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This thesis introduces and develops a novel real-time predictive maintenance system to estimate
the machine system parameters using the motion current signaturs.

Recently, motion current signature analysis has been addressed as an alternative to the uae
of sensors for monitoring internal faults of a motor. A maintenance system based upon the
analysis of motion current signature avoids the need for the implementation and maintenance
of expensive motion sensing technology. By developing nonlinear dynamical analysis for motion
current signature, the research described in this thesis implements a navel real-time predictive
maintenance system for current and future manufacturing machine systems.

A crucial concept underpinning this project is that the motion current signature containe infar-
mation relating to the machine system parameters and that this infarmation can he extracied
using nonlinear mapping techniques, such as neural networks. Towards this end, a proof of con-
cept procedure is performed, which substantiates this concept. A simulation madel, Tunelearn,
is developed ta simulate the large amount of training data required by the neural network ap-
proach. Statistical validation and verification of the model is performed to ascertain confidence
in the simulated motion current signature. Validation experiment concludes that, although, the
simulation model generates a good macro-dynamical mapping of the motion current signature,
it fails to accurately map the micro-dynamical structure due to the lack of knowledge regarding
performance of higher order and nonlinear factors, such as backlash and compliance.

Failure of the simulation model to determine the micro-dynamical structure suggests the pres-
ence of nonlinearity in the motion current signature. This motivated us to perform surrogate
data testing for nonlinearity in the motion current signature. Results confirm the presence of
nonlinearity in the motion current signature, thereby, motivating the use of nonlinear tech-
niques for further analysis.

Outcomes of the experiment show that nonlinear noise reduction combined with the linear
reverse algorithm offers precise machine system parameier estimation using the motion currsnt
signature for the implementation of the real-time predictive maintenanece system. Finally, a
linear reverse algorithm, BJEST, is developed and applied to the motion current signature to
estimate the machine system parameters.

Keywords: Motion current signature, neural network, linear reverse algorithm;
simulation model, nonlinear noise reduction
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Chapter 1

Introduction

1.1 Background

Much emphasis has been given to the vesearch and development of high speed machine systema
possessing high levels of programmability and recanfigurability. Mation cycle demands in such
machines are high; motars and drives are required to perform under demanding conditions,
hence the need for a predictive maintenance system. Modern machines typically use some farm
of direct current (DC) motor and the framework described in this thesis is based upon such

motors.

The DC motor is one of the first machines devised to convert electrical power into mechanical
power. Recent improvements in DC machines, and specifically the emergence of the brushless
motor have lead to its wide usage due to its high torque and small size when compared to the

induction motors.

The need for new high-performance motors, with highly sophisticated capabilities, has pro-
duced an abundance of new types and sizes of DC motor. Nowadays, DC motors are widely
used in many machine applications; with this there is a need for high reliability supported by
an effective maintenance system. Recent studies have demonstrated that the predictive mainte-
nance approach can ensure high reliability and performance (Cambrias and Rittenhouse, 1988;
Discenzo, 1997; Haddad, 1991; Herbert, 1984; Penmann, 1986; Smeaton, 1987: Tavner and Pen-
man, 1892).

This thesis introduces an effective, real-time, predictive maintenance system hased on the cup-
rent feedback of brushless servo type of DC mators. The aim of the praposed system is to
localize and detect abnormal machine parametric conditions in arder to prediet mechanical ah-

normalities that indicate, or may lead to the failure of the motar (Tsermann, 1084; Leith, 1088).

In this chapter, we introdues the main considerations of this thesis: the real-time pradistive
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1.2 Machine maintenance

maintenance problem of large scale machine systems using the motion current signature; the
application of the analytical and time-series techniques; and modelling of current characteristic

of a brushless servo motor.

1.2 Machine maintenance

Every facility that produces a consumer product has some requirement for maintenance or
upkeep of their machinery. Depending upon the product and, to some extent, the size of the
facility, this maintenance activity may be continuous or periodic in nature. Some maintenance

activities may consume a significant partion of the expenses and manpower of a facility.

Facility maintenance activities generally fall into three caiegories: hreakdown, preventive, and

predictive. Each category has particular costs and henefits associated with it.

Breakdown maintenance
T'his method has no continuous activity associated with it. Essentially, no maintenance activity

is performed on machinery until it fails or produces unacceptable product.

At first impression, this method appears to be the most cost effective because the manpower

and their associated costs are minimal.

But closer examination shows that when the machinery fails, considerable expense is required
to allocate manpower an an emergency basis, repair/replacement parts. Additionally, lost rev-
enues due to non-production can mount rapidly depending upon the manufacturing process
or product linked with the failed machinery. Clearly, this maintenance methodology has the
highest associated and unpredictable cost. In addition, an unexpected failure can be dangerous
to personnel and the facility. This prompted researchers around the world to develop another

maintenarnce system which will reduce unpredictahility and cost.

Preventive maintenance

An advancement on a breakdown maintenance program is a preventive maintenance program.
This periodic approach to maintenance has little continuous activity associated with it. It
involves scheduling a regular outage, usually on an annual basia, where the entire machine,
process or plant is shutdown, or removed from production, for careful inspection and routine

replacement of specific parts.

This method has the highest cost for replacement parts hecause the facility may have a sepa-
rate program or department with the sole purpose of maintaining an inventory of apare paria

14




1.3 Main components

and scheduling outage activity. Maintenance costs are reduced because the ”annual outage” or
“turn around” is usually scheduled for a period when the product demand is low. Additional

cost savings are realized because manpower and any heavy equipment are scheduled.

The method of preventive maintenance is specially beneficial in increasing the predictability

of a breakdown. However, this methodology is not very successful in the following situations:

e if a machine part breaks down before outage:
e if the vendor or the material of the machine part changes;
e if there is some health left in the machine part.

Due to these factors we need a continuous and real-time process of maintenance.

Predictive maintenance

Throughout the decade of the 1980s many facilities began to seek solutions to reduce high
maintenance cost and spare parts inventories. By adopting a continuous approach to facility
majntenance these reductions can be realized. Supporting this approach was the profusion of
portable data collectors and database software. As an extension to a portable data collector
system is a permanently installed monitoring system. Many of these systems can be interfaced
to advance software systems that can assist with signal analysis. Until present day, the key to
this enhanced system is having the sensors installed which are available for signal acquisition

continuously.

Using these systems, and the appropriate training necessary for signal interpretation, a facility
can implement a predictive maintenance program. This method relies on the data collected,
either on a continuous basis or on a routine, periodic basis, to dictate the required maintenance

procedure and scheduling the maintenance activity.

1.3 Main components

The development of a real-time predictive maintenance system invalves application of a number
of different techniques from various avenues of research, ranging from neural natwarks, time-
series analysis through to simulation modelling. The research performed as part of this thesis
has explored a number of research areas to find a viable and effective solution ta maintenance

issues. Various components of this thesis are therefore mentioned in the follawing suh-sactions.
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1.3 Main components

1.3.1 Neural networks

Neural networks provide a valuable alternative to conventional mathematical techniques in
order to map the complex nonlinear function between the motion current signature and the
machine system parameters. The application of the neural network approach to the proposed

system is tested in chapter 3 as part of the proof of concept procedure.

The tests indicate a high success rate of the neural network approach when applied to the
classification of load inertia with motion current signature as as input. However, beyond the
proof of cancept, the system needs to be developed to perform exact value estimation of more
than one system parameter, which prompts the requirement of large amount of training data
due to the reasons which will be clear as we progress through this thesis. This multi-fold re-
quirement of the training data motivates us to explore various avenues of training and teat data

generation including simulation modelling.

1.3.2  Simulation modelling

Mathematical simulation models are increasingly being used in problem solving and in decision
making (Sargent, 2004). Thus, the use of a simulation model for generating the training data,
covering harder to replicate machine conditions, like current limit over-run, is motivated in
chapter 4. A simulation model, TuneLearn', of a closed loop form based on a PID controller is
developed and is shown to be capable of mapping the motion current signature to the system

parameters.

The developers and the users of the models, the decision makers using information derived
from the results of the models, and the people affected by decisions based on the simulation
models are all rightly concerned with whether a model and its results are ”correct” and "use-
ful” (Kleijnen, 1999; Sargent, 2004). This concern is addressed through model validation and

verification, which is also presented in chapter 4.

The model is found to generate a good macro-dynamical replica of the motian current sig-
nature, however, a correct mapping of the micro-dynamical hehaviour is still missing. A good
understanding of the micro-dynamical structure of the mation current signature is impartant

to apply a correct mathematical or modelling or statistical technigue in a precise manner.

The validation procedure reveals that the micro-dynamical; structure could he hecause of tha
presence of nonlinearity in the motion current signature. Although, nonlinearity is expectad in

the signature, the nonlinear time-series analysis techniques can not he applied without mathe-

"The simulation madel daveloped as part of joint University and Rackwsl) Automatian resesreh pragramme,
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1.4 Contributions of thesis

matically testing the signature for nonlinearity. This is explained in the next section.

1.3.3 Nonlinearity

The failure of the simulation model to map the micro-dynamics, and the view that the non-
linearity might be present in the motion current signature, motivates us to test the motion
current signature for inherent nonlinear behaviour. Surrogate data testing based upon the null
hypothesis that the signature is derived from a linear stochastic process is performed in chapter

5.

Motion current signature collected from a real production machine rejected the hypothesis,
thereby, suggesting that the signature contains nonlinear components, including noise. Along-
side, it is believed that the effect of the machine system parameters (inertia, friction and
gravitation) does not lead to any nonlinear characteristic in the mation current signature. This
argument inspires us to perform noise reduction on the motion current signature to have a clear

understanding of the process.

1.3.4 Noise reduction

The noise reduction algorithm is considered in this thesis to gain a better understanding of the
motion current signature. It is contended in chapter 6 that the application of the linear reverse
algorithm, BJEST (developed in chapter 4), on the noise-less motion current signature may

provide better results than the application of the neural network approach.

The tests with noise reduction technique confirm the belief and lead to a possible solution

to the aims and objectives of this thesis.

1.4 Contributions of thesis

The overall aim of this project is to develop a real-time predictive maintenance syatem capahle
of detecting abnormal machine conditions with a minimum requirement of mation sensing tech-
nology. Currently, the machine maintenance technology largely depends upon the use of mation
sensors, which are not only expensive hut aleo increase maintenance averhead. The tachnique
of the real-time predictive maintenance will represent a camhination of exiating methads drawn
fram the fields of neural netwaorks, simulation modelling, dynamical aystema and nonlinear ieche

nigues. In support of this aim, this thesis will focus on the develapment of a machine paramater
17
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Alert Zone
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@ Alert limit crossed

Figure 1.1: A method of displaying the real-time predictive maintenance aystem autput. The
parameter shown in the graph could be any of the machine parameters estimated using the

technique.

estimation system, which significantly reduces or eliminates the use of expensive sensor tech-

nology.

This thesis motivates the use of the motion current signature as an input for the real-time
predictive maintenance system. The motion current signature is readily available as a feedback
to the motor drive from the motor, thus eliminating the need for any additional sensor in the
real-time predictive maintenance system implementation. Measurements of the real-time ma-
tion current can be obtained using the motor-drive system’s serial port interface. Interfacing

simply requires the connection between the computer and the motor-drive system serial ports.

The analysis of the motion current signature is performed by the computer using basic math-
ematical tool-sets. The results obtained are displayed in the format chosen hy the machine
operator or the maintenance technician. One of the many different methods of diaplaying the

results is shown in figure 1.1.

Figure 1.1 shows a sample plot of the varjations in the value of a parameter in real-time. The
settings related to various zonal levels are customisable and can be linked to an alarming ays
tem. The machine technician can monitor the graph and take action whenever there is an

unexpected change in the value of the parameter.
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1.5 Motivations and novelty

‘The fundamental tenet in our work is the assumption that the motion current signature contains
relevant information pertaining to the machine system parameters and that this information
can be extracted using nonlinear mapping techniques. Crucially, we claim that the effect of the
most significant machine system parameters, in terms of their maintenance overheads, an the
motion current signature is linear. We strongly helieve that the use of the expensive motion
sensing technology can be reduced or, after further research, eliminated hy the implementation

of the real-time predictive maintenance proposed in this thesia.

Over the past decade, a large amount of research interest has been centered around the devel-
opment of the maintenance system [ramework far the matars and machines. The research areas

have heen:

e Development of a framewark to manitar the internal candition of the motor an the hasis of
sensors and mathematical analysis techniques (Boothman et al., 1974; Chow, 1996; Key-
hani and Miri, 1986; Leith, 1988; Penmann, 1986; Saod, Fahs and Henein, 1985; Tavner
and Penman, 1992).

¢ Development of a motion current signature analysis framework for condition monitoring
(Haddad, 1991; Kryter, 1989; Maseler and Isermann, 2000). However, all of the research
until now in the field of the motion current signature analysis have been dedicated for the
development of system which can monitor or detect machine incipient fault. This field
of research has been termed as the machine incipient fault detection and isolation in the

literature.

¢ Development of a framework to analyse the sensor based signals and mation current aig-
natures using neural network and other artificial intelligence techniques (Betta, Ligouri
and Pietrosanto, 1998; Cambrias and Rittenhouse, 1988; Chow, Sharpe and Hung, 1003;
Herbert, 1984; Kim, Shin and Carlson, 1991; Lennox et al., 2001; Lin and Wang, 1006;
Lipmann, 1989). Again, all the work performed in this part of ressarch is also centerad
around systems for detecting motor internal and plant faults, rather than the faults de-

veloped outside a motor, which can affect the motor perfarmance.

Since, there are a huge number of motor faults which are due to the factors ariginating autaide

the motor, the field of research related to the deteciion and identification of machine faulis
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should be given equal importance. On the other hand, due to the expensive nature of the

motion sensing technology, it is stressed in the literature that the newly developed predictive
maintenance techniques should be least dependent up on the use of the sensors (Boothman
et al., 1974; Discenzo, 1997; Lennox et al., 2001; Littlehales and Jones, 1997; Littlehales et al.,
1998; Singh and Parikh, 1993; Smeaton, 1987).

The unavailability of a reliable machine fault isolation and detection system based upon iden-
tification of the machine system parameter changes motivates us to undertake this path of
research. Additionally, as recommended in a lot of literature, this research focusses on the use
of motion current signature as a possible source of information related to the machine param-

eters.

1.6 Plan of the thesis

This thesis will be organised in the following manner:

Chapter 1 is this introduction.

Chapter 2 gives the background to the field of machine maintenance and provides a sur-
vey of the various condition monitoring techniques that are relevant to our project. Where ever
applicable, the aims and objectives laid out in this chapter will be linked with related aspects
of the research as these are encountered. This chapter also presents a qualitative description of
the real-time predictive maintenance system. Finally, this chapter motivates the development
of a framework in light of the fact that there has been virtually very little research performed

in this very important area of study.

Chapter 3 provides the proof of concept procedure performed to validate the concept he-
hind the real-time predictive maintenance system using the neural network approach. A shart
introduction is given to the main concepts of the neural network theory and aspects that are
relevant to this project are explained in greater detail. In particular the multi-layer perceptron
type of neural network is introduced as a means of learning nonlinear mapping functions and
hence forming the basis of the concept on which the real-time predictive maintenance resides.
The final part of this chapter is devoted to the application of the neural network to classify load
inertia using the motion current signature. The results of the application of the neural netwark

are also presented.

Chapter 4 is the chapter devoted to the design, build, implementatian, validation and veri-

fication of the simulation model. An overview of the aims and abjectives, inputs and oulputa

]
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1.6 Plan of the thesis

and the block diagram of the simulation model is presented. The basic underlying algorithm

of the simulation model is then provided, which is followed by a concise discussion of various
validation and verification techniques proposed and applied in the literature. The results of the
application of validation and verification techniques on the simulation model are also presented
and discussed. The chapter also features the development and application of a linear reverse
algorithm, called BJEST. The algorithm is developed in the chapter to "roughly” estimate the
machine system parameters of the complex production machine used for validation and verifi-

calion process.

Chapter 5 investigates nonlinear behaviour of the motion current signature. The chapter
focusses on surrogate data testing technique to detect the presence of nonlinearity in the mo-
tion current signature. As there is a little prior knowledge about the micro-dynamics of the
motion current signature, we first propose to detect the nature of the dynamics which would
assist us to better visualize the signature. The result of the application of surrogate data. test

is then presented.

Chapter 6 details the nonlinear noise reduction procedure adopted in this thesis. After the
confirmation of the presence of nonlinearity in the motion current signature in chapter 8, thia
chapter deals with the methods to reduce or remove the nonlinear component of the signature.
‘This chapter begins with presenting noise determination and reduction techniques and then
determines the presence of nonlinearity in the filtered data using the same surrogate data test
as used in chapter 5. The estimation of the machine system parameters is then performed using

the linear reverse algorithm on the filtered data, which shows encouraging results.

Chapter 7 concludes this thesis by presenting a unifying summary of the results obtained
throughout the course of this project. The aims and objective laid out in the beginning of the
thesis are alsa briefly reviewed and these are linked to the results which are presented. Finally,

directions for further work are suggested and reviewed.




Chapter 2

Background

2.1 Introduction

Chapter 1 has already provided some insight to a predictive maintenance system and some of
the jasues and problems in its implementation. As the real-time predictive maintenance ia a
velative newcomer in the field of non-sensory based manitaring, it is characteriged on one hand
by high expectations and potential for further development, and on the other by many difficult
technical problems that need to be resolved before it can be fully explaited. This chapter pro-
vides an introduction to this field of research as well as a review of traditional maintenance and
monitoring techniques that have been used on machines. However, a comprehensive review of
the theory and many issues surrounding machine maintenance systems is beyond the scope of
this thesis and the interested reader is referred to many review articles in the literature (Booth-
man et al., 1974; Cambrias and Rittenhouse, 1988; Chow, 1996; Discenzo, 1997, Keyhani and
Miri, 1986; Kryter, 1989; Penmann, 1986; Smeaton, 1987; Sood, Fahs and Henein, 1985; Tavner

and Penman, 1992).

Section 2.2 introduces the origin and applicability of DC servo mators. Section 2.3 reviews
the electrical equations that are used to model a DC servo motor, which forms the hasis of
the research carried out in this thesis. Because of their importance and greater relevance (o
this project, various intelligent system based machine maintenance techniques are descrihed in
detail in section 2.4. This section also reviews some of the traditional fault tree hased machine
maintenance techniques. Section 2.5 discusses the advantages and disadvantages of the machine
maintenance techniques presented, and introduces the real-time predictive maintenance aystem,

whieh is further explained in section 2.6.
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2.2 DC servo motor

The direct current (DC) motor is one of the first machines devised to convert electrical power
into mechanical power. Its origin can be traced to disc-type machines conceived and tested by
Michael Faraday, the experimenter who formulated the fundamental concepts of electromag-

netism.

Faraday’s primitive design was quickly improved; many DC machines were built in 1800’s when
DC was the principal form of electric power generation (Fink and Beaty, 1978). With the ad-
vent of 60 Hz alternating current (AC) as the electric power standard in the United States and
50 Hz in the Europe, and invention of the induction motor with its lower manufacturing costs,
the DC machine became less important for application into the manufacturing environment
(Electro-craft, 1997). In recent years, the use of DC machines has hecome almost exclusively
associated with applications where the unique characteristics of DC motor, the high starting
torque for traction motor application, justify its cost, or where portable equipment must be run
from a DC (or battery) power supply. Recent improvements in DC machines, and specifically
the emergence of the brushless motor have lead to its wide usage due to ita high torque and

small size when compared to ather electrical motors.

The need for new high-performance motors, with highly sophisticated capabilities, has pro-
duced an abundance of new types and sizes of DC motor. Nowadays, DC motors are widely
used in many manufacturing machine applications; with this there is a need for high relia-
bility supported by an effective maintenance system. Recent studies have demonsirated that
the technique of predictive maintenance approach can ensure high reliability and performance
(Cambrias and Rittenhouse, 1988; Discenzo, 1997; Haddad, 1991; Herbert, 1984; Penmann,
1086: Smeaton, 1987; Tavner and Penman, 1992).

Next, we present the electrical equation of a DC motor, which will serve as a basis for the

predictive maintenance framework discussed in this thesis.

2.3 Electrical equations of a DC motor

This section presents the equations of a DC motor and derivation of the relation between tarque
requirement and velocity, which will be critical in designing the framewark for the real-time

predictive maintenance system.

According to Thevenin (Thevenin, 18834,b), no matter how complex the elecirical eireuit, fram
the viewpoint of any pair of terminals, the circuit hehaves as il it canaistad only of vallage

source and an impedance. An impedance is a general expression which ean he applied Lo any
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Figure 2.1: Schematic diagram of a DC servo motor showing various equivalent electrical com-
ponents defining a DC servo motor operation. The diagram is inspired by the DC equivalent

circuit of (Electro-craft, 1997)

electrical entity which impedes, resists, the flow of current, such as a vesistance, a reactance or

a combination of both resistance and reactance.

