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SUMMARY

The thesis deals with manpower planning problems within large
organisations. The work was accomplished as a temporary employee
of Dunlop U.K. Tyre Group under the auspices of the University of
Aston I.H.D. scheme. The terms of reference for the project were;

a) To determine a methodology for estimating the requirements
relating to the requisition and dispersal of manpouwer.

b) To produce a manpower plan for the short term (1-2 years),
medium term (5 years) and the long term (10 plus years).

After an initial analysis of the problem faced by Dunlop and the
state of available manpower records, it was concluded that classical
statistical methods would be inappropriate. The aim was, therefore,
to construct an estimation procedure which could handle; limited
data, time-variant parameters and account for information gained

only through noise corrupted observations.

Following a comprehensive and critical review of the current use of
statistical techniques in manpower planning, a general stochastic

model is formulated. The structure, solution and many applications

to manpower planning of this general problem are examined. Consideration
of the grade transitions in an organisation lsads to a new probability
distribution termed the 'Dirichlet-Multinomial!, and the derivation

of its properties.

On the completion of suitable Supply and Demand models, the question
of controlling manpower systems is considered. A general cost function

is constructed and algorithms for minimal cost control are given.

Finally, results obtained by the application of the stochastic models
to Dunlop data over the period 1972-1377 are presented.
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Te1e INTRODUCTION TO THE PROJECT

The work of the thesis was carried out as a member of the Interdisciplinary
Higher Degrees (I.H.D.) Scheme of the University of Aston in Birmingham.
Within the scheme a student becomes a temporary employee of an organisation,
in order to solve an identified practical problem that exists in

industry. Approximately 70% of the student's time is spent within

the sponsoring organisation, which enables a thorough understanding of

the problem to be obtained. The scheme underlines the difference

between problems encountered within industry and those tackled at the
undergraduate level. The solutions to 'well behaved! problems met in
purely academic work are not necessarily directly applicable in the
industrial environment. It is soon learnt that data upon which classical
techniques are well proven are simply not available in the required

form, may be limited in length, inaccurate or have just not been

collected. This in itself is not at all surprising as the need for
collecting data is not usually foreseen until the problem has been

identified.

Nevertheless, limited data is a facet of industrial life and managers
have to make decisions every day based on imperfect information,
which itself presents many difficulties. The problem of manpower
planning in Dunlop U.K. Tyre Group was of this category and the company
was already aware of some of the difficulties associated with their
current system. It was in view of this that the project was instigated
with the terms of reference being stated initially as;

a) To determine a methodology for estimating the requirements

relating to the requisition and dispersal of manpower
b) To produce a manpower plan for the short term (1-2 years),

medium term (5 years) and long term (10 years plus).
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The first objective was to gain a full understanding of the problem.

In order to achieve this it was necessary to undertake a review of

Dunlop U.K.T.G. with emphasis upon corporate strategy, employee structure,
production processes, present personnel and employment practices and
current management attitudes towards manpower planning. It was
discovered that senior management held a definite commitment to the
project but having limited knowledge of manpowser planning technigues

and their implications to the organisation they reserved judgement on

the adoption on any system currently available.

In tandem with this induction to the company a thorough study of the
academic work withinm this subject area was performed, the results of

which are presented in the literature survey of Chapter Z.
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Te2e HISTORICAL BACKGROUND OF THE COMPANY

In 1888 the first practicable pneumatic tyre was invented by J.B.Dunlop,
a Scottish veterinary surgeon then practising in Ireland. The

company was formed the following year in Dublin, assembling tyres

from components supplied by other rubber manufacturers. However,
Dunlop soon acquired its own rubber component manufacturer based in
Birmingham. Demand for the product expanded necessitating the
establishment of manufacturing and selling companies in Australia,

South Africa, Canada, France and Germany. A further tyre factory was
also needed in Britain and the natural choice for location was Birmingham
where they already possessed the component works and in 1900 the tyre
operation was moved to Aston. Dunlop then began to expand both its
production and the extent of operations to adjacent industries, i.e.;
the supply of raw materials and wheel production. In 1906 it took

over a wheel manufacturing company in Coventry and 1909 bought some
Malayan rubber plantations. By 1920 it was the largest single

owner of plantations in Malaya and had established cotton mills in
Rochdale for the manufacture of tyre cord and other fabric. In

1916 the Fort.Dunlop site of nearly 400 acres was purchased and this

was to become one of the largest tyre factories in Europe.

Dunlop suffered badly in the collapse of world trade in 1921, the

drop in its raw material prices being catastrophic. This led to the
decision of a new board to diversify the company!s activities; acquisitions
included C.Macintosh of Manchester (hose, belting and general rubber
products), W.Bates of Leicester (cycle tyres and rubber thread) and

a sports racket manufacturer at Waltham Abbey which became Dunlop
International Sportse. In 1929 Dunlop's laboratories invented

'Dunlopillo! latex foam, this formed a second important development

in the operation. Further expansion took place overseas and Dunlop's
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tyre production was extended to Scotland with the purchase of the

India Tyre and Rubber Company at Inchinnan near Glasgou.

In World War II Dunlop's research and manufacturing resources were
devoted to the war effort. During this period the plantations fell
under the control of the Japanese and its French and German factories
were destroyed. It was at this time that American competition,
which escaped the effects of the war, was able to attain a very strong
commercial position. However, after the war Dunlop was soon able to
react and resume its position as a world force with the commissioning
of many new factories, including a tyre factory at Speke, Liverpool.
Dunlop continued with its diversification policy, acquiring major
interests in sports, hose, belting and fire protection equipment.

In 1970 the company was the 39th largest outside the U.5.A., having
130 factories in 22 countries, providing employment for 108;000

over half of which were in the United Kingdom.

One of the most important advances in tyre technology was the develop-
ment of the radial tyre but it could be said to be the instigator of
the deéline of the tyre industry. The main feature of the radial is
its ability to last twice as long as the cross-ply tyre, resulting

in over capacity within the world tyre market. In addition the
policy of leasing factories and setting up tyre operations in the
lower paid arsas of Eastern Europe brought a flood of cheap tyres

onto the market, which aggravated the situation.

As Dunlop had been one of the sarliest manufacturers of tyres the
plant and machinery were becoming old and outdated, thus productivity
compared with competition from new sectors of the industry was low

and over manning high. Dunlop decided to set up a small nsuw tyre

factory in Washington, County Durham to try to counteract this situation.
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The labour force has subsequently decreased throughout the other U.K.

tyre factories; Speke, Fort Dunlop and Inchinnan.

It is thought that two more factors will influence the decline of the
tyre market;

i) The market price of the new steel radial

ii) The fail safe (Denovo) type tyre
The price of steel radials when compared with cross-ply does not
reflect the added benefit to the customer, it is effectively under
priced to the point of being a commercial disaster in an inefficient
production unit. The over capacity in the tyre market creates a
ruthless competitive situation and many older tyre factories must
be doomed, unless they can be re-equipped and the majority of the
workforce gquickly trained in work other than tyre production. The
fail safe tyre and wheel unit, 'Denovo'!', which esnables control with
a 'blow out! and continued travel for up to 100 miles at normal
speed is perhaps Dunlop's main achievement of the seventies and as
yet there is little competition in this area. Unfortunately it has been
found that the public are reluctant to pay extra for this added safsty
feature and when competitors are able to react the market price might
be affected in the same way as that of the steel radial in the past.
The other important feature of this tyre is that it makes a spare tyre
superfluous and thus reduces the world's car tyre market by a further

20% at once.

In 1971 Dunlop formed a business union with Pirelli. The main advantage
of this was the complementary marketing areas of the two companies.
Dunlop acquired a greater part of the markets of Italy, Southern Europe
and Latin America and Pirelli; North America, Africa and Asia. The
wider product range of the combined group was seen as an insurance

against the effects of fluctuations in the fortunes of the existing
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products of each partner.

Nevertheless, the tyre industry is not in a state of expansion and the
rate of dispersal of excess labour, whether through retraining,
redundancy or natural wastage, will be a necessary consideration of

any manpouwer system. The problem was involved with the maintenance of
a viable workforce at minimum cost, given the present state of the
industry. Thus, the desired manpower structure was not constant over

~

time but was dynamic and subject to stochastic variation.
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1.3, MANPBWER INFORMATION IN DUNLOP U.K.T.G.

Having gained an appreciation of the structure of U.K.T.G. it was
considered sensible to ask what type of information was available

at the employee level, as any manpower system could only be as good

as the information upon which it was based. It was found that the
main source of information for the operative level were manual records
held in the Personnel Department at sach of the four main factory
units and that staff up to a certain salary level were again on

manual records held at group and departmental level. Information on
senior managers and employzes with potential to reach this status was
held at Dunlop H.Q. in London. In addition some valuable information
for manpower planning purposes had been processed by the computerised

salary suite in Coventry.

It was discovered that a Dunlop Computerised Personnel Information
System (C.P.I.S5.) had also recently been scrapped. The main reasons
for its discontinuation was its inability to be kept up toc date

coupled with experisnces of large time delay in information retrieval.
This had meant that few requests were processed and hence the system
proved to be cost ineffective. Various discussions took place when
this system was to be terminated and Fort Dunlop thought that they

could operate a C.P.I.S5. more efficiently on their own. Unfortunately,
due to plans to change both the computer payroll system and the present

computer this scheme was never realised.

Te3eTe ADAPTATION OF EXISTING MANPOWER INFORMATION

My two immediate priorities were to decide whether useful information
could be salvaged from the old system and to ensure that no further
information was lost. A search through the 'dead! computer tapes,
provided no useful data but 'year-snd'! tapes from the old salary

suite had been kept for 'tax! purposes and these it was thought might



contain useful information. These I.C.L. tapes for the years 1970-76
were then examined and 'cleaned'! on the Coventry computer. Relevant
data included;

Insurance number

lorks number

Grade/Salary

Date of Birth

Date of Engagement

Date of Leaving

Sex
which were extracted for each year and merged into a new tape. This
tape was converted to I.B.M. format for use on the Fort Dunlop

computer.

Since Dunlop had a semi-structured salary payment scheme for its
lower and medium salary range and with reference to location/year/
salary tables it was possible to achieve a graded data bank for the
years 1970-76 on the computer. Any exeptions were traced through
the manual records and graded taking account of standard yearly
increases. The higher salaried managers up to board level were

graded manually.

The whole package was then set up onto a 'QUEST!' file. QUEST 1is

the acronym for Query Extract Sort and Tabulate and is a programming
language designed for this purpose. Its main attribute is the ability
to handle large amounts of data rapidly and efficiently, although its
mathematical ability is limited. However, it provided an excellent

means of sorting and checking the salvaged data.
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Te3e2, DESIGN AND IMPLEMENTATION OF A COMPUTERISED MANPOWER DATA

SYSTEM
The recent failure of a Dunlop C.P.I.S. stimulated a thorough examination
of the holding of manpower records. Manual personnel records were
in existence for the 15,000 employees of Bunlop U.K.T.G.. Accessibility
to data on an individual employee was fast and efficient if the name
or department was knownj but if information was required on points
such as;

i) Number of engineers in the organisation aged over 30 years

ii) Number of retirements in 1980

iii) Number of employees working as accountants outside

the Finance Division

the task was almost impossible as the design of current records only
accommodated data on known individuals. Any additional demands,
such as the profile on a group of employees led to unacceptable work
loads, the cost of such a manual search operation being excessive

due to the man-hours required.

Fortunately, Dunlop had recently purchased a nsw salary suite developed
by Peterborough Data Processing and this had space for the inclusion

of perscnnel information at any time on the Employee Master Fils.

In addition to the usual data common to both salary and manpower
requirements the suite had the following capabilities; a 200 character
memoranda file and a 10 x 10 event-date automatic updating file which
were available on the standard suite and could be increased if necessary.
The advantage of having this type of arrangement of a C.P.I.S. intergrated
with the payroll are well documented. It was also intended that the
salary suite be extended to include the operative level sometime in

the near future, thus making a unified career record available for the

first time.
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With the cooperation of U.K.T.G. management committee, Dunlop Central
Personnel who were the custodians of the suite were approached in
order that the possibilities of using the file for manpower planning
could be examined. It was decided that the additional information
that U.K.T.G. desired on the salary file for each employee would be
initially limited toj;

i) Job Title (abbresviated)

ii) Job Activity (coded)

iii) Job Evaluation Scheme (coded) and Points on the Scheme

iv) Date of Commencement of New Appointment
The job title was to be abbreviated and stored in the personnel memoranda
file and could be overuwritten at each job change. A full list of
standard abbreviations were issued to the factory personnel departments
so that the abbreviated job title could be consistant and sasily
understood. The job activity to be used as a basic unit for analysis
was a three digit numerical code. This was very similar to the
coding adopted on the Institute of Manpower Studies survey but was
somewhat extended and tailored to meet Dunlop U.K.T.G. requirements.
It was as a result of consultation with K.Smith of I;M.S. that a

transformation between the codes was eétablished.

Both the information on the job evaluation schsme/boints and the job
activity together with the salary were stored against the date of

change in the personnel history file. In this way, the historical
gvents covering up to nine changes could be stored. The file is
constructed so that the new data automatically re-orders the file on

a 'roll-over! basis in which the new entry goes to the top of the

stack and the other entries move down one place. Updating was possible
by a small change in an existing salary change form, used as an

input document to the computer salary file, as it already contained all

but the new job activity code. This form was redesigned (Appendix D)
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and unnecessary data removed.

The discussion of U.K.T.G. proposals with other Groups in Dunlop led
to a committee being formed to examine the possibility of extending
the system to all Groups. General agreement was reached with all
participating Groups and permission to proceed was requested fraom the
director responsible for both Group Management Services and Central
Personnel, Permission was denied and concern for the security of
information was mentioned as the reason. The committee reviewing

manpower data was disbanded as a result of this decision.

U.KeT+G. were not satisfied with this decision and made several

efforts to reverse it. It was explained that the security of information
would be at no more risk with the new system than it was on the present
salary suite and the additional benefits of the system were expounded;
such as the assistance in the determination and formulation of procedures

in the following areas;

a) Remuneration planning and control
b) Statutory returns.
c) Staff development
d) Manpower planning

at little additional cost. The decision to proceed was eventually
given for U.K.T.G. onlye. The Tyre Technical Group, also based on

the Fort Dunlop site, were later allowed to join the Tyre Group
scheme, as it was argued that much interchange existed with that Group

and the Factory Technical Division of U.KoToGow

Six months after the commencement of discussions the four Tyre Group
factories were asked to provide information on a suitably designed
input document for all current staff. This was then input to the

computer and the information was made available through a monthly
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extracted tape covering all manpower information on the salary suite.
Updating now, intimately connected with the salary data insured that

the manpower data was the latest available. A simple merging operation
with the salvaged data, discussed in the previous section, enabled

a continuous but limited manpower data to be accessed for staff over

the period 1871-77. As the manpower data base is updated this

system will provide an increasingly more comprehensive source QF

information.

103630 IMMEDIATE USES OF THE DATA BASE

At once vital information was available from this data bank, enabling
staff previously occupied on the manual compilation of personnel
statistics to be released from this work, so that they could concentrate
on the analysis of the data. Basic programmes were quickly written

providing useful information in the following areas;

i) Verification of job grade to salary levels
ii) Discrepencies in payments for similar jobs in different
areas

iii) A tabulation of the grade/length of service/age
distribution by department/job activity

iv) Average salary by department/job activity
A preliminary examination of 2880 staff based in England was undertaken,
the results of this are pressnted in Appendix D. The data from
programme iii) above provided the input to a 'camera' type analysis
which will be discussed fully in Chapter 2. This was useful for
obtaining a 'feel! for the manpower system, but this was only one
observation of the employee structure at a single point in time and

a deesper time dependent analysis was necessary.
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1e4. REVIEW OF THE PROJECT AND THE WAY AHEAD

It was clear at this point that only limited data was going to be
available and so a classical statistical analysis based on long

time series would be impossible. An analysis of the yearly transitions
and a monthly analysis of leavers with a low length of service revealed
that not only was the employee structure changing but promotion rates
and wastage rates were time variable. Also an observation of someone
leaving is the only firm information that is available to demonstrate

an employee's propensity to leave which means some observation error
would occur in the manpower system. The objectives of the project

were now more clearly seen to be;

a) To develop an estimation methodology that would be
optimal given the limited time variable data available,
which in turn is subjected to observation error.

b) Given these estimates of the future supply and demand
structure of Dunlop U.K.T.G., determine an optimal

control policy under a realistic cost function.

The general methodology which was developed to give optimal stochastic
estimation is discussed at length in Chapters 3 and 4. The application
of this method to the General Problem, along with a methodology based

on a new 'Dirichlet-Multinomial! distribution is expounded for supply
forecasting. The problems of demand forecasting are dealt with in
Chapter 6 and in Chapter 7 the difficulties of controlling a system

subject to stochastic variation are considered.

However before the development of a methodology can be attempted it
is wise to make a critical review of the relesvant literature in order

to set the new work in the context of current methods.
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2.7, GENERAL INTRODUCTIGN

Manpower planning may be considered at four levels; national, industrial,
organizational and individual. At the national level the main
determinants of future manpower requiremsnts are the levels of economic
activity and the future state of technology (Leicester (1969,1371)).

In fact, national manpower forecasting becomes an integral part of

the total economic forecasting of the country, enabling national

policies to be determined. It should be noted that planning for large
regions (i.e. a state in the U.S.A.) may be considered in an analogous

way to national planning.

At the second level, that is the industrial and occupational level,

the main forecasting tools are the econometric models and again changes
in technology are considered important. Much of the work carried

out at this lesvel has been documeﬁted by the 0.E.C.D., particularly

in the area of labour mobility. ~ Recently, the Industrial Training
Boards have bescome more aware of the benefits that come from monitoring
and planning the human resource, and have esncouraged the gathering

of basic personnel information from the industries that fall under
their jurisdiction. The state of the art at this level was first
reveiwved by Yewdall (1969) and his work is an adequate introduction

to studies concerning industries and occupations.

The major part of this thesis is aimed primarily at the third level-
that of the organization. It could be said that the foundations of
manpower planning were laid more than 300 ysars ago. It was then
that the Admiralty started to hold records on the throughput of naval
officers, and indeed the Navy has one of the longest documented data
banks of any hierarchical organization. The scope of the monitoring

was extended in the reign of Queen Victoria to include a 'central
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personnel information system! to help with career development. About

this time the first 'actuarial' model for career planning was developed.

The second world war saw the rebirth of manpower planning (Seal (1945),
Jones (1946,1948) and Vajda(1947,1948)), sponsored to a. large extent

by the Royal Navy and again actuarial models were prominent. Following
on from this the N.A.T.0. conferences of the late sixties (Jessop (1966),
Wilson (1969), Smith (1971) and Bartholomew and Smith (1971)) provide

a useful insight into the systems that are in operation within a strict
hierarchical organization. It is within these papers that statistics
affirm their position as the core discipline of manpower planning. Authors,
in these collections of papers, used the concepts of demographic and
actuarial statistics, deterministic and stochastic models and because

of the form of military organizations, linear programming models

(Morgan (1971a,1971b) and Charmes and Cooper (1971)) were also proposed.

On the civilian side, the initial catalyst of manpower planning, as

it was for much of management science, was the work of the Tavistock
Institute on the Glacier Project (Rice, Hill and Trist (1950,1951,1952),
Brown and Jagues (1965,1971) and Jagues (1958)). These papers generated
a lot of interest into the phenomenon of labour turnover (Silcock (1954,

1955), Lane and Andrew (1955) and Bartholomew (1959)).

In the early sixties work began on the !'university manpower systsem' and
it was then that two very important papers were published, (Young and
Almond (1961) and Gani (1963)). The former covered the topic of 'a!
labour turnover index very well. Papers continued to appear in learned
journals at a steady rate throughout the remainder of the sixties, then
dramatically increased in the early seventies (Hyman (1970), Bartholomew
(1969,+.4.), Forbes (1971,s44)9s4+). Since there is now a vast amount

of literature written on manpower planning at the organizational levsl,
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only refersnces to works that are particularly important to the

development of the thesis will be made. These will be found in the
following four sections. It is noted that Huber (1976) gives extensive
references concerning both the guantitative and qualitative approaches

to the measursment of labour turnover.

The final level is that of the individual. Here is entered the
disciplines of Psychology and the Behavioural Sciences, but statistics
is still a basic tool of analysis. The literature in this area developed
much later than that of the other levels. The works of Herbst(1963)-
and Clowss (1972) should be mentioned, both of which are based on Markov
transition matrices. These papers are mainly concerned with an
individual's perception of the firm, the elements of the matrices being
the probability that an individual moves from one state to another.
States such as 'temporarily cbmmittad', 'permanently committed' and
'decided to leave! are introduced. The identification of attributes
that are correlated with promotability, and propensity to leave are
important (Timperley (1971)).  These attributes have been included

in computer simulation models, (Walmsley(1971), Wishart and Ko (1973)
and Weber (1971» mhere the approach is to mirror the manpower system

by probable individual movements. Most of these tackle the concept

of promotability, by age, service and some measure similar to Jaques!

(1958) salary progression index.

Returning to the organizational level, the models that have been
proposed for analysing the manpowsr system at this lsvel are nou
critically reviewed. It is convenient to discuss this topic in four
stages; the measurement and prediction of labour wastage., supply
forecasting, demand forecasting and control of the manpower system.

It is remarked upon that this partition is for sase of exposition only,

as sach part of the manpower system interacts with the others.
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2.2 LABOUR WASTAGE

Labour turnover refers to the flow of esmployees throughout organisations.
It is readily seen then that labour wastage is only a part of labour
turnover. It is not unusual, however, to see the terms 'wastage'

and 'turnover' used synonymously. The problem of wastage has been
examined and various indices have been proposed to measure this

leaving process. A selection of these are considered below:-

2.2.7. MONITORING OF THE LABOUR PROCESS

The British Institute of Management (1949) proposed an index of

labour turnover, commonly known as the 'crude' turnover rate;

I = Number who lsave in a given interval x 100 %

Average number employed during the same interval
Usually the time interval is that of the calerdar ysar, but any
time period may be used. - The main characteristic of this index
is its sase of calculation - perhaps its only recommendation.
It is believed that the B.I.M. index is the most widely misused
index in Manpower Studies and its shortcomings are wsll documented,
(S5ilcock (1954, 1955), Bowey(1969) and Bartholomew(1959)). The main
criticism of the index stems from its inability to take account of
the length of service of an employes. This is important as it
has been observed by many researchers that length of service correlates
very highly with propensity to leave, (Rice,Hill and Trist (1950),
Young and Almond(1961), and Lane and Andrew (1955)). There are
other objections, though to be fair to the B.I.M. these were not
apparent at the time;
(1) It has been impossible to find a single parameter distribution
that adequately follows the form of the 'completed length of service'

distribution This is further explained in the segqguel. Considering

this, it is clear that a single index that would summarise the
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wastage process is an unattainable goal.

(i1) Less numerate managers have corrupted the index taking 'average'
to mean the half sum of the number of employees at the beginning

and the end of the interval. In a relatively unstable work force

this is an unrealistic approximation and can lead to misleading

results.

Criticisms such as these led Silcock(1954) to reason that:

'the difficulties of interpreting the crude rate are such
that it would probably be better to abandon it altogether and to sesk
an alternative measure of the employer's power to retain labour!

This led to several proposals of different types of stability indices:

Duncan's Index (1955) was;

I = Number of employees with more than 1 year service now x 100%

Total employed 1 year ago

The only way in which this index takes account of the lsngth of
service of employees is by its avoidance of the most volatile group -

the new recruits.

Bowey's Index (1969) was;

I="n x 100%

Py
where Ln is the sum of the length of service (in months) of all
smployees with less than two ysears service plus 24 times the number
of employees with two ysears or more service. The denominator is
the sum of the sum of the steps in the expansion of the labour force,
a step being measured by the total size of the labour force at time

i,(Ni) multiplied by the number of months it remained at that size

(n.).

1
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This index does not discriminate adequately betwsen a labour force
with constant propensity to leave across all length of service
categories and one with an unchanging core of workers but also having

gquick 'turn round! employses.

It is worthwhile to consider one further single index. It was
conceived by Rice et al (1950) and later Bartholomew (1973 b.) that
the lsaving rates of employees from organisations could be considered
in an analogous way to mortality rates. Demographers and actuaries
both know amd understand the limitations of a crude death rate index
and therefore proposed the use of standardised mortality rates.

Here a standard age (length of service) distribution is assumed.

The standard index is simply the value that the crude turnover rate
would have been if the length of service distribution were standard.
In this way the dependency of severance on service is discounted.
Other correlatss of severance can be standardised in a similar way.
Bartholomew (1973 b.) shows that if the standard length of service
distribution were chosen to be the steady state distribution (see 2.3.71.),
this index would be sguivalent to the mean of the completed length

of service distribution suggested by Lane and Andrew (1955). Most
organisations do not, however, operate in the steady state and hence

this distribution would change over time, altering the base of the index.

At present only single indices have been nated. A set of indicss,
known as the wastage rates (Forbes (1971) and Bell (1974)) will now

be considersd. The following information is required for sach

manpower group:
(i) The length of service distribution of the group.
(ii) The number of leavers from sach length of service class of

the year.
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The ssries of wastage rates are then calculated loosely as:
w, =1, |, ieN
i i,i+1
1,
i
where wi represents the wastage rate of the manpower group li which
had length of service i at the start of the period, given that
£i47 were the number of leavers from this group in the next time
?
period. The wastage rates will be more rigorously defined and

developed in Chapter 3 where thsey will be allowed their true dynamic

(time-dependent) structure.

2.2.2. COMPLETED LENGTH OF SERVICE DISTRIBUTION

It is convenient here to introduce the notion of the completed length

of service (C.L.S.) distribution as it forms the basis for the devslop-
ment of much of the recent work. The terminology and notation stems

from Bartholomew (1973 b.) but its origins were much sarlier, (Rice st

al (1950) and Lane and Andrew (1955)).

The probability that an individual survives inthe organisation for a
length of time t is demoted by G(t) and known as the survivor function.
Its compliment F(t) is called the completed length of service distribution
function. The density of the C.L.S. distribution function is represented

in the usual way by f(t).

The propensity to leave function X(t) can now be defined as;

A(t)dt = f(t)dt

G(t)
Typical graphs of these four functions are shown below;

Figure 2.2.1.

1 1 4‘4_/,/

G(t) F(t)

_‘\ 4
i 4
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£(t) A(t)

f(t)dt = 1 i
3T 0, >T

ii

b - - - - =

Clearly, all these functions are eguivalent under transformation by
the following eguations;

F(t) ..1 - G(t)

f(t)

A(t)

- d6(t) / dt

]

- d log G(t) / dt
Both parametric and non-parametric methods have been proposed for
estimating these functions, developments in both occuring in tandem.

The parametric method will be considered first.

2.2.3. PARAMETRIC ESTIMATION OF THE WASTAGE CURVES

There were two important contributions from the Glacier Project (1965);
i) The finding that:

'wastage was a function primarily of length of service'
ii) A remark by one of the authors that:

'thers seemed to be an underlying pattern in human bshaviour
with respect to labour wastage, independent of social and sconomic
factors outside the organisation!

Silcock (1954) understood this to mean a constant propensity to leave
function that is; A(t) =\ . As can be seen from Figure 2.3.1., this
is a reasonable approximation over the settled period (ii) but not

over the induction period (i). This led to a simple survivor function;

G(t) = et A>0, t20

and to an sxponential C.L.S. density;

F(t) = ye 't
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The exponential distribution was, however, not a satisfactory fit to

the observed data.

Silcocks second approach was to assume that an individual's propensity

to leave was constant but admitted the possibility that it might

vary between individuals according to a distribution function H(A ).
Bartholomew (op. cit.) shows that any non-degenerate distribution

function H( A ) will introduce more skeswness into f(t), leading to a

better fit to the data. He uses a discrete density function concentrated
on two points whilst Silcock uses the usual gamma distribution.

When fitted to data from the Glacier Metal Company the fit is equally
as good for both models. Even though the 2-term mixed sxponsntial
model fits the data well it is not, howsver, correct to conclude

that the assumptions of the model are true, as authors Herbst(1963)
and Clowes (1972) starting from different hypotheses have obtained
the same functional form for f(t). The main criticism of this
distribution is that the density function decreasss monotonically

with increasing time, which typically is not the cass.

Lane and Andrew (1955) proposed an alternative form for f(t) which

was the lognormal distribution. This distribution has the desired
property of increasing to a mode then slowly dying away. Considerable
success has been achieved using the form of the curve (Young(1871)).

It has two distinct advantages over the 'sxponential! models;

(i) It is closely related to the normal distribution and thersforse
all infersnce about the data can bs carried out by !'Normal!' Theory.
(ii) When plotted on readily available log-cycle paper the resultant
is a straight lins.

The second point is very important practically as straight lines are

sasily extendsd (for prediction) and the process is gasy to communicate
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to Ron-numerate personnel managers. There are many explanations

as to why the completed length of service distribution should be
lognormal, (Young(1971) , Aitchison(1955) and Marshall (1974)), these
include the assumption that 'an individual's propensity to leave
varies with the number of jobs he has held and his length of service
in each!. This can be seen to be lognormal in the limit by taking
the logarithmic transform of the related distributions and applying
the Central Limit Theorem. Unfoftunately thies does not explain

why the lognormal distribution should be applicable to first job

employees.

In conclusion, a rigorous argument to validate the use of a particular
'paramestrised! distribution is still required. Only then can the
power of classical statistical theory be brought to bear on labour
wastage analyses. It should be noted, howsver, that because of

the number of cases in which the lognormal curve has been found to

fit the data, an approach along these lines would be more than

satisfactory in an initial examination of labour wastage.

2.2.4. NON-PARAMETRIC METHODS

Non-parametric methods; that is, methods estimating the C.L.S.
distribution without parametric assumptions are now considsered.

A general reference is Forbes (1971a).

There are two main approaches; those of cohort and census analysis.

A cohort is defined as a group of people that enter an organisation

in a given period, sach manpowser group being as homogenesous as

possible with respect to age, sex, marital status, et cetera..

The fundamental principle of this method is to eliminate all attributes

correlated highly with wastage other than length of service, thus
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leaving length of service as a good predictor of wastage.

In practice, five to ten years data would have to be collected

before meaningful results were obtained. This is far too long,

as changes in esmployee attitude would take place in this period,

so invalidating the severance propensity of the original cohort. as

a useful predictor of the behaviour of nsw rscruits. This problem
always occurs when 'static'! models are used to estimate truly !'dynamic!

systems.

The second approach is that of census analysis. This is & t'snap shot!
of the wastage profile at a point in tims. The ratio of the number
of leavers with a certain length of service over the number at risk

in the group is chosen as an estimator of MA(t), the propensity to
lesave function. Forbes (1971a) gives an excellant summary of current
non-parametric methods for estimating the surviver function and also
shows that the previous estimator is a minimum variance unbiased
estimator of A(t). = He does, however, persist in calling A(t), his
$(x), a probability which it is not. This point is discussed further

in Section 2.3¢%70 &

As stated above, the wastage is dependent on length of service but
this dependence also varies with real tims. A model using this as
a basic assumption is proposed in Chapter 3 Section 1 and then

further developed in Chapter 3 Section 2 and 3 and also in Chapter 4.
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2.3, MANPOWER SUPPLY FORECASTING

Supply forecasting deals with the prediction of the future states

of the labour force under assumptions about the flows that occur

in the manpower system. Such assumptions might be; constant wastage
across all groups, promotion by seniority, recruitment allowed only

at the lowsst level or compulsory retirement at a specified age.

The simplest of these developments is the stationary model, (Forbes,
Morgan and Rowntrse (1975)) which can be useful in getting a fesl for

the problem. A more visual interpretation is provided by the
Camel/Cambridge models, (Morgan, Keenay and Ray (1974)), where the
promotion prospectus is the main feature of the analysis. Warmsley
.(1971) uses a form of the promotion prospectus in his paper on simulation

models.

When considering the flows that eccur in a manpower system, it is
worthwhile distinguishing betwsen push flows and pull flouws. A

push flow is appropriate when there is a constant probability of
promotion betwesen grades, that is the flow is in essence from the
sourcs, AR pull flow describes a process such as if a vacancy occurs,
a replacemsnt is selected from levels below, the flow can thereforé

be considered as initiating at the sink. It is noted that both

push and pull flows may be pressnt in the same manpowsr system.

The pull flows lend themselves to analysis by Renswal theory and the

push flows by Markov thsory.

Most of the work using the Markov approach has considered prediction,
assuming the promotion flows follow their expected stochastic path.
In Chapter 5 of this thesis the probability transition matrix is
assumed to be an observation from a probability distribution. Its

distribution and corresponding moments are then derived.
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In summary, there has been five main approaches to supply forecasting:

(1) Stationary models
(2) The Cambridge models
(3) Simulation models
(4) Renswal models

(5) Markov models

Each of the above models are now critically examined.

2347, THE STATIONARY MODEL

Under the assumptions of constant recruitment, retirement and expansion
policies and given that wastage rates are constant, there is a unigue
age (length of service) distribution that is time invariant (Forbes,
Morgan and Rowntree (1975)). This distribution has been termed

the stationary (age) distribution.

A simple stationary model with constant wastage rates is initially

considered.

Let the propensity to leave be constant and independent of timej
A(T) =A
this yields the familiar exponential decay curve for the survivor

function;

MT):B-AT

Over the unit time period (T, T + 1) the proportion who lsave the

system isj

G(T) = G(T+1) = e AL -

G(T) e'kT

This is clearly independent of T and is the unit (annual) wastage

rate w. Thersfore;

(1) w=1-e-’\ we(0,1) , Ae (0,0 ( and so w #A if w £ O
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If the system is such that the maximum length of service is K years
and the structure is maintained by a recruitment R, then N the

number in the system is given by;

K
(2) N = R_[ s'”dT -RATT(1 - e"\K) A>0
u]

It is noted that A may take all values along the positive axis,

so it is not a probability as some authors have called it.

