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THESIS SUMMARY:

In the last twenty or so years the results of theory and experiment have produced
much information on the characteristics of gas-surface interactions relevant to a satellite
in hyperthermal free-molecular flow. This thesis contains reviews of the rarefied gas
dynamics applicable to satellites and has attempted to compare existing models of
gas-surface interaction with contemporary knowledge of such systems. It is shown that a
more natural approach would be to characterise the gas-surface interaction using the
normal and tangential momentum accommodation coefficients, o° and ¢ respectively,
specifically in the form

3

o=constant , o =0 -0’ sect;
o 1

where &, is the angle subtended between the incident flow and the surface normal and
0,0, and ¢, are constants. Adopting these relationships, the effects of atmospheric lift

on inclination, i, and atmospheric drag on the semi-major axis, a, and eccentricity, e, have
been investigated. Applications to ANS-1 (1974-70A) show that the observed
perturbation in i can be ascribed primarily to non-zero ¢ 1 Whilst perturbations in a and e

produce constraint equations between the three parameters. The numerical results seem
to imply that a good theoretical orbit is achieved despite a much lower drag coefficient
than anticipated by earlier theories. :
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CHAPTER1 -
INTRODUCTION

For the last_twenty years or so the field of satellite acrodynamics has been almost
completely dominated by the results of only a handful of reports and papers generated
during the enormous enthusiasm that followed in the wake of the first man-made
satellites. The results of those papers have been used again and again in the refinement of
satellite orbits and in the derivation of atmospheric densities at satellite altitudes.

The purpose of this thesis has been to review the field of satellite aerodynamics in
the light of the last twenty or so years and to consider the problem in the light of
experimental and theoretical studies conducted therein. The first task was to simply
review the current status of gas dynamics relevant to satellites and to introduce the most
common methods of describing the drag and lift forces on such a body in terms of widely
accepted parameters. This is certainly true of Chapter 2 where the basic concepts of
rarefied gas dynamics are introduced and contrasted with the most popular models of
satellite aerodynamics. From this, we observe that the crucial link between the two fields
lies in the parameterisation of the problem, particularly in the modelling of the interaction
between the atmosphere and the surface of the satellite; models relevant to this problem,
gleaned from contemporary references in surface science, are summarised in Chapter 3
and analytically extended to encompass momentum accommodation coefficients. The
analytical models are shown to be incomplete and the numerical simulations, although
more promising, are shown to lack the quantitative agreement with experiment. In
Chapter 4 a new numerical simulation of the problem has been undertaken in an attempt
to roughen the surface more than existing, greatly idealised, models, in an attempt to gain
the quantitative agreement currently lacking. This was not achieved, although there still
remained much agreement with the observed behaviour of the momentum
accommodation coefficients with angle of incidence, thus further adding to the necessity
to test the new parameterisation on the orbit of a real satellite.

In ordcr to test the model on a real orbit, we must adapt the existing equations of
orbital dynamlcs to encompass the new parameter. This is achieved in Chapter 5 for the
particular case of a flat plate constantly orientated to a fixed position in the celestial
sphere, such as the Sun. In Chapter 6, this is applied to the orbit of the Astronomical
Netherlands Satellite ANS-1, particularly with respect to the variations of the semi-major
axis, the eccentricity and the inclination of the satellite. Here, a full description of the
ANS-1 platform geometry is encompassed in the modelling, including reductions in the
area of certain portions of the body due to shadowing by other faces and panels of the
incident gas stream. The results show that the parameterisation was successful in this

case and has interesting implications on the values of drag coefficients for satellites.
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The field of satellite aerodynamics is a ‘ﬁiﬁiﬁ—diébii)linafy subject as it covers the
areas of rarefied gas dynamics, surface science, atmospheric modelling and, ultimately,
satellite dynamics. In an attempt to form a coherent argument I have had to consider all
of these topics and make no apologies for introducing concepts that may be unfamiliar to
the orbital analyst. Indeed, it has all been necessary to-describe one of the most difficult
and interesting problems in satellite orbital dynamics.
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CHAPTER2 .
SATELLITE AERODYNAMICS

2.1 Introduction

2.1.1 The Satellite Environment
The atmosphere of the Earth extends to high altitudes, albeit at increasingly

low densities as we move further into space. The structure of the lower

atmosphere, say, below 80 km, is characterised by high densities and continuum
flow. However, at altitudes greater than this, in a region called the
Thermosphere [1,2], air density decreases rapidly with the negative exponential of
altitude as given by the hydrostatic equation [45]

1 dp_ lr (2.1)

p or H’
where p is air density, r is altitude above the Earth’s surface and 4 is the density
scale height. The atmosphere here may not simply be considered as a continuous
medium but as a rarefied gas whose properties are determined by the trajectories of
individual particles [1].

The temperature within the thermosphere increases with height due to the
differential absorption of solar radiation until, at about 200 km, the temperature
becomes independent of height. At such heights, the temperature has values
between 600 K and 1200 K [45,3], dependent on the level of solar activity which
varies over a near 11-year cycle.

Because of the very low densities encountered at such heights, an individual
gas particle rarely collides with other particles and thus experiences a negligible
amount of inter-molecular forces. For instance at round 600 km, the average
distance travelled by a particle between collisions (the so-called mean free path) is
of the order of tens of kilometres [1]. The gas-surface interaction between the
individual atmospheric molecules and the satellite surface gives rise to
aerodynamic forces that retard the motion, causing noticeable perturbations over
long periods of time with the result that the satellite falls to lower and lower
altitudes until re-entry is unavoidable. As re-entry only accounts for a very small
proportion of a satellite’s lifetime, this thesis will attempt to characterise the
aerodynamics of an arbitrary body throughout the vast majority of its lifetime, that
of a body moving through a highly rarefied gas.