The first step in the computation of DC motor equations is to define the equivalent cireuit,
which is an electrical realisation of a physical instrument. The equivalent elecirical eircuit of a
DC motor comprises of an impedance (a combination of R4 and La), connected in series to a
voltage source, V;. This equivalent circuit is shown in the figure 2.1. In figure 2.1, R4 ia the
armature resistance, L4 is the armature inductance, i 4 is the armature current, V; is the input
voltage, Ky is the motor voltage constant, 6 is the angular position of the motor shaft, K, is

the motor torque constant, Jys is the motor inertia and Jy, is the load inertia.

The internally generated voltage of a motor, Vinternal, proportional to the motor velocity,

w, can be represented as:

Vinternal = Kyw, (2.1)

where Ky is a constant called the motor voliage constant. According to Kirchhoff’s law, the
relation between the variables of figure 2.1 can be given by:
dig 0

. di
Vi= LA—E]_i + Raia + Kv*d—t‘-

—
i)
3O

P

Since the magnetic field in the motor is constant (Electro-craft, 1897), the current produces a

proportional torque, T},

T, = Kria, (2.8)

where K7 is the motor torque constant. Let us denote the constant friction tarque in the matar

hy Ty and the viscous friction tarques (damping torque and veloeity dependent frietion tarque),
24




2.3 Electrical equations of a DC motor

by Dw, where D is the damping factor. Then, the opposing torque in the motor, Ty, is given by

T = Ts + Dw. (2.4)

Assuming that the motor is coupled to a load, with load moment of inertia, Jy,, and the load

opposing torque by 77, the relation between the torques can be written in the form:

Tg =Ty + T + fPL: (25)

in which T, is the acceleration torque (Electro-craft, 1997) of the motor represented hy:

i dw
To = (Jyp + Jp)—, b6
To=(Jm +J1) 7 (2.6)

Thus, combining the equations 2.3, 2.4, 2.5 and 2.6, the relationship hetween the matar torque
and velocity can be written in the form:

(Jn +J0) % 4 Dw + Ty + T4,
Ky

@.7)

14 =

Equation 2.7 is the dynamic equation of a motor relating the armature current of a motor
to the system parameters, and along with equation 2.2, it describes the relations between the

electrical and mechanical variables.

The parameters on the right of the equation 2.7 - motor inertia, load inertia, friction torque
and load torque - are referred to as the machine system parameters. From here onwards, iner-

tia and other parameters of equation 2.7 would be referred to as the machine system parameters.

Note that equation 2.7 is based on the assumption that motor velocity is the same as that
of the load. While this assumption holds in most cases, for high-performance servo systems,
the torsional resonance due to the deflections of the mator shaft and other elastic parts has to be
taken into account (Electro-craft, 1997; Rockwell, 2000). Also, equation 2.7 does nat repressnt
the affect of the higher order terms, such as backlash and compliance on the armature current

(Electro-craft, 1997).

FEquations 2.3 and 2.7 show that the motor torque, Ty, is proportional to the armature current,
i4, and the armature current is dependent upan the inertia, friction and gravitation torque
parameters of the motor. Therefore, it can he cancluded that the machine system parametera
affect the motor torque and current requirements. In literalure, there are a number of terms
used to refer Lo the armature current of the motor, such a8 the motor eurrant feedhack, mation
current feedhack or the motion current signature. We will he referring to the armalure eurrant
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Figure 2.2: A diagram showing an example of the motion current signature superimposed on

the motion profile used to generate such a signature.

as the motion current signature in this thesis. Figure 2.2 shows an example of the motion cur-
rent signature superimposed on the velocity profile (motion profile) used to define the position

command of the motor shaft.

The next section presents a background study of various techniques developed and employed

for machine maintenance over the years along with a literature survey of the key papers.

2.4 Techniques used for machine maintenance

Monitoring of industrial processes and equipment is an essential part of a critical drive towards
leaner, more competitive manufacturing. Effective monitoring can suppart cost reduction and
efficiency improvement strategies. Functions such ag maintenance, that are seen as hsing nan-
value adding’, are being continuously required to reduce costs, whilat keeping equipment running
in an optimum condition. Increasingly these systems are not anly required to provide cost hen-
efits, but also, by running equipment longer at optimum levels, he more energy sfficient and
environmentally friendly industrial processes. To this end, process and condition monitoring
are being used to provide key information that is necessary to plan, implement and manage

production in a strategic and more efficient way.

The technique of estimating machine system parameters using the mation current signatire,




2.4 Techniques used for machine maintenance

proposed in this thesis, is a member of the family of condition monitoring techniques. Condi-
tion monitoring is the use of advanced technologies in order to determine equipment condition,
and potentially predict failure (Frankowiak, Grosvenor and Prickett, 2004). It includes, but is

not limited to, technologies such as:

e vibration measurement and analysis;
¢ infrared thermography;
¢ oil analysis and tribology ultrasonics;

& motor current signature analysis.

Condition monitoring is most frequently used as a predictive or condition-hased maintenance
technique. However, there are other predictive maintenance techniques, ather than condition
monitoring, that can also be used, including the use of the human senses (lock, liaten, feel, amell
etc.), machine performance monitoring, and statistical process contral techniquea. These are
the techniques with a primary aim of gathering information aboul eandition and performance

of a machine or a motor without the need for invasive procedures.

We now review some of the more popular condition monitoring techniques frequently used
for machine maintenance. The motive of this survey is to highlight the importance of research

and development in the area of condition monitoring and maintenance.

2.4.1 Fault diagnostic techniques

Fault tree

A fault tree is a logical tree used to map a fault to the proeess knowledge (Kuzawineki and
Smurthwaite, 1988). In most of the condition monitoring implementations, the effect of a fault
diagnosis system is determined on the basis of the amount of process knowledge inherent in
the representation method used o support fault identification. Fault trees have the ahility to
model a physical system failure as a combination of component failures with associated failure
rates. A fault tree is a logical tree in which the intermediate nades and the leaves represent all
possible causes for the undesired event lacated at the top node of the tree. However, due to the
existence of a node for each possible cause and effect combination, the fault tree analyaia can he-
corme computationally intensive (Kuzawinski and Smurthwaite, 1988) far complex machines and
processes. In a fault tree, the information ahaut a pracess ia represented in terma of a proceas
fowsheet, which can he viewed as a directed graph with nodes vepresenting the process eome

panents, and edges indicating the connections and directions of flows of praducts and processes.
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To overcome the severe computational demands of the fault tree, Raaphorst et al. (Raaphorst,
Netten and Vingerhoeds, 1995) recommended implementation of an automated fault tree gen-

eration algorithm. The idea behind it relies on three key items:

e process decomposition into basic units of equipment (components) and special structures

such as control loops;
e definition of component models;

e plant-wide fault tree synthesis algorithm.

Fault tree analysis has been deployed for diagnostic purposes in flexible manufacturing systems
(Hu, Starr and Leung, 1999).

The developed diagnostic model considered fault symptoms as representing the roots of the
tree and expert knowledge, represented in terms of rules, was deployed to suggest the hest
matching fault cause and the required actions. Related work (Hu et al., 2000), proposed that
correct process operation cauld be characterized hy a sequence of states and events. The rasuli-
ing approach to diagnostics was based on the acquisition of digital data and analogue parameters

and a diagnostic expert system.

Event tree

Fault trees offer a perfect means for explaining deviations in a single process variable. However,
a set of such deviations usually occurs during on-line diagnosis. In order to list the set of faults,
which can explain the deviations, all the fault trees have to be processed. The processing can
be time-consuming. Moreover, there is a lot of duplicated information, and the nodes which
are not measurable are of no practical relevance. The information contained in the fault trees,
therefore, has to be compiled into a more suitable form of a tree called an event tree (Kaveic

and Juricie, 2000).

An event tree is a tree structure in which a fault is placed at the tree root while the devi-
ations of measured variables appear in the branches of the tree. Thus, in contrast to fault trees,
which provide a list of all possible causes for deviation in a process variable, the event frees

provide all possible consequences emerging from a given fault.

An event tree reduces the size of the pracess representation model to a moat sffective and
efficient tree by considering only the most frequently observed faults. Additionally, the fauli-to-
cause atructure of an event tree makes the diagnosia faster and efficient (Frankowiak, Grosvenor

and Pricksit, 2004).
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Binary decision diagram

Event tree reduces the computational overhead, however, in a complex and ageing machine
pracess, the size of an event tree can result into a lot of processing effort. To further reduce
the processing effort an approach based on a Binary Decision Diagram (BDD) was proposed

(Andrews and Dunnett, 2000).

Event tree analysis is inaccurate and inefficient in the situations where there are dependen-
cies amangst the branch point events. The dependencies may be due to camponent-failures
in more than one of the fault trees. In these situations, the analysis methods based on the
traditional fault-tree analysis are inaccurate and inefficient. Also, the inaccuracies are nat can-
sistent across the outcome events. If frequency predictions calculated in this way are then used
in a risk assessment, the relative risks would be distorted and could lead o resources heing
used inappropriately to reduce the overall risk. A new approach using BDD addresses these
deficiencies. In BDD, events are ordered to allow anly two paths (true or false) to he followed
after each event, so reducing the time to diagnose the problems. In this manner, the size of the
tree remains the same as the event tree but the pracessing burden is reduced due to the binary

approach of the tree.

Sequential model

Further work (Hu, Starr and Leung, 2003) in the field of event trees concentrated on operational
fault diagnostics. A sequential model, representing the changes in the machine operating states,
was employed to investigate faults based on the actual states. A logical diagnostic model was
used to provide the fault source indication, hy matching the controller's signals against the

expected (modelled) states (Frankowiak, Grosvenor and Prickett, 2004).

Under normal operating conditions, a programmable logic controller (PLC) controls the man-
ufacturing system according to the sequence of actions. At the same time, each step in the
control sequence is monitored by the watch-dog-timer in the PLC. If the machine ia in a normal
condition, it will operate sequentially according to the preset control sequence. Therefare, if
the machine control status is delayed too long at a certain action, it suggests the occurrence of

a fault.

Upon the detection of a sequential control fault, diagnosis is carried out using the sequen-
tial diagnosis model. At first, the current values of all the signalg in the PLC are read. Then,
the start conditions of every step are analyzed accarding to the values read from the PLO. This
process identifies the step in which the fault has occurred. In the end, sach conirol command
and condition of the fanlty step are checked, till the sxact fault is located.
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Petri-nets

The use of systems that monitor processes via an indication of process states includes the

deployment of Petri-nets (Yang and Liu, 1998).

In this approach, fault trees were converted into petri-nets, making use of their concept to
describe the evolution and the state of system degradation. Petri-net are associated with
process parameters and warning levels are used to provide the marking state. Following this
approach, early detection was provided by the system, which had the capability to issue alarms.
Shutdown capabilities were also supporied, in order to prevent further equipment damage, if

maintenance had failed to intervene (Frankowiak, Grosvenor and Prickett, 2004).

In another Petri-net based approach (Prickett, 1997) and (Davey et al., 1996), faulis were
detected when the operating time associated to an event was exceeded. Fault isolation could
then be performed hased on the indication of the process signal that had prevenied the eveni
from proceeding within the established time. Such an approach is restricted o discrete signals,
although it could also bhe used to indicate the development of faulty canditions hy recording

changes in the process time constants.

Ajtonyi and Terstnszky (Ajtonyi and Terstnszky, 1994) described fault diagnosis methods that
considered process signals as inputs into a stochastic model, which could evaluate faults based

on the residual between the model output and the actual physical parameter.

Concerns were raised on the requirements of the computational system to provide a real-time
response for such implementations. These concerns could apply to most of the methods ouf-
lined above, and have prompted research into more intelligent systems that are able to target

diagnostic efforts more effectively.

2.4.2 Intelligent system based techniques

Intelligent system based techniques refer to those techniques which emplay the use of neural
networks and fuzzy logic approaches. Such systems affer improved accuracy and efficiency cou-
pled with an ability to learn from examples (data). Next, some of the intelligent system hased

techniques are explained.

Neural netwark

The use of neural-networks for condition monitaring falls into the categary of intelligant ayatam
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based approaches (Frankowiak, Grosvenor and Prickett, 2004).

‘T'he non-linear behaviour associated with many real systems is a source of complexity that
must be considered when implementing fault diagnostics. To do this, methods such as Fault
Detection and Isolation (FDI) [12] have been used. In FDI, pattern recognition, neural net-

works and decision trees, are used to provide an effective approach to fault diagnosis.

Meziane et al. (Meziane et al., 2000) provided a review that considered the smployment of
intelligent systems in the manufacturing area. It indicated that, for the specific application of
maintenance and fault diagnostics, researchers have mainly concentrated on knowledge based
systems and neural networks. Knowledge based sysiems were largely used for fault classifica-
tion and diagnaostics due to their ability to incorporate human knowledge. Neural networks

represented a better alternative for the cases where domain expertise was not availahle.

The formulation of expert system rules for a generic fauli diagnostic application is congid-
ered to be a complex task, especially in cases where process parameters and their interaction
vary according to different process settings. It has been suggested (Jantunen and Jokinen, 1006)
that one approach to overcome these difficuliies is to dynamically generate the set of rules for
each process task. Off-line processing was employed to build the rules required for the fault

diagnostic process.

Benefits from the use of neural networks for fault diagnostics come from their parallel pro-
cessing capabilities, non-linear mapping capabilities, the ability of learning from examples and
robustness. The use of neural networks in this context can be illustrated by Lennox et al.
(Lennox et al., 2001), who employed neural networks to detect and predict the failure of a melt
vessel. The implementation used existing data in the neural network training process. Failure
prediction was based on the error between the measured and the predicted temperature, which

was then compared against defined thresholds to issue alarms.

Two level neural network

Mageed et al. (Mageed, Sakr and Bahgat, 1993) contended that employing neural networks
in complex industrial fault detection systems could result in oversized networks, making the
learning process extremely difficult. They proposed a two level neural network. The first level
provided fault detection and isolation. The second one, using the first level outputs, provided

the indication of the different levels of fault in terms of the probability of occurrence.

A neural network based fault diagnosis system of a flash smelting process (Jms-Jounela et al.,
2003) demonstrated the use of self-organising maps and heuristic rules to provide process diag-
nostics based on the state changes detected by a neural network. Messages were issued whenever
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rules were matched. It was recognised that to provide robust rules precise process measurement
and a good knowledge base would be required. This is true in most implementations and can
be seen as being something of a limitation to the wider application of the neural network based

methods.

Fuzzy logic

The use of fuzzy based models may offer an alternative (Ball and Isermann, 1998). In this
approach, a non-linear function was represented as the sum of discrete linear segments. Symp-
toms were generated on the basis of residuals and ratios between process measurements and the

respective model outputs. A knowledge-based system was employed for fault decision purposes.

In a similar approach (Chafi, Akbarzadeh and Moavenian, 2001), a fuzzy decision method was
used to extract the process symptoms which were then applied as inputs to a neural network
to establish the most probable fault cause and a confidence index. The use of knowledge-based
systems has, thus, been shown to be effective if enough rules exist to classify and diagnose
faults, i.e. a good knowledge of the process and the application requirements are necessary.
However, this can require extensive testing and training for each possible process variation,

which is often time consuming and may be prohibitively expensive.

All the above mentioned intelligent system based approaches were initially used to improve
prediction estimation accuracy of the condition monitoring process. However, the use of these
techniques in real-time was proposed by Johnson (Johnson, 2003). The use of sensors can
provide useful information related to machine condition for processing using neural network
based techniques. This has led to extensive research into the sensor based machine monitoring

techniques.

2.4.3 Sensor based machine monitoring

The choice of the adequate sensors to provide the best signal is important to improve confidence
in sensor-based monitoring systems. This alone, however, may not be enough to support effec-
tive monitoring since it is important to not only acquire an accurate signal but to also be able
to interpret what the signal means. A good overview of the basis of many of the approaches
being developed in this area was provided by Johnson (Johnson, 2003). It is not possible to
include a complete review of all the sensor-based research being undertaken; so developments

are illustrated in the context of machine condition monitoring.

The methods applied to condition monitoring in drilling processes were considered by Jantunen

(Jantunen, 2002). Justifying that direct measurements are not very efficient in economical and
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technical terms, he targeted those methods that indirectly measure sudden failure and tool
wear which he classified into three groups. The first group considered cutting parameters such
as the torque, feed force and drift force. This indicated that such signals tend to change with
the increasing amounts of tool wear. The second group consisted of vibration and sound mea-
surements. Such methods were considered adequate for rotating machines and were said to be
easy to implement in terms of sensor deployment. The last group focused on spindle motor and
axis feed drive currents. Current measurement was found to be easier to implement and gave

better results.

Jantunen’s review then considered the subjects of signal analysis and the diagnostic meth-
ods applied. He suggested that neural network methods provided the best results but, although
capable of dealing with process non-linearity, these were seen to require huge amounts of data
for training purposes, if all process dynamics were to be considered. Jantunen concluded that
satisfactory results were normally achieved when the process parameters (cutting conditions,
work-piece) were kept unchanged. Since this cannot normally be assured during real-life pro-

cesses sensor-fusion was suggested to reduce such dependency.

Turning is another very important manufacturing process that has attracted researchers. Sick
(Sick, 2002) carried out a review that surveyed 138 publications related to the subject. Only
online and indirect methods were considered for both tool wear and fracture. Cutting force
and vibration were indicated as the process parameters mostly employed. In this work, current
measurement was suggested as the preferred method in terms of implementation cost. Sick
observed that those researches employing multi-sensor approaches performed the information
processing at the tool wear model level. Many different methods were employed for feature
extraction. The extracted features were employed as inputs to different types of neural network
configurations, therefore providing the model implementation to identify the tool condition. He
also suggested that multi-sensor approaches could provide better results, by comparing process
parameters obtained from different sensors. In his view such approach should be applied at

early stages of the monitoring system in order to provide reliable input information.

A review of sensor signals for tool condition monitoring in cutting processes by Dimla (Dimla,
2000) concluded that the cutting force and vibration are the most widely used measurement
parameters. However, the dynamics of the cutting process itself results in difficulties in detect-

ing tool faults.

Dimla (Dimla, 2000) indicated that the sensor-fusion and distributed intelligence is the best
way forward. An example of this type of approach used existing signals of the machine axis feed
drive to monitor tool condition (Prickett and Grosvenor, 1999). It was argued that monitoring
could be based upon observing the way in which the machine controller reacts in order to keep
operations within set parameters. The use of existing signals, rather than the deployment of

33




2.5 Broad classification of machine maintenance techniques

additional sensors, was presented as an alternative to traditional condition monitoring methods.
The efficacy of this approach was demonstrated by monitoring the tachometer of the X-axis of
a CNC milling machine. The signal signature provided evidence to distinguish a healthy tool
from a broken one (Prickett and Johns, 2001). Arguments in favour were the fact that it does
not require process disruption for the implementation, since all signals are already present. An
extensive review of acoustic emission research by Rao (Rao, 2003) also indicated that advances
in intelligent signal processing will produce more successful and wider applications of sensor

based systems.

In summarizing, it must be recognized that many excellent and worthwhile systems have been
developed and very successfully deployed. The requirement of a rapid reaction in order to im-
mediately detect a faulty state means most successful systems are dedicated. Cost implications
and the need for expert analysis have thus limited the take up of this research. However, the
advent of low-cost and powerful computer networks has made it possible to consider the wider

deployment of these methods.

Next, we briefly review and classify all the above mentioned machine maintenance techniques

in light of the development of a real-time predictive maintenance system in this thesis.

2.5 Broad classification of machine maintenance techniques

As already stated in the previous section, depending upon the use of intelligent systems and

sensors, the existing condition monitoring techniques can be divided into three main categories:

e fault diagnostic (non-intelligent) techniques;
e intelligent system based techniques;

e sensor-based intelligent techniques.

Fault diagnostic techniques are based upon the use of non-intelligent tree based architecture,
which helps to infer the cause of the breakdown in a machine system on the basis of pre-
programmed machine conditions. This maintenance methodology of reaction upon breakdown
inhibits the use of the traditional fault diagnostic techniques in real-time. Additionally, the
accuracy and efficiency of the systems based upon such techniques are poor due to the assump-

tion regarding system linearity.

Intelligent system based techniques are based upon the use of the neural network and fuzzy

logic based approaches due to their ability to learn complex non-linear mapping functions. Such
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systems offer improved accuracy and efficiency coupled with an ability to learn from examples.
However, the use of neural network based intelligent system techniques require large amount of
training data to map complex data generator, which can prove tedious, and sometimes impos-
sible, in a non-accessible environment. The requirement of large amount of training data can
be minimised by restricting the capabilities and functionalities of such systems, but that also

reduces the effectiveness of the system.