In the stationary model authors have not stressed the difference
between A and u strongly, and some have misunderstood them as

being identical. As can be seen from (1) this is not the case.

The first four rows of the Table 2.3.7. compare values of N, obtained
under a constant recruitment of 100 for w = 0.1 (8.1)1.0, for the

correct values NC and the false values Nf . NC and Nf being defined

as;

-wK)

NC = R(1 - (1 = w)K) and N, = R(1 - e
-1
loge(1 - w) w

The final row gives the appropriate value of A to be used in (2)

where the wastags rates are as stated.

TABLE 2.3.7.

K 1] 0.7 0.2 8.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1 NC 94.9 89.6 84.1 78.3 72.1 65.5 58.1 45.7 39.1 0

1 Nf 95.1 90.6 86.4 82.4 78.7 75.2 72.0 68B.8 65.9 63.3
40 Nc 935 448 280 196 144 109 83 62 43 0
40 Nf 981 500 333 250 200 166 143 125 111 100
R=100 .105 .223 ,357 .511 .693 .916 1.20 1.61 2.30 ©°
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From the table it is readily seen that a constant propensity to
leave of 1.2 is approximately equivalent to a wastage rate of .7.
It is, perhaps, fortunate that the error in the sector of the table
most widely used, i.e.; K = 1+340, U = 0+ 20%, is usually less

than 10%.

Earlier in this chapter it was shown that to consider wastage independent
from length of service was inappropriate. Even if this assumption

were valid much care needs to be taken in choosing the correct

formula, This method, used solely to gain an insight into the

problem has a limited value; to make decisions based on the results

of this model is considered unreasonable.

The next stage in the development of the model was to introduce
gradss. Dealing with the simpler case of grade invariant wastage
rates first, a simple formula relating the fixed proportion of those
promoted with a length of service A to the proportion of the total

work force is easily derived;

K

p=afoan < ol e e I (I L
K AK -K
J 6(u)du 1-8 1= (1 - w
0

It is seen thsn that there are four degrees of freedom in the sguation.
Fixing a value to any four degrees of the paramsters automatically
fixes the fifth. Rgain this methad might be useful in obtainimng an

insight into the structure of the system.

The model can then be extended to admit differing wastage rates
between grades, but as before the same criticisms about the assumption

of wastage being independent of tenure hold. The Camel/Cambridge
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models of Morgan and Keenay allow for the changing wastage rate over
the age structure. This is more by considering promotion rates of
the survivors only than by actually including the wastage rate in

the model. These models are considersd in the following sub-section.

2:342, THE CAMBRIDGE MODEL

The Camel/Cambridge approach requires only stock data to produce
results that are useful to managemsnt. The necsssary input being

the age - grade matrix of the organisation. The model calculates

the age structure and outputs the proportion of the survivors that are

in sach age and grade.

FIGURE 2.3.1.

Figure 2.3.71. shows a typical unsmoothed and smoothed output. The
output reflects the results of the promotion and rscruitment policies
of many ysars. If this promotion prospsctus was now adopted as
policy and could be assumed roughly constant over time, then the
approximate age on promotion for those people snding their caresers

in any of the grades is easily calculated. R quick method of doing
this is to project backwards the points where the smoothed grade lines
cross the maximum age axis, and then by sye, draw in the ‘avérags‘

age on promotion. Figure 2.3.2. shows the relesvant constructesd
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horizontal and vertical lines.

FIGURE 2.3.2.

<X <O

The horizontal lines divide the figure into the various carser streams
and the vertical lines the average promotion points within the career

streams.

The model can also be used’'in 'rsverse!, thét is given the abovse
career prospectus (Figure 2.3.2.) and wastage/éxpansion rates it is
possible to calculate the stationary age grade distribution. It

is noted that although the 'Quick' method of estimating the promotion
points has been shown above, a more rigorous mathematical method
based on the logistic curve is used on computer to sstimate the
average promotion points. The simplicity of the assumptions means

that this method lends itself to valuable sensitivity analysis.

In conclusion, the Camel/Cambridge models provide warthwhile information
about the manpower system, and from very little, usually available

data. In considering a new manpower system with management, an
analysis similar to that of the above model is always carried out,
gaining insight into the changing age structure that might occur

under hypothesized promotion policies under certain wastage functions.
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2.3.3, SIMULATION MODELS

These models represent the first step in the direction of a full
stochastic treatment of manpower supply forecasting. Until nouw
the models discussed have carried the assumption that the expectation

of a variable may be considered as a deterministic input.

All stochastic models may be simulated on computer by the selection

of random numbers as determined by the probabilistic assumptions of

the model to represent the manpower system. In this way realisations
of possible future states of the manpower stocks may be obtained.

A number of different results of the simulation could then be averaged
and a range for the future number of employees in each grade calculated.
A theory of order statistics gives the probability that a future

trial will result in an outcome outside the current range of (n)

trials is 2(n + 1)-1. Thus, 39 simulations are required to achieve
ninsty five percent confidence limits for the future state of the

manpower system.

Warmsley (1970) produced a simulation model where promotion for
employees aged thirty or more was simulated according to an index
similar to Jacques' (1958) salary progression curve. Here the claim

of Jacques is the existence of a set of age-salary curves and that an
employee remains on ons of these curves throughout their working life.
This hypothesis is not universally “accepted. In hresent industrial
circumstances the salary curves would have to be corrected for inflation.
It is noted that this is a very similar concept to that of the promotion
prospectus discussed in the last subsection. It has been explained

in this context that individuals may change grade bands, but that

the prospectus represents the net result of these changes. The problem
is only significant then when the simulation is related to specific

individuals and not treated as the net result of individual movements.
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Wishart and Ko (1973) give a more extensive simulation model known

as MANSIM, an acronym for [MANpower Simulation by Individual Movements.
This model is used extensively for small group analyses in the Civil
Service. As the authors point out MANSIM is not so much a model,
more of a structure in which the user can build a model that reflects
his own personal view of the manpower system. Wastage can therefore
be simulated according to several attributes that might be deemed

as useful predictors, including length of service.

This model onld then seem to be the answer to the prediction of
manpower supply. However, as the data storage and computational
time requirements of the model are large, such a simulation model is

limited to groups containing around 500 employees.

2.3.4., RENEWAL MODELS

In renewal modsls the grade sizes are predetermined by the modeller.
Here employees are said to be 'pulled! through the manpower system

to fill vacancies, in this way a loss from the highest grade will
permeate the system resulting in a recruitment inte the lowest grade

and promotions in the intermediate grades to maintain stock values.
Wastage rates therefore actuate the system causing vacancies in the
grades and so determine the number of promotional opportunitiss.

The way in which those eligible for promotion or the order of promotion,

is decided constitutes a second input to the model.

Bartholomew (1959, 1963a, 1963b, 1967, 1969, 1970b, and 1973b) can
justifiably claim much credit for the development of the theoretical
aspects of renewal models. In his book (1967, 1973b) he examines
four different policies, which are the permutations of ths following
variables:

1) Wastage as a function of length of service.
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2) Wastage depending on seniority within each grade.
3) Promotion by seniority.
4) Promotion at random.

Forbes has applied these ideas to the much acclaimed Kent model
used by the Civil Service, (Forbes, Morgan and Rountree (1975),

Hopes (1973) and Smith (1976)).

The way in which 1-step promotion and wastage are intimately related
in an n-grade manpower system can be seen by observing that;
(t)

pK(t) =P, ,(t) + U

K+1 K+1

n-K
=Zw (t)
j=

where PK(t) is the number promoted from grade K and WK(t) is the

number of lsavers from grade K, both within (t, t+1). The output

of the renewal type model is usually the promotion vector and recruitment
vector needed to maintain the grade size. Easily interpreted results
being excessive promotion rates which may result in inexperienced
personnel resaching the higher grades without spending ample time

in sach grade and secondly the converse of this situation when the
opportunities of promotion are low due to iack of turnover in the

higher grades.

Noting the above, a good method of sstimating the wastage rates is
deemed important. This problem is considered in Chapter 3, where a
method that gives optimal estimates of the time-dependent wastage
rates is presented. This will make the current renewal models
'dynamic' and thus they will be able to reflect the true structure of

organisations more accurately.
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2.345. MARKOV MODELS

Consider a process which can exist in one of an at most countable
number of states (51,52,...). Labelling the sequence of states
is the initial state,

occupied by the process by x ,xq,... where X

0 0

then if;
P(xn+1/xn-..x0) = P(xn+1/xn) s N =0,T,40.

the process is said to constitute a Markov chain.

The elements of the transition matrix P are then defined as;

Py = Plx = sj/xn = s;)

If n(T) represents the vector of the number of employess in the
various states at time T it is found that;

E(n(T + 1)/n(T)) = n(T)P
This type of model has been used freguently in the manpouwer supply
forecasting field. Young and Almond (1961) and Gani (1963) have
documented uses in universitiss, Sales (1971) and Hopes (1973) in

the Civil Service and Forbes (1970) on data from the W.R.N.S..

Bartholomew (1975) has shown that errors may occur in the 'deterministic!'
assumption that the process follows its expected stochastic path.
He points out the well knouwn fact;

'Conditional on ni(T) the flows from state i will be

. . . s s '
multinomial with probabilities pi1’pi2"'pik'

Pollard (1966 and 1973) gives formulae for the computation of the
moments of predicted stock vectors subject to this type of error.
The next gensralisation is the assumption that the p's are sampled
from a parsnt time invariant distribution. A further error is

incurred by the estimation of the parameters of this distribution.

Bartholomew (op. cit.) assumes the pi.'s follow Dirichlet distributions
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and gives an equation for the second order moments of the grade size
at time T as; (his equation)

M (T + 1) = M(T)(EP x EP) + {fen(T) - En(T)D”" + (En(T) x En(T))J'D-T}RE

This is incorrect as, from ecuation 7 of Bartholomew (1975a)it can ke shown *th

M(T + 1) = M(D)TT_ + M (T)A

E
expanding yields;
(Mq(T + 1) MZ(T +1)) = (Mq(T) MZ(T)) EP RE )
(0 EP x EP

+ (M:(T) MZ(T))(U - JC)

0 ¢C
so that
Mo (T + 1) = M (T)R. + M (T)(EP X EP) - M, (T)3C + M (T)C
= M, (T)(EP X £0) + {En(T) - En(MD™" + my(1)a'0""}A,
but

M;(T) = En(T) x En(T) + MZ(T)

This means the last term is in error by;
to=1
MZ(T)J D Re

The error, however, does not significantly detract from an otherwise

forward thinking paper.

In Chapter 5 of this work the Markov approach is further developed.

The assumption of the Dirichlet distribution for the transition
probabilities is.initially relaxed and a genseral covariance structure

is given for the prediction of the grade sizes one stage ahsead. It

is shown that for any distribution compounded with the multinomial
distribution, the moments of njk(T)/hk(T - 1) approach the moments of
the arbitrary compounded distribution. Further, methods for estimating

parameters under a Dirichlet assumption are proposed. It is remarked



-38-

upon, that the assumption of a Dirichlet distribution for the transition
matrix, up until now thought to be a very general assumption, introduces

a nested assumption of a very specific form for the stock distribution.
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2.4, MANPOWER DEMAND FORECASTING

It should be made clear from the very outset that the forecasting of
manpower demand relates directly to that demand determined by the
corporate plan of an organisation. It should not be assumed from
this, however, that manpower demand is a secondary effect of the
corporate plan but rather an intimately laced element of it.
Bartholomew, Hopes and Smith (1976) state:
'Demand Forecasts have to be made using a blend of statistical
analyses and management judgement'
It is within this context that the various methods that have been
proposed far the purpose of manpower demand forecasting are nouw
reviswed. Whilst pursuing this objective it should be noted that
although the number of publications on supply forecasting are voluminous

the converse applies to demand forecasting.

It 1is considered that all demand models published so far have in fact
one underlying theme; the prediction of future 'production' levels

in their widest sense and the method of relating these levels to the
manpower requirements. The only difference within the various models
is the mix betwsen management information/éxperience and the statistical

technigues employed.

The simplest method is to ask managers their future manpower require-
ments. In this case the process is carried out by purely 'mental!
calculation. It has the advantage of being cheap having small data
collection requirements and subjective factors which may sometimes not
be confided to the modeller are incorporated. 0f course, when many
time-dependent variables have to be considered which are governed

by stochastic rules this mental exercise is unlikely to yield usable

bounds for the sstimates produced.
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The second method, at the other extreme, is the simple statistical
process of extrapolating the curve of the number of employees in the
organisation. This is thought to be a dangerous method to adopt as
there is usually a great deal of available data on the nature of the
employee structure which has a causal relation to the size of the
labour force and may enable a far more accurate method of demand
forecasting than extrapolation to be used.

This brings us to tgé most fruitful approach which encompasses the
methods of work study and time series analysis. The basic proposal
is that various measures of the workloads in an organisation can be
determined. Once identified these may constitute inputs into the
corporate plan, in which case they may be assumed to be given or,
they may have to be predicted from past measurements. These workloads
must then be converted intoc manpower requirements. As before, there
are two methods; the first relates to Industrial Engineering and the
second to Regrasssion Analysis. Further explanation of these four
methods now follows. It is not, however, intended to expound the
methods of corporate planning. It is enough to say that a more
professional view of the market in which statistical methods play
their part would often reap benefits when attempting to determine the

company's market shars.

If there is no knowledge of future workloads other than that they will
continue to follow a pattern that can be inferred from past values,
time series analysis is appropriate. Drui (1963) assumss that the
explanatory variables used in his regression analysis remain unchanged,
howsver Livingstone and Montgomery (1966) show several shortcomings

of this type of hypothesis.



-4 -

Cameron and Nash (1974), in the first full analytic paper on Manpower
Demand Forecasting, use Box and Jenkins (1970) techniques to evaluate
future workloads. Young and Vassiliou (1974) have used exponentially
weighted moving averages to predict these variables. Cameron and
Nash have mentioned defects in their method; firstly that over fifty
observations are usually required and secondly, errors will occur if
any change takes place in the parameters of the time series. The
same faults are applicable to the E.W.M.A. model. In Chapter 6 an
adaptive model for the prediction of seasonal and trend inherent time

series is developed.

Once the workloads have been established there are two prominent methods
that have been employed to convert these into manpower requirements.

The method used in Industrial Engineering is considered first. As
identified by Purkiss (1976), many firms have a standard manning

level; that is a standard output per man hour figure for their operations.
O0ften these are related to the British Standard scale. Given these
figures it is a simple matter to compute the manpower demand. However,
these standards should be recalculated whenever operational changes

occur and small but important changes in efficiency and technology occur
almost continuously. This is the reason why productivity bonus' tightly
related to these scales at their conception often become very loose

over time and prove to be a plague to management. New schemes

related to the 'nmew' standard must then be cleverly negotiated and

introduced to maintain the effort of the worker at a desired level.

The second method is that of Regression Analysis. Drui (1963) made
the first attempts along these lines using 'independent' variables
to try and predict the manpower requirements. Again, Livingstone and

Montgomery criticise his failure to account for autocorrelation of the
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regression residuals. Cameron and Nash (1974) also use regression
analysis to construct a model that relates the manpower demand to

the workloads. They further investigated the time stability of their
model amd found that the 'model was not stable over time!, and that

'a major change in the parameters had taken place during the psriod
covered by the data!'. They then tried to make the series time .
stable. By finding the first three principle components from the
correlation matrix, they achieved a correlation coefficient of

0.928, 'but once again... tests suggested that the model was not stable
over time'!. After searching the data for a time stable period they
eventually found one in the last four ysars of data. They then

made the tenuous assumption that the regression coefficients for the
last 14 guarters will be time invariant for the forecasting period

and further, that the factored variables continue to explain future
variation in the workload series. Surely by now they should have
discontinued the approach of trying to achieve time stability for

the time series when it is, by their own admittance, in essence

time instable and tried to analyse it as such. A method of calculating

adaptive regression coefficients for this type of series is explained

in Chapter 6.

In summary it is thought that the best approach for Demand Forecasting
lies in a subtle interplay betwsen management foresight and statistical
analysis. We should tend towards the esstimation of desired workloads
by the Planning Department of an organisation and the analysis of the
complex and time variable relationships between these variables by
statistical technigues. In sach case the management plans should

be constructed in the light of the results from both approaches.
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2.5, CONTROL OF MANPOWER SYSTEMS

In simple terms the control of a manpouwer system refers to the method
of matching the supply and demand forecasts. This process is achieved
by the introduction of some 'control!' input into the manpower system.

In a typical representation of a manpouwer model;

where

stock vector at time t

3J
n

t
Pt = transition matrix at time t
Rt = recruitment vector at time t

there are three implicit variables: wastage, promotion(demotion) and
recruitment(redundancy). 0f these control exercised over the latter
variable is the most acceptable, although to some extent both promotional

and wastage control are available.

There have been many papers on the solution of this problem in its
deterministic formulation including: Charnes, Cooper and Niehaus (1968),
Grinold and Marshall (1977), Grinold and Stafford (1974) and Bartholomew
(1973). In real life howsver the deterministic model, although
providing some insight into the problem, cannot be considered a good
approximation. The reasons for this are twofold; wastage is inherently
stochastic and even if a probability transition matrix were knouwn for
all time, then the distribution of the grade sizes would be multinomial,
once again making the system stochastic. The only variable that can

be taken as known (deterministic) is the recruitment/redundancy vector.
It is for this reason that the main problem considered in Chapter 7 is
the control of a stochastic manpower system, when the only known input

that may be used to esxercise control is recruitment/fedundancy.
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Bartholomew (1976, 1977, 1976b) has made many advances in the development
of control strategiss for the stochastic model. He advocates a 1-step
control strategy as being the most worthwhile. Although at first his
arguments are very persuasive, a deeper analysis of results presented
in Bartholomew (1976b) reveals an error in his thinking which will be
discussed in Chapter 7 Section 1. The 1-step strategy is clearly
analogous to the !'fire-fighting' methods in which Briﬁish management
have needed to excel over recent years.. It is generally accepted that
this is not a form of gbod management, 'by doing somsthing at this point
in time we might ruin our chances of achieving a desired future goal!,
but an alternative strategy is not immediately obvious. The reason
for this lies in the measure chosen to evaluate differing control
strategises. The measuring function is therefore of paramount importance
and a suitable form for it is discussed in Chapter 7 Section 2. It
is sufficient to state here that such a function should represent
the minimising of some cost over a planning period not just from one
time instant to the next; as the latter will clearly not be optimal

over the complete planning horizon.

In Chapter 7 Section 3, having made a very general choice of a 'cost!

function to be minimised over the total planning period, the solution

of the deterministic problem is then obtained. This may initially

appear to be somewhat contradictory following the earlier criticisms

of this approach, howsver there are twoc strong reasons for its inclusion:
1) The solution is certainly valid when considering

deterministic systems.

2) The notation introduced in arriving at the deterministic
solution can be carried over to the stochastic problem
in such a way as to esase the exposition of its solution.

Chapter 7 Section 4, deals with the solution of this stochastic control

problem.
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In the last four sections, various manpower planning models and
approaches have been reviewed, some have already been rejected, some
have been critically examined in depth and others have only been
mentioned. In doing this it was hoped to bring out two very important
facts that underlie the philosophy of this thesis. Firstly, industrial
structures are not static, they are organic and therefore change over
time. Secondly, manpower systems have variables which are not
deterministic but stochastic. These two remarks constitute the main
assumptions of the models that are developed over the next fivs
chapters. These models are then brought together into a total

manpower system in Chapter 8.

The objective is to add further rsalism to manpowser planning. Usually
this would entail highly complex statistical treatment and at times this
may be true of our approach. However, after spending some time
defining the problem with acceptable mathematical rigour, the rewards
are extremely worthwhils. The form of the solution is concise and

easily interpreted and in addition is computationally efficient.

Throughout the following chapters the intention is to further investigate
as mentioned previously, the basis of those models that have bsen

useful in the formulation of a stochastic time variable manpouwsr

model. This will then be succeeded by sstablishing such a model and
exploring its applications. Those praoblsesms which are difficult

solely because of their obvious notational difficulties will be mainly
appended, as they do not provide significant insight into the structure
of the manpower system. The same applies to the results produced on

trial data by the nsw manpowsr models.

The next chapter commences with a discussion of the wastage process and
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develops into the problem of determining the solution to a general
time variable stochastic system. This model and its solution is then
seen in the following chapters to be a most useful tool in the analysis

of manpower systems.
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CHAPTER THREE

THE SOLUTION OF A GENERAL FORECASTING AND FILTERING PROBLEM
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37, INTRODUCTION

In this chapter the problems of estimating future labour wastage

are considered. Section 1.1. includes a discussion of Forbes (1971a).
a paper that has numerous non-parametric methods of estimating the
survivor function. The relevance of one of the basic methods of

the paper is guestioned. Various elemsnts of this article are then
brought together to form a new model of the wastage process that

allows the possibility of the true wastage probabilities changing over
time. This model is {just a special case of a more general problem,
that of finding optimal forecasts for dynamic systems only observable

through noise corrupted measurements.

This general problem is stated more precisely in Section 2, where an
example is presented and its method of solution discussed. It is
found that the general problem carries a natural mathematical structure
that of the Hilbert Spacs. The structure and propsrties of the
Hilbert Space relevant to the solution of the géneral problem are

given in Appendix A. To estimate a vector in this space, given a

cost (error) function that it also an inner product, there is a unique
vector that minimises this cost criteria. Moreover, this vector is
just the orthogonal projection of the estimatedAQector into the

subspace generated by the observations.

The final section of this chapter is devoted to the solution of the
General Problem. Here the optimal filtered and predicted estimates

of vectors which follow processes that are encompassed by the General
Problem are given. Further the error covariance matrix of these
sstimates are derived. The solution is presented as a set of

recurrsive equations from which given initial estimates, the new estimates
converge automatically and optimélly to the true valus of the estimated

vector.
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3.741. A_DYNAMIC MODEL OF THE WASTAGE PROCESS

This section begins with a discussion of Forbes (1971a) and in particular
his section 3(b) on the use of the Cohort service table for estimating
the survivor function.

Defining the msan force of separation over the ith interval by;

X,
i+1

¢i = \jﬂ <U(u)du/ci

X.
1l

Forbes shouws,(his equation 8);
@i = (InG, - 1nG; ,)/c,
This is readily seen to be equivalent to;

by = - 1npy/e,
He also gives, (equation 9);

by = (1= p)/(0 - (1= 201 - p))ey
from which ai;

'the average fraction of the ith interval completed before
leaving for those who leave during the interval!
can be evaluated as;

e, = (/o N < p, (1 - )7

Forbes suggests a; ~ 5, Equality only holds when there is zero
severance propsnsity, this is a rare occurence, but certainly for
pi > % the approximation is reasonable. The values of the force
of separation for the true ¢iT and the approximation ¢iA can be
compared for P, = +1(+1)+4 on the unit time period by reference to
Table 3.1.1. belouw.

TABLE 3.1.1,

Pi %3 0, P
.4 424 | 0.916 0.857
.3 402 | 1.204 1.077
.2 371 | 1.609 1.333
1 323 | 2.303 1.636
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Taking a, = %+ clearly underestimates ¢i and care must therefore be
taken when applying this approximation in areas of high wastage.

In his section 4(a) the use of the 'mean of the numbers in service
at the beginning and the end of the calendar time interval! is
eguivalent to setting a; = % and conseguently, the use of this will
underestimate ¢i' It is noted that his value Ri will overestimate
bi. This can sasily be seen by observing that under a constant
force of separation, the number of employees who will eventually

lsave during the interval who are present at the midpoint of the

interval, is less than half of the total lsavers in the interval.

However, over the wastage rates normally experienced in industry
the approximation proposed by Forbes is guite acceptable. What is
not clear is the reason for the introduction of such an approximation.
This seems to be superflous as his equation 8 affords a simple

ti .
squation for ¢i

As pointed out by Forbes;
r-1
G(x_) = exp(- 2 o)
r i=0'* *

substituting the derived eguation for ¢i gives;

T-1
G(xr) = exp( 3_1n pi)
i=0
r-1
= TV by
i=0 1t

which is a much simpler formulation - this is equation 13 of the paper.
In ordser to estimate G(xr) from the above it is necessary to find
estimates of the pi.

o ) , 0 _
Now as li ~~ binomial (n = li’ p = pi)

+1

The minimum variance unbiased estimator of Ps is;

A 0 0
P; = li+‘l/li
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and an estimate of its variance is;

AA A A u}

Result 1 of the paper can now be employed to find an estimate of the

variance of the estimate of the survivor function;

A A A A 2
V(G(x_)) = V(p.)/ aG(x )
r . 1 T
i=0 —
"
api
r-1
A A A 2
= . pl(1 - pi) G(xr)
J_:D o A
1
i pi
T=-1
= G(x )2 1 - 1
r i=0 0
1. +1 1.
1
A 2
= G(xr) 1 - 1
1° 1°
r 0

E(Xr) (1 - E(xr))/lg

which is in form the same as Forbss' equation 5 for Cohort analysis.
It is not in fact the same equation. The confusion arises as Bi
has in fact different values dependent on whether it is obtainéd
from cohort or census analysis.

Assuming that time is counted from zero; for cohort analysis:

A u] . o,.
p, =1, (i« 1)/li(l)

and for census analysis:

B, = 1,,(1/15(0)

equality holding only when i = 0.

To overcome this a change of notation is introduced. The problem
of forecasting the wastage rates is then formulated in a dynamic

sense, encompassing elements of both census and cohort analysis.
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Before doing this it is noted that the maximum of the variance of
the estimated survivor function occurs at the half life which is

often used as a measure of wastage.

Let the number of employees observed with length of service i at
real time t be represented by lz(t). The proportion of these

leaving in the next unit of time will be denoted O.

i,i+1 t4q? vwhere;

0 u]
Di,i+1 t+1 T li+1(t + 1) - 1;(¢)

10(¢)

Similarly the true probability of leaving over the interval (i,i + 1)

will be symbolised pi In this way, we say 0 is an observation

yi+1 t+1°

of p, the true probability of leaving. It is readily seen that O

is an unbiased estimator of p.

An observation system is now postulated as below;

- 0
01,107 te1 = Pi,i41 taq * @ 1,141 t+1

where dO, . is the total (stochastic) disturbance in the system.
i,i+7 t+1

In order to sase the exposition matrix notation is introduced. If
there are n intervals (i, i+1), the column vector of the observations,

. The 'observation!

19 where i = 0(1)n - 1, will be denoted Gt+1

0. .
1,i+1 t+
system is now;

Ofyq = Peyq + 90,

) dDT ) is finite.

where E(dO £+1? 904

0 and E(dO

t+1

Now it is recognised that the true wastage probabilities might vary
over time. In order to incorporate this into the model, dpt is
chosen to represent a small random additive disturbance that transforms

Pt to Pt+1. Therefore the 'system! equation can be written as;
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Pear = Py * 9Py
Further it is assumsd that the expsctation of dpt is zero and that it

has finite variance.

The task can be summarised as finding ths optimum estimate of pt+1

from the set of observations O 0

A
denoted pO’J“,],t t, Ots1

,...,01.

This problem is of great importance in the prediction of manpower
supply. Most manpower supply models have not trsated pt+k as a
time variant vector input, until now the modeller being asked to
state a scalar to represent this quantity. Clearly, if the optimal
éstimates of these wastage probabilities could be derived !'on line!

it would give additional creditability to any manpower supply model

using them, given the same information.
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3.2, FORMULATION OF A GENERAL STOCHASTIC PROBLEM

3.2.1.  THE GENERAL PROBLEM

The problem stated above belongs to a wider class of problems; that
of finding optimal forscasts for dynamic systems only observable
through noise corrupted measurements. It is the more general
problem that will be solved in this chapter. More strictly the

problem to be solved is stated belou.

Given the:

System Equation

] X dx
O ¢k+1,k k T Pk
where
X is the state of the system at time k (n x 1)
¢ is a state transition matrix known at
k+1,k
time k (n x n)
dxk is the random error vector at time k (n x 1)

It is assumed that;

E(dxk) =0 Yk
and that

E(dx

.
(Ixg) = Rd

where gkj is the 'kronecker delta', i.e.;

§ = {'1 k=J

kJ
o k#J

and Rk is a real symmetric positive definite (n x n) matrix.

Observation Eguation

+ dz

21 = Vet ket K+

where

2, is the observation vector at time k (m x 1)
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*k is the transition matrix that relates the
observations at time k to the system parameters (m x n)

dzk is the observation error vector at time k (m x 1)

It is further assumed that;
E(dzk) =0 Yk
and

E(dzkdzj) = Skskj

where S, is a real symmetric positive definite (m x m) matrix.

Covariance Restrictions

The observation noise, system noise and any estimate of the initial

state (xD D) are mutually uncorrelated for all time.
H

The task is to find the optimal estimate of xk+j given the observations

to z .
wtoz .

Further, it is proposed to determine the error covariance matrix of

the optimal estimatse of x, .
k+]

The systems modsl of this general problem is shown below:

dx dz

k k+1
+ +
+ X+
— N SUM R «P hd
4>k+1,k k1 sum
K
Zk+1
AAAV.‘
| pELAY : ;
k + 1= k ?
PN 4
A
%o, kY j,k

The task is to find the form of the 'fuzzy box' that yields the optimum

gstimats.



-56-

The class of problems included as subsets of the General Problem is
very wide. By an appropriate choice of the system and observation
matrices, least squares, ARIMA, linear and polynomial regression and

EWMA analyses can be performed, in a dynamic sense.

The General Problem can be further extended to include correlated
disturbances or functions of known error sources. This extension is

fairly sasy but cumbersome and hence the results are given in Appendix

Be The General Problem is naturally complex and its solution somewhat
lengthy, Before embarking on its solution we will motivate the necessary

theory by giving a short example taken from minimum variance estimation.

3.2.2, AN EXAMPLE

Define xt, zt and xt as nx1 matrices and V ,mt as nxn matrices.
L ]

Let X be a forecast of X_ just before observing zt - a measurement of

t

Xt being the system parametsr.

X, and z, being independent unbiased estimates of Xt are dsemed to have

variances \/x and Uz respectively.

t t

It is required to find the best estimate X0t of the process Xt after
’

the observatione.

Let x be a weighted combination of x

o,tt being a linear

¢ and Zt’wt

weighting factor.
So

(1 - wt) Xy * W Zy

“o,tt T
where

1 = nxn matrixe.
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A
The expectation of x tt is readily seen to be Xt, and its variance
O,
given by (dropping the t suffices);
T
Vs vp = E((x = E()) (x - E(x)) )

T T
(1- wt)VXt(1— wt) + ththt

+ (Covariance terms = 0)

It is now required to minimise this expression with respect to wt.

T T
" = U - -
Uaote = Vap * o WV VL) Ve mw Vi Vot “t
As Uxt + UZt is real symmetric there exists C such that (see footnote)
T
= C
Uxt + Uy C
Therefore
TT T
=V CcC - Y} -V w
Voett T Vae T ullug - V-V
T.-1 T T.-1 T
(+uxt(cc ) V., - vxt(cc ) th)
_ -1 T‘][ -1. T 7T T.-1 T
- U><t * [wtC - th(t ) wtC th(C ) ] - th(CC ) th

Clearly the middle term is either positive or zero and the other terms do

not include wt’VQ,tt is at a minimum when;
-1, T
w,C - vxt(c ) =0
that is

-1
Y
th( xt * Vzt)

T -1
w, = th(CC )

A well known theory of linear algebra states: (Hoffman & Kunze(1961) );
If A is a symmetric nxn matrix over the Reals, then there exists an
invertible nxn matrix P such that PTAP is diagonal and further P may be
1

chosen to be orthogonal i.s. PT = p~
T

T
Let V>< + V =A, then , P AP = BB for some complex B

t zt
Therefors
T.=1 -1
R =(P) BBTP
T

= PBB PT

= pB(pB)T
T

= CC , say

. T
and th + \/Zt may be written as CC .
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342.3, DISCUSSION OF THE EXAMPLE

It was desired to find an estimate for the state of the system at time
t. The best estimate was, in thié case, defined as the estimate with
minimum Vvariance. AR linear combination of the best forecast up to
the time of observation and the new observation, was formed and the
weighting factor was found to be a function of these two estimates!
variances. In the sequel the methodology for obtaining the best
forecast up to the time of the new observation is given, this is then
combined in a similar way, as above, with the new observation in order

to give the optimum filtered sstimate.

3.2.4. THE IMPORTANCE OF THE HILBERT SPACE TO THE STRUCTURE OF

THE GENERAL PROBLEM

Rs stated in the introduction a natural topological structure in
which to solve the General Problem is the Hilbert Space. It's
structure is reviewed in Appendix A. Section 1. Included in this
discussion is sufficient theory to develop an understanding of the
important properties of this space as related to the General Problem
only. Definitions of a metric, norm, complete space and convexity
are worked through fairly quickly. In particular, one of the main
tasks of the Appendix is the proof that the Lesbesgue space of
dimension two; i.e. the space generated by random functions with

finite second mements, is indeed a Hilbeft‘Space;

In the second section of Appendix A. the importance of the study of
Hilbert Spaces is shown. The structure allows the concept of orthe-
ogonal projections and an orthogonal projection lemma is proved.
Further, it is shown that under certain conditions the optimum
estimate Qt of xt is simply the orthogonal projection of the xt into

the subspace generated by the observations.
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The General Problem is easily solved using this mathematical structure.

