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S YINOPSIS

This thesis is concerned with the inventory control of items that can be
considered independent of one another. The decisions when to order and in
what quantity, are the controllable or independent variables in cost exp-
ressions which are minimised.

The four systems considered are referred to as (Q,R),
(nQ,R,T), (4,T7) and (M,R,T). With (Q,R) a fixed quantity Q is ordered each
time the order cover (i.e. stock in hand plus on order ) equals or falls
below R, the re-order level. With the other three systems reviews are made
only at intervals of T, ¥ith (nQ,R,T) an order for nQ is placed if on
review the inventory cover is less than or equal to R, where n, which is an
integer, is chosen at the time so that the new order cover just exceeds R,
In (M,T) each order increases the order cover to M. Finally in (M,R,T)
when on review, order cover does not exceed R)enough is ordered to increase it
to M. The (Q,R) system is examined at several levels of complexity, so that
the theoretical savings in inventory costs obtained with more exact models
could be compared with the increases in computational costs, Since the exact
model was preferable for the (Q,R) system only exact models were derived for

theoretical systems for the other three.

Several methods of optimization were tried, but’most were found
inappropriate for the exact models because of non-convergence, However one
method did work for each of the exact models.

Demand is considered continuous, and with one exception, the
distribution assumed. is the normal distribution truncated so that demand is
never less than zero. Shortages are assumed to result in backorders, not lost
sales, However, the shortage cost is a function of three items, one of which,
the backorder cost, may be either a linear, quadratic or an exponential

function of the length of time of a backorder, with or without period of grace.



Lead times are assumed constant or gamma distributed. Lastly, the actual supply
quantity is allowed to be distributed. All the sets of equations were programmed

for a KDF 9 computer and the computed performances of the four inventory

control procedures are compared under each assumption.
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The introduction is split into four sections: the evaluation of

inventory, the control systems chosen for study, 'Aspirations and

xpectations', and finally th

(]

layout of the volume. In the evaluation
of inventory, we give a brief background of inventory control and the
variables that need controlling. Ve describe the various inventory
control precedures chosen for study in the second section fcontrol systems
chosen for study', Ve give the scope énd the various cases looked into
in the thesis in the third section 'Expectations and Aspirations'. |

Finally, in section four we give the layout of this volume-of the thesis.

Section 1.1 The Bvaluation of Inventory. -

This section is divided into three subsections; the first subsection
gives the basic concepts of inventory con?rol, The second suvsection
describes various crude ways of controlling inventory and introduces the
exact form of a transactions reporting model. In the third subsection
we describe the various cost factors that affect the choice of an

inventory control procedure.

Section i.l.l Tnventory Control

Tnventory control is concerned with the control of stocks, stocks of

money, fuel, consumer durables and countless other commoditiese.

Stocks act as a buffer between supply and demand and enable a more reliable
" or faster service to be given, or economias to be made in the replenishment

process. Some supply functions, such as the creation of coal seams and

01l fields, or the filling of reservoirs, are largely uncontrollable ,

and some demand functions are largely controllable, for example by
‘ \

telovision advertising, discounts, and other marketing strategiese
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Hlowever, inventory control is usually concerned with the more common
» 1 3 - Al 2l 3

case, when denmand is not knowm exactly, althoush forecasts of it may

in
be made, and supply is controllable,Athe sense that decisions may be

made for any item, on when to order a replenishment, and how large the

A series of these two decisions(pr the system generating theﬁ)not
only determines the stock levels for given characteristics of the
demand and supdly functions (e.g. mean and variance of the expected
demand during the lead time, between ordering and obtaining replenishment),
but also the number of replenishments and the nuwber and severity of
shortages or stockouts., Thus, for given unit costs of stock holding,
replenishment, and shortare, they determine what may be called the
arnual inventory costs of the system, i.e. the annusl costs of holding
stocl, replenishing it and servicing stockouts. What this sum is for an
individual item, or even for a firm, may be estimated. What it is for
the country as a whole is not known, but it is certainly very large,
pogsibly of the order of £150 million per annum, on the basis of stocks
of £1.000 million,

Fach of the stocks may be strategic, held against crises such as
national strilkes and wars, or speculative, held against posgible upsurges
in price or world demand, luch again may be obsolete, and awaiting scrapping.
Tnventory control should be concerned with such stoclks, but most of the
theoretical attention has been given to stock which can be replenished
within a lmovm lead time, at a constant cost per unit, and for most of
this thesis the same conventions are observed.

A nunber of different procedures for controlling inventory have been
devised and the decisions within each that appear to be optiwual depend
on what effects are expected to result from the decisions., These

exnectations are in turn derived from models of what hapvens, The problem



is to determine what procedures, models, and decisions are appropriate.

hia theada <o - T .
This thesis is concerned with this problem, for some of the inventory

situations in which items may be considered independently of one another.
Independence of items is the simplest case, but it is so complex
that it does not scew to have been adequately dealt with previously.
For examplez most advanced text books leave most of their equations
unsolved. It will be shown that it is only with the discovery of some
recent numerical methods that some of the equations have now become solu-
ble. - oreover gome of the results should be of assistance in cases
when items are not independent, as will be seen later.
But even if one were talking‘about improving the control of only
10¢% of stock by as little as 1%, the value of research could be
£150,000 per annum, The actual benefit may well be larger, not only
if the 10¢° and 1¢ proved to be underestimates, but also because by using
an improved stock control system, there mighf be other unquantifiable

benefits to. the overall system,

1a 1 .2‘ l<OT)“‘:Tlc3

The kind of models uwe have been alluding to are mathematical ones
in which the costs resulting from a partiéular control procedure are
represented by a wathematical expression that contains the decisions
to be made az variables. The optimal valuesAof these variables are
then to be found, i.e. the valucs that made the nathematical cost
expression as small as possible. Let us take the most well known
examples, the economic batch quentity and safety stock in a re~order
level system, to indicafe briefly, in anticipation of chapter 2 of

vol.2. some of the different kinds of models that can be formulated.
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A re-—order lavel systen, in which all transactions are reported and
- o] 1- P o . . .
The stock level is examined after esch transaction and compared with a

re~order level, we desipnate a (Q,R) system.

(@.e)
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A fixed quantity 0 is ordered whenever the order cover falls to or below R,the

reorder level,. The quantity Q is received in stock after the elapse

of a lead time L, equal to T, - Tl. Durine this lead time the stock

2
falls, on averare to some lower level, known as the safety stock, which

we might call m.

The annual costs are usually modelled, at the'crudest level as

Batch Quantity costs = Costs per order x Orders per annum
+ average Batch Stock x 3tockholding cost per

unit per annum,

and Safety Stoclk Costs = Cost per shortage x' shortages per annum
+ Safety stockx'&toclkholding cost per annum

These may be represented as

= x‘lh
¢, S x D4 Q.hc
Q 2
and C = sxDIFm)+mxhe
2 Z{ >

Where S = Cost per ordey m= safety stock, Q = batch quantity, hc = holding
cost. .
s = Cost per shortage, D = demand, #(m) = Probability of stockout given n

C1 may be minimised by differentiating with respect to Q, and the
optimum value of Q is found to be J 2D5/hc. The value of Q may then

be used in 02, to find similarly the optimum value of m, although
oranhical or numerical means may need to be employed, depending on the

mathematical expression for F(m})the probability of stoclout.

S -



This, although more sophisticated and cost effective than the practice in
many companies, is never the less crudest level of modelling, as was stated,

For example, the second equation, which contains @ was not considered
when solving for Q. To be able to solve for @ and m simultaneously,we combine
the first and second equations and write ag the annual cost equation

C=(38+sPm)xd/Q+ (0/2 +m ) x hc
This kind of model is designated the Heuristic model of (Q,R) in the thesis.
However, it is sometimes difficult to solve for Q and m, when demand follows
a normal distribution. When demand follows a normal distribution, Tate has sugg-
ested the following annual cost function,

C = (S + s.exp(a-bk)»¥n/Q + (Q/2 + m) x hc
where the safety stock m is expressed as k standard deviations of the forecasting

error of demand over lead time,

This we call the exponential approximation of the heuristic model in the thesis.
Thus Tate's exponential approximation is a device that ensures that Q and k can
be obtained‘analytically. The correct formulation must consider the probability
of a stockout from any starting stock position, not from the reorder level,

If sales are lost in the event of a stockout then the expressions for the average
stock will not be correct either, but in this thesis it is assumed that shortages
are met later, i.e. backordered, and the shortage cost on each occasion is a

constant plus a function of the number of backorders and of their durations,

However, even when the shortage cost is simply a constant on each
occasion, as in the equation given earlier, the exact model is extremely complicate
Its complexity is of a mathematical type that is called non-convex, in which

circumstances most of the numerical techniques fail.




By omitting two small terms from the exact model we can derive
a fifth model, more accurate than the heuristic wodel, and, salthough
alightly less accurate than the exact model, it is slightly easier
to solve hecause it is convex. Thus, conceptually we have five (QJR)
models with a simple shortage cost function, the coastant, s. ‘hich

should we choose ?

1.1.%, TVALUATTION
The paraméters that define an inventory coatrol system such as
the cost of holding stocly, shortage costs, and the costs of ordering
are not static over time., For example, the cout of ordering goods and
the cost of holding stocl increases as world prices increase or as
inflation increases. In every competitive nmar'-et the cost of
shortage varies as the degree of competition varies. The cost of a
shortase would also be expected to increase as inflation increases.
The cost of holding inventory depends upon many costs besgides
the cost of capitale These include insurance, taxes, breakages and
nilferage of the storare site, and possibly warehouse rental rates
and depreciation, 1ighting> heating, night wyatchman and storekeeperse
Llso demand is continually changing. As a result a complete
control system should include adequate ways of taking account

inventory

of this. In most systems including a1l those considered in the thesis,

the demand rate is also unknown. As a result, a forecast of the demand rate

has to be made.

-l W
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After a system has been installed, all the parameters have to be

updated as th@akhanﬁe or as new forecasts of their values are made.

The cost of the system would depend upon how frequently the parameters

are updated and the cost of each updating., Tn the extreme case, a new
inventory system might have to be installed if the paramneters change

to such an extent as to make it uneconomical compared to another

gystem, Some examples of this are defined in this thesis. Thus, the total
costs of any system includes the cost of jnstallation, updating, forecasting
and the relevant inventory costs of the system.

Although the effectiveness of the system as a whole will depend on

the frequency =znd effectiveness of vpdating parameter values as well as

e

te cost, this interesting field for research has not been studiede

In defence of this position it can be argued that most versions of the

(Q,R) system, or other svstem to be defined later would derive equal
costs and benefits from equal updating policies.

However, two potentially important ways in which the models
differ are in their difficulty of comprehension by decigion-makers and
in the cost of solution of the equations. On the grounds that the

n the cost effectiveness

[N

decision mekers will be chiefly interested
of their policies, the computational costs are computed, and set against

the improved inventory costs resulting from the wmore sophisticated rodelse

Tn this research it has not been possible to explore the gquestion of
difficulty of comprehension, To be able to explore the question of difficulty
of comprehension, it is necessary to ask as many decision makers in as many
firms as possible_for their understanding and comprehension of the models.
This would take a’ considerable length of time and the time for thé ‘completion

of the thesis is limited.” Hence we have not’ explored the question of diffic-

t

ulty of comprehension.



Section 1.2  CONTROL SYSTEM CHOSEN ¥OR STUDY

! ai N . .
The version of (,®) described in 1.1.2 was an over simplification

because it neglected the fact that more than one order might be out-standing

at one time, There are also a number of alternatives to (Q,R) based on ordering
and reviewing at fixed intervals, and also mixed systems. The four systems

this thesis attempts to compare, chosen because they seem to be the most important
ones, are described below, Fire#@e replaced the stock version of (Q,R) with an

torder cover' version,

Order cover

Reorder level

{
Yo
' {
e —
L ,rl | jrae.

A fixed quantity @ is ordered whenever the order cover equals &, the reorder

level. The quantity Q is received in stock after the elapse of a lead time L,

equal to T9— T The order breaking the reorder level, would normally overs-

1
hoot it by a variable amount, but since we have taken a continuous model of
demand this phenomenon does not occur and so the maximum order cover Q+R is
always reached whenever. the reorder level is broken. Thus, the system is equi-
valent to an inventory control procedure we désignate (m,R), in which on break-
ing a reorder level an order is placed of a size to increase immediately the order
cover to M. Therefore, we do not distinguish between these two systems which
might well be slightly different in practice.

The second inventory control procedure is designated (},7). Like (Q,R),
(M;T) has two controllable variables but the cost of review may be included

with the cost of an order unlike the (q,R) system, which does not consider the

cost of reviewing, in the derivation of the cost equations for (Q,R).



In (Q,R) reviewing is continuous and comes with every demand for an

item, while it occurs after every period T in (¥,7). Tn both systems the cost

of an order can be regarded as the cost of replenishing stock in the warehouse.
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Review time T = T? ~'Tl. At each review time an order is alway

placed to bring the order cover to Il
The third confrol procedure is designated (IM,R,T). lere a review
is made after a period T, and an order is placed if the order cover

is less than or equal to R at thet time. The quentity ordered is such

]
6}

to make the order cover I after every order.

This model is introduced bhecause it takes into consideration

three controllable variazbles unlike (M,T) and should be adaptable to

more subtle combinations of varameter values than is (1,T).
(M, R, T)
HM\‘MmM r\/l —— i T T .

[N
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Re~oedew Levl
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Review time is equal to T? —-Tl. An order is placed at Tl to bring the

\w,

d

order cover to M and at T2 no order is placed. The amount ordered
when there is an order varies at every order,

The fourth inventory control procedure considered is designated
(nQ,R,T). Hadley proposed this model widch would be ap ropriate when

the batch size imst be a multiple of some gquantity O and which he

3 - 1A
gpeculates might sometimes be an improvement over (15,7)

LA

-10-
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A review is made after every period T. In the above diagram reviews are made
t T, and nd s T -

a 5 AN T1 and ' equals T2 T1.

An integer multiple of a fixed quantity Q is placed only when the order cover

equals or falls below R at review time, n is the minimum integer such that the

gquantity ordered nQ, is such as to bring the order cover above R.

Section 1.7 ASPTRATIONS AND EXPECTATTONS

(a,R), (nQ,R,T), (,T) and (1,R,T) cover most of the inventory control
procedures met with in practice in industry, and that have also been
considered in the 1ite&%n@. However, authors who have considered relatively
simple models (e.g. Nadley and Whitin ref.1.) have only considered relatively
simple shortage costs and constant lead times., In the real world, neither are

the lead times usually constant nor are the shortage costs simple.

However, the exact models of even the simple cases have not previously been

gsolved.

Shortage costs can have three components, one constant each time a stockout

occurs, one varying with the number of backorders, and one varying with the

length of time of backordering.

11




Three backorder cost functions chosen here,linear,quadratic and exponential
form a good representation of most of the backorder cost functions met with
in practice, In an additional set of functions, a time is allowed to elapse
before a penalty is applied.
In the real world, lead times are not constant, People who use inven-

tory control procedures often use an artificially increased wvalue of the
standard deviation of demand over the lead time in a model in which the lead
time is held constant to compensate for this.

Prom the literature surveyed on%? T.A. Burgin (Inventory Control with
normal demand and gamma lead times, Operational Research Quarterly Vol. 23,
No. 1) has derived expressions for the behaviour of stock that take into
consideration the distribution function of the lead time explicitly.

There are very few articles that compare the inventory cost performance
of these inventory control procedures, under the assumptions considered in the
thesis. Nost of them consider constant lead times only and linear backorder
costs. In Operational Research Vol. 10. lo. %. pp. 401-407, Naddor compares
in our notation (i1,T) and (¥,R) analytically. He shows that (,R) is always the
better policy when replenishment costs are not common to several items., The reason
(3,T) can be the better policy when replenishment costs are common to several items
is that in (M,T) an orderxis’alwaySapléoed at every review and when the order cost
is quite high (M,T) would benefit from sharing its high order costs with other item

Also in the Journal of the Royal Statistical»Series B Vol 24, No. 1.
1962 pp 1-32, Thatcher compares the (M,R),(E,T) and (M,R,T). He . Agsumes .
constant shortage costs per unit time and shows analytically that (M,R,T) is
always the better policy amongst the periodic review models. (Q,R) is compared

with the periodic review models in this thesis by adding the cost of a review

to the cost of ordering.
Boothroyd and R.C. Tomlinson come to the conclusion that (Q,R) produces

smaller inventory costs than (1,T) for discrete demand for spares,for a particular

set of parameters. (Ref. 11) .
12



The purpose of this thesis is to compare four inventory control
procedures (Q,R), (ng,R,T), (¥,T) and (1,R,T7) on the criterionof which gives
the best inventory costs, when the variables entering each model are gimultaneously
optimised,and also taking into consideration the cost of computing for each

model, for certain cases listed.

