
Globally Optimal Learning Rates for Multilayer Neural NetworksDavid Saad and Magnus RattrayDept. of Comp. Sci. & Applied Math.Aston University, Birmingham B4 7ET, UK.AbstractA method for calculating the globally optimal learning rate in on-line gradient-descent trainingof multilayer neural networks is presented. The method is based on a variational approach whichmaximizes the decrease in generalization error over a given time frame. We demonstrate the methodby computing optimal learning rates in typical learning scenarios. The method can also be employedwhen di�erent learning rates are allowed for di�erent parameter vectors as well as to determine therelevance of related training algorithms based on modi�cations to the basic gradient descent rule.1 IntroductionLayered feed-forward neural networks are of interest to both theoreticians and practitioners alike fortheir capability to emulate continuous mappings to any degree of accuracy, if a su�cient number ofsigmoidal hidden nodes is provided. In particular, it has been shown that a two layer system withsigmoidal hidden units and a linear output unit is a universal approximator[Cybenko 1989].In a typical training scenario, a given desired map, of the form ~f : X ! Y , where X and Yrepresent the input and output space respectively, is instanced by a set of examples. These examplesare then used to optimize the network's internal parameters fJg with respect to some measure of thediscrepancy between the function implemented by the network fJ and ~f .The optimization process, which is termed training, may be carried out by a variety of methods.One of the leading techniques in neural networks training, especially for large systems, is on-linelearning, whereby the network's parameters are modi�ed after each presentation of a training example.On-line learning has been successfully applied to many real-world problems and is arguably the mostcommonly used neural networks training technique. Many variations of the basic algorithm have beensuggested over the years (for a review, see [Bishop 1995]). We will concentrate in this work on basicgradient descent back-propagation, where the dynamics is in the direction of the gradient and the step1



size is controlled by a single parameter - the learning rate. We will also briey consider the case ofsite dependent learning rates, which is a simple extension of the single learning rate case.Recent studies [Biehl and Schwarze 1995, Saad and Solla 1995a, Saad and Solla 1995b], o�er aframework for analysing on-line learning scenarios. We will employ this framework for calculating,within given time windows, globally optimal learning rates. It is worthwhile to point out that the samemethod can be generalized to accommodate other parameters and learning rules for both smooth anddiscrete architectures. It can also be employed to assess the usefulness of various modi�cations to thebasic gradient descent rule, or to compare the e�ciency of di�erent training techniques, by examiningthe optimal values assigned to the related coe�cients.2 The general frameworkConsider a map from anN -dimensional input space � 2 <N onto a scalar � 2 <, realized through a map�(J; �) =PKi=1 g (Ji ��), which can be viewed as a soft committee machine [Biehl and Schwarze 1995],where g � erf(x=p2), is the activation function of the hidden units, J � fJig1�i�K is the set of input-to-hidden adaptive weights for the K hidden nodes and the hidden-to-output weights are set to 1.The activation of hidden node i under presentation of the input pattern �� is denoted x�i = Ji � ��.This general con�guration represents most of the properties of general multilayer networks and caneasily be extended to accommodate adaptive hidden-to-output weights [Riegler and Biehl 1995].Training examples are of the form (��; ��) where � = 1; 2; : : : ; P . The components of the in-dependently drawn input vectors �� are uncorrelated random variables with zero mean and unitvariance. The corresponding output �� is given by a deterministic teacher of a similar con�gurationto the student except for a possible di�erence in the number M of hidden units and is of the form�� = PMn=1 g (Bn � ��), where B � fBng1�n�M is the set of input-to-hidden adaptive weights forteacher hidden nodes. The activation of hidden node n under presentation of the input pattern ��is denoted y�n = Bn � ��. We will use indices i; j; k; l : : : to refer to units in the student network andn;m; : : : for units in the teacher network.The error made by a student with weights J on a given input � is given by the quadratic deviation�(J; �) � 12 [ �(J; �)� � ]2 = 12 " KXi=1 g(xi)� MXn=1 g(yn) #2 : (1)This error is then used to de�ne the training dynamics via a gradient descent rule for the update ofstudent weights J�+1i = J�i + �N ��i ��, where ��i � g0(x�i ) hPMn=1 g(y�n)�PKj=1 g(x�j )i and the learning2