A similar problem founded in engineering has been tackled by Kalman

and Bucy.(1971). Their solution, an attempt to solve the Wiener

1949 problem, was based on conditional expectations, assumed the specific
form of the Gaussian distribution for the system noise and error free
cbservation. The solution presented in the following section requires
only that the first two moments of the system disturbance and the
observation error distributions are finite. The next chapter deals

with the simplified solution of the General Problem that relates to

wastage forecasting.
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363 SOLUTION OF THE GENERAL FORECASTING AND FILTERING PROBLEM

The general problem was stated precisely in Section 3.2., here the
salient points are reviewed and placed within the mathematical structure

developed in Appendix A.

3.307s REVIEW OF THE GENERAL PROBLEM

The state of the system is governed by the eqguation;

(1)

where,

- o
4 ¢k+1,k Kt

8

E( dxk) = g N E( dx K kj

-
" dxj) = R

The only information that is available are the noise corrupted observations;
(2) 24 = +’k+1 kit T Bppq
where,
T
E( dzk) =0, E( &z, dzj) = skSkj

Further it is assumed that;

(3) X { dx?} and { dzj} are stochastically independent.

The task is to find the optimal estimate (Qo K j) of x, given the
b

k

observations 21""’Zj = { zj'}, the constants { @k,k-1} and -{qu}

and the noise variances -{Rk} and '{Sk} .

The problem is: one of:
'Smoothing!' when j >k
'Filtering' when j = k
'Forecasting' when j<k

The last two of these are discussed in this section.

B.3.2. MATHEMATICAL FRAMEWORK

As shown in Appendix 1.7 the state space X, the set of all mappings
from A\ > R that are measurable with respect to a o' -field ® of N,

2
such that Ix(w)|® is integrable,with the inner product;

-
$xp %) =J{x1 ()%, (w)dp (w)
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and associated norm;

2
Ixl = (J{!x(w)l dpt (u)

forms a Hilbert Space.

By
2

Since both the system noise d X, and the observation noise d z, have

finite second moments, “d xk” 2, i'(tk” 2L o , for all k.

34343, THE SOLUTION OF THE GENERAL PROBLEM

The only knouwledge of the system must be gained through the observations
{ Zk} . The subspace generated by these observations is defined as;

J
’\._ 6. .8 _ s n m
XJ = {XJ : xJ. = i Aizi VAiQ R x R }

and called the Estimation Space as the optimal estimate Qo j is a
¥

member. The orthogonal complement of this subspace, Q;, will be denoted
&j and called the Estimation Error Space.

It was proven in THEOREM A.2.1. that within the subspace ij there exists
a unigue element of the smallest norm. This element will be denotsd

X where the symbols

6 Kk, j represent the error in the optimum (o)

0 k,j
estimate of the kth.(k) state given the observation set { ZJ} .

Using THEOREM A. 2.2. it was shown that any vector xke_ X can be represented
uniquely as;

~ A
(4) " T %0 k5t 0 K, j

where

A ~

A
X0 ki T %k T %ok, 5 € X

and is the orthogonal projection of X\ into &j'

It is desired to minimise the error norm.

O

A

= I - B 17 = S0 - A )T ) - & wap)
Substituting (4) into (5):

~ 2 ~ A A 2
”Xk,J“ =% w5+ % ke = Xk, 5l

~ 2 ~ A A
= |I% T o+ 2<% . - % " 2
” o k,J” < 0 k,J’xo K, j Xk,j> * ”X0 k,j Xk,j“
The second term is zero since X 3 ? and (Q - % ) &' which
o k,j €% o kyj Tk, il €
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are by definition orthogonal subspaces.
Therefore
%, 17 = 1%, AT A I
and the minimum of this expression is attained when Qk . is chosen to

s J

A
into xj, (R ).

be the orthogonal projection of x .
o k,J

k
The object of this section is to seek the solution of the General Problem.
This solution will be given in the form of a set of recurrence relation-
ships. The proof of these equations is quite lengthy so for ease of
exposition each of them will be derived separately and then brought
together in the finmal THEOREM (3.3.6.) of this Section.

Before embarking on this task it is necessary to define one further
subspace - the subspace generated by the observation errors.

If Qo K, ; is the optimum estimate of X, given { Zj} , then the optimum

gstimate of zk is given by;

A A

A
%5 kyj ~ 4’kxo KyJj
The corresponding error in this estimate is,

~ A
(6) %0 kyi T %k T %o Ky j

and for any estimate 2 .
KyJ

The subspace of the observation errors is now defined as;

~ ~ ~ ~ n m
z, = {zk.zk =BZ .1 Y8 e R x R 3
A A ~r
In THEOREM 3.3.3. it is shown that X =X &Z where @ denotes
k+1 k k+1
the direct sum. From this identity the value of Qo K. cen be found.
b4

For the next theorem it is assumed that % has been obtained by

o k,k

some method.
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THEGREM 3. 3.1.

. . . { A .
The optimum estimate of the state vector xk+j given {-Zk} X K,k is
A A
A =
(A) %o k+j,k ¢k+j,kxo k,k
where
J
®k+J,k i ¢k+J,k+J—1 '."¢k+1,k =TT ¢k+i,k+i—1
i=1 v
PROOF

A

We know that Xk+j = XO k+j,k * XO k+j,k

So it is enough to prove that;
X, o, - ¢ . % € X
k+j k+j,k 0o kyk k
Let X R and id
e xk,k e X and consider;

A

A
(7) s - ¢k+j,kxo Kok XK,k

Now

- d
k+] ¢k+j,k+j-1xk+j—1 T ke g1

d dx
¢k+j,k+j—1¢k+j—1,k+j-2xk+j-2 * ¢k+j,k+j-1 “kej-2 ¥ Kt j-1

® 0 000000 s 0000 s e e s

J
= X = ¢ S . ¢ = 1
(8) ¢R+J,k k ¥ 521 Theg,kei @ Xkaiod ( 1,1 )
Substituting into (7) gives;
J 5 a
. . ELE T
< ¢k+J,kxk * i=1 ¢k+J,k+l xk+1-'l k+j,k 0 kyk ’ xk,k>
= X
<¢k+j’k 0 k,k * f§1 k+‘j,k+i.dxk+i—’l’xk,k>

_ ~ A J A
(9) _<'¢k+j,kxo Kok Sk k2t Z, < ¢k+j,k+i 9X 1o kD
The first term is clearly zero, as;

~ ~ T A A

Xo,k,k € % and ¢k+j,k X,k € Ay
which are orthogonal subspaces. It is only necessary then to consider

e
th . X
e second term As xk,k € Xk’
A k
xk,k = E%inzi for some Ai



—64=

and zi can be expressed as;

z, = ¢.x + dz, Y. 1€ickK
1 1l 1 1 1

il sogxig + Py oox g 0z

This expansion does not have any of the terms dxk.... d

]

xk+j—1’ and
noting (3), the second term vanishes.

Therefore

A A
<xk+j - ¢k+j,kxo Kok K KD K, K

and

so that
A . N . A
¢ is the orthogonal projection of X, j into Xk'
+

k+j ko K,k
]

We now define C K. the error covariance matrices;
0 Ky

~ AT A ~ ~
o k03 T 3% ko s S DR, 0% <

where » <{ defined above is called an outer product.

THEOREM 3.3.2.

.y given

The covariance error matrix of the optimal estimate of xk+3

i b
is related to CO K,k Vs

observations { zk} and Qo K K?
b 1

J

T
(B) Co kajk = ¢k+j,kco k,k¢k+j,k * E;1¢k+j,k+iﬂk+i-1

PROOF

It has been shown that;

~ A

o kedyk T Tkej T %o kej,k
So using the result derived in THEOREM 3,3%.71. this may be re-written
as;
™ X ¢ %
x - -
o k+j,k k+j k+jsk o k,yk

The expansion (8) is now substituted into the above to yield
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%

. = ¢ ';J( + J ¢ . . dx .
o k+j,k k+jsk 0 kyk f K+, k+1 k+1i-1
Now

hacd Land

C X <
o k+j,k > %, ke k® "o ke+j,k

- ¥ % <4JT
k+J,k o kyk’™ 0 kyk k+ 3,k

Jo ¢ T
Tz = ¢k+J,k+l AL RTELL A IRAT IR
J T
* %51¢k+J, k,d xk+l--’l< ¢k+j,k+l
J ~ T
f;1¥ k+j,k+i dxk+i-?xo k,k< Tk+j,k

From the workings in THEOREM 3.3.1., the last two terms are identically
Zero. Also from (1) E( dx de) =R & . - this means that all

k J k " kyj
constituents for which i#l, vanish in the second term.

Therefore

T

-~ ne <
L L ¢k+j,k

Co kaj,k © ¢k+j,k

J
* ff1¢k+j,k+i > dxy g 8% q< ¢k+j,k+i

T

J R
= ?k+j,k+i'k+i—1 ¢k+j,k+i

= C ?T o+
- ¢k+j,k 0 kyklTk+j,k =

The forecasting side is now complete, that is to say, given the optimum
estimate of xk based on the observation sst '{zk} and its error covariance

matrix CO ‘K we have a system to generate the optimum estimates of
7

{xk _} s J=1.... and the respective error covariance matrices of our
+J

forecasts {C . UWe have now to show how to obtain %X and

o} k+j,k} 0 kyk

CO Kok Their form is not immediate and it is necessary to investigate
?

A
the composition of the Estimation Space Xk+1' This we now give in the

following theorem.
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THEOREM 3.3 3.

The subspaces Qk and 7 are orthogonal,

k+1

Morsover their direct sum,

PROOF

The orthogonal proposition is first proven.

~)

A~ , . .
Take any % e Xk’ 21 € Zk+1 18 now well defined and consider

k
the innmer product;

~

£ zk+1 <B

~ ~ A
> X
'X, kzk+1gk’ k> for some BL<

~

{21, i

"

Ta
,kak>

A Ta

" T Ak BXS

Ta
X - B
<‘Pk+1 kel T 9 % g 4}k+1xk+1,k’ K>

v d Ta
B
bra™ank * Fear? K >

i

o T Ta
= X B’\ B
<y Kty k0K 2t < dg B D

The first term is clearly zero as the elements of the inner product

belong to orthogonal subspaces. The second term is now expanded;

Ta T k
d = d z

4 zk+1’kak> < zk+1’Bk E;%Ai i> for some Ai

T k
= {.d d
<dz,,58, 5 Ai(quxi v odz))
i=1
Noting that x; 1s not a function of dzk+1, and that;

dz, = 5 .5

this second term also vanishes.

Therefore

oy

K and Zk+1 are orthogonal.

x>

-10
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X - X Z i t H
I = we H

i) X .C X ®7 .1 @nd then

AI\-
ii)?( J X @17

. A A
i) Let X, .1 Pe any element of X, .1 then;

% = A.z, for some A.
k+1 £ i1 i

1=
K A -
= A.z
E i“e 7 Ak+‘l(zk+1,k AEDIPR

~

A
= Az + A X + A prd
Z "% k+’l+k+1 kelyk kel k+ls k

K * o
- AL+ A A AT
= (R + AP )2 * A k

A ~ . ')\( A o
X @2 S CX ©z
€ M ® e K+ 1 K € 2

A o~ A ~
. 7
ii) Take any X, * 2.4 € Xk =) "

NQ
4

z f
1% + Bk+1 Kes K OT some Ai’Bk+1

x>
+
1}

e

n Mx
b=
N

k k+1

K Az B z B &
= + -
351 1% Y Oka1%ke k+‘l+k+’| K41y K

K Az B z B 4) KA*
P S LT K+ k+1izz1 1%

i=1
ez e X where . = A - B A*
TR © Mg vnere G { i k+1“’)k+1 g stk
Bk+1 i:k+1
A ~ ;\( A ~ A
+ z and X 6 Z C X
"y k+1 € k+1 k+1 k+1
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THEOREM 3.3.4.

The recurrence relationship for obtaining the filtered estimate of

X, given K observations is;

k
A A ~
(©) %o k+1yk+1 ~ %o kelyk Bk+1 %o k+1,k
where
T T -1
- C [ C J ]
B et o k+’|,kl7bk+1 ‘Pkn o kelok Pk ¥ Ska v
PROOF
et $ eX and ¥ 7 from THEOREM 3,08 4+ 2 3
and z .
et X &4, k1€ Caq SO TTOM BedeSer Xt 210 © M.
te the orth 1 jscti £ to X by % d
Denote e orthogonal projection of x onto K y ><0 Koy k an
similarly the orthogonal projection of xk+1 onto Zk+1 by z0 kel
By forming the inner product;
A ~ A ~
X~ O kelsk & %o ka1?s Xt 2
and noting that
A A -~ A
= <ka1 % k+1,k’xk> - <zo ka1 2
~n ~ A ~
-z z - z
+ Xy o ket Zka1” <x0 kel sk’ a1’
vhiech is clearly zero,
Xg Ke1gk+1 o k+lsk © ‘o k+1
Now
¢ 7  and therefore ¥ B 2 £
zO k+1€ " erefore z0 kel = B1Zo Kelsk oT some Bk+1
This may be restated as;
;\< = I>\< + B b4
0 k+lsk+1 ~ "0 k+1sk k+1 o k+1sk
w.
and it only remains to find Bk+1'
Bk+1 is such that;
B % £3 =0 ¥ 2 e?
(X k170 ks K ket " 2 K+
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Now lst

~ * ~ f *

= Z

ka1 T Bi1%o ket .k or some B, ,
Thus

< B ¥ 8" ¥ 0

Xerh T Pli1%0 ket Kk Beat%o ket k2 T
*

and this must be true for all Bk+1'
Hence
(9) dDx 7 { -B )% 7 { =0

z 2
k+1 o k+1,k k+1 o k+1,k” o k+1,k

Considering the first term only:

~ ~ A ~
P X020 e, kST 2K ktok * %o ket,k? %o kel, Kk
= 2%, kel,k? %0 ka1,k< * 8
~ ~
= X
> %, k+1,k"1”k+1 0 kel k ¥ 971 ¢

= 2% a1 % k+’|,|»<<'1hl+‘l * L
=L, k+1,k+:+1
The second term is;
Bee1” Zo ket K 20 ket kS = Bra? q”kn;{o k+l,k dzk+’l’+k+1§o ke1,k" 9%

T
B+ (4’ k+1%0 k+'l,kLP kel T 5% T8 8)

)

T
_ 5
Bk+'l(4)k+'lco k+1,k‘P kel & Tke
Substituting back into (9);
T T -1
- B C
% I-<+’1,I~<LFI—<+1 k+1(4’k+1 o k+’l,kq’}k+’| * Sian)

Hencse

T T -1
=C C
Bl o k+1,kl{)k+1(+k+1 o k+’|,klPk+1 * Sk+1) .

We now need only to determine the srror covariance matrix of the

filtered estimate.

THEOREM 3,3.5.

The outer product of X5 ke, ke is

(D) o kel,k+1 (1, - Bk+1+’k+1)co k+1,k R



-70-

PROOF

From THEOREM 3.3.4.

A A ~

*o kel ke = %o ke1,k * Bia1Zo kel,k

A A

= %o ket,k T Bar(Z T 7, ke, k)
A N
= X
%o k+1,k T Bk+1(+Jk+1 o k+l,k * d?k+1)
xk+1 (In Bk+14)k+1) 0 k+1,k * Bk+'] d k+1

This can now be substituted into

= % X
Co ka1 ka1 = 2 %0 Kke1,ke1" %0 ka1, ke

I

- v - . % <
> (Iﬂ Bk+1$Jk+7)(XO k+1,k) Bk+1<32k+1’ 0 k+1,k+1

~ ~ d
- X _ >
(1 Bk+1*1k+1)> X0 kel,k’ 70 k+1,k+1< Bls Ze?

~

Xo k+1,k+1<

T T
-B C I -B S B
(In k+1\'P k+1) ) k+’|,k( n k+']+lk+1) * BL<+'] k+1 ke

T
_ - C

=t BtV 1o kel k
T T

S
Bk+1$)k+1co k+1,k(8k+1q)k+1) * Bk+1 k+1sk+1

o k+1,k_Co k+1,k(Bk+1qu+1)

- C
Co k+1,k Bk+1%Jk+1 0 k+1,k

T

T T
s . -¢C
*B 18t 7 B ket kP ke Bk+1+Jk+1co k+1,k4‘k+1)8k+1

= T katk ¥ Bar PG ke, k
+(Bk+1(5k+1+q}k+1co k+1,k4):+1) -5 k+1,quI+1)BI+1
Noting the expression for Bk in THEOREM 3,3.4., the last term above
vanishes, sc that:

CO ke, k+1 (In - Bk+1qjk+1)co k+1T,k "

The whole of this chapter can now be summarised in the following

theorem.
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THEOREM 3,3.6.

The solution of the General Problem (3.2.1.)may be obtained from the

one step recurrsnce relationships;

A A
. A X =
( ) o k+17k ?k‘*"]skxo kyk

T
(8) Co ke,k = ‘Pkm,kco k,k¢k+1,k * Ry

A A A
= + B V4 -
(c) X0 kal,k+1 = o k+l,K WL \kaxo k+1, Kk

)

(D) Co k+1,k+1 N (Iﬂ B Bk+‘l+’ k+’|) Co k+1,k
vhere
T T -1
= C
(£) Bt = &6 k+1,k"P k1 ("Pkm o k+1,k‘+,k+’l + S 1) v
PROCF

Letting j = 1, in THEOREMS 3.3,1. and 3.3.2., expanding the last term
in THEOREM 3.3.4. and noting the result in THEOREM 3,3,5., the above

equations are obtained. | |

The only data required to start the recurrence process are initial

- 4]
guesses of X and C
0,0 o

, the known transformation matrices ¢> }
o k+1,k

’

and {\P k+1} and the error covariance matrices {Fﬂ(} and {Sk} .

It is possible to estimate all of the last four sets { } 'on line!.
The method of doing this is explained in the context of the 'Labour

Turnover' problem in Chapter 4.

. . . A
The algorithm for operating the system given x0 K,k and C0 K, k is;
i) Use (A) to obtain %
o k+1,k
ii) Substitute C_ <,k into (B) to obtain c, el K



iii) By, €an now
iv) Note the neuw
v) The filtered
vi) its variance

The systems model of

x>
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be obtained from (E)

information zk+1

estimate of X\ 1 is now obtained using (C) and

using (D)

the solution is given below:-

d
xk d2k+1
+ +
X, ?k“,k + /" sum X Y ;;!UM
DELAY
1:=
k+1:=k 2k
%
0 k+1,k+1
+
Yy
A
X sum
o k.l DELAY . B, .1 sum
k+1 2=k \\\'7
+ -
¢k+1,k q)kﬂ
0 k+1,k

AN



4de2e1.

4e242a
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CHAPTER FOUR

THE PREDICTION OF LABOUR TURNDVER

Introduction

Solution of the wastage problem
Covariance structure of the model
Covariance estimation

Unbiased sstimation of Rk and Sk

R Bayesian approach to covariance estimation

Simplification of the model by a 'mormality! assumption



-7l

4.17. INTRODUCTION

At the start of Chapter 3 a model of the wastage process was proposed.
It was shown that this was just a special case of a wider class of
models; for convenience these were known collectively as the General
Problem. The General Problem was found to carry its own natural
mathematical structure and within this structure the solution was
accomplished (THEOREM 3.3.6.). By applying the constraints of the
proposed wastage model to the solution of the General Problem it is
then sasy to solve the wastage problem. This optimal solution

for known, time-dependent, system and observation, covariance matrices

is given in Part 4.1.1..

It is recognised that these latter matrices may not be known for all
time. This, howsver, is not a severe setback for, as shown in the
last part of this section, all that is required for optimal asymptotic
estimation is knowledge of RS-q. Further, in the sequel three

methods of estimating the covariance matrices {Rk} and {Sk} are
proposed. The first method is based on Sampling Theory and the other

two on Bayesian Statistical Theory.

4.1.17. SOLUTION OF THE WASTAGE PROBLEM

The model chosen to represent the wastage process was detailed in
Chapter 3 Section 1.1.. Here the actual probability of an employee
who had seniority i, breaking tenure with the company in the next

unit of time, at time k+1, (p, ), was related to that probability

1 i+1,k+1

at time k by equality except for some small additive random disturbance

dp. . . If there are n intervals (i, i+1), this may be written in
i i+1,k

matrix notation as;

_.pk+dp

Pre K

the above being n-vectors.
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It was also assumed that the actual wastage probability was not
directly observable - but that the number of employees who leave

is directly observable. Therefore, an observation process was proposed.

If Dk+1 is the n-vector whose elements are the proportion of employees
who left from service category i in the next time unit, at time k+1,

0 + dO

kel = Praq K+

whare d0k+1 is the total (sampling) error in the observation system

at times k+1.

By making the following transformation to the General Problem:

A

A
¢k+1 =1, ¢k+1 =1, % kyj = Pok,jy 3@z =0

the wastage problem is obtained.

Noting THEOREM 3.3.6. the corresponding solution to the wastage

problem is:

1) P =B
Po ke1,k = Po k,k

A A A
2) Po ket kel = Po kat,k * Biar (Opuq = B, k+1,k)

3) Co ke1,k = G ke TRy
4) C0 k+1,k+1 (1 Bk 1) o k+1,k
where;
5) B =C (c +s )7
k+1 o k+1,k 0 k+1,k k+1
Utilising any 'a priori! information to construct estimates BD 0.0 and
?
CO 0.0 the filtering and forecasting models are activated by the first
H
observation. So, given the covariance matrices {RQ} and {Sk+1}the
learning process begins. If they are not known they may be estimated.

The treatment of this is deferred until Section 4.2. however, the variance

structure is examined in the concluding part of this sub-section.
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4.1.2. COVARIANCE STRUCTURE OF THE MODEL

A covariance matrix has a special structure called (semi) positive
definiteness which will be formally defined belou. An important
aspect of any model must be its ability to mirror reality. Therefore,
if a true covariance matrix is input at time zero (CO o,o) it is
valuable that any proposed model retains this special structure.

After proving two alternative representations of Equation 4 Section

4.1.1. it is shown that the properties of covariance matrices are

indeed preserved by the wastage equations.

The structure of the matrix Bk’ which may be thought of as a weighting
factor of the forecast and the new observation, is then examined.

It is found that the determinant of this matrix aluays lies in the
interval (0,1) and so has a sensible influence in the construction

of the mew filtered estimate. Lastly, an equation in Bk’ Bk+1
?

S and R is given, from which, if Bk has a limiting form its value

may be obtained.

THEOREM 4.1.1.

The covariance error matrix of the filtered estimate may be written

as ;
") Cokat,ke1 = BrarSian
2) C;1k+'],k+1 = C;1k+'],k * 5;1 4
PROOF
~1), Bk+1 - CO k+1,k (Co kel,k * Sk-&’l)_1
Post multiplying each side by Co R + Sk+1 yields;
Bee1 (Co katyk ™ Sien) = Co hatk

and upon re-arranging the terms;
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)C - B

(1 - Bt o k+1,k k+1sk+1

Noticing Equation 4;

CD kel,k+1 ~ Bk+15k+1

(1 -8 ,)C

2) k+1” 0 k1, k

Co k+1,k+1

Post multiplying by CD K1

gives;
s K

-1
=1 -
Co k+1,k+1co k+1,k Bk+1

Therefore

-1
Co ke1,k+1% kel,k By =1

From the first part of the Theorem;

-1
= C S
Bk+1 0 k+1,k+1 k+1

Substituting this into the preceeding equation yields;

-1 -1

S =
Co k+1,k+1co k+1,k * Co k+1,k+1 k+1 I

-1
and premultiplying sach side by Co ke, K+

4 Proves the second part
of the Theorsm;

=1 ' -1 -1
- C -
Co kat,ke1 = "o kel,k ¥ Skar 2)

DEFINITION: PRINCIPAL MINOR

A principle minor of a matrix A is & submatrix sbtained by -deleting
certain rows and the same numbersd columns of A. Thus, diagonal
elements of a principal minor are diagonal slsments of A. For

notational eass Ai' is chosen to represent the principal minor of

Jk
A obtained by sliminating the ith, jth and kth rows and columns.

DEFINITION: POSITIVE DEFINITE

R matrix A is positive definite if all its principal minors are

positive.
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It is clear that covariance matrices are thersfore positive definite
since their principal minors are positive. Before proving that
the wastage equations preserve the structure of the covariance

matrices, two preliminary lemmas are given.

LEMMA 4.1.1.

If A and B are symmetric positive definite, then so is A + B.

PROOF

Since B is symmetric there exists an orthogonal matrix P such that
P_1BP is diagonal. In fact, this diagonal matrix is the matrix

of the characteristic roots of B and is therefore positive definite.

As P is orthogonal |P] = + 1. This implies that;
}P-1(A + B)P| = }P-1[[A +8l Pl = |n + g
Letting ¢
Q=P ap and AN - plgp
then

P_q(A +BP =0+ A

Now, a well known theory of Matrix Algebra (Ayres(1962)) states
that:
A real symmetric matrix A is positive definite if, and only if,

there exists a non singular matrix C; such that A = CTC. So letting:

A=cc,

- -1
Q=P AP =P clcP = piciep = (cp) Tcp

Since P is orthogonal then § is positive definite.

Now consider [Q + Aj:-
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q11+X11 992 0 9y

) U

91 Gpp*As,,

1 T qnn)')\nn

91 992 v 99 Agg O .o O

921 921
= +

ces (Q+/\)1 oo (Q +/\)1

n1 Sh1

911 Q92+ A4y 999 992 =+ 94,
921 922 ** Qg . 0 Ay e O

(@+A),, (@ +A),,
n1 tt Qpq o
A1 0 ces O Ag; O ..o O
0 22 o O 921 922 *** 9o

+ +

Chy coe Qg o

Continuing this process to completion, it is clear that |Q + A} is
a function in the Aii and the principal minors of Q only. Therefors
IQ@ + A is positive. Further, as a consequence of the above
decomposition, the principal minors of Q + A are readily ssen to
be positive and so Q +A is positive definite.
Now
lp’1(u +A )Pl = |A+B > 0O
and by similar decomposition the principal minors can be shown to

be positive. This implies that A + B is positive definite.
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COROLLARY 4.1.1.

It is an immediate consequence of the above decomposition that;
@+ Al > Jal+ A
Hence, for positive symmetric matrices A,B

A + Bl > Ia] + 18]

LEMMA 4.1.2,

-1
If A is symmetric positive definite then so is A .

PROOF

T
Since A is symmetric positive definite then, A = C C for some non
singular matrix C.

Now

L oL T

and letting
T,-1
B:(C),

. . L . -
B is clearly non singular and therefore B B is positive definite.
But

- T
A”l - B'B
and therefore A-1 is positive definite.

It is nouw a simple matter to show that the wastage equations retain

the covariance structure of symmetric positive definiteness.

THEOREM 4.1.2.

If CO 0,0’ {Rk} and {Sk} are symmetric positive definite then

3 > : Iy Y > .
CO K, k=1 and CO k=1, k=1 are symmetric positive definite for k2 1

PROCF

The proof will be by induction; let k = 1. C = C
0 k=1,k~1 0 0,0

and therefore C° is symmetric positive definits.
0 k=1,k=1
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Now
C = C
ol,0 0 0,0 0
which is the sum of two symmetric positive definite matrices and
consequently symmetric positive definite. The Theorem is true
then for k = 1, so assume that it is true for k = n, that is;
and C are symmetric positive definite.

o n,n=1 o n-1,n=1

Noting Theorem 4.1.1.3
-1 -1y-1
% nyn = ( o nyn=1 " ®n )

Envoking the Lemmas (4.1.1. and 4.1.2.) it is immediate that C0 n
]
is symmetric positive definits. Also;

C = C + R
o N+1,n 0 NyN n

~and is clearly symmetric positive definits. The Theorem is, therefore,
true for k = n + 1. By the principle of mathematical induction,

the Theorem holds for all k¥ 1. |

Two theories of Matrix Algsbra (Hoffman & Kunze(1961)) are;

i) If A is positive definite then it is self adjoint.

ii) If A and B are self adjoint, then AB is self adjoint AB = BA.
A necessary condition for the product of A and B, both positive

definite, to be positive definite is that A and B must commute.

In Theorem 4.1.1. it was proven that;
-1

= 5
Bk+1 Co k+1,k+1 k+1" -
and in general there is no reason to belisve that C and
0 k+1,k+1
5;11 commute. Therefore, Bk+1 will not normally be symmetric

positive definite. As mentioned earlier Bk+1 may be thought of
as a 'weighting! matrix - it is in this context that its properties

are examined below.
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THEOREM 4.1.3.

0 < B | <1

PROOF
From Theorsm .1.1. Bk may be written as;

-1
= 5
B = & kyk ok

Therefors
-1
B | = 1% k,kl'skl > 0
In the wastage equations ( ..1.1.) Bk is given in the form;
-1
B = ok, k=1 Co k ka1 * Siat)

Taking determinants, gives;

-1
18] = 1% ik, ket 1% ket * Sian!

Now, Corollary .1.1. shows;
I, k,k-1| * ISl <12, kyk=1 © Sk+4
ané since
18141 > 05

|c

+

o ko1l < G5 Kkt * Spa

Substituting into the last expression for Bk yields the desired
result; that is;

-1

18,1 < |E, koket Skl Co iy * Spanl =

Three other properties are noteworthy:

(1) I - Bkl> 0 ¥k as f1-Bk| = [co ekl 1% k’k_1}'1> 0
(11) 1 k< 15| ¥ ms e = 1Bl < IS, ]

(iii) ,co k+1,k,>, R.| vk as ]co k+1,k| = |c0 okt Rk[:>[Rkl
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THEOREM 4.1.4.

If Rk = R and Sk = 5§ for all k, then;

B - B 0

k=1 kl%or'}{Bk’Bkn 2

PROOF

=1
= S
Bk+1 Co k+1,k(CD k+1,k + 8)

Expanding CD and noting Theorem 4 .1.1. gives;

k+1,k

-1
= S + R S + R + S

Therefore

-B (BS - (R
Bk(B _18 + R +85) Bk+1(Bk +R +5) = (B

5 - s
K 5+ R) (Bk + R)

k
Collecting terms;

(B, B

- - B - -
KBeet 7 BB+ (B - B DR+ 8) = (B, - B))s

Adding (BkBk - BkBk)S to the left hand side of the esquation and

simplifying yields;

B - B )S - B R S) = -
B (Beq ~ B (B - B (E v R+8) = (B - 8)s
So
(Bk - Bk+1)(CO okt R+5)=(1- Bk)(sk_1 - Bk)S
Taking detefminants proves the Theorsm. | |
COROLLARY 4.1.2.
- - >
Byr ™ BlZ 0 IS koK~ S k+1,k+1' R 0
3
- 20
IC, k+1,k ~ o k+2,k+1‘< E
Another interesting fact is revealed by writing;
-1 -1
IBkl - IBk-1"Bk-1l ,Bkl = ,Bk+1‘,Co k+1,k+1, ICO k,k,

Proving

'BRI%’BLH']' = lco k,k, X 'CO ir(-t»’l,k-}"ll
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If there is no ' a priori ! information about the system then it
is sensible to take the first observation vector as a starting
point. This amounts to setting 81 the weighting factor equal to

the n-identity matrix. The recursive equations are now active;

B, = 1 which implies |B1[ =1
Therefore

Coqq9 =85 =5
and

5021=S+R

The second weighting factor is now computed as;

B, = 5 + R(S + 2R)'1

5o clearly
[B.] > I8,
But, further

|B1 - B = 1 - le> 0

which implies |B - B _,[> O for all k.

THEOREM 4 .1.5,

If R,S and CO o, are diagonal and ka-+ B, then the limiting matrix

’

B is diagonal and has elements;

-1 +
b,, = (1 + 4r,.s, . )% -1 for i = 1...n
ii ii"ii
-1
2
Tii°44 v

PROCF
Starting as in the previous Theorem withy

-1
Bk+1 = (BkS + R)(BkS + R + 8)

and post multiplying by BkS + R + S5 we obtain;

Bk+1(BkS + R + 5) = BkS + R
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or

-1 -1
Bk+1Bk + Bk+1(RS + 1) = Bk - RS =0

It is noted that this is a function of RS-1only; the importance
of this is explained immediately after this Theorsm.

So if Bkﬁ—é B then;

8° + 8RS - Rs™! = 0O
Since Bk is the product of diagonal matrices, B must be diagonal

and therefors its elements are given by the solution of';

2 -1 -1

b.. + b,.r..s,. - I..S.. =0
ii ii7iivii ii~ii
and so
-1+ 2 =2 -1.%
b,., = =r,.s.. - (r.."s + 4r, .s.. )?
11 11 11 11 11 11 11
2

Rlgebraic manipulation proves the Theorem.

If the weighting matrix converges to a limit B, it is clear that

the wastage model tends to a model that might be described as ths
matrix equivalent of the Exponentially Weighting Moving Average
method - often employed by forecasters. As noted in the last
theorem, the limiting matrix B is a function of RS-1 only. The
choice of the correct value for B (in a E.W.M.A.) is often a problem
for the inexpsrienced forecaster. The latter property of the B
matrix implies that knowledge of the covariance matrices R and S

is sufficient to snsure convergsence to the optimal B, automatically.

Now, it might be thought that the problem has been complicated; the
practitioner being asked to supply two covariance matrices instead of
one weighting factor. The problem has not in fact been complicated
but simplified. This statement is justified by noting that the
structure introduced into the model has a physical meaning; whereas

the weighting factor of classical methods is just an abstract matrix.
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The structural model is therefore easier to interpret in the real
world. 0ften, even inexperienced forecasters will be able to
supply reasonable bounds for the error in any estimate they have put
forward but will be unable to justify the guess of a weighting

factor B, let alone give usable confidence limits for its valus.

