Aston University

If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either
yours or that of a third party) or any other law, including but not limited to those relating to
patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please

read our Takedown Policyand contact the service immediately




4 SYSTEMIC APPROACH TO ESTABLISH
FUNDAMENTAL PRINCIPLES OF COMPUTER

APPLICATIONS PACKAGES DESIGN

BY
IHAB ABDEL RAHMAN TAWFIC

B.Sc. Alex., M.Sc. Aston

Thesis submitted to the University of Aston in Birmingham

for the Degree of Doctor of Philosophy

MANAGEMENT CENTRE

July 1975 HE




0

This thesis is dedicated to the memory
of my father, Abdel Rehman Tawfic, who

had faith in me.




SYNOPSIS

This work attempts to create a systemic design framework
for man-machine interfaces which is self consistent, compatible with
other concepts, and applicable to real situations. This is tackled
by examining the current grchitecture of computer applications
packages. The treatment in the main is philosophical and theoretical
and analyses the origins, assumptions and current practice of the
design of applications packages. It proposes that the present form
of packages is fundamentally contradictory to the notion of packaging
itself., This is because as an indivisible ready-to-implement
solution, current package architecture displays the following major
disadvantages. First, it creates problems as a result of user-
package interactions, in which the designer tries to mould all
potential individual users, no matter how diverse they are, into one
model., This is worsened by the minute provision, if any, of
important properties such as flexibility, independence and
impartiality. Second, it displays rigid structure that reduces
the variety and/or multi-use of the component parts of such a
package. Third, it dictates specific hardware and software
configurations which probably results in reducing the number of
degrees of freedom of its user. Fourth, it increases the
dependence of its user upon its supplier through inadeguate
documentation and understanding of the package. Fifth, it tends
to cause a degeneration of the expertise of design of the data

processing practitioners.
g P




In view of this understanding an alternative
methodological design framework which is both consistent
with systems approach and the role of a package in its
likely context is proposed. The proposition is based
upon an extension of the identified concept of the hierarchy
of holons*which facilitates the examination of the complex
relationships of a package with its two principal environ-
ments. First, the user characteristics and his decision
making practice'and procedures; implying an examination of
the userf's M.I.S. network. Second, the software environ-
ment and its influence upon a package regarding support,

control and operation of the package.

The framework is built gradually as discussion
advances around the central theme of a compatible M.I.S.,
software and model design. This leads to the formation of
the alternative package architecture that is based upon the
design of a number of independent, self-contained small
parts. Such is believed to constitute the nucleus around
which not only packages can be more effectively designed,

but is also applicable to many man-machine systems design.

Definition: A holon is a self-contained, stable
open sub-system.

More details in Chapter 2.




ACKNOWLEDGEMENTS

The author wishes to express his gratitude to
Professor S.L. Cook for his interest and advice during the

study.

He would like to express his deep and sincere
appreciation to his supervisor Mr. J.C. Watt whose inspiration
and guidance were invaluable to this work and for his diligent
supervision and patience throughout the entire course of the

author's postgraduate study.

Mrs. H. Watt's genuine support to the author and his

family during the same period has been much appriciated.

In addition, he would like to thamk all the companies

visited and their staff for their co-operation and support.

Last, but not the least, his debts are specially due
to his two daughters Reem and Mona who have been a great source
of comfort. and to his wife Suzy, the author expresses his

sincere gratitude for her continuous encouragement and support.




TABLE OF CONTENTS

SYNOPSIS .o oo .o .o .o - oo
ACKNOWLEDGEMENTS .. - - - .o o
INTRODUCTION oo . . .e . .o
CHAPTER 1 : PROBLEM SOLVING .. oo oo -

The Process of Defining .o o .

Circularity of Defining and Relativity of
Definitions . oo o o o

Methodology oo - . - oo
1. The #lementalistic Conception ..
2. The Systems Conception . -
Simplification and Approximation .. oo
Some Design Implications . o
Analysis, Synthesis and Problems .. oo
Analysis-Synthesis Relationship o

Existing Analysts Misconception o

Problem Definition Versus Problem Solution

Conclusions .. - oo oo oo oo

CHAPTER 2 : THEORETICAL DESIGN CONSTRUCTS FOR
APPLICATIONS PACKAGES o .

Black-Box as a Design Concept .. oo
An Overview of Analogy .o - oo
Activity-Package Mapping oo oo

Some Practical Implications oe oo

iii

10
11
12
15
18
20
26
26
28
31
32

33
34
57
L1
b3




Cont.

CHAPTER 3 : APPLICATIONS PACKAGES AND MANAGEMENT

Structural Constructs oo oo oo oo
Data and Their Indications .. oo oo

Organized Complexity and Hierarchical
Structure . ce - .o .o e

The Hierarchy of Holons - An Exposition

1. Output Hierarchy : Triggers -

2. Input Hierarchy : Filters, Scanners and

Classifiers oo oo o oo
Arborization and Reticulation .. oo
Mechanization and Structure oo oo

Conclusions . . o . P e

INFORMATION SYSTEMS oo .o -
Relation of M.I.S. to Applications Packages
Top-Down and Bottom-Up Approaches .. ce

Factors Affecting the Decision Whether to
Buy or Make . oo e o . oo

1. Decision Maker's Bias . . os
2. Manufacturert's Influence oo .
The Aftermath of Deciding on a Package ..

Conclusions oo - oo oo . oo

CHAPTER 4 : APPLICATIONS PACKAGES AND SOFTWARE

Relation of Software to Applications Packages..

1. The Inverted Pyramid - oo .o
2. Operating Procedures .o .o oo
Hierarchic Structure oo «o .e -

Conclusions - .e oo oo . -

48

48

51
55
58

75
75
79
33
87
89
90
93
95
97

101




Conte.

CHAPTER 5

Scheduling and its Organizational Context

Scheduling Techniques - oo -
The CLASS Model o oo . -
A. Scheduling to Infinite Capacity
B. Scheduling to Finite Capacity
C. Short Term Sequencing - -
D. Priority Factors - .o .o
Design Implications o oo oo
Conclusions oo .o . o -

PROBLEM DEFINITION AND INTEGRATIVE SUMMARY OF

CHAPTER 6 : THE IMPLICATIONS OF COMMUNICATION
UPON THE DESIGN OF APPLICATIONS PACKAGES

The Mathematical Theary of Communication -

An Exposition . oo - o s
1. Information and Choice .. oo
2. Choice, Uncertainty and Entropy
3. Properties of the Entropy Function H
4, The Fundamental Theorem for a Noiseless
Channel . - .o N
5., The fundamental Theorem for a Discrete

Channel with Noise .. - -

: AN EXAMPLE OF A TYPICAL APPLICATION AREA
AND ITS MATCHING COMPUTER PACKAGE

PART 1

SYSTEMS

®

e

°

Variety Implications of Current Package Design..

Software and Communication . oo

User-Practitioner Communication Model

Entropy and Programme Design oe oo

102
103
109
112

112

131

132
133

133
134

137

138
139
141
146
148




Cont.

Design Implications . oo oo - .o 151
1. Pseudo-Modularity .. oo o oo .o 154

2, The Concept of Structured Programming and
Top-Down Design  eo  os ce e .o 158
2.1. Elements of Structured Programming .. 159
Conclusions ce  we  ee  se  se s e» 161

CHAPTER 7 : DECISION MAKING AS A DETERMINANT OF

DESIGN CRITERIA oo eo oo oo oo 164

Models of Users'! Hierarchies and Automation .. 165
1. Three-Level Management Framework o 166
1.1. Strategic Planning .. o oo ss 167
1.2. Management Control .. e .e .o 167
T.3. Operational Control .. o oo o 169
1.4, Impact on Automation .. «o oo .o 169

2. Decisions and Programmability oo oo 170
2.7, Impact on Automation .. . oo oo 173
Automation and the Decision Maker .. oo oo 175

A Holonic Interpretation of Churchman's Model
for Problem Solving oo .e - oo oo 177

1. Properties of Lockean Inquiring Systemn.. 179

2. Properties of Leibnitzian Inquiring
System .o oo .o oo oo - 180

3. Properties of Kantian Inquiring System.. 181

L4, Properties of Hegelian Inquiring
Systen - oo .o - .o oo 182

5. Properties of Singerian Inquiring
System ce  ee  ee  es  se e 184




Cont.

Implication and Conclusions .. oo - .o
1. Activity Arborization and Hierarchical
Reticulation oo oo oo oo oo
2., Uncertainty and Programmability .o

CHAPTER 8 : CONCLUSIONS - A PACKAGE AS A HIERARCHY OF
HOLONS oo oo o oo . oo
References o os o oo oo o o oo

Appendix 1 : Seme Configurative Data of the

Questionnaire .. o oo o oo
2 : An Extract of Interviews Questions to

Illustrate Current Users Thinking ..

185

185

191

193

203

211

215




Figure

\n £ W AV

N

~J

20:

217:

22

TABLE OF FIGURES AND

ILLUSTRATIONS

Emphasis upon no. of functions
Fmphasis upon no. of users
Superposition

Problem Solving

4 Package as a black-box
Representation of parts

(a) Isomorphism, (b) Homomorphism, (c) Plain
Activity-package mapping
Data-types

Disjunction of sub-systems
Conjunction of sub-systems
Holon Hierarchy

Properties of a holon
Arborization and reticulation
Dissection of computer systems
The Inverted Pyramid

Flexible sub-systems
User-software interaction
Hierarchic architecture

Rowe's operating characteristics of a production system
Spare-capacity

Overall systems flow chart for job shop




Cont.

Table

23:
2k
2k
26:

27:

23

35:
36
37:
38:
39:

Pinite scheduling four techniques

Schematic diagram of a general communication system
Two communicating holons

Schematic presentation of User/Software/Hardware
interaction

Schematic presentation of the analogy between the
two channels

Schematic presentation of Software as a discrete
channel with noise

Source~encoder interaction
Coupling of modules

Directed coupling of two elements
Coupling with feedback

Module's strength and coupling

Basic structures - (a) Process box,
(b) If-Then-Else, (c) Do-While

Three~level hierarchy
Programmed-unprogrammed decisions
Hierarchy and programmability of decisions
Methodologies as holons

Schematic representation of the various taxonomics
Ww.r.t. Uncertainty

Equi-uncertainty contours
Activity continuum and uncertainty
Equi-uncertainty contours

Uncertainty vs. programmability

t

Users! Estimated Software Effort Distribution

Correspondence Between Conventional and Sof tware
Communication




INTRODUCTION

This thesis is about the design of man-machine systems.
It is particularly concerned with the role and use of data processing
equipment in management information systems, and specifically with

the problem of designing the man-machine interface in this context.

The philosophical and methodological emphasis of the
research came about as the result of earlier efforts to conduct an
emplrical study of the design and implementation of commercial
computer applications packages (1). Preliminary work in this
direction (2) showed that there was a lack of fundamental conceptual
frames of reference, and hence it appeared difficult, if not
impossible, to conduct a meaningful empirical study. Concepts and
theories play an important role in laying down the basis for a
programme of analysis and empirical examination. It appeared that
there was a serious mismatch between the relatively important
practical roles packages play in business, and the very low interest

directed towards the development of rigorous design theories and

(1) An application package can be defined as a set of inter-related
programmes or modules - generally sequences of instructions.
It is generally designed and planned so that when operational
it may form a part of a system. It should be capable of
handling similar - but not identical sets of input to produce
required sets of output needed to perform one or more functions
within different organisations in order to be sold commercially.

-~
ro
N

Cf. Appendices 1 and 2.




concepts for this expanding area of systems application. This was
also confirmed by dissatisfaction expressed by many users (during
preliminary explorations for the empirical study) with some of the
characteristics of current package architecture regarding
intelligibility, modifiability, adaptability, etc. Discussions
with analysts and designers of users coumputer systems exposed, in
varying degrees, confused understanding and/or misuse of systems
concepts and terms. Some analysts justified the acceptance of
inadequate packages on the grounds of not being able to design
their own, and this seemed to be a symptom of serious underlying
problems. Many analysts appeared tc have a deep involvement with
computing technicalities at the expense of identification of users

needs, and this seemed likely to cause problems of miscommunication.

It was therefore decided to redirect the main effort
towards investigating the philosophical and theoretical bases of
man-machine interface design. In other words, the main theme
instead of being primarily concerned with package design has become
the more general one of interface design, but with particular
reference to packages when practical illustration or demonstration

is called for.

It is rather important to mention that this study treats
a package or a computer programme as a system specifically when it

is loaded into the central processing unit and other relevant

peripherals. Accordingly, the hardware is considered as an
essential environment for the package as a system. Without

hardware the package will lose its purpose and hence its systems




nature, as any other open system will do when separated from its

environment.

The thesis therefore attempts to construct a systems

based framework for the design of man-machine interfaces. It

concentrates on:-—

i)

iii)

The modelling of systems and their conceptualisation.
This involves the study of the relation between model
building and problem formulation. This implies an
examination of whether a particular design method when
used within a certain philosophical context is capable

of producing models that reflect the fundamental
characteristics of the modelled entities. This is a
question of methodology and definitions of systems
characteristics, e.g. structure, behaviour, environmental
infliuence etc. This is subsequently referred to as the

conceptual environment.

The role, influence and impact of machines, e.g. computers,
on their parent systems, e.g. organisations and vice versa.
This leads to the guestion, what is mechanisable and to

what extent? This is referred to below as the technical

environment.

The development of a design method that is capable of
yielding designs having properties to match the
characteristics of their parent systems. This is referred

to subsequently as the organisational environment.




It is argued that any attempt to build a conceptual framework for use

BN

by vpracti

£

L

tioners to aid them in the design of man-machine systems,
should try to satisfy four requirements. First, the language and
concepts with which the framework is built must be internally
consistent, Secondly, as much as possible of the language and
concepts must be drawn from those already recognised and in use in
the systems field, in order to minimise difficulties for potential

o

users of the Iramework. Thirdly, the use made of these terms and
concepts should as far as possible be compatible with present
accepted uses and interpretations, or confusion will be caused.
Fourthly, there should be some demonstration that the framework can

be helpful in describing and approaching a real example of man-

machine interface design.

The way in which the thesis attempts to deal with each of

the four requirements is as follows:

1) Internal Self-Consistency of terminology and concepts.

Consistent usage of terminology and concepts is particularly
critical in the systems field because it is a young field without
a well-established and coherent language system and because it
draws its ideas from such a wide range of disciplines, each
within its own different languages and idea systems. One way

of insuring internal self-consistency in building a new framework

is to rely largely or entirely on creating and defining one's own




language and concepts from a few very fundamental ideas. (To some
extent this is a path followed by Ackoff (3). That approach may
however discourage users and following researchers, who may be
reluctant to take on the onerous task of learning the new language,
and 1s not used here as will be clear from the statement of
reguirement 2. Concepts will be found to have been widely drawn
from the systems literature. It is hoped that the structure of
the thesis and the way the terms are used within it helps to show
that the usage is internally consistent; or failing that, that the
clarity with which they are displayed enables the reader to detect

any inconsistencies which will need treatment in further research.

PO
o

Use of well established terminology and concepts.

It will be very clear from the thesis that it draws on language

and ideas already used by others. References are liberally
given to allow sources to be checked. The aim has been in
each case to use the term in the same bgsic way as generally
accepted usage (or sometimes, the originator), and this may in

o

[9)]

the use and meaning of a term or concept in systems literature
is not normally restricted to either a unigue use or meaning.
A case in mind is the philosophical and scientific arguments
about the meaning of terms such as information, operation,
activity, etc. This is also the case concerning what is a
system? Is it right to refer to any entity, once it is made

up of more than one part, as a system? Can it be treated as

(3) Ackoff, R.L., "Towards a System of Systems Concepts',
Management Science, Series A - Theory, Vol.17, No.11,
July, 1971, pp.bo1-671.

t cases be readily checked. However it must be stated that




such without causing many difficulties?  Such ambiguity of

systems terms and concepts has been identified as still =
major limitation in this field and attempts are currently

being made (4) to overcome this problem.

Broader Implications and Interpretations of Terminology

and Concepts.

Although this thesis attempts to use terms and concepts to
carry the same basic meaning as in general usage, it does not
follow that the broader implications and interpretations of
the term in general usage (or by the originator) are accepted
here. Where this difference is seen zs important, it is
discussed in the text. However, as will be indicated below,
this is by no means covered exhaustively in the thesis and
there is much scope for further exploration and development.

It is hoped the references given will provide an adequate base

for such further work.

Applicability of the Framework to practical design problems.

To show the relevance of the present philosophical and
theoretical treatment of interface design, a real situation is
considered throughout. This is the design problem of
applications packages. This also may show that a reasonable
understanding of systems and other related concepts can be

useful in tackling ill-structured problems by developing new ideas.

(4) For example see Young, O.R., "A Survey of General Systems
Theory', General Systems, Vol.IX, 1364, p.61.

Also see Ackoff, "Towards a System of Systems Concepts™, op.clt.




t 1s imperative however to point out that the proposed

framework has not been experimentally checked. This again is

discussed further below.

A Comment on the above reqguirements

The four reguirements dealt with above were put forward as

being feasible for a research study of this nature. Ideally they
might well have been extended further. In particular, for exanmple,

a more exhaustive search of the laternative interpretations of each
of the terms and concepts in the literature might have been made and
documented, any incompatibilities discovered being pursued and in
some way resolved. Similarly, applicability of the framework in
practice would mainly be tested in relation to a wide range of
practical examples of interface design and perhaps shown to have

weaknesses as well as strengths.

This thesis does not claim to have gone that far. The
building of a conceptual framework of this «ind, it is argued, is a
very large task that cannot be completed in one PhD thesis. The
framework put forward here is seen as a testable hypothesis,
partially tested in the thesis but needing much further testing by

researchners who may follow on. Thus the thesis sets out to show

also that the effort involved in such further testing is worthwhile.

In other words, the framework put forward is not supposed

to be without defects or shortcomings. It is recognised that it




e

does not resolve all problems. Such a proposition would in fact
be anti-thetical and inconsistent with the main idea of the thesis
which is that no definition or solution or design is perfect or

complete. Consequently eventual application of the framework can

result in discovering new problems due to its inevitable incompleteness.

2

Not all difficulties in application, of course, will be due
to defects in the conceptual framework; there are inevitable
difficulties in the systems approach itself, due to the inability to
formulate perfect or complete definitions of real phenomena. This,
in turn, leads to inaccurate definitions, boundaries, elements and

relationships.

3
7
=)
5]

TRUCTURE OF THE FRAMBEWORK

In the light of the foregoing, this thesis attempts to
construct the design framework from the viewpoint of the three
environments, vis the conceptual environment, the organisational
environment and the technical environment. The characteristics of

each are swmarised in the following.

-

fo The Conceptual Enviromment of the Framework

A mental image of a real phenomenon or situation is a form
of a model as developed by the person involved, e.g. the designer.
The conception of the model may involve the activation of a set of
preceding activities like the identification of the phenomenon, its
description, the selection of the appropriate method that can handle
it, and so on. However, the effective use of such activities is

considered to be constrained by the designer's own set of conceptual

frames of reference and their natures. Thus Chapter One is devoted




to discussing the complex topic of change and its likely effects

on models, and how such models should be designed in order to

cope with a changing environment. Accepting that change is
inevitable, it is argued that the internal structure of the model
should be distinguished by flexibility to enable it to meet the
requirements of change, Other design criteria, namely content and
bias, and their effect on the flexibility of the model are examined.
This has implied a brief study of interdependence between‘the
process of defining, methods and concepts. Within these outlines
the current form of a package as a ready-to-implement solution for

an ldentified problematic situation is examined.

Chapter Two has two purposes. One is to identify the
basic assumptions behind the concept of packaging. The second
purpose is involved with the problem of understanding a given
package or model under normal operational conditions. As for the
first purpose, the thesis hypothesizes that the basic philosophy
behind the concept of packages is that of analogy. This hypothesis
is built on two assumptions which may form the foundation of
packaging: a) the feasbility of designing a specific model that can
correspond to procedures and fulfil needs of all members that may be
included in an arbitrarily chosen set of N potential users whose
procedures are assumed to have some similar properties; b) certain
needs and procedures of any potential user within the set are very
similar or even identical to those of any other user within the
same arbitrary set of users. Consequently, only those relevant

o

aspects of the concept of analogy are considered. Concerning the

juestion of understanding a given package or model the concept of

7o

[¢]




black-~box is reviewed. This involves a discussion about the
concept's characteristics and limitations, and whether the concept
its own can yield a unique determination of the structural
pattern of a given package. This treatment derives much of its
importance from the idea that many analysts and designers rely
heavily on this concept, thinking that it can resolve much of
their éifficulties. This has brought to the discussion the notion
of structural organization to identify some means through which the

given package or model can be analyzed. Again, this has suggested

the study of the concept of hisrarchy as a possible conceptual

means. The Chapter ends by introducing the concept of holons and
their organization; Koestler defines a holon as a self-contained,

Stable open-subsystem (5).  These holons provide: 1) a satisfactory
conceptual definition or description for a part or module; Z2) a

flexible overall structural pattern of a package.

2. The Organisational Eavironment of the Framework

This is the enviromment within which the purpose and
usefulness or otherwise of the model as an interface between the
user and the computer can be determined. Unless its users are
satisfied with its performance the model may lose its purpose.
hus a reliable conception of the nature of the eventual interplay

between the model and its user is of absolute design importance.

(5) Koestler, A., "The Tree and the Candle', In, W. Gray, and,
N.D. Rizzo, (Eds.), "Unity Through Diversity",
(Gordon and Breach, Sci. Pub., N.Y., 1973),
Part I, pp. 207-314.

7c




The scope of this environment covers two main arecas.

+

Cne is the study of the likely interaction between a user and a

model that may be allowed through the different versions of the
&

J

concept of management information systems, M.I.S.'s. Chapter

Three examines typical definitions of M.I.S.'s as proposed by

designers. In this Chapter an M.I.S. is treated as the user-
oriented environment of a package. The decision whether to

buy a ready-to-cimplement model or package or attempt to make
one's own model is also investigated. The decision is analyzed
to identify and examine the likely consecuences of opting for

nd/or relying on ready-to-implement models in a comprehensive

Y

manner as presented in the form of packages. The effect of

this model form on the development and versatility of users:?

data processing and design expertise and skills is also considered.
The second area covered by the organizational environment
is that concerning the identification of usevs' characteristics.

It is arpgued in this thesis that without adequate identification

of users' characteristics it may become absolutely difficult to
understand or awpreciate users' needs. This lack of understanding
of users' regquirements may lead to the design of the wrong models.

At best this may lead to the design of models that may not fit in

the structures of their users. This is dealt with in Chapter
sSeven by attempting to test the compatability of the design

reguirenents - drawn so far - with the needs of




Te

Do The Technical Environment of the Framework

»

This is the environment which constrains or limits the

scope of the model. It exercises this role by dictating the
content of the model in the form of specific features. Content

is therefore defined to refer to: specifications, i.e. the model's

language, size, st

<
H
2
(@]
it
o
H
m
o
5
jo)
o
]

03
W
=
e
&
W
o
}...‘ .
0
5

-
w
o
9
[&
[©)
}._1
[
o
1]

acceptable
input and the possible outwut; generality, i.e. whether it

corresponds to a unigue real situation with reference to a specific

=

uscr; etc. Thus the reclationship between the intended purpose of

seen content and

<
&,

the model and its content on one hand, and that bet

H

i
—

the design reguirements, e.g. flexibility, on the other, should all
be carefully examined. Chapter Four discusses the relationship
between software and packages and studies the impact of the latter
on the former. Also the manufacturers' desire to extend their
influence to control users' freedom of choice is examined.

Methods to prevent this from happening are suggested.

Chapter Six attempts to define a package or model in

termns of its communication function. This is considered to be

P

ble with the reguirements of the other two environments

i
!.J

compa.
as well as those of the concept of holons. Also this Chapter

urrent state of modularity and proposes the use of

jO]
ja
@
}__
i
[0}
0]
)]
o
o
@
0

e technique of structured programming.




Chapter Five considers a typical package, namely CLASS

il ]
N

and discusses 1t along the lines put forward in the above three
g P

environnents,

-
@
w
'_J
[]
(¢
O
=
(¢}
ft
o
jon
€]
1]
o

The th y rejecting the present package
architecture on the grounds of three main reasons. The first
reason 1s concerned with the design properties. In this respect

current packapge architecture makes it very difficult, if not

imposiible, for users' analysts to modify or adapt such vackages

CP
O
-
’_J
ot
=
5
o+
i
&)
l_l
]
@

cnvironment, This is attributed to the ad hoc,
pseudo=-modular, over-complicated and inadequately documented and
tested designs As pseudo-modular, the constituent parts of the
package become more dependent upon each other and-thus increasingly
inseparable. In view of these qualities and in addition to the
content implanted by the manufacturer the package becomes extremely
vlased to and dependent on its originator's backing. The second
reason is involved with rigidity. Current architecture leads to
duplication of efforts, due to the inseparability of the parts of
this is anti-thetical to the fundamental idea

The third reason for rejecting present package

the effect of package rigidity on its user by
reducing his number of degrees of freedom, which can lead to
communication as well as psychological problems. Also for these
very reasons users' data processing design skills and expertise

degenerate.




The thesis concludes by proposing the design of small and
independent modules as an alternative design approach. It is
concluded that through this new architecture packages may be freed

from most of their deficiencies.

However, the usefulness of this study will not be fully
realised unless further resecarch is carried out to construct more
precise propositions which are testable. This is likely to have
two facets. One is to assess the practical effectiveness of the
general

s
S Ls

proposed package architecture. The second is more

the philosophy of the framework
in relation to a wide range of actual interface problems. Also
it may be possible to extend the scope of the former facet to

examine the reliability of the package concept in general which

is not questioned in




oo

CHAPTER 1

PROBLEM SOLVING

The purpose of this chapter is to study the essential

design requirements to cope effectively with change., These
requirements have two main facets. One is that covering the

designer's own conception of change in general and more
specifically in relation to his, or his clients, needs. The

other is that involving the designerts ability to discriminate

and select methods to design models to satisfy the identified
needs., Consequently, by treating a package as a ready-to-
implement model or set of definitions, its design requirements

are investigated. In this context, it is argued that the package
iz bound to reflect the conceptual frames of reference of its
igner, Also the impact of design methods on package properties
such as flexibility is considered.  Thus the emphasis of the

discussion is centred around the interdevendence of definitions
£ 4

methods and solutions. First, the process of defining is briefly
outlined and some of its characteristics are pin-pointed. This
is followed by an overview of methodology. This is because

methodologzy can be regarded as the source of frameworks within
which concepts and technigues may be used. In this respect two
methods are reviewed, viz. the elementistic and the systems.

Finally the roles of analysis and synthesis and the nature of

problems are all examined from the viewpoint of systems thinking.

1




THE PROCESS OF DEFINING

A definition is essentially a statement describing an
abstract entity or a material object, or any combination of both.
Such a statement may take numerous farms, for example mathematical
expreséions and verbal descriptions. Whatever form a definition
may take, it is regarded to be imperfect and ultimately imprecise (1).
Consequently definitions are constantly reconsidered and reformulated.
As a new definition is formulated often it is accompanied with more
dimensions and/or new insights (2). Such new insights open new
horizons and make it possible to redeem the definition in question
to unveil new aspects. It has been said that defining is circular 3)
because definitions do not emerge from vacuum, rather they are founded
in terms of some known concepts. Accordingly definitions show either
implicitly or explicitly varying amounts of subjectivity. This
remains to be true as long as they contain such an element of
selection, i.e., personal judgment; they may always be liable to

review.

(1)  Westaway, F.W., "Scientific Method", (Hillman-Curl Pub, N.Y.,
1937)s P19

(2) Popper, K.R., #The Logic of Scientific Discovery",
(Hutchinson & Co Ltd, London, 1972), Pe.5h.

(3) Ackoff, R.L., "Scientific Method- Optimizing Applied Research
Decisions', (John Wiley & Sons, N.Y., 1968), p.170.




10

CIRCULARITY OF DEFINING AND RELATIVITY OF DEFINITIONS

Revision of definitions may be initiated in the light of
new propositions, observations, or needs. Whatever reason that
there may be behind it, constant reconsideration helps in formulating
a more precise description of the phenomena in question (4). This
argumnent as it applies to definitions in general is particularly
applicable to computer anplication programmes. In this respect, the
programne is consildered to comprise a set of definitions which is
constructed and designed primarily to support or perform a certain

5

efinitons depends to a large extent upon the

o

function. The set of
knowledge of the definer (5). The interdependence between the

definer and the definition is illustrated by Russell when he says:

"Common words, even proper names, are usually
descriptions. That is to say, the thought in
the mind of a person using a proper name
correctly can generally only be expressed
explicitly if we replace the proper name by a
description. Moreover, the description
required to express the thought will vary for
different people, or for the same person at
different times.*  The only thing constant ...
is the object to which the name applies (6).

Therefore the problem is further compounded by trying to define

concepts which are not objects and which are not constants.

-~

his understanding of change and the variability and relativistic

¢

ha

Q

racteristics of definitions implies the selection of a certain
dezign approach which is capable of producing designs which are

easy to change and modify.

*  Emphasis is not in the original.

(4) Whitehead, A.N., "Process and Reality", (Indiana Univ. Press, 1971).

(5) Russell, B., "The Problems of Philosophy', (Oxford Univ. Press,
London, 197%), pp. 25=32.

(6) Ibid.




Thus adequate defining should not be seen as an easy,

ad hoc task to perfornm. Indeed it embodies the whole process of
inguiry. Cne cf its basic requirements is clear understanding of

1e body of concepts that may form the conceptual framework of

Lgners in order to use them appropriately.

Good method is a prerequisite for good design.
Methodology is the science which studies the various problem
solving and design methods that are generated by the various
philosophical auproaches (7). Thus a clear understanding of

ach and the appreciation of its limitations and usefulness

are primary conditions for the appropriate application of its
method. ihis, in turn, can lead to deeper consideration of
design properties such as consistency, discrimination and

effectiveness,.

The current design practices of computer systems analysts/
designers reflect: a serious misconception of some of the basic

desipgn methods; a confused understanding of the conventional, i.e.

(7) Ackoff, "Scientific Mathod", op.cit., p.b.




11a

elementistic, and systematic approaches (8). This criticism is
directed towards the manner in which methods are confused rather
than the methods themselves Thus, considering the present
problem, i.e. package design, it may be appropriate to emphasise

5

hat the usefulness of the elementalistic

ystemic approach that caters for

identification and hence the

investigation of the proper parts. Consequently, the problem
of package design as conceived here is not only that of writin ng

number of instructicns but also the studying of how such
instructions are rclated to its designer, and its environment,
¢.g. the organization needs of its potential user, other
pregramies, to hardware, etc.
As was implied earlier definitions and desipns evolve.

Some lose their purpose or relative importance and so attract
little, if any, attention and hence fade away. Others are
maintained and elaborated to cope with change. Such an

volutionary process may involve conceptualization of new

relationships. These relationships can indicate new dimensions

(&) 1t may suffice at this stage of the discussion to mention

that most users of packages complain from the lack of
adequate documentation of their packages irrespective of
the sources of such packages. This indicates besides
other things a comparable lack of appreciation of the
consequences of the inevitable interaction that takes
place between a package and its invironment.

a




12

and/or similarities between two or more phenomena previously

considered unrelated. Consequently, in the light of such

novelty, the original statement or design undergoes certain

changes in order to be adapted to suit the new requ ments.
[ndintibunen Bty AN e

A8 a result, and parallel to this evolution, methods, techniques

1

and tools have been continuously worked upon to render better
understonding and thus descriptions/definitions/designs of the

5

problems concerned, Therefore, the creation, ‘evelopment

)
&)
o,

formulation of the science of methods can also be traced bacl

- Thus in the following two modes, i.e. the elementalistic and
systemic, are briefly reviewed because of their identified
s J

influence upon today's prosramme desien characteristics.
ES iy (&) o

1. The Elementalistic Conception

The application of this approach involves the brealking

down of the investigated entity (whether material or conceptual)

into its basic clements. Thus the emphasis of the study is
bound to be placed upon parts rather than wholes. The main

proposition is that examination and understanding of parts
permit an understanding of the whole. This may be exemplified

1

by the following Descartes! rule:

"If we arc to understand a problem perfectly,

we must free it from any superfluous oonceftions,
reduce it to the simplest terms, and by a process of
enuneration, split it up into the smallest possible
partst * (9).

Geach, (trans. ), "Dpsca tes Ehiloso%h%cal
(Thomas Nelson & Son Ltd. London, 1971), pe179.