12




2.1.2 Rarefied Gas Dynamics : - -
In order to classify the particular flow regime about a body in a fluid, it is
necessary to consider the rarefaction of the gas and the size of the satellite. This
manifests itself in the dimensionless Knudsen number, where, if L is a typical
length of the body,
_MEANFREEPATH 2.2)
T .

Kn

For Kn << 1 standard continuum flow is encountered but for Kn > 10 the gas is no
longer a continuum but a highly rarefied and collisionless collection of molecules,
and flow here is called free molecule. For intermediate values of Kn we fall into a
transition regime where the characteristics of both extremes may be observed,
depending on the configurations. Because of the higher rarefaction of the upper
atmosphere, the overwhelming majority of satellites experience free-molecular
flow, exceptions being those in exceedingly low orbits or of very large dimensions.
For instance, the size of the American Space Shuttle means that free-molecular
flow is encountered only at heights above 200 km, approximately [4]. In reality,
the transition regime will not be clearly defined. For instance, if the surface
temperature of the body in the gas is high, a cloud of particles re-emitted by the
surface may hamper the aerodynamic characterisation. Indeed, Cook [14] suggests
that the true requirement for free-molecular flow is

K Vi
> —
Y,

r

where V; and V, are the average speed of the particles incident and reflected by the
surface respectively.

For a molecular gas in a Cartesian coordinate system (X, y, z) where the
molecular velocity is given by ¢ =(c,, ¢,, ¢,), experiencing a force per unit mass of
(X, Y, Z), we can define the distribution function of the gas, F, by declaring that
the number of molecules with velocities between (€1,Cy, ¢3) and (¢, +dcy, ¢, +dc,,

¢y +dc,y) is dN, where:

dN =Fdcdc,dc,, (2.4)

For a body experiencing free-molecular flow through a uniform gas in equilibrium

F is a Maxwellian distribution function of the form [5]

2 (2.5)
F =n(2nRT) *exp{—(c~ V)’/2RT}
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where n is the number density of the gas, T is its ’:térhpéréture, V is the velocity of
the gas relative to the satellite (the macroscopic velocity) and R is the universal gas
constant given by R=8.31 JK* mol..

Consider the coordinate system in Figure 2.1 for a gas striking a unit
elemental surface.

Here, the distribution function is given by

F =nQnRT) *exp{-[(c, ~V cosE)* +(c, + V sinE)*+ c2Y2RT}. 2.6)
For any flux quantity Q = Q(c,, c,, C;), we can find the total flux, 0, on the surface

per unit time where [6]

— oo oo B (2-7)
Q= f f J. Qc,Fdcdc,dc,.
0 —o0 of oo

The most important quantities concerning us are the normal momentum
(i.e. along x,) given by mc,, where m is the mass of the gas molecule, and the
tangential momentum (i.e. along x,) given by mc,. Hence, the total normal
momentum, p;, and the total tangential momentum, T, striking our surface per unit
time are found by replacing Q by mc, and mc, respectively. Hence, if p = nm is

the mass density of the gas, then

pizf f f mclFdc,de,de,
0 —o0 o/ —co

2
—s COs

RT 2
=P —{s cos&e S+

i

i1 S W (2.8)
+n‘(§ +s%cos E) [1+erf(s cos&)]}

‘c,.=f f f mc,c,Fdcdc,dc,
0 e o/ —oo

LRTY L,
=pVsin &(EJ {e“‘ o't | e cos€[1 +erf(s cosf,)]}

where

2 (% p
erf(x):-—zf e dt
R

and s is the speed ratio, defined as the ratio between the macroscopic and the mean
thermal velocities of the gas, and is given by

S =

¥‘<
bﬂo
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Figure 2.1 Coordinate system for a gas particle
striking _an _elemental surface

Figure 2.2 Incidental and reflected momentum components
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As s — oo (hyperthermal flow) we find that we can ignore the thermal velocny ‘and

consider the gas as a collection of : particles all with velocity V. Hence, in
hyperthermal flow,

p;=pV’cos’s, (2.10)

T, =pV’sin& cosé.

For a satellite, the speed ratio is large, typically 10 [5], (although this is
subject to large variations due to temperature fluctuations in the thermosphere [4]),
and the hyperthermal approximation becomes very useful in simplifying the
equations involved. Indeed, it is almost universally the sole consideration for
calculating satellite drag coefficients. However, there is a range of values of
s cos § for which the simplified Equation (2.10) cannot be applied [7] and thus,
when considering flow over a body, hyperthermal flow is only really useful when
the regions for which s cos £ < 1 are relatively small.

So far, we have been concerned with identifying the characteristics of the gas
dynamics encountered by a satellite in a free-molecular gas stream, and have
successfully achieved this in terms of known properties of the incident stream,

e.g. speed ratio, temperature etc. However, if we are to proceed further to derive
the force on such a body, we will require a knowledge of the mechanism
describing what happens when a high velocity particle strikes a solid surface.