The complication; simplification question can, houwever, be conclusively
resolved by noting a statement made in Chapter 3 Section 3:

"It is possible to estimate the covariance matrices Rk

and Sk on line"
So values of the covariance matrices are not asked for which must
hold for all time but only initial estimates (Ro and SO) of them
are required. These can then be automatically updated within the
model so that they converge to the true values Rk and Sk' In

the next section thres methods of updating these covariance matrices

‘are proposed.
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4.2 COVARIANCE ESTIMATION

In this sub-section three methods of estimating the covariance
matrices Rk and Sk are considered. The first method examined
is that of unbiased estimation. Unbiasedness can be achieved by

the evaluation of the expectation of certain differences in the
temporal observations. The latter two methods employ techniques

from Bayesian Statistical Theory. Here the procedure is to set

up a class of alternative valuss for each Rk and Sk and to
assign a prior probability to them. These prior probabilities are
then modified in view of the observations, to give posterior probabilities
of each element of the class attaining. The second method chooses the
model with the highest posterior probability of attaining at time

k as the model to be employed for the next time period. The third
method uses a reduction process to obtain a model whose parameters

are a weighted estimate according to the posterior probabilities

of the elements obtained in the second method.

4+247. UNBIASED ESTIMATION OF Rk AND SkL

After defining unbiasedness, unbiased estimators of { Rk} and {Sk }

ars presented. If {'Rk } can be considered time-invariant, the
problem of its estimation is shown to be yst another special case

of the General Problsm. In this instance the sample mean of classical
statistics is seen to be squivalent to the optimal estimator given

by the particular solution of the General Problem. The variance

of this estimator is then discussed gualitatively. It is seen that
although the estimator is unbiased and the covariance matrix always
(semi) positive definite, the estimator can in fact be negative in

the early time periods.

DEFINITION: UNBIASED

. o)
An estimator x  _ f(z1,...,zj) of x is defined as unbiased if, and

Ky J k
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only if;

The jth difference in the observations at time k will be denoted
JDzk. With this notation the expectation of JDzk can be seen
below to be zero for all k and j, such that k 2 j o+ 1,

oz = 7 -
Dzk = zk Zk-j

+ dz, - x - dz

Xk
J
= iz_,ldxk—i + de - de_J.

Since the expectation of all the terms on the right hand side of the

last eguation is zero it is clear that;

E(JDzk) =0 ¥j,k such that k>j> O

Its covariance can now be considersd, for k > j > 03
i .
) Dzk, JDzk<

J J-
= d - -
e X1 * 9z, dzk—j ' T dx, _; + dz, dzk-j<

i=1 1=1

J J
= d d
)iz_1 xk_i,iZ=1 xk-i< + ) dz,, dzk( + >dzk-j’ dzk—j<

+ (4j + 2 terms whose value is zero)
J 2
=2 R . +85 +5 4+ (i 3j + 2 terms whose esxpectation
ke T T
is zero)

Similarly the expectation for two adjacent Jjth differences can be

computed for all k> j + 2.

J J
> Dzk, Dzk_1<

J J
= > §E1dxk-i + dzk - dzk-j’ f§1dxk-1-l + dzk-1 - dzk—j-1 £

J J
>,qudxk'i’ fzquk“q’l -2 dzk—j’dzk~1<

+ (4j + 3 terms = 0)

J
,2 .
= 3 Rk—i - 5k-1 S, + (j7 + 3j +4terms equal to zero)
i=2

J1

whers 8j1 is the Kronecker delta.
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If j is set equal to 1 in the last two derivations then the following
is obtained;

(+ 6 terms equal to zero)

(R
> Dz, 02, =R _, +5 +§

k=1
and

1 1
h) Dz, Dzk_1< =-S5 _, (+ B terms equal to zero)

Noticing the above it is now easy to see how unbiased estimators

may be constructed. This is given in the following Theorem.

THEDREM 4‘2.1 L

. 1 1 -

l) "> DZk, DZk_,]( - Sk—1

.. 1 3 _

i1) > Dz Dz < =R

PROOF

i) This has already been proved above, 8i

. 1 3
1) >0z, bz <
1 1 1 1
= ) Dz, Dz ., + Dz =+ Dzk_1<

1 <

1 1 1 1 1
P Dz, » Dzk< + D Dz, . Da(( + D> Dz , Dz, _,

and noting the arguments made -above;

= R + 5 + 8 - Sk - 5

k=1 k T Pk-1 k=1

= R mii

Unbiased estimators of Rk-1 and Sk-1 are then;

R = (z

k-1 K ™ Zkar) (2 - k=2

A
S = (z

k=1 k™ 21 (2 724

If Rk is time invariant the following is easily seen to be a specific

form of the General Problem;
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where dﬁk represents the estimation error.

A

A
As Rk is an unbiased estimator of R it is clear that E(de) = 0.

Let )dﬁk,dﬁk< = T and the first observation ﬁq be the starting

o
point. Then the algorithm of Chapter 4 Section 4, with Rk = Qo KoK
2
gives the following;
-1 -1
81 1 82 . 83
R Ro=2"R +2 R, A -2x3'h 43
R1 = R1 R2 = R1 + R2 5 = X R2 + R3
C =T C =27t C = 3717
o 1,1 ~ o 2,2 o 3,3
and in general;
B =k, ¢ = k17 adﬁ—kRk-ll—é
k = » So K,k n k=2 T

Thus the mean value of the {ﬁk} is the optimal estimate of R.
Further, Bk = k-1 implies Bv—0 as kw» %, Since Co K,k = BkT’

it also vanishes with increasing observations - this shows that

not only is §k an unbiased optimal sstimate for Rk but that its
variance tends to zero in the limit. The same argument can clearly
be repeated for an unbiased estimator Sk of a system with time

invariant Sk. Results of these unbiased estimators are presented

in Appendix 3

In practice the number of observations required to start the estimation
process depends on the dimension of ths system. Inspection of the
'raw'! estimators, ﬁk-1 and gk-1’ reveals four observations are

needed for the former and three for the latter. This number of
observations will give a sample of one (dimension n) for each estimator.

n
The dimension of & n x n covariance matrix is, however, 3. i = n(n + 1),

i=1
This means that degeneration, (singularity in the covariance matrix)
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will occur if n % T Therefore, to avoid singularity the number of
'samples' needed (N) is given by the solution of the following
equation;

Nn > En(n + 1)
If n is odd this amounts to setting N = 3(n + 1) and if n is even
N=2%(n+2). Coupled with the number of observations needed to
give the first sample it is seen that N = 4(n + 7) is sufficient

to expect that the estimated covariance matrices would be non singular.

Earlier in this subsection whilst deriving the covariance of certain
difference combinations it was noted that there were terms whose
expectation were zero. The covariance of these terms, however,

do not vanish. For this reason the unbiased estimators have significant
variance. This, of course, is true for most covariance estimators.

So, although the estimators are unbiased and covariance matrices

cannot have negative diagonal elements - when the true covariance

matrix has diagonal elements close to zero, negative estimates can

arise (See Figure 4.2.1.). This amounts to loss of positive definiteness

of the covariance estimators in the model.

FIGURE 4.2.1,

A%

D A
N

*
A typical graph illustrating the convergence of Rk to R for the

. *
univaeriate case and the fact that Rk may be negative in the early

stages of prediction.
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Many practical procedures can be suggested to overcome the loss of
positive definiteness in the estimated covariance matrix. The
solution given below is neither the only nor possibly the optimal

one. It has, however, worked well in practice when absolutely

no knowledge is available to the magnitude of the estimated matrix.

Of course, if knowledge exists to the nature of this matrix, it could
be used in the sarly stages of prediction, until positive definiteness

is achisved.

The practical procedure is to set negative diagonal elements equal
to their positive equivalents of the same valus. This may be
justified by observing that these elements represent variances and
are therefore positive, so that the new positive-valued estimate
must in fact be closer to the true variance. The matrix can nouw
be made symmetric by pooling the off diagonal estimates, the nesw
aij be equal to the mean of the old aij and aij' The principal
minors are then examined in increasing dimension order. If they
are found to be negative then the relevant off diagonal elements
are sst to zero. The covariance matrix estimate is now positive
definite and provides a usable input into the model. It is noted
once again that this procedure is only called upon when loss of
positive definiteness occurs. In the majority of the systems
examined the covariance matrix is significantly different from zero

whereupon the normal estimation procedure converges satisfactory to

the trus value from the outset.

4.2.2. R BAYESIAN APPROACH TO COVARIANCE ESTIMATION

Before embarking on the presentation of the method employed in the
model, an insight into Bayesian methodology is given. Bayesian

statisticians use probabilities to describe degrees of belief in

possiblé,éifernétiﬁe parameter values or states of nature. In
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advance of experimentation it is assumed that a prior distribution

of the parameter that it is desired to estimate can be obtained.

This may be achieved as a last resort by introspection to arrive at
odds for which one might bet for and against a parameter attaining.
This prior distribution is then modified to a posterior distribution
according to Bayes theorem. In essence a new observation changes
ones belief in the set of admissable parameter values from the prior
distribution to the posterior distribution. The exact prior distribution
of the parameter is not however, imperative, for, if an adsquate

prior is given, a reasonably informative experiment will often

yield a posterior distribution not much different from the true value.
Further, it is not even necessary for the prior distribution to
intergrate (sum) to unity over the whole sample space to achieve

valid posterior distributions. In this case the prior is said to

be improper. In this subsection the likelihood interpretation of
Bayes theorem is adopted. R more comprehensive refersnce to the

Bayesian philosophy is Lindley (1965).

DEFINITION: LIKELIHOOD FUNCTION

The likelihood function (L(B/é1,22,...,zn)) of n random variables
21’22""’Zn is their joint density;

fz1,22,...,zn(z1’22’""Zn/b)

which is to be regarded as a function of 8.

In particular, if 21,22,...,2n is a random sample from f(z/8)

n

feprzgnr) =TT, g

EXAMPLE 4.2.1.

If the Zi have a Bernoulli distribution, i.843

-
f(z/8) = 82(1 - 8) ?  where 0¢ 8<1
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The likelihood function is;

sz

. n - iZi
1
L(B/Z1,22,.o-,zn) = 8 (1 - g)

If p'(B/z) denotes the posterior density of 8 and m(z) the marginal

density of Z, the joint density of Z and 8 is;
M(z)p'(8/z) = p(8)L(z/8B)

so that

p'(8/2) = (M(2))”" p(8) L(z/8)
Now if the integral (sum) of the posterior density is to be unity,
it is clear that;

m(z) = (p(e)L(z/B)c8
N

Substituting this into the preceeding squation gives;

p'(8/2) = p(8B)L(2/8)
Jgp(e)L(z/E%)ds

The above result is known as Bayes theorem.

It is noted that Bayes sstimators are C.A.N.E.(consistant asymptotically
normal sfficient). Even in those problems when the exact prior
distribution is unknown this method can therefore be used. Thus, it
provides a technigue of determining estimators of functions that

might not have otherwise have been considered estimiable.

Since the aim of this subsection is to estimate the covariance
. . { i i}
matrices R and S an admissable nth order paramster set R,S
is chosen. The elements of the parameter set is denoted by Bi
where 1 € i€ n. Recalling Bayes theorem it is sasy to verify

that;

pr8/z 0 {2, Y ) = Lz /{2 Y e,/ {2, X )
“gl‘(zk/gi"{-zk—'l\-‘ e/ {243 )ds

The denominator of the left hand side of the above equation is a
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constant for all of the n models.

Therefore
pr(e; /{2 ) o Lz /e {2, Y Ip(8,/{2,_3).

The notation can be further simplified by allowing Pi to represent

k
]
the probability density of model Bi attaining, given cbservations
up to and including z -
In this case;
p

A Lz, /8 1z, % ) i,k=1

so that

L(Zrn/ei’ {Zm-1} )pi,o

k
p
ik % IT

1
Rs stated sarlier there are two methods to be examined that relate to
this Bayesian approach;

(1) The first method is to choose at time k the model that has
highest posterior probability of attaining at time{k as the model
most likely to hold at time k + 1. That is, the model used to
predict Qk+1,k’ for any decision making, is the model 9: such that

i1 = max. {‘pi,k} . Values of the other Qi are also computed, so

that the process may continue. In this case;

CYTPRIE PP CHEE S
keTyk = Skyk=1 % B\ 2 = X kan
(i1) The second method is to weight the parameters R™ and 5°

according to the magnitude of the posterior probabilities of the

modsls Bi attaining. In this way;

RL = ZP, kRi and 5! = 5P, S
zpl,k zF‘i,k
and
Rt =% + B! (z - % )
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The first method is useful when cost is an inportant constraint -

to reduce the computational burden the model chosen at time k can

be deemed to hold for all succeeding time. The weighting method

has intuitive appeal - if the true model B is not an element of the
parameter set Bi , the estimate 8! can still be unbiased. Further,
if B8 is not time invariant, the second method will in fact follow

the moments of-Bk through time. .To employ either method, it is seen
that an expiicit form for the likelihood function is required for
each Bi. How to obtain these forms is the subject of the following

hart of this subsection.

4.2.3. SIMPLIFICATION OF THE MODEL BY A 'NORMALITY' ASSUMPTION

Under the hypothesis that model Gi holds, the governing rscurrence

equations are;

1 % S

kyk=1 = %ke1,k=1

Al al i Al

2) ok T Mkt t Bz - X k1)

i i i
3) G k-1 = Bkoq,ker + R

i iy i
4) Ck,k = (1 - Bk)ck,k-1
where

i i i iy-1
5) B = O ke1(Ci kmr * 57)

At tims k-1 the best estimate of 2, (see Chapter 3 Section 3.3.)
under model Bi will be;

% _ Al _ A

= Mkyk-1 T X

i i
Ky k=1 k=1, k=1

Its error covariance matrix may be calculated as below;

~:]._ ~1 ~i Ai
2 k=172 ket & F 2kk=1"%k T 2 k€
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. >~zi,k_1, - <
___>§i’k_1 + dz, ii’k_q + dz, <
- ct,k_1 + st
= Ci—1,k—1 + Si+ Ri

Summarising, the best estimate for z, at time k - 1 is Qi 1 K1
-1,k=

with an error covariance matrix Ct 1kt * Sl+ Rl. The first
-1, k-

two moments of the distribution of z, are now known for sach Qi
given {zk 1} . These moments are enough to define a unique Normal
distribution;

al i i i
f(z /B - c R
(/80 12,_3) VXt ka1 G ket TR 2 8)

The likelihood function of this distribution is;

L(Zk/eiy {'Zk—'|} )

_1 Al T, 1 i i, -1 _A
WE )" . 2(2) X k) (G kB #8) (7,5
T 1.1
2
le~1’k—1 + R + 8 ,

Recalling that;

Pik = L(Zk/gi"{zk—1} P ken

the Pi can now be recursively evaluated.

K
Each of the three methods described in this section for estimating
Rk and Sk are shown in an operational mode in the Appendix (C).

Comparisons of their efficiency are given, both on simulatsd data

and on 'live' data from Dunlop U. K. Tyre Group.



5.1.1.

5.2,

5.2.1.

5.3.

56307

53424

5.3.3,

5.4,

~08-

CHAPTER FIVE

MANPOWER SUPPLY FORECASTING

Introduction
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Properties of the compounded multinomial distribution

Moments of the compounded multinomial distribution for

large stock vectors

Properties of the Dirichlet distribution and of the compounded
Dirichlet=Multinomial distribution

The moments and density function of the Dirichlet-Multinomial
distribution

A method for estimating the parameters of the Dirichlet-
Multinomial distribution

The structure of the Dirichlet distribution

An application of the General Problem to supply forscasting
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Sele INTRODUCTION

In this chapter the flow of employees within a graded organisation

ars consideredo. It is usual that an organisation will be hierarchical
and that the only transitions will be one and two step promotions;
demotions and accelerated promotion being rare. Dunlop U.K.T.é.

is an example of such an organisation. However, a manpower sub-system
might be such that ons has to obtain experience in one or more areas

of esqual status, in this case transitions would occur betwsen all
'grades!. The model developed in this chapter is equally capabls of

dealing with both situations.

After applying the length of service dependent wastage rates to the

stock matrix at time T and summing over the lsngth of service categories,
the resultant vector is the estimated number of graded smployses who

will remain in the system at least until time T + 1. These smployess
are admissable for transition betwesn grades. Recruits entering the
manpowsr system in this period are not considered eligible for transition.
It is apparent therefore that the manpower system under consideration

is closed, as both inflow (recruits) and outflow (1eavers) have been

accounted for.

In a renswal model, once the wastage rates have been given, the transition
matrix is exactly determined although it is not deterministic as its
elements include the stochastic wastage rates. The optimal forecasting
of these time dependent wastage rates has been dealt with in the

Previous two chapters. Their application to renewal models is

obvious and it is not wished to elaborate further on this hers.

The primary concern of this chapter is the estimation of the elements

of the stochastic transition matrix and the one-step prediction of the
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stock flow matrix. The notation to be used throughout this chapter

is presented in Section 1.1.. In Section 2 properties of the compound
multinomial distribution are given. It should be remembered that,
conditional upon the value of the transition matrix, the flows between
grades are multinomially distributed. If the elements of transition
matrix are considered to be random variables then the flow will be

a realisation of a contagious distribution of the multinomial and
transition distributions. General results are derived when the
transition distribution is assumed to be arbitrary and a method of

estimating its second order moments exhibited.

In Section 3, the rows of the transition matrix are assumed to be
governed by Dirichlet distributions. The joint raw moments of this
distribution are obtained and from these the generalised factorial
moments of the stock vector can be calculated. The next problem
examined is the estimation of the parameters of this distribution

and a method based on Sampling Theory is developed. Concluding this
section is an examination of the structure of the Dirichlet distribution.
It is foundbthat the distribution is not as general as it may first have
been thought to be as it conceals a very specific assumption about

flows within the organisation.

In the last section of this chapter, the prediction of manpower supply
can be alligned with the General Problem of previous chapters. The

particular representation for manpower supply applications is given.

Selel. NOTATION
The notation used in this chapter is now introduced. Occasionally
it will be found convenient to drop either the T or i suffix, when

transitions from the ith row at time T only are considered. It will
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be made clear in the text when this procedure is employed.

ng 1= number of employees in grade i at time T
]

Nij T = random variable denoting the number of transitions between
9
grade i and grade j within the time interval (T,T + 1)
pij T = random variable denoting the probability of a transition as
H
above
Q.. = random variable denoting the proportion of transitions observed
ij,T
as above

nij,T’ pij,T and qu’T are realisations of the above random variables

o]

nij,T = observed number of nij,T

dt( )

density function of the Dirichlet distribution

m( ) = density function of the multinomial distribution

d'm( ) = density function of the Dirichlet-Multinomial distribution

EX( ) = expectation function over an X-distribution

C( ) = covariance function
R( ) = correlation function
V( ) = variance function

SX( ) = a matrix with (i,j) th element C (Xin)

» % = an sstimate of X

x(z)= X(X = 1)eee(X =2 + 1)

D(X-1) = terms of order at most X |
I" = gamma function

aij = parameters of the Dirichlet distribution
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S5e2e PROPERTIES OF THE COMPOUNDED MULTINOMIAL DISTRIBUTION

A distribution is said to be multinomial if it has density function;

nl
m(x1,-..Xk_1/n,p1,--.pk_1) = e —

o,
L] IX
N

O

[

K
x 1
j=1"

where for notational convenience the symbols X, and P, have been

introduced such that;

k=1 k=1
X =n - X, and p =1 - p.
k 2 J k J
j=1 Jj=1

Rs stated earlier, conditional upon the pij and the ni T for all i,
’

the flows nij T are multinomially distributed, that is;
’

K n,. T
ni TI pij lJ’ i:1o-ok
‘e cos = ————— -
(30,10 Mt 7701, 1P Py = J=1
n. . Tl
j___1 J’
(5.2.1.)
The generalised factorial moment of this distribution is;
z . Z,
E(N 30) N (212>... N Ziger ) i=1eeuk
i1’T i2’T i k_1,T
k=1
(X 7z5) w1 2
= J=1 ij
= n, T P
1y J=1 1]
(5.2.2.)

So, clearly the generalised factorial moment of any compounded distribution

isy
k=1
(X2,
J=1 M0 2 4
ni,T E(..Tr pij ) i=1oook

J=1
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where the expectation is now over the arbitrary distribution of the

P!'s, We may therefore write;

k=1
k=1 (Zij) (J}; Zij) k=1 Z, |
E N. . = . - E p. . i=1oo-k
N(?jg 13,7 ) "i,T p(TT i )
J= J=1
(5.2.3.)

5.2.1. MOMENTS OF THE COMPOUNDED MULTINOMIAL DISTRIBUTION FOR

LARGE STOCK VECTORS

In this subsection it is shown that for large grade sizes, the moments

of N, . /h_ approach those of P and so the correlation of the
ij, T 4,T ij

flows tend to the correlations of the transition probabilities.

k=1
£z
J=1"1j
Dividing each side of the Equation (5.2.3.) by n, 1 , the
Y
following identity is obtained;
k=1 Z, 5 -1 kel oz, »
E, ( N, . ) + 0(n, =E (TTP,. ") 4 o(n. i=1...k
N | Ll 1,7 P joq 1 1,7
"i,T

where O(ni-;) represents all terms whose order is at most n,-1 In
’

i, T’
this way it is said that if the grade size is large, the moments of

the N/H tend to those of the P. This may be written as;

k=1 z k=1 Z. .
E/TV N, . )~ E ( UM p, 4
N(j=1 [111],T ) P =1 ij
i,T

In particular for all i and Js

ij,T prij , T 7

EN(N" ) ~ E (P.)) for large n.
M7

and this is true at all times t.
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Now n, T is certainly known at time T, so conditioning on this it is
1,

found that for the compounded multinomial distribution;

N = - £ P - P P
C(Nij,T ik,T) LT (pij)E( il ”i,T(”i,T 1) ij m
(5.244.)
and that;
= P - E(P. . -
U(Nij,T) nT E( iJ.)(1 E( iJ)) + ni,T(ni,T 1)V(Pij)

(5.2.5.)

Considering the correlation of N.

i, T and Nik,T and dropping the i

and T suffices for ease of presentation;

R(Nij) = fE(Pj)E(Pk) + (n - 1)c(pjpk)

(11},kE(pl)(1 - E(Pl)) + (n = 1)U(pl))5

so that for large grade sizes

) ~ R(P P. )

R(N N
( 1j,T ik, T ij ik

A method for estimating the elements of the covariance matrix of the

P's, denoted Si p» is now given.  From earlier work, Equation (5.2.2.)
?
of this section, conditional upon ni and pi,;

s T J

c(N ) = -

N .
13,T ik, T M, 7P13Pik

(5.2.6.)
and

O A IR

(5.2.7.)
Replacing each pij in the above by E(pij)’ letting Si,me represent
the covariance matrix so obtained and substituting into (5.2.4.) and

(5¢2.5.) we have;

S. =5 +n, _(n.

i,N i, me i, TV i, T~ 1) Si

,P
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It is therefore clear that . A
a Si,P may be estimated by Si,P where;

3 5
Si,P= i N

It only remains to find esti : . .
imates for SN and Sme which is discussed

in Section 5.3.2..
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5.3. PROPERTIES OF THE DIRICHLET DISTRIBUTION AND OF THE COMPOUNDED

DIRICHLET-MULTINOMIAL DISTRIBUTION

In the first part of this section, the rous of the stochastic transition
matrix (P) are assumed to be sampled from Dirichlet distributions, as

in Bartholomew (1975). The joint raw moments of this distribution

are given in Theorem 5.3.1.. Following this the density function of
the stock flow matrix (N) is derived and its general factorial moments
computed. In subsection 5.3.2. a method of estimating the parameters
of this distribution is presented and in the final part of the section

the structure of the Dirichlet distribution is further examined.

5.3.7. THE MOMENTS _AND DENSITY FUNCTION OF THE DIRICHLET-MULTINOMIAL

DISTRIBUTION

Bartholomew (1975) gives the density function of the Dirichlet distribution,
assumed to represent the density of the ith row of the stochastic

transition matrix, as;

k k a, .-
! . oo = lJ '=1"’k
Vg Py a/2yeneay) = (X %011 Py :
J=1 J=1
K
T M (a, .
. 1]
J=1
(543.1.)
where again Psy symbolises;
ol 121440k
- 1= ese
1 Zpij
J=1

A formula which may be used to obtain the joint raw moments of this
distribution is provided in the following theorem, where the i suffix

is dropped in order to conserve space and make reading easier.
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THEDREM 5.3.17.

Z Z Z k-1
1 2 k=1
E(p1 p2 ."pk—1 ) = n(a, + Z. - 1)00.(8‘)
j J J J
k k=1 k=1
(Za + 272 -1(3a)
=13 o joq d
PROOF
Z, z z )
1 2 k=1
E(P, P, “eeeP, . )
k=2
1-3 p, -
& 3 k Z +a, -1 z .+a -1, K
j=1 P(T e) 1 k=1""k=1 "(1-% p.)
- . B e[ h j
j=1 9 k-1 j=1"
T_H"(aj)
0% j=1

where dp represents dp1 dp2...dpk

Letting

M(a.)

J

k
1T
j=1

-1

the right hand side of Equation 5.3.2. reduces to;

k=2

122 P,

j=1 J

—— >

>k
~N
+
W
!
KN

1%8, k=12

Py

-1

k=1

k=1
(1-Zp

3=1

k=1
TR

(5.3.2.)

(5.3.3.)
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Now it is well known that;

C
r-1 s=1 T+s-
po (C=-p) dp=T(r)P(s) ¢
M Er+55
0
(5.3.44)
Noting this the first integration is easily performed, yielding;
k-3
=2 P
[ 5=1
* Z _+a -1 k=2 Z  _+a _+a =1
Z +a oo -2 - - -
G (a) (z,_,+a ) p o K2 kT ) ke e T dp
k=2 =1 J k=2
(8,2, _1*3) 1 JJ 5

The next integral is seen to be of the same form as (5¢344.), so by

continuing this process the expression is found to be;

k=1

G P(ak)r(ak_1+zk_1) M(a +Z, e p(ak_2+zk_2)..wj) N(a,+z,)
' k ke
Pleptra ) Dlachopsora ) MEepzi)

P(g a) m(a,) TTI”(a+Z)
= =1 j=1

K K ket
M) P(Ta+xz)
=1 j=1 9 j=1 9

t

k=1
E(aj+zj-1)..........(aj)

k=1 k

k -
za.'f‘z Z‘-’] oooooooo(zaj)
j=1 J j=1 J j=1
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It is remarked upon that an alternatiye representation of the above

equation is;

Z,
k=1 J
Z’l 22 Zk-'l i (a.+h=1)
E(p1 P2 ...pk_,l ) = J:'] h=1
k=1
Z,
( a_ +h=1)
h=1 J=1 J

and as a corollary, the generalised factorial moment of the Dirichlet-

Multinomial distribution is (see Equation 5.2.2.);

k=1
Z
k=1 (z; ( %aZlJ) k=1 "ij
EN(TT N oo 3y = n, - J= TV (a, .+h=1)
j=1 Js 1 J=1 h=1
k=1
Z. .
j=1 1J k
( < a, _+h-'l)
j=1 1
h=1

The first and second central moments of the stock flow vectors are

now easily obtained;

E N = a i'—"lau.k
( ij,T) niLT ij
k
a. 3
jz=1 *
; )
C(N - a T a, .+n
( ij,TNih,T) 1,7 %15 Cih (j:1 14,7




-110-

k
= (% a, +n,
V(Nij,T) "1, T ey "1 =1t ,7)
K - ”
2 a,. (E:a +1)
. 1 a i
j=1 J ;§1 ij j=1

(543.5.)

A relationship is now apparent between the covariance matrix of the
stock flows under a Dirichlet distribution of the probability transition

matrix ZS.Y
i

;N) and the covariance matrix of the stock flows that would

have been obtained if the p's were assumed known and equal to their

expectation (S, ). So that we may urite;
i,me
Siov = Ai55 e
(5.3464)
where
k
A, = 3 a,.  +
i =1 ij i,T
k
> a,. +1
j=1
(5:3474)

From the above it is easily seen that the correlation coefficients
are unchanged by ascribing a probability distribution to the p's.
S50 that;
R
igN i,me
Recalling the density functions of the Dirichlet and Multinomial

distributions, Equations 5.3.7. and 5¢2.7.;

k a, .-l

ij
a,.) TTDiJ-

(
11 5=

.
™M x

i=1cook

d’ ® a0 ® o0 =
(py, pik-1/éi1 2
a..)

1)

k
mi

j=1

~~



~111=~

symboli -
where pik ymbolises 1

K=~1

) pij s ands;

j=1

* 00 LY n' 2

Ny, 7 nik-’I,T/ni,T’pi’l Pipoq) = _i,T
k
Mn,.
=1 1j,T

k=1
where n. symbolises n, -
ik, T y i,T j_1nij,T

i=1oo

The density function of the Dirichlet-Multinomial distribution is

given by;
! oo L Y
d'm(n;q ¢ nik-’I,T/ni,T’ 1702g)
k=2
1 1-p -2 p
noi1
k r \J:’]
- M a,.)
=Nyt =1 3 ee
K k
TTn, . mir(a, )
je1 1T =1 4 J J
00 0

o

k

1

p..
1]

n
1,7

+3

1]

ol

..d
dpjq6ee0P;

Equation 5.3.4. can now be recursively employed to yield the density

function of the Dirichlet-Multinomial distribution as;

a
i, 7’711

...aik)

K K
N(za..) TIN(n,, —+a..)
= x s . . . o
N j=1 gzt T A
b : :
N, 4 TTP(e, ) M(n, +xa )
jer BT Ly SAREIES
where
k=1
- - n, .
nik’T ni,T j=1 iJ’T

i=1-0n

ok

k=1

K
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This is the distribution of exactly Mjj,T Oc¢currences of a transition

from grade i1 to grade j in the time interval (T,T + 1) At time

is certainly known, but a.

T, ni,T 11008 must be estimated. A method

of estimating these parameters ig presented in the following subsection.

5¢3e24 A_METHOD FOR ESTIMATING THE PARAMETERS OF THE

DIRICHLET-MULTINOMIAL DISTRIBUTION

Let the observed flow of employees betwesn grade i and grade j, in

the time interval (T, T + 1) be denoted ngj 1+ Over any time
b
. 2
period there will be k observed flows in a k-grade system, however
only k(k = 1) of these will be independent.

Recalling Equation 5.3.5.;

a, . .
- ll l=1001k
BN 5, 1) = % "i,T
a.. ) j=1-.ok-1

j=1 H

and adopting the normal convention by denoting the mean of the Nij T
?

by Nij,t wherses

t
N = 2N T/£

iJ’t T=1 J-J’

it is simply verified that;

a —
— - ij n. £
E(Nij,t) K ok
a, .
j=1

13y

obtain k(k - 1) estimates of the a; ; as;

Clearly E(N. | t) may be sstimated by no " and so it is possible to
1d,

o0 k A - "
o 3 l=1loesee
A REL R R
ij  _ J=1 .
n J=1ootk-1
i,t

A further k equations are required to complete the solution.
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Recalling 'Equation 5.3.7.;

i k i=’]ao-k

1+Z

5=1

o

ij

so all that is required is an estimate ﬁ. for A
i 1

Now Equation 5.3.6. states;

= A S s _

so on taking determinants;

k=1
ISi,N‘ = Ai I i’me, l’—'1ocok
From Section 5.2.;
=N -
syme g3 - i, 7E(Py (1 - E(R D)

and
Si,me jh = = My, 7E(PsE(PL)

These may be unbiasedly estimated by;

-0 - -0
= -n..
Si,me g5 = Mgt (Mt lj,t)
it
and
=0 -
= - n
Si,me jh "ij,t "ih.t
i,t

To achisve an unbiased estimator for S, T it is necessary to standardise
1,

the data. The standardised flow from the ith grade to the jth grade

* 3
in the time interval (T,T + 1) is denoted "7 and defined as;

¥* o p—
15,77 "1, T X Migt
n

i,T



=114~

Here
.. =n “3» t °
15,0 7 M,p( =t ) F Ny
i,t

In most organisations the grade sizes will not vary too greatly and;
b

—_— v O
"15,t 0 Mij,t

Estimators of the elements of Si,N are now easily calculated as;

§
1N 3

- zt (n* —% )2
=2 Mg ) /e

and

s I TR
= n.. .=n,, - -
1,0 5h T E T T Mg, gt nih,t) / e

The estimation procedure is now completed by setting;
k

¥ a, . =n, -//-\\.
jep 0 Ak 4

F

>3

. =1
i

where

A A A )]
Ai - (Isi,N, / lSi,mel)(k K

(5.3.8.)
Summarising, the estimates of the ai, are given bys
A - -— A ..
= - 1 =1000k
alJ nij,t nl’t Ai s J
n A -1
nl,t i~

A
where Ai is given in Eguation 5.3.8..

EXAMPLE 5.3.1.
In order to generate observations, actual parameter values for the

aij were assumed. Only transitions from the ith grade are given, wheres;
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L 3
a, = 8 and so ¥ a_ = 20
2 ‘ j
j=1
= 8
&3
Given this E(P1) = 0.2 v(pq) = 0.008
E(P = 0.4 - 0.
( 2) V(Pz) 0.011

These distributions were then simulated and three sampled values

obtained from each.

TABLE 5.3.7%.

t 1 2 3
P, .04 .23 .35
P, .60 3 .39

The number of employees in this grade were assumed to vary 10, 11, S
so that the flows between the grades could again be simulated.
The resulting, and standardised flows are presented in the following

table.

