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SUMMARY

The purlin-sheeting system has been the subject of numerous theoretical and experimental
investigations over the past 30 years, but the complexity of the problem has led to great
difficulty in developing a sound and general model. The primary aim of the thesis is to
investigate the failure behaviours of cold-formed zed and channel sections for use in purlin-
sheeting systems. Both the energy method and finite strip method are used to develop an
approach to investigate cold-formed zed and channel section beams with partial-lateral

restraint from the metal sheeting when subjected to a uniformly distributed transverse load.
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The stress analysis of cold-formed zed and channel section beams with partially-lateral

restraint from the metal sheeting when subjected to a uniformly distributed transverse load is
investigated firstly by using the analytical model based on the energy method in which the
restraint actions of the sheeting are modelled by using two springs representing the
translational and rotational restraints. The numerical results have showed that the two springs
have significantly different influences on the stresses of the beams. The influence of the two

springs has also been found to depend on the anti-sag bar and the position of the loading line.
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A novel method is presented for analysing the elastic local buckling behaviour of cold-formed
zed and channel section beams with partial-lateral restraint from metal sheeting when
subjected to a uniformly distributed transverse load, which is carried out by inputting the
cross sectional stresses with the largest compressive stress into the finite strip analysis. By
using the presented novel method, individual influences of warping stress, partially lateral
restraints from the sheeting and the dimensions of the cross section and position of the

loading line on the local buckling behaviour are investigated.

The semi-analytical finite strip method is presented to investigate the buckling behaviour of
the cold-formed steel zed and channel section beams when subjected to different loads. The
focus of the study is on local and distortional buckling, for which existing results are only for
sections subjected to pure compression and/or pure bending. The results obtained from this
study have shown that, for local buckling there is no practical difference in the critical loads
between pure bending and uniformly distributed loading. For distortional buckling, however,
remarkable differences are found. The critical load for the uniformly distributed load is
generally higher than that for the pure bending. The difference between these two loading

cases is found to decrease with the beam length.

An analytical model is presented for predicting the lateral-torsional buckling of cold-formed
zed and channel section beams, partial-laterally restrained by metal sheeting, subjected to
uniformly distributed transverse loading with various boundary conditions. The individual
influences of restraints provided by the sheeting and by interval anti-sag bars, boundary
conditions, warping stress, loading position and the dimensions of cross section on the lateral-
torsional buckling behaviour of the beams have been investigated. Further development of the
analytical model is carried out to determine the load capacity for the lateral-torsional buckling
of statically indeterminate zed purlins (a single span beam with one or two ends fixed), with
partial lateral restraint from metal sheeting, when subjected to a uniformly distributed uplift
load. The model takes account of the influence of the “softening” of the section stiffness due
to local buckling and/or local material yielding. The analytical model developed in this paper,
together with the numerically or experimentally obtained curves describing the local stiffness
softening, can be used to determine the critical load for lateral-torsional buckling of the

statically indeterminate purlin.

Keywords: cold-formed steel, local buckling, distortional buckling, lateral-torsional

buckling, thin-walled.
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Chapter 1

1 INTRODUCTION

1.1 GENERAL BACKGROUND

Cold-formed steel members are widely used as purlins or rails, the intermediate
members between the main structural frame and the corrugated roof or wall sheeting,
in buildings for farming and industrial use. Trapezoidal sheeting is usually fixed to
these members in order to enclose the building. The shape of the cross-section of the
members is mostly that of zed, channel or sigma. These types of cross-section are
inherently sensitive to local, distortional, and lateral-torsional buckling. As a result of
current trends, these sections are becoming more slender and more highly stiffened

and therefore more prone to local and distortional buckling.

Historically, the load-bearing capacity of purlins and sheeting rails has generally been
determined by carrying out full-scale testing (Moore, 1988; Rhodes, 1991; Trahair,
1993; Laine & Tuomala, 1999). However, the proliferation of new cladding systems,
including those which offer little restriction to the supporting purlins (standing seam
roofs, clip fix systems, etc.) requires that analytical design procedures should be
developed. This is a problem that has not been addressed in British Codes of Practice
(Leach & Robinson, 1993).

The recent Eurocode publication (EC 3: Part 1.3, 1996) presents a method which
enables the designer to evaluate the ultimate load capacity of a purlin system. The
method is largely based on the research work carried out in The Netherlands (Toma &
Soetens, 1987), Germany (Schardt, 1982) and France (Sokol, 1979 & 1996). The
method requires only a limited amount of small-scale testing to evaluate the lateral
and torsional restraints offered by the roof cladding system to the purlin itself.
Different end conditions are dealt by means of the effective length concept. Anti-sag
bars are treated in a similar manner. The load tables calculated from EC3, however,

have been found to be on average 20% to 25% less than those based on full-scale



testing (Leach & Robinson, 1993; Toma & Wittemann, 1994) and those obtained
from finite strip analysis (Hancock, 1997a; Ye et al.,, 2002 & 2004). This implies that
the method suggested in EC3 is rather conservative. Although any design method
should be a conservative estimate of the true behaviour of a member, it is clear that,
with an inherent conservatism in the design method of up to 30%, the method still
needs considerable refinement before it becomes an acceptable and economical
replacement for full-scale testing. In addition, the calculation method does not include
the case where the beam is overlapped over interior supports (i.e., the sleeved system
which is widely used today). The overlapping of beams results in an increase of
stiffness in the overlap zone which can enhance the load capacity of the system, as has

been demonstrated experimentally by Ghosn and Sinno (1995).

Cold-formed steel members have been increasingly used recently in various buildings
because of the advantages such as lightness, high strength and stiffness, fast and easy
erection/installation, economy in transportation and handing. Although it is not yet so
evident in the UK, in other parts of the developed world there is an extremely rapid
development in the use of cold-formed framing systems for houses and other low-rise
construction (Davies, 2000). It was reported that, in the USA, about 500 homes were
built in light gauge steel in 1992, which increased to 15,000 in 1993 and 75,000 in
1994, while by 2002 the increase has reached to a further five-fold.

The cross-sections of thin-walled members consist usually of relatively slender parts.
Instead of failure through material yielding, compressed parts tend to loose their
stability. Steel sections may be subject to one of three basic types of buckling, namely

local, distortional and global.

The term global buckling (or long mode buckling) embraces flexural buckling,
torsional and flexural-torsional buckling and lateral-torsional buckling. The half-wave
lengths of these modes are of the order of magnitude of the length of the member.
Rigid body movements of the whole member characterize global buckling such that
individual cross-sections rotate and translate but do not distort in shape. Local and
distortional buckling are sometimes called sectional buckling because they depend
very much of the geometry of the cross-section. Local buckling is characterized by

relatively short half-wave length of the order of magnitude of individual plate



elements and the displacements only perpendicular to plane elements and
redistribution of stresses while the fold lines remain straight. In this mode the shape of
the section is only slightly distorted, because only rotations at plane element junctures
are involved. Distortional buckling occurs at a half-wave length intermediate to local
and global mode buckling. The half-wave length is typically several times larger than
the largest characteristic dimension of the cross-section. Distortional buckling
involves both translation and rotation at the fold lines of a member leading to a

distortion of the cross-section.

With the increasing use of higher strength steels it is inevitable to reduce the thickness
of the section and therefore considerations of local stability lead logically to the
development of highly stiffened sections with more folds and rolled in stiffeners. The
consequence of this is that design procedures are becoming more complicated and
engineers will experience difficulty if they try to obtain results by hand calculation. In
addition, some cases may arise which are not adequately covered by the available
codes or where the codes are over-conservative and more efficient designs can be

obtained by improving the design procedure (Davies, 2000).

1.2 BACKGROUND OF THE PROJECT

The purlin-sheeting system has been the subject of numerous theoretical and
experimental investigations over the past 30 years, but the complexity of the problem
has led to great difficulty in developing a sound and general model (Rhodes, 1991;
Pekoz, 1999; Davies, 2000). The complexity shows itself in three main aspects.
Firstly, the purlin is either a channel or zed section, which is not doubly symmetric,
with very thin thickness and therefore the failure mode could be either a local
buckling at short half-wavelengths, or a lateral-torsional buckling at long half-
wavelengths, or even a distortional buckling at intermediate half-wavelengths.
Interactions between these buckling modes and between buckling and yielding may
also occur. Secondly, the nature of the purlin-sheeting connection makes the shear and
rotational stiffness provided by the sheeting to the purlin difficult to quantify. The
rotational stiffness, in particular, varies with sheeting type, purlin type and

dimensions, screw spacing, and other connection details. Thirdly, most pulins are



fixed with cleats by bolt connection at each end through their web, which behave
neither as simply supported nor as fixed boundaries. Although existing whole-section
models based on the finite strip method (FSM) (Hancock, 1997a; Schafer, 2001c &
2003a) or on the generalized beam theory (GBT) (Davies, 2000) using half sine wave
displacement functions are very effective in dealing with local and distortional
buckling and the interaction between them, they are not very suitable for handling
lateral-torsional buckling, particularly where anti-sag bars are present because the
influence of end boundary conditions and point supports provided by the anti-sag bars

is not appropriately treated in these methods.

In addition, bifurcation analyses in finite strip method and GBT only provide the
critical stress for elastic buckling of the beams with pure bending and/or pure
compression. For economic design, it is necessary to consider the moment gradient
along the longitudinal axis of the beam (that is, the uniformly distributed load rather
than the uniformly distributed stress). In most current design codes, the design focus
is placed on the local buckling behaviour. This may be correct for beams that are
laterally restrained by either cladding and/or anti-sag bars. For beams that have little
or no lateral restraints the failure of the beams is likely to be dominated by the lateral-
torsional and distorsional buckling. Therefore, how to quantity the influence of the
lateral restraints on the lateral-torsional buckling of the beams becomes critical for

providing economic design of a purlin sheeting system.

1.3 AIMS OF THE THESIS

The primary aim of the thesis is to investigate the failure behaviours of cold-formed
zed and channel sections for use in purlin-sheeting systems. The main task is to
develop an approach to investigate cold-formed zed and channel section beams with
partially-lateral restraint from metal sheeting when subjected to a uniformly

distributed transverse load.

The main aim can be subdivided into further sub-sections:
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. To develop an analytical model based on the energy method for the stress

analysis of cold-formed steel zed and channel sections within purlin-sheeting

systems.

To study the elastic local buckling behaviour of cold-formed steel zed and
channel sections by introducing a novel approach by use of the method
described in (1) and the finite strip method. To review the existing design
specifications and to compare the relevant clauses with results obtained by the

presented approach.

To examine the local and distortional buckling behaviour of cold-formed steel

zed and channel section beams by using the semi-analytical finite strip method.

To investigate the elastic lateral-torsional buckling of cold-formed steel zed

and channel sections using the analytical model based on the energy method.

To study inelastic lateral-torsional buckling of cold-formed steel zed and
channel sections by developing a spring model to simulate the local softening

of the section stiffness due to local buckling and/or local material yielding.
To study the effects of various factors, such as, dimensions of cross-sections,

internal and external restraints, warping stress, loading positions and span

lengths, on the behaviour of cold-formed steel zed and channel beams.

ORDER OF PRESENTATION

The main body of the thesis contains the introduction, a literature review of previous

research, the theoretical (based on energy method) and numerical (design

specifications, finite strip method) investigations, recommendations, and conclusions.

There are four appendices which include more comprehensive descriptions.

Chapter 2 provides an introduction to the characteristics of cold-formed steel

structures, including aspects such as the buckling behaviour and the developments in



technology and application, past research on local buckling, distortional buckling and
lateral-torsional buckling, and the examination of existing approaches for research and

development.

The stress analysis of cold-formed zed and channel section beams is described in
Chapter 3. The investigations are carried out based on the analytical method which
provides the full formulations for calculating the longitudinal stresses due to bending
and warping. The effects of various restraints on the pre-buckling stress are also

studied.

In Chapter 4, the local buckling behaviours of cold-formed steel zed and channel
sections are studied. The basic design process of BS 5950 (1998) and finite strip
method-CUFSM (Schafer, 2001c & 2003a) are introduced and three types of loading
conditions are considered. A novel model based on the combination of energy method
and finite strip method is presented to investigate the local buckling behaviour of the

purlin-sheeting systems.

An investigation on the buckling behaviour of the cold-formed steel zed and channel
section beams when subjected to different loads using a semi-analytical finite strip
method is presented in Chapter 5. The focus of the study is on the local and
distortional buckling, while existing results are available only for sections subjected to

pure compression and/or pure bending.

An analytical model for predicting the elastic lateral-torsional buckling of cold-
formed zed and channel section beams partial-laterally restrained by metal sheeting
when subjected to a uniformly distributed load is discussed in Chapter 6. The effects
of warping stress, boundary conditions, internal supports and loading positions on

lateral-torsional buckling are studied.

A novel analytical model is presented in Chapter 7 for predicting the lateral-torsional
buckling of statically indeterminate zed section purlins. The model together with
experimentally or numerically obtained stiffness softening curves for local buckling
or local material yielding can be used to determine the critical load of lateral-torsional

buckling of the purlin with statically indeterminate boundary conditions.



Conclusions drawn from the work that has been done during this research project and

future work on this topic are given in Chapter 8.

In addition to the chapters in the main body of this thesis, there are four appendices
dealing with various topics, as noted by the appendix heading in the contents. In
Appendix 1, the basic theory and formulations used in the finite strip software
CUFSM and the present semi-analytical finite strip program are described, including a
version of CUFSM modified by the thesis author. The expressions of sectional
properties for zed and channel sections are presented in Appendix 2. MATLAB
programming Scheme for the analytical model based on the energy method for
investigating cold-formed steel zed and channel section beams partially-lateral
restrained by the metal sheeting is presented in Appendix 3. Finally, several papers
that have been published or submitted based on the work in this thesis are listed in

Appendix 4.



Chapter 2

2 LITERATURE REVIEW

2.0 CHAPTER SYNOPSIS

The following chapter provides an introduction to the characteristics of cold-formed
steel structures, including aspects such as the buckling behaviour and the

developments in technology and application.

In particular, this chapter reviews the previous research in the occurrence of local
buckling, distortional buckling and lateral-torsional buckling and examines existing

approaches for research and development.

It is a consequence of the increasing complexity of section shapes that local bucking
calculations are becoming more complicated and that distortional buckling takes on
increasing importance. Whereas much has been written about local and lateral
buckling, and codes of practice for the design of structural steelwork contain the
relevant clauses, distortional buckling and lateral-torsional buckling are less well
known and less well documented. This, however, should not be taken as an indication

of its lack of importance.



2.1 INTRODUCTION

The major research developments in cold-formed steel structures over the recent years
as published in leading journals on steel structures and thin-walled structures are
reviewed and summarized by Hancock (1997 & 2003), Rondal (2000) and Davies
(2000) which provide the latest information on developments in, and the design of
cold-formed steel structural members and sections. Hancock summarizes the
publication and development of the American Iron and Steel Institute Specification
for the design of light gauge cold-formed steel structural members (1996, 1999,
2001), publication of the CEN document Eurocode 3, Part 1.3 for cold-formed thin
gauge members and sheeting (1996), and the publication of the Australian/New
Zealand Standard AS/NZS 4600:1996 for cold-formed steel structures (1996). The
general report by Rondal (2000) deals with stability problems of cold-formed
members, and joints between cold-formed. The paper by Davies (2000) includes
developments in cold-formed section technology, developments in applications, and
developments in design procedures for cold-formed sections, current design models

and their deficiencies, and design using whole-section models.

2.2 COLD-FORMED STEEL SECTIONS

2.2.1 Characteristics Of Cold-Formed Steel Sections

2.2.1.1 Peculiarities

In general, cold-formed steel structural members provide the following advantages in
building construction (Yu, 1985):

» As compared with thicker hot-rolled shapes, cold-formed light members can be
manufactured for relatively light loads and/or short spans;

= Unusual sectional configurations can be produced economically by cold-forming
operations and, consequently, favourable strength-to-weight ratios can be

obtained;

* Nestable sections can be produced, allowing for compact packaging and shipping;



= Load-carrying panels and decks can provide useful surfaces for floor, roof, and
wall construction, and in other cases, they can also provide enclosed cells for
electrical and HVAC conduits;

= Load-carrying panels and decks not only withstand loads normal to their surfaces,
but they can also act as shear diaphragms to resist force in their own planes if they

are adequately interconnected to each other and to supporting members.

Compared with other materials such as timber and concrete, the cold-formed steel

structural members have the following qualities:

» Lightness;

= High strength and stiffness;

* Ease of prefabrication and mass production;

= Fast and easy erection and installation;

= Substantial elimination of delays due to weather;

= More accurate detailing;

* Nonshrinking and noncreeping at ambient temperature;
*  Uniform quality;

« Economy in transportation and handling.

However, because cold-formed members are usually thin-walled, special care must be
given to design. Compared to classical hot-rolled sections, they are characterized by

some peculiarities, e.g.:

= Large width to thickness ratios;

= Singly symmetrical or unsymmetrical shapes;

* Unstiffened or partially unstiffened parts of sections, which can lead to
complicated buckling problems;

* Combined torsional and flexural buckling;

* Local plate buckling;

» Distortional buckling;

= Interaction between local and global buckling;

= Fire resistance,...
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Also, connections must be designed with care because of the thinness of the members

that can lead to local failures.

For these reasons, dedicated specifications have been published in United States first,
followed in Europe, Australia and in other countries to cover these important

questions.

2.2.1.2 Materials

The type of steel used should be suitable for cold-forming and, if required, for
galvanising. For cold-formed sections and sheeting it is preferable to use cold-rolled
continuously galvanized steel with yield stresses in the range of 280-320-350 N/mm?,
and with a total elongation of at least 10% for a 12.5 mm wide strip, referred to a
gauge length 80 mm, and a ratio of ultimate tensile strength to yield stress of at least
1.1

Under normal conditions, zinc protection Z275 (275 g/m?) is sufficient; in more
corrosive environments, improved protection using suitable coating systems may be
necessary. Continuously applied zinc protective coating systems are generally limited
in core thickness to about 3.5 mm. For increased material thickness, hot-dip

galvanizing and site- or shop-applied top coats may be used.

2.2.1.3 Mechanical properties

Thin-walled steel sections are fabricated by means of folding, press-braking of plates
or cold-rolling of coils made in carbon steel. Cold-forming techniques allow the
geometrical properties of a shape to be readily varied. It is possible, therefore, to
influence the load-bearing behaviour of the element with respect to strength, stiffness
and failure modes by, for example, the introduction of intermediate stiffeners or by

ensuring adequate width-to-thickness ratios in adjacent flat parts of the section.

For these members which are now very frequently used in modern steel construction,
the initial o—¢ relations of the steel are considerably changed by the cold-straining due
to the manufacturing processes. Fig.2.1 shows the modification of the o—¢ diagram
when a carbon steel specimen is first strained beyond the yield plateau and then

unloaded. If strain aging is now very rare, or at least limited, with modern steels, the
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cold-straining however modified the apparent c—¢ diagram which is pertinent for

cold-formed steel members.

However, the stain-hardening can vary considerably along the cross-section due to the
forming process shown in Fig.2.2. When a steel section is cold-formed from flat sheet
or strip, the yield strength, and to a lesser extent the ultimate strength, are increased as
a result of this cold working, particularly in the bends of the section. The yield and
ultimate strength are unaffected in the area where little cold work has taken place and
the strength is much higher in the corners, which have been strongly cold-worked in
the forming process. Many authors have investigated the influence of cold work on
the distribution of the yield strength along the cross-section (Karren 1967; Karren &
Winster, 1967; EC 3, 1996).

2.2.2 Developments In Cold-Formed Section Technology

As a “high-tech” product, a cold-formed steel section is more open to development
than its more mundane hot-rolled counterpart. This section reviews some recent

developments which have been summarised by Pekoz (1999) and Davies (2000).

2.2.2.1 Trend to higher quality steels

The trends to higher quality steel is primarily seen in an increased yield stress and
there has been a continuing increase in the yield stress of typical mass-produced
products such as purlins, sheeting and decking in recent years. The steel used for such
applications now typically has yield stress in the range 280 to 550 N/mm?”. This trend
of increasing yield stress is likely to continue. There are also some steels available
with ultra-high yield stress. These are generally only economic for special
applications such as lightweight bridges for the military. Hoglund (1995) discusses
the welding of quenched and tempered (QT) steel produced in Sweden with yield
strength up to 1100 N/mm?. The application of steels with a very high yield stress is
often limited by considerations of stiffness and Nippon Steel in Japan is reputed to
have produced steels with a 30% increase of Young’s modulus in the direction of
rolling though with a corresponding decrease in the transverse direction. Steels with
better fire resistance, including less creep at elevated temperature, are also being

introduced.
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2.2.2.2 Trend to more complex section shape

The use of higher strength steels is inevitably accompanied by a reduction in
thickness and considerations of local stability lead logically to the development of
highly stiffened sections with more folds and rolled in stiffeners. This trend can be
conveniently illustrated by the development of sections for purlins. Early purlin
shapes were simple lipped channels and Zed sections. As shown in Fig.2.3, the simple
channel has evolved into Multibeam Marks I, II and III, the last having a compound
lip. A similar trend can be seen in the evolution of Zed into the Zeta and Ultrazed

shapes.

A similar evolution can be obtained in cassette sections with stiffened flanges and
webs, the (perforated) uprights in pallet racks, slotted wall studs and the 2" and 3"
generation decking profiles. The use of high strength steels in thinner, highly stiffened

sections inevitably leads to more demanding design requirements.

2.2.2.3 Better corrosion resistance

Undoubtedly, one of the primary reasons for the increase in the practical usage of
cold-formed sections is improved corrosion resistance. This is the result of improved
galvanising and other coating technology, bearing in mind that the protective coating
system is undamaged by the cold-forming process. There is also an increasing use of
cold-formed stainless steel. A 12% chromium steel with no nickel has been used for
housing in Japan. This steel does not have the shiny surface usually associated with

stainless steel but is less prone to rust.

2.2.2.4 Improved rolling and forming technology

Modern rolling lines are generally computer controlled from the design office so that
not only can highly accurate complex shapes of precise lengths be produced to order
but also holes, perforations and slots (e.g. web openings for services) can be punched
in precise positions during the rolling process. A significant recent development is the

automatic end forming of beams at the time of rolling.
The rolling of transverse stiffeners in the wide top flange of 3™ generation decking

profiles, has been available for some time. Similar technology allows the rolling of

vertical web stiffeners in beam sections. Even more complex sections may now be
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formed in two or more parts in which the individual parts are formed and assembled
using high frequency welding in a single operation. This may involve the combination

of different material qualities and thickness in a single component.

2.2.2.5 Improved connection technology

Because of the comparative thinness of the material, connection technology plays an
important role in the development of structures formed using cold-formed sections.
The conventional methods of connection, such as bolting and arc-welding are, of
course, available but are generally less appropriate and the emphasis is on special
techniques more suited to thin material. Long-standing methods for connecting two
elements of thin material are blind rivets and self-drilling, self-tapping screws. Fired
pins are often used to connect thin material to a thicker supporting member. More
recently, clinching technology (Davies et al., 1996) has been taken from automotive
industry and applied to building construction. An even more recent and significantly
stronger innovation is the “Rosette” (Makelainen & Kesti, 1999; Pasternak &
Komann, 1999).

2.2.3 Developments In Applications

The use of cold-formed steel members in building construction began in the middle of
the eighteenth century in the United States and United Kingdom. However such steel
members were not widely used as structural members until around 1946 and the
publication of the first edition of the “Specification for the Design of Light Gauge
Steel Structural Members” by the American Iron and Steel Institute (AISI). Since that
period, thousands of researches in the field have led to a wide use of cold-formed

metal elements in all types of buildings.

Historically, the main applications have been such elements as: purlins and sheeting
rails and associated components; cladding and decking; pallet racking and shelving
etc. The developments in technology outlined above are all applicable to components
of this type and their evolution will undoubtedly continue. However, the main current
and foreseeable developments are in a rather different sphere which have been

summarised by Davies (2000).
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2.2.3.1 Applications in residential and other low-rise buildings

Although this is not yet so evident in Europe, in other parts of the developed world
there is an extremely rapid development in the use of cold-formed framing systems
for houses and other low-rise construction. This development is being led by the USA
where the rise may be said to be "exponential". Pekoz (1999) states that, in the USA,
about 500 homes were built in light gauge steel in 1992. This number rose to 15000 in
1993 and 75000 in 1994. A further five-fold increase was estimated by 2002. The
primary framing elements for this form of construction are cold-formed steel wall
studs and floor joists. Light gauge steel roof trusses or rafters are also used. There is a
vast amount of literature on the subject, a good deal of which is summarised in the
"Residential Steel Framing Manual" published by the American Iron and Steel
Institute [AISI, undated].

Surprisingly, this major evolution has been accompanied by little development in
cold-formed section technology. The majority of steel framing systems have evolved
from timber framed solutions and have merely involved replacing timber sections by
cold formed steel sections of similar overall size connected together by conventional
methods such as bolting and welding. More recently, advantage has been taken of the
clinching connection methods (Davies et al., 1996), particularly where factory
prefabrication is used. A recent important development is the use of wall studs with
perforated webs (Hoglund, 1998; Kesti & Makelainen, 1998). These studs have been
developed in the Scandinavian countries in order to reduce thermal bridging in
external walls. The web perforations take the form of arrays of slots which, of course,
significantly weaken the web in transverse bending and shear. This has several
effects, including a reduced resistance to distortional buckling, and thus leads to rather

complex design problems.

Another significant development is the use of cassette walls (Davies, 1998). These
have the advantage of providing a weather proof wall as well as a structural frame and
avoid many of the stability problems of stud wall construction. They also act as a
shear diaphragm with regard to horizontal (wind) load and thus avoid the necessity of
providing bracing systems in the plane of the walls. This leads to much simpler

detailing and more rapid construction.
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2.2.3.2 Factory assembly of prefabricated units

Closely associated with the trend outlined above is the related trend to maximise
prefabrication in the factory. Using jigs and appropriate jointing technology such as
clinching and Rosettes, cold-formed steel components can be rapidly and accurately
assembled into complete structural units for delivery to the site. Such units can take
the form of wall and floor panels and roof trusses. Even more dramatic is the
increasing factory prefabrication of complete building modules such as complete hotel
rooms. These may be built and fitted out with bathroom units, furniture and fittings
before being shipped to the site complete and requiring only the connection of
external services (Davies et al., 1995). In the UK, most out of town hotels and motels

are now built in this way.