The parameterisation of the gas surface interaction required to derive the
force on a body in terms of easily utilised coefficients has been the subject-of much
debate; for the case of satellites, a parameterisation based on the thermal transfer at
a surface is usually adopted, whereas the gas dynamicists prefer a more direct
method based on momentum transfer. Whichever system is adopted, the normal
momentum, p,, and the tangential momentum, 1,, of the reflected £as atoms per unit
time are then calculated so that the momentum transfer and hence force on the
surface can be calculated. If p is the normal momentum transfer and 7 the
tangential momentum transfer on our elemental surface (i.e. lost to the surface),

then considering Figure 2.2,
p:pi+pya ..... (2.11)

T:T"_Tr.

If Fy, is the drag force, and F,_the lift force on our surface, then, according to
Figure 2.3

16




Fy=p cos&+1sink, e e

Fy =—psin€+tcosé.
Hence the forces on a body with total surface area A are given by
Fp= f FpdA,
A

E=f&w .....
A

where, for a complex body, the lift direction will require further definition. In the
case of hyperthermal flow, there will be no gas striking any surface turned away
from the stream and so the integration in (2.13) will be over that portion of the
surface turned towards the stream.

2.2 Accommodation Coefficients

In considering the scattering of a gas particle from a solid surface, we will
assume that there is no chemical reaction between the two and hence assume that mass
is conserved in the reaction. Also, we will assume that the gas particle is always
re-emitted into the atmosphere, albeit at some microscopically later date. We will
assume the convention of Figure 2.4, where the gas particle has mass m, strikes the
surface at an angle of incidence £, with velocity V;and is reflected at an angle of
reflection §, with velocity V,. The angles here are measured with respect to the
surface normal, n. (See Figure 2.4).

When Maxwell [8] first considered the problem of gas-surface interactions in the
last century he suggested that there were two extreme forms of reflection: Specular
and Diffuse reflection.

.Specular reflection is simply the case when the gas particle’s characteristics are
unchanged after reflection, except that it has reversed its normal velocity component
away from the surface (i.e. V, = V;and €, = £)).

In Diffuse reflection, the particle is completely absorbed by the surface only to
be released back in thermal equilibrium with the surface at some random angle of
reflection (i.e. the mean value of V, is (2RT,)"? where T, is the temperature of the
surface and the mean €, is 0°).

17
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Figure 2.3 Drag and lift directions on a flat plate

Figure 2.4 Coordinates of incident and reflected particle
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Maxwell then postulated that we can app’x’foxi;héte a gas-surface interaction by
considering that a proportion, o, of the reflected atoms reflected per unit time will be
diffusely reflected, the remainder being specularly reflected. Hence, if we are
measuring a flux quantity q, where g is its incident value and qy is the value of q
measured in thermal equilibrium with the wall per unit time, then

qg,=(1-o)¢;+0q, (2.14)
where
0<o<1

We see that 6 = 1 is purely Diffuse reflection, whereas ¢ = 0 is Specular reflection.

It is highly unlikely that, in reality, a reflected beam would actually be divided as
proposed. In fact, values of & appear to depend exactly on what the quantity q is.
However, we can formally introduce the accommodation coefficient, ¥, associated
with a scalar flux quantity q, as

aQ-q. (2.15)

p

q; ~qw

where we place no restrictions on the possible range of values of ¥ unless qis
specified.

By far the most important accommodation coefficients are the normal-and
tangential momentum accommodation coefficients, 6" and ¢ respectively (9], and the
thermal energy accommodation coefficient, o, where, if p is the component of
momentum normal to the surface, 1 is its tangential component, and E its kinetic

energy, then

Ei—Er
*“E-E,
, Pi—p, (2.16)
0 b )
p;"]’w
T,-—"C,
c= (1, =0),
T,—T,

19




where

E, =2pRT,,

1 1
P =3 p(2rRT.)’

and p is the mass density of the gas.
Thus, since ¢ and ¢’ describe completely the momentum exchange at our

surface, we can derive the force on our satellite in terms of these two accommodation
coefficients using Equations (2.8) and (2.11). Indeed, for a flat plate of unit area [9]

V2 2__ ; 7 T: ‘Szmsz. 1
p:%s—z[ Tcscosﬁﬁ% T e §‘+{(2a($’)[s2cos?‘§i4—5:,

+92-, n% s cos§;}[1+erf(s cosE)] ],

opV?sin&; [ .
T=

__;\/;_.{ e oo’y +\ns cos&; [1+erf(s cosf;,-)]}

and hence we may derive the drag and lift forces Fp and F| on a flat plate.
The hyperthermal approximation, where we let s cos& — oo, is very useful both

in simplifying the equations and for later comparisons with other models. Thus, in
hyperthermal molecular flow on a flat plate of area A, using Equations (2.12),

Fp=0ApVicost, +ApV’2~0 —0)cos’E, e (2.18)

F, =-ApV*2-06"-0)cos’E, sin€,,

and if we define the drag and lift coefficients, Cp and C,_ respectively, by

1
Fp=3 pVA'C,,

e (2.19)
1 2,47
F, =—-—pV°A’C,,
2
where A’ = A cos&; is the cross-sectional area, then
Cp=2[c+(2-0"-0c)cos’E], L. (2.20)

C, =22~ 0" —0o)cos§; sin&,.

20
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If we further assume that the coefficients o’ and & are constant over all. angles of
incidence, then the drag coefficient for a sphere is/given by:

w221
=2-0'+0.