TABLE 5.3.2.

t 1 2 3 -
n: 1 3 4 2.67
*

n1 1 2.73 444 2.72
0

4 3.67

n2 5 2

*
n2 5 1682 4,44 3.75
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The estimated covariance matrices are;

: ) 2.96 -0.49 4 1.96 -0.98
i,N Lp.40 2.88 Isme | g o8 2.32
A A
S l = 8.28 ] ] =
' o Si mel = 358
Ry
2

A, = (8.28 / 3.59)% = 1.52

and so we have;

>

3
A A A
a = ’]6'3’] a = 4-35 = . = .

- i3 ’ ] ’ a2 5.99 and a:3 5.97

o

as estimates of;
3
aj = 20, a, = 4, a, =8 and a_ =8

j=1

5.3.3. THE STRUCTURE OF THE DIRICHLET DISTRIBUTION

In this subsection it is shown that the Dirichlet distribution represents
a very particular form for the varying pij's.

Recalling Equation 5.3.7.3

1 LY ® e
d1(pyqeeePyg /By meayy)

a =1

i-J i:‘]..ok
250 TTP

= r'( J=1 ij

M x

1

K
M(a, )
=1 M

Adopting the Stieltjes integral notation;

dD' 5 @D' (pyqeeePyyq / Bpqe ey
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Now by definition;

*>]

-xb a-
M) = Joo T u?

So we may form a new equation, if x_ is independent of P. e
1 i

dG(p

k a, .~1
= TTp, . H
. ij
j=1
k
a, .

1
Tt )

which on simplification becomes;

i i3

k a
J:1 l']

and so

117" Pk %y / Giq7ce®

)

ik

i,j = 1oook
i = 1oook
i - 1000k

Pk

dx
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The Jacobian is now given by;

Kk
eeoof), X, = . tevoes e ~
a(pm Pik-17 l) .E,]ylj Yir Yk
k 5 5
a . oony. ,Y. ) (Z Y) Z
(Yiq02Y5m137 ik g i (Jﬂ)./ij)
k .
—y. -
11 n..vo'o-on:,Ile yik—"
k k
2 2
(Zvy..) (Zvy.)
j=1 j=1
-yi1 oQOoooooo-yik—'}
k k
2 2
(Zy..) (=vy.)
j=1 1J j=1 1J
k .
= k 1 2k-2 jgllyij-yi'l .oooooooo-yik-,]
(z y_ .) ¢ s0e0cecos
j=1* .
k
_yi'] ’........jgllyi\j-yik-ll
-yi'] o620 00000 "‘yik-,]

which can be verified quickly to be;
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This can now be substituted into Equation 5.3.9. to give;
’

dH(yi1"'yik)

aij aij-1 -b.y. .
= b . 171 ¢ -
Yy e yij i=1eeek

j=1

Therefore the marginal distributions of the Y’j are gamma distributions,
i
all with the same amplitude parameter bi. Letting the dummy variable

x. be identified with n. -, it is clear that if the P, ., for 1= Teeek
i i,T ij

and j = 1es.k = 1, are to be governed by Dirichlet distributions and

be independent of the n, T then the N'j must have independent gamma
i, i

distributions with parameters b, . The converse is alsoc true, so that
. i

if the N_. are not governed by gamma distributions with paramsters
1]

bi then the P, . are not independent of n. e

ij l,T
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S5¢4 AN APPLICATION OF THE GENERAL PROBLEM TO SUPPLY

FORECASTING

In Section 5.3. it was assumed that if the pij at time T were knouwn,
then the nij,T would be multinomially distributed. Letting qij,T

represent the observed proportion of employees who move from grade i

to grade j in the time interval (T,T + 1), clearly;

a]

Si5,7 7 "ij,T / Ni,T

and

E(Qij’T) = E(Pij)

Previously the distribution of the probability transition matrix,
from which the pi, were sampled, has been assumed to be time invariant.
Here this assumption is relaxed and a time depsndent P-distribution

is admissible. Letting EE‘ repressent the mean of the elements

jeT

of the P-distribution and as before adopting matrix notation, a three

stage process can be constructed;

P = d p.) = O

Relating the above equations to the General Problem we have;

A 1 17 [dp
T Pr-1

T
= +
[ - —

for the system equation andj
= d
g = (1 0) (ffr) + dag
Pr
for the observation eqguation. This is now seen to be a special case

of the General Problem presented in Appendix 2. Noting this the
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optimal filtered and predicted linear estimates of the grade sizes

and their covariances are easily obtained.
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CHAPTER SIX

MANPOWER DEMAND FORECASTING

Bels Introduction

6.2 The forecasting of manpower demand given the future work
loads of an organisation

Be2:¢70 The incorporation of technological change into the manpower
demand forecasting model

6.3 The forecasting of workloads from series with growth and
seasonal characteristics

6.3671 A growth model

6.3e24 A cyclical model

6.3.3. Workload forecasting
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6.1 INTRODUCTION

In this chapter the problem of forecasting an organisation's manpower
requirements is considered. In the review of the present manpower
demand models (Chapter 2 Section 4) it was suggested that the forecasting
should be a subtle interplay between management foresight and methods
of statistical analysis. The spirit of this statement pervades the
models of this chapter.

In Section 2 the relationship between the firm's manpou;r requirements
and the workloads serviced is explored. Here the workloads are
assumed to be known or, more strictly, given for all future times.

In some cases they will be taken directly from the corporate plan

of the organisation and in others they may have been the results of
some statistical forecasting method on past values. A suitable
method that is useful in the latter case is the subject of the final

section of this chapter.

Until now the technique that has been used to modél the relationship

of manpower demand to workloads has beeﬁ time~-independent multivariate
linear regression. | This means that the degree to which indspendent
variables are deemed to contribute to the total manpower is assumed
constant for all time. Cameron and Nash (1974) in their comprehensive
analysis of this situation have shown, using a programme developed by
the Central Statistical Office (Brown and Durbin (1968,1971)) that the
regression cosfficients estimated from their data were not stable over
time. In fact it does not seem that this situation is a rare occurencs,
rather, that the time variance of the regression coefficients is a
fundamental property of most real life systems.  Beer (1966) when
discussing industrial operations, and in particular systems with

Many variables, writss;

'...the importance of a particular variable in such a system
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is a guestion of degree, a question of judgement, a guestion
of convention. Moreover, the importance it has by any of
these criteria, change from moment to moment. This does
not mean merely the numerical value assumed by the variable
is changing - that is the nature of variables, one of the
things about the system, that we know how to handle. No
it means more: the STRUCTURAL RELEVANCE of the variable
inside the system is changing with tims.! |

The emphasis given to the structural relevance of the variable is

Beer's.

It is therefore concluded that any model used to represent the manpouwer
requiremsents of an organisation, derived from the workloads it has to
service, should reject the tenuous assumption that the regression
coefficients (structure) of the model be time invariant. The fact
that the regression coefficients vary over time is fully recognised

and is incorporated into the model suggested for forecasting manpower

demand, proposed in Section 2 of the chapter.

The future value of the workloads is an important input into the above
model if it is to be used in its forecasting mode, as opposed to its
pure filtering facility. In many real life planning exercises,
including the above, it is necessary for managers to predict the futurs
values of some variable from past data. Often this time series

will be short, contain !'freak!' observations and undergo ma jor changes
in time, Many excellent methods exist for dealing with long time
series, notably 'Box and Jenkins! (1970) technigues, which are wsll
behaved, However, it is a primary tenet that many real life series

eXperienced in industrial situations are principally not well behaved.
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In examining projected time series that had trend components over

some period of time, Jantsch (1967) identified four main types of

curves observed in technological forecasting. In each case these
'growth'! curves exhibited either gradual or rapid change of shape

after the initial observed time-stable situation which is indicative

of a change in the external factors which effect the curves.  What

is important then, is the ability to identify these changes when they
occur and to forecast in the light of this. The growth model expounded

in the first part of Section 3 has this facility.

Another property that has been found to occur in many industrial time
series is a cyclical nature. This may be monthly, seasonal or an
X-year business cycle. Again, this type of attribute may in fact
change over time. A model which copes with this type of data is

presented in Section 3.2..

Of course, many series possess both a growth and cyclical nature.

It is the property of linear models that their addition is also

linear. The combination of the separate models is carried out in

the final part of Section 3. Throughout this Section 3 the nomenclaturs
applicable to the prediction of workloads from growth and seasonal

data is employed. However, the models presented are quite generally

applicable to this type of data.
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Ge2e THE FORECASTING OF MANPOWER DEMAND GIVEN THE FUTURE WORKLOADS

OF AN ORGANISATION

cameron and Nash (1974) proposed the following model to describe the

total staff (St) of an organisation in time period t;

n
R TR
where
wit = the number of units of workload w, served in time period t
&, = the regression parameters
and
e, = the error term at time t

It is further assumed that the error term has zero mean and constant

variance.

They discovered that the regression coefficients were, in fact, not

time stable. In modern usage stability usually refers to a system
governed by some dynamic equilibrium. Who would say that a governor
used to control a mechanical instrument were unstable?  But certainly

it is not static. Cyberneticians have adopted the word homeostatic

to describe a process that is inherently stable, although not necessarily
static and the word homeorhetic for a process that is undergoing

a stable change. It is therefore preferable to say that the regrsssion

cosfficients of the above model are not static but that their instability

has yet to be examined.

In keeping with the above, a model of the form;

n
Spe1 = E;Dwit+1ait+1 t B
(5.2.".)
is Proposed where

8 4 = the time dependent regression parameters
1,41
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and

wo,t+1 = 1, for all time

ps before it is convenient to introduce matrix notation so that the

Equation 6.2.7. is equivalent toj

'St+1 = uJt+1at+1 * et+’|
(6+4224)
where
at+1 = n + 1 column vector of the ait+1
and
=1 1 tri f th
mt+1 X n o+ matrix o e wit+1

Now as the regression coefficients are known to vary over time, this
is accounted for by the admittance of a structural equation of the

form;

(642430)
So that the regression parameters are assumed to be time dependent.
The difference betwsen sucessive time periods t + 1 and t is defined
as da, and it is further assumed that the expectation of this difference

t

is zero, and that it's variance is finite.

By direct comparison of Equations 6.2.2. and 6.2.3. with Equations
(1) and (2) of Chapter 3 Section 3.1., it is clear that the above
model is yet another submodel contained in :the General Problem.

The relevant transformation is given by;

St = zt
Uy =\ht
at = Xt
e, = dz

t t
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ovariance matrices of the proc ifi
The c© p esses must also be specified, for

yhich the methods of Chapter 4 Section 2 will be useful.

The recurence equations for the updating of the regression coefficients
are then seen to be;

A

fot+1,t = “ot,t .

Cots1,t = Cot,t * R

>

2 B, (S

_ A
aot+1,t+1 B aot+1,t T P P T ll]t+’lacﬁ:-(~'l,‘c,)

Cotat,te1 = (1 - Bt+1mt+1)cot+1,t
where
_ T T -1 .
Bigr = Cot+1,tmt+1(mt+1cot+1,tmt+1 +25t+1) and is a

(n + 1 x 1) matrix.

. . b .
C = the error covariance matrix of a given
ot+u,t ot+u,t

observations up to and including S, and is an n x 1 symmgtric

t
positive definite matrix.

Rt = covariance matrix of the observed regression process

at time t and is an n x 1 symmetric positive definite matrix.

?5t+1 = covariance matrix of the structural process at time

t+1 and is a positive scalar.

Now, if the regression coefficients were time independent, that is

Rt = 0 for all time, and if the initial covariance matrix Co,oo is
large in comparison with St’ then the estimated regression coefficients
are independent of 30’00. Moreover, the model then reduces to the
classical multiple regression analysis model and affords an elegant
method for updating the regression coefficisnts as more observations

are gathered. This is particularly useful with data containing a

large number of observations or a large number of regression parameters,
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as the only data storage requirements are the optimal estimates of
the regression coefficients and their error covariance matrix and also
no matrix inversion is necessary. The objective of making the regression

parameters time dependent has now been achieved.

6,207 THE INCORPORATION OF TECHNOLOGICAL CHANGE INTO THE MANPOWER

DEMAND FORECASTING MODEL

In the new model the expectation of the change in these parameters
was assumed to be zero. This assumption might be invalid under some
interpretations of the model. In order to illustrate this point

a model based on the corporate plan and on industrial enginesering

techniques is proposed and its solution in then given.

It might be that the workloads described above were in fact independent
tasks that have to be carried out by any organisation to meet its
corporate objective. It is usually the case that the industrial
engineering department ‘will have gathered information enabling the
'standard! man years required to produce a unit of each workload to

be calculated. In the light of this a model of the form;

S =

te1 = Upi1Ben T ©

t+1
(6e244.)

is again appropriate. Here a e might be indicative of a basic
staffingfleuel needed, even though actual production may be near zero.

This type of assumption is not uncommon in econometrics, where the

staffing level may be related to the minimal capital investment.

As before the values of the 'manpower utilisation' coefficients (at)
can be allowed to be time dependent and again a structural model of

the form;
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might be deemed appropriate. Due to the significance applied to the

regression parameters, the assumption that the expectation of dat is
zero is in some doubt. This is due to changes in technology and
efficiency, usually, and hopefully affecting organisations in such a

way that productivity increases. This would clearly increase manpower

utilisation and so lower the regression coefficients over time.

The guestion arises now of how this can be incorporated into the model
and if possible also retain the simple recurrence equations of the
General Problem. Two methods are proposed;
1) The introduction of an additive/subtractive parameter b% to
represent the change in manpower utilisation due to increases
in productivity and technology over time.

2) The introduction of a parameter b, to represent the rate of change

t
in manpower saving due to technical progress.

The first model has equations;

- ' d
Ba1 = 8t Bpg Oy

1 o) !
Pioq = Py * 9by
and are seen to be a special structural case of the General Problem by

noting the equivalent formulation;

db!
S L I dag + dby
= +
1 1 db!
b! . o 1| |b! !

The second model is alsoc & special case of the General Problem.

This is so as its equations;

b" _a, + da

fi1 T Pta?t t

" — " 1]
bt+1 = bt + db &

are the same as;

b 0 - bg dbg
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In both cases Eguation 6.2.4. has to be modified to;

Star T (Wg,q ©) St+1\ T Ctaq
n
bt+1
(6+24.5.)
- 1" 3
where b£+1 = bt+1 when appropriate.

Both models are now simple to apply for one-step ahead forecasts and
no problem exists in forecasting j-steps ahead with the first model.
However, with the second model the forecasting equations are not

simple as Theorem 3.3.7. does not apply. This is now shown below.

Firstly
¢k+1,k = g¥+1 0 where §£ =‘diag(bt)
0 1
and therefore )
J
¢L+j,k - 22;51+j 0

0 1
This is unknown for j > 1.

Now recalling the first term of Equation 8, Theorem 3636703

A
% >
€ ¢k+j,k Kok, kK, k

J N A
% &~ . TuT Bn d
5ﬁb£+, at,t+bot,ttt M

= a
i=1 J Ot’_ ’
511
= ! d + other terms 1in izj=Tees
by, 1) %ottt 0 M t+1
e (642.6.)

This expression is in general non-zero. It is therefore deduced that

the j-step ahead prediction can be obtained from the first j moments of
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the distribution of bt+1,t and thus the simple recurrence equations
are lost. However, if the rate of change in manpower saving due to
technical change can be predicted independently of the above series

or is assumed constant then Equation 6.2.6. can be factorised to terms

involvings
in Qs T A

d
%ottt 1
and once again Theorem 3.7.1. holds and the simple recurrence equations

can be esmployed.

In summary; if the regression coefficients are static then an elegant
method of updating their estimates which is computationally very
efficient has been presented. If they are not static but their
expected change in a unit time period is zero then the model described
by Equations 6.2.2. and 6.2.3. is appropriate. Further, it is

simple to incorporate an additive change, a constant rate of change

or an independently e;timated rate of change to represent the variation
in the regression coefficients due to technical progress and other
alterations in the efficiency’of the organisation into the model and

still retain the simple recurrence relations.

Throughout this section it has been assumed that the workloads have
been known or given. In the next section methods of predicting

workloads from series that have an inherent trend and seasonal character-

istics are proposed.
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6e3e THE FORECASTING OF WORKLOADS FROM SERIES WITH GROWTH AND

SEASONAL CHARATERISTICS

In this section the forecasting of future workloads from past observations
is considered. Firstly, a model that gives optimal estimates of the
workloads when only a growth factor is present will be described.
secondly, a model that copes with the cyclical nature which is often
present in industrial time series is given. Finally, these tuwo

models are combined to form a third model that is applicable to time

series that possess both of these attributes.

Throughout this section the terms in which the models are described
are particular to the estimation of workloads, however, the models
have general applicability to other situations when the assumptions of

the model are valid.

6.3.1. A GROWTH MODEL

. 1
Here it is assumed that the observed workloads serviced mt, are related
to an underlying workload parameters ut exactly except for some small

random error dw; . This can be written asj;

1 1
Upq = Upaq * 9
(643¢14)

Further, it is assumed that the underlying parameter has a growth

charateristic, such that;

+ du

“ = Ut 94 t

£+ (6e3424)

where 9t 41 is the step increase in time interval (t, t+1) and dut
+

is a small disturbance vector. Now the incremental growth parameter

is constant in time, barring a small error, SO that;

g = g +dg
£+ t t (6+343.)
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It is also assumed that the expectation of each of the error terms

;s zero and that they have finite variances.

griefly expressed the model under consideration consists of cbservations
from a process that exhibits a stochastic linear growth. The
eguivalence of the model to the General Problem of Chapter 3 is readily

seen when it is written in the following form;

11
R TC AN a du, + dg,
0 1
St % dgy
(6e3.44)
1 » 1
W
par = 000 fup o\ U
gt+']
(6e345.)
Equation 6.3.4. can be further simplified to;
Ut 11 . 11 ut . 1 1 dut
B4 VAN 0 Y \da;
(643e64)

In this case Equations 6.3.6. and 6.3.5. are a specific form of the
extended model of Appendix 2. Once the respective error covariance
matrices of dwl, dut and dgt have been specified, estimation of

future parameter values follows immediately by application of the

recurrence equations of Theorem 3.3.6. to initial estimates.

6.3.2. A CYCLICAL MODEL

Consider a process, propagating through time, that exhibits only a

Cyclical nature of time period N. At sach time point t an observation

of the process, denoted wi, is taken. It is assumed that the cyclical

nature of the precess at time t can be described by a (N x 1) factor

vector denoted fie It is clear that a constraint of the factor vector
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must be;

11--01 f =D
(1100108,

(64347.)

Now, t can be written as a multiple of the time cycle and a remainder
such that;

t:Nj+k k:'l,...’N

In this case the time point t relates to the kth part of the n-cycle.

A model of the form;

wi+1 - 1::;-v'] * dw§+1
(6.3.84)
is therefore proposed, where fi+1 is the appropriate element of the
cyclical factor vector ft+1 at time t + 1 and dhji.l_1 represents a
small random cbservation error vector. It is also assumed that
E(dwi+1) = 0 and that E(dWi+1 dW311> = 5.9, .

Further, the cyclical factor vector is allowed to change with time

in such a way that the Equation;

Frar = T * 90y

(6.3.9.)

describes itstransition. The term dft takes on its obvious meaning
T
of & small random disturbance vector where E(dft) = 0 and E(dftdft) =
d .
Rt t<

The correspondence of this process to the General Problem is easily

seen by redefining Equation 6.3.8. as;

2

2
v = ‘P £+ du
1
t+1 t+1 t+1 t+ (6.3.10.)

where

4)2=¢2 (L £ .

t nj+k 1k 2K " TNk
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The constraint of Equation 6.3.7., however introduces a restricted

form for the covariance structure of the model, In order that the

constraint be preserved by the recurrence relationships of Theorem
3.3000 Co,oo and Rt(the 8rror covariance matrix of ft) must be of
the following form;

= R R . 7]
Rt 11 12 R1N

R R .
21 22 RZN

| N1 N2 NN
such that
Rii> 0 1= 1,0eeN
Rij = Rji 1,7 = 15eee,N
and
n
i=1Rij =0 J = Tyeea,N

This completes the cyclical model. In the next subsection the linear

growth model described by Equation 6.3.2. is combined with a 4-cycle
(seasonal) model. This type of combined series is frequently found

in industrial time series.

6e3.3. WORKLOAD FORECASTING

Cameron and Nash (1974) use a multiplicative seasonal 'Box-Jenkins!
(0’191)(0,1,1)4 model to predict eight of the nine workloads under

examination, The form of the model;
vvu, K = (1-88)(0" - BBa)a ’ 18l < 1, I8l <1
47it it

Carries the assumption that both the seasonal and growth variations
are time invariant. After obtaining estimates of the parameters

B and B over 35 observations they then tested the model for time
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periods 36-43. They found that one of the estimated series performed
badly and attributed this to a probable change in the seasonal pattern,
for which they had insufficient data to fit a neu static model.

The seasonal linear growth stochastic model that follouws is proposed

as an improvement of the Box and Jenkins model. Not only does it

allow for time variable parameters, little data and gives interpretation
to the process but also encompasses Cameron and Nash's model for their

remaining workload (ws);

V,Usy = g

Inspection of the graphs of their workload series would also suggest

that the parameters for at least wz, W_ and w8 might have changed over

3

the observation period.

It is considersd that the observation of worklocad i at time t + 1(uit+1)
is made up of an underlying value, a seasonal adjustment and a random

observation error. The observation system is then;

Ui gaq T Y5 gan ? 4)5 g1 1 tar * U g
where the definition of the above terms follows through from the
previous subsections. The structural system is taken straight from
Equations 6.3.4. and 6.3.9. with the introduction of the suffix i to

indicate the relationship to the ith workload.

= dU,

Yioger T Yie Y % g T Tt
— dg.

B t41 T 9¢ 7 Tt
f = f + df

i t+1 it it

Putting this into the framework of the General Problem it is apparent

that;
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" process; that is du
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2
W = (1 0 -)l) Y Ty
i t+1 it+1 it+ * dwi £+

it
f.
L 1 t+u
and
1 M 0 1L, E T Mag
U5 a1 ! Uit 11 0] fdu,
-lo 1 0
9 t+1| ;¢ *|% T 0 l{de;y
£ 0o 1.]lf. 0o
U1t L MLt L "] _dfitJ

for each workload wi. Clearly, it is a simple matter to incorporate
the prediction of the vector wt into one model of the General Problem
type but this would necessitate the storage of large matrices with

many zero elements which is»computationally inefficient.

Once again, this model could be used to update estimates from a static
& dgt and dft are zero for all time without

matrix inversion or recalculating the parameters using all observations.
In saying this however there is much to be lost in assuming stationality
of time series parameters as we are forced to reject the model each

time they change, whereas the above model handles this situation most

elegantly and without the difficulties caused by the stationality

assumptions.
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CHAPTER SEVEN

STOCHASTIC CONTROL OF MANPOWER SYSTEMS

Introduction

A review of the preferability of a one-step strategy in the
control of manpower systems

The choice of a cost function

Deterministic control theory

Solution of the one-period deterministic control problem
Solution of the two-period deterministic control problem
Splution of the N-period deterministic control problem
Stochastic control theory

Solution of the one=-period stochastic control problem
Solution of the two-period stochastic control problem
Solution of the N-period stochastic control problem

An example in stochastic control theory
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7.1 INTRODUCTION

In this chapter the problems encountered when controlling manpower

systems are considered. In the review of manpower control theory,
chapter 2 Section 5, some prejudice against the one-step strateqy
advocated by Bartholomeuw (1975) was apparent. The gensral dislike

for this type of strategy stems from its resemblance to the !'fire
fighting' methods often used but even more frequently deplored by

British management. In the second part of this section the justification

of adopting such a strategy is guestioned with specific reference to

Bartholomew (1975).

In Section 2 a cost function is developed which is thought to portray

the true cost of controlling a manpower system more accurately.

Having generated such a function, the theory that enables the construction
of sequential optimal control inputs is presented. Sections 3 and

4 comprise the solution of the deterministic and stochastic control
problems respectively, both deal with general N time period planning
horizon. Although there is no great difficulty in going straight to

the stochastic situation this would, however, involve the introduction

of a vast amount of notation in a short period in order to preserve

the compactness of the solutione. It is for this reason that the

notation is built up slowly through the discussion of the deterministic
problem, which is also included to facilitate the understanding of

the structure of the control problem under consideration. Whilst
working towards the solution of controlling manpouwer systems it is

found quite generally that the method employed should be to start

at the end of the manpower planning period and work, somewhat

counter-intuitively, from the end of this period backwards in time

to the present. This point is emphasised continually throughout the

Chapter. In this presentation the solution to an unconstrained control
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input is only considered, although the method of solution extends to

systems having structural constraints.

This chapter is then concluded with a short example that exhibits
the simplicity of the calculations which are involved in deriving
control inputs. Moreover, it is found that' the estimation praoblem
discussed in Chapters 3 and 4 and the control problem examined here
can be considered as completely independent processes. The

re-evaluation of the one-step strategy now follouws.

Telale A REVIEW OF THE PREFERABILITY OF A ONE-STEP STRATEGY IN

THE CONTROL OF MANPOWER SYSTEMS

Bartholomew (1973, 1975) has definite views in favour of the one-step
strategy, in this section it is intended to re-examine the value
of such a strategy. In Bartholomew (1975), he states;
'The one-step strategy will certainly make at least as much
progress at the first step as any other strategy but, on
the other hand, it cennot be better than a T-step strategy
after any multiple of T steps.  There can thus be no
choice which is 'best! in an overall sence. The length
of the planning horizon must, therefore; be decided by
balancing short term and long term advantages. It appears
difficult to give a satisfactory mathematical analysis
of the question, but calculations are sasily made and,
fortunately, the matter seems to be st clear cut as to
make a deeper analysis superfluous.’

The review of the one-step strategy that follows is extracted from

Work communicated to Professor Bartholomeu early in 1976.

Firstly, it is shown that the one-step strategy may in fact be better

than a T-step strategy after a multiple of T steps.  Fere the one and
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tyo step strategies are compared after 4 steps. As in Bartholomeu

“975), Table 1, the following values are used;

P = e5 o4 0 Initial vector (0 1 0)
0 .6 3 and
0 0 .8 goal vector (.286 .286 .428)

The results of applying the one and two-step strategies to this

~ problem are presented in Table 7.7.7. below;

TABLE 7.7.1.

Comparison of the one and two-step strategies over four time periods,

details given in the text.

ONE-STEP STRATEGY TWO-STEP STRATEGY

TIME Ni(1*) 10D Ni(2*) 10D
N

0 .000 1 .000 7.748 .000 1 .000 7.748
1 .100 .600 .300 1,496 .090 .600 .310 1.509
2 .180 .400 .420 0,243 176 0396 .428 0.242
3 .232 .312 456 | 0.044 231 308 461 0.046
4 .262 .280 .458 0.016 062 277 <467 0.018

Clearly the two-step strategy is inferior to the ene=-sgtep strateqgy

. _ e R . L4l ~ 2
after four time periods and this is sufficient to prove the first

point.

Secondly it is thought that the preferability of the one-step strategy

Over the N-step strategy has not been adeguately resolveds Bartholomeuw,

Uith refersnce to his Table 2 (see Table 2.1.2.), argues that the

valuss of the distance function at various time periods differ significantly

In favour of the one-step strategy so 285 to make a deeper analysis

superfluoys. Never the less a deeper analysis was performed and it
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yas found that the entries in his Table 2 were a little misleading
It is gertainly true that the minimum distance of 0.61 after two time
periods can be achieved by the two-step strategy from a distance of

0,16 after one time period, but it can also be reached from a distance

of 1.16. Similarly the 3-step strateov can reach the minimm
of 0.31, from a distance of 1.16 after one time period and 0.61

afrer two periods. Thus Table 2 of Bartholomew can be revised
Tis is presented in Table 7.1.3.

TABLE 7+71¢2¢

An extract of Table 2 of Bartholomew, (1975);

TIME \\if 1 2 3
0

2.44 2.44 2.44
1 1.16 2.16 2,16
2 0.6 0.6 1.66
3 0.32 1421 0.31

TABLE 74143,

A revision of Table 7.1.2.3

TINME \\\T* 1 2

3

~

o 2,44 2,44 244
1 1.16 1.16 1.16
2 0.61 0.61 0.61
3 0.32 0,32 0.1

Comparing the entries in Table 7.7.3., it would be difficult te

ctonclude other than that the strategies have very similar properties

N this specific example.
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at this point a re-examination of the comparison process that has

been employed above is undertaken.  Various step strategies have

been used and all time values of their distance from a goal have

been calculated. These relative distances have then been compared,

but the strategies have not been designed so as to minimise the

distance from goal at all times, only for one specific time period

74, Thus, this comparison process is somewhat unsatisfactory.

This naturally leads to the rejection of the simple distance function

ysed above and therefore a new distance/host function must be established.
The choice of a suitable function is the topic under discussion in

the ensuing section.
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THE CHOICE OF A COST FUNCTION

Tele

In Chapter 2 it was stated that a simplified view of control theory

yas the matching of the supply and demand forecasts of the manpower
system. By this it is assumed implicitly that there is something

to be gained by 'controlling' the manpower system or equivalently a

1088 associated with not controlling it. So, already a subjective
measure of ‘cost! has arisen. It is the aim of the section to formulise
an objective cost function that has the same properties as the actual
1oss associated in industry by failing to control manpower. The
following two sections will then show optimal methods of minimising

this cost function over time.

Dealing with a deterministic system first, it is clear that any cost
function should include some measure that reflects the difference
between the desired stock vector x* and the projected system vector ‘

X, that is;

£‘ = f((X* - X),o.n)
where £!' represents some cost function. Now as the system propogates
through time, cost will certainly accumulate through ali stages of

an N-period planning horizon. Hence;

£l{l,0 = qu((x; - xi),...)

since it is assumed that the system starts in stete x, for which no

control can be exerted.

One of the most widely used functions that expresses the cost of some

discrepancy is the squared error function. This has the property that

it attributes equal loss to both positive and negative errors of the

Same magnitude. It has the additional feature that the cost also

increases with the amplitude and duration of the discrepancy. Both of
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these characteristics were thought to be valid first approximatioﬁs

to the costs incurred in industrial manpower systems. To add further

realism to the cost function, a time variant symmetric positive definite
weighting matrix is introduced. This may be used to model costs that
are different for distinct grades which may vary cver time. The cost

function now takes the formj

(7.201‘)
where

mi is an n x n symmetric positive definite weighting matrix.

The above cost function now reflects the loss associated with not
obtaining a desired stock vector at each point of observation.
However, this form assumes that no further cost is associated with
controlling the manpouwer system. In industry costs are certainly
incurred as when redundancy or recruitment occurs. This may be
accounted for by the introduction of a second type of cost function.

The deterministic cost function is now given as;

N

* T %
£ = - - .
N, O Eq(xi X ) B (%g = g )Yy g By

(7.2.2.)
where .

Y is the control input at time i
and

B is symmetric positive definite weighting matrix.

1

The difference between the x and y suffices is due to control y.

affecting x,.
i

It is clear that the objective of management must be to minimise this

The function LN 0 is defined to

°0st over the planning period. ,
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represent the minimum value attainable, that is;

L = min min «es min £
N,O N,O

yD y1 yN—1

(7.2.3.)

5p the aim is to minimise the 'system error' plus the 'control effect!.

Having now established a general deterministic cost function, it is
possible to re-examine the cost function of Bartholomew (1975), discussed
in the previous section. Bartholomew's cost criteria for the k-step
strategy is equivalent to;
* *
min  min ... min (x - xk)T1(x - xk)
Yo Y1 Yk-1
(7.2444)

with the additional constraint

y..> O for all i = O,esek=1

1]
aﬂd j=1’.¢on

The one-step strategy involves minimising the cost function at each
point in time adding further constraints to the minimising process
and therefore cannot be better than a k-step strategy cver k time
periods, which is in agreement with Bartholomeu. Thie is a rather
unjust criticism of the one-step strategy as it is being compared with
other strategies over different cost functions. What is moTe important
is the fact that the one-step strategy cannct be better than the

optimal control strategy obtained by finding the solution for ygeee¥y 4

of Equation 7.2.3., again subject to the constraint of positive

values of yij only being admissable.

The control problem is nouw examined in moTe detail. It should be

Clear that since the only knouwledge that is possessed of the manpoweT
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em is through observation,

st the control vectors must satisfy the

the constants of the system and be a function of the observations
such a seguence of control vectors will be called admissible.

suppose a sequence of admissible control vectors exist which are the

* *

O’y1""yN—1c

Using the sare initial part of theoptmalcontrol secuence §O’§

solution to Equation 7.2.3. and let them be denoted by ;

*
17 Yygrog we can

assume that over the time interval (N',N) there is another admissible control

. .. that has a cost less +har v ..*
sequence Yy s - ¥y than ¥yrrs Y1, Then it is clear that

*
YN-1

this is a contradiction as the control sequence which is the solution

* *

*
yU,,,.yN'-qyl{l...yN_1 has a total cost less than y ,...

. However,
of Equation 7.2.3. is the minimum.  This means that an optimal

control sequence must have the property that regardless of any earlier
control sequence the remainder of the control sequence must be optimal.
As will be ssen in the following sections this property of optimal

control sequences is paramount to their derivation.

The derivation of an @ptimal control sequence in one stage at first
seems a mammoth task, however, the above indicates a-much simpler
approach. The method is not the intuitive way of trying fo gain as
nuch as possible in the first time period but the converse.  Starting
at the end of the planning horizon, the method is to obtain the
minimal cost over the period (N-1,N) from an acbitrary x, . position
and then work backwards in time to the present. 1his is the method
®mployed in the next two sections.