These cases are (1) constant lead times and the cost of a
backorder is a linear function of the length of time of a backorder,
(2) constant lead times and the cost of a backorder is a quadratic function
of the length of time of a bhackorder and

(3) constant lead times and the cost of a backorder is an exponential function of
time.

Other assumptions are (4) that backorders do not incur a backorder
cost until after a period of grace, with constant lead times for each of the
backorder cost functions and (5) lead time is assumed continuous and gamma
distributed, with no period of grace for each of the three backorder cost functions,

Finally (6) Supply is allowed to vary with constant lead times and

continuous lead times respectively, with no period of grace for each of the three

backorder cost functions.

Situations could arise where scrap is a distributed variable giving rise to an

uncertain production quantity. (Ref. 6).

A1l combinations are examined,japart from the period of grace, for all the four
control procedures we have

-13-
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defined. The Table below swmaries the various combinations examined,

Backorder Cost Function

‘ Iinear Quadratic ¥xponential
Pived ' Constant * \ ¥* *
v J v
Lead Tine
Supply
Variable ! Y g
Distributed . Constant
Lead Time J / 7
Supply
Variable v ‘
| I ’
{ i
- !

* TIncludes cases in which the ‘*period of grace® is talen into

congideration,

)

Intuitively the (Q,R) control procedure always has lower average
annual costs than a periodic review system, when review costs are
isnored., The reason for this is that in the periodic review systen,
fficient stocls must be held to offer protection for a length of L + T
(lead time plus review time), while for (Q,R) the lead time L is the relevant
time. Thus the periodic review system will require higher safety stocks
nd have higher costs.
The question is how much better is it, and does this affect
potential savings when items are not irdependent, To examine this we
have calculated the exact savings for a whole renge of combinations of

n the next chapter. Also intuitively the choice

[=N

parameters gpecified

between (M T) and (nQ,R,T) inventory control procedures would depend
y

on the relative maenitudes of order cost and review cost. If the review

costs are hisher than order costs, it would be uneconomical to have a
review vithout placing an order, hence (1,T) would yield less inventory
costs than (nQ,R,T).

gimilarly when order costs are nigher than review costs (M, T)

would yield higher inventory costs than (nn,R,") because it is

14~



uncconomical to order at cvery review as the (¥,1) does.
(1LR,T) is more flexible than both and so is lilely to have
lower ‘inventory costs, Sut it is also lilely to have hicher
computational costs , where computational cost is the cost of computing the
optimum values of the control variables.

The normal distribution was talen as our basic distribution
although it introduces some probability that demand could be
nersative, which is impossible in practice. Consequently we
truncated the normal distribution although this introduces some

anproximation, Je also illustrate some points, for the sake of
- ]

simplicity, with the wniform distribution.

1ods LAYOUT OF THESIS

Tn chapter 2 of this volume we describe briefly the methods
of deriving the cost equations and the ontimisation techniques,
vsed to solve the equationse

Tn chapter 3 we give a sample of the results. The detailed
results are in the volume 3 of the thesise

4 ‘ ) : 19 ISkl 4l ~(7;c~ul_'tc~
Tn chapter 4 we give a discussion Ol The TESULLS.
Tn Volunme 2 of the thesis ve pive the mathematical derivation

give the computational results

Ud
o
3
2,
>
=
@

of all the cost equations

in Volume 3.
Phis thesis has developed iron Tate's joint calculation of

reorder leovel and renlenishment order quantity from his exponential

approximation of the neuristic model of (Q,R) (Rof.5), vhich

formed the basis of chapier 2 of volume 2.

. St -
Chanter 3 of volune 2 18 also based on chapters 4 and 5 of

Tadley and YMitint's Analysis of Inventory Systens (Refole)e

Fxtensive use is made of T. Aviargints (Ref.6.) mathematical




ons

derivat: 1d with gamia lead tines in chapter 8

of Volume 2,
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CHAPTHR 2

METIOD

Tntroduction

Tn section 2.1 of this chapter we describe the two approaches
of deriving the cost equations of the models, developed in volume
5 of the thesise. The methods of optindisation used to solve the
cost equations are described briefly in Section 2,2, In section
2.3 we gpocify which optimisation techaique is applied to each
model, and we also give the aifficulties encountered in the
researche

Tn Section 2.4, we specify the ranges of parameters covered

v

. . . .
in the thesis during the profrainiing of the cost equatlonse

-17-




Section 2.1 Tioguations,. g

2.1.1

Shortare Costs

The chortese cost is 1ade up of three items] one
is & constant por stocke—out, the second is proportional
to the mumber of units back-ordered and the third is
related to the time for which an item has been hackordered.
“hen the backorder cost is a linear function of the length of
tine of a backorder, the approach employed 18 to calculate
for a single period sepnrately, the prohability of a
stockout, the expected mmber of hackorders incurred Der
year and the expected munber of baclkorders at any tinme,
regpectively, The probability of a stockout applies to
the constant cost per stoclout, and the eypected nunber of
backorders incurred per year applies to the cost proportional
tor the number of units backordered, and the exvected
baclorders at any time applies to the cost proportional
to the length of time of backorder.,

The above approach can not be applied when the
backorder cost function i more complicatbed than the linear
form. The approach employed is to assume an initial level
of order cover at time O and assume that in some time 2,

bofore the lsad tine, L, the systen is out of stock. lence
th of time of a backorder that occurred at 2 = I~Ze
The cost of such a hackorder that occurs at 7 is obtained and

the expected coats for the neriod is averaged over the states

vihen the period of grace igs introduced, this approach is
easily nodified, for exarmple if the period of grace is p (after
which a backorder atnarts bearing a boclkorder cost) then the

relevant length of time that bears a cost is IL=Z~D

(Z+p<i). The cost for a length of I~7-D time is obtained

-18-



2.1.2e

and averased over the states of Z.
“men the lead tine is o centinucus random variable,
there are two ways of obtaining the annual inventory costs.

One approach is to compute the various exvected values

usine the marsinal distribution of lcad time demand
rather than the lead tire demand for o fixed lead time L.

1 is to calculate the anmmal inventory
costs Tor a Tixed lead time T, and then to averace the
annual inventory costs obtained over the states of lead
time L, The apnroach enployed in the thesis is to calculate
firgtly the ammal inventory costs for a fixed lead time L

and averase over the gtntes of lead time.

Mhis aporosch is choszen beesuse we have available in

+he th the anuael inveintory couts, in the earlier

A

chapters before the chapters that deal with continuous

1end times, Hence at that stese of the thesis it hecomes

mathematically easier to averase the

je

aventory costs for
fied lend times over the stétes of lead time,

“imilorly vhen the size of the batch quontities are
distributed, the annual inventory costs are obtained by

averasing the annual inventory costs for fixed batch
quantities over its statese.

Talidity of Bauations

The mathematics has been worked throuesh several times
in various notations. lowever, a number of checks are
introduced into different scctions of the thesis to check
the validity of some of the equations, ‘hen the backorder

duration cost is linear, the apnroach used for the more

complicated backorder cost function can be reconciled with

the simpler approach by putting the coat parameter, b3 (for
the quadratic tern) or by (for the exponential term) equal

to zerOe Thig cai he done for the exnacted baclorders

-19-



incurred per year and for the mwber outstandine at
anyone time ag voll as for the munber of stockouts and

total inventory costs

Se

In Section 2.6 of Volume 2 the exact version of  the

(Q,R) model Tor the linear case wns derived by calculating

the expected. number of bhackorders per vear and the
expected backorders incurred at any one tine,

.2 of Volume 2, the (0,R) model for the

=
]
\::
a
s
g
o
13
M

linear case was derived by using the duration of
backordering explicitly and both cost equations are

o o«

raeconciled,

ifhen the 'period of grace' p is =et equal to zero
in the cost equations of Chenters 6 and 7 of Volume 2,

the corresponding cost equations that do not consider

a veriod of grace can be obtained.

O



SECTION 2.7 METHODS OF OPTIMIZATION

In this section the methods of optimization used to
solve the inventory models are described very briefly. The
methods with the least computing time with respect to each
inventory model are indicated in later sections.

The methodé described are:-

(1) The Steepest Descent (Reference 2)

(2) Powell's method (Reference 3)

(3) Simplex technique (Reference 4)

(4) Complex method (Reference?)

(5) Hadley & Whitin's iterative technigue (Reference 1)

The Steepest Descent requires values of the first order
derivatives of the cost expression with respect to the wvariables
and at least the first order derivatives with respect to one of
the variables must not be zero.

| Powell's method is based on a quadratic approximation
of the cost expressions. 1t uses n mutually conjugate directions
in n stages to find the minimum where n is the number of
variables.

The Simplex and Complex methods do not require valueé of

the derivatives of the cost expressions.

2. STEEPEST DESCENT

—— ettt

Tet C be the cost expression, where C must have at least

one lst derivative. ¢ ig a function of Xl, X2, X3 cosssen e Xn

variables. Let $C be a decrease in the objective function for a

change in the variables. Tet os be the change in the point where

$s is defined as

21



n
= 2
8s = - (5xy)

i = l 202.1. lo
Now 8C ‘-—‘—}%__Q le + }C 83{2 +\OC BXy + oceccsoes .
S ol S

n

= ;> ?BC , Bx.
— \ 3%, :
i=1

2.2.1.2.
n
4
Hence SC = z (\Lc> £,
S ok R
° NS s 2.2.1.3.

One particular set of displacements will make 8C/8s as
small as possible (gince we are minimising the function). This
direction is the Steepest Descent. Minimise §¢/8s subject to

constraint 1.2.1.1.

Min §(/8s
) n
Suich Huornk §s = WZ <8 X‘:’)Z
Ci=1

Tet T be the modified objective function where

n _ n
F:Z(Dc § X. + /<1— f 5 X.\°
| SW ) e ~ =
i21 . i=1 ’ D.2.1.4.

where /<ﬁis a lagrangian multiplier.

Differentiate I with respect to Sxi/Ss

N

O —

ﬁ%_ - 2,(8xj_ - 0
1 Sc«
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H
les)
e
1

l_l

1 -—---------w
2< X4
2.72.1.5.

This tells us that the direction of the Steepest Descent
is proportional to the partial derivatives of C. The direction

of steepest descent i$ parallel to the gradiant of the functiaon.

Substitute 2.20.1.5, into 0L.2.1.1l. We obtain

n

§ xi -1 c: /\m > P
Z ) e L \N
i=1

Solving f (
g 1or /N

/( = + 1 % Ei Do @

?T'V CXl .

i= 2.2.1.6.

ubstitute 2.2.1.5. into 2.2.1.3. We obtain

The positive sign gives the direction of the greatest
increase in C while the negative sign gives the direction of the

greatest decrease in C.



0 . . .
Let Xj y, =1, ¢o...n be the starting point provided

at the point gi.

T hne next point %! is obtained from

i

.l - .0
X g = XJ + Mji s
where Mj = - \bC
\ij j=leese.. e
[ n(b 2
e | 2
\j P e
1=1

’2!’2~ 107 L]
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SECTTION 2.2.2, POWELL'S METHOD

Let C be the cost expression which is a function of

Xl, X2 ce s eon e Xn variables. C must have continuous first

and second order derivatives.

Taking the Taylor series expansion at X’

n )
0(x) = o) + < D¢ (g - %)
P A
i=1
n n
+1~j>* E\%. (Xi"X;‘z)(Xj"Xf)
i=1  j=1
In rector form
cx) = ¢ X)) + ax o+ X B

where B in such that X BX is positive definite

Step 1.
» th . . (k)
Tet the starting value of the K iteration be Xo
Let n linearly independent directions for the Kth
! (k) o (k) (k).
step be Sl y So ceesecenunse Sn

Begin'the gearch by finding the position of the optimum

point along the line passing through zo(k) which is parallel to
o (X) (k)

1 ¢ 1
this new point in the Sz(k) direction,

At this optimum point X , begins a second search from

Continues until all n search directions have been explored.

Step 2.

Detine A3 = }c (ggj\{k? - C<§j-1(k>’ j=le....n

wherezﬁ j is the improvement of the objective function over its

5



previous value,

k . \
Let Km( ) yileld the largest ij j=l....n, of any of the n moves.

A - o (@) - o (a™)

N

is largest

Determine the rector U = Xn(k) - Xo(k)

o

(k)

Determine Kt

where_gt(k) = 2§n(k) - 2§o(k) and calculate C <§t(k{>

§jep 4.

If in seeking a minimun

(%) 2 o (6

and/or C(go(k)) . 2C(§n(k)) + C(Et(k))A'(C(go(k))~0(§n(k>)

_ AM> 2 /Z/ _42}11 (C(Ko(k)) _ C(zi(k)))z

Then begin the search again, starting at the best point and using

the same directions.

that is Ko:+l = Xnk

and §ik+l = §ik i=1leeeenns n
step 1 is repeated.
If neither of these inequations is satisfied, search
along the direction U until the minimum is found. This point is
defined as zo(k+l>'and the new search directions for the (1c+1) 5B

stage are

)
Si(k+1) = §§k‘ 121y 2 ovenes e mel



. (k+1) k
27 2i+l

(k+1)
2n

i =M ceeeeoee N = 1

i
n

And repeat the entire process starting with step 1.




SECTION 2.2.3, SIMPIEX TECHWIQUE

The objective function is evaluated at n+l points in the
space spanned by n independent variables, The points form the
vertices of a regular simplex.

Let_the vertices of the Simplex be Xi and fhe
corresponding function values be Ci 1 = 04l seeseose Mo
Step 1

Let g, hy, s be respectively the subscripts of the
vertices possessing the largeét, next largest and smallest
function values.

e

Tet X be the centroid of all vertices excluding Xg

n
X = Z X3
N
i=1
17
Step 2
Xg is reflected in X to Xr
where Xr = (1 +o)¥ - xXg. o> 0 ( qﬁ_l)
If Ch;>0r > (s then Xr replaces Xg then return to
step 1.
Step 2

1f Cg > Cr then it is investigated whether a further
step in {his direction will also be successful. Therefore a

new point Xe on the extended line Xg X Xr is calculated where

Ye = y¥kr + (1-7X 771 (¥=2)
If Ce « Cr then the expansion has been successful and

Xg is replaced by Xe. Otherwise Xg is replaced by Xr

Step 4
If Cg:>>Cr;;>Ch then Xr replaces Xg, but not otherwise.

28



A new point Xc is calculated as follows
Xc = ng+(1—-F)3‘<
where o <f'l,/B = %\
F B o=z
If Ce Cg then Xc replaces Xg.
The basic process is repeated.
Step 5
If Cc ;>Og then contract the whole simplex.

Xi = % (Xs + Xi) 1 = 041l evevcee. 1

Repeat basic process.
Stop when the standard deviation of the function

values at (n+l) vertices < ¢ .

N
\
rj’
[ AN

29



SECTION 2.7..4. COMPIEX METHOD

The Complex method is g modification of the Simplex

method, designed to handle constrained problems.

Constraints are of the types gi(x) = 0 and/or
(Li‘é i< Ui)di =1, uoo.... m. Vhere the implicit constraints
are 9i(X)SJO and Li and Ui are either constants or also functions

of Xl, X2, cene e Xn and are the explicit constraints.

Find an initial point that satisfies all constraints.
The further (k-1) points required to set up the initial
Complex figure are found as follows.

A tentative trial point is generated with co-ordinates.

vo= i+ rs(Uy - 13) i=1,2 ... m

where the random numbers rj are pseudo-random rectangularly
distributed deviates in the interval (0,1). If an implicit
constraint is violated, the trial point is moved halfway in
toward the centroid of the points already determined. Repeat

until the complete set of k points is defined.

The objective function is evaluated at each point, and
the point yielding the poorest value of the function is rejected
and replaced by the Simplex technique described in Section 2.2..3.

Various cases calling for different treatments, arise as follows.

(a) 1If the trial point does not satisfy some explicit constraint,
that variable is reset just inside the appropriate boundary (by

" say 0.000001) to give a further trial point.

(b) If some implicit constraint is violated a further trial point

is constructed by a move halfway back towards the centroid, this

process being repeated as necessary.
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\

¥+l voints are necessary in order to prevent the
configuration from collapsing nre-maturely into a sub-sdace,

SECTION 2.2.5, HADLEY 'S AMD WHTTTH!S TTRURATIVIG THCTTTIOUR

It is strictly applicable only to a function of two variables

that can each be expresged exnlicitly in terms of the other.
This rarcly apolies except in the case of the heuristic models
referred to later in Chanter 2.

Tet C be a function of X1 and K?.

Ty Neyer ) a Tiv 1 b e = 4
Bxpress X, as a function of X, ¥, ul(dg

" ¥ onou n noox YO 52(:{1)

=

. o 0 P . 0
Start with a value for X, say X, and obtain £,° = g(kg )

[

. 0
and obtain a new velue for X° = g, (£, 7).

