buckling laterally. Further, the sections are often
loaded eccentrically from their shear centres. Because of the geometry of the cross
section, which gives great flexural rigidity about one axis at the expense of low
torsional rigidity and low flexural rigidity about a perpendicular axis, cold-formed

members are particularly susceptible to lateral-torsional buckling.

Comparing to the local and distortional buckling, the lateral-torsional buckling has
been little concerned. This is partly because cold-formed steel members are usually
used together with metal sheeting that restrains the lateral movement of the members
and thus reduces the possibility of the occurrence of lateral-torsional buckling, and
partly because the lateral-torsional buckling is traditionally prevented by the use of

inexpensive anti-sag bars.

Recently, there have been many experimental, numerical and analytical studies of
torsion and lateral-torsional buckling (Davies, 2000; Gotluru et al., 2000; Hancock,
2003). Put et al. (1998) performed lateral buckling tests on un-braced, simply
supported cold-formed lipped channel beams. Experiments on braced cold-formed
steel channels and zed purlin beams were also undertaken at Cornell University
(Schafer, 2001b). Pi et al. (1998) investigated the lateral buckling and biaxial bending

behaviour of both channel and zed sections using finite element methods. A pilot
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study of laterally braced C-sections as used in wall studs was performed by Beshara
and LaBoube (2001). The effect of a lateral brace at the middle of span to restrain the

C-section from rotation was investigated experimentally.

Channel and Zed-sections are the most common members used as purlins and girders
in roof and wall systems with sheeting attached and so the effect of the sheeting in
preventing torsion and lateral-torsional buckling needs to be quantified. Considerable
research has been performed in this area over many years. Lucas et al. (1997a &
1997b) investigated the influence of sheeting on the performance of the cold-formed
sections using the finite element method. Linder and Aschinger (1994) proposed some
alternative design procedures for the load-carrying capacity of cold-formed beams
subjected to overall lateral-torsional buckling and local plate buckling. Laine and
Tuomala (1999) studied Z, Zeta, C and Hat shaped sections to determine
experimentally the influence of internal supports and sheeting on the top flange for
purlins under gravity load. In design specifications such as BS 5950-5:1998 the
lateral-torsional buckling of cold-formed members is calculated based on the theory of
a detached beam, the result of which is obviously too conservative as it neglects the

influence of sheeting restraints.

The recently developed finite strip analysis packages are aimed to predict more
accurate elastic buckling stresses related to local, distortional, and lateral-torsional
buckling (Loughlan, 1996; Hancock, 1997a; Schafer, 2001c&2003a; Ye, 2002).
However, at the present, these packages can be only applied to the case where the
member is subjected to pure compression and pure bending. For local buckling, it
may be acceptable to assume constant stresses along the longitudinal axis because of

its relatively short half-wavelength. For distortional buckling and particularly for
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lateral-torsional buckling, however, the stress gradient along the longitudinal axis
should be considered if the result of finite strip analysis is going to be used for the

design purpose.

Recently, Li (2004) developed an analytical model for predicting the lateral-torsional
buckling of cold-formed zed-purlins partially restrained by metal sheeting for both

downward and uplift loadings. The calculation details are given in the following part.

2.6.2 Analytical model for lateral-torsional buckling

An analytical model for predicting the lateral-torsional buckling of cold-formed steel
members is presented by Li (2004). The model is constructed for the practical case
where the cold-formed member is subjected to transverse loads and is restrained
partial-laterally by sheeting and interval anti-sag bars. The focus is to investigate the
influence of the restraints provided by the sheeting and by the interval anti-sag bars,
and the variation of moment along the longitudinal axis on the lateral-torsional

buckling behaviour of the cold-formed steel member.

Consider a purlin that is partially restrained by the sheeting on its upper flange. The
restraint of the sheeting can be simplified by one translational spring and one
rotational spring, as shown in Fig. 2.11. Let the origin of the coordinate system (x, y,
z) be the centroid of the cross-section, with x axis being along the longitudinal
direction of the beam, and y and z axes taken in the plane of the cross-section. For an
arbitrary axis system, the relationship between bending moments and radii of

curvature can be expressed as:
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Fig. 2.11: An analytical model for lateral-torsional buckling analysis.

I, I1.7(1/R
My _gl?y ‘» : (2.37)
M, I, I, ||UR,

where M and M, are the bending moments about y and z axes; / and I, are the
second moments of the cross-section area about y and z axes; /,, is the product
moment of the cross-section area; R, and R, are the radii of curvature of the centroidal

axis in the xz and xy planes, respectively.

The moment in Eq.(2.37) is defined as positive if it creates a tensile stress for positive

y and z values. Thus, M, has the same direction as y axis, while M, has an opposite

direction to z axis.

Note that for small deflections the radii of curvature can be expressed in terms of

deflections of the centroidal axis as follows:
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where v and w are the deflections of the beam centroidal axis in y and z directions,

respectively.

The strain energy of the beam due to deflections and rotation can be expressed as:

i ! 2 1L 12 2)\2
v, LM M dx+ﬂj[@] aes BC [ 4] 4, (2.39)
Hem 2\ R, R, 2 \dx 2 J\dx

where G is the modulus of elasticity in shear; J is the torsion constant; C, is the

warping constant; ¢ is the angle of twist; / is the span length of the beam.

The first term in Eq.(2.39) represents the strain energy due to bending about y and z
axes, the second term represents the strain energy due to twisting, and the third term

represents the warping strain energy, respectively.

The strain energy stored in the two springs due to the deformation of the beam can be

expressed by
k' dY k.
Ty i =?J.[w—?J dx+76[¢ dx (2.40)

where k,and k, are the per-unit length stiffness constants of the translational and

rotational springs; d is the depth of the section.

It is assumed that the purlin is subjected to the external loads of a vertical uniformly

distributed load within the span and concentrated moments at its ends. The potential
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energy generated by these external loads can be expressed by

dw dv dv
x:l!_M_y Td;l.me-l—[M:oa x-—O‘_Mz ‘d_.x x‘-u’) (241)

1
dw
W = —ag)dx+| M —
: qu,,(v ag) +[ o

where g is the density of uniformly distributed load; a is the distance between

loading line and web central line; M ,,M M, , M are the concentrated moments

b

about y and z axes, applied at the ends of the purlin.

The deflections, v(x) and w(x), and the angle of twist, ¢(x) due to the externally

applied loads can be determined by employing the stationary principle as follows:

w,)=0 (2.42)

§(U{} - Wo) = 5(Uﬂ_bmm + UO_spring A
After the deflections and rotation are determined the pre-buckling moment

distributions along the longitudinal axis can then be calculated using Eq.(2.37).

The analysis of linear elastic buckling can be done using a similar energy method. Let
M,, and M,; be the pre-buckling moment distributions that are obtained from the pre-
buckling stress analysis. The pre-buckling longitudinal stress due to M,, and M,, can

be calculated by using the bending formula of the asymmetric beam:

M,I,-M,I, M,I,-M.],

oz” y
F¥ S
LI -1

(2.43)
2
11, -1%

Ux(x’y’z) =

Note that o is the function of y and z as well as of x. Now, let v(x)and w(x)be the
buckling deflections of the beam centroidal axis in y and z directions and ¢(x) as the

buckling twisting about x axis. Thus, the strain energy generated by the buckling
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displacements can be calculated using Eq.(2.39) for the purlin and Eq.(2.40) for the

springs.

The buckling deflections of the beam at any point x during buckling can be expressed
in terms of the buckling displacements of the beam centroidal axis, v,,w, and ¢, , as

follows (Li, 2004):

e . 1

V(x,y,z) =v, —zsing, + y(cosg, - 1) 2 v, —z¢, _Ey¢:
i (2.44)
W(x,y,2) = w, +z(cosg, —1) + ysing, = w, + y4, _‘iz¢:

where V(x, y,z)and w(x, y,z) are the deflections of the beam at point (x,y,z) during

the buckling.

The longitudinal displacement at point (x,y,z) can be expressed as follows:

T(x,7,2) = 4, - (ycos g, — zsin ) 22 — (zcosg, + ysing,) Wb + f(y,2) %
dx dx d (2.45)
dv, _dw, .dd, . dv, E ;
XU, — - 2 5 -
u, ydx zdx+ﬂdx z¢bdx y¢bdx

where B(y,z) is the warping function of St. Venant torsion; #(x, y,z) and u(x) are

the longitudinal displacements of the beam at points (x,y,z) and (x,0,0), respectively.

The longitudinal strain and shear strains generated by the buckling displacements can

be calculated by

37



ou ow

P2y = —+ =) +(—
£.(x,,2) P 2[(6x) (8):)]
iy = g T DU (2.46)
® dy oOx Ox Oy
(x z)—éi.i_@.}.?f_ﬁ
Farils 8z ox ox oz

Substituting Eqs.(2.44) and (2.45) into (2.46) and splitting them into linear and
nonlinear terms in terms of the buckling displacements, it leads to the following

second-order nonlinear strains:

1 _dv., dw d¢Y  d¥ d>w
5xz(xays2)="2*[(zx*)z+(ﬁ;)2"“(J’z“‘zz)(fJ =W

Y2 =0 (2.47)
:yx:zZ = 0

The non-linear strain energy generated by the pre-buckling longitudinal stress through

the second-order strains is calculated by:

!
W == [ [0 (%,3,2) 8,5 (%, 7,2) dddlx (2.48)
04

where 4 = the area of the cross section.

The negative sign in Eq.(2.48) is because o, and £, are in opposite direction.

Substituting Eq.(2.47) into Eq.(2.48) and noting that for the zed purlin that is

symmetric about its centroid.
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the following equation is obtained,

(=11 —

2 I d2 d2
J‘a X, y,z)[ —z%)gﬁdfidx =J¢(Mm =M, dxz]dx (2.50)

Note that #_, does not include the strain energy generated due to the lowering of the

distributed load during the rotation which is due to the load that is not acting at the
shear center (Timoshenko & Gere, 1961). When this is considered the strain energy

should be expressed by

=W,

oxb

+Wq=]¢[M i-MW%J %j (2.51)

It is known that for any infinitesimal buckling displacements, if the strain energy
generated by the buckling displacements is less than the strain energy generated by
the pre-buckling stresses then buckling will occur. Mathematically, this indicates that

buckling occurs at:
AW, =AW + W) 2U, =U, ine YU, poam (2.52)

where A is the critical load factor; U, is the total strain energy of the system;

U, yeamand U, _ . are the stain energy of the beam when the buckling occurs, which
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have the same expressions as U andU except now that the deflections and

0_beam 0_spring *

the angle of twist are the buckling deflections and the buckling angle of twist.

The minimum buckling critical load thus is calculated from

SU=-AW)=0 (2.53)

2.7 CALCULATION OF DEFLECTION

In evaluation of the deflection for such a beam, the question arises: which section
properties should be used? Using the full second moment of area predicts deflections,
which seriously underestimates the real deflections. Using the reduced second
moment of area overestimates the deflections considerably, and will cause over-
conservatism if the design is governed by deflection. Therefore, if the displacements
are required with reasonable accuracy, some attempt must be made to give

consideration to both pre-buckling and post-buckling effects on deflection behaviour.

The recommended deflection limitations for beams are given in cl.2.4.2 of BS 5950-
5:1998. The deflection, in the plane of loading, of a laterally stable beam or one which
is adequately restrained against twisting and which does not utilise the plastic

capacity, may be calculated as follows:

a- For M or M < M_, the full cross-section should be used in evaluating the

second moment of area and the deflection calculated using simple beam

theory;
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b- M, <M<M,_, either M or A is determined from a specified value of the

other quantity using the equation:

M = MCT — cr (2.54)
Mc = MCT

where M is the bending moment for a given loading system; A is the deflection for the
given loading system; M_is the moment capacity determined in accordance with
cl.5.2.2 of BS 5950-5:1998. A, is the deflection corresponding to M_ calculated using

the reduced cross-section; A_ is the deflection of the beam corresponding to M_

calculated using the full cross-section; M_, is the critical bending moment given by:

M_ =0.59EK(1/b)*Z, (2.55)

where K is the buckling coefficient of the compression flange, values of K for

different sections and conditions are given in the annex B of BS 5950-5:1998; Z_is

the elastic modulus of the gross cross-section with respect to the compression flange.

2.8 FINITE STRIP METHOD

The best known numerical method developed for analysing thin-walled beams based
on the separation of variables is perhaps the finite strip method. In the finite strip
method, the displacement interpolation is built-up of two parts, a polynomial defined
on a cross-section and a truncated Fourier-series part governing the behaviour of the
displacement function in the axial direction with the latter satisfying a priori the
boundary conditions at the ends of the beam. This provides “whole section” solutions

for the full range of buckling phenomena, leading to relatively new design procedures.
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If the thin-walled beam is prismatic and the boundary and loading conditions are
suitable, the finite strip method is quite economical with respect to computational
efficiency. Several well-known researchers have developed user-friendly computer

software (Schafer, 2001¢ & 2003a) for this calculation, which is available to practical

designers.

Unfortunately, the applications of the finite strip method to various geometries or
boundary and loading conditions are not fully developed. In the buckling analysis of
thin-walled beams using the finite strip method difficulties are experienced, for
example, when dealing with non-periodic buckling modes or unequal loading in the

axial direction.

A brief introduction to the finite strip model employed in the open access software

CUFSM (Schafer, 2001¢c & 2003a) is presented in the section below:

The finite strip method is applicable to elastic local, distortional and global buckling
of the structures with uniform stress distribution along the longitudinal axis of the
member. The finite strip method falls into the category of numerical methods that are
specifically designed for prismatic members. Cold-formed sections are generally
prismatic and the finite strip method has the advantage over finite element method of
requiring less computer time and memory as well as less data preparation.

From the practical point of view, the second-order finite strip method is particularly
important because bifurcation buckling solutions may be obtained relatively easily
using simple half sine wave displacement functions. This provides "whole section”

solutions for the full range of buckling phenomena, leading to relatively new design
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procedures which will be considered later. Several well-known researchers (e.g.
Hancock, Pekoz, Rhodes) have developed user-friendly computer software for this

calculation which is available to practical designers.

Cheung (1976) originally developed the finite strip method and an excellent summar)'/
of the method, and the theory behind it, can be found in his book. The use of the finite
strip method to understand and predict the behaviour of hot-rolled steel members and
cold-formed steel members has been greatly extended by Hancock (1994). Hancock
used the stiffness matrices derived in Cheung’s book, and with some modification,
created BFINST- a computer programme for solution of the elastic buckling problem
of open thin-walled members via finite strip. His early work in the field on I-beams
led to the acceptance and understanding of the use of finite strip method, which was

further developed particularly on cold-formed steel design.

A basic introduction to the finite strip model employed in the programme CUFSM is
presented here, which includes theoretical development and derivation of the initial
stiffness and geometric stiffness within the finite strip method (Schafer, 2001c,
2003a). The coordinate directions and degrees of freedom for a typical strip are shown
in Fig. 2.12. Please note the rather unusual choice of the x-z coordinate system which

is consistent with Cheung’s original derivation.

Since a box structure may be considered as an assembly of rectangular plates, which
are capable of undergoing both bending and in-plane deformations; in a linear elastic
analysis, it is assumed that no interaction takes place between these two systems. The
stiffness and force matrices for a finite strip in the analysis of box structures can

therefore be obtained by combining the bending and in plane analysis.
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Fig. 2.12: Displacement field for typical simply supported finite strip.

o

Fig. 2.13: Strip with compression stress distribution.

2.8.1 [Initial stiffness matrix for plates
The standard definition of an initial stiffness matrix is apparent from {f}=[K]{d}, or,

expanded to explicitly show the nodal forces, nodal degrees of freedom, and the initial

stiffness sub matrices: [K,, ] (plane stress) and [K ;] (bending) are:
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(Mo, (2.56)
The initial stiffness matrix may be expressed as:
[K]= [[BJ"[D][BId¥ or [IN'T'[DIN]dV (2.57)

where [B] or [N’] is the appropriate derivatives of the shape functions [N], which is
defined from (u,v,w)T =[N]{d}, where (u,v, w)T is the displacement field and {d}is

a vector of the nodal degrees of freedom.

For an orthotropic plate, and assuming no variation in the thickness (7) of the strip,

[K]may be expressed as: [K]=¢ j[B]T[D][B]dA , wWhere the plate rigidities are defined

as:

o O

[D] (2.58)
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The finite strip solution used employs a polynomial in the transverse direction and a
harmonic function in the longitudinal direction. In this derivation, the longitudinal
direction 1s assumed to take the form of a half sine wave. This 1s consistent with the
boundary condition of simply supported ends. The advantage of such an assumption is
that the integrals used in forming the stiffness matrix decouple, and the solution is

simplified.

The derivation of the initial stiffness matrix is in two completely decoupled parts. A
pure plane stress conditions is assumed for the in-plane u and v degrees of freedom.
Thew, @ degrees of freedom are derived using classical small defection plate theory

to arrive at the bending initial stiffness matrix. The two matrices [K,,] and [K ;] are

combined to form the total initial stiffness matrix.

= Plane stress initial stiffness matrix [K ]

The shape functions for use in determining the in-plane stiffness matrix are:

faox &=
u—[(l . (b)}{uz}l’m
_[I_E x vl a 4
vell-2) (b)] i

The expressions can be put in the general form [N]such that:

Y, =sin(Z2 (2.59)
a

u W4
H=[N] ~[N]{d} (2.60)
v U
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With the shape functions in that form, the strain-displacement matrix [B] can be

written in terms of derivatives of [N]:

£ Ou / Ox

x

g, b={ov/ay ~ [B]{d}=[N{d} 2.61)
y,| low/oy+oviex

Using these definitions, and performing the necessary substitutions into the
expression for the stiffness matrix presented before, the explicit plane stress matrix for

an element, or strip is given in Appendix A.1.
= Bending initial stiffness matrix [K ]

The shape functions for use in determining the bending stiffness matrix are:

W
3x 2x° v x 3x* 2%’ x* x :| 6,
w=Y |(l1-—5+") x(1-—+=) (-—) x(=5--) (2.62)
{ »¥ b b b »* b b* b ||w,
92

With the shape functions in this form, the strain-displacement matrix [B] can be

written in terms of derivatives of [N]:

-0*w/ &t
{e} =<-0’w/dy’ ; =[B]{d}=[N{d} (2.63)
&*w/ dxy
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The explicit bending stiffness matrix for an element or strip is also given in Appendix

Al

2.8.2 Geometrical stiffness matrix for plates

The geometric stiffness matrix for a plate strip subjected to linearly varying edge
traction can be determined by either directly considering the higher order strain terms,

or equivalently by forming the potential energy due to in-plane forces.

Consider a strip with linear edge traction as shown in Fig. 2.13. The tractions

corresponding to linear edge stresses f;, f, are T; and T>.

The expression for the potential energy (U) due to the in-plane forces is

v=1Tjn-a —E)fl{{@*@@:{{@@a—w} ]dxdy (2.64)

0 Oy Oy dy ||y oy o

N | =

The derivatives in the expression for U, may be expressed in terms of the nodal
degrees of freedom {d}. The matrix resulting from differentiating the shape functions

in this case is called [G], for which we have

Bu dv ow) "
2770 —1G14d 2.65
{5 5 3} [G1{d} ( )

The potential energy may now be expressed in terms of {d} and a matrix known as

the geometric stiffness [£,],
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U =)', Tk, 1= [ (-7 -1 IG T dxdy (2.66)

8

Its explicit form is given in Appendix A.1.

2.8.3 The finite strip solution method

In the previous two sections explicit matrices are given for the initial stiffness and
geometric stiffness of a discrete finite strip. For a member composed of multiple strips
the contribution of each strip must be formed into a global initial stiffness geometric
stiffness. Thus:

#istrips

[KI= 3 [, and [K, 1= 3 K, ], @.67)

The summation implies proper coordinate transformations and correct addition of the
stiffness terms in the global coordinates according to the degrees of freedom. The

elastic buckling problem is a standard eigenvalue problem of the following form:

[KI{d}=A[K, {d} (2.68)

Where the eigenvalues A, are the buckling load factor, and the eigenvectors are the
buckling modes. Solution of such an eigenvalue problem may readily be solved in

programmes such as MATLAB.

Both [K] and [K,] are a function of the modelling length. Therefore, the elastic
buckling stress and the corresponding buckling modes are also a function of the

length. The problem can be solved for several lengths and thus a complete picture of

49



the elastic buckling stress and modes can be determined. The minima of such of curve

could be considered as the critical buckling loads and modes for the member.