Possible interpretations of this rule may include:

1. the characteristics and properties of the whole can

be perfectly inferred from those of the individual parts;

2o interactions between the parts, i.e. relationships, are

less important than the varts themselves, Some
interpreters go farther than that by suggesting that
this and other similar rules assume the non-~-existence

o

of part interactions (10);

De the whole is the sum of its parts. Thus an entity
can be resolved into, and hence reconstituted from,

the parts put together (11).

However, in some areas of biology and social organization the
complete reliance on this approach as a source of understanding
has been regarded as inadequate (12), It is argued that this
inadequacy is due to the observed complexities, e.g. strong part

interactions, of biological and social phenomena. Lven in

physics the aim to identify and define the simplest unit of matter

(10) Bertalanffy, von L., 'General Systems Theory: Foundations,
Development, Applications", (Allen Lane, The Penguin
Press, London, 1971), pp. 16-17.

(11) Bertalanffy, von L., "Problems of Life", (Watts & Co., London,
1952); Churchman, C.W., '"The Design of Inguiring Systems',
(Basic Books Inc., London, 1971).

(12) 1Ibid, p.5.; Ashby, W.R., "General Systems Theory as a New
Discipline', General Systems, 1958, Vol.3, pp. 1-6.




» F Fon - =

is far from being reach (13). It has also been suggested by
Weaver thal hes e S an . 3 3 i
Weaver that being part-oriented, the elementalistic, or classical

it, can lead to fragmentation or unorganized

complexity (14).

In shysics as well as other hard sciences, laws and
definitions are lizble to change, then it can be
considered as illogical to design a man-machine
system such as a package without being changeable.

—~
Y

ASN

~

"Science and Complexity!', American
Scientists, 1948, 36, pp. 536-5hk,
Bertalanffy, "General System Theory",
op.Citey P33,

(14)  Weaver, W.,




s

2o The Systems Conception
The systems' view of the world is that of a complex

whole.  Conceptually this is based upon two highly related notions.

he systems' concept. The other is that

ct

of f

o

m L K S e a
The first is tha

O

analogy and isomorphism. The term system is defined to be a complex

of elements in mutual interaction (15). Isomorphism is that of one-
to~cne correspondence between two or more diffe phenomena (16).
Tv__) . ,.,,1 I o 1. .

aerein, lsomorphism is considered to be a sub-class or special case

of the wider encompassing area of analogy (17).

N

It has been suggested that the two concepts, i.e. systems
and analogy, together form the pillars of the contemporary general

1.

systens theory and systems research in general (18). Also the concept

o]

f systems is often associated with other concepts such as hierarchy,
differentiation, purposiveness, etc. Each of these concepts is used
to provide means by which an entilty can be conceived of and examined.
All of these concepts must be treated with caution, since they are not
adegquately rigorous and certainly are not relateable to the physical
world in the same way as corresponding concepts in, say, physics.

i

Thus the concept of systems is used only as a conceptual framework

4

(4]

(the systems approach) that can handle complexity by considering

entities as wholes (19). The approach is not fully satisfactory but

what are the other alternatives? Thus, the impact of systems thinking upon

(15) Bertalanffy, "Problems of Life'', op.cit.

(16) Rapoport, A., "The Uses of Mathematical Isomorphism In General
Systems Theory", In G.J. Klir, (Ed.), "Trends in General
Systems Theory™, (J. Wiley, N.Y., 1972), pp. 42-77.

(17) Bunge, M., "'Analogy, Simulation, Representation', General Systems,
1970, Vol.15, pp. 27-34.

Bertalanffy, von L., "The History and Status of General Sy§tems
Theory!', Academy of Management Journal, 1972, pp.407 %20;”
Ashby, W.R., *Gewm“aL Sysbems Theory a° a New Discipline®,
General Systems, 1950, Vol D pp..j~

rigclence Complexity™, Op.Cit.

—~
—
(@]

~

10} Weaver,




the development of model building should be found in every discipline.

For example, analogy between organisms and human groups or sub~groups,
organizations, can be drawn. Various other analogues of organizations
are nowadays available. Thus, there is Beer's Cybernetic model (20);
Churchman's communication model (21); March and Simon theory of
organizations (22); Forrester's industrial dynamics (23). In that

sense, organizations are regarded to constitute open systems 24).

The main characteristic of which is dynamics, i.e. continuous inter-
action with the environment. This enables the organization to
maintain, at least its survival, i.e. maintains its steady state.

Such indicates teleological or purposeful behaviour.

Thus considered as interacting systems, man-
machine complexes are understandably permitted to exhibit regulative
behaviour and consequently are expected to show variable degrees of

adaptability in face of disturbance.

(20) BReer, S., "Decision and Control", (J. Wiley, London, 1966), Part II;
"Cybernetics and Management', (English Univ. Press,
ILondon, 1959.

(21) Churchman, C.¥W.; Ackoff, R.L.; Arnoff, E.L., "Analysis of the
Organization", In Litterer, J.A. (Fd.), "Organizations:
Systems, Control and Adaptation', Vol. IT, (J. wWiley,
N.Y., 1969), pp.27H4-286.

(22) March, J.G.; Simon, H.A., "Orgamizatious", (J. Wiley, N.T., 1958).

(23) Forrester, J.W., "Industrial Dynamics", (M.I.T. Press, Cambridge,
Mass., 19671).

(2L) Katz, D.; Kahn, R.L., ngommon Characteristics of Open Systems',
Tn Bmery, F.E., (Ed.), "Systems Thinking'", (Penguin
Books Ltd., 1970), pp.86-104.




The development of the systems approach has induced a

change in the attitude towards structure. The mutual dependence

petween structure, behaviour and genesis (i.e. origin, mode of

formation or generation) has been clearly identified (25).
Consequently, the idea maintained here is that design processes
which act as genesis determine structure; structure puts the limits
and scoves of behaviour which, in turn, may introduce changes in
structure. According to this understanding flexible structuring of
the parts that constitute the system gives it better chances of

survival in a changing environment.

f ¥ i Y 1 { 1
Furthermore, the dynamic approach towards structure has
shown some significant design implications; of these, it is

suggested that hierarchical ordering of structure can present an

effective way of coping with complexity (26). For the purposes of
stability, a hierarchical structure is considered to be governed by
two modes of interactions. These are the horizontal interactions
that connect within each one level its various parts so as to
maintain the coherence of the whole; vertical interactions between

different levels are necessary for control purposes.

(25) Gerard, R.¥W. '"Units and Concepts of Biology",
Behavioural Sci., 1958, 3, pp. 197-206.

(26) Simon, H.A. '"The architecture of Complexity'™, In Litterer, J.A.,

op.cit., pp. 98-114.

-

e G SR R




The resultant dynamic interaction precludes the
delineation of a clear sharp line, to wit a boundary, which
discerns either horizontally a sub-system from another, or
vertically one level from another. Instead, fuzzy, i.e. greyish

area, determination of boundaries may be regarded as sufficient (27).

SIMPLIFICATION AND APPROXIMATION

Simplification and approximation constitute a major
property of systems thinking and design because under no circum-
stance, exact measurements, even of physical forms, can be assured.
This is mainly due to the infinite number of variables associated
with any particular event (28). It can be maintained that
considering structures as hierarchies implicitly assumes an
element of simplification. Moreover, it has been ‘proposed
that the notions of hierarchy and simplification are complements (29).
As time lapses the complexity of a system with certain levels of

hierarchy may increase according to the intensity of the interaction

(27) Stratton, A., "Total Systems Analysig", First Internat.
Research Conf. On O.R., 1973, Univ. of Sussex.

(28) Ashby, W.R. ngystems and Their Informational Measures",
In G.J. Kir, (Bd.), op.cit., pp. 78«97,

(29) Pattee, H.H., nThe Evolution of Self-Simplifying Systems',
In E. Laszlo, (8d.), "Relevance of General Systems
Theory", (George Braziller, N.Y., 1972).




between the system and its environment. If the system succeeds in
maintaining this interaction, its complexity, which results from
growth or change, may reach a point where the system either moves
up to a new hierarchical level capable of handling such complexity,

or it may collapse under its own weight.

Simplification is, therefore, quite a useful concept in
systems research and study; on one hand without simplification or
approximation, no model, including computer programmes, may ever be
conceptualized. On the other hand, the act of modelling of phenomena
stems mainly from attempting to perceive analogies, recognition that
something is like something else.  The ultimate purpose of these
models and/or analogies is to attain clear understanding of the
considered phenomena. Nonetheless, to devise an acceptable analogue
is not in itself attainable for every phenomenon. Indeed, ferfect
analogues may not exist in the real world. It has been suggested
that the closer a particular model is related to human behaviour,

e.g. management information model, the farther it moves away from

exact analogies (30).

However, over-simplification can lead to unforeseen

conseguences. To illustrate, one of the fundamental premises, upon

which current design practices of computer application packages are

based, is the assumed strong similarity, even isomorphism, between

(30) Rapoport, A., "The search for Simplicity", In E. Laszlo, (Ed. ),

op.cit. pp.15-%1.

T e ey s

T e e




different companies. This is a misunderstanding of systems thinking

which can lead to misuse of concepts, e.g. analogy, and has been
guarded against by maintaining that models, regardless of their

origins, are neither exhaustive, unique, nor certain (31). The

validity of such characteristics can be examined through the concept
of information. Characteristically information is said to be an
incomplete concept because it depends completely upon the inter-
pretative system of its recipient which alone can judge whether the
information has meaning (32). More important, this interpretative
system changes continuously with time (33). According to this
understanding not only companies differ from each other, more

significantly an individual company undergoes continuous chanege.
rany 28 28

SOME DESIGN IMPLICATIONS

WYhatever case it is, models may, and in fact are, grouped
into classes according to noted similarities with respect to their
properties (34%).,  From the viewpoint of computer application
packages, the criterion which discerns a general or multi-purpose
model from a specific or special-purpose one is here considered to

have a three-fold nature, i.e. content; bilas; flexibility.

(31) Beer, "Decision and Control", op.cit., p. 104.
Bertalanffy, "General Systems Theory", op.cit., p. 100,

(32) Vickers, G., Sir, "A Classification of Systems'", General
Systems, 1970, Vol.15, pp. 3-6. o

(33) 1Ibid. This is to be covered more fully in Chapters 3, 6 and 7.

(34) Ackoff, R.L.; Sasieni, M.W., "Fundamentals of Operations
Research', (J. Wiley, N.Y., 1968).




Content of a model/programme: It can be described in terms of

specificity, precision, correspondence/connection/representation
with specific/concrete/unique/real situation/company. That is
the stronger the correspondence between a model/programme and a
real situation, the more content the model is supposed to have.
Also the term content is chosen for its generality, i.e. content

may indicate or refer to specificity, or precision, etc., but the

reverse cdoes not necessarily hold.

Bias: This term is used to indicate preference or inclination
towards something which is not necessarily justifiable from the
viewpoint of rationality. This is not to say that rationality
itself is without limits, this is discussed throughout limits,

this is discussed throughout the thesis.

Flexibility: This may refer to the model's modifiability and

adaptability




It has been suggested that as content increases
generality may decrease (35). Both content and generality
are considered to be two important criteria that determine the
scope of a package. This can be explained as follows: A
programme can be considered as being general or specific depending
on wiether it is designed to meet the requirements of several
users, or it is designed for a specific user respectively.
Also a programme can be distinguished as being general or
specific by considering the number of functions which it can

perform,

1. According to the Number of Functions (36)

When the package is either externally or internally
supplied, then it is general purpose i1f it covers more than one
functional area and irrespective of the number of users such as
management information, production control, Pert/cost, etc. The
package is special purpose if it covers only one functional area
such as scheduling, inventory control, etce. This is shown in

Figure (1).

(35) Boulding, K.E., "General Systems Theory - The Skeleton of
Science', In W. Buckley, (rd.), "Modern Systems Research
for the Behavioural Scientist', (Aldine Pub. Co.,
Chicago, 1968), pp. 3-10.

(%36) The scope of the function is immaterial.  Therefore the
definition is applicable to modules irrespective of their
size or level. Tn this case the only critical factor is
the number of, say, operations performed by the module.




no. of functions

General Purpose

no. of users

Emphasis upon no. of functions

Figure (1)

2. According to the Number of Users

when the package is externally supplied, then it is
general purpose since it implies an applicability to more than one
company and irrespective of the number of its functions.
Consequently an internally supplied package is considered as special

purpose since its applicability is restricted to only one user.

This is shown in Figure 2).

no. of functions

Special Purpose\\\\
General Purpose

no. of users

s

Emphasis upon no. of users

(Figure (2)




3. The Two Dimensions are Considered

In this gencral case when Figures (1) and (2) are
super-imposed upon each other all packages become general purpose

except that which is internally supplied to perform a sgecific

function, as shown in Figure (3).

no. of functions

General
Special Purpose purpose

2;i;ﬂ Packages

/
t

no. of users

Superposition

Figure (3)

This also explains the relationships between content,
generality and specificitye. when a package is highly specialized
it tends to be highly specified since it is designed to perform a
specific functione. However, its range of application depends
mainly on the amount of content it may contain. Content imposes

constraints which may or may not be compatible with the user's own

structure. Thus a general property which distinguishes a general

purpose package is contentlessness (37). This property ascertains

(37) 1In that respect, the package resembles mathematical models;
black-box concepts; open-system scheme; €ven definitions of

s such as information; system; etc. each is

concept ; es
contentless thus it has an extensive applicability.




the right of the individual user to derive his own meaningful version
of the package within its general framework. Therein, the problem

becomes that of synthesizing or relating the package to his own

procedures.

The second element in the triplet is bias which is related
to content. Package design, like models, depends upon a number of
factors. First, the familiarity of the package-designer with the
real phenomena he needs to project. Second to this is the designer's
conceptual background. Thirdly, the designer's objectives, i.e. why
he is designing the package and what should it achieve. If the scope
of the designer is highly specialized, this may lead to a significant
reduction in the applicability of the package in question and the
effort needed to off-set this quality may prove to be costly. Thus
the bias of the package designer 1s inevitably going to be refleéted

in the package itself. That is, the more content a package may have,

the more biased it may become.

Flexibility is the last aspect of the proposed triplet which
differentiates between general and special-purpose packages. Once
again, flexibility per se depends upon the preceeding two properties;

the more content a package may have, the more rigid-structure it

exhibits as content delimits, or perhaps reduces, the number of

degrees of freedom built into the package. And as bias increases,

so does rigidity proportionally. Thus flexible structure should be

regarded as an indispensable charactertistic of general-purpose

packages.




The conviction is, however, that a truly general-purpose

package like that of a definition and that of a system of systems,

is a theoretical gauging or datum point.

ANALYSIS, SYNTHESIS AND PROBLIMS

The process of systems design is similar to that of inquiry.
That is, design should supposedly activate the processes of analysis
and synthesis to define and solve jdentified problematic situations.
The following brief discussion will basically involve an interpretation
of the interdependence hetween (a) analysis and synthesis;

(b) definition and solution.

ANALYSIS-SYNTHESIS RELATTONSHIP

Both analysis and synthesis are prerequisites of clear
understanding (38).  Analysis is needed to provide in-depth knowledge
and detailed accounts of the individual components and elements;

whereas synthesis integrates and unifies that knowledge to pin-point

deficiencies and misunderstandings.  Thus analysis and synthesis

complement each other. Tt is identified here that a characteristic

s that of dynamic—interdependence between

of an inquiring process i

its components. This understanding is founded upon the realization

that analysis stimulates synthesis and synthesis generates further

: i . nfinitum, as shown in Figure COP
analysis' requirements and so on ad 1 .

R Reason'', (Great Books of the
38) Kent, L., ''Ihe Ccritique of Pure
(39 , ’ Western World, Vol.k2, 1952), p.16.




(4) arSTa

goroxddy m>ﬂpmnmpH50Hstha

"OTINTOS
— ozTsoRluls
ss00YD
quamsTdwl u8tssq TInd < ¥V N
°bay saAT3000q0
JOouT]
waTqoad
— sskreuy —
SUTIad
Jolen




Furthermore, there is no clear sharp line which marks an end, say,
of analysis, and the start of the other, i.e. synthesis. Instead
it may be conceived of as being consisting of a fuzzy area. As a
consequence, any separation between the two is considered to be

arbitrary as regards both, spatial and temporal dimensions.

However, the artificial separation of the processes of
analysis and synthesis is regarded as originating from the same
sources as the classical elementalistic approach. Therein, the
emphases are upon individual elements, which resulted in the
development of the summative principle, viz. the whole is equal to
the sum of its parts (39) which is apparently in disagreement with
the Gestalt principle. The latter states that, the whole is greater
than the sum of its parts. At any rate, it has been suggested that
the summative principle is incapable of offering adequate descriptions
of complex entities such as man-machine systems (40). This is
because knowledge of parts may not necessarily provide sufficient
knowledge about the whole. Even more, the pattern of behaviour of
an individual component depends upon, and is affected by, the
number of other individuals to which it is related. Thus, the
outcome of synthesis may be different from the results obtained
from analysis. This basic understanding of systems philosophy is

not always fully appreciated -by

(39) Bertalanffy, '"Problems of Life', op.cit.

(L0) , '"General Systems Theory", op.cit., p.16.




existing computer systems designers and/or analysts. This is
demonstrated by the huge resources they allocate for the development
and testing of modules compared to these they allocate for

integrating or linking modules to each other (&1).

EXISTING ANALYSTS MISCONCEPTIONS

The main problem seems to be a lack of an explicit
philosophical approach and the unthinking use of a mainly mechanistic
approach derived from traditional education. Maslow considers
concentration on the mechanistic/atomistic approach to be a very

serious handicap. He says:

n... of the two modes of thinking, the atomistic
and the holistic, it is the holistic which is the
sign of the healthy, self-actualizing ...
Tnsistence on the atomistic mode is in itself a
form of mild psychoneurosis' (42).

Tf the atomistic thinking is regarded as

inappropriate approach, then confusing the two modes can be

seen as a sign of still more serious deterioration:

many analysts talk in systems terms but still behave mechanistically.

The reason for emphasizing this point is the relative influence

systems analysts/designers can exercise on their companies. Through

their tasks they can make or break such companies. They are assumed

to interact with all levels of management in order to identify and

(41) This is based upon attitudes expressed by w9rking system§
analysts/designers who occupy leading p081?1ons in a seriles
of interviews. An 11lustration is given 1n Table 1, Chapter 3.

motivation and personality!, (Harper & Row,
N Y.. 1970), Preface.

(42) Maslow, A.H.,




fulfil its various needs. In addition, they are supplied with
computers which often constitute large investments, specially for
smaller firms. Consequently, an analyst/designer's job can be
understandably regarded at least not less demanding, if not more
critical, than for example an engineering job. Yet most engineers
are expected to undertake high technical training, e.g. university/
polytechnic degrees. Conversely, a large number of existing
systems practitigners have only a formal training equivalent to the
O-level. They are often conceptually constrained to the mode of
thinking they used to utilize during their earlier schooling period.
Tt can be maintained that this mode is anything but a systems
thinking. As a result, systems analysts learn by experience or
trial and error. Resides the costs that may be incurred, it has
often been questioned whether experience on its own right does or
does not suffice purposes of interpretation.and understanding (43)}%
particularly when uncertainty is encountered as situations are
never exactly repeated (4h). The disadvantage of relying heavily
upon experience becomes obvious when analysts are challenged by
novel situtations. Tn the absence of clear appreciation of the
available methods and adequate frames of reference analysts often
opt for ad hoc definitions and designs. The result is weak

designs that may be held responsible for exceeding the estimated

(43) Churchmen, "The Design of Inquiring Systems', op.Ccit.

(L) Beer, npecision and Control'', op.cit., pp,402~103.




costs (45).  Thus weak designs coupled with high costs explain

most of the mistrust, on the part of the users, of computers in
general (46), It is believed here that the reason behind these
drawbacks can be attributed to the misconception by systems
analysts of the nature and dimensions of the problems they are
supposed to tackle. In practice and in many computer-oriented
systems analysis text-books the idea is that given a problematic
situation, it can be defined with a bit of pressing. However,
problematic situations are not identified entities, rather they
are complexes of relationships. It is thus implied that problems
portray systems of differing magnitudes and dimensions. The
result of the process of isolating a certain problem depends upon
parameters such as adequacy of frames of reference, judgment and
value sets. When these parameters are either ignored or
misconceived, problems may equally be misformulated and hence a
serious conflict may develop ebtween the analyst and the user,

say the manager. This difficult situation should be of great
concern to the analyst because it is he who is going to design

a computer solution for the problem as he sees it. If the

design proves to be defective it is the analyst who is going to

get the blame.

(45) .Wolverton, R.W., "The Cost of Developing Large-Scale
Software, I.E,E.E. Trans. On Computers, 1974,
Vol. C-23, No.b, pp. 015-630.

(46) A significant number of users have asserted that
analysts/designers frequently offer them what
they do not want, on the assumption that they,
the users, do not know much about computer
systems techniques.




PROBLEM DEFINITION VERSUS PROBLEM SOLUTION

It follows that the term problem definition implicitly
indicates a system definition and so it can be maintained that no
problem definition is absolute. Because of the inevitable
incompleteness in defining, a problem may never completely be
solved; it can only be solved partially at a particular point

in time with respect to some specific viewpoint.

Dewey has maintained that a problem well defined is half

solved (47). It is proposed here that problem definition and its

solution are in fact a whole, They are two interacting and inter-

dependent components; a development or refinement in any one of
them will certainly be reflected on the other resulting in still a

~,

further refinement in the first, and so on indefinitely (48). The

underlying characteristic, however, is the perpetual group translation

of the whole which is supposed to be generally directed towards the
unattainable target which is the perfect definition and hence the
perfect solution. Then and only then the recursive process
ceases. That is, in the hypothetical case of a perfectly or
completely defined problem, it is, then and only then, the problem
is perfectly or completely solved. At the other extreme the

ieast defined problem is the least solveable.

(47) Dewey, J., ''Logic: The Theory of Inguiry', (Henry Holt & Co.,
N.Y., 1938), p.100.

(48) This reflection can be direct or indir?ct, conscious or
unconscious, etc. Also the relationshio
between problem definition and solution is
very similar to that of aralysis and synthesis.




The need to cope with change is reflected in the
iterative nature of defining. This iteration also characterizes
the systems approach because of the inevitable incompleteness of
the systems and other related concepts. However, the systems
approach is regarded as more suitable for man-machine systems
design because it puts much emphasis on wholes rather than parts
and also due to the complexity of such systems. Thus clearer
understanding on the part of systems designers of systems
philosophy will result in better appreciation of the effectiveness

and limitations of the systems approach.

Appreciation of the effectiveness and limitations of
each of the most widely known methods will be reflected in the
adaptability and modifiability of a package. Also these

gualities will affect the interactions between the structure of

the package end its behaviour. The factors which affects this
interaction as well as the scope of the package are: content;
flexibility; bias. The relationships between these properties
are:

The more content a package has,

the more rigid-structure its exhibits.

The more content a package has,

the more biased it may become.

Rigidity increases proportionally with bias.
Systems analysts better understanding of systems philosophy

will be reflected in better systems design. Also their

understanding of the relativistic nature of problems as well

as the interdependence between the processes of analysis and

synthesis will all be reflected in the analysts output.




CHAPTER 2

THEORETICAL DESIGN CONSTRUCTS FOR

APPLICATIONS PACKAGES

This chapter has two main purposes. The first is to
identify the basic assumptions behind the concept of packaging.
This is expected to reveal the current designers' conceptions
regarding packaging. Then the discussion sets out to examine
the validity of the identified assumptions from the viewpoints

of their practical and logical implications and limitations.

The second purpose of the chapter is to investigate into the
essential requirements that may be needed in carrying out
satisfactory adaptation/maintenance processes. Adaptation

is studied from the point of view of users' designers.

It is hypothesized here that the basic philosophy
behind the design of a general purpose model or package is
essentially analogical. This hypothesis is based on the
following two assumptions: a) the feasibility of designing a
specific model that can correspond to procedures and fulfil
needs that may be included in an arbitrarily chosen, (by the

designer), set of N potential users whose needs are assumed

to have some similar properties; b) needs and procedures of
any potential user within the set are very similar to, or even

identical to those of any other user within the same arbitrary

set of users.




Hence for the purposes of analysis and understanding

only those relevant aspects of the concept of analogy are
considered, The treatment involves a very limited use of

set theory notation and preliminaries. The purpose of using
set theorems is to facilitate the process of defining some
secondary design criteria. These secondary properties, such
as order - i.e. sequencing of instructions in case of packages
and organization in general, are studied in relation to the
previously suggested setj i.e. flexibility, independence and
impartiality, in order to find out what are the requirements of

the latter.

As for the second purpose, the discussion reviews
briefly the concept of black-box. This is considered because
of two main reasons. Firstly, its wide popularity among
existing systems analyéts/designers. Hence the review centres
on the concept's fundamental characteristics, requirements,
useability and limitations. Secondly, the discussion examines
the solving power of the concept, i.e. whether the concept on
its own right is sufficient, €.g., for a unique determination
of the structural pattern and contents of a certain model/
package. The treatment derives much of its importance from
the fact that many analysts/designers rely heavily on this

concept, hoping to resolve whatever problems they may have.

Also the problem of adapting a model/package to a

. * 4 - 3
specific user's context 1s studied. In other words, under




conditions of insufficient data pertaining to structure, how

can an adaptor - i.e. user's analyst/designer - tackle this
problem with any real confidence? This brings to the discussion
the subject of structural organization in order to identify some
means by which a given package/model can be analyzed and studied.
To this effect the concept of hierarchy is considered as one of

such conceptual means.,

The concept of holons and their organization is
examined regarding: 1) its ability to offer a satisfactory
conceptual definition/description for a part/module whose
properties are compatible with those of flexibility, independence
and impartiality; 2) the flexibility of the overall struetural
pattern of the whole model/package and whether this concept does
avoid some frequent drawbacks, such as rigidity, that may be

associated with stereotyped hierarchical organization of entities.




3k

BLACK-BOX AS A DESIGN CONCEPT

A black~box is that box whose internal structure is unknown
and whose inputs and outputs are identifiable. For this reason the
problem of black-box is frequently referred to as an input-output

rroblem.

The term black-box is used to refer to two situations.
The first is the use of the term in relation to the original package
designer. This designer is supposed to know the algorithm and
content which he is going to incorporate into his model. What is
probably unknown to him is actual users'! practices and thus can be
treated as black-boxes. The second possible use of the term is
that made by any user's analyst who tries to understand the model.
In this case, the analyst is supposéd to know the procedures and
needs of his organization. what is probably unknown for him is the
actual internal structure of the model itself. Thus he may consider
the model as a black-box. However, as the problem investigated here

is that of design, and since both cases involve design processes,

then the term black-box as used here may refer to either case.

The different forms a black-box problem can assume are
generally distinguished from each other according to the amount of
information available at a given point in time pertaining to:

(a) the set of the identifiable external quantities, e.g. input and
output, environmental factors, etc.; (b) the properties of the
contents of the box, €.g. its elements, components, couplings, etc.,
which decide the box's transfer function. Thus, as a consequence,
black-box problems are associated with various amounts of uncertainty

since full comprehensive knowledge about the box is unattainable (1).

M., "A General Black Box Theory', Phil. of Science,

1963, 3, PP« z46-358,

(1) Bunge,




Uncertainty is, therefore, coupledto what is inside, i.e. the structure,

rather than what 3 ing i
an what is coming in and out of the box.

Thus any package or system can be represented by the use of
blocks or boxes, The number and level of the boxes used to illustrate
the package in question depend mainly upon the set of objectives,
abilities and background of the designer. Hence at a higher level of
design a production control package can for example be depicted as a
single box as shown in Figure (5). At a lower level of design, i.e.
more detailed, the same package can be viewed as consisting of a set of
‘related boxes, each representing a certain aspect of the package; €.8.

inventory control, scheduling, etc., as in Figure (6).

Forecasts; Stock levels;
Orders; Material ordering/
Labours; T P 0 allocation;
M/cts Capacity; —_— -~ 5  Schedules/Job
Directives; sequences;
etc. Delivery dates;
etc.

A Package as a black-box

Figure (5)
oo T T T T T T T
| |
| l
i Im Inventory Om |
| S > |
‘ Control |
| ) | |
} | ( |
1 Ig > Scheduling ____Eﬁi_%> }
‘ !
! I

L e e T T T T T T ;

Representation of Parts

Figure (6)



package are interdependent.

be projected in the future (3).

As established earlier, the behaviour and structure of a

However, obtaining information mainly

about that package's behaviour does not necessarily lead to the
determination of the structural pattern that is responsible for such
behaviour- (2). Thus a characteristic property of black-box concept
is that the only way the behaviour of a box can be approximately

determined is by examining its past to identify a pattern which can

Such a process involves a significant

amount of uncertainty since the behaviour itself continues to be

unexplainable (4).

Consegquently a black-box representation, on its own, of a

package prevents, or at best, makes it extremely difficult to develop

a clear systems understanding which emphasizes the identification of

the various relationships that constitute the package (5). As a

result, this necessitates that the primary objective of the designer/

analyst is to transform the black-box into - a grey - if possible

white-box., Thus the usefulness of the black-box concept to the

designer must be confined to its simplifying power which transforms

complicated events into figurative and relatively simple models.

(2)

(3)
(%)
(5)

Ashby, W.R., tAD Introduction to Cybernetics", (Methuen & Co Ltd,
Tondon, 1971), Pe©9-

Tbid, p.93.
Vickers, nglassification of Systems', op.cit.

s stressed here because of the prevailing attitude
viewed data processing managers and analysts which
wes due to the inaccessability of

This point 1
of the inter
accepts packages as black-bo
basic design and structure data.



AN OQVERVIEW OF ANALOGY

Given a package in the form of a black-box, its internal

structure can be delineated by applying certain analogical procedures.

There must be two boxes before analogy can be started. Thus two
black-boxes, say 'A' - manual activity - and 'B' - a computerized
model of the same activity, are said to be analogous when either:
(a) 'A' and 'B' have some common objective properties, i.e. are equal

in some respects; or (b) there is a correspondence between the parts

or properties of 'A' and those of 181.(6)If the result of the tests is

positive it is then said that tA' is the analogue of 'B' and vice ¥ersa.
However, there is a spectrum of analogies ranging from the most perfect,
viz. isomorphism at one end, to the weak, namely plain - analogy at the

other end. Isomorphism is defined as: two sets are said to be

isomorphic to each other if a one-to-one correspondence can be
established between the elements of one and those of the other and
if all the relations defined on the elements of one hold also among

the corresponding elements of the other (7), as shown in Figure (7-a).

Ibomorghism
Figure (7-a)

(6) Bunge, "Analogy, gimulation, Representation™, op.cit.; Ackoff,
ngeientific Method™, p.109, op.cit.; Beer, "Decision and

Controll, gp.cit., p. 111

A} pamamart . .. 'The Uses of Mathematical Isomorhpism", In G.J. Klir,




Also, one-to-one can be imperfect, thus yielding a many-to-one
t e 1 > . .
ype of relationship as in Figure (7-b), whereas, plain-analogy, i.e.

a some-to-s : . . .
ome relationship, Figure (7-c), is achieved when some

elements of 'A' are paired-off to some elements of 'BY

Homomorghism Plain
Figure (7-b) Figure (7-c)

These constructs can be used to interpret some modes of
current computer systems design. It has been mentioned earlier
that a significant number of systems designers learn through trial
and error. That is they start learning about a certain applications,
perhaps for the first time, when they are assumed to design a new
computer version. In many cases the purpose of initiating the
process of design is to get rid of some of the deficiencies that

exist, and not for the sake of computerizing such an application.

Since they are inadequately equipped to conduct such an inguiry

either one of the two possibilities is likely to occur. The first

. R . ‘t . .
may take the form of an isomorphic translation of the s1 uation into




computer programmes thus reproducing the same difficulties but in
different forms. This outcome can be strengthened by two different
forces. On the one hand, the user's employees potential influence
upon the outcome due to their role as the designer's main source of
the practices and technicalities of the problem. Lack of knowledge
weakens the designer's image by reducing his abilities to convince
his interviewees and to discriminate between reliable and distorted
information. On the other hand, fear of change on the part of the
employees can push them to withhold some key information, specially
when the designers image is weak, in an attempt, either intentionally
or unintentionally, to frustrate that change (8). In this context,

isomorphic design is regarded as an indication of weak ad hoc approach

which is not capable of defining the problem.