rate � has been scaled with the input size N . Performance on a typical input de�nes the generalizationerror �g(J) � < �(J; �) >f�g through an average over all possible input vectors �.Expressions for the generalization error as well as for the learning dynamics have been obtained[Saad and Solla 1995a] in the thermodynamic limit (N ! 1) and can be represented by a set ofmacroscopic variables of the form: Ji �Jk � Qik, Ji �Bn � Rin, and Bn �Bm � Tnm, measuring overlapsbetween student and teacher vectors. The overlaps R and Q become the dynamical variables of thesystem while T is de�ned by the task. The learning dynamics is then de�ned in terms of di�erentialequations for the macroscopic variables with respect to the normalized number of examples � = �=Nplaying the role of a continuous time variable:dRind� = � �in ;dQikd� = �  ik + �2 �ik ; (2)where �in �< �i yn >f�g,  ik �< �i xk + �k xi >f�g and �ik �< �i �k >f�g. The explicitexpressions[Saad and Solla 1995a] for �in,  ik, �ik and �g depend exclusively on the overlaps Q;Rand T .These equations, depending on a closed set of parameters, can be integrated and iteratively solved,providing a full description of the order parameters evolution, from which the evolution of the gener-alization error can be derived.3 Globally optimal learning ratesDe�ning the decrease in generalization error as the measure of optimality, it is straightforward to�nd the locally optimal learning rate by determining the value of � that minimizes d�g=d�, using theequations of motion for R and Q and the fact that the generalization error depends exclusively onthese parameters. The expression obtained for the locally optimal learning rate is of the form:� = �Pin @�g@Rin�in +Pij @�g@Qij ij2Pij @�g@Qij �ij ; (3)Although the value of � obtained in this manner may be useful for some phases of the learning processit is likely to be useless for others. For example, the lowest generalization error for the symmetricphase, characterized by lack of di�erentiation between the student nodes [Saad and Solla 1995b], isachieved by reducing the learning rate to zero; however, decaying the learning rate in the symmetricphase will prevent the system from escaping the symmetric �xed point, thus resulting in a suboptimalsolution. 3



A globally optimal learning scenario in a certain time window [�0; �1] corresponds to the largestdecrease in generalization error between these two times; i.e., we attempt to minimize ��g = �g(�1)��g(�0) which may be written as an integral of the form:��g = Z �1�0 d�gd� d� (4)Since the generalization error depends exclusively on the overlaps Q;R and T , for which thedynamical equations are known, one can rewrite the integrand L = d�gd� asL =Xin @�g@Rin dRind� +Xik @�g@Qik dQikd� +Xin �in �dRind� � � �in�+Xik �ik �dQikd� � �  ik � �2 �ik� (5)The last two right hand terms in Eq.(5) force the correct dynamics using sets of Lagrange multipliers�in and �ik for the corresponding equations dRin=d� and dQik=d�.Using variational techniques it is straightforward to obtain a set of coupled di�erential equationsfor the Lagrange multipliers:d�kmd� = ��Xin �in @�in@Rkm � �Xij �ij @ ( ij + � �ij)@Rkmd�kld� = ��Xin �in @�in@Qkl � �Xij �ij @ ( ij + � �ij)@Qkl ; (6)a separate equation for � as a function of the Lagrange multipliers� = �Pin �in�in +Pij �ij ij2Pij �ij�ij ; (7)and a set of boundary conditions�in�����1 = @�g@Rin �����1 and �ik�����1 = @�g@Qik �����1 ; (8)which correspond to the greedy optimization of the generalization error with respect to � at �1. Notethat the boundary conditions are identical to the locally optimal solution (Eq.3), reecting the factthat at �1 only local information is relevant as the choice of � here does not a�ect the dynamics atother times.To solve Eq.(7), which is found by setting the functional derivative of ��g with respect to � tozero, we use gradient descent �(t+ 1) = �(t)� � ���g=�� , where���g�� =Xin �in�in +Xij �ij ( ij + 2 � �ij) (9)Here, t is the iteration index and � is the learning rate for the optimization process. Second ordervariations can also be employed to speed up convergence. All terms required for determining this4