2.8.4 The limitation of finite strip method

It should be mentioned here that in the finite strip method the stress distribution is
assumed as constant along the half wavelength, while in the practical case the
longitudinal stress varies along the member span. However, it is conceivable that for a
beam subjected to a varying stress distribution along its span the local and distortional
buckling will occur only at a worst location such as mid span. Obviously, the finite
strip method is not suitable for analysing global buckling of the structures with a

varying stress distribution along its span.

However, local buckling can be carried out by finite strip method if the pre-buckling
stress distribution on the cross-section at the worst place is known, since it has a

relatively short half wavelength.
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Chapter 3
3 OPTIMISATION PROBLEM

3.1 INTRODUCTION

Nowadays, optimisation has become a necessary design trend in all major disciplines.
The motivation to produce economically relevant products with embedded quality is
the principal reason for optimisation. Optimisation is frequently associated with

engineering design, especially in structure civil engineering.

Cold-formed steel members provide substantial savings due to their high strength-to-
weight ratio. As a result, they have become very popular in the construction of
industrial, commercial, and agricultural buildings. An important advantage of cold-
formed steel is the greater flexibility of cross-sectional shapes and sizes available to
the structural steel designer. The shape of the cross-section of the members is mostly
that of zed, channel or sigma. These types of cross sections are popular and suitable
for the connection with other structure parts for buildings such as Zed and Channel,
Sigma sections which are used in roof and wall systems, as purlins and girt, or

sometimes as beams or columns,

The basic problem of the economical design of structures is to achieve the least
expensive construction that satisfies the design requirements. One of the conditions
required for a low-cost erected structure is the minimum weight of the material, which
is associated with the maximum structural efficiency (Yu, 1991). Cold-formed steel
structural members provide various kinds of cross sections, and can be produced
economically by forming operations. They provide a much larger variety of choices

for steel designers.
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In this study, the MATLAB programme for optimising the cross-sectional area of
cold-formed steel beams such as channel, zed and sigma purlin, subjected to the
uniformly distributed vertical load is presented here. The optimised beams arc
assumed to be simply supported with no lateral restraint. The design variables include
thickness, web depth, flange width, lip length and dimension of stiffener. Parametric

studies are carried out for different span lengths and loading intensities.

3.2 DESCRIPTION OF THE OPTIMISATION PROBLEM

The aim of the optimisation of cold-formed steel members is to minimise the weight
of material which is described by the gross area of the cross section Ag when the
design variables reach their constraints. In general, the optimum design problem of

thin-walled open cross sections can be expressed as below:

min F = f(x,) (3.1)

where f(x,) is the objective function which represent the area of the cross section
and x, represents the design variables, which consists of the cross sectional
dimensions such as the wall thickness 7, web depth % , flange width b and lip length
¢, or the dimension of the stiffener of the section, which are chosen to minimise the
objective function f(x;) under some equality or inequality structural performance

constraints and geometric constraints of the design variables.

The structural performance constraints for cold-formed section beams generally

include strength, deflection and stability requirements as well as geometric
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constraints. There might exist some types of fabrication constraints in some practical

applications. For instance, the length of strip L, , which is used to form the desired

strip ?
shape of the cross section, should be in the range of design variables that the

manufacturer provides. In general, the constraints of optimisation in cold-formed steel

beams C,(x)can be expressed as follows:

M_ M

C(x) =3 My —min{M, , M, M_ .} <0 (.2)
A=A

max lim

where M, and A, are the actual maximum moment design and maximum

max

deflection occurring in the beam when it is subjected to a uniformly distributed

transverse load, which is calculated based on the bending theory of the beam; M is

the moment capacity of the section, which is calculated based on the design codes;

A,,, is the deflection limit which is also specified in design codes; M_,, M and

M__ are the moment capacities corresponding to distortional buckling, lateral-

torsional buckling and shear buckling, which are also calculated based on design
codes and currently available approaches.
Geometrical constraints of design variables are applied based on the EN 1993-1-

3:2006 as below:

Lsl, si, (3.3)

h

T"ssoo;b—: <60,0.2 s;—**so.e;c—" <50 (3.4)
B t

where L, and L, are the lower and upper limit of the strip length which is provided by

the manufacturer.
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These geometrical proportions are assumed to represent the field for which sufficient
experience and verification by testing are already available. Cross sections with larger
width-to-thickness ratio are also used, provided that their resistance at ultimate limit
states and their behaviour at serviceability limit states are verified by testing and/or by

calculations and the results are confirmed by an appropriate number of tests.

In general, the above optimisation problem is a nonlinear problem in which both
objective function and constraints are nonlinear functions of the design variables. The
nonlinear character of the objective function and the constraints will be expressed in
greater detail in the next chapters with regard to different kinds of sections that are to

be optimised.

In this study, the optimisation problem is solved using the trust-region method which
is based on a standard optimisation algorithm medium scale built in MATLAB. The
requirement inputs for using this kind of optimisation tool are to create the objective
function and constraint functions for each individual optimisation problem. The
computational procedure and the mechanism of the optimisation programme are

described in the following section.

In order to demonstrate the overview picture of the general algorithm and its process
towards a solution of the optimisation problem, an example of the optimisation
problem with two design variables will be presented here as a good demonstration of

nonlinearity and the solution method when there are many variables.
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The problem is to design simply supported, plain channel beams under a uniformly

distributed load, and minimise the cross-sectional area, as shown in the Fig 3.1. The
design parameters are modulus of elasticity E=205000 N/m® , yielding

stress p, =350 N/m” , span length L=4m , thickness of section #=3mm , load
intensity g = 4kN/m . The design variables are the width of flange (X, ) and the depth

of web (X,). In this example, we assume the only two critical design criteria are

bending strength and a deflection limit of beam. Hence we have two nonlinear
constraints, and for practical engineering we have a geometric constraint for the
section as the depth of web is greater or equal to twice the width of flange. So the

optimisation problem can be described as follows:

q (kN/m) s

X

Fig.3.1: Simply supported beam subjected to uniformly-distributed transverse

loading
Objective function:
Minimise f(X,X,)=tQ2X,+X,—1). (3.5)
Subjected to:
Ci(X),X,): Oggn <P, (3.6)
C,(X,,X,): A, <A, (3.7)
C.(X.X,): 2X,-X,50 (3.8)

Dimension constraints are: 50mm < X, <300mm;50mm < X, <300mm
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where 0, 18 the maximum stress in the section due to the applied design load,;

A, . 15 the maximum deflection at mid span due to the applied design load; A, is the

allowable limit deflection in the beam equal to L/300.

300

250

Depth of web (m)
g

50 150 200
Width of 7lange (mm)

Fig.3.2: Graphical optimisation representation

The two inequalities of nonlinear constraints are shown as (C1) and (C2) curves and
linear constraint is given by as line (C3). The labels on the constraints curves is the
limitation of constraint such as allowable stress and limit deflection of beam. Hash
lines on the side of the inequalities of constraint establish the disallowable region for
the design variables. The constraints are drawn thicker for emphasis. The scaled
objective function is represented through several labelled contours. Each contour is
associated with a fixed value of the objective function and these values are shown on
Fig.3.2. The range of two axes establishes the web and flange dimension constraints.
The problem represented in Fig.3.2 provides an opportunity to identify the graphical

solution. First, the feasible region is identified. In Fig.3.2, the region above the linear
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constraint (C3) and nonlinear curve constraint (C2) is a feasible and optimal region.
Any solution from this region is an acceptable solution. There are usually a large
number of such solutions so-called infinite solutions. If optimisation is involved, then
these choices must be reduced to the best one with respect to some criteria (the

objective). In this example, the smallest value of objective function f(X,,X,) is
desired. The lowest values of f(X,,X,) must be bigger than the contour value of 800

and less than the contour value of 1000. It is the intersection of constraint C2 and

dimension constraint for the depth of web. Hence the value of f(X,,X,) needs to be

calculated. The optimal values of the design variables read from Fig.3.2, are 200mm
for web depth and 50mm for flange width. Another significant item of information
obtained from Fig.3.2 is that C1, C2 and C3 are active constraints. While there are

infinite feasible solutions to the problem, the optimal solution is unique.

3.3 STANDARD ALGORITHM OPTIMISATION BUILT IN MATLAB

Standard Algorithm provides an introduction to the different optimisation problem
formulations, and describes the medium-scale algorithms used in the toolbox
functions. These algorithms have been chosen for their robustness and iterative
efficiency. The choice of problem formulation (e.g., unconstrained, least-squares,
constrained, multi-objective, or goal attainment) depends on the problem being

considered and the required execution efficiency.

Optimisation techniques are used to find a set of design parameters,
x={x,,x,,....,X, } , that can in some way be defined as optimal. In a simple case this
might be the minimisation or maximisation of some system characteristic that is
dependent on design variables x;. In a more advanced formulation the objective
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function, f(x;), to be minimised or maximised, might be subject to constraints in the
form of equality constraints, C,(x)=0(=1,...m,) , inequality constraints,

C.(x)<0(i=m,,,...,m);and x,,x, are the parameter bounds of the variables design.

A general problem description is stated as

minimise f(x) (-9
Subject to

C.(x)=0(=1,...m,) (3.10)
C(x)=0(i=m,,,.,m) (3.11)

where x is the vector of »n design variables parameters; f{x) is the objective function,
which returns a scalar value, and the vector function C(x) returns a vector of length m

containing the values of the equality and inequality constraints evaluated at x .

An efficient and accurate solution to this problem depends not only on the size of the
problem in terms of the number of constraints and design variables, but also on
characteristics of the objective function and constraints. For the optimisation problem
of the cold-formed steel section, because of nonlinear characteristics of the objective
function and constraints, the optimisation problem for the cold-formed beam is
described as a nonlinear optimisation problem (NLP). A solution of the nonlinear
problem generally requires an iterative procedure to establish a direction of search at
major iteration and is obtained through numerical analysis. Through computer code,
numerical analysis becomes a numerical technique. The methods or techniques for
finding the solution to optimisation problems are called search methods. In applied

mathematics and numerical techniques these are referred to as interactive techniques.
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Implicitly, this means several tries will be necessary before the solution can be
obtained. Also implied is that each try or search is executed in a consistent manner.
The information from the previous iteration is employed in the computation of values
in the present sequence. This consistent process, by which the search is performed and
the solution determined, is called an algorithm. The search process is started typically
by trying to guess the initial design solution. The designer can base this selection on
his experience. On several occasions the success of optimisation may hinge on his
ability to choose a good initial estimate to the required solution. The search method,
even when used consistently, corresponds differently to the particular problem that is
being solved. The degree and type of nonlinearity may frequently cause the method to

fail.

In constrained optimisation the general aim is to transform the problem into an easier
sub-problem that can then be solved and used as the basis of an iterative process. A
characteristic of a large class of early methods is the translation of the constrained
problem to a basic unconstrained problem by using a penalty function for constraints
that are near or beyond the constraint boundary. In this way the constrained problem
is solved using a sequence of parameterised unconstrained optimisations, which in the

limit converge to the constrained problem.

Minimise F = f(x)(if Required Strength < Allowable Strength)

F = f(x)+ penalty(x)

3.12
(if Required Strength > Allowable Strength) S

The penalty is equal to the sum of square of all the constraints and is therefore greater

than zero when any constraint is violated and is zero when the point is feasible.
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Penalty(X)=r.y C} (3.13)

where r is a positive penalty constant.

This method is now considered relatively inefficient and has been replaced by a
method that has focused on the solution of the Kuhn-Tucker (KT) equations(Venka.
The KT equations are necessary conditions for optimality of constrained optimisation

problems. If the problem is a so-called convex programming problem, that is, f(x)
and C,(x)(i=m,,,,....,m) , are convex functions, then the KT equations are both

necessary and sufficient for a global solution point.

Referring to the general mathematical problem in Eq.(3.9), the Kuhn-Tucker

expressions can be stated as

V(X + 36 VC(X) =0

i=1
8 C(X)=0 i=1,..m (3.14)

5 =0 i=m,+1,..,m

The first equation describes a cancelling of the gradients between the objective
function and the active constraints at the solution point. For the gradients to be
cancelled, Lagrange multipliers J.,i =1,...,m are necessary to balance the deviations
in magnitude of the objective function and constraint gradients. Because only active
constraints are included in this cancelling operation, the constraints which are not
active must not be included in this operation and so are given Lagrange multipliers

equal to zero. This is stated implicitly in the last two relationships to Eq.(3.14)

The gradient of the function is a vector which presents the change of the function per

unit change in the variables and at any point represents the direction in which the
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function will increase most rapidly. Examining the conventional objective function of
nonlinear problem minimisation of objective functions, the gradient has a natural part
to play in the development of methods to solve the problem. The gradient is

composed of the partial derivatives organised as a vector. It is defined by:

(v o]
Vf{ax] Sy ax,,:| (3.15)

For mathematical concepts of nonlinear optimisation problems, the unconstrained
problems are discussed first followed by constrained problems. For constrained
problems the equality constrained problem is discussed first. A similar technique will

be applied to the inequality-constrained problem.

e Unconstrained problems
To illustrate the mathematical concepts of the unconstrained problem, we use an

example of two design variables and the nonlinear objective function defined as
below:
Minimise f(x,,x,)=(x, —=1)* +(x, —=1)* = x,x, (3.16)

0<x <3 0<x,<3 (3.17)
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Aston University

lustration removed for copyright restrictions

Fig. 3.3: Three-dimensional plot (P. Venkataraman, 2002)

Fig. 3.3 gives the contour plot solution and is used to identify the properties of the

function f(x,,x,). A tangent plane is drawn at the minimum for emphasis. The
minimum value of function is identified by X or [x,x,’] . From Fig. 3.3 the
minimum value of the function is equal to -2, while the design variables x,’,x, are

both equal to 2. If the design variables move a slight amount away from the optimum

value, in any direction, the value of the function f (xl,xz}will definitely increase

because X" is the lowest location of the concave surface representing the function

7 (x,x,). Corresponding to the displacement from the optimum values of variables

as AX, the change in the function value from the optimum value as Af, from the

direct observation, it is evident that the optimum solution must be a point which

satisfies

Af =0, forall AY (3.18)
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The same suggestion can be applied in the limit, such as for extreme small

displacement dx, and dx,about X . The function itself can be approximated by a

plane tangent to the function at the optimum solution as in Fig. 3.3. Moving to any
point in the plane from the optimum will not change the value of the function,

therefore df = 0 . Moving away from optimum variables thatdx,, dx, are not zero. The
changes in functions occur due to changes in the variables. From calculation of the

differential change in f (xl,xz)(df ) due to the differential change in the variables

x, (dx,)and x, (dx, ) is expressed as

L PN

T (3.19)
g E 2] |
ox, ox, || dx,
This should be applied for all locations in the planedx, # 0and dx, #0
Therefore,
A
o, o,
or the gradient of f(x,,x,) at the optimum must be zero. That is,
V(% )=0
For n variables, X", this expression becomes:
Vi(X")=0 (3.20)

Eq.(3.20) expresses the necessary condition, or first order condition, for unconstrained
optimisation. This equation is used to identify the possible solutions to the
optimisation problem. The solution for the variables will be at the same value of the

design variable. Eq.(3.20) by itself will not determine the minimum value of the
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function. Additional considerations are necessary to ensurc that the solution

established by the first order conditions is optimum value.

The second order conditions are usually considered as sufficient conditions. It can be
assumed that these conditions will involve a second derivative of the function. The
second-order condition is often gained through the Taylor expression of the function.

The Taylor series is a useful mechanism to approximate the value of the function

f(x)at the point (x, +Ax) if the function is completely known at point x,.The

expansion is for finite n:

f(x,+&x)= f (%V%‘I @+ =80 gl a1

n! dx”
*p

2! dx?

*p
The series is widely used in most disciplines to establish continuous models. It is the
basis of many numerical techniques, including those in optimisation. The equation is
usually truncated to the first two or three terms, understanding that the approximation
will suffer some error:

d’f

1
£x, +ax)= £(x, )+ < i

T (Ax)* +0.(Ax)? (3.22)

(Ax) +

*p

Moving the first term of the right hand side to the left hand side, ignoring the error

term, the Eq.(3.22) can be written as:

9
T odx

1ds

AP

(Ax)* (3:23)

*p

= £ (548913,

*p
For n variables, with X, the current point and AX the displacement vector,

T 1 T
f(X,+AX)=f(X,)+Vf(X,) AX +-AX H(X,)Ax (3.24)
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where H (X ), the Hessian matrix is the same as the matrix of second derivatives of a

function of » variables:

*f  df *f
ol owdx, | oxox,
*f  f
[H]=| ox,0x, ox,’ (3.25)
*f *f
| Ox,0x, ox 2 |

If X" is the solution, and AX represents the change of the variables from the optimum

value which will lead a change Af, then

. . \T 1 1 .
Af = f(X +AX)-f(X")=vf(X") AX +—AX H(X)AX (3.26)

Af must be greater than zero. By substituting the first order condition in Eq.(3.26) the
first term on the right hand side of this equation is zero, and we have the following
inequality:

Af = % AXTH(X)AX >0 (3.27)

Hence, the second-order condition to ensure that the solution established by the first-

order condition is optimum is expressed in Eq.(3.27).

e Equality-constrained problem
For the equality-constrained problem, it is said that at the optimum solution, the
gradients of the objective function and the constraint are parallel and oppositely

directed. There may exist a proportional relationship between the gradients at the
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solution. Using the constant of proportionality &, (a positive value) the relationship

between the gradient can be expressed as:

Vf =-8VC or Vf +8VC =0 (3.28)

Eq.(3.28) is usually obtained in a more formal way using the method of Lagrange
multipliers. In this method, the problem is transformed by introducing an increased
function, called the Lagrangian, as the objective function subjected to the same
equality constraints. The Lagrangian is defined as the sum of the original objective
function and a linear combination of the constraints. The coefficients of this linear
combination are known as the Lagrange multipliers. Therefore the objective function
becomes as below:

Minimise F (X,8) = f(X)+6C (3.29)
Subject to equality constraint C '

The solution to Eq.(3.29) is the same as the solution to Eq.(3.16). This is because, if
the design variable is feasible, the equality constraint is satisfied and the objective

function returns to the original expression. If it is not feasible, then by definition there

is no solution anyway. Applying the first-order condition, we obtained:

VF =Vf+6VC=0 (3.30)

The Lagrange multiplier method is an elegant formulation to gain the solution to a
constrained problem. In overview, it seems out of the ordinary that we have to
introduce an additional unknown & to solve the constrained problem. This breaks the

conventional rule for nonlinear problems in which the problem with fewer variables
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are normally easier to obtain the solution. As illustrated above, the Lagrangian allows
the transformation of a constrained problem into an unconstrained problem. The
Lagrange multiplier also has a physical significance. At the solution, it expresses the

ratio of the change in the objective function to the change in the constraint value.
F(X,0)=f(X)+6C=dF =df +0dC (3.31)
At the solution, the first order condition supposes that dF = 0. Hence,

s=-Y __ & (3.32)
iC  AC

At the solution determined by first order condition, to ensure having the optimum
solution, the second-order condition can be expected to satisfy the following relations:

L * L _ * 1 T 2 *
AF =F (X' +AX)-F(X")=VF (X )+§AX [VF(X)]AX >0 (3.33)
VC'AX =0
where [V2F(X")]is the Hessian of Lagrangian, with respect to the design variables

only evaluated at the solution. Also, the first order condition requires

that VF(X")=0.

e Inequality-constrained problem
The inequality-constrained problem is described by Eq.(3.9) and Eq.(3.11). We saw
above how the equality-constrained problems can be solved. If the inequality-
constrained problem can be equally transformed to an equivalent equality-constrained

problem, then we have a solution. The standard transformation approach requires a
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slack variable s, for each inequality constraintC;. Unlike linear problems, the slack

variable for nonlinear problems is not restricted in sign. Therefore, the square of the
new variable is added to the left-hand side of the corresponding constraint. This adds
a positive value to the left-hand side to bring the constraint up to zero. Evidently a
zero value of slack will be added if the constraint is already zero. Therefore, the new

equality-constrained problem is defined as below:

Minimise  f(X)

3.34
Subjectto  C(X)+s*=0 hed5%)

This is a valid equality-constrained problem. The Lagrange multiplier method can be
applied to this transformation. To distinguish the multipliers associated with
inequality constraints, the symbol S is used. The augmented function or Lagrangian
is:

Minimise F(X,s,8)= f(X)+ BIC(X)+5°] (3.35)
If the Lagrangian is considered as an unconstrained objective function, the first order

conditions are:

8F

ox aX '8 -

oF

= gﬁ /;—S-zﬁ s=0 (3.36)
£=C+sz=0

op

It is noted that X is the vector of design variables, C is vector of constrained function

and s is the vector of slack variables for each inequality constraintC,.