Dgprrre

In retrospect we can say, since ¢” and G so completely describe the forces on a
satellite, that a study of the momentum accommodation coefficients is all that is
required to understand the problems of free-molecular flow for Earth satellites.
However, the almost total predominance of the thermal energy accommodation

coefficient, a, is due almost entirely to historical timing than any physical necessity.
The concept of a "thermal accommodation coefficient" was first introduced by
Smoluchowski [10] in 1898 and further enhanced by Knudsen [11] in 1911 to
parameterise the heat transfer between a gas and a solid surface. Heat transfer is a
much studied phenomenon, and thus o became a familiar piece of notation in the
world of physics.
In 1957 the first artificial satellite was launched, and the subsequent wealth of

orbital data obtained excited scientists keen to exploit the potential of such knowledge.
In 1959 Schamberg [12] introduced a model of gas-surface interaction that was not
only capable of using the thermal accommodation coefficient, but also discussed the
scattered distribution of the gas atoms which is of great interest to surface scientists.
Other attempts to study the scattered distribution, such as Nocilla [13] in 1963, which

is discussed later, have fallen against the almost universal acceptance of Schamberg’s
model for satellite considerations.

Although momentum transfer at a surface was originally modelled by
Maxwell [8], the experimental difficulties involved in measuring 6" and G set back a
full study until 1958, with Schaaf and Chambré’s [9] work on the flow of Rarefied
Gases. However, because of its use of o and its form of the scattered distribution,
Schamberg’s model has been by far the most accepted model of gas-surface

interaction for satellite purposes.

2.3 Schamberg’s Model for the Scattered Distribution of
Gas Particles from a Solid Surface
Consider a body in hyperthermal free-molecular flow, where, on an elemental

unit surface, each particle strikes the solid with velocity V;, making an angle 6, with
the surface. After interaction, Schamberg [12] proposed that the gas particles are
re-emitted with the velocity V. in a conical beam of half-angle width ¢, about a mean
axis which makes an angle of 6, with the solid surface (see Figure 2.5).
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The angular distribution of the reﬂectediﬁrﬁdcs éﬁeys Knudsen’s cosine law
where the number of particles, dN,, emitted per unit time between angles ¢ and @ +d¢
1s given by
To), 2.22
dN, =K cos Ei . 222

Since we assume continuity, K can be derived from

M=de, .....

where the integration is over the re-emitted beam. Further, N,; is the total number of
particles striking the surface per unit time, given by

N; =nV,sin6,

n;being the number density of the incident gas.

Schamberg considered three types of beam: a linear beam (P,=0),a
wedge-shaped beam where the scattered particles are simply scattered in the same
plane as the incident particles and the surface normal, and a conical three-dimensional
beam. Here we will consider only the three-dimensional case as it is the most widely

accepted, whence

z \2
N; l-—(a) ..... (2.25)
K=—. - :
2n l—i 5 isinq),,

The angle of reflection 6, is related to the angle of incidence ©; by the parameter

v, where

cos@, =(cos®)” L. (2.26)

* The thermal energy accommodation coefficient was defined earlier in
Equation (2.16). For the type of high energy impact expected in space, the thermal
velocity of a diffusely re-emitted beam is likely to be much less than its incident
velocity. Hence we can take the ratio E,/E,; to be, effectively, 0. Therefore

v: o (2.27)

(121—'7‘72‘
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Figure 2.5 Schamberg's gas-surface interaction _scheme
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We can now see that the three parameters ¢, @, and v bﬁinpletely describe the

distribution of the reflected gas particles, noticing that for classically Specular
reflection,

a=0
v=1 (2.28)
¢, =0

and for Diffuse reflection

a=1

V=o0 (2.29)
T

q)o _E

We may now proceed to find the normal and tangential momentum reflected per
unit time, p, and T, respectively. These are found to be

vZ . 29 q)( )Vr Sin 9?‘
=pV’si . ——
p,=pVv;sin b, b, V. sin®, e (2.30)

V, cos6,

1, = pV,-z sin 9‘- . COS 9‘- . (I)((bo)v . E‘(;é“,

where p is the density of the incident beam, and ®(¢,) is the beam width function
given for a conical beam, by

Thus, the normal and tangential forces in our surface are given by

Ve, |14 )V, sin©,
p=prismns; + o0, V; sin®;

0 0o, |10 V, cos®©,
T=pV,; sin6; cosH; - (¢°)V, cos®; |’

If we assume that @,, & and v are constants for all 6;, we find the drag coefficient
of a sphere 1s

24




v £ ‘ -
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where

L) =f01x\/(1 =x™) (1 -x%)dx.

Notice that this is a highly complex method of deriving satellite drag and lift
coefficients for the general case. In order to utilise o we must introduce two new
coefficients, @, and v, for which we know nothing about any realistic numerical values
or behaviour over varying angles of incidence. Schamberg recognised this, and
realised that by setting ¢, and v to their diffuse or specular values we could simplify
the equations immensely, and proposed the definitions of quasi-specular and
quasi-diffuse reflection.

In quasi-specular reflection, ¢, and v take their specular values (¢, =0and
¥ = 1) and hence, using Equation (2.27), p and T become

p=pVisin’e; |1,y

..... (2.35)
T=pV/sin 6, cos 6, [1 —( —a)}i]
giving
Dspurpe =
Similarly, for quasi-diffuse reflection, @, = ; and vV — oo, implying that
2 - 2 2 %
p =pV;sin"6; [1 +§(1 —a)]
..... (2.36)

T=pV/sin6, cos 6,

and

<

CDSPHERE = 2{1 +§(1 —(X);].