functional derivative can be obtained by integrating the equations forward, using Eq.(2) and someinitial conditions for the overlaps, and then backwards for the Lagrange multipliers, using Eq.(6)and the boundary conditions expressed in Eq.(8). This process converges within a few iterations andresults in an exact function for the optimal learning rate over the given time window.4 ExamplesIn our �rst example we apply the method to a realizable (K = M = 2) noiseless training task inthe case of isotropic teacher vectors (Tnm = �nm), to obtain the optimal learning rate throughout thelearning process. Initial conditions for the overlaps Rin and Qik, where i 6= k, are taken randomlyfrom a uniform distribution between [0; 10�6] while the vector lengths Qii are taken from a uniformdistribution between [0; 0:5]. The learning rate was initially �xed to some arbitrary value and the timewindow taken is 0 � � � 350.Applying the optimization process we obtain the results shown in Fig. 1 for the optimal learningrate and the corresponding evolution of the generalization error. After a rapid initial decay thegeneralization error stabilizes at an almost �xed value, corresponding to the symmetric phase. Atthe same time the learning rate grows quickly until stabilizing at an almost �xed value, � ' 1:66,corresponding to the maximal learning rate for which the vectors do not show an uncontrollable growth,thus resulting in the shortest symmetric phase[Saad and Solla 1995b]. This result is in close agreementwith values obtained numerically in separate studies[West and Saad 1997]. As the system escapes thesymmetric phase, we see an increase in the learning rate towards another �xed value. The newvalue � = 1:8808 is identical to the analytical results, obtained independently[Saad and Solla 1995b,Riegler and Biehl 1995, West and Saad 1997] by expanding the dynamical equations (2) around theirasymptotic �xed point (Rin = �in and Qik = �ik, once the indices have been reordered).Towards the end of the time window we see an unexpected drop in the learning rate to a value ofabout � = 0:59. Examining the expression for the generalization error in the vicinity of its asymptotic�xed point we see that it is possible to gain an immediate reduction by choosing an appropriatedirection for the decay eigenvectors. This is achieved by reducing the learning rate which results in aslower decay of the order parameters. Using the symmetry of the problem we expand the generalizationerror around the �xed point via Rin = �in(1 � r) + (1 � �in)s and Qik = �ik(1 � q) + (1 � �ik)cto �nd two contributions to the leading term of opposite sign, proportional to 2r � q and 2s � crespectively. These quantities are shown in the inset to Fig. 1, for 310 � � � 350, which also showsthe corresponding generalization error. The constant exponential decay is interrupted by a rapid5
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Figure 1: The optimal learning rate (a) and the resulting generalization error (b) as a function of � forthe case of a two hidden node student trained to emulate a teacher of a similar con�guration. Inset -the evolution of the generalization error (solid line) and the magnitude of the opposing contributionsto the leading term (dashed lines - upper line proportional to 2r� q, lower line proportional to 2s� c)for 310 � � � 350.reduction in the di�erence between these two opposing contributions to the generalization error. Thegreedy procedure slows the asymptotic decay of the order parameters and is therefore unsustainablein the long term. Thus, this drop o� in the learning rate only ever occurs towards the end of the giventime window.In the second example we apply our method to an unrealizable learning scenario, by introducingadditive uncorrelated Gaussian output noise of zero mean and some variance �2 to the examples.Similar results are obtained for structural unrealizability (K < M). The picture that emerges, shownin Fig. 2(a) for various noise levels (�2 = 10�2; 10�5 and 10�7), is initially similar to that of therealizable case but changes dramatically as the system escapes the symmetric phase towards theasymptotic regime. In this case the learning rate starts from a �xed value but decays increasingly