The second possibility is that of homomorphic representation
of the problematic situation. By the time the designer has finished
that design, he would have developed a conceptual model that is mainly
based upon his own experience. Also by that time he would have

changed jobs. In his new exercise the designer may try to mould the

new application to fit in his model. This bias is often reinforced

by the designers tendency to project a strong image as he has already

learned by experience. Consequently the resulting design could be a

many-to-one relationship between the new - but similar problem and

- i d Prevention"
.. "Resistance to Change Its Analysis an i ,
) zandars & Iﬁ P.P. Schoderbek, "Management Systems', (The Wiley

Series In Mgmt. & Admin., 1967), pp.200-203.




.
the designer's own model. Such an approach could have serious

onsequ e SL I b s oo . . .
onsequences as it may implant difficulties that did not exist before.

Because of the characteristic weakness of the plain-
analogy which is demonstrated in its definition, i.e. some-to-some,
plain analogy imposes less constraining forces upon the designer.
Thus it offers, when it is regarded as one of the conceptual bases
of model building, the designer more degrees of freedom as it may
liberate him from his own model which results in reducing his bias

and consequently enabling him to produce more Flexible and less

The implications that may be drawn from the above discussion
can be summarised as follows. First, in the case of two black-boxes,
say an activity and an application package, at least one of them has

to be worked upon to reduce it in order to increase its similarities

with respect to the second so that a reasonably strong analogy may
hold (9). Second to this, and as a consequence of it, only that box
which is more comprehensive is subjected to the process of
simplification in order to establish isomorphism between the two.

Also this may indicate that, having a wider scope, the activity is
almost always going to be selected to undergo such a change, which, if
not conducted with utmost care, can lead to serious consequences.
Third, the whole process is characterised by considerable amount of

bias because of the subjectivity of the involved attitudes.

. . S . ashbvts definiti
(9) This interpretation 1S based upon Ashby's definition of

. ; MA uction t rnetics!
homomorphism, see Ashby, '"an Introduction to Cybe ics',

0p.cit., p.103.




ACTIVITY-PACKAGE MAPPING

The above mentioned process that is used to establish an

analogy between the two boxes A and B is frequently referred to as

wapping of A into B - Figure (8). 1In the following, some of the

Activity-package mapping

Figure (8)

constructs of the set theory are used in an attempt to examine whether

the current form of packages is suitable for human organization.

Let an organizational activity 'A’, such as scheduling, or

inventory control, or payroll, etc., be a non-empty set of a family of

non-empty sets 1At (10), such that:

y Amay be taken to include, for

(10) 1In this context, the famil incly .
tivities that may exist in a certain

example, all scheduling ac
environment.




A= {4}

B I

where ‘'I' is the i .
index set, representing the universe of discourse,

e.g. the environment, of one and only one such activity, so that for
each element i E I there corresponds a set A.. Now, let '8 be

i
another family of sets, such as the family of all scheduling apdica-

tion packages that are available, so that:

Accordingly, if the activity 'A' is to be mapped into the package,
iB' i.e. f : A—s>B, then the mapping assigns to each set Tg A
a unique set f(T) EfB . In other words, the function f : A—sB
induces a function T :uqr—a;B . However, the two functions are

essentially different. The first being a mapping function, where

the second is a set function, i.e. its domain consists of sets (11).

However, for the activity and the package to be similar,

further conditions must be preserved.  The two sets must be,

t exist a one-to-one correspondence

(a) ordered; (b) there mus

between the elements which preserve the order relation (12).

be applied to the more detailed case of
) ize iim? agg%mzn;a;igcularpgcheduling activity within a certain
P e hich can be treated as a family of sets whose member=-
e the procedures for calculating, allocating
sets are o ii - a scheduling package, such as

P Into, 1
capacities, etc. oo family of sets whose
. lso be treated as a Y
CLASS, which can 8-5% the various algorithms that calculate,

member-sets are, €8s
allocate capacities an
nget Theory and Related Topics', (Shaum's Series,

a produce sthedules.

i t Se 7
(12)  Lipschutz, S« \eGraa-TIl Cos N.1., 1906H).




Order can be i
partial or total. A partially ordered set

consists of a set 'At
and a specific t F .
e :
ype of a relation 'R' in ‘AT,

i.e. (A . i i
(A, R) The relation R is a comparability relation, i.e.

either of any two elements in the set *A¢Y precedes or dominates the
second, 1.e. symbolically a<'b and a # b or a< b respectively.
Whereas, a total order in a set 'A' is a partial order in 'A' with

the additional property that: a< by, a = b or a> b.

Therefore an ordered set 'A!' is similar to an ordered set
tB', i,e, A~ B, if there exists a function f : A—B which is one-

to-one and onto (13), and which has the property that, for any

elements a, &¢ A: a<a if f@)< f(a’). The function 'f' is

called a similarity mapping.

SOME PRACTICAL IMPLICATIONS

In the light of the above constructs, knowledge of input

and output of both an activity and an application package is not

enough to establish with confidence the stréngth of the analogy

between them. Thus, it is obvious that the amount of knowledge

available about the contents of the two, i.e. the activity and the

package, will decide on the level of the analogye. This implies

that the designer must be familiar with the structure of both,

However, in practice the

viz. the activity and the package.

oo

called a one~to=~one and onto if for

I wh ere i ! tion
;[ A 1S the domaln Of the func 3
has one and Only one U.nj que mage b E B 5 Whe re B 18 1 t,S

g i image .
ange, with 1o two elements sharing an 1mag
r 3 i

(13) A sunction f : A—B 1s




attainm )
ent of such knowledge is made diffiecult because. of two main

reasons. i ; .
s The first is attributed to the lack of design information

about the package which ought to have been provided by the package

desi
esigners (14). The second reason is that due to the involvement

of the human element in the activity.

An examination of some real activities and a number of
applications packages has underlinedthe basic difference between the
two. Any computer application package 'B', indeed any computer
programme, can be defined as a well-ordered set. An ordered set is

called well-ordered if it has a first element (15).  Specifically,

if 'B' is an ordered set with the property that every subset of 'BY,
e.g. a module T such that wa B = T, contains a first element,
then 'B' is called a well-ordered set. Obviously, this is particu-
larly applicable to applications packages, since every package and
every one of its constituent modules, irrespective of size, has a

pre-determined first element, €.g. an instruction or statement.

Conversely, not every real activity, in practical terms,

is ordered. Tn fact, the most one may hope for is partial order,

perhaps apart from military organizations. The reason behind this

tnis type of information is non-existent,

1k In many cases
) as in the case of I.B.M. - CLASS package.

(15)  Lipschutz, op.cit.




assertion is that as one ascends the hierarchical tree, an activity
becomes less determinable and more unspecifiable. In other words,
the activity's associated patterns of behaviour become 1ess
repetitive implying less programmability/definability. Even at its
lowest level, it is not unusual for an activity to have more than one
first element. These elements can also be unidentifiable. Because
the structure/organization of the activity itself, under conditions
of pressure, may be squeezed, altered and/or some of its parts may
also be skipped (16). Such behaviour can be explained in terms of
the activity'!s partial-order. Due to its incomplete order, i.e.

the relationships between its various parts is not exhaustively defined,
an activity retains higher degrees of freedom than these when it is

completely ordered. Thus, partial-order, which may seem at the first

look as a defect, leads to flexibility, whereas well-order, which also

may seem as a healthy sign, in fact leads to rigidity. The difference

between the degrees of freedom in the two cases, i.e. the degree of
constrain, accounts for most of the difficulties encountered by

applications packages, and computer systems applications in general.

Therefore, the concept of order can be interpreted so as to distinguish

good from bad or ad hoc package design. Good, i.e. flexible design

is that characterized by partial-order, whereas bad, i.e. rigid design

is that associated with order. Partial-order implies two valuable

erms of skills.  The activity

. i in t
(16) This can be explainable 7 differs from that of another

illed person
pattem OfAisikiimetiﬁes the skilled person's pattern does
person. =

i f criteria. Rather it
to a rescribed set o . :
not.conformrdzng %o the circumstances. This flex1b%ila2d
vartes ac;?lity differentiates betyeen, etg.,dtwo Skls e
dynamlg Zslwell as skilled and semi/un-skilled personsSe.
person




inter-related design criteria.

The first is that of designing

indep .
endent parts, This can be ascertained by weakening as much

as possible the relationships among the parts of the package.

The second is that of designing small parts. This is because as

the size of a part increases, the relationships within this part

S > .
trengthen due to order increase, i.e. dependence increases, until

reaching that limit where the whole package becomes in effect a

single, well-ordered part. Thus it becomes rigid.

These derived design criteria can be effectively used to
examine the viability of packagee judging by its current state.
The assumption that members of the family of sets '/A' of a certain
activity*are all similar, i.e. Ai:: Aj, is practically and organ-
izationally questionable, if not for any other reason than the
influence of the subjectivity of the human component. That is,
the human component of, say an activity 'A' in company 'i' - 'A'i,
may not necessarily comply with that of company it - 'A'j. Yet,

the same standard achieved by either(Ai/Aj)may also be reached, or

even surpassed by the other(Aj/Ag. Consequently, objectives,

methods and procedures may all differ from one company to the other

3 -
i i h iverse of discourse of 'J%', i.e. "IV,
as 'i' varies over the uni

ore persistent as & certain activity,

The question becomes even 1

tpt,, itself varies with time.
1 ccmemmr———

* as defined on p.h1.




In the absence of a clear design philosophy, package

designers, a .
Signers, and computer Systems designers in general, have been

s e .
satisfied with either of the previously discussed methods, viz.

1 ¥ ~hH4 A . N . X
isomorpnic, i.e. copying, or homomorphic, i.e. moulding, approaches.

] PR . .
Both are defective. This has resulted in the current package form

i i B i .
which is a statement of self-contradictory design. The truth of

this assertion is demonstrated by the fact that almost any available

>Nel il 7 i Ty . P
backage 1s said to have comprised a number of individual small parts,

However the size of such part is on the average found to be in excess

of several thousand core locations (17). That is, in many cases one

part of a package can, on its own, constitute a separate and complete
package. Such a design complicates the subsequent implementation
procedures to fit the package into its user's organisational context.
This is largely due to its inherent rigidity that results from the
sheer dependence of its parts. This rigidity forces wither one of
two outcomes, i.e. the user changes his activity to fit the package,
or the package has to be changed. In both cases knowledge of the
internal structure of the package is essential. However, this

information is not always sufficiently available (18), therefore

!

rendering the package as a proper black-box.  Assuming that the
user has committed himself to a package, he often finds that the
costs required either to adjust the package, if allowed, to his own
needs, or to adjust his activity to suit the package, exceed the

estimated savings he has initially envisaged.

(17) Examples are I.C.L.'s NDMMS package which Con81§ts of a
2kl p P S o
number of large modules, with each covering a wide are?
PR T oo ~amn is T v
such as inventory control. Another example is I.B.M.'s
such wentor

CLASS which covers the shceduling activity.

(18) 1I.B.M, does not suprly adequate information of the
internal structure of its CLASS package.

g R




Therefore the main justification fop packaging, viz.

saving by not having to duplicate Programming effort, is
challenged. The blame is shared by both the designers for not
having clear design methodology, and the users for accepting such
weak and often incomprehensible designs. However, this main
justification for pursuing a package approach can be reinforced by

clear understanding of the criteria of order; flexibility,

independence; size.

STRUCTURAL CONSTRUCTS

In the preceding - discussion the close relatedness of the
already reviewed concepts of open-system; black-box; analogy and
the derived design criteria, i.e. order and independence, 1is

investigated to show how flexible structure is needed to increase

the viability of packages, specially when they are supposed to

interact with varying problematic situations.

DATA AND THEIR INDICATIONS

It follows from above that the ability to discern between

the various types of data that may ve available to a designer/user

e is indispensable for him for a number of

about a certain packag




reasons., These may include:

1. The type of data decides how far the user can

explain/understand the behaviour of the package.

The available data can be taken as an indication

of how the designers think of the packaging

approach, because:

i. each type of data may reflect the design

methodology and frames of reference, for

example whether the designers recognise

the inevitable need for change; g

ii. Data can also reflect the designers:

attitude towards users, i.e. whether the

designers regard users as being identicals.

In general, data about packages may belong to either one @

of two broad classes, viz. external or internal. External data

encompasses these of input and output, where internal are these

concerning the structure of a package. The relationships between

these types can be depicted as a threesome of boxes, as shown in

Figure (9), with the following characteristics. In this game, at




Analysis Quasi-analysis/ S Structure

synthesis
I Input

0 Output

Synthesis

Data-types
Figure (9)

best, only any two boxes may be seen through at any one time. If
the two boxes, 'I' and 'S' are given, then box '0O' can be predicted.
The process involved is that of analysis. Alternatively, when boxes
"It and 'O' are known, the process of inferring 'S' is designated as
synthesis whereas the third possibility, i.e. involving boxes 'O' and
181 can be referred to as quasi-analysis or quasi-synthesis (19).
However, this articulation can be misleading and a reservation must
Neither any one box is exhaustively known, nor any one

be stated.

box is completely unknown.

Consequently the type of data that is available about a

certain package cen influence the activation of specific inquiring

Processes, whose main objective is to predict and control the

sed to fill the gap that is
nTntroduction to Modern

(19) These two terms are propo
N.7.. 1965), Chap.1,

jdentified by Valkenburg,.M.E. Von,
Network Synthesis", (J. wiley & Sons,

Sect.1e

e !




behaviour of that package,

In this respect, the behaviour of the

package can indicate some of the underlying characteristics of the
structure of the package. This is due to the mutual dependence of
both, i.e. structure and behaviour, However, identifying that
almost all data that are available to package users are these of

the external tjpe; also identifying that not all users are interested
in knowing too much about the internal type of data, the question
becomes that of designing a structure that facilitates the task of the

user when he wants to conduct any of the three inquiring processes.

ORGANIZED COMPLEXITY AND HIERARCHICAL STRUCTURE

Structure implies, and is implied by, order and organization.
Thus, it is a definition of the set of relationships that may exist
between the different parts of a package. The order in which the
parts are organized and the type of linkage/coupling between them

determine the properties of the structure. For example, if a

pattern of connections or couplings between some parts changes over

a given period of time, then the prevailing structure can be regarded

as dynamic. Conversely, if that pattern remains virtually unaltered,

it is often designated as fixed or static.

A useful concept for both designing and understanding

structures is that of hierarchy. A hierarchic structure 18 that
r and sub-ordinate levels. The principal

comprising a number of supe

TN
e Gl !

w




S A > S . X .
criterion of hierarchical ordering is the stability of the various

sub-systens that make-up the package.  This does not preclude the

L

interactions between these Sub-systems but accounts for the overall
coherence of the package. However, a hierarchic structure being
fundamentally based upon some pre-determined criteria of ordering

can lead to rigidity. This can result mainly from the designers!
Tailure to distinguish explicitly the implications of dynamic
behaviour within a hierarchy. There are two types of hierarchical
dynamics (20).  One is the high frequency dynamics within individual
components that results from strong couplings between the constituents
of a component. The other is the low frequency dynamics between the

my

Thus, the structure becomes rigid when the designer

ct

sub~-systens.

does not discriminate precisely between sub-systems and components.

Unfortunately the current trend among systems analysts/designers is
the misnomer, i.e. the imprecise use of terms such as systems, sub-
systems, etc., on the ground that every system is a sub-system of
some larger system and vice versa. To illustrate, I.B.M. produces
two packages PICS and CLASS, On one hand, PICS is a production
control package which consists of eight sub-systems of which
scheduling is one.  On the other hand, CLASS is a scheduling

‘ L. 1 s < b= intoc th ﬁ_.
package, but it cannot be incorporated into the Ilormer.

(20) gimon, H.A., "Architecture of Complexity', op.cit., pp.98-114,

- s
ot

sy,

i
I




Thus, good appreciation of the concept of hierarchy will

significantly facilitate the two inquiring processes of analysis and

synthesis.  In many practical cases the aim of conducting such

processes is to identify and replace defective parts whether they

are subsystems and/or components. However, the operation required

to identify/define a sub-system is the opposite of that required for

the component (21). The former is that of decomposing the package

into isolated sub-systems, thus the given package/system is considered
to be the disjunction of its isolated sub-systems, i.e. if 'Z' is the
package, e.g. PICS, and 'S' is the maximal set of isolated sub-systems,

e.g. the set containing scheduling, inventory control, etc., then f

7 = OR(S), as shown in Figure (10). Conversely, the package/systenm

AE— 2 1 g
| |
{ |
|
! S 5 Sub-system
—
: I
!
]
1
|
I
! S, ]
L 1

Disjunction of Sub-systems

Figure (10)

i i i mponents (22), thus the
171, can be resolved into its independent compo ,

4. 14 attled Theory of Systems", In G.J. Klir, (Ed.),
ey

( 2,] ) Y\l"‘J-‘anore 5 pp . 270"300 .

ODgCitov

(22)  TIbid.




given package/system is considered to be the

conjunction of its

independent components, i.e. if 'S¢ is the maximal set of the

package's independent components, such as the routine to determine

safety stock and re-order points, then 7 = AND(S), as shown in

Figure (11).  Thus the two operations, the determination of sub-

systems and components, are duals, as indicated by the OR and AND

___@ —_——— Q _____ @__ C —> Components

Conjunction of Components

Figure (11)

operations. Consequently sub-systems and components are not
Synonyms. This can be interpreted to suggest few design criteria.
First, a proper hierarchic design of packages, i.e. OR based, will
ascertain the following: (1) the continuing operation of the package

even when more than one of its sub-systems fail to work; (2) detec~-

tion, replacement or modification become significantly less compli~

cated and less costly; (3) implementation can be carried-out in

independent stages by building and adding new sub~-systems success-

fully; (4) work can be delegated to different teams each designing
?

a sub=-system. Secondly, the AND-based design is that component

i hit a considerable awareness of
oriented. To be effective this needs

and a comprehensive documentation

the role of each one component,

e to follow the logic of the

is a necessity for designers to be abl

desi Unfortunately, this is the current practice of design which is
esign.

ion. This
further aggravated by the obvious lack of documentation

c designs as demonstrated by many user-

results in unorganized ad ho

PR
i




made programmes and packages such as CLASS, PROMP, etc. where the

modules are very big.

However, the question now is what is exactly meant by an
independent component, and how does it relate to its system/sub-
system. The more recent concept of holons is believed to give

adequate answers to these and other design questions.

THE HIERARCHY OF HOLONS: AN EXPOSITION

Koestler, in an attempt to resolve the problem of misnomer,

has introduced the concept of a holon (23).

depth

n+1+

n-14

Holon Hierarchy

Figure (12)

NP

A N.D. Rizzo
the Candle'™, In W. Gray and N.D. .
e TreiUigiy Through Diversity", (Gordon and Breach

éms.;&b ~N.T., 1973), Part I, pp.287-31k.
Cle o g Neloed

(23) Koestler, A,

A




He derived the term holop from the Greek hole - meaning whole,

with

th ix ¢ s
e suffix 'on! suggesting a part or particle (24). A holon is a

sub-wh i ; .
whole which, relative to its subordinate components, behaves as

l \

integrative~—-attractive,

dependent
cohesive force part
th wer.t. the whole
n programme
X —
level holon X
or
. . module
self assertive separating autonomous
internal force whole

. or statements
Properties of a holon

Figure (13)

self-contained whole; with respect to its superordinated controls as
a dependent part, as shown in Figure (13). Thus a holon indicates a
stable sub-whole which displays rule-governed behaviour and/or
structural Gestalt constancy. Also, a holon is meant to supply the

missing link between atomism and holism.

One of the basic propositions of the concept is that a

hierarchically organized whole EEEEEE pe reduced to its elementary

parts, but it can be dissected into its constituent branches on which
9

the holons are the nodes of the tree and the lines connecting them

(24)  Ibid.

w.r.t. its instructia

g G




LalEs

represent the channels of communication Hence

"...holons are self-re i
~-regulating ‘open systems®
governed by a set of fixed rules accounting

for the holon's coherence, stability, and

characteristic pattern of structure and
function" (25),

This set of rules is referred to as the canon of the holon.
Consequently, the canon determines the fixed, invariant aspect of
the open-system in its steédy state. (26). However, the canon is
in essence equivalent to the constraints that may be imposed upon
the holon. These constraints should not exhaust the holon's total
degrees of freedom, because if they do the holon will lose its
flexibility and becomes unable to cope with any unprogrammed
disturbance. This implies the need for even the lowest holons to
be allowed some sort of freedom. In contrast, present forms of
packages exhibit an overwhelming concentration upon the aspects
covered by their canons. Thus packages come with fixed file struct-

ures, pre-determined algorithms, record layouts, and even input/

output formats. That is, in effect dictating certain structures,

and consequently behaviours, which may or may not be compatible

with these of their users. Also such elaborate canons reduce the

ability of their packages to perform adequately under overloading

(25)  Ibid.
anon is based upon aln interpreta-

n of the ¢ the

tion of Klir's fourth definition of a system, 1.€.
i t-~behavi

definition of the permanen

Approach to General Systems Theory's (Van

NoY., 1969), Ppit3e

(26) This descriptio

our, G.J. Klir, "An
Nostrand Reinhold,




conditi c i
onditions (27). However, if designers consider packages as

hierarchies of holons, with each holon being allowed to play its

roles, i.e. i 1
? integrative and autonomous, these packages may become

much more flexible, In the following the organizational implica-

tions of the holonts double-character are considered.

1. Qutput Hierarchy : Triggers

Output hierarchies are these which operate on the trigger-
release principle. Accordingly, a relatively simple implicit or
coded signal releases complex, pre~-set mechanisms. Examples are
sub routine call statements; core-dump, file-setup commands, etc.
Bach initiates the execution of a set of instructions. The signal
from higher echelons does not carry all the details ef the actious
of the holon. It only triggers the holon into action. This
impulse will cause the holon to reactivate its relevant sub-units
in the appropriate sequence according to the received message, and
guided by feedback from its environment (28). This is essentially
what is known as top-down communication with the associated property

of magnification. However, implicit in the output hierarchy is the

emphasis upon autonomy of parts.

g these who do not use packages

(27)  The common reason held amon O e inflenibility of

or have used to and abandoned them

packages.

(28)  Koestler, op.cit.




20 1 . N
Input Hierarchy : Filters, Scanners and Classifiers

Input hierarchies work on the opposite principle of that
of output hierarchies. 1In other words, instead of using trigger-
release mechanisms, inpat hierarchies employ series of filters,
scanners, and classifiers. Their effect is that of reductionism.
Thus input hierarchies are similar to the bottom-up communication

mode .

Obviously hierarchies are neither exhaustively output
nor input but combinations of both. Thus the resulting mixes
account for the intelligibility and simplicity of the structures

as well as their viability as outlined below.

Arborization and Reticulation

A production control activity comprises sub-activities

such as scheduling, sequencing, inventory control, forecasting,

costing, etc. Each can be conceived of as a tree. A tree

constitutes a vertical structure. The nodes where the branches

of such trees meet form horizontal networks at several levels.

For example, the output of forecasting can be fed to the inventory

control, thus forming one node, and the output of scheduling can be
, e
fed to inventory control as well as forecasting, resulting in two

Without the trees

a5 shown in Figure (14).
networks (29) and thus no

extra nodes and SO On,

there could be neither entwining nor

(29)  Ibid.

™
i
iy
i

‘}k;u ! e




Vertical Structure

1. 2.
Horizontal
Networks
30
Scheduling Inventory Control Forecasting
Kex:
Te Material
Requisition
Arborization and Reticulation 2o Material
Purchase

Figare (14)
5. Planning

inter-dependences. Also, without the networks, trees would be
isolated and hence no integration of functions.  Thus arborization

and reticulation are complements. The design indication is clearly

that of the nodes. Being a tree implies upwards and sidewards

growth that results in the developument of new nodes.

Mechanization and Structure

An activity such as production control and its sub-activities

. , . .
become, on successively lower levels of the hierarcay, inereasingly

mechanized and predictable. Thus a sub-activity or a holon on the

nth level has more degrees of freedom permitted by its canon, than a

holon on the (n-1) level. However, in a changing environment time




comes when mechanized holons face situations that call for trans—
forming mechanized activities into mental activities, for example,
when stocks reach an unacceptable level or when schedules slip
behind. If the holon is fully mechanized, control will have to

be transferred to some higher, i.e. less mechanized holon,
conversely if the holon is partially unmechanized it may be able

to handle the situation. Consequently, mechanization can inflict
rigidity by transforming the activity into a machine. In this
light the designer should be alert and prevent such a mechanization
from reaching to the apex of the hierarchy. By doing so he keeps
rigidity under control and within its specified limits and there-

fore allowing for future development.

| g

toppdt




CONCLUSIONS

It can be concluded that:

Te

5

The designer conceptual model ought to be flexible

to minimise the effect of his bias and to avoid

either, a - copying existing problems into the
potential computer version;

b - inflicting new problems as a result of
moulding the situation into his own
pre-conceived model.

However, either one of them is a sign of lack of

firm methodology.

Order is seen to induce rigidity. This applies to
both, i.e. the human activity and the package.
Therefore ordering must be only partial otherwise
the human component will not have enough freedom

to cope with contingencies. Also flexible
structuring of a package increases its effectiveness

as it facilitates subsequent modifications.

As size increases, independence decreases, and

' i1l
rigidity increases. Therefore small modules wi

ensure both independence and flexibility.




The problem of structuring a package within the
context of flexibility, independence and impartiality
is much reduced by using the holonic concept of a
package, as a self-contained, rule-governed stable
open-system, which implies:

2 - it must be open-ended at the top to allow for
growth,

b - its canon mist be flexible to survive unplanned
circumstances,

¢ - it must be hierarchical to facilitate identifica-
tion of defective components,

d - its components or holons are self-contained,

e -~ it cannot exist in isolation thus provision must
be made for the inevitable entwining with other
holons, i.e. packages, programmes, etc.

Also, the concept of holon re-affirms the concluded

effect of order upon flexibility by showing that

automation, which is a form of order, reduces

flexibility.

Throughout of the remainder, various aspects and implica~-

tions of the arborization and reticulation will be discussed.




CRAPTER 3

APPLICATIONS PACKAGES AND MANAGEMENT INFORMATION

SYSTEMS

This chapter is devoted to the discussion of two items.
The first involves the examination of typical M.I.S. definitions
and approaches and the second examines the relationships of packages

to M.I.S.

Considering an M.I.S. as one of the environments with
which an application package is to interact, thus the problem of
M.I.S. definition and its relationship te data and performance is
examined to determine where the application package lies. After
establishing the relationship between M.I.S. and the package, some
design effects of the former on the latter are drawn through

analysing the basic features of the two prevailing M.I.S. design

approaches, i.e. top-down and bottom-up.

The discussion continues by examining the decision

whether to buy applications packages or make one's own programmes.

Two factors are considered to have influence upon the decision:

. 1] 3 e
1) the decision maker's owI pias; 2) the manufacturer's weight.

The investigation extends further to attempt to reveal the causes

and effects of using packages, Or ready—tovimplement solutlons‘
upon the flexibility, versatility of data processing departments

rocessing staff.

and experiences of data p




3

RELATION OF M.I.S. TO APPLICATIONS PACKAGES

The concept of management information systems, or M.I.S.,
is discussed for two main reasons: 1) a management information
system is the framework within which applications packages are
slotted; 2) the concept of management information systems is a
source of generating and evaluating design methods and
approaches since it is the focus of attention of a mltitude of
disciplines such as Cybernetics, Psychology, Decision-making, etc.
Particularly it constitutes an interesting and challenging applica-
tion for systems philosophy. Thus whatever design methods

and approaches that may emerge from M.I.S.'s will affect these of

packages.

A company can be considered as being analogous to a
communication network. Also it is today's concept to regard a
computer, within the context of the network, as being similar to
the human mind with respect to the human body (1); the analogy is
based upon the similar function of data processing performed by
each. Both; it is suggested, maintain their function by
networks through which data are

supporting neuron/communicatlon

received and transmitted.

on Systems: The Challenge

. . 1 ~ement Informati
(1) Argyris, C-, Hanage Management Science, 1971,

to Ratiomality and Emotiomality",
Vol.17, No.6, pp- B-275/292.




In the context of the organization, -the resulting
communication network is usually referred to as management

information system. The designer's definition of the primary

role of the computer is believed to affect the flexibility,
impartiality and independence of the M.I.S. Thus, if he
thinks that the computer's role is that of a problem-solver/
decision-maker (3) then, his tendency will be to emphasize the
need and usefulness of increasing automation. This is often
implied by dissociating the manager/user from the M.I.S.
Through increasing automation and less involvement of the user
the structure of the M.I.S. becomes more like the conventional
machine with its inability to change or adapt itself to cope
with new environmental perturbations. Alternatively, if the
designer considers the computer as é useful aid or tool for
problem~solving/decision—making then, ther;ole'of the manager/
user as the prime decision-maker may not be undermined. - This

can lead to a more flexible M.I.S. through its inclusion of the

user/manager and his adaptability.

In either case the scope of M.I.S. is influenced by the

underlying attitude. According to the former, the scope of

M.I.S. should be delimited by what can be economically defined/

programmed In the latter the question becomes irrelevant since

d on the computer and the emphases should

the scope does not depen
what can be defined/programmed to support

rightly be directed to

management.




However, practical as well as published evidence show

that scopes of existing M.I.S.'s do not g0 beyond computerizing
parts of some of the activities of the involved companies.

These computerized parts, in the main, do not exceed the operational

level (2).

As may be expected there exists a myriad of M.I.S.

definitions. Representing different viewpoints but strangely

enough almost all imply automation. Thus, a typical definition
is that

"An M.I.S. is an automated system which presents
to the manager information, both internal and
external to the business, that aids him in making
a specific set of routine decisions" * (3).

o]

An M.I.S. so defined is, obviously, limited in scope and

handicapped because: 1) the definition confines the use of M.I.S.

T Ty e

to routine decisions only which are out-weighed by non~routi?e

decisions; 2) it further limits M.I.S. to automated components i

which are generally outnumbered by unautomated ones. Such an

M.I.S. cannot be considered more than a small number of computer

* Emphasis is not in the original.

M., "Framework For Management

S . Morton Scot ,
(2) Gorry, A o ’ Sloan Management Review, 1971, i

Information Systems", |
Vol.13, No.1, pp.55-70- i

i In Management Science',
S H,., "Information Systens g
(3) terﬁénag;ment Seience, 1970, Vol.17, No.2, pp- B-119/123.




programmes or packages that may

perform functions such as payroll;

3) the exclusion of the manager/user degenerates the M.I.S. into
a rigid set of programmes which may or may not sustain their relevancy

and/or usefulness, thus disregarding the basic idea of M.I.S. as being

management, i.e. user, information system.

Also, the question of the difference between data and inform-

ation is not purely academic because the answer determines the
attitudes of the designer towards the role the M.I.S. is supposed to
undertake. In this respect data are regarded to be facts which can be
used as a basis for reasoning and thinking. Information is the meaning
extracted from data by means of interpretation, and thus it is meaning-

ful only to the person who derives that meaning at that time. e

Accordingly, the designer's concepts of data and information can both ;‘yi

be identified from and characterize his design. Once again there are

two cases of interest. The first is the case where M.I.S. is defined

to exclude the user, i.e. the user does not constitute a component of C

M.I.S. In this context, and according to the present understanding,

M,I.S, cannot produce information unless the term information is used

indiscriminately, as often happens,as a synonym of data. Otherwise,

a definition such as

NTnformation is the intelligence or system output

which results from the conversion of data into a

which enables management to take action
rticular frame of reference" (4)

tproduct’ :
appropriate within a pa

is utterly defective. This is because data and information are not

anagement Information Systems',
noperations Research and the Design
(Special Ass. Pub.,

(4) Kriebel, C.H., '"Design of M
In J.F. Pierce, (Ed.), 5
of Management Tnformation Systems™,

1967), ppe>275-390-




distinguished from each other on the basis of their respective

forms, i.e. whether being arranged inte tables, graphs, etc.

Thus data arrangements do not suffice the conditions to automatically
convert them into information until they have been acted upon by
management/user. Also, the assertion that an M.I.S. without its
user 1is capable of produbing information is impregnated with bias,
specifically, in favour of M.I.S. at the expense of its user.
Because if the user is presumably provided with information then his
role implicitly becomes equally degenerated into an automatic form
which can be triggered on and off without thinking as dictated to
him by the M.I.S. Obviously such an attitude is bound to produce
futile and barren designs, and promote unhealthy conflict between
the designer and the user. ansequently, the misunderstanding of
data and information can, as it does in practice, mislead many
designers to rate their designs, i.e. parts of M.I.5., as higher
than their users. This is based upon the belief that the designer,
despite his defective understanding of systems, is the one who

defines/solves the user's problems.