2.2.3.3 Interaction of cold-formed steel with other materials and components

It is inherent in the nature of thin-walled steel construction that this material is often
seen at its best when it interacts with other materials and building components.
Familiar applications of this principle are: purlins stabilised by cladding; wall studs
stabilised by sheathing; composite decks where embossed metal decking acts together
with in-situ concrete; and sandwich panels where two thin metal faces interact with a
lightweight insulating core. Stressed skin (diaphragm action) offers another instance
of this important principle in which the thin metal cladding of a building can act to
stabilise the framing members and even provide the primary stability of the complete

structure. Various forms of frameless construction take this principle a stage further.

There are a number of current developments which utilise the interaction of cold-
formed steel members with other materials. There are double skin roofing
constructions which use profiled rigid insulation to completely fill the space between
liner and weather sheets. Even in some roof systems there is no metal liner sheet and a
rigid self supporting polyisocyanurate insulation board laid in metal tees is used
instead. Also, filled cassettes, which are substantial C-shaped sections used for wall
construction may be filled with rigid thermal insulation in order to provide improved
stability and resistance to denting. Another important application is in dry flooring
systems in which cold-formed steel floor joists (or profiled steel decking) act together
with a built-up walking surface to provide enhanced structural performance as well as

meeting the requirements of building physics (acoustic, fire, vibration etc). It is
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significant that these two examples are both particularly applicable to residential and

low-rise steel construction.

2.2.4 Structural Behaviour Of Cold-Formed Members

The cross-sections of thin-walled members consist usually of relatively slender parts,
i.e. of flat plate fields and edge stiffeners. Instead of failure through material yielding,
compressed parts tend to loose their stability. Steel sections may be subject to one of

three basic types of buckling, namely local, distortional and global.

The term global buckling (or long mode buckling) embraces flexural buckling,
torsional and flexural-torsional buckling and lateral-torsional buckling. The half-wave
lengths of these modes are of the order of magnitude of the length of the member.
Rigid body movements of the whole member characterize global buckling such that
individual cross-sections rotate and translate but do not distort in shape. The
displacements of the entire cross-section are large, leading to overall loss of stability
of the member. Flexural buckling usually in the direction of minimum flexural
stiffness is common also for cold formed members. Low torsional stiffness is typical
for open thin-walled members, so buckling modes associated with torsion may be
critical. Pure torsional buckling is possible for example in the case of a point
symmetric cross-section (e.g. Z-section), where the centre of the cross-section and the
shear centre coincide. In torsional buckling, the cross-section rotates around the shear
centre. A mixed flexural-torsional buckling mode, where the cross-section also
translates in plane, is possible in the case of single symmetric cross-sections (e.g. U, C
and hat). Due to the low torsional stiffness of open thin-walled cross-sections, lateral-

torsional buckling is a very probable failure mode of beams.

Local and distortional buckling are sometimes called sectional buckling because they
depend very much of the geometry of the cross-section. Local buckling is
characterized by relatively short half-wave length of the order of magnitude of
individual plate elements and the displacements only perpendicular to plane elements
and redistribution of stresses while the fold lines remain straight. In this mode the
shape of the section is only slightly distorted, because only rotations at plane element

junctures are involved.
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Distortional buckling occurs at a half-wave length intermediate to local and global
mode buckling. The half-wave length is typically several times larger than the largest
characteristic dimension of the cross-section. Distortional buckling involves both
translation and rotation at the fold lines of a member leading to a distortion of the
cross-section. The displacements of the cross-section parts are largely due to buckling
of e.g. flange stiffeners. In both local and distortional buckling modes, the stiffness
properties of the cross-section may be changed, but the member probably still has
some post-buckling capacity since translation and/or rotation of the entire cross-

section is not involved.

A selection of buckling modes produced using the finite strip analysis at different half
wavelengths is shown in Fig.2.4 by Hancock (1997a). The modes range from lateral
buckling at long half-wavelengths (>10d) shown in the top left of the figure through
distortional buckling at intermediate half-wavelengths to local buckling at short half-
wavelengths (<d) shown in the bottom right of the figure (d is the web depth).

It is a consequence of the increasing complexity of section shapes that local buckling
calculations are becoming more complicated and that distortional buckling takes on
increasing importance. These two modes of buckling may, of course, interact with
each other as well as with global buckling. Whereas much has been written about
local and global buckling, and codes of practice for the design of structural steelwork
contain the relevant clauses, distortional buckling is less well known and less well
documented. This, however, should not be taken as an indication of its lack of
importance. In many cold-formed sections, distortional buckling is at least as likely as

local buckling and warrants similar consideration in design.

There are other untypical buckling modes, such as shear buckling, interactive
buckling, etc. There is an increasing need for the understanding of them. Naturally,
plastic or elastic-plastic static behaviour of compressed or bent members are possible
when loaded to failure, but with normal structural geometry and loading, stability is

critical in the design of thin-walled members.
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2.3 LOCAL BUCKLING BEHAVIOUR

2.3.1 Models For Local Buckling

2.3.1.1 Effective width concept

In this mode the shape of the section is only slightly distorted, because only rotations
at plane element junctures are involved. Local buckling of thin-walled sections has
been known for many years and has been well understood. For such plate elements,
local buckling is not the same as overall beam or column buckling. Although the
element begins to deflect out of its original straight or plane shape, it does not fail
when the initial buckling stress is reached. On the contrary it can still resist increasing
compression stresses often well in excess of those at which local buckling first

appears.

The basic phenomenon of local buckling in a cassette column is illustrated in Fig.2.5
which shows local buckling in a cassette column with an intermediate stiffener in the
wide flange. As shown, plate elements that are adequately stiffened along both
longitudinal edges tend to buckle into approximately square waves. For economic
design, it is essential to consider the post-buckled condition and the primary “building
block” for cold-formed section design is the concept of effective width illustrated in
Fig.2.6.

Considering the element as the compression flange of some member (see Fig.2.6), the
total compressive force is the area under this stress distribution curve, times the
thickness of the element. What is needed in design, really, is only this total
compressive force. It is convenient to replace the actual variable stress distribution
with a fictitious uniform stress distribution, of the same intensity of the edge stress,

Oefr as in the real element.

In order to get the same total compression force in the fictitious as in the real
distribution, the areas under the two must be equal. This means adjusting the width of
each of the two fictitious rectangles, b2, until the combined area of the two
rectangles is equal to that under the solid curve. This width is known as the effective
width, bey.
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Once this effective width, b.y 1s known, structural members, such as beams or
columns, can be designed simply by replacing the real width, b, of each compression
element by its effective width, b.s. Then, effective section properties, such as area,
section modulus, and moment of inertia, can be calculated by using for each

compression element its effective width, b.4, instead of its real width, b.

2.3.1.2 Effective cross-sections

The effects of local buckling shall be taken into account in the determination of the
design strength and stiffness of the members. Using the concept of effective width of
individual elements prone to local bucking, the effective cross-sectional properties can
be calculated. The first step is to evaluate the effective width of the compression
elements of the section, based on the appropriate stress distribution over the cross-
section; the next step is to calculate the geometric properties of the effective section,
taking into account the shift of the neutral axis caused by disregarding the ineffective
parts of the section. In general, the resistance of a thin-walled effective cross-section
is limited by the design yield stress at any part of the section, based on an elastic

analysis. Deviations from this rule are only permitted in special cases.

2.3.2 Analysis Approaches

2.3.2.1 Design specification

Elastic local buckling is typically treated by ignoring any interaction between
elements (flanges and web). Each element is considered independently and classical
plate buckling equations based on isolated simply supported plates are generally used.
The result of this approach is that each element of the section is predicted to buckle at
a different stress. This approach, called the element model, can lead to rather

conservative predictions.

The usual effective width formula is the semi-empirical formula due to Winter (1947):

if 2, <0.673 by =b
if 4,>0.673 b, = o-25 2 @1
A, "2,

in which the plate slenderness 1; is given by:
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where o, = the maximum compressive stress in the plate element;
o, = the critical stress for elastic buckling of the plate element given by the
well-known Von Karmen formula;
E = the Young’s modulus;
ks = the buckling factor which is 4.0 for a simply supported plate in uniform

compression and 0.43 for an outstand plate element with one edge free.

Elements stiffened on one side only are much less stable and can also be treated by an
analogous effective width approach. However, such unstiffened elements rarely arise
in practice because lips usually restrain the free edges. The modern tendency is to use

compound lips.

Eurocode 3: Part 1.3 (1996) gives some comprehensive rules for the determination of
effective widths under different stress conditions. In principle, the effective widths of
the individual plate elements may be combined to give an effective section and
member design completed using conventional techniques. However, this apparent
simplicity conceals a number of difficulties. As illustrated by Fig.2.5, individual plate
elements do not buckle in isolation but interact with each other. Although some codes
(e.g. BS 5950 (1998)) give an approximate treatment of this phenomenon, it can only

be dealt with accurately by a whole-section analysis.

Furthermore, Fig.2.5 suggests that both the intermediate stiffener in the wide flange
and the compound lip stiffeners are “fully effective” so that they remain straight
during local buckling of the plate elements. With modern, highly stiffened sections,
this is often not the case. Stiffeners may be partially effective so that stiffener
buckling interacts with local plate buckling. Eurocode 3: Part 1.3 (1996) gives some
design rules for more general situations but these are complicated to use and not
particularly accurate (Kesti & Davies, 1999). Evidently, this is the situation where

design based on an analysis of the whole section is to be preferred.
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2.3.2.2 Finite strip method

The best known of numerical methods developed for analysing thin-walled beams
based on the separation of variables is perhaps the finite strip method. In the finite
strip method the displacement interpolation is built up of two parts, a polynomial
defined on a cross-section and a truncated Fourier series part governing the behaviour
of displacement function in the axial direction with the latter satisfying a prioni the
boundary conditions at the ends of the beam. This provides “whole section” solutions

for the full range of buckling phenomena, leading to relatively new design procedures.

If the thin-walled beam is prismatic and the boundary and loading conditions are
suitable, the finite strip method is quite economical with respect to computational
efficiency. Several well-known researchers have developed user-friendly computer
software (Schafer, 2001¢ & 2003a) for this calculation, which is available to practical

designers.

Unfortunately, the applicability of the finite strip method to various geometries or
boundary and loading conditions introduced is weak. In the buckling analysis of thin-
walled beams using the finite strip method difficulties are experienced, for example,
when dealing with non-periodic buckling modes or unequal loading in the axial

direction.

A brief introduction to the finite strip model employed in the program CUFSM
(Schafer, 2001c & 2003a) is presented in Section 2.8.5.

2.4 DISTORTIONAL BUCKLING BEHAVIOUR

2.4.1 Models For Distortional Buckling

Distortional buckling involves both translation and rotation at the fold lines of a
member leading to a distortion of the cross-section. Recently, distortional buckling
has received the attention of a number of researchers. The research has now reached
the point where design procedures suitable for inclusion in codes of practice are

beginning to emerge. Both columns and beams will be considered in turn. Mention
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will also be made of the special case of beams (purlins or sheeting rails) which are
partially restrained by the cladding that they support as this is an important practical

case.

2.4.1.1 Model for distortional column buckling

Distortional buckling of compression members such as lipped channels usually
involves rotation of each flange and lip about the flange-web junction in opposite
directions as shown in Fig.2.7. The web undergoes flexure at the same half-
wavelength as the flange buckles, and the whole section may translate in a direction
normal to the web also at the same half-wavelength as the flange and web buckling
deformations. The web buckling involves single curvature transverse bending of the

web.

A simplified analytical expressions for the distortional elastic buckling stress was
originally developed by Lau and Hancock (1987), as is shown in Fig.2.7, which were
based on a flange buckling model in which the flange was treated as a compression
member restrained by a rotational and a translational spring. The rotational spring
stiffness k4 represents the torsional restraint from the web and the translational spring

stiffness k, represents the restraint to translational movement of the cross section.

In Lau and Hancock's analysis (1987), it is shown that the translational spring
stiffness k. does not have much influence on the buckling mode under consideration
and the value of kx was thus assumed to be zero. The key to evaluating this model is
to consider the rotational spring stiffness &, and the half buckling wavelength A;, while
taking account of symmetry. Lau and Hancock (1987) give a detailed analysis in
which the effect of the local buckling stress in the web and of shear and flange
distortion were taken into account in determining expressions for k4 and A;. This gave
rise to a rather long and detailed series of explicit equations for the distortional
buckling stress. Not withstanding their cumbersome nature, these are now included in

the Australian code (AS/NZS 4600, 1996).

A similar set of explicit equations has also proposed by Schafer (2001a).
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2.4.1.2 Model for distortional buckling in beams

Analytical expressions for the distortional buckling of thin-walled beams of general
section geometry under a constant bending moment about the major axis have been
developed by Hancock (1995). These analytical expressions were based on the simple
flange buckling model shown in Fig.2.8 (together with an improvement proposed by
Davies and Jiang (1996a & 1996b)), in which the flange was treated as a compression
member with both rotational and translational spring restraints in the longitudinal
direction. The rotational spring stiffness k4 and the translational spring stiffness &y
represent the torsional restraint and translational restraint from the web respectively.

In his analysis, Hancock again assumed the translational spring stiffness & to be zero.

These beam models are, of course, directly analogous to the column model shown in
Fig.2.7. The only significant difference lies in the stiffness of the rotational spring and
the necessary modifications to the design expressions for the rotational spring
stiffness k4 and the buckling length A; are given in Hancock's paper (1995). This then

leads to the similar equations for the critical stress for distortional buckling.

Explicit expressions for the prediction of the distortional buckling of beams have also

been proposed by Schafer and Pekoz (1999a).

2.4.1.3 Models for the buckling of restrained beams

When one flange is elastically restrained, the buckling behaviour is more complex and
there are two distortional modes to consider in design. Pekoz and Soroushian (1982)
have described a model for the combined torsional-distortional mode. And Hancock’s
distortion buckling model in Fig.2.8 can be readily modified further to include the
additional torsional restraint from the cladding (Davies, 1996).

2.4.2 Useful Data On The Distortional Buckling Mode

Three recent papers have provided more useful data on the distortional buckling mode
where the edge stiffened element fails by transverse bending of the stiffener, which
has been called flange-distortional to distinguish it from the lateral-distortional mode
that can occur in flexure as shown in Fig.2.9 by Hancock (2003). The first paper by

Badawy Abu-Sena et al. (2001) provides an interesting study where the torsional-
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flexural mode interacts with the lip buckling (flange-distortional) mode for lip-
stiffened compression members. Useful formulae based on an energy method are
provided for design and compared with finite element analyses (FEA) to test their

accuracy.

The second paper by Kesti and Davies (1999) investigates local and distortional
buckling of thin-walled short columns. An investigation of the design method in
Eurocode 3 Part 1.3 (1996) for lip-stiffened channels versus design based on
distortional buckling and GBT has been performed to show that the latter provides a
better estimate of strength than EC3. The third paper by Schafer and Pek&z (1999b)
investigates laterally braced cold-formed steel flexural members with edge stiffened
flanges with similar buckling modes to those shown in Fig. 2.9. New procedures for
hand calculation of the buckling stress in the local and distortional modes are
presented and verified. Comparisons with tests show that the methods are more
reliable than the existing methods in the design standards and specifications (AISI,
1996; AS/NZS, 1996).

2.5 LATERAL-TORSIONAL BUCKLING BEHAVIOUR

2.5.1 Research on Lateral-torsional Buckling Behaviour

The lateral-torsional buckling is characterized by the mode of rigid body movements
of the whole member in which individual cross-sections rotate and translate but do not
distort in shape. It is well known that long beams with low lateral stiffness and low
torsional stiffness are very prone to buckling laterally. Further, the sections are often
loaded eccentrically from their shear centres. Because of the geometry of the cross
section, which gives great flexural rigidity about one axis at the expense of low
torsional rigidity and low flexural rigidity about a perpendicular axis, cold-formed

members are particularly susceptible to lateral-torsional buckling.
Compared to the local and distortional buckling, the lateral-torsional buckling has

been little concerned. This is partly because cold-formed steel members are usually

used together with metal sheeting that restrains the lateral movement of the members
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and thus reduces the possibility of the occurrence of lateral-torsional buckling, and
partly because the lateral-torsional buckling is traditionally prevented by the use of

inexpensive anti-sag bars.

Recently, there have been many experimental, numerical and analytical studies of
torsion and lateral-torsional buckling (Davies, 2000; Gotluru et al., 2000; Hancock,
2003). Put et al. (1998) performed lateral buckling tests on unbraced, simply
supported cold-formed lipped channel beams. Experiments on braced cold-formed
steel channel and zed purlin beams were also undertaken at Cornell University
(Schafer, 2001b). Pi et al. (1998) investigated the lateral buckling and biaxial bending
behaviour of both channel and zed sections using finite element methods. A pilot
study of laterally braced C-sections as used in wall studs was performed by Beshara
and LaBoube (2001). The effect of a lateral brace at mid length to restrain the C-

section from rotation was investigated experimentally.

Channel and Zee (Zed) sections are the most common members used as purlins and
girts in roof and wall systems with sheeting attached and so the effect of the sheeting
in preventing torsion and lateral-torsional buckling needs to be quantified.
Considerable research has been performed in this area over many years. Lucas et al.
(1997a & 1997b) investigated the influence of sheeting on the performance of the
cold-formed sections using the finite element method. Linder and Aschinger (1994)
proposed some alternative design procedures for the load-carrying capacity of cold-
formed beams subjected to overall lateral-torsional buckling and local plate buckling.
Laine and Tuomala (1999) studied Z, Zeta, C and Hat shaped sections to determine
experimentally the influence of internal supports and sheeting on the top flange for
purlins under gravity load. In design specifications such as BSI (1998) the lateral-
torsional buckling of cold-formed members is calculated based on the theory of a
detached beam, the result of which is obviously too conservative as it neglects the

influence of sheeting restraints.

The recently developed finite strip analysis packages are aimed to predict more
accurate elastic buckling stresses related to local, distortional, and lateral-torsional
buckling (Loughlan, 1996; Hancock, 1997a; Schafer, 2001¢&2003a; Ye, 2002).

However, at the present, these packages can be only applied to the case where the
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member is subjected to pure compression and/or pure bending. For local buckling, it
may be acceptable to assume constant stresses along the longitudinal axis because of
its relatively short half-wavelength. For distortional buckling and particularly for
lateral-torsional buckling, however, the stress gradient along the longitudinal axis
should be considered if the result of finite strip analysis is going to be used for the

design purpose.

Recently, Li (2004) developed an analytical model for predicting the lateral-torsional
buckling of cold-formed zed-purlins partially restrained by metal sheeting for both

downward and uplift loadings. The details are given in Section 2.5.2.

2.5.2 Analytical Model For Cold-Formed Steel Beams

An analytical model for predicting the lateral-torsional buckling of cold-formed steel
members is presented by Li (2004). The model is constructed for the practical case
where the cold-formed member is subjected to transverse loads and is restrained
partial-laterally by sheeting and interval anti-sag bars. The focus is to investigate the
influence of the restraints provided by the sheeting and by the interval anti-sag bars,
and the variation of moment along the longitudinal axis on the lateral-torsional

buckling behaviour of the cold-formed steel member.

2.5.2.1 Analytical model

Consider a purlin that is partially restrained by the sheeting on its upper flange. The
restraint of the sheeting can be simplified by one translational spring and one
rotational spring, as shown in Fig.2.10. Let the origin of the coordinate system (x, y, z)
be the centroid of the cross-section, with x axis being along the longitudinal direction
of the beam, and y and z axes taken in the plane of the cross-section. For an arbitrary
axis system, the relationship between bending moments and radii of curvature can be

expressed as:

M I. I_1(1/R
vl y yz z
{Mz} - E[Iﬂ E Hlm)} (2.3)

where M, and M, = the bending moments about y and z axes;

E = the Young’s modulus;
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I, and I, = the second moments of the cross-section area about y and z axes;
I,. = the product moment of the cross-section area;
R, and R; = the radii of curvature of the centroidal axis in the xz and xy planes,

respectively.

The moment in Eq.(2.3) is defined as positive if it creates a tensile stress for positive y
and z values. Thus, M, has the same direction as y axis, while M, has an opposite

direction to z axis.

Note that for small deflections the radii of curvature can be expressed in terms of

deflections of the centroidal axis as follows:

—_————— - (2°4)

where v and w = the deflections of the beam centroidal axis in y and z directions,

respectively.

The strain energy of the beam due to deflections and rotation can be expressed as:

1M, M, GJ 't d.,
UO_beam =§;I.(R_z+_)‘ix+_ﬂ2_(!(g) dx+

C, 'cd?
- o [ yax @.5)

2 N

where G = the modulus of elasticity in shear;
J = the torsion constant;
C, = the warping constant;
¢ = the angle of twist;
[ = the span length of the beam.

The first term in Eq. (2.5) represents the strain energy due to bending about y and z
axes, the second term represents the strain energy due to twisting, and the third term

represents the warping strain energy, respectively.

The strain energy stored in the two springs due to the deformation of the beam can be

expressed by
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k.. d k
UO_sprr'ng = ?z I(w - 7¢)2dx + 7# J'¢2dx (2'6)

a Q

where k, and ky = the per-unit length stiffness constants of the translational and
rotational springs;

d = the depth of the section.

It is assumed that the purlin is subjected to the external loads of a vertical uniformly
distributed load within the span and concentrated moments at its ends. The potential

energy generated by these external loads can be expressed by

dw

Wozqu(v—a¢)dx+(M = 29

-M  —
x=0 yidx

Y+ (M, %
i dx

M dav

e @7)
M)

x=l

¥ dx

X=,

where g, = the density of uniformly distributed load;
a = the distance between loading line and web central line;
Myo, My;, M, M;; = the concentrated moments about y and z axes, applied at

the ends of the purlin.

The deflections, v(x) and w(x), and the angle of twist, ¢(x) due to the externally

applied loads can be determined by employing the stationary principle as follows:

SWU,-W,)=6, ,. +U W.)=0 (2.8)

0_beam 0_spring — Wy

After the deflections and rotation are determined the pre-buckling moment

distributions along the longitudinal axis can then be calculated using Eq. (2.3).

The analysis of linear elastic buckling can be done using a similar energy method. Let
M,y and M,, be the pre-buckling moment distributions that are obtained from the pre-
buckling stress analysis. The pre-buckling longitudinal stress due to M,, and M,, can
be calculated by using the bending formula of the asymmetric beam:

M, -M, I, M, -M_I,

oz" y oy” yz oy” z

2 6 2
LI -1 LI -1

o . (x,y,2)= (2.9
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Note that oy 1s the function of y and z as well as of x. Now, let v(x) and w(x) be the
buckling deflections of the beam centroidal axis in y and z directions and #(x) as the
buckling twisting about x axis. Thus, the strain energy generated by the buckling
displacements can be calculated using Eq. (2.5) for the purlin and Eq. (2.6) for the

springs.

The buckling deflections of the beam at any point (x,y,z) during buckling can be
expressed in terms of the buckling displacements of the beam centroidal axis, vy, wp

and ¢, as follows (Ressner, 1989; Li, 2004):

_ . 1
v(x,y,2) =V, —zsing, + y(cos@, —1) = v, — z¢, _EJ'QE
(2.10)

w(x,y,z) = w, + z(cos @, —1) + ysing, ~ w, + yg, _%Z¢:

where V(x, y,z)and W(x, y,z) = the deflections of the beam at point (x,y,z) during the

buckling.

The longitudinal displacement at point (x,y,z) can be expressed as follows:

7(x,3,2) = u, ~ (ycos g, — zsing,) 22 — (zcos, + ysing,) 22 + B(y,z) Lo
dv, d d;fx d d “ * @
Y W, % W,
mub—yd:—z dxb+ﬁ d;"'szﬁaj_,‘@b“ﬁ

where (y,z) = the warping function of St. Venant torsion;
u(x,y,z) and up(x) = the longitudinal displacements of the beam at points

(x,y,z) and (x,0,0), respectively.

The longitudinal strain and shear strains generated by the buckling displacements can

be calculated by
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Substituting Egs. (2.10) and (2.11) into (2.12) and splitting them into linear and
nonlinear terms in terms of the buckling displacements, it leads to the following

second-order nonlinear strains:
1 _dv., .dw,, a . 5y 805 d*v d*w
Vz2)=—[(—) " +(—)" + +z) (=) ]+ z¢ ———
g (nz) 2[(dx) (dx) 6% )(dx) ] ¢dx2 Y=
yxyz = 0 (2'13)
yxz?. = 0

The non-linear strain energy generated by the pre-buckling longitudinal stress through

the second-order strains is calculated by:
!
=~ [ [o.(x,y,2)8,,(x, , 2)dAdx (2.14)
od

where A = the area of the cross section.

The negative sign in Eq. (2.14) is because oy and €, are in opposite direction.
Substituting Eq. (2.13) into (2.14) and noting that for the zed purlin that is symmetric

about its centroid.

[o.(x,y,2)dd =0
A

(2.15)
jcrx (x,y,2)(y* +2%)dA=0
A
the following equation is obtained,
p d’w 2w d*v
= [[o. (., I¢(Moz - M, ) (2.16)
oA
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Note that W, does not include the strain energy generated due to the lowering of the
distributed load during the rotation which is due to the load that is not acting at the
shear center (Timoshenko & Gere, 1961). When this is considered the strain energy
should be expressed by

d*w

]
PV] &= Waxb +Wq = I¢(Moz E_

T e+ 4 qu¢ dx (217)
It is known that for any infinitesimal buckling displacements if the strain energy
generated by the buckling displacements is less than the strain energy generated by
the pre-buckling stresses then buckling will occur. Mathematically, this means that

buckling occurs at:

AW, = AWy + W) 2U, =U, g + U, _peum (2.18)

1_spring

where A = the critical load factor;
U, = the total strain energy of the system.
Ui beam a0d Uj gpring = the stain energy of the beam when the buckling occurs,
which have the same expression as Up peam and Up sring €Xcept for that the
deflections and the angle of twist are now the buckling deflections and the

buckling angle of twist.