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Figure 2: Optimal learning rate for a two hidden node student trained on corrupted examples generatedby a teacher of a similar con�guration. (a) shows behaviour for three noise levels �2 = 10�2, 10�5and 10�7 (from left to right) over a �xed time window 0 � � � �1 = 600. (b) shows the asymptoticdecay for �2 = 10�7 over di�erent time windows, with �1 = 600, 2000 and 104 (from left to right).The curves lie on top of one another until a drop o� towards the end of each curve which correspondsto a greedy minimization of the generalization error. The overall trend before this point is towards adecay inversely proportional to �.rapidly until it reaches a decay inversely proportional to �, proved to be optimal for linear systems (fora review, see [White 1998]). As in the realizable case one observes a greedy selection of the learningrate for obtaining an instantaneous reduction of the generalization error, in the form of a kink in thecurve after � = 420. The log-log plot in Fig. 2(b) shows the optimal learning rate as a function of � forvarious time windows (increasing �1). The drop o� towards the end of each time window is due to thegreedy e�ect discussed above and corresponds to a similar fast reduction in the generalization error.Before this point is reached the decay of the learning rate and generalization error becomes inverselyproportional to � asymptotically, which presumably corresponds to the optimal sustainable learningschedule in this regime. As the symmetry breaks one should therefore gradually modify the decay7



rate from a constant until it is proportional to 1=�. However, it will often take a prohibitively longtime until the 1=� decay rate becomes optimal, making it completely irrelevant in many instances.Moreover, if one decays the learning rate at a �xed rate (for example, inversely with �) it may takean extremely long time before losses, incurred due to the use of sub-optimal learning rates in earlierstages of the dynamics, can be recovered.5 Site dependent learning rateThis framework for choosing the optimal learning rate can easily be extended to accommodate di�erentlearning rates for weights associated with di�erent hidden nodes. This enables the system to exploremore complex routes of breaking the symmetry and converging to the optimal solution.In the following example, shown in Fig.3, we train a three hidden node system on examplesgenerated by a three node teacher, using three di�erent learning rates related to the various hiddennodes. The following picture emerges when applying the optimisation process: At �rst, the methodseparates the three nodes by assigning a high value to two of the learning rates, higher than the valueobtained for a single learning rate in the case of a realizable three node scenario, and a very low valueto the third. Then, after the symmetry of the two nodes is broken, the third learning rate increasesand the third model vector specializes on the remaining teacher vector. Eventually, all learning ratesconverge to the same constant and asymptotically optimal learning rate.6 ConclusionsThis paper introduces a method for optimizing the learning rate in on-line learning scenarios over agiven time frame, using a variational approach. First we consider the case of a single learning rate,optimized in two learning scenarios: realizable and unrealizable. The results, which are consistentwith numerical values obtained separately, provide the constant learning rate that should be used inthe symmetric phase in both scenarios as well as the �nal constant learning rate and the asymptoticdecay rate required for the realizable and unrealizable cases respectively. We then demonstrate thecapability of the method for handling site dependent learning rates in a realizable scenario and explainthe results obtained.A similar approach can be applied to incorporate information about curvature and to examine therelevance of many modi�cations that have been suggested over the years to the basic gradient descentrule. It is also possible to determine globally optimal learning rules, extending existing results for8
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�Figure 3: Optimized site dependent learning rates. Both student and teacher are three node softcommittee machines; examples are generated by an isotropic teacher.discrete machines [Kinouchi and Caticha 1992]. In addition, by constraining the di�erential equations(6) on the basis of the numerical solutions, using the fact that symmetries in the Lagrange multipliersdynamics mirror those of the order parameters, one can analyse the behavior of the di�erential equa-tions for speci�c phases in the evolution of � to obtain a more generic description for its behavior as afunction of the network size and other relevant parameters. These aspects and others will be discussedin future publications.Acknowledgement This work was supported by the EPSRC grant GR/L19232. The authorswould like to thank Ansgar West and Bernhard Schottky for useful discussions.
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