The use of sensor based machine maintenance systems overcomes the limitation of the tra-
ditional fault diagnostic or the intelligent systems to not to be able to react in real-time with
least preparation effort involved. Such systems use sensor based data for obtaining the infor-
mation regarding the machine condition through various parameters, which is then mapped
against the anticipated condition using intelligent techniques. In other words, sensor based
techniques involve use of sensory data as input for the intelligent or tree based diagnostic sys-

tems. However, sensor based systems suffer from a few drawbacks:

e sensor based systems require the use of expensive sensing technology;

e sensing technology is hard to maintain and may over-burden the maintenance framework.

The failure of all the existing machine maintenance techniques to efficiently reduce the main-
tenance overheads motivates the development of a real-time predictive maintenance system.
The system is, therefore, required to react in real-time with minimal or no use of the sensing

technology.

This thesis introduces an effective, real-time, predictive maintenance system, which eliminates
the use of expensive motion sensing technology by using the motion current signature of the

motor to provide crucial machine condition and performance information.

A brief explanation of the real-time predictive maintenance system is provided in the next

section.

2.6 Real-time predictive maintenance system

The aim of the real-time predictive maintenance system is to localize and detect abnormal ma-
chine conditions in order to predict mechanical abnormalities that indicate, or may lead to the

failure of the motor (Isermann, 1984; Leith, 1988).

The use of the conventional predictive techniques requires an accurate mathematical model
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in order to predict the dynamic behaviour in response to a command input (Boothman et al.,
1974; Chow, 1996; Keyhani and Miri, 1986; Kryter, 1989; Sood, Fahs and Henein, 1985; 7).
This requires that the machine system parameters such as load, friction torques are accurately
known. Tracking of the system parameter changes during the operation also necessitates costly

instrumentation, which is difficult to justify in a production environment.

The approach presented in this thesis allows deviations from the normal dynamic behaviour
to be predicted accurately based upon the interpretation of the motor current signature. The
interpretation of the deviations can then be made using a simple machine or process specific

event tree.

2.7 Summary

In this chapter our aim has been to introduce some of the most commonly used condition
monitoring techniques. As we have pointed out, the most challenging aspects of a condition
monitoring technique are the accuracy, efficiency and processing overhead. The consequence is
that the cost of machine, along with the sensors, and the maintenance burden of the machine
is increased considerably. Intelligent systems, such as neural-network and fuzzy logic, greatly

help in reducing the number of sensors needed and provide improved accuracy and efficiency.

Traditionally, the use of the sensors has been greatly related to the measurement of vibration
or temperature of a specific section or part of a machine (Frankowiak, Grosvenor and Prickett,
2004). With relation to the real-time predictive maintenance system, analysis of the vibration
signal can provide significant inertia information, while the friction and external torque varia-
tions can be inferred using the analysis of the temperature signal. Some of the most common
inertia defects are raw material defects and imbalance of the rotary components of the machine.

Friction defects can be caused by wearing belt, rack or threaded components.

The traditional implementation of condition monitoring using the neural-network approach
has largely been linked to the motor internal fault detection and isolation. The problem with
such an inclination towards motor internal fault detection and isolation is that not all the ma-
chine faults are born within the motor and, hence, are easy to be missed. This prompts this
project to be based upon the use of intelligent system based techniques to detect and isolate
machine faults not particularly related to the motor internal conditions. Furthermore, in re-
sponse to issues of cost, we will use the motion current signature, thereby, eliminating the use

of the expensive motion sensing technology.

This approach of using an intelligent system based approach on the motion current signa-

ture to detect and isolate machine faults, now onward referred to as the real-time predictive
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maintenance system, has not been attempted in any other research effort to date. '
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Chapter 3

Proof Of Concept

3.1 Introduction

Chapter 2 introduced a real-time predictive maintenance system based up on the analysis of
the motion current signature of DC servo motor and explained some of the challenges encoun-
tered in the field of machine maintenance. This project is focussed on the development of a
novel framework for machine maintenance, based upon non-sensing technology, in which these

problems may be more effectively addressed.

The real-time predictive maintenance system developed in this thesis is based upon the idea
of extracting relevant machine system information from the motion current signature. How-
ever, the relationship between the motion current signature and machine system parameters,
described by equation 2.7, is not fully defined to account for the parameters, such as backlash

and compliance. Rewriting equation 2.7, to include the higher order terms, we obtain:

o UMH I Y Do T+ T+ 2
LA"" K’[‘ >

(3.1)

where Z is a collective term for the all the higher order factors affecting the motion current
signature. Due to the lack of professional knowledge to clearly define the effect of Z on 14
(Electro-craft, 1997; Rockwell, 2000), alternative techniques to the conventional algorithmic
approaches have to be considered to map the complex non-linear relationship between the ma-

chine systems parameters and the motion current signature.

Neural networks, with their ability to derive meaning from complicated and imprecise data,
can be used to extract patterns and detect trends that are too complex to be noticed by either
humans or other computer techniques (Bishop, 1995; Nabney, 2002). A trained neural network
can be thought of as an “expert” in the category of the information it has been given to analyse.
The neural network can then be used to provide projections given new situations of interest
and answer "what if* questions. Other advantages of the neural network approach include:
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o Adaptive learning: An ability to learn how to do tasks based on the data given for training

or initial experience.

e Self-organisation: A neural network can create its own organisation or representation of

the information it receives during learning time.

e Real time operation: Neural network computations may be carried out in parallel, and
special hardware devices are being designed and manufactured, which take advantage of

this capability.

e [ault tolerance via redundant information coding: Partial destruction of a network leads

to the corresponding degradation of performance.

Therefore, we plan to use neural networks to map the complex nonlinear function between
the machine system parameters and the motion current signature to be used in the real-time

predictive maintenance system.

Unlike many neural network based condition monitoring systems (Betta, Ligouri and Piet-
rosanto, 1998; Chow, Sharpe and Hung, 1993; Lennox et al., 2001; Lin and Wang, 1996), this
approach is validated in an off-line proof of concept procedure, using data from an experimental
test rig providing conditions typical of those used on the production machines. This chapter

focusses on the prof of concept procedure performed to validate the concept that:

there exists a relationship between the motion current signature and the machine system param-
eters which can be identified using a nonlinear mapping technique such as the neural networks

as shown in figure 3.1.

Section 3.2 outlines the basic algorithm of the various types of neural networks. Section
3.3 to 3.6 explain the feature extraction techniques, normalization, regularization, MATLAB
and NETLAB. Section 3.7 explains the experimental setup; Section 3.8 presents the results of
the application of the neural network technique on the data collected from the test rig. The

results and conclusion of of the application are given in section 3.9 and 3.10 of this chapter.

3.2 Neural networks

A neural network is an information processing paradigm that is inspired by the way biological
nervous systems, such as the brain, process information. A key element of this paradigm is the

novel structure of the information processing system. It is composed of a large number of highly
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Figure 3.1: The conceptual diagram of the real-time predictive maintenance system showing

the neural network based system estimating the machine system parameters using the motion

current signature.

interconnected processing elements (neurones) working together to solve specific problems.

Neural networks versus conventional computers

Neural networks take a different approach to problem solving than that of conventional com-
puters. Conventional computers use an algorithmic approach i.e. the computer follows a set of
instructions in order to solve a problem. Unless the specific steps that the computer needs to
follow are known the computer cannot solve the problem. That restricts the problem solving
capability of conventional computers to problems that we already understand and know how

to solve.

Neural networks, on the other hand, process information in a similar way the human brain
does and also learn by example, which increases the applicability of neural networks to the

problems with unknown algorithmic solution.

Neural networks and conventional algorithmic computers are not in competition but comple-
ment each other. There are tasks that are more suited to an algorithmic approach like arithmetic
operations and tasks that are more suited to neural networks. Even more, a large number of
tasks, require systems that use a combination of the two approaches (normally a conventional

computer is used to supervise the neural network) in order to perform at maximum efficiency.
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Figure 3.2: A typical multi-layer perceptron network with sigmoid activation function showing

various layers and weights.

3.2.1 Various types of neural networks

There are many different types of neural network techniques developed and applied over the
past decades. This section will provide a brief explanation of the most commonly used neural
network techniques. However, a detailed explanation of various neural network approaches is
beyond the scope of this thesis and a comprehensive insight into the most commonly used neural

networks can be found in (Bishop, 1995).

3.2.1.1 Multi-layer perceptron

The Multi-Layer Perceptron (MLP) is probably the most widely used architecture for practical
applications of neural networks (Nabney, 2002). In most cases the network consists of two
layers of adaptive weights with full connectivity between inputs and hidden units, and between
hidden units and outputs (Hornik, 1991; Hornik, Stinchecombe and White, 1989; Stinchecombe
and White, 1989) (Figure 3.2).

The input values of the network are denoted by z; where i = 1,..,d. The first layer of
the network forms linear combinations of the input to form a layer of intermediate activation

variables, a;, represented by
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d
a; = Zwijli -+ bj, (32)
=1

where the variable a; is associated with each hidden unit, w;; represents the elements of the
first layer of the network and b; are the bias parameters associated with the hidden units. The
variable a; is then transformed by a non-linear activation function. The outputs of the hidden

units after the transformation are then given by

z; = tanh(a;), (3.3)
which has the property
da; = (1 - zj). (3.4)

The outputs, z;, are then transformed by a second layer of weights and biases to give second-

layer activation values, ay,

M
ap = Z‘wjkzj + b, (3.5)

J=1

where w;, represents the elements of the second layer of the network. Finally, the second layer
activation value, ay, is passed through the output unit-activation function to give output values,
Yk, where k = 1,...,c and c is the total number of outputs. There are three forms of activation
functions used in the implementation of the MLP depending upon the type of problem dealt

with by the network:

1. Regression problem: The appropriate choice for such type of problem is the linear

function of the form

Y = Q. (36)

2. Classification problem involving multiple independent attributes: The appro-
priate choice for such type of problem is the logistic sigmoid activation function due to

its 2d characteristics, given by

1

BT exp(—ak)’
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3. Classification problem involving ¢ mutually exclusive classes: The most com-
monly used activation function for such type of classification problems is the softmax

activation function due to its inherent 3d characteristics

exp(ax)

Yk = ——————Zk ea:p(ak)' (3-8)

The multi-layer networks can learn a suitable mapping from a given data set by using a suitable
error function, which is then minimised with respect to the weights and biases in the network.
The training algorithm involves an iterative procedure for minimization of an error function,

with adjustments to the weights being made in a sequence of steps.

Error back-propagation One of the most commonly used training algorithm for a MLP
type neural network is error back-propagation, which involves training of the MLP using gra-
dient descent (Bishop, 1995) applied to a sum-of-squares function. This is a two stage process:
in the first stage, the derivatives of the error function with respect to the weights is evaluated
and in the second stage the derivatives are used to compute the adjustments to be made to
the weights. Since it is in the first stage that the errors are propagated backwards through the

network, the term back-propagation is used to describe the evaluation of the derivatives.
In a general, MLP network, each unit computes a weighted sum of its inputs in the form
a; = Zwijzi, (8.9)
i

where z; is the activation of a unit, or input, which connects to the unit Ji and w;; is the weight
associated with that connection. The activation z; of unit j can be computed by transforming

the sum in equation 3.9 using an activation function g(.) as
zj = g(a;). (3.10)

As the suitable values of the weights are determined by minimizing an appropriate error func-
tions, the error function, which can be written as a sum, over all patterns in the training set,

of an error defined for each pattern, is to be defined. Let E be the error function and is written as
E=YE" (3.11)

where n labels the patterns. The outputs of the various units depends up on the input pattern

n. Also, E™ depends on the weight wi; only via the summed input ¢; to unit j. Application of
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the chain rule for partial derivative gives

OE™  OE™ da;

= . 3.12
awij 80.3‘ 8wij ( )
Using equation 3.9 and by denoting %‘21 by 45, we get
oE™
=§;2;. 3.13
6wij 3% ( )

Equation 3.13 tells us that the required derivative for adjusting the weights of an MLP network
is obtained simply by multiplying the value of § for the unit at the output end of the weight by
the value of 2 for the unit at the input end of the weight (Bishop, 1995).

3.2.1.2 Radial basis functions

Radial basis function (RBF) network is the main practical alternative to the MLP for non-linear
modelling. Instead of units that compute a non-linear function of the scalar product of the input
vector and a weight vector, the activation of the hidden units in an RBF network is given by a

non-linear function of the distance between the input vector and a weight vector (Nabney, 2002).

The output values, yi, in the case of an RBF network is computed as

M
ye(x) = Z wikd;(x) + b, (3.14)

j=1

where ¢; are the basis functions and wj; are the output layer weights. The most important
benefit of an RBF network is that these type of networks are trained using a two stage process
which is considerably faster than the methods used to train an MLP, such as the error back-
propagation. In the first stage, the parameters of the basis functions are set so that they model
the unconditional data density and in the second stage, the weights of the layers are determined
using an efficient training algorithm. For stage one, a common viewpoint is that the sum of the
basis functions, E;\i]—_o ¢;, should form a representation of the unconditional probability density
of the input data. A more detailed explanation of RBF networks and their training algorithm
1s out of the scope of this thesis and the interested readers are advised to refer to (Bishop, 1995;

Nabney, 2002) for a detailed description.
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3.2.1.3 Bayes’ theorem

The goal in the Bayes’ theorem (after the Revd. Thomas Bayes, 1702-1761) is to perform clas-
sification in such a way as to minimize the probability of misclassification (Bishop, 1995). The

Bayes’s theorem can be written as

P(a'|Cy)P(Cy)

P(Cklll) = P(xl) 3

(3.15)

where P(Cy|at) is called the posterior probability, since it gives the probability that the class
is Ck. Bayes’s theorem expresses the posterior probability in terms of the prior probability
P(Cy), together with the quantity P(2!|Cy) which is called the class-conditional probability of
z! for class Ci. The denominator in Bayes’ theorem, P(z!), plays the role of a normalization

factor, and ensures that the posterior probabilities sum to unity.

The posterior probability gives the probability of the pattern belonging to class Cy once the
feature vector x has been observed. The probability of misclassification is minimized by select-
ing the class Cj having the largest posterior probability, so that a feature vector z is assigned

to class Cy if

P(Cilz) > P(Cjla), (3.16)

for all j # k.

The proof of concept procedure, explained in this chapter, used multi-layer perceptron type
of neural network due to its wide usage in practical applications of neural networks (Bishop,
1995). The choice was also based upon the recommendation from my supervisor, Dr. David
Evans, who is an information science specialist in School of Engineering and Applied Science,

Aston University, Birmingham, UK.

Since neural networks can perform non-linear functional mappings between sets of variables, a
single neural-network could, in principle, be used to map the raw input data directly onto the
required final output values (Nabney, 2002). However, it is often recommended to incorporate

additional steps, such as pre-processing and feature extraction, before the neural-network, to:

e filter the information adapted by the network,
e add the prior knowledge about the inputs and the outputs,

e to reduce the dimensionality of the input patterns.




3.3 Pre-processing and feature extraction

A concise overview of the most commonly used pre-processing and feature extraction techniques

is presented in the next section.

3.3 Pre-processing and feature extraction

Since the training of the neural network, of the form MLP or RBF, involves an iterative al-
gorithm, it is generally convenient to process the whole training set using the pre-processing
transformations, and then use the transformed data set to train the network (Nabney, 2002).
One of the most important forms of pre-processing involves a reduction in the dimensionality of
the input data as it exponentially reduces the number of iterations and the amount of training
data needed to train a neural network (Bishop, 1995). At the simplest level, this could involve
discarding a subset of the original inputs. Other approaches involve forming linear or non-linear
combinations of the original variables to generate inputs for the network. Such combinations of
inputs are called features, and the process of generating them is called feature extraction. Two

of the most commonly used feature extraction techniques are explained below.

3.3.1 Principal component analysis

Principal Component Analysis (PCA) is essentially a technique for dimensionality reduction
and is also known as eigen-analysis. A simple illustration of PCA is shown in figure 3.3, in

which the first principal component of a two-dimensional data set is shown.

According to Bishop (Bishop, 1995), in PCA, the goal is to map vectors Xy, in a d-dimensional
space (X1, Xa, ., Xq) onto vectors z, in an M-dimensional space (21, 22, ., zm), Where M < d. A

vector X can be represented as a linear combination of a set of d orthonormal vectors u; as
d
X =3 zu, (3.17)
=1

where the vector u; satisfies the orthonormality relation and hence the above equation can be

transformed to

zi=ul X, (3.18)

which can be regarded as a simple rotation of coordinate system. Now, suppose that for sake
of reducing the dimensionality of the data, we want to retain only a subset M < d of the basis

vector u;. The remaining coefficients will be replaced by a constant b; so that each vector X is
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Figure 3.3: Principal component analysis of a 2-d data. The line shown is the direction of the
first principal component, which gives an optimal (in the mean-square sense) linear reduction

of dimension from 2 to 1 dimension.

approximated by the following expression
M

d
X = Zziui + byu;. (3.19)
i=1 i=M+1

This represents a form of dimensionality reduction since the original vector X which contained
d degrees of freedom is now approximated by a new vector z which has M < d degrees of
freedom. But, making the best approximation to the value of X would require a choice of the
appropriate value of basis vector u; and the coefficients b;. The error in the value of the vector

X can be given by the equation

d
X'=X= 3" (z—bi)u, (3.20)
i=M+1

The best approximation can, hence, be defined as the one which minimizes the sum of the

squares of the errors over the whole data set. Thus, the minimization problem is

N N d
E=05x) (X-X')?=05x) >z - )2 (3.21)

n=1 n=1li=M+1

If we set the derivative of E with respect to b; to zero in equation 3.21, we find that

I)i = ’U,?X, (322)

where the mean vector X can be defined as
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1N
X =— X. 3.23
v ; (3.23)
Combining equations 3.21, 3.22 and 3.23, we get

d
E=05x Y . (3.24)
i=M+1

From equation 3.24, it is clear that the minimum error is obtained by discarding the d — M

smallest eigen-values, and their corresponding eigenvectors.

The linear dimensionality reduction method derived above is called Karhunen-Loeve transfor-

mation or PCA (Bishop, 1995). Each of the eigenvectors u; are called the principal components.

In practice, the algorithm proceeds by first computing the mean of the vector X and then
subtracting off this mean from the original value. Then the covariance matrix is calculated
and its eigenvalues and eigenvectors are determined. The eigenvectors corresponding to the M
largest eigenvalues are retained and the input vector X is projected onto the eigenvectors to

give the components of the transformed vector z in an M-dimensional space.

There are a number of advantages of using PCA as a feature extraction technique, includ-

ing:

e The computational overhead of the subsequent processing stages is reduced.

o Noise may be reduced, as the data not contained in the n first components may be mostly

due to noise.

e A projection into a subspace of a very low dimension, for example two, is useful for visu-

alizing the data.

However, the reduction in dimensionality is generally coupled with loss of information and
it may happen that this information is vital for subsequent regression or classification phase.
Thus, the dimensionality reduction using PCA has to be performed by carefully choosing the

number of principal components to be considered for the analysis.

3.3.2 Singular value decomposition

Singular value decomposition (SVD) provides a mathematical way of extracting algebraic fea-

tures from the data. SVD has been used in many fields such as data compression, signal
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processing and pattern analysis (Klema, 1980).

Let X denotes an m x n matrix of real-valued data and rank =, where without loss of gen-

erality m > n, and therefore » < n. The equation for SVD of X is then given by

X=UsvT, (3.25)

where U is an m x n matrix, S is an n x n matrix, and V7 is also an n x n matrix. The columns
of U are called the left singular vectors, the rows of VT contain the elements of the right
singular vectors and the non-zero diagonal elements of S are called the singular values. The di-

agonal elements of S are the square roots of eigenvalues of the correlation matrix represented as:

Z=X'X. (3.26)

The rows of V' are the corresponding eigenvectors of Z. Hence,

S = diag(S), Sz, ..., Sn). (3.27)

Furthermore,
S > 0forl <k <r,and (3.28)
Si=0for(r+1) <k <n. (3.29)

By convention, the ordering of the singular vectors is determined by high-to-low sorting of sin-

gular values, with the highest singular value in the upper left index of S matrix.

In principle, the number of non-zero eigenvalues generated by SVD is equal to the number
of linearly independent vectors in the original data matrix (Bishop, 1995). This is true for well
posed problems, but even the presence of errors due to numerical operations results in small
eigenvalues that theoretically should be zero. Numerical errors are an insignificant problem

compared to the inclusion of experimental error in the calculations.

Various statistics are available for identifying the mostly likely dimensionality of a data ma-
trix. These statistics are designed to aid partitioning of the abstract factors into primary and
secondary factors. The primary factors are those corresponding to the largest n eigenvalues
and represent the set of abstract factors that span the true subspace for the data. The sec-

ondary factors are associated with the noise and, in principle, can be omitted from subsequent
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calculations. It is not possible to completely disassociate the true data from the error within
the measured data; however the statistics guide the analyst in choosing the most appropriate
number of abstract factors that describe the data and therefore the ”best guess” dimensionality

for the data matrix.