The minimum buckling critical load thus is calculated by
SU-AW)=0 (2.19)

2.5.2.2 Numerical implementation

Egs. (2.8) and (2.19) can be applied to the general case where the purlin can have any
boundary conditions and subjected to any distribution loads and moments. Variational
Eq. (2.8) is equivalent to the pre-buckling equilibrium equation, whereas variational
Eq. (2.19) is equivalent to the secondary equilibrium of the system, that is, so-called
buckling equation. For a given problem, one can determine the pre-buckling
displacement functions v(x), w(x) and ¢x) and thus the pre-buckling moment
distributions, M,, and M, by solving the variational Eq. (2.8) and then determine the

critical load factor and corresponding buckling displacements v(x), w(x) and ¢x) by
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solving the variational Eq. (2.19). It should be mentioned here that the strain energies,
U, in Egs. (2.8) and (2.19) have different meanings although they have the same
expression. In the former, the strain energy is generated by the pre-buckling
deflections and rotation which are caused by the loads externally applied to the purlin;
while in the latter, the strain energy is the buckling strain energy generated by the
buckling displacements, which are determined from the buckling Eq. (2.19).

In Li’s numerical study focus is on the purlin that is laterally restrained in the

translational direction but free in the rotational direction (that is, k, =0,k, =0),

which is a case of most practical applications. For the purlin with its upper flange
being laterally restrained the rotational displacement can be expressed in terms of the

deflection in the horizontal direction as follows:
2
#(x) = 7 w(x) (2.20)

For this particular case the strain energy expression (2.5) and (2.7) and (2.17) can be

simplified into:

4C d w d*wd? d*v ZGJ
s j[( S Pl dx:”z = (2.21)
i
2aw aw aw dv dv
W = v—— +(M,, -M ,— )+WM,—| -M_,— 2.22
o JQy )‘ix ( dx il d‘[ x=1) ( zode‘=0 ddx:HI) ( )
2! d*w
w =EJW(M02 - Mﬂy — )dx+-~ Iq}, (2.23)

The horizontal and vertical deflections of the purlin at the centroid can be constructed

by using cubic spline interpolations as follows:

v(x) = iv:‘fs (x,x,)
- (2.24)
w(x) = 3w, f (%, x
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where v; and w; = the to-be-determined horizontal and vertical deflections at
interpolation points x;;
fi(x,x;) = the spline interpolation function which is constructed in terms of the
function values at » internal interpolation points (x;, X2, ..., X,) and function

and derivative values at two end points (x,, X»+7)-

The function values used for constructing fi(x,x;) are defined as:

fi(x,x)=1  for x=x i=12,.,n

225
filx,x)=0 for x=x,#2x, j=0l..,n+l 2

The derivative values used at end points are dependent upon the real boundary

conditions of the member. For each end it is divided into two cases:

4i(5x;) (C':;x") =0 for a fixed boundary at end x=x; (2.26)
2
4 10%) ;iif’ *) 20 for a simply supported boundary at end x=x; (2.27)

Fig.2.11 graphically shows the profiles of the spline interpolation employed for two
different boundaries. It can be seen that the influence of the boundary on the function
distribution profile is mainly in the region close to the boundary. The superior of
using spline functions over the traditional trigonometric series is obvious. Firstly, it
can easily fit the required boundary conditions. Secondly, it is convenient to simulate

intermediate point restraints provided by the anti-sag bars.

Substituting Eq. (2.24) into (2.21)-(2.23) and then into the variational Eqs. (2.8) and
(2.19), it yields two algebra equations,

Ao Bo—‘_{vi}_ {fyf}

- 22
|:B° C, JLiwi} [{fz.}] (2.28)
4, BT} [4 BT
[Bo C, | {w:}] - Z[Bl C, }[{w‘.}} (2.29)
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where 4, B, and C, = the coefficients obtained from the calculation of the strain
energy;
fyi and f;; = the coefficients obtained from the calculation of the work done by
the externally applied loads;
A,, B; and C, = the coefficients obtained from the calculation of the work done

by the pre-buckling stress.

Equation (2.28) is the pre-buckling equilibrium equation and the corresponding
solutions {v;} and {w;} represent the deflections of the purlin centroid at x=x,.
Whereas Eq. (2.29) is the buckling equation and the corresponding solutions {v;},
{w;} and A represent the buckling modes and corresponding critical load factors. The
smallest eigenvalue of Eq. (2.29) represents the buckling critical load factor of the

member.

2.6 UNTYPICAL BUCKLING MODES

2.6.1 Shear Buckling Mode

Shear buckling may also be either local or global. Local shear buckling can occur in
the slender webs of members subjected to bending or in the wide flanges of sheeting
and decking profiles subjected to diaphragm action. Global shear buckling generally
only arises when relatively lightweight sheeting or lining profiles are subjected to
diaphragm action. There is a need for greater understanding of both local and global

shear buckling of stiffened tray and cassette sections subjected to diaphragm action
(Davies, 2000).

2.6.2 Torsion And Distortion

Cold-formed open section steel members are more likely to undergo torsional
deformation due to their low torsional rigidity resulting from their thin walls. Further,
the sections are often loaded eccentrically from their shear centres and so are
subjected to substantial torques. According to Hancock (2003), four recent papers
provide valuable information on the torsional and distortional behaviour of thin-

walled and cold-formed sections.
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Gotluru et al. (2000) have performed simple geometric nonlinear analyses, finite
element analysis and finite strip analysis and compared their results with simple
experiments. The influence of typical support conditions was studied and found to
produce partial warping restraints. This effect is accounted for by introducing
hypothetical springs. Put et al. (1999) have investigated the bending and torsion of
cold-formed channel beams. The effect of loading eccentricity was investigated in

detail and simple interaction equations have been developed for design.

Jonsson (1999a) has developed a distortional theory for thin-walled beams by
extending the conventional torsional theory to include a distortional warping function.
The extended theory works for open sections, closed sections and sections with open

and closed parts.

2.6.3 Web Crippling

Web crippling often occurs in cold-formed members because the loading is eccentric
from the web centreline due to the rounded corners of the sections, and because the
webs are often slender and unstiffened unlike hot-rolled design where web stiffeners
are often used (Hancock, 2003). A recent paper by Young and Hancock (2001)
provides experimental data on cold-formed unlipped channels subjected to web
crippling. The web slendemess of the channels was lower than that used in the
calibration of the design standards (AISI, 1996; AS/NZS, 1996; CEN, 1996) and the
results showed these standards to be quite lax for stockier webs. The results have been
used as part of the calibration of the new web crippling rules in the NAS (AISI, 2001)

to remove the current laxity.

Webs may often contain openings especially if they are part of residential
construction as floor joist or studs. A recent experimental investigation of the effect of
circular holes on web strength was conducted by LaBoube et al. (1999), from which
new design rules have been developed and incorporated in the NAS (AISI, 2001).
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2.7 DESIGN ISSUES

Currently the design of thin-walled cold-formed steel members relies on the effective
width approach. This powerful empirical method has been used successfully since the
inception of the cold-formed steel design specification in the 1940’s and continues to
be used in the design of a variety of thin-walled structures. The method works by
considering the strength reduction due to local plate buckling as a reduced (or

effective) width for each element of a member.

In developing new rules for elements with intermediate and edge stiffeners difficulty
in extending the effective width approach was encountered. This includes that the
number of effective portions increases significantly with the introduction of stiffeners,
and the competition between multiple buckling modes (i.e., local vs. distortional) is

difficult to capture in an effective width approach.

The classical elastic buckling analysis on isolated structural elements could provide
over conservative or under conservative results. For design purposes, it is generally
necessary to consider the interaction of bucking and yielding. Furthermore, for
economic design, it is also necessary to consider the beneficial effect of post-
buckling. There are two complementary approaches which are available to deal with

this situation.

2.7.1 The Ayrton-Perry Equation

The Ayrton—Perry equation (EC3, 1996) is used in most modern codes to combine
yielding and global buckling (lateral or lateral-torsional). Solutions of practical
accuracy can generally be obtained by combining the theoretical load (or stress) for
elastic (bifurcation) buckling with the corresponding yield load (or stress) using the

equation:

but y <1with ¢ =0.5[1+a,(A-02)+1 ] (2.30)

1
L= =
p+[¢* -2 1
where 7y = the reduction factor for buckling with respect to the unbuckled capacity;

o = an imperfection factor;
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A = the relative slenderness in the relevant buckling mode.

In Eurocode 3: Part 1.3 (1996), this equation is applied to the flexural buckling of
columns and to the lateral torsional buckling of beams with A equal to ./P/P, or

JM /M, respectively.

However, the Ayrton—Perry approach does not include any allowance for post local
buckling so that it is likely to be over-conservative when applied to situations where
local buckling is significant. It is with this in mind that Schafer and Pekoz (1998)

have recently proposed the “direct strength” approach.

2.7.2 Direct Strength Design Of Cold-Formed Sections

Schafer and Pekoz (1998) have recently proposed a new procedure which works only
with the gross properties of a member and can take into account not only the
interaction between local and global buckling but also the interaction between

distortional and global buckling.

Formulae are proposed for beams (Schafer & Pekoz, 1998) and for columns (Schafer,
2001a) and were approved in 2003 by the American Iron and Steel Institute
Committee on Specifications and finalized in 2004 as Appendix 1 of the North
American Specification for the Design of Cold-Formed Steel Structural Members
(AISI, 2004).

The Direct Strength Method requires determing of the elastic buckling behaviour of
the member, and then provides a series of nominal strength [resistance] curves for
predicting the member strength based on the elastic buckling behaviour. The
procedure does not require effective width calculations, nor iteration, and instead uses
gross properties and the elastic buckling behaviour of the cross-section to predict the

of the whole section.

The provisions of the method are applicable for determinng of the nominal axial (P,)

and flexural (M,) strengths of cold-formed steel members. A list of pre-qualified
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beams and columns with geometric and material limitations and their corresponding
calibrated safety factor and resistance factor are given in (AISI, 2004). Other beams
and columns shall be permitted to use the provisions, but the standard factors for

rational analysis apply.

2.7.2.1 Direct strength for columns

The nominal axial strength, P, is the minimum of Py, P,; and P, as give below.
. Flexural, Torsional, or Torsional-Flexural Buckling

The nominal axial strength, P,., for flexural, torsional, or torsional-flexural buckling

is

0.658% [P/P <15
B,/P, = . VI o (2.31)
0.877/2 [P /P, >1.5

where P, = AF);

P.. = Minimum of the critical elastic column buckling load in flexural,

torsional, or torsional-flexural buckling.
. Local Buckling

The nominal axial strength, P,;, for local buckling is

1 JP./P,, <0.776

FulBre = [1-0.15(—}};&)"-4](%)0-4 JB.IB, >0.776 @)
where P, = Critical elastic local column buckling load.
o Distortional Buckling
The nominal axial strength, P,,, for distortional buckling is
1 JP,/P,, <0.561
FualF, = [1—0.25(%)“](%)“ JB, /By >0.561 223

B h g
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where P,,4 = Critical elastic distortional column buckling load.

2.7.2.2 Direct strength for beams

The nominal flexural strength, M,, is the minimum of M,,, M, and M,, as given
below.

» Lateral-torsional Buckling

The nominal flexural strength, M,,, for lateral-torsional buckling is

M if M, <0.56M

cre vield
10M
M, = .199 M(-32) if 278M, 2 M, 2056M (2.34)
MJ‘ - '!f M cre = 2'78M}'fefd

where M,eiq = SiFy;
Sr=the gross section modulus referenced to the extreme fiber in first field,
M., = Critical elastic lateral-torsional buckling moment.

. Local Buckling

The nominal flexural strength, M, for local buckling is

1 JM M, <0.776
T [1-0.15(== ff’)‘”]( ”‘)‘” JM, M, >0.776 (2.35)

ne

M,IM,

where M,,; = Critical elastic local buckling moment.
. Distortional Buckling

The nominal flexural strength, M4, for distortional buckling is

1 M, 1M, <0673

[1-0.22(%&)”](%@)“-’ JM, 1M, >0.673 (2.36)

y ¥y

M, /M, =
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where M,,4 = Critical elastic distortional buckling moment.

2.7.2.3 The limitations of direct strength method

Currently, the Direct Strength Method provides no explicit provisions for members in
tension, shear, combined bending and shear, web crippling, combined bending and

web crippling, or combined axial load and bending (bending-columns).

A more profound understanding of the method’s conception can be gained on this
basis. As a result, the Direct Strength Method assumes the plastic reserve of the
section shape to influence the cross-section capacity of locally buckled members. This
assumption has been checked by Rusch and Lindner (2001) using the test results on
thin-walled I-sections, who pointed out that the Direct Strength Method is limited to
cases where no shift of the effective centroid occurs. This is presupposed by the
fundamental similarity to the other concepts. Therefore, caution is necessary in all
cases, where the shift leads to an additional bending moment. Especially if the
additional bending moment increases an exiting external moment, an interaction
formula, which does not take into account the shift, overestimates the load carrying

capacity significantly.

2.8 OUTLINE OF APPROACHES FOR RESEARCH

2.8.1 Tests

Tests are suitable for the determination of the design strength of all kinds of cold-

formed steel structures.

Historically, design by testing has been more widely used for cold-formed sections
than for most other building components. There are a number of reasons for this, both
practical and economic. As analytical methods have improved, testing is now used
less frequently. However, it is still widely used for particular cases such as: purlins
clad with sheeting; perforated racking uprights; (slotted) studs with sheathing
attached; composite decks; sandwich panels etc. It is notable that almost all of these
examples involve the interaction of light gauge steel components with other materials

or parts of the structure as discussed above. These situations are, of course,
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notoriously difficult to analyse satisfactorily although much progress is being made in
this area. Other situations which are difficult to analyse and where testing may still be
appropriate are those involving significant holes or openings through the member and
those where economic design requires consideration of ultimate limit states in which

there is interaction between buckling and yielding.

2.8.2 Design Specifications

Design specifications are suitable for the determination of the design strength of most

cases.

The research and development engineer has a range of tools available to him when
considering the design of a new range of cold-formed sections or new applications of
existing sections. Evidently, most cases of practical importance are covered by
modern design codes such as Eurocode 3: Part 1.3 (1996); The American
Specification (1996), The Australian and New Zealand Standard (1996) and the
British Standard BS 5950: Part 5 (1998).

However, cases may arise which are not adequately covered by the available codes or
where the codes are over-conservative and more efficient designs can be obtained by

an investment in a more detailed design.

2.8.3 Classic Methods

They are applicable to various buckling behaviours.

Although the differential equations which govern the behaviour of thin-walled metal
sections have been known for many years, explicit solutions have been found for
relatively few practical situations. The main application of explicit solutions is in the
analysis of the global buckling (lateral and lateral-torsional) of beams and columns.

Explicit solutions are also useful in some simple cases of shear buckling.

An analytical model for predicting the lateral-torsional buckling of cold-formed steel
members is presented by Li (2004). The model is constructed for the practical case

where the cold-formed member is subjected to transverse loads and is restrained
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partial-laterally by sheeting and interval anti-sag bars. The details are given in Section
25.2.

Generalised beam theory is also applicable to all three generic modes of buckling as
well as their interaction for prismatic members. The essential concept of GBT is the
separation of the behaviour of a prismatic member into a series of orthogonal

displacement modes. Some details are given in Section 2.8.6.

2.8.4 The Finite Element Method

The finite element method can model all of the required phenomena.

The most general method is the finite element method, which provides solutions to the
governing differential equations. In principle, all of the required phenomena can be
modelled using appropriate finite element techniques. However, this method is
generally considered to be too cumbersome for practical design and therefore may

only be seen as a primary method for researchers.

The primary building-block for the analysis of cold-formed sections is the second-
order thin shell element which can accommodate the full range of section shapes and
buckling phenomena. If a non-linear stress-strain relationship is incorporated into the
analysis, such elements can also model yielding and elastic-plastic buckling. Contact
elements, connection elements and large deflection theory add to the huge range of
facilities that are available to the analyst so that all the relevant practical problems can
be solved using the finite element method. The disadvantage is, of course, the
considerable cost. This is mainly a consequence of the time spent in data preparation
and post-processing although non-linear problems may take a long time to run. It
should be noted that great care is needed in formulating the correct boundary

conditions and this can also consume a considerable amount of time.

The seven degrees of freedom, prismatic finite element was developed by Barsoum
and Gallagher (1970). It adds the first derivative of rotation about the longitudinal
axis to a conventional six degree of freedom, second-order beam-column element and

thus introduces consideration of lateral torsional buckling. This provides a rational
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approach to "rigid body" buckling when the available solutions based on explicit

solutions of the governing differential equations are not sufficient.

2.8.5 The Finite Strip Method

The finite strip method is applicable to elastic local, distortional and global buckling
of the structures with uniform stress distribution along the longitudinal axis of the

member.

The finite strip method falls into the category of numerical methods that are
specifically designed for prismatic members. Cold-formed sections are generally
prismatic and so the finite strip method has the advantage over the finite element

method of requiring less computer time and memory as well as less data preparation.

From the practical point of view, the second-order finite strip method is particularly
important because bifurcation buckling solutions may be obtained relatively easily
using simple half sine wave displacement functions. This provides "whole section”
solutions for the full range of buckling phenomena, leading to relatively new design
procedures which will be considered later. Several well-known researchers (e.g.
Hancock, Pekoz, Rhodes) have developed user-friendly computer software codes for

this calculation which are available to practical designers.

Y K. Cheung originally promoted the finite strip method. An excellent summary of
the method, and the theory behind it, can be found in his book (Cheung, 1976). The
use of the finite strip method for understanding and predicting the behaviour of hot-
rolled steel members, and cold-formed steel members has been greatly extended by G.
Hancock (1994). Hancock used the stiffness matrices derived in Cheung’s book, and
with some modification, created BFINST- a computer program for solving the elastic
buckling problem of open thin-walled members via the finite strip. His early work in
the field on I-Beams led to the acceptance and understanding of the use of the finite

strip method, which was further developed particularly on cold-formed steel design.

A basic introduction to the finite strip model employed in the program CUFSM is

presented here, which includes the theoretical development and derivation of the
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initial stiffness and geometric stiffness within the finite strip method (Schafer, 2001¢
& 2003a). The coordinate directions and degrees of freedom for a typical strip are
shown in Fig.2.12. Note the rather unusual choice of the x-z coordinate system and

this is consistent with Cheung’s original derivation.

Since a box structure may be considered as an assembly of rectangular plates which
are capable of undergoing both bending and in-plane deformations, in a linear elastic
analysis, it is assumed that no interaction takes place between these two systems. The
stiffness and force matrices for a finite strip in the analysis of box structures can

therefore be obtained by combining the bending and in plane analysis.

2.8.5.1 Initial stiffness matrix for plates
The standard definition of an initial stiffness matrix is apparent from: { f} = [K]{d},

or, expanded to explicitly show the nodal forces, nodal degrees of freedom, and the

initial stiffness submatrices: [K, ] (plane stress) and [K,,] (bending) are:

-

| 3 0 0 0 0]y
E, [ K ] 0 0 0 0w
] uy 0 0 0 Of|u
F 0 0 0 0f)w| (2.37)
Vs L e -
1£, [Tlo 0 0 o i
M| {0000 K ] o
1o 0 0 o0 wod |,
Wl 9
i, | 0 0 0 0 110 )
The initial stiffness matrix may be expressed as:
[K]= j[B]T[E][B]dV or J’[N’]T[E][N']dV (2.38)

where [B] or [N'] = the appropriate derivatives of the shape functions [N], which is

defined from (u v w)" =[N]{d}, where (u v w)" is the displacement field and

{d} is a vector of the nodal degrees of freedom.
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For an orthotropic plate, and assuming no variation in the thickness (¢) of the strip,

[K] may be expressed as: [K]=3I[B]T [D][BldA , where the plate rigidities are

defined as:
D, D 0
[D]=|D, D, © (2.39)
0 0 D,
Etr Er Gi® v,EX v.E

x:—-———,D = e xy':_? | = =
12(0-vy,) 7 12(1-vy, 12 12(1-vy,) 12(1-vy,

The finite strip solution used here employs a polynomial in the transverse direction
and a harmonic function in the longitudinal direction. In this derivation, the
longitudinal direction is assumed to take the form of a half sine wave. This is
consistent with the boundary condition of simply supported ends. The advantage of
such an assumption is that the integrals used in forming the stiffness matrix decouple,

and the solution is simplified.

The derivation of the initial stiffness matrix is in two completely decoupled parts. A
pure plane stress conditions is assumed for the in plane u and v degrees of freedom.
The w and @ degrees of freedom are derived using classical small defection plate

theory to arrive at the bending initial stiffness matrix. The two matrices [K,,] and

[K,,] are combined to form the total initial stiffness matrix.
* Plane stress initial stiffness matrix [K ]

The shape functions for use in determining the in-plane stiffness matrix are:

u=|-2) (bi)H“‘ }Ym
r AL Y, =sin(-2) (2.40a)

i X x \nw| a , a,
S M

The expressions can be put in the general form [N]such that:

46



U

{:}=[N] : = [N1{d} (2.40b)

2
V,

With the shape functions in that form, the strain-displacement matrix [B]can be write

in terms of derivatives of [N]:

& Oulox

X

g, (=10v/dy =[Bl{d} =[N'}{d} (2.41)
v, | |ouldy+ov/ox

Using these definitions, and performing the necessary substitutions into the
expression for the stiffness matrix presented before, the explicit plane stress matrix for

an element, or strip is given in Appendix 1.
* Bending initial stiffness matrix [K ]

The shape functions for use in determining the bending stiffness matrix are:

W

oLl s 2% % 3x 2% x* x_||6
w=Y|(l-—+—) x(1-—+—=) (—-—7) x(—-— 2.42
"‘[( o) U e ) MG b,}wz S

92

With the shape functions in this form, the strain-displacement matrix [B] can be

written in terms of derivatives of [N]:

- *w/ ox?
{e}={-0"w/ &y’ } =[Bl{d} =[N']{d} (2.42)
52w/ Bxdy

The explicit bending stiffness matrix for an element or strip is also given in Appendix
L
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2.8.5.2 Geometric stiffness matrix for plates

The geometric stiffness matrix for a plate strip subjected to linearly varying edge
traction can be determined by either directly considering the higher order strain terms,
or equivalently by forming the potential energy due to in-plane forces. The latter is the

method for use here.

Consider a strip with linear edge traction as shown in Fig.2.13. The tractions

correspond to linear edge stresses f, and f, via T, = fit and T, = f;t.

The expression for the potential energy (U) due to the in-plane forces is

1 oo x [[6u v ow](ou ov ow)”
== -T-T)=)||—————— d 2.44
[ fo-a )bs][[@»ayay}{ay@@f}}‘y .

The derivatives in the expression for U, may be expressed in terms of the nodal

degrees of freedom {d} . The matrix resulting from differentiating the shape functions

in this case is called [G], for which we have

Ou Ov ow
et lltiih < P Y 2.45
{5 3y6y} (G]{d} (2.45)

The potential energy may now be expressed in terms of {d} and a matrix known as

the geometric stiffness [K, ],

1 e EA X T
U= @K@, (K= [ [ -0 - DIeT (Gl (2.46)

And its explicit form is given in Appendix 1.

2.8.5.3 Finite strip solution methods

In the previous two sections explicit matrices are given for the initial stiffness and
geometric stiffness of a discrete finite strip. For a member composed of multiple strips
the contribution of each strip must be formed into the global initial stiffness and

geometric stiffness. Thus:
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Hsiri #stri

[K]1= 2 [k], and [K, ]= ) [£,], (2.47)
n=1 n=1

The summation implies proper coordinate transformations and correct addition of the

stiffness terms in the global coordinates according to the degrees of freedom. The

elastic buckling problem is a standard eigenvalue problem of the following form:
[K1{d} = A[K, ]{d} (2.48)

Where the eigenvalue A, are the buckling load factor, and the eigenvectors are the
buckling modes. Solution of such an eigenvalue problem may readily be solved in

such programs as MATLAB.

Both [K] and [K ] are a function of the length. Therefore, the elastic buckling stress

and the corresponding buckling modes are also a function of the length. The problem
can be solved for several lengths and thus a complete picture of the elastic buckling
stress and modes can be determined. The minima of such of curve could be

considered as the critical buckling loads and modes for the member.

2.8.5.4 The limitation of the finite strip method

It should be mentioned here that, in the finite strip method the stress distribution is
assumed as constant along the half wavelength, while in the practical case the
longitudinal stress varies along the span. However, it is conceivable that for a beam
subjected to a varying stress distribution along its span the local and distortional
buckling will occur only at a worst place. Obviously, the finite strip method proposed

here is not suitable for analyzing global buckling of the structures with a varying

stress distribution along its span.
However, local buckling can be carried out by the finite strip method if the pre-

buckling stress distribution on the cross-section at the worst place is known, since it

has a relatively short half wavelength.
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2.8.6 Generalised Beam Theory

Generalised Beam Theory is applicable to local, distortional and global buckling as

well as their interaction.

The essential concept of GBT is the separation of the behaviour of a prismatic
member into a series of orthogonal displacement modes (Davies et al., 1994a; Davies
& Leach, 1994; Davies et al., 1994b; Davies, 2000). It is a particular strength of GBT
that these modes may be considered separately or in any combination in order to
investigate different aspects of the structural response. In GBT, each mode has an
equation and, in the second-order format, neglecting the shear deformation terms, the

equation for mode "k" is:

E'CYY" -G'D*V"+'B'V + D *x(WV)="q fork=12,.n (2.49)

i=1 j=1

where the left superscript £ denotes the mode;
“C is the generalised warping constant;
“D is the generalised torsional constant;

“B is the transverse bending stiffness.

These are the generalised section properties which depend only on the cross-section

geometry. In addition:

% = second-order section properties which relate the cross-section

deformations to the stress distributions;

E and G = the modulus of elasticity and the shear modulus respectively;
¥y and *W = the generalised deformation resultant and stress resultant;
“4 = the uniformly distributed load;

n = the number of modes in the analysis.