So far the formulation has been purely deterministic, however the real

Problem is stochastic. It is necessary therefore that the cost

function to be minimised is;

N T
* T * .
*N,0 ° E(?:q(xi - xg) 0 (xg 7 Xg) ZRLIIN)
1l=
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given the observations up to the time the control must be implemented
This representation of the cost is sufficient to cover both the
deterministic problem and the stochastic problem and so further

notation is unnecessary.

pefore embarking upon the task of determining optimal control seqguences,
2 convenient restructuring of the problem is established. Consider

the system equation of the model as;

+ B dx

= X
Xy a1 ¢k+1,k k ¥ Ske1,klk Ty

where it is desired to find the solution of;

. . 0 T T
min min ... min E(;E; X, = Xi) mi(xi - Xi) + yi-18i-1yi-1
y Yy y

0 71 N-1

An equivalent form of the problem is;

v o= O T !+ dx!
X1 ¢k+1,kxk etk T
where
L 9 |=- 0
% k - rxk qJk+’|,k q]k+’|,k
* 3
8" ! Pran, i
- J
v - TdxT ! - e
Oxp = 9% B+, k k+15£]
L 0] L © J
| S,
ve =[]
and where $k+1 , is 2 matrix which satisfies:
b

* *
Xee1 = ¥k+1,kxk
and it is desired to find the solution of;
N
: T T
min  min ... min E( Z:XE mixi * yi—1ai-1yi—1)
i=1

N=1
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where

The equivalence is simply established by multiplying out the terms.
Noticing this reduction it is sufficient to find an optimal control

sequence that minimises;

N
T T
X X
E(ii_-'1 i mi i’ yi-1Ei-—1yi_1)

given the observations up to the time of implementation of control.
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7.5 DETERMINISTIC CONTROL THEORY

In this section the solution to the problem of controlling a deterministic

manpower system is obtained. As noted in the pPrevious section we

will work from the end of the planning horizon backward in time to
the present. The approach will be to solve the N period planning
problem for time intervals (N - 1,N) and (N - 2,N). After this a
form of the solution for time (N - J,N), that is compatable with the
two previous solutions, will be assumed and the solution for time

(N -3 - 1,N) derived. The principle of mathematical induction can
then be invoked in order to prove that the solution is valid for all
Je In developing the solution both the optimal control sequence

*
*eeYg and the costs L eosl will be obtained. The solution

IN= Ny N=1 N, O

given is for an unconstrained control input, however, the methodology
for a constrained control input is analogous and is a development

of Equation 15 of Bartholomew (1975).

Since, in the deterministic formulation of this problem the state
vector X, is directly observable there is no need to consider the

redundant observation system. Here the task is to find the optimal

* *
control sequence yN 1,...y0 that minimises;
£ = 3 me X, +y, B, Y. .
N,O Pt iii i-171i-1"1-1

wherg

kel = bk+1,kxk * 8,1k

As an aside, the usual formulation of the deterministic manpower

Problem can easily be placed within this structure;

n =P

t+1 *r

te1,tt T Tt

a . . e
nd the problem is to minimiss;



N ZE *
S w.(n . =n_.)
t
£ g Y
where

Nei = the ith element of the stock vector at time t
pt+1’t = the known transition matrix

r, = the recruitment vector at time t

wj = a weighting of the relative cost of errors between

different grades

with the further constraints that;

rij'a.o and often (1,1...1)nt = N for all time

These latter constraints, although reducing the set of admissible

control vectors, do not affect the method of solution that should be

employed.

Te3e7s SOLUTION OF THE ONE-PERIOD DETERMINISTIC CONTROL PROBLEM

The optimal cost in this first problem is given by;

. T T \
Ly e = mEn OBy X+ yy_q By qYaq
YN=1 (7.3.1.)
where
N = ¢N,N-1XN-1 * By N=1Y N1

(7.3424)

using the fact

Fo3sle

On substituting Equation 7.3.2. into Equation 7

s

that mN is symmetric and collecting terms, the following expression

FOI‘ L 1 1 .
N, N1 is obtained;

T T

T 4T
2X o 8 y
N1 N,N~1mN¢N,N-1xN-1 + 2% By et B e

LN,N-1 = min (

-1

+ Yo By o o, n- T N
(70303.)
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The turning point of this expression is found by taking the gradient

yith respect to vy, , and equating this to zero, whereby;

T 47 08 ool BT
2%y 4PN, N-1 NN N1 T Yyaq € NoN=1 8, o * Byoq) = O
and conditional on the inverse of the bracketed term existing, the

optimal control for time n-1 is seen to be;

* T

-1 T
= -(8
Y1 ( )

08 B
N N=T N NyN=1 * Fnar 8N,N-1mN¢N,N—1XN-1

(7.3.4.)

The fact that this is a minimum can be seen by observing that the

second gradient of Equation 7.3.3. is positive definite if BN Ner
,N-

exists and it ecan always be made to do so.

It is clear that notation and space difficulties are going to arise
as the development continues towards the solution of the N-period
control problsm. For this reason two further symbols are introduced

in order to esase the exposition;

A
Uy = 0y
(7.3.5.)
and
4 T -1,T g b
Ina1 = - (SN,N-1UN8N,N-1 * EN-1) BN, - N¢N;N=W
(7.3.64)
by using these definitions Equation 7.3.4. recuces toj
¥*
y =Y X
N-T — "N=1 N-1 (7.3.7.)
The evaluation of L can now begin;
NyN=1
T *T o
= B
TR R R I SR TR TR
(703080)

vhich becomes on substitution of Equation 7.3.7 and Equation 7.3.2.3

T 4T
L = ¢ X e
NyN=1 = XNet N,N-1UN¢N,N-1 N=1
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T T
U 8
* 2xN-1¢N,N-1 NN, N TN e
T, T T
oy Oy B U8 e Broq ) T )%y

T T T
i XN-W{ @N’N'WUN¢N,N-1 ' qjN,N-1UNBN,N-1!N-1 }XN—1

T v X
= XN=1 N-1TN=1
(7.3.9.)
where
a T T
v = U 8
N-1 ¢N,N-1 N¢N,N-1 " ¢N,N-1UN N N1 TNe
(7.3.10)
The one-period solution can now be summarised as;
*
a1 = Tyer™n-
. (703.11)
-
= v
TR I Bl VG (S TR
(7.3.12.)
where
T -1.T
= - 8 U
T (BN,N-1UN N,N=1 BN—ﬂ) BN, -1 N¢N,N-1
(7.3.13.)
U =
N Oy
(7.3144)
T c)
v = U + A1
N-1 ¢N,N-1 N(¢N,N—1 Ny N=1"N=1
(7.3.15.)

7.3.2.  SOLUTION OF THE TWO-PERIOD DETERMINISIIL CONTROL _PROBLEM

The optimal cost is now given Dy;

N

T 5
L omin min & (xBX Y5 9850V
NyN=2 , ioN=1 i1

Yn-2 YN-1

As noted previcusly the value of Yy_qs does not affect the stock

vectar at time N - 1, hence LN,N—2 reduces toj



, T
= min (x 0
Ly N-2 ey g (g Vet Xy YN-2By-2Y o2
y
Ne? (7.3.16.)
Lgtting
Uyar = Bner * Ve
(763.17.)
Fquation 7.3.16. further reduces to;
. T T
Ly et = ™0 Oy by iy YysoBy o)
YN-2
(7.3.18.)

vhich is the same form as Eguation 7.3.1. of the previous subsection,

the solution of which is already known. Noting this it 1s apparent

that;
y Y
Yn-2 T n-2”N-2
T
= Y X
Ly,ne2 = XNe2 N-2 N-2
where
T T
= - u 8 8 U
Tz = =By g oot Byt vz * By-2) N-1,N-2 N-1¢N-1,N—2
Une1 = Byon * Ve
T \
= Y )
Un-2 ¢N-1,N-2UN-1(¢N-1,N-2 * BN, Ne2 2

It is now a simple matter to postulate the solution of a Jwperiod

problem.

7.3.3.  SOLUTION OF THE N-PERIOD DETERMINISTIC CONTROL PROSLEF

It is first assumed that the equations for & J-peried prublem are;

-3 = Tnoa%n-3 (7.3.19.)
T
L = Vo X
N,N=3  TN=3 N=37N-D (7.3.20.)
T
T + B _)8

- 8 - -
N-J (BN-J+1,N—JUN-J+1 N-J+1,N-3 T N=DTN=de T, N

UN"J+1¢N-J+1,N-J (7.3.21.)
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= 0 v
e P T VI, P [ VI, WO

(7.3.22.)

v = ¢T U (b + 8
N=3 T TN=D#T,N=3 N=3+1 PNe3a,8-0 T Fyiga, neaTye )

(7.3.23.)

The J + 1-period problem consists of finding the control sequence;
3

* * *
Yped=1? V=3 N-t
that minimises;

N

T T
£ = x.0.x, +vy, B
N, N=J-1 if%-J i01% T Y5801 500

* *
Now the control vectors yN—J""’yN-1 do not affect the stock vector

*
Xy 37 therefore the task reduces to finding Y Negt that minimises;

T T T
TR R R VL e R B T R VR R T, N6 i A i T

since we assumed that the solution of the J-period problem is as above.
By writing;

U =0 + V

N-3 N N-J

=3
*
the task is to find y that satisfies;

i T U X + T B y
min Xy 9 %-7"n-3 F YN-3-1 N-3-17N=3-1
YN=3=1

uhich is the same form as Equation 7.3.1.; whose solubion is already

known . Thus we obtaing

*

YpNager = 1

N=J=1"N=J=1

.
- v X
LN,N—3—1 XN=J=1 N=3=1" N=3-1

.
T 8 U

TNegon = ‘(BN-J,N-3-1UN-JBN-J,N-3-1+EN-J-1) N-3,N-J-1 w-ah-a,n-3-1

U =0 + V

N-3 N-J N-J

T +8 I
VN-3—1 = ¢N—3,N-J—1UN-J(¢N—J9N-J-1 N-J,N—3-1 N-3'1
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The principle of mathematical induction can now be employed Since

ion is true for J =

the solut T and for J + 1 given it is true for J,

it is true for all J = 1,2,000'\1.
The solution of the deterministic control problem is again a set of

recursive equations. The computation procedure would be as follouws;

1, Set UN = mN and a counter equal to zero

2. Using UN in Equation 7.3.21., obtain the value of YN '

-

3. Store the value of YN 1

4 Substitute YN 1 and UN into Equation 7.3.23., this yields VN 1

S Store the value of UN 1

6. Obtaining mN ’ and UN ’ from above, Equation 7.3.22. now gives UN ]
T Set counter = counter + 1

B. If counter = N go to Instruction 10

9, Set N - 1 = N, return to Instruction 1

10. The series YD""’YN-1 and UU""’UN—1 have been stored.

Given x_ and the updating relationship X _, = $k+1,kxk + ek+1,kyk’

0
= X :D’].noN"q
Yy Ykk K ’
and
Yv,o0 = bn,o T by k
where
L :XTUX

N, k k Kk

tan be evaluated.

Having determined the optimal control sequence for & deterministic

. ] d.
"aNpower system, in the next section the stochastic problem 1S tackle
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7.b STOCHASTIC CONTROL THEORY

The development of the optimal control sequence for the stochastic
problem can cow be carried out in an analogous way to the deterministic
solution obtained in the previous section. It is known that any
control sequence must be a function of the available observations,

this is because direct knowledge of the system is clouded by random
eITOT» As in the deterministic solution, derivation of the optimal
control sequence will commence at the end of the planning horizon

and work towards the present.

Tebdals SOLUTION OF THE ONE-PERIOD STOCHASTIC CONTROL PROBLEM

The optimal cost is now given by;

:
= i X B
Ly,neg = ™0 ECB Xy * YyoaByorYner)
YN=1
(7.4.1.)
where
= B8 dx
N ¢N,N-1XN-1 ST R RA YIS B Y
(744424)

Substituting Equation 7.4.2. into Eguation 7.4.1., ueing the symmetry

of mN and collecting terms, the following equation holds;

1
y + dx ) o

N Neg T MO E<(¢N,N-1XN_1 + By N1 YN N-1! N
YN-1
' 3y
+ aX }
(¢N,N-1XN—1 * By, -1 e -1
T
R RL IRy

(704030)

Dropping the time suffices, expanding and rearranging the terms;

T
- Ty T Ty T g 08 +8)y
LN,N_1 = min E(x § D P x + 2x p 0By +Y (

. T T
+ demdx + 2xT$ Ddx + 2dx 0 B y)



-159~

\ou the second to last term on the right hand side is equivalent to;
’

240 § x,dx> =0

the last term also vanishes since Ynon is a function of ZN~1""’Z1

and

<Zide—1> = 0 Ui:'],,.,,N_']

*
The task therefore reduces to finding Yy that minimises;

/I

T, T T, T T
E(x § 0 Px + 2x boBy +y (BDB+B)y-+ deudx)

(7.4.4.)
The fact that
= £
Ey EZ( (x/z))
is now employed, so that Equation 7.4.5. may be written as;
T T.T
E (E(XT$ 0fx + 2x § 08y « yT(BmB + B)y + demdx/z yeesz, )
ZN—1’00.,Z N"1 /l
(7.4.5.)

Now obviously it is enough to minimise the inner expectation in order
to minimi .

minimise LN,N-1
Taking the gradient of Equation 7.4.5. and equating this to zern and

: : . . s = ntains:e
reinstating the time suffices the following expression obtalns;

T T *T T n o + B) = 0
8 ¢ e : =
ZE(XN/ZN-1""’21)¢N,N—1mN8N,N-1 + ZyNwﬁ( et B, e
But as bef T / 2 ) =% and so
efore E(xN_1 Zy qreeeaZy) = Xg o et
* A
Yne1 = Ino1%0 N-1,N-1
(7.4.64)

shere ¥ . takes on the same value as it did In the deterministic

Problem, which is shown in Equation 7.3.6..

L ing

N,N-q ©&8N now be evaluated, defining once 2g&
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A
Z 0
UN N ’
(7.4.7.)
L =E(><TU><+yTE y
N, N-1 N NN N=1"N-1"N-1
(7.4.8.)
yhich equals on dropping the time suffices;
T+T A AT T
E(quﬂTWX + 2X 41 08YX + X Y (808 + B)YR + dede)
(7.4.9.)

>-1 T

T, T T o
E(xTUx) + E(% $ us(e uUs + B) 8 U¢x) + E(demdx)

E(XT\IX) + E(%TqJTue!i) + E(dx'0dx)

"

T

T
= v X RAC 8
g Yyt Xya) T E@N,NAUN N, N-1TN=1C0 N-’I,N-—1) * TRACE(UNRN--1)
(7.4.10.)
d i i i i N
where RN-1 an CO N=1,N=1 were first defined in Chapter 3 Section 2.7
and Section 3.3. respectively and where VN 1 is defined by Eguation 7.3.15..
Equation 7.4.10. is now further simplified to give;
L = E(XT v X ) + 5
NyN=1 N=1 N=1 N=1 N=1
(7.44114)
where
g =TRACE(¢T U8 Y .C + UR. )
Ne1 NyN=1"N N,N=1"N=1"0 Ne14N=1 N N1
(7444124)

In examining Equation 7.4.11. it is found that the first term is the

g : i ter
expected value of the deterministic solution and the second Lerm

. it me of i
represents the additional cost due to stochastic dynaiice Gf the

system and the estimation error.

7.4.2,  SOLUTION OF THE TWO-PERIOD STOCHASTIC CONTROL PROBLER

The optimal cost for the two-period problem is given bys

N
T g v
Ly oz = N min E'ZN 1(><if13i><i Y01 i

(7.4.134)
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in the previous section, th
as noted P » the value of Ynon has no effect on

tock vector at time N-1 .
XN-1’ the s y and so LN, - can be rewritten as;
] cmin E(x (B L+ v x4 T g =
NyN=2 N=1" N=1 N=1"""Na1 N=2 N-QyN-Z + y 1)
YN=-2 -
which as in Equation 7.3.17., letting; (7.4.74.)
= v
Un=1 = Onor * Vg
(7+4.15.)

, T T
by, N-2 T M By Uo XLy YysBuoYy) *+ 5

(7:40165)

Now this is the same form as Equation 7.4.1., except for the addition
of the term EEN-1 which is independent of Y2 Thus the solution to

this problem is immediate;

* A
Yne2 = In-1%o N-2,N-2
(7¢44174)
T
LN,N—2 - E(XN-ZVN-ZXN-Z)'+§?N-2
(7.44184)
where
T -1 T J
IN-2 - "(BN-w,N-2UN-18N-1,N-2 * waz BN, N2 et =1, N2
(7.44.19.)
T ' \
= B Yo
VN_2 - ¢N-1,N-2UN-1(¢N-1,N-2 * Nel N=2 Ned
(7044204)
and
T ¥ o +U R
E;IV-Z = EfN_q + TRACE(*N-1,N-ZUN—18N»1,NQZ“N»2 0 N=2,N=2" N=1 N=2
(7.4421.)
7edo3, SOLUTION OF THE N-PERIOD STOCHASTIC CONTROL PROBLEM
problem it

Noting the form of the solutions to the one and two period

)
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is easy to postulate the solution to a J-period problem.

Thus, it
is assumed that the solution of the J-period problem is:
b
* Y A
YN-3 T IN-2"0 N-3,N-3
. (7040.22,)
L = E
T Bl SV L T VY +5 N3
(7.4.23.)
yhere
T
1 = (8 TN 8 ) g
N=3 N=J+1,N=3 N=J+1 N=J+1,N=3 ~ N-7) 8N-J+1,N-JUN_3+1¢N_J+1’N_3
(704.244)
Uneget = Oncaer * Vneda
(7.4425.)
T
v = ] ) .
N-3J ¢]N-:M,N-J N-J+1(¢N-3+1,N-J'f{?N-J+1,N-3!N-J)
(7.4.26.)

T
5 = TRACE
N- SN-341 (¢N-3+1,N—JUN-J+18N-J+1,N-J!N-JCON-J,N-J

M UN—J+1RN-J)

(7.6427.)

The J+1-period problem consists of finding the control seguence
* *

*
yN-J.1’yN_3’-u,yN_1 that minimises;

£ v T T
- \
N,N-3-1 ~ E.?% J(Ximixi *YyaPiaaYier’

1

* *

Now the eontrol vectors Yy J,...,yN 1 the etock vector

do not affect

at time N-J, and since it has been assumed that the sciution to the

*
J-period problem is true, then the task is simply to find Yyie3et

that minimises;

T T Ty x )
XNegnean-3 * Yo 3-1EN=3-17N=3-1 * XN.7 N=3 N=3 *Esw-a

(74.28)

£ _
N,N-J-1 = E
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Compatable with Egquation 7.4.25,;

U3 = Oh-g * Vneg
(7.4.29.)
fquation 7.4.28., reduces to;
=31 IR y§‘3‘1EN-3—1yN-3-1) S
(7.4.30.)

strictly, we should now go through the minimising process as in Section
7.4.7., but as this is so similar, it is considered enough to note the
similarity between Equation 7.4.7. and Equation 7.4.30. and then state
the solution to the J+1-period problem as;

* Y A
YNed=1 = *N=3=170 N=3-1,N-3-1

T
L = E(x v
NyN=3-1 ( N-J-1 N-J-1XN-J-1) ¥ EgN_J.q

where
T T
Y = -(8 u .8 8 U
N=J-1 ( N=J,N=3=1 N=-3 N-J,N=J-1 ¥ ElN-3—1) N=-J,N-J-1 N—J¢N-3,N-3-1
U = + V

T T
= Y )
Un-3-1 ¢N-3,N-3-1UN-3(¢N-J,N-J-1 SV BV, B R B
5 =5 TRACE(¢T u. .8 Y .. .
NeJ-1 “@nN-3 7 N=3,N=3=1 Ne3J NedyNed=t =1 ON~J~1yNeJ=1

* UN-JRN-J-1)

So, given that the sclution is true for a Jeperiod problem, it is true

for a J+1-period problem and noting that st is alsc true for J=1, by

the principle of mathematical induction, the solution holds for

3=1,2,...N. This completes the stochastic control problem.

In the next section a simple example 1S given sO that the theory

of the last two sections can be related to a real situation.
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7,50 AN EXAMPLE IN STOCHASTIC CONTROL THEQRY

Consider & three-period stochastic control problem where there are

no costs associated with control, that is;

3
* T *
:E - X -
53 qu(xi i) mi(xi xi)

where

= B
k41 ¢k+1,kxk * Bt Wi 9%

+ dz

NI DL K+

* *
and where the objective is to find controls yD,y,I,;2 that minimise
£3. Using the work of Section 2 of this chapter, the above problem

may be reduced toj;

5 7
| - 1
£3 = E;: xi mixi
i=1
where
1 - MO 1 1 1
* k41 ¢k+1,kxk MEEDTCTIR o
- t 1 d
2] kel kel T PPk

The definitions of the terms with an apostrophe carry over from

Section 2. The solution can be written down immediately as;

¥ I
= ¥ X k = 051420
Yk k™D k,k P

where YI< simplifies toj;
¥

-1 -1 X
Ls [_8k+1,k¢k+1,k 8k+1,k$k+1,ki

Also
%1 _ X %t =|x =+ Bz = ;E)
Ok+1,k | “k+1 Ok y k K <
x X,
XK+ K
and therefore
* ~ = | dx
a1 = Piar ¥ g k+1,k k
* 0
X

k+1
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It is simple to verify that Uk = 0,Yk and so the total cost is;

2
_ RACE @. U,
by EEE TRACE R 41, 1%00%50,5 75 i,i”

R.)

u.
i+ i

yhich after some algebraic manipulation becomes;

2
L, = > TRACE D, C

o 0 i+1,i

A noteworthy characteristic of this type of prablem is that the
optimal control filter Yk and the optimal filtered estimate ;\(U Kok
are determined independently. Thus, the control filter can, z;n;
in fact must, be determined for all times of the planning period.

This is because in most problems its form is given by applying the

recursive Equations; 7.4.24.,25.,26. backward in time.

In the above simplistic example the optimal control filter can be
determined without reference to the planning period. This occurs
because the expected error is zero. In cases where the E!k are
non-zerc or if other constraints were present,as in Bartholomsw (1975),
the optimal control filter can only be obtained from the recursive
equations starting at the end of the planning period and working
backwards in time.

We have now developed models for the measurement and preciction of

IRTey * AN 3T
wastage, supply and demand forecasting, and the contrel of manpower

. beee Epaether and discuss
systems.  In the next chapter we bring these LOUEEREs ane =

e

their application to an industrial manpower syste
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CHAPTER EIGHT

THE DUNLOP MANPOWER SYSTEM AT WORK

Introduction

The results of the wastage models on Dunlop Engineering
data 1971-1977

Results of using the Dirichlet-Multinomial distribution to
predict promotions on Dunlop U.K.T.G. data 1972-1977
Project benefits to Dunlop U.K.T.G..

Further applications of the stochastic planning models

Concluding remarks
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5.1 INTRODUCTION

1t is the aim of this chapter to review the current state of manpower
planning in Dunlop U.K.T.G..  The follouing section begins with a
presentation of some of the results obtained by using the models
developed in the previous chapters. Firstly, wastage estimation is
considered; here the problem is to estimate the time varying elements

of the survivor curve so that the estimated function may be applied

to the current grade dependent length of service distribution in order
to ascertain the probable stock remaining at the end of the time period.
The actual data exhibited refers to operators and their propensity to
leave during the first three months of service. The three methods
proposed in Chapter 4 are compared with what might be called the classical,
sample mean - sample variance, approach. Dn this data the results of
the new approach are very much better as measured by two different

techniques.

After the wastage rates and numbers have besn estimated by the above

methods, one is left with a stock that is eligible for promotion.

In Chapter 5 the Dirichlet-Multinomial distribution was proposed as a
suitable distribution to govern the grade traneitions. In Section 3
this method is employed to estimate the promotional transition over

Dunlop data for the years 1972-1977 inclusive.

Neturally any industry based thesis must be judged not anly on its

academic success but on the benefits it offers to the sponsoring company.

Uith this in mind Section 4 deals with current and potential uses of the

Proposed manpower models to Dunlop UeKeTeGoo Tt would be misleading to
Suggest that the complex models expounded in the main chapters of the

thesisg have been understood by all management and that they use them

UnreservedlY, that is not the case, however the simpler aspects, such

85 an accessible up-to-date data base, extracted programmes for tabulation
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and graphical representation of data and methods of wastage estimation

gained considerable approval,

e The reasons for this situation

and the resistance to accepting the complete 'package! are further

examined in Section 4.

The manpower models, although specifically designed for the Dunlop
contextual environment, will be applicable to other organisations
‘for manpower planning and because of the generality of the formulated
stochastic dynamic models, will have applications outside the manpower
planning field. A variety of possible applications will be discussed

in Section 5.

In this way it is hoped to trace the progress of the project, the results
and implications as related to Dunlop U.K.T.G. and also to discuss the
relevance of the models which have been developed in the more general

context of manpower and industrial planning.
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8,24 RESULTS OF THE WASTAGE MODELS ON DUNLOP ENGINEERING DATA 1571-77

Fyery manpower supply model must consider wastage. It is therefore of

great importance that the best estimation procedure available should be
used to estimate wastage, for the accuracy of any supply forecast will
be ultimately dependent upon it. It is now widely accepted that one
of the prominent, if not most prominent, correlate of wastage is length
of service. It is clear then that wastage can only be discussed sensibly
with reference to length of service. Forbes (1971a) has given a
comprehensive account of methods of estimating the survivor function;
amongst other methods he deals with census and cohort analysis. Both
of these approaches have their advantages and disadvantages. In order
to overcome the disadvantages of these étatic models, the problem of
wastage estimation was reformulated into a time dependent stochastic
context. The new dynamic estimation procedure was established in
Chapters 3 and 4, where three methods of estimating the covariance

structure of the optimal predictor were proposed.

These three methods and the time invariant, sample mean - sample variance,
method have been compared on data from Dunlop Engineering Group.  The

data comprised 28 observations of the quarterly wastage rate over the

period 1971-1977. The comparison was made using two different statistics;

The mean sum of sguared errors and the mean likelihood of ochtaining

the observation from its estimated distributicn. The former is the

more usual test statistic whereas the latter afforde the inclusion of

. . . . N 1 £pp decision makinge
the variance of the estimate which is most yseful for dec 9

Graphical results of the relative efficiencies under the test statistics

are presented in Figures 8.2.1. and B.2.2., and a summary of the results

are given in Table B.2.1., where the weighted posterior probability

estimator is scaled to 100. Further details of the calculations and

Tesults can be found in Appendix C. Section 2.



GRAPHICAL REPRESENTATION OF THE RELATIVE EFFICIENCIES

FIGURE 8.2.1.

OF THE FOUR ESTIMATORS ON DUNLQOP DATA USING THE MEAN
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GRAPHICAL REPRESENTATION OF THE RELATIVE EFFICIENCIES

FIGURE B.2.2.

OF THE FOUR ESTIMATORS ON DUNLOP DATA USING THE MEAN

LIKELIHOOD STATISTIC
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TABLE B.2:1-
Comparison of the relative efficiences of the four estimators over the

yhole Dunlop data series:

UNBIASED  BAYES 1 BAYES 2 CLASSICAL

mean sum of sguared errors 896.1 101.4 100.0 371

Mean likelihood 68.8 83.3 100.0 51.0

The graphs give a clear indication of the necessity to use the time
variant estimation methods on data which is thought might be time
dependent. Comparison by the mean sum of squared errors shows little
difference between the proposed estimators, houwever the improvement

on the classical estimator is enormous. On this data, the second
test statistic separates the estimators still further and reveals the
Bayesian-type estimators to have the greater power in resolving the
observation distribution. Further, it is noted that little loss is
incurred if the data is time invariant by using the time variant method
and much is to be gained computationally through the smaller data
which will obuviously affect

storage requirements of the dynamic method

maintenance costs of the system.
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8.3 RESULTS OF USING THE DIRICHLET-MULTINOMIAL DISTRIBUTION To

PREDICT PROMOTIONS ON DUNLOP U.K.T.G. DATA 1972-1977

commencing with the stock vector on January 1st, 1973 knowledge of the
ohserved length of service dependent wastage rates and the promotions
occuring in the preceeding year, estimation of future transitions could
begin. Initially, the grade-length of service estimated wastage rates
vere applied to the stock vector yielding an estimate of the number of
employses who would remain in the system at least until January 1st,
1974. The surviving graded stock were then considered eligible for
transition. The probability transition rate for 1973-1974 was now
gstimated by the methods discussed in Chapter 5. The observation of
what actually occured during this period was then recorded. After

the addition of all surviving recruits for that year, the stock vector
for January 4st, 1974 was obtained and the recursive estimation process

continued. Details of the results are presented in Appendix E. whilst

a summary of the results follows in Tables 8.3.71. and Be3e2en

TABLE 8.3.1.

The actual and estimated leavers (staff) from Dunlop UeKeT<Ge 1672=-1977

GRADE 1 2 3 4 5 6 © TOTAL
ACTUAL 72-73 57 143 52 16 7 5 z80
ESTIMATE 73-74 | 90 293 71 12 3 5 474
ACTUAL 7374 g2 286 = 72 13 3 4_,:;__
ESTIMATE 74-75 117 ~ 462 133 40 13 12 777
ACTUAL 74-75 108 458 144 37 14 3 174
P— -

ESTIMATE 75-76 | 77 392 96 36 11 g 621
P m—

4
ESTIMATE 76=77 76 357 150 79 10 2 531
ACTUAL 76-77 70 7286 148 35 11 2 % Goa
\ =




=174~

oue o the intermittent nature of leaving.with those groups having more
£han eight years service, predictions here were extremely varied, bu;
as the numbers leaving were small, the results when aggregated to the
grade 1evel are most satisfactory.

The second table relates to the estimated stock distribution after

account has been taken of the estimated wastage and promotional transitions
but before the addition of the surviving recruits during the relevant

period.

TABLE B8.3.2.

actual and estimated stock distribution for the year end on Dunlop U.K.T.G.

data 1972-1977.

GRADE 1 2 3 4 5 6 TOTAL
ACTUAL 72-73 299 1882 834 139 51 23 3228
ESTIMATE 73-74 | 315 1890 874 150 59 28 3316
ACTUAL 73-74 253 1894 936 151 56 28 3319
ESTIMATE 74-75 | 204 1709 911 129 51 24 3028

ACTUAL 74-75 234 1691 502 125 55 24 3031

CSTIMATE 75-76 |187 1484 891 q0e 46 20| T
ACTUAL 7576 |1ss 149 874 oe 42 1B P72
ot 7677|164 1516 823 98 45 28 26T

24 | 2652

ACTUAL 76-77 156 1565 759 105 &7

P P TN RO :90
Once again the total stock size 1s predicted with greal accuracy (=1%)

. s : 14l and estimated
and the grade sizes are of usable precisions The actual and €

Here, as may be expected, the

transitions are given in Appendix Ee

. . ith the variance
Promotional flows are more varied but when coupled wit

Sstimation given by the Dirichlet-multinomial method a sensible

i ¢ egstimati
lnterpretation of the flows can be made. The method for estimating
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f the Dirichlet-Multinomial distribution,
ters and moments o
the parame

:s described in Chapter 5, has proved a most useful tool in the
which 18

alysis of promotional flous.
an
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- PROJECT BENEFITS TO DUNLOP U.K.T.G.

at the beginning of the project U.K.T.G. had a manual based record system
b

access to which was effective only on an employee name basis. The

collection of aggregate data by any other attribute was almost impossible

due to the excessive workload that would be involved. The same was

true for any form of cross tabulation between work locations, job type

or factory. In order to obtain usable data for ths input into the

models proposed in this thesis it was necessary to construct an accurate,
up-to-date data base. This was achieved at minimal cost to the centre
and, perhaps more importantly, minimal disruption to the smaller operating
units during both the initial stages and the necessary procedures for
updating the system. This computerised information system was established
as an interlaced element of the salary suite and not merely an appendage
of it. The value of the total system was thus enhanced; now information
on both salary, job evaluation schemes and manpower data could be

cross referenced. The elementary programmes written for data extraction

have been extensively used by Dunlop U.K.T.G. giving immediate results.

Another feature of this system is the emall amount of effort that is
required for the maintenance of the file after the initial implementation

stage. This is invaluable to the company as the usable data base is

now expanding and no further informaticn is being lost through either

the absence of data or its ineffective storagé.

Not all of the models are being used to their full advantege and it 1s

1 <o 4," y ASE.e FiI‘Stly,
Necessary to examine some of the reasons why this ig vie &

in 3 ; - that it carries
1N industry information is not neutral, in the sense th a

> i t
S0cio-political implications. The proposed manpouer pianning &ys o

i i to changes
may have far peaching affects on the organisation and lead to g

. 5 uitment and
being made. These changes may influence many areas; LECT

f3 1 i development
fedundancy pplicies, manning levels, skill dietribution, GArser P
b .
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patterns etCeoe All of which are politically and emotionally charged
Any proposed change may meet with resistance especially when its

implications are so extensive.

Increased information on the manpower within an organisation could lead

to industrial conflict. The disclosure of information was of particular
concern to the executive management of Dunlop U.K.T.G.; should knowledge
be given of plans to reduce the labour force, the probability of promotion
between various grades or the closure of a factory? Present leglislation
on the disclosure of information increases the difficulty of this problem.
It should be realised, therefore, that the information given by the
manpower models, however accurate, will have socio-political implications

for the organisation and its work groups.