The second case is that in which the user is seen within
the boundary of M.I.S. Accordingly, it can be maintained that the

M.I.S. converts data into decisions. The process of conversion

implies the generation of information at the point where the
- j=]

decision maker lies and not outside it. In this context, the user

satisfaction can be increased as the attitude of the designer becomes




less biased. Such an a

ttitude is strengthened and implied by

the appreciati f the u
PP atlion of the user's role and impact upon M.I.S.

1. a . s '
hus, fa » . NP
Thus, failing to grasp the relativistic nature of information

is seen as one of 18 - .
ol the main reasons for the reported failure of

H.I.8."s.(5).  Churchman emphasises this by saying

”Thgy (i.e. computer-baseg information systems)
fal; simply because their measure of performance
15 1in terms of the transactions, rather than the
benefit, The true benefit of an information
.system must be measured in terms of the meaning
lof information to the user (6).

Consequently, the communication network encompasses both automated/

unautomated components and the user, e.g. the manager.,

Because of its complexity, novelty and high rewards,
management information systems design as a proper area of application
attracts the attention of many systematists. Again two prevailing
approaches can be identified. The first, i.e. top-down, is a

version of the systems approach. It has not gained yet practical

o]

opularity perhaps because it requires clear understanding of the

o]

basic concepts of systems as well as the situation at hand, before
the anproach can be successfully applied. The second, i.e.

bottom-up, is component-oriented and therefore 1s complementary to

the first. Misconception of bottom-up approach constitutes the

e
common practice, ironically enough, among computer systems

i Lhe uwe A Dy
designers/analysts. Before reviewing the two approaches it should

i i1 0 i ar the other.
be clear that either approach can activate and use the o

5 M t Misinformation Systems™
(5) Ackoff, R.L., '"Management Mislnior v ,

Management Science, 1967, Vol.14, No.k, B-147/156.

(6) Churchman, C.W., "The Systems Approach!, (Dell Pub. Co.,

il

N.Y., 1968), p.112.




TOP~DOYN AND BOTTOM-UP APPROACHES

In the top-down approach the emphases are placed upon

\*\W = = s - Eahal b £ 5 3 ] 1
wholeness and the process of defining the user's set of objectives.

Q

N I ERETE Ted e Fomrn hle c 5 . N
Gradually working from that point downwards, the objectives are

el s o s . b .
broken-~down successlvely into subordinate objectives at the various
levels, Until reaching that level below which it becomes

elementary and a waste to proceed. However, simultaneous to this

Process, another procedure takes place; the latter involves the

attemplts to map holons as needed.

A major premise of this approach is tﬁat there is no
guarantee that can be given to ensure the realisation of all needed
components or holons. Consequently, it is quite probable after
completing the whole process to find a number of missing components

or holons.

Top~down per se reflects the inter-~dependence and dynamics
of the processes of defining or solving and analysing and synthesysing.
Tn other words it seems more likely to fulfil the requirements of the
inguiring process previously outlined.  Also a successful application
of this approach depends wholly on the ability to define objectives and

. . > L * o T o H
the relative understanding and rigour of the investigator's conceptual

framework,

i | -up apy is concerned with the
Alternatively, the bottom-u approach 1s co

£ what is available in terms of functions, resources,

identification of
etc Guided by these constraints, objectives can be formulated and

. nlq + rt Sombining
then, the procedure is supposed to start. gombining

By

1t




or linking a number of e

quivalent and/or inferior sub-functions

or holons rethe it o
S together, it is assumed, may suffice the requirements

of developing a suverior 1 + .
bing perior holon at a higher level. By repeating

this process on these suyners
X ] eS¢ superior holons results in the development

of 5till higl 1 i i
nigher holons, This repeats until the required apex is

reached.

3 1Y) o 4+ 2 : . . 3 .
According to this interpretation a major premise of the

591 2l 15 that + b 1S 1 713 & 3 i
approach is that there is N0 guarantee that objectives are to be

oo 1afactars £ £ TR 4 .
satisfactorily fulfilled. In this context it is not uwnusual to

s pim e Far 3 4 i . .
vhey may ve forced to change. Consequently, objectives may have
to comply with what can be achieved rather than what ought to be

achieved. The discrepancy between the two sets may account for

user dissatisfaction.

The approach seems to revolve around the concept of
optimasation. Optimisation may be activated in two ways. First

the overall optimisation that aims to strike an acceptable balance
between what is desired and what is achievable under certain con-
ditions. The second is that concerned with sub-optimisation, say,
between the various compounents of the application. However, opt-
imisation should not be used as a scapegoat for inadequate definitions
or designs. Such inadequate designs may result as consequences of
misunderstanding of optimisation and/or careless application of the

a00rosch. These, in turn, may lead to interface-incompatabilities

¥y

G Ty L LNy v ;
tine holons. Less careful application of this approach

. ~ oy +]
. c v of disorganised complex of holons rather than a
may result in a form ol disorganised comy

harmonised whole.

o
‘,




The two approaches, top-down and bottom-up, seem to

converge, at least, at ope point.  Namely, that of both being

iterative,inSOfar as objectives are concerned. Both, admittedly,

start with  somewhat vague objectives and both aim to strike an

acceptable balance between the inherited uncertainties and

resources, on the one hand and satisfactory design on the other.
As soon as the processes of iteration start the two approaches
imnediately start to diverge rapidly. In case of top-down,
iteration is less conspicuous and less frequent due to the close
contact between each level reached and its objectives and the
influence of the overall goals. No action is taken without a
need signalling its relevance and thus no superfluous holons are
produced, only those needed, within the total framework,are
investigated. On the other hand, having to start from, nearly,
the lowest level, i.e. the most distant point from the objectives,
the designer's chances of goingastray increase, so asking for
reliable and effective feedback mechanisms to keep himself, and

others, within limits. The introduction of feedback loops, in

addition to the extra costs it may incur, complicates the design (7).

(7) Feedback loops which are designed to control the members
of the design/implementation team are also seen 1n .
conventional programming languages such as FORTRAN in
the form of GOTO statements. The use of such ;tatemegts
complicates the logic of the programmne and can reduceflts
life span by making it very difficult to follow even for

the person who wrote it.




m d
Thus, each approach sets out a method by which M.I.S.

holons are supposed to be arranged and coupled to each other.

Any one holon, in this respect, can either be tailor-made to
that particular application, or, alternatively, it can be an
extraneously produced application package. Whatever combination

the M.I.5. may comprise will influence its characterigtics and
prospects through the properties of the individual holoms concern-

ing precision, robustness, time-space performance, proving, tuning,

etc. However, management, as the prospective user of the M.I.S.,

may only be interested in service, reliability, up-to-date

application,; and cost.

CogeEd

Inevitably the application of either approach to a

problematic situation may result in the identification of a mumber

of new computer applications. To fulfil such requirements,

management has to decide either to buy or to make them. By the
former, i.e. to buy, it is meant the use of ready-to-implement

applications packages that are externally supplied. By the

latter, i.e. to make, it is meant any sort of in-house definitions/

designs of the required application by using, basically, the

internal resources of the company concerned. Because of the

serious egonsequencies of whatever option the management may go

e length in the following.

for, the question is discussed at som




FACIORS AFFECTING THE DECISION WHETHER TO BUY OR MAKE

The relaiive importance of the decision to buy-an
application package or to do one's own design work is derived
from the likely impact of its outcome on the future of data
processing departments regarding their effectiveness and
adaptabilities (3). An outcome, i.e. either to buy or to make,
is preferred in reference to a number of critical factors.

These may include (a) the concept of defining/solving; (b) the
decision-maker's own experience, attitude, and bias; (c¢) the
role of the manufacturers and suppliers of software and hardware;
(d) the implications, advantages and disadvantages of general-
purpose packages; (e) compatibility between the desired package

and those already in operation; (f) the abilities and resources

available to the company concerned.

A particular conceptualization of definitions and
solutions is bound to be reflected in the process to arrive at
a certain decision. Static appreciation of definitiqns leads
to static consideration of solutions resulting in a sort of
undermining the significance of modifiability and flexibility.
On the other hand, dynamic realization of the properties of
definitions and solutions emphasizes the inevitable need for

change as a consequence of the perpetual interaction between

ment is used as -a reference to

i t
(8) Data processifi deper cluding management services

any computer department 1n
divisions.

i 117




the package, i.e.

an imported definition/solution, and its

environment, thus acknowledging the benefits of flexible
designs.  Consequently, the three criteria of design, viz.
flexibility, bias, and independence, should be considered by

the decision-maker when deciding either to make or to buy a

- package.

1. Decision Maker's Bias

LiKe definitions, decisions cannot be separated from,
or discussed without direct reference to the person who formu-
lates them. Once again, the person involved in this type of
decisions, i.e. whether to make or to buy, is constrained by
his conceptual framework and influenced by his own experience.
This combination results in his individuality. Nevertheless,
individuality indicates uniqueness which in turn can be credited
to bias. Either consciously or unconsciously, the person
concerned undergoes a continuous struggle between his objective
and subjective views. The difference between the two is that
the former depends upon the comprehensiveness of the decision-
maker's knowledge of the precise outcome of all conceivable
reas the latter this knowledge is incomplete

alternatives, whe

and more or less incorrect (9). Consequently, questions such

i i P
(9) Simon, H.A., A Behavioural Model of gatlonaégcﬁggfe .
Quarterly J. of Econ., 1955, Vol. 9, pPp- - ;
e rative Behaviour", (Macmillan,

N.Y., 19477,

RETRIL




as rational . .
Versus irrational and personalistic versus impersonal-

istic decision making become directly pertinent to the decision of

whether to make or to buy.

There are two sthools of rational decision-making (10).
These are the classical-rational and neo-rationalist schools.
The principles of the former include: 1) the decision maker should
consider all alternatives and their consequences, and makes a choice
according to a scale of preferences; 2) his objective is to maximize
gain expressed in some quantitative parameter related to these
preferences; 3) he beliwes that any decision process can be
eventually modelled. However, if all alternatives and consequences
are known plus the ability to model the decision process then
whatever decision is involved can be automated. Thus, the one who
believes in this theory is bound to be biased to automation.
However, the latter, i.e. the neo-rationalist school, is based upon
the principle of bounded rationality which postulates that managers
do not often proceed to the point of maximization in decision making,
but individual managers pursue the decesion process only as far as

the first satisfying solution that presents itself, the criterion

of satisfaction being entirely personalistic 1.

(10) Gremion, C., "Toward a New Theory of Decision Making",
Internat. Studies Mgmt. Orge., 1972, 2(2).

(11) Simon, H.A., "The New Science of Management Decision’,
’ - o
(Harper & Row, N-T., 1960) .

o dr it 4«




Thus,

impersonalistic (12). In the former decisions are typified by

both incompleteness and unspecificity of the process itself,

whereas in the latter decisions are completely specified and

laid-ocut beforehand.

Accordingly, imporsonalistic decisions being independent

of the decision maker himself, can, therefore, be automated. The

personalistic decisions being incomplete depend essentially on,
the decision maker's reasoning
It is imperative to emphasize that the foregoing dichotomies are
all essentially relativistic and personalistic decisions are

usually considered by some higher decision maker.

As far as the decision to buy or make is concerned, it
is regarded to be personalistic. In practice there camnot be a
clear well specified set of rules according to which a data
processing manager can decide on either course with reasonable
certainty of success. In fact the whole issue rests upon the
manager's own attitudes and judgment (13). His assessment of
the abilities, skills and resources subordinate to him is almost

totally personal. Attributes such as the manager's social

(12) Eilon, S., "What Is a Decision", Management Science, 1969,
’ o
Vol.16, No.lk.

ntained that the matter 1is decided upon
their individual circumstances insofar
their own departmental
time limitations, etc.

(13) Most managers mal
within the scope of
as co-operation with producers,
experience, available resources,

are all concerned.

rational decisions can be either personalisticior

g, judgment, intuition and reflection.




values, way of communication, familiarity with the practices and

developments in data processing, his understanding of the role of

his department, his attitudes towards his subordinates,; are all
liable to influence the response he gets from his staff and users.
This in turn affects the manager's own assessment. Another factor
that usually has a bearing on the assessment is the manager's
attitude towards a particular mamufacturer. Individual managers

may have personal bias in favouring particular mamufacturer.

The intention behind the foregoing is nothing more than
to establish that the decision either to buy or make is based upon
personal preferences rather than a rigorous set of criteria.

Thus, nothing can be offered to the manager to safeguard him
against taking the wrong decision better than confirming the
importance of having clear conceptual framework from which con-
sequences can be imagined and weighed therefore fulfilling the

requirements for rationality as attempted below.

2. Manmufacturer's Influence

One of the objectives of package producers is to
maintain, if not increase, their respective market shares (14,

One approach is by offering software applications compatible

(14) Package nanufacturers can be divided 1nto:‘g) harggarz
manufacturers which, by and large, cover wi e ar:lv 0
applications; b) software houses, wh;ch are mosuméaux.
involved with operation functions; <¢) service bux ;

d) users groupse




with popular hardware.

Obviously, hardware namufacturers are,

in this respect, the most influential, They enjoy stronger

relationships with users or potential users than other computer
organisations. Also, they control more resources and guide
most of the trends as far as computing is concerned.

A computer is one of the most flexible available machines.
The nuwber of possible applications to which a computer can be used
is, indeed, very large. Realizing the potentiality of this
property, hardware manufacturers to be more competent started
to offer software support (15). The idea being that a user may
not only rely and depend on the manufacturer for hardware supply,

he is also persuaded to depend on the manufacturer for his software

needs.

The impact of hardware on the user's company is far less
dangerous than that of software, in particular software applica-
tions. This can be appreciated when the role software plays in
a company is understood. First software applications, i.e. M.I.S.
in its limited definition, constitute the media through which data
processing department interaets with other departments. Equally

true through these applications various departments can interact

with each other. Thus, software does not only affect hardware;

. : s d to extend over the
more serious than that its consequences ten

e is used here not only to igdicgte
put also to refer to applications.
t chapter.

(15) The term softwar

rati s
Opelatlng’syste ’ g
This is discussed 1n ta

sl e




whole organization.

Consequently, establishing control over

software is regarded to be more exacting and potentially more

rewarding than controlling hardware.  Therefore, an unaware

user may find whatever automated activities he may have under

the contrcl of the software supplier which is particularly

alarming if the user has a form of data-base and/or integrated/

total management information systen.,

Package designers rely heavily on the assumed sameness
of all companies that may make use of their packages. This is
for the purpose of extending the usability of packages.

i he M

However, this was shown earlier to be misleading in two respects. L

The first is due to the variation in human behaviour from one

company to e other and from one time to the next. The second is
the implications of the content, e.g. algorithms; bias, e.g.

emphases depend upon the attitude of the designer; rigidity,

€.g. the extensibility of the package, which are all built into

the package (16).

In this context perhaps it is expected that a general-
purpose package may intentionally incorporate a relatively high
degree of flexibility to reduce both the unavoidable differences
between potential users and the built-in bias. Unfortunately,

L i ! o suffer from both. Therefore,
in practice, such a package seems t

(16) Cf. Chapter 1, p-20.




a keen user who sets himself to adopt

such a package may have

to employ very competent staff which can be costly (17). The

user by doing so is nmost likely to get a hostile reaction from
the supplier by withdrawing his support (18). Thus, leaving
the user with what amounts to a black-box problem. In many

cases the costs incurred in solving that problem equal, if not

exceed, those required to design the user's own programme.

Besides direct control of hardware and software manufact-
urers aim to influence users' staff through training schenes.
Existing practitioners, e.g. systems designers, programmers,
get their basic knowledge about design, languages, etc. from such
schemes, which are designed to introduce bias to the trainees in
addition to instructing them. Thus, the manager must be critical
when he gets recommendations from his staff and examines them

within the context of the staff's backgrounds.

Therefore the data processing manager must be alert not
to relinquish his control over his department and indirectly other
involved departments to a manufacturer or supplier by not consider-

ing the consequences of opting for ready-to-implement solutions.

i i Engi ing™, Infotech State
Discussion, "Software Englneering-,
H7) Dunc:?,the Art Repgrt No.11, Maidenhead, Berks., pp.171-172.

(18) Holden, G.K., "Factfinder 15: Production Control Packages',
A g L4 L3 ~
(N.C.C. Pub., 1973), p-53.

,:

i

i

i




THE APTERMATH OF

DECIDING ON A PAGCKAGR

Far reaching consequences of relying upon packages are
recognisable,
in terms of human and hardware terms, and independence. However,
the assertion made by many data processing managers that they have
to use packages because of their lack of competent systems designers
is believed to be the start of a vicious circle. This is because
the more a company opts for packages, the less experience its
practiticners may gain (19), and the more a company believes in
extrinsic solutions, the less need it may recognise to go for more
expensive staff. This may be attributed to the imaginary reduction
in design, analysis and programming functions associated with the
acquisition of packages. As a result, when presented with a fresh
roblematic situation, the company may find it difficult to resist
the tendency to opt for the seemingly-easy way, i.e. another package,
which again may further contribute in limiting its staff experience.
This crucial relationship is best explainable in terms of the Law of
Evolutionary Potential. The law states
"the more adapted a population (presently,

systems designers) becomes to a particular

environment (i.e. packaging) the less

adaptable it is when faced with other

enviromments” (20).

That is, through what may account for a constant interaction with
is, thr

ficult to understand

b" e o are ve di ..i
( 7 ) ince oS t )

even if detailed information 18

"Natural Selection as Applied to Computers

(20) Weinberg, 8-, General Systems, 1970, Vol.15, pp.145-150.

and Programs’,

Of these are the effects upon experience, versatility .




packages, systems designers

may develop certain skills required

for the handling and operation of packages, but on the expense

of other more important abilities such as design itself. Two

possibilities may emerge but lead to the same outcone. The

first is that of motivated designers who seek design experience.

In this case the designers may find a package-environment monotonous
and futile that may drive them to look for more challenging jobs
elsewhere thus leaving the company with less able designers. The
second is the loss of confidence of the remaining designers to
undertake design responsibilities. Handicapped with their con-
ceptual understanding of systems and fhe particular area of
application, in addition to lack of experience in design, designers
may be too reluctant to accept or propose to assume proper design
responsibilities. Thus, through the loss or stagnation of design
faculties, versatility of the staff declines, leaving the environ-
ment to exercise a sort of selection. The term selection is used
in the sense that thevenvironment may push for more packages leading
to higher still specialization of the population, i.e. designers,

in packages. Logically, as this situation persists, the whole
company becomes more and wmore dependent upon the suppliers and
to-implement solutions whose effects do not vanish at

their ready-

this point, but extends all over the concerned areas of application

that may cause serious conflicts between these areas and data

processing.

7
cateld




The same argument can be practically applied to hardware.

By delimiting available harduare to the running of a particular

1 5 . . .
package, or application to this effect, only these parts and

components of hardware used get maintenance and, thus, are kept in
shape, whereas other unused parts accurulate errors as time

progresses. Consequently, when a new and basically different
application is tested, hardware may fail to survive the test (21).

Therefore it logically follows from the above that high specializa-

tion must be avoided since it brings with it rigidity in the form of

limited freedom to act. However, if systems concepts are adequately

understood by systems practitioners, including managers, this con-
o
i

clusion should have been clear in their minds since high specializa-

tion is refuted by the systems first principles. Thus, variety of

applications helps to keep hardware from becoming highly adapted to s
a specific application, and through the use of its own resources a i

company can maintain and develop the versatility of its staff that

may lead to greater independence.

The decision then whether to go for a package or not |
should be weighed independently of whether a company does or does
not use other packages at that time. Also, the issue is not so %
much that of know-how and resources enjoyed by the suppliers as it

is an issue of self-development and perseverance by the company

concerned. However, in practice, the decision is based upon an

awareness of lack of experience and investment priorities.

(21) 1Ibid.




Table (1) showing the attitudes of five data processing managers

Table (1)
M

Users' BEstimated Software Effort Distribution

Design + Analysis % 51301 20] bo| 25§ 26

Programme Coding + Auditing % 60 | 40| 501 4o

Testing + Integration % 251 301 30| 20

who use packages to 'how they allocate their resources regarding

the three main software development phases' illustrates this.

The first four entries give programme coding and auditing the
biggest slice &0 supporting the previously questioned programming
cost savings (22). In view of the current researches in this area,
it is recommended not less thanm 45 to 50% of the total effort should
be directed and allocated to testing and integration (23). Seen
within the frame work of selection, users by over-estimating the
difficulties associated with coding, tend to overlook the real
costly problem of testing and correction. This coupled with the

fact that there will always be bugs in any programme (24), provide

(22) Cf. Chapter 2.

(23) Boehm, B.W., "Software and its Impact: A Quantitative
Assessuent, Datamation, 1973, May; also
Wolvéerton, Opj01?2

(24) Cf. Chapter 6.

i ol
[T




practical evidence th

at they,

perhaps, use inaccurate and

unrealistic criteris .
S riteria.  For even in cases of charge~free packages,

« CLASS, the usery i
. T day consciously or unconsciously over-

]

(S

estimate what he w IR
gets, In other words, although the package

1tself may be given free,

the hardware on which it runs, its

maintenance, are all paid for. More important is the price he

A < 3 Tl P n o~ s . +
may pay in the form of degenerating his experience abilities,

dependence on extraneous sources.,

<

CONCLUSIONS

o~

An applications package is a part of an M.I.S. which

ge]

is defined to include the whole organisational activities !

jg

irrespective of both routine and/or automation. The output of

such a package should be treated objectively, i.e. as data, and

not subjectively, i.e. information, in order to ensure that it is i

the user who controls the package and not vice versa. P

Proper or effective application of either approach,
i.e¢. top-down or bottom-up, may require the use of the other. i

The ability to identify such interdependence between the two

aoproaches is much enhanced by clearer understanding of systems

philosophy and its concepts. Failing to identify such an
interdependence can result in over-complicated and ad hoc designs

that management nowadays complain from.




The decision to buy or make is personalistic since

the manager has not got a specified set of criteria that he
can apply, knowing this manufacturers try to tempt managers
by offering applications packages, sometimes charge-free, to
retain their customers. This is because through software

the manufacturers ensure the continuing dependence of customers.
This dependence marks the start of a vicious circle that can
seriously be damaging since the more a company opts for
packages, the less experience its designers may get and the

less attractive it may become to competent designers to stay,

this, in turn, pushes for more ready-to-implement solutions.




CEAPTER 4

APPLICATIONS PACKAGES AND SOFTWARE

This chapter discusses software as being the second

environment, besides M,I.S., of an application package.  Software
is the environment that supports and activates the package when

need arises and imposes restrictions upon future developments in

the package.

The idea of user's control over software is investigated o

particularly because software, in its limited definition consists i
of compilers, operating systems, etc., is provided by the

manufacturer. Having established earlier the consequences of a

user not controlling his software, two models are examined to

provide two things: 1) to establish the dependence between

software and applications programmes; 2) to show how the user can

increase his control.

Software structure is discussed and the relationships be-

tween its components are examined through two models. Also the

i t its
concept of holons 1S compared to these models to tes

applicability.



RELATION OF SOFTWARE To APPLICATIONS PACKAGES

Sof i
ottware, i.e. the whole corpus of programmes, is studied

here b it i . .
ecause it influences application programmes, including packages,

10 a number of ways such as: 1) it determines what programming
languages can be used, size of Programmes, mode of processing, etc.;

2) it provides support in the form of sort programmes, core dumps,

error flags, loading and execution of programmes, compiling, etc.;

3) it constitutes»a centre of attention and consequently it generates

design methods and techniques. In this respect, an application

package in addition to its dependence upon the M.I.S. it also depends

upon software as far as effective use of hardware and other programmes !

are concerned.

Software can be dissected into its three main constituents

as shown in Figure (15). The parts are, (a) operating programmes,

(b) utility programmes, (c) applications programmes. In this figure

the principal constituents of both hardware and sof tware are represented

by a set of concentric discs. Fach disc is free to rotate around the

centre, i.e. the central processing unit, irrespective of other discs.

Thus, when a user triggers one of his signals, i.e. a request/demand,

a number of co-ordinated rotations of a number of discs occur in order

to release and to activate the required mechanism (1).  That is, the

(1) The term user 1is used in its general sense to include

anyone who belongs to the M.I.S.



outermost disc,

the user-software interface, which may

in some

environm
onments be done through Special programmes as in time-sharing

operation or h - .
P wnan activity in other-less automated environments,

receives .
the message, This message subsequently transforms into

a set of signals. These signals can be transmitted either serially

or in parallel depending upon the characteristics of software's
structure. The resulting signals, however, are initiated to
activate the rotation of the individual discs so that all parts

of the required mechanism are properly aligned. Consequently, the
manner in which these discs are coupled to each other determines
the level of flexibility built-in the available software. Also
the mode of coupling, i.e. whether strong or weak, may indicate

whether or not the user controls or is controlled by the service

offered to him.

Therefore the internal structure of software is regarded
to be not only the concern of software designers, but also that of
users in general. The question of software structure has thus

drawn the attention of many software theorists and practitioners

who have proposed many models each describing how software should

be constructed. Tew interesting examples are discussed below

within the framework of the three-fold design criteria, i.e.

flexibility, independence and impartiality.




ENVIRONMENT

APP. PROG.

UTILITY PROG.

OP. PROG.

HARDWARE

Rotation of hardware

Rotation of Op. prog.

=
-

R2 : Rotation of Ut. prog.

R% : Rotation of App.prog.

) ) put Y ¢ S
Dissection of Computer Systens

Figure (15)




1. The Inverted Pyramid

App. Prog.

Compilers

Assemblers

The Inverted Pyramid

Figure (16)

The idea behind the Inverted Pyramid is to show the
weaknesses of software regarding the inability to maintain an
application and to extend it freely (2).  According to the model,
software's internal structure does not contain assemblers and
compilers as members, but as far as stability is concerned both are
indispensable.  Also the model shows that extending and, hence,
maintaining an application do not depend upon free-will. Rather
these functions are constrained by the structure of software as

illustrated by the Inverted pyramid, the idea behind which is that

any change in the underlying software does not contain the old

version as a subset. As & direct consequence of this change the

application programme may not be able to work. Thus demonstrating

h t interdependence between software, as defined conventionally
the strong

. dell, (Eds.),
: :on. In P. Naur; B. Randell, 1
(2) a'Agapeyeff, Aes Discussio ,(Garmisch Repprt, Scientific

. eerin 't
"Softuare LSS Brusseis, 1969), pp.22-23-

Division, NATO,




to
cover the bottom two layers of the Pyramid, and applications

rogrammes,
rrog 5 In other words, the data processing manager who runs

an application package is not free to change or develop his own

software because they may affect the workability of that package.

That is, the package may not only affect his staff and users, but

also it can reduce his ability to change.

The model also incorporates a layer called middleware.

If standard software, i.e. operating programmes, etc., which is

supplied by manufacturers is conceived of as an abstract machine

of the real one, then middleware is similarly seen as another
abstract machine between the user and the software and is provided

by the user. Consequently, the principal purpose of the concept

of middleware is to reduce the dependence between user's applications
and manufacturer's software which may result in more freedom to
change. That is, middleware is user oriented and it is tuned for

his applications. Thus, middleware covers functions such as file

handling procedures, real-time schedules, etc.




2o Operating Procedures

Sub-systems o

\\\\\\\\\\\~>

Procésses

Flexible Sub-systems

Figure (17)

User procedures

<—operating
system

Software

data

Hardware

User-Software Interaction

rigure (18)




Another model of software is that shown in Figure‘(18)

in which th : . )
© media that links users' procedures to hardware is that

of operating procedures 3). The message of the model is that of

building more flexibility in software's structure. It is suggested
that this can be achieved by reducing, and eventually eliminating,
the degrees of discreteness normally associated with procedures
supplied through some external channels, specifically operating
procedures., Thus if users are allowed and provided with the
facilities needed to enable them to adapt and/or rewrite whatever
procedures they may find unsatisfactory, the users then and as a
consequence of this promotion of understanding, may bring software
under their control. One form of such control is that of merging
both users own-produced procedures and those supplied from outside.

Consequently the users can build as many sub-systems as they may

need by the use of all that is available to them as illustrated in

Figure (17).

Tt follows from the above two examples that dependence

upon external sources of programmes is not at all recommended not

only for applications programmes but also for others such as

operating procedures. More significantly is the user's ability to

build-up new procedures from already existing ones. In this respect

current package architecture as comprising & number of highly

1 f Computers',
n ting Systems for a Range O

O%iga) §Operating Systems', Infotech State
o t’No.’]’+, Maidenhead, Berks., 1972,

(3)  Moore, B.d.,
In C. Boon,
of the Art Repor

pp.225-239-




depend .
pendent chunks of machine coded instructions precludes the multi-
use of its constituents in other suitable applications as well as

it makes the task of adapting it to suit the operating conditions

of the user very difficult.

HIERARCHIC STRUCTURE

In the foregoing no particular reference has been made to
the type of intra-relationships that may exist within software.
To this the concept of holons is of immediate pertinency. A
demonstration of the state of the art of software's trends in
hierarchical organization as well as the use of terminology may

reflect some of the misconceptions and indeterminateness.

System -

1

Suite <+

Package -

o

Module -

Hierarchic Architecture

rigure (19)

Fi (19) shows & typical examples of the architecture of software
gure 7




or part of it. Thi , )
his model suggests the construction of a matrix

to contain a complete system, e.g. an application package (4).

The hori Cmenst o ;
orizontal dimension of the matrix is not to exceed ten columns,

i.e

. boxes whereas the vertical dimensions entails four levels.
The resulting matrix is :
e 1g matrlx is partially ordered by the relation is

contained in. . . . .
arned in The elements of the matrix, i.e. the boxes, do not,

howevar, lexicographically contain one another, but the execution of
one includes, potentially at least, the execution of the boxes below
ite Accordingly the top layer is given the name system; below it
comes the level of the suite which is followed by that of the
package, and finally at the bottom is that of the module. A number
of such matrices, it is suggested, can result in % complete corpus

of sunftware.

Comparing this model with that of the holons, one
immediately recognizes that the above hierarchy is deficient in more
than one respect. To start with the boxes, apart from being defined
as modules, have had no mention made of their properties and the
rules governing their behaviour, such as their modes of couplings.
Also, the term box does not carry with itself specific meanings, and,
thus, does not reduce any uncertainty regarding what a module is.
Moreover, by constructing a ceiling, the model is in effect limiting

or even prohibiting the evolution and/or extensibility of software

into higher orders. what has been

P I "Hi ies: ordered Approach to Software
() Byre 5.0 g22§2i2%1§ifoﬁzch State of the Art Report No.17,
oE.cito; PPRe. 253-272. Pyle uses t@e term‘boxes
and modules to refer to the same thing. Also
his hierarchy 18 directly relevant becaus§ I.B.M.
and I.C.L. use the same hierarchy for theilr
packages;, 5pecifically the bottom two levels,
viz. package and module.




said ab
id about the use of the term box is also applicable to the other

terms, i.e. .
y 1.e. system, suite, etc. As regards the relationship this

model disregards the response of the subordinate box to its ordinate.

That is what the concept of holons calls the input hierarchy.

Another model which elaborates on the relationship between

any two modules is that saying

"A module that does not call any other module
is of height zero. wWhereas a module which
calls one or more other modules is of height
one higher than that of the highest among
the ones called by it'" (5).

Evidently this rule is not only more concrete than the previous
tis contained in' relationship but also it is better because it

offers more flexibility and dynamics.

The concept of holons can be seen to incorporate that
rule. In a response to a certain stimulus, the holon in question
may select and bring into action a whole hierarchy of holons to

carry-out the designated demands. However, the resultant hierarchy

i.e. output hierarchy, may change as stimuli change within the

course of time. Conversely the same holon, irrespective of its

hierarchical level, regards itself as a subordinate part to some

other supra-holon. Consequently the holon's role reverses to that

of feedback through £iltering and reporting in response to the
$

stimuli it may receive.

e

i d by Hierarchical
i] H Jexity Controllec
> DleStza"Eéwé% Fggiiion and Variagiliggﬂ, In, Naur,
' erin - Lty
%;ndell, (EdS. ) opeCites pp.




t
It may have become clear that the matrix model and all

similar hierarchics are less flexible than that of holons. = For

&

the 1 ]
atter, i.e. the holons, does not only avoid to relate holons

to specific hierarchical levels and thus restricting their trans-

ferability from one to another; the hierarchy of holons is built,

by definition, to promote and cope with the independence of its
constituents (6). Both dynamics, i.e. transferability and
communication are regarded to be prerequisites of flexibility.
Communication is enhanced in the case of a holon by recognising
that a holon, regardless of its level, may encounter some ﬁnrout—
inized, i.e. unprogrammed, situations. Thus, when designing a
holon, an explicit communication requirements should be identified

and catered for including the uncertainties.