For simple cross-sections, the section properties and the « values may be calculated

manually but this is cumbersome.
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If the right hand side term “g of Eq.(2.49) is zero, the solution gives the critical stress
resultant ‘. In general, this requires the solution of an eigenvalue problem in which
the analyst is free to choose which modes to include in the analysis. Various mode

interactions can be studied in this way for prismatic members of varying lengths.

When a constant stress resultant, such as an axial load or a constant bending moment,
is applied along a member which is assumed to buckle in a half sine wave of
wavelength A;, GBT allows some particularly simple results to be obtained. Thus the
critical stress resultant for single mode buckling is (Davies et al., 1994):

ik 1 {

2
W= (%E*C+G"D+"“—;*B) (2.50)
T

er T ikk
1
As the wavelength is varied, the minimum critical stress resultant is
., = %(2,/1«: ‘CB+G"D) (2.51)
K

and the corresponding half wavelength is

E*C
)0.25

k
;;L; = ﬂ(ﬁ

(2.52)
Egs. (2.49), (2.50) and (2.51) allow a particularly simple examination to be made of
any individual buckling mode, including the distortional modes. No other method
known to the author allows the distortional modes to be isolated in this way. In
particular, it can be seen that critical stress resultant for either local or distortional
buckling in mode k is dependant only on readily calculable section properties. The
second-order coupling term “*x is dependant on the load mode i but the buckling half
wavelength depends only on the cross-section properties “C and “B which are
independent of the type of load (e.g. axial or bending). The design expressions based

on simplified models, which will be discussed later, have the same pattern.

There are three different applications of second-order GBT which may be used to

investigate buckling phenomena in cold-formed sections. These are: (1) the above
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explicit expressions for single-mode buckling; (2) simple mode interaction based on
the half sine wave assumption which gives rise to elementary eigenvalue problems;
and (3) the general case, without any assumed displacement function, which gives rise
to larger eigenvalue problems based on a finite difference solution of the coupled
differential equations. However, at the present time, GBT is not readily available to

the structural designer.

2.8.7 Direct Strength Method

The direct strength method is suitable for the determination of the design strength
based on the known elastic buckling load for those cases where no shift of the

effective centroid occurs.

The direct strength method makes a more formal allowance for post-buckling and is
evidently more appropriate when local buckling is significant. The "direct strength
method" recognises that the available models for local and distortional buckling
design are far from simple and have significant limitations. It also recognises that the
current trend is to increase the complexity of section shapes and also increases the
complexity of the required mathematical models. It therefore proposes a formal
design procedure based on elastic bucking solutions for the complete cross-section.
The particular characteristic of this procedure is that for economic design, it is

necessary to take advantage of the post-buckling strength.

However, the Direct Strength Method is limited to cases where no shift of the

effective centroid occurs (Rusch & Lindner, 2001).

2.9 SUMMARY

This chapter contains three aspects. First, it summarises the characteristics of cold-
formed structures and the developments in cold-formed structural technology and
applications. Cold-formed steel structures are structural products that are made by
bending flat sheets of steel at ambient temperature into shapes which will support

more than the flat sheets themselves. They have been produced for more than a
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century since the first flat sheets of steel were produced by the steel mills. However,
in recent years, higher strength materials and a wider range of structural applications
have caused a significant growth in cold-formed steel relative to the traditional

heavier hot-rolled steel structural members.

Secondly, the structural behaviour of cold-formed structures is reviewed, which
includes local, distortional and global buckling modes. The available approaches
based on the previous research are summarised. Development in technology and
applications make demands on a more sophisticated treatment of local, distortional

and global buckling and the interactions between them.

Finally, the main tools for research and development into the buckling phenomena

are described by means of their availability and uncertainty.
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Fig.2.3 Evolution of cold-formed purlin sections.
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Fig.2.5 Local buckling in a cassette section column (Davies, 2000).
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Fig.2.7 Analytical model for distortional column buckling.
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Fig.2.8 Distortional buckling models. (a) Hancock’s model; (b) Davies’s model; (c)
Analytical model.
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Fig.2.10 An analytical model for lateral-torsional buckling analysis.
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Fig.2.11 Profiles of spline interpolations(n=5).
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Fig.2.12 Displacement field for typical simply supported finite strip.
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Fig.2.13 Strip with edge traction.
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Chapter 3

3 STRESS ANALYSIS OF PURLIN-SHEETING
SYSTEMS

3.0 CHAPTER SYNOPSIS

This chapter describes the stress analysis of cold-formed zed and channel section
beams. An analytical model for the stress analysis of cold-formed zed and channel
section beams, subjected to a uniformly distributed transverse load, is proposed, in
which the restraints from the sheeting to the purlin is taken into account by using
translational and rotational springs. The influence of spring stiffnesses on the
maximum tensile and compressive stresses is discussed. The effects of boundary
conditions, interval restraints provided by anti-sag bars and the position of the loading

point on the pre-buckling stress are also examined.
The results obtained from this study not only highlight the influence of the sheeting

restraints on the results of stresses but also can be used as an input for carrying out the

linear elastic buckling analysis of the sections.
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3.1 INTRODUCTION

As most cold-formed sections are restrained by cladding or metal sheeting, the loads
acting on the sections not only cause the bending of the member about its two
principal axes but also torsion of the cross-section. Chapter 2 introduced an analytical
model proposed by Li (2004) which uses energy methods for predicting the lateral-
torsional buckling of cold-formed zed-purlins partially restrained by the sheeting. The
model considers the bending and torsion of the member for pre-buckling analysis but

in the buckling analyses the warping stress is ignored.

It is well known that, when a thin-walled beam has one or more cross-sections that are
constrained against warping, a complex distribution of longitudinal warping stresses
can be developed. These warping stresses together with the longitudinal stresses
generated by bending moments may cause the beam to have local, distortional, or

lateral-torsional buckling.

In this chapter, a further development of Li’s model (2004) to carry out the stress
analysis of cold-formed zed and channel section beams is proposed. The importance
of the stress analysis is obvious as it provides the base for both strength and buckling
analyses. The focus of this study is on the influence of the sheeting stiffness on the
stress distribution in the cross-section of the member when it is subjected to a
uniformly distributed transverse load. This problem has not been addressed in most
current design codes (Leach & Robinson, 1993; BS 5950, 1998). In the British Codes
of Practice (1998) the stress of a cold-formed member is calculated based on the
bending in its web plane using the bending formula of symmetric beams. The
compressive stresses calculated are then used to check if they would cause the
compressed flanges to buckle locally. This design procedure is theoretically correct
only if the member is fully restrained in both the translational and rotational directions.
If it is not so, the member will be bent asymmetrically and therefore the stress should
be calculated based on the bending of asymmetric beams. In addition to the
asymmetric bending, torsion also needs to be considered due to the loads that are not

applied at the shear centre. The twist creates not only shear stress but also warping
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stress. This is a problem which has been recognized since 1970s (Kitipornchai &
Trahair, 1980; Williams & Jemah, 1987; Walker, 1995; Trahair & Bradford, 1998;
Bradford, 2000; Ye et al., 2004) but has not been considered in practice until the
recent publication of EC 3 (1996).

3.2 ANALYTICAL MODEL

Consider the zed or channel section beam that is partially restrained by the sheeting
on its upper flange. The restraint of the sheeting can be simplified by one translational
spring and one rotational spring, as shown in Fig.3.1, and the coordinate of the
position where the springs are applied is (y, zx). Let the origin of the coordinate
system (x, y, z) be the centroid of the cross-section, with x axis being along the

longitudinal direction of the beam, and y and z axes taken in the plane of the cross-

section.

The relationship between moments and generalized strains can be expressed as
(Vlasov, 1961; Oden, 1967):

_a’?‘w
dx?
M, EI, EI, 0 0 pcl
M,| |EI, EI EI, 01 a7 | a1
M, 0 EI, EI, 0| d*
M, 0 0 0 GJ|| art
d¢
dx

which can be written in the matrix form:
{M}=[R]{x} (3.2)

where M, and M, = the bending moments about y and z axes;
M, 1s the warping moment;
M7 is the twisting moment;

v and w denote the y and z components of displacement of the centroid of the

cross section;
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¢ is the angle of twist;

E is the Young’s modulus;

G is the shear modulus;

J is the torsion constant;

I, and I, are the second moments of the cross-section with respect to y and z
axes, respectively;

I, is the product moment of the cross-section area;

1, is the sectorial product of inertia with respect to z axis;

I, 1s the warping constant.

Note that the angle of twist and the two displacements in the present system are
defined at the centroid of the cross section and therefore I,,, and I, are also calculated
based on the sectional coordinate with respect to centroid coordinate system (for
channel sections the shear centre is not at the centroid). The detailed expressions for

the sectional properties of zed and channel sections are predicted in Appendix 2.

The strain energy of the beam due to deflections and rotation can be expressed as:

AT 1 B
Uy som =5 [0 (M} == [ [R) s

*w., d’wd’v
= ) + ‘[yz afx2 dxz ( )}dx (33)
GJ d¢., EI, d’§., dvd'g
j[ CO+ =22 ) Bl 5

where / = the span length of the beam.

The strain energy stored in the two springs due to the deformation of the beam can be

expressed by
U,_opring = J(w+yk¢) dir de (3.4)

where k, and k4 = the per-unit length stiffness constants of the translational and

rotational springs.
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For a purlin that is subjected only to a uniformly distributed transverse load at the

point (y,, z,), the potential energy caused by the load can be expressed by
I
W, = Iq[sin a(v—z,¢)+cosa(w+y,p)ldx 3.5)

where g = the density of uniformly distributed load;

« = the angle between z axis and loading line seen in Fig.3.1.

The deflections, v(x) and w(x), and the angle of twist, ¢(x) due to the externally

applied loads can be determined by employing the stationary principle as follows:

5(UO - Wo) = 6(Uo_beam + Uo_spring - W ) = 0 (36)

(]

After the deflections and rotation are determined the pre-buckling moment
distributions along the longitudinal axis can be calculated using Eq. (3.1). Then the

pre-buckling longitudinal stresses can be calculated as follows:
o-x (x’ Vs Z) = o-xb ¥ tJ-xw (37)

where oy, and oy, = the longitudinal stresses generated by the bending and twisting

moments, respectively, which are expressed by

ly=1I. z Lz=I._ y
O =0y +0,4, =M, ;I ; +M, T ’;2 (3.8)
bt B yiz ix;
I 2 2
6o =E@-0-y=) Ll @ —0)L? (3.9)

1,7 dax® dx®

where M, and M; = the bending moments calculated from Eq.(3.1);

@ and @ = the sectorial coordinate and corresponding average value with

respect to the centroid,
o, and @, are the sectorial coordinate and corresponding average value with

respect to the shear centre;
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The sectorial coordinates are properties of the cross-sections and are calculated as
follows (Timoshenko & Gere, 1961; Oden, 1967):

1
(s)=|hds @=—|wd
(s ‘[ s k'[ s _—
o, (s)= '[h,ds o, =% fa)sds

where & and h; = the perpendicular distances from a tangent at the point under
consideration to the centroid and shear centre, respectively;
s = the distance from any chosen origin to the same point measured along the
middle line of the section;

k = the total length of the middle lines of the cross-section.
The details of calculations of Eq.(3.10) are given in Appendix 2.

Eq. (3.6) is solved using a numerical method in which cubic spline interpolations are
used to construct the deflection distribution with a number of nodal displacements as
the unknowns. The assumed deflection functions are required to pre-satisfy all the
required displacement boundary conditions. In this way, the variational Eq.(3.6) are
reduced to the matrix forms of a set of linear algebraic equations. The numerical
treatment is similar to the one introduced in Section 2.5.2.2, except that here cubic

spline interpolations is also needed to construct the angle of twist ¢,
#(x) =D 4.fi(x,x;) (3.11)
i=1

where ¢; = the to-be-determined angle of twist at interpolation points x;;

fi(x,x;) = defined in Section 2.5.2.2.

By using this way, Egs.(3.6) reduce to the following algebra equation,

A4, 4, A;| M} /i
A, Ay Ay |W|=|1; (3.12)
4, 4, A4y, {0} f
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where A4;; = the coefficients obtained from the calculation of the strain energy;
fyi and f; = the coefficients obtained from the calculation of the work done by

the externally applied loads.

Equation (3.12) is the pre-buckling equilibrium equation and the corresponding

solutions {v;}, {w;} and {4} represent the deflections of the purlin centroid at x=x;.

3.3 NUMERICAL EXAMPLES

Table 3.1 gives the details of the analyzed zed and channel sections, such as section

dimensions, material properties, definition of boundary conditions and loading details.

For a given problem, one can use numerical methods to solve the variational Eq.(3.6)
to determine the pre-buckling displacements v(x), w(x) and ¢x) and thus the pre-
buckling bending moment distributions M, and M, and corresponding longitudinal
stresses oy and oy, from Eq.(3.8) and (3.9).

The symbols like ‘Zd200_b60_c20 _t20’ represents the cross-section with a section
depth of 200mm, a flange width of 60mm and a lip depth of 20mm and the thickness

of the plate is 2.0mm. The members considered here have a length of 8m.

3.3.1 Influence Of The Rotational And Translational Springs

The influence of the translational and rotational spring stiffness is studied for the zed
and channel section beams with or without anti-sag bars when subjected to a

uniformly distributed downward load at the middle of the top flange.

3.3.1.1 Zed section beams (Zd202_b75_c20_t20)

Figs.3.2a and b show the influence of the translational spring stiffness on the
maximum tensile stress and the maximum compressive stress for the simply-
supported zed purlin without anti-sag bars subjected to the uniformly distributed
downward load. Fig.3.2a is for a zero rotational spring stiffness (k,~0) and Fig.3.2b is

for an infinite rotational spring stiffness (kg=o0). It can be seen from the figures that
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the influence of the translational spring stiffness on the maximum tensile and
compressive stresses only occurs in the range 10"%<k,/E<10” where both maximum
stresses decrease with the increase of the translational spring stiffness. For the case of
ks=0, the maximum compressive stress is found to be higher than the maximum
tensile stress, particularly when k,/E is very small. This is due to the contribution of
the warping stress to the compressive stress. If the warping stress is ignored, the
maximum tensile stress was found to always be equal to the maximum compressive
stress. This is due to the central symmetry of the cross-section. As is to be expected,
for the case of ks=, the warping stress is zero because the beam is fully restrained in
the rotational degree and so all four curves in Fig.3.2b are coincident. Comparison of
the results in Fig.3.2a and Fig.3.2b shows that the influence of the translational spring

stiffness is much greater than that of the rotational stiffness.

Figs.3.2¢c and d show the influence of the rotational spring stiffness on the maximum
tensile stress and the maximum compressive stress for the simply-supported zed
purlin without anti-sag bars subjected to the uniformly distributed load. Fig.3.2c is for
a zero translational spring stiffness (k,=0) and Fig.3.2d is for an infinite translational
spring stiffness (k,=c0). Again, it is shown that the rotational spring stiffness has little
influence on both maximum stresses, particularly when the translational spring

stiffness is very large.

Fig.3.3 shows the influence of the translational and rotational spring stiffness on the
maximum tensile stress and the maximum compressive stress for the simply-
supported zed putlin with one anti-sag bar. Again, it can be seen from the figures that
the influence of the translational spring stiffness on the maximum tensile and
compressive stresses only occurs in the range 108<k,/E<10” where both maximum
stresses decrease with the increase of the translational spring stiffness, while the
rotational spring stiffness has little influence on both maximum stresses, particularly

when the translational spring stiffness is very large.
The comparisons of Fig.3.2 and Fig.3.3 show that the range where the influence of

spring stiffness occurs for the beams with one anti-sag bar has larger spring stiffness

than that for the beams without anti-sag bars, and the maximum compressive stress
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for the beams with one anti-sag bar is smaller than those for the beams without anti-
sag bars, particularly when the translational spring stiffness is very small. It can also
be seen from Fig.3.2-3.3 a and c that when there is one anti-sag bar, the maximum
tensile stress is much smaller than the maximum compressive stress particularly when

k; and k4 are small.

3.3.1.2 Channel section beams (Cd202_b75_c20_t20)

Fig.3.4 shows the influence of the translational and rotational spring stiffness on the
maximum tensile stress and the maximum compressive stress for the simply-

supported channel section beam without anti-sag bars.

From Fig.3.4a, it can be seen that the influence of the translational spring stiffness on

the maximum tensile and compressive stresses only occurs in the range

107" <k/E<107” where both maximum stresses decrease with the increase of the
translational spring stiffness and the maximum compressive stress is found to be
slightly lower than the maximum tensile stress when £; is large. This, again, is due to
the contribution of the warping stress. If the warping stress is ignored, the maximum
compressive stress was found to be higher than the maximum tensile stress, which is
because that channel section is axial symmetry instead of central symmetry as for zed
section. For the case of ks=c0, the warping stress is zero because the beam is fully
restrained in the rotational degree and the translational spring stiffness has no

influence on the maximum stresses, so all four curves in Fig.3.4b are coincident.

It can be seen from Fig.3.4c and d that the influence of the rotational spring stiffness
on the maximum tensile and compressive stresses only occurs in the range
107 <ky/(Ey’)<10® where both maximum stresses decrease with the increase of the
rotational spring stiffness. It appears that the warping stress has significant
contribution on the influence of the rotational spring stiffness for £,=0. If the warping
stress 1s ignored, the maximum tensile stress is always equal to the maximum

compressive stress, in which case stresses are purely generated by M..

Fig.3.5 shows the influence of the translational and rotational spring stiffness on the

maximum tensile and compressive stresses for the simply-supported channel section
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beam with one anti-sag bar. The most features shown here are very much similar to
those observed in Fig.3.4. The comparisons of results reflect the influence of anti-sag

bars which is similar to those for zed section beams.

3.3.2 Influence Of Boundaries And Interval Restraints Produced By Anti-Sag
Bars

The influence of anti-sag bars and boundary conditions on the zed and channel section
beams, when subjected to the uniformly distributed downward load, is analyzed. The
load here is assumed to act at the middle of the top flange. Four special cases with
respect to the various restraints from the sheeting are considered: Case 1: k&=0 and
k#=0; Case 2: k,=0 and kg=; Case 3: k,=o and ks=0; Case 4: k;= and kg=o. The
stresses plotted within the cross-section are normalized and are defined as positive
(tensile) if they are plotted above or on the right of the central line of the cross

section.

3.3.2.1 Zed section beams (Zd202_b75 c20_t20)

Case 1: k£,=0 and k=0

Fig.3.6 shows the distributions of the longitudinal bending stresses (Oxp, Oxby) caused
by the two bending moments (M, and M;) and the longitudinal warping stress ()
caused by the warping torsion, both within the cross-section and along the axial
direction, for zed section beams with 0, 1, and 2 anti-sag bars. Fig.3.6a is for the beam

with both ends simply-supported and Fig.3.6b is for the beam with both ends fixed.

It can be seen from Fig.3.6a that the dominant stress is the bending stress oy,
particularly when there is no anti-sag bar, which is generated by the bending moment
about z axis. Although the loading line is not along any of the principal axes of the
zed section, the bending moment about y axis generated by external load is very small
when the anti-sag bar is absent. However, the bending stress oy, becomes comparable
with oy, when anti-sag bar is present which is due to the interference of the anti-sag
bar on the existing bending moment about the y axis created by the external load. It is

also apparent from the figure that the anti-sag bars have no influence on the
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distribution and the magnitude of the bending stress oy, and o, although they do

affect the distribution of oysy.

The similar distributions for the longitudinal stresses for zed section beams with both
ends fixed are shown in Fig.3.6b. It is noticed that, for oy, the largest stress is always
found at the fixed ends, while for oy, this is interfered by the presence of anti-sag
bars. Anti-sag bar has some influence on the magnitude but not much on the
distribution of o, and it has no influence on both magnitude and distribution of gy,

and oy,.

The comparisons of Fig.3.6a and b reflect the influence of the boundary conditions. It
is interesting to notice that the boundary condition affects both the value and
distribution of stresses in the longitudinal axis direction, but not the distribution of

stresses within the cross-section.
Case 2: k,=0 and kg=co0

Fig.3.7 shows the distributions of bending stresses (i, Oxsy) and the warping stress
(0ww) for zed section beams. As is to be expected, the warping stress is zero because
the beam is fully restrained in the rotational degree. It is clear that the features of oy,

and Oy, are very similar to those in Fig.3.6. The main difference between Fig.3.7a

and b reflects the influence of the change in boundary conditions.

Case 3: k= and k=0

Fig.3.8 shows the distributions of oy, Oy, and oy, for zed section beams.

It can be seen from Fig.3.8a that the warping stress is much lower than the two
bending stresses, particularly when the anti-sag bar is present for which case the
warping stress is almost negligible. It is also apparent that the anti-sag bars have little
influence on the distribution of bending stress oy, which is due to the full lateral
restraint from the sheeting. It is interesting that the two bending stresses are in

opposite direction. The bending stress, ox,, is generated by the lateral restraint
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provided by the sheeting and this implies that the lateral restraint can actually reduce

the bending stress, which is coincident with the results in Fig 3.2a.

It is found from Fig.3.8b that the distribution of oy, and oy, dramatically changed
and the warping stress is higher than the results in Fig.3.8a, particularly near the fixed
ends. Again, this is due to the influence of the fixed boundary conditions.

Case 4: ;=0 and kg=o0

Fig.3.9 shows the distributions of oy, oy, and oy, for zed section beams. Again, the
warping stress is zero because the beam is fully restrained in the rotational degree. It
can also be seen the bending stress oy, is comparable to o, , which is due to the yx
plane not being one of the principal planes of the zed section, although the beam can

only bend in yx plane when k,=c and kg=.

3.3.2.2 Channel section beams (Cd202_b75_c20_t20)
Case 1: k,=0 and ks=0

Fig.3.10 shows the distributions of oy, O,y and oy, for channel section beams, in
which the bending stress oy, is generated by the bending moment about z-axis
directly due to the external load and the bending stress oy, is generated by the
bending moment about y-axis due to the lateral restraint. As is to be expected, the
bending stress oy is zero because the loading line is parallel to one of the principal
axes of the channel section so that only a bending moment about z axis and an
additional torsion are generated. It can be seen that the warping stress is comparable
with the bending stress oy.. The anti-sag bars have no influence on both the

magnitude and distribution of oy, and oyy,.
Case 2: k=0 and k=

Fig.3.11 shows the distributions of oy, Oy and oy, for channel section beams. As is
to be expected, the warping stress is almost negligible because the beam is fully

restrained in the rotational degree. It is clear that the features of oy, and oy, are very
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similar to those in Fig.3.10. The main difference between Fig.3.11a and b reflects the

influence of the fixed boundary conditions.

Case 3: k,=o0 and kg=0

Fig.3.12 shows the distributions of oy, Ox»y and o, for channel section beams. It can
be seen that lateral restraint from &, and anti-sag bars makes significant contribution to

the bending stress oys,.
Case 4: k,= and kg~

Fig.3.13 shows the distributions of oy, Oy, and oy, for channel section beams. It can
be seen that when the channel section beams are fully restrained by the sheeting, the

bending stress oy, and warping stress oy, are almost negligible.

3.3.3 Comparison Of Bending Stress And Warping Stress

Figs.3.14 and 15 show the distributions of the pre-buckling stresses in the zed
(Zd202 b75 c20_t20)and channel section (Cd202 b75 c20 t20) beams, respectively,
both of which are simply-supported with 0, 1 and 2 anti-sag bars when k,=c and
k=0, which are further illustrations of Fig.3.8a and Fig.3.12a. The beams are
subjected to the uniformly distributed downward load at the middle of the top flange.
The stresses plotted are defined as negative (compressive stress) if they are plotted

above or on the right of the middle line of the cross-section in order to achieve visible

effect.

It is found from the figures that the warping stress is much larger in the channel
section than in the zed section. This is probably due to the loading point which is
assumed to be at the middle of the top flange and so cause more severe torsion in the
channel section than in the zed section. For both sections, however, the warping stress
is found to be significantly reduced when anti-sag bars are present. It is interesting to
notice from Fig.3.15 that their presence has remarkable influence on the pre-buckling
bending stress of the channel section (both the value and distribution). However, fo
the zed section, the influence of the anti-sag bars is not very remarkable (see

Fig.3.14). And this 1s consistent with the results in Section 3.3.2.
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3.3.4 Influence Of The Position Of The Loading Points

The influence of the position of the loading point on the maximum tensile stress and
maximum compressive stress for simply-supported zed and channel section beams
without anti-sag bars when subjected to the uniformly distributed downward load at

the top flange is analyzed.

Figs.3.16a and b respectively show the influence of the position of the loading point
on the maximum tensile stress and maximum compressive stress for zed section
beams. Again, as expected, for the fully rotational restrained cases (k=< ) the
maximum tensile stresses are equal to the maximum compressive stresses because
there is no warping stress and also the maximum stresses do not vary with the position

of loading point.

However, when the beam is not rotationally restrained (k4=0), warping stresses are
generated due to the torsion caused by eccentric loading and so the position of the
loading point does affect the stress results. The maximum tensile stresses decrease
with the increase of the distance z, between the loading point and the y axis until z, is
around 0.4b when the stresses start to rise. However the maximum compressive

stresses always increase for k,=0 and k=0 and slightly decrease for k;=c0 and kz=0.

Figs.3.17a and b respectively show the influence of the position of loading point on
the maximum tensile and compressive stresses for channel section beams. Again, for
the fully restrained rotational cases (k4= ), the maximum tensile stresses are equal to
the maximum compressive stresses and also the maximum stresses do not vary with
the position of loading point. It is also found that when kg=0, k, has no influence on
the maximum stresses which is consistent with the results shown before. On the other
hand, for the cases of k=0, the greater the distance between the loading point and y

axis, the higher the maximum compressive stress.

Further inspection of Fig.3.16 and 17 shows that, for the zed section beams, the
maximum compressive stress is less dependent on the rotational spring stiffness than
on the translational spring stiffness. For the maximum tensile stress, however, the

rotational spring stiffness may have a similar influence to the translational spring
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stiffness when the loading point is remote from y axis. In contrast, for the channel
section beams, the maximum stresses are more dependent on the rotational spring

stiffness than on the translational spring stiffness.