The above situation is true of many organisations. Dunlop, in common
with other tyre companies, has one more important feature that it is
thought to have influenced the acceptance of the models. This is the
desperate over-capacity in the tyre industry and the accumulated over
manning in certain areas. This results in a situation of terisis!
management such as the drowning man who thinks that he sees land on the
horizon and starts swimming for it although there might be an island

just behind him to the left or right. Time to thoroughly analyse a

situation in order to determine the best iong-term strategres sgidom

fmtme apcnheld are e
ssems availabls, even though the short-term policies AGCPEEY are rarely

optimal. Nevertheless !'fire-fighting' seems to be the ususl approach

. P selly pn decision
and it is difficult to change managsment attitudes quiviiy O deci

making approaches.

i i hree
The initial terms of reference for the project provided for thre

3 . . ‘}‘ - )
different planning horizons to the manpoweT methodology.  Within these

boundaries, it could be said that over the short-term (1-2 years)
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Considerable success has been achieved with the one year ahead forecasts
of the new models e.g. wastage estimation and promotional transition
chseqUB”tlY’ the confidence in these techniques is growing due to the

realised benefits of their adoption.

The attempt to Justify a long

term (10 years plus) strategy over a short time period is a problem of

2 much higher magnitude and it is unlikely that acceptance of the long
term strategy will increase significantly beyond the !scenario! level

for some time to come. With the medium-term planning horizon, the
situation is a little more optimistic. The Manpower Services Commission
and the Industrial Training Boards are becoming more aware of the rewards
of medium-term manpower planning. Their educational influence on industry
through the provision of courses and discussions at all levels of
management, coupled with the inclusion of manpower planning as a
pre-requisite for levy esxemption for some of the Boards, has noticeably

raised the level of consciousness as to the benefits of using manpower

planning tschniguss.

As management becomes more informed it is believed that the techniques

developsd in this work, or similar technigues, will become widely used as

the potential gains are realised. However, manpower modelling must be

. jecision
seen as a useful tool for effective manpouwer management and dec ’

making, not a substitute for it.
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8.5 FURTHER APPLICATIONS OF THE STOCHASTIC PLANNING MODELS

The models described in the thesis have been developed specifically to

satisfy the manpower problems of Dunlop U.K.T.G.. The U.K.T.G. acts

s a administrative centre of the U.K. tyre operation and has direct
control over the four main new-tyre factories, the retreading factories,
distribution depots and the sales organisation. In this respect the
tyre organisation is highly centralised but has many operating locations.

The Group is easily seen to be a complex system having a high degree of

a

hetrogeneity in job types. The manpower system therefore needed to be
flexible enough to operate at the local level, with the minimum of
intervention, whilst providing the centre with meaningful data both in
quantity and gquality, for the development of manpower strategies. In

order to achieve this objective the extra data requirements were restricted
to eight items which were specified on one form; the 'Staff Changes Form'.
One of the strengths of the system lies in the timely and accurate completion
of this document, used for both salary and manpower information. for
manpower applications the model has been seen to work well on a small

amount of readily available data.

Being centralised is not, of course, a constraint on the use of the

models, but mentioned only as & consideration when information is scarce

and resentment exists against the provision of data to the centre.

The advantages are not felt solely by the central unit,; as now valiuable

_tpllite uniis providi
manpower statistics may be disseminated to the satellite unils providing

iet gpics includings
useful background to discussions on @ variety of topits &b as

imo of salesmen in
1) Leaving rates and peasons for leaving 0f S84=%

the South East as opposed to other arease

. >socturi unitse
2)  Foreman to operative ratio in the manufacturing

4)  Compilation of possible candidetes if ather locatiens

for succession planninge
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This type of information and the benmefits to be derived from thenm should

not be limited to use in one organisation. The manpower system could b
e

adapted for use in a number of organisations where similarp problems already
exist, such as;
1) Insufficient data on manpower already in existence where
the use of classical statistical methods is excluded.
2) Concern for the amount of time and money to be expended
on the provision of a manpower planning system.
3) A central unit with smaller units distributed throughout

a region/country .

The formulation of the stochastic estimation model, as stated in Chapter 3,
was very general and its association with the control strategies of
Chapter 7 means that the model will be applicable to many situations

where control of knowledge within a dynamic system is required and

where observation of the system is coloured by random disturbances or

the lack of precision is some measuring Process. Applications will
include such diverse things as; guality control on manufacturing lines,
prediction of mortality rates, market forecasting or more obscure uses

such estimating the destruction occuring at a distance from the epicentre

of an earthquake in which case the process diffuses through hoth space

and time.

. g menlieations outside
The Dirichlet-Multinomial distribution also has mey gppiications O

. 1 ppe oonun between
Organisational manpower planning; wherever unknoun flows GUTL

: . : e arsas of social
identifiable units. Some obvious uses would be in the wred

i i ‘nternational export
and labour mobility, consumer brand switching, 1ru,ern\_1,_..) a p

. . - nueiear nparticle
and import analysis and the less obvious area of nucisarn |

Collision theory.
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t is @ parent from t i
. 5 he few possible applicatio
. ns mention i
section that stochasti . ed in thi
astic planning methods have great f s
| | eat flexibili
otential uses within i o
) many diverse situations which i
i1s a clear stre
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8.6 CONCLUDING REMARKS

The content, development and results of the project within Dunlop U.K.T.G.
have been fully discussed now and it is worthwhile, in conclusion, to
review the underlying philosophy of an industry based I.H.D. scheme.
The foundation of the work lies in the synergy of industrial practicality
and academic analysis. As was mentioned in Chapter 1, classical theory
may be suitable only where 'well behaved' data is available. It has
frequently been a problem, therefdre to make the transition betwsen the
classical methods and the industrial application. The industrial
environment varies greatly from the ideal situation in which academic

work is often based. Despite the difference in environment, priorities
and attitude the two worlds, academic and industrial, may benefit éreatly
by constructive communication. Industrial managers are stimulated

into thought and action which the pressures of industry may often inhibit.
The academic gains a clearer insight of the situations in which proposed
models must function and the effect of socio-political influences on

the acceptance of methodology.

In some way the project which took place within Dunlop U.K.T.Ge. made

some progress by bringing about this type of communication which,

uhen successful, brings mutual benefite and the foundation upon which

to build a closer co-operation.
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APPENDIX A

THE HILBERT SPACE

Here the concept of the Lebesgue and Hilbert Spaces are formally
defined and some of their properties, which are usefully employed

in the main chapters, derived. Both of these mathematical spaces

are not new and can be found in basic texts on algebra, (Halmos 1951),
however, the mode of presentation and proofs as applied to the solution

of the General Problem are original to the present work.

In Appendix A.%1.1. the structure of the Hilbert Space is built up

from first principles. Starting with basic algebra, the definition

of a ring is given and by adding further constraints, the structure

of an ¢ -algebra is obtained. The concept of a measure is then defined
and, in particular, the probability msasure is introduced. From

these definitions a formal definition of a random variable can be

established.

By the introduction of addition and multiplication as mathematical

operators on a vector space, random vectors are Seen to be elements

of the gpace of all mappings from Ne FRN that are measurable with

Tespect to a e -field, ® offA .  The concepts of length and disiance

betwsen vectors of Euclidean space are formulaised in the topogral hica

structure of the norm and metric. Following this is given T
ine & danach

definition of the Cauchy sequence and we are able to def?

3 P PR £
Space iz o Banacnh

Space, This leads to the proof that the Lebesgue =

hetyeen

SPace.  One last structural concept that of an 'angle®

. ¢ af the inner

\ectors in Euclidean Space, and its formal squivalent oi the inné
. P, i ‘:_f. 'L".Eiﬁ

pTUdUCt enables the def‘inition Df thB Hllbel‘t SpOCL‘o It 1 I}

®asily shown that the Lebesgue Space 18 indeed a Hilbert Space.
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In Section 2. of this Appendix, the important properties of the
Hilbert Space that accounts for its natural choice as a space in
yhich to solve the General Problem are explained. Tuo important
theorems are proveds;
i) Within a closed convex subspace of an Hilbert Space
there is an element with smallest norm
ii) Every vector in an Hilbert Space may be written as an
unique element of a closed subspace and one in its
orthogonal complement

Section A.%1.%7. now follows beginning with a set of elementary

definitions.
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DEFINITION OF THE HILBERT SPACE

AA'1°
Je begin by defining a probability space and work towards the definiti
10n

of a random vector. This work is standard to any text on Probability

Theory e

Definition: RING

n non-empty class @ of subsets of a set L is called a ring if;

R(1) Ai,Aje R =» Ain Aje R
A R A.NA

R(Z) Ai’ ,je = i JQG

R(3) A,A.e R % A UA e R
i° ] i J

Definition: o* -ALGEBRA

R is ac-algebra if it is a ring and if;

R(4) N € R

o
R(5) Ae RYe N UA € @
n n n:'ln

It is noted that R(2,4,5,) are sufficient for ® to be a o -algebra.
The double (ML, tR)‘, wvhere ® is a o -algebra over A is called a measureable
space. The real numbers R extended by the symbols +00 - (not real

numbers) will be denoted M*.

Definition: MEASURE

i i that maps @&
A measure on a measurable space (J1 ®) is a function fL that maps

inte R* such that;

") a) =0

"2) M(R) 7 0 yhe @R
i wemmes of mobually
") (OG A) 5 (A ) whensver {A ’S is a seguencs oF MULHasL
) n
H g N nZﬂ n

disjoint sets in .

fondition M(3) is called 'countably additive'.
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Dafinition: 4 PROBABILITY MEASURE

f measure p is a probability measure if;

The triple (N, ®R,P), where R is a 6 -algebra over the non-empty set

fland P is a probability measure is called a Probability Space, where

no confusion arises we may talk of a probability spaceﬁ..

Definition: RANDOM VARIABLE

et (N, R,P) be a probability space and let X :/\ = R. Then if

xR, the set;
{wef\.: X(w)(xo} e R

is measurable then X(w) is a random variable or measurable function.

Rele24 VECTOR SPACE

f vector space consists of a set V, whose elements are called vectors,
a scalar field F and some mathematical structure. We will only be
interested in the scalar field, the real numbers R, and thus confine

ourselves to Real Vector Spaces.

Definition: VECTOR SPACE

The 4-tuple (V,F,+,.), less strictly denoted by its underlying set V,

is a vector space if the following hold:

) A mapping + of V x V p— V, callsd addition.

such that;

¥ vectors Vsv, € V, 3 a unique VBQU

2
+(V—|’V2) = v, OF more usually — V,*V, & Vs
U“) Vq + V2 = V2 + \/,l Y Vq’Vze )
V(z) V nyuq§;_,7£ \_Il'
V1 (\/2 + V3) = (V1 + \/2) + \13 ERPA

W3 34 unique element in V denoted O . such that;

0 +v=uv yue Vv
v(4) ASSDCiate; with each vevy, 32 unigue element denoted (-v), such
that

VvV + (—V) =0
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2) A mapping - of FxV +—> V, called scalar multiplication.

y scalars feF and v, €V i a unigue element v, &V such that;

.(F,uq) = v or more usually f.y = y

2 2

If no ambiguity exists then the operation . can be dropped and we write:
3

' (f"v) as fv.

i(s) (T ) = (Ff )y ¥fafeF, ve
U(6) 1fv =V Y veV

ur)  (Fy o+ Flv = fau s fou ¥ feF, vey
ue) fluy, + vy) = fug =+ fuy ¥feF, v,v,eV

an immediate consequence of the definition is;

O.v =0 Yvey
The vector space we will use later is the space of all mappings from
L iRn, that are measurable with respsct to a ¢ -field @ ofJ\.

Thus the elements of this space are to be called randem vectors.

Ba1a3. NORMED VECTOR_SPACES

Given a Vector Space V we will find it useful to be able to compare
vectors. In order to do this we introduce three types of mapping

from the Vector Space V, (or its product space UxV) to the real numbers
R.

Ue consider firstly the concept of the metric space.

Oefinition: METRIC SPACE

Let X be a set and j):XxX — RY = [D, so0) a map such that;

Hx1,x2,x3 in X

MS(1) Plxix) =0 & x =%
MS(2) f<x1’x2) zf)(Xz’x’])

Ms(3) -P(Xﬂ’xz)‘,f)(xq’xz) *_P(xz’xz)
The”ﬁ is called a metric of X and the double (X,f} s metril

Trianole ilhegua Lity

T goncent
he structure of the metric space 1s related to our conce!

" : d the metric ofi
fuclidean geometry. For this reason ue calle



n

2
4 b (x,3%,) = { (x,, = x,. :‘ .
gefined Y *P 12 12:1 11 21) the Euclidean or Usual Metric.

(e

The c1ass of metrics 1s vast so we will not discuss them here, but will
3

oxaming & special sub-class later in the chapter.

Je nou progress further in our development of the mathematical structure
by gefining another real valued function which is not only similar to
the idea of fuclidean length but also generates a suitable distance
function (metric)-

sefinition:  NORMED VECTOR SPACE

Lot U be a vector space and || l: v — R a nap such that;
YA € R,u,v v, eV

)y Il =0 e v=g,

i) llkvll'

N(3) "\/ v, “u2

The number “v” is called the norm or sometimes the length of v.

The double (V, ” ” ) is called a normed vector space GRZEDE

THEOREM A.1. %

If (v, | “ ) is a normed vector space then;
(vvg) = gV
defines a metric on U called the induced metric. (See footnote) v
PROOF
A ,
ms(1) P (x1x2) ég ”x”_lel =0 (Il‘—é ><,’-x2 =0 & x=y
) o
2 Plx; %) é”f 1<% = 4] = POy
R T 3] I [Gegxg) + X )
N3
¢ Pl o b
2P lxxg) s § (xg%)) =
—— e B s T, SN AT TR

e Me T T "t ‘lf
Vorneg Vector Space: This means that every n.y.s. cen De Lhought

as .
@ metric space.
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y state, without proof, that all norms on ;Rn

Je 0 are eguivalent - thjs,

for oUL PUTPOSES: means they have similar topographical properties

n
cone familar norms on R are;

/E?:& 3 qu ix_\ ’ \Xi\ and [%{ lx(t)i P dt] 14

=171

ye shall shouw the following map is a well defined norm and use it
extensively later;

Ixlh p = [}gX(w)' p0‘)(dw)] 1/p $R by
shere (S\, R,oP) is a probability space and ><€Lp the space of all

measurable mappings from N to R.

Aefobs BANACH SPACES

Another property that is deemed essential to our mathematical space is
that ssguences {xn’% that converge to some element x, do so within the

vector space, i.e. x€V , more precisely uwe define a Cauchy sequence.

A seguence {xn} in a metric space (X,f) is Cauchy, if given €7 0,

there exists an nD(E) such that;

f (x ,x )< € whenever m,n Z HU(€)
m’ n

The metric space (X,f ) is complete if every Cauchy seguence CONVETrges

to a point within X.
A Banach Space is a normed vector space that when regarded as @ netric
space (though induced metric) is complete.

jmportant
Ve noy consider a special class of spaces that are most i

: Gt DMA0ES
e LeDpayls Jpehee
the development of a forecasting system. These are the LeDEsb
i 5 thet have finite
e are closely related to the set of random variables tne
W Al
o o prove thst
Moments. g ywill define an appropriate norm and go on Lo prove U
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;ne Lebesgue Spaces are complete and thus are Banach Spaces

pefinition: LEBESGUE SPACE LP(J\, R, L)

he set Lo (N, (‘R,H.) is defined as the set of measurable functions X
on the measure space (J\, (R’H') such that IXI P for p»1 is integrable
and finite, i.e.t
J.[lx(u)l Pape(u) < o Lepeo

Je will denote the set Lp (N, R,M) by &p, uhere no confusion arises to
yhich measure space is under consideration.
ye define for p2 1, the p norm on &@ p given by;

Il o = € LX) Papete) )
as JIx-YNl p = 0 & x=y except possibly on a set of measure zero it
is necessary to define a null setoV;

N = {X:X =0 a.e.%

uhere a.e. means'almost everyuwhere'.
Ve now give the Lebesgue space Lp{ﬂ ) (R,H} as the guotient o@p/(yV,
vhere there is no ambiguity the space is represented by Lp only.
The measurable functions X of Lp are thus equivalent classes of those
Ufé&p- The distinction is unimportant for our purposes and we will
speak of functions of Lp when we formally mean the representation of

that function's equivalence class in aﬂpo

The space L_ is easily shown to be linear. The properties of the norm
P

D o,

i

follow immediately, by noticing that N(3) (the triangle inequality o

norms) is given by directly applying the Famous Minkowski Inequallity.

. —_— . apace. Te snou
L. 15 thus quickly verified as being & nopmed linear space: |

| LN A A 4 e
. ; ‘g ig mone CarTTLOULL,
Lp 18 a Banach Space we must show it 18 complete.  This 38 T )

®"d is given in the following theorem:
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THEOREM A 1. 2

The space Lp is complete and, hence, is a Banach Space.

\ 4
pROCE
Let ixn} be a Cauchy sequence In Lp; then for each k there exists
an N » such that; if n, m, 2 Nk’ we have
-k
Ix_ - x I p <2
There is no loss in generality if it is assumed that Nk< Nk 1 Yk.
+
Thus
IIxy - =y fle < 2™ *
k k+1
e define
>
y = & ' X - X ' (X - g)
n k=1 Nk Nk-’l NO
Clearly yn is positive and increasing with n so by applying Levi's
fonotone Convergence Theorem;
1 p 1/p
Cf v ) [Popen™® = S Iy | Popute)
) A
JL
uhere y denotes;
o0
= IXN - N l
- k k-1
Here
; |
“y lp = 1im “yn lp € 1im Z P g WP
N> Ne>ss k:’] k
i Sy =3 '2;.175:'Y 5
Using * we see that “ y “p is less than e finite constant; €0 o3
f'y(w) lpd,.u(w) £ o .
i iy o 11 set .
This Qives y = { lx - X '( o0 except on the null ¢
N N
k=1 k k-1
ie s oo nVerges 2imasi @ug:;j;\)/'.‘\_rhel‘e.
It ig immediately clear that Z (XN - XN ) co ¢

k=1 k k-1
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Letting
o0
x:Z(XN XN ) we shouw xe L
k=1 k k=1 p
clearly
x| = |« < ¥
X = X -X -
N )1\ e I = e
o1 Yk Nk =1 N N y ~a.s
Therefore

P
("x”p) =J‘[,X(W)lpdf-\(w)\(j(ypdrk = (”y”p)p { oo
yich implies
”x”p { o and x € Lp
To show that “xn-x“p = 0 we first prove ”xN -x"p - 0 as k =y 00
k

Now .
| >
X =X <
N NGEY ik

x -
TR R
i i-1

p

Therefore IXN —xN is dominated by yp and we may apply the Lebesgue's

ko J

Dominance Convergence Theorem.

Letting j =>o¢ we have,

'xNk—xlpé yp
and
f lim |x -x'pd,.l. - 1imf|x -x|Pap = 1in (”XN x[]p)P = o
koo | Ny ke ” kv K

Now for fixed € > 0, 3 N such that if m,n?N;

”xn-xrn “p 4 &/2

So for Nk, n> N

“"n"‘Nk lo< &/2 ()

and since

Iy o v o
k

i Noosuch thaty
o can, by choosing a K sufficiently large obtain an N

| X -x|p< &/2 (2)
k



~-193=

substituting into the triangle inequality;

“x - ><|_]”l3\< ux-xNk”+ ”XN;'xn”< €/2 +E/2 =g

for some N % N.

Thus, xn converges to x in Lp, Lp is complete and hence a Banach Space.

We note here and use later that the particular space L,
2
< oo
S Papw)

with the 2-norm is a Banach Space.

Rele5. - "HILBERT SPACES

We have already given the concepts of the metric and the norm noting

their similarities to the ideas of distance and length in Euclidean

Space. In this, the final part of Appendix A we introduce the concept

of the innmer product ~ this is the formulisation of the Euclidean idea

of an 'angle'! betwsen elements of a Vector Space. More importantly,

we will be able to talk about the perpendicularity or orthogonality

of these vectors. The induced metric was discussed earlier,pursuing

this notion, the norm associated with an inner product will be introduced.
It is shown that this norm is well defined. AR Banach space with its

norm so described is termed a Hilbert Space.

We begin with the definition of the inner product.

Definition: INNER PRODUCT

An inner product on a real vector space V is a mapping { »: UxV +—3 R,
and satisfiss the following rules;

For v, Vs v, € and r,, T, € R

I _
(1) <r1V1 + r2V2,v> =T, (vq,v> + T, (vz,v>

I(2) (upsv) = {vyov,)

I(3) {v,v> > D & v # D
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he double (V,4 )) is called an inner product space (i,p.s.). The

tdot! product defined by;

M

(VVU2> = VU, .V

1°Vp © v

.V,
e 11 21

(=
"

may already be familiar from elementary vector analysis.

1f <V1’V2> = 0 we say that Vg is orthogonal to Vs and denoted this by
V1L.V2- We will assume that our inner product spaces always carry an

associated norm given by;
1
fvll = <v,v> 2,
that it is truely a norm, we leave until Theorem 4.2.4.
It is easily shoun that{ Y>is linear in both vectors of the ordered

pair, (I(1) + 1(2)),we therefore say4 > is a bilinear functional.

THEOREM A.1.3.

The Cauchy-Schwarz Inequality:
Let xq,x2 be elements of the i.p.s. X then;
‘<X1’X2>| £ ”xq ” "le[
where
1
"x ”: { xy,x7 ? v
If x, or x, is the origin,
{x0) = (D,x2> = {0,0) = O
and the inequality holds. So let us assume X,,X, # 0
Clearly
- - ¥ R
{ X, ~TXp1 %, rxz) 7 0 TE
In particular let;
T = <X’1’X2>
<x2’x2>
Then
X 2 0
(xq—rxz, xq-rxz):<x1,x1> - I<X1’ 2)[ >
<X29x2>

Taking roots we obtain the desired inesguality.
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THEOREM A.71.4.

The inner product norm given by;

[ = <x0°

is a well defined norm. \ 4

PROOF

The only property that does not follow trivially is N(3), the triangle
inequality;

2 2
) X +x2> = ”X1” +2<X1,X2)+”X2”

2
"x1+x2“ = <x,|+x2 1

N E R RPN Y P

We now employ the Cauchy-Schwarz inequality;
i, 12l i I, 1
(EAEA N

Teking square roots we satisfy N(3) and the theorem is proved. n

3

Definition: HILBERT SPACE

A Hilbert Space is an inner product space whose associated norm (i.p.norm)
is complete.

We now show that the function;
(x,l,xz) = 5 m)x )d,.L xp0%, € L,
Ju
is an inner product and hence (L2,< , ») is an inner product space.
11

T _ T -
OxTxpaM = Jxix dl = {xpox)
N N

2
(xdm > 0 & x{o
N

1(1) (r X +T x2,x)..J§(r X +r2x2y;drk = r1(x1,x)+r2(x2,x)

1(2) (X,|’x2>

1(3) (X,X)

Ue have shown already (THEOREM 4.1.2.) that the associated norm

1 2 L1
“ " = ( ] ) 2 = d 2
X Xy X (J{X H’)

is complete, hence the Lebesgue Space L2 is a Hilbert Space.
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ReZe PROPERTIES OF THE HILBERT SPACE

The object of this section ié to prove two very important theorems

viz;

1) Given a closed convex subset of a Hilbert Space there exists a

unique elsment in the subset with smallest norm.

2) Each vector of the Hilbert Space may be represented by the combination
of a unique element in a closed subspace and one in the orthogonal

-

complement of that subspace.

Loosely, these two theorems may be taken to mean;

If we wish to estimate a vectecr in a Hilbert Space, given a subspace,
there is a unique estimate of this vector in this subspace that minimises
our estimation srror. In fact, we will see that the estimate is the
orthogonal projection of the vector into the subspace.

In order to put this into the context of the General Problem (Section 3.2.)

let x be a-vector of the State Space X. The estimate of this vector
will be denoted X and the error (x-%) by X. The object is to minimise
the estimation error in some way. If we can define a function that

represents the cost of estimation error in a meaningful way as an inner
product, then there is a unique Qo that minimises this cost. In this
way we say Qo is the optimal estimate of x. Further, if the subspace
is the space generated by all linsar combinations of the observations

then & is the orthogonal projection of x into this subspace.
a]

We begin by giving two elementary but extremely useful identities.
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(1) GENERALISED PYTHAGOREAN IDENTITY

Let X oo X be pairwise orthogonal i.e.; (xi,x.} = 0 vYi £ j, then,
J
n 2 n 2
= > | = 3 Ix. |
i=1 * iz ” ;|
= X 2 = <>< +X_+ X X = - L <
“1:::’1 1” N 172 T ’l+><2+'“xn> - i};’l J?_-,‘ xixj>

T XX = = lx, I

i=’l 1=

=

(2)  PARALLELODGRAM IDENTITY

For all x,],><2 e X

I o, 4l =, 1% = 2, [Pl 1)

2 2
“x,l+><2” +"x,|-x2" =(x,l+x2,x,]+x2) + (x,]-x2,x1 x2)
:(x,],xll) +2<x1,x2> +<X2a><2)
+<x1x,l> -2(x,|,x2) +<x2,x2)

= 2lix, 17 <2l )12

We now give two definitions;

If A is a subset of a ' ! space X and is itself a ' ! space, we say that

Ais a (' ') subspace of X.

If VX’I’XZQ X and 0¢ X & 1, kx1+('l— >\)x2€ X we say that X is convex.

THEDREM A .2+ 1.

Let X be a convex subspace of a Hilbert Space X, then there is a unique

element X e ’>\(' that has the smallest norm. Moreover for this vector ?fo;
o
(xo,x-xo> z O ¥x & X v
PRODF

There are three parts to the proof:-



~-198~

(1)  The existence of';D

(2) Its unigueness

>

(3) £X %X > >0 V¥ €

Let €= inf{”?&” : 'ie?}, then there is a sequence {')?n‘],( ex

such that
“Yn“ —>E asn >
S50 let
~ o~ V4 . ~o. 1~ A~ N
xn,xme X, since X is convex 7(xn,xm)e.X
Clearly
15(% +% ) » €7 s | > 42
220 m nom

(a4

By applying the Parellogram Identity to §%,xn;
”xn-xm” = 2Hxn” +2”Xm" -Hxn+xmﬂ
~ 12 g 2 2
£ 2”xn“ +2me” -4€
On taking limits;
-~ ~ 2
X % |I” > 0

and is thersfore Cauchy in X.

~o

Since X is closed (being complete CX), ?% converges to a point in X,

~
X, say.

To show unigqueness we again employ the Parallelogram Identity. For

X, s % e?(' we state from the first part of the proof;

172
I%,-%,1I7¢ 1% 2|3 -ae

So, if X, and X, both give the smallest norm ( £ );

1 2
I%,-%,1°¢ o

which implies §1=§2 and unigueness is shoun.

wi.

B2,
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We now show <?<'O,§—>?O> Z 0 ¥xeX

~

Since X is convex we have for 0 < >\ £ 1
~

A%+ (1= MR = X+ >\(§_x~o> e X

Now
2

€5 = % "< IR+ A(%-2)
o 12 o~ 20 o~
= ”Xo” 2A < xo,x-x0> A [1X-X |l
~ oo ~ ~ |12
0 £ (X HR-% ) +%Allx—x0,]
and letting A+ 0, we have;

0 £ <'>'<'D,'>‘<’->'2' >

a]
- 3.
Definition: ORTHOGONAL COMPLEMENT
Let A be a non-empty subset of X. If for any xe X and for all aeA
{x,ad» = 0, we say x is orthogonal toc the set A, and further define A‘L,
the orthogonal complement of A, as the set,
Ro= {xex: <x,a>= 0, vaea}
This may be shortened by writing;
At = {xeX, <x,A> = 0%
In the next theorem we prove that any vector xe X may be uniquely de-
composed into two vectors; Qo belonging to the estimation space g(\ and '>\<'[3
belonging to its orthogonal ‘complement ’)\<J, the error space.
JHEOREM A.2.2 (DECOMPOSITION THEOREM)
Let ?( be a closed vector space of X and let xe€ X, then there exists a
unique X QQ such that x-% € X = (Q‘L) v
] 0
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PROOF
. o)
wWe define the coset of X containing x as the set;
2 ~
X+X = {x+§‘<; xe)?}
This is both closed and convex.

~ . . > . ~ .
Let X be the point in x+X with smallest norm, so that X, may be written

~ A A A
as X_ = X=X for some x € X.
a] 0 o]

~ . ~ " ~ .
Now if X were not in X we could find an %X eX such that < xo,;\(>;¢ 0
A ¥ A ~ *
therefore, there is an x = X XeX with (xo,?( > £ 0

But

~ A% A A A¥ A A
XO+X = X—XD+X = X + (x - xo) € x + X

We now apply the third part of the previous theorem and obtainj
~ ~ A* ~ ~ I\*
£ - =
0 (xo, (xo+x ) xo> (xo,x > KL
¥ eX

. . . N A
vhich is a contradiction and therefore x-xo =
a]

al.

To prove unigueness:

A A . A A Q A N A .
If ><1,><2 are two vectors in X, clearly x,l— 2eX, since X is closed,

also x—Qq, x-Qze')Z
0 = <x=%,,%, =%, = < xR %, %))
= <Qq—Q2,Q1-Q2>
= ¢<1 = 92

EB2.
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APPENDIX B

SOLUTION OF AN EXTENDED STOCHASTIC ESTIMATION PROBLEM

In Chapter 3, a general stochastic problem was solved. It was

remarked there that the problem could be easily extended to include;

a deterministic control input, colouration of the system and observation
disturbances and a system error transition matrix. In this Appendix
the extended General Problem is solved. We begin then with the
statement of the problem;

Let the equation representing the propagation of the system through

time be;

X + B8 y. +X dxk

kel - ¢k+1,kxk k+1,k" Kk k+1,k
where

X, is the state of the system at time k

¢ is the state transition matrix
k+1,k

Y, is the control input at time k

B8 is the control transition matrix
k41, K

dxk is the random error vector at time k
X is the system error transition matrix
k+1,K

It is further assumed that;

E(dxk) =0 Wk

and that

Ty = - R d
E(dxkdxj) = <dxk,dxj> = Rk "

where dL. is the 'kronecker delta' -and Rk is a real symmetric positive
J
definite matrix. The observation system is the same as in Chapter 3,

so that;

+ dz

e L K+

where
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zk is the observation vector at time k

*k is the observation transition matrix
dzk is the observation error vector at time k

It is further assumed that;

£(d = 0
( zk) ¥k

and that

T
E(dz d = =S d
( z, Zj) <dzk,dzj) e

Now, to allow for correlation between the observation and system
disturbances;

T
E(dxk,dzj) = <dxk,dzj> = deLj

but the independence of the system and observation errors to any

initial state vector xO is retained.

The filtered estimates and their error covariance matrices are the
same as in Chapter 3 so the task is to find the optimal estimates of
the one-step prediction of the state vector and its error covariance

matrixe.

THEOREM B.1.

A A $
= ! = U
X0 k+1,k ¢k+1,kx0 Kok © Bk(zk kxk,k-1) * B,k
where
T -1
1 - C
8= Yyeor, ko puanbic *+ 8
PROOF
Now

A %4

- +
X1 T X0 kel,k T %0 k1,k

So it is sufficient to prove that;

- % 1z, - | % B X
Xewr =B 10 1, * B B pkan) * Brar, k%) € %
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A 2 .
Let xk,k ¢ Xk and consider;

A A A
- X 1 -
<X (qjk-ﬂ,k 0k, ¢ BLZ *kxD Kket) 8k+1,kyk) IR
-~ ~ A
- - B! -
< ¢]k+1,kx0 K,k Bk\“kxo ko k=1 * Ykn kK xk,k>
A
= - B8'd
<- quJkUkLM B 92, +f¥k+1k 20X K
801.1.
. <~ A =0
since < X, k,k’xk,k> =
2 X
Now as Xk,k € K 3
k
% =2 A.z, for some A,
kyk joq 101 i

thus

= A 4
Z sy g+ R gaeg) ¢ 92)

9

Substituting into Equation B.1.1. and ignoring terms identically

zero, yields;

(- BIUX - Bldz + X

A
kak’I kS %K dx, s

g
k+1,K kl}lkﬂkk1+Akzk>

TT T T
_ At - B'S A TA
BklleCU k,k-'qukAk BeSkk ){kﬂ,k Kk

n

T T
-B! T )A
( Bk(qjkco k,k-’lqjk * Sk) * 'Xkﬂ,k k) K

and substituting for B&, the above term vanishes and the theorem is

proven.

THEOREM B.2.