Repeat until convergence is obtained.

- 3] -



o 3 E GPROTIR ST Y oy -
Section 2.3, SPROTRIC OPTIHTSATION TECINIIOUR APPLIED T0 RACIL MODET,

T g . .
Tadley and hitin's iterative technique described in

r oy
Section 2.2.5. was used to solve the leuristic wodel of

(Q»P)e Tate's exponenlial model was colved by calculating
the inventory costs for each pair of values of a and b and
the rinimum inventory costs ig chosen.

The Siunlex, Powell's and Complex methods were used to

solve the exact and inexact models of (0,R), for the linear

. o
case but the results presented in thesis are derived by the

Complex method, The Complex method was found to be converging
on all the sets of peramcters corgidered unlike the Simplex
technique. Powell's method converped for the sets of

parameters considered for the lincar cane for both the inexact

and exact models of (Q,R). However, for cach of the periodic
review wodcls, only the Complex method converged for all the
gets of parameters. As a result 211 the results presented in
the thesis are obtained by the Complex ethods

o major difficulties were encountered in the research.
the first wos the lack oi convergence of most of the

aumerical methods tried, and the continual senrch for methods

L.
I

hat would converse.
Secondly while still on chanter 4 of Volwme 2 my
conputer ernenditure £400 had cvhavsted more than my share

of the cownuter budret and more than holf of the computer
budret Tor the departments 25 a rosult, I eacountered

dirficulties in having to revrite prosrans to sult

0]

S0”
another conputer which my supervisor hod made speclal

arrancements for me to use.
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Section 2.4,  Scove of Paraucters

e . e . ~ . :
Curine to the cont and time of computation it has not

becm vossible to consider all the possible rances of the

naraneters.  The standerd Adovsadti
parameters. The standord deviation of demand ovsr the

2
oY) et - s ~ R - .
lead ulmng:f; is evpressed as o Traction of expected

demand over the lead time DxL, This is done becaus

1 T a3 3 -
the gtandord deviation of demand over the lead time,

for the same demand rate and lead time, cen be varied

as desived by multiplying the expectod lead time demand

I

by a constant to attain the desired stardard deviation

derand.

!

mhe stockout cost, when a stockout oceurs is expressed
as a fraction of the ewnected demend over the lead time,
Since in vractice the atocl-out coat would vary each
occasion a stockout occurs, the stoclout cost is averaged

over the expocted demand over the lend time. Also it makes

it easy to vary the atockout cost by multiplying the

croscted lead time demand by a constant to achieve the

desired value of stockout coste

“lhen considering the different versions of model (Q,R),
(the ©RN - ROL, Matets exponential, Teuristic, Inexact and
Txact models), the following values vare assirmed to the

parameters.

Anmual Denand = 10, 100, 1000, 10000, 100000, 1000000

Order cost in £3. = 0.1, 1.0, 10

olding Cost in £s20,01, 0.1, 1.C

N 02L / DxL

LeadvTime = 0,1, 0.2, 0ot of a year

0.1, 1.0

]

atoclout Cost ;fb.OOS, 0.05 x Lead *time demand

per period.
The values assismed to the parancters cover nost of

the values that are net swith in practicee.
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When a stockout occurs the cost may consist of the cost of telephone

calls and paper work., Hence the values agssigned to the stockout costs would cover
the stockout costs met with in practice, e

-The lead time ranges from six weeks to twenty weeks.

In practice the lead time could be a lot less than six weeks.

B 3 . g
e now discuss the values assigned to the parameters for the exact

models, (Q,R),(nQ,Rr,7), (¥,T) and (¥,R,T).

When the shortage cost is more complicated than the simple stockout costs assumed
above, the time and cost of computation increases. As a result, the values assig-
ned to the parameters had to be limited.

A sample of values was assigned to the parameters and it was found
that the difference in annual inventory costs did not vary much with changes in
the values assigned to the parameters except those assigned to order costs, review
costs and demand, hence some parameters are held constant. Parameters held constant

are b as can be seen belowv.

17b2’b37b4

- b
The backorder cost functions are as follows: exponential = 0. xe 4t;

t2; linear = b, + bt .

quadratic = b . 5

+ b2t+ b

1 3

In cases where the values of b1,b2,b3,b4 are related to the cost of the item,
it is only necessary to change their value in proportion to the cost of the item.
Values assigned are:

Demand, D =10,1000, 100000

Standard deviation of

demand per year =0.1xD
Holding cost,hc =£8 0.061, 0.1, 1.0
b, =£1.0
b, =£0.1
b3 =£1.0
b, =2.5

Review cost, R =£0.01,0.1,1,0,10.0,100
c

Order cost , S =£0.01,0;T,1.0,10.0,100.0,1000.0

Period of grace,p =0.25 of lead time.

Lead time‘L =0.1 of a year "




In the cases of continuous lead times and distributed supply, values assigned
to the parameters of their gamma distributions, respectively, were such as

to make the expected lead times and expected supply quantity equal to the

values being used in earlier chapters,




Chapter

Z
A

el

In this chapter we present a subset of the results., The detailed

relationship of the subset to the whole results,

results can be found in volume 3 of the thesis, The

diagram below shows the

Rackorder Cost Munction

Linear | Quadratic [ Rxponential

Ol blcell oo b V¢ o [ v | ¢c
FPixed Constant , Tk ‘ \
Supply Lead Time Y Y Y

Variable J / v \ \

Variable Constant s \ S / / \ \
- Lead Time % l
Supply Variable v \ v b \ \

Different Versions of model (4,R)

Standard deviation of

0.1

]

demand over lead time

6
Demand = 10 —=——- 10
Order cost = 0,1 -- 10,0
Holding cost = £0.01 --1.0

o2/ )

* Includes period of grace. Holding cost =£0.01 for a; =£0.1 for b; =£1.0 for - c.
The subset presented in this chapter is the results for the linear backorder
cost function for all combinations and the results for constant lead times
for exponential and quadratic backorder cost for fixed supply.
The subset is chosen because any conclusion drawn from it would be
applicable to the gquadratic and exponential backorder cost functions respectively,

for all the assumptions, after inspection of the ~whole results.

e present a guide to the results on pages 41 to 75 of this chapter.

Lead Time = 0.1 of a year
Stockout cést‘ =£ 0.05xLead time demand
Fodel Page

EBQ~-ROL 41
Tate's Exponential 42
Heuristic 43
Inexact A4
Exact 45



Cn pages 41 and 43 it will be seen that the inventory costs decreases as

order cost increases for high levels of demand. This is not due to the programming
technique but due an error in the model itself. An explanation of the reason is
given in chapter 2 of volume 2,

The results of (Q,R) given in page 4% can not be compared with the results
of (Q,R) given in page: 48 or later pages because the shortage costs taken into
consideration are different. Page 45 considers a constant average total costs
whenever there is a stockout while 48 considers a linear function of backorder

cost per unit backordered per length of time of backorder,
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Case 1 Linear Backorder Costa and Constant Lead Times

Demand T 0 mmm 10

0.01=eau10?

!

Review Cost,Re

Order Cost,S O.O1»~--—~1O3

i

Holding Cost,he = 0,01

Lead Time - 0,1 of a year
JEEZ/DL , = 0.1
b, - _ 1.0
b, = 0.1
Model Page
(Q,R) 48
(v,T) 49
(nQ,R,T) 50
(M,R,T) o1

Quadratic Backorder Costs and Constant Lead Times

Case 2
Case 2 = Case 1 plus b5
where b5 = 1.0
Model , Page
(Q, 1) 52
(M,T) 53
(nQ’R’T> 54
(M,R,T) 55
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g tim]l Boelkordar (e I , .
Exponential Backorder Coets and Jenstant Lesd Times
S A QR @ M vy & (Y im omigm b I o
SASE 3¢ wase 3 = Case 1 deleting bT and W Aand adding 7, =Lu7 {
; h ot owhere + 5o Fhe Tevreei A S A f a4 e gz
heckorder costs = Owﬂxebdt where t iz *he lengwh of “iloe ~f 2 hackcrier .
Model ! Page
; Z
(o Q)
\(1,1& ; ﬂr/}
- i .
(M, 7) .57
1
v ! o
ny,R,T) L o8
|
; | =g
(M,R,T) 59
CASE A Period Of Graces GQuadratic Backorder CTosits
Case 4 = Case 2 plus pericd of grace, o
where o) = (.25 of Lead Time
MHodel ( Page
‘x
(,R) @
(nQerT) \ 62
(3, R,T) 63
CASE 5: Continuous Lead Times and Linear Backorder Costs
27000 H

f

Model | Page

(Q,Rr) 64
(¥,T) 65
(nQ,R,T) ' 66
(1,R,T) o7

59



i 3 [®] .
Linear Backorder Costs And Constant Lead Times.

Variable Supply

Model ' Page
(Q,r) 68
(1,T) | 69
(nQ,R,T) 70
(M,R,T) T

@

CASE T: Continuous Lead Times and Variable Supply

Sl

Linear backorder cogts

e g

todel , .. Page

AR

(Q,R) 72
(M,T) T3
(nQ,R,T) T4

(1, R, T) ‘ 75

B A - el il T i
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EBQ-REORDER LEVEL MODEL: ANNUAL INVENTORY COSTS

LEAD TIME IS 0.1 OF A YEAR
STANDARD DEVIATION OF DEMAND OVER LEAD TIME = 0.1% Ds SQRT(D)
=0,Q5 x LEAD TINME DEMAND

STOCKOUT COST

ANNUAL DEMAND

10

100
1000
10000
100000
1000000

S5=0.1

10

100
10C0
10000
100000
1000000

10
100
10C0

5=10.0 10000

100000

10006000

HC=0,01
0.147
0.520
2.285

14.400

124.583

1248.833

0.450
1.469
5.202
22.849
144,004
1245,830

1.414
4.498
14.690
52.024
228,491
1440.041

HC=0. 1
0.474
1,916
12.019
106.074
1039.545

11185.830

1.415
4.745
19.163
120.193
1060.740

10395.453

4,472
14.147
47.446

191.628
1201.935
10607.404

41

HC=1,0
1,492
8,082

78.501

873.822
9860,495
999%1.360

4.481
14.922
80.815
785.010
87%8.224
98604.950

14,144
44.809
149.222
808.151
7850.099
87382.,236



TATE'S EXPONENTIAL APPROXIMATION TO THE HEURISTIC MODEL

LEAD TIME IS 0.1 OF A YEAR

STANDARD DEVIATION GF DEMAND OVER LEAD TIME = 0.14D +SQRT(L)

STOCKOUT COST

ANNUAL DEMAND

10

100
1000
10000
100000
1000000

S=0.1

10

100
1000
10000
100000
1000000

5=1.0

10
100
1000
" 10000
100000
1000000

S=

HC=0,01
0.147

0.520

2,281
14.411
124.430
1212,890

0.450
1.470
5.197

22.810
144,107
1244.300

1.414
4.497
14.697
51.966
228,096
1441.073

= (0, 054 LEAD TIME DEMAND

HC=0. 1
0.472
1.973
11,761
99.286
966,070

9631, 636

1.415
4.719
19.727
117. 607
992.863
9660.696

4.472
14,149
47.191

197.276
1176.072
9928, 628

fC=1.0
1.473
6.648
5%.277
516, 681
5151.179
51496.055

4.484
14,727
66.484

532.773
5166.905
51511.794

14.145
44.835
147.291
664.836
5322.7%3
51669,051



HEURISTIC MODEL: ANNUAL INVENTORY COST:S

LEAD TIME IS 0.1 OF A YEAR

STANDARD DEVIATION OF DEMAND OVER

STOCKOUT COST

ANNUAL DEMAND

10
100
1000
10000

S=0.1

100000

1000000

10
100
1000
10000
100000
1000000

S=1.0

10

100
1000
10000
100000
1000000

5=10.0

[iC=0,01
0.147
0.520
2.286

14.304

121,660

1178.703

0.450
1.469
5.200
22,856
143.045
1216.599

1.414
4.498
14.689
52,002
228,557
1430.446

43

LEAD TIME = O,1x D SQRT'(L)

= 0,05 » LEAD TIME DEMAND

HC=0.1
0.473
1.962

11,757

99.874

972.805
9700.249

1.415
4.7%0
19,621
117.572
998,740
9728.052

4,472
14.148
47.200

196.206
1175.715
9967. 402

HC=1.0
1.464
6.575

52.905
573.179
5765.944
57684.875

4.481

14. 640
65.751
529.049
5131.751
57659.492

14.144
44.811
146,397
657.510
5290492
57317.446



INEXACT MOBEL: ANNUAL INVENTORY COSTS

LEAD TIME IS 0.1 OF A YBAR

STANDARD DEVIATION OF DEMAND OVER LEAD TIME

STOCKOUT COST

ANNUAL DEMAND HC=0.01

10

100
1000
10000
100000
1000000

S=0,1

10

100
1000
10000
100000
1000000

S=1.0

10
100
1000

5=10.0 10000

100000.

1000000

0.142
0.476
2.071

13.304
111,191
1036.974

0.447
1.418
4.757
20,708
133,066
1116.211

1.414
4.473
14.175
47.571
207.083
1332.412

1]

i}

HC=0, 1
0.451
1.663

10.437
92,066
904.471
9033.752

1,415
4.509
16,633
104,372
920. 641
9044.545

4.472
14.472
45,087

166.350
1043.723
9205.967

0.1% D= SQRT(L)
0,05 # LEAD TIME DEMAND

HC=10,
1.461
6.537

52,818

549.979
5128.916
51266.953

4.481
14,613
65.366

527.973
5141.736
51294.349

14.144
44,809
146,133
653,702
5277.328
51417.420



BXACT MODEL: ANNUAL INVENTORY COSTS
LEAD TIME IS C.7 OF A YEAR

STANDARD DEVIATION OF DEMAND OVER LEAD TIME = O.1xDsSQRT(L)
STOCKOUT COST =0, 05 » LEADTIME DEMAND
ANNUAL DEMAND HC=0,01 HC=0, 1 HC=1,0
10 0.142 0.451 1.461
100 0.476 1,663 6.528
1000 2.071 10,436 52.503%
5=0.1 10000 . 13.302 92.055 511.426
100000  111.142 904. 385 5098.044
1000000 1035.889 19032, 652 50959.148
10 0.447 1.415 4,481
100 1.418 4.509 14,612
1000 4.757 16,632 65.282
8=1.0 10000 20.707 104.363 525.0%5
100000 133,049 920,529 5111.%43
1000000 1115.777 904%.%60 51002.757
10 1.414 4,472 14.144
100 4.47% 14.147 44.809
1000 14,175 45.087 146,124
5=10.0 10006 47.571 166,339 653.725
100000  207.067 104%. 629 5252, 228
1000000 1%32,23%2 9205,515 51123.544
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DEMAND FOLLOWS A MNORMAL DISTRIRUTION
INEXACT MODEL OF (Q,R)
LEAD TIME IS 0.1 O A YRAR

PACKORDER COST PER YBAR 5@.0

ORDER COSTS fb,o AND HOLDING COSTS:£O.1

BACKORDER COST PER UNIT BACKORDERED 35.1

0.1 JgﬁinL D=10
0.0000 1.415
0.0006 1.421
0.0012 1.429
0.0018 1,437
0.0024 1.447
0.0029 1.458
0.00%5 1.470
0.0041 1,484
0.0047 1,498
0.0053% 1.517
0.0059 1.531
0.0065 1.548
0.0071 1.567
0.0076 1.587
0.0082 1.607
0.00e8 1.628
0.0094 1.650

0.0100 1,672

46

D=100
4.501
4. 680
4.880
5.096
5.323
5.561
5.808
6.063
6.324
6.591
6.663
7.140
7.422
7.707
7.996
8.288
8.583

8.881

D=1000
14,645
17.627
20. 690
23,821
27.005
30,235
33,502
36,801
40.127
43,4775
46.843
50.229
53,627
57.039
60.462
63.897
67.337
70,786



DFWMAND FOLLOYS A MNpRMAL DISTRIRLI Ty
EXACT HODEL aF (R, F)
LEAD TIME 1S 0wl GF A YEAR

RACKORDER COST PFR YFAR =

l1e0

ORDERING CPOSTS = 1.8 AND

HCLDIMG Cc0STS

= {\).‘l

NACKORDER COST PFR UNMIT RACKORDFPED =zQ.10

oJM&F{/bL halo N=100
0s 0080 1ed415 4.50]
00006 1e421 4R
P.0012 1;429 AeBRN
0.0018 1437 BeN06
0.0024 1447 5e320
0.0029 led5H 5.558
00035 1ed476 5, R0
0.0041 1e1R4 bEeNRB
0.0047 1e49R 62219
00053 1517 be586
0.0059 16530 AeB5 8B
0eDOGS 1e547 70135
00071 o566 76416
0«0076 1586 7.700
©.0082 1606 7.988
0.0088 T 1eb627 Ba279
0.0094 1e649 Be572
0.0100 16670 R.869
L7

P=1000
14,645
17,627
204674
27,800

264980

3n.203

33,449

6,705

0,072

47,246
AheB26

40,808

57,090
560379
50.665

62952

R .