3.3.3 Relationship between PCA and SVD

There is a direct relationship between PCA and SVD in the case where principal components
are calculated from the correlation matrix. One possible way of calculating SVD is to first

calculate VT and S by diagonalizing X7 X

XTX =vs?yT, (3.30)

And then to calculate U as

U=XVS. (3.31)

Thus, using equation 3.30 and 3.31, we can conclude that the diagonalization of XTX yields
VT, which also yields the principal components. Hence, the right singular vectors obtained
using the SVD are same as the principal components calculated using PCA. The eigenvalues of

XT X are equivalent to 5%, which are proportional to the variances of the principal components.

Due to fundamenta] similarities between the PCA and SVD and due to the relatively sim-
pler implementation of PCA (using NETLAB and MATLAB, which are explained in the next
section), the proof of concept procedure uses PCA for dimensionality reduction and feature

extraction of the input patterns.

3.4 Normalization

Normalization helps in scaling input variables so that they have similar magnitudes. This in
turn makes sure that the network weights can all be expected to have similar values if the
inputs are equally important, and so can be initialized randomly. Without normalization, net-
work training often gets stuck in a local optimum because some of the weights are very long way
from their best values (Nabney, 2002). To normalise the data, each input variable is treated
independently and, for each variable z;, the mean Z; and variance o? is calculated on the train-

ing data. The rescaled variables are then defined by
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A L (3.32)

and have zero mean and unity variance.

3.5 Regularization

A polynomial with an excess of free coefficients tends to generate mappings which have a lot
of curvature and structure, as a result of over-fitting to the noise on the training data (Bishop,
1995). The technique of regularization encourages smoother network mappings by adding a

penalty ) to the error function (Bishop, 1995).

One of the simplest forms of regularizer is called weight decay and consists of the sum of

the squares of the adaptive parameters in the network.
1 2
Q= EZwi, (3.33)
i
where the sum runs over all the weights and biases.

An alternative to regularization as a way of controlling the effective complexity of a network is
the procedure of early stopping. The training of non-linear network models involves an iterative
reduction of the error function defined with respect to the training data. During a typical
training session, this error, referred to as the training error, generally decreases as a function
of the number of iterations in the algorithm (Bishop, 1995). However, the error, termed as
the validation error, measured with respect to a set of independent data, called the validation
set, often shows a decrease at first, followed by an increase as the network starts to over-fit.
‘Thus, early stopping involves the stopping of training at the point of smallest error with respect

to new data, since this gives a network with the best generalization performance (Bishop, 1995).

The proof of concept procedure described in this chapter uses early stopping regularization
to avoid over-fitting the neural network due to its simple implementation and applicability to

the non-linear models.

The next section explains the implementation of the neural network and feature extraction

algorithms for use in the proof of concept procedure.




3.6 MATLAB and NETLAB

3.6 MATLAB and NETLAB

The name MATLAB stands for matrix laboratory. MATLAB was originally written to provide
easy access to matrix software developed by the LINPACK and EISPACK projects. Today,
MATLAB uses software developed by the LAPACK and ARPACK projects, which together

represent the state-of-the-art in software for matrix computation.

MATLAB has evolved over a period of years with input from many users. In university
environments, it is the standard instructional tool for introductory and advanced courses in
mathematics, engineering, and science. In industry, MATLAB is the tool of choice for high-
productivity research, development, and analysis. MATLAB is an interactive system whose
basic data element is an array that does not require dimensioning. This allows many technical
computing problems to be solved efficiently, especially those with matrix and vector formu-
lations, in a fraction of the time it would take to write a program in a scalar noninteractive

language such as C or Fortran.

NETLAB toolbox, developed by 1. T. Nabney (Nabney, 2002), is a central tool necessary for
the simulation of theoretically well-founded neural network algorithm for use in research and
development. NETLAB consists of a library of more than 150 Matlab functions and scripts for
the most common neural network algorithms, including MLP and RBF. Most of the functions
in NETLAB operate on a data structure representing the current state of a model and matrices

representing datasets.

The feature extraction, PCA, and neural network, MLP, algorithms used in this chapter are

implemented using the NETLAR tool box on MATLAB.

Next, we explain the experimental setup of the proof of concept procedure.

3.7 The experimental setup

The aim of the proof of concept procedure was to validate the concept of the real-time pre-
dictive maintenance system by establishing the fact that there is a relationship between the
machine system parameters and the motion current signature. This concept can be proven
by conducting a simple test to classify a machine system parameter, either inertia, friction or

gravitation, based upon the motion current signature using a neural network.

The training data for the neural network was collected using an experimental test rig providing
conditions typical of those used on production machines. There are a number of variables in a

typical operation of a test rig:
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Figure 3.4: Motion profile of the motor shaft used for the proof of concept experiment. Motion
profile is the velocity-time plot of machine end effector. An end effector is the terminal moving
body of the machine assembly. The units of the motion profile can be rotary or linear depending

upon the load type of the end effector.

1. Motion profile: The motion profile of the motor is a velocity-time plot which defines
the position command of the motor shaft. The motion profile for the proof of concept

was assumed fixed and is shown in figure 3.4.

The motion profile was collected at the rate of 750 readings per second, which re-

sulted in a total of 900 measurements over a period of 1.2 seconds (750 x 1.2).

2. Motor and amplifier parameters: The motor and amplifier parameters play a critical
role in defining the current requirement of the motor during any operation cycle (Electro-
craft, 1997; Rockwell, 2000). Even though the basic underlying principle of the effect
of machine system parameters on the motion current signature remains same with the
change in the motor and amplifier parameters, the change in the motor and amplifier
parameters can either amplify or shrink the current requirement for a given position
command. Therefore, the same motor and amplifier combination was used to collect the
training data and to test the performance of the neural network. The motor parameters

of the test-rig used for the proof of concept are shown in table 3.1.

3. Tuning parameters: Tuning parameters define the control configuration of a motor-
amplifier combination to respond to the changes in the position command of the motor

shaft. The most common of these parameters are the proportional (p) gain, the differen-
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Table 3.1: Motor parameters of the experimental test rig used for the proof of concept.

Parameter Name Value Units
Motor Type H-4075-R -
Motor Inertia 0.00068  kgm?
Motor torque constant 0.74 Nm-A
Motor peak torque 30.0 Nm
Motor poles 6 -
Motor rms torque 10 Nm
Motor damping factor 0.068 k]:;;
Motor friction torque 0.14 Nm
Motor maximum speed 3000 rpm

tial (d) gain and the integral (i) gain. There is a separate control configuration for the
position, the velocity and the current. Although, the changing tuning parameters affect
the current requirement, the real-time predictive maintenance system can not depend
upon a certain tuning configuration due to the uncertain nature of the application depen-
dent configuration. This motivates the use of changing tuning parameters to generate the
training data for the proof of concept procedure. The use of changing tuning parameters
will help assess the dependency of the classification process on the tuning configuration

of the motor.

For the proof of concept procedure, the p-gain was varied from 0.1 to 0.3, in steps of
0.01, and v-gain was varied from 5.0 to 15.0, in increments of 1.00. The values 0.1 and
0.3, for the p-gain, and 5.0 and 15.0, for the v-gain, form the upper and lower boundary
of the 1398 — H class of Rockwell Automation motor used on the test rig. The increments
of 0.1 and 1.0 for the p-gain and v-gain, respectively, were selected to make sure that

enough variation is present in the training data.

4. Machine system parameters: From equation 3.1, it can be seen that the acceleration
torque, friction torque and load torque affect the motion current signature of a DC servo
motor and the proof of concept procedure should use one of these machine system pa-
rameters for the the purpose of classification. However, the acceleration torque, due to
load on the motor shaft, is easiest to vary on a test rig. This motivated the use of inertia
as the machine system parameter to be used for estimation in the proof of concept. The
experiment aimed to classify five distinct motor loads (inertia) given the motion current
signature in spite of changing tuning parameters. Five readings of the motion current
signature were taken per load per p-gain per v-gain. This resulted in a total of 5000

signatures with a sample size of 900 (Figure 3.5).
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Figure 3.5: A plot showing all the 5000 collected patterns of the motion current signatures used

for proof of concept procedure.

3.8 Application of the feature extraction and neural net-
work techniques

All the collected patterns were normalized to zero mean and unity variance and then divided

into three groups:

1. Training data: This group constitutes the data used for training the neural network. The

number of patterns used to form this were half the total number, i.e. 2500 patterns.

2. Validation data: This group is used for early stopping regularization and consisted of a

sixth of all the patterns, i.e. 838 patterns.

3. Target data: This group is utilized to assess the network performance after it is fully
trained using the training data. This group had a third of all the patterns, i.e. 1662

patterns.

The distribution of the patterns into the training, validation and target data was based upon
half-sixth-third (training-validation-testing) approach. Given the pattern size, the selection was
based using the heuristic rule to maximize the generalization capability of the neural network

model (Lipmann, 1989).

The features of the input data were extracted using PCA. The eigen-values were arranged in
descending order, and the plot of the eigen-value against the number of principal components
was generated (Figure 3.6). This plot can primarily be used to locate the number of principal
components where ”large” eigen-values cease and ”small” eigen-values begin (Mardia, Kent and
Bibby, 1979b6). The aim was to identify M Principal Components (PCs) whose inclusion return

sufficient information. Figure 3.6 highlights three such points (4, 10 and 14) where there is a
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Figure 3.6: Plot of the eigen-values of the training data versus the number of PCs.

noticeable step in the value of the eigen-values. The cumulative contribution of information by
the first 4 PCs to the data was found to be 60 % and hence it was not considered against 10
with a contribution of 85 % and 14 with a contribution of 96 %. The analysis with 14 principal
components was adopted as that gave maximum cumulative contribution of information. This

reduced the dimensionality of data from 900 patterns to 14 patterns.

An MLP network with a softmax activation function, was trained using scaled conjugate gradi-
ent (SCG) optimization algorithm (Bishop, 1995; Nabney, 2002). Early stopping regularization
was used to avoid over-fitting and number of hidden units was varied from 5 to 50 in steps of
1 in order to access model order. The minimum validation error (obtained by using validation
data set on trained neural network) was plotted against the number of hidden units in the MLP

(Fig. 3.7). Figure 3.7 indicates that the validation error is minimum for 15 hidden units.

Neural network was trained with five output nodes, each corresponding to a load class for the
purpose of classification. Table 3.2 shows the relationship between the shaft masses and the
classes. The third column of the table, 1-of-N coding, indicates the value of the output nodes

for a pattern to belong to each of the five load classes.

Hence, a neural network of 14 inputs, 15 hidden units and 5 outputs (1 of N coding) was

used for the proof of concept procedure.
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Figure 3.7: Plot of validation error versus number of hidden units. The number of hidden units

is varied from 5 to 50 in steps of 1.

Table 3.2: Relationship between the shaft masses and the classes used for the proof of concept.

Description Class  1-of-N coding
No load (shaft only) 1 10000
Small + shaft 2 01000
Smooth + shaft 3 00100
Big mass + shaft 4 00010
Cog + shaft 5 00001
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Figure 3.8: Percentage of correct load type classification obtained using the neural network

approach.

3.9 Results

A confusion matrix was used to evaluate the performance of the classifier (Bishop, 1995; Nab-
ney, 2002). Confusion matrix are a useful way of presenting the results of a classification model
on a dataset. The matrix provides detailed information on the performance of the model on
each class. In a confusion matrix C, the rows represent the true classes and the columns rep-
resent the predicted classes; the entry C; is the number of examples from class 4 that were

classified as class j. Thus, an ideal matrix is one whose off-diagonal entries are all zero.

The response of the neural network to the test data was obtained and the confusion ma-
trix was plotted (Table 3.3). The confusion matrix shows 97.59% correct classification for the
test data. The off diagonal entries show that 40 out of 1662 samples are misclassified. A graph
of correct classification percentage for a range of loads is shown, figure 3.8. Figure 3.8 shows
that all the signatures of loads 2 and 4 were correctly classified. This is supported by all zero

off diagonal entries in rows 2 and 4 of the confusion matrix (table 3.3).

3.10 Conclusion and further work

The high value (97.59%) of correct classification indicates that the neural network based ap-
proach can be used for predicting the value of the machine system parameter using the motion
current signature. However, there are a few issues which need to be addressed before the proof
of concept results can be used for the development of the real-time predictive maintenance
system. They are:

e the experiment has only classified inertia as the machine system parameter;
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Table 3.3: Confusion Matrix obtained using the neural network to classify the load information

of the test data.

Predicted Classes
1 2 3 4
Class 1 295 13 0 0
Class 2 0 346 O 0
Class 3 0
Class4 0 0 0 322
Class 5 0

S| O |]O|O WL

e the experiment has only performed classification, while the actual system is expected to

compute the actual values of the machine system parameters.

As already mentioned, the real-time predictive maintenance system requires to estimate the
value of the machine system parameters using the motion current signature. This means that
the neural network used for such a system would need to be trained for the regression analysis
and would also be required to estimate more than one parameter. The classification of load
inertia into 5 classes requires far less amount of training data compared to, for example, the
amount of data needed to train a neural network to estimate the value of the inertia, due to the
increased network size and complexity (Bishop, 1995). This multi-fold increase in the require-
ment of the training data motivates an exploration into the possible sources and data collection

methodologies of training data.

3.11 Summary

The objective of the work described in this chapter has been to validate the concept behind
the real-time predictive maintenance system. In particular we have tried to focus on the idea
of the machine system parameter classification/estimation using the motion current signature

based upon the use of the neural network approach.

Our tests indicate that a high value of correct classification (97.59%) of the load inertia was

obtained using the neural network approach.

This chapter concludes the proof of concept procedure and supports the idea of using the
motion current signature for the real-time predictive maintenance system. In the next chapter,
we review the methods of generating and collecting the large amount of data needed for training

the neural network for the real-time predictive maintenance system.
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Chapter 4

The Simulation Model

4.1 Introduction

The previous chapter has validated the concept behind the real-time predictive maintenance
system and verified that the neural network approach can be used to extract information per-
taining to the machine system parameters from the motion current signature. However, this
project is an attempt to develop a framework capable of not just classifying but of estimating
the value of the machine system parameters. Additionally, the real-time predictive maintenance
system is to estimate more than one machine system parameter. This multi-fold requirement
increases the relevance of the data used for training the neural network. This chapter focuses
on the collection/generation of the data to be used to train the neural network for use in the

real-time predictive maintenance system.

A fundamental requirement for the successful implementation of a neural network is the avail-
ability of relevant, information-rich training data. The real-time predictive maintenance system
requires machine parameters to be varied to cover all the anticipated machine conditions; which
ensures that any parameter variation can be interpolated (Kim, Shin and Carlson, 1991; Lip-

mann, 1989).

While an ideal solution would be to utilize training data from a real production system, this is

impractical for a number of reasons:

e a large number of sensors would be required to collect data relevant to all machine pa-

rameters;
e machine faults are rare and unlikely to occur;

e it is impractical to scan the entire range of machine operations.
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This motivates an alternative approach for developing a system which generates the training

data using simulation models.

Simulation modelling is a valuable alternative provided that the model is fully validated against
a real production machine (Isermann, 1984). The model can be used to generate the training
data covering all anticipated machine conditions, including the rare and unlikely events of the

machine operation cycle.

A simulation model, called TuneLearn, capable of generating the training data for the neu-
ral network was developed and is-presented in this chapter. The model is a result of & joint
Aston University and Rockwell Automation research programme. The preliminary algorithm
of the simulation model was designed by Graham Elvis of Rockwell Automation. The software
version of the algorithm, used in this project and termed as TuneLearn, was coded by the

author. The simulation model is capable of:

e generating the motor current and velocity characteristics of a motor on the basis of system

parameters, motion profile, motor-amplifier data and tuning configuration;
¢ modelling fault conditions, which are hard to replicate in an on-line environment.

As such, the model will be used to provide a mapping of system parameters and motion current
signatures for all anticipated machine and tuning configurations. This mapping will then be

used as the training data for the neural network (Figure 4.1).

This method of using a simulation model eliminates the need to collect the training data from
a real production machine. Also, the time and effort needed to collect large quantities of data

is reduced to a minimum.

This chapter presents the design, implementation, validation and verification of the simulation

model.

Simulation model aims and objectives, inputs and outputs and the block diagram are explained
in sections 4.2, 4.3 and 4.4, respectively. Section 4.5 details the validation and verification
procedure theory and is followed by section 4.6 and 4.7 explaining the construction of the pro-
duction machine and the test rig. Section 4.8 highlights the collection routine of the motion
current signature. Section 4.9 and 4.10 present the linear reverse algorithm, BJEST, and it’s
application. Finally, section 4.11 and 4.12 give the results of the validation and verification

process.
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Figure 4.1: The conceptual diagram of the real-time predictive maintenance system. The
diagram is inspired by figure 3.1 with a modification to show the simulation model (TuneLearn)

as the source of the training data for the neural network approach.

4.2 Aims and objectives of the simulation model

The aim of the simulation model is to simulate the motion dynamics of a DC servo motor based

upon:

e tuning configuration (PID) parameters;
e motor-amplifier parameters;
e motion profile;

e machine system parameters.

The motion current signature generated using the simulation model would be used to train
the neural network for use in the real-time predictive maintenance system, as shown in figure
4.1. Apart from use in the real-time predictive maintenance system, the simulation model can
also be used to model critical engineering or biomedical applications for determining the most
efficient control/tuning parameters. In such applications, the tuning parameters can be varied
in the simulation model until the most appropriate motion current signature is achieved. The
graphical user interface of the simulation model makes it easier to analyse the motion current
signature and effectively modify various input parameters to monitor the effect on the motion

current signature.
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The objective of the simulation model is to simulate the effect of the input parameters to
compute the motion current and torque requirements. Next section presents the inputs and

outputs of the simulation model.

4.3 Inputs and outputs of the simulation model

As already mentioned in the previous section, the inputs to the simulation model are:

e tuning configuration (PID) parameters;
e motor-amplifier parameters;
e motion profile;

e machine system parameters.

The detail of all the input parameters of the simulation model is presented in section 3.7. The
output of the simulation model is the motion current signature. Thus, keeping the tuning con-
figuration, motion profile and motor-amplifier combination constant, if the value of the machine
system parameters is altered, the effect on the motion current signature can be examined using
the simulation model. Similarly, the effect of the tuning configuration on the motion current
signature can be monitored by keeping all the other input parameters same. The tuning con-
figuration adjustment technique is useful in designing an application off-line in order to save

critical industrial time when installing machines on-line.

Figure 4.2 shows the conceptual model of the simulation model showing the inputs and outputs.

4.4 Block diagram of the simulation model

The simulation model is of a closed loop form as shown in the figure 4.3. It contains three
connected PID (proportional-integral-differential) loops in sequence: a position loop, a velocity
loop and a current loop. The block diagram shown in figure 4.3 shows the calculation of the
motion current signature from the motion profile input. The model takes the motor position
requirement as the input and gives the motor current signature as the output. The model
supports a wide range of control applications and, therefore, uses position, velocity and current
loops. However, the choice of the loops is based up on the type of the control application, as
indicated in table 4.1.
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Figure 4.2: The conceptual model of the simulation model showing the inputs and outputs.
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Table 4.1: Loop configuration of the simulation model showing the status of various loops of

the model depending upon the type of control application.

Position Feedback Velocity Feedback Torque Velocity Position
Source Source Offset Loop Loop
Position Servo Motor Motor On Yes Yes
Velocity Servo None Motor On Yes No
Torque Servo None None On No No
Auxiliary Position Auxiliary Auxiliary On Yes Yes
Servo
Dual Position Auxiliary Motor On Yes Yes
Servo
Motor Dual Motor Motor Off Yes Yes
Command Servo
Auxiliary Dual Auxiliary Auxiliary Off Yes Yes
Command Servo

The position loop of the simulation model calculates the position error by subtracting motor
position (obtained as feedback from the previous iteration of the closed loop calculation) from
the position command. The output of the position loop is the velocity command, which is cal-
culated using the position loop gains and the position error. The velocity command is carried

forward as an input to the velocity loop.

The velocity loop calculates velocity error by subtracting the velocity feedback (obtained by
differentiating the motor position) from the velocity command. The output of the velocity loop
is current command, which is calculated using the velocity loop gains and the velocity error.

The current command is carried forward as an input to the current loop.

The current command is filtered using a notch and a low pass filter within the current loop
to remove any ripple effect induced into the signal due to the closed loop calculations with
imprecise feedback. The filtered current command is then used by the amplifier to drive the
motor. This filtered current command is the simulated motion current signature generated by

the simulation model.