T T T
- R
Co k+1,k [Pk+’l,k[:0 k,k¢k+1,k * Ykn,k k’xkﬂ,k ¢k+1 KBk kx k+1,k

T4T Ty T
- B - B!'T
'xk+1,ka kqjk.;.’],k k k‘x k+1,k
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where as in Chapter 3;

Te=1
B =2C S
k 0 kyk'k k

A A
X =

0 kyk - %0 kyket * B

A
A *kxD k,k~1)
and

Co ik = (I - Bk*k)co k1, Kk

PROOF

From the previous theorem;

4 =p % + Bz, - | % ) + 8 y
0 k+1,k — Tke1,k' 0 kok "k %k ~ Tk 0 Kk, k=1 k+1,k K
so that
L - ~N _ 1 ~N = 1 d
X0 k+1,k ¢k+1,kxo K, K Bk*kxo kok=1 7 ROz ¥ 7Kl<+1,k K
Therefore
Co ke, =2 X0 k1, k?%0 ket k<
T T T
= C ¢ '
¢k+1,k 0 K,kiksl,k ¥ Bk(wkCD k,k-1¢k + 8,08,
T Ty T T
R - BT - T B!
* Yk+1,k k'xk+’|,k B k1k+’|,k zk«-’l,k k k
X - B X - B'd dx <
+D ¢k+1,k 0 kK’ k¢kXD Kyk=1 ~ K%k +)(k+1,k K
- By X - B'dz X
+> Bk*kxo kok=1 ~ k%K +X k+1,kdxk’¢k+1,k 0 K, k<
+ other terms equal to zero.
B.1.2.
Now
A A A
X0 Kok = %0 koke1 *B(Z " ¢kx0 WORY
Hence

= - v - B d
0 K,k = %0 k,ke1 Bk*kxD kyk=-1 ~ BRO%

xe

~J
- - d
(1 Bk*k)xo k,k=1 ~ B 92,

It
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This expression may be substituted into the sixth term of Equation B.1.2.

to gives
- P - - B'U Y - B!
> bk+’l,k(1 quJk)xD kyk=-1 #ka,kBkdzk’ Bk¢kxg Kok=1 T B

dx, £
ke, kK

T T T T/ T
= - 1 -8B U )C ! B S B! -
[Pkm,k( klpk 0 k,k-’lqjk B * ¢k+1,k K kP ¢k+1,k DY S

- 13 c qJTBvT+ 43 BS g - qs g T YT
kal,k D kok! “k kel Kk k Kk Tke1,k "k Kk Mk, k

But

T _gs

Co i
0 kykik k k

and the above equation reduces to;

Ty T
- ‘bkm,kBkaxkn,k

Substituting this back into Egquation B.1.2. the following is obtained;

T T T
= C ! 1
Co ke, k ¢k+’|,k 0 k,k¢]k+1,k * quJkCD k+’i,klljk * Sk)Bk

T T T T
R - Bt - 1
* Ykﬂ,k WP MY AW xkn,kaBk
T T YT
- B T - fl
LRI OY ARTRE PRI SR

Noting that the second and fifth terms are complements the Theorem

is proven.

The solution of the extended solution is now summarised in the following

Theorem.

THEOREM B.3.

The optimal filtered and one-step prediction estimates and their
respective covariance matrices for the extended General Problem may

be obtained recursively given initial estimates Q and C from
0G6,0 00,0
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the following equations;

% q) X B ( % ) + 8
= + -
0 k+l,k = Thkat,k D Kok ¥ 2K\ *k 0 kyk=1" " "k, Kk

8.3.1-
T T Ty T
C = qJ C R - R
0 kel,k  Tk+1,k 0 k,k¢k+1,k +’XLH4,k KAtk T BT ke, k
To/ T T, T
BT - B
¢]L<+1,L< k kA K41,k Z'k+1,ka k¢k+1,k
B.3.2.
A A A
= B - ’
X0 k,k T %0 kKt * OBz, bg K k=1
B.3.3.
%0 K,k T (1 - Bk¢k)CD kyk=1
803.4.
where
T -
1 _ T C S
B ’Xk+1,k k(¢k 0 k,k-1¢k +5,)
B.3.5.
T T -1
= C u' () c U + S
B = B0 K,k k(¢k 0 k,k-1k * "
8.3.6'
\ 4

PROOF

Equations B.3.1. and B.3.5. are given in Theorem B.1., Equation B.3.2.
in Theorem B.2., Equation B.3.3. and B.3.6. in Theorem 3.3.4. and

Equation B.3.4. in Theorem 3.3.5.. -
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RPPENDIX C

- THE EVALUATION GF THE THREE MODELS

ON SIMULATED AND DUNLOP DATA

When the covariance matrices of the system and observation disturbances
are known for all time, they may be substituted into the recursive
relationships of the General Problem to derive the optimal solution.
In manpower planning it is rare that the error covariance matrices
will be known exactly for all future time periods and in this case
they have to be estimated. Three methods of estimatirmg their values
were detailed in Chapter 4 and are recalled here for ease of reference;
(1) Unbiased estimation by the evaluation of certain
differences in the observations
(2) Bayesian estimation by the selection of values from a
class of alternative models so that the model employed
for the (t, t + 1) time period is the one with the
highest posterior probability of attaining at time t
(3) Bayesian estimation by constructing the model for time
period (t, t + 1) as a posterior probability weighting
of the models at time t
In order that the propoéed models may be compared with the more usual
(classical) estimator (4), that of sample mean and sample variance,
results using this model are also included. All four methods are
comparsd on two data series; one simulated and the other taken from
Dunlope. The comparison is made by two techniques; the first and
probably the more familiar is the often used relative mean sum of
squared error and the second is the relative mean likelihood. On
the simulated data relative refers to the optimal estimator and on
Dunlop data, where the optimal estimator is 'a priori' unknown, to

the third estimator.
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Ce1s SIMULATED DATA

The data was created on computer by assuming a starting point for the
process as 100 and generating a time series for the system by adding

at each time period a realisation from a random process with standard
deviation 2 and zero mean to the previous system value. An observation
series of these system values was generated by assuming random error
with zero mean and variance 20. These observations are presented in

the following table.

TABLE C.1. SIMULATED OBSERVATIONS

TIME 0BS TIME 0BS TIME 0BS TIME 0BS =~ TIME 0BS
1 97 .66 11 86.11 21 91.11 31 92.58 41 102.46

2 101.42 12 86452 22 99.11 32 95.48 42 99.90
3 101.30 13 102.11 23 97.56 33 97 .41 43 95.29
4 96.98 14 86613 24 92.85 34 80.54 44 93415
5 97.46 15 86.29 25 97.02 35 890.83 45 94.05
6 1080.19 16 92.16 26 102.00 36 96.64 46 80.77
7 90.19 17 91.11 27 89.64 37 94,55 47 86.07
8 97.40 18 94.09 28 92 .47 38 100.06 48 -80.74
9 93.42 19 94.70 29 98.46 39 92.25 49 90.05
10 95.37 20 94.45 30 93.70 40 96.23 50 83.15

To form the Bayesian type (2,3) estimators of the process, only three

alternatives, assumed to cover the normal range of variance, were

propased;
81 = R = 0, S = 10, CO = 10
82 = R=10, S =10, CO = 30
83 = R =10, S = 100, CD = 210

In this case the optimal estimator is known and can be used as a

standard by which the other estimators may be compared.
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TABLE C.2. ESTIMATES USING THE OPTIMAL ESTIMATOR
TIME EST TIME EST TIME EST TIME
1 100,00 11 95,37 21 93.53 31

2 98.64 12 95.63 22 92.67 32

3 99,86 13 92.37 23 94.97 33

4 100.42 14 95.86 24 95.90 34

5 99.14 15 92.37 25 94.81 35

6 98.53 16 90.19 26 95.60 36

7 95.13 17 950.90 27 97.89 37

8 95,92 18 90.97 28 94.94 38

9 96.45 19 92.09 29 94.05 39
10 95.36 20 93.03 30 95.63 40

TABLE C.3. ESTIMATES USING ESTIMATOR 1(UNBIASED)

TIME
1

O v o N oo B~ KN

—_—

EST
100.00
58.29
99.39
101.24
97.29
97.45
100.12
99.10
99.02
97.16

TIME
1M
12
13
14
15
16
17
18
19
20

EST

56.27
56.19
S50.88
94,16
91.40
89.40
50.53
90.17
91.78
92.85

TIME
21
22
23
24
25
26
27
28
29
30

EST

93.50
952.50
85,28
S6.17
94,81
95.68
98.19
95.00
94.15
95.60

TIME
31
32
33
34
35
36
37
38
38
40

EST

94,84
94,10
94,59
95.60
93.79
92.73
94,13
94,28
96435
94.88

EST

95.01
94,28
94.63
95.42
94.07
93.25
94.06
94.16
95,37
94.70

TIME

41
42
43
44
45
46
47
48
49
50

TIME
41
42
43
44
45
46
47
48
49
50

EST

95.36
97.90
98.62
97.43
95.89
95.23
950.05
88.63
85.80
87432

EST

95.05
56.85
97.49
97.07
96.34
95.88
53.01
91.34
88.05
88467
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TABLE C.4. ESTIMATES USING ESTIMATOR 2 (BAYES 1)

TIME
1

2
3
4
5
6
7
8
9
0

1

EST
100.00
98.83
99.69
100.09
99.47
99.14
899.29
98.15
98.07
97.60

TIME
11
12
13
14
15
16
17
18
19
20

EST

97.40
97.29
90,02
97.49
90.47
87.89
90.53
890.89
92.87
84.00

TIME
21
22
23
24
25
26
27
28
29
30

EST

94.28
92.32
96.52
97.16
94.50
96.06
99.73
93.49
92.86
86.32

TIME
31
32
33
34
35
36
37
38
39
40

TABLE C.5. ESTIMATES USING ESTIMATOR 3 (BAYES 2)

TIME

EST
100.00
98.29
99,39
100.10
99.04
98.45
99.07
97.05
97.20
95.81

TIME
11
12
13
14
15
16
17
18
19
20

EST

895.63
895,81
93.69
96.09
893.77
90.67
91.23
91.18
92.37
93.26

TIME
21
22
23
24
25
26
27
28
29
30

EST

83.70
592.83
94.81
95.88
94.81
95.62
97.50
95.35
94,11
95.62

TIME
31
32
33
34
35
36
37
38
39
40

EST

94.70
93.39
94.68
96.37
92.77
91.57
94.70
94,61
97.98
94,44

EST

94.88
94.04
94,58
95.58
94,03
92,83
94,23
94,35
96.26
94.87

TIME
41
42
43
44
45
46
47
48
49
50

TIME
41
42
43
44
45
46
47
48
49
50

EST

95.08
99.82
99.87
97.04
94.64
94,27
85.93
86.02
81.90
B6.12

EST

95.39
9733
98.37
97.15
85.72
95.11
92.59
89.86
B6e46
87.70
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TABLE C.6. ESTIMATES USING THE 'CLASSICAL' ESTIMATOR

TIME EST TIME EST TIME EST TIME EST TIME EST

] 100.00 11 97.14 21 94.75 31 94.97 41 94.89
2 97 .66 12 97 .05 22 94,58 32 94,89 42 95,07
3 99.54 13 96,17 23 94.79 33 94.97 43 95.19
4 100.13 14 96.63 24 94.91 34 94.98 44 95.14
5 99.34 15 85,88 25 94.82 35 94.85 45 95.10
6 98.96 16 95.24 26 94.91 36 94.74 46 95.07
7 88.17 17 95.04 27 95.18 37 94.79 47 94.76
8 97,89 18 94.81 28 94.98 38 94.92 48 94.58
9 97.83 19 84,77 29 94.89 39 94.92 49 94,29
10 97«43 20 94.77 30 895.01 40 84.85 50 94,20

The mean sum of squared error is calculated as;
N
-1 1

2)

(N =N
1 1

Ny

where Qi is the relevant estimate at time 1i. Relative efficiences
are obtained by taking the inverse ratio of this value to that of the

optimal estimator and scaling to 100. The results are shown for the

whole series (N1 = 50, N2 = 1) and since the estimators are all 'learning',
for the last 10 observations (N1 = 50, N, = 41).
TABLE C.7.

Comparison of the relative efficiency of the various estimators over

the whole simulated data series by the mean sguared error statistic:

OPTIMAL EST. 1 EST. 2 EST.3 CLASSICAL

100 87.9 88.3 97.2 81.9
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TABLE C.8.
Comparison of the relative efficiency of the various estimators over

the last 10 simulated observations by the mean squared error statistic:

OPTIMAL EST.1 EST. 2 EST. 3 CLASSICAL

100 79.9 108.8 91.1 58.8

The second method of comparison, that of relative likelihood, is thought
to be more valuable as it emcompasses not only the estimation error

but also the estimated observation variance. Loosely speaking for
estimators with the same magnitude of error, the smaller the variance

the greater the value of the estimator. The likelihood of an observation

is calculated asj

N1 L A 2 (N "N)
(71. Vé}(zi)-2 exp(-—%—(zi - Zi) / Va%(zi))) ! 2

i:N2

-1

Again values for the whole series and the last ten observations are

presented.

TABLE C.9.
Comparison of the relative efficiency of the various estimators over

the whole simulated data series by the mean likelihood statistic:

OPTIMAL EST.1 EST.2 EST.3 CLASSICAL

100 B4.8 88.6 91.3 75.0

TABLE C.10.
Comparison of the relative efficiency of the various estimators over

the last ten simulated observations by the mean likelihood statistics:

OPTIMAL EST.1 EST.2 EST.3 CLASSICAL

100 76.4 91.39 90.31 44.5
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’

In each case the three proposed estimators show an improvement over
the 'classical! estimator and in the latter part of the series the

improvemsnt is immense.

C.2. DUNLOP DATA

The data, on operatives of Dunlop Engineering Group, was obtained from
the Central Personnel Division. It consists of 28 values of the
wastage rate for the first 13 weeks of employment observed over the

period 1971-1977.

TABLE C.11. OBSERVED QUARTERLY % WASTAGE RATES IN DUNLOP ENGINEERING GROUP

1871 1972 1973 1974 1975 1976 1977
28.4 39.5 34.9 10.1 2143 21.4 22.7
33.7 39.5 22.6 15.9 25.8 23.6 1041
33.5 42,0 25.2 19.8 22.2 20.2 1748
39.3 43.9 15.7 16.9 141 29.8 1243

The three estimators of Chapter 4 and the classical estimator were

used to estimate this series and the following results were obtained:

TABLE C.12. ESTIMATES USING ESTIMATOR 1 (UNBIASED)

1971 1872 1873 1974 1975 1876 1977
25,0 3748 43.8 16.4 171 15.0 29.7
27459 39.5 37.0 11.0 21.0 27.1 23.2
32.5 39.9 26.6 15.5 25.3 23.5 10.6

33.5 42.0 25.3 19.3 22.4 20.4 1763
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TABLE C.13. ESTIMATES USING ESTIMATOR 2 (BAYES 1)

1971 1972 1973 1874 1975 1976 1977
25.0 3748 4343 171 1742 15.3 26.4
2746 39.1 36.9 1161 20.7 20.5 24,1
31.3 39.7 24.6 15.2 25.1 22.2 121
33.2 4145 25.1 19.1 22.6 21.0 13.8

TABLE C.14. ESTIMATES USING ESTIMATOR 3 (BAYES 2)

1971 1972 1973 1974 1975 1976 1977
25.0 38.0 43.3 17 ¢4 173 15.9 28.0
27.9 39.2 3647 1144 20.4 20.1 23.9
32.5 39.7 24.8 14.9 24.7 22.8 12.4
33.3 4144 25.1 18.7 22.8 20.8 16.6

TABLE C.15. ESTIAMTES USING THE 'CLASSICAL' ESTIMATOR

1971 1972 1973 1974 1975 1976 1977
25.0. 3347 375 33.2 28.8 2742 26.7
28.4 34.9 37.2 31.4 28.4 27.0 2645
3141 35.7 35.8 30.3 27.9 26.8 25.9
31.9 36e6 34.8 29.6 27.9 2645 25.6

These four estimators were them compared using the test statistics
detailed in Section C.7.. Since the observations come from real
data, the optimal estimator was of course unknown, and for this data

the third estimator was scaled to 100.
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TABLE C.16. RELATIVE EFFICIENCIES OF THE FOUR ESTIMATORS ON DUNLOP

DATA USING THE MEAN SUM OF SQUARED ERROR STATISTIC

TIME EST.1. EST.2. EST.3. CLASSICAL
1 100.0 100.0 100.0 100.0
2 100.0 92.7 100.0 114.0
3 100.0 86.2 100.0 10147
4 103.0 90.5 100.0 82.1
5 102.0 90.1 100.0 6341
6 102.5 90.0 100.0 53.5
7 10344 90.6 100.0 45.5
8 10641 91.5 100.0 38.3
9 98.2 94.9 100.0 6446

10 9649 9642 100.0 7746
11 9645 96. 1 100.0 6247
12 96.3 96.8 100.0 47.9
13 99.3 98.0 100.0 34.2
14 98.6 97.5 100.0 30.6
15 99.7 98. 1 100.0 3041
16 99.2 97.9 100.0 27.8
17 99.0 97.8 100.0 27.9
18 100.0 98.4 100.0 29.2
19 99.5 98.1 100.0 29.0
20 100.5 98.8 100.0 29.9
21 99.0 97.9 100.0 3047
22 99.8 98.3 100.0 31,1
23 99.3 98.7 100.0 30.8
24 98.5 99.2 100.0 3441
25 9642 101.0 100.0 35.0
26 98.6 100.2 100.0 38.6
27 96.6 99.9 100.0 38.8

96.1 101.4 100.0 3741

N
W
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TABLE C.17. RELATIVE EFFICIENCIES OF THE FOUR ESTIMATORS ON DUNLOP
DATA USING THE MEAN LIKELIHOOD STATISTIC

TIME EST.1. EST.2. EST.3. CLASSICAL
1 100.0 100.0 100.0 100.0
2 100.0 89.2 100.0 60.4
3 100.0 96.8 100.0 86.4
4 100.8 93.2 100.0 56.8
5 117.6 100.8 100.0 57.6
6 12142 10641 100.0 59.1
7 125.0 109.6 100.0 58.8
8 128.6 110.7 100.0 55.7
9 94.5 101.6 100.0 6649

10 3643 7445 100.0 58.8
11 40.4 76.0 100.0 55.8
12 4544 79.4 100.0 4644
13 47.9 8143 100.0 3845
14 50.0 80.6 100.0 37.8
15 5245 81.8 100.0 38.4
16 53,9 81.4 100.0 37.3
17 54.8 80.8 100.0 38.5
18 5647 81.7 100.0 4044
19 5845 81.1 100.0 40.6
20 60.2 82.5 100.0 41,7
21 6142 83.5 100.0 42.7
22 63.5 83.7 100.0 44,2
23 6442 84.0 100.0 4443
24 65.0 84.5 100.0 47 .6
25 6640 86.4 100.0 4845
26 67 .4 83.2 100.0 50.5
27 67«4 8442 100.0 51.6
28 68.8 83.3 100.0 51.0

It is clear that under hoth test statistics the three proposed estimators
are far superior to the classical estimator on the live Dunlop data.
Graphical representations of the efficiency of the estimators are given

in Chapter 8 Section 2 of the main text.
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APPENDIX D

PRELIMINARY WORK IN DUNLOP U.K.T.G.

Before any meaningful manpower analysis could be undertaken in Dunlop
U.K.T.G. a reliable and up-to-date data base needed to be established.
One characteristic was paramount to the success of such a data base,
that of the interlacing of salary and manpower information. This
link assured the quality of the manpower data as salary information

is obviously a priority and therefore its accuracy is ensured. The
basic input to both the salary and manpower suites was the pink Staff

Changes Form GSA 17 T/D reproduced on the following two pages.

One of the key units for data analysis at the occupational level was
the Job Activity Code and the Job Appointment Date (Datacode 781).
A full list of these codes and their I.M.S. Survey equivalent are

presented in Table D.1..

Once the data base had been constructed a preliminary manpower analysis

of the 'camera! type was undertaken on 2880 staff employsd in Dunlop
UsKoT.G. factories in England. The results of this analysis are

shown in Section 1 of this appendix.

-
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DUNLOP STAFF CHANGES FORM (OBVERSE)

FORM GSA 17 T/D DUNLOP LIMITED CONFIDENTIAL

( and Subsidiary Companies )

STAFF CHANGES FORM

i) THIS FORM WILL NOT BE ACCEPTED UNLESS COMPLETED WHERE APPLICABLE IN EVERY DETAIL.
ii) PLEASE READ '’ NOTES FOR GUIDANCE " OVERLEAF BEFORE COMPLETING THIS FORM.
THE FOLLOWING CHANGES HAVE BEEN AUTHORISED AFFECTING: -

SURNAME: INITIALS: |{MR/MRS/MISS | DATE OF BIRTH| DATE JOINED DATE JOINED

DUNLOP GROUP | PRESENT DIVISION
(or Subsidiary Co)

NEW DETALLS QLD DETANIS

i) Company or Division

ii) Location

i) Deparumenul Title

iiy Deparomental Cost Code

i) Job Title 553

ii) Job Appointment Date 781

i) Job Evaluation Scheme 550

i) Points-Grade-Agreed Salary
551

SALARY BASIC SUPPLEMENTARY /ADDITIONAL

i) PresentSalary £

il) increase Recommended £

iil}) New Salary IS

Date Change Operates For Salaries Dept. Use Only.

Number of Days Pay in
1 imy nf Holiday

Standard Weekly Hours

Job Activity Code 781

Keydate 552 Date REC’E weeererernnreorsrocssnceanes

CODE REASON(S)
Reason{s) for Change(s)

(Leaving) 554
(Selory) 555

Manager's Signawre & Date

Approved by: Complete for All Types of Change | Transfer Only - Receiving Div,unit,Dept
i) Signawre & Date wesd eeen / o eeren
f) Job Tithe 1 eeveesescooeesucuesensscconmesuseneeoonmonn ] eencnieenniensetntetei il iR I

Authorised by: ]
i) Signawre & Date /. /eorenes

i) Job Title

Al ™7
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DUNLOP STAFF CHANGES FORM (REVERSE)

NOTES FOR GUIDANCE
Alserations must be signed by the Authorising Official

MONTHLY SALARIES The form must reach the Salaries Section Loadon nat -later than 13 working for change to
deys before payment is due . . operate in same
WEEKLY SALARIES The form must reach the Salaries Section not later than Monday moming month of week

H

Q)

(3)

4

5)

respectively
If paid monthly show SALARY PER ANNUM; if weekly SALARY PER WEEK

SALARY CHANGES.
Use one of the following codes to describe the *Reason(s) for Change(s) ' Section (1)
\ Q=

P = Promotion G = Generai incresse Qualifications Gained

M = Merit {Group - Wide) J = inline with J.E.

R = Rate for Age N= Negotiated Award . T = Compietion of Training/Probation
I = Increased Responsibility (L.ocal Agreement) VY = Annugl increment

H . lncreased Hours A = Market Rate Adjustment X = QOther Reason

B = Back Dated increase /Anomaly Correction

INTER-DEPARTMENTAL TRANSFERS WITHIN TYRE DIVISION GROUP

The form should be completed for old details (ltems | to 5) by the department from which the employee is being
transferred and should be signed by the Manager of that department. |t should then be sent to the Manager of
the department to which the employee is being transferred and he will complete the ‘new’ part and countersign
the form. It shruld then be suthorised before being sent to Chief Salary Administrator F.D.

TRANSFERS TO OTHER DUNLOP DIVISIONS
This form should be compieted by the department from which the employee is being transferred and sent to
Chief Salary Administrator, Tyre Division, Fort Dunlop.

in addition, the Company form GSA 17 should be completed by the same department and sent to the
establishment to which the empioyee is being wransferred.

STAFF LEAVING THE COMPANY ‘

(8) In cases where staff are taking & paid holiday immediately prior o leaving the Company, the ieaving date on
the form should be the date on which the holiday is compieted and not the date the empioyee actually ceases work.
(b) Where payment in lisu of holiday is being made, the acwal date of leaving should be given against item 6
and the number of day’s pay due stated against item 7.

(c) Payment in lieu of notice will not be made uniess the form is supported by a separate written request

from the Division.

(d) Use one of the following codes to oescribe the 'Resson for Change' (item 11).

Discharge

0! = Unsuitable 07 = Dissatisfaction with Job/Company 14 = Marriage

02 = Disciplinary 08 = Work relationships with other staff IS5 = Pregnancy

03 = Redundancy or 09 = Personal Betterment {6 = Moving House
Re - erganisation 17 = Retirement

Resi‘nmon 10 = Transport difficulties 18 = Death

04 = Remunaeration 11 = Housing difficulties 19 = Emigration

05 = Hours of Work {2 = Domestic Responsibility 20 = Other Reason

06 = Working Conditions 13 = |liness/Accident 21 = Cause Unknown

JOB EVALUATION ) A )
(a) Use one of the following codes to describe the type of Job Evaluation Scheme (item 4i)

A = TD/FD H = TASS P = Pregnancy Absence

B = F.D. J.J.E. HA= TASS - TD/FD R = Research - ASTMS Sch,
C = Union Agreed Minimum { = ASTMS - Exec, S = Seniot Secretary

D = Training Scale A= ASTMS - Exec - TD/FD T = Off Site

E = Graduste Scale J = Cierical Grade TA= Off Site TD/FD

F = Ratwe for Age K = Suaff Mgt Grade TB= Off Site F.D. J.J.E.

FA = R.F.A. - TD/FD L = Machine Tool V = Depot Scaies - Marketing
FB = R.F.A. -F.D. J.J.E. M = Retread Bilateral W = Washington - Bilawera

G = Accountancy Scale N =

Inchinnan - J.J.E. ASTMS

(b) Item 4ii) refers to the Points/Grade/Union Agreed Salsry awarded under the above scheme item 4i).

1
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TABLE D.1. J0OB ACTIVITY CODES

JOB ACTIVITY

PROFESSIONAL /MANAGERIAL

Enginaering

Mechanical
Electrical
Civil
Chemical
Electronics
Instrument
Maintenance
Other

Scientific

Physical

Chemical
Mathematical/Statistical
Other

Comguter

Systems Analyst
Programmer
Operator

Other

Manager

Managerial

Diractor/Ganeral Works Manager
Salas/markating

Technical
Planning/Distribution
foica/Section/Department
Personnel

Buying

Production

Other

Selscted

Accountant
Architect

Estate Surveyor
Quantity Surveyor
Legal

Draughtsman
Designer

Buyer

CODE

111
112
113
114
115
116
117
118

121
122
123
129

131
132
133
139
130

141
142
143
144
145
146
147
148
149

161
162
163
164
165
166
167
168

I.M.S.

CODE

PEM
PEE
PEC
PEH
PEE
PED
PED
PEO

PSH
PSC
POM
PSO

SCU
SCu
cuc
CuM
poo

pOoO
p0oo
pPoo
poo
po0
p0o0
P00
P00
p0Oo

poyY
POA
pPOS
poo
poL
SEU
poo
poo

T



JOB _ACTIVITY

Selected Continued...

Salesman/Rep.
Industrial Engineer
Planner

0 &M

Auditor

Other

CLERICAL

Typing & Secretarial

Secretary

Copy Typist

Shorthand Typist
Clerk/Typist

Audio Typist

Other Secretary or Typist

Clerical
Accounts Clerk

Other Clerical

Machine Operator

Telephonist

Telex
Photo/Reprographic
Other Machine Op.

Selected

Postal & Mailing
Other Clerical

SUPERVISORY

Senior Foreman
Foreman

Section Leader
Inspector/Checker
Shift Leader
Other Supervisory

-22%-

CODE

171
172
173
174
175
179

211
213
214
215
216
219

221
229

231
232
233
239

281
299

311
319
329
339
399
389

CUs
CUS
CUS
cuo
Cus
CUS

Cub
Cuo

Cus

g 7
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308 ACTIVITY

TECHNICAL

Technologist
Technician
Experimental Operator
Other Technical

OTHER STAFF

Commissionaire
Fire/Security Patrol
Fireman

Tyre Fitter
Storeman/Storekeeper
Driver

Nurse

Trainer

Trainee

Sales Executive
Other Staff

CODE I.M.S.
CODE
419 -
428 -
489 -
499 -
811 -
815 -
821 -
831 -
841 -
851 -
861 -
871 -
881 -
891 -
899 -

~E
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D.1. A PRELIMINARY ANALYSIS OF DUNLOP U.K.T.G. STAFF

The tables that follow can be extracted in similar format through

interpretive programmes written for the Dunlop Manpower Suite.

Table D.2. is a simple age-grade matrix of all Dunlop U.K.T.G. monthly
paid employees (excluding India Tyres). Totals of the number of
employees in each grade band appsear in the extreme right hand column,
whereas totals of employees in each grade are in the bottom row.

Any age/length of service cross referenced with grade/salary band/job

evaluation band, can be constructed in an analogous way.

Table D.3. is a graphical representation of Table D.2. and in this case
each character represents five employees. In general the computer
problem chooses the character/employee ratio to be the interger so

that the graph fills most of the computer output.

Table D.4. is another representation of Table D.2. where the proportion
of the employees in each grade 1is given instead of the actual number

and is used as the input to a simple 'camera' analysis.

Table D.5. is a graphical representation of Table D.4. (Unsmoothed)
and may be thought of as a snapshot of the career progression of the
employees inthe current analysis.
il 22
Table D.6. is a version of Table D.5. using the smoothing function;

* =
10x X-2 + 2x_1 + 4x + 2X1 + x2

Table D.7. is the result of a programme which averages the smoothed
readings over the 35-60 age group to obtain the 'career streams'.

The promotional points are obtained by calculating the mean of the

values over the 'cross over' range.
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APPENDIX E

RESULTS OF USING THE DIRICHLET-MULTINOMIAL DISTRIBUTION TO PREDICT

PROMOTIONS WITHIN DUNLOP U.K.T.G. OVER THE PERIOD 1972-77

After applying the estimated grade dependent wastage rate vector to the
stocks the employees remaining in the manpower system are deemed eligible
for promotion. The observed number of promotions ffom gach grade

was used as the basic data input to the Dirichlet-Multinomial estimator

yielding the following results.

TABLE E.1. PROBABILITY TRANSITIONS (ACTUAL & ESTIMATED) USING THE

DIRICHLET-MULTINOMIAL DISTRIBUTION ON DUNLOP DATA 1972-77

1-1 1-2 2-2  2-3 3-3 34 bel 4-5 5-5 5-6

Actual 72-73 .797 .203 .959 .041 .978 .022 .931 .06S .913 .087

Fstimate 73-74].797 .203 .959 .041 .978 .022 .931 .069 .913 .087
Actual 73-74 643 .357 .927 .073 .978 .022 .943 .057 .889 111

Estimate 74-75{.718 .282 .943 .057 .978 .022 .938 .062 .S00 .100
Actual 74-75 .799 .201 .942 .058 .879 .021 .893 .107 .875 .125

Estimate 75-76|.741 .259 .942 .058 .978 .022 .924 .076 892 .108
Actual 75-76 .756 .244 .957 .043 .981 .019 .8969 .031 .907 .093

Estimate 76=77|.743 .257 .946 .054 .979 .021 .933 .067 .895 .105
Actual 76=77 .693 .307 .9B8 .012 .979 .021 .957 .043 .892 .108

The number of recruits remaining at year end over the five years are

given in the following table:

TABLE E.2. SURVIVING RECRUITS OVER THE PERIOD 1972-77

GRADE 1 2 3 4 5 6 TOTAL
1972-73 186 298 52 15 6 5 562
1973-74 148 296 27 7 6 2 486
1874-75 95 207 16 6 - - 324
1975-76 111 406 31 19 12 4 583
1976-77 86 234 52 36 - 2 410
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The estimation-observation results are best considered by reference to

the stock transition matrix over the years 1972-1977. The transitions

observed during the year 1972-1973 were used as the starting point of

the estimation process.

TABLE E.3. ACTUAL STOCK TRANSITION MATRIX 1972-1973

1 2 3 4 5 6 W T

1 299 76 - - - - 57 432
2 - 1805 77 = - - 143 2025
3 - 1 757 17 - - 52 827
4 - - - 122 9 - 16 147
5 - - - - 42 4 7 53
6 - - - - - 19 5 24
T 299 1882 834 139 51 23 280 3508
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E.4., ESTIMATED STOCK TRANSITION MATRIX 1973-1974

1 2 3 4 5 6 W
315 80 - - - - 90
- 1810 77 - - - 293
- - 797 18 - - 71
- - - 132 10 - 12
- - - - 49 5 3
- - - - - 23 5
315 1890 874 150 59 28 474
E.5. ACTUAL STOCK TRANSITION MATRIX 1973-1974

1 2 3 4 5 6 W
252 140 1 - - - 92
1 1754 139 - - - 286

- - 796 18 - - 72
- - - 133 8 - 13
- - - - 48 6 3
- - - - - 23 5
253 1894 836 151 56 29 471

485
2180
886
154
57
28
3780

485
2180
886
154
57
28
3790
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TABLE E.6. STOCK TRANSITION MATRIX 1974-1975

1 2 3 4 5 6 u T
1 204 80 - - - - 117 401
2 - 1629 99 - - - 462 2190
3 - - 812 18 - - 133 963
4 - - - 111 7 - 40 158
5 - - - - 44 5 13 62
6 - - - - - 19 12 31
T 204 1708 911 129 51 24 777 3805

TABLE E.7. ACTUAL STOCK TRANSITION MATRIX 1974-1975

1 2 3 4 5 6 W T

1 234 59 - - - - 108 401
2 - 1831 107 - - - 458 2190
3 - 1 801 17 - - 144 963
4 - - . 108 13 - 37 158
5 - i, - - 42 6 14 62
6 - - - - - 18 13 31
T 234 1691 902 125 55 24 774 3805
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TABLE E.8. ESTIMATED STOCK TRANSITION MATRIX 1975-13976

1
187

187

2
65
1419

1484

87
804

891

18
88

106

39

46

- 77
- 392

5 11
15 9
20 621

186

1494

874

16
93

108

39

42

- 400

14 10
18 632

329
1898
918
131
55
24
3355

3289
1898
918
131
55
24
3355
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TABLE E.10. ESTIMATED STOCK TRANSITION MATRIX 1976-1977

1 2 3 4 5 6 W T

1 164 57 - - - - 76 297
2 - 1459 B4 - - - 357 1900
3 - - 739 16 - - 150 905
4 - - - 83 6 - 39 128
5 - - - - 39 5 10 54
6 - - - - - 20 2 22
T 164 1516 823 99 45 25 634 3506

TABLE E.11. ACTUAL STOCK TRANSITION MATRIX 1976-1977

1 2 3 4 5 & u T
1 156 69 - - - - 72 297
2 - 1496 18 - - - 386 1900
3 - - 741 16 - - 148 905
4 - - - 89 4 - 35 128
5 - - - - 39 4 11 54
6 - - - - - 20 2 22
T 156 1565 759 105 43 24 654 3306

A summary and discussion of these results can be found in the main

text in Chapter 8 Section 2.
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