The range of applicability of the "Quasi” models remains unknown. Since
purely specular reflection has never been observed, the quasi-diffuse model has
remained popular, as we can admit non-diffuse values of o in an easy analytical form,
as in the case of Cook [14]. However, we have no reason to believe that quasi-diffuse
reflection occurs in all situations, and by accepting that it does we eliminate a large

number of possible alternatives.
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Perhaps the greatest criticism levelled at Schamberg’s model is in his
interpretation of the model and the restrictions he placed on the numerical values
obtained. Firstly, he calculates values for purely diffuse reflection, then for purely
specular reflection and hence assumes that any non-specular and non-diffuse reﬂeétio_n
will fall between these values. This is based on the false assumption that, if o =0 for
specular reflection (although o = 0 does not necessarily imply purely specular
reflection) and o = 1 for diffuse, then for intermediate values the beam will sweep
between them, i.e. that 0 < ¢ < | implies v > 1. This is disputed by Goodman [15]
(and also by Bird [6]), who claims that, in the majority of cases, v < 1 would have
been better. Indeed, Goodman [16] has pointed out that reflection below the specular
angle is a characteristic of the interaction at such energies, backed by experimental
results such as those of Calia and Oman [17], Romney and Anderson [18] and Miller
and Subbarao [19], along with Nocilla’s [13] interpretation of the experiments of
Hurlbut [20]. Thus, to regard specular reflection as an "extreme" in the sense of a
boundary of the reflected possibilities must surely be rejected in favour of some

method that is not restricted by such intuitive prejudice. In its most general form,
Schamberg’s model has attracted some praise from Goodman [15] and, indeed, some
of the notation was used by Kogan in 1969 [21].

The form of Schamberg’s equations compares very well with the model using
the momentum accommodation coefficients in hyperthermal flow. Indeed, equating
Equation (2.33) with Equation (2. 17) obtained earlier, we find, when we let s — oo,
that

) V, sin®,

o' =1 —<D(¢a);,:-sin 6 (2.37)
V, cos®,

c=1 _(D(q)”)—v?cose,-

which means that, for quasi-specular reflection

&= (2.38)

and for quasi-diffuse reflection
o' =1 ——32-(1 - oc)%cosec 0,
c=1.
In anticipation of the remainder of this thesis, it will be interesting to compare
Equations (2.39) with the results of the Chapters immediately following which
describe the theoretical and experimental behaviour of the momentum accommodation

coefficients.
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2.4 Other Models of the Reflected Distribution 7

2.4.1 Introduction ,

Insofar as satellite orbital dynamics is concerned, Schambeng’s modéi ‘has
been almost omnipresent throughout aerodynamic studies in the upper atmosphefe.
Indeed, Cook [22] in 1965 made a full enhancement to the model by estimating
values of the thermal accommodation coefficient subject to the surface chemistry,
to finally [14] introduce angular dependence using quasi-diffuse reflection.

Cook’s deductions have been almost universally accepted, as has his value
for the drag coefficient of a sphere as 2.2 which has been the basis for many
studies of the thermosphere (e.g. the CIRA 1972 atmospheric model [3]).
However, Cook’s model demonstrates all of the flaws of Schamberg’s model and
must therefore be unacceptable as a justification for the drag coefficients utilised in
such studies. Further models of gas-surface interaction have been developed over
the years, of which those due to Karr [23] and Nocilla [13] are examples.

2.4.2 Karr’s Model
This model differs from most others as Karr [23] does not attempt to describe

the form of the scattered distribution, preferring to say that we can approximate its
characteristics by a thin pencil beam of re-emitted particles, all with velocity V, at
an angle 6, with the surface tangent.

In almost total analogy with Schamberg’s quasi-specular model (that is,
setting @, = 0) he assumes we can describe V, using the thermal energy
accommodation coefficient, but introduces a new parameter P; to describe the angle

6,, where:

T
0,==P,+(1-P)8,

T2
Restricting P; to the range 0 < P; < 2, he does allow backscattering (i.e. 0,> ;f) up to
a point, but thus attracts many criticisms for not allowing sub-specular (6 < 0,
reflections.

Using the notation of former chapters, the normal and tangential forces on a
unit element are given by

! sin{fP-+(1 _P‘)Gi]
=pVZsin’6, -y - :
p=pVisin'o; |]4+(1-0) sin, | ... (2.41)

1 co EP»+(1 -P))o;
T=pV,—2$in9‘-COSGi 1-(1-a) S[z J J ] .
cos6;

27




Notice that this is still a difficult analytical model and we have lost any of the
generality of Schamberg’s model.

If we assume the constancy of o and P, the drag coefficient of a sphere is
given by [57]

v Hl-cosPs| e (242)
Cp=2+(1-a) ——_.(P(4 P;J
A=

The simplicity of equations such as (2.42) does allow the possibility of using
satellite data to find values for P, and a.. Indeed, Karr used the technique on the
OVI-15 satellite obtaining 0.64 for o and 0.44 for P,. However, assumptions made
for the form of the scattered beam make the interpretation of such results difficult,
particularly when so little experimental data is available for P,

2.4.3 Nocilla’s Model
In 1963, Nocilla [13] proposed a model based on the assumption that the

reflected gas stream has a Maxwellian distribution with macroscopic velocity V,
Hence, the number distribution F is given by:

Here, ¢, and n, are the most probable thermal velocity and number of

molecules per unit volume of the re-emitted gas. The two parameters used to

describe this beam are the angle of reflection

with the surface normal, §,, and s, where

If we are allowed to vary &, and s,, Nocilla discovered excellent correspondence
with the experimental results of Hurlbut [20].