Additionally, the inverse relationship between flexibility

and mechanization is also identified and stressed by the holons

concept. cranting that both complete flexibility and zero uncertainty

are unattainable due to the finiteness of involved attributes, e.g. the

: : i nfinement and formal
designer's braln, core-size, etc., then, the co

allocation of parts/modules to specific different levels, as that of

Figure (19), may be taken as faulty in the respect that it may increase
z ]

the finiteness itself. Permanent association of a part to a

articular level imposes restrictions on the use, not only of the part
b

the only way to cope with independence

when this is established an
cal and norizontal structures,

(6) Koestler emphasizes Epat
is through communlgaulon. o
integrated whole, 1e€- ver21 s
may result; c.f. Chapter £, Pe22°




it . .
itself, but also of its constituents. Consequently restricting

farther the available resources. The architecture of all packages

and almost all users! i
S’ own programmes is a case showing such permanency.

All them, specially packages, are signs of wasted resources. This is

because all design and programming efforts that may have gone into a
package cannot be restored back and used again in any economical way.
Instead, a new programme has to be written from scratch under the
constraints of the o0ld whether packages or programmes. Thus by the
intentional dropping of such permanent allocations the concept of
holons strikes a distinguishable balance between economic feasibility
and dynamic structuring of even complex programmes. Also this
dynamic property implies flexibility which is, once again, essential

ot counterbalance the effects of automation.

CONCLUSIONS

This chapter reveals that if the user is to control his

software, including applications programmes, he will have to develop

his own buffer, i.e. the middleware, between him and the manufacturers

software This is because the supplied software impairs the users

efforts to extend or change his applications programmes. Therefore

there is little doubt about the user's need for rigorous design me thod

approach and competent designers to write such a buffer. Also

th nt package architecture as inseparable wholes prohibits the
he prese

it rts in building new applications and consequently leads
use of its pa

a solutiom.
to provide self-consistent sramework for
seen to

e




AN EXAMPLE OF A TYPICAL APPLICATION ~AREA

AND TTS MATCHING COMPUTER PACKAGE

In the following discussion is directed towards an important
application area i.e. production scheduling together with a typical

computer application package of that area, viz. CLASS 1.

Production scheduling is reviewed in order to identify its
characteristics and uncertainties. This is done by looking at
scheduling within the wider context of production control and planning
activity. In this pursuit an account of network analysis techniques

is provided.

CLASS is examined to reveal the technique it uses and the
facilities it provides. Problems of compatability and interaction
between the package on one hand and both data processing departments

and the larger aread of production control on the other are considered.

The discussion terminates by jnvestigating CLASS within the

framework of the criteria that have peen developed so far in previous

chapterse.

ity Loading and §cheduling System. It is
(1 CLASS stands for gapaci®y = it is not part of a larger system.

ackage, 1e€-
ghztzzii;t;nioifigufa%ion requirements are: any system /360 or

i : ine Printer; Card Reader;
/370 W?th 32Ki 2 stzl; g;?kS,ItLis written in Assembler: It
operating oy eZb'ect code. Only the User Manual is available
L releésed oo cgount of the facilities provided by tbe package
whichhglve§ iie; can be usede. It also jescribes the input
and the W&

requirements and outlines the outpute.




SCHEDULING AND ITS ORGANIZATIONAL CONTEXT

Scheduling is taken to constitute one part of the larger
activity of production control and planning. In this context,
planning is mainly concerned with the development of a method for
accomplishing a production requirement (2). Consequently planning
as such has two types. The first is the long-range planning which
deals with decisions such as plant investment, acquisition of
resources, etc. whereas, the second covers short-range planning
such as the deployment of the given resources to achieve the desired
goals. However the process through which resources are used is
designated as scheduling, thus it is described as the assignment of
specific times for projected operations either of the plant as a

whole or of individual work centres. This is supposed to be done

by taking into account due-dates, processing time, and a time

allowance for the average, and variance in, waiting time of operations

at various machine facilities (3). However, scheduling as such must

be distinguished from the related activity of sequencing which 1s

described as the order in which jobs are serviced (&)

lanning, Scheduling, and Inventory
g, (Macmillan Coe, London,

(2) Niland, P- nproduction P
Control: A Text and Case

7970), pp-o1=61.

. . In R.L. Ackoff, (Bd. )s
. R.L., "Sequencing Theory s . ) .
) Slsson’nprog;ess in Operations Research', Vol.1, (J. Wiley &

gons, N.Y.s 1961), pp.295-326.

Arnoff, E.L., nIntroduction
(J. wWiley & Sons, N.Y.,

an, C.Wes Ackoff, R.Les
) Comrobnd?s Lions Research',

bogresuiions Sossarch
1957 ) s PP 50.




» - l’
Considering production control activity as a hierarchy l*
. . 5
of holons makes it possible to identify some of its intra- :
relationships that exist between the various holons. The

hierarchy extends almost over the entire hierarchy of most

manufacturing companies. On receiving an order for a product

the whole mechanism of the hierarchy may, consequently, be
triggered into action. According to the concept of holons the

mechanism involves some automated as well as unautomated procedures (5).

The mechanism has its specified policies, i.e. its canon, to control
its routine or quasi-routine actions along with unroutinezed
procedures dictated by, and required to enable it to deal with, the
inevitable uncertainties as it continues to interact with other e
external and/or internal environments.  Assuming that the mechanism
has been reactivated, hence its basic output hierarchy as shown in
Figure (20) may include, beside others, the following branches:

a - Order analysis

b - Inventory control;

¢ - Work-In-Progress control;

Loading and Scheduling;

o)
i

e - Purchasing;

£ - Demand Forecastings;

g - performance analysis; etc.

(5) Automation does not only refer to computerized procedires,

put also any well—specified actions.




System Output:

Demand breakdown

to

order, stock, to

forecast

Capacity

Planning:

Lot size

Tconomics of

men Bhifts,
vendors,
substitutes

No. of machines,

Commitments

Delivery promises,

Scheduling

Establishment of

Inventory

Control:

Execution:

Feedback:

Changes

Split lots,

new cycles

manufacturing
cycle, release
dates

oad vs. capacity

Routing

]&achines, methods,

Factory monitor

Release jobs,
tools, material,
Report job
status

processes

Reports

Exceptions,

v

Disggtching

Assignment of
jobs to specific

Completions,
load status

Output

Finished products

m/c's, correct-
ive action

Perturbations

Emergency orders,

Rowe

P

m/c. breakdowns,
delays, SCrap,
etc.

to customers

Overloads

Use overtime,

alternate m/cs.

s Operating Characteristics

of a Production System

Figure (20)

S




An appreciation of the input requirements and output of
the scheduling activity shows the entwining nature of these branches.
As far as production planning and scheduling are concerned, a state-
ment of production requirements, over a specific time interval, is
pre-eminent.  Such a statement is either produced on the basis of

a demand forecast covering the same time interval or on the basis

of received orders, or a combination of both. In whatever case,

the statement constitutes the primary document according to which
needs are calculated and resources are, thus, allocated. This is

done by translating forecasts and/or orders into material require-

EEEEE and operations. Material reguirements cover raw materials
in addition to work-in-progress. Accordingly stocks can be
adjusted and replenishments are ordered. However, in this respect
work-in-progress constitutes a further critical common factor which
strengthens the interdependence between demand/order breakdown,
inventory control, and scheduling since work-in-progress represents
work either previously and/or currently scheduled.  When this work
slips behind, schedule rescheduling may become necessary and, thus,

stocks and delivery dates may ve affected as a result.

The second face of forecast/order preakdown is that

concerning operations to ve performed, i.e. the added value.  Here

an operation can be broadly described in terms of: (a) men, who may

be classified according to some criteria into skilled, semi-skilled,

may be grouped into groups of like machines,

etc.; (b) machines which

etc.; (c) time, i.e. in terms of manufacturing cycle. This is taken
e ] e




to de .
note the average elapsed time between the date a job:is released

to th ey s
e shop and the date it is shipped (6). The mein compenents of

such a manufacturing cycle may include: (i) actual working time;
(ii) waiting time; (iii) tramsportation time.  Thus, a manufacturing
cycle can play a critical role both in making delivery promises and in

planning.

Consequently the entwinings within the hierarchy are
reinforced through the menufacturing cycle.  Again purchases may be
requested and stocks cen be adjusted, and work is, sometime, sub-
contracted in accordance with the manufacturing lead time, i.e.
cycle, and the volume of demand/orders to be scheduled. These
schedules take into account other pertinent factors that can affect
their outcomes such as: (i) identification of alternate routines,
i.e. permitting the use of similar machines or groups of machines,
and/or allowing variations in the sequence of operations to be
(ii) sequence control, i.e. to determine the best-

performed, etc.;

possible sequence according to which batches of orders are assimilated

with the purpose of reducing as much as possible the set-up times of

jobs and tools on the machines (7).  These measures are designed to

increase the flexibility and workability of schedules in case of

uncertain occurrencese.

i —————————t

nputomated Data processing far the Corrugated

i i C.CD .
(6)  Polr el " In J.F. Pierce, (Ed.), op.cite, pp. H16-432.

Box plant',

(7) Sisson, op.Cites pp.504—308.




n .
One schedule may differ from another with respect to the

amount of details included in each. The extent of detail can be

regarded as arbitrary only insofar as the manner in which the person
responsible views the orders-mix. Regardless, the depth of details
is considered as a function of the requirements' mix and how close

the current level of operations is to the available capacity, i.e.

the degree of tolerance, and the degree of .labour’ versatility,

i.e. the extent to which workers can switch from one type of operation

to the next and from one work centre to another (8).

Given a list of the work to be done, i.e. production
requirements, a typical scheduling application may, therefore,

include the following features. (1) Plant capacity which may be

broken-down by individual machines, by groups of the like machines,

by department, by work centre, by manpower skill classification, or

by any combination of these. (2) Amount of capacity needed to

produce the work required. This, for example, can be calculated

(%) Allgcation of

from the operation sheet of each required part.

available capacity to the shop orders being scheduled. (&) A cycle

for rescheduling to cope with delinquent orders.

It is important to note that plant capacity should not be

allocated fully. There»ought to be an extra capacity left un-

pe with unforeseen difficultiese. when there is no

allocated to co

e
(8) Niland, op.cites pp.66-75-




spare capacity the degrees of freedom of scheduling fall sharply
resulting in more rigid schedules and inability to handle change

as shown in Figure (21).

T

Relative Efficiency

20 Lo 60 86 100

Percent Utilization of

Production Activity

Spare-Capacity

ﬁ@we(m)

Scheduling Technigues

There are two common approaches to scheduling used in

computer applications packagese. The first is that of network

analysis whereas the other 1is that of simulation. Network

analysis covers both Critical Path Method, i.e. CPM, and Programme

i i i 3 fundamental
Evaluation and Revievw Qechnlques, i.e. PERT. The fu

elements of simulation are: (i) a mathematical model of the

process or other phenomenon being investigated; (11) 2 sample




fi v )
of inputs (9). Regarding scheduling and sequencing the appropriate

technique bhas to cater for stochastic situations due to the formation

of queues at the various machine facilities (10).

The object of network analysis is to determine the minimum
time interval in which a job/order/schedule can be completed, and to
identify the critical path. A definition of the critical path for
either CPH or PERT is that series of activities having a precedence
relationship to one another, the delay of any one of which would
result in a comparable delay of the completion of the whole job/
order/schedule (11).  The term activity is used to designate a task
or part of the whole jobe Such activities are coupled with duration
estimates. The term event denotes either the start or the end of an
activity or number of activities. Consequently an activity is
regarded to describe what may happen between the event with which it

starts and the event with which it ends.

Other network paths that are not critical offer float, or

slack, which is the total amount of time that non-critical path

activities in the network can be delayed without affecting the over-

all job completion date.

-

ini > isti nalysis For Business
r.A., Bonlnl C.Pey ngtatistical Ana Lnes
© Spurﬁeiigiéns", (Richard D. Irwine, InC., Homewood, I111nols,

15677, pp.407-426.

nThe Theory and Application of Simulation

s
(10) Morgenthaler, S In R.L. Ackoff, (Ed. ), op.cite,

in Operations Research',
pp.363-119.

(11) Langefors; B., MActiv

ity Network for Planning and Scheduling™,
BIT, 1962, 2 Noels pp.21-3h.

i3




The definition of activities and the choice of events are
afbitraty, but there is an obvious advantage in using breakdowns
that correspond to the everyday concepts employed by people who will
use the network and the analyses based upon it. The level of detail,
as outlined before, in the breakdown, depends upon the magnitude and

complexity of the project itself and the organizational levels that

will utilize the network. Large and complex projects may use one

network for over-all project management, and other more detailed

networks for use at lower levels of management.

There is a difference between CPM and PERT regarding the
use of probability. PERT, on the one hand, associates uncertainty
with the estimated activities durations. This is achieved by using
three estimates for the duration of each activity; optimistic,
pessimistic, and the most likely. Assuming the probabilistic beta~-
distribution for these estimates, the three durations are used to
calculate an average or expected duration of each activitye. The

expected times for all activities are then used in a network analysis

to determine the critical path and the amount of float in the same

manner that is done for CPM. Having determined the critical path,

the data related to the expected times for the activities on the

critical path and their variances may be combined and used to

estimate the probability of meeting alternative target completion

However the CLASS package uses CPM and therefore does not
I 2

dates.

make use of probabilities.

Rl kﬁhi




The CLASS Model

The model covers the following functional areas: (i) “Work-
in-progress; (ii) scheduling; (iii) performance analysis, as
schematically shown in Figure (22). The package operation involves
the following. (1) Creation and/or updating of the W,I.P. order
file that contains all production data relevant to the scheduling
processe. (2) Scheduling to infinite capacity, 1.€. unlimited run
with no restrictions. (%) Scheduling to finite capacity, 1.e€.
limited run with limited resources. (&) Short term sequencing to
finite capacity, i.e. sequencing individual operations in the short

term according to priority rules. Tn all cases time periods are

miltiples of one day.

A. gcheduling to Infinite Capacity - Forwards or backwards.

Using both the timing and the statement of requirements

it becomes relatively easy to perform the infinite capacity loading

phase. Each network may then be analysed and the capacity required

for the operation 15 deducted from the particular machine/facility.

o at the earliest start time, EST, or latest

This deduction is mad

start time 18T, of the activity, 1-€- the operation, and a different
k]

deduction 1ist is maintained for each facilitye. The list is divided

into time periods whose magnitudes are selected according to the

For each machine, oT group of 1ike machines, &

management 's plane.

nistogram can be printed, comparing both capacities required and
18TO




Work data changes Permanent

since last Priority data
ast run resource data

0ld file

Sort
Programme

New file

Temporary

Resource data

Schedule
Programme

Details of M/c

Shop scheduling

and finish dates

Overall System Flow Chart For Job Shop

Figure (22)




available.

These histograms demonstrate the overall state of

facility utilization and thus may indicate to management where
over and/or under-loadings may have occurred. Management can
accordingly perform its control function to smooth the situation.
Another possible use of the histograms is to plan man-power

utilizatione.

Thus the main characteristics of this phase are:
i) it is possible to develop long term

loading to infinite capacity.

ii) activity times are calculated by CPM
for the two passesS; i.e. forward and
backward.

iii) when an activity's duration exceeds that

is available the package automatically

tries to:

- reduce the transit time, and/or
- split batches, and/or
_ overlap batches,

subject to management approval.

B gcheduling to Finite Capgcitz

In this context, there are two modes of scheduling,

viz. forwards and backwardse Fach can be equally performed on
However, &8 far as CLASS is

jpdividual jobs oF operations.




concerned it restricts its users to backwards scheduling on individual

jobs as shown in Figure (23) by the dotted line.

Forward Job
Operation
Scheduling
Operation
Backward —— o e 1
1
1
Job
!
' ' CLASS

Finite Scheduling Four Techniques

Figure (23)

The purpose of this technique is to prevent jobs from being
loaded past today and so the critical path times should be adjusted,
if feasible, to fit the network into the time available. Preserving

priorities, networks are Joaded on to the facilities at their latest

short times, LST Any overloads are avoided by trying to load the
L 5 * ¢

operations at earlier times and not sooner than the early start time.

If a network already reduced in time scale, must start earlier than
9

today, then it should be reloaded from t{oday' and forward scheduled.
odays




It i s
is envisaged that servicing time can be minimized by

not loading operations until late start time is reached.

a reduction in W.I.P,

costs, delivery date is considered.

individual operations cannot be chased

Resides

However,

Consequently, the main characteristics of this phase are:

i)

e
-
~—

vi)

The outpu
operations ar

loadin

may be available.

ranged in chronolo

g digures under th

in case of overloaded capacity time
shippage or delay are offered
alternative machine or group of
machines is automatically tried

jobs are loaded in priority order
oaded

individual operations are not 1

work cannot be 1oaded in the forward

mode from ftoday'

work can be loaded in the backward

mode from delivery dates.

t reports include 1lis

gical or priority order.

e actual conditions

y.I.p., status report.

ts of machines with the

Overall

of limited capacity




Coe Short Term Sequencing

When infinite scheduling is only to be performed it has

to be supplemented by a short term sequencing whereby the accumilated
load can be sequenced according to priority order and a list of jobs
is released to the workshop. tWhen jobs are scheduled, e.g. to
particular weeks, then detailed sequencing ought to follow, specific~-
ally when machine groups are used. The load allocated to a group
has to be arranged in priority order or in a sequence that accounts
for set-up conditions, e.g. changeover time can be minimized when

jobs with similar set-ups are run in sequence.

In case of back scheduling nothing is done to make sure
that there is work available at the beginning of the scheduling
stage so that the short term run in this case must take the results
of the long term scheduling and pull some of the work forward before
sequencing the work at the work centres. Tt can also 'pull forward!'

work in order to £i1l unallocated capacity. Before embarking on the

action to ‘pull forward! the package checks on the state of W.I.P. in

the light of the pre-determined policy of Ww.I.P.

Consequently short term seguencing of operations 15

performed by CLASS. Also work can be fpulled forward? to fill

whatever capacity that may be available.




D.

Priority Factors

a)

b)

e

Priority factors that are automatically included:

ii)

iv)

v)

management assigned value such as customer

or order importance

based upon float in the jobs network, hence

1/ delivery date - ‘'today's" date

Priority =
Sum of the remaining processing times

the package does not pay special attention to
either the job's complexity or the number of
its constituent operations

when a job's plan is altered the package offers
the facility to maintain the job's schedule by,
for example, reducing its transit times, etc.

the age of a job 1n progress is considered

In case of short term sequencing the package considers

the T

i)
ii)

iii)

iv)

ollowing additional factors:

whether an operation is already started

length of operation

the package does not question whether an
operation is delaying next operation
the package does not compare’loading levels

of work centres.




DESIGN TMPLICATIONS

Despite its apparent popularity CLASS as briefly

outlined above constitutes the antithesis of the criteria presented

here . ; . o o
re so far This may become clearer as it is seen within the

context of each criterion. Considering definitions/solutions and
their inevitable change, CLASS as a ready-to-implement solutions
represents a static definition/solution to the scheduling problem.

To start with, it is not adequately documented since there is no
available literature about its design or structure. Consequently
the user's ability to modify it or even adapt it to his own
environment is very much reduced. Also, sticking to one technique
of scheduling, i.e. to one point of view, without providing facilities
to change the technigue or add another such as forward scheduling of
finite capacity is an extra sign of the package's static philosophy.
This type of definition is bound to cause problems to the user
particularly when it is fitted into the wider context of production
planning and control which are likely to bring uncertainty very
closely to the scheduling procedures. This uncertainty can take

The most relevant is that associated with capacity.

different forms.

Tt is most likely that the actual capacity will be either more or

less than that planned for the plant. This can be explained in

terms of: (1) machine breakdowns; (ii) shortages of stocks;

(iii) absenteelsm; (iv) planned maintenance. Also, uncertainty

n be introduced through jnaccurate or imprecise timing of operatlonsS,
ca

The third source of uncertainty is

i i f ivities.
i.e., durations of activi




that characterized by demand/order fluctuations.

attributed to:

(ii) excessive spoilage or rework;

This can be

(i).unexpected customers' orders/demand;

(iii) lost shop orders.

Uncertainty may, therefore, affect the reliability and flexibility

of the scheduling technique insofar as the amount of unscheduled

orders that can be cancelled.

the scheduling solution should tend

the technique used in CLASS for finite capacity is job oriented,

i.e. it treats the job as a whole and does not break it down into

its constituent operations.

To minimize the effect of uncertainty

By doing so the package does not offer

to be more dynamic. Conversely,

means to compare pProgress against schedule to identify bottlenecks.

Consequently, the user who is intere

wait for twenty six hours, assuming
allows, needed to run both infinite
sequencing (12).  Thus the package

static solution which becomes WOIr'se

The rigidity of CLASS
to the three jnter-related design

independence. Besides

Recause of th

particular user .
roduction controllers ignore

develop thelr OWIls mainly in
simple example tha i
that the sequence of list
and Cros

(12)

pumber s

becomes explicit when it is subjected
criteria, Viz.

the designer's own

vy between the requirements of the

i ncompatabilit
e incomy t of the package, large number of

and the outpu

the form of Gantt chart.
t demonstrates such incompata
5 is
s-referencing is thus muc

sted in operations may have to
that the data processing schedule
scheduling and then short term
as it stands now represents

as it is inextensible.

bias; flexibilitys

bias in selecting the

the produced schedules and

A
pilities is
not-part-

by loading sequence,
h reduced.




techniques incorporated into the package, bias is also extended to
confine the package to I.B.M.'s hardware and software environment.
This is implied by the use of the Assembler language which compels
the user to base his software and hardware upon I.B.M. products.
Such is a direct consequence of choosing to write the package into
a low level language whose role as a principal factor in determining
the stability of the user's whole software has been illustrated in
the Inverted Pyramid model of software (13). Consequently, having
committed himself to such a package, the user's future developments
will tend to be biased in favour of I.B.M. products in order not to
disturb the stability of his data processing function. This is
evident in almost all computing departments by being oriented to

specific manufactures.

The rigidity of CLASS is also obvious in its size. As a
large programie, 30K, without being truly modular its constituent

parts are highly dependent on each other. That is, its parts

cannot be separated from each other or used as building blocks in

. . . c s -
developing other programmes. This, in addition to other factor

such as its static definition, low level language and the inavail-

ability of source code 1listings, makes it very difficult for the

user's staff to update the package or to locate errors. As a

consequence the user of cLASS finds nimself highly dependent upon
9

package leaving his staff primarily concerned

I.B.M. to maintain the

-

(13) GCf. Chapter




with writing CLASS parameters,

All these factors lend the

package as a source and cause of many problems particularly

when it is ithi i
Seen within the framework of its function.

The purpose of the package is to provide data that
may help management in its production planning and control
functions which are characterized by dynamic interactions and
change. Management requirements often change in accordance
with change in conditions or situations. To meet adequately
such requirements the data processing staff have to have an
adequate understanding of the architecture of the package which
is denied by I.B.M. Acceptance of such a deprivation can be
attributed to failure either of understanding the mechanics of
production control activity and/or the inter-dependence between
the package and other applications programmes. Concerning the
former the current attitude of existing systems analysts is
demonstrated by five out of five interviewed analysts who main-
tained that the technical aspects of scheduling is not their
Considering the latter the problem involves the

concern (14).

attitude towards M.I.S. In this context, larger companies such

as car manufacturers tend to develop their M.I.S.'s by implementing

the analysts was: How do you rate your
heduling methods and techniques? They
ties as being poor and justified this
ization. See Appendix 2.

(14) The question put to
familiarity with sche
rated their familiaritl
on the grounds of special




a number of packages covering a number of closely related areas such as

production reguirements, BOMP;

inventory control, ICS; etc. (15).

The approach used in i i ;
- coupling the various packages is a typical componentoriente

design which is emphasized by the fact that CLASS, as well as other
packages, are also stand alone packages.  The application of such an
approach is intended to reduce manual-automated functions interactions
and incompatabilities to hide the limitations of the individual
rackages., Thus any subsequent assessment pertaining to a particular
package becomes increasingly difficult insofar as to dissociate the

package from other related packages.

CONCLUSIONS

It is thus concluded that CLASS, as an example of manufact-
urers! computer applications packages, both reduces the degrees of
freedom of its users and degenerates their design abilities when
analysed from the viewpoint of:

1. Flexibility: this-is much reduced because

(1) It represents a static definition of scheduling
by imposing a particulaf technique on its users
which can be incapable of handling varying

requirements as situations change.

users have two or more packages.

Also 70% of all packages are provided by the manufacturers.
In all production control applications the packages are
provided by the same hardware manufacturer. See Appendix 1.

(15) Approximately 71% of package




(iv)

(v)

It is a closed-end system and thus

inextinsible.

Its usability is limited to I.B.M.
configurations. This is because it
is written in Assembler. Thus it is
general purpose package only within
the sphere of I.B.M. computers.

It is highly specialized, i.e. its
parts cannot be incorporated in other
applications designs.

Its design is not properly modular.

Therefore its parts are inseparable.

2. Bias is much increasel because:

(3)

It represents its designer's concept
of scheduling that cannot be modified
because of lack of data concerning
its structure.

Tt is totally biased to I.B.M. due to
the fact that it is written in low
level language.

It is extremely ordered, in the sense

that it can be used in any other

application.




5. Independence is much reduced because:

(1) Its parts are highly dependent upon each
other because of the built-in strong
couplings or order which permanently
link these parts to each other.

(ii) It is wholly dependent upon I.B.M.
software support, that is it is not

transferable.

Consequently, CLASS is a typical ad hoc bottom-up approach

which is implied from the foregoing. Also it is a classic example

which demonstrates and substantiates the argument concerning the
likely effects of packages upon the experiences and abilities of

systenms analysts/designers whose function under CLASS is reduced to

that of preparing the parameter cards of the package.




PROBLEM DEFINITION AND _INTEGRATIVE SUMMARY

Or_Pamr 1

The activity of problem definition is believed to be
unlimited and needs complete concentration in order to derive a
reagonable definiton. Thus chapters one through five have been
totally devoted to define the problem of the design of applications
packages which is conceived of as comprising two classes of questions.
The Tirst class considers the definition of the package itself and
asks is it a design problem of just a computer programme?
Consequently is it confined to practitioners with the exclusion
of the users? OQr is it a design problem of an organizational
activity? If so, does an organizational activity in one environ-
ment correspond exactly to a similar activity in another environment?
If not, why and what are the factors that can be attributed to such
variation? etc. The second class examines the relationships that
relate a package to its wider contexts, thus it includes questions

like: does a package relate to an M.I.5.2 If so, what is the

designer's concept of the M.I.5.7  How an M.I.3. can influence the

design process?  Does a package relate to software? If yes, in

what manner? How software's structure and definition can influence

the package?  What is the relationship between a package and both

its producer and user? what are the consequences of a package upon
its ?

its environments, and so on.




In attempting these Questions,

chapters one through five
have aimed towards a number of specific objectives. First to
identify as many attributes and dimensions as can be conceived of
in order to develop a fundamentally systematic conceptual framework
for applications packages. Second, within this framework various
drawbacks of current designs are identified and methods of averting
them are proposed in the form of design criteria. Third to show
that an understanding of the preliminaries of systems concepts
provides flexibility in so far as interpretation of these concepts
are concerned. That is depending upon the degree of familiarity
with, say one concept, it can be interpreted in various ways to
suit various conditions. Fourth to demonstrate that the main
causes behind the present unsatisfactory state of applications
packages' design stems largely from not only the designers and/or
users lack of familiarity with the fundamentals of the systems
approach, but more serious than that is that of confusing the
systems approach with incompatible traditional approaches.

Fifth to emphasize that the underlying design approach is bound

to be reflected in the behaviour of the package when it is:

(i) on its own; (ii) interacting with other programmes, and in

its effect on the data processing function.

However the sequence of the chapters does not correspond

to the listed order of the purposes. This results from the logic

of the process of constructing the framework which is built

gradually by adding more constructs as the discussion has advanced

from one point to another.




Consequently,

the contribution of chapter one has been
that of outlining the basic philosophy of the framework. It is
argued there that definitions and solutions are incomplete and
the former assume their adequate forms only when the latter have
been sufficiently developed. Thus, a problem can be said to be
truly defined only when it is solved indicating the ceaseless
propefty of the iterative process between analysis and synthesis.
Thus defining a package as a definition/solution of a problematic
situation implies catering for change which is explicit in the
interplay between behaviour and structure. The design criteria
which affect this interaction and the scope of the package are:
content; bias; flexibility. The relationships between these
properties are:
The more content a package has, the more rigid the
structure it exhibits.
The more content a package has, the more biased it
may become.

Rigidity increases proportionally with bias.

Chapter two further elaborates on the theoretical basis

of these criteria and concludes that 1) the designer's own bias

and content can be transferred to the model/package through either:

(a) copying existing problems into the potential computer version;

g new problems as a result of moulding the situation

or (b) inflictin

into his own pre-conceived model. 2) order has been seen to

i pli h the human activity and the
i i gidd his applies to bot
induce rigidity. T




package.

3) slze is directly proportional with rigidity, and

inversely proportional with independence. Therefore small modules

will ensure both independence ang flexibility.

However, the main contribution of chapter two is the

adaptation of the concept of holons to offer: (a) a flexible

definition of a package as a self-contained, rule-governed stable

open system; (b) a dynamic hierarchical design of mudules or

holons which implies: an open-end hierarchy; canons or permanent
behaviour of holons must be flexible to reduce the effects of
automation; catering for arborization or vertical structuring and

reticulation or horizontal interlocking of holons.

Chapter three considers one environment, viz. M.I.S.
which is defined to include the whole of the company, in which

arborization and reticulation of holons may take place. In this
respect, the chapter identifies two approaches of achieving this.
The first is the top-down approach which is an interpretation of

the systems approach and has not gained any significant mpularity

in practical application. The other is the bottom-up which is

often misinterpreted and thus gives way to ad hoc designs, and
unfortunately is the most popular. Also, the effect of ready-~
to-implement solutions upon the expertise and skills of data
processing practitioners. The dependence upon packages marks
the start of a vicious circle since the more a company opts

for packages, the less experience its designers may get, and
more dependent upon packages the company will become. This

ive to competent designers to stay
set up becomes less attractive to Js g




in the company, this,

in turn, leads for more packages.

Chapter four discusses the problem of user indepéndence.
If th ' :
© user values independence from the manufacturer, he may have

to develop his own software buffer, or middleware, to increase his

own flexibility regarding extensibility and modifiability of his
software. Also, it is argued that the present package architecture
as inseparable wholes prohibits the use of its parts in building new
brogrammes and thus leads to duplication of effort, i.e. self-

contradictory to the basic idea behind packaging.

Chapter five, substantiates the argument of the preceding
four chapters. This is done by examining CLASS as a typical example

of applications packages.

The remainder of this thesis discusses methods and proposes
techniques that may lead to a solution. This is attempted from two
points of view within a consistent framework, i.e. the concept of
holons. Consequently chapter six tackles this issue from the view-
point of programme design and architecture, i.e. a software context,
whereas chapter seven takes up the same issue but from the viewpoint
of the process of decision making and its elements and the conse-

- . . g Y 5 1 1 i 1
quences of indiscriminate mechanization upon the decision maker,

i.e. an organizational context.




THE IMPLICATIONS OF COMMUNICATION SYSTEMS

UPON THE DESIGN OF APPLICATIONS PACKAGES

This chapter proposes a concrete programme design technique,

viz. structured programming, which adheres to the top-down approach
and consequently caters for the criteria of flexibility, impartiality
and independence. This is to rectify the current misconception of

modularity that results in ad hoc and illogical modular designs.

In order to achieve this objective an attempt is made to
define applications packages, and software in general, in terms of

their communication roles.

To arrive at such a definition, certain theorems of the

communication theory and Ashby's concept of requisite variety are

considered for their direct contribution in establishing the

theoretical foundations of the definition and in deriving further

properties for applications packages.