By combining the last two relationships in Eq.(3.36), the first order condition can be

restated as:
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W . yEC
X ox T ax (3.37)
BC=0

These equations have to be solved for X*, 8". Note that the slacks s are not being

determined. It suggests that they can be removed from the problem altogether in the
first order condition. The last equation of Eq.(3.37) presents a definite feature for a

nontrivial solution, either S is zero (and C#0) or Cis zero ( f#0 ). Since

simultaneous equations are being solved, the conditions on the multipliers and

constraints must be satisfied simultaneously. If 8 # 0 (or corresponding C =0), then

the corresponding constraint is an equality. Therefore, we are going to pretend slack

s never existed; the Lagrangian is reformed without the slack variables as

Minimise F(X,p)= f(X)+pC (3.38)

This equation is the same formulation as in the equality-constrained problem. The
slack variable was introduced to provide the transformation to an equality constraint.
It is evident that the construction of the Lagrangian function is insensitive to the type
of constraint. Since the multipliers tie to the inequality constraints are required to be
positive, those corresponding to the equality constraint are not. Hence the first order
condition for the problem can be rewritten as Eq.(3.37). These equations are used to
solve unknown variables. The best design solution is decided by scanning several
solutions. The sign of the multiplier in the solution is not a sufficient condition for the
inequality-constrained problem. Formally verifying a minimum solution requires
consideration of the second derivative of the Lagrangian. In practical situations, if the
problem is well defined, the positive value of the multiplier usually suggests a

minimum solution.
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e (General optimisation problem

The general optimisation problem is described as below:

Minimise f(x,,x,,...,X,)
Subjectto E,(x,,x,,...,x,)=0 k=1,2,...,1

3.39
C (X, %p--0%,) 20 J=L,2,...m (3.39)
Mg axWe im0
The Lagrangian:
Minimise F(x,,...;%X,,0,5..0,0;5 By 50y B,) = (3.40)

F (%5002, )+ OB +...+ G E; + BC +...+ B.C,
The first order condition associated with the general optimisation problem is called
the Kuhn-Tucker condition. There are n+[+m unknowns. The same numbers of

equations are required to solve the problem. They are provided by the Kuhn-Tucker

condition:

L 5 ‘ +..46, ‘+ﬂ1£+...+ﬂm C =0 i=12..n (3.41)
ax axi r i axi 6xx‘

E, (%, %y500s%,)=0 k=1,2,...,] (3.42)

It is evident that » equations are obtained by Eq.(3.41), / equations are obtained
directly through the equality constraints Eq.(3.42) and m equations are applied
through the 2" cases. This indicates that there are 2™ possible solutions. These

solutions must include Eq.(3.41) and Eq.(3.42). Each case sets the multiplier S, or the
corresponding inequality constraint C,to zero. If the multiplier is set to zero, then the

corresponding constraint must be feasible for an acceptable solution. If the constraint
is set to zero, then the corresponding multiplier must be positive for a minimum.

Therefore, the m equations can be expressed as below:
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B,C,=0—>if f,=0then C, <0

(3.43)
if C, =0 then §,>0

If conditions Eq.(3.43) are not met, the design is not acceptable. For each case a
simultaneous total of m values and equalities must be assigned. Once these first order
conditions determine a possible solution, the side or boundary constraints of variable

design have to be checked.

The solution of the equations forms the basis to many nonlinear programming
algorithms. These algorithms attempt to compute the Lagrange multipliers directly.
Constrained quasi-Newton methods guarantee super-linear convergence by
accumulating second order information regarding the KT equations using a quasi-

Newton updating procedure.
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Chapter 4
4 CONSTRAINTS IN THE OPTIMISATION PROBLEM

4.1 GENERAL

The optimisation of cold-formed steel sections is a highly nonlinear problem. As seen
in Chapter 3 the objective function is a quadratic nonlinear function of the multi-
design variables, and the constraints are also nonlinear. The constraints of the
optimisation problem in cold-formed steel sections consist of strength, deflection and
stability requirements, as well as the practical geometrical constraints of the design

variables. These constraints will be discussed in the following sections.

4.2 GEOMETRICAL CONSTRAINTS

In this study, the three types of cold formed steel purlins studied are the C channel,
the Zed section and the Sigma section. Depending on the design specification of each
country, the geometrical constraints of the cold-formed steel section are different. For

example, following the EN 1993-1-3:2006, the dimensions of the section are specified

as:
%o <500, % <60, 02< % <0.6; So<50 .1)
t t b, t

where b_, ¢, and h are the overall width of a flange, a lip and a web, respectively,

measured from the face of the section.
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In the British Standard BS 5950-5:1998, the maximum ratios of the element flat width

b

elem

to the thickness ¢ are determined for different kind of elements and compression

elements are given as follows;

Stiffened elements having one longitudinal edge connected to a flange or web element

(Bger /1), =60 4.2)
Stiffened element with both longitudinal edges connected to other stiffened elements

(Boem /1), =500 (4.3)
Un-stiffened compression elements

(Byem /1) ,,, =60 (4.4)

According to AISI, the geometrical constraint of the flange is the same as BS 5950-
5:1998 above, but for the flexural member maximum depth-to-thickness ratio of web

should not exceed the following limitations:

For un-reinforced webs

(h, /1), =200 (4.5)

For web with intermediate stiffener

(h, /1), =300 (4.6)

In this thesis, the geometrical constraints based on EN 1993-1-3:2006 will be used in
the optimisation process. However, depending on the purpose of the design, these

constraints can be changed to suite the design requirement.
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4.3 STRENGTH CONTRAINTS

In designing simple cold-formed steel purlins subjected to the uniformly distributed
load, the constraints in the strength of the members are based on the three main modes
of failure as local buckling, distortional buckling and the lateral-torsional buckling.
Additionally, the serviceability limit state of the member such as the maximum
deflection is also considered as one of the design constraints. The calculation of these
constraints will be presented herein under several methods based on the different
codes and recent research deliverables. The purpose of this section is to illustrate the
currently available approaches that are used to investigate the behaviour of the cold-

formed steel beams and are used for optimisation programming.

4.3.1 Local buckling

4.3.1.1 British standard BS 5950-5:1998

b2, . . . b2 b2, . .  baf2

(a) Effective width of (a) Reduced stress, Po
web in compress In fully effective web

Fig. 4.1: Behaviour of the member in bending.

The elastic properties of sections in bending are determined by considering the

effective widths of compression elements, as illustrated in Fig. 4.1. The neutral axis of
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the section is determined by balancing tension and a compression zone. The elastic
section modulus is then calculated based on the final axis position. Multiplying the
elastic section modulus by the design yielding strength of the steel leads directly to
the elastic moment capacity. Both the neutral axis position and the elastic section

modulus are therefore functions of the operating stress in the compression flange.

For symmetric sections, the elastic section modulus in compression is not higher than
that in tension and therefore compression yielding occurs first. However, for those
sections that are un-symmetric about the axis of bending, tension yielding may occur
first, causing plasticity to occur in the web. This local yielding as illustrated in Fig.
4.1, and is permitted provided that this stress in the compression plate does not

exceed the yield value.

The moment capacity of the section is computed based on the effective section. In BS
5950-5:1998, the moment capacity is determined on the basis of a limiting
compressive stress in the webs p,, determined in accordance with CL.5.2.2.2 and
C1.5.2.2.3. This stress is used to determine the effective widths of compression
elements, and hence the reduced section properties, and in the determination of the

moment capacity M, .

The procedure of the calculation of effective section based on BS 5950-5:1998 is
listed as follows:
Limiting compressive stress in the web:

P, =P, min(l, k) 4.7)

where:

75



k=1.13-0.0019 ﬂ) =
: )\ 280

d, =max(h,2Y,); h is depth of web along the middle line; p, is yield stress, given

in Table 3.1 BS 5950-5:1998; Y,, is depth of compression zone (=0.5h);
Effective width of the compressed flange (with stiffening lip):

The local buckling stress of an element is calculated by E.q.(4.8):

p, = %kc (%)2 — 0.904Ek, (é)2 (4.8)
where
k,=54- % = 0.02(%)3 (4.9)
Compressive stress on the effective flange:
f.=p, (4.10)
Effective width of the flange:
b,=b,=0.5b (4.11)
where
402
bcﬁ—b|:1+14{ ;-; —0.35} ] if £./p, >0.123 @.12)
bye=0 if f./p,.<0.123
Effective length of the compressed stiffening lip:
The local buckling stress:
n’E t.s
Pe = 120=0%) k, (Z) (4.13)
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where

i | ¥.~&
k =3 =P Je=Js st

i

cis lip length along middle line
Average compression stress in the stiffening lip: £, =(f, + f;)/2 (4.14)
where f; and f_ are compression stress at two end of lip.

Effective length of the stiffening lip:

Cp =C if f./p,<0.123
4 0.2
C =i 0.89[1+14{ L—O.BSJ ] +0.11; if £,/ p, >0.123 (4.15)
Pe
= Calculation of the new position of the neutral axis

2 2

ci+h—+bh+c[h—£]

2 2 2
Cy+bp+h+b+c

¥ =

n

(4.16)

4.3.1.2 Eurocode EN 1993-1-3:2006

EN 1993-1-3:2006 gives some comprehensive rule for the determination of effective
widths under different stress conditions. In practice, the effective width of individual
plate elements may be combined to give an effective section and member design
completed using conventional techniques. The procedure of calculating of the
effective width of an individual plane element is described detail in EN 1993-1-
5:2006. For plane elements without stiffeners, the effective width of un-stiffened

elements such as lip element of channel should be obtained by using the notional flat
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width reduced by the reduction factor p for plate buckling based on the plate
slendemessi_P. For plane elements such as flange element with edge or intermediate

stiffener, the design of a compression element should be based on the assumption that
the stiffener behaves as a full restraint.

We therefore have for plate element i that:
bui = Pb; (4.17)

The calculation of the effective width of a compression element is summarised here:

Internal compression elements:

- ~0.055(3+ 4.18
1>0673  p= % _2( V) o, whees (34 ) 20 ChIS)
)

P
Out-stand compression elements:

— . 4-19

—_ -

2
L btt
o, 284sfk,

o= [B5
Sy

where k_ is buckling factor corresponding to the stress ratio y and boundary

conditions
p 1s the reduction factor

2,>0748  p=

|

(4.20)

b;is notional flat width of a plane element
£, is the basic yield strength

o, 1s the elastic critical plate buckling stress
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The effective widths of compression element under different stress conditions are

summarised in the Table 4.1 and Table 4.2.

Table 4.1: Internal compression elements

Stress distribution (compression positive)

Effective® width b,y

=

b‘ AI' E ﬂL b bfﬁ = P b_
bey = 0.5 begy bea = 0.5 by
O3 oy
e be | beg=p b
14 B H 4 2
b, = i—wbﬂy ber = bty - by
P b - w<O:
i [IM:IDIDx-‘mm beg=p b.=p bl (1-w)
& eff = P Oc =P W
i i)
b | bey = 0.4 by bes= 0.6 by
W = Gylo, | 1>u>0 0 0> y>-1 -1 l>p>-3
Buckling factork. | 4.0 | 82/(1.05+¢) | 7.81 7.81 - 629 + 9.78v" 23.9 5.98 (1 - v)°

Table 4.2: Out-stand compression elements

Stress distribution (compression positive)

Effective? width by

1 Ba | 1> u>0;
Ty
o beit=p ¢
A
A
w< 0:

S
by | be |
n:[]l G
=] beg

bi=pb.=pcll-w)

yr = g0, 1

-1 | 2y=-3

Buck]ing factor k.

0.85 0.57 - 0.2 1 + 0,07ur

#

b,
" | >yur>0:
[
o2 bgt=pc
I%ck
ik | pr<;
a,
a bei=pbe=pcl/(l-y)
p be b
v = 0J0; 1 1>w>0 0 0> > -] -1
Buckling factor k. 0.43 0.578 /(¢ + 0.34) 1.70 1.7- 5w+ 171w 23.8
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4.3.2 Distortional buckling

4.3.2.1 Hancock’s model

Distortional buckling of flexural members such as C channel and Z sections usually
involves rotation of only the compression flange and lip about the ﬂange-web junction.
The web undergoes flexure at the same half-wavelength as the flange buckle, and the
compression flange may translate in a direction normal to the web, also at the same
half-wavelength as the flange and web buckling deformations. The web buckle

involves double curvature transverse bending.

Translation
——— Rotetion
Com pression
flange
h
: ;

Fig. 4.2: Distortional buckling mode of flexural members.

Analytical expressions for the distortional buckling of thin-walled beams of general
section geometry under a constant bending moment about the major axis had been
developed by Hancock (1995). These analytical expressions were based on the simple
flange buckling model, with an improvement proposed by Davies and Jiang (1996) in
which the flange was again treated as a compression member with both rotational and
translational spring restraints in the longitudinal direction. The rotational spring

stiffness k, and the translational spring stiffness k, represent the torsional restraint

and translational restraint from the web respectively. In this analysis, Hancock
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assumes the translational spring stiffness k_to be zero so that the flange is free to

translate in direction perpendicular to web plane. This gives a conservative prediction

for the buckling load.

Detailed explicit expressions for the determination of the distortional buckling
strength of flexural members have been presented in the literature review, and are thus

not discussed further here.

4.3.2.2 Direct strength method

Schafer and Pekoz (1998) proposed a new approach that works only with gross
properties of a member, and can take into account not only the interaction between
local and global buckling but also the interaction between distortional and global

buckling.

The Direct Strength Method (DSM) employs strength curves for an entire section to
predict the load carrying capacity. The strength curves were initiated from the
Winter’s curve and have been modified by a number of experimental results on cold-
formed steel structural members. The current provisions (AISI) for the distortional

buckling of beams give the nominal flexural strength M, as:

1 JM, /M, <0673
M_IM, =

y [1-0.22(%*)"-5](1{;’&)“5 JM, M, >0.673

y ¥

4.21)
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where M_, is the critical elastic distortional buckling moment. M_, can be obtained

by using finite element analysis or finite strip analysis (ABAQUS, ANSYS and
CUFSM). Modelling and simulation by such computational method is often too
complicated for the practitioner to use effectively. For this reason, Schafer and Pekoz
proposed closed form expressions as Eq 4.22 to Eq 4.24 giving the elastic distortional
buckling. Yu (2005) simplified the closed form expressions, and proposed empirical
expressions which are more applicable to C and Z sections with simple lip edge

stiffeners.

Analytical model for distortional buckling of cold-formed steel members

For design purposes, closed-form solutions for elastic buckling moment are often

desired.

Aston University

lustration removed for copyright restrictions

Fig. 4.3: Analytical model for flange (Yu 2005)

Since distortional buckling mainly involves the rotation of the flange, the distortional
buckling of an entire section can be obtained by considering the lateral-torsional
buckling of the compression flange. As shown Fig. 4.3, the flange is modelled as an
undistorted column with springs along one edge. The three springs represent the effect

of the web. By considering equilibrium of forces in the x and y direction and
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equilibrium of the moments about the shear centre axis, the govemning differential

equations are:

d*u d*v d’u d’¢

El,—+EI, —4+P[—2+y0——2]+kxf (u +(y, —hy).;&): 0 (4.22)
d*v d*u d*v d*¢

EI —+EI r—_1+1:'[—2+x0—2 +k,(v+(x,~h)p)=0 (4.23)

4 I 2 2 2
EC d—‘é—(GJf o P]M—P[xod—f-yod—‘jJ
4 dz dz (4.24)

+kxf("+(yo —hy)é)(yo _hy)_k»' ("”(xo _hx)¢)(xa —h)+k,$=0

where Iof,Ig,, I”,, Iw” C“f, Jf and A‘,r are section properties of the flange, k_,
k,,and k,  are the springs stiffness, x,and y, are the distances from the centroid to
the shear centre, 4, and A are the distances from the centroid to the springs. The

geometrical flange properties for C and Z sections are determined from Table 4.3.

Table 4.3: Geometrical flange properties for C and Z-section (Schafer, 1997).
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Aston University

Hustration removed for copyright restrictions

This flange model has been applied successfully by Lau and Hancock (1987) for
compression members, Hancock (1995) for flexural members, Schafer and Pekoz
(1999) for flexural members, and Schafer (2001) for compression members. The work
by Schafer and Pekoz proposed an explicit treatment of the role of the elastic and
geometric rotational stiffness at the web-flange junction and the method can account
for the cases where the buckling is initiated by web instability. The elastic distortional

buckling solutions of Schafer and Pekoz (1999) are summarised here:

The elastic distortional buckling stress f, is:

ke +k
o W (4.25)

=
kﬁ+km,

where the flange rotational stiffness is:
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4 I 2 2
by = [fJ El(x,~h) +EC —E-2(x,~h) } + [EJ GJ, (4.26)

_ # I i 1
T
ky = [—] Af(xo —h, ){%J -2y, (xa —h, {I—M] + h: +J’OZJ +1,+1, (4.27)

b ¥

And the web rotational stiffness is:

3 2 4 7.5
P . L{EJ I_E"L[E] h (4.28)
120-v?) n \L) 60 (L) 240
LY hY
, | 45360(1-¢,,, )+ 62160 —] +448;z2+[—] (53+3(1-¢,, )~
}c""'—_ htr h L
g 2 i
13440
7t +28x° -L-J +420[£)
h h
(4.29)

where, L is defined as the minimum of the critical distortional buckling length L, .
&, is stress gradient in the web defined as (f;—f,)/ f; in which f andf, are the
stresses at the opposite ends of the web. The critical buckling lengths L_ can be

determined by minimising the elastic buckling stress f, with respect to the L. The

general solution for L, is:

1/4
4 2 2 474
La_[ﬂ_")[;@,(xo_hx)%cwf—f i (xo—hx)2J+7[ 4 J (4.30)

t 720

The closed-form solutions for the buckling stress f, and critical buckling length
L, were previously proposed and verified, but the expressions are still complicated.

Therefore, simple empirical expressions are proposed herein, applicable for C and Z-

sections with simple lip edge stiffeners within the following dimensional limits:
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50<h /1<200; 25<b, /t<100; 6.25< D/t <50
45deg< 0 <90; 2<h, /b, <8; 0.04< Dsin(0)/b, <0.5
where £ is out-to-out dimension of web;
b, is out-to-out dimension of the flange;

D and 6 are defined as in the Fig.4.4;

D, d = Actual stiffener dimensions

Fig.4.4: Element with simple lip edge stiffener.

The proposed simple expressions are:

n*E t *
fa=ak, 207 [b—] (4.31)

. 0.7
k,=05< 0.6[MJ <8 (4.32)
ht
where a accounts for bracing as follow:
il ek, o=l
Ly
_ L 1"[IZ]
if L. <L = L—”’ (4.33)

Where L, is the distance between restraints which restrict distortional buckling and

L, is critical distortional buckling wave-length given by
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!

e}

b,Dsing)"”
B :]'Eh"[”Tm_] <10h, (4.34)

The simplified provisions have been verified by Yu (2005) by way of an extensive
parametric study using 7251 different geometries for C and Z section (Yu, 2005). The
results show that the simple expression of Eq 4.32 give a lower bound approximation
solutions as shown in Fig 4.5. Hence, the simple empirical expressions will be used in
the optimisation programme to determine the load capacity of the section against

failure by the distortional buckling mode failure.

Aston University

Hustration removed for copyright restrictions

Fig. 4.5: Development of simple expression for distortional buckling kg of C and
Z- section based on closed-form solution (Yu, 2005).

For the case where the member is subjected to a moment gradient, the closed-form

solution can be modified by multiplying by a factor f#, to take into account the

moment gradient effect. The modified formulae are:

Ko + K g
2
~E [t
fa=apky —r— [b—) (4.36)
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where f#=1.0<1+04(L,/L,)" (1-M,/M,)”" <1.3
M| > M|

M,/ M, is positive for single curvature;

where, M, and M, are the largest moment at the distance between restraints that do

restrict distortional buckling.