3.4 SUMMARY

The stress analysis of cold-formed zed and channel section beams has been presented
in this chapter in which the restraint actions of the sheeting are modelled by using two
springs representing the translational and rotational restraints. The numerical results
have shown that the two springs have significantly different influences on the stresses
of the beams. The influence of the two springs has also been found to depend on
presence of anti-sag bars and the position of the loading line. For the reported beam

examples, the following major conclusions can be drawn:

* For most of the cases, the maximum tensile and compressive stresses decrease

with increase in the translational and rotational spring stiffnesses.

* The influence of translational and rotational spring stiffness on the maximum

tensile and compressive stresses occurs only in a small range of stiffness value.

* As far as the maximum tensile and compressive stresses are concerned, for zed
section beams the rotational spring stiffness has less influence than
translational spring stiffness, while for channel section beams the rotational

spring stiffness has more influence.

* The translational and rotational spring stiffnesses have more significant
influence on the bending stress oy, and warping stress oy, than on the bending
stress Oy, particularly for the case where no bi-moments are generated by the

external load.

* When there is no rotational restraint (ks~0), the warping stress has a
significant contribution on the pre-buckling stress. However, its contribution is

reduced by the presence of anti-sag bars.
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The bending stress of zed section beams is less sensitive to anti-sag bars than

those of channel section beams.

The influence of the two spring stiffnesses on the stress and its distribution is
found to be influenced by the anti-sag bars. The influence range for the spring
stiffness moves from a low value to a high value when the anti-sag bars are
present. The maximum stresses for the beams with anti-sag bars are smaller
than those for the beams without anti-sag bars, particularly when the

translational and rotational spring stiffnesses are very small.

In terms of the generated stresses it appears that the best location for fixing
(that is, the loading line) is close to the centre of the flange for zed section
beams and to the web line for channel section beams, which provides the

lowest maximum tensile and compressive stresses.
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Fig.3.1 Analytical models for stress analysis of zed and channel section beams.
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Fig.3.8 Pre-buckling stress distribution for zed section beam when k.= and k0. (i)
No anti-sag bars; (ii) One anti-sag bar; (iii) Two anti-sag bars.

83



(i) olo

(i) oo

(i) /o

(i) olo

(i) ofo.

y

(iii) o/o

xbz xby Xw
1
05 N— 05 S, 0.5 2l
-1 0
-1
. q,_é_ [
1.5 E{ 05
2 15 1
05 1 0 05 1 0 0.5
1
-0.5 05 0.5 ~—
A% TS 0
-1
15 P \ o =
2 1.5 1
0.5 1 0 05 1 0 05
1
05 }_Q 0.5 —
=1 0
el —
-0.5 =
-15
-1
0.5 1 0 05 1 4] 0.5
xfspan x/span x/span
(a) Simply supported beam (y,=-d/2, 2;=b/2).
Sz cm L
1
1
1
] 0.5 i
0.5
0.5 ¢
-0.5
06 05 p
0 0.5 1 0 0.5 1 0 0.5
1
1
1
;ﬂ — /1_] 0.5 - /l_‘
05
0.5 0
0 0 N B
5SS 0.5
08 05 "
0 0.5 1 0 0.5 1 0 0.5
1
1
1
_ﬂ: 0.5 /I'_\
05
0.5 0
0 0 x =
-0.5
-0.5 . :
0 0.5 1 0 05 1 0 0.5
X/span x/span x/span

(b) Fixed beam (y,=-d/2, z,;=b/2).

Fig.3.9 Pre-buckling stress distribution for zed section beam when k,=00 and k&=. (i)

No anti-sag bars; (ii) One anti-sag bar; (iii) Two anti-sag bars.

84




xbz xby Oy
1
-0.2
0.5 2 _7.41:
=
E"" 0.4 YE i
=]
e 08 ﬁx 05 " 1 s.a
0.8 :
-1 0
0 0.5 1 0 0.5 1 0 0.5
1
0.2 . 05 o 3 N
-9.’ 0.4 3 Y
[ 0
& w8 AN . 1 La
08 0.5
-1 0
0 0.5 1 0 0.5 1 0 05
1
-0.2
i 0.5 —e, 2 -1
" .04 —
© 0
€ 08 AN s - 1 -
-0.8 N
-1 0
0 05 1 0 0.5 1 0 0.5
x/span X/span x/span
(a) Simply supported beam (y,=-d/2, z,=b/2-e,).
Oybz “xby Ow
06 L 1
. 04 IH 0.5 — 0 7_@
b
B 0.2 0 i
= O i ] E _7.43
-0.5
-0.2 2
-1
0 0.5 1 0 05 1 0 0.5
06 1 1
. 04 7_‘1_, 0.5 _— i -
s 0.2 0 )
= 0 —a i i T
-0.5
0.2 -2
-1
Q 0.5 1 0 05 1 0 05
06 1 1
- 04 0.5 — 0
B 02 0
= 0 -1
= -
0.5
0.2 -2
-1
0 0.5 1 0 0.5 1 0 0.5
x/span x/span x/span

(b) Fixed beam (y,=-d/2, z,=b/2-e,).
Fig.3.10 Pre-buckling stress distribution for channel section beam when k,=0 and k0.

(i) No anti-sag bars; (ii) One anti-sag bar; (iii) Two anti-sag bars.

85




Oz by S
1 1
0.2
0.5 0.5
— S— -
2"‘ 04 E
e 0.6 v e
S <0 R : \ o
08 05 0.5
-1 -1
0 05 1 0 0.5 1 0 05
1 1
-0.2
05 0.5
< [r——
o 04 [ 7=
e 0.6 5 ¢ g
= NN I _7.43
-08 'DAS “05
-1 -1
0 0.5 1 0 05 1 0 05
1 1
-0.2
y 05 3 0.5
© 04 i :
i3 0 0
g 08 i ;
0.8 0.5 0.5
-1 -1
0 05 1 0 05 1 0 05
x/span xX/span x/span
(a) Simply supported beam(y,=-d/2, z;=b/2-e,).
Uxbz GXD)‘ O'm
0.6 1 1
04 f = | 0.5 0.5 7
bh
:-6.. 0.2 2 0 0 Z
= @ -
ey 05 05 e
-0.2
-1 -1
0 0.5 1 0 05 1 0 05
0.6 1 1
04 ;l:, 05 I 05 =
D)\
s 02
¢ o \4d ’ . T
— P
-0.5 0.5
0.2
-1 -1
0 0.5 1 0 0.5 1 0 0.5
06 L 1
04 :1: 0.5 — 0.5 7-a
L
g 0.2 Z 0 (1] 55 z
S 0 o <
' 05 -0.5
-0.2
-1 -1
0 05 1 0 0.5 1 0 0.5
x/span x/span x/span

(b) Fixed beam (y,=-d/2, z,=b/2-e;).

Fig.3.11 Pre-buckling stress distribution for channel section beam when k,=0 and
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Fig.3.14 The longitudinal stress distribution of zed section beams when k= and k0.
(a) Warping stress and (b) bending stress (y,=-d/2, z;=b/2).
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Fig.3.15 The longitudinal stress distribution of channel section beams when k.= and
k0. (a) Warping stress and (b) bending stress (y,=-d/2, z;=b/2-e,).
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Chapter 4

4 LOCAL BUCKLING BEHAVIOUR

4.0 CHAPTER SYNOPSIS

The following chapter describes the local buckling behaviour of cold-formed zed and
channel section beams subjected to various loading conditions. A novel method is
presented for analysing the elastic local buckling behaviour of cold-formed zed and
channel section beams with partial-lateral restraint from metal sheeting when

subjected to a uniformly distributed transverse load.

The focus of the study is to investigate the local buckling behaviour of cold-formed
zed and channel section beams under pure bending and uniformly distributed
transverse loading by using the available approaches, the individual influences of
warping stress, partial lateral restraints from the sheeting and the dimensions of the

cross section on the local buckling behaviour.
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4.1 INTRODUCTION

It is well known that the effective width and the finite strip method are commonly
used for studying the local buckling behaviour of cold-formed steel sections. However,
by ignoring the interaction between the individual plate elements, the effective width
method may be inaccurate, particularly when dealing with different stress conditions.
In the finite strip method the stress distribution is assumed as constant along the half
wavelength, while for the uniformly distributed transverse loading case the
longitudinal stress varies along the span. Nevertheless, it is conceivable that, for a
beam subjected to a varying stress distribution along its span, the local buckling will
occur only at a worst place. The worst place should be where the compressive stress is
the largest. Therefore, only the cross-sectional stresses with the largest compressive
stress are used as the input to the finite strip analysis for carrying out the elastic local
buckling analysis. The finite strip method has been shown to be a good approach to
effectively analyse the local buckling of cold-formed members. The details of the
finite strip method can be found in Section 2.8.5 and thus is not presented further

here.

4.2 LOCAL BUCKLING OF THE MEMBERS UNDER
PURE BENDING

The local bucking capacity of the simply-supported zed and channel section beams
under pure bending are investigated using the effective width method based on BS
5950 (1998) and the finite strip program — CUFSM (Schafer, 2001c & 2003a). The
stress distribution on the cross section is demonstrated in Fig.4.1, where d; is the
overall depth of section, b, is the width of flange, c; is the length of stiffening lip and ¢
is the thickness.

Note, because the purlins investigated here are restrained both laterally and

rotationally at the corner between the web and the flange subjected to tensile stress

94



and are subjected to pure bending, the results in Section 4.2 can be applied to both zed

and channel section beams.

4.2.1 Effective Width Method Based On BS 5950-5

The procedure of the calculation of effective section based on BS 5950 (1998) is

listed as follows,

= Limiting compressive stress in the web:
p, = p, xmin(l, k) 4.1)
(o) d
where k = 1.13—0.0019(d—“)1’ L =1.13-0.212(—) (4.2)
t V280 100z

d,=max(d,2Y,);
d = depth of web (=d;-t);
o, = yield stress, given in Table 3.1.

Y, = depth of compression zone (=0.54d);
= thickness of web.

= Effective width of the compressed flange (with stiffening lip)

" ﬂ'zE t 2 t 2
Local buckling stress: p,, = ) k, (3) =0.904Ek, (3) (4.3)

12(1-v?

LA@IB) _ oncdys

where k£, =5.4— .
06+d/b b

b = width of flange (=b;-7)
Compressive stress in the flange: f. = p, (4.4)

Effective width of the flange: b,, = b,, = 0.5b,; (4.5)
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where b, =b it flp, 80123

4 -0.2
by =z{1+14( /e —0.35} } if £./p, >0.123
pcr

= Effective length of the compressed stiffening lip

Local buckling stress: p, =—%-2—k (})? (4.6)
e T R '
1.7 Y —¢
wherek = ———; — B = f..——;c=c-0.5t.
o 3+fcsff;f fr:s po f;:f f Ym 1
Compressive stress in the stiffening lip: f, =(f, + f,)/2 4.7)
Effective length of the stiffening lip:
cg =c if f./p, £0.123
4 -0.2
Cq=C 0.89[1+14{ Lo 0.35] } +0.11% if £,/ p,, >0.123(4.8)
pcr
= Calculation of the new position of the neutral axis
2 2
L SPLIPRY O
Y, = b’ 2 4.9)

c%g,+bqﬁ,+d+b+c

4.2.2 Elastic Buckling Based On Finite Strip Analysis

The buckling modes of cold-formed steel sections can be classified as local, distortional

and global buckling modes. Some typical buckling curves calculated using CUFSM are
shown in Fig.4.2.

The curve, ‘d100 b60 ¢20 t20°, is a ‘standard’ buckling curve, which provides the

information about when and how the section buckles for a given length. There are three
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regions in the curve, which correspond to the local buckling of short buckling
wavelengths, the distortional buckling of medium buckling wavelengths and the lateral
distortional buckling of long buckling wavelengths. The local minimum in each region
provide the lowest possible critical load and the corresponding buckling wavelength for

the particular type of the buckling.

Fig.4.3 shows the typical local buckling modes. The main local buckling mode is the
combination of lip, flange and web buckling. However, due to the difference in the width
for each element, the buckling is initiated by the longest element amongst the lip, the

flange and the compression part of the web.

4.2.3 Comparison Of Local Buckling Capacity Calculated Using BS 5950-5 And
Finite Strip Analysis

Fig.4.4 shows comparisons of the critical bending moments for local buckling calculated
using the method shown in BS 5950 and the finite strip method, for the beam restrained
both laterally and rotationally at the corner between web and the flange subjected to
tensile stress. The results can be applied to both channel and zed sections. It can be seen
from the figure that the values of the moment capacity calculated using BS 5950 increase
with increase in the flange width b, web depth d and the ratio of lip depth ¢ to flange
width 4. This is due to the fact that the effective area for the bigger cross section is

larger than for the smaller cross section.

However, the results are more complicated for the moment capacity calculated using
the finite strip method. It is found in Fig.4.4a that the moment capacity decreases with
the increase of flange width b when d=100mm, but increases with the flange when
d=300mm; and in Fig.4.4b that the moment capacity reaches to the maximum value
before it decreases with the increase of the web depth. The influence of the ratio of ¢
to b was found only for the shallower section (d=100mm) when ¢/b is larger than 0.3
(see Fig.4.4c). In general, it is the difference between the width of the flange and the
compression part of the web that determines the elastic buckling capacity. When the
width of the flange is larger than the depth of the compression part of the web, the
buckling mode is flange buckling. The elastic local buckling capacity can be
decreased by increasing the flange width 4. On the other hand, when the width of the
flange is less than the depth of the compression part of the web, the buckling mode
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will be the web buckling. The elastic local buckling capacity can be increased by

increasing either the flange width b or the lip length c.

It is also apparent from Fig.4.4 that the results from the finite strip method and BS 5950
are closing when the web depth is deeper than 270mm, otherwise the results from the
finite strip method are greater than those from BS 5950. This is due to the fact that local
buckling is initiated in web when the section is deeper. Note that in BS 5950, the web
element is assumed to be fully effective but the maximum compressive stress is
limited; while in the finite strip method, the int'eraction of local buckling of the

individual elements is considered.

Fig.4.5a shows the ratios of critical bending moments to yielding moments
(Mc/Myieiq) calculated using the finite strip method and BS 5950. It can be seen that
the results obtained from the finite strip method exceed yielding moments when
d=100m, particularly when b is small; while the results from BS 5950 are almost
equal to the yielding moments. However, when d=300mm, both of the results are
smaller than yielding moment, which means the local buckling occurs before the

yielding.

Fig.4.5b shows the influences of the dimensions on the moment efficiency, which is
defined as the ratio of the moment capacity to the gross area of the cross section. It is
interesting to see that it gives different trends for d=100mm and d=300mm. The
maximum value of moment efficiency is reached when the flange width 1s 60mm for

the section with d=100mm and around 80mm for the section with d=300mm.

4.3 LOCAL BUCKLING OF PURLIN-SHEETING
SYSTEMS
4.3.1 Limitation Of Design Specifications

As illustrated in Section 2.3.2.1, elastic local buckling is typically treated by ignoring
any interaction between the elements (flanges and web) in the design specifications

(EC3, Part 1.3, 1996; BS 5950, 1998). Each element is considered independently and
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the classical plate buckling equations based on isolated free or simply supported
plates are used. This approach, called the element model, can lead to rather

conservative predictions.

Eurocode 3: Part 1.3 (1996) gives some comprehensive rules for the determination of
the effective widths under different stress conditions. In principle, the effective widths
of the individual plate elements may be combined to give an effective section and the
member design can be completed using conventional techniques. However, this
apparent simplicity conceals a number of difficulties. This is because individual plate

elements do not buckle in isolation but interact with each other.

Furthermore, with modern, highly stiffened sections, the stiffeners may be partially
effective so that stiffener buckling interacts with local plate buckling. Eurocode 3:
Part 1.3 (1996) gives some design rules for more general situations but these are
complicated to use and not particularly accurate (Kesti & Davies, 1999). Evidently,
this is the situation where design based on an analysis of the whole section is to be

preferred.

4.3.2 The Novel Model Based On Energy Methods And Finite Strip Analysis

The analytical model introduced in Section 3.2 is used to carry out pre-buckling stress
analysis for the zed and channel section beams, which are partially restrained by the
sheeting on the upper flange. The restraint of the sheeting can be simplified by a

translational spring and a rotational spring, as shown in Fig.3.1.

The critical load for local buckling of the partially restrained zed and channel section
members can be calculated using the finite strip method (Schafer, 2001c & 2003a). It
should be mentioned here that, in this method the stress distribution is assumed as
constant along the half wavelength, while in the present case the longitudinal stress
varies along the span. However, it is conceivable that for a beam subjected to a
varying stress distribution along its span, local buckling will only occur at a worst
place. The worst place should be one at length in which the compressive stress is the
largest. Therefore, only the cross-sectional stresses with the largest compressive stress

are used as the input to the finite strip analysis for carrying out the elastic local
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buckling analysis. The finite strip method has been proved to be a good approach to
effectively analyse the local buckling of cold-formed members. The details of the
finite strip method can be found in Section 2.8.5 and thus is not presented further

here.

Also, in the finite strip method the local buckling analysis is performed with respect
to the half wavelength of the buckling modes which is independent of the span length
and the end boundary conditions. However, since the pre-buckling stress in the
present study is calculated based on the particular member of a given span length and
of prescribed boundary conditions, the critical load obtained from the finite strip
analysis is thus only applicable to this particular member. Any change in the beam
span length or the end boundary conditions will alter the pre-buckling stress and thus

leads to different local buckling critical load.

4.3.3 Numerical examples

Table 3.1 gives the details of the analyzed zed and channel sections, such as material
properties, definition of boundary conditions and loading details. Here the boundary
conditions for the displacements are assumed as simply supported. The investigated

beams have a span length of 8m.

For a given problem, one can solve variational Eq.(3.6) by using the numerical
method to obtain pre-buckling displacements v(x), w(x) and ¢x) and the
corresponding longitudinal stresses o. The stress distribution in the cross-section
with the largest compressive stress is then used for carrying out the local buckling

analysis by using the finite strip method. The beams investigated are subjected to the

uniformly distributed transverse load (that is, a = 90%).

4.3.3.1 Influence of Translational and Rotational Spring Stiffness

The influences of the translational and rotational spring stiffnesses are studied for the
zed and channel section beams without anti-sag bars when subjected to the uniformly

distributed uplift load located at the middle of the top flange shown in Fig.3.1.

Zed section beams (y;=-d/2; z;=b/2)
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Fig.4.6 show the influence of the translational and rotational spring stiffnesses on the
local buckling load g./g, for the simply-supported zed section beams without anti-sag
bars subjected to the uniformly distributed uplift load (Zd202_b75_c20_t20 and
Zd302 b75 c20 t20). Fig.4.6a is for a zero rotational spring stiffness (k/~0) and
Fig.4.6b is for an infinite rotational spring stiffness (kg=o0).It can be seen from
Fig.4.6a (k4=0) that the local buckling loads increase with the increase of translational
spring stiffness and the influence of the translational spring stiffness on the local
buckling load only occurs in the range 10°<k,/E<10”. Warping stress is much more
obvious when k/E is very small. As is to be expected, for the case of k=, the
warping stress is zero because the beam is fully restrained in the rotational degree.
However, although the cross section is rotationally restrained, the critical loads still
increase with the increase of the translational spring stiffness, which is due to the fact
that coordinate axes are not coincident with the principle axe of the cross section;
therefore, the pre-buckling stress caused by bi-moments can be influenced by the

translational spring stiffness.

Fig.4.6c and 4.6d show the influence of the rotational spring stiffness on the local
buckling load for the simply-supported zed section beams. Fig.4.6c is for a zero
translational spring stiffness (k,=0) and Fig.4.6d is for an infinite translational spring
stiffness (k;=). It is clear that the local buckling loads decrease with the increase of

the rotational spring stiffness when warping stress is considered, particularly when
k.=O0.

It can also be seen from the results in Fig.4.6 that for most of the cases the critical
loads increase when the warping stress is considered, the most obvious case being
when k=0 and k4=0. The local buckling loads for the beams Zd202 b75 ¢20 t20 are
higher than those for the beams Zd302_b75 c20_t20. The warping stress has more
effect on Zd202_b75_c20_t20 than on Zd302_b75 c20 _t20.

Channel section beams (y,=-d/2; z;=b/2-¢;)

Fig.4.7 shows the influence of the translational and rotational spring stiffnesses on the
local buckling load for the simply-supported channel section beams, without anti-sag
bars, subjected to a uniformly distributed uplift load (Cd202 b75 ¢20 t20 and

101



Cd302_b75_c20 _t20). Fig.4.7a is for a zero rotational spring stiffness (k;~0) and
Fig.4.7b is for an infinite rotational spring stiffness (kg=c0).It can be seen from
Fig.4.7a (ks=0) that the local buckling loads decrease with the increase of translational
spring stiffness. Again, for the case of ks=co,the warping stress is zero and the
translational spring stiffness does not have any influence on the local buckling
because the cross section is under the single moment bending. Figs.4.7c and 4.7d
show the influence of the rotational spring stiffness. It can be seen that the loads
increase with the increase of translational spring stiffness and the rotational spring

stiffness has more influence than the translational spring stiffness.

It can also be seen from the results in Fig.4.7 that the critical loads decrease when
warping stress is considered for most of the cases and the most obvious case is that

when £,=0 and k0.

4.3.3.2 Influence of the Dimensions of Cross Section

The influence of the dimensions of the cross section is studied for the zed and channel
section beams without anti-sag bars when subjected to a uniformly distributed uplift

load applied at the middle of the top flange as shown in Fig.3.1.
Zed section beams (y,=-d/2; z;=b/2)

Fig.4.8 shows the influence of the dimensions of the cross section on the critical loads
for the simply-supported zed section beams. It is found in Fig.4.8a that the critical
load decreases with the increase of flange width when d=100mm, but keeps almost
constant when d=300mm. This is due to the fact that the wider flange tends to buckle
locally for the shallow sections; while the compressed part of the web buckles locally
for the deeper section. This is also the reason that the significant influence of the ratio
of ¢ to b only occurs for the shallow sections (¢=100mm). It can be seen from
Fig.4.8b that the critical loads decrease with the increase of the web depth for most
cases except that when flange is wider and lip is longer (b=90mm and ¢/b=0.4) for
which case the influence of section depth is almost neglected, which is also the only
case showing the effect of c/b. Fig.4.8c shows that the effects of ¢/b on the local
buckling are only for the shallow section (d=100mm) when ¢/b is at least 0.27.

Channel section beams (y,=-d/2; z;=b/2-e;)
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Fig.4.9 show influence of the dimensions of the cross section on the critical loads for
the simply-supported channel section beams, subjected to a uniformly distributed
uplift load. It can be seen that most of the features are similar to those found in Fig.4.8
for zed section beams, except that the ratio of ¢ to b did not show any effect on the

local bucking loads for the investigated examples.

4.3.3.3 Influence of the position of the loading points

The influence of the position of the loading points (z,) is studied for the zed and
channel section beams without anti-sag bars when subjected to the uniformly

distributed uplift load as shown in Fig.3.1.
Zed section beams

Figs.4.10a and 4.10b respectively show the influence of the position of loading point
(z;) on the local buckling loads for zed section beams Zd202_b75_c20_t20 and
Zd250 b50 c20 t20.

Again, as is expected, for the fully rotational restrained cases (k4=c0) the local
buckling loads do not vary with the position of loading point which can be explained
by Eq. (3.5). The comparison of Fig.4.10a and 4.10b shows that deeper cross sections
have lower local buckling loads. However, when the beam is not rotationally
restrained (k;=0), warping stresses are generated due to the torsion caused by
eccentric loading and so the position of loading point does affect the loading results.
For the case of k,=o0 and k40, the local buckling loads increase with the increase of
the distance z, between the loading point and the y axis until z, is around 0.5b for
Zd202 b75 ¢20_t20 and 0.7b for Zd250 bS50 _c20_t20 where the loads start to
decrease, while in the case of k=0 and k4=0, the critical loads are always to decrease

with the increased z,.
Channel section beams

Figs.4.11a and b respectively show the influence of the position of loading point on
the local buckling loads for channel section beams Cd202_b75_c20_t20 and
Cd250 b50_c20_t20.
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Again, as is expected, for the fully rotational restrained cases (k4= ) the local
buckling loads do not vary with the position of loading point. For the case of k,=0 and
k4=0, the local buckling loads slightly increase with increased z, while, in the case of

k=0 and k=0, the critical loads decrease with increased zq.

44 SUMMARY

In this chapter the local buckling behaviour has been investigated for cold-formed zed
and channel section beams subjected to pure bending and uniformly distributed
transverse loading, By using the presented novel method, the individual influences of
warping stress, partial lateral restraints from the sheeting, the dimensions of the cross
section and the position of the loading point are also investigated. The following

major conclusions can be drawn based on the investigated examples:

= For the beams restrained both translationally and rotationally, subjected to
pure bending, the moment capacities calculated using BS 5950 and the finite strip
method show the influence of the various cross-section dimensions, which indicate

the importance of considering the interactions between the individual elements.

= For the beams under a uniformly distributed transverse loading in a purlin-

sheeting system:

» The local buckling loads g./g, of the zed section beams increase with increase
in the translational spring stiffness, but decrease with increase in the rotational
spring stiffness. The influence of the translational and rotational spring

stiffnesses occurs only over a limited range of stiffness values.
* The local buckling loads g./g, of the channel section beams decrease with

increase in the translational spring stiffness, but increase with increase in the

rotational spring stiffness.
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Warping stress has a significant influence on the local buckling loads;
however, the influence is reduced by increases of both the translational and

rotational spring stiffnesses.

As far as local buckling is concerned, the best location for fixing (that is, the
loading line) is close to the centre of the flange for zed section beams and to
the web line for channel section beams, which provides rather higher local

buckling loads.
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Chapter S

5 SEMI-ANALYTICAL FINITE STRIP
METHOD

5.0 CHAPTER SYNOPSIS

A semi-analytical finite strip method is introduced in this chapter to investigate the
buckling behaviour of the cold-formed steel zed and channel section beams when
subjected to different loads. The focus of the study is on the local and distortional
buckling, for which currently available results are only for sections subjected to pure

compression and/or pure bending.