The following section explains the algorithm used in the simulation model.
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4.4.1 Simulation model algorithm

Initially, the motion profile is broken into smaller motion profiles called the sub-profile, of a
time slice duration. The time slice is a small time interval normally equal to the encoder count.
Each sub-profile is then fed into the simulation model recursively; the algorithm of the simula-

tion model is based upon the time slice approach.

Following; we describe the steps of the simulation model algorithm.

4.4.1.1 Initial calculations

The following set of calculation is performed to evaluate the various components of the torque

command before the position command of the sub-profile can be used in the PID loops.
The total inertia (J) of the sub-profile is given by

J=Jy+ JL, (4.1)
where Jys and Jy, denote the motor inertia and load inertia respectively. The total inertia is

then used to calculate the acceleration torque (A7) of the sub-profile using

o= oy 2
A[ J x AL (4 )

where w is the angular velocity, At is the sub-profile duration equal to the time slice and %‘f is

the angular acceleration of the sub-profile. The friction torque, F, of the system can be found by

F= (F[‘ + F']‘m) xS, (43)

where
S is a constant, and is:
1. equal to 1, when the motion is in the clockwise direction;

2. equal to -1, when the motion is in the anti-clockwise direction;

3. equal to 0, when the motor shaft is stationary.

Fr represents friction torque of the sub-profile and Fr,, is the motor friction torque. Adding

acceleration torque , Ap, gravitation torque, G, and friction torque, F', we obtain

T=Gr+ Ar+F, (4.9)
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where T is the total torque of the sub-profile.

4.4.1.2 Position loop

Please note that all the calculations hereafter are in the time domain and a superscript of t is

used to denote it.

The position command of the sub-profile is written in the form

c cmd

Plog=Po i+ Vi x Ty, (4.5)

in which the parameter Pct;uli is the position command of the previous sub-profile, Vf‘f is the

shaft velocity of the sub-profile and T is the time slice. The actual position, P, is then sub-

tracted from the position command, P!, to calculate the position error, P!

; -, at time t, so that

T

t
Perr

= P! .- Pi. (4.6)

cmd

The differential position error, Pjiﬂ, shows the rate of change of position error. Subtracting
the position error of the previous sub-profile, P:7!, from the position error, Pt gives

err e

]J(fo = ]Detrr - ‘Pet:rl‘ (47)

Similarly, the integral position error, P!

imt» 1S given by

Pt o— P'tn_t] + pt (4.8)

nt T 1 err:

The position loop is based upon a PID controller with velocity feed-forward gain, K;s,. The
velocity feed-forward gain, Kjj,, generates a velocity command signal proportional to the
derivative of the position command, P! ,. Using equation 4.6, 4.7 and 4.8 to form a PID

equation, the velocity command, V! . takes the form

cmnd?

Vena = ((Per x K) + (Pl x Ki)

+(13(§iff X Kd)

+(Kypo x Vi) (4.9)

The velocity command from equation 4.9 is carried forward as an input to the velocity loop.

4.4.1.3 Velocity loop

Within the velocity loop, the actual velocity, V%, is subtracted from the velocity command,

Vt

cmd?

so that
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Vi.

err

= Vctmd - Vfi, (410)

where V?

err

is the velocity error of the sub-profile. Subtracting the velocity error of the previous

sub-profile (V/>1) from the velocity error (V%) gives the differential velocity error,

err err

e err err

Viaisy = Vi = VITL (4.11)

Similarly, the integral velocity error, V?

orint 15 calculated using

t t—1 ¢
Ve1‘1‘int = Verrint + Verr' (412)
The acceleration feed-forward gain, K ffa, generates a current command, I, proportional

to the derivative of the velocity command. Taking the values of the velocity error, V.. the

err)

Lraif s and the integral velocity error, VY . .

differential velocity error, V!

4.11 and 4.12 to form a PID equation, leads to

from equations 4.10,

[émd = ((Vetrr X Vga'in) + (Vetrrint X I!!G'iﬂ»)

+(Verraiss % Doain)
t

fo
HE X Ky, (4.13)

"The current command from equation 4.13 is passed as an input to the current loop.

4.4.1.4 Current loop

The current command, If, ,, is scaled and filtered using a notch and a low pass filter. The
filtered value is then termed as the motion current signature used by the amplifier to drive the

motor.

Finally, the motor position acts as a feedback for the analysis of the next sub-profile, thereby,

completing the closed loop control system.

4.4.2 Sample simulation to demonstrate the effectiveness of the model

The simulation model is designed to simulate the motion current signature and the current
command on the same plot. This facilitates visual comparison and error measurement of cur-
rent command and simulated current signature. The model also generates the velocity feedback

which is mapped against the motion profile.
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Figure 4.4: Sample simulation generated using the simulation model showing the torque com-
mand and the torque feedback. Torque command and torque feedback are analogous to current
command and current signature, respectively, with motor torque constant as the conversion

factor.
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Figure 4.5: Motion profile used for generating the sample simulation shown in figure 4.4
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Table 4.2: Machine parameters for sample test rig simulation

Parameter Name Value Units
Motor parameters
Motor Type H-4075-R -
Motor Inertia 0.00068  kgm?
Motor torque constant 0.74 Nm-A
Motor peak torque 30.0 Nm
Motor poles 6 -
Motor rms torque 10 Nm
Motor damping factor 0.068 gg—n
Motor friction torque 0.14 Nm
Motor maximum speed 3000 rpm
Load parameters
Load inertia 0.0119 kgm?
External torque -0.052 Nm
Friction torque 0.321 Nm
Tuning Parameters

Position proportional gain 1000 %
Position integral gain 0 m;__s
Velocity proportional gain 2000 %
Velocity integral gain 0 m,sl—s

A sample simulated motion current signature generated using the model is shown in fig-
ure 4.4. The simulation is generated using the motion profile shown in figure 4.5 and machine

parameters shown in Table 4.2.

The RMS error between the torque feedback, equivalent to the motion current signature
and represented by dotted line in the figure 4.4, and the torque command, equivalent to the
current command and shown by the solid black line in the figure 4.4, was calculated and was
found to be 6%. Visual comparison of figure 4.4 also shows that the current command and
motion current signature are very similar to each other. The low value of the RMS error
and obvious similarities between the current command and signature reinforce the argument
that the simulation model is capable of mapping the macro-dynamics of the motion current
signature to the machine system parameters. However, further experiments to validate the
simulation model against a real production machine need to be carried out to make sure that

the simulation model is good enough to be used to generate training data for the neural network.

The next section explains the simulation model validation and verification process in detail.
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4.5 Simulation model validation and verification

Simulation models are increasingly being used in problem solving and to aid in decision-making.
The developers and users of these simulation models, the decision makers using information ob-
tained from the results of these models, and the individuals affected by decisions based on such
models have a justifiable concern of whether a model and its results are ”correct”. This concern

1s addressed through model validation and verification (Sargent, 2004).

Model validation is usually defined to mean "substantiation that a computerized model within
its domain of applicability possesses a satisfactory range of accuracy consistent with the in-

tended application of the model” (Schlesinger, 1979).

Model verification is often defined as "ensuring that the computer program of the comput-

erized model and its implementation are correct” (Kleijnen, 1999).

4.5.1 Simulation model validation

A simulation model is developed for a specific purpose (or application) and its validity has to be
determined with respect to that purpose. It is often too costly and time consuming to determine
that a model is absolutely valid over the complete domain of its intended applicability (Sar-
gent, 2004). Instead, tests and evaluations are conducted until sufficient confidence is obtained

that a model can be considered valid for its intended application (Kleijnen, 1999; Sargent, 2004).

According to Sargent (Sargent, 2004), there are three basic approaches for validating a simula-

tion model:

1. Team verification and validation: In this approach, the model development team
itself has to make the decision as to whether a simulation model is valid. A subjective
decision is made based on the results of the various tests and evaluations, conducted as
part of the model development process. As the TuneLearn was developed by the author
alone with algorithmic inputs from the Rockwell Automation team, this approach is not

considered as an effective way of validating TuneLearn.

2. Independent verification and validation (IV&V): This method uses a third (in-
dependent) party to decide whether the simulation model is valid. The IV&V approach
should be used when developing large-scale simulation models, whose developments usu-
ally involve several teams. This approach is also used to help in model credibility, espe-
cially when the problem the simulation model is associated with has a high cost (Sargent,
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4.5 Simulation model validation and verification

2004). This approach is applicable for validating TuneLearn as it has been developed by

multiple teams, based in the University and in Rockwell Automation.

The visual comparison is performed between the simulated motion current signature and
the real motion current signature, collected from the real production machine and the test
rig. The expert level comparison involves identification and reasoning of the differences
between the simulated and the real output time series to gain confidence in the simulation
model (Sargent, 2004). The simulation model is considered to be a good match of the
real system if all the differences between the simulated and the real output are because of
the factors beyond the scope of the simulation model. For example, the TuneLearn would
be considered to be a good match of the real system if all the differences between the
TuneLearn generated simulated output and the real output are due to the factors other
than inertia, gravitation torque and friction torque. The effect of the inertia, friction
torque and gravitational torque on the motion current signature is linear (equation 3.1)
and can be easily identified in case of a noticeable difference between the real and the

simulated output.

. Statistical techniques: The most important statistical technique in the model valida-
tion is the sensitivity analysis (Sargent, 2004). This technique consists of changing the
values of the input and internal parameters of a model to determine the effect upon the
models behaviour or output (Kleijnen, 1995a,b; Sargent, 2004). The same relationships
should occur in the model as in the real system. Those parameters that are sensitive,
t.e., cause significant changes in the models behaviour or output, should be made suffi-
ciently accurate prior to using the model. In principle, sensitivity analysis is based on a
simple idea: change the model inputs and observe the behaviour. An important decision
in sensitivity analysis is the selection of the model input parameters to be varied and the
combination in which the parameters will be varied. The selection of input parameters is
based upon the effect of the parameter on the model output, and the intended application

of the model.

An important term in the sensitivity analysis of TuneLearn is the segment-wise aver-
age current signature (SACS). The motion profile command of the system comprises of
the straight lines called the velocity segments. The average current signature for a veloc-

ity segment is called the SACS.

The experimental setup of the sensitivity analysis of TuneLearn is based upon the vari-
ation in the SACS due to the changes in the values of the inertia, friction torque and
gravitational torque. The inertia, friction torque and gravitational torque are part of the
system parameters. These system parameters have been chosen for the sensitivity analysis

because these machine system parameters will be estimated using the real-time predictive
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Figure 4.6: The positive trapezoidal motion profile used for the sensitivity analysis

simulation maodel.

maintenance system. Additionally, the TuneLearn is intended ic map the effect of aystem
parameters (like inertia, friction torque and gravitational torque) on the motion current
signature. Hence, the inclusion of the system parameters in the sensitivity analysis will
ensure the validation of the model against its intended purpose. All the three system
parameters: inertia, gravitational torque and friction torque, are varied in all the seven

possible combinations, as would be explained later.

Apart from the three machine system parameters, the dynamics of the motion profile
also has an effect on the motion current signature. The instantaneous acceleration of
the motion profile affects the acceleration torque, which contributes to the total torque
and current requirements (equation 3.1). This motivates the repetition of the sensitivity
analysis for a positive and a negative motion profile to test for the correctness of the
simulation model for the positive and negative accelerations. The two different maotion

profiles chosen for the sensitivity analysis are:

(a) Positive trapezoidal (Figure 4.6);

(b) Negative trapezoidal (Figure 4.7).

The motion profiles are divided into straight line segmenis called the valocity segments.

Thus, the paositive and the negative trapezoidal maotion profiles have 5

each (Figure 4.6 and 4.7).

tlon i the valus of BAOR, b

As the sensitivity analysis is based upon the
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performing the sensitivity analysis, the initial level of the SACS, for each velocity seg-

ment, is determined using a zero value for all the system pe

torque and gravitational torque). After this, the relative change in the value of SACS
from the initial level is simulated for each scenario of changing system parameters. This

process is repeated for both the motion profiles.

4.5.2 Simulation model verification

The use of statistics has been shown to be an effective technique for performing mode] verifica-
tion (Beck et al., 1987; Kleijnen, 19954,b, 1999; Sargent, 2004). It has been argued that, because
simulation means experimentation, and any experimentaiion calls for statistical analysis, the
use of statistical techniques for simulation verification should be preferred (Kleijnen, 1909).
The statistical techniques have the advantage of yielding reproducible, objective, quantitative

data about the quality of a given simulation model (Kleijnen, 1999).

According to Kleijnen (Kleijnen, 1999), the verification of the trace-driven simulation mad-
els is a unique process due to the large amount of time dependent daia pertaining tc each input

configuration. The verification of such simulation models has to he done using the graphical

comparison (Kleijnen, 19954,b, 1099). Since TuneLearn is one such trace-driven simulation

model, the verification of Tunelearn is also performed using the graphical comparison method.
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ficient accuracy for its intended purpose (Sargent, 1996). The verification of TuneLearn uses
the behaviour graphs using scatter plots for the graphical comparison of simulated and actual

motor current feedback.

This process involves the comparison of the time series of simulated output (y) with the time
series of the real output (z) , both having the same input conditions, using the scaiter plot. A
line is then fit to the scatter plot, given by

o+ Br, (4.14)

jes

'y =
where fy and B; dencie the intercept and slope of the line respectively. According to Kleijnen

(Kleijnen, 1999), the simulation model is a close match of the real system if:
1. 0< By <1, and

2. 0< Bo < p,

in which it is assumed that the simulation cutput is a close match of the real output and hence
po= fy = pby,, Where g, and p, are the mean of the real and simulaied ouipui time ssries

ectively.

The primary requirement for performing the graphical comparison is the availability of the
simulated output time series and the real output time series, collected under similar input con-
ditions. The graphical comparison of TuneLearn is performed against a real production machine
and an experimental test rig. The construction of the production machine and the test rig, the
procedure for collecting the real output time series and the calculation of the input conditions

are explained in the following sections.

Next, we describe the production machine and the experimental test rig used for performe

ing the comparison.

4.6 The production machine
The production machine used for the validation and verification procedure was a tea-bag man-

had 8 axes of operation, all having the same motor and drive m factured by Rockwsl] Au-

tomation. Table 4.3 presents the values of the motor and drive parameters used for maodelling

the machine in the simulation modal.

kad o all the axes and




4.6 The production machine

Table 4.3: Motor and drive parameters of the production machine used for performing the

simulation model validation and verification.

Parameter Name Value Units
Motor parameters
Motor Type H-4075-ROH -
Motor Inertia 0.00068 kgm?
Motor torque constant 0.74 Nm-A
Motor peak torque 30.0 Nm
Motor poles 6 -
Motor rms torque 10 Nm
Motor damping factor 0.068 :‘}%‘5
Motor friction torque 0.14 N
Motor maximuimn speed 3000 rpri
Drive parameters
L?i'i\/’e Type 1398-DDM-30 -

the axes of the machine to operate in a controlled synchronous machine eycle. All the axes of

the machine are explained below:

 Axis 1: This axis was termed as a Doser. This axis was mainly rotary, high inertia, with

some crank and gravitational effects.

Axis 2: This axis was termed as a Maker. This axis had transport belts for both sides
and rotating jaws for movement, running at a constant speed. The axis was primarily a

vertical Form, Fill and Seal machine with one axis.

Axis 3: This axis was termed as a Skillet. This axis had crank effects and motion was in

two forward indexes and a reverse.

Axis 4: This axis was termed as a Conveyor. This axis was responsible for driving a

simple geared conveyer.

 Axis 5 This axis was termed as a Gun. This axis drove a number of glue guns.

Axis 6: This axis was termed as Cartoner. This axis was driving an assembly of belts

and pulleys.

_ Axis 7T: This axis was termed as a Horizontal temper. This axis had a reciprocating

plunger action, pushing tea-bags into a hox. The axis was fitted with a 3:] planstary

N

gearbox (Neugart PL115-03).

Asxis B This axis was termed as a Vertical Temper. This axis alao had a reciprocating

plunger action, pushing tea-bags into a hox. The axis was fitterd with a &1 planstary
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Table 4.4: Motor and drive parameters of the test rig used for simulation model validation and

verification process.

Parameter Name Value Units

Motor parameters

Motor Type 1326 AB-B520E -
Motor Inertia 0.004 kgm?
Motor torque constant 2.33 Nm-A
Motor peak torque 36.1 Nm
Motor poles 8 -
Motor rms torque 13 Nm
Motor damping factor 0.13 e
Motor friction torque 0 Nm
Motor maximum speed 3000 Fpin

Drive Type 1304C-AMED -

gearbox (Neugart PL115-03).

Every axis of the production machine had a different motion profile and system parameters.
For the simulation model validation and verification experiment, the motion current signature
from each of the axis of the production machine was collected. However, the us: bility of an
axis for the validation and verification process is dependent upon a number of factors, including
the variations in the machine parameters. As would be discussed in section 4.10 in detail, only
axis 3 was used for the validation and verification process due to absence of any shared inertia
components. All the other axis of the production machine, other than axis 3, had variable and

shared inertia.

4.7 The test rig

The test rig was a single axis machine with a motor, a drive and a system controller, all man-
ufactured by Rockwell Automation. The motor and drive parameters of the test rig are given

in table 4.4.

For the validation experiment, the current signature of the test rig was collected at zero iner-

tia. The motion profile used for the validation and verification experiment is shown in figure 4.8.
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Figure 4.8: Test rig motion profile used for the validation and verification experiment.

4.8 Collection of the motion current signature from the
production machine

The motion current signature was collected using the serial port command structure of the Rock-
well Automation 1398 drives (Inc., 1996). The serial interfacing between the computer and the

machine was established using Visual Basic (VB 6.0, Visual Studio 6.0, Microsoft Corporation).

Each axis of the production machine was capable of running at two different line speeds; normal
and full (9 times the normal). The current and velocity feedbacks for both the line speeds were

collected.

As already stated, the validation experiment requires both simulated output time series and
the real output time series. The collected motion current signature is used as a real output
time series. However, for simulating the motion current signature of the production machine
using TuneLearn, the production machine system parameters and motion profile are required

to be known.

The production machine had a large number of complex belt drives and shared inertias between
different axis. Due to the complex architecture of the machine axes, the direct determination
of machine parameters, such as inertia, friction torque and external torque was impractical.
This motivated the development of an algorithm for calculating the system parameters (iner-
tia, friction torque and gravitational torgue) using the current and the velacity fesdback. The
algorithm has been named as BJIEST (Bansal-Jones Estimation) technigue afier the name of
the researchers. This technique is often termed as reverse sngineering in sizing and selection
science and significant work has been done in this field (Littlehales and Janes, 1087; Littlehales
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4.9 BJEST: Bansal-Jones Estimation

et al., 1998; Singh and Parikh, 1993).

Next section presents the BJEST algorithm, used for the calculation of machine parameters

of the production machine using current and velocity feedback.

4.9 BJEST: Bansal-Jones Estimation

[oe

BJEST algorithm has been named after the researchers involved in iis development; Dheeraj

jusl

ansal and Barrie Jones.
The algorithm is used for estimating the value of inertia, friction torque and gravitation torgue
of an axis using the motor current feedback and the motor velocity feedback. In practice, the

motion current signature is dependent upon a number of factars (Penmann, 1986) including:

e acceleration torque;

# friction torque;

gravitation torque;

backlash;

@ resonarce.

However, it is impractical to calculate higher order terms like backlash and resonance of a com-

plex machine (Littlehales et al., 1998). Therefore, the BJEST assumes:

¢ The motor torque feedback comprises of only acceleration, friction torque and gravitation

tarque constituents in absence of any higher order terms;

¢ The value of inertia, friction torque and gravitation torque of an axis does not change

within an operation cycle;

e An axis does not have any shared inertia and friction components.

The assumptions are made so as Lo make sure that there is a single value of machine aystem pa-
rameters relating to a motion current signature of an aperation cycle. The shared and variabla
machine system parameters introduce uncertainty in the estimation process. The thres Loregue

components can he detailed as follows:
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4.9 BJEST: Bansal-Jones Estimation

1. Inertia based acceleration torque: Proportional to the rate of change of angular

velocity i.e. angular acceleration:

2. Friction torque: A fixed bidirectional torque present whenever there is a motion. It is
assumed that the viscous friction is very small compared to the constant friction torque

and hence it is neglected in the BJEST;

3. Gravitation torque (external torque): A fixed offset which is always present in a

system.

BJEST works on the basis of the instantaneous readings of the current signature and is de-
pendent upon the encoder feedback resolution. The calculation of all the torgue components
is performed simultaneously. The method is based upon the regression analysis and uses the
concept of pseudo-inverse (Mardia, Kent and Bibby, 19794) to solve simultaneous linear equa-

tions. The algorithm is deiailed in the following section.

4.9.1 Pseudo-inverse

Consider the following system of equations:

(113}-{-1)1:1/4-612 - d]
ax 4+ boy + coz = ds
a3r + bgy +ec3z = dy

Where ay,as, a3, by, be, b3, ¢y, ¢, c3,dy,dy and dy are constant coefficients, and z,y and z are

unknown variables.