In case of partial restraint by a panel, the closed form solution for distortional
buckling can be modified to be:
ky+k,.+k,

= 437
fd ﬁ ké’s+k¢wg ( )

where k; is the elastic rotational stiffness provided by the panel.
Because the optimisation analysis does not consider attached panel case, hence then

expression for k;, is not presented now.

4.3.2.3 Distortional buckling based on EN 1993-1-3:2006

Distortional buckling for elements with edge or intermediate stiffener is described in
CL5.5.3 of EN 1993-1-3:2006. The design of compression elements with edge or
intermediate stiffener should be based on the assumption that the stiffener behaves as
a compression member with continuous partial restraint, with a spring stiffness that

depends on the boundary conditions and the flexural stiffness of adjacent plane
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elements. The spring stiffness of the stiffener should be determined by applying a unit

load per unit length « as illustrated in Fig. 4.6.

N

b) Equivalent system

Fig. 4.6: Determination of spring stiffness.

The spring stiffness K per unit length may be determined from:
K=ulé (4.38)
where ¢ 1s the deflection of the stiffener due to the unit load # acting in the centroid

of the effective area of the edge stiffener of flange.

In the case of the edge stiffener of a lipped C section and a lipped Z section, the spring

stiffness K of the compression flange is given by:

Ef 1

K= ) 4.39
4(1-v*) b*h+b’ (4.39)

where b, is the distance from the web to flange junction to the centre of gravity of the

effective area of the edge stiffener of flange, and £ is the depth of the web.

The reduction factor y, for determining the distortional buckling resistance should be

obtained from the relative slenderness 4, given from:
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7, =1 if ,<0.65

7, =147-0.7234, if 0.65<4,<138
066
A

A=\f,10.,,

(4.40)

2 if A,>138

where o, _ is the elastic critical stress of the stiffener calculated by Eq 4.41 .
The general procedure to calculate the effective properties of the compression flange
and lip taking into account distortional buckling has the following three steps :

Stepl:

Obtain an initial effective cross section for stiffeners, using effective widths of flange

determined by assuming that the compression flange is doubly supported, the edge

stiffener lip gives full restraint( X =) and the design strength is not reduced ( f, ).

The initial values of the effective widths of flange (4,,,5,,) should be determined from
CL5.5.2 in EN 1993-1-5:2006. The initial value of an effective lip depth is calculated
from C1.5.5.3.2 in EN 1993-1-3:2006.

Step 2:

Use the 1nitial effective cross section of the stiffener to determine the reduction factor

for distortional buckling. The elastic critical buckling stress o, , for an edge stiffener

should be obtained from:

2. /K.EI
Ters :TS (4.41)

where /_is the effective second moment of area of the stiffener, taken as that of its

effective area A4 about the centroidal axis of its effective cross section.

Step 3:
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Optionally repeat step 1 by calculating the effective width with a reduced compressive

stress 0, gy = Xa-foo ! Vio With  x, from previous iteration, continuing until
%, converge. Adopt an effective cross section with b,,,¢,, and reduced thickness

.4 cOrresponding to z,, ,

[+% B
<]

Fay 1

L&
L L | O
||“|"|lrn;"m _I_I T/t
- T a— a‘r
f’b.vw ..,E ;’n'w

=

A
1
-+
&
I
Carn—

:

Fig. 4.7: Compression resistance of a flange with an edge stiffener (Fig 5.8 in
EN 1993-1-3:2006).

4.3.3 Lateral-torsional buckling

In the design of cold-formed steel flexural members, when the load is applied in the
plane of the web, the members may twist and deflect laterally, as well as vertically, if
braces are not adequately provided. In design the moment capacity is not only ruled
by the section strength of the cross section but is also limited by the lateral buckling
strength of the member. This sub-section presents the current methods to design cold-
formed steel flexural members which will be discussed and used as the constraints in

the optimisation programme.

4.3.3.1 Lateral-torsional buckling based on BS 5950-5:1998
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M Loacing &

Fig. 4.8: Deformation of lateral-torsional buckling.

The buckling moment resistance of flexural members M, is calculated as follows:

M, = M’;M” (4.42)
¢3 + '\J|¢B i MEMY
M, +(1+n)M,
by = 5 (4.43)

where M is the moment capacity of the section.
M , is the yield moment of the section, that is the product of the design strength
p, and the elastic section modulus of the gross cross-section with respect to
the compression flange Z, .

M .. is the elastic lateral-torsional buckling moment resistance.

n is the Perry coefficient which is determined as followings

When L, /r, <40C, 7=0

When L, /r, >40C, 7= 0.002("‘—E —40C, J
r.

¥y
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where L, is the effective length in accordance with CL.5.6.3 in BS 5950-5:1998.
r,is the radius of gyration of the section about the y axis.C, is a coefficient which -
may be conservatively assumed to be unity, or can be calculated using
C, =1.75-1.054+0.38% <2.3 . B is the ratio of the smaller end moment to the

larger end moment ,M, in the un-braced length of a beam. S is taken as positive in

the case of single curvature bending and negative in the case of double curvature

bending. The bending curves are shown in Fig. 4.9. When the bending moment at any

point within the span is greater than M, C, should be taken as unity.

Double curvature bending, f negative

Fig. 4.9: Single and double curvature bending.

When the buckling moment resistance M, exceeds M, the ultimate moment should

be taken as M, .

For the channel section which is torsionally restrained at the end support points, it

may be considered to be loaded through the shear centre. The elastic lateral-torsional

buckling moment resistance M, can be determined from clause 5.6.2.2 in BS 5950-

5:1998:
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B3| =

2
2
M =T 488 o 1+L(LE ’] (4.44)

2oL, ir, ) ) 200,

For Z-section beams which are bent in the plane of the web:

.
_ ' AEh, . I(LE r} ’

= j JEEEE=E
© 4L Y| 20

=LA 4.45
¥ (4.45)

4.3.3.2 Lateral-torsional buckling based on AISI specification

For the laterally un-braced segment of singly and/or doubly symmetric sections in
which the compression flange is laterally braced by the sheeting steel, subject to

lateral buckling M shall be determined as follows:

M =5 Lo (4.46)

where S, is the elastic section modulus of the full section for the extreme
compression fibre; S, is the elastic section modulus of the effective section calculated

at a stress M_ /S, in the extreme compression fibre;

M , is the critical moment calculated according to:

For M, >0.5M,

My
M, =M,1-—2 (4.47)

e
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For M, <0.5M,

M =M (4.48)

where M is the moment causing initial yield at the extreme compression fibre of the

full section;

M,=S,F (4.49)

M,=Cyr, o,0, (4.50)
n*.E
” 4.51)
= (K oy 7, '
2
o, =—-| G+ 2 (4.52)
Ar, (k,.L,)

where C, is bending coefficient which can conservatively be taken as unity or
calculated from:

C, =1.75+1.05[ (M, / M, ) ]+0.3[ (M, / M, )]2 <23 (4.53)

where M, is the smaller and M, the larger bending moment at the ends of un-braced
length, taken about the strong axis of the member, and where M,/ M, the ratio of end

moments 1s positive when M; and M, have the same sign (reverse curvature bending)
and negative when they are of opposite sign (single curvature bending). When the

bending moment at any point within an un-braced length is larger than that at both
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ends of this length, and for members subject to combined axial load and bending

moment, Cp shall be taken as unity

r, 1s polar radius of gyration of the cross section about the shear centre

r, = 1”}2 + JP'y2 + .wca2 4.59)

where r,,7, are radii of gyration of the cross section about the centroidal principal
axes; K,,K ,K, are effective length factors for bending about the x and y axes and
for twisting; L, , L,, L, are un-braced lengths of compression member for bending

about the x and y axes and for twisting; x, is distance from the shear centre to the

centroid along the principal x-axis taken as negative.

4.3.3.3 Lateral-torsional buckling based on Li’s model

Recently, Li (2004) developed an analytical model for predicting the lateral-torsional
buckling of cold-formed C channel and Z purlins partially restrained by metal
sheeting for both downward and upward loadings. The model is constructed for the
practical case where the member is subjected to transverse loads and is restrained
partial-laterally by sheeting and interval anti-sag bars. The focus is to investigate the
influence of the restraints provided by the sheeting and by the interval anti-sag bars,
and the variation of moment along the longitudinal axis on the lateral-torsional
buckling behaviour resistance. In design specification such as BS 5950-5:1998,
lateral-torsional buckling of cold-formed steel members is calculated based on the
theory of unrestrained beam, the result of which is obviously conservative as it

neglects the influence of sheeting restraints. In the analytical model of Li (2004), the
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relations between the sheeting and the beam have been considered. As a result of that,
the calculation of lateral-torsional buckling is improved and it illustrated the real
behaviour of the structure. The explicit detail of this calculation was presented in the

literature review.

4.3.4 Deflection constraint

In the design of flexural beams, with a given loading condition, the deflection of
flexural members depends on the magnitude, location, and type of the applied load,

the span length, and the elastic bending stiffness.

Similar to the bending strength calculation, the determination of the second moment /
for calculating the deflection of steel beams is based on the effective areas of the
compression flange and beam web, for which the effective widths are computed for
the compressive stress developed from the bending. If the compression flange and the
web of beam are fully effective, the second moment of the beam section is obviously
based on the full section. In this case, the second moment is constant value along the
entire beam length. Otherwise, if the second moment is based on the effective areas of
the compression flange and the web of beam, the second moment may vary along the

beam span because the bending moment usually varies along the beam length.

In design the method to be used for deflection calculation is based on the accuracy
desired in the analysis. If more exact deflection is required, a computer programme or
a numerical method such as finite element method may be used. The deflection
calculation is too complicated for hand calculation. If an approximate analysis is used,
such as assuming the full constant second moment determined for maximum bending

moment, the deflection result is too conservative. Thus, some attempt must be made
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to give consideration to both pre-buckling and post-buckling effects on deflection
behaviour. The recommended deflection limitations for beams given in C1.2.4.2 of BS
5950-5:1998 are chosen as being appropriate. In this study, we apply this concept in
the deflection constraint for the optimisation programme of C channel, Z zed and
sigma purlins. The detailed expressions of the calculation are described in sub-section

2.7 in Chapter 2.

The recommended deflection limitation for beam is limited to maximum of span/200.

However, the limit of deflection should be specified by the designer.

4.3.5 Shear strength in web

For simply supported beam subjected to the uniformly distributed load, the shear
force in the web at the supports is quite significant, as the section could fail in the
event of an over shear stress in the web. According to BS 5950-5:1998, a separate
calculation should be made for maximum and average stresses. The maximum shear
stress is calculated based on the principle of an accepted method of elastic analysis,

which should not be greater than0.7 p,, where here p, is the for design strength. The
average shear stress should not exceed the lesser of the shear yield strength p, or the

shear buckling strength g, , obtained as follows:

pv=0‘6py
¢ 4.55
Ly - 59

The design strength value p, is from Table 4 of BS 5950-5:1998
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4.4 SUMMARY

The summary of constraints of the optimisation problem in cold-formed steel purlin
which consists of strength, deflection and stability requirements, as well as the
practical geometrical constraint of the design variables have been presented here.
Structural designer can freely modify these constraints to suit the different design
codes and the purpose of the client. The purpose of this chapter is to demonstrate the
general constraints of the optimisation problem of C channel, Z zed and X sigma
simply supported purlin subjected to uniformly distributed load. For more
complicated shape sections and others loading condition, the constraints may be

amended and revised accordingly.
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Chapter 5

5 OPTIMISATION OF CHANNEL SECTION PURLINS

5.1 BEHAVIOUR OF SINGLE SPAN CHANNEL PURLIN

5.1.1 Introduction

Channel section are widely used as purlins or rails, the secondary member between
main the structural frame and the outer cladding material, such as corrugated roof or
wall sheeting, such as that used agricultural and industrial buildings. Generally, the
purlin works as a simply supported beam subjected to uniformly distributed load. The
loading, the span and the dimensions of cross-section are illustrated in Fig. 5.1. In

Fig.5.1, b, is the overall width of flange; c, is the depth of lip; 7 is the thickness of

cross-section, 4, is the overall height of cross-section and L is the span of purlin.

q (kN/m) r—b-“—|
EEEEEEEEEEEEENER T_Te,
I 1N I
| L |
S EREEN RN RN ==

Fig. 5.1: Dimension and model analysis of single span channel purlin under
vertical uniformly distributed load.

In this section, the effects of dimension changes on the effective section properties are
investigated in order to obtain the first information to find the optimum section. The
mvestigations are based on BS 5950-5:1998, EN 1993-1-3:2006, and AISI or

AS4600.
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The investigation is performed for section with 4, increased from 40 to 100mm, in
10mm increments. The depth of web, % , is also increased from 100 to 300mm, in

100mm increments. The thickness of section is assumed to vary from 1 to 3 mm in
0.Imm increments. The span of purlin is maintained at a constant value of 4 m. The

yield strength is 350MPa with modulus of elasticity of 205GPa.

5.1.2 Effects of dimensions changes on the cross-sections local buckling
resistance

In this part, the effects of dimension changes on local buckling resistance are
mvestigated. The calculations are based on BS 5950-5:1998. In this thesis the

specimen labelling is shown as h200-02 which illustrate /_ and the ratioc, /b, of 0.2.

Fig. 5.2 shows the comparison between local buckling moment resistance and
yielding moment capacity of section which are presented in Chapter 4. As can be seen
from Fig. 5.2, the yield moment resistance of section is always higher than that of the

local buckling moment. The yield moment varies linearly with the increase ofb,,

whereas the local buckling moment varies nonlinearly with the increase of the flange
width. Fig. 5.2 shows that local buckling has a significant effect on the resistance of
the channel section. Furthermore, the local buckling moment increases more rapidly
for flange width from 40 to 65mm and less rapidly for 4, from 65 to 100mm. This is
due to the fact that the effective width of a large flange is less than that of full flange
width of small section. While effective width of flange of small section is equal or
closes to the full width of flange. It indicates that local buckling tends to occur when

the flange is reasonably large. We also found that b, from 40 to 60mm local buckling
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moment and yielding moment are very close. It proves that the local buckling occur
rarely with small width of flange.

Section h200-02

2 T
—&— Local bucking moment

— 4= - Yielding moment
20 4

Moment capacity (kNm)

10 1 1 1
40 50 60 70 80 80 100
Width of flange b, (mm)

Fig. 5.2: Comparison between local buckling moment and yielding moment
(BS 5950-5:1998).

3x 10
' ' ' i s —e— n100-02
s —=—h100-04
3 —e— h100-06
25F 4| ---¥-- h200-02
---Br-- h200-04
---e--~ h200-06
yierBemmentr ;sﬂ:::::::::::E::::::::"vu_. ,,,,,, 4| —— h300-02
R I -
o

Moment efficiency M_fA_ (Nmm/mm?)

40 50 60 70 80 90 100
Width of flange (mm)

Fig. 5.3: Moment efficiency based on BS 5950-5:1998.

Fig. 5.3 shows the effects of dimension changes on the moment efficiency. This is
defined as the ratio of the moment capacity to the gross area of cross section. As far as
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the moment efficiency M, /A, is concerned, its value decreases when b,is more than

80mm. Thus, the maximum value of moment efficiency does not correspond to the

widest flange and the largest ratio ¢, /b, .

Section h200-02

22 T T .
—8— Local bucking moment

— ¥ -Yielding moment

®
*

-
i

Moment capacity (kNm)
>

12

i 1

40 50 60 70 80 90 100
Width of flange b (mm)

Fig. 5.4: Comparison between local buckling moment and yielding moment

(EN 1993-1-3:2006).

—— h100-02
—a&— h100-04
—&— h100-06

c

Moment efficiency M /A (Nmm/mm?)

08 ] ] ] ] ]
40 50 60 70 80 a0 100

Width of flange b (mm)

Fig. 5.5: Moment efficiency based on EN 1993-1-3:2006.
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h0=2£JE|mm; cufbD=D.2; t=2mm

—&— BS 5950-51993 ' ' ' b
—+— EN 1993.1.3.2006 \

[+

Moment capacity M_ (kNm)

10 1 1 - A1 A
40 50 60 70 80 0 100

Width of flange b, (mm)

Fig. 5.6: Comparison of local buckling moment between BS 5950-5:1998 and
EN 1993-1-3:2006 based on variation of flange width.

bo=?5mm; t=2mm; |:°=15mm

28 T .
—&— BS5-5950-5:1998

—+— EN 1993-1-3:2006

[ +]

Mornent capacity M_ (kNm)

14 1 1 1 1 1 1 1 1 1
200 210 220 230 240 250 260 270 280 290 300
Depth of Web ho (mm)

Fig. 5.7: Comparison of local buckling moment between BS 5950-5:1998 and
EN 1993-1-3:2006 based on variation of web depth.

The same effect can be seen on the moment capacity calculated using the EN 1993-1-

3:2006 shown in Fig. 5.4. When b, is small enough, the flange is has a full effective
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width, and local buckling does not occur. But when the width of flange is more than
65mm, local buckling of flange starts to occur. From Fig. 5.6, it is found that the local
buckling moments calculated by BS 5950-5:1998 and EN 1993-1-3:2006 are very
convergent. However, the moment capacity computed by EN 1993-1-3:2006 is always

smaller than that by BS 5950-5:1998 when A, varies, it can bee seen clearly from Fig.
5.7. This is due to the fact that local buckling in the compression part of web is
considered in EN 1993-1-3:2006, whilst there is a limiting compression stress p_ of

the web in BS 5950-5:1998. This comparison demonstrates that local buckling

calculated by EN 1993-1-3:2006 is more conservative than BS 5950-5:1998.

5.1.3 Effects of dimension changes on the lateral-torsional buckling based on
BS 5950-5:1998

Fig. 5.8 gives plots to show the effects of dimension changes on the lateral-torsional
buckling moment based on BS 5950-5:1998. As can be seen from Fig. 5.8, the
increase of b, leads to an increase of moment resistance of lateral-torsional buckling,
because the minor second moment of area of the cross section is increased and the
position of shear centre is shifted in vicinity of the centroid of the section. Similarly,
the lateral-torsional buckling moment is improved significantly with an increase in the
depth of lip. The lip will improve the torsional rigidity of the channel section, which
is often very weak to torsion force. Thus, Fig. 5.8 illustrates the true behaviour of a

channel section, the moment resistance increases as result of the increase of ¢,. As
can be seen also in Fig. 5.8, with the deep 4_, the lateral-torsional buckling moment

resistance is greater than that of the section with shallow 4, due to the increase of th
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yield moment of section which is a product of the yielding stress p, and the elastic

section modulus of the gross cross-section.

The span length L=4 m

&

8

—_
(&, ]

10

Lateral torsional buckling (kNm)

1 L 1
40 50 60 70 80 90 100
Width of flange (mm)

Fig. 5.8: Effects of the dimensions on the moment of lateral-torsional buckling
based on BS 5950-5:1998.

5.1.4 Effects of the dimensions changes on deflection of the purlin based on BS
5950-5:1998

As can be seen from the plots in Fig. 5.9 that the moment resistance considering the

deflection constraint increases with the increase of b,, because of the full second
moment of area of section increases. Similarly, with the increase of 4, the moment

resistance against deflection increases also. Observing the lowest group of three

curves, when 4, =100mm , the influence of ¢ on the section capacity of deflection is
insignificant. But for the deepest section with#, = 300mm , we can see that the ¢, does

have a significant effect on the moment resistance. This is due to the fact that the full
cross section is used in evaluating the second moment of area for the shallow section

for example 4, =100mm . Hence an increase of ¢, does not help to increase the
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capacity of section to resist deflection. However, in the deep section, the effective
section may be used to calculate the second moment of area due to the local buckling.
In such case, the depth of lip will improve significantly the cross sections capacity to

resist deflection.

The span length L=4 m

3,

15

10 T

4]

Moment resistance considering deflection (kNm)

Width of flange (mm)

Fig. 5.9: Effects of the dimensions on moment resistance taking into account of
deflection based on BS 5950-5:1998.

5.1.5 Investigation of the distortional buckling resistance of purlin

In BS 5950-5:1998 the purlin section is designed without considering the effect of
distortional buckling. Currently, there are two efficient approaches for calculating
distortional buckling of flexural members. The first approach is Hancock's method
(1995) in which analytical expressions were based on the simple flange buckling
model, the flange was treated as a compression member with rotational and

translational spring restraints at junction between web and flange. The rotational

spring stiffness k, and the translational spring stiffness k, represent the torsional

restraint and translational restraint from the web, respectively. Hancock assumes the
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translational spring stiffness 4, to be zero. The second method by Schafer and

Pekoz's (1999) is the direct strength method. It is a new approach which works with
the gross properties of member and can take into account not only the interaction
between local and global buckling but also the interaction between distortional

buckling and global buckling.