The results obtained from this study have shown that, for local buckling there is no
practical difference in the critical loads between pure bending and uniformly
distributed loading. For distortional buckling, however, remarkable difference exists.
The critical load for the uniformly distributed load is generally higher than that for the
pure bending. The difference between these two loading cases is found to decrease

with the beam length.

114



5.1 INTRODUCTION

It is well known that beams made of cold-formed steel sections may exhibit local,
distortional and lateral-torsional buckling. Most design methods used in current
standards and specifications that account for local and distortional buckling are based
on the effective width concept for stiffened and unstiffened elements. The effective
width method was originally developed by Von Karman et al. (1932) and calibrated
for cold-formed members by Winter (1968). The method was initially intended to
account for local buckling but has now been extended to the distortional bucking of

stiffened elements with an intermediate stiffener or edge stiffeners (Schafer, 2003b).

The key part in calculating the effective width is the selection of the technique to
determine the critical loads related to local and distortional buckling. The common
methods currently employed to calculate these critical loads include analytical
methods (Rhodes and Lawson, 1993; Schafer and Pekoz, 1999a; Hancock, 2003),
based on various simplified models, and the finite strip method (Hancock, 1997a;
Schafer, 2001c & 2003a). However, most of these methods are limited to the
members subjected to pure compression or pure bending or a combination of these
two loading cases. In other words, the methods cannot be applied to the case where
the compressive stresses vary along the longitudinal axis. Apart from these methods,
there is one that may be applied to the case of varying stresses, which is the
generalized beam theory (GBT) method (Camotim et al., 2004). It is, therefore,
surprising that there is no published work regarding its application to the case of

varying stresses.

Cold-formed steel sections are usually used as purlins or rails, the intermediate
members between the main structural frame and the corrugated roof or wall sheeting
in buildings for farming and industrial use. Therefore it is very common that the cold-
formed member is subjected to a uniformly distributed transverse load, and so this
creates a question - can the critical loads obtained from pure bending be applied to the

uniformly distributed loading case? The objective of the chapter is to answer this
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question. The chapter is only focused on the local and distortional buckling. The

lateral-torsional buckling will be addressed in the next chapter.

5.2 SEMI-ANALYTICAL FINITE STRIP METHOD

This section addresses the modification that is incorporated into the conventional
finite strip analysis procedure in order to perform the buckling analysis of beams
under uniformly distributed loads. Similar to the finite strip method, we consider a
strip shown in Fig.2.12. To be consistent with the notations used in the finite strip
method addressed in Chapter 2, we use the local coordinate system in which the x-
and y-axes are the two axes within the plane of the strip and the z-axis is normal to the
plane of the strip. The three displacements of the strip at a point (x,y) can be expressed

in terms of the nodal displacements as follows (Schafer, 2003a; Boresi et al. 2002):

u m
dan?2 § h-2 8 & all™
{u(x, y)} _5 a, b, b, v, G.1)
v(x, ,V) m=l 0 coSs M 0 1- ;x_ 0 i Uy
as bs bs vV

2m

m

2 3 2 3 2 3 3 2 9
sl Zsin mrzy{l 3x°  2x 2x° x 3x° 2x x x ] i
m=1 as

x_ i — s ——

5 b B B B B b

5 5

(5.2)

me

2m

where u(x,y) and v(x,y) = the plane displacements;
w(x,y) = the deflection;
(trms Vim, Wims Gim) and (uzm, Vam, Wams Ghm) = the nodal displacements
associated with wave number m;

as and b, = the length and width of the strip, respectively.

The assumed displacement functions satisfy the simply supported boundary

conditions. The strain energy of the strip can be expressed as
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Et % y?

U= ﬁ [[ie, +£,) —20-v)(e,e, ——)]dxdy+
(5.3)
K, +k,) —2(1-v)(k,x, - k_,)]dxd
24(1 H[( ) =201 - V(K x, - x2,)ldxdy
where E = Young’s modulus;
v = Poisson’s ratio;
t is the thickness of the strip.
The membrane and bending strains in Eq. (5.3) are defined as follows
5 = Ou 5. e ov ¥ Ou " ov
w0y Tt
oy oy (5.4)

__a’*w __azw _ o*w

x axz 4 Ky ayz ’ xy axay

The element stiffness matrix can be obtained by substituting Egs. (5.1) and (5.2) into
(5.4) and then into (5.3). Note that for each wave number the element stiffness matrix
is independent and thus the global stiffness matrix consists of M sub-stiffness

matrices sitting on the diagonal location (where M is the total number of waves).

The element geometric stiffness matrix can be derived based on the work done by the
membrane stresses through the nonlinear strains of the buckling displacements as
follows (Schafer, 2003a)

ab
W = [ 70T -0~ 1) 1[(5)2 (%)u(%)z]my (5.5)

where T, and T, = the tractions at nodes 1 and 2 (see Fig.2.13), respectively;
f(y) = the function defining the variation of the compressive stress along the

longitudinal axis.

Obviously, for either pure compression or pure bending f{y)=1. For beams subjected
to a uniformly distributed load f(y) = 4(ay — y*)/a’ . The element geometric stiffness

matrix can be obtained by substituting Egs. (5.1) and (5.2) into (5.5). Note,
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because f(y) # 1, the element geometric stiffness matrix is coupled about the wave

number. After the assembly of the element matrices, the following global matrix

equation can be obtained:

(K] 0 .. 0 |[{d} (Kenl [Kgel o [Koul|| {4}
[K,] .. O {d,} - [Kgnn] o [Kpanl|] {d,} (5.6)
[Kp 1) {dy} (K ne] | [{d)

where [K] and [Kgmm] = the global stiffness matrix and global geometric stiffness
matrix associated with wave number M; the expressions of which can be found
in Appendix 1;
[Kemn](= [Kgnm)) = the coupled global geometric stiffness matrix associated
with wave number m and n, the expression of which is given in the Appendix
1
{dn} = the nodal displacement vector associated with wave number m;

A is the loading factor.

The critical load can be obtained by solving the eigen-value matrix Eq. (5.6).

5.3 NUMERICAL EXAMPLES

In this section, the buckling behavior of simply-supported cold-formed channel and
zed section beams is investigated using the semi-analytical finite strip method

addressed in Section 5.2.

In order to illustrate the application and to provide a better grasp of the capabilities of
this approach, two numerical examples are presented and briefly discussed in this
section. The first example relates to a section of depth d=250 mm, flange width b=50
mm, lip length ¢=20 mm and thickness t=1.9 mm (d250 b50 ¢20 t19), which is
dominated by local buckling. In the second example the section has a depth of d=202
mm, flange width b=75 mm, lip length ¢=20 mm and thickness t=2.3 mm
(d202_b75 ¢20 t23) and it i1s dominated by distortional buckling. Their material
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properties are listed in Table 3.1. Two different loading cases, pure bending or

uniformly distributed loading (applied at shear centre), are discussed.

5.3.1 Channel-section Beams

The bending moment diagrams and the corresponding stress distribution within the

cross-section for these two different loading cases are plotted in Fig.5.1.

Fig.5.2 shows the typical buckling curves of the simply supported channel section
beam (Cd250 b50 c20 t19) subjected to pure bending, in which m is the number of
half-waves. The buckling curve corresponding to m=1 exhibits two local minima
associated with local buckling and distortional buckling, the features of which are
well known and have been explained by many investigators (Hancock, 1997a;
Schafer, 2003a). It can be seen that the critical load for local buckling is lower than
that for distortional buckling. This is particularly so for deep channels with narrow
flanges. Note that the buckling curve only provides information about how and when
the beam buckles. The actual critical load of the beam for a given length should be
taken as the lowest value from all of the buckling curves of the same length. The
critical loads obtained in such a way are plotted in Fig.5.3. In order to identify the
buckling mode associated with the critical load, the buckling curve corresponding to
m=1 is also superimposed in the figure. It is seen from the figure that these two curves
coincide in the two end regions, which indicates that the buckling modes of the beam
in these two regions are essentially of a single wave. The difference between the two
curves is apparent in the mid part, where the critical load curve is below the buckling
curve and, except in the beginning part of the region where the critical load varies
slightly, representing the interaction between different waves, in the majority of this
central region the critical load is virtually constant, representing the local buckling
mode of equal half-wavelengths. These features are clearly demonstrated by the
buckling modes plotted in Fig.5.3.

The beam subjected to pure bending is an ideal case. In reality, particularly for cold-
formed steel members, the beam is usually subjected to uniformly distributed
transverse loading in which case the longitudinal stress varies not only within the

cross-section but also along the longitudinal axis. When the longitudinal stress varies

119



along the longitudinal axis, the buckling modes associated with the wave number are
coupled and therefore the conventional finite strip analysis method with a single wave
can no longer be applied. Fig.5.4 shows the critical load curve of the channel-section
beam (Cd250_b50_c20_t19), subjected to a uniformly distributed load, obtained by
using the present semi-analytical method. In order to demonstrate the difference in
buckling behaviour between pure bending and uniformly distributed loading, the
buckling curves (m=1) for the two loading cases and the critical load curve for the

pure bending are superimposed on the figure.

Comparing the two buckling curves it can be seen that both curves have a similar
pattern although, for any beam length, significantly lower critical loads are associated
with pure bending as opposed to uniformly distributed loading. The difference
between the two buckling curves is attributed to the difference in the longitudinal
stresses in the two loading cases. For pure bending, the longitudinal stress is constant
along the Ilongitudinal axis while, for uniformly distributed load, it wvaries
parabolically. As a consequence of this variation, the buckling modes with different m
values are coupled with each other. This indicates that the half-wavelengths would be
different in different regions if the buckling mode has multiple half-waves. This is
demonstrated by the critical load curve of the channel subjected to the uniformly
distributed load, in Fig.5.4 which shows a further decrease after the local minima in
the corresponding buckling curve is reached, which is clearly different from the
critical load curve of the channel subjected to pure bending. Fig.5.4 shows that in both
cases the critical load curve is close to the buckling curve for either very short or very
long beams, indicating that, in either region the local or lateral-torsional buckling
mode is dominated by the single half-wave. In the central region, the critical load, for
uniformly distributed loading, decreases with increasing beam length. With the longer
beams, this value approaches the corresponding critical load for local buckling for a
similar beam subjected to pure bending, but it slightly exceeds this limiting value.
This is attributed to the individual half-wavelengths being not equal when the beam
buckles locally. For long beams, the dominant local buckling occurs in the central part
where the moment is higher; as is demonstrated by the buckling mode plotted in
Fig.5.4 which, compared to the whole beam length, is much shorter and so the
variation of the longitudinal stress due to the moment gradient over this half-

wavelength may be neglected. This implies that for most beams, which are longer
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than 1 m, as shown in the figure, the critical loads for local buckling are very close for

these two different loading cases.

The second example is for a similar channel but the section depth is slightly shallower
and the flange is slightly wider than those in the first example (Cd202 b75 c20 t23).
It 1s known that shallow channels with wide flanges can easily buckle distortionally
(Schafer & Pekoz, 1999a; Schater, 2003a). This is demonstrated by the buckling
curves of the channel subjected to a pure bending, shown in Fig.5.5, in which the
second local minima, representing distortional buckling, is much lower than the first
local minima, representing local buckling. The corresponding critical load curve for
the channel 1s plotted in Fig.5.6, from which one can easily see three different
buckling regions, local, distortional and lateral-torsional buckling, controlled by the
beam length. In reality, local buckling would be highly unlikely as most practical
beams are longer than 1 m. Nevertheless the figure shows how the buckling modes are

influenced by the length of the beam.

The buckling behaviour of the same channel under a uniformly distributed load is
shown in Fig.5.7. Again, in order to identify the difference in buckling behaviour
between pure bending and uniformly distributed load, the corresponding results from
pure bending are superimposed on the figure. Unlike the critical load curve for pure
bending, the critical load curve for uniformly distributed loading does not have any
clear buckling regions and the distortional buckling mode is highly influenced by the
beam length. This leads the critical load to decrease continuously with beam length.
Comparing the two critical load curves shown in Fig.5.7, it can be seen that the
critical load for uniformly distributed loading is significantly greater than that for pure
bending. The minimum difference between the two curves is about 17%, which is

obviously not negligible.

The results shown in Fig.5.8 are for the channel restrained both laterally and
rotationally at the corner between web and the flange subjected to tensile stresses. As
the section is restrained, lateral-torsional buckling does not occur (Ye et al. 2002 &
2004) and so the difference between the two critical load curves for long beams still
reveals the difference in distortional buckling for the two loading cases. This

difference between the two curves is clearly present for beams up to 7 m long. For
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example, the difference in the critical loads between the uniformly distributed load
and pure bending is about 15% for a 3 m beam and 8% for a 7 m beam. It is also
evident, from the buckling modes plotted in Fig.5.8, that distortional buckling is

mainly located in the central region where the compressive stresses are the highest.

In conclusion, the comparison of the present results with the critical loads for the
same channel sections subjected to pure bending has shown that, for local buckling,
there 1s no practical difference in the critical loads between the two loading systems
but, for distortional buckling, significant differences exist. The critical load for
uniformly distributed loading is generally higher than that for pure bending. For most
practical cases the difference in the critical loads between uniformly distributed
loading and pure bending is not negligible although it decreases with the beam length.
Finally, it should be pointed out that the approximation method presented here is only
for the beam with simply-supported boundary conditions which, however, are
sufficient to investigate the behaviour of local and distortional buckling. For other
boundary conditions the displacement functions expressed in Eqs.(5.1) and (5.2) have
to be modified.

5.3.2 Zed-section Beams

For zed-section beams two different loading cases, pure bending and uniformly
distributed transverse loading (applied at the shear centre), are discussed here. For
each loading case two different stress distributions are investigated which are with
respect to when the section is (a) fully restrained in its lateral and rotational degrees
and (b) entirely unrestrained. The stress distributions in the cross-section
corresponding to these two cases are shown in Fig.5.9 and can be mathematically
expressed as (Ye et al. 2002 & 2004),

@) o,(y,2)= it 04 for the restrained section 5.7)
s I
Myieid . .
®) o,(,z2)=—"——FU,y-1,2) for the unrestrained section (5.8)
LI =L, 7 =

where M,u=20,1,1d 1s the yield moment.
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Fig.5.10 shows the typical buckling curves of the simply supported zed-section beam
(Zd250 b50 c20 t19) subjected to the pure bending stress shown in Fig.5.9a. It is
seen that the buckling curves for different wave numbers, m, exhibit very similar
features, in which the local minima are associated with local buckling and distortional
buckling, as demonstrated by the plotted buckling modes. These features are well
known and have been explained by many investigators (Hancock, 1997a; Schafer,
2001c & 2003a). Since the section is fully restrained the lateral-torsional buckling is
replaced by a secondary distortional buckling. Note that the buckling curves only
provide information about how and when the beam buckles. The actual critical load of
the beam for a given length should be taken as the lowest value from all of the
buckling curves of the same length, that is, the critical load curve which is plotted by
the solid line in Fig.5.10. It is seen from the critical load curve that, the critical load
associated with local buckling undergoes an initial decrease followed by a ripple area
before it reaches constant. The critical load of the constant value for different beam
lengths implies that the local buckling modes in beams of different lengths have
almost equal wavelength. This can be demonstrated by examining the buckling modes

of 135 m and 270 m beams.

As mentioned before, the beam subjected to pure bending is an ideal case. In reality,
particularly for cold-formed steel members, the beam is normally subjected to a
uniformly distributed transverse load in which case the longitudinal stress varies not
only within the cross-section but also along the longitudinal axis. Fig.5.11 shows the
critical load curve and the corresponding buckling modes of the same zed-section
beam subjected to a uniformly distributed load (stress distribution (a) in Fig.5.9),
obtained by using the present semi-analytical method. In order to demonstrate the
difference in buckling behaviour between pure bending and uniformly distributed

loading, the critical load curve for the pure bending is also superimposed in the figure.

Comparing the two critical load curves one can see two significant differences
between the two curves. The first difference is that the critical load is higher in the
uniformly distributed loading case than in the pure bending case. The second
difference is that the critical load for local buckling in the uniformly distributed

loading case decreases continuously with the beam length. In additional to the local
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buckling, Fig.5.11 also shows the significant difference between the two loading cases
in relating to the secondary distortional buckling. These differences may be explained
by examining their buckling modes. For pure bending beam the local buckling
exhibits an equal-wavelength multi-waves mode, as is shown in Fig.5.10, while for
uniformly distributed loading beam the local buckling exhibits a multi-waves mode of
unequal wavelengths, as is shown in Fig.5.11. As it is mentioned before, the critical
load is mainly dominated by the shortest wavelength. The stress gradient along the
shortest wavelength, which is located in the central part of the beam, is dependent on
the span length of the beam. The longer the beam is, the smaller the stress gradient
will be. This is why the critical loads related to local buckling for the two different

loading cases become close when the beam length increases.

Fig.5.12 shows the buckling curves of the same zed-section beam subjected to the
pure bending stress shown in Fig.5.9b. Interestingly, for the section with no lateral
and rotational restraints the beam buckles only locally or lateral-torsionally; there is
no distortional buckling. The critical load curve shown in Fig.5.12 has the similar

feature as that shown in Fig.5.10 and thus is not discussed further here.

The comparison of the critical loads between pure bending and uniformly distributed
loading for this unrestrained beam (that is, the stress distribution (b) shown in Fig.5.9)
is shown in Fig.5.13. Again, it can be seen that the critical load is higher in the
uniformly distributed case than in the pure bending case. The difference (for the local
buckling) between the two loading cases decreases quickly with the beam length. For
example, the difference is less than 5% for a 2 m long beam. This indicates that, as far
as local buckling is concerned, there is no practical difference in the critical loads

between the two loading cases.

Fig.5.14 shows the buckling curves of the second zed-section beam
(Zd202_b75 ¢20 t23) under the pure bending stress shown in Fig.5.9a. The pattern of
the buckling curves shown here is similar to that shown in Fig.5.10 except for that the
critical load corresponding to local buckling is now higher than that corresponding to
distortional buckling. This is particularly so for shallow sections with large flange

widths. The critical load curve shown in Fig.5.14 indicates that the beam will exhibit
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either a local buckling (if it is extremely short) or distortional buckling. The buckling

modes for different beam lengths are also plotted in the figure.

The comparison of critical loads between the pure bending and uniformly distributed
loading for the unrestrained section is shown in Fig.5.15. It is evident that the critical
load corresponding to uniformly distributed loading is significantly higher than that
corresponding to pure bending, although for both local and distortional buckling, the
differences between the two loading cases decrease with the beam length. For
example, for a 5 m long beam, the critical load of a uniformly distributed loading

beam is 12% higher than that of the pure bending beam.

Fig.5.16 shows the buckling curves and corresponding critical load curve for the
second zed-section beam when subjected to the pure bending stress shown in
Fig.5.9b. Similar to that shown in Fig.5.12, the unrestrained beam buckles only
locally or lateral-torsionally. The critical load corresponding local buckling varies
slightly for very short beams, representing the change in wavelength, and then
becomes constant for long beams, representing the constant wavelength in multiple-
waves buckling modes. The difference in critical loads between pure bending and
uniformly distributed loading is shown in Fig.5.17. Again, the difference reduces
quickly with the increase of beam length. For example, for a 2 m long beam, the

difference between the two loading cases is only about 3%.

5.4 SUMMARY

The local and distortional buckling behaviour of the cold-formed steel zed and
channel section beams subjected to a uniformly distributed load has been investigated

using a semi-analytical method. The results obtained from this study have shown that:
® For local buckling there is no practical difference in the critical loads for the

same cross section between pure bending and uniformly distributed loading.

Thus, the approach introduced in Chapter 4 is still valid.
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For distortional buckling, however, remarkable difference between the two
loading cases was found. The critical load corresponding to uniformly
distributed loading is higher than that corresponding to pure bending. Their

difference decreases with the increase of beam length.

For either local buckling or distortional buckling, the beam subjected to pure
bending exhibits the multi-wave buckling mode of equal wavelength, while
the beam subjected to uniformly distributed loading exhibits the multi-wave

buckling mode of unequal wavelengths.
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Fig.5.1 (a) Stress distribution within cross-section, (b) bending moment diagram for
pure bending and (c) bending moment diagram for uniformly distributed
loading. (Myeq is the yield moment and g, is the yield distributed load).

Me/Myieia

Beam length, mm

Fig.5.2 Buckling curves of simply supported channel under pure bending (d=250mm,
b=50mm, c=20mm, t=1.9mm).
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Fig.5.3 Critical load curve of simply supported channel under pure bending
(d=250mm, b=50mm, ¢=20mm, t=1.9mm).
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Fig.5.4 Critical load curve of simply supported channel under a uniformly distributed
transverse load (d=250mm, b=50mm, c=20mm, t=1.9mm).
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Fig.5.5 Buckling curves of simply supported channel under pure bending (d=202mm,
b=75mm, ¢=20mm, t=2.3mm).

—— Critical load curve
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Mc/Myialg

10° 10’
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Fig.5.6 Critical load curve of simply supported channel under pure bending

(d=202mm, b=75mm, c=20mm, t=2.3mm).
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Fig.5.7 Critical load curve of simply supported channel under a uniformly distributed
transverse load (d=202mm, b=75mm, c=20mm, t=2.3mm).
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Fig.5.8 Critical load curve of simply supported channel restrained both laterally and
rotationally under a uniformly distributed transverse load (d=202mm, b=75mm,

c=20mm, t=2.3mm).
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(a) Cross-section stress distribution for restrained section. (b) Cross-section

stress distribution for unrestrained section. (c) Bending moment diagram for
pure bending. (d) Bending moment diagram distribution for uniformly
distributed loading.
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Fig.5.10 Buckling curves of simply supported, restrained beam under pure bending

(d=250mm, b=50mm, c=20mm, t=1.9mm).
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Fig.5.11 Critical load curve of simply supported, restrained beam under uniformly
distributed loading (d=250mm, b=50mm, c=20mm, t=1.9mm).
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Fig.5.12 Buckling curves of simply supported, unrestrained beam under pure bending
(d=250mm, b=50mm, c=20mm, t=1.9mm).
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Fig.5.13 Critical load curve of simply supported, unrestrained beam under uniformly
distributed loading (d=250mm, b=50mm, c=20mm, t=1.9mm).
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Fig.5.14 Buckling curves of simply supported, restrained beam under pure bending
(d=202mm, b=75mm, c=20mm, t=2.3mm).
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Fig.5.15 Critical load curve of simply supported, restrained beam under uniformly
distributed loading (d=202mm, b=75mm, c=20mm, t=2.3mm).
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Fig.5.16 Buckling curves of simply supported, unrestrained beam under pure bending
(d=202mm, b=75mm, c=20mm, t=2.3mm).
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Fig.5.17 Critical load curve of simply supported, unrestrained beam under uniformly
distributed loading (d=202mm, b=75mm, c=20mm, t=2.3mm).
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Chapter 6

6 LATERAL-TORSIONAL BUCKLING

6.0 CHAPTER SYNOPSIS

This chapter presents an analytical model for predicting the lateral-torsional buckling
of cold-formed zed and channel section beams, with partial lateral restraint provided

by the metal sheeting, subjected to uniformly distributed transverse loading.

The focus of the study is to investigate the individual influences of the restraint
provided by the sheeting and the interval anti-sag bars, the boundary conditions,
warping stress, loading position and the dimensions of the cross section on the lateral-
torsional buckling behaviour of the beams. These are of practical interests to design

engineers but have not previously been investigated.
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6.1 INTRODUCTION

The phenomenon of lateral-torsional buckling is not new to structural engineers.
However, due to the nature of the problem, most existing studies have been on
detached beams with symmetric cross-sections, subjected to bending loads in the
direction of their greatest flexural rigidity (Singer et al., 1998; Trahair, 1993). The
recently developed finite strip analysis packages are aimed at more accurately
predicting the elastic buckling stresses related to the local, distortional, and lateral-
torsional buckling of thin-walled beams with various lateral restraints. The method
itself is very effective. However, at present, these packages can only deal with the
case where the member is subjected to pure bending and/or pure compression (Li,
2004; Ye et al, 2002 & 2004). Recently, Li (2004) has developed an analytical model
for predicting the lateral-torsional buckling of cold-formed zed-purlins, with partial-
lateral restraint from the cladding, with various end boundary conditions and interval
restraints provided by anti-sag bars, subjected to any lateral and transversal distributed
loads.

In this chapter, we use Li’s model to analyze the lateral-torsional buckling of zed
sections (Chu et al., 2004) and channel sections (Chu et al., 2004), which also repeats
a further development of the analytical model for the stress analysis of purlin-sheeting

system addressed in Section 3.2.

6.2 ANALYTICAL MODEL

The beam may exhibit a lateral-torsional buckling when the resultant longitudinal
stress is in compression. The critical load of the beam, when lateral-torsional buckling
occurs, can be calculated using a similar energy method as the stress analysis
mtroduced in Section 3.2. The expression of the strain energy of the beam, when
buckling occurs, is the same as Eqs.(3.3) and (3.4) except for that the deflections and
the angle of twist are now the buckling deflections and the buckling angle of twist,
that is,
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(6. 1)
where v, and wj, = the buckling deflections of the beam in the y and z directions;

@» = the buckling angle of twist.

The buckling deflections of the beam at any point (x,y,z) during buckling can be
expressed in terms of the buckling displacements of the beam centroidal axis, vy, wj

and ¢, as follows (Ressner, 1989; Li, 2004):

_ . 1
V(x,y,2) = v, —zsing, + y(cosd, 1) » v, — zg, —5y¢f
(6.2)

w(x,y,z) =w, +z(cosg, —1) + ysing, = w, + yg, ——;—zg}f

where V(x, y,z) and w(x, y,z) = the deflections of the beam at point (x,y,z) during

buckling.

The longitudinal displacement at point (x,y,z) can be expressed as follows:

u(x,y,z)=u, —(ycosg, —zsinqﬁb)di—(zcos;ﬁb +ysin¢b)gﬂ+ﬂ(y,z)%
dx dx
i s (6.3)
v
%ub—yd:—z "'ﬂ +z¢ﬂdx_y¢b dxb

where (y,z) = the warping function of St. Venant torsion;
u(x,y,z) and uy(x) = the longitudinal displacements of the beam at points

(x,,z) and (x,0,0), respectively.