Assuming that the determinant of coefficients be:

ay b] cy
A= ag b‘z Co 1
ag b g9 3

the determinant of unknown variables be:
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4.9 BJEST: Bansal-Jones Estimation

and the determinant of right hand equivalent of the system of equations be:

Then, the system of equations can be written as

AX =D. (4.15)

Re-arranging equation 4.15, we obtain

X =A"'D. (4.16)

Since A, in general, is a non-square matrix, it does not itself has a true inverse. Hence, the

BJEST uses the property of the pseudo-inverse (Mardia, Kent and Bibby, 1979a), so that

PI(Ayx A=1, (4.17)

in which the parameter PJ(A) is the pseudo-inverse of the matrix A and [ is the identity ma~

trix. The pseudo-inverse PJ(A) of the matrix A is given by

PI(A) = (A'A)7. (4.18)

The inverse (A’A)~" exists only if the matrix A4 has a full rank (Mardia, Kent and Bibhy,
1979a). The situation, where A is not well conditioned, is not discussed in this thesis because
the matrix A was found to be of the full rank in all the discussed cases (Mardia, Kent and

Bibby, 1979a).

4.9.2 BJEST algorithm

According to the BJEST, the torque feedback equation of a motor can be written as:

Total Torque = Acceleration torque + Friction torque + Gravitation torque.

All the components of the total torque can be expanded individually. The acceleration torgue

takes the form

Acceleration torque = Ace x J,

in which Acc is the instantaneous acceleration and J is the inertia. The [riction tarque ia

given hy
8]
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Friction Torque = Sign x F,

where Sign signifies positive or negative velocity of the motor based up on the current and

F means the magnitude of the friction torque. The Sign is a constant value and is

1. equal to 1, when the velocity is positive;

2. equal to -1, when the velocity is negative;

3. equal to 0, when the the velocity is zero.
The gravitation torque is a constant torque effect, which is always added to the total torque
and it takes the form
Grawvitation Torque = Gy,
Combining the expressions for the acceleration torque, friction torque and gravitation torque,
the equation for the total torque can be given hy

T = (Ace x J) + (Sign x F) + (Gy). (4.19)

For n different readings of the torque feedback, the system of equation takes the form

(Acey x Jy+ (Signy x FY+ (Gy) = T
(Accy x J) + (Signe x Y+ (Gy) = Ty

fl

(Accn, x J) + (Signg, x )+ (Gy)

in which the parameters Accy, Aces, ..., Acey, Signy, Signe, ..., Sign, and 11,75, ..., T, are

the known variables, while J, F and G, are the unknown variahles.

The determinants of the system of equations would be:

Acey  Signy ]
Aceg  Signg 1
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and
T

Using the equations 4.16, 4.17 and 4.18, we obtain

X = (A4 x D, (4.20)

where X is the matrix of unknown system parameters.

Thus, the BJEST can be used to estimate the values of the inertia, friction torque and gravi-
tation torque, if the torque feedback and the motion profile are knawn. However, it is atressed
again that BJEST is only a highly assumptive estimation algorithm as it neglects all the non-
linear and higher order terms. The only use of BJEST in this form is to "roughly” estimate
the values of the machine system parameters of the complex production machine to he able o

model it in the Tunelearn.

Next, we present the results of the application of the BIEST on the current signature cal-

lected from the production machine.

4.10 Results of the application of the BJEST

One of the important requirements of the application of the BJEST is the absence of variable
and shared inertias in the axis of operation. However, a close examination of the production
machine resulted in the conclusion that the axis 1, 2, 4, 5, 7 and 8 had shared and variable

inertia. Hence, the BJEST is applied only to axes 3 and 6 of the machine.

From the axes 3 and 6; axis 3 was chosen for the application of the BIEST due to easier
access to the amplifier and the time constraint of use of the production machine at the pro-
duction facility. The values of inertia, friction torque and gravitation torque ohtained after the

application of the BJEST to the axis 3 are presented in table 4.5.

The imprecise in the values of the inertia, friction torgue and gravitation torgue (Table 4.5)
are due to the assumptions of the BJEST, in which the effect of nanlinear and higher arder
terms in neglected. However, the BJEST is just used as an approximation algorithm in this
chapter. For the validation and verification process, the mean values of inertia, friction targue

and gravitation tarqgue are used as the machine system parameters {or the aimilation purposes.
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Table 4.5: Results obtained by application of the BJEST to axis-3.

Load
Total Inertia Friction | Gravitational

Data Inertia J —0.00068 | Torque Torque

Set | (J) kgm? kgm? (F) Nm (G) N-m

1 0.0124 0.01172 0.3178 0.0533

2 0.0128 0.01212 0.2874 0.0557

3 0.0131 0.01242 0.2989 0.0432

4 0.0126 0.01192 0.3210 0.0520

5 0.0119 0.01122 0.2961 0.0586

6 0.0125 0.01182 0.3102 0.0525

As stated above, the BJEST is an assumptive algorithm and, in it’s current form, it only
determines a rough estimate of the values of the system parameters. This implies that the ajim-
ulated output, generated using the system parameters predicted using the BJEST, may indicate
some offset in the value of the current signature an comparison to the real output. But the
offset can he eliminated by adjusting the values of the model input system parameters. Apart
from the offset differences (linear), there can also be non-linear (ripple, backlash and compliance
related) differences between the simulated and the veal ontput. The linear components, due
to their larger contribution, affect the macro-dynamics of the current signature. On the other
hand, the nonlinear components have micro-dynamical effect on the current signature due to
their smaller affect. For the work to follow, the current signature would be considered with

respect to it’s macro and micro dynamical constitution.

4.11 Application of the validation process

As discussed in section 4.5, the validation experiment performed in this thesis comprises of
two techniques; sensitivity analysis and visual comparison. Following, we describe the results

obtained by using each of these analysis and comparison techniques.

4.11.1 Sensitivity Analysis

The sensitivity analysis is performed using the motion current signature collected fram the fest
rig. The experimental setup of the sensitivity analysis is shown in table 4.6 in which the load in-
ertia, friction torque and gravitational torque are varied in all the seven paossible combinations.
The step size of the all the inpul parameters was kept equal to the resolution of the simulation
model; for inertia the step size was 0.0001 kgm?, while for the friction and the gravitational

torgue, the step gize was 0.01 Nm. All the seenarios, presented in tabls 4.6, wers conalderad
4
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tions of variations in the machine system parameters.

Table 4.6: The experimental setup of the sensitivity analysis showing all the possible combina-

Scenario | Inertia | Iriction | Gravitational
Torque Torque
(kgm?) | (Nm) (Nm)
Initial 0 0 0

1 0.0001 0.01 0.01

2 0.0002 0.01 0.01

3 0.0001 0.02 0.01

4 0.0001 0.01 0.02

5 0.0002 0.02 0.01%

6 0.0002 0.01 0.02

7 0.0001 0.02 0.02

8 0.0002 0.02 0.02

zoidal motion profiles used for the sensitivity analysis.

Table 4.7: Acceleration and sign values of all the segments of the positive and negative trape-

Positive

trapezoidal

Negative

trapezoidal

A% S

A(%) S

Segment 1 0.00 0.00 0.00 0.00
Segment 2 | 628.32 1.00 -628.32 -1.00
Segment 3 0.00 1.00 0.00 -1.00
Segment 4 | 628.32 1.00 -628.32 -1.00
Segment 5 0.00 0.00 0.00 0.00

and equation 4.20.

for both positive and negative motion profiles.

ghown in figures 4.6 and 4.7) are shown in table 4.7.
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For caleulating the expected behaviour of the simulation madel, the values of load iner-
tia, [riction torque and gravitational torque are replaced in equation 4.20 and the total tarque
feedback is calculated. As is clear from equation 4.20, the total torque feedback is dependant
upon the acceleration and the sign of the segment; the total torque feedback calculated for each
segment separately will serve as the SACS for the sensitivity analysis. The acceleration and

sign of all the segments of the motion profiles (congidered for the validation experiment and

The expected behaviour of the simulatian madel was calcilated uaing tables 4.6 and 4.7,
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Table 4.8: The expected (E) and observed (O) SACS deviation of the simulation model for all

the segments of the positive trapezoidal motion profile. All the values are in Nm.

Scenario Segment 1 Segment 2 Segment 3 Segment 4 Segment 5
E 0] E 0] E 0] E O E 0

1 0.0100 0.0099 | 0.0830 0.0827 | 0.0200 0.0199 | -0.0430 -0.0430 | 0.0100 0.0098

2 0.0100 0.0101 | 0.1460 0.1462 | 0.0200 0.0199 | -0.1060 -0.1062 | 0.0100 0.0101

3 0.0100 0.0100 | 0.0930 0.0932 | 0.0300 0.0310 | -0.0330 -0.0331 | 0.0100 0.0100

4 0.0200 0.0200 | 0.0930 0.0932 | 0.0300 0.0300 | -0.0330 -0.0330 | 0.0200 0.0194

5 0.0100 0.0099 | 0.1560 0.1560 | 0.0300 0.0300 | -0.0960 -0.0860 | 0.0100 0.0008

6 0.0200 0.0201 | 0.1560 0.1560 | 0.0300 0.0300 | -0.0860 -0.0064 | 0.0200 0.0200

7 0.0200  0.0200 | 0.1030 0.1031 | 0.0400 0.0404 | -0.0230 -0.0220 | 0.0200 0.0208

8 0.0200  0.0200 | 0.1660 0.1660 | 0.0400 0.0402 | -0.0860 -0.0856 | 0.0200 0.020%

All the scenarios, shown in table 4.6, were simulated using the TuneLearn and tahles 4.8 and
4.9 show the expected and observed behaviour of the simulation model for the positive and
the negative trapezoidal motion profile respectively. Please note that the values shown in the
tables 4.8 and 4.9 are the deviations in the value of SACS from the initial scenario (Table 4.6).
Tables 4.8 and 4.9 can be used to detect the sensitivity of the simulation model to the changes

in the value of the machine system parameters.

Tables 4.8 and 4.9 show that the simulation model is very sensitive to the model input
changes. The model is found to accurately respond to the changes of the order of 0.0001 kgm?
in the value of inertia and to the changes of the order of 0.01 Nm in the value of friction or
gravitation torque. The relative accuracy of the TuneLearn to the input parameter changes

was found to be of the order of 99.5%.

However, as already mentioned, the sensitivity analysis of the simulation maodel is hased
upon the variations in the value of SACS. The SACS does not account for the current signature
behaviour of the model within the segment. Additionally, the sensitivity analysis of the modal
is only a theoretical way of validation. This motivates the visual comparison of the simulation

model against a real production machine and an experimental test rig.

4.11.2  Visual comparison

The visual comparizgon of the simulation model involves identification and reasaning of the dif-

ferences between simulated and real output time series. The main requirement of the validation

using the visual comparison is the availability of the simulated and the real autput time series.
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Table 4.9: The expected (E) and observed (O) SACS deviation of the simulation model for all

the segments of the negative trapezoidal motion profile. All the values are in Nm.

Scenario Segment 1 Segment 2 Segment 3 Segment 4 Segment &
E O E O E O E 0] E o)

1 0.0100 0.0099 | -0.0630 -0.0630 | 0.0000 0.0000 | 0.0630 0.0627 | 0.0100 0.0009

2 0.0100  0.0101 | -0.1260 -0.1257 | 0.0000 0.0001 | 0.1260 0.1261 | 0.0100 0.0101

3 0.0100  0.0100 | -0.0730 -0.0733 | -0.0100 -0.0101 | 0.0530 0.0520 | 0.0100 0.0100

4 0.0200  0.0200 | -0.0530 -0.0530 | 0.0100 0.0100 | 0.0730 0.0731 | 0.0200 0.0189

5 0.0100  0.0099 | -0.1360 -0.1359 | -0.0100 -0.0100 | 0.1160 0.1161 | 0.0100 0.0086

6 0.0200  0.0201 | -0.1160 -0.1161 | 0.0100  0.0099 | 0.1360 0.1360 | 0.0200 0.0200

7 0.0200  0.0200 | -0.0630 -0.0627 | 0.0000  0.0000 | 0.0630 0.0630 | 0.0200 0.0208

8 0.0200  0.0200 | -0.1260 -0.1258 | 0.0000  0.0000 | 0.1260 0.1264 | 0.0200 0.0202

As already mentioned, the graphical comparison of the simul
real production machine and an experimental fest rig. Figures 4.9 and 4.10 show t)

of simulated output along with the time series of the real output f

and the experimental test rig respectively.

The differences between the real and the simulated output are marked as s}

4.11 and 4.12.

ation model is performed against a
18 Lime series

or real production machine

hown in figures

The simulation model would be considered to be a good match of the real system if all

the differences shown in figures 4.11 and 4.12 are due to the factors other than inertia, gravi-

tation torque and friction torque.

The experts involved in the visual comparison of the simulation model were Graham Elvis
(Commercial Engineer, Rockwell Automation, Crewe, UK), John Durrant (Former Manager,
Rockwell Automation, Crewe, UK), Roger Brookes (Former Manager, Rockwell Automation,

Crewe, UK) and Prof. Barrie Jones (Aston University, Birmingham, UK).

In the following sub-section, we discuss the differences shown in the Figures 4.11 and 4.19

for the real production machine and the test rig respectively.

4.11.2.1  Real production machine

The differences, figure 4.11, between the simulation madel generaied simulation and the real
system autput generated using the real production machine are discussed helow:
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Figure 4.9: Simulated and collected (real) output time series, mation eurrent signature, for the

real production machine.
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Figure 4.10: Simulated and collected (real) output time series, motion current signature, for

the experimental test rig.
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Figure 4.11: Simulated and real current signature of the real production machine showing the

differences marked with circles and alphabets.
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Figure 4.12: Simulated and real current signature of the experimental test rig showing the

differences marked with circles and alphabets.
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e A, B, D, E and F: These differences are due to the poles ripple curve. This kind of ran-
dom behaviour totally depends upon the start position of the ripple curve. The simulation
model is programmed to behave in a similar manner, but the real machines start at a
different position leading to a random ripple curve. These differences can be removed by
averaging the curve over a number of runs and are not due to the incorrect mapping of

the machine system parameters.

e C and G: These differences are due to inaccurate friction torque and gravitation torque
values. The friction torque and the gravitational torque, for modelling the real production
machine in the simulation model, were calculated using the BJEST. As already mentioned
in section 4.9, the BJEST is an approximation algorithm and only roughly estimates the
values of the inertia, the friction torque and the gravitation torque. These differences can
be eliminated by adjusting the values of the friction torque and the gravitational torque.

A part of these differences is also caused due to the ripple curve.

4.11.2.2 Experimental test rig

The differences, Figure 4.12, between the simulation model generated simulation and the real

system output generated using an experimental test rig are presented below:

e A: This difference is due to poles ripple curve and can be removed by averaging the curve

over a number of runs.

e B and D: These differences comprise of two separate parts; a positive shift and a ripple
effect. The positive shift is due to static friction and was removed by modelling the
experimental test rig with a 0.2 Nm static friction torque. The ripple effect is due to the

position correction.

e C: This difference contain two separate parts; a negative shift and a ripple effect. The
negative shift is due to static friction, subtracted from the total torque because the motor
is regenerating, and is removed by modelling the experimental test rig with a 0.2 Nm

static friction torque. The ripple effect is due to the position correction.

The discussion establishes that all the differences between the simulated time series, generated
using the simulation model, and the real system output time series, generated using the real
production machine and the test rig, were due to the factors other than the inertia, the friction
torque and the gravitational torque. This reinforces the argument that the simulation model
is capable of mapping the motion current signature to the system parameters. However, the
accuracy of the real-time predictive maintenance system has to be calculated by using it to

detect the system parameter deviations in a real world scenario.
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4.12 Application of the verification process

As discussed in section 4.5, the verification process of the simulation model is performed by the
graphical comparison. Following, we describe the details of the graphical comparison technique

to verify the operations of the simulation model.

4.12.1 Graphical comparison

Figure 4.9 and 4.10 are used for the graphical comparison of the simulation model in this thesis.

The following sections explain the graphical comparison of the simulated output against the

real output of the real production machine and the test rig.

4.12.1.1 Real production machine

Figure 4.13 shows the scatter plot of the time series of the simulated and the real output ob-
tained from the real production machine. A line was then fit to the scatter plot (figure 4.13).

The equation of the line is given by

y = 0.0291 + 0.8439z. (4.21)

Applying the validatory conditions given in section 4.5, we find

1. 0 < B = 0.8439 < 1, and
2. 0< By =0.0291 < p = 0.1504,

where p, = 0.1474 and p, = 0.1535. Therefore, p is taken as 0.1504, the mean of p, and p,.

The equation given above satisfies the condition given in section 4.5 and justifies that the

simulation model is a close match of the real system defined by a real production machine.

4.12.1.2 Experimental test rig

Figure 4.14 shows the scatter plot of the time series of simulated and the real output obtained
from an experimental test rig. A line was then fit to the scatter plot (figure 4.14). The equation

of the line is given by

y = 0.0607 + 0.9969z. (4.22)
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Figure 4.13: Scatter plot of the time series of simulated output and the real output obtained

from the real production machine.
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Simulated output from the TunelLearn
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Figure 4.14: Scatter plot of the time series of simulated output and the real output obtained

from an experimental test rig.

Applying the validatory conditions given in section 4.5, we find

1. 0 < 3y =0.9969 < 1, and
2. 0 < o =0.0607 < p = 0.2752.
where p, = 0.2416 and u, = 0.3088. Therefore, p is taken as 0.2752, the average of y, and Ly

This proves that that simulation model is a close match of the real system defined by the

experimental test rig.

The graphical comparison of the TuneLearn against the real production machine and the test

rig has re-confirmed that the model is a close macro-dynamical match to a real system.



4.13 Summary

4.13 Summary

The accuracy of the real-time predictive maintenance system is a direct function of the valid-
ity of the simulated data, used for training the neural network. In this chapter, a simulation
model was designed, implemented and validated to meet the training data requirements of the
real-time predictive maintenance system. The objective validation of the simulation model,
TuneLearn, was performed against an on-line production machine and an experimental test rig.
It has been shown that the TuneLearn is capable of mapping the macro-dynamics of the motion

current signature to the machine system parameters.

The sensitivity analysis resulted in a 99.5% accuracy to the deviations in the values of the
inertia, the friction torque and the gravitation torque. The visual comparison was used to in-
corporate the expert knowledge in the validation process. Afterwards, the graphical comparison
verified that the scatter plot of the simulated and the real output are within the acceptable

limits. The simulation model cleared all the validation and verification tests used in this chapter.

However, the simulation model was not able to precisely map the micro-dynamics of the motion
current signature. The failure to map the micro-dynamics could be due to a number of reasons,

including:

e the underlying data generator of the motion current signature could be nonlinear and,
hence, it is difficult to map the micro-dynamics of the motion current signature using

linear algorithm;

e the simulation model algorithm is not capable of mapping the higher order terms, like
backlash and resonance, which have a significant effect on the micro-dynamics of the mo-

tion current signature.

This motivates us to test the motion current signature for inherent nonlinear behaviour. The
next chapter tests the nonlinearity of the motion current signature using nonlinear statistical

techniques.
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Chapter 5

Nonlinearity in motion current

signature

5.1 Introduction

The previous chapter explained the design, implementation, validation and verification of the
simulation model. The simulation model has been shown to be capable of mapping the machine
system paranieters against the motion current signature. The model was validated using the
sensitivity analysis and the visual comparison using independent experts. The verification of
the model was carried out using the graphical comparison. Although the statistical techniques
showed that the model is accurate for its purpose, the visual comparison by experts pointed out
that the model is not performing accurately to map the micro-dynamics of the motion current
signature. As the simulation model does not have the implementation of the corresponding
non-linear algorithm, the simulation model is unable to replicate the micro-dynamics of the

motion current signature.

Whilst validating the simulation model, a reverse algorithm called BJEST (Bansal-Jones Esti-
mation), for estimating the machine input parameters using the motion current signature, was
designed and proven to be successful in estimating the macro-dynamics of the motion current
signature (section 4.9). Additionally, according to Bishop (Bishop, 1995), the performance of

the neural network largely depends upon a number of factors including:
o the quality of the training data;
e quality and type of the preprocessing of the input data;
e the type of the neural network technique adopted;

e the training methodology used.
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The success in estimating the macro-dynamics of the motion current signature using BJEST,
referred to as the reverse algorithm here onwards, and the dependence of the performance of
a neural-network approach upon training data, motivates us to enhance the reverse algorithm
to incorporate nonlinear characteristic. This chapter is an attempt to verify the non-linear
characteristic of the motion current signature and , upon verification, to enhance the reverse
algorithm to incorporate the nonlinear characteristics of the motion current signature. How-

ever, the first step is to statistically test the motion current signature for nonlinearity.