The direct strength method employs the elastic distortional buckling moment which
can be obtained by numerical methods such as finite element analysis or finite strip
analysis (CUFSM, ABAQUS, and ANSYS). However, those methods are sometimes
complicated or not practical for the designer. For this reason, Schafer and Pekoz
proposed the expression for close form solutions of elastic distortional buckling.
Recently, Cheng Yu (2005) simplified this expression and produced empirical

expressions which are applicable for C and Z sections with lip edge stiffeners.

The comparison between the two methods is performed based on the calculation of

the distortional buckling of the channel purlin with /4, of 200mm and the width of

flange varying from 40 to 100mm, the thickness of 2mm in order to evaluate the
efficiency and applicability of each approach in terms of design. Fig. 5.10 shows that
the moment resistance of distortional buckling calculated by the direct strength
method which is smaller than that by Hancock’s analysis. Thus we will use the direct
strength method to calculate distortional buckling in the optimisation programme of

channel purlin, because the results are more conservative.

108



The span length L=4 (m)
14 T +

—&— Direct Strength Method

—=—  Hancock's method /

Morment resistance of Distortional buckling (kNrmi)
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40 50 60 70 80 S0 100
Width of flange (mm)

Fig. 5.10: Distortional buckling comparison.

5.1.6 Comparisons lateral-torsional buckling moment of resistance based on
different calculation methods

Comparison is carried out for four different analyses with variation of dimensions and
span length. First, we shall consider a simply supported channel purlin with a span
length of 4m, which is restrained rotationally in all directions at the supports. The web

depth is maintained at 200mm, the section thickness of 2 mm and ratio ¢, /b, of 0.2.

The width of flange varies from 40 to 100 mm. Fig. 5.11 shows that the moment
resistance of lateral-torsional buckling increases with the increase of the width of
flange in all four methods(BS 5950-5:1998 , Li's model and AISI, and AS4600
standard). Such increase is due to the increase of minor second moment of section.
However, Fig. 5.11 illustrates that the results of Li's model are always higher than
other methods, because Li's model computes lateral-torsional buckling taking into
account the explicit gradient moment of members subjected to the uniform distributed

load instead of using approximate bending coefficient C, to consider the gradient
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distributed moment of the simple beam or considering pure bending moment. AS4600
results are the most conservative due to the assumption that the section is subjected to

a pure bending moment. Similarly with the variations of 4_, span length and c,, the

moment resistance calculated by Li's model is always higher than other methods. The
plots for these comparisons are given in Fig. 5.12, Fig. 5.13 and Fig. 5.14. It shows
that the Li's model illustrates more accurate behaviour of the channel purlin. However
for practical design, we tend to use the more conservative result, because it inclines

toward the safety.

L=4 (m), h,= 200 (mm), c,=0.2b, (mm), 1= 2 (mm)
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—— | TB-A54600

=]

&

8

o
(]

—_
=]
T

[4,]
T

Moment resistance of lateral-torsioan! buckling (kNm)

1
40 50 60 70 80 S0 100
Width of flange (mm)

Fig. 5.11: Lateral-torsional buckling with the variation of the width of flange.
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L=4 (m), bo= 75 (mm), co=15 (mm), t=2 (mm)
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Fig. 5.12: Lateral-torsional buckling with the variation of the depth of web

h,=200 (mm), b= 75 (mm}, c ;= 15 (mm), t=2 (mm)

18 : ? ' : ' : —&— LTB-BS5950-5
—e— LTB-Li

14% —s— LTB-AISI
—+4— LTB-AS4600

&

f-N
T

Moment resistance of lateral-torsioan! buckling (kNm)

4203[] 4200 4400 4600 4800 5000 5200 5400 5600 5800 6000
Span length (mm)

Fig. 5.13: Lateral-torsional buckling with the variation of the span length.
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h,=200 (mm), b= 75 (mm), L= 4000 (mm), t=2 (mm)

—&— LTB-BS5950-5
—6&— LTB-Li
—%— LTB-AISI

Ll
o

[
w

—+— LTB-AS54600

(]
o

-
(5]
&

Moment resistance of lateral-torsioanl buckling (kNm)

Depth of lip (mm)

Fig. 5.14: Lateral-torsional buckling with the variation of the depth of lip.

5.2 OPTIMISATION PROCEDURE
5.2.1 Description of problems
For a given span length, the minimisation of weight of the beam is equivalent to

minimisation of its cross-sectional area. Hence the objective function of the

optimisation problem can be expressed as:

F(h,,b,,c,,t)=ht+2(b, —)t+2(c,—t) (5.1)
where &, ,b,,c, and ¢ are the dimensions of cross section and so-called the design

variables which are chosen to minimise the objective function F under some structural

performance constraints and the geometric constraints of the design variables.

The structural performance constraints for cold-formed section beams generally
include strength, deflection and stability requirement and the geometrical constraints;

these have been discussed in Chapter 4.

112



5.2.2 Optimisation process in MATLAB programme

In this section, the dimensions of the channel purlins used in Section 5.1 are optimised
by using the optimisation toolbox in MATLAB. The toolbox includes routines for

many types of optimisation, including constrained nonlinear minimisation.

The cold-formed steel optimisation is the nonlinear optimisation problem with
nonlinear constraints and multi-design variables such as the geometrical dimension
constraints and the structural performance constraints. The procedure using the

optimisation toolbox of MATLAB is introduced:

The called function for the optimisation problem is:

(x, Fval)= fmincon( F(x),x,,A,b, A L,,U,,Nonlcon) (5.2)

eq’eq?

where fmincon function attempts to find a constrained minimum of a scalar function
of several variables starting at an initial population of design variables. This is

generally referred to as constrained nonlinear optimisation or nonlinear programming;

F(x)is the objective function defined by Eq.(5.1); x, is the initial population of the
design variables; 4, b and 4, , b,, are the parameters of the linear constraints, in our

problem the constraint is a nonlinear functions, hence those parameters can be set to
null; L, and U, are the lower and upper bounds of the design variables such as the
overall depth of section, the overall width of flange, the depth of lip and the thickness
of section; Nonlcon are nonlinear constraints of the problem including the geometrical
constraints and the strength constraints; x and Fval are the optimum design variables

and the optimum value of the objective function.

113



In the present study, the optimisation problem is solved using the trust-region method
which is based on a standard optimisation algorithm built into MATLAB. The
requirement for using this kind of optimisation tool is to create the objective function
and constraints functions. The computational procedure of optimisation is summarised

in the flowchart given in Fig. 5.15.

/ Start program /

Generate initial set of design
variablesh_ ,b_,c,,t

n? “n? “n?

Checking the performance constraint
Checking the geometric constraint

X

Fitness evaluation

Optimisation criteria met

/ Best solution /

Fig. 5.15: The computational procedure of the optimisation programme.
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5.3 SELECTION OF PARAMETERS

The optimisation is performed for simply supported channel beams subjected to a
uniformly distributed load from 2kN/m to 4kN/m with span length between 3m and

6m. The modulus of elasticity and the yield strength of steel are taken as E = 205GPa

and p,=350MPa . The optimisation is carried out with different constraint

conditions. Firstly, we perform the optimisation based on BS 5950-5:1998 in which
the local buckling, lateral-torsional buckling and deflection constraints are considered.
Secondly, due to the lack of the calculation of distortional buckling calculation in BS
5950-5:1998, we take consideration of the distortional buckling calculation in the

optimisation problem.

5.4 NUMERICAL OPTIMISATION RESULTS

5.4.1 Optimisation result based on BS 5950-5:1998

The optimum dimensions /,, b and c, are given in Fig. 5.16 to 5.19 and that the
minimum cross section area is given in Fig. 5.20. The optimum dimensions are read
from graphical curve in accordance with specific span and loading value. For example
with span L=4500mm and @g=3kN/m, the optimum dimensions

are h, =270mm, b, = 84mm, ¢, =17.5mmand 7 =1.47mm.

Fig. 5.16 shows that the wall thickness has a slight influence on the resistance of
section. It is especially so for small load cases such as 2kN/m, although spans of the
beam vary from 3m to 6m, the thickness of section just changes in the range of Imm

to 1.5mm. For higher loads, the wall thickness does not increase significantly. It
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indicates that in terms of material saving, the thickness of section is not an important

design factor.

(wuw)y ssauyony |

C)
T T T T &
=
. W ' ' L0
EEE|l ' : g
= = ' 1 ) |
g : - H H
o M = : E H H
F| F: U ) " : ¥
: ] § : o
.......... b i
3 1] L} L} [}
: ‘ : - :
- : : ; {
~ : : : : :
: ' ] : ; .
3 Ll . [} [} .
1 . . [} . 1]
. | SN, (U LA —
: ' . : : :
] 1 . I3 L] 1]
1 Ll . 1} " 3
] L} . 1] . 3
) L 1} 1} [} ] —U
1 . . 1} . i
e e e e s i e i teiet S St [ |
' ' H ' ' ' ul
I [ . ' ] i =T
: - : : H '
— [ L R— T ; ot PR [
s ' " h h ' o
L " [ [} 1] 1 -
: : : : . :
L} L3 [} [} 1] 1
= - A= A e memme- - brsmee= b —
1 1 i ! i M
n ™ [T ™ - n om
m '] o

Span length L{mm)

1998.

Curves of optimum thickness over span length for un-braced channel
beams based on BS 5950-5

Fig. 5.16

e L (PUPRPRRPAPR R Y TN ——

B ——

Prresssscnsntnssannnnss

i
5500

i
4500

Span length L{mm)

|
5000

|
4000

1
3500

| o P
[

25

]

(ww) "y yidap gapp

1111 S

1998.

Curves of optimum web depth over span length for un-braced channel
beams based on BS 5950-5

Fig. 5.17

116



From Fig. 5.17, we can see that /4 increases rapidly according to large load case, for
instance, load case of 4kN/m, at 4.7m span length, 4, attains the maximum bound

value of 300mm. Whereas for small load case such as 2kN/m, the depth of web
increases gradually and slowly and reaches the maximum bound value at 6m span. It
is due to the fact that for large load cases with unrestrained beams, the lateral-
torsional buckling starts to control the capacity of section, so it evidently leads to an

increase of 4, in order to improve the lateral-torsional buckling resistance.
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Fig. 5.18: Curves of optimum flange width over span length for un-braced
channel beams based on BS 5950-5:1998.

Fig. 5.18 shows the optimum flange width over span length. The lateral-torsional
buckling is an instability mode with lateral movement of section in plane of the minor
axis and torsion around the longitudinal axis of member. In order to improve the
resistance of lateral-torsional buckling, there are two trends. Firstly, we can increase
the second moment of area about the minor axis by increasing the width of flange.

Secondly, we can increase the depth of lip which will help to change the performance
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of open section, like plain channel, to closed section form which has greater resistance

of torsion. It is illustrated in Fig. 5.19, the depth of lip increases dramatically for long

span for all load case.
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Fig. 5.21: Moment capacities of the optimised section over span length for un-
braced channel beams based on BS 5950-5:1998 for gq= 2 kN/m.
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Fig. 5.22: Moment capacities of the optimised section over span length for un-
braced channel beams based on BS 5950-5:1998 for g= 3 kN/m.

119



Moment capacity for g=4 kN/m

—=a— Local buckling
—=e— Deflection
—— Lateral buckling
—— Shear strength

c

Moment capacity M_(kNm)

0 |
3000 3500 4000 4500 2000 5500 6000
Span length L{mm)

Fig. 5.23: Moment capacities of the optimised section over span length for un-
braced channel beams based on BS 5950-5:1998 for q= 4 kN/m.

From Fig. 5.21 to 5.23, we know which design criterion controls the strength capacity
of the beam. It obviously can be seen that the optimum section of the unrestrained
beam are found when lateral-torsional buckling and local buckling coincide. It
satisfies the hypothesis of optimisation problem that we discussed in the Chapter 2.
The optimum section is a section which satisfies the hypothesis that all buckling mode
happen at the same time. However, because of geometrical constraint, it is impossible

to make all mode of failure occurring at the same time.

In order to verify the optimisation method, general method of optimisation process is
used. This method is effective with less design variable. The inputs of optimisation of

the channel section are b, from 50mm to 150mm, and the ratio c, /b, of 0.2, & of

202mm and the thickness is 2mm. The span length of beam is 4m. The beam is
designed based on the geometrical constraints and strength constraints identified by

local buckling and lateral-torsional buckling. The beam is subjected to uniformly
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distributed load of SkN/m. The comparison of optimum dimensions for two methods

are shown in Table 5.1:

In the table, ‘Opt-GO’ is the general optimisation procedure; ‘Opt-STA’ is the
standard algorithm procedure using the trust-region method. The corresponding
optimum dimensions are quite close in both methods. Thus the computer programme

for optimisation using standard algorithms is verified and can be used for further

analysis.
Table 5.1: Comparison of optimisation results
Optimisation h, b, c, t A,
methods (mm) (mm) (mm) (mm) (mm?)
Opt-GO 202 96.1 19.22 2 849.28
Opt-STA 202 95.7 19.10 2 847.22

5.4.2 Optimisation result based on BS 5950-5:1998 considering distortional
buckling

Currently, the distortional buckling is not considered in BS 5950-5:1998. Therefore,
the distortional buckling will be considered in the optimisation programme of the
flexural channel section based on BS 5950-5:1998. As above-mentioned in 5.1.5, the
investigation of the distortional buckling failure of channel section is calculated by
Hancock’s method and direct strength method (DSM).Fig. 5.10 shows that the
mément resistance of distortional buckling computed by DSM is always smaller than
by Hancock’s value, because DSM employs elastic distortional buckling which is

considered for the flexural beam under gradient moment and the interaction between
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flange element and web element instead of pure bending and assuming the lateral
restraint from the web to compression flange is zero in Hancock’s model. Hence, in
this part the calculation of distortional buckling based on DSM is used for the

optimisation programme for safety reason and numerical results.

Although, the distortional buckling is included in the optimisation programme, the
plots of optimum thickness are 0.5% different from the case without considering

distortional buckling. It indicates that the thickness of section has a small influence on

the optimum design section.

Thickness t(mm)

Span length L{mm)

Fig. 5.24: Curves of optimum thickness over span length for un-braced channel
beams based on BS 5950-5:1998 taking into account distortional buckling.
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Fig. 5.25: Curves of optimum web depth over span length for un-braced channel
beams based on BS 5950-5:1998 taking into account distortional buckling.

As can be seen from Fig. 5.25, it has the same trend compared with the case without
taking into account distortional buckling. However, for load cases of 3 and 4kN/m,
the depth of web increases with increase of span to attain the upper bound of 300mm
more quickly than that in Fig 5.17 when distortional buckling is not considered. It
indicates that the distortional buckling has evolved to control in the optimisation

process and hence it should be included in the design procedure of section.
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Fig. 5.26: Curves of optimum flange width span length for un-braced channel
beams based on BS 5950-5:1998 taking into account distortional buckling.

Contrary to the depth of web, Fig. 5.26 shows that as the width of flange increases
gradually it reaches its upper bound of 100mm more slowly than that in Fig. 5.18
when the distortional buckling is not considered. It proves that there is a reciprocal
relation between the web depth and flange width in designing process. When

considering distortional buckling in design, A4, provides a greater contribution to
increase the rotational spring stiffness k, at the junction between the web and the

flange, in order to increase the resistance of distortional buckling. The increase of 4,
induces the slow increase of the flange width. Furthermore, the optimum design
section is controlled by distortional buckling as showed in Fig. 5.29 to Fig. 5.31. On
the other hand, when the distortional buckling is not considered in Fig. 5.18, b, tends
to increase more quickly due to the fact that the lateral-torsional buckling or local
buckling governs the design section, hence this leads to the a quicker increase in

flange width.
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Fig. 5.27: Curves of optimum lip depth over span length for un-braced channel
beams based on BS 5950-5:1998 taking into account distortional buckling.

As can seen from Fig. 5.27, we find that the depth of lip becomes the important factor
in the distortional buckling resistance. The depth of lip starts at the higher value of
27mm instead of 12mm in Fig. 5.19 and increases significantly up to the upper bound

of 60mm.
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Fig. 5.28: Curves of optimum gross area section over span length for un-braced
channel beams based on BS 5950-5:1998 taking into account distortional
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Fig. 5.29: Moment capacities of the optimised section over span length for un-
braced channel beams based on BS 5950-5:1998 taking into account DB for ¢= 2

kN/m,
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Fig. 5.30: Moment capacities of the optimised section over span length for un-
braced channel beams based on BS 5950-5:1998 taking into account DB for g=3
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Fig. 5.31: Moment capacities of the optimised section over span length for un-
braced channel beams based on BS 5950-5:1998 taking into account DB for g= 4

kN/m.

Figs. 5.29 to 5.31 show the plots of moment capacity of five design constraints and

show the lowest M _that governs the optimum design solution.
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5.5 CONCLUSION

The optimum dimensions section of simply supported lipped channel beams subjected
uniform distributed load, and without internal restraint have been calculated. The
numerical results of the optimisation were performed for two cases based on BS
5950-5:1998 without distortional buckling calculation and with distortional buckling
calculation. We found that the optimum thicknesses for the both cases with different
load intensities are similar. It indicates that the wall thickness has a slight influence on
distortional buckling. On the contrary, the distortional buckling affects the other
dimensions of the section such as the depth of web, the width of flange and depth of
lip. Furthermore, it can be seen that the optimum design section is controlled by the
moment of distortional buckling when distortional buckling is considered in the

design calculation.

In conclusion, the global optimum dimensions of a simply supported lipped channel
purlin without restraints in span subjected uniformly distributed load are presented
here. The plots can be used for concept design by the structural engineer. For other
standards or other design constraint conditions such as with intermediate restraints,
the optimisation programme can easily be amended to find the plots for global

optimum section dimensions.
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Chapter 6
6 OPTIMISATION OF ZED PURLIN SECTIONS

6.1 BEHAVIOUR OF SINGLE SPAN ZED PURLIN

6.1.1 Introduction

Similar to the channel section, zed section is used often as a purlin on the roof system,
to be connected to the trapezoidal sheeting at the top flange. However, the channel
section is employed more in the flat roof] since its principal axes of the section are
perpendicular to the flange and the web of the section instead of zed section in which
the major axis makes an angle with the web plane. Thus, we tend to use the zed
section in a slope roof system to avoid the torsion of the section subjected to the

vertical load.

Aston University

Hlustration removed for copyright restrictions

The behaviour of the zed purlin section will be investigated with parametric studies

where flange width b, varies from 40 to 100 mm in 10mm increments, and depth of
the web 4, varies from 100 to 300mm in 100mm increments. The thickness of the
cross section is assumed to vary from 2 mm to 3mm. The span of the purlin is to be

4m. The steel properties are design strength of 350MPa and of modulus of elasticity
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of 205GPa. The current available design method as BS 5950-5:1998, EN 1993-1-

3:2006, and AISI will be employed in this investigation.

6.1.2 Design zed purlin subjected to bending

In general, cold-formed Zed sections may undergo the modes of failure listed as
below:

® Flexural failure involving local buckling in compression zone.

® Lateral-torsional buckling due to insufficient lateral restraints.

® Distortional buckling of the compression flange.

® Shear failure at support.

® Web crushing under direct loads or reactions.

® Combined effects between bending and web crushing, and bending and shear.

® Excessive deflection at the mid span.

In this study, we consider a simply supported zed purlin subjected to vertical
uniformly distributed load applied through the shear centre of section without internal
lateral restraints and no concentrated load applied to the beam. Therefore, the design
criteria for the combinations between bending and web crushing and bending and
shear are omitted. The detail formulas for beam design based on BS 5950-5:1998

were presented in the Chapter 2.

6.1.3 Effects of dimensions changes on the cross section local buckling
resistance

The influence of local buckling failure of a flexural beam is illustrated under moment

capacity of section. In BS 5950-5:1998, the limiting maximum compressive stress p,

in the web is employed, thus the entire web depth is considered fully effective under

130



p,, only the effective width of compression flange is required. Fig. 6.2 shows the
moment capacity of section with variation of b, and ratio ¢, /b,, it can be seen that the
moment capacity increases with the increase of b,. The effective width of flange
b, is smaller thanb,, for example b, = 70mmthenb,; = 65mm, the width of flange
decrease 7.15%. Furthermore, with the increase of web depth, the moment capacity of

section increases also due to the increase of second moment of area of the section. For

shallow sections such as 2, =100mm , the depth of lip has insignificant influence on
the moment capacity while ¢, has considerable influence on the moment capacity in

deep sections such as 4, above 200mm.