The only criticism levelled at Nocilla (e.g. Cercignani [7] and Goodman [15])
is that the beam is not related to the incident beam in any way. However, Nocilla
récognised this and suggested the introduction of two new parameters, {, and {,

where
V,sin§, = (1-L)V;sing;

V, cos&, =(1-L,)V,cos&.

(Note that {, and , are closely analogous to tangential and normal

accommodation coefficients.)
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Hurlbut and Sherman [24] have attemp'tea «tlo:’dse?NociHa"s model to cé’icuiate
theoretical drag coefficients using the three parameters @, s, and 6, but, despite
including linear variations in aand s, restricted their views, basically, to lie within
diffuse and specular reflection thus neglecting a large range of possibilities.

2.5 Conclusions

For each of the models of Schamberg [12] and Nocilla [13] we have witnessed
attermnpts to initially model the scattered distribution of a gas stream and then introduce
some parameterisation that links the reflected and incident gases. However, to make
such parameterisations feasible, Schamberg, Hurlbut and Sherman [24] and, to some
extent, Karr have to place restrictions on them according to their own intuitive ideas of
the distribution behaviour. The restrictions are generally viewed with scepticism by
the surface analysts and the rarefied gas dynamicists as described. Thus, when
introducing a parameterisation we must place as few restrictions on it as possible such
that we can truly explore the nature of the interaction of the thermosphere with a
satellite surface and properly relate them to theoretical and experimental data.

As already mentioned, for aerodynamic purposes we are not strictly concerned
with the scattered distribution of gas particles from a surface but only with the
momentum exchange, which is completely described by the normal and tangential
momentum accommodation coefficients, 6" and o respectively for all cases of
free-molecular flow. Initially, they were not adopted because of insufficient data, but,
due to recent improvements in experimental techniques we can now make certain
assumptions about their behaviour, and also relate our results directly to the
laboratory. Further, 6" and ¢ have already been the subject of theoretical analysis, and
surface models already exist for comparison with observed data.

Thus, the remainder of this thesis will be concerned with a study of the
momentum accommodation coefficients and then to apply any conclusions to the orbit
of the satellite ANS-1 (1974-70A).
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CHAPTER 3 -
MOMENTUM ACCOMMODATION COEFFICIENTS

3.1 Introduction - Thermal and Structure S cattering

The gas-surface interface has remained the subject of much study, not *‘on‘lvy for
aerodynamic purposes but also to study the structure of crystal lattices, the electric
potential between gas atom and surface molecule and boundary problems affecting
solutions of the Boltzmann equation. Most of the relevant references are covered by
Tully [25]. However, most of the work relevant to the satellite aerodynamicist was
covered in the 1960’s and is best summarised in a review paper by Goodman [16].

An important consideration in the field of gas-surface interactions is the relative
energy of a gas particle to a surface particle, manifesting itself in the parameter t,
where, if E, is the kinetic energy of the gas particle striking the surface and T, the
temperature of the surface, then [16]

E, I 3.1
kT,

I =

where k is Boltzmann’s constant.

If t << 1 the gas particle strikes the surface in such a slow fashion that it can
easily detect, and is changed by, the thermal vibrations of the surface particles. Also,
if the gas-surface particle electromagnetic potential is large enough, the gas particle
may not actually penetrate very far towards the surface molecule and it may thus
behave as if it is striking a "smooth" surface. Such a process of gas-surface interaction
is called Thermal Scattering [16].

As the energy of the incident gas particles increases, the degree of penetration
into the surface increases until, with t >> 1, the gas particles are effectively striking
the individual molecules of the surface which, because of the high incident velocity of
the gas, can be taken to be relatively stationary at collision. This type of scattering is
called Structure Scattering [16].

“In structure scattering we can assume, effectively, that T, = 0 (i.e. that, on
collision, the motion of the surface particle is negligible compared to the gas particle)
and that the gas-solid interaction is governed by the laws of "billiard ball mechanics" -
perfectly elastic collisions. Here we will assume that the gas particle is much lighter
than the surface particle. If this were not so, the gas particle may penetrate into the
surface requiring extensive further analysis to describe the possibilities of absorption

or outgassing.
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An interesting point to notice is that, generaﬂliy,: in thermal scattering most
particles are scattered above the specular angle (SUBSPECULAR) whereas as we
approach structure scattering most particles are scattered below the specular angle
(SUPRASPECULAR). This observation was first noted by Oman [26], with the
subsequent backing of experiment (e.g. Calia and Oman [17], Romney and
Anderson [18] and Miller and Subbarao [19]).

For the majority of satellites t >> 1. Indeed, for a hydrogen atom striking a
surface where T, = 1000°K at a velocity of 7 km/s we find that t ~ 3, which implies

that the majority of neutral particle interactions will be characterised by structure
scattering.

3.2 Elastic Collisions

Let us consider the two-dimensional elastic collision between a dynamic gas
particle of mass m, and a stationary surface particle of mass M. Assume the gas
particle has initial velocity V, at an incident angle &; to the surface normal n. After the
collision the gas particle has velocity V, and angle of reflection &, with the surface
normal, whereas the surface particle now has velocity u (Figure 3.1).

Thus, for this collision the thermal energy, normal and tangential momentum
accommodation coefficients, o, ¢’, and ¢ respectively, by definition, are given by:

We will assume that the masses m and M are spherical and, for the moment, we
will take m < M, which allows the gas particle to "bounce" away from the surface
particle after collision. Also we consider for simplicity that there is only one collision
between particles and that there are no further collisions between the reflected gas
particle and the surface.