In this chapter, we perform a series of experiments to explicitly test for the presence of nonlinear

dynamics in the motion current signature.

Sections 5.2 and 5.3 detail the basic terminology necessary to understand the nonlinear time-
series techniques. Section 5.4 explain the testing algorithm for nonlinearity which is followed

by section 5.5, which presents the results of the surrogate data testing.

5.2 Linear vs. Nonlinear systems

An important problem in engineering and physical sciences is that of identifying a model for
a physical system (or process) given observations on the input and output of the system. The
study of the time series can be divided into two main categories depending on the nature of
the transition function f. The first class, where the transition function is linear, is accordingly
termed linear systems. Similarly, the term nonlinear systems is used to refer to cases where the

transition function is nonlinear (Kantz and Schreiber, 2004).

Why the division into these two classes? At least part of the reason is historical: it is only

recently that the ability to effectively analyze nonlinear systems has become widely attainable.
The linearity can be defined as:

Suppose y;(t), y2(t) are the outputs corresponding to x;(t), z2(t) respectively. Then the sys-
tem is saild to be linear if,and only if, a linear combination of the inputs, say Az, (t), Aaz2(t),
produces the same linear combination of the outputs, namely Ajy(t), A2y2(t), where Ay, Ag are

any constants.

The nature of linear dynamics is such that it permits only one of three classes of behaviour:

e Convergence to a stationary point;

e Sustained oscillation at one or a number of fixed frequencies;
98



5.3 Basic concepts and terminologies

e Exponential growth (instability).

As systems belonging to the first or the last classes are of little interest, the focus of lin-
ear dynamical systems analysis has been on the study of frequency components. Under this
paradigm, the signal of interest is described as being the combination of a large number of
separate frequency generators. For long periods of time, the analysis of dynamical systems
using linear tools was probably the only really effective method of characterizing noisy data.
Consequently, a large body of research has grown up around a number of methods which either
implicitly or explicitly assume linear dynamics. These include all methods related to Fourier
transforms, frequency and power spectral methods, as well as linear modelling techniques such
as auto-regressive and ARMA (Auto Regressive Moving Average) models and Kalman filters.
Certainly, the characterization of time series via power spectra has had a long and distinguished
history of successful applications in an exceedingly wide variety of research areas and remains
one of the most reliable methods for time series analysis. At the same time, it is not true to
say that nonlinear systems have received no attention at all. The last few years have seen a
massive expansion in the scope of research into systems that are not adequately handled by
these traditional methods. The existing body of linear tools has been augmented by a host of
new approaches that are capable of modelling systems that show nonlinear behaviour but not

chaos (Kantz and Schreiber, 2004).

The nonlinear time series analysis techniques strictly assume that the system has been tested

for nonlinearity, which stresses the importance of nonlinearity detection.

5.3 Basic concepts and terminologies

Before we proceed with any more explanation, it is in order to explain a few basic terms asso-
ciated with system analysis 5.1. A systern will be taken to be a set of variables which change
over time, and which have a some natural connectedness (such as all being measured from the
same individual). A dynamical systern will be defined to be a system in which the present state
(the values of all of the variables and all of their derivatives) is somehow dependent on previous
states of the system. A deterministic system will be taken to be a system in which the present
state is entirely dependent on previous states of the system. A linear system is a system in
which all of the dependence of the current state on previous states can be expressed in terms
of a linear combination. A linear stochastic system is a system in which all of the dependence
of the current state on previous states can be expressed in terms of a linear combination and
the residual unpredictable portions can be expressed as additive, independent, identically dis-

tributed, random variables.
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Figure 5.1: A diagram of the types of systems which may potentially underlie physiological
and psychological phenomena. Note that there are many possibilities of which little is known.
(After a diagram presented by Thomas Schreiber at the Nonlinear Techniques in Physiological

Time Series conference in Dresden, October 1995.)
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A nonlinear system is a system in which the dependence of the current state on previous states
cannot be expressed entirely as a linear combination; even if some of the dependence can be
captured in a linear combination of the previous states, something extra is required to capture
all of the dependence. That extra something is frequently an interaction between variables,
Le. a multiplicative term involving the previous states. A nonlinear stochastic system exists

somewhere among the question marks in Figure 5.1; very little is known about these systems.

If an infinitesimal difference in the initial conditions (initial state) of two realizations of the
same dynamical system causes an exponential divergence between the trajectories of the two
systems, then that system is said to have sensitive dependence on initial conditions. A chaotic
system is a nonlinear dynamical system which exhibits sensitive dependence on initial condi-
tions. Linear dynamical systems never show sensitive dependence on initial conditions. Some
nonlinear dynamica) systems show sensitive dependence with some initial conditions and no
sensitive dependence with other initial conditions. These systems are sometimes chaotic and
sometimes not chaotic depending on their state, and can be changed from a nonchaotic regime

to a chaotic regime and back again by external manipulations of their variables.

The next section presents the test for nonlinearity performed on the motion current signa-

ture to test the presence of nonlinear behaviour.

9.4 Testing for Nonlinearity

Given an arbitrary time series generated by an unknown process, it is important to test whether
the time series needs to be modelled as a deterministic system and given determinism, whether
a linear deterministic system is sufficient to model the measured data or if a nonlinear analysis
is required. If there is no evidence of deterministic behaviour, there is little point in pursuing
a dynamical systems model; a correlational model will fit the measured data just as well. If
there is no evidence of nonlinearity, then there is little point in pursuing a nonlinear dynamical
systems model when a linear model will fit the measured data just as well. In almost every
case, the simpler model is to be preferred over the more complex one (Golyandina, Nekrutkin

and Zhigljavsky, 2001).

Making these determinations requires performing tests to verify the nature of the data. Normal
statistical theory will not help in this case, since the calculation of standard errors requires some
model of the process which generated the data. The test for nonlinearity of the motion current
signature performed in this chapter is an attempt to determine such a model. A variant on the
bootstrap method (Efron, 19794,b) for empirically determining the distribution of a statistic

has been used in order to overcome this problem (Horn, 1965). Theiler, et. al. (1992) (Theiler
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et al., 1992) have called this the method of surrogate data.

Surrogate data testing is a method used to test for nonlinearity in the motion current sig-

nature (Theiler et al., 1992). The motivation for pursuing this avenue of research are:

e The simulation model, which was based upon the linear modelling techniques, has failed

to replicate the micro-dynamics of the motion current signature (section 4.11.2 and 4.13);

e Prior knowledge regarding the motion current signature and the effect of higher order

factors, such as friction and backlash, indicate the presence of nonlinearity.

Nevertheless, the reasons given above can prove insufficient to justify the use of nonlinear tech-
niques for analyzing motion current signature. The fact that a system contains nonlinear com-
ponents does not prove that this nonlinearity is also reflected in a specific signal measured from

that system. Due to these reasons, formal validation of the presence of nonlinearity is desirable.

The simplest way to test for nonlinearity is to calculate some general measure of nonlinear-
ity or chaos, examples being various high order statistics and Lyapunov exponents (Kantz and
Schreiber, 2004). One popular method has been to calculate both the correlation dimension
and first Lyapunov exponent - a combination of convergence of the correlation dimension and a
positive exponent was then taken as an indication of nonlinearity (Golyandina, Nekrutkin and
Zhigljavsky, 2001). However, it is now generally accepted that measures such as these are not
sufficient, by themselves, to establish chaotic or nonlinear behaviour in the data (Govindan,
Narayanan and Gopinathan, 1998; Theiler et al., 1992). In particular, the measurement of
such statistics is often prone to noise contamination and requires large input data sets, which
increases the computational overhead. In addition, using longer data sets increases the likeli-
hood of encountering nonstationarities. Errors associated with the acquisition of data such as
inappropriate sampling frequency, noise fltering and digitization error can all lead to erroneous
values of these statistics being returned. Finally, even if we were able to determine these values
with sufficient accuracy, the actual distribution for the nonlinear statistic in question is gener-

ally not known except for the simplest of models.

The method of surrogate data analysis (Theiler et al., 1992) solves some of these problems
by providing a suitable statistical framework in which nonlinearity tests may be performed
more reliably. It is based on the principle of Monte Carlo methods: the idea is to sample in the
space of possible time series matching some carefully chosen null hypothesis, then perform a
standard statistical t-test to reject this hypothesis. The basic idea is to generate a population
of null hypothesis data sets (surrogates) appropriate to the test of interest and then use the
distribution of some nonlinear invariant (such as the fractal dimension of a time delay embed-

ding) of these surrogates to estimate a confidence interval around the mean of the invariant.
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Then if the nonlinear invariant of the measured data lies outside the confidence interval of the

surrogates, the null hypothesis is rejected.

Thus, the first step is to specify a null hypothesis against which the nonlinearity of the data is
tested. Hypothesis testing (Papoulis, 1991) is a method used in the statistical analysis to state
the alternative (for or against the hypothesis) which minimizes certain risks. Essentially, an
assumption about the data, known as the null hypothesis (Hop), which is expected to contradict,

is made.

The observed dynamical system could fall into one of the four categories:

1. linear deterministic (e.g. Newtonian, undamped pendulum, sinewave);
2. nonlinear deterministic (e.g. Lorenz, Henon map);
3. linear stochastic (e.g. a linear Markov model);

4. nonlinear stochastic (e.g. a nonlinear Markov model).

In this chapter, the null hypothesis, Hg, for motion current signature is that the observed data
is an element of a linear stochastic Gaussian process. After the null hypothesis is identified, a
nonlinear parameter is extracted from the data. In theory, this can be anything, provided it is
able to reject data not belonging to the class of models defined by the null hypothesis. Lyapunov
exponents and correlation dimensions have been popular choices (Unsworth et al., 2001). The
most important requirement when choosing this parameter, however, is that it should have a
relatively localized distribution when applied to data, that conforms to the null hypothesis. In
other words, the value of this quantity should be sensitive to changes near regions of interest
since this will increase the ability to reject data with different characteristics from the null

hypothesis.

A cautionary note about null hypothesis testing is always in order. It is wise to remember
that the null hypothesis can only be rejected, it cannot be accepted. Thus the surrogate data
methods cannot rule out the presence of a nonlinear dynamical system as the generating process
for a measured time series. If the null hypothesis cannot be rejected, then the conclusion is
only that the measured time series does not support the conclusion of a (nonlinear) dynamical
system. This may be because the underlying process is truly not a (nonlinear) dynamical sys-
tem, or it could be because the surrogate data test lacks sufficient power in the measured time
series. Since there is no model for the standard errors of the test, one cannot properly calculate

the power of these surrogate data tests.
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5.4.1 Generating surrogate data

Constructing the surrogate data sets can take many forms and will naturally vary depending
on the particular null hypothesis that one desires to test. The first class of null hypotheses
that need to be tested is that there is no dynamical process operating in the data. One possi-
ble surrogate data set considers the null hypothesis that the data are independent, identically
Gaussian distributed random variables. A pseudo-random number generator can be used to
generate a sample of surrogate time series that each have the same mean and variance as the

measured time series.

Another variant of this null hypothesis of no dynamical system preserves the amplitude distri-
bution of the original signal, but destroys the time relations between the samples. In this case,
the easiest method to generate a sample of surrogate time series is to shuffle the ordering of
the samples in the measured time series. Each surrogate so generated will have all of its time
dependencies removed, but the original amplitude distribution of the measured time series will

be preserved.

The second class of null hypotheses are that the data were generated by a linear stochastic
system. One method of generating a surrogate data set for this null hypothesis is to fit an
autoregressive model to the data and then generate a sample of surrogate time series by iterat-
ing that model. There is a problem with this method: there are many possible autoregressive
models which would need to be fit in order to find the best fitting alternative. A clever way
around this problem was suggested by Osborne et. al. (Osborne et al., 1986). The Fourier
transform of the time series is applied, a uniform random number between 0 and 27 is added
to the phase spectrum of the Fourier series, and then the inverse Fourier transform is applied.
The effect of this method is to generate a surrogate which shuffles the time ordering of the data
while preserving the linear autocorrelations in the time series. The resulting surrogate fits the

null hypothesis that the time series is a linear stochastic process (colored noise).

A refinement of this method involves iteratively phaserandomizing the Fourier series and then
correcting the resulting amplitude distribution for minor anomalies introduced by the phaseran-
domization process (Schreiber and Schmitz, 1996). This process is called polished surrogates
and is the method which will be used to generate the linear stochastic null hypotheses for the

present work.

In brief, the idea is to directly optimise the spectrum of a randomly generated time series
such that it matches that of the original data. First, an initial data set is chosen either by gen-
erating some random numbers, or by using the phase randomisation method mentioned above.

Next, the power spectra of the new set is optimised via a two step iterative procedure:
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1. The Fourier transform is performed on the surrogate data, and the magnitude of the

Fourier coefficients are set to that of the original data.

2. The inverse Fourier transform is calculated. However, changing the Fourier amplitudes
will have affected the distribution of the data. To remedy this, a two step procedure is
applied: firstly, both the candidate surrogate set and the real dataset are arranged so
that the largest data points come first, second largest second, and so forth. However
the original time indices of the surrogate set are retained, and are used to rearrange the
ordered version of the original data set. This ensures that the static distribution of the
new time series now matches that of the original data set, while the dynamical ordering
of the data points are changed to match the surrogate dataset. However, this reordering
will again change the power spectra. This so step one is carried out again and so on.
With each iteration, the changes required become increasingly smaller until convergence

is reached.

Further, as recommended in (Kugiumtzis, 1999), we terminated the training after the adjust-
ment of the spectra, rather than the amplitude distribution, as this method results in surrogate
data with the same autocorrelation structure as the data. The slight deviation in the amplitude
spectra that this results in was deemed to be acceptable. For a more detailed description of
this algorithm, or of surrogate data testing in general, please refer to (Schreiber and Schmitz,

1996; Theiler et al., 1992).

The next sub-section describes the discriminating statistics of the test.

5.4.2 Discriminating statistics of the test

A discriminating statistic is the aspect of the data that has to be tested with the null hypothesis.
In principle, any nonlinear statistic which assigns a real number to a time series can be used.
Higher order autocorrelations such as (5,5,-15n-2) are cheap in computation but quantities
inspired by nonlinear science seem to be more popular because they are particularly powerful
if the data set has a nonlinear deterministic structure.

A particularly higher-order autocorrelation, (5,52, — S25,41), which measures time asym-
metry, is the most powerful measure of nonlinearity (Kantz and Schreiber, 2004; Schreiber and
Schmitz, 1996). Due to this reason, time asymmetry will be used as the discriminating statistic
with the intention of testing different aspects of the data. It uses the fact that the statistics of
linear stochastic processes are always symmetric under time reversal, since the power spectrum
itself does not contain any information about the direction of time. There are a number of ways
for measuring time asymmetry but one of the more useful methods, and also the one which is

used in this paper, is given by the following equation:
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5.5 Results of surrogate data testing

Tn — T 3
Prev = (@ = zn_r)] (5.1)

[(3571 - $n~7)2]3/2,

where ¢, is the time asymmetry measure of n generated surrogate data sets and 7 is the delay

used for reconstruction (Kantz and Schreiber, 2004).

5.4.3 Evaluating significance

Evaluating the significance of the result is one of the most important step in the test for non-
linearity. The most common method is to calculate the deviation of the data from the mean
in terms of numbers of standard deviation. However, this method depends on the assumption
that the distribution of the statistic is according to the ¢ distribution, which is either difficult to
prove or untrue (Kantz and Schreiber, 2004). This paper used the method proposed in (Theiler
et al., 1992), which is based upon the idea of rank statistics. The basic idea being: a residual
probability o of a false rejection is chosen and then, for a double-sided test such as the time
asymmetry measure, % surrogate data sets are needed to obtain (100 — a)% confidence in the
results. Hence, in order to attain the commonly used 95% significance mark, 40 surrogate sets

for the time asymmetry test have been used.

The next section details the experimental results of the surrogate data testing performed on

motion current signature.

5.5 Results of surrogate data testing

The experiment was carried out in a number of stages, they are:

e Step 1: The motion current signature, referred to as the original signature from here
onwards, from a real production machine was collected. Table 5.1 presents the values of

the motor and drive parameters of the production machine used for the experiment.

e Step 2: The discriminating statistic of the original signature was computed.
e Step 3: The surrogate data sets (40 in total) were generated.

e Step 4: Subsequently, the discriminating statistic of all the surrogate data sets was

computed.

e Step 5: The histogram of the discriminating statistic of all the surrogate data sets

was plotted against the discriminating statistic of the original signature. The histogram
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5.5 Results of surrogate data testing

Table 5.1: Motor and drive parameters of the production machine.

Parameter Name Value Units
Motor parameters
Motor Type H-4075-ROH -
Motor Inertia 0.00068 kgm?
Motor torque constant 0.74 Nm-A
Motor peak torque 30.0 Nm
Motor poles 6 -
Motor rms torque 10 Nm
Motor damping factor 0.068 E’;V;—';l
Motor friction torque 0.14 Nm
Motor maximum speed 3000 rpm
Drive parameters
Drive Type 1398-DDM-30 -

presents the distribution of the test statistic under the assumption of the null hypothesis
(Ts), and the vertical line denoting the value of the test statistic for the original signature

(To).

e Step 6: If 1} is not drawn from the distribution of 7%, the original signature can be

concluded to be a nonlinear signal with a confidence level of 95%.

The experiment was repeated for 2 different axis of the production machine.

Figure 5.2 shows the original signature collected from axis 3 (chosen due to the reason de-
scribed in section 4.10) of the production machine used for the experiment. Figure 5.3 details 5
of the 40 generated surrogate data sets. Figure 5.4 presents the distribution of the test statistic

for surrogate data sets. The vertical line denotes the test statistic for the original signature.

As mentioned above, the surrogate data set is generated as an element of linear stochastic
Gaussian process and if the test statistic value of the original signature does not match the
test statistic distribution of the surrogate data sets, it can be safely concluded that the original

signature is drawn from a non-linear stochastic Gaussian process with a 95% confidence level.

According to figure 5.4, the test statistic 7y of the original signature is not drawn from the same
distribution of the test statistic Ts of the surrogate data sets. This establishes the nonlinearity

of the motion current signature with 95% confidence level.

The same experiment was repeated for axis 6 of the production machine and the results are
presented in figure 5.5,5.6 and 5.7.
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Figure 5.2: The original signature collected from axis 3 of the production machine.

500 T T T Y T T

-500 i i i i L I
0 20 40 60 80 100 120 140
500 T T T T T T

_500 i1 ! i 1 L 1
0 20 40 60 80 100 120 140
500 T T T T T T

_‘500 i 1 i 1 1 i
0 20 40 60 80 100 120 140
500 T T T T T Y

0 20 40 60 80 100 120 140
500 T T T T T T

Current (Amps) Current (Amps) Current (Amps) Current (Amps) Current (Amps)
=)
T
1

_500 1 i 1 i 1 A
0 20 40 60 80 100 120 140

Time (40 msec)

Figure 5.3: 5 of the 40 surrogate data sets generated for the experiment by directly optimizing
the spectrum of a randomly generated time series such that it matches that of the original data

in figure 5.2.
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Figure 5.4: Distribution of the test statistic (¢) of the surrogate data sets against the test

statistic (¢) of the original signature from axis 3.

Experiment on axis 6 (Figure 5.7) confirms the outcome of the results from axis 3 (Figure 5.4),

and establishes the nonlinearity of the motion current signature with 95% confidence level.

5.6 Summary

The objective of this chapter has been to present a brief introduction to relevant elements of
the time series analysis. In particular we have tried to focus on the idea of the motion current
signature as an unobservable time series. An important issue of the presence of nonlinearity
in the motion current signature has been addressed. Surrogate testing methodology has been
applied to ascertain the presence of nonlinear components in the motion current signature. The
results of the tests on the sample motion current signature are presented and appear to indicate
that the motion current signature are a mixture of linear and stochastic component but with
definite nonlinear components mixed in it. It has been shown that the motion current signature
obtained from a production machine does not have the same distribution as a linear stochastic
process, thus confirming the presence of nonlinear components in the signature. This chapter
concludes that further analysis of the motion current signature must involve nonlinear analysis

to obtain better estimation of the system parameters.

109



5.6 Summary

Current (Amps)

1 i i i 1 1

0 500

i
1000 1500 2000 2500 3000 3500 4000
Time (40 msec)

4500

Figure 5.5: A motion current signature collected from axis 6 of the production machine.
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Figure 5.6: 5 of the 40 surrogate data sets generated for the experiment by directly optimizing

the spectrum of a randomly generated time series such that it matches that of the original data

in figure 5.5.
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Figure 5.7: Distribution of the test statistic (¢) of the surrogate data sets against the test

statistic (¢) of the original signature from axis 6.