B : : 5 : ,
nr e e e s
E g . i ! :
E ! : : ! :
3 : ! : : ;
-] ] " 3 . ‘
ST R R e e L b A
< : : : : '
2 ; : i ! !
PR e el et o e e b Sk s
@ i ' . '
= H f : : :
w i H | ' I
L e o e e e R e
40 kA H i R o —— ]
35 i 1 JI | 1
40 50 B0 70 80 20 100
Width of flange(mm)
m L L} T T T
: : ---w--- h100-02
é B
2%} ety ST - - “:__'_.:.'_."':.@ﬁ'#"“"_.. e Z
__4=EITT |
T i Loy : -
Py sl BTl I SRU R |
e : : —— h300-02
" ‘::"'..f"" : A ! . 4| —o— 30004
P : P20 o tamos

SR S ——

Moment capacity M_ (kNm)

skaeres n:‘ spzesEinnig

] '
) ] I i
40 50 60 0 100

Wiidth of flange (mm)

Fig. 6.2: Effects of the dimensions on the moment capacity.
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Fig. 6.3: Effects of the dimensions on the moment efficiency.

The effect of section dimensions on local bucking is also demonstrated under the
moment efficiency, which is defined as the ratio of moment capacity to the gross area
of section. As far as the moment efficiency is concerned, as can be seen from Fig. 6.3,
when b, starts increasing, the maximum value of moment efficiency is found not to

correspond to the widest flange width and the largest ratio ¢, /b,. For example with

h,=200mmandc, /b, =0.2, the M,/ A4, is maximum when b, is 80mm.

6.1.4 Effects of dimensions changes on the lateral-torsional buckling

The effect of section dimensions on the lateral-torsional buckling of the zed section is
slightly different compared with the channel section analysed in Chapter 5. Fig. 6.4

demonstrates the effect of section dimension changes on the moment of lateral-

torsional buckling, it can be seen that for shallow sections such as 4, =100mm, the

lateral-torsional buckling increases gradually with the increase of b and c,. This
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illustrates that for shallow sections the change of b and c do not contribute very

much to the lateral-torsional buckling resistance. On the contrary, for deep sections

h, above 200mm, the width of flange and the depth of lip have a significant

contribution to increase resistance of lateral torsional buckling.

The span length L=4 m
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Fig. 6.4: Effects of the dimensions on the moment of lateral-torsional buckling
based on BS 5950-5:1998.

6.1.5 Effects of dimensions changes on the deflection of the zed purlin

Fig. 6.5 shows the effect of dimension change on moment resistance when the
deflection is considered, It can be seen that the moment resistance increases rapidly
when the web depth increases. For example with the same width of flange of 70mm

and ratio ¢, /b, of 0.2, when A, increases from 200 to 300mm (increase 50%) the

moment resistance increases from 12 to 28kNm (increase 133%). Compared with the

case with the same depth of web, and the change of b, for instance 4, =200mm and

b, varies from 60 to 90mm (increase 50%). The moment resistance increases from 9 to

133



12kNm (increase 33%). Therefore, for the deflection constraint, the depth of web is

dominant variable for determining the resistance of section.

The span length L=4 m
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Fig. 6.5: Effects of the dimensions on the moment resistance taking into account
of deflection.

6.1.6 Distortional buckling

Due to the lack of distortional buckling calculation for the purlin design in BS 5950-
5:1998, similar to the channel design, the distortional buckling design is integrated in

the design programme.
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Fig. 6.6: Distortional buckling comparison.

From Fig. 6.6 and Fig. 5.10, it found that the distortional buckling behaviour of both
channel and zed sections are similar. The reason is due to the same analytical model
for distortional buckling of channel and zed section. Since distortional buckling in the
analytical model mainly involves the rotation of the flange around the junction

between the flange and the web of section.

6.1.7 Comparison of lateral-torsional buckling results
Four parametric studies identified by b,, 4, , c,and span length L, which are varied to

investigate their effect on the moment resistance of lateral-torsional buckling
calculated by three methods BS 5950-5:1998, AISI and Li’s model. Considering the

zed purlin restrained against rotation in any direction at the end supports with the

dimension of 4, varying from 150 to 300mm, the thickness being 2 mm, and
b, varying from 40 to 100 mm, ¢, varying from 15 to 60mm and the span length from

4 to 6m, From Fig. 6.7 the moment resistance of lateral-torsional buckling increases
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with the increase of b, in the three methods BS 5950-5:1998, Li model and AISI. The

Fig. 6.7 shows that the results of AISI are higher than that of BS 5950-5:1998 and Li

model with b, from 40mm to 85mm, but when the width of flange is more than

85mm the moment resistance based on AISI is now lower than that of BS 5950-

5:1998 and the Li model.
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Fig. 6.7: Lateral-torsional buckling with variation of the flange width.

From Fig. 6.8, we can see that the moment resistance of lateral-torsional buckling
increases in three methods with the increase of /. However the results calculated by
AISI are the highest value. It shows that 4 improves significantly the lateral-torsional

buckling of the zed section purlin calculated by AISI. However Li’s model and BS
5950-5:1998 give more conservative results. Thus, we tend to use the result of BS

5950-5:1998 or Li’s calculation in the optimisation programme.
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only highest at ¢ from 15 to 25mm. And ¢, from 25 to 60mm, the results of Li’s
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model are the highest. It indicates that in Li’s model the depth of lip has more
contribution to improve resistance of lateral-torsional buckling in zed purlin than
other approaches. It is due the fact that in Li’s model, the purlin is subjected to the
gradient bending moment, the bending moments decrease from mid span to ends of
the beam. There is redistribution of stiffness and stress between mid span zone and
zone near supports. This makes the moment resistance of section based on Li’s model

is higher than that of other models.

h,=200 (mm}, b= 75 (mm), L= 4000 (mm), t=2 (mm)
24 T T T T T T
—&8—LTB-BS i i i i i '

Moment resistance of lateral-torsioanl buckling (kNm)

8 | L
15 2 25 30 35 40 45 50 55 60
Depth of lip (mm)

Fig. 6.10: Lateral-torsional buckling with variation of the the lip.

6.2 SELECTION OF PARAMETERS OF OPTIMISATION PROBLEM

In this section, the optimisation of section is performed for single zed purlin subjected
to a uniformly distributed vertical load ranging from 2 to 4kN/m with span length
between 3m and 6m. The modulus of elasticity and yield strength of the steel are

taken as E=205GPa ando, =350 MPa. The optimisation problem is performed with

different constraints. Firstly, we consider the optimisation based on BS 5950-5:1998
in which local buckling, lateral buckling and deflection constraint are considered.
Secondly, due to the lack of the calculation of the distortional buckling failure of BS
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5950-5:1998, we include the distortional computation in the optimisation problem.
The geometric constraints of the design variables are assumed as in Eq.(6.1) based on

BS 5950-5:1998.

h %— <0.6 (6.1)

- <5003 0550;%550;0.23

QQ- |Qn

6.3 NUMERICAL OPTIMISATION RESULTS

6.3.1 Optimisation results based on BS 5950-5:1998

Similar to the channel purlin, the description of optimisation problem and the
optimisation process were presented in Chapter 4. The optimisation results are
presented under plots of global optimum dimensions. Figs. 6.11 to 6.15 provide the

optimum dimensions section in accordance with given span and given load case.

Thickness t(mm)

0
3000 3500 4000 4500 5000 5500 6000
Span length L{mm)

Fig. 6.11: Global optimum design thickness versus span length for un-braced zed
beams based on BS 5950-5:1998.

Fig. 6.11 shows that the trend of optimum thickness of zed section is similar to the

channel section shown in Fig. 5.16. For load case of 2kN/m the thickness increases
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more gradually than that in the load case of 4kN/m. However for all three load cases,
the thickness of section increases slowly, it demonstrates that the thickness does not

contribute much to increase the resistance of section.

Fig. 6.12 demonstrate that /_ increases quickly when the span length increases from 3
to 6m. Especially for the highest load of 4kN/m, 4, reaches maximum bound of

300mm at 4.5m span, while for the channel sections shape this happened when the

span is 4.7m. It indicates that the resistance strength of zed section is smaller than that

of channel section. Whereas, for small load cases such as 2kN/m, A increases

gradually. It is due to the fact that in large load cases for unrestrained beams the
lateral-torsional buckling becomes more active and starts to control the capacity of

section, so it evidently leads to an increase to 4, in order to improve the lateral-

torsional buckling resistance.

(4]

Web depth h_(mm)

1 i i i J I
E&ﬂﬂ 3500 4000 4500 5000 5500 6000
Span length L{imm)

Fig. 6.12: Global optimum design web depth versus span length for un-braced
zed beams based on BS 5950-5:1998.
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Fig. 6.13 and Fig. 5.18 show that for three load cases the width of flange in zed
section reaches the maximum bound value more quickly than that of channel sections.
It 1s due to the fact that the major axis of a zed section makes an angle with the plane
of web, so the load is not applied in the plane of the major axis. This leads to lower
torsional resistance than that of a channel section with the same

dimensionsh , b, c and f.

10

100

o
u]
o

Flange width b_(mm)

= — - I S —

3000 3500 4000 4500 5000 5500 6000
Span length L{mm)

Fig. 6.13: Global optimum design flange width versus span length for un-braced
zed beams based on BS 5950-5:1998.
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Fig. 6.14: Global optimum design lip depth versus span length for un-braced zed
beams based on BS 5950-5:1998.

Fig. 6.14 shows that the depth of lip increases with span more rapidly than that of
channel section shape. This is because the torsion stiffness of zed sections is lower.

To overcome this, c_of zed section tends to increase quickly to improve the section’s
torsional stiffness. It can be seen that when span is from 5m, c, has the sudden

change in gradient in three plots. This shows that the lip contributes significantly to

increase resistance of section.
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Fig. 6.17: Moment capacities of the optimised section over span length for un-
braced zed beams based on BS 5950-5:1998 for g= 3kN/m.
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Fig. 6.18: Moment capacities of the optimised section over span length for un-
braced zed beams based on BS 5950-5:1998 for q= 4kN/m.

From Fig. 6.16 to 6.18, it can be seen that for all three load cases during the
optimisation process, the lateral-torsional buckling moment coincides with local
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buckling. As mentioned in the section 2.3, the ideal optimum section is obtained when
all modes of failure of section happen at the same time. However, this case is
impossible to occur due to the geometric constraints of section for practical
engineering. It is a so-called naive optimum section. In fact two modes of failure are

possible to occur at the same time as shown in the results above.

6.3.2 Optimisation results based on BS 5950-5:1998 considering distortional
bucking

Similar to channel sections, the zed section purlin is a symmetric section about the
minor axis. Therefore, for flexural member there is only a flange in tension and other
in compression. The compression flange tends to buckle in two kinds of buckling
mode, namely local buckling and distortional buckling. In the case of distortional
buckling, the compression flange of zed section behaves similarly to the flange of
channel section, which was described in chapter 5. The flange acts as compression
element and tends to rotate around the intersection between the flange and web of
section. Currently, there are two efficient approaches to calculate the distortional
buckling as DSM and Hancock method. Both methods are practical for hand
calculation and suitable for the structural engineer. Thus, these two methods are

employed in the optimisation programme to find the optimum section.

The optimum dimensions of zed purlin are presented by each individual curve form of
each element of section such as thickness, flange width, depth lip and the web depth.
In this study, we present the numerical optimisation results for three load cases
2kN/m, 3kN/m and 4kN/m with span length varying from 3m to 6m. However, the

optimisation programme can be applied for different load cases with different spans
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that the structural engineer defines. The optimum results are illustrated in Fig. 6.19 to

6.22.

Comparing optimum thicknesses of zed sections considering distortional buckling and
without taking into account distortional buckling in Fig. 6.11 and Fig. 6.19, there is no
difference between the two cases. It confirms the finding that the thickness of section
has a very small effect on distortional buckling resistance of the zed section.
Nevertheless, for each individual case the thickness of section still helps to increase
distortional buckling resistance of the section, because the thickness increases

gradually when span length increase.

: : ] ! —8— g=2 kN/m
: : : P | —e—q=3 kN/m
—— g=4 kN/m

Thickness t{mm)

3000 3500 4000 4500 5000 5500 6000
Span length L(mm)

Fig. 6.19: Global optimum design thickness versus span length for un-braced zed
beam based on BS 5950-5:1998 taking into account distortional buckling.
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Fig. 6.20: Global optimum design web depth versus span length for un-braced
zed beam based on BS 5950-5:1998 taking into account distortional buckling.

Comparing plots in Fig. 6.20 and 6.12, we can see that for two load cases 2 and
3kN/m, the optimum depth of web does not change, but when the load is 4kN/m the

distortional buckling controls the dimension, and / now increases faster. To illustrate

this, Fig. 6.12 shows that the depth of web reaches its maximum of 300mm at a span

of 4.5m whereas in the Fig. 6.20 A, attains 300mm at the smaller span of 4.2m . This

is an important finding since it shows that there are situation where design in

accordance with BS 5950:5:1998 will not be as safe as the guidance does imply.
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Fig. 6.21: Global optimum design flange width versus span length for un-braced
zed beam based on BS 5950-5:1998 taking into account distortional buckling.

Comparing the optimum width of flange in Fig. 6.13 and Fig. 6.21, we can see
evidently that the effect of the distortional buckling on the design of zed purlin, the
optimum results of b, in two cases considering distortional buckling and not
considering distortional buckling are completely different. The width of flange
increases faster in the case not considering the distortional buckling. For example, for
load case 2kN/m, b, reaches the maximum 100mm at span 5.4m in the case not
considering distortional buckling, a flange width of 85mm when taking into account
distortional buckling. It appears to be not a logical trend, when distortional buckling is
considered, the width of flange should be increased more quickly when the load and

the span increase. However, b, does not increase. It is due to the fact that ¢, increases
more quickly when considering distortional buckling. For instance, the optimum c_

starts from 32mm at the shortest span of 3m in the case taking into account

distortional buckling instead of 12mm in the case without distortional bucking and for

148



the largest load case 4kN/m, ¢, attains the maximum value at span 5.2m instead of
5.7m in the case not considering distortional buckling. The increase of ¢, helps to

strengthen the stiffness of the lip to prevent vertical deflection of the lip which causes

the failure of distortional buckling.

[+]

Lip depth ¢_(mm)

1 I | i | 1 |
&U 3500 4000 4500 5000 5500 6000
Span length L{mm)

Fig. 6.22: Global optimum design lip depth versus span length for un-braced Zed
beam based on BS 5950-5:1998 taking into account distortional buckling.
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Fig. 6.23: Global optimum design cross area section versus span length for un-
braced zed beams based on BS 5950-5:1998 taking into account distortional
buckling.
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Fig. 6.24: Moment capacities of the optimised section over span length for un-
braced zed beam based on BS 5950-5:1998 taking into account DB for g=2kN/m.
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Fig. 6.25: Moment capacities of the optimised section over span length for un-
braced zed beam based on BS 5950-5:1998 taking into account DB for q=3kN/m.
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Fig. 6.26: Moment capacities of the optimised section over span length for un
braced zed beam based on BS 5950-5:1998 taking into account DB for q=4kIN/m.

Figs. 6.24 to 6.26 show the moment capacity of section under 5 different design

constraints. Fig. 6.24 shows that when g = 2kN/m the optimum moment capacity is

obtained when three failure modes of local buckling, lateral-torsional buckling and
distortional buckling coincide. When the load increases to 3kN/m, distortional
buckling mode controls the moment capacity, lateral-torsional buckling and local
buckling still occur at the same as can be seen in Fig. 6.25 and Fig. 6.26. The
behaviour of section through the optimisation process is investigated. In terms of
structure design, the structural engineer will know which design criterion controls the
capacity of the section. The designer can strengthen the section by putting more

internal restraints or stiffeners to prevent the failure of section.

6.4 CONCLUSION

The result of optimum dimensions of the simply supported zed purlins which are

subjected to the uniformly distributed vertical load with no restraints at the middle of
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span under different loads intensities have been presented. The optimisation
programme is performed for two cases with and without considering distortional
buckling based on BS 5950-5:1998. It was found that the optimum thicknesses for
both cases with different loads intensities are very similar. It indicates that the
distortional buckling has a slight influence on the thickness of section. On the
contrary, the distortional buckling affects the other dimensions of the section such as
the depth of web, the width of flange and depth of lip. Furthermore, we realise that the
optimum section is controlled by the moment of distortional buckling when this is

considered in the design calculation.

In conclusion, the global optimum dimensions are found and the behaviour of section
during the optimisation process is investigated. They can be used for a quick design
for the structural engineer. For other standards or other design criteria such as with
intermediate restraints etc.., the optimisation programme can easily be amended to

find the global optimum dimensions.
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Chapter 7
7  OPTIMISATION OF THE SIGMA PURLIN SECTION

7.1 BEHAVIOUR OF A SINGLE SPAN SIGMA PURLIN

7.1.1 Introduction

In this chapter, the behaviour of X -shape purlins with one axis of symmetry is
investigated. The purlins are simply supported beams subjected to uniformly
distributed loads. The dimensions of the cross section are shown in Fig.7.1, in the

figure, b, is the width of the flange, c, is the depth of the lip, 4, is the total height of

the cross section, A, is the distance of the web stiffener to the top and bottom flange,
h, is the depth of the stiffener in the plane of the web, d_ is the depth of the web

stiffener perpendicular to the web plane. The parametric studies focus on the effects
of position and size of the web stiffener on the section’s strength capacity based on
the finite strip method CUFSM by Schafer (2001). After an investigation of the size
of the web stiffener, the size of the stiffener will be used in the optimisation

programme.

Fig.7.1: Dimension of the cross-section of the X -shape purlin.
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7.1.2 Effect of the depth of the web stiffener in the plane perpendicular to the
web on local buckling

To investigate the effect of the depth of the web stiffener in the plane perpendicular to
the web, we perform a local buckling analysis based on the finite strip method

CUFSM of the sample section with the dimension of a total height 4, of 300mm, the
width of the flange b, being 75mm, A, being 100mm and 4, being 10mm, the ratio

between d, and width of the flange is 0.1, 0.15, 0.2, 0.3, respectively.

d_/b=0.1 d /b=0.15
L —.—! f
d /b=0.2 d /b=0.3

| ﬁ
Fig. 7.2: Effect of the depth of the web stiffener on local buckling mode shape.

After running analysis for the different modes of failure from 1 to 30 and it can be
seen that when depth of the web stiffener is not sufficient long identified by the ratio

between d, to b, as 0.1, 0.15, respectively, the compression part of the web buckles

as an element and the web stiffener does not work properly as like a true stiffener,

while with the ratios d,to b, are over 0.2, the two compression part of the web
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buckle locally between the web stiffener. Thus, the web stiffener works effectively as

a true stiffener.

Fig. 7.3 plots the stress factor curves of the sections with different d_ . It can be seen

that the deep web stiffener has higher stress factor than that of the shallow web
stiffener. Thus, the web stiffener has influence on the resistance of the section.

Buckling curve from parameter study

L.H —o—d /b=0.1
45} '\ —— d b=0.15 |
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Fig. 7.3: Effect of the web stiffener on the load factor of the sigma purlin section.
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Fig. 7.4: Comparison between section with stiffener and without stiffener.

135



Fig. 7.4 illustrates the comparison of the stress factor between a section with and
without the web stiffener. As can be seen from Fig. 7.4, the stress factor of section
with the web stiffener is twice higher than that of the section without the web stiffener

at the half wavelength from 100mm to 600mm.

7.1.3 Effect of the depth of web stiffener in plane of web on local buckling
resistance

After determining the most efficient depth of the web stiffener perpendicular to the
web which is over one fifth of the flange width, we perform the analysis of the section

with fixed d,, h, of the web stiffener varies from 10 to 30mm with step 5. The

shapes of buckling section with the variation of 4, are illustrated in Fig.7.5.

h2=10mm h2=15mm h2=20mm
h2=25mm h2=30mm

L

Fig.7.5: Buckling mode shape of the section with h; from 10 to 30mm.