The longitudinal strain and shear strains generated by the buckling displacements can

be calculated by
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Substituting Eqs.(6.2) and (6.3) into (6.4) and splitting them into linear and nonlinear
terms of the buckling displacements, it leads to the following second-order nonlinear

strains:

49,

sﬂ(-’c,y,z)=%[(§xK ()+(y +2) L ¢ y¢

}’xyE = O (6'5)
V2 = 0

The strain energy caused by the pre-buckling stresses can be calculated separately as

those caused by the longitudinal bending stresses and by the longitudinal warping

stress as follows:

i
W == [ [0.(% 3, 2)2.5 (%, y, 2)dAdx
s (6.6)
W oow == I [0 (%, 3,2)8,5 (%, y, 2)dAdx
o d

The negative sign in Eq.(6.6) is because o; and &; are in opposite directions.
Substituting Eq.(6.5) into Eq.(6.6) and noting that the zed purlin is symmetric about

its centroid

IaxbdA = Iyzo'xbdA = Izzo'mdA =0
A A A

f O dd = fycr,wdA = _fzamdA =0 (6.7)
A A 1

and for the channel section that is monosymmetric about z axis
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A A

[yoda= [z0,,d4=0 (6.8)
A A

[0 + 20 dd= (5 +2°),,dA4 =0
A A

the following equation is obtained for the zed section,

J d*v d w d’w d*v
=~ [ [ould (==t~ y = 20dddx = [4,(M,, =70~ M,, =—2)dx
J‘Aj bLT'b dx2 Ib dx Yo de
i i 7 5 o, (6.9)
__1 3 27/ 84Pp 2 _ b
W e = 2”01“.[@ +28)( by Wdde =~ Ojdxz( )? dx
where D = L((TJ —w)(y* +2%)dA is a section property given in the Appendix 2;
And for the channel section
s == [ 1207 + ) 4 00, S0y L ¥y p010
oxh ) 2 y xbT'h d‘xz y dxz
_ z(y* +2%) dg, ., d? d'w, d vy
__LTdAJM( )dx+j¢,,(M M, (6.10)
W_, =0

It is interesting to notice from Eq.(6.10) that the warping stress does not do work
during the lateral-torsional buckling of the channel section beams. This indicates that
as far as lateral-torsional buckling is concerned, the warping stress has no influence

on the critical buckling load for channel section beams.

The strain energy caused by the load due to the load that is acting above the shear
centre can be expressed as (Timoshenko & Gere, 1961; Li, 2004):

I 1
-2 f(gsinagidx -2 [(gcosa)piax 6.11)
2 o 2 L
Hence, the total strain energy generated during lateral-torsional buckling is

W =W_+W_ +W (6.12)
1 oxbh oxw q
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The minimum buckling critical load and corresponding buckling modal displacements

can thus be determined by the conventional variational equation:
O(U,-AW,)=0 (6.13)

where A = the critical load factor. If the stain energy generated by the warping stress,
Woxw, 18 neglected in Eq.(6.12) then the present model reduces to the conventional

lateral buckling models (Li, 2004; Tarnai, 1979; Reissner 1989; Lee & Kim, 2002).

The variation of Eq.(6.13) results in three simultaneous, linear homogeneous ordinary
differential equations from which the minimum eigenvalue representing the critical
load factor and corresponding eigenvector representing the buckling displacements,

that is the buckling modes, v, w}, and ¢, can be determined.

6.3 NUMERICAL IMPLEMENTATION

In the present study, both variational Eqs.(3.6) and (6.13) are solved using a
numerical procedure in which the horizontal and vertical deflections and the angle of
twist are constructed using cubic splines. It is well known that cubic polynomials are
widely used to approximate the curve between each pair of data points. Since a
straight line is uniquely defined by two points, an infinite number of cubic
polynomials can be used to approximate a curve between two points. Therefore, in
cubic splines, additional constraints are required on the cubic polynomials to make
sure the result is unique. Constraining the continuity of the first and second
derivatives of each cubic polynomial at internal points will define all internal cubic
polynomials. The first and last cubic polynomials, however, do not have adjoining
cubic polynomials beyond the first and last points. As a result, two more constrains
must be added at the two end points in order to define these two end polynomials. In
the present study, the first derivatives at each end point are chosen as the two required
constrains. Therefore, for each to-be-determined function, if there are » nodes, we will
end up n+2 unknowns, in which » unknowns are the functional values at » nodes and
the other two unknowns are the first derivatives at two end nodes. The horizontal and

vertical deflections and the angle of twist can thus be expressed in terms of their
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(n+2) nodal unknowns by using the cubic interpolation function. The buckling
deflections and buckling angle of twist can be treated in a similar manner. By using
this approach, Egs.(3.6) and (6.13) reduce to the following two sets of algebra

equations, in which one is inhomogeneous and the other is homogeneous,

Alsn{v} f
4, 4, A |W=|1; (6.14)

A13 Aza A33__{¢} fs

s
s
N

_-{vb} B,, B, B;| {v}
» || W} |=A4| B, By B, | {w,} (6.15)
33 | {95} B, B, B | {¢}

o

|—
=N
o

AN

where 4;; = the coefficient matrices obtained from the calculation of the strain energy
from Eqs.(3.3) and (3.4) or (6.1);
Ji and B;; = the coefficient columns and matrices obtained from the calculations
of work done by the externally applied load through the pre-buckling and
buckling displacements, that is, Eqgs.(3.5) and (6.12).

The solution of Eq.(6.14) gives the pre-buckling displacements from which the pre-
buckling longitudinal stress can be calculated and thus the coefficient matrices Bj; can
be evaluated. The solution of Eq.(6.15) gives the eigenvalue and eigenvector, which
represent the critical load factor and the corresponding buckling modes. The use of
spline interpolations provides great convenience in simulating the various
displacement boundary conditions and the interval displacement restraints provided

by anti-sag bars.

6.4 NUMERICAL EXAMPLES

Table 3.1 gives the details of the analyzed zed and channel sections, such as material

properties, definition of boundary conditions and internal supports.

Here, the considered beams are restrained by translational and rotational springs at the

top corner of the section and subjected to a uniformly distributed load. Since the beam
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buckles easily when the compressed flange is not laterally restrained, only the uplift

load is considered here.

6.4.1 Comparison Of Present Model With Other Approaches

Fig.6.1 shows the critical load factors of simply supported zed section beams with and
without lateral restraint (k/=0), subjected to pure bending about the z-axis and the
corresponding stress distribution is shown in Fig.5.9a (Zd302_b75_c20_t25). The
results are compared with those obtained from the finite strip method (Schafer, 2001c
& 2003a). As is to be expected, the present solutions provide exactly the same results
as the finite strip method. It is interesting to notice from the figure that, for pure
bending, the critical loads for the beams with and without lateral restraint are very
close, which indicates that the lateral restraint has almost no influence on the lateral-
torsional buckling of the beam subjected to pure bending. The reason for this is
because buckling is only caused by the compressive stress. In the present two cases,
the assumed pure bending is such that it causes the bottom flange of the section to be
in compression. While, for the laterally restrained purlin, the restraint provided by the
cladding is on the top flange which is actually in tension. Thus it has very little
influence on the critical load when the lateral-torsional buckling occurs. Significant
differences will be expected if the moment is applied in an opposite direction (top
flange in compression), for in this case the lateral restraint will constrain the lateral

movement of the top flange and thus increase the critical load.

Fig.6.2 is the demonstration on how the lateral restraint influences the lateral-torsional
buckling of a simply supported zed section beam under pure compression. In the
figure the results are also compared with those obtained using the Euler buckling
theory for the laterally unrestrained beam and the finite strip method for the laterally
restrained beam. Again, it can be seen that the present solutions are exactly the same
as those provided by the Euler buckling theory and by the finite strip method. The
results show that the laterally restrained beam has significantly higher critical loads
than the laterally unrestrained beam. This is because the buckling modes for the
laterally restrained and laterally unrestrained beams are different. For the laterally
unrestrained beam, the beam buckles in the principal plane with minor flexural

rigidity whereas, for the laterally restrained beam, the beam is unable to buckle in that
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principal plane because of the lateral restraint imposed at the top flange. In other
words, the laterally restrained beam can only take the higher buckling mode, which,

of course, results in a higher critical load.

The common point for the pure bending and pure compression is that the pre-buckling
stresses are exactly the same for laterally restrained and laterally unrestrained beams.
Thus the increase in critical loads caused by the lateral restraint purely reflects its
influence on the restriction of the buckling modes. In reality, most purlins are
subjected to a uniformly distributed transverse load. Because of the asymmetry of the
cross-section of the zed-purlin, the vertical transverse load generates not only a
vertical deflection but also a horizontal deflection. If it is not acting at the shear centre
the load may also cause the beam to twist about its longitudinal axis. For the purlin
that is laterally restrained at its top flange the constraining provides an additional
horizontal force, which also causes the beam to bend and twist. Thus, the pre-buckling
stresses of the laterally restrained beam will be different from those of the laterally

unrestrained beam although they both are subjected to the same external load.

6.4.2 Influence Of Boundary Conditons And Internal Support
6.4.2.1 Zed Section Beams

The comparison of the critical loads for the simply supported zed section
(Zd202 b75 c20 t20) beams laterally restrained in the translational direction but free
in the rotational direction (k,=, ks=0) with and without considering the influence of
warping stress is shown in Fig.6.3, in which the beams are subjected to the uniformly
distributed uplift load at the middle of the top flange (y,=-d/2, z,=b/2). As is to be
expected, the warping stress has almost no influence on the critical lateral torsion-
buckling load for purlins with and without anti-sag bars. This is simply due to the
warping stress not being significant when the purlin is simply supported as is

demonstrated in Chapter 3.

Practically, purlins are often used as continuous beams over two or more spans, in
which case the boundary conditions of the beam can be simplified as simply
supported at one end and fixed at the other end. The influence of the warping stress on

the critical loads for the same zed section beam (Zd202 b75 c20 t20) simply
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supported at one end and fixed at the other end are shown in Fig.6.4 (k=, k=0, y;~-
d/2, z,=b/2). It 1s seen from this figure that the main influence of the warping stress is
when the purlin has no anti-sag bars, in which case the critical load is slightly lower
when the warping stress is considered. For purlins with either one or two anti-sag bars
the influence of the warping stress on the critical load is almost negligible. This can
be explained by the results of the pre-buckling stress analysis where the region with
the highest warping stresses tends to be very narrow when one or more anti-sag bars

are present.

The critical loads for fixed zed section beams (Zd202_b75_c20_t20, k=0, k=0, y;=-
d/2, z,=b/2) with and without considering the influence of warping stress can be
compared in Fig.6.5 and, similarly, the main influence of the warping stress on the
critical load occurrs when the purlin has no anti-sag bars. The shorter the purlin, the
stronger the influence of the warping stress. For example, for a 3m span purlin, the

critical load is reduced by some 28% when the warping stress is considered.

Fig.6.6 shows the critical load factors of simply supported zed section beams with
zero, one and two anti-sag bars, subjected to a uniformly distributed uplift load
(Z2d302_b75_c20 _t25, k=0, y;=-d/2, z,=0). It can be seen from the figure that the
lateral restraint has a remarkable influence on the lateral-torsional buckling of the
beam, particularly when there are two anti-sag bars. The influence is found to

decrease with the increase in the beam length.

Fig.6.7 shows the critical load factors of the zed section beam simply supported at one
end and fixed at the other end (Zd302_b75_c20_t25, k=0, y,=-d/2, z;=0). The figure
shows that there is a significant increase in critical load when the top flange is fully
laterally restrained. Compared to the pinned-pinned beam, the pinned-fixed beam also

appears sensitive to the lateral restraint.

6.4.2.2 Channel Section Beams

The critical loads for the simply supported channel section beams
(Cd202_b75_c20_t20), subjected to the uniformly distributed uplift load at the middle
of the top flange (y,=-d/2, z,=b/2-e;) and laterally restrained in the translational
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direction but free in the rotational direction (k,=, ks=0), without considering the
influence of warping stress are shown in Fig.6.8. As is to be expected, the critical load

increases with the number of anti-sag bars used and decreases with the span length.

Fig.6.9 shows the comparison of critical loads for the channels with 0, 1 and 2 anti-
sag bars when its one end is simply supported and the other end is fixed
(Cd202_b75_c20_t20, k=0, kg0, y;=-d/2, z,=b/2-e;). It is clear that the critical
loads shown in this figure are much higher than the corresponding one shown in
Fig.6.8. This indicates that the boundary condition of the beam has significant
influence on the lateral-torsional buckling of the beam. This is further demonstrated
by the results shown in Fig.6.10 for the beams with both ends fixed. It is interesting to
notice from both Figs.6.9 and 6.10 that, the influence of the mid anti-sag bar seems to
be less significant when the boundary of the beam becomes to be fixed. This is
probably due to the combined influence of the fixed boundary on the pre-buckling
stress and buckling modal displacements, which makes the mid anti-sag bar be less

effective.

Fig.6.11 shows the critical load factors of simply supported channel section beams
with zero, one and two anti-sag bars, subjected to a uniformly distributed uplift load
(Cd302_b75_c20_t25, ky=0, y;=-d/2, zq=-€2). It can be seen from the figure that the
lateral restraint has a remarkable influence on the lateral-torsional buckling of the
beam when there are two anti-sag bars. The influence is found to decrease with the

increase of the beam length.

Fig.6.12 shows the critical load factors of the channel section beam simply supported
at one end and fixed at the other end (Cd302_b75_c20_t25, k¢=0, ys=-d/2, z;=-€2).
Again, the figure shows that there is a significant increase in critical load when the top
flange is fully laterally restrained. Compared to the pinned-pinned beam, the pinned-

fixed beam also appears sensitive to the lateral restraint.
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6.4.3 Influence Of Loading Position

6.4.3.1 Zed Section Beams

In this section the influence of various loading positions on the critical loads of the
zed section beam (Zd302_b75_c20_t25, k#~0) under a uniformly distributed uplift
load is investigated. Fig.6.13 is for the load acting along the web central line (z,=0)
but with different vertical distance (y,) from the z-axis for the simply-supported beam
with or without lateral restraints. It is shown that, the highest critical load is related to
the load that is applied at the top, while the lowest critical load corresponds to the
load applied at the bottom. This feature appears to be consistent with those found
earlier in I beams (Timoshenko & Gere, 1961). The influence of the lateral restraint
on the critical load seems not very remarkable when the load is applied below the z-

axis.

Fig.6.14-6.16 show the influence of the loading position on the critical load where the
load is acting vertically on the top flange but with different horizontal distance (z,)
from the y-axis (Zd202_b75_c20_t20, k,=o, ky=0, y,=-d/2). From these figures, the
critical load is seen to decrease with the increase in the distance between the loading
point and web central line. The worst case, that is, associated with the lowest critical
load factor, is when the load is placed at the corner between the flange and the lip,
whereas the highest critical load factor occurs when the load is applied through the
central line of the web. The influence of the warping stress on the critical load factor
is variable. When the warping stress is considered, the critical load factor is reduced

for z,=b/2 and z,=b, but is increased when z,=0.

6.4.3.2 Channel Section Beams

The influence of various different loading positions (y,;) on the critical loads of the
channel section beam (Cd302_b75_c20_t25, k=0, z,=0) under a uniformly distributed
uplift load is investigated and the corresponding results are provided in Fig.6.17.
Again, it is clear that the highest critical load occurs when the load is applied at the
top, while the lowest critical load corresponds to the load applied at the bottom, which
is consistent with those found earlier in I beams (Timoshenko & Gere, 1961). The
influence of the lateral restraint on the critical load seems not very remarkable when

the load is applied below the z-axis.
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Figs.6.18-6.20 show the influence of loading position (zy) on the critical load of the
channel-section beam for different boundary conditions (Cd202 b75 c20 t20, k,=o0,
k¢=0, y;=-d/2). The loading positions shown in these figures include one above the
shear centre (zq =-el-e2) and four on the top flange; along the web central line (z,=-
e2), above the centroid (z,=0), along the mid of the flange (z;=b/2-e2) and along the
lip central line (zq=b-e2). It is surprisingly found that the lowest critical load is
corresponding to the case where the load is applied at the position above the shear
centre, whereas the highest critical load is in the case where the load is applied at the
top of the lip. This indicates that, the closer the loading point is to the shear centre, the
lower the critical load. Since the warping stress does not do work during lateral-
torsional buckling, the lower the critical load means that less work done by the two
bending stresses. However, the bending stress oy, generated by the bending moment
about z-axis is not affected by the loading position. This implies that during the
lateral-torsional buckling the work done by the bending stress oy is opposite to the

work done by the bending stress oyp;.

6.4.4 Influence Of Spring Stiffnesses

The influence of the translational and rotational spring stiffnesses on the lateral-
torsional buckling is studied for the zed and channel section beams without anti-sag
bars for beams subjected to a uniformly distributed uplift load at the top of the web

line.

6.4.4.1 Zed Section Beams

Fig.6.21a and b show the influence of the translational spring stiffness on the lateral-
torsional buckling load g.,/q, for simply-supported zed section beams subjected to the
uniformly distributed uplift load (Zd202_b75 c20 t20 and Zd302_b75 c20 t20)
when k4=0. It can be seen that the critical loads slightly increase with the increase of
translational spring stiffness and the influence of the translational spring stiffness on
the critical load primarily occurs in the range 10°<k,/E<10°. The influence of the
beam length on the critical loads is also shown in Fig.6.21 from which it is evident

that the longer the beam the lower the critical load.
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Fig.6.21c and d show the influence of the rotational spring stiffness on the critical
buckling load for simply-supported zed section beams subjected to a uniformed
distributed uplift load when k=0. It is shown that the critical loads significantly
increase with the increase of the rotational spring stiffness, particular in the region

where k/(Eyi’) is greater than 107

Fig.6.22 shows the influence of the translational and rotational spring stiffnesses on
the lateral-torsional buckling load g./q, for zed section beams simply-supported at
one end and fixed at the other end, subjected to a uniformly distributed uplift load
(Zd202 b75 c20 t20 and Zd302 b75 c20 t20). The figure shows that the influences
of the two springs on the critical loads are different. For increasing translational
spring the critical load initially decreases then increases, whereas for the rotational

spring the critical load increases continuously with the increase of the spring stiffness.

Fig.6.23 shows the influence of the translational and rotational spring stiffnesses on
the lateral-torsional buckling load for zed section beams with both ends fixed
(Zd202 b75 c20 t20 and Zd302 b75 c20 t20). Comparing Fig.6.23 and Fig.6.22, it
seems that the influence of the translational spring stiffness is more remarkable on

fixed beams than on simply supported beams.

6.4.4.2 Channel Section Beams

Fig.6.24 shows the influence of the translational and rotational spring stiffnesses on
the lateral-torsional buckling load g./g, for simply-supported channel section beams
subjected to a uniformly distributed uplift load (Cd202 b75 ¢20 t20 and
Cd302 b75 c20 t20). Again, it can be seen that the critical load slightly increases
with increase in the translational spring stiffness in the range 10°<k/E<10°. In
contrast, the increase in the critical load with increase in the rotational spring stiffness

is significant, particularly for the region where k/(Ey;’)>107.

Fig.6.25 shows the influence of the translational and rotational spring stiffnesses on
the lateral-torsional buckling load g./g, for channel section beams simply-supported
at one end and fixed at the other end, subjected to a uniformly distributed uplift load
(Cd202 b75 c20 t20 and Cd302 b75 c20 t20). Again, it can be seen from the figure
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that the increase of the critical loads is more significant with the increase of rotational

spring stiffness than the translational spring stiffness.

Fig.6.26 shows the influence of the translational and rotational spring stiffnesses for
channel section beams with both ends fixed. Most of the features shown in this figure

are similar to those shown in Fig.6.24 and 6.25.

6.4.5 Influence Of The Dimensions Of Cross Section

The influence of the sectional dimensions on the critical loads of lateral-torsional
buckling is studied for zed and channel section beams, 8m in length, without anti-sag
bars when subjected to the uniformly distributed uplift load at the middle of the top

flange, as is shown in Fig.3.1.

Figs.6.27 and 6.28 respectively show the results of the simply-supported zed and
channel section beams. It is found from these figures that, for the zed section the
critical buckling load increases with the increase of web depth, flange width and lip
depth whereas, for the channel section, the critical buckling load increases with the

increase of flange width and lip depth, but decreases slightly with the increase of web
depth.

6.5 SUMMARY

In this chapter an analytical model is presented for predicting the lateral-torsional
buckling of cold-formed zed and channel section beams subjected to partial-lateral
restraint by the metal sheeting and subjected to a uniformly distributed transverse
loading. The focus of the study is to investigate the individual influences of the
restraints provided by the sheeting and the interval anti-sag bars, the boundary
conditions, warping stress, loading position and the dimensions of cross section on the
lateral-torsional buckling behaviour of the beams. The following conclusions can be

drawn from the investigation:
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The use of interval anti-sag bars is a very effective way to increase the
buckling resistance of the beam. However the position of the anti-sag bars to
be used should take into account the influence of the boundary condition. In
general, it is more effective to use the anti-sag bars in the simply supported

beams than in the fixed beams.

The warping stress is found to have a significant influence on the critical load
for lateral-torsional buckling of the partial-laterally restrained zed section
beams only when the purlin is fixed at least at one end and no anti-sag bars are
present. For a simply supported purlin or a purlin with anti-sag bars, the effect
of the warping stress on the critical load for lateral-torsional buckling is almost
negligible. Warping stress does not have influence on the lateral-torsional

buckling of the channel section beams.

The loading position has remarkable influence on the critical buckling load.
The highest critical load is found when the loading point is closer to the shear
centre for zed section. For channel section, however, the lowest critical load is

found when the loading point is closer to the shear centre.

Rotational spring stiffness has more influence on the lateral-torsional buckling
loads than translational spring stiffness. The influence of translational spring
stiffness on the critical load occurs only in a small range of stiffness value,

while that of rotational spring stiffness occurs when ky/(Ey;’) is larger 107
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Fig.6.3 Critical loads of the simply supported zed section beams (k,= 0, k,=0, y,=-d/2,
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Fig.6.4 Critical loads of zed section beams with one end simply supported and the
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Fig.6.6 Critical loads of the simply-supported zed section beams (k,=0, y,=-d/2, z,=0).
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Fig.6.7 Critical loads of zed section beams with one end simply supported and the
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Fig.6.9 Critical loads of channel section beams with one end simply supported and
the other end fixed (k= 0, k;=0, y,=-d/2, z;=b/2-e,).
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Fig.6.10 Critical loads of the fixed channel section beams (k,= 0, k;=0, y;=-d/2, z;=b/2-
92).
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Fig.6.12 Critical loads of channel section beams with one end simply supported and
the other end fixed (k;=0, y,=-d/2, z,=-e,).
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Fig.6.24 Influence of spring stiffnesses on the critical load of simply supported
channel section beam (y,=-d/2, z,=-e2).
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Fig.6.27 Influence of the dimensions of cross section on the local buckling loads for
the simply supported zed section beams (k.=0, k,=0, y,=-d/2, z,=b/2).
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Chapter 7

7 INTERACTION BETWEEN LATERAL-
TORSIONAL BUCKLING AND LOCAL
BUCKING

7.0 CHAPTER SYNOPSIS

This chapter presents a novel analytical model for determining the load capacity for
the lateral-torsional buckling of statically indeterminate zed purlins (single span
beams with one or two ends fixed), with partial lateral restraint from metal sheeting,
when subjected to a uniformly distributed uplift load. The model takes account of the
influence of the “softening” of the section stiffness due to local buckling and/or local
material yielding. The analytical model developed in this paper, together with the
numerically or experimentally obtained moment-rotation curves describing the local
stiffness softening, can be used to determine the critical load for lateral-torsional

buckling of the statically indeterminate purlin.
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7.1 INTRODUCTION

Structural members made with cold-formed sections are widely used as purlins or
rails, the intermediate members between the main structural frame and the corrugated
roof or wall sheeting in light gauge steel construction. These members are produced in
a variety of forms, such as zed, channel and sigma, which are inherently sensitive to
local, distortional and lateral-torsional buckling (Hancock, 1997a; Davies, 2000). The
modes corresponding to these different types of buckling are well defined in the paper
of Hancock (1997a). In the literature, local buckling has been extensively addressed
but, in contrast, lateral-torsional buckling has not been considered by many
investigators. This is probably because cold-formed steel members are usually used
together with metal sheeting which restrains the lateral movement of the members and
so reduces the possibility of the occurrence of lateral-torsional buckling. However,
with the increasing use of various new composite cladding systems that offer little
rotational restraint to the purlin, the consideration of lateral-torsional buckling

becomes necessary.

In current design codes such as BS 5950 (1998) and EC3 (1996) the lateral-torsional
buckling of cold-formed members is treated by using the theory of the lateral buckling
of detached beams, but this does not take into account either the lateral restraint of the
sheeting or the torsion produced by the loading that is not applied at the shear centre.
The analytical model for predicting the lateral-torsional buckling of cold-formed zed-
purlins partially restrained by the sheeting, originally presented by Li (2004), has been
developed in Chapter 6. However, the model considers only elastic buckling with no
interaction with the other buckling modes. Experience has shown that, if a purlin is
not very long and if it is fixed at one or both ends, local material yielding near the
fixed end(s) will take place before lateral-torsional buckling occurs. A problem
previously recognized is that of the exploitation of the inelastic bending strength
reserve that seems to exist, as well as the associated problem of bending moment
redistribution. The main objection to the existence of such a strength reserve is based
on the fact that thin-walled cross-sections are not compact enough for significant

plastic strain to develop. The high width to thickness ratios of the elements of the
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cross-section and the consequent existence of local buckling corroborate in favour of
this objection. Experimental and theoretical research has shown that some inelastic
strength reserve in bending does indeed exist. This reserve mainly depends on the
width to thickness ratio of the compressed part of the cross-section and the degree of
longitudinal restraint at the member’s walls. This indicates that the analysis of lateral-
torsional buckling has to take into account the influence of the local softening of the

section stiffness due to this local buckling and/or local material yielding.

