










































































































































































































































































































































































































































































































































































Chapter 9 CONCLUSIONS AND FUTURE WORK

9.1 _Conclusions

This thesis had investigated the osmotic dehydration process in plant storage tissues
(like fruits and vegetables). Two mathematical mass transport models are presented to
simulate the complex process. In each model, the fluxes caused by diffusion and by
convection as well as the flux across the membrane are considered. The results have

been verified using existing experimental data.

Both of the mathematical models are reasonable and successful to simulate the osmotic
dehydration process although each of them employs some parameters from experiential
assumptions, such as the elastic modulus of intracellular volume and cell membrane.
They contribute a useful tool to investigate the mechanism of mass transfer phenomena
in osmotic dehydration. The models can also be used by plant physiologists and

cytologiSts in the study of the transport of water and solutes in cells and plants.

Mathematical model one is developed based on the original model proposed by Toupin
et al., (1989). Different from Toupin’s model, the diffusion in intracellular volume is
considered and the volume flux is employed in this model. The following conclusions

can be drawn from mathematical model one:

e Trans-membrane volume flux is important in the analysis of mass transfer in
osmotic dehydration because it indicates the amount of water and solutes

removed from the intra-cellular volume.

e Bulk flow plays an important role in osmotic dehydration. The influence of the
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bulk flow is consequently considerable, and indicates that attempting to interpret

osmotically driven processes on the basis of pure diffusion would lead to serious

underestimation of the time.

e Solute concentration of osmotic solutién, diffusion coefficient can affect the
overall behaviour of the osmotic dehydration significantly; more or less, the
membrane conductivity coefficient, diffusibility of cell wall, elastic modulus of
cell wall and critical cell volume all influence the progress of osmotic

dehydration.

Mathematical model two is originally developed by Li, (2005). However, the turgor
pressure is added by the author. Also, the original model is extended to two-dimension,
which generalizes the osmotic dehydration process and gives us an intuitionistic
expression of this process. It avoids the conceptual and abstract properties to understand
the osmotic dehydration process. Besides the conclusions drawn from model one, the

study of model two has reached to the following conclusions:

e The assumption that plant tissue can be considered as the porous medium 1s
reasonable. The employment of Darcy’s law to express the relation between the

bulk velocities and hydrostatic pressures also appears suitable.

e The modification of the equations of hydrostatic pressures and volumes is

successful, although it needs further verification by experimental data.

e The ratio of permeability to dynamic viscosity can affect the results of osmotic
dehydration significantly. More or less, the membrane constants can influence

the progress of osmotic dehydration process.

e When the size of the plant tissue samples in one direction is much bigger than

the ones in other directions, the results obtained from one-dimensional analyses
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and two-dimensional analyses are almost identical, which is expected. However,

for the common geometrical tissue structure, the one-dimensional analyses are

inaccurate and it must be treated as the multi-dimensional problems

e The results obtained from two-dimensional analyses can demonstrate the osmotic
dehydration process more intuitionistic. The results in cross-sections of
x-direction and y-direction can be visible to demonstrate how the plant tissue is

shrunk.

9.2 Suggestions for Future Work

The osmotic dehydration in plant tissue is a very complex process. It is hard to build
one model to solve all the problems in this area. The future work should concentrate on

the following:

e based on mathematical model two, revise the pressure equations in intracellular

and extra-cellular volume;

e do more research about the turgor pressure and revise the express of turgor

pressure in plant tissue;

e explore other more general models;

e do some experiments to obtain more useful data, such as the hydrostatic
pressures, the elastic modulus of cell wall, the membrane permeability, the

dynamic viscosity of the plant tissue etc., to verify the presented or new built

models.
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APPENDIX A

Chemical Potential of A Species in A Solution

It 1s well known that the chemical potential of a species in a mixed solution can be

expressed by
M, =p; +RTIna, +V,P+z,FE+m,gh (A1)

where 1 1n J/mole is the total chemical potential of the species s, u; in J/mole is the
potential of the species in reference level since the chemical potential is a relative
quantity. 171 in m’/mole is the partial molar volume of the species, P in N/m? is the

hydrostatic pressure, R=8.314 J/(mole-K) is the universal gas constant, T in K is the
absolute temperature, a; is the activity of the species, z; is the charge number of the
species, F=96458 C/mole is the Faraday constant, £ in V is the electrical potential, g is

in N/s® is the gravitational acceleration. The gravitational term m ;8h expressing the

amount of work required to raise an object of mass m, per mole to a vertical height A.