From Fig.7.5, it is seen that, with the &, >20mm, the buckling mode tends to change

from local buckling to distortional buckling of the whole compression part of web.
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While with a small value of 4, such as 10mm, the local buckling occurs only on the

parts above and below the web stiffener, the web stiffener is stable.

In conclusion, the value of 4, should be small enough to avoid the web distortional

buckling mode. The conventional elastic distortional bucking stress is also lower

when the web distortional buckling mode occurs.

7.2 DESIGN OF SIGMA SECTION PURLIN BASED ON BS 5950-5:1998
7.2.1 General

Similar to channel and zed purlin sections, there are several factors which govern the
resistance of sigma sections such as the deflection of section, the stability of section
identified by local buckling, distortional buckling and the lateral-torsional buckling.

The influence of section dimensions on each factor is investigated next.

7.2.2 Determination of moment capacity based on the local buckling

Local buckling occurs on the compression part of section such as the compression
flange and the compression part of the web. In clause 5.2.2.2 of BS 5950-5:1998, it is
indicated that in the case of sections which have stiffened webs or bending elements,
the moment capacity should be determined on the basis of a limiting compressive
stress in the web, p_ . This stress is used in evaluation of the effective width of the
compression flange and the compressive lip. Hence, the reduced section properties
and moment capacity are determined. The detailed procedure of calculation of the
effective section based on BS 5950-5:1998 is presented in Section 4.3.1. Fig. 7.6
shows the model of calculating effective section of sigma section.
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Fig. 7.6: Effective section of the Sigma purlin.

7.2.3 [Effect of dimensions changes on the moment capacity

In order to investigate the effect of dimensions changes on the moment capacity of

section, we perform the analysis of sections with 7 of 250mm and b, varies in the

order 50, 60, 75mm, respectively and the position of web stiffener, 4, varies from 20
to 70 with Smm increments. As shows in Fig. 7.7, the symbol h250-50-20-2 defines
the dimensions of section as total depth of web, width of flange, depth of lip and the
thickness, respectively. Fig. 7.7 shows the effect of position of web stiffener to the
moment capacity of section. It is seen that the position of the web stiffener has a slight
influence on the moment capacity. Following BS 5950-5:1998 the moment capacity is
determined on the basis of the limiting compressive stress in the web, thus the full

length of compressive web is considered. On the contrary, the influence of b, on the

moment capacity is quite important. The moment capacity increases with the increase

of b,, because the effective width of the flange increases significantly.
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Fig. 7.7: Effect of position of web stiffener on the moment capacity.

7.2.4 Calculation of lateral-torsional buckling of sigma section

A slender beam under the action of a bending load in the plane of maximum flexural
rigidity can buckle by combining a twist and a lateral movement of the cross section,
unless it has continuous lateral restraints. Slender beam is manufactured from a
narrow rectangular plate to form the section as channel section, zed section and sigma
section. These sections have narrow flanges, which lack of both lateral flexural
rigidity and torsional rigidity, and when the beams have no restraints or are restrained
intermittently only, they may buckle under bending stresses considerably lower than
yielding stress of the material. The low torsional rigidity is an important factor, thus
the thin-walled open section, for instance channel or zeds and sigma section are also
susceptible to the instability. In almost, all methods design like BS 5950-5:1998,
AISI, the elastic lateral-torsional buckling moment resistance is used to calculate the
nominal lateral-torsional buckling moment resistance of the open section. The elastic

lateral-torsional moment depends on a lot of factors such as the type of load, loading
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position, the shape of section and the lateral end restraints or intermediate lateral
restraints. For this study, we only consider the simply supported purlins under the
uniformly distributed vertical load applied through the shear centre, the elastic lateral-

torsional buckling moment can be computed from (Allen, 1980).

M, =1132

/

12 2 1/2
[EJI.GJ] [HE.Cw.fi} 1)
y G.J1

where:  /: span of the purlin
E: modulus of elasticity of steel
I;: major second moment of section
I>: minor second moment of section
G: Shear modulus of steel
J: St Venant torsion constant of section

C,: Warping constant of section

12
7—(1—?)

7.2.5 Comparison of the lateral-torsional buckling results

In this section, we will perform the comparison between the two design methods of
lateral-torsional buckling by BS 5950-5:1998 and the direct strength method (DSM)
proposed in AISI. From Fig.7.8, we realise that the flange improves significantly the
lateral-torsional buckling moment resistance due to the increase of torsion rigidity of
section. Also can be seen from Fig. 7.9, when the web stiffener moves toward the

neutral axis of the section, the lateral-torsional moment increases up to maximum

value at 90mm wide of b, for DSM and at 110mm wide of 5, for BS 5950-5:1998

and then decreases. It indicates that it exists at a position of web stiffener at which the

maximum lateral-torsional moment of the sigma section can be reached. From Fig.7.8
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and 7.9 the results using BS 5950-5:1998 are always below than those using by DSM.

It indicates that BS 5950-5:1998 results are more conservative than the direct strength

method and are therefore safer.

Moment resistance of lateral-torsioanl buckling (kNm)

L=6(m), h= 300(mm), c,=0.2b,(mm), t= 2(mm),h,=50(mm)
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Fig.7.8: Effect of the flange to the lateral-torsional buckling.
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Fig. 7.9: Effect of the position of the web stiffener.
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7.2.6 Distortional buckling

To understand the distortional buckling behaviour of simply supported sigma purlins
subjected to the uniformly distributed vertical load, we employ the programme
CUFSM of Schafer (2002) to investigate the shape mode of distortional buckling of
sigma section. In this section, we execute the numerical studies with four different
sections, with A, =300mm and 4 =75mm, A =10mm, d, =0.2b,, b, varies in

range of 75, 85, 95, 105mm, respectively.

Width of flange b =75 mm Width of flange b =85 mm
Lo i : j
Width of flange b =95 mm Width of flange b =105 mm

f
Fig. 7.10: Distortional buckling shape mode of sigma section.

From Fig. 7.10, we found that the compression flange tends to rotate around the
intersection between the compression flange and the compression part of web.
Therefore, the distortional buckling calculation model by Hancock’s model (1995) or
Schafer and Pekoz (1999) for channel section or zed section are still applicable for
sigma sections. For sigma sections, because of the appearance of the web stiffener, the

distortional buckling can happen on the compression part of the web. However, as the

162



investigation in Section 7.1.2, in order for the web stiffener to works as an efficient
stiffener which can stay stable during the buckling process, the minimum length

required of the web stiffener is 0.2 times of 5 . Consequently, the failure mode of

distortional buckling of the sigma section involves only the rotation of the
compression flange around the junction between the compression flange and the web.
The models calculation of distortional buckling by Hancock’s model (1995) or

Schafer and Pekoz’s model (1999) are presented in Chapter 4.

The span length L=4000 mm

~—&— Simplified Method
—2— Hancock's method
—*— Schafer's Method
—o6— CUFSM

Morment resistance of Distortional buckling (kNm)

75 80 85 S0 95 100
Width of flange (mm)

Fig.7.11: Effect of the flange width on distortional buckling of sigma section
calculated by direct strength method.
Fig.7.11 illustrates the effect of b,on the moment resistance of distortional buckling

calculated by DSM in which the elastic distortional buckling moments are computed
by different approaches such as CUFSM programme (2002), Hancock’s approach
(1995), Schafer and Pekoz’(1999) approach and simplified method of Yu (2005). The
investigation is performed on the sample sigma section with 4m span length. From

Fig.7.11, we found that in all methods &, contributes significantly to the distortional
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buckling strength of the section. And the simplified method of Yu (2005) gives the
most conservative result. In terms of the safety aspect and practical engineering
purposes, the simplified method of Yu is preferable to use.

The span length L=4 m;ho= 300mm; bo=75mm; co=0.2bo; t=2mm
15.5 T T T T T T

g —o— CUFSM

—_
wn
T

145

—
§ -
T

Elastic distortional buckling moment(kNm)

13’530 40 50 60 70 80 90 100

Web Stiffener position {mm)

Fig.7.12: Effect of web stiffener position on the elastic distortional buckling
strength.

In order to investigate the effect of the web stiffener location on the elastic
distortional buckling, we use the finite strip method CUFSM (2002) to calculate the
elastic distortional buckling moment. From Fig.7.12, it is said that when the web
stiffener move downward to the neutral axis of section, the elastic distortional
buckling decreases 15%. It proves that the web stiffener has an important influence on
the distortional buckling strength of sigma sections. Thus, for the optimisation

programme, we will find out the optimum location of web stiffener and also b, to

obtain the maximum distortional buckling capacity of sigma section.
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The span length L=4 m;ho= 300mm; bo=100 mm; ho1=75mm; t=2mm
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Fig. 7.13: Effect of depth of lip on the distortional buckling resistance.

Fig. 7.13 shows the effect of lip depth on the distortional buckling resistance. It can be
seen that the depth of lip helps to improve the distortional buckling resistance of the

section with the increase of the depth of lip, but when the ratio ¢, /5, is over 0.5, the

beneficial contribution of lip depth decreases quickly. In order to understand the
interaction between the elements of section, the CUFSM programme is used to
investigate the effect of the lip on the elastic moment distortional buckling. In the
CUFSM analysis, the whole section is modelled and so that it depicts a more realistic
picture of section behaviour. Fig. 7.14 demonstrates that the depth of lip assists to
increase the distortional buckling resistance at 15 to 30mm lip depth and after that the
lip does not contribute to increase distortional buckling any more. It can be explained
that when the depth of lip increases, at the first stage the lip will help to improve the
distortional buckling of flange and then when the depth of lip reaches the limited
length as 31mm at which the distortional buckling of itself starts to occur. It leads to

the decrease of distortional buckling of the whole section.
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The span length L=4 m;hg= 300mm: h01=?5mm; ha=75mm; t=2mm
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Fig. 7.14: Effect of lip depth on the distortional buckling strength.

7.3 OPTIMISATION OF SIGMA PURLIN

7.3.1 Selection of parameters

The optimisation of section is carried out for simply supported sigma beams subjected
to a uniformly distributed vertical load varying from 2 to 4kIN/m with the span length
between 3 and 6m. The modulus of elasticity and yield strength of steel are taken as

E=205GPa andp, =350MPa . The optimisation problem is performed based on

different design constraints. Firstly, we carry out the optimisation programme based
on BS 5950-5:1998 in which local buckling, lateral-torsional buckling and deflection
constraint and shear strength at the supports are considered. Hence, due to the lack of
calculation of the distortional buckling failure of BS 5950-5:1998, we will consider
the distortional buckling calculation in the optimisation programme based on the

current approach by Hancock method, and the DSM presented in AISI.
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7.3.2 Optimisation results based on BS 5950-5:1998

The thickness was found to not contribute too much to increase the strength capacity
of section in Chapter 5 and 6. Comparing with channel section in Chapter 5, the
thickness of sigma section has the similar trend as channel section, but slightly thinner
than that of the channel section. It is due to the fact that the appearance of the web
stiffener does help to increase the strength capacity of section. It leads to a slow

increase of the thickness as shown in Fig.7.15.

—&— g=2 kN/m
45| —©— =3 kN/m
—&— g=4 kN/m

Thickness (mm)
(o8]
th
1

gJUU 3500 4000 4500 5000 5500 6000
Span length L{mm)

Fig.7.15: Global optimum design thickness versus span length for un-braced
sigma beams based on BS 5950-5:1998.

Fig. 7.16 shows the optimum #4_ versus span length for un-braced beams based on BS
5950-5:1998. Comparing the optimum A, of channel and sigma sections which are
designed based on BS 5950-5:1998, we discover that 4 of two sections are very

similar even with the existence of web stiffener in sigma section. It indicates that the
depth of web in the sigma section makes a significant contribution to the strength of

section. Fig. 7.17 plots the optimum b, versus span length for un-braced beams. On

the contrary, it is can be seen from Fig.7.17 that b, of sigma section increases more
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slowly than that of channel section, for instance with the largest load case 4kN/m the
width of flange of channel increases and attains 100mm at span 5.2m, but in the sigma

section the flange width increase gradually and reaches the value of 100mm wide at

span 6m. Therefore, there is a balance between A, and b, in sigma section. Logically,
in sigma section 4, should be smaller than that of channel section because of having
web stiffener. However in fact, b of sigma section is smaller than that of channel

section. It demonstrates that in sigma section with the help of web stiffener, the

stiffness of section tend to move toward the web part, b, increases more slowly to

prevent local buckling in the compression flange.

—&— =2 kN/m
—&— =3 kN/m
—a— g=4 kN/m

[+]

Web depth h_ (mm)

1 L 1 1 1
I?[IO[ZI 3500 4000 4500 5000 5500 6000
Span length L{mm)

Fig.7.16: Global optimum design web depth versus span length for un-braced
sigma beams based on BS 5950-5:1998.
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Fig.7.17: Global optimum design flange width versus span length for un-braced
sigma beams based on BS 5950-5:1998.
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Fig.7.18: Global optimum design position of web stiffener in plane of web versus
span length for sigma beams based on BS 5950-5:1998.

Fig.7.18 presents the optimum position of web stiffener. For all three load cases at the
span from 3 to 5m, the position of the web stiffener does not change. It indicates that
for small span the location of web stiffener does not affect the resistance of section,

but when the span increases over Sm the bending moment increases and the

169



compression stress in the web will increase also. In order to prevent local buckling in
the compression part of web, the web stiffener starts to move towards the neutral axis

of section to prevent the local buckling.

Fig.7.19 shows the optimum depth of web stiffener, it was found that d, increases
gradually with the increase of span length and the load intensity. However, d, does
not reach to the upper bound ofd,. The optimisation programme found the optimum

d, which performed effectively the role of stiffener.

—&— ¢=2 kN/m
45| —€— g=3 kN/m .
—a— =4 kN/m

5

Depth of web stiffener d_(mm)
b
(i ]

Span length L{mm)

Fig.7.19: Global optimum design web stiffener depth versus span length for
sigma beams based on BS 5950-5:1998.
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Fig.7.20: Optimum crosses sectional area versus span length for sigma beams
based on BS 5950-5:1998.

Comparing Fig.7.20 and Fig. 5.20, it is said that sigma section can save more material
than channel section with the same load condition and the same span length. For
example, at the load case of 4kN/m and 6m span length the cross sectional area is

about 1400mm? for a channel section, while with the same conditions the cross

sectional area is about 1250mm’ for a sigma section. In conclusion, in terms of
saving material a sigma section is found to be more economical than that of the

channel section.

Fig.7.21 to 7.23 present the behaviour of simply supported sigma purlin subjected to
uniformly distributed vertical load for three different load cases. It can be seen that the
shear resistance of the section is always higher than other resistance. The optimum
sections are not controlled by the shear resistance. However, the optimum sections are
governed by local buckling and lateral-torsional buckling. When load intensity and
span length increase, the deflection criterion becomes active and controls the optimum

section, for instance when the span above 5.5m as can be seen in Fig.7.23. As
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mentioned in Chapter 2, the ideal section occurs when all failure modes occur at the
same time, but it i1s impossible to obtain that section due to the limit of the
geometrical constraint. In this study, the local buckling and the lateral-torsional
buckling occur at the same time.

Moment capacity for =2 kN/m

50 - T T T
—&— Local buckling

3
45 | —e— Deflection /
—=&— Lateral buckling

40| —*— Shear strength

c
8

Moment capacity M_ (mm)
o

1 1

:g:m 3500 4000 4500 5000 5500 6000
Span length L{mm)

Fig.7.21: Moment capacity of the optimum section versus span length for sigma
beam based on BS 5950-5:1998 for q=2kN/m.

Moment capacity for g=3 kN/m

m T T
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—=2— Lateral buckling
—#— Shear strength

3

Moment capacity M_ (mm)
=
o

D 1 i
3000 3500 4000 4500 5000 5500 6000
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Fig.7.22: Moment capacity of the optimum section versus span length for sigma
beam based on BS 5950-5:1998 for g=3kN/m.
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Fig.7.23: Moment capacity of the optimum section versus span length for sigma
beam based on BS 5950-5:1998 for q=4kN/m.

7.3.3 Optimisation result based on BS 5950-5:1998 and considering distortional
buckling

Fig.7.24 shows that the thickness of sigma section changes very slightly in both cases
considering the distortional buckling and not considering the distortional buckling. It
is similar to channel and zed section, the thickness does not help to improve the

strength resistance of section very much.

Fig. 7.25 shows the difference of optimum /4, between sections with and without
distortional buckling, it can be seen that there is slight difference of the optimum #4_ in
two cases. A, increases slightly and more quickly when distortional buckling is

considered. It is because in the analytical model of distortional buckling, the flange

width keeps the most important role in the model, while %4 only contributes to the

rotational spring stiffness at the junction between the flange and the web.

173



(8]

—8— q=2kN/m with DB
—o— =3kN/m with 0B
—a— g=4kN/m with DB
---8-- g=2kN/m No DB
=== -- g=3kN/m No DB
-==4e-- g=4kN/m No DB

-
3]

=

w
n

5]

N
n

(8]
T

Thickness (mm)

-
—_ n
-

05+

C?UJEI 3500 -ili:ll]

4500 5000 5500 6000

Span length L(mm)

Fig.7.24: Optimum design thickness of sigma section with and without

distortional buckling (DB).
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Fig. 7.25: Optimum design web depth of sigma section with and without
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distortional buckling (DB).

In contrast to/,, the width of flange increases more slowly when the distortional

buckling is considered. This is due to the fact that with the existence of the web

stiffener, the compression part of web is much stiffer and the stress redistributes to the
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web. Furthermore, b, has a tendency to increase to the optimum value at which the
distortional buckling resistance is maximum value. If b, is over this value, the

distortional buckling resistance of the section will decrease.

The position of web stiffener %, is not active until the span length increases to over

5m. It indicates that over Sm span length, the compressive stress in the web above
neutral axis increase considerably due to the increase of bending moment, and the
web stiffener tends to move toward the neutral axis to avoid local buckling occurring
in the compression part of the web. The change of location of web stiffener is shown

in Fig.7.27.

150 T T T
—8— g=2kN/m with DB

140 | —e— g=3kN/m with DB -
—&— g=4kN/m with DB
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---&--- g=4kN/m No OB
110 F b

100 F
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Flange width (mm)
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Fig.7.26: Optimum design flange width of sigma section with and without
distortional buckling (DB).
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Fig.7.27: Optimum location of web stiffener of sigma section with and without

distortional buckling (DB).
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Fig.7.29: Optimum design depth of lip of sigma section with and without
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distortional buckling.

Fig.7.28 shows the optimum depth of web stiffener. The depth of web stiffener

increases gradually with the increase of span length and load intensity. The same

trend occurs with the depth of lip. However, ¢, does not reach the upper bound value.

It indicates that ¢, attains the optimum depth.
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Fig.7.30: Moment capacity of the optimised section for un-braced sigma beams

based on BS 5950-5:1998 considering distortional buckling for g=2kN/m.
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Fig.7.31: Moment capacity of the optimised section for un-braced sigma beams
based on BS 5950-5:1998 considering distortional buckling for g=3kN/m.
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Fig. 7.32: Moment capacity of the optimised section for un-braced sigma beams
based on BS 5950-5:1998 considering distortional buckling for g=3kN/m.

Fig.7.30 to 7.32 present the behaviour of section through the optimisation process and
show design criterion which controls the strength of section. From the point of view

of structural engineering, this information is very important because it will help
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engineer to know which mode of failure will occur with section and to have

engineering solution for individual case.

7.4 CONCLUSION

The optimum dimensions of a simply supported sigma beam subjected to uniformly
distributed load are presented here. The objective function is the total cross sectional
area which is minimised subjected to the five strength constraints identified by local
buckling, deflection based on BS 5950-5:1998, lateral-torsional buckling following
Allen (1980), distortional buckling calculated by DSM and the shear strength at the
support. The lateral-torsional buckling and the local buckling are two criteria that
mostly control the optimum result. Comparing the optimum cross sectional area of the
channel section and the sigma section, we found that with the existence of the web
stiffener, with the same load condition the area requirement of a sigma section is
smaller than that of a channel section and a zed section. Hence, in terms of structure

resistance and saving material, the sigma section is the best choice.
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Chapter 8
8 CONCLUSIONS AND FUTURE RESEARCH

8.1 CHAPTER SYNOPSIS

This thesis has completed two main studies. Firstly, the investigations of the
behaviour of cold-formed steel zed, channel and sigma sections of a simply supported
beam subjected to the uniformly distributed load were performed. Secondly, the main
aim of this thesis was to find a robust optimisation method and develop the

optimisation programme to find the optimum section.