Also viewing a package within the context of a
communication system (1) makes it possible to: (a) examine
the design implications of the user~-practitioner interaction
as being components of the encompassing communication system (2);
(b) determine the factors that affect the behaviour and the life~

span of a package, i.e. the process of gaining entropy.

THE MATHEMATICAL THEORY OF COMMUNICATION - AN EXPOSITION

In the following an overview of the conventional
communication model and the relationships between information,
choice and entropy are discussed within the framework of selected

theorems of the general theory of communications.

Information

Source Transmitter Channel Receiver Destination
M S Sr M
Kelz

M : Message
S : Transmitted Signal

S : Received Signal

Noise Source
NOLSE »0ul-=

Schematic Diagram of a General Communication System

Figure (24)
i b
o L.: Weaver, W., "Ihe Mathemet}ca} Theory o
() Shannonéozéuﬁicationn,’(Iliini Pooks, Illinois, 1972), p.7.

communication and understanding are two

. jeall .
(2) EpistemologlcalLy, dependent phenomena; Dewey, OpeCit., p.b47.

closely related and




Te Information ang Choice

The particular meaning of the term 'information' as used
in the communication theory has neither relation to the way in which
it is used in everyday parlance nor to the suggested attitude which
considers information as interpreted data. Rather information is
treated as a measure of choice available to a person when he selects
a message (3). In other words, information is defined in terms of

the probability associated with the selection of a particular message.

2 Choice, Uncertainty and Entropy

Given a set of possible events whose probabilities of
OCCUrTrence are, P,y Poy =c«s P It is theorized that in order to
measure the amount of choice which is associated with the selection
of the event or the uncertainty of the outcome, the measure itself,

say H (pq, Doy oees pn), must exhibit the following three properties:
i) H should be continuous in the P, -

If all the 2 are equal, Py =1, then H should be a

He
(W5
e
i

monotonic increasing function of n.  With equally

likely events there is more choice, or uncertainty,

when there are more possible events.

(3) Weaver, In Shennon et al, op.cit., pp.8=9.

biiga g
-




iii)

It is

f : : ;
If a choice is broken down into two successive

choices, the original H should be the weighted

sum of the individual values of H.

concluded that the only relationship that satisfies

the above three conditions is of the form:

pi logﬂé pi ® ° e o o o 1

Hence, in the special case where all possible messages/

events are equally likely, the relationship reduces to:
E=K log&n 6 o o s o & 2
Where K is always a positive constant, and is taken as

a uwnity, i.e. K~ 1.

However, the above expression of H is similar to that of
the second law of statistical thermo-dynamics for entropy. Thus,

the term entropy is used to define the amount of information or

uncertainty.

3,  Properties of the Entropy Function H

i) H = o if all the pg but one are zero, this one

having the value unity. Thus only when the outcome is certain

vanish, otherwise H is positive.

does H, i.€. information,




Howe .
However, because the amount of information is the negative of the

logarithm of a probability it is also considered as a negative

entropy, or negentropy ().

AN - . o .
ii) £or a given n, H is a maximum and equal to log n

when all the p; are equal, i.e. 1/m. This is also the most

uncertain situation.

iii) Suppose there are two events, x and y, with m
possibilities for the first and n for the second. ILet p(i,j) be
the joint probability of the occurrence of i for the first and j

for the second. The entropy of the joint event is:

H (gyy) == 2 p (1,3) logp (F33) « v v v v 3

i,
where
g (x) =- =2 p (1,3) logS p (1,3) « « - - i
14 >
and B (y) =- > p (i,3) lo%;z p (1,3) ¢ o o 5
1,3 i
from which g (x,y7) < H (x) +HG) o s o o s 6

expression (6) transforms into equality only when x and y are

independent, 1.€e¢ P = P - D .

(i,3) (i) (3)

iv) Any tendency to normalize the probabilities Pqs Pso

! mizing
i T rocesses of averaging or rando
p_ increases H. Thus, the P
n

2 00 g

the probabilities will result in increasing the value of H.

mmesaimisnois

Control and Comrunication in the
(The M.I.T. Press, Cambridge, Mass.,

Cee or
siener, N., "CyperneticS: O
(4)  Wiener, N., S —achind'

Animal andA




v)
Let x and y be two chance events, as in (iii), not

necessari i
arily independent. Then, the conditional entropy, H_ (y),
= X

s i} .
15 a measure of uncertainty of y when given x. That is:

H o) = 8 (xyy) - H (x) . e

f

or H (zx,y) = B (x) + 5 (y) e e e e . 8

Expression (8) reads, the joint uncertainty, or entropy,

of the joint event (x,y), is equal to the uncertainty of x plus

that of y when x is known.

vi) From (iii) and (v), then:

H@E) +H2 () 2 BG&y) =8& +HE () ...9

H(y)EHX(y) 10

That is, the uncertainty of y can never be increased by

knowledge of . Likewise, any other relationships can be

H(x): uncertainty of x.
H(y): 1 Y

Hy(x): equivocation.

Hx(y): noise.

7(x,y): transmitted
“\H(x,y)/ﬂ uncertainty.

Two Communicating Holons

Figure (25)

conveniently derived Dby the use of Venn-diagrams as in Figure (25) to




illustrate the situation at hand (5). In this context, it may be

appropriate to note that H(x) ang H(y) are partially related sets (6).

b The Fundamental Theorem for a Noiseless Channel

An analogy is drawn between the source that generates
information, say x, and the channel that carries this information,
say ¥y, as being another source which generates the output (7).

Now since x and y are partially related sources of information,
the overlap or the intersection between H(x) and H(y) is the
transmitted information. Consequently, and as indicated by
Figure (25), the greater the overlap, the more related the input

is to the output.

However, the fundamental theorem for a noiseless channel
introduces the concept of rates at which information can be trans-
mitted. A source which has an entropy H bits/signal; a channel
may have a capacity of C bits/signal, and hence, the average rate

of transmission cannot exceed C/H bits/signal (8).

(5) Miller, G.A., "What is Information Measurement?', In
Buckley, (Bd.), op.cit., pp. 123-128.

) 1 i ", In W.T. Singleton;
6 Edwards, E., "Communication Thgory ’ ;
) R.S: Ea;terby; D.C. Wnitfield, (Eds.), "The guman
Operator in Complex Systems', (Taylor & Francis Ltd.,

Tondon, 1967), ppe>37=53.

(7) wMiller, op.cit.,pp.126-127.

(8)  Shannon, op.cit., pp.58-59.




Se

The Fundamental Theorem for a Discrete Channel with Noise

When there j i i ;
T'€ 1s noise in a communication system,*transmission

errors are liable ¢ ] 1 t
© occur.  Errors may be counteracted by redundancy.

It the p 113 1 : 5
18 probability of error is made to approach zero this must be

coupled with a large i ]
I & large increase in the amount of redundancy so that the

rate of use 1 M155] 8 £t i
ol useful transmission may effectively tend to zero. However,

e . .
1t 1s proved that such is not the case (9). The proodof says that there

1s a finite channel capacity C, such that if signals are generated at
the rate of H bits/sec, information can be transmitted with an
arbitrarily small error provided that H<C. When H is greater than C,

then information is lost, the rate of information-loss can be made, as

required, to almost equal to the amount of excess entropy, i.e. H-C.

This theorem can be used to establish another design
criterion. If H is the amount of uncertainty handled by the activity
to be computerised and C is that of its computerised version, then
problems will arise when and where there is incompatability between
H and C. Also this criterion can be used to distinguish between what
is programmable and what is non-programmable (10). However, the term
uncertainty is used to indicate two types. One is the uncertainty of
the occurrence of an event which can be attributed to environmental
changes or disturbances. The other is that concerning the
programnability of the process of decision making, i.e. the uncertainty
associated with decisions such as deciding on objectives, selecting a

certain course of action, etc.
One of the implications of the theory of communication is

‘ i + is believed that variety can be used as
the concept of variety. t is believed th ¥

(9) Ibid, p.75.

] is di in length in Chapter 7.
(10) This aspect is discussed in l1eng




a principal design criterion because it provides a framework
within which flexibility, bias and independence may all be

achieved.

VARIETY IMPLICATIONS OF CURRENT PACKAGE DESIGN

The design of software as the media which links users,
e.g. management, at one end with the computing machine at the other,
has to demonstrate adequate understanding of the holonic, i.e.
openness, dynamics, complexity, etc., nature of such potential
applications. One concept which is central to both communication
and control is that of varietye. Consequently the variety of a set
of distinguishable holons, say software, is defined to indicate
either: (i) the number of distinct holons, or (ii) the logarithm
to the base 2 of the number (11). Thus, the similarity and
continuation of variety and communication are clearly identifiable.
Closely related to variety is the concept of constraint. It is
defined as a relationship between two holons it exists when variety
when variety that exists under one condition is less

changes, i.e.

than the variety that exists under another (12).  In this respect,

ordering and/or coupling of modules in a specific manner amount to

imposing constraint upon the degrees of freedom of the constituent

if a1l combinations are possible, then the number

modules. Thus,

i ics" .Cite, p.126.
(11) Ashby, "An Tntroduction to Cybernetics', op.cite, P

(12) Ibid., pp-129, 13k, 206.




£ . . ﬁ
of degrees of fr“edomlls equal to the number of all available

11 1 .
rodules. Consequently, if only one combination is possible,

as 1n the case of
oL permanently coupled modules, the degrees of

f H [} . - -
reedofi are zero. COHSlderlng CLASS and most of the available

appli Ko} :
pplications packages, and indeed users' own designed programmes,
1t is dn SR o .
1t 1s 1mmediately recognisable that the degrees of freedom
e -
offered by each rrogramme are zero. Generally mechanization or

automation is associated with a reduction in the number of the

degrees of freedom. By permanent coupling of modules into omne

and only one sequence variety of the whole is reduced to zero.

Considering the amount of variety management may have to interact

with, this design approach is regarded to be faulty. First, it
imposes a freezing effect upon the modules, and secondly, it leads
to uneconomical use of resources by not allowing full use of such
modules as, for example, in building new programmes. This, as
indicated earlier, constitutes the antithesis of the underlying

assumiption of applications packages as being fundamentally designed

to avoid duplication of programming efforts. More important than
that, current design of applications packages ignores one very

basic and essential characteristic of the notion of variety, i.e.

tonly variety can destroy variety" (13). The design implication

of this relationship is that depending upon the variety of
decisions that may be handled by a specific managerial level,
related software applications must exhibit a matching amount of

t-in flexibility to balance the former. In

variety through buill

order to do that an appreciation of the relationship between soft-

1 1 ized. ne way of achievin
ware and its users have to be clearly real 0 v g

this is by

7 omr N\ -1 3 - 207 .



investigatin
g g the role of software within the communication network

of a company.

SOFTWARE AND COMMUNICATION

User Software Hardware

Schematic Presentation of User/Software/Hardware

Interaction

Figure (26)

NATO defines software as ''programmes developed to control *
the actions of computers"(14). The key ward in the definition, for
the present purpose, is that of control. Already it is established
that control and communication are interrelated. Consequently, if
software is to control hardware, then evidently it has to impart
messages to activate and direct the behaviour of the component parts
of hardware. Tn view of the previosly discussed holonic structure

of software, through the operating programmnes, software maintains

its communication mode with hardware (15). Again, in the same

* Emphasis is not in the original.
(14) Naur; Randell, (Ed.), OpsCifes preface.

(15) Cf. Chapter L, p.94.




manner but a i
t a higher level of conceptualization, software in

general and applications programmes in particular constitute the

media by which u
y S€rs, e.g. managers, control and/or interact with

the hardware, i e . )
v 1l.e. software is the media that allows communication

- h)
between users and hardware as shown in Figure (26). In this set-up

software's role can be depicted essentially to be similar to that of

a conventional communication channel.

To establish the validity or otherwise of the proposition
that software is analogous to an ordinary communication channel
Figure (26) is exploded in the same fashion as Figure (25) to
produce that of Figure (27). By successive consideration of the
boxes of Figure (27) and starting from left to right, correspondence
may be identified. However, it may be appropriate to stress here
that the two analogues are not treated as isomorphics.

a - Conventional Channel

Cha%gel

Incoder Decoder
Information )
Source Programmer Noise Compiler  Destination
Progpamme

b - Software Channel
n of the Analogy between the Two Channels

Gchematic presentatio

rigure (27)




Table (2)

Correspondence Between Conventional and Software

Communication

Conventicnal

Software

Te Information Source

Produces a message or
series of messages from
a set of possible choices.

2. Transmitter/Encoder

Operates on the message
and transforms it into
signals suitable for
transmission over the

channel.

%. Channel
Carries the signals from
the transmitter to the
receiver.

L, Receiver/Decoder

Operates on the received
signal and attempts to
extract the message and
present it in a usable

form to the destination.

Information Source

The user may inquire or
Pproduce data depending
upon his needs.,

Programmer

The human operator who
translates the message into
a sequence of instructions
compatible with, and suitable
for transmission over the
channel.

Programme

Carries the data from the

programmer to the receiver.

Compiler

Another transformation
process. Instructions are
translated into machine
language instructions

comprehensible by the

central processing units.




5. Destination

Destination

The person i
i or thing for The central processing unit

whom the message is to perform the intended

intended.
nded data processing operations.

N.B. Communication in the reverse direction also holds.

That is the C.P.U.'s response goes through the same

order in steps.

In Figure (27) and Table (2), the information sourse,
say x, can take more than one form. Thus it may represent an
organizational department which requires the hardware, say y, to
process varieties of data. The selection of such data is
essentially influenced by two primary factors. First, the type

and range of data software can handle, i.e. the capacity of
software. Second, the situation which activates the communication

pProcesse. As the difference between the second and the first

increases communication degenerates and interaction eventually

ceases (16).  An approach to naintain an effective interaction

between x and y is by of fering software enough variety to cope

with that of its user as variety only destroys variety. This

variety can be generated by allowing temporary coupling of

different independent modules in various ways in response to
-~ v9

] sof e to have infinite
varying demonds without the need for oftwar

capacitye

P

(16) This is based upon an interpretation of the fundamental
o) :

theoren for a discrete channel with noise.




The ;
encoder is the computer practitioner, i.e. an

analys
yst, programmer, operator, etc., whose function is to

recelve and translate messages into sets of instructions
compatible with the requirements of the decoder, or more

specifically, the compiler. It is possible in this regard,

to fuse hoth steps into one (17). Next to the encoder is

the channel. The channel is represented by a programme which
has, like most other communication channels, a finite capacity.

Cyon ma s . R
Beyond that limit economic transmission may cease to operate

and/or data distortion and overflow may occur.

To minimize the chances of the occurrence of data
distortion and loss, redundancy has also been catered for in
most software languages (18). Noise in the form of instruction
errors and circuitry may affect the communication process.
Since errors, in one form or the other, are unavoidable, much
emphasis has been attached to redundancy in programming
languages (19). For, without a degree of redundancy, errors cannot
be tolerated. Following the channel is the decoder, i.e. the

compiler, which receives the discrete signals, i.e. coded

instructions, and further operates on the signals and produces

i te
object programmes. Software can therefore be treated as a discre

j i i in Figure (28).
communication channel with nolse as shown in Fig (28)

‘ i 1 ho operates a terminal.
A .1 mind is that of a manager W :
7 ;nciiislzet~up he actually plays the combined role of an
information source and encoder.

(18) Boehm, op.cite., p. 5.

(19) Wienberg, '"Natural Selecti
programs'', op.cite, pe 149.

on as Applied to Computers and




User

Software Hardware
Noise

Schematic Presentation of Software As a Discrete

Channel with Noise

Figure (28)

USER-PRACTITIONER COMMUNICAT ION MODEL

Among the various interacting components of the above

communication model, the user as an information source, and the
software practitioner as an encoder, are of special interest.
The impact and properties of their relationship can best be

demonstrated in the context of communication theory (20).

d that the problem is primarily that of
Therefore subjecting it to the

theory of information may involve significant reductionism.
Nonetheless, information theory suffices the present

purpose of outlining the problem areas.

(20) It must be state
human eommunication.




Source-fncoder Interaction

Figure (29)

In Figure (29), let x be the source, and y be the encoder.
If x wishes to impart a message H(x) to y, then according to the
theory of communication, the information transmitted is that portion
only common to both x and y denoted by T(x,y). The rest, the
shaded area, is information lost. In general this may take the
form of equivocation and/or noise.  When communication is from
x to y, then equivocation, 1.€. H(x/y), can be attributed to
ambiguity or mispresentation by the source, i;e. x, of his require-

ments. That is, equivocation is information that could have been

imparted to the encoder, i.e. y, but it did not materialize.

However, noise, i.¢- A(y/x), 18 unintended information added

randomly to the message/signal during transmission (21).  Noise

can be attributed to the encoders inability to predict and/or

unfamiliarity with the source's set of choices. Obviously the

objective should be to increase the intersection of H(x) and H(y),

e e

1 Cito Dp- 61'{"‘69.
(21) Wiener, cybernetics, OE: y I




i.e., the informati

on common to both x and y, as mich as pessible.

r]'l'!‘ . . .
This results in the reduction of the symmetric difference, i.e.

equivocation and noise. This can readily be explained by the

following equality

H(X)AH(y) = H(X)UH(y) -HE)HEGE) - o o o 11

in which, as the intersection, i.e. the second term of the right

hand side, increases, the difference vanishes.,

If either the manager, i.e. the source, or the practitioner,-"

i.e. the encoder, or hopefully both, extends his repertoire of know-
ledge about the others limitations and requirements, communication
between them may be enhanced. This is attributed to the fact that
the encoder's output signal, in the form of designs, may become a
closer representation of the source's intended message or requirement.
In other words, the amount of iost information can, thus, be reduced
in accordance with better understanding. However, if one is more

rt than the other in this pursuit, the

willing to spend more effo

oractitioner has to be that one. If he wishes to secure his career

then he can convince management with his useful qualities by

yielding better designs.

ENTROPY AND PROGRAMIE DESIGHN

Entropy and communication are fundamentally two closely

lated concepts Entropy is defined in the hard sciences as the
rela b ¢

statistical tendency of matter to move, at random, towards total




teb

disorder :
and decay (22), It is argued that entropy and information,

as defi i i i
ined in the communication theory, are analogues except that

one 1s the negative of the other (23). This is because of the
isomorphic correspondence between the mathematical formulae of

entropy and information (24),

Entropy, as interpreted here is used to identify and
explain some intrinsic programme properties and their effect upon
programme design. In the theory of communication, all the com-

ponents of a communication system are governed by probabilities.

The same applies to software as comprising special purpese channels.

Accordingly, it is most likely to find scme channels that are more
probably used than others. As the higher frequency programmes, or
parts of a programme, obviously tend to be more up-to-date, lower
frequency parts become, relatively out-of-date.  The outdating
process is caused and speeded by an accumulation of errors and by
being static or immobile in a basically mobile environment. In
other words, the more a user interacts/communicates with a certain
programme, the more likely he is to become aware of the programme's

weaknesses, and consequently, the more likely he is to press for

such changes.

(22) Schrédinger, E., "ihat is Life", (Cambridge Univ. Press,
Cambridge, 1945).

L., '"Thermodynamics and Information Theory",
°9

(23) Brillouln, "(gd.), op.Cit., pp.161-165.

In W. Buckley,

n of information in terms of entropy has
) posed caused & philosophic, scientific
This is because entropy 15

(2l+) The interpretatio
ever since it was pri -
‘ntellectual controversje ; ‘
iﬁisigered by some as & purely physical quantity, whereas

others see it as & universal concept. The latter is held

here.




L
[

The Co . -
continuing existence of a programme depends upon two

inte £ - X
rrelated factors, namely survival time and identification.

By survival time is meant the time Span during which the programme

N ’ _ . |
exhibits a more or less constant behaviour, i.e. the main character-

.r“'l" ., > 3 g
istics of the programme are always maintained allowing only for

minor changes to take place. If the behaviour of the programme
adheres to these limits, then and only then, the programme may
remain identifiable, i.e. operational (25). The constancy, in
this respect, does not imply rigidity since it is conceived of as
a relative phenomenon, i.e. the programme changes in response to
its environment. Once again as the environment is perpetually
changing so the programme itself needs to be frequently modified
depending upon the rate of change of the environment, in order to
exhibit a constant behaviour. Otherwise, and as time lapses, the
orogramme may gain increasing amounts of obsolescence. In other
words, when the relationship that binds a programme with its
environment loosens, the process of exchange of energy in the form
of information between the two, in terms of maintenance, slows down
accordingly, and time may come when the programme's behaviour does

not preserve its acceptable limits.  Worse still is the situation

when the energy needed to revitalise the programme is estimated to

be nearly as much as that required to develop a new one. Then it

can be maintained that the programmeé has gained enough entropy to

destroy its purpose, and hence, its existence.

General Systems Theory',

. . Approach to
(25) Weinberg, G., "& Computer 42 98-142.

n G.J. Kiir, (Ed.), opecit., PPe




DESIGN IMPLICATIONS

Complementary + .
plementary to the holonic, communicative and entropic

COl’lCeT)tualiza ti on Oi nY ol
£ < a ogramn e S 1 o

the ho i £ y -
he holon itself, The fundamental principle is that of requisite

variety. he high dew
J The high degree of relevance of this law to design

methodology can be shown regarding the struggle to control entropy.

It has bee iscussed tha : Sy -
v las n discussed that as the variety within a system increases,

T B o k - 31 N o
in terms of flexible coupling of its components, the ability to

L VR | FR .
handle uncertainty also increases proportionaliy (26). Uncertainty

= he 1 e e 'y [N 5 1 s s
can be inverpreted as a measure of the degree of randomness within

Ja1 Try 1S o - o~ 3 N S : 3
the holon. This relationship, though it may not have been inter-
preted in a similar fashion can be regarded to constitute the

theoretical constructs behind the notion of modularity. Modularity,

Bge gy

in the context of software, is defined as the ability to extend a
system in increments (27). With the underlying idea of having a

set of modules that can be individually developed, debugged, improveds;

or extended with minimal personnel interaction or system discontinuity (28). |

Through modular structuring of programmes, applications of

4

either of the two approaches, i.e. top~down and bottom-up, can be

performed. Such has resulted in the development of two programming

techniques, i.e. conventional modularity, and structured programming.

One central feature to both is coupling. Two

. . Q
(26) Ashby, An Introduction to Cybernetics, op.cit., p.200C.

iz ietylt
(27) Martin. J.; Norman, A.R.D., "The Computerized Society',
(Prentice-Hall, N.Y., 1970), P.599.

J Eds ~o‘ ° T).7,
(28) @Gillette, H.R., In Naur; Rendell, (Bds.), opscite, p.39

edlo §




DL

modules when conn
connected to each other are said to be coupled Thus
° 9

through a specific ¢
g orrespondin i
| P g aspect, viz. Ai and A. respectively,
then:
Cij = Aﬂh]Aj, such that i j “ e e e 12
Il Oi 1. ¢
a, J J
RN 1 fe—— e aj S

Coupling of Modules

Figure (30)

Again, coupling as such is inadequate, hence for couplings

to be purposeful, then if:

Ii . is the set of input quantities for element a;
Oi . is the set of output quantities for element as i
Ij . is the set of input guantities far element aj;
Oj . is the set of output quantities for element aj,

a controlled, or directed, coupling of two elements is the set of

all quantities that belong to the output quantities of the first

. . ‘s oo 29).
element, e.g. 05y 30d to input quantities of the second, €-& Ij (29)

That is, if d.. is the girected coupling of the pair of modules
< [ ij

(a., a.), as shown in Figure (31), hence symbolically:
1 J

eral Systems Theory'',

. o roach to Gen
(29) Orchard, R.A.s "on an ApP 205-250.

In G.J. KT, (Ede ) s op.cites PP-




d

.. =0, I. such tr
i3 5 3 ch that dij# dji 6 o o o o 13

then the two modules are said to be

" dependent (30). This

indicates any change in either set Ii or 0, may result in a
i

Directed Coupling of Two Elements

Figure (31)

change in Oj' Thus co-ordination and harmony must always be
maintained. That is, according to the concept of variety,
unless the element of aj is equipped and built to cope with
all possible variations in Oi’ i.e. the output of ai, Oj may

not conform to its specifications if any variation occurs in Oi'

Therefore, to circumvent this probability and to control the

behaviour of individual modules to remain within the stated

limits, directed coupling has to be defined for i1 = j, so as

to allow feedback, 1.€. for 1 = ]

4 General Theory of

; d Parts:
"yholes 2T (Pergamon

T O« Ea)
(30) uangg§steé Rehaviour', trans. by B. Lepa,
Sross, oxford, 1965); pp.11-21-




Coupling with Feedback

Figure (32)

dii = Oiﬂ Ii ° e e e ° e /Il-}-

Consequently, dii is a measure of feedback. Thus, an application
programme S which comprises a set of connected modules can be

defined as a set D of independent modules Quy Bsyeeey By with

= ../d. ., is the di ted 1i f (a;, &a;
D éle/ i3 is the direc coupling of ( 50 J)
such that ai, an S% e e o o o e 15

directed couplings between them. f

However, in practice, modules are as large as complete
programmes. Specifically this point, i.e. slze, 15 what
zran
nventional or pseudo-modular and

differentiates the notion of co

structured programning.

1.  pseudo-Modularity

The essence of nodular programming can be demonstrated

E -—dI‘




modules, each module being a closed sub-pr

ogramme-with a single

entry point which returns to the calling module at the next

sequentigl instruction following the call (31).  Each module is

assigned some distinct function by performing it the module

contributes in fulfilling the requirements of the overall programme.

The main advantages of modularity sre:- . (1) a number of programmers

may work on different modules of a single programme; (2) testing
can be carried out on separate or several modules in the same time;
(3) testing is facilitated by not having to create test files (32);
a programmer may only be concerned with testing the variables of

his module.

However, such advantages cannot materialize unless the
three~fold criteria, i.e. flexibility, bias and impartiality, are
considered. In this respect, the design difficulty is two-fold,
one being the coherence of the module, and the other the coupling
of modules, though retaining their individual independence.  Two
modular properties, as shown in Figure (33), are regarded to

affect the independence of one module from the other (3%).  TFirst,

is the module's strength, i.e. @ function of the intra-relationships

of the module. To maximize module strength is equivalent to

g 1 f Computer Programs',
venworth, K., 'Modular Design O
(1) pes Déta ﬁanagement, 1974, July, pp. 14-19.

available test programmes that

. iall
(32) There are commercially S to set-up their test data

help progra:il
in the core store.

¢cs of Composite Design',

teristi
(33) Myers, G.J.y CRETACRE L ept., Pp.100-102.

patamation, 1977

P




120

maximizing the relationships among the module's constituents.

Accordingly, a module which performs one function is stronger

1 1 .
than that which has two or more parts to perform two or more

functions.  The second property is that of module coupling.

As defined above, module coupling is a function of inter-

relationships between modules. Independence and flexibility
of modules can be maximized by minimizing the couplings. One
way of attaining such requirement is by specifying that all

input to and outpul of a module take the form of parameters or

arguments. Also pertinent to coupling is the transferability

of control data between modules. The idea is that coupling

a,
i
Strength
’ \

/ N

4 \

Coupling -

%3 - > %k

Module's Strength and Coupling

Figure (33)

increases when, €.8. &,

between two modules, say &; and aj,

Thus meximizing the modules independence

sends control data to aj.

has to be characterized DY minimizlng
1d more flexible design.

the transferability of control

data, and that may also yie




However s . : ; . s
y modularity, in practical terms, is conceived of

as an arbitrary decisi . :
sio . SN
y I concerning the division of a large programme

T

not adequately independent of one another due to the ad hoc manner in
witlch modularity is attempted within the context of bottom-up desig#
approach.  Modularity when woid of its basic conceptual framework,
becomes another term referring to monolithic programming or rigid,
uninterrupted long sequence of instructions. The principal
deficiency of a monolithic programme is that if a part of it fails
to work so does the rest of it. Modularity cannot solve this
problem if the overall philosophy and design approach are not
modular in essence. Consistency is indispensable. There is no
point in fragmenting a programme into a set of smaller pieces when
the programme is designed originally as monolithic, or, at least,
the logical boundaries of the various functions have not been

identified (B4). The resulted pieces, however, are not modules,

rather they can be called pseudo-modules. Such is regarded as a

sign of confusion: stemming from lack of appreciation of the systems

approach, 7‘0Dtimizationand bottom-up approach. In the presence

of such confusien, the problem encountered with pseudo-modular

programmes, €.ge. CLASS, is that a programme is often comprised of

few large modules that cannot be simply subdivided. Hence 1f

indivisil treated as wholes. This
programmes are indivisible, they must be

. i ti jere asked about their
the interviews practitioners wer 2
(34) In tﬂeiieria that,may decide the number ??d size of
irdules Almost all of them said this 1s a matter
modules.

decided by programers.




impli
Iplies that all subsequent activities such as testing,

debugging,

module's stry i '
cture and behaviour, are seriously hampered by the

necessit .
Sty to comprehend and digest a large sequence of instructions.

The situation is further aggravated by the excessive use of jump/

oto statem o
g ments., So the structure of such programmes can be

T aheT ‘s - N
labelled as monolithic. Therefore, judging from the current

practice of software manufacturers, as well as users own expertise,

modular application through - ad hoc approaches has

departed away from the original purpose of modularity, i.e. variety,

flexibility and understanding.

2e The Concept of Structured Programming and Top-Down Design

From both the inadequacy and degeneracy of pseudosmodularity,
structured programming has evolved as an application of the top~down
approach (35). The intrinsic quality of structured programming is
that of extending some rigorous mechanisms to ascertain the successive

sub-division of a programme into smaller modules through a continuous

process until the level of atomic-modules, i.e. consisting of a few

' i is is done within the guldelines of
statements, has been reached. This is gu

top-down design by first developing a general framework which becomes

more specific by the use of structured programming at successive lower

ng Considered as a Human Activity',

. ! "y rammil
(35) Dijkstra, E.W., "Prog ngress 65, (Spartan Books,

Proceedings of IFIP Co
Washington, 1965) .




levels of i 2
of the hierarchy (36), 1 other words, structured programming

complies wit} ;
plies vith the holonic structure, particularly wiss regard to production

of output hierarchies.

2.7. Elements of Structured Programming

Any programme can be constructed from three basic building-
blocks, i.e.: (a) process boxes; (b) IF-THEN-ELSE mechanisms;
(c) DO-WHILE mechanisms (37). These are illustrated in Figure (34).
Also these three structures are referred to as linear sequence,

selection and loop patterns respectively. In linear sequence one

A C Truev A

a: Process box

b: IF-THEN-ELSE

Not at end

P
i
¢ DO-WHILE
Basic Structures
Figure (34)
R ——
i e 5 ngtructured
. McDaniel, HN.; wachtel, R.,
(36) Chapin, Wi Saggiiéigéﬁ %gmputer’Decisions, 1974, June, pp,28~31.
1HE 3

Programmning

(37) Ibid.




step is done after ther . G :
another. Tt is analogous to the AND operation since
+1- 'Fl £ L . .
tile Liow of C . .
P control is in series, i.e. do first A and then do C, the

2lectd 3o " |
1on consists of a test followed by two parallel control routes

only one of whi i : .
J Aich is taken in any given time depending upon the result

of the test. This 1 .
+5 analogous to the OR operation since the rule is,

Tor example, 1f B is ture then do A, else do C. In the loop, control

L

transfers according to:

perform P while test B is false. Accordingly,

43 ¥ N .
the loop P may never be executed since the outcome of B may cause an

&) aft L + o e e L. .
exit after control enters the pattern. Alternatively, it may be

required to execute P at least once. This can be achieved by the con-

struction of a linear sequence, i.e. the loop body P, followed by the
tdo~while! structure., This is known as the 'do-until' or 'repeat-

until! structure.

Top~down design facilitates the proof of programme correct-

ness (38). This may be done by: (a) first viewing the ;

&

sgramme as
a collection of major functions, e.g. as a main programme that may call
a set of major modules; (b) assuming that these modules are operation-
2lly acceptable; (c) attempting to demonstrate that the overall logic

of the programme, e.g. the logic of the main programme itself, is

correct and that the interfaces are compatible. Following this is

the breaking of each major module into smaller modules and going through
B i )

the same three-step process. This continues until the lowest level of

) - . b o . L 29),
modules is reached whose proof 1s regarded as a straightforward task (39)

£inds it rather important to note that he would

The author I1

have liked to provide a aumber of structured programming modules or

. imi ions i ime and
holons as illustrations. However, due to limitations in tim

. a2 - - £ t
. e 53 for it is a multi-year/person effort.
resources this was not possible ror

s 5 Structured Program: The Sieve of

R., 'Prool 1972, Vol.15,No.k, pp.321-325.