Now, for the general case, the gas particle can strike any parts of the hemisphere
turned towards it. We will define ¢ to be the angle between the surface normal and
the point of collision on the surface particle, as in Figure 3.2.

An elastic collision between the two particles, where energy and linear
momentum are conserved, has the following consequences for our accommodation

coefficients:
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n (= Surface
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Figure 3.1 Particle states before and after collision

Before Collision

Figure 3.2 Scheme for the collision between two particles
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If we take the scheme of Figure 3.2 we ﬁnd’thét, for a conservation of kinetic »
energy,

mVi=mVvi+ My?
which implies that

2 2
wWwie=e*

where u—’—n—
=3

Conservation of linear momentum in the y-direction implies that
V:sin(€; +¢) =V sin®

which may be rewritten as:

(1-a)cos’® = (1 o) —sin®E,+¢). e (3.4)

Conservation of momentum in the x-direction implies that
mV;cos&;+¢) =Mu —mV cos

which may be re-written as
u=p{V,cos(§;+¢)+V,cos6}. . (3.5)

Hence

u = p*{Vicos’ €+ ¢)+ Vicos’ 0 +2V,V, cos(€; + ) cos6}.
Using Equation (3.3) we find that

|%
o= M{COSZ(Q +¢)+ (1 -a)cos’0+ 2—V—fcos B cos(E; + ¢)}

and after a substitution of Equation (3.4) we see that
V,
(14w =2pcos&; +6) {cos(ig +¢) +70056}

which equals

v, (1 +po

— =——————cos(E. +¢).

v, S cosg + ) GO
Squaring both sides we see that

I+  (I+po
4u?cos*(E; + o) n
and by a further substitution of Equation (3.4) we see that
i —1- I+p o
1+p 4pcos’(&; +¢)

+ cosz(éi +0)

(1 -t)cos’0 =
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and hence

4p 2
1+ u)2cos & +9).
This may now be used to derive comparable results for 6" and ©.
Our definition of ¢ may be adapted to Figure 3.2 to give
. V, sin(¢ + 6)

g=
V" Sin‘E_,,

Now, a re-writing of Equation (3.3) gives

whereas (3.6) gives us

2

r 4p 2

1——L =8 Cos%E + ).
VT 0 & +9)

Equating these two gives us
u =V,ocos(&; +¢)

where

2

G=——.
1+

If this is now substituted into (3.5) we see that

(c- 1V, cos(E; +6) = uV, cos 6

and multiplying both sides by sin ¢ we find that
V,cos0sin¢ = (1 — 6)V, cos(&, + ¢) sin 6.

A re-arrangement of (3.4) gives us
V,sin@ . cos¢ = V;sin(&; + ¢) cos ¢.

The sum of these last two equations gives us, after some manipulation,
V. sin@+0) 1. . sin(29+E,)
V;sin§; 2 sin&;

from which we find that

sinR¢ +€;)
~ sing |

V,cos(¢+0)
- Vicosé;

1 -
==—2-0) 1
o 2( o)

Now, o'=1
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and, in analogy to the method used to derive ¢ we find that

cos(2¢+¢&: ¥ L (3
L Cos20+8)

1 -
0'=2-=(2-0)| 1
2( ) cos&;

Thus, if we believe that the gas particle can strike all of the surface turned
towards it, then

_r o (3.9)
> -G<o<Z-¢

We can now find average values of a, ¢’ and o (given by o, 0’ and &

respectively) over all values of ¢, namely,

PR
(1+p)?
— A 1
0’:1(2+0) (3.10)
2
8~1@—&
=5 ,

The value of o in (3.10) was first suggested by Baule in 1914 [27], but because

of shielding by other surface atoms, restricting the possible values of ¢, a more useful
value is

kw 3.11)
(1+py?

where 2 <k <4. Equation (3.11) was used by Cook [22] who, by using Schamberg’s

a=

model for the reflected distribution, evaluated the drag coefficient for a variety of
regular objects, concluding that despite some uncertainty, the drag coefficient for a
sphere will lie around 2.4 for a satellite.

We note here that Oman found a good empirical value for o would be [28]

A4 (3.12)
a —————-———~(1 +u)2cos§,-.

Using this expression and the quasi-diffuse and quasi-specular models of
Schamberg, Cook [14] concluded that the drag coefficient of a sphere would be
around 2.2, with an error of less than 33%.

This empirical result aside, the value of averaging values of ¢ must surely be

questionable, especially when we have taken no account of the direction of the
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re-emitted beam. If we examine 57 we find that it is always greater than 1, which
implies that, on average, most particles are reflected into the surface, and if we find
the drag coefficient of a sphere using ¢’ and © in Equation (2:41), we obtain

=2-G

DSPHERE -

i.e. a value that is always less than 2 would certainly contradict Cook’s results.
Despite the good results for o, backed up by experimental results such as those

by Oman et al [29], the implications of this type of averaging on the force on a

surface, and hence ¢’ and o, are surely preposterous when we do not consider the full

effects of multiple collisions and shadowing by adjacent particles.

3.3 The Hard-Spheres Model

Due to the complicating effects of multiple collisions and shielding, an analytical

model of elastic gas-surface interactions would be hard to achieve. Thus, numerical
simulation of these effects could substantially improve our knowledge of elastic
gas-surface collisions, providing useful empirical behavioural relationships. In 1967
Goodman [30, 31] developed a 3-dimensional computer simulation of the problem,
assuming that the surface could be represented as a regular 2-dimensional array of
similar spheres that are initially stationary. This is the Hard-Spheres model.