Linear Racl o
» _Backorder Costs and Constant Lead Tines

MODEL (0,
LEAD TIME 1S 0,1 ©oF A YrAR
STAMUARD DEVIATICHN CF DENMAND PER YFAR=QelCxD

HOLDING CesST = 0,01

BACKQRDER CCST PER YEAR = 1.0

BACKGRDER CGS7T PER HYMIT RACKORDERED =0.10

STCCKOUT COST INDEPEMDEMT 0F UNIT RACK 'RPEPED =7

ORDER Co0ST RCz0e2] RPIL=04] Pr=1.0 RC=12.0 Pr=lap.’
D= 100
0.01 0.049 0e113 0,317 1,041 3224
0.10 G.113 3.152 0,352 1.045 3e226
1,00 0337 0e352 0,472 1.090 34240
10.0¢C 1.041 1945 1.090 1.462 3¢379
160.00 3.224 3.226 3.240 3,379 40532
10G0.00 2.995 9.995 10,000 18,244 10+474
D= 10000
0,01 3,141 74259 21,577 66,596 2060356
€.10 74259 9,737 22,501 66.9889 2064447
1.00 21.577 224501 30,185 69,755 26757
10.00 664596 664889 69,755 93,573 216+239
100.00 2064356 2060447 207,357 216.239 290.+075
1000.00 6394675 639704 639,987 642,808 670342
D=100000e0
0.01 201.022 464547 1350,943 4262 .,137 13206.785B
0.10 4644547 623,168 1440.095 1280.724 132124626
1,00 1380.943 1440095 1931,822 4464.296 13270865
10,00 42624137 4280.924 44k4,296 5088,648 18839.,316
160.00 13206.788 132124626 13270.865 13839,316 18564808
1009.CC 40939.232 40941.042 40959.141 41139.680 42901881
49



MODEL (M, T)

LEAD TIME IS 0.1 OF A YFAP

STANDARD DEYIATION DF DEMAMND PFEP YFARzZO.10x0
HOLDING CosST = 0.01

BACKCGRDER COST PER YEAR =z 1.0

BACKGRDER C0Sy PER HMIT RACKORNDERFD =pnel10

STECKOUT CoST [NDEPENDENT CF UMIT RACKORDERED =T

ORDER CQS7 RC=0s RC=0,1 RC=z1.0 PC=10.0 prz=lape
D= ' 10«0
0.0 Q.95 Ca2l5 C.b620" 1,852 N
0.10 0.215 De286 C.h46 1.869 -
1.00 629 Qebdb C.RHB9 1.937 54582
10,00 1,852 1eB60 1.937 2.577 reay?
100,900 5.554 5557 5,589 5812 707731
1000,00 16662 166,62 16,670 16,741 17437
o= 10000
0,01 6.108 13,777 39,682 118,540 3556447
0.10 13777 184325 41,332 .19.647 35544619
1,00 390682 41.332 54,975 123,996 3570141
10,00 1184540 1194047 123,996 164,924 371.987
100,00 3554467 355619 357,141 371.987 494773
tvgo.0C 1066354 10664400 1066,857 1071.423 1115.960C
D=100000+0
0,01 390.932 88le746 2539.670 7586.542 22749860
0.10 881746 1172795 2645.238 7619,010 227594+ 625
1,00 25394671 26454238 3518,.385 7935.715 22857031
10.00 75864542 7619010 79725.715 10595, 154 138074146
100,00 22749.860 227594625 22857 .031 23807.146 31665446
10C0.00 682464649 68249579 68278.876 69571,094 71421438
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MODEL

(Q,R.T)Y

LEAD TIME

1S 0.1

NF 4 YEAR

STANDARD DEVIATION OF DEMAND PER YEAR=0410xD

HCLDING

BACKQRDEP COST

CesT = 0.0

I

TER YERP

= ].0

BACKORDER CGST PER UNMIT RACKQRNERFN =p,10

STOCKOUT CnST INDEPENDFNT OF UMIT PRACKARDERED

ORDER CaSY
D= 100
001
0.10
1.00
10.00
100.00
100000

= 10000

~
v

10.00
100,00
1060.00
D=1000000
0.01
0.10
1,60
- 10.00
100.00

10G6G.00C

60209
13102
17198

1104939
3324621

097-836

397401
838517
23806660
7100.}120
21287.758

63859493

Deb14.

le744
5200

15-592

144849
184628
39,305

111593

132.818

997.864

950334
1192.204
25154550
7141.980

213004361

638634275
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RC=1

Q. 676
Cahb9h
¢.873
1.842
5,231

15.60)

43,233
44,547
55.885

117,916

334,780

998,454

2766.687
2851,003
3576.611
7546.650
21425.?4l

6£3901,083

=G

.0

RC=1C.0

129,296
120.696
133,641
167 .654
353,749

1004 ,341

8274 .,961
3300.661
8553,010
10729.832
22h39.9%0

64277 .823

RC=1cDeD

6+ 059
6061
£.080
be2b64
7+.859

16582

367768
387 389
38%.093
400922
502061

1061024°

24817« (60
4824884
24901.982
25659+03}
32189« sPL

67919+850



MODEL (I, R, T)

LEAD TIME 1S n,! oF A YE*P

STANDARD DEVIATION AF DEMAND PER YFAR=zN1INxD

HOLDING CoST = (.01

BACKCRDER COST PER YEAR

BACKCRDER COST PER UNIT BACKZRDERFED

= le0

:0.1(’:

STOCKOUT CnST INDEPENDENT GF UMIT RACKQRDEQFD

ORDER C0ST RC=Gen]
D= 100
001 LIER
0.10 0.195
1.00 0.558
10,00 14665
100,00 4,993
1000.00 144979
D= 100046
001 54653
010 12453
1.00 35.696
10.00 roe.574
100,00 3194568
1000.00 " 958,658
D=100000+0
0.01 261,764
0410 7964979
1.00 22R4.524
10.00 68204746
100.00 204524352
100C.00 61354124

PC:0e1

Ce204
0e265
QestBia
1eh73
40,996

14.98¢C

13639
166958
37358
107087
319722

9584+7C5

8344465
10854291
23904938
ga53.573

204624239

51357088

PC=1e0

37.717
39,116
50,073
112,075
321,241

959,167

2413.889
2503.394
3255,874
7172.815
20560,718

61386,718

RC=1760

112,722
113,151
117,347
152,619
336,226

263,784

7214,2}3
1241.6568
7510.183
9767.622
21518 ,4946

61682,.155

r’":l;().

Sepnd
Se73fd
5e501
7e154

15761

338.037
338.366
339.453
3524040
457 857

(008.677

216324.385
21642840
21725004
22530549
293024265

64555337



Quadratic Packorder Costs and Constant Lead Times

nopeL {osR)

LEAD TIME 15 ¢,1 OF A YEAR

STANDARE DEViaploN pf DEMAND PER YEARz0e104D
HolLDIMG CosT - 0,01
RACKQRNPER c0ST »Er sOUARE TIME BACKkowDERED:-1,20
RACKQRNER 0ST PER YEAR = 140
RACKARPTR cpST PER UNIT naCKpRDEFED =g.10
SToCvguT ST [NPEPENDENT oF 1 NIT RACKARPERED =fie
oPlER CoST ROz 01 RC=0, RC=1,0 nCS10,0 RC=1004¢"
D= 100
0.01 0.071 0,154 0,421 1,196 6407
0.10 0:154 0,202 0,438 1,201 20408
{1.00 0.421 0,438 0,575 1,2 4R 30422
10.00 lel96 1,201 1,248 1,638 Je557
100.00 3.407 3.¢08 3,422 2,567 Aept?
1000.00 9.708 9.709 9,713 9,752 10138
D= 10000
0,01 5,113 11103 30,437 86,304 2460122
0.10 114103 14,572 31,642 BboT4h 2440222
.l.oov 30,437 31,442 41 530 950,180 24746227
10.00 pbe30d 86,746 90,180 118,361 257014
100,00 246122 2464222 247,227 257,014 3374328
1000.00 7014418 7014447 701,734 704,597 732449}
Pz1p000040 ;
0.0l 369412 802,159 2199 004 6241 ,954 17782291
0,10 862+)59 1052.823 22r6 154 6267, 1R " ;7750.565
{ .00 21994094 ;286.154 3CnC 545 6515 ,539 17862¢14)
l0.00 6241,954 6267418 4515 539 8551 554 1a5h9e2RE
FIOO.OD l77gz.291 177894567 17862 ,141 18569,2864 24371629
LopD.00 504677 ¢ 455 506792529 5C790,24R 50907 ,102 42922-¢6¢‘

5L



HoDEL, T

LEAD TINE 1S A1 nF A YFAR

STAMUARD NEVIayloH gF pENAND PER yFAR-Qe Qs
HOLDING CpsT - 0,01
RACKHRDER r£oST PER SAUaRE TIME BackprRDFERED.},00

BACKORDFR COST PER YEAR = 1-0

BACKQFNER OST PER UMIT RACKORDREPED

SToCrenT Tpy

ORDEDN CpST RCz0,01 RC:O., RC=1,0
0= 190
v.01 0,128 Ce292 0,775
0.10 G292 Qo380 0,804
1.00 Ce775 Copl4 1,046
10,00 2.122 24131 2,212
100,00 5,834 5.1.36 5;85q
1000.,00 16042 164043 16,049
b= 10060
C.01 94993 21,133 55,976
0,10 214133 27,480 58,115
1,00 55976 584115 75,571
10,00 153,330 153,934 159 816
100,00 4214491 4214457 423 319
1000, 00 11594053 11594099 1159557
D=topvoee-o
8.01 791.985 1526,.841 4044 247
c.10 fs26.841 19854459 4198, 812
1,08 40444287 41984812 544 012
16.00 11078,084 11121-733 11546 ,732
loo,0cC 304524695 20464,731 anNs584 767
1007.00 83741599 83744s911 83778212

0190

ST [NDEPENDENY oF tNMIT mACKcRDERFD

53

RC=10,0

2,122
2.131
2,212
2,876
6,087

le 112

153,339
153,934
159,814
207,821
439,495

1164,124

1i¢7e8,084
11127 ,733
11544,733
15215,032
31753,51%8

5416A,108

RC:loon

56334
54836
Bepge?®
XL
74910

{6e728

4210491
421e457
4234319
4394495
571506

1208441

9045204695
304644731
305840767
317836515
412914339

873224167



ﬁEEEL (QLgLI)
LEAD TIME 5 p.{ oF A YEAR

STANDARD DPEVIA710N of DEMAND PER yEARzpe 104D
HOLDING CosT = 0,01

BACKoRDER COST »Lr SnuUarrF TIME DACkorRDEREDR:],00
RAZKRNER £0ST PER YEAR = 140

BACKQRDER ¢0ST PER _UNIT naCKOFDPERED =petp

SToCxonT COST (NREPEPNENT oF (MIT pACKkoRDERED =0

ORPER oS8T RCzg, 01 RC=0, 4 RCz1,0
Nz 10:0
0.0t Dylat £4313 0,"38
§.10 8¢279 $e38L 0,862
1,00 f.730 34768 1,562
10,90 14907 20007 2,112
100,00 5,488 5¢431 5,529
1000, 00 15¢%90 15,091 15,999
Dz 100040
£,01 10,145 22,442 69,572
0,190 20177 274899 62,265
1,00 52,741 554486 76,722
10.00 1444254 145,037 152,587
100,00 396.482 3964699 398,852
1000.08 10004267 1090327 1090 021
D=10000D+0
P01 732,980 16354875 43746 ,204
0.10 1452777 20154494 4498 655
1,00 3810516 40084886 - 55423 159"
ig.,vo0 10422.353 10478,9290 11024 435
100,0¢ 2846454+855 28661447} 28R17,030
1000.00 787714807 787764102 72819,%44

54

166,997
164,572
171,229
216,985
4lg 615

1794 ,842

120CQ, %95
12934,708
12371,302
15243,688
30317,197

79246 ,832

150972

4560435
4560766
45Ra72
470e880
580,210

11:30042

32991 e905
23001 «340
330950723
34021077
41920.143

63372?202



f-"‘f\»EL (M)K;T)

LEAD TINME

STANGARD

HoLDING CgpsT o

BACKoRPER £0ST PER SnuUarRE TIME BACworDERED-1,.00

IS o1

0,01

OF A YEAR

BACKGRDRER (28T PFR YEAR 2 160

BACKQRDER coST PER UNIT RACKQRDERED

STpCuguT CpST [NCEREMDENT ofF UNIT RACKORNERED =00

ORDER CgST
D= 10«0
0.01
0,10
.00
10,00

100,00
1000, 00
D= 10000
0.01
0.10
1,00
10,00
106,00
1000,00
D=100000+0

0.01

10.00
100.0600

1000.00

RCz0, 01

1924
5.289

14,544

9:¢304
19255
504776
129019
3241233

10504819

6724233
13914150C
346845907

100440140
27669.108

759210670

QC=091

0e¢278
0354
0.733
1,033
5.271

14,545

2C.087
254587
524950
1396435
382,303

{050,866

1451,289
148,640
38254462
100884542

276210384

769250047

5%

PEVIATICN (F DEMAND PFR yFARzQe104D

:Ic.l",‘

2Cxy1,0

0,739
G765

0,974

53,418
55,239
7C 363

145 613

383,907

1051 ,333

3859 ,464
3991,045
SOR3 760

10520 ,571

27743767

75958,907

”C=10.C

2,026
2,033
2.1013
ze678
£.542

14 616

146,387
144,900
151,9CR
193,500
400,437

1055,991

10576,.,°69
10613,%26
ico78,373

13080.339

2893 ,572

~6295,359

RC=100+0

5e570
5572
Beg0l
5¢782
7e365

156242

4025423
4520865
403¢975
4174748
53é0124

1101202

290754075
29085.291
291874107
301R2e27°%
384454632

79561s522



Exponential Backorder Costs and Constant Lead Times

MODEL (DIR)

LEAD TI1HZ 1S g1

OF‘ A

YEAR

STAIPAPL PEVIATION OF DEMAND PER YEARzQ+ 1040

HOL-DYNG COST B 01

BACKORDERED Cq,TS = g, |*EXP( 2,5% TIME BACyrNFNED)

STOCK oY CoST (N EpENDINT oF ''nIY BACKOPDERED =0O-

pRDER (ST RC=(e 01
b= fo:o
.01 04114
0.0 0.237
1+00 0:618
fo ,00 1,661
100.00 4,4R3
1000.00 12103
D= 1000+D
0.0f 9,213
0,10 19,221
1.00 0,020
10,00 1344532
foo,00 343006
1000, 00 9§0.322
D=1p00000
0.01 v46,253
0‘10 1556.869
1,60 4051 .58l
10,00 V10397.112
100,00 ‘29410.758
1000, 00 79406.,046

pc:(}!i

C.237
a7
Depdl
1ekb?
40484

12103

194221
24|R75

51 ¢4n96

._.
W
n
°
[
N
[

w
o
“
-

~N
w
~J

980;360

556,869
2014,.884
4203.545
{0939.,268
29422,202

794094129

5T

rCz140

51
67,163
140,117
364 642

980, 74C

4051, 58!
4202 545
5440, 187
11349,572
29536,023

79439, 946

PC=1T,0

1.661
1667
1,730
2,229
4,671

12,1558

134,532
135,257
HERO B I
181,340
37p,310

984,534

10897,.112
10939 248
11343.572
14688 D05
3C643,3844

79747 %62

pr=t 308!