If we ignore the gravitational term and the considered solutes are non-electrolytes, then

the Eq. (A.1) can be simplified to:

p; =, +RTIna; +V,P (A2)

The activity of a species is usually related to its mole fraction or its concentration ratio

in the solution by means of an activity coefficient, that is:

71'N/ 7/JC

_ _ j
YTN,FSN, G430,

(A.3)

where y; is the activity coefficient of the species, N; in mole is the mole number of the

species in the solution, &, in mole is the mole number of the solvent in the solution, C;
in mole/m’ is the concentration of the species in the solution, C,, in mole/m’ is the
concentration of the solvent in the solution. The summation in Eq. (A.3) is applied to all

the species involved in the solution except for the solvent.
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For an ideal solution y,=1 and therefore Eq. (A.2) can be rewritten as:

C.
= +RTIn| ——L—|+V.P A4
/uj :Llj {Cw%-zck} J ( )

Since it contains an unknown constant, the actual value of the chemical potential is not
determinable. But for most applications of chemical potential, we are interested in the

difference in the chemical potential between particular locations, so only relative values
of the chemical potential are important anyway. Therefore, /z; is cancelled out when
the chemical potential in one location is subtracted from that in another to obtain the

chemical potential difference between the two locations. Note that for any solution the

concentrations of species and solvent satisfy:

CV,+> ClV, =1 (A.5)

Hence, any change in the concentration of one particular species will result in the
changes of the concentrations of other species and solvent. The differentiation of Eq.

(A.5) leads to:

_ AC, AC,+> AC
A,uj:VjAPﬁ-RT\: A—_. 2 k} (A.6)
C,
J

C,+>.C,

Using Eq. (A.5) and noting that

3ACT,
AC, =&tk (A7)
VW
so Eq. (A.6) can be rewritten as:
_ AC, V. -V)AC
Ap; =V,AP+ RT| —*~ 2. VNG, (A.8)
C, 1+y.(V,-V)C,

Similarly to the solute, the potential of the solvent in a solution can be expressed by

- C
-4 +RTIn| ——2—|+V P A9
M, = Hy, {C.ﬁ}:q} y (A.9)
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Note that the electrical term is not included for the solvent. This is because the solvent

(water) carries no net charge (z,=0). The differentiation of Eq. (A.9) leads to:

_ V,-V)AC,
A, =7, AP+ RT| 25 27 -V k}

L CW —1+Z(I7:v_f/‘k)ck
7 apopr| 208G, XL TOAC, }
BT YA Ate

(A.10)

Egs. (A.8) and (A.10) are the expressions for the chemical potential gradients of species

and solvent which can be applied to any ideal solution. If the solution is a dilute solution,

thatis?,C, ~1, andZVJ.Cj <<1, Egs. (A.8) and (A.10) can be simplified into:

AC,

Ap, =V ,AP+RT (A.11)

J

s, =7, 0P~ RIS TAC, + .07, TG,

_ s A12
=V,AP-RTV,> AC, (A.12)

which are well-known equations appeared in literatures.
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APPENDIX B

B.1 T he PDE Terms

The dependent variables are called u; and u;, and the equation system solved is

da%—V~(cVu+au—y)+ﬂ-Vu+w:f

(B.1)

where u = (u,,u,). The coefficients and equation terms are now generations (vectors

and matrices) of the corresponding scalars for the 1-variable coefficient form PDE

described earlier.

The mass term is defined as

ou, ou, ou,
@_{dm dos | 2 _ ar g G2y,
‘ot - daZl dn22 8u2 d Q’i‘. d %
or R

The components of this term are not available as variables.

The diffusive flux is defined as

{Cn 612:\ {ulji {Cn CIZ}{vul} {CnVW +612vu2}
cVu = \% = = =
Cy Cp U, Cy  Cyp | VU, ¢, Vu, + ¢, Vu,

[ Tow, ] Tow, ]| [[ 6w u, ||
£l ox N T Ty

) 2y |7 oy ou o || ||
»] Lo " ||l
L . L — - ly
o, | E R ou, || |]cu,,
o ox 05 T2 g cu

| gu, | T 2| ou ou ou >
— 2 Cp—=+cC 2

21 22
Lol Lol L Oy

(B.2)

(B.3)

where Vu, and Vu, are considered to be column vectors. The variable names for the

diffusive flux components are culx, culy, culx, and cu2y. The flux matrix of flux
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tensor is presented here as a column vector. It can also be presented in Matrix form as

cu,  Cuy,

cVu = (B.4)