22 Taar ~ o

¢ Hoare, C.A.R., _

o E;ato°t enes', Computer Journal,
: sonelt

ctured Programming and Top-Down

rief Loock at Stru =
Brief Loc 1974, June, PP« 30-35.

1A
. ~don., E., "4 ) !
(39) Yourdon, &, Modern Data,
eSS e

- it
Program DeS1gl s




Considering a

pplications Programmes, and software generally,

as communicati P . R
on channels leads %o some rfruitful results. First it

singles out that both the user and the analyst as two components of

the communication system have to be compatible regarding under-
standing and familiarity of each other's requirements and constraints
in order to attain adequate communication. Also it constructs a
rigorous framework of systems design within which concepts such as
requisite variety, coupling and/or control, entropy, etc., become
directly applicable in interpreting, developing and validating
existing and new design criteria such as flexibility, impartiality
and independence. Finally it facilitates the task of identifying
and selecting the appropriate techniques that are compatible with

the derived criteria. In this regard, the advantages of the top~

down design approach can materialize by the use of structured

programming whose contributions may cover the following.

1 Higher Resilience: That is, the ability of a programme
® (=)

is i se and speed with
to recover from errorsSe This includes the ea gs)

which errors can be detected, Jocated and corrected.  The reduction

aths in a module increases

or elimination of the number of alternate p

Lo : do-
its resilience significantly when it is compared with large, pseudo
i

modules, with many branches.




10

2.  Bett s .
er Replacability/Modifiability/Adaptability: The

grouping of the tl ] ) )
g aree properties is based upon their strong inter-

dependence. : .
J¢ Since to modify a module, may involve replacing a

defective part or the whole of the module. By so doing adapt-

ablility is maintained. At any rate replacing smail rmodules is
logically much less expensive than replacing a large pseudo-
module, e.g. NIMMS Stock Control. However, as interactlons
between the user and his environment on one hand, and the user
and the programme on the other, continue programmne modification
becomes inevitable. Trrespective of the type and degree of
change, modifiability depends upon the documentation and compre-
hensibility of the modules involved. when a programue/pseudo-
module is lengthy and cumbersome, it is frequently reported that
the programmer concerned tends to abandon the programme under
review and embarks on producing his own new version even if the
programme Was originally written by him. This coupled with the
attitude towards documentation as being boring and barren, reduce

the modifiability of the programme whereas small proper modules

facilitate and enhance all these properties by the mere size and

independence that distinguish them.

xibility/?artial Processing: Ascertaining

3.  More Openness/?le

that modules are highly independent, i.e. weakly coupled to each

th 1leads to attainment of a comparable degree of flexibility.
other, leads

o endent nodules variet increases a5 modules
by desi ming indp I [] J
Also, 1es1g




can be added, removed ang modified according to the requirements.
This, in turn, Presupposes openness. Evidently this is not the

case with pseudo-monolithic modules where rigidity and strong/

permanent coupling are ubiquitous. Thus modularity when properly

applied yields flexible, independent and impartial modules.




1b§7

CHAPTER 7
e s

DECISION MAKING AS A __DETERMINANT OF

DESIGN CRITERTA

The purpose is to study the compatibility of the top-down
design approach and design criteria, for example flexibility and
independence, with the needs of decision making. The implications
of regarding the mechanics of the process of decision making to be
equivalent to that of problem solving opens a new horizon to
consider the effectiveness of the package version of problem
solving as represented by its current architecture. This involves
looking at the following items.

1, An organizational model representing a three~level

management framework. This can indicate the functions,

properties and scope of each level.
2. Types of decisions, i.e. whether being routine, programmed,

non-programmed and the difference between programmed and

mechanized decisionsSe

3, The psychological offect of automation in the form of

current packages upon the decision maker.

l,., problem solving methods within the context of the

t of holons and their respective handling capabilities
concep

the decision naker's uncertainty level, the more likely
of the ade <

rtal i jated
s with hi uncertainty that is assoc
it is to interact with higher

‘,‘]ith it.




This is 3 .
concluded by investigating the relationshi

between uncertainty ang programmability

MODELS OF USERS! HIERARCHIES AND AUTOMATION

I
n more recent attempts to understang and reveal some

chara st . 7
aracteristics of the two closely related phenomena of management

or trol 1 5 s . ]
control (1) and cécision-making or problem solving process (2),

& number of approaches and models have been proposed. In the

; . .
following the models considered are those supposedly based upon
the systems approach and oriented towards the design and develop-

ment of management information systems.

It has been suggested earlier that problems, like systems,
are hierarchical in nature. The higher the problem's level, the
more likely it is to interact with higher uncertainty that is
associated with it. Uncertainty on its part implies complexity and
vice versa. Consequently an organization as an open system that
interacts with its environment, can be observed to import and export
uncertainty (3). Thus, ascending the organizational hierarchy,
functional boundaries become increasinging fuzzier and their scopes
enlarges. The data requirement of each level differs significantly

from levels above and below it. This requirement is characterized

by the properties of

nStructure and Process in Modern Society',
(Glencoe: Free Press, 1960), pp. 59-96.

(1) Parsons, T.,

(2) HMarch et al, op.cite, 172-199.

ertainty, in this context, implies

: that uac
(3) Tt should be noted 22 Shannon; see Chapter 6, p.133.

the same meaning as used by




100

P il g g

tion i i - .
criterion the organizational hierarchy has been depicted in a

number of models of which the following are but some

1.  Three-Level Management Framework

This view divides the hierarchical structure of organiza-
. . 1 . .
tions into three levels, e.g. strategic planning, management control

and operational control (4), as depicted in Figure (35). The

Parsons Anthony
Institutional Strategic Planning
Managerial Management Control Articulations
Technical Operarional Control

Three-level Hierarchy

Figure (35)

dividing lines of the model represent areas of overlapping functions

and responsibilities.

nplanning and Control Systems: A Framework for
(Garvard Univ. Press, 1965). It may be

(4)  Anthony, R,

;E 3]

e i 1 is fundamentall
i te that this model 15 y

2ppropris ¢ oo that the latter is

i mi that of Parsons except '
izgziaintgoope. Thus Parson divides the hierarchy

. to technical system, managerial system and community
o ipstitutional system from bottom to top. hlso,
;zr;ons discerns between the two dividing lines by

icl tes technical and
; s i the one which separa
alnl?gS;Zist is simpler and less obscure than that

managerial and institutional systems, Parsons, op.cit
g = )

manageria
Separatln




107

1.7 Strategic Planning

This i . )
§ 1s the process of deciding on: 1) the organizational

objectives; i '
Jectives; 2) changing these objectives; 3) the resources needed

to attain these objectives; 4) the policies that govern the

acquisiti i siti
q tion, use and disposition of these resources (5). However,

the term strategic is used to refer to the relationship between an

organization and its environment (6).

Being mainly concerned with environmental forces the
strategic level is characterized by an interaction with unreptitive
or, scarcely so, problematic situations. This, in turn, is coupled
with a comparable degree of unspecificity of the actions and/or
procedures that can be employed to combat such situations.
Consequently, being deprived from adequate specification makes

it extremely difficult to automate insofar as to cater for all

possibilities.

1.2 Management Control

This is mainly

t,., the process by which managers assure that
resources are obtained and used effectively
and efficiently in the accomplishment of the

organization's objectives" (7).

(5) Anthony, 0peCite: p.2k.

(6)  Ansoff defines strategy to denote decislons pertaining to

i i than its
i of the organization rather har
?hi exzirgiibiZEZ%rs An example is that of deterﬂlnlng the
l? Zigt mix and the potential market, Ansoff, H.h.,
pro !

nGorporate Strate i, (Penguin Books, 1968), p.18.

(7)  Anthony, op.cit., P.27-




In other words,

thi : .
5 process ig mainly concerned with the problem

of s i
tructuring reésources for Optimum utilization

deci & X
ecisions that are likely to pe involved with pertain to: 1)

working-out informati : ici
1on needs; 2) policies ang responsibilities;

z ¥ ;
3) transforming resources into the required output (8)

This level is more involved with internal organizational

affairs., It is responsible for the conversion of strategics into

simple and operational form. The conversion process when viewed

from the top can be observed to be accompanied with a reduction in
uncertainty. Consequently if the conversion is to be successful,

management has to ascertain that both strategies communicated from

above are realistic and that estimated capabilities and capacities

at lower levels are reasonably accurate. In this context, the

process of ceonversion is influenced by the characteristics of the

internal environment of the organization regarding the permissible o

mode of communication, i.e. whether it comprises both vertical,
top-down and bottom-up, snd horizontal (9).  Personal interactions,

individual-organization conflict of objectives are some of the

potential sources of perturbations introduced from above as well as

below. Thus the type of problems of this category are quasi-

repetitive and quasi_specified. Depending upon the degree of

(8)  Ansoff, op.cite, p.19.
iew Patterns of Menagement', (McGraw-Hill,

Likert, Re,
) N.Y., 1961), pp.t-00.




i
2

specificity

and the frequency of occurrence,

decisions may be
consid .
onsidered.  Thus faced with this type of problems management

r 1 il . . )
equires high degree of flexibility which is much affected by

automation.,

1.3 Operational Control

This is

"eoo the process of assuring that specific

tasks are carried out effectively and
efficiently™ (10).

Consequently decisions may pertain to problems such as operating
objectives, pricing and output level, operating levels, production i3
schedules, inventory levels, etc., all being enveloped by the

overall property of repetitiveness and self-regeneration (11).

1.4 Impact on Automation

In view of the above categorization,automation in the
form of current package philosophy and architecture imposes

unsurmountable difficulties due to serious design misconceptions.

This is because a package as a ready-to-implement solution often

comprises one solution +o what is essentially a varying problematic

situation Tn other words, the current philosophy of packaging

implicitly forces the users to treat all possible versions of the
Eh

(10) Anthony, op.cit.s p.69.

(11) Ansoff, op.cites p.21e



170

situation in th i
€ Same manner. This reductionism asks the user to

erf i : .
kS orm 1somorphic mapping between whatever situation that may be

at hand
and the package. Such a philosophy obviously gives way

to many problems largely due to the inevitable conflict that exists

bet

ween the package which tries to reduce the managers freedom, and

the manager who seeks more flexibility. This is also as true for

packages which are designed specifically for strategical decision
making (12). These packages while they recognise the characteristic
variability of this type of decisions, it is observed that they
retain the same architecture of other packages, i.e. of being
unchangeable, inextensible and rigid. In other words, the
effectiveness of offering more than one technique to choose from

is strongly questioned because they are contained within a pre-
determined rigid framework dictated by the current package

architecture.

Another approach to decision making is that which

associates it to programmability.  The basic idea of the approach

is reviewed below.

2., Decisions and Programmability

The thesis of this idea is based upon the recognition of
4

] imilarity between the processes of decision meking and problem
he similarity 1 i

PROS kages.
. .mp7aN and I.C.L.'S PROSPER pac
I.B.M.'s STRATPLA
(12) Examples are




solving (13),

In this context decisions are: classified into

routine decigsi
ions and others characterized as problem solving

Concerning
i0g the latter, when faced with problematic situation (14),

the process to e .
arrive at a decision comprises three main activities:

(a) an intelligence activity with the military meaning of the word
(b) a design activity which involves inventing, developing, and

analysing possible courses of action (¢) a choice activity that is
mainly concerned with the selection of a course of action from the

available set of alternatives (15). These three activities should
be seen to be compatible with the systems approach and consequently
they are interdependent and iterative in essence (16) and thus

emphasize the need for flexible structuring of definitions or

solutions.

From this conceptualization it has been possible to

distinguish between the various types of decisions on the basis of

(13) Simon, "The New Science of Management Decision', op.cit., p.Z;
also March; Simon, '"Organizations', opscit., pp.172-199.

(14) Tt is assumed that the decision maker develops his degisiog
on the grounds of a conceived model of the ?eal 51tuat19n.
This model, as mentioned previously, }s egu}valent to his
definition. In Simon's terms, the 51mp11f1ed'model of
the real situation used by the decisiog makgr is that
referenced as the ndefinition of the situation'.

] 1 3
Simon, "The New Science of Management Decision’, op.cit.,
9

ppe2-3-

(15)

(16) Ibid.




R ——————

§
|
g
§

programmability (17),

In thig context

s Programmed decisions are

disti i i :
tinguished by being repetitive, routine and well-defined, i,e.

they are not novel, Non-programmeq decisions

it

éﬂé are novel, unstruc?ured, and consequential.
T€ 1s no cut-and-dried method of handling

the problen because it hasn't arisen before,

or because its precise nature and structure

are elusive or complex, or because it is 50

important that it deserves a custom-tailored
treatmentt * (18).

Decisions
Novel, unstructured
Unprogrammed
Programmed Routine, Repetitive

Programmed~Unprogrammed Decisions

Figure (36)

(17) This should not be interpreted in the limited stereo-typed
computer use, but it does not exclude it. In this regard
the degree of programmability is similar to that proposed by
Cyert and March and reads "In this continuum (?epresented by
Figure (36),) from great specificity and r?pgtltion to éxtreme
vagueness and uniqueness, we will call decisions Fhat lie
toward the former extreme programmed and those ;ylﬂf tgwgrd

tter end non-programmed!. Cyert, R.M.; March, J.G.,

Egigi;alizational Facfors in the Theory of Oligopoly't, Quarterly ,
J. of Econ., 1956, 70, pp..4k-6h, However, Fbrr?ster{ has ‘
classified decisions along this contlngum depending upon the .
degree of pre-programming.  Thus he'dlscern§ between 'Aut?m§t1?
programming', €.8e computer instructions; ‘1nco¢plete.pollc1es s
e.g. instructions to middle managemept f?r'ha?dllng filrly
routinized problems; 'judgment and intuition ; e‘gg' ;si
structured decisions; ‘'randomized' decisions for which no

' i t er, op.cit.
programmes exist at all. Forrester, ‘
* Tmohasis is not in the original.

(18) Simon, "The New Science of Management Decision''y op.cit., pp.5-6.
HlOily




2.7 TImpact on Automation

Regarding the distinction between programmed and non-

programmed decisions it cap 1 i i
can be maintained that the former is more

mechanizable than the latter. However, there is a subtle

difference between being programmable and being mechanizable.
Programmability does not aﬁtomatically imply mechanization, it
only indicates specificity which can facilitate mechanization
insofar as available resources and complexity of the considered
situation allow. In this respect, mechanization implies rigidity
since there is an upper limit on coping with complexity and
retaining in the same time the required flexibility. Consequently
confusing the two notions may result in an over-simplification of
the decision which, as was seen earlier, can lead to user conflict
and dis-satisfaction (19). This constitutes a major drawback of
current applications packages. This problem can be resolved by
adhering to the relationship between flexibility and independence
which asks for a fundamental change in the architecture of packages.
Considering that resources are limited and situations vary continu-

ously with time mechanization can become more flexible by designing

tutes one of the main criticisms of
thus Churchman et al emphasize that
jence has been conducted under the

that a certain kind of reason must

this reason has been made clear,

the manager will either accept it or bg ?haﬁgeghw1tg ggosg -
negligence OI, still worse, gross stupidity , ?rX giaiecéié’
Schainblatt, He, The Researcher apd the Magageg.l Diatect
of Implementation”, Management Schience, 1965, Vol.11, No.%,

PP. B-69/57.

(19) This question consti
management science,
myuch of menagement sC
very naive philosophy
prevail, and that once

T




holons that can be coupled and decoupled according to needs (20).
This does not only apply to programmed decisions, it is as

applicable to non-programmed situations since the resulting
architecture is not pre-determined and fixed as exhibited by

existing packages, rather it is constructed by the user and

therefore the architecture is customer-tailored as emphasized

above.

Strat. Undefined

Non-programmed
Mgmt. Cont.

Programmed
Op. Cont.

Hierarchy and Programmability of Decisions

Figure (37)

Considering the above two models within the context of
the nature of definitions, as shown in Figure (37), it can be
concluded that a strategic decision is not wholly unknown or- non-
programmable otherwise it may be unsolvable, at the other extreme,
an operational decision is not completely programmable or specified

i - untered
otherwise there would not have problems such as these encoun

(20) This is covered in Chapter 8.



in inventory control angd schedulingo Consequently & programmed

decision, as implied by the concept of holons, should not be ‘seen

as fully mechanizable,

AUTOMATION AND THE DECISION MAKER

It may have become evident from the above that the
previously discussed three-fold, viz. bias, independence and
flexibility, characterizes the Process of decision making. In
this respect it has been proposed that flexibility may
not only be considered ang treated as a relevant property more
than that it has to be seen as an overall organizational objective
extending over the entire organizational structure (21). The
criteria used to discern between programmable and non~-programmable
decisions are used to distinguish two types of flexibility, viz.
external and internal flexibilities, External flexibility assists
in the endeavours to combat and minimize external/environmental
perturbations that are likely to induce unforeseen problems.
Internal flexibility, on the other hand, is complementary to the
former, and its fundamental purpose is to provide a 'cushion' for
response to disturbances (22). However, in this respect the

current package architecture has, as was seen earlier, failed to

cater for such requirement.

(21) Ansoff, op.cit., p.56.

(22) 1pid.



The psychological effect of failing to recognise the
relative importance of flexibility to the decision maker can have

Sérious drawbacks (23). Reducing the decision maker's degrees

of freedom leads to complicated feelings of lack of choice,
pressure and psychological failure, that may induce other feelings
of helplessness and decreasing sense of responsibility, Conse-
quently the decision maker may become more dependent upon what
has restricted his freedom. In this regard the decision maker
may find himself 1) subjected to increasing amounts of psychologi-
cal failure,even when the package is successfully operating; if
the decision maker adheres to rationality he may succeed in this
respect and fail as a human being (24) that may result in a
bsychological conflict. 2) He may be forced to reduce inter-~
departmental interactions as concessions for the sake -of

automation (25).

Thus it follows that a package in the form of ready-to~-
implement solution which is characterized by being inflexible and

static, with respect to the definition/solution it comprises,

(23) Argyris, "Management Information Systems: The Challenge to
Rationality and Bmotionality', op.cit.,
"Interpersonal Barriers to Decision Making!,
Harvard Business Review, 1966, 44, 2, pp.84-97.

is i t i ivi I t practices
24) This is a result of misconceiving managemen
) which was guarded against by Churchmen et al, n.q. (19),

"The Researcher and the Manager', og.cit; Also,
Mason, R.O.; Mitroff, I.I., "A Program for Research on

Management Information Systems', Management Science,

1973, Vol.19, No.5, pp.475-487.

Argyris, C., U"Personality and QOrganization', (Harper & Row,
s Co

N.Y., 1965).

(25)



besides its bagd effect upon data Processing function as previously
discussed, has comparable degenerative consequences .upon the
abilities of the decision maker or prroblem-solver/definer. This
becomes more significant when both the data processing and the

decision makers are considered as interacting components of a

larger encompassing context, viz. the M.I.S.

A HCLONIC INTERPRETATION OF CHURCHMAN'S MODEL FOR PROBLEM-

SOLVING

Recently a significant advance towards the identifi-
cation and understanding of the methodological bases of problem-
solving has been established around the works of five prominent
philosophers with each representing a specific approach (26).
Consequently, the potential result that may be obtained through
the application of a certain framework, or inquiring system, is
bound to be characterized by the fundamental philosophical premises
and the methods ailowed through that inquiring system. Therefore,
Churchman's model can be used to serve the purpose of providing
design methods that are first compatible with the top-down design
approach suggested earlier and secondly consider rigowausly the

decision maker's requirements and environment.

(26) Churchman, "The Design of Inquiring Systems", op.cit.



recognition of automation and its emphasis upon the maintenance

of flexible structure,

Complexity

Key:

S: Singerian I.S; we-

H: Hegelian I,S. — , -

K: Kantian IS¢ e, e,
Z: Leibnitzian I.S.cccee.
L: Locke I.S,

Methodologies as Holons

Figure (38)




The functioning of the hierarchy as illustrated in
Figure (38) can be explained as follows, Any higher Tevel holbn,
i.e, Singerian, Hegelian, Kantian or Leibnetzian respectively in
descending order, can activate ang communicate with any or all
lower holons by sending and/or receiving messages directly or
indirectly through the appropriate channels which are represented
in the diagram by various kinds of lines. Thus, the output
hierarchy of the Singerian inquiring system comprises some or all
holons that are connected to S by solid lines. Also, the output
hierarchy of the Hegelian inquiring system comprises some or all
holons that are connected to H by dashed-single dotteq lines.
Similarly, the output hierarchy of the Kantian inquiring system
may include any holons that are linked by dashed-double dotted
lines. Finally, the output hierarchy of the Leibnitzian inguiring
system consists of the dashed line that links it to Lockean
inquiring system. However, such structure demonstrates enough
flexibility to activate whatever required mechanism to handle a
certain problematic situation. The choice of the mechanisms is

partly determined by their conceived respective characteristics as

briefly outlined below, and partly by the complexity of the problem.

Te Properties of Lockean Inquiring System

Locke's philosophy attaches much weight and emphasis to

sense data. Its basic premise is that all knowledge of material



180

existence depends upon sensation. However, Locke then gqualifies
this assertion by pointing out that sensations, themselves, obstruct
- the build-up of knowledge of objects (27). Consequently, the
Lockean methodology can be interpreted as being empirical (28).
Being based upon sensations then Jjudgment is bound to contain bias
to what constitutes the observed object. Also, the guarantor of
Lockean Systems is its generality. Thus, Lockean inquiry can be
useful in the context of well structured and least uncertain

problematic situations.

2 Properties of Leibnitzian Inquiring System

Formal logic and axioms form the foundations of Leibnitzian
thinking. Mathematical or symbolic model building are the most
notable characteristics of Leibnitzian inquiring systenms. Thus the
building blocks of such models are the elementary formal truths.
Propositions are often tested within the context of primitive truths

by the application of the deductive mode of logic. The difference

(27) Locke, J., "An Essay Concerning Human Understanding",
(Fveryman's Library, 1972), Book IV, Chap.3:
#The Extent of Knowledge'; Chap.4: "The Reality
of Knowledge'.

(28) Tlocke differentiates between knowledge of matters of fact
and of relations between ideas.  Accordingly the
latter rests upon sheer observation, ‘'internal' or
texternal't. The outcome is a reduction of ‘'experience’
to sensations as the constituents of all observation,
and 'thought' to external associations among these
elements both sensations and associations being
supposed to be merely mental or physical, ibid.




between Leibnitzts philosophy and that of Locke may be equivalent

to the difference between deductive and inductive logic respectively.
It is maintained that Leibnitz inquiry identifies, besides what is
known through experience, certain 'innate ideas' and finnate
principles', which can be known independently of experience (29).

It follows that the guarantor of Leibnetzian models may be identified
through validity, strength, rigour and consistency. This is because
the mathematical orientation of such models which delimits the
capacity of Leibnitz's inquiry to that of the available analytical
techniques. This is also reflected upon the nature of problematic
situations that can be investigated. These situations have to be
unambiguously described. Examples are QOperational Research models

such as inventory control, mathematical programming, etc.

Se Properties of Kantian Inquiring System

Kant's philosophy is distinguished by its idea of a priori
knowledge. This type of knowledge is concerned with space and time
and causality and comparison which are the fundamental elements of
building relationships (30). Also, Kant emphasized that a priori

knowledge is not purely ‘analytic',

"i.e. such that the opposite would be
self-contradictory' (31).

(29) Russel, "The Problems of Philosophy", op.cit., p.41.

(30) 1Ibid., p.48; Kant, 'Critique of Pure Reason", op.cit., p.72.

(31) Russell, "The Problems of Philosophy", op.cit., p.k4b.



He concluded that bure mathematics, though a priori, is synthetie,

Therefore Kant's inquiry is fundamentally concerned with the
development of at least two models (32). The type of problems
that can be dealt with encompasses these that are covered by
Leibnitz and/or Locke. Consequently by activating both the
Leibnitzian and Lockean inquiring systems alternative synthetic
solutions can be generated to select the best suitable solution

for partially specified problems.

L. Properties of Hegelian Inquiring System-

Hegel's philosophical thesis can be summarized as that
everything less than the whole is fragmentary, and, thus, incapable
of existing without the complement supplied by the rest of the
world (33). This incompleteness appears, according to Hegel,
equally in the world of thought and in the world of things. Thus,
considering any abstract or incomplete idea, it is found, on
examination, that if its incompleteness is forgotten, the person

concerned will become involved in contradictions. These contra-

dictions turn the considered idea into its opposite or antithesis.
To escape the person was to search for a new less incomplete idea

which is the synthesis of his original idea and its antithesis (34).

(32) Mason; Mitroff, op.cit.

(33) Mure, G.R.G., "The Philosophy of Hegel", (Oxford Univ. Press,
London, 1965), pp. 1-40,

(34) Tbid.; also Russell, '"The Problems of Philosophy', op.cit.




The same is repeated again with the ‘new idea, until the person
reaches the ‘*Absolute Idea' which as Hegel holds, has no

incompleteness, no opposite, and, therefore, requires no

further elucidation.

Now since attainment of the 'Absolute Tdea'! is
practically unachievable, any other idea is, essentially,
incomplete (35). Consequently, Hegelian inquiry may involve
all preceding types of inquiries. That is, it may activate
Kantian inquiry to yield two opposing synthetic Leibnitzian
models. These consequently are applied to the same fact set
as supplied by the Lockean inguiry. The two opposite
Leibnitzian models aré supposed to derive different meanings
from the data set as each model interprets data differently so
emphasizing the relativistic qualities of information.
Consequently, higher echelons of an organization have to be
provided with the facility to construct such conflicting models
as decision makers who belong to these echelons are supposed to
deal with ill-structured problems and often conflicting objectives.
Thus, the crux of Hegelian inquiring system is the maintenance and

enhancement of conflict to allow for decision makers to disagree.

(35) The earlier discussion of definitions is also app}icable to
the notion of an ‘idea'. That is, since an idea
constitutes a mental image or mapping of the world;
and since the mind is finite, according to Descartes,
then the idea is bound to be incomplete in some '
respect; Cf. Chap.T; also, Anscombe; Geach, op.cit.




5. Properties of Singerian Inquiring System

This inquiring system is advocated to encompass all
other inquiring systems. That is it can trigger into action
any type of inquiry depending upon the complexity of the situation
at hand. However, this inquiring system is regarded to be most

suitable for problems that are characterized with an exceedingly

high degree of uncertainty (36). The main theme of Singer's

ingquiry is its endlessness. It is maintained that the essential (37)

features of this inquiring system may include the following:
1. The purpose of the inquiring system is to
develop the ability to choose the right %
means to achieve the desired goals.
2. Its measure of performance has not been developed.
3. The environment of the inquiring system is a
co-operative environment.
"One sees how fuzzy the boundaries of the
inquiring system become because inquiry
is evidently needed to create co-operation
and co-operation to create inquiry" (38).

L4, The decision maker is any one.

5. The designer is any one.

(36) Churchman, "The Design of Inquiring Systems", op.cit.,
pp.186-205; also, Mason et al, op.cit.

(37) 1Ibid, pp. 200-201.

(38) 1Ibid.




That is, the usefulness of this methodology is most identifiable

with top manage: iy i i f i ne
P nagement whose function is that of interacting with

the environment to ensue control over a portion of it.

IMPLTICATIONS AND CONCLUSIONS

Thus, the above shows that Churchman's model when
considered within the framework of the concept of holons meets
the specifications of top~down approach. Also the concept by
being essentially flexible adds this property to Churchman's
model., Consequently, the holonic concept serves as a unifying

agency between design methodology and that of problem solving.

In the following the implications of the holonic arbor-
ization or vertical structures and reticulation or hierarchical

levels on one hand and the decision maker on the other is

investigated.

1. Activity Arborization and Hierarchical Reticulation

Taking the amount of uncertainty U as a classificatory

criterion, and considering Figure (39), that any one organization
can be dissected into its main activities such as production,

sales, management services, finance, R & D, etc., then the

organization as a whole and individual activities can each be
[&]




divided into three consecutive,

though partially overlapping

levels. Namely, top-level Management which corresponds to

maximum uncertainty, middle-management which corresponds to

medium uncertainty, operational control which corresponds to

minimum uncertainty.,

Variety

Singer
Str. Non-
Planning Programmed .
+ Hegel .
T Mgmt. ‘
Control + Kant ;
+ Leibnitz
1 op.
Control
+ Locke Pro grammed
Ashby Dissection Churchman Simon

Schematic Representation of the Various

Taxonomics w.r.t. Uncertainty

Figure (39)




Equi-Uncertainty
Contours

Equi-Uncertainty Contours

Figure (40)

In conjunction with Figure (40), let E be the environment,

and S be the organization. However, if S is defined as the

Cartesian product of the family of activities (Ai) , then it can
i1z
be denoted by:
S Clra
i“—El

Similarly, relative to the organization S, the environment & is the

corresponding family of sub-environments (Bj) , such that:
jed

B = Tjeq %




But for every i there is Jy i.e. 1€¢d, such that

i
el

Aiﬂ Bj

SNE = 3

That is, every activity of S is also an activity of E. But the
total amount of uncertainty*within S must be less than the total
amount of uncertainty outside it, i.e.l&gf Ue' Conversely, if
the organization's internal uncertainty is equal to that of the
environment's, then the organisation's characteristics and
qualities that distinguish it may all disappear. In other words,

the difference US ~ Ue, which is negative, accounts for the

organization, pattern and adherence of S.

Consequently, the amount of uncertainty that is associated
with a certain holon, that belongs to an activity, depends on its
allotted level on the continuum. Thus holons that lie near the
lowest hierarchical level are presumed to deal with the least amount
of uncertainty and a Lockean, i.e. empirico-inductive,inquiry may
suffice the corresponding variety since they do not activate sub-
ordinate holons and being activated in response to superordinate

holons (39). However, as holons traverse the activity's continuum,

(39) This is because low-level holons are asked to do precisely
what they have been designed to do. This, however, should
not forbid them from moving freely within their defined space.

* Uncertainty in terms of disorganization.



they are boung to encounter higher variety and uncertainty as

illustrated in Figure (41). Holons that are most near to the

S E
Activity Continuum

x _\/\/
min. ////
U U

a a

maX © e
Ua :E; Ua . C
max. e Organization's
Boundary

Activity Continuum and Uncertainty

Figure (41)

boundary are supposed to interact with the largest uncertainties.
More precisely the uncertainty level of the inside surface of the

boundary-shell, i.e. Ua should be less than that of the outer-
max.
most surface, i.e. Ua . The difference between the two, i.e.

e
U U is attributed to the endeavours of top management (40)

s

a a
max. e
and thus a Hegelian or even Singerian inquiry may be used to cope

(40O) It should be noted that Ua is equivalent to the environment's

uncertainty as referenced ®to that particular activity. Also,
as Dewey maintains, more differentiation leads to enlarging the
immediate relevant environment. Consequently, the more
differentiated the activity is, the wider is its potential
environment. And the wider the environment, the higher is

the potential uncertainty, Dewey, op.cit.




with the high variety. However, the managerial structure can be

conceived of as concentric contours (41). Starting from the

outer surface of the boundary and moving inwards the first

identifiable shell is that of top management followed by middle

Management and ending with the operational level.

Consequently, all holons that exhibit individually an

equivalent set of governing rules and strategies to cope with

varieties may, thus, all form a contour that is characterized by

SRR s

a particular uncertainty range since each contour is not a line

per se, but a shell. Thus the activities of each shell may

Continuum

a
= = ... U (A
U, (A U, (Aj) x (A)
) = A) = oo =T (A)
also ( Uy (a,) Uy ( J) y Ay
such that U (&) U, (a0
implyi that U 20U irrespective of iy, j, see, n
implying tha v %

Equi-Uncertainty Contours

Figure (42)

(41) That is points on the same curve/bontourﬁhave the_same gmount
of uncertainty. The activity's ugcer?alnty.contlngu?kls
regarded to be analogous to electric field llneshan e
equipotential contours which are orthogonal to them are

analogous to equi-uncertainty.




assume different uncertainties as their position varies in

accordance with pertinent events..