3630006
363237
364642
378319
4894417

1021-461

26410.788
29422.202
29536.023
30643844
39658o964

32733v 373



HobEL (M, T)

LEAD TIME IS 5y oF

A YF AR

SYAMDARD CEVIa1ON ¢F BDEMAND PER yEFARzQa104D

HOLDING C4sT . 0.0}

BACKORBEXED COSTS =

ST oUT CpST (NDERENDENT oF UyIT nAcCKoRPERED =0

ORDER CpST RCzgs01
b= 1oec
G,0t 0,223
0,10 0,453
| .00 1,136
10,00 2,942
100,00 7,646
1600, 00 [ 9. R78
D= 10000
0.01 18,068
0,10 76,656
1.00 51.988
10,00 278,282
100,00 6194303
1660.00 16104127
D<100000+ 0
0,01 1463,512
0.0 29494114
1,00 T451.0306
10,00 l9300,87)
100,00  50143.536
1000,00  (30420,323

RC:=0+y

36,65#
46,077
95,305
239,169
~19,534

1610,188

29694114
3805, 130
7719.698
19372.694
S01B2,264

130425,194

57

FTC: 1.0

91, 9at
05,305
122 140
247 793
621 820

1610,789

7451,036
7719 b9%
9893 338
20071 214
50369,006

130473,887

Os 1 *EXPL 2,5% TIME BACKORDERED)

RC=10.0

235,282
239,16°
247,797
317,564
644,261

1616.783

1930¢0,871
19372,694
20C71,214
25722 ,A79%
£2185,15¢

130959.+r5

RC=106: 0

7Tep4db
Tepa?
Ten77
7e054
10153

20:4680

610603
6179534
6212840
644026
8250666

1675079

50163536
501232264
50369+006
521854156
66878965
i35481.405



HoDEL (C'R'T’

LEAaD TIHE

1S g,

oF A& YEaAR

STaltpsaRE DEVIArION OF DFMAND PER yFAR-5.1040

HOLDING Cg

RACKORDERFD p~TS =

STOCKAUT CoST MDFPERNENT of UnIT pACKkpRDERED 200

ORDE? CosT
D= 160
0.0}
0.10
1,00
10,00

100,00
1000 ,00
D= {000« 0

0,901

10,00
100,00
1000,00
D=100000+0
0701
0.10
1,00
10,00
100,00
1000 ,00

C‘T - OQO‘

RCzp 01

0,218
0,422
1.047
2,710
7.041

18,307

17.688
34,158
84827

219.474

570,353

1432845

1432.,689
2946,836
68704947
17777 .432
46198,609

{201(0,477

Os )_*pr(

RC:O-I

374499
45,088
88en12
220,549
570,634

1482,9138

3737,448
A724,992
7193,773
17864 ,463

46221,323

120116,384

RC:I.G’

94 879
97 408
119 548
23C 911
573,427

1483647

7685,225
7897345
9684 980
18703 809

46447 603

120175, 441

2,5% TIME BACLOePEFRFD)

RC=172a9

3,037
3,046
3, 13D
3,838
7;412

1,404

245,991
244 686
253,496
310,876
00,3409

1490 ,911

19925,233
19981 ,584
20%33,150
25180 ,249
48629 902

120763 ,769

RC:IOUO(

7.87%4
7e506
7en]R
fe}37
Qo079

19.271

6300394
639576
641384
659089
g0n 277

15500940

£1790.938
518054420
519524119
53386150
65470-467

126437745



peDFL (MR

;)

LEAD TIME

1S 9.1 oF A YeaR

STANLARD DEVIAYION oF PLUANS PER yFARzc. 104D

HELDING CosT
BACYXORDERED CpgTS =

STyl gUT ST

QRDER CpST
D= 160
0.01
6,10
1.00
10, 00
100, 60

100D,0D
D= 1ODD-O
0,0l
6,10
1,00
10,00
[0p,00
1000,00
b-1pp000-0
0.0t
b.10
1,00
10,00
100,00

1009.,00

RE=040p1

1e026
2;682
6.970

18.120

16.890
23.571
g3.896
217 :220
5644534

14467 +727

1368,066
2719.,245
6795+ 549
17864 ,800
45727.275

1188a85.921

0.0}

RC:Ocl

344940
43,913
R7,284
218,129
564,771

14674769

2330,14%
2556,97T
70670,036
17668,426
457464480

118890,916

57

[MDERPENDENT ofF UNTT BACKoRDERED =0

P\C: l 00

18 128

88,0113
90 R44
114 174
226,929
567,135
1468,40¢

7129 024
7358 385
£248 123
18382 094
45937 ,908

118940 849

0e1xFXP( 2,5« TInE BACkORPEREDR)

RC=10.0

1n,204

225,078
228,833
234,195
296,853
590,043

1474 ,550

1847 4,333
18535 4e5
12131 ,800
24045 ,119
47793 444

119438 ,560

DC'—'lOo-i

75319
7e32!
7e345
7.552
9529

180940

592307
593003
594.966
6140107
7718158

1534111

48017329
480330265
4g192,.217
49742.680
b2517+310

1242624954



Period of Grace: (Quadratic Rackorder Costs

MODEL (0. R)

»

LEAD TIME IS 0.1 DF A YFAR

PERIGD OF GRACE = 025 0F LEAD TIMF
STANDARD DEVIATION OF DEHAND PER YFARzO«10sD
BACKORDER CcOST PER SnUARE TIME BACYORDERED=1.00

BACKCRDER COST PER YEAR = 1eC

HCLDPItG COST = 0.0

BACKORDER COST PER UNIT RACKCGRPERED =0.10

STOCKQUT CnST [NDEPENDENT OF UnIT RACKIRDERED =0

ORDER CoQST RCz0e?) RC=0. 1 RC=1.,0
D= 160
0.0} 0,053 N.12¢ 0.350
0.10 0120 0e160 0.364
1.00 0350 0e364 0.486
10,00 1.059 1963 1.108
100.00 3.217 3.21R 3.232
1000.00 9779 9478L - 9.78%
D= 1000s0
0.01 34635 Re279 24,153
0410 80:279 114050 25,169
1,00 244153 25416° 33.592
10,00 734108 734425 76.5{4
100,00 2224152 2220249 223.211
1000,00 6754314 6754343 675,636
D=100000¢0
0.01 2514013 571740 1667,905
0.10 571740 763.081 1738,0990
1.00 1667+905 1738.090 2319.746
10,00 50484565 50706432 5283,792
100,00 153404971 153470636 15414,114
100,00 46634.527 4466364553 40656,314

60

rc=10,0

1.059

1,063
1.108
1,479
3,368

9,826

73,108
73,425
76,514
102,121
232,604

678,563

5048 ,.565
5070, ‘32
5283.792
7052 ,088
16062,729

16853,907

RNTz100e0

3.217
3.218
31232
3-368
44496

10240

222.162
2224249
223211
232604
3104448

707146

15340.971
15347 - 636
15414471
16062729
21438.348

A8830.696



MODEL (M, T)

LEAD TIME

PERIGD 0F GRACE =

STANDARD DEVIATION
BACKQRDER COST PER
BACKGRDER COST

BACKORDER COST PER

1S 6.1 OF

PER

YEAR =z 1.C

A YEAP

Ge25 COF LEAD TIMF

UNTIT BACKCRDFRED

OF DEMAND PER y7rAP=0.10xD

HOLDING CCST =

:".‘010

SAQUARF TI1ME RACKCRDERFD=z1.00

Ds0

STDCKOUT CoST INDEPEMDENT OF UnlT RACKORDPERED =D

GRDER CgST

D= 1Ge0

10.00

1C0.00

1060,00

D= 10000

0,01

0.10

1.00

10.00

100,00

1000.00

0=100000+0

0.01
0.10
1.00
10.00
186.00

1000,00

RC=0.01

0102
0228
0c643
1.883
5534

166270

7.077
15725
44,419

130.046
382.174

4886697
1085.892
30674409
80804506

263914419

77587502

RC=0.1

0e¢22R
06301
Coeb67
ls891
5537

166271

15725
200806
460231
1306592
382.335

11236590

1085,892
14364769
3192,522
9018f162
26402.540

775904773

61

RC=1

D,647
0. bb9
C.RRb
1,968
5.5460

16,278

44,419
46,231
61,169
138,919
383,941

1124.064

3067.409
3192,522
4224,101
9386,9015
26513.454

77523.467

-0

PC=10.0

1.887
1.891
1968
2.604
5.787

16.346

130,046
130.592
135,919
179,837

299,601

1128.786

8980.456
9018,.182
9386,015
1241%,858
27594.883

77949.555

RC=1090.0

Se534
5.537
5.550
5+787
756

17C13

382.174
3£2.335
383.941
399.401
528.721

1174.827

26391419
26402.549
265134454
27594.58%
3651443

81128557



MODEL (asR,T)
MODEL 07N |

LEAD TIME 1S 0.l OF A YEAR

PERIGD CF GRACE = 0625 OF LEAD TIME

STANDARD DEVIATION OF DEMAND PER YFAR=C. 10D
BACKORDER COST PER SQUARF TIME BACKORDERED=1.00

BACKCRDER COST PER YEAR = 1.0 HOLDING COST = 0.0

BACKQRDER COST PER UNIT RACKORDEPED =010

sToCkQUT €o0ST JNDEPENDENT OF UnlT RACKORDERED =G

ORDER Co0ST RCzGe 01 RC=0.1 RC=1,0
D= 1660
0.01 0.100 0e234 0,666
010 0.210 00294 0l687
1.00 0:587 Deb18 0.R65
10.00 1.716 16726 1.B1R
16000 5,043 5046 5,074
1030.00 14826 140827 14,835
p= 100000
0.01 64909 160134 45,998
0.10 14,521 20.312 47,4733
1,00 404536 420692 59,717
10.00 1186521 119176 125,517
160,00 3484259 3484452 350,378
1000.,00 1023+824 1023.881 1024,.,449
N=10000040
0.01 4774097 11144139 31?6.437
0.10 10020771 14020665 3275.570
1.00 2799266 2948.146 4123,835
10,00 8184¢605 8229842 8667 .548
160.00 240490394 240620740 24195,734
1050.00 707010294 70705219 75744 ,455

62

rr=10.0

1.952
1.95%
2.019
2,542
5,344

14,917

134,804
135,234
139,454
175,568
369,013

1030.1 1)

9309 .07
9338,723
9630,175
12124.074
25482,591

71125.458

RC=100+0

1966196
3964322
397 .588
409+996
s16.171}

jos4-€9¢

27359 «72F
27368487

27455484

3R644477.
74918-8)



MODEL

(MR, T

LEAD TIME

PERIND oF GRACE =

STANDARD DEVIATION
BACKQORDER COST PER
BACKORDER COSY
BACKORDER COST PER

STOCKOUT CaST

ORDER CQST

0s!10
1.00
10.00
100.00
1080.00
D= 1000+0
C.n!
0,10
1.00
10.00
180,00
1000.00
b=1000000
AO.Ol
0.10
1.00
10,00
150,00

10,000

IS 0.1

PER

RC:OOOI

0.095
0.206
0.580
16696
4,985

140655

64558
14,240
40,034

117148

3445251

1012051

4524880
0g3.+326
27644622
8089.771
2377246556

698884301

YEAR

INDEPENDENT OF

OF & YEAR

025 OF LEAD TIME

= 100

UNIT BACKORDERED

PC=0.1

Ge216
0279
De606
1704
4,87

14.656

14897
19281
414864
117.7C1
344,415

1012099

1028706
1331.467
28906977
R127.987

237836927

698916615

OF DEMAND PFER YEAR=zQ.10#D

HOoLDING COST =

=010

UNIT RACKORDFRED

rC=1

Cabi2
C.6R4
0.821
1.782
5,011

14.6A3

42,259

42.796

56,686
123,081
346,042

1012.579

2918.216
3024.395
3914,514
8499.473
23896,282

67924,745

SQUARE TIME BACKORDFRED=1.00

00

=0e

.0

fC=19%.0

1,792
1.799
1.845
2.413
2,240

14,732

123,778
124,246
128,761
166,657
361,857

1017.362

B547.524
8579.554
8891.,72!
i1508.672
24988,452

70225,071

f‘rzl",(_lul

36377
3634907
365.267
378.557
4894971

1063-860

251206605
25130.014
25223.888
26141660
33B35.496

73466.049



( on L i naous ] < i = € ql,%‘
.. Efﬂ.d 1me & i e
{ J fl nes dnd Lln >ar ))&Ckold 2T L0 =

LEAD YIME 1S GAMMA DISTRIRUTFD

MODEL (0:R)

STANDARD DEVIATION OF DEMAND PER YEAR=zOQO«10#D
HOLDING CoSsT = 0.0]
BACKQRDER COST PER YEAR = 140

RACKQRDER COSYT PER UNIT BACKORDERED =0.10

STOCKOUT CoST INDEPENDENT CF UNIT RACKORDIORED =Co

ORDER CoST RCz0.01 RC:. 0.1 RC=1.0
D= 1000
0.01 Ge056 04130 0,386
0.10 0:130 0175 0.404
1.00 0.388 0ed404 0,542
10,00 1e197 14202 1.253
100400 3,708 3.710 3.726
1060400 11404 11.495 11,500
B2 160040
0.01 3.612 84347 24,814
0.10 8.347 11,198 25,877
1.00 24,814 254877 34,712
10.00 764585 764923 80,218
100,00 2374309 2374414 238,461
1000,00 7354627 7354659 735,985
D=100000+0
0.01 2314175 5344229 1568,085
0.10 534,229 716.644 1656,110
1,00 15884085 16564110 2221,505
10,00 40014458 49234063 5133,940
100,00 151874806 151944520 15261,494
1060,00 47080.116 470824198 47103,012

i 2

o

RC=10.0

1197
1202
1253
1681
3.886

11.550

76585
76,923
B0,21R
107.609
248,675

739,229

4901,458
4$23,063
5133.240
6886 ,945

15915.214

47310,632

36726
:].EQf\

237309
2374414
238461
2480675
313586

770.893

15127.806
151940520
15261494
15915,214
21349530

49337163



LEAD TIME

1S GAMMA DISTRIBUTED

CMODEL (M, T)

STANDARD DEVIATION OF DEMAND PER YEAR=O0e10s+D

HOLDING €COST = 0.0!
BACKRDER COST PER YEAR
BACKQRDER COST PER VNIT BACKORDERED
STQCKOUY CpST
OQRDER CoOST

D= 100

0.01

0.10

1.00

10.00

100.00

1000.00

D= 10000

0.01
C.10
1.00
10,00
100.00

1000.00

D=1000000

0.01
0,10
1.00
10,00
100.00

1000.,0¢0

RC:OUO]

J¢110
0.248
0.713
24130
64387

190161

7025
15844
45.635

136321
408.787

1226307

449,571
10140065
2020.621
B724¢523

261624339

78483.64§

INDEPENDENT OF

= 1lo0

RC=z=0.1

0,240
0.329

0743

15.844
21074
474532
1366904
4080962

1226¢360

1014.008
1348.,714
3042.024

8761862

261730569'

78487016

65

:0.10
UNIT RACKORDFRED

RC=1.0

0,988

2,228

6,417

19,170

45,635
47,532
63,221
142,595
410,712

1226,886

2920.621

3042,024

4046,142
9126,073
26285,586

78520.708

RC=10.0

2.130
2,139
2.228
2,962
£, 684

19,252

136,321
1364904
142,595
189,663
427.785

1232,137

8724,523
3761.862
9126.C73
12138.427
27378.,218

7RB56.,758

RE=100.0

CbepHA
Be 890

20052

406.787
408+ 9h2-
410.712
427 4785
568089

1283.354

26162+339
26173569
26285586
27378.218
36415+.280

82134+653



LEAD TIME 1S GaMMa DISTRIRUTED

MODEL (no»R.T)
STANDARD DEVIATION OF DEMAND PER YEAR=z0.10xD
HOLDING CoOST = 0.01
% . BACKQRDER COSTY PER YEAR = 1.0

BACKQORDER COST PER UNIT BACKORNDERED =0.10

STOCKOUT C0ST INDEPENDENT OF UNIT RACKOPRDERFED ={Qe
ORDER cosST RC=z0.01 RC=0e1 RC=1.0 PC=10.0 RC=100.0
D= 100
0,01 0e112 Na267 0.777 24323 609068
0.10 0.235 0335 0,800 2,331 66970
1.00 0,668 Ge706 1,004 ?2.401 be9o2
lbcoo 1993 2,005 2.119. 3.013 7.204
100.00 5¢977 5.980 6,016 6.356 9.038
1600.00 17929 17930 17.941 18,347 19069
0= 100600
0.01 7.141 17076 49,717 148,691 445.933
C.10 15067 21.422 51,229 149,152 4460072
1,00 42.777 45,201 64,267 153.bh87 4474457
10,00 127580 128.332 135,604 192,802 461.061
100.00 382514 382,741 384,997 406,812 578 o 405
1000.00 1147¢475 1147543 1148,223 [1154,992 1220435
D=100000+0
0.01 457,011 1092.885 3181,920 9516,206 28539734
c.10 064.294 1371.034 3278,654 7545,760 285484617
1.00 2737759 2892.882 4113,.102 9835, 62 28637.280
10.00 8165138 82136277 R67B ., 647 12339.3C7 29507386
100.00 244800922 244954415 24639,832 26035,942 37017.920
10G0.00 734380417 734424766 734B6,246 72919,497 78107827

b6



LEAD TIME 1S GaMMA D,I}_LRYBU,IEP

MoDEL (MK, T)

STANDARD DEVIATION OF DEMAND PER YFAR=Ce10xD

HOLDING CoST = 0.0!
BACKORDER COST PER YEAR = 1.0
BACKGRDER COST PER UNIT BACKORDERED =0.10
STOCKOUT COST INDEPENDENT OF UNIT BACKCROERED =0
ORDER CoST RCz0e01 RC=z0.1 RC=1.0 RC=10.0 RC=1n0a®
D= 100
0.01 0.102 0234 0,678 2.025 beQ7 4
0.10 0.224 0.30C5 C.703 2.033 6.676
1.00 0c¢641 Ceb71 0.914 2.109 be 100
10.00 1.915 1924 2,014 2.742 6326
100,00 50742 54745 5.773 t.042 8.227
1000.00 17226 174227 17.235 17.318 18.125
D= 10000
0.0t 6+500 14694 43,375 129,630 38§ . 743
.10 144321 194501 44,983 130,124 388891
1.00 414050 424962 58,504 134,949 360371
10.00 1224560 1230150 128,8R7 175,512 404846
100,00 367503 367.681 369,45D 386.660 5260536
1500.00 1102¢457 11024510 1103,043 1108,.351 1159979
D=1000000
0.01 4160028 9594635 2775.973 8296,345 24879+543
0.10 0164526 1248,085 2878,904 3327,518 24889.036
1.00 26274203 27494579 3744,255 8636.711 24583+755
10,00 7843.858 78814609 8248,738 11232.765 25916.132
100,00 235206217 235314575 23644,826 24746,213 336984295
1000.0C 70557243 705604651 70594,725 70934,479 742384438
A

67



Supply: Linear Backorder Cosls

Variable

and Constant Lead Times

SUPPLY FOLLOWS A GAMMA DISTRIRUTION

MODEL (0:R)

LEAD TIME 1S 0.1

OF A YFAR

STANDARD DEVIATION OF DEMAND PER YFAR=0e10xD

HOLDING CgsTY - 0,01

BACKORDER COST PER YTAR

= 160

BACKORDER CcCSf PER UNIT BACKORDERID =0.19

STOCKQUT €oSf INDEPENCENT OF UNTIY RACKAORDERED

ORDER COST RCz0e01
D= 100
001 0067
0610 0.149
1.00 00,421
10.00 1236
100.00 3.637
1660.00 10.712
D= 10000
¢.01 /5.665
6.10 12604
1.00 35662
10.00 104.584
10000 307871
1000.00 9066643
D=1000000
0.01 479.504
0.106 1066806
1.00 3018.429
106,00 BB52.028
100.0C0 260584224
1000.00 767386231

RC=Q.}

0149
06197
0439
le241
3639

10712

12.604
16a684
37119
105024
308.00!