The essential work of this research has been predominately theoretical. Thus, the main
methodology to perform the analysis and the investigation of the sections’ behaviour
as well as the optimisation procedure has been carried out using the computer
programme MATLAB, which has involved an extensive range of theory development

and formulation.

8.2 MATHEMATICAL MODELLING OF THE OPTIMISATION
PROBLEM

Nowadays, optimisation has become a basic necessity in design activity across all
major disciplines. The motivation to produce economically relevant products with
embedded quality is the principal reason for optimisation. Optimisation is frequently
associated with engineering design, especially so in civil engineering structures. To
solve any specific optimisation problem, it is required to transform the problem into a
mathematic model which can be solved by mathematical concepts as described in
detail in Chapter 3. The optimisation of cold-formed steel sections is complicated by

the complex and highly nonlinear nature of the rules that govern their designs. In this
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thesis, the standard algorithm has been chosen for its robustness and iterative efficiency.
To solve the inequality constraints of nonlinear optimisation of cold-formed steel

sections, the Lagrange multiplier method and Kuhn-Tucker equation were employed.

8.3 DESIGN CONSTRAINTS OF OPTIMISATION

The optimisation problem of the cold-formed steel section is a highly nonlinear
problem in which the objective function is a quadratic nonlinear function of the multi-
design variables and the constraints are also inequally nonlinear. The constraints of
the optimisation problem in the cold-formed steel section consist of strength,
deflection and stability requirement as well as the practical geometric constraint of the
design variables. For zed, channel and sigma section, the local buckling, distortional
buckling and lateral-torsional buckling are given consideration, respectively.
Currently, the local buckling resistance is based on formulae given in BS 5950-5:1998
and EN 1993-1-3:2006. For distortional buckling calculation used in the optimisation
programme, the direct strength method employing the elastic distortional buckling is
calculated by three available approaches, i.e Hancock (1995), Schafer and Pekoz
(1998) and Yu (2005). In this thesis, the lateral-torsional buckling based on BS 5950-

5:1998, AISI and analytical model of Li (2004) are employed.

8.4 OPTIMISATION RESULTS OF CHANNEL SECTION

The behaviour of channel shape cold-formed steel purlins is investigated in Chapter 5
using the optimisation computer programme developed in MATLAB. The
investigations are carried out based on BS 5950-5:1998 with and without distortional

buckling. The optimum dimensions of the simply supported channel beam which are
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subjected to the uniformly distributed load with no restraint at the middle of span

under different loading intensity are found. The following conclusions are made:

Optimum thicknesses for both cases with different loading intensities are the
same, which indicates that the thickness of the section has a slight influence on
distortional buckling.

On the contrary, the distortional buckling affects the other dimension of the
section such as the depth of web, the width of flange and depth of lip.
Furthermore, we realise that the optimum section is controlled by the moment
of distortional buckling when distortional buckling is considered in the design

calculation.

8.5 OPTIMISATION RESULTS OF ZED SECTION

The same procedure of optimisation is applied to zed sections and some conclusions

are made:

Optimum thicknesses for cases considering distortional buckling and not
considering distortional buckling with different loads of intensity are the same.
It indicates that same as the channel section, the thickness of section does not
contribute a lot to improve the distortional buckling strength of a section.

The web depth of zed section reaches the maximum bound value more quickly
than that of channel section, but the zed section’s width of flange increases
more quickly than that of channel sections. It is due to the fact that the major
axis of the zed section makes an angle with the plane of the web, so the load
applied is not in the plane of the major axis. It leads to a strength resistance of
the zed section being lower than that of a channel section with the same

dimension.
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e The depth of lip in cold-formed steel zed sections increases more quickly than
in channel sections. This is due to the fact that the torsion stiffness of zed
section is lower than that of channel sections when the load is applied not in
the plane of web. Hence the depth of lip in zed sections tends to increase more
quickly with the span to improve the torsional stiffness of the section

e As for the optimum section the moment lateral-torsional buckling coincides
with local buckling. As mentioned in the literature review, the ideal optimum
sections are obtained when all modes of section’s failure happen at the same
time. However, this is impractical due to the geometric constraints of the
section for practical engineering. It is a so-called naive optimum section. In
fact two modes of failure are possible to occur at the same time as the results
above show.

In conclusion, the global optimum dimensions are found and the behaviour of the
section during the optimisation process is investigated here. They can be used for
quick design by structural engineers. For other standards or other design criteria such
as intermediate restraints etc, the optimisation programme can easily be amended to

find the curves for global optimum dimensions.

8.6 OPTIMISATION RESULTS OF SIGMA SECTION

The optimum dimensions of a simply supported sigma beam subjected to uniformly
distributed load are found here. The objective function is the total cross sectional area
which is minimised and subjected to the five constraints identified, i.e. local buckling,
deflection based on BS 5950-5:1998, lateral-torsional buckling following Allen

(1980), distortional buckling calculated by direct strength method and the shear
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strength at the support. Lateral-torsional buckling and local buckling are two criteria
which control the optimum result. The following conclusions are made:

e The thickness of a section increases gradually with the increase of span length
and load condition. However, the thickness does not help much to improve the
strength resistance of a section.

e The optimum depth of web of a sigma section increases more quickly than that
of channel and zed sections.

e The optimum width of flange of a sigma section increase more slowly than
that of channel and zed sections.

e The optimum depth of lip of a sigma sections is smaller than that of channel
and zed sections.

e Comparing the optimum cross sectional area of channel sections and sigma
sections, we find that with the existence of web stiffeners, having the same
load condition, the area requirement of the sigma section is smaller than that
of channel and zed sections. Hence, in terms of structure and economising on

material, the sigma section is the best choice.

8.7 HOW TO APPLY THE RESEARCH RESULTS IN PRACTICAL
DESIGN

The optimisation results of channel, zed and sigma sections in this thesis are the case
study of simply supported purlins subjected to the assumed uniformly distributed load
applied through the shear centre of a section. The member is designed with no
restraint in the span. The imposed loads are 2, 3 and 4kN/m. The results are presented
under global curves of dimensions of a section versus the span varying from 3 to 4m.
For example, the channel section results are read in combination of Figs 5.24 to 5.27,

such as the purlin span of 4.5m and load of 3kN/m, the optimum dimensions are a
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thickness of 1.4mm, a web depth of 280mm, a flange width of 70mm, lip depth of
37mm ( C-280-70-1.4). The purpose of using curve form is to show clearly the
behaviour of a section during the optimisation process. However, for practical design
purposes, the designer can set the input with a specific span and load value and the
output will be a set of optimum dimensions for the section. Hence the designer can
order with the manufacturer or find a suitable section close to the optimum section in

the catalogue of products.

8.8 DISCUSSION FOR FUTURE RESEARCH

This thesis consists of two parts. The first part is the study of the design of cold-
formed steel open sections. The second part is to find a robust and effective method to
solve the optimisation problem. In the design of purlin sections, all analysis and
calculation formula in this thesis are based on the assumption that the load is applied
on the top of flange and go through the shear centre of the section. In fact, the load
applied has the eccentricity from the shear centre of the section. Hence in the future
the design of channel, zed section and sigma section should consider the effect of load
location. For local buckling in BS 5950-5:1998, the local buckling occurring at the
compression part of the web is ignored by limiting compressive stress in the web.
This limitation may make the design method too conservative. This leads to an
underestimation of the section’s capacity. Recently, the new approach has been
presented by Schafer, where a consistent integration of local buckling and distortional
buckling into the design of thin-walled section is proposed. The local buckling is
calculated based on a semi-empirical interaction approach which considers the

interaction between elements of the section expressed in terms of buckling

factor kg,eenip » Koangewen - FOT distortional buckling, at the moment the available
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approaches for flexural members, for instance by Hancock (1997), or Schafer (2002)
and Yu (2005) are based on the assumption that the translational spring stiffness,
which represents the resistance to translational movement of the flange by web
element, is zero. In fact this value is not zero, so in future the model of distortional
buckling can be improved. Furthermore, the effect of a web stiffener of the sigma
section to the torsional restraint stiffness needs to be improved and further studied.
The local buckling and distortional buckling relationship has been investigated by
Schafer, but the local buckling and lateral-torsional buckling should be investigated,

too.

For the optimisation programme in this thesis, the programming codes are written for
optimisation of simply supported channels, zed and sigma beams subjected to
uniformly distributed load only. The full study has been coded into a computer-based
analysis programme (MATLAB). However, the programme can be amended to meet
other optimisation problems for different kinds of cold-formed steel sections. It is
suggested that the performance of the programme can be further improved by
upgrading to a user friendly standalone version, which would become a more efficient

tool for design engineers.
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A.1.5 Finite strip programme scheme

( Start )

Matrix sizes: nnodes: nelems: nlengths:
|
Generate strip width and direction angle
[elprop]=elemprop(node,elem,nnodes, nelems)
|

I=1:nlengths
loop over all the half-wave lengths

Generate element stiffness matrix in local coordinates
[k _l]=klocal(Ex,Ey,vy,G,t,a,b,m)
I
Generate geometric stiffness matrix in local coordinates
[kg l]=kglocal(a,b,m,Tyl,Ty2)
[
Transform k and kg into global coordinates
[k kg]=trans(alphak lLkg 1)
[
Assemble K and Kg
[k kg]=assemble(K,Kg,k, kg, nodei,nodej,nnodes)

Partition the matrix into free and restrained
[K Kg, restrained]=kfreeof(K,Kg,node,nnodes)
[

Solve the eigenvalue problem

[modes,If]=eig(Kff. Kgff)
|

Find the smallest positive eigenvalue
|
Expand the mode shape to reflect restrained DOF

|
Generate output values: curve, shapes

End
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A.2.3 Sigma section or arbitrary open section

In view of the complexity of sigma sections and arbitrary open sections, the

MATLAB codes were written by Schafer (1997) to determine the section properties.

e The gross properties of the section are determined by the function below:

function [A,xcg,zcg,Ixx,1zz,Ixz,thetap,I11,]122]=grosprop(node,elem)

%[A,xcg zcg, Ixx,Izz,Ixz, thetap,11 1,122 ] =grosprop(node,elem)
%lInput

Y%node=[#x z DOFX DOFZ DOFY DOFQO stress]
Yoelem=[#1ijt]

%Quput

%

A=0;, Ax=0;, Az=0;, Axx=0;, Azz=0;, Axz=0;
Ixx_o0=0;, Izz_0=0;, Ixz_o=0;
for k=1:length(elem(:,1)) % number element of section
ni=elem(k,2);
nj=elem(k,3),
t=elem(k,4);
xi=node(ni,2);
xj=node(nj,2);
zi=node(ni,3);
zj=node(nj,3);
%
delx=xj-xi;
delz=zj-zi;
theta xx=pi/2-atan2(delz,delx);
theta_zz=theta xx+pi/2;
xcg_elem=1/2*(xi+xj);
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zcg elem=1/2%(zi+zj);
L_elem=sqrt(delx"2+delz"2),
A_elem=t*L elem,
Ixx_elem=1/12%t*L_elem*(t"2*(sin(theta xx))"2 + L elem"2*(cos(theta xx))"2);
Izz_elem=1/12%t*L_elem™(t"2*(sin(theta_zz))"2 + L _elem”2*(cos(theta zz))"2),
Ixz_elem=1/12*t*L_elem*(t"2*sin(theta_xx)*cos(theta_xx) + ...
L _elem"2*cos(theta_xx)*sin(theta xx));
%
A=A + A elem;
Ax=Ax + A_elem*xcg elem;
Az=Az + A _elem*zcg elem;
Axx=Axx + A_elem*xcg_elem*xcg_elem;
Azz=Azz + A_elem*zcg_elem*zcg_elem;
Axz=Axz + A_elem*xcg elem*zcg elem;
Ixx_o=Ixx_o + Ixx_elem;
Izz 0=Izz 0 + Izz elem;
Ixz o=Ixz_o + Ixz_elem;
%
end
xcg=Ax/A;
zcg=Az/A;
Dex=Ixx_o + Azz - A*zcg"2;
Izz=Izz_o + Axx - A*xcg"2;
Ixz=Ixz o + Axz - A*xcg*zcg;
thetap=180/pi*1/2*atan2 (-2 *Ixz,Ixx-Izz);
111=1/2%(Dex+1zz) + sqre( (1/2*(Ixx-Izz))"2 + Ixz"2 );
122=1/2%(Pex+1zz) - sqre( (1/2*(Ixx-Izz))"2 + Ixz"2 );

e Sectional properties of thin-walled members

Sunction [Cw, J, Xs, Ys, w, Bx, By, Bl, B2]=Warp(node,elem)
%[A,xcg,zcg, Ixx,Izz,Ixz,thetap,11 1,122 ] =grosprop(node,elem);
%Cw, J , Warping function,

% Xs ,Ys Shear center location
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% J torsion constant
% w sectorial co-ordinate.

Yolnput

Yonode=[#x z DOFX DOFZ DOFY DOFO stress]

Yoelem=[#1ij t]
n=length(node(:,1));

%Basic Section Properties

% Area lengths, coordinates etc
t=elem(:,4);

x=node(.,2);

y=node(:,3);

A=0;

Jor i=1:n-1

I@)=sqre((x(i+1)-x(1)"2+¥(i+1)-y(1)"2);

Ai(i)=t(i)*1(i);
x_()=(1/2)*x()+x(i+1));
y_()=(172)*(y@)+y(i+1));
dx(i)=x(i+1)-x(i);
dy()=y(i+1)-y(i);
A=A+Ai(i);

end

%Centroid
xc=0;
ye=0;
for i=1:n-1
xc=xc+(1/4)*t(i) *1(i))*x_(i);
ye=ye+(1/4)*1()*1()*y_(V);
end

%Moments of Inertia, Torsion constant
J=0;
Ixe=0;
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Iyc=0;

Ixyc=0;

for i=1:n-1
J=JH(1/3) ¥ () *t(i)"3;
Ixc=Ixc+((y_()"2*Ai(i)+(1/12) *dy(i)"2*Ai(i)));
Iye=Iyc+((x_(i)"2*Ai(i)+(1/12)*dx(i)"2*4i(i)));
Iye=Ixye((c_()y_()*Ai()+(1/12)*dx(i) *dy(i) *4i(3)));

end

Ixc=Ixc-yc"2*4;

Iyc=Iyc-xc"2%A;

Ixyc=Ixyc-yc*xc*A;

%Principal moments of inertia

Imax=(1/2)*((Ixc+Iyc)+sqrt((Ixc-Iyc)"2+4*Ixyc"2)),

Imin=(1/2)*((Ixc+Iyc)-sqrt((Ixc-Iyc)"2+4*Ixyc"2));

Th _p=1/2*(atan2(-2*Ixyc, (Ixc-Iyc)));

%Transform into new coordinates about principal axes

SJori=I:n
XY=[(x()-xc) (¥(i)-yc); (¥(i)-yc) -(x(})-xc)] *[cos(Th_p);sin(Th_p)];
X(i)=XY(1);
Y(i)=XY(2);

end

%Shearflow and Shear center
VX(1)=0;
VY(1)=0;
for i=1:n-1
dX(i)=(1/1(i)) *abs(X(i) *Y (i+1)-X(i+ 1) *Y(i));
dY(i)=(1/1(i)) *abs(X(i) *Y(i+1)-X(i+1) *Y(i));

if (Y()*(X(i+1)-X(1))<(X()*(Y(i+1)-Y(}))
diX(i)=1;

else if (Y()*(X(i+1)-X(i)))> (X() *(Y(i+1)-Y(i)))
dIX(i)=-1;
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else if (Y() *(X(i + 1)-X(0))) ==(X() *(Y(i+ 1)-Y (i)
diX(i)=0;
end
end
end

if (X()*(Y(i+1)-Y()))<(Y() *(X(i+1)-X(}))
dlY@)=1;
else if (X()*(Y(i+1)-Y(i))> (Y() *(X(i+1)-X(i)))
diY(i)=-1;
else if (X(i)*(Y(i+1)-Y(1)))==(Y()*(X(i+1)-X(}))
aly(i)=0;
end
end
end
VX(i+1)=VX(i)+AiG)*(Y(i+1)+Y(i))/2;
VY(i+1)=VY(i)-Ai()*(X(i+1)+X()/2;

end
Xs=0;
Ys=0;
if Imax~=0
for i=1:n-1
Xs=Xs+(-1/Imax) *dIX(i) *dX (i) *1(i) *(VX(i) +(1/6) *4i(i) *(Y(i+ 1)+ 2*Y(i)));
end
end
if Imin~=0
Sfor i=1:n-1

Ys=Ys+(-1/Imin) *dIY (i) *dY (i) *1(i)) *(VY(i)-(1/6) *Ai(i) *(X(i+ 1) +2*X(i)));
end

end

%Warping funcions and Warping Constant
X s(1)=X(1)-Xs;
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Y s(1)=Y(1)-Ys;
ws(1)=0;
wa(l)=0;

ws_=0;

Jori=I:n-1
X s(i+1)=X(i+1)-Xs;
Y s(i+1)=Y(i+1)-Ys;
ds(i)=(1/1(i)) *abs(X s(i)*Y s(i+1)-X s(i+1)*Y s(i));
if (Y_s()*(X(i+1)-X(1)) <(X_s()*(Y(i+1)-Y(1))
dis(i)=1;
else if (Y_s() *(X(i+1)-X(i)> (X_s()) *(¥(i+1)-¥(3)))
dis(i)=-1;
else if (Y_s(i) *(X(i+1)-X()) ==(X_s () *(V(i+1)-¥(i)))
dis(i)=0;
end
end
end
ws(i+1)=ws(i)+ds(i) *I(i) *dls (i),
ws_=ws_+(1/4)*4i(i)*(ws(i+1)+ws(i))/2;

end

xx(1)=0;

fori=I:n
w(i,1)=ws_-ws(i);

end

Cw=0;
Jori=I:n-1

aw=w(i+1)-w(i);

wa=w(i);

Cw=Cw+t(i)¥(wa"2*1(i)+(1/3) *aw"2 *I (i) +wa*dw*l(i));
end
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%Monosymmetry Parameters Bx and By
BI1=0;
B2=0;
for i=1:n-1
Xa=X{i);
dX=X(i+1)-X(i);
Ya=Y(i);
dy=Y(i+1)-Y(i);

BI=BI1+Ai(i)*1/12*(3*dY*dX"2+3*dY"3+4*Ya*dX"2+12*Ya*dY"2+8*dY*Xa*dX+
12*Ya*Xa*dX+18*Ya"2*dY+6*dY*Xa"2+12*Ya*Xa"2+12*Ya"3);

B2=B2+Ai(i)*1/12*(3*dX"3+3*dX*dY"2+12*Xa*dX"2+4*Xa*dY"2+8*dX*Ya*dY+
18*Xa"2*dX+12*Xa*Ya*dY+6*dX*Ya"2+12*Xa"3+12*Xa*Ya"2);

end
Bl=(1/Imax)*B1-2*(Ys);
B2=(1/Imin)*B2-2*(Xs);

X=x-xc¥*ones(n, 1),
Y=y-yc*ones(n,1);
Bx=0;

By=0;

Jor i=1:n-1
Xa=X(i);
dX=X(i+1)-X(i);
Ya=Y(i),
dY=Y(i+1)-Y(i);

Bx=Bx+Ai(i)*1/12*(3*dY*dX"2+3*dY"3+4*Ya*dX"2+12*Ya*dY"2+8*dY*Xa*dX+
12*Ya*Xa*dX+18*Ya"2*dY+6*dY*Xa"2+12*Ya*Xa"2+12*Ya"3);

By=By+Ai(i) *1/12*(3*dX"3+3*dX*dY 2+ 12*Xa*dX"2+4*Xa*dY"2+8*dX*Ya*dY+
18*Xa"2*dX+ 12*Xa*Ya*dY+6*dX*Ya"2+12*Xa"3+12*Xa*Ya"2);

end
Bx=(1/Ixc) *Bx-2*(Ys);
By=(1/Iyc)*By-2*(Xs);
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NUMERICAL OPTIMISATION RESULTS
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Lippped channel wall stud in compression
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Lippped channel wall stud in compression
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Simple lippped channel purlin in bending
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Simple lippped channel purlin in bending
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Simple lippped channel purlin in bending
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