Previous attempts have been made to consider the influence of the local buckling
and/or local material yielding on the load capacity of purlin systems. Recently, EC 3
(1996) provides a simple trial and error method to deal with the interaction of local
and lateral-torsional buckling for two-equal-span continuous beams. However, the
application of this method to continuous, arbitrary multi-span beams is limited. In
addition to this trial and error method, there is a simplified method, namely the
moment redistribution method, which was very popular in past (Rhodes & Lawson,
1993). The main reservations for the application of moment redistribution are the
unfamiliar form of the M-@diagram caused by cracking and plasticization of some
regions of the structure and the strong dependence of M-8 on the shearing forces that
develop near the support points. The form of this non-linear M-8 diagram is due to the
combination of material non-linearity with severe local buckling, the softening branch
being its main trait (Grundy, 1990). Laine and Tuomala (1999) investigated
experimentally the utilization of a softening moment resistance and described an
ideally plastic calculation method which defines the bending moment at the internal
support as a function of the plastic rotation. Softening behaviour of continuous thin-

walled steel beams was also studied numerically by Thomopoulos et al (1996).

7.2 A SPRING MODEL OF ANALYZING LATERAL-
TORSIONAL BUCKLING

For a statically determinate purlin, its corresponding moment distribution diagram
when lateral-torsional buckling occurs is illustrated in Fig.7.1. However, for a

statically indeterminate purlin, with one end simply supported and the other fixed, the
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initial moment distribution diagram has different format as is shown in Fig.7.2. It is
well known that, the purlin will undergo lateral-torsional buckling if it has a long
span. But if the purlin is not very long, it will buckle locally in the region near the
fixed end before lateral-torsional buckling takes place since the moment in the region
close to the fixed end is the largest. After the local buckling occurs, the purlin is still
able to sustain the load. However, the moment at the fixed support will decrease
because of the local buckling, while the span moment increases as usual. With further
increase of the load, the beam will undergo overall lateral-torsional buckling. This
indicates that the analysis of lateral-torsional buckling has to take into account the

influence of the local softening of the section stiffness due to the local buckling.

7.2.1 Analytical Model

Consider a statically indeterminate zed section beam (fixed at both ends), subjected to
a uniformly distributed transverse load, the section of which is shown in Fig.7.3a. It is
assumed that the section is laterally restrained in the translational direction but free in
the rotational direction (k;=c, ks=0), which is of most practical applications. The
model representing the lateral-torsional buckling when there has been some softening
at the supports for the statically indeterminate purlin is illustrated in Fig.7.3b, in
which the statically indeterminate beam is simplified to a simply supported beam with

two rotational springs over the two indeterminate supports.

The critical buckling load of the simplified beam with rotational spring supports, as
shown in Fig.7.3, can be determined by using a similar energy method based on the
analytical method addressed in Chapter 2, 3 and 6, in which the analysis involves two
steps. The first is the stress analysis, which determines the pre-buckling stress
distribution in the member. The second is the buckling analysis, which determines the

critical buckling load when lateral-torsional buckling occurs.

Similarly, the strain energy of the beam due to deflections and rotation can be

expressed as:
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The strain energy stored in the two distributed springs due to the deformation of the

beam can be expressed by
Us_cpring = I(w b yd)des ot j@" dx (7.2)

where k, and ks = the per-unit length stiffness constants of the translational and

rotational springs.

The strain energy stored in the two rotational springs over the supports can be

expressed by
dv av
U, , ==k Y+k(— ) 13
ot 2[ '(dxﬁo) z(dxm) ] (73)
av av ; 3
where = and —| = the rotational angles about z axis over two supports;
x=0 x=l

ki and k, = the constants of the two rotational springs applied at the ends of the

purlin.

For a purlin that is subjected only to a uniformly distributed transverse load at the

point (y,, z,), the potential energy generated by the load can be expressed by
!
W= Iq(v - z,p)dx (7.4)

The deflections, v(x) and w(x), and the angle of twist ¢(x) due to the externally applied

loads can be determined by employing the stationary principle as follows:

S(U, ~W,)= 6, yoam + Uy g +Us o =W,)=0 (1.5)

o_ beam o _spring
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After the deflections and rotation are determined the pre-buckling moment
distributions along the longitudinal axis can then be calculated using Eq. (3.1). Then

the pre-buckling longitudinal stresses can be calculated as follows:
o-x(x!yDZ) :O-xb +O-xw (76)

where oy, and o, = the longitudinal stresses generated by the bending and twisting

moments, respectively, which are expressed by

ly=-1.2 I,z—-1,y
bezo-xbz+axby=Mzﬁ+ y}‘}‘—:*}}%* (7.7)
yz vz yiz vz
— I..d%¢ - d2¢
o =E@o-0-y—*=% =E(@. - 7.8
w ( y]. )dxz ( 5 s)dxz ( )

z

The pre-buckling longitudinal stresses generated by the pre-buckling bending and
twisting moments can be calculated, which are then used to calculate the strain energy

generated by the membrane stresses through the buckling displacements as follows:

1

W == [ [0, (5, 9,2)8,,(x, , 2)dAdlx

oA
1

W= wJAJ-O'm(x, ¥,2)€,,(x,y,z)dAdx

(7.9)

The strain energy generated by the load due to the load acting above the shear centre

can be expressed as:
y 1
e [ag;ax (7.10)

The expression used for calculating the strain energy generated by the buckling

displacements is the same as Eqs.(7.1)-(7.3),

d*w, d*v,
dx* dx?

g? d*w d*v
U, ZEJUJ’(Tx;)J +21, +1( dx;‘)z]dx
p (7.11)
Vb 2
= )’]

x=[

GI [ @y2 e 4 ECo [ @y Lyp (@
5 Jhg e [ s RS

2 ad

)* +ky(

x=0
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The minimum critical buckling load and the corresponding buckling mode
displacements can thus be determined by the use of the following variational

equation:

S(U, =AW, = 8, _youm + Uy sping +Us s =Wy =Wy =W,) = 0 (7.12)

1_beam 1_spring

where A = the loading proportional factor, i.e., the critical buckling load factor.

The details of the numerical treatment can be found in Chapter 2 and 6 and thus are

not presented further here.

7.2.2 Bucking Load Of Spring Model

For given k| and k; values the above model can be used to calculate the critical
buckling load. Figures 7.4 and 7.5 plot the critical buckling load against the spring
stiffness k for a zed section beam (Zd202_b75_c20 t20) subjected to the uniformly
distributed uplift load applied at the middle of top flange, for the material properties
listed in Table 3.1. The results are presented for three different span lengths —- 3, 5 and
8 m — representing short, intermediate and long beams, respectively. As is expected,
the critical load increases with the spring constant but reduces as the length of the
beam increases. The critical load corresponding to k;=k,=0 represents the critical load
of the purlin with both ends simply supported, whereas the critical load corresponding

to k, =k, = o represents the critical load of the purlin with both ends fixed. For the

case of k, = 0,k, =« it represents the purlin with one end simply supported and the

other end fixed.

7.3 LATERAL-TORSIONAL BUCKLING OF
STATICALLY INDETERMINATE PURLINS

Analysis of the lateral-torsional buckling of statically indeterminate thin-walled
beams is very difficult as it is usually required to consider local influences such as

local buckling or local material yielding unless the particular beam is very long, in
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which case local buckling or local material yielding does not occur before the beam
buckles lateral-torsionally. Although the occurrence of local buckling or local material
yielding may not cause the failure of the beam, it alters the distribution of internal
forces in the beam and so conventional analysis of the eigen-value type cannot be

applied directly.

Strictly speaking, the analysis of the lateral-torsional buckling of statically
indeterminate beams involving local buckling or local material yielding has to be
nonlinear, using the load increment method (Zienkiewicz & Taylor, 2000). The
analysis takes account of local post-buckling and/or local post-yielding behavior of
the section if either occurs before the beam undergoes an overall lateral-torsional
buckling. The local post-buckling and local post-yielding behaviour of the beam can
be obtained by using experimental or numerical methods (finite element analysis)
(Laine & Tuomala, 1999).

7.3.1 M- Relationship Of Local Buckling

Fig.7.6a shows typical curves of moment-to-angle of rotation at the loading point for
a cantilever purlin with a point load applied at its free end, which were idealized from
experimental results (Li, 1999). The corresponding curves of moment-to-angle of

rotation at the fixed end are plotted in Fig.7.6b.

These curves describe the softening behaviour of the section due to local buckling and
can be used to describe the post-buckling relationship between the moment and the
angle of rotation at the fixed support for the statically indeterminate beam when it is
loaded, although their exact value when lateral-torsional buckling occurs is also
dependent upon the properties of the section, the length of the beam and the load
applied.

7.3.2 M-6 Relationship Of The Spring Model

Consider a statically indeterminate beam, one end simply supported and the other end
fixed, subjected to a uniformly distributed uplift load. If the load is small, neither
local nor overall buckling occurs. When the load increases to a certain value, this

beam will suffer local buckling which takes place in the region close to the fixed end
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since 1t 1s in that region that the moment is the largest. After the local buckling occurs
the angle of rotation at the fixed support increases while the actual moment decreases,

as shown by the curves in Fig.7.6b.

With further increase of the load, the beam will undergo overall lateral-torsional
buckling, with My, and 6, assumed to be the moment and angle of rotation at the
fixed end when the beam experiences overall lateral-torsional buckling. It is
conceivable that the pre-buckling moment distribution of the beam is dependent only
on the final values of My, and &,,,. The stiffness of the rotation spring thus should be
k=Msup/ Gsup.

Note that for the simply supported beam with a rotation spring at its one end (k;), the
analytical model presented in Section 7.2 can be used to calculate the critical load (g;)
of the lateral-torsional buckling of the beam (see in Fig.7.4 and 7.5), which can be
used to calculate the end angle of rotation (&) by using conventional stress analysis
method. The corresponding moment at the support can thus be calculated from the
obtained angle of rotation. The curve of M;,,~6, obtained in this way is plotted in
Fig.7.7. It can be seen that the moment reduces with the increase of the angle of
rotation. The rotational spring stiffness is zero at the bottom end of the curve, where
the support can be regarded as being simply supported; whereas at the top of the
curve, the rotational spring stiffness is very large and the corresponding support can

be regarded as a fixed support.

7.3.3 Determination Of M,,, And 0,,, When Lateral-Torsional Buckling Occurs

Figs.7.8 and 7.9 show the re-plotted curves of Figs.7.4 and 7.5. The re-plotted
Miyp~6syp curves provide the relationship between M;,, and 6,,, when lateral-torsional
buckling is taking place. These curves together with the numerically or
experimentally determined M~@ curves describing the section stiffness softening can
be used to determine the exact values of My, and 6, at which the lateral-torsional
buckling actually occurs. In order to demonstrate this, the worst Mj,,~8%,, curve (with

the steepest slope) shown in Fig.7.6b describing the local post-buckling behaviour of
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the section is superimposed in Figs.7.8 and 7.9 (the dot straight line). Examination of

Figs.7.8 and 7.9 shows that there are three different cases:

= The first one is for the long span purlin (/=8m) in which lateral-torsional

7.4

buckling occurs first and thus there is no rotation at the support before the
lateral-torsional buckling occurs and therefore k = 0.

The second case is for the intermediate span purlin (/=5m) in which local
buckling occurs initially and so there is some rotation at the fixed support
when the subsequent lateral-torsional buckling occurs. The intersection point
of the two curves provides the values of M, and &, for lateral-torsional
buckling. From M, and 6}, the value of k£ and thus the critical load g, can be
determined, which presents the interaction between the local buckling and the
overall lateral-torsional buckling.

The third one is for the short span purlin (/=3m) in which case local buckling
again occurs initially. However, it is apparent that when the subsequent lateral-
torsional buckling occurs, the beam has already had a large rotation at the
fixed support and therefore the value of & is rather small. This indicates that
for the short span purlin when lateral-torsional buckling occurs the fixed
support has almost lost its rotational resistance. Consequently, for the sake of
simplicity the critical load of the lateral-torsional buckling for short beams can

be calculated simply based on the beam with simply supported boundaries.

NUMERICAL RESULTS

Figs.7.10 and 7.11 shows the critical loads of lateral-torsional buckling for the zed-

purlin beams obtained by using the approach introduced in Section 7.3. Fig.7.10 is for

beams with one end simply supported and the other end fixed, while Fig.7.11 is for

the beams with both ends fixed. In order to examine the feature of the results, two

curves obtained from the same beam but without considering the influence of local

buckling are also superimposed in the figure.

From Figs.7.10 it is interesting to notice that, for long beams, the curve that considers

local buckling is very close to that for the beam having fixed support. This indicates
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that the interaction between the local and lateral-torsional buckling is not important in
long beams. For very short beams, the curve that considers local buckling is close to
that for the beam with both ends simply-supported. This indicates that the local
buckling occurs much earlier and when the lateral-torsional buckling takes place the
fixed support has almost no rotational resistance. Therefore, only for the intermediate
span purlins, the analysis needs to consider the interaction between the local and
lateral-torsional buckling. Similar conclusions can be obtained by examining the

results shown in Fig.7.11 for the beams with both end fixed.

7.5 SUMMARY

In this chapter a novel analytical model is presented for predicting the lateral-torsional
buckling of statically indeterminate zed section purlins. The model together with
experimentally or numerically obtained stiffness softening curves for local buckling
or local material yielding can be used to determine the critical load of lateral-torsional

buckling of the purlin with statically indeterminate boundary conditions.

Conclusions from the present study can be summarised as follows:

e For long span purlins lateral-torsional buckling occurs first and so the local
stiffness softening need not be considered when analyzing the lateral-torsional

buckling.

e For intermediate span purlins, local buckling occurs first and thus the analysis

of lateral-torsional buckling needs to consider the local stiffness softening.

e For short span purlins, local buckling occurs much earlier than the lateral-
torsional buckling and so the moment resistance at the fixed support becomes
very weak when the subsequent lateral-torsional buckling occurs. Therefore
for the sake of simplicity the fixed beam may be regarded as the simply

supported beam for the lateral-torsional buckling analyses.
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Chapter 8

8 CONCLUSIONS AND FUTURE RESEARCH

8.0 CHAPTER SYNOPSIS

This thesis has investigated the behaviour of cold-formed steel zed and channel
section beams in purlin-sheeting systems. The main aim was to develop an
approach to investigate cold-formed zed and channel section beams with partial-
lateral restraint from metal sheeting when subjected to a uniformly distributed

transverse load, which has not been extensively studied by other researchers.

Since the project has been predominately theoretical, the main methodology to
perform the analysis for the cold formed steel purlins is via computer programs,
which has involved an extensive range of theory developments, equation derivations,
and substantial set of numerical analysis (MATLAB) on cold-formed zed and channel

section beams. The programming schemes are presented in Appendix 1 and 3.
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8.1

LITERATURE REVIEW

Chapter 2 examined the history of cold-formed structural technology, the

characteristics of cold-formed structures, structural behaviour of cold-formed purlin-

sheeting systems and the current approaches in design standards. The most significant

findings in the literature review were:

8.2

Developments in technology and applications make demands for a more
sophisticated treatment of local, distortional and global buckling and their

interactions between these different buckling modes.

The finite strip method is the best known of the numerical methods developed
for relatively short half wave-length buckling (local buckling) analysis of thin-
walled beams. However, the current version of the approach becomes
inaccurate when dealing with the distorsional and global buckling of long half

wave-lengths for beams subjected to uniformly distributed loadings.

Channel and Zee (Zed) sections are the most common members used as
purlins and girts in roof and wall systems with sheeting attached and so the
effect of the sheeting in preventing torsion and lateral-torsional buckling needs

to be quantified.

STRESS ANALYSIS OF PURLIN-SHEETING
SYSTEMS

An analytical model for the stress analysis of cold-formed zed and channel section

beams, subjected to a uniformly distributed transverse load, has been developed in

which the restraint actions of the sheeting are modelled by using two springs

representing the translational and rotational restraints. The following conclusions are

drawn:
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Both translational and rotational spring stiffnesses have significantly different
influences on the stresses in the beams. The influence of the two springs has
also been found to depend on the presence of anti-sag bar and the position of

the loading line.

For most of the cases, the maximum tensile and compressive stresses decrease
with the increase in the translational and rotational spring stiffness. The
influence of translational and rotational spring stiffness on the maximum

tensile and compressive stresses occurs only in small range of stiffness value.

As far as the maximum tensile and compressive stresses are concerned, for zed
section beams the rotational spring stiffness has less influence than
translational spring stiffness, while for channel section beams the rotational

spring stiffness has more influence.

The translational and rotational spring stiffnesses have more significant
influence on the bending stress oy, and warping stress oy, than on the bending
stress oy, particularly for the case where no bi-moments are generated by the

external load.

When there is no rotational restraint (ks=0), the warping stress makes a
significant contribution to the pre-buckling stress. However, its contribution is
reduced by the presence of anti-sag bars. The bending stress of zed section

beams is less sensitive to anti-sag bars than those of channel section beams.

The influence of the two spring stiffnesses on the stress and its distribution is
influenced to be interfered by anti-sag bars. The influence range for the spring
stiffness moves from a low value to a high value when the anti-sag bars are
present. The maximum stresses for beams with anti-sag bars are smaller than
those for beams without anti-sag bars, particularly when the translational and

rotational spring stiffnesses are very small.
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8.3

In terms of the generated stresses, it appears that the best location for fixing
(that is, the loading line) is close to the centre of the flange for zed section
beams and on the web central line for channel section beams, which provide

the lowest tensile and compressive stresses.

LOCAL BUCKLING BEHAVIOUR

The local buckling behaviour of cold-formed zed and channel section beams, under

pure bending and a uniformly distributed transverse load, has been investigated using

the available approaches. A novel method is presented for analysing the elastic local

buckling behaviour of cold-formed zed and channel section beams with partial-lateral

restraint from the metal sheeting when subjected to a uniformly distributed transverse

load. The following major conclusions can be drawn based on the investigated

examples:

For beams restrained both translationally and rotationally, subjected to pure
bending, the moment capacities calculated using both BS 5950 and the finite
strip method show the influence of the cross-section dimensions, hereby
indicating the importance of considering the interactions between the

individual elements.

For beams under a uniformly distributed transverse load in the purlin-sheeting
system, the local buckling loads g./g, of the zed section beams increase with
increase in the translational spring stiffness, but decrease with the increased
rotational spring stiffness. Furthermore the influence of the translational and
rotational spring stiffnesses occurs only over a limited range of stiffness
values. The local buckling loads g./g, of the channel section beams decrease
with the increase of translational spring stiffness, but increase with increased
rotational spring stiffness. Warping stress has significant influence on the local
buckling loads; however, the influence is reduced by the increase of both
translational and rotational spring stiffnesses. As far as local buckling is

concerned, the best location for fixing (that is, the loading line) is close to the
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centre of the flange for zed section beams and on the web central line for

channel section beams, hereby providing the highest local buckling loads.

84 SEMI-ANALYTICAL FINITE STRIP METHOD

The local and distortional buckling behaviour of the cold-formed steel zed and
channel section beams, subjected to a uniformly distributed load, has been
investigated using a semi-analytical method. The focus of the study is on the local and
distortional buckling, for which the existing results are only for sections subjected to

pure compression and/or pure bending.

The results from this study have shown that for local buckling there is no practical
difference in the critical loads for the same cross section between pure bending and
uniformly distributed loading. Thus, the approach introduced in Chapter 4 is still
valid. For distortional buckling, however, remarkable differences were found between
the two loading cases. The critical load for uniformly distributed loading is higher
than that for the corresponding pure bending, This difference decreases with increase
in the beam length. Furthermore, for either local buckling or distortional buckling, the
beam subjected to pure bending exhibits the multi-wave buckling mode of equal
wavelength, while the beam subjected to uniformly distributed loading exhibits a

multi-wave buckling mode of unequal wavelengths.

8.5 LATERAL-TORSIONAL BUCKLING

An analytical model is presented for predicting the lateral-torsional buckling of cold-
formed zed and channel section beams partially-laterally restrained by metal sheeting
and subjected to uniformly distributed transverse loading. The following conclusions

can be drawn from the investigation:
e The use of interval anti-sag bars is a very effective way of increasing the

buckling resistance of the beam. However the position of the anti-sag bars

should take into account the influence of the boundary condition. In general, it
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8.6

1s more effective to use anti-sag bars in the simply supported beams than in the

fixed beams.

The warping stress is found to have a significant influence on the critical load
for lateral-torsional buckling of the partially-laterally restrained zed section
beams when the purlin is fixed at least at one end and no anti-sag bars are
present. For a simply supported purlin or a purlin with anti-sag bars, the effect
of the warping stress on the critical load for lateral-torsional buckling is almost
negligible. Warping stress does not have influence on the lateral-torsional

buckling of channel section beams.

Loading position has a remarkable influence on the critical buckling load. The
highest critical load is found when the loading point is closer to the shear
centre for zed sections. For channel section, however, the lowest critical load

is found when the loading point is closer to the shear centre.

The rotational spring stiffness has more influence on the lateral-torsional
buckling loads than the translational spring stiffness. The influence of the
translational spring stiffness on the critical load only occurs over a limited
range of stiffness values, while that of the rotational spring stiffness occurs

when ky(Ey,’) is larger 107,

INTERACTION BETWEEN LATERAL-
TORSIONAL BUCKLING AND LOCAL BUCKLING

A novel analytical model is developed for determining the load capacity for the

lateral-torsional buckling of statically indeterminate zed purlins (a single span beam

with one or two ends fixed), with partial lateral restraint from metal sheeting, when

subjected to a uniformly distributed uplift load. The model takes account the influence

of the “softening” of the section stiffness due to local buckling and/or local material

yielding. The analytical model together with the numerically or experimentally

obtained curves describing the local stiffness softening, can be used to determine the
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critical load for lateral-torsional buckling of the statically indeterminate purlin. The

study has reached to the following conclusions:

e For long span purlins lateral-torsional buckling occurs first and so the local
stiffness softening need not be considered when analyzing the lateral-torsional

buckling.

e For intermediate span purlins, local buckling occurs first and thus the analysis
of lateral-torsional buckling needs to consider the local stiffness softening,

that is, there is an interaction between the local and lateral-torsional buckling.

e For short span purlins, local buckling occurs much earlier than the lateral-
torsional buckling and so the moment resistance at the fixed support becomes
very weak when the lateral-torsional buckling occurs. Therefore for the sake
of simplicity the fixed beam may be regarded as a simply supported beam for
carrying out the analysis of lateral-torsional buckling without considering the
local buckling.

8.7 SUGGESTIONS FOR FUTURE STUDY

The work conducted in this thesis has identified several areas where further research

may be required:

Various cross sections

The introduced analytical model based on the energy method can only be applied to
the beams with zed or channel sections with straight corners. Further study can be
carried out for the cold-formed steel beams with various cross sections considering

the effects of details, like round corners.

Local buckling/yielding relationship between the moment and the angle of
rotation
One of the most important findings of this investigation was the analysis of the

interaction of lateral-torsional buckling and local buckling/yielding. It 1is
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recommended that there should be further examination of the local buckling/yielding
relationship between the moment and the angle rotation for cold-formed steel beams,
which may involve more related experiments and finite element analyses, to make
more general conclusions that can improve the performance of the presented

approach.

Friendly interface computer program

The full study has been coded into a computer-based analysis program (MATLAB)
that can be used to analysis local, distortional and lateral-torsional buckling of zed and
channel section beams. It is suggested that the performance of the program can be
further improved by upgrading to a friendly interface computer program-stand alone

version, which would become a more efficient tool for design engineers.

Optimum design of cold-formed steel beams

An important advantage of cold-formed steel is the great flexibility of cross-sectional
shapes and sizes available to the structural steel designer. However, the lack of standard
optimized shapes makes the selection of the most economical shape very difficult.
Therefore, it is suggested that the optimization of cold-formed steel beams should be
carried out using the approaches developed in this thesis together with an optimization
tool so that a set of optimum sections that can be easily accessed for structural steel

designers and steel manufacturers.
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A.1.5 Finite Strip Program Scheme

Start

Matrix sizes: nnodes: nelems: nlengths:
|

Generate strip width and direction angle
[elprop]=elemprop(node,elem,nnodes, nelems)

I=1:nlengths
loop over all the half-wave lengths
-..-_{ i=1:nnelems >

Generate element stiffness matrix in local coordinates
[k _]=klocal(Ex,Ey,vy,G,t,a,b,m)
|
Generate geometric stiffness matrix in local coordinates
[kg _l]=kglocal(a,b,m,Tyl,Ty2)
I
Transform k and kg into global coordinates
[k kg]=trans(alpha,k L kg 1)
I
Assemble K and Kg
[k kg]=assemble(K, Kg k kg nodei,nodej,nnodes)

Partition the matrix into free and restrained
[K Kg restrained] =kfreeof(K, Kg,node, nnodes)
I
Solve the eigenvalue problem

[modes,lf]=eig(Kff,Kgff)
[

Find the smallest positive eigenvalue

|
Expand the mode shape to reflect restrained DOF

|
Generate output values: curve, shapes

End
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A.3 MATLAB PROGRAMMING SCHEME OF ENERGY

METHOD

Input Data

Disglacemenq

Function

Pre-buckling
Analysis

Buckling
Analysis

<

<

Section dimensions and properties
|

Input boundary conditions, anti-sag bars, span length;
loading position (y,, z,); spring stiffnesses (k;, k4, k1, k2).

]
Define the spline interpolation points
[
Generate the function, derivative, 2nd derivative
values of displacements (v, w, @) at any points
along the beam considering the boundary condition

Generate the coefficients of the matrix [4]
from the calculation of the strain energy

I

Generate the coefficients of the vector {f} from the
calculation of the work done by the externally applied load

Redefine the coefficients in [4] and {/} related to the
constraints provided by boundary conditions and anti-sag bars

I
Solve the pre-bucking displacements of the
beam centroid at interpolation points
[
Generate the function, derivative, 2nd derivative values
of pre-buckling displacements (v, w, ¢) at any points
along the beam considering the boundary condition

[
Generate the pre-buckling bending moments
M, and M,; and warping moment M,,
|

Generate the coefficients of the matrix [B] from the
calculation of work done by the externally applied load
through the pre-buckling and buckling displacements

Redefine the coefficients in [B] related to the constraints
provided by boundary conditions and anti-sag bars

I
Solve the critical buckling load factor= eig(4,B)
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