9064681

1066806
1412.138
3141,742
88R9¢273
2606696222

767410470

68

RC:I.O

35,662
37.119
49.135
109.315
309,207

907,064

018,429
3141,742
4158,748
9252,431

26178.509

76773,85¢€

RC=12.0

1.236

10241
16292
1.710
3.80Q4

16.76?

104.584
165,024
109,315
144.701%
32(.933

91p.880Q

8852,028
8889.273
9252.431
{2247,.,513

27248.409

77096 856

RC=100eb

3067871
308.p0]1
3094297
221933
4264145

948.093

26058 224
26069.222
26178+909
272484409
360684923

80246564



SUPPLY FOLLOWS

A GaMMA DISTRPIRUT (M

MODEL (M, T)

LEAD TIME 1S @1

OF A YEAR

STANDARD DEVIATION O©F DEMAND PFR YFAR=0.10«D

HOLDING CoST = 0.0!

BACKORDER COST PER YFAR

BACKORDER COST PER UNIT RACKORDEPRED

GRDER CQOST RCz0e01
D= 1000
0.01 0.130
0.10 0+283
1.60 0775
10.00 2.199
160.00 6266
1000.00 17857
D= 1000.0Q
.01 11017
0.10 234923
100 ~5458%
10.00 1864159
100.00 5306335
1000.,00 1511394
D=1000000
0.01 032.501
0. 10 2024880
1.00 55514143
10.00 157564479
100,00 44887.595
127024,410

1000.00

= 10

2.208
6268

17.857

234923
31399
68.187
1864918
530¢553

1511456

2024.853
2657.627
57704908
15ﬂ20;758
44P05.964

1279296647

67

=03« 19

£5,585
68,182
89.48¢8
194.318
532,717

1512,075

5551.143
5775.908
7574.236
16447 .987
A5089.160

127981.998

RE=10.0

2.199
2,208
2.29¢6
3.013
6.543

[7.938

186,159
186.918
194.318
255,040
553,807

1516.243

1§756.479
15820.758
16447 .087
21586.572
16874.197

128504.106

Pr'tl",'flo -

bopb6
647268
6+294
be543
8.588

18.648

530335
530553
5324717
553.807
726.964

15784349

448874555
44905+ 964
450894160
46874197
61521727

133591 ¢464



SUPPLY FOLLOWS

A GomMAe NISTRIADT pb

MODEL (gsF,T)

LEAD TIME 1S p,! OF A YFAR

STANDAPL CEVI&TI0N OF DEMAMD PEF Yrap=z=n.10«D

HOLDING COST = 0,01
BACKORDER COST PER YYAR = 1.0
BACKORDER COST PFR UMIYT BRACKOPPTRED =2(.10
STOCKOUf CoSy IHDEPFMDENT orlUan NACY2RIERED =00
ORDER CoST RCz(o(t] NC=0a ne=1.,0 nre)0,0 FCxlpos
D= 100
0,01 0.132 De304 0.841 2.389 6.807
0.10 06269 Ue377 0.865 2.39b b6e8D9
1.06 0.729 Ce768 1,074 2.446 6830
10.00 24065 2.a76 2.188 3.061 7.027
160.00 5+881 5.885 5.918 6,237 8.723
1000.00 164761 16.762 16,771 16,865 17775
D= 10000
0.01 11191 254694 71,168 202,229 5764183
0.10 224804 31894 73,229 202.828 5764354
1.00 61 e 665 6he991 Y0.299 208,707 SThevfl
10.060 1744762 175.745 185,225 259,062 594802
100.00 4974793 498,074 500,873 527,893 7383258
1000.00 14184630 14184710 1419,511 1427,.488 15044494
D=1035000+0
0.01 947.206 2174.77p 6023, 640 17116.70) 48768129
0.10 10304131 2699.538 6198,093 17167.375 187824599
1.00 5219315 55004872 7693,684 17664.566 48927.018
10,20 14791.923 14875.049 15677, 485 21927,000 50344-013
100.00 42133.2Q3 42156+982 42393.889 44680,835 6249'f950;
1000.,00 1200724849 12007%.629 {20147 ,393 {20522.583 127340.879
7o



cuUPPLY FOLLOWS A CAMMA nISTRIDUT AN

Moqgh_qqﬁk.T)

LEAD TIME 1S 0.1 OF & YFEAR

STANDARD pgviaTioN Or DEMAND PER YEAR=D 16D

HOLDING cosT = 0.01

BACKPRDER COST PFR YFAR = 1.0

PACKORDER COST PEP LNIT AACKORDERER =010

STECKOUT COST INDFPENDENT OF Up 1T RACKARDERFD =0+

ORDER COST RCz0-01 RC=0+1 PL=1.0 RC=z10.0 RC=1p0:0
D= 100
0.01 0.121 0268 6.738 2.096 5,973
0.10 Ge257 D+345 Q.74 2,104 5.975
1.90 0.700 0732 ©.982 2.178 S.906
10.00 1.987 1.996 2.085 7,799 64208
100.00 5.66]1 el bA 5.690 £,942 74976
1000,00 16133 16.13@ 16,141 16.216 160935
D= 100N<0
0.01 10232 224699 b2.485 1774439 505.5L7
0.10 212726 920,162 ba.b92 178.083 505.701
1.00 594229 1919 g3.111 184372 507536
10,00 1684201 1684973 176.46b 236,867 6254461
100.€0 479+153 479373 A81.573 502.93% 6754071
100000 13654523 13654586 1366.214 1372.482 1433.363
D=100000+0Q
0.01 8664055 1921.238 5288,7432 15018.435 A2786+975
0010 18304875 24684258 SA75.529 15072, 916 42392.546
1.00 5018¢167 5240.795 7034.535 15605.258 42957.3)2
10.00 142364552 14201.862 14936266 20048424 (47T 4955
100.00 40555.503 405744173 40760.307 42558.353 57138-oot
050.00 115577860 115533.183 (15630.302 11@\66.675‘ {21319-31"

"1

o

17



L

~ .
Continuous Lead Times and Variable Supply

§9PPLY FOLLOWS

A_GANMA DISTRIRUTICN

LEAD TIME 1S GaMMA DISTRIBUTED

MOPEL (8R)

STANDARD PEV1IATION OF DEMAMD PER yFAR=zD.1CxD

HOLDING COST = 0.0}

BACKORDER COST PER YEAR = 1.0

BACKORDER COST PER UMNIT RACKORDERED =010

STPCKOUT CCST ]NDEPEHDENf OF UI.1T RACKORDERED =0-

ORDER COST RC= 0. 01
D= 10 ¢
0.0! 0.082
G 10 0176
1.00 0+472
10.00 14311
100.00 3,656
1000.00 104201
p= 10000
0.0! 64955
0.10 14.867
1.00 39.932
10,00 110.967
10000 309 474
1000.00 8634397
D=1006000-0Q
0.01 588,713
0.10 125B.382
1.00 3379.851
10. 00 9392.247
100.00 26193.868
1000, 00 73077960

RC=0. 1

0.l76
0.2.29
0. 490

1.316

3.698

104+ 201

144867
19.406
41480
111410
309.598
8634432

{258.38%
1642.510
3510.8%5
94294783
26204+ 369

73080.89}

RC=1].0

0.472
0. 490
0. 64D
1367
3.672

10.20%

39.932%
41,480
54,142
115.730
310,835

863,778

3379.85!
3510.885
4582, 602
0795.379
26309.09¢

73110.'89

RC=}10-0

1.311
1.316
1.367
1.785

3.819

1 0. 246

110.967
1t .40
115.730
151.067
222,886

867,230

939 2. 247

9429.783

9795.370

- 12785.45¢

27329.0%1

73404.373

RC=100-0

3.656
3. 658
3672
3.815
4979

{0643

309-47¢
309-598
310835
322.886
421 - 449
900352

26193~ 868

262044369
26309+ 094
273292.08!
356714429

76249+ 1 36



SUPPLY FOLLOWS

A GAMMA DVSTRIBUTON

LEAD TIMEhIS GAMME DISTRICUTED

MODEL (M, T)

STANDARD DEVIATION OF NCMAND PER YEAR=OQ:10«D

HOLDING

BACKGRDER COST PER YEAR =

CosT =

0. 0!

1«0

BACKORDER COST PER UNIT BACKORDERED =D« 18

STGCKOUT COST INDEPENDENT OF UNIT BACKORDERED =0-

ORDER CQST
p= 10:-0
0.1
0. 10
1.C0
10.00

100.00

1000.00

p= 108040

0.01
G.10
1.00
10.C0
100.00

1000.00

p=1¢0000:0

0.01
0.10
1.C0
10.00
100.00

1000.00

RC=0e O!

0.160
G.323
0.868
2.334
6¢298

174005

13.526
28.220
73+.438
197520
533.096

14394304

1144.882
2388.507
6215.828
16718.061
451214253

1218224654

?\C: 00 ]

17.006

28220
3@.512
7160193
198,284
533.303

l439t359

2388.507
3091182
64484968
16782735
4513Re764

121827+2383

N
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RC=1.0

0.86%
0.900
1.165
2.431
6.325

17,012

73.438
76,193
98,608
206,721
535,364

1439,918

6215,828
6448,968
8346,19!
17412.213
45313,

385

121874,563

RC=10:0

2.334
2.343
2.431

3.146
6.562

17.073

197.520
198,284
205.72!

266,242
555,446

| 445. 488

16718.061
16782.735
17412.213
22534.716
47012.974

122344,139

RC=100:0

533.096
533.3D7
535:366
556+ 446
7184853

1499705

451212563
45138-764%
45313.385
47012974
60843734

}269350030




SUPPLY FOLLOWS A GAMMA DISTRIBUTIPN

LEAD TIME IS GAMMA DISTRIDUTED

MODEL (0:R,T)

STANDARD DEVIATION OF DEMAND PER Y{UAR=DB«!1Q«D
HOLDING CosT = 0.01

BACKGRDER COST PER YEAR = 1.C

BACKORDFR COST PER UNIT BACKORDERED =0.10

STOCKOUT CQST INDEPENDENT OF UnIT BACKORDERED =0-
ORDER CpST RC=0.D1 RC=0. | RC=1,0 RC=10.0 RC=100.D
D= 16:0
O] 0e¢162 0.357 0,938 2.924 6eB14
0. 10 0319 0.438 0.963 2.531 o816
1,00 0.816 0.860 1.182 2.601 6.535
10.00 2.198 2.210 2.323 3.193 7.022
100.00 5.931 5.934 5.966 6.271 8.620
1000.00 16014 16014 16,023 16.108 16.931
D= 10000
0.01 13729 30.197 79.354 713,656 576708
0.10 264966 37.068 81.532 214.254 5764871
1.00 690269 72.808 100.082 220,136 578+ 490
10,00 186034 187.025 196,580 270,222 594367
100.00 502023 502291 504,968 530.767 729600
iOO0.00 1355389 13554461 1356.187 1363.414 1433-071
P=160000+0C
0.01 1161+998 25550873 6716,517 18C83,827 48812.598
0.10 22824382 3137.396 5900.858 18134,596 48826333
1.00 5862+894 61624431 8470.968 18632.317 489634409
10.00 15745907 15829813 16638,564 22871.614 50307« 257
100.00 42491206 42513.948 42740,495 44924,122 £§1753.358
1000.00 1147204113 1147264256 114787.560 115399.335 121295. 130
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SUPPLY FOLLOWS A GaAHMMA DISTRIRUTIAN

LEAD TIME 1S GAMMA DISTRIBUTED

MODEL (MR, 1)

STANDARD DEVIAT!ION OF DEMAND PER YEAR=O«10+D
HOLDING C0oST = 0.0!1

BACKORDER COST PER YEAR = 1.0

BACKQORDER CO03T PER UNIT BACKORDERED =0.10

STOCKQUT COST INPEPENDENT OF UHIT RACKCRDEPED =0

ORDER COST RC=0.01 - RC=D.1 RC=1,0 RC=10.0 RC=100+0
D= 1060

0.01 0.149 » Ge317 0,829 2.230 6.019
0.10 0.304 0+402 0.856 2.238 6021
1.00 0+788 OeR22 1,086 2.312 6041
10.00 2.120 26129 2.218 2.933 6243
100.00 5,720 5723 5.748 5.989 7,918
1000.00 154444 156445 15,452 15.519 16171

D= 18000

0.01 124611 268480 70.142 188.735 509« 407
0.10 25¢75% 34,049 72,489 189,384 509.583
1,00 664735 69:539 91.932 195,721 511336
10,00 1794403 1804184 167,755 248,216 528448
100.00 4844177 4844389 486.496 506,939 46706 84
1000.,00 1307221 13076279 1307.849 1313.539 1368734

pz100000¢0

0.01 10674369 22724408 5936.830  15974.489  43116.247
0.10 2179.916 2881.897 6135,503 16029.,447 A3131.121
1.00  5648.423 56654774 7781.122  16565.857  43279:494
10.00  151n4.686 152500742 15891.390 21009.020 447774813
100,00 409804762 409984653 41177,004 42707.292 56724377

1000.00  110643.224  110648.057 110696.363  111177.912  115849.688
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CHAPTER 4

Discussion of the results
———

section 4.1. Introduction

Volume 3 contains the optimum inventory costs per annum for each of
the systems and ranges of parameters described in section 2.4 of this volume,
A complete analysis of these results would constitute a further major regearch
effort., The purpose of this final chapter is to draw a number of broad conclusi-
on,

A subset of the results given in volume 3 is given in chapter 3 of this
volume so that most of the points made in this chapter can be illustrated
by examples taken from this subset without referring to the full results given
in volume 3.

Tn section 4.2. we discuss how to use the results. In section 4.3, we
discuss the five different versions of the model (q,n).
In section 4.4 we discuss the results obtained on models (q,R), (M,T), (nQ,R,T)
and (M,R,T) taking into consideration the introduction of period of grace,
‘variable lead times and variable supply, as well as a more complete model of the
costs incurred when there is a stockout.