For anisotropic materials, each of the components ¢;y, ¢;2, ¢2;, and ¢z, can be matrices as
described above for the 1-variable coefficient form PDE. In this case, the diffusive flux

reads

[cllll ClllZ ClZH C1212
¢, ¢, || Vu c c c ¢ Vu
11 12 1 1
CVu — — 1121 1122 1221 1222 —
C, Cy || Vi, ‘:02111 62“2} Coi Caann ||| Vi,
c c c c
2121 2122 2221 2222
(B.5)
c c c c
1111 1112 1211 1212
{ }Vu1 -{ j!Vuz
Chizi Cuz Cizr Cima
c c c c
2111 2112 2211 2212
Vu, + Vu,
C2121 C2122 c2221 c2222
The variable names are the same as for the isotropic diffusive flux.
The conservative convective flux is defined as
agy, 2978 &y Q)
ul + 2
u a a., |l u a o u o o
1 11 12 1 112 122 1 12 122
au=a = = =c ! (B.6)
U, ay Ay || Uy Qo Q) U, Qo Ay
u, + u,
a212 a222 a212 C1222

The variable names for these components are alulx, aluly, alu2x and alu2y. Here the

third index, k, of «,, corresponds to the space coordinate suffixes x and y.

ik

The conservative flux source is defined as

1
11

Y12

y = (B.7)
1:721
72

183




The variables names for these components are galx, galy, ga2x, and ga2y. Here the

second index, j, of y, denotes the space coordinate suffixes for x and y.

For the flux terms the divergence operator works on each row separately. To 1illustrate

this, consider the divergence of the conservative flux source
{711} v _{711}

Mol _ Y12 (B.8)
l:yzl} v. I:yzi

y22 )/22

V.y=V.

The convection term is defined as
. [ﬂlll} {IBIZI‘J
ﬂ'vu:{ﬂ” ﬂn}[vul}_ ﬂl]Z ﬂlZZ

Ba P | Vi, - 1?3211} l:ﬂzzl}
Bz P

The variable names for these components are beu! and beu2.

ﬂm /Bm
[V%}_ [ﬂnj.vul +|:13122]vu2
VUZ - ]:,lelit_vu +{ﬂ221}vu
ﬂ212 1 ﬁzzz ’

(B.9)

The absorption term is defined as

a,, a, ||u a, u, +a,u
1 12 1 1171 12772
au{ ‘ }{ }{ } (B.10)
Uy Ay | Uy Ayl +ayni,
The variable names for these components are aul and au?2.

The source term is defined as

/
= B.11
! L’j i

The variable names for these components are fI and f2.
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B.2 The Boundary Condition Terms

The Dirichlet boundary condition, in expanded form, reads

hy  hy | u _ h (B.12)
by hy LW g

The components of this equation are not available as variables.

If the Dirichlet condition is chosen, the generalized Neumann boundary condition can

also be got, which reads

n(cVutrau—y)+qu=g-h"p (B.13)

The normal vector n=(n, n,) operates on the flux vector in the same way as the
divergence operator as explained earlier. If h has full rank, for instance as in the default
identity matrix, only the constrains from the Dirichlet condition are active.

If the Neumann condition is chosen, the only boundary condition is

n-(cVu+0m-y)+qu:g (B.14)

The normal component of the diffusive flux is defined as

eV = n {Cn Ciy }{Vu] } _ {” ) (Cnv”l + Clzvuz)} (B.15)

cy €y || Vi, ”'(szvux + szvuz)

The variable names for these components are ncul and ncuZ.

The normal component of the conservative convective flux is defined as
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[ < I o a,, |
amjkule{:aﬁa}uz (nx’ny)‘([ milule{ Ll}lzJ
) lianz} Xy _ @12 L2 (B.16)
u

The variable names for these components are nalul and nalu?2.

The normal component of the conservative flux source is defined as
1:711:1 (nx’ny){yn}
A2, 712 (B.17)
{721} ( ) i:?’zlji
ne,n,
Y2 &)
The variable names for these components are ngaul and ngau?.
The boundary absorption term is defined as
uzl:‘]n ‘hzﬂ:ulj\:\:q”ul"ﬂhzuz} (B.18)
4y 4xn | % 4t gt
The variable names for these components are gul and qu2.

The boundary source term is defined as

g{ﬂ (B.19)
P

The variable names for these components are g/ and g2.
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