The next chapter deals with nonlinearity reduction, so that the linear reverse algorithm (pre-
sented in section 4.9) can be applied on the filtered motion current signature to estimate the

system parameters.
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Chapter 6

Nonlinear noise reduction and

BJEST

6.1 Introduction

After testifying the presence of nonlinearity in the motion current signature in the previous
chapter, the predictive analysis for the real-time predictive maintenance system has to be en-
hanced to incorporate nonlinear behaviour. The broad-band spectrum of signals from nonlinear
systems usually makes traditional linear algorithms incapable of mapping nonlinear behaviour.
Due to this reason many researchers have studied noise reduction methods applicable to non-
linear systems (Davies, 1994; Kostelich and Yorke, 1988, 1990; Kostelich and Schreiber, 1993).
This motivates the enhancement of the reverse algorithm to include nonlinear noise reduction
as a forestep before the linear analysis. In simpler terms, the idea is to reduce the nonlinear
noise of the motion current signature and then apply the linear reverse algorithm, BJEST, to

estimate the values of the machine system parameters (figure 6.1.

In this chapter, section 6.2 details the basics of the nonlinear noise reduction technique. Section
6.3 details the Schreiber noise reduction technique used for reducing the noise from the motion
current signature. Section 6.4 and 6.5 present the results of application of the noise reduction

and linear reverse algorithm technique, respectively.

6.2 Nonlinear noise reduction

The task of noise reduction is a central theme in a wide variety of fields. Methods for optimal
signal/noise separation include linear signal processing techniques such as Wiener filtering and
Kalman filtering as well as nonlinear methods such as manifold decomposition and phase space

projection (Kantz and Schreiber, 2004). There is often a great deal of overlap in the underlying
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6.2 Nonlinear noise reduction

_Tﬂe motion current The data after the nonlinear
signature is honlinear noise reduction is lamely
as shown in chapter 5. linear.

Figure 6.1: The idea behind the application of the nonlinear noise reduction and BJEST tech-

niques in the real-time predictive maintenance system.

concepts on which methods from separate areas are based, and significant improvements in
both understanding and technique may be gained through cross-disciplinary study (Johnson

and Povinelli, 2005).

There are two types of noises:

® measurement noise, which means corruption of data in observation process without inter-

fering with the dynamics itself;

e dynamical noise, which denotes the perturbation of the system coupled to dynamics, oc-

curring at each time step.

The noise reduction technique used for filtering the noisy signal is different for different type
of noise. Owing to the presence of nonlinearity in the motion current signature due to higher
order factors, such as backlash, resonance and friction, this chapter will concentrate on noise

reduction techniques for nonlinear dynamical noise.

Noise reduction means decomposition of a time series value into two components, the sig-
nal and random fluctuations. In nonlinear noise reduction, it is assumed that the data is an
additive superposition of the two different components and these components are distinguish-

able by some objective criterion.

A classical statistical tool for obtaining this distinction is the power spectrum. Random noise
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6.3 Schreiber noise reduction

has a flat, or at least a broad spectrum, whereas periodic or quasi-periodic signals have sharp
spectral lines (Kantz and Schreiber, 2004). After both components have been identified in the
spectrum, a Wiener filter (Kantz and Schreiber, 2004) can be used to separate the time series
accordingly. This approach fails for deterministic chaotic dynamics because the output of such
systems usually leads to broad band spectra itself and thus possesses spectral properties gen-

erally attributed to random noise.

A lot of research has been done in the area of noise reduction pertaining to real-time and
chaotic dynamical systems (Broomhead and King, 1986; Grassberger et al., 1993; Kantz et al.,
1993; Ott, Sauer and Yorke, 1994; Pikovsky, 1986). The simplest nonlinear noise reduction al-
gorithm, which is capable of deterministic and stochastic chaotic dynamical analysis, are based
upon the idea of replacing the central coordinate of each embedding vector by the local average
of the coordinate (Schreiber, 1993b). This amounts to a locally constant approximation of the
dynamics and is based on the assumption that the dynamics is continuous. A noise reduction
algorithm, termed as Schreiber noise reduction (Schreiber, 1993b), has proven to be an effective
reduction technique for the nonlinear data series. The next section explains the technique in

brief.

6.3 Schreiber noise reduction

Schreiber noise reduction couples a noise level determination method and a noise reduction
method. The level of noise in the data is first estimated using the method of Schreiber (1993)
(Schreiber, 1993a), and method of Schreiber (1993b) (Schreiber, 1993b) is then employed to
reduce noise. A brief account of the two methods (noise determination and noise reduction)

used in the present study is presented below.

6.3.1 Noise level determination

The noise level determination method of (Schreiber, 1993a) is derived under the assumption
that the data are samples from a low-dimensional attractor contaminated by noise, which is
Gaussian. A simple analytical expression is derived for the rescaled correlation integral, that is

a function of the noise level as well as the dimension of the underlying chaotic attractor.

The method is based on the correlation integral defined as

' 9 N-—-1 N .
) = 77— ; ; H(r = [z = z;), (6.1)
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6.3:Schreiber noise reduction

where H is the Heaviside step function, and |.| denotes the maximum norm,T'=N-m+1,m

is the embedding dimension, and z; = (@i Tig 1y ooy Tigrmo1)-

The correlation integral counts the number of pairs of points (Y;,Y;) on the attractor whose
distance apart is smaller than r. If the time series is characterized by an attractor, the correla-
tion integral is found to obey a power law with C(ry=7r% asr — 0and N — co. The exponent
d, defined as the correlation dimension of the attractor, can be obtained from the slope of log
C(r) versus log r. The correlation integral measured by the maximum norm for a Gaussian

white noise process with standard deviation o is
C (r) = ?“f(—r )y (6.2)
auss\T e . X
Gaus 2

In fact, the correlation integral can be measured in 3 different ways. Apart from the maximum
norm, the Euclidean norm or a Gaussian Kernel can also be used. Different considerations of

the correlation integral result into different sensitivities on the slope increase.

Which one of the method is preferable for N — oo? None is preferable, according to Schreiber
(Schreiber, 1993a), because all of them, independently from their sensitivity to noise, are de-

signed to give the very same result, which is the noise standard deviation (o).

6.3.2 Noise reduction

Schreiber (Schreiber, 1993b) proposed an extremely simple but robust noise reduction method,
which has been found to be suitable for trajectories contaminated with high noise levels. The

procedure of the method is as follows.

Suppose we have a scalar time series X;,i = 1,2,,N, where the X; are composed of a clean
signal Y; with some noise 7; added so that X; = Y; + 7;. The main idea of the noise reduction
method is to replace each measurement X; by the average value of this coordinate over points
in a suitably chosen neighborhood. The neighborhoods are defined in a (k+ 1+ {)-dimensional
phase space reconstructed by delay coordinates using information on k past coordinates and [

future coordinates given by

YVi=(Xick, Xickgr, -, Xiy oo, Xigi-1, Xig1). (6.3)

The present coordinate of X; is then replaced by X" given by




6.4 Application of the Schreiber noise reduction on the motion current signature
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Figure 6.2: The motion current signature of figure 5.2 after noise filtering using Schreiber noise

reduction technique.

i Cv:*

According to this procedure, only the central coordinate in the delay window is corrected since
only this coordinate is optimally controlled from past and future. The X{°™" values can then
be used to reconstruct the phase space and the procedure can be repeated. Further details on
the selection of the parameters, e.g. the neighborhood size, embedding dimension, are out of

scope of this thesis and can be obtained from Schreiber (Schreiber, 19935).

6.4 Application of the Schreiber noise reduction on the
motion current signature

Schreiber noise reduction technique was applied to the motion current signature collected from

axis 3 of the production machine (figure 5.2) and the filtered signal is shown in the figure 6.2.

The values of the delay (7), embedding dimension and radius were set to the minimum possible

of 1, 2 and 0.1 respectively (Kantz and Schreiber, 2004).
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Figure 6.3: 5 of the 40 surrogate data sets generated for the experiment by directly optimizing
the spectrum of a randomly generated time series such that it matches that of the original data

in figure 6.2.

As already mentioned in section 6.2, the nonlinearity in the motion current signature is due to
dynamical noise. Clearly, if the filtered signature (figure 6.2) is found to be linear, it can be
concluded that the noise reduction algorithm has removed all or most of the nonlinear dynam-

ical noise.

The capability of the Schreiber noise reduction algorithm to reduce nonlinear noige from the
motion current signature was tested using the same procedure as section 5.5. The original
signature used in this case was the filtered signature shown in figure 6.2. Figure 6.3 shows 5 of
the 40 generated surrogate data sets and figure 6.4 presents the distribution of the test statistic

for surrogate data sets. The vertical line denotes the test statistic for the original signature.

According to figure 6.4, the test statistic Ty of the original filtered signature is drawn from the
same distribution of the test statistic T, of the surrogate data sets. Figure 6.4 highlights that
the filtered signature failed to contradict the null hypothesis, establishing that it has reduced
or no nonlinear noise component. Thus, the linear reverse algorithm can be used for estimating

machine system parameters using filtered motion current signature.

The experiment was then repeated using the motion current signature from axis 6 of the pro-

duction machine. The experiment is detailed as follows:
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Figure 6.4: Distribution of the test statistic (@) of the surrogate data sets against the test

statistic (¢) of the original filtered signature of axis 3.

e Figure 6.5: The filtered signature generated using the Schreiber noise reduction tech-

nique on the original signature of figure 5.5.
e Figure 6.6: The surrogate data sets generated using the filtered signature of figure 6.5.

e Figure 6.7: The distribution of the test statistic of the surrogate data sets (figure 6.6)

plotted along with the value of the test statistic of the original signature of figure 6.5.

The results of figures 6.4 and 6.7 re-confirm the belief that the motion current signature col-
lected from the production machine has nonlinear dynamical noise which can be filtered to

result into a mostly linear signal using Schreiber noise reduction technique.

The reverse algorithm, developed in section 4.9, was applied to the filtered signature to ob-
tain the values of the system parameters. The next section shows the results of the application
of the reverse algorithm (BJEST) after the reduction of noise using the Schreiber noise reduc-

tion technique on the motion current signature.

6.5 Results of the application of linear reverse algorithm

Data used for enhanced reverse algorithm testing was same as the one used in section 4.10, in

which the reverse algorithm was applied on the data collected from the production machine for
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Figure 6.5: The motion current signature of figure 5.5 superimposed on the filtered signature.

The noise filtering was performed using the Schreiber noise reduction technique.
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Figure 6.6: 5 of the 40 surrogate data sets generated for the experiment by directly optimizing
the spectrum of a randomly generated time series such that it matches that of the original data

in figure 6.5.
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Figure 6.7: Distribution of the test statistic (¢) of the surrogate data sets against the test

statistic (¢) of the original filtered signature of axis 6.

validation and verification of the simulation model. Table 4.5 shows the results obtained by
using the reverse algorithm on non-filtered motion signature. It is apparent from table 4.5 there
were significant fluctuations in the predicted values of the system parameters when the input
to the reverse algorithm was a noisy nonlinear motion current signature. The inconsistency in
the predicted values was due to the fact that a linear reverse algorithm was applied to the noisy
nonlinear data. The presence of fluctuations in the predicted values can, to a large extent, be

attributed to the nonlinearity of the input signature.

Table 6.1 highlights the results obtained using the reverse algorithm after the motion current
signature is filtered using the Schreiber noise reduction technique. The results shown in table
6.1 were computed by filtering the noisy nonlinear motion current gignature using Schreiber
noise reduction technique and then reverse algorithm was applied to compute the values of the

system parameters.

The values of the system parameters, indicated in tables 4.5 and 6.1, were then plotted
to demonstrate the prediction fluctuations (figures 6.8, 6.9 and 6.10) for inertia, friction torque

and gravitation torque.

Figures 6.8, 6.9 and 6.10 show that the fluctuations in the predicted values are very low when

the reverse algorithm is applied after filtering the noise out of the data using the Schreiber
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Table 6.1: Results obtained by applying reverse algorithm to the filtered signatures of axis 3 of

the production machine. One of the signatures used for the experiment is shown in figure 4.

Load
Total Inertia Friction | Gravitational
Data Inertia J —0.00068 | Torque Torque
Set | (J) kgm? kgm? (F) Nm (G) N-m
1 0.0123 0.01162 0.2986 0.0503
2 0.0124 0.01172 0.2948 0.0507
3 0.0123 0.01162 0.2999 0.0501
4 0.0123 0.01162 0.2908 0.0520
5 0.0124 0.01172 0.2967 0.0516
6 0.0123 0.01162 0.2943 0.0525
0014 T T T H T T 1 T T
0012 oo s
0.01F b
“g 0.008F .
g
g
€
2o0.006f .
0.004 -
""" BJEST inertia estimation
— Enhanced BJEST inertia estimation
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O i | 1 i 1 i i 1 | ;
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Figure 6.8: Inertia estimates using linear reverse algorithm compared to the estimates using
enhanced reverse algorithm. The graph shows the variation in the inertia for twelve different

data measurements, referred to as data sets.
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Figure 6.9: Friction estimates using linear reverse algorithm compared to the estimates using
enhanced reverse algorithm. The graph shows the variation in the friction for twelve different

data measurements, referred to as data sets.
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Figure 6.10: Gravity estimates using linear reverse algorithm compared to the estimates using
enhanced reverse algorithm. The graph shows the variation in the gravity for twelve different

data measurements, referred to as data sets.
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6.6 Summary

noise reduction technique. Due to the reason that the machine system parameters have not
changed during the operation cycle of the machine, a constant single value prediction over var-
lous machine operation cycle would prove that the estimation of the parameters is accurate.
Lower variation in the predicted values of the parameters after the reverse algorithm is applied
following noise reduction proves that the predictive capability of the real-time predictive main-

tenance system has improved by using this technique.

6.6 Summary

The focus of this chapter has been the nonlinear noise reduction of the motion current signature
after the previous chapter confirmed the presence of the nonlinear components in the motion
current signature. The noise reduction technique was explained in brief followed by application

to the motion current signature collected from a real production machine.

It has been argued that if the filtered data, obtained after noise reduction of the motion cur-
rent signature, is tested against the null hypothesis adopted in chapter 5, we should be able
to determine the success of the noise reduction technique. The motion current signature were
then filtered and tested against the hypothesis that the data is derived from a linear stochastic
process. Surrogate data testing did not reject the hypothesis confirming that the data belongs

to a linear process and there was little or no nonlinear component in the filtered data.

The machine system parameters were then estimated using the filtered data and it was found
that the predictions obtained by such a method were more accurate and consistent than the
ones obtained in chapter 5, where noisy motion current signature was used. This has proven
that the new improved reverse algorithmic technique, Schreiber noise reduction followed by
BJEST, is capable of defining the framework of the real-time predictive maintenance system.
These techniques put together will also eliminate the requirement of any training data, thereby

overcoming the problem of lack of micro-dynamical capabilities of the simulation model.
This chapter concludes the applications and results section of this thesis. The following and

final chapter brings the thesis to a close by providing a summary of the key findings uncovered

during the course of this project.
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Chapter 7

Conclusions

7.1 Introduction

In the first and second chapter of this thesis, the concept of the real-time predictive mainte-
nance system was promoted. The model was based upon the idea that the armature current of

the DC servo motor depends upon the machine system parameters according to the relation:

(JM-{—JL)%:— +Dw+TJ+TL
14 = .
Kr

(7.1)

In the third chapter of this thesis the proof of concept of the real-time predictive maintenance
system was performed. Chapter 4 was dedicated to the design, implementation, validation and
verification of the simulation model to be used for generating the training data. Chapter 5
and 6 of this thesis were focussed on the use of the nonlinear time-series analysis techniques,

including testing for nonlinearity and nonlinear noise determination and reduction.

7.2 General overview

The results of the machine parameter estimation were very successful. This thesis has described
the use of a variety of novel, real-time, processing techniques to estimate machine system
parameters using motion current signature. The key results of this thesis are summarised

below:

e It has been demonstrated through the use of neural networks and nonlinear time series
approaches that there is a predictive relationship between the motion current signature
and the machine system parameters. The high accuracy (97.59%) of the proof of concept
experiment showed the possibility of extracting machine system parameter information

from the motion current signature.




7.3 System setup

e A simulation model, TuneLearn, was developed to cater to the training data requirement
of neural networks. The simulation model was capable of mapping the motion current sig-
nature against the machine system parameters. The inputs of the simulation model were
the motion profile, the motor-amplifier parameters, the tuning configuration, the load
information and the machine system parameters. The output were the motion current
signature and the motion velocity feedback. The validation and verification experiment
was conducted to ascertain confidence in the simulated training data, which demonstrated

the macro-dynamical simulating capabilities of the simulation model.

A linear reverse model, BJEST, was designed to estimate the machine system parame-
ters using the motion current signature, as an alternative to the use of neural networks

approach.

Surrogate data testing of the motion current signature, collected from a production ma-
chine, highlighted the nonlinear nature of the signatures. This confirmed the belief that
the if the nonlinear noise of the motion current signature could be reduced or removed,
the " clean” signal would be an ideal input for the linear reverse algorithm due to its linear

nature.

The nonlinear noise reduction technique developed by Schreiber (Schreiber, 1993¢,b) was
adopted to filter the motion current signature. It is shown that the filtered signature
had little or no nonlinear component, supporting the belief that the filtered signature is

a perfect input for the linear reverse algorithm.

The reverse algorithmn was applied to the filtered data to extract machine system pa-
rameter information and the results were very successful. We were able to find that the
estimation obtained using the reverse algorithm following noise reduction were consistent

and accurate.

7.3 System setup

The development of the real-time predictive maintenance has focussed on minimum setup re-

quirements. The system setup only requires serial interfacing between the computer and the

motor-drive system. All the maintenance calculations are mathematical and are conducted by

the computer using basic mathematical toolkits. The output of the estimation calculations

are displayed in a customised graph, depicting a real-time variation of the parameter. A basic

outline of the setup procedure is shown in figure 7.1.
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Figure 7.1: A basic outline of the system setup from a technician’s point of view. All the

estimation calculations are performed by the computer.

Figure 7.1 shows the serial port interface between the computer and the motor-drive system.
The estimation and display results are shown to be the output of the calculations performed

by the computer program.

7.4 Future work

As the machine predictive maintenance in real-time is such an important requirement, the
potential for further research in this area is enormous. Similarly, there has been a corresponding
explosion of interests in the general class of motion current signature analysis. In applying the
motion current signature analysis to the predictive maintenance requirement of the machine
systems using neural network and nonlinear time-series techniques, this work has been an
attempt to bridge the gap between the two areas of research. While we feel that we have
made some headway in this direction, there undoubtedly exists numerous avenues in which
the research described in this thesis may be improved and extended. Possible extensions may
be divided into two categories: additions and modifications to the technique itself, and the

development of the technique for other systems.

7.4.1 Methodological extensions

There are a number of areas where improvements could be made to obtain improved under-
standing and results of the real-time predictive maintenance system. They are listed in order

of their appearance in this thesis as follows:

e Even though the neural network approach has not been adopted as the final solution
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recommended by this thesis, the approach holds keys to enormous amount of possible
extensions to the proposed framework. The disadvantage associated with the use of the
neural network has been the vast requirement of the training data, which led this research
to explore avenues of simulation modelling. However, it is believed that the use of a single
neural network model for estimating each machine system parameters would reduce the
training data requirement. Additionally, other promising neural network techniques, such
as the bayesian approach, should be considered to benchmark the most useful neural

network technique for the system.

e The definition of the micro-dynamical structure of the motion current signature could
answer a lot of key questions associated with the motion current signature analysis. Such
a knowledge would not only help in the correction of the simulation model, but also
lead to the possibility of development of a nonlinear reverse algorithm. This nonlinear
reverse algorithm could be used to map the motion current signature to the corresponding

machine system parameters value, without the use of any neural network approach.

e The proposed technique has been shown to be effective in a controlled production en-
vironment. However, a rigorous laboratory and industrial testing for the technique for

correctness is desirable prior to its deployment for practical purposes.

7.4.2 Practical applications

The thesis has primarily focussed on the real-time predictive analysis of the DC motor. How-
ever, it is easy to foresee that the proposed system of nonlinear analysis based estimation could

be applied for predictive advantages of other equipment, such as transformers and generators.

The main assumption in the implementation of the real-time predictive maintenance system
has been the fact that the torque producing current is directly proportional to the torque. The
proportionality assumption has created a direct relationship between the machine system pa-
rameters and the current signature as shown in equation 7.1, which fits into the operational
domain of brushless servo type of DC motors. However, the system can also be extended to the
maintenance of other types of motors, in addition to the brushless servo type of DC motors,
which do not strictly obey equation 7.1. For example, the current and torque relation for an
induction motor is non-linear. However, using the nonlinear time series techniques, explained
in chapter 6, some or all of these nonlinearities can be eliminated. The filtered motion current
signature from the induction motor then acts as an input for the real-time predictive mainte-

nance system.
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Journals

This appendix presents all the journals published as part of this research for reference purposes.

The journals have not been referenced anywhere in the main text to avoid any linking confusions.
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