In section 4.5 we consider how the inventory costs varies as model
becomes more complicated.

gaction 4.2. Usage of the results

RN

The results given in volume 3% are volumin-ous and may be used as a

source of reference. Tour approaches are. possible in cases where the range

of parameters covered in the thesis does not cover the values  degiredv .4 7

A number of techniques such as that of Lagrangian interpolation formula,

are available to interpolate or extrapolate for the values desired.,

Obviously it is safer to interpolate than to extrapolate for the given lead times
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0.1, 0.2, 0.4 of a year provided in the thesis. (i.e., It is safer to interpolate

to 0.3 rather than to extrapolate to 0.02),

In this thesis the unit of time was conceptually one year. However

nowhere was this unit of time defined and so the logic does not change if it is
one day, a week or a month. If the inventory costs for a lead time of one week
is desired, the unit of time can be expressed as one fifth of a year. Then
the lowest range of lead time of 0.1 of a time unit provided in the thesis would
correspond to 0.1 of one fifth of a year, i.e. one week.
All the time dependent parameters will also change, and this second technique
for which an example is given below, will only work if the adjusted parameters
fa1l within the set for which results are given in the thesis.

Suppose the minimum inventory cost on each of the (Q,R) models is required

for an item with the following set of parameter values:

Unit of time: 1 yearb
Demand per year,D  =100000

Lead time,L =1 week = 1/50 of unit time.

5, d. of demand over

the lead time =400
Stockout cost,s =£25
Holding cost,hc =£5 p.a.

Order cost,S =£10

If the unit of time ig changed to one fifth of a year we have the following values

assigned to the parameters.
Unit of time : 1/5 of a year

pemand: per unit time =20000

Lead time,L = 1 week = 1/10 of unit time

5.d of demand over =400

lead Twme

Sggcko&% cost,s =£25

Holding cost,hc =£1 per unit time,
Order cost,S =£10
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Apart from the demand rate this set of parameters is given in the thesis, and
interpolating between 10000 and 100000 for the demand is probably more accurate
than extrapolating for the lead time, However the above examples illustrates the
problem that will result in using a different unit of time that is not given in
the thesis. A similar problem arises from using the fact that the cost of an item
is undefined but assumed to be about £1. The set of cost parameters can therefore
all be changed in proportion too, to the cost of the item. Another alternative
will be to write Qne‘s own program using the equations in volume 2-and. feed ..
one's ovn values of the parameters to obtain the necessary 'optimum' inventory
costs, and variables of the inventory system.

Section 4.3. Different Versions of (Q,R)

" The (Q,R) system was examined at several levels of complexity with the

stockout cost held constant. By stockqﬁt cost we mean the total costs incurred
on each occasion the system goes out of stock. We anticipated that as the complexity

of the models approached that of the exact model their inventory costs would decreas
and computational costs would dincrease. Hence we investigated to seée,- fo some ranges

of the parameters, whether the extra cost of compufing the exact model might oﬁt~

weigh the'savings'in inventory costs obtained by using the exact version of (Q,R).

The ‘optimum' values of the batch quantity @ and reorder level Ry for
each of these approximate versions, were fed into the exact cost expression of
(Q,R) to obtain the equivalent annual inventory costs in terms of the exact model,
Ranking the different versions df (Q,R) in terms of the complexity and ease

of understanding of the models we have the following table, starting with the

gimplest.
1, BBQ-ROL

2, Tate's Exponential Approximation
3, Heuristic
4

. Inexact

5, Bxact
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Firstly we discuss the inventory costs obtained using the five models before

discussing their computational costs., To illustrate the performance of the models

we take an item with the following set of parameter

S¢

Demand per year =10000

Holding cost ' =£0.,1

Order cost =£1,0

Lead time =0,1 0f a year

Stockout cost =£0.05 Lead time demand =£50

3.d. of demand over lead
time =0,1xDx SQRT(L)
The inventory costs are obtained from pages 41 to 45 of this volume,

Ranking the models in the order of complexity suggested above we have

Versions of (Q,R) \ Annual Inventory costs
EBQ-ROL £106.074
Tate's Exponential App. }99.286
ﬁeuristic 99,874
Inexact {92,066
Exact £92.055

In this specific example EBQ-ROL gives the highest inventory costs.
This is true in general for all the range of parameters oonsidered. Also in

this example Tate's exponential approximation is unexpectedly better than the

Heuristic model, despite it's lower complexity. This is also true in general and

ig discussed further in volume 2.

As expected the inexact model and exact model are superior to the three

simpler models. In this example fhe error of the Inexact over the Exact model is

trivial.In general the Exact model produces the least inventory costs but for

certain demand levels, the savings in the Mxact and Inexact models do not outweigh

the extra cost of computing them compared to Tate's exponential approximation.

This take's us into the discussion of their cost of computation.
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Ranking the different versions of (Q,R) again in terms of complexity we have

the following table.

Model { Computational costs
EBQ-ROL £0.004
Tate's Bxponential App. £0.,004
Heuristic £0.006
Inexact £0.02
Exaét £O.C3

Firstly the computational costs apply to a KDF 9 computer. On a

mach bigger machine the computational costs might be considerably less, and

conversely for a smaller machine,

Tt might be possible to compute these costs only once, and to update

the parameters of items whose demand changed by means of some heuristic app-

roach . The annual costs of computation for each model depending ‘upon the

frequency of computation are shown below,

Annual costs of computation

No of computations per year

Model Once - 5 times 10 times 50 times
BEBQ~ROL £0.004 £0.02 £0.04 £0.2
Tate'e Expo-
nential App. £0.004 £0,02 £0.04 £0.2
Heuristic £0.006 £0.0% £0.06 £0.3
Inexact £0,02 | £0.1 £1.0
nxact ;_£0.03 £0.,15 £1.5

From the above table we can see that th

are quite small compared to

e annual costs of computation

the inventory costs, even when computations are

carried out more than once a year.
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gince the computational costs of Tate's is lower than the ERQ~ROL model's

and no dearer than the Heuristic, we therefore always prefer it to these two,
providing the level of complexity was acceptable. Tt would therefore seem reason-
able intutively to favour one system, such as Tate's, as the best of thz simple
models, or the Evact model which gives the lowest inventory costs.
However it was the purpose of this thesis to compare the total costs, and this

we proceed to do, at first on the basis of one calculation per year,

Tor the parameter ranges considered we illustrate . in the diagram below

cases for which the inventory costs plus computational costs of Tate's method
was better than either the lixact or Inexact models.
Also when stockout cost was equal to £0.005x Lead time demand, Tate's method

was better than the Inexact and the Fyxact models for most of the ranges considered.

STOCKOUT COST = £0.05 LEAD TINE DEMAND

e

——

$=10.

1]

1000

Key: For cells marked ¥, Tate's method gave lower total costs

than the exact method.
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The portion of the total results for which the savings of the exact and

inexact models over the other models do not outweigh the extra cost of

computation is only about eight percent,
An item, taken from this small area of the results for which the extra cost
of computation of the exact or inexact does not outweigh the savings in in-

ventory costs is as follows,

Bolding costs =£0.01
Lead time =0.1 of a year
Demanad =10

5.d of demand over lead time=0.1xD xSQRT(L)

Order cost =£0,1

We shall assume that computations are done once a year.

From pages 42 to#45 of this volume we obtain the following table,

noting that Total costs is defined as Annual Invento-ry costs plus computat-

ional costs.

Versions of (Q,R) \Annual Tnventory costs|Computational costs|Total (»
Tate's exponential App. £0.147 £0.004 £0,151
Inexact ‘ £0.142 £0.02 £0,162
Bxact ' £0.142 , £0.03 £0.172

We can see immediately that the extra cost of computing the exact
model of the inexact over Tate's exponential model outweighs economically
the saviﬁgs in inventory costs. As previously suggested, the advantage is
trivial ‘but in generél, one would recommende . Tate's exponential appro-

ximation for levels of demand of 100 a year or less.

Hence the only issue that remained to be solved ior the class of models

was which version to use, the exact or inexact for high demand rates.
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The two most important variables turned out to be standard deviation of demand

over the lead time and demand level. We take a sample of the results from pages

44-4] of this volume and present the inventory costs for the two models.

Exact (Inventory costs)

o211 | 100 | 1000 | 10000 100000
0.012 \ 4.88 \ 20. 674 128,330 1094,099
0.047 6.319 39.972 345,273 333%.114
0.07 1 7.416 53.090 483,146 4728,465

| 0.094 8.572 | 66.242 | 618.974 6095.742

Inexact (Inventory costs )

?«[;§L/DL 100 | 1000 | 10000 100000 |
0.012 4.88 20. 69 \ 128,519 1107.904\
0.047 61324 40,127 353.499 3469-551k
0.07 7.422 | 5%.627 | 499.458 4950061 |
0.094 |8.583 167.357 | 643.696 | 6403.643 1

Difference in costs (Inexact:— Exact )
lo1/on | 100 1000 10000 100000 ]
0.012 0.000 |0.016 0.181 13.805

| 0.047 0.005 \0.155 8.226 #_\136.457
10.07 0.006 \0.537 16,312 \2?10596

| 0.094 0.011 ¥1.095 \24-722 \307*892 J

i

For demand levels of 10 and 100 we have already recommended that

Tate's exponential approximation should be used. Hence we shall comment only on

demands of 1000 and above, The difference in inventory costs is greater than the

extra cost of computing the exact model over that of the inexact model,

(which is £0.01 for one computation per year ) for demands greater than 100 per

year and all levels of gtandard deviation of demand considered.

83




Hence 1in general one Would#se ths exact model instead of the inexact
model. We illustrate below for completensss, cases where the computation is

done more than once a year,

Difference  in costs $VD ‘fi§@

[ -
100 1000 A 10000 A 100000

|

€.000 \ 0.01§////\ 0.181//// 1%.805
|
|

|
|
0.047 \ 0.005
|
|

IQEL/DL

0.012

0.0155 //4 136,437
0.071 0,006 } 0.537 \ 16,312 221,596
\_ 0.094 0.011 vl -\ 24.722 307.892Aj

1 13

The above table shows the indifference curves for -which the computations
are carried out ten times and fifty times a year. In these cases the exact model
would be appropriate for combinations of the parameters below the line and the
Inexact - for combinations above the line. The general conclusion is that if
computations are done once a year it will cost less money to use the exact model
in almost every case.

We now sum up the results in this section 4.37. A management system that
uses the (Q,R) system as an inventory control procedure and that also has a
shortage cost equal to the expected number of stockouté multiplied by the cost
of a stockout, has five versions of (,R) model to choose from.

‘hat we have: shown is that the model to use for low levels of demand such as

10 or 100 per year is Tate's exponential approximation and the model to use for

higher levels of demand is the exact model. If onlw6ne model is allowed,one would

choose the exact model, and the extra computational cost could not be great,

The relative complexity of this model is thus worth mastering or accepting.
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Section 4.4 (QyR),(IlQ’,,R,T),(M,T) and (M,R,T)

Because of the superiority of the exact model for (Q,R) it was
gecided to derive the exact models only for the models (nQ,R,T), (¥,7) and
(M,R,T). In (QJR) systems a review occurs after every transaction.

The optimum batch guantity and reorder level are independent of the cost of
reviewing, and so the cost equations of (q,R) do not take into consideration

the cost of reviewing. lowever in the periodic review models, a review is made
after every period T and the optimum values of the control variables depend
partly on review costs., Hence the cost®equations take into consideration
directly the cost of reviewing in every period T in the periodic review models.
Consequenfly the 'total costs' of the periodic review systems include an element
which occur? in reorder level systems, but which is not included in the (Q)Q>

costs.

In practice the cost of reviewing in a (Q,R) model might be larger

than the cost of reviewing in the periodic review models because the frequency

of reviewing is more frequent in the (G,R) system. However it might also be
less, since only active items have their stock levels reviewed,

We have to devise a way of incorporating the review cost into the (Q,R) system

so as to make it comparable with the periodic review models. There are many

possible ways of doing this. The method we have chosen in this thesis is to add

the review cost for the periodic review models to the order cost of (Q,R).

We choose this approach because in practice, the optimum interval between orders

for (Q,R) is not much aifferent from thé'optimumkeview period for (M,T); and in

(m,T), review cost is directly added to the order cost.

We normally expect that (M,R,T) would produce the least inventory

cogté amongst the periodic review models jgnoring the computational costs.
ste g

We intend to show that for someé combinations of the parameters the total cost

of operating (M,R,T), where total cost is defined as ijnventory cost plus
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computational cost, may exceed that of the other review models

In the comparisons that follow we ghall assume that the solutions

are computed once a year., The ¢ . . .
P v cost of computing each set of 'optimum' values

of each model is given below. The models are ranked in order of complexity

lodels {Cost of computation Extra cost of computing (m,R,T)
(QsR) £0.03 _ fs:o.4'}
(M, T) £0.19 £0.31
(nQ,R,T) £0,25 £0.25
(34,R,T) £€0.5 | -

%e first note that the rank order of computational cost, as we might

expect, is again the same as that of complexity.
To illustrate our comparison of the four models, consider an item with the

following set of parameters:

Demand per year =1000
Lead time =0,1 of a year
S.d, of demand per year =100
b1 =£1.0
b2 =£0.1
Holding cost | =£0.01
Order cost =£10
Review cost =£1,0

We obtain the following table from pages 48 to 5| of this volume.

Again ranking the models in order of complexity, we have the following table

for the inventory costs. e are gtill assuming that computations are carried

out once a year and thus Total cost is equal to Annual inventory costs plus

Computational costs.

odels Annual inventory costs Computational costs |Total costs
(12,1) £1,09 £0.03 | £1,12
(m,T) £1.937 £0,19 £2,127
£2.092
(nQ,R,T) £1.842 £0.25 £2,09
g £2,251
(M,R,T) £1,751 £0.5 | 5
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From the above table (Q,R) gives the least inventory costs and computational

costs. In general, for all the different set of parameters considered (Q,R)

gives the least inventory costs, as expected, as well as the lowest computational
costs., However periodic models may be desirable for administrative convenience
or to save set up costs, or for production scheduling reasons. As a result

from now on we mainly compare these three models,

(M,R,T) gives the least inventory costs in all cases, although (nQ,R,T)
gives the least total costs amongst the periodic review models for particular
set of parameters chosen above,

The addition of computational costs to the annual costs of the models does not
always change the ranking, when ranked in the order of their inventory-costs.

For example:

Demand =100CCO
Lead time =0,1 of a year
5.4 of demand per year =10000
b1 =£1.0
b2 =£0,1
llolding cost =£0,01
=£10

Order cost

Review cost =£1.0

From pages 48 to S| of this volume we obtain the following table.

Models ‘ Annual inventory costs
(v,T) £20071.24
(nQ,R,T) £1870%.809
(M,R,T) £18382.094

Comparing the difference in inventory costs for (¥,R,T) with the extra cost of

computation we obtain the following table.

sts (Extra cost of computing (¥,R,T)

Nodel mifference i inventory. co
(m,T)-(1,R,T) £1689.12 £0.31
(nQ,R,T)~(3, &, T) £ 321,715 g £0.25
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The extra cost of computation is extreuely small compared to the difference

in inventory CQStS' As a result the ccst of computation could be ignored.

From the table model (¥,R,T) gives the lowest inventory costs amongst
the periodic review models and for high demand rates the extra cost of computat-
ion can be ignored, The review costs depend on whether the system is manualior
on a computer, and whether stock checks are involved,and they are thus very
difficult to estimate.

kit J . . .
we now give an example of how the difference in inventory costs and

the cost of computation varies for high and low values of review costs,

Demand =1000
Lead time =0,1 of a year'
5,4 of demand per year =100
b1 =£1.0
b2 =£0.1
Holding cost =£0,01
Order cost | =£1.0
Review cost =£1.0

Trom pages4sto 2/ we obtain the following table.

Review costs = £1.0

Annual inventory costs |Difference in costs. Model-(N,R,T)

S

Models

(M,T) £122,14 £8.,966
(n@,R,T) £119,568 ' £5.%94
(3,R,T) £114.174 -

When the review cost is changed to £10.0 we obtain the following table.

Review costs = £10,0

Annual inventory costs |Difference in costs.

Models h@del— M,R,T

(m,7) £247.793 £11.578
(nQ,R,T) £253.496 £17,301
(M,R,T) £2%6.195 -
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Comparing the difference in inventory costs for both levels of review costs
with the extra cost of computation we obtain the following table

Difference in. Inventory costs

; Model Review cost= £1.0 \ Review cost= £10,0 ‘Cost of computation
(1, 1)-(, 1) | £6.966 £11.578 £0.25
(nQ, 8, T)-(1, R, T) | £5.394 £17.301 £0.31
, P

For both levels of review costs illustrated we can see that the extra cost of
computation can be ignored and model (M,R,T) produces the lpast inventory costs

amongst the periodic review models. At the moment we are not comparing (M,T)

with (nQ,R,T).
We now give an example of how the diffegpce in inventory costs varies for
high and low values of order costs.
Demand =1000

TLead time =0,1 of a year

5,4 of demand per

year =100
=% ,O
b1 £1
=£0.1
b2 £
Holding cost =£1.0
Review cost =£1.0

From pages48 t0&] we obtain the following table

Order costs = £1.0

pifference in costs. Model-(M,R,T)

| Annual inventory.costs

£8,966
£5.394

(M,R,T)
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when the order cost is . &
ost is changed to £10.0 we obtain the following table. ﬁ

Order cost = £10.0

_Model | Annual inventory costs | Difference in costs. Model-(M,R,T)
(1, T) £123.996 11,921
(n@,R,T) £117.916 £ 4.841
(M,R,T) £112,075 -

Combining the difference in inventory costs for both levels of order costs

with the extra cost of computing (},R,T) we obtain

Difference in costs

Order cost = £1.0 | Order cost =£10.0 Cost of computation
(v, 7)-(¥,R,T) £8.966 £11,921 £0.25
(nQ,R,T)-(m,R,T) - £5.394 £ 4,841 £0.31

¥or both levels of order costs, the extra cost of computing (M,R,T) can

be ignored, and (¥,R,T) still produces the lowest total costs.