2. Uncertainty ang Programmability

As each major activity extends throughout the

organizational hierarchy, and as there can he a corresponding

scale of uncertainty, then, specificity may couple the two

continuums together. However, in order to programme a function,

a minimum level of specification must be attained (42); It is

Uncertainty/
Variety
<75
.50
02{_
25 .50 .75

Programmability

Uncertainty vs. Programmability

Figure (43)

(42) Newell, A.; Shaw, J.C.; Simon, H.A., ?Chess Playing
Programs and the Problem of Compleglty", In
Feigenbaum; Feldman, (Eds.), op.cit., pp.39-70.




clear from the previously outlined taxonemies that particularly
for higher level decision makers, and sometimes lower omes, not
every function is specifiable. This is also explainable in
terms of the complexity barrier (43).  Then, first, from the
definition of the barrier, and secondly from the parallelism
between complexity and uncertainty, and thirdly from the holonic
representation of the decision making process, it is reaffirmed
that the design of the independent parts and their associated
high flexibility, variety and impartiality will tremendously
help to penetrate that barrier which is seen as an upper bound
for programmability and thus achieving the required viability.
This is so specifically wheﬁ the non-linear relationship as

that of Figure (435) between uncertainty or variety and

programmability is considered.

(43) Beer points out that for a system to be viable it has to
advance towards a minimum complexity and if the system
is able to penetrate that complexity barrier it then
secures the following properties: 1) The ability to make
a response to a stimulus which was not included in the
list of anticipated stimuli when the system was designed.
2) It can learn from repeated experience what is the
optimal response to that stimulus. 3) It grows.
43 It renews itself. 5) It becomes robust against
internal breakdown and error. 6) It continuously adapts
itself to a changing environment and so it increases its
chances of surviving conditions which had not been foreseen
by the designer. Beer, '"Decision and Control', op.cit.,

pp.256—258.




CONCLUSIONS: A PACKAGE AS A HIERARCHY CF HOLONS

This thesis has considered the question of man-machine
interface design by concentrating on two objectives. The first
is to attempt to develop a systemic design framework which -is self
consistent, compatible with other concepts, and applicable to real
situations. The second objective is to examine the framework and
its consistency, compatability and applicability in the theoretical
and philosophical context of a real situation. In order to limit
the scope to manageable proportions, the situation chosen is that

of applications packages design.

This theme has implied the examination of the possible
role a package may play from various angles. The result has been
the rejection of the present package architecture on the grounds of
being rigid and proposes instead the design of independent modules
as an essential condition to attain other properties such as
flexibility required to match the dynamic properties of the users!

environment and also to increase the variety of software.

This has been reached by looking at a package as a ready-
to-implement solution. Such has indicated the examination of
definitions and solutions in order to establish their mutual
dependence and of being open-~ended and dynamic. In this respect,
a definition, being fundamentally a model of some phenomena as

conceived by the designer concerned, is essentially imperfect and




carries a varying degree of bias and content depending upon tﬁe
designer's conceptual framework and background. Consequently
the inherited bias and content are responsible for the rigidity
of the package and its prospective. It thus follows that to
reduce the effect of bias and content the designer should provide
adequate facilities to cater for modifiability and adaptability
of the package. Failure to recognise this has been attributed
to the poverty of understanding of existing systems designers of
the various methodological approaches., This has led to ad hoc
inadequate designs where, for example, the so-called modules are

as large as complete packages.

Some important design requirements, viz. flexibility,

independence and impartiality have been identified and further
studied in relation to order, i.e. the sequence or pattern or
arrangement of parts or instructions, and size, i.e. the number
of instructions within a part. This study has concluded that
these design requirements are rendered more difficult to attain
as both order and size increase. Also, as far as the user is
concerned, order must be only partial so that he may be left with

enough freedom to cope with unprogrammed disturbances.

The concept of holons has been found to provide the
required conceptual model which is rigorously based upon a true
understanding of the systems concept. Within this model the
problem of designing a flexible, independent and impartial package
structure is largely resolved by defining a package as a self-
contained, rule-governed stable open-system. This new look of a

package emphasizes the need for openness, flexibility, hierarchical




structuring of its constituent modules or holons which are also
self-contained, and the provision for the inevitable subsequent
entwining with other packages or programmes. Additionally, the
holonic treatment of automation shows a clear understanding of

the rclationship between a holon and its environment by insisting
that each holon must have its canon (1) and strategy. The holon's
canon refers to its invariant properties and structure, i.e. its
specifications. Thus the invariant behaviour of a holon is

explainable in terms of its canon whereas its strategy is responsible

Tor its behaviour in view of environmental perturbations.

Two significant environments of an application package
have been considered, The first is the M.I.S. which is defined to
contain all automated and non-automated procedures. Consequently a
package is contained in an M.I.5. and not vice versa and thus
emphasizing the control function of users. In this respect two
M.I.5. design approaches have been discussed, viz. top-down and
bottom-up. It does not appear possible to use either approach by
itself. The ability to identify mutual interdependence bhetween
the two approaches is of much importance for an effective use of
elither one. It is envisaged here that such an ability can be
enhanced by clearer understanding of the mechanisms, advantages and
limitations of each. Also this knowledge may be easier to acquire
when designers - i.e. users of the approaches - develop more rigomously
based conceptual frameworks. The absence of such knowledge and frame-
works have resulted in indiscriminate use of the bottom-up approach.

This has, in turn, resulted in over-comnlicated and ad hoc designs.

It has been shown that current package architecture causes

degeneration of the design skill and expertise of data processing

(1) For more details see p. 56



practitioners by making the users more dependent upon package

suppliers. The

more a company opts for packages, the less

deign experience its desi

o

ners may get and the less attractive

ey

it may become to competent designers to stay thus pushing for

more ready-to-implement sclutions.

The second influential environment of a package is
software, It is noted that the unwary user can lose his
independence and freedonm by letting the manufacturer control
his software. Thus the user who accepts manufacturers! soft-
ware as given and does nothing to control it is putting himself
in a very awkward situation. Alternatively, if the user values
independence and recognises his inevitable need for adaptability‘

o

and modifiability he will have to develop his own buffer, i.e.

@

the middleware (2), to reduce the effect of the built-in bias in
the manufacturers supplied software, Also it is indicated that
the current package architecture, with its inseparable wholes,
prohibits the use of its constituent parts in building new

programmes and consequently leads to duplication, i.e. contra-

ot

dicting the main idea behind packaging.

The above deficiencies have been demonstrated through
the examination of a typical package, namely CLASS, within the
context of the three design criteria, i.e. flexibility, bias and
independence. Flexibility is much reduced because the package

represents a typical example of static definition which impairs

no

)  As defined on p. 93

(




197

modifiability and adaptability. Also it is a closed-end system
that recognises neither the need for extensibility nor the possible
use of its parts as building blocks. Bias is much increased
mianly because CLASS is written in a low level language that

dictates a particular software and hardware configuration, and

thus makes CLASS intransferable.

Thenceforth the discussion has concentrated upon finding
an alternative package architecture having the three basic properties:
(a) flexible structure; (b) impartiality through independence of
modules; (c) compatability with the characteristics of the users!
process of decision making. In the search for an alternative

package architecture, software has been treated as communication

channels. This conception has identified the relationship between

standing and familiarity of each other's requirements and constraints
in order to attain adeguate communication. Also it has provided a
rigorous theoretical framework compatible with that of the holons

and within which concepts such as requisite variety, coupling and/or

control, entropy, etc. have all confirmed the inadequacy of the

(2]
i

current package architecture and supported that of designing small

A - 3, - 1
and independent parts. It is proposed that such an architecture

e
b

can be designed by the use of the top-down design approach which
may be made practicable by the proper application of the technique

of structured programming.




The need and suitability of the design of parts instead
of the existing package form have also been reaffirmed by examining
the various kinds of decision a user may have to consider and the

rocesses of problem solving he has to apply in order to arrive at

such decisions. This examination has resulted in the following:

i) the higher the level of uncertainty, the more

indefinite and ill-structured is the decision making process;

ii) the more indefinite the decision making process, the greater

is the need for flexible software;

iii) more flexibility implies less dependence upon manufacturers

or external sources;

iv) the more flexible the structure is, the greater the number
of degrees of freedom that is built into it, by increasing
the ability to couple or decouple proper modules without
incurring serious disturbances and/or modifications.

This may enhance the software's capability of producing
enough variety to match that introduced to the decision

maker by the environment.

iy

Starting from these premises, a new design and
implementation architecture are introduced. The main concept of
the proposed method is not new, Its basic charactcristics are

familiar and exactly analogous to methods used in the assembly line in which




199

design and production are fundamentally concerned with: (a)
production of parts; (b) particular emphasis upon compatabilities.
When the analogous method is used in coﬁventional assembly lines,
the above two characteristics do not pose any serious problems
through the establishment of rigorous standards., In the case of
software, using present methods, such requirements represent the

main sources of problems and headaches; the proposed method should

largely eliminate such difficulties. If the typical adopted design

strategy is that of applying the top-down approach, and of limiting
the size of modules to only few statements - through the use of
structured programming which also increases the transferability of

the modules since it is 5 sort of high level language - all within

D
1

the framework of the concept of holons, the problems can be confined
ana tackled. However, at present, lack of standards presents
limitations to the proposition and precludes its immediate full
scale application. For example, the optimum size of a module

needs to be calculated before a truly independent holon can be
produced. There is at least another Ph.D. project in the software

field here which would attempt to devise and test a technique for

producing these holons or modules.

The holonic understanding implies the design and
production of self-contained, open and stable modules. The
condition of stability is essential for any building operation.
Once again, being an autonomous. whole on its own, a holon, i.e.

a module, acquires the required degree of independence and con-

sequently the important property of multi-purposefulness. At




the same time, emphasizing the integrative role the module has
to play as a constituent part of a larger super-whole, the
module's canon carries a certificate of its specifications
along with the range of uncertainty it can cope with as

determined by its strategy.

Consequently, an application programme can be conceived
of as a dynamic hierarchy of holons in which higher modules comm-
unicate and activate lower ones and in other instances can them-
selves be activated by other holons. Thus, the position of the
module within a programme is determined, at a given time,
relative to the definition of the situation. Consequently the
programme itself becomes synchronized with the problems and their
variations. Also it may be used in more than one programme at
the same time thus effectively reducing duplication of effort
since software replication costs of a prototype are only those
of the media on which modules are copied. As a result design.
of subsequent new programmes can largely be reduced, as time
progresses, to that of coupling modules according to require-
ments. Hence as each new module is designed the variety of
software as a whole increases. Also flexibility canm be achieved
through the arbitrary inclusion and/or exclusion of modules as
required. In this manner a user does not have to be constrained
by a predetermined structure, but contrarily he may be able to

tune his programmes as he needs as a consequence of him acquiring

T e S




enough flexibility. Another important consequence is théf‘of
reducing bias as a result of increasing independeﬁce bf modules
and by not having to comply with an unalterable architecture.

Additionally, programme resilience and modifiability can all be

increased.

The design and production of holons can be carried out
by the same traditional software sources,; e.g. manufacturers,
software houses, etc., as well as in-house. The danger of
importing rigidity, bias and dependence is minimized since in
either case the resulting programmes tend to be more or less
tailor-made. Any one source may produce families of modules
whose members can be classified according to various criteria
such as precision, robustness, time-space performance and
generality (1). As far as precision is concerned the choice
may include specifications like twidth' of characters and. tsize!
of address, etc., whereas the choice of robustness means. the
trade-off between reliability and compactness in space and time.
Generality can be arranged according to the degree of freedonm
entertained by the user to adjust the module's parameters at run
time. Other criteria such as choice of algorithm; !choice of

accessing mode, etc., can also be considered.

(1) McIlroy, M.D., "The Outlook for Software Components',
In "Software Engineering: State of the Art Report

No.11, op.cit., pp.2h3-252.




This thesis attempts to present a useful and coﬁéiétéQ&,
systemic design framework. Its reievance and applicability to real
situations has been shown by considering the désign problem of
applications packages. Through the framework it has been possible
to identify the close relationship between programme design and the
charucteristics of user's practice in problem solving. This is
tackled by the identification and extension of the concept of holons
to provide a rigorous conceptual model that may resolve the problem
of system-subsystem relationships. Thus the definition of a holon

1s considered to be adequate for a module.

Finally, a deeper consideration of the methodological
theme of this thesis will reveal its wider applicability not only
to automated applications programmes, but also equally to non-
automated procedures of man-machine systems design in general.
This is evident in the great emphasis the thesis has placed upon
the dynamic properties of systems behaviour and their design
requirements by envisaging components, and their characteristics,
through their contextual relationships and not vice versa and that

is the crux of systems thinking.

It may be appropriate to end this thesis by emphasizing
the need for further research. Two specific areas are software
design and management information systems. Research in software

is needed for the following reasons:



i)

1 ii)

iii)

to attempt to define the optimum size of a

holon in terms of the number of instructions;

to select or devise the appropriate programming

language;

to test the practicability of building and
rebuilding programmes by coupling and

decoupling holons.

This may be started by testing the practical usefulness of the

exzmine ¢

i)

ii)

technique of structured programming in achieving the above goals.

Research in management information systems design might

the more accurate defining of the relationship
between programmcbility and uncertainty in

relation to the process of decision making;

the development of a method by which changing

real situations, as identified by design makers,
can be matched and be built up into programmes

from the available holons.

Another interesting area for research is te study more
deeply the interface nature of computer programmes from the

viewpoint of communication and its effects on programme design.




La,

10.

/\]/].

13.

14,

REFERENCES

Ackoff, R.L., (&d.), "Progress In Operations Research',

J. Wiley & Sons, New York, 1967.

» '"Management Misinformation Systems',
Management Science, 1967, Vol.1k,

No.%4, pp. B-1L47/156.

i Sasieni, M.W., "Fundamentals of Cperations
Research', J. Wiley & Sons,
New York, 1968,

y '"Scientific Method: Optimizing Applied Research
Decisions''y J. Wiley & Sons, New York,
1968.

s "Towards a System of Systems Concepts't,
Management Science, Series A - Theory,
Vol.17, No.11, July, 1971, pp.6561-671.

Alexander, M.J., "Information Analysis", Sci. Res. Ass., 1974.

Anscombe, E.; Geach, P.T., (Trans.), "Descartes Philosphical
Writings", Thomas Nelson & Sons Ltd.,
London, 1971.

Ansoff, H.I., "Corporate Strategy", Penguin Books, 1968,

-

Anthony, R., "Planning and Control Systems: A Framework for
Analysis'', Harvard Univ. Press, 1965,

)

Argyris, C., "Personality and Organization!", Harper & Row,
New York, 1965,

"Interpersonal Barriers tc Decision Making'!,
Harvard Business Review, 1966, Vol.lk,
No.2, pp.ol-97.

"Management Information Systems: The Challenge
to Rationality and Emotionality',
Management Science, 1971, Vol.17,

No.6, pp. B-275-292.

HGeneral Systems Theory as a New Discipline“,
General Systems, 1958, Vol.3, pp. 1-6.

L
2]

Ashby,

"An Introduction to Cybernetics', Methuen & Co.
Ltd., London, 1971.

tigystems and Their Informational Measuges”, In
G.J. Klir, (£d.), loc.cit., ref.(58),
Q
pPp. 70-97.

A
B




15.

16,

17,

18,

19.

20,

23.

2k,

25.

26.

27

28,

29-

Beer, S., "Cybernetics and Management', . English Univ; Press,
London, 1959 . '

y '"Decision and Control", J. Wiley & Sons, London, 1966 ,

Bertalanffy, von L., "Problems of Life", Watts & Co. y~London,
1952 .

s ""General Systems Theory: Foundations,

Development, Application™, Allen Lane
The Penguin Press, London, 1971 .

s '"The History and Status of General Systems
Theory", Academy of Management Journal,
1972, Dec., pp.407-426,

Boehm, B.W., "Software and its Impact: A Quantitative Assessment",
Datamation, 1973, May, pp.48-59.

Boon, C., (Ed.), "Operating Systems', Infotech State of the Art
Report No.14, 1972, loc.cit., ref (55).

Boulding, K.E., "General Systems Theory: The Skeleton of Science™,
In W. Buckley, (Ed.), loc.cit., ref. (24),
pp.5=10. ] o

Brillouin, L., "Thermodynamics and Information Theory", In
W. Buckley, (Ed.), loc.cit., ref (24),
Pp.161-165,

Buckley, W., (Ed.), "Modern Systems Research for the Behaviourél
Scientist', Aldine Pub. Co., Chicago, 196G .

Bunge, M., "A General Black Box Theory'", Philosophy of Science,
1963, 3, pp.346-358.

, "Analogy, Simulation, Representation', General
Systems, 1970, Vol.15, pp.27-35.
Chapin, N.; House, R.; McDaniel, N.; Wachtel, R., "Structured

Programming Simplified', Computer
Decisions, 1974, June, pp.28-31.

Churchman, C.W.; Ackoff, R.L.; Arnoff, E.L., "Introduction to
Operations Research', J. Wiley & Sons,
New York, 1957 .

Schainblatt, H., '"The Researcher and the
Manager: A Dialectic of Implementation',
Management Science, 1965, Vol.11, No.k,
pp. B=69/57.

&

o
b




30.

3.

3k,

35.

36,

37

38-

29.

Lo.

L1,
4o,

h3.

4,

k5.

Churchman, C,W., "The Systems Approach!, Dell Pub. Ce.,-
New York, 1968 . -

; Ackoff, R.L.; Arnoff, E.L., "Analysis
of the Organization', In J.A. Litterer,
(Ed.), loc.cit., ref. (68), pp.274-286..

"The Design of Inquiring Systems', Basic
Books Inc., London,. 1971 .

Cyert, R.M.; March, J.G., "Organizational Factors in the
Theory of Oligopoly", Qrtly. J. of Feon.,
1956, 70, pp.4k-64,

d'Agapeyeff, A., "Discussion", In P. Naur et al, (®Eds.),
loc.cit., ref. (80), pp.22-23.

Dewey, J., "Logic: The Theory of Inquiry', Henry Holt & Co.,
New York, 1930 .

Dijkstra, E.W., "Programming Considered as a Human Activity",
Proceedings of IFIP Congress 65,
Spartan Books, Washington, 1965 .

s '""Complexity Controlled by Hierarchical

Ordering of Function and Variability',
In Naur et al, (Eds.), loc.cit., ref.
(80), pp.181-185.

Duncan, "Discussion', In '"Software Engineering', Infotech
Report No.11, loc.cit., ref. (54), pp.171-
172,

Edwards, E., "Communication Theory'", In W. Singleton;,et al,
(Eds.), loc.cit., ref. (100), pp.37=53.

Eilon, S., "What is a Decision', Management Science, 1969,
Vol.16, No.lk.

Buery, F.E., (Ed.), "Systems Thinking', Penguin Books, 1970 .

Feigenbaum, E.A.; Feldman, J., (Eds.), "Computers and Thought",
McGraw-Hill, New York, 1963 .

Forrester, J.W., "Industrial Dynamics", M.I.T. Press,
Cambridge, Mass., 1961 .

Gerard, R.W., "Units and Concepts of Biology", Behavioural
Seience, 1958, 3, pp.197~206.

Gillette, R.‘7 Y?Discussion”, In Naur et al, (Eds-), lOCoCito,
ref (80), pp.39.




L6,

h7.

48,

59.

50,

56,

57

58.

Gorry, A.; Morton Scot, M., "Framework for Management
Information Systems", Sloan Management
Review, 1971, Vol.13, No.1, pp.55-70.

Gray, W.; Rizzo, N.D., (Bds.), "Unity Through Diversity",
Two Volumes, Gordon & Breach Sci. Pub.,
New York, 1973.

Gremion, C., "Toward a New Theory of Decision Making',
Internal Studies Mgmt. Org., 1972, 2, 2.

Hoare, C.A.R., "Proof of a Structured Program: The Sieve of

Eratosthenes', Computer Journal, 1972,
Vol.15, No.4, pp.321-325.

Holden, G.K., "Factfinder 13: Production Control Packages',
N.C.C, Pub., 1973 .

Infotech State of the Art Report Number:

6, Computer Networks;

8, Application Technigues;

11, Software Engineering;

14, Operating Systems,

Maidenhead, Berks., England.

Kant, I., "The Critique of Pure Reason™, Great ‘Books of the
Wwestern World, Vol.k2, 1952 .

Katz, D.; Kahn, R.L., "Common Characteristics of Open
Systems'", In F.E. BEmery, (Ed.), op.cit.,
ref. (41), pp.86-10L.

Klir, G.J., (Ed.), "Trends in General Systems Theory",
J. Wiley & Sons, New York, 1972 ..

$

"An Approach to General Systems Theory', Van
: Nostrand Reinhold, New York, 1969 .

Koestler, A., "The Tree and the Candle', In Gray, et al,
(Eds.), loc.cit., ref (47), pp.287-31k.

Krieble, C.H., "Design of Management Information Systems',
In J.F. Pierce, (Ed.), loc.cit.,




6,

65.

66.

67.

68,

69.

70.

7.

720

3.

74,

5.

76,

207

Lange, 0., "Wholes and Parts: A General Theory of System
Behaviour®, trans. by E. Lepa,
Pergamon Press, Oxford, 1965 .

Langefors, B., "Activity Network for Planning and Scheduling',
BIT, 1962, 2, No.1, pp.21=3k.

laszlo, E., (Ed.), "Relevance of General Systems Theory',
George Braziller, New York, 1972 .

Leavenworth, K., '"Modular Design of Computer Programs',
Data Management, 1974, July, pp.14-19.

Likert, R., '"New Patterns of Management', McGraw-Hill,
New York, 1961 .

Lipschutz, S., 'Set Theory and Related Topics', Shaum's
Series, McGraw-Hill, New York, 1964 .

Litterer, J.A., "Organizations: Systems, Control and
Adaptation', J. Wiley & Sons, New
York, 1969 .

Locke, J., "An Essay Concerning Human Understanding’,
Everyman's Library, 1972 .

McIlroy, M.D., "The Outlook for Software Components™, In
Infotech Report No.11, loc.cit.
ref. (54), pp.243-252.

March, J.G.; Simon, H.A., "Organizations", J. Wiley &
Sons, New York, 1958 .

Martin, J.; Norman, A.R.D., '"The Computerized Society'',
Prentice Hall, New York, 1970 .

Mason, R.0.; Mitroff, I.I., "A Program for Research on
Management Information Systems®,
Management Science, 1973, Vol.19,

No.5, pp.475-487.

Maslow, A.H., "Motivation and Personality'’, Harper & Row,
New York, 1970 .

Miller, G.A., "What Is Information Measurement?'', In
Buckley, Ed., loc.cit., ref. (24),
pp.123-128.

Moore, B.J., "Operating Systems for a Range of Computers’,
In C. Boon, (Ed.), loc.cit., ref. (21),
pp.225-239.




78.

79.

8o,

81,

82.

83.

8k,

85.

87.

38.

89.

90-

208

Morgenthaler, G.W., "The Theory and Application of Simulation
in Operations Research", In Ackoff, (Ed.),
loc.cit., ref. (1), pp.363-419.

Mure, G.R.G., "The Philosophy of Hezel", Oxford Univ. Press,
London, 1965 .

Myers, G.L., '"Characteristics of Composite Design',
Datamation, 1973, Sept., pp.100-102.

Naur, P.; Randell, B., (Eds.), Software Engineering',
Garmisch Report, NATO Scientific
Division, Brussels, 1969 .

Newell, A.; Shaw, J.C.; Simon, H.A., "Chess-Playing Programs
and the Problem of Complexity'', In
Feizenbaum et al, (Eds.), loc.cit.,
ref. (42), pp.39-70.

Niland, P., "Production Planning, Scheduling, and Inventory
Control: A Text and Cases', Macmillan
Co., London, 1970 .

Orchard, R.A., "On an Approach to General Systems Theory"',
In Klir, Ed., loc.cit., ref. (58),
pp.205-250.

Parsons, T., "Structure and Process in Modern Society",
Glencoe: Free Press, 1960 .

Pattee, H.H., "The Evolution of Self-Simplifying Systems',
In Laszlo, (Ed.), loce.cit., ref. (64).

Pierce, J.F., (Ed.), "Operations Research and the Design of
Management Information Systems',
Special Ass. Pub., 1967 .

Poirier, C.C., "Automated Data Processing for the Corrugated
Box Plant'', In Pierce, (Ed.), loc.cit.,
ref. (86), pp.t16-432.

Popper, K.R., "The Logic of Scientific Discovery',
Hutchinson & Ltd., London, 1972 .

Pyle, I.C., "Hierarchies: An Ordered Approach to Software
Design', In Infotech Report HNo.11,
loc.cit., ref. (54), pp.253-272.

Rapoport, A., '"The Uses of Mathematical Isomorphism In General
Systems Theory", In Klir, (Ed.), loc.cit.,
ref. (58), pp.42-77.




91.

92.

933

ok,

95.

96,

97.

98.

99.

100.

107,

102.

103,

104,

105.

209

Rapoport, A., '"The Search for Simplicity", In Laszlo, (Ed.),
loc.cit., ref. (64), pp.15-41.

Russell, B., ""The Problems of Philosophy', Oxford Univ.
Press, London, 1973 .

Schoderbek, P.P., (Ed.), "Management Systems'', Wiley Series
in Management & Admin., 1967 .

Schrddinger, E., "Waat is Life?", Cambridge Univ. Press,
Cambridge, 1945 .

Shannon, C.E.; Weaver,; W., "The Mathematical Theory of
Communication''y TIllini Books,
Tllinois, 1972 .

Simon, H.A., "Administrative Behaviour', Macmillan Co.,

New York, 1947 .

, A Behavioural Model of Rational Choice®,
Qrtly. J. of Econ., 1955, Vol.69,
pp.99-118.

The New Science of Management Decision'l,

Harper & Row, New York, 1960 .

, "The Architecture of Complexity®, In ILitterer,
(Ed.), loc.cit., ref. (68), pp.98-11k,
also in General Systems, 1965, Vol.10,
pp.63-76.

Singleton, W.T.; Easterby, R.S.; Whitfield, D.C., (Eds.),
"The Human Operator in Complex Systems'",
Taylor & Francis Ltd., London, 1967 .

Sisson, R.L., '"Sequencing Theory', In Ackoff, (Ed.), loc.cit.,
ref. (1), pp.293-326.

Spur, W.A.; Bonini, C.P., "Statistical Analysis for Business
Decisions', Richard D. Irwine, Inc.,
Homewood, Illinois, 1967 .

Stern, H., '"Information Systems in Management Sciencefi,
Management Science, 1970, Vol.17, No.2,
pp. B-119/123.

Stratton, A., "Total Systems Analysis', First Internal Res.
Conf. On O.R., 1975, Univ. of Sussex.

Valkenburg, M.E. von, "Introduction to Modern Network

Synthesis", J. Wiley & Sons, New York,
19%5 .




N

10

107

108,

109.

110.

1117,

M3

117,

210

Vickers, G., "A Classification of Systems', General
Systems, 1970, Vol.15, ppr. 3-0.

Weaver, W., '"Science and Complexity", American
Scientist, 1948, 36, pp. 556-50k,

Weinberg, G., "Natural Selection as Applied to
Computers and Programs, General

Systems, 1970, Vol.15, pp. 1452150,

, "A Computer Approach to General
Systems Theory', In Klir, (Ed.),
loc.cit., ref. (58), pp. 98-1k42.

Westaway, F.W., "Scientific Method!, Hillman-Curl
Pub., New York, 1973.

Whitehead, A.N., "Process and Reality', Indiana
Univ. Press, 1971.

Weiner, N., "Cybernetics: or Control and Communication
in the Animal and the Machine®™, M.I.T.
Press, Cambridge, Mass., 1971.

Wolverton, R.W., "The Cost of Developing Large-Scale
Software', I,E.E.BE, Trans. On Computers,
1974, Vol. C-23, No.b, pp. 0615-636.

Wymore, W., "A Wattled Theory of Systems', In Klir,
(Ed.), loc.cit., ref. (58), pp. 270~300.

Young, O.R., "A Survey of General Systems Theory',
General Systems, Vol.IX, 1964, p.61.

Yourdon, K., "A Brief Look at Structured Programming
and Top-Down Program Design', Modern
Data, 1974, June, pp. 30-35.

Zander, A., "Resistance to Change - Its Analysis and
Prevention', In Schoderbek, (Ed.),
loc.cit., ref. (93), pp. 200-203.




211

APPENDIX 1

SOME CONFIGURATIVE DATA OF THE QUESTIONNAIRE

The questionnaire was limited in its scope to packages that
cover a part of an operational activity such as: sales accounting;
costing; dinventory control; production control; etc. within an
organization and perform day-to-day operations. However, all

scientific, mathematical and statistical packages are excluded.

The sample of the mail-questionnaire comprised 262 computer

users mainly of the Midland area of whom 104 had completed the forms *

thus yielding a response of about 40%.

The returned forms included the following:

1. Number of companies who make or had made use of packages

Table 1
| No Yes Total
39 65 104
38% 62% 100%

2. Number of companies who are making use of packages

Table 2
No Yes Total
L 57 104
Lo/ 55% 100%




292

The difference between the entries of the two tables,
i.e. 7%, is accounted for those companies who abandoned their

packages. Table (2) is further broken down into the following

a, HNumber of packages per user

Table 3
z
1 2 Total
17 40 57
9% | 7% | 100%

This shows that the majority of package users depend to a

large extent upon packages.

b. Future considerations of using packages by those

who are presently using them

Table 4
No Yes Total»
32 25 57
56% Lhg 100%

c. Future considerations of using packages by those

who are not presently using them

Table 5
No Yes Total
i
39 8 L
83% 17%: 100%




213

Number and function of financial packages

Table 6
Number
Payroll 36 25%
Ledger 15 11%
Costing 8 6%
Others 11 b
Total 70 50%

Manufacturers supplied financial packages

Table 7
Payroll Ledger Costing Others
649 38% 85% L

Manufacturers share of production packages

Table 8
Production | Stock ' .
Control Control Scheduling | Parts B/D
9l 93% 79% 6%




214

6. Overall manufacturers share of packages

Table 9
Manuf. QOthers Total
Number 97 43 140
Per cent 69% 31% 100%

Table (9) is

as follows

broken down by the major manufacturers

Table 10
Other
> T 1
I.C.L. I.B.M. Manuf. Total
48 28 21 97
349 20% 15% 09%




215

APPENDIX 2

AN EXTRACT OF INTERVIEWS QUESTIONS TO ILLUSTRATE

CURRENT USERS THINKING

Introduction

Fourteen manufacturing and business companies who use packages

were selected from those who had completed and returned questionnaire

forms.* This was for the purpose of developing a realistic image of

the practical state of applications packages. In almost all cases the
attitude of the interviewees was that of co-operation and encouragement.#
This has been substantiated by their expressed willingness to always
provide more time as needed to discuss the various aspects of the
problem. Such discussions have helped not only in developing that

image, but more important is their constructive influence upon the

orientation of the research throughout its various phases.

In the following some key questions and the common attitude

towards them are described.

* Cf. attached list of visited companies.

The interviewees were in the main either data processing/management
services managers, project leaders, package specialists, or managers
who are supplied with the output of packages.




216

Trends and Attitudes

Interviewees were asked:

1) What is the degree of package compatability with your

definition of the problem concerned?

The answer to this question varied between fair and good.

Interestingly the latter was maintained by those who use more than
one package and the former by those who use only one package.

However it should be noted that the d.p. practitioners definition

of the problem was very much dissimilar to that of the real package
users, i.e. the production managers. The latter were more critical
and less satisfied. This must be qualified by recording that it was
not possible to conduct as many visits to production departments as

was desired.

2) Vhat did make you decide upon the package and what are

your criteria of selection?

The trend was that they did not have much choice since they are short
of required skills and expertise to undertake project design. Also

as far as selection was concerned packages were chosen in view of two
considerations: 1) compatability with existing hardware and, 2) costs.
In other words, and as expected there does not exist a set of criteria
according to which a user can either decide upon whether to go for a

package or not, or what aspects of the considered package should be

investigated.




3) What is your conception of the package-user relationship?

The general attitude of d.p. practitioners did not regard such a
relationship as a strong one. Accordingly, the user's role starts
and ends with the print-out. This is an obvious serious misunder-
standing of the user-package interaction which is further aggrevated
by the popular view d.p. practitioners regard themselves as being more

knowledgeable about user's requirements and needs than the user himself.

&) Concerning the specific problem the package addresses, e.g.
scheduling, how do you rate your familiarity with the

methods and techniques of this area?

Almost invariably practitioners displayed inadequate understanding of
the characteristics and relative effectiveness of the various existing
techniques. Their individual knowledge is limited to their experience,

and void of basic theoretical background.

5) Who is responsible for software and package maintenance?

A package is considered to be the responsibility of its supplier in

the same way software is seen. The actual design and structure of

either software or a package induce little interest.




218

6) If the package is modular, is each u