If computations are done more than once a year, Say 50 times a year, the

extra cost of computing (M,R,T) could not be ignored, Jowever we are doing our

comparisons of the mnodels on the basis of once a year.

packorder costs

n the backorder cost function

Now we show the difference in inventory costs whe

is linear, guadratic and exponential. we choose the following set of parameters

for the linear case.

Demand ~ =1000
Jiead time =0.1 of a year
5.4 of demand per year =100
=£1.0
b1
=£0.1
b2 £
Holding cost =£0,01
Order cost =£1.0
Review cost =£1.0
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2 59 ., .
Fom pages*% to 2 we obtain the following table for the linear case

Kodels | Annual inventory costs |Pifference in costs, rodel-(M,R,T)
(1,T) £122,14 £8.966
(nQ,R,T) £119.568 £5.394
(,R,T) 114,174 -

E

When the bac lcorder cost function is quadratic, we retain the above set of

parameters and add

b§ =x£1 .O

From pagesl48 to 59 we obtain the following table for the quadratic case,

guadratic
47Models 1Annua1 inventory costs ‘Difference in costs. Model—(M,R,T)
(1, T) £159.816 £14,203
(nQ,R,T) £152.587 £ 6.974
(¥,R,T) £145,613 -

When the backorder cost function is exponential we replace b1,b?,b3 in the

2.5%

above examples where applicable by the backorder cost = O.1xe where

t is the length of time of a backorder for the exponential case.
From pages #8-59 we obtain the following table.

Txponential
b At mare

Yiodel Difference in costs, Nodel-(,R,T)
(M,T) £20.854

(n@,R,T) £13.772

(M,R,T) -

Combining the difference in inventory costs into 2 single table we have

Rackordex cost function

‘Quadratic iExponential

todel

. Linear
(M, T)-(2,R,T) £8,966 £14.20% £20.854
(nQ,R,T)-(M,R,T) | £5.794 g 6,974 | £15.772
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gince the values assigned to the three tackorder cost functions are different
S v n

we are not at this stage relating the rcsults with the backorder cost functions

An attempt is made to do this at a later stage for one model. ¥rom the example

chosen above (¥,R,T) is still best amongst the periodic review models for all

the three backorder cost functions.

pPeriod of grace

7e now compare the performance of the three models when a period of

grace is introduced. The computational costs of the models do not change when
a period of grace is introduced.
we choose the following set of parameters.
Demand =1000
Lead time =0,1 of a year

g.d of demand per year=100

h1=£1.0
b2=£0.1
b5=£1.0
Holding cost =£0,01
Order cost =£10.0
Review cost =£10.0
Period of grace =0.0

From pages b2~ 55 we obtain the following table.

pifference in costs. Model-(M,R,T)

Model ,{ Annual inventory costs

£14.%21

(M,T) £207.821
(nQ, R, T) £210.989 £17.489
(M,R,T) £193.5 -

When the period of grace is 0.25 of a lead time, we obtain the following table

from pages 6.0 to 63

pifference éy costs.Model—{M,R,T)

Model ]iAnnual inventory

costs

(M,T) £179.837 £1%.,18
(nQ,R,T) £175.568 ¢ 8.911
(M,R,T) £166.657 -
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combining both tables, with and without a period of grace, we obtéin the
- 3

following table,

Model No Period of Grace | With Period of Grace
(1,7)-(%,1,T) £14.321 £1%.18
(nQ, R,T)~(11,R,T) | £17.489 € 8.911

We find that model (},R,T) produces the least inventory costs with or without

a period of grace.

Continuous Lead Times
| "

\

ve next compare the performance of the three models when the lead time is
a continuous variable, as opposed to a constant. (Sometimes we refer-to the
distributed lead time as continuous, sometimes as variable )
We choose the following set of parameters.
Demand =1000
S.d. of démand per year =100

Density function of Lead

i =e~p(Lc<kLk—-1 e
KE
A = 20
k=2
b13£1.0
b2=£0.1
Holding cost =£0.01
Order cost =£10.0
Review cost -£1.0
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et




A s A / ’
Fromn pdgesé4'tot§/we obtain the following table,

fodel Annual invgntory costs Difference in inventory costs
Model-(M,R,T)
(%,T) | £142,595 £13,708
(nQ, R, T) £135, 604 £ 6,717
(M,R,T) £128.,887 -

The cost of computation and tota) costs for each model is given in the table

below for continuous leagd times

Model |Computation costs Total costs
(M, T) £0.43 £143,025
(nQ, R,T) £0.61 £1%6,214
(M, R,T) £0.89 £129,777

We also find that for this particular set of parameters that (M,R,T) gives the

lowest total costs amongst the three models when lead time is continuous, We

now show the increase in computational costs for continuous lead times.
Constant and Continuous Lead times: Computation costs
_Nodel Constant Continuous Increase
(M,T) £0.19 £0.43 £0.24
(nQ,R,T) £0.25 £0. 61 £0.36
(M,R,T) £0.5 £0.89 £0.49

" The increase in computatonal costs as lead time is changed from constant

to continuous lead times increases-as the models increase in cpmplex1ty.

The increase for (M,R,T) is about twice the increase for (M,T), as shown in

table,
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Variable Supply

we now compare the models when supply is a distributed variable

The set of parameters chosen is as follows

Demand

=1000

Lead time =0,1 of a year

g.,d of demand per year =100

b, =£1.0
b, =£0.1 ]
Holding cost =£0.,01 ‘ﬁ
Order cost =£10.0 i
Review cost =£1,0 f
%

Supply is gamma distributed

From pages €8 to

71 we obtain the following table

in costs. Model-(M,R,T)

Model \Annual inventory costs Difference
(M,T) £194.318 £17.852
(nQ,R,T) £185.225 £ 8.759
(M,R,T) £176.466 -

For this particular case,

costs amongst the three models.
In general, model (M,R,T)

costs that out

periodic review models.

nodel (M,R,T) still produces the lowest inventory

would yield considerable savings in inventory

weigh the extra cost of computing it, compared to the other
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(4,T) and (nQ,R,7)

1 . fom . 7 \
To compare (M,T) and (nQ, R,T) we choose the following set of parameters

Demand =1000

Lead time =0,1 of a year

S.d of demand per year =100
b1 =£1.0
b2 =£0.,1

Holding cost - =£0,01

Order cost =£10,0

Review cost =£1.0

From pages 48-51  we obtain the following table.

Model 1 Annual inventory cost \ (1,7)-(nQ, R, T) ¢
(M,T) £123.,996 £4.08
i

(nQ,R,T) £117.91 -

When we change order cost to £1 and review cost to £10 we obtain the following

table,
Model (Knnual inventory cost (M,T)—(Q@LR,T)
(1,T) £123.996 | -£9.645
(nQ,R,T) £1%3. 641 -

What we have shown is that theoretically the choice vetween (M,T) and (nQ,R,T)

costs and review costs.

would depend upon the relative magnituddgfﬂorder

In practice review cost per item is almost certainly less than order

costs. Consequently, in practice (nQ,R,T) would always yield less inventory

costs than (M,T)
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Xleference in inventory costs for ch

anges in some parameters

In this secti b v .
ion, we show how the differences in inventory costs between

v TR M o o
(¥,R,T) and the other models are related to the magnitudes of changes in some

of the parameters.

1 + 1 1] ;
The 'basic' set of parameters chosen is as follows.

Demand =1000
Lead time =0.1 of a year
5.,d. of demand per year =100
b1 =£1,0 %
b, =£0.1 f
Holding cost =£0,01 \#
Order cost =£10 |
' Review cost =£1.0 é

75 fference in inventory costs

Holding cost \ Order cost
. i

Review cost ;

RS

NI M

x10 | masic | x10 Pasic | x10 |
(4, T)-(1,R,T) | 11.92 29.866 11.92 84.13 11,92 30,261
(nQ,R,T)-(M;R,T)| 5.841 | 14.659 5.841 31,765 5.841 | 36.954

¥ /G /Basic
W

Order cost Review cost

lolding cost

7.058 2.5306

2.5061

(M,T)-(M,R,T)

(nQ,R,T)-(1,R,T) 2.5095 5.4415 6.3256

We see that the increase in inventory costs 1s more when order costs change

than when holding costs change. Also the increase in inventory costs 1s more

in (M,T) when order cost changes than when review cost changes and vice-versa

for (nQ,R,T).

Ve extend the idea of changes in inventory costs as the model becomes

more complicated in the next section.
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gection 4.4 Variation in Inventory Costs for A Particular kod
- . ular Kodel

18 h 0
e choose one model (Q,R) and show how the inventory costs vary for
various combinations of the assumptions considered in the thesi
sis,
We choose (Q,R) because it produced the lowest inventory costs and computational

costs.

Owing to the different values that can be assigned to the parameters
it is extremely difficult to compare the inventory costs for the different
sets of assumptions. lowever in this section we shall be assuming that the
values assigned to b1,b2,b5,b4, constant lead times,{and k of continuous lead
times and variable supply are such as to make the different assumptions nearly
equivalent.

The table below relates to the following set of parameters.

Demand =10
Holding cost =£10
Review cost =£10
b1 =£1,Q
=£
b2 £0.1
b =£1.,0
5
. b,t
Exponential cost =0,1xe 4
where b4 =2.5
t = length of time of backorder

Lead . time when constant =0,1 of a year

TLead time when variable = e—xLLk—1c(k
e L~

where ¢ = 20

k =2

cpected lead time for the contimuous

From the above values, we can gee that the €

case is 0.1 of a yeAar.
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This helps to preserve closeness with the value already assigned to the con

gtant lead time.

At this stag,e we S50Na. ake our inven ory costs from 1 5) &
hall t vent f vo lume pages 61 y94$
121’ 175, 184, 193’ 202, 211, ?_20, 229, 238 and QIH.

Inventory costs

Time related part of backorder cost

lLinear \ fGuadratic EExponential
1“*“'
Constant Lead T.\1.462 \ 1,638 \ 2,239
Tixed Supply
Variable Lead T.\1.681 \ 1,884 \ 2.575
\Constant Lead T.\1.71 \ 1.916 \ 2.618
Variable %
Supply Variable Lead T.|1.785 [ eo00 | 2733
1

The technique used for comparison is to compute the ratios of various costs
in . this table. 3

we firstly show the ratios of the inventory costs for continuous %
lead times to those of constant lead times for each of the three packorder

cost functions and for both fixed to variable supply.

Ratio of Continuous Lead Times Inventory Costs to .Constant Lead Times
Ja oY _____________,__‘,___,___ﬁ___,_____.__‘_,_,,ﬁ,__,._.,ﬂn_,_ﬁ,ﬂ___._,ﬂﬂ__ﬂa.m,

Inventory CostS.

. Y'Linear quadratic’ \ Exponential %
Pixed Supply 1.1498 1,1503 1.1503
Variable Supply 1.0437 1.044 j.044

From the above table we can see that the increase in inventory costs

when lead time is continuous OVer when lead time 18 constant is less for

variable supply than for fixed supply.
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For both fixed supply and variable supply, the introduction of continuous lead

times has about the same effect for the three backorder cogst functions

Also from the above table it is more significant to have continuous lead time

with fixed supply than continuous lead time with variable supply.
llowever the increase in inventory cost of variable lead times over constant
Jead times is less than say 15%,
One could cater for variable lead time by increasing.the variance of demand.and
then we could treat lead timé as a constant. L

Next we consider constant lead times and variable  lead times and
show how the inventqry costs for variable supply and fixed supply varies.
The table below gives the inventory costs for variable supply aé a percentage of
fixed supply for each of constant and continuous lead times.

Variable Supply over Fixed Supply

| Linear ouadratic Oxponential
Constant Lead Times 1.,1709 1.1689 1,1685
Continuous Lead Times 1.06186 71,0617 1.0608

From the above table the inventory cost of variable supply as a percentage of

fixed supply is almost the same for the three backorder cost functions for both

constant and continuous lead times.
' concluding, the performance of the models,for each of the three

backorder cost functions was the same, with (M,R,T)'givinéAthe lowest inventory

costs amongst the review models for each of the three backorder cost functions.

When fpériod of grace' was introduced, (M,R,T) gtill produced the lowest  inventory
costs amongst the review models.
The computational costs of the models increases as the complexity of the models

increased.
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(#,R,T) produces the lowest inventory costs when supply is a variable
and also when lead time isg-a continuous variable.
1t was found that it is more significant to have continuous lead time with
rixed supply than Lo have continuous lead time with variable supply.
In general, for all the cases considered (q,R) gave the lowest inventory
costs amongst the fonr models (o,r), (nQ,R,T), (¥,T) and (M,R,T). (1, . R.T)
gave the lowest inventory costs amongst (3,T), (nQ,R,T) and (¥,Rr,T).
(nQ,R,T) was better than (1,7) unless order costs were much less than

review costs.
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SUGGESTIONS FGR FURTHER INVESTIGATIONS

Owing to the time limit for the thesis and the cost of computing,
it has not been possible in this thesis to J'.mi%tigate with other demand dis-
tibu'tion.s. Performance of the models could be investigated assuming gamma
distribution of demand. This would not involve truncation of the density
function as was done for normal demand distribution. The normal distribution
introduces some probability that demand could be negative, which does not happen
in practice. In this sense the gamma distribution. could be slightly more
accurate than the normal distribution as a demand distribution.

1+ has not been possible to give a wide range of values to the
parameters. Further investigations could be made by giving further values to
the parameters. A savings function could then be obtained, such that with a
given set of parameter :values, the savings between any two inventory control
procedures could be obtained by direct substitution into the savings function.

This thesis concentrated mainly on backorders. Tt would be worth

v

carrying out some investigations on lost sales. .

This thesis has looked at various backorder cost functiohs. 1t would be o

[ -
P P

worth  carrying out some. inves‘tigati_Ops‘to determine their validity or to

suggest alternative functions.
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Definitions

Let D be the demand per year.
Let S be the set up or order costs,
Let Q be the batch gquantity.
Let M be the maximum order cover,
Let R be the re-order level,
A%
In chapter 2 R is expressedAk standard deviations of stock.
Let T be the review period.
Let L be the lead time.
Let 6~ be the standard deviation of demand per year.
Let hc be the annual holding cost of a unit of stock.
Let p be the period of grace for which a backorder does not incur & cost.
(p is also used briefly in chapter 2 to indicate a particular ratio).
Let s be the cost dependent only on the number of stockouts.
Let b1 be the cost of a backorder, independent of the time for which a backorder
exists.

Let b2 be the cost per year relating to the time for which a backorder exists.

Let b3 be the cost of a backord

When the backorder cost 1

er per square time for which a backorder exists.

s an exponential function, the cost of a backorder

is b1exp(b4.z) where z is the length of time of the backorder.

Let CB(t) be the backorder cost function where t is the length of time for

which a backorder has been backordered, including the cost prOportional to

number of backorders.

il1i ‘ i . ition of the
Let Q(X) be the steady state probablllty that the inventory posl

system is x.

Let POR be the probability of placing an order.

Let POUT be the probability of peen out of stocke
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Let H(L) be the probability density function of Lead time L
Let u(Q) be the probability density function of supply Q.

The proba.bility density function of Noxmal demand x in a period t is defined

2
1 1/ x-Dt
exp -
r—:;&?‘:— 2
{21o % t
x-Dt 1 1] x-Dt
Let & = exXp -

Let £(x,Dt)

J’m

R e a(v) av

The notation adopted for the inventory control procedures as defined in the intro-

duction to the thesis, in Vol. 1, are (Q,R)y (0 Ry Y, (3,T) and (M,R,T).

Some authors use (z,2) or (s,8) or other notations for (Q,Rys0T (s,s,T) for

(M,R, D), (2, 7) for (M,T) . Nnemonic notations have peen adopted in this thesis:
1.

for example in (Q,,R) ¢ stands for batch quantity and R stands for reorder leve

he models better than not-

The notation adopted conveys the characteristics of t

Tn (M,T) and (M,R,T) 1 stands for maximum order COVeT:
, :

ations adopted by some authors.

T »Standc for reorder time and R for reordeT level.

[.o')—é
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