Denoting the type of array by S, he considered two forms of the arrangement of
molecules on the surface: S ='square and S = triangular, where L is the distance
between adjacent surface molecules and ¢ is the polar angle describing a direction
relative to the surface particles. (See Figure 3.3.)

Given that the radii of the gas atom and the surface atom are r, and r;
respectively, he assumed that the gaps between the surface atoms are small enough to
prevent a gas atom from penetrating through, i.e. that for S = square,

r:+rg>—

\2

and for S = triangular
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S = SQUARE S = TRIANGULAR

Figure 3.3 Square and Triangular surface arrays
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r.o+r > L
5 4 \/§ °
He interpreted his results, calculated over many possible trajectories, in terms of
five basic parameters: '
(1) The array size parameter R, where
rtr,
L

restricting it to the range 0.9 <R < 1.3, which covers many values of
interest to the gas-surface analyst (see Table 3.1).

SYSTEM mn R
He -W 0.0218 1.0
Ar-w 0.217 1.1
Xe- W 0.714 1.2
He - Ni 0.0682 12
Ar - Ni 0.680 1.4

Table 3.1 - y and R Values for Different Gas-Surface Combinations (Goodman [31])
(1) The mass ratio, i, where 0 S p < 1.

(ii1) S, the type of array.

(iv)  The spherical angle of incidence, 6, (= n-E,).

(v)  The direction along the array, given by @,.

A selection of the results for the accommodation coefficients are given by
Figures 3.4 to 3.7.

Goodman concluded that the results for the accommodation coefficients were
generally independent of ¢, and that an approximate correlation of the results could be

obtained by the equations:

O = e 30t cosé,

(1+p)?
o' =0',— 0o sec; e (3.13)
o =C . cos¢;

where ¢’y > ¢’, > 0 and C > 0, each parameter being a function of pt and R. For the

scattered distribution, excellent agreement with experiment is achieved (see Figure 14

of reference [16]).
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Fiqure 3.4 Goodman's simulation results for p=0.1, R=0.9,
S=triangular and ¢,=0
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Figure 3.6 Goodman's simulation results for u=0.9, R=0.9,
S=square and ¢,=45°
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Fiqure 3.7 Goodman's simulation results for u=0.9, R=1.3,
S=square and ¢,=0
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If we consider Cp,, using the accommodation coefficients in (3.13) we find

_ , 4 8
2—00+§0’,——C- . (314)

CDsprmu - 15
Estimating his results for p = 0.9, R =09, S = square and @, = 0, then

CDSPHERE~ L1

whereas for {1 = 0.1, the same system gives
CD ~ 1 .6.

SPHERE

Goodman’s hard-spheres model was developed in 1967 when there was little
experimental evidence for the behaviour of the momentum accommodation
coefficients with angle of incidence. However, due to improvements in Laboratory
techniques, some evidence has surfaced. Hence, before we can come to any

conclusions, a consideration of such results is needed.

3.4 The Dependence of the Momentum Accommodation
Coefficients On Angle of Incidence

Experimental values for 6" and ¢ have remained elusive for many years. When

Schaaf and Chambre considered their use in 1958 [9] they considered values of ¢ that
were obtained by Millikan in 1923 [32] only, as there were no comparable values for
¢’ and no indications of behaviour with angle of incidence.

The behaviour of the drag and lift forces with angle of incidence, and hence ¢’
and o, remains a crucial ingredient to properly formulate the aerodynamic problem for
satellites, particularly when many satellites are oriented in some direction, meaning
that the incident angle with the atmosphere sweeps only slowly over the body of the
craft, thus producing effects pronounced over only one portion of the orbit.

There has been a significant improvement in the measurement of ¢ and ¢
throughout the last twenty years, ranging from the measurement of ¢ by rotating disks
in a stationary gas [33] to the firing of molecular beams at targets placed, at various
incident angles, in their path [34, 35, 36, 37, 38]. Indeed, we have now seen actual
satellite samples in such devices such as the firing of N, molecules on surfaces of the
type used on Echo I and Echo II [39]. Also, Boettcher et al [4] have placed a model of
the TD-1A satellite in a high speed vacuum wind tunnel. However, to fully utilise
such work, we need to study the behaviour of the two coefficients ¢” and ¢ and see

what generalisations can be made.
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The tangential momentum accommodaﬁoncoe’fficieﬁt, o, was perhaps the least
elusive of the two, as it best describes the “friction" between a gas and a surface.
Thus, many values for a general angle of incidence are available, such as the studies
by Thomas and Lord {33] and Lord {40]. Most of the recent studies of the variation of
¢ with angle of incidence have been done in conjunction with ¢’, and have shown a
degree of inconsistency in the trends affecting 6. Indeed, although Doughty and
Schaetzle [37] show that there is a marked linear decrease in © as the angle of
incidence with the surface normal &; increases, other references seem to suggest that,
although there may be some variation of ¢ with &, this is only very slight. This is
certainly echoed in the work of Steinheil et al [34], where ¢ may increase or decrease
depending on the purification of the surface. Also, Liu at al [38], firing Helium atoms
at an aluminium plate, and Seidl and Steinheil [35], firing Helium at sapphire, have
shown that, for these systems at least, a constant value of ¢ can be adopted with only a
small margin of error.

The normal momentum accommodation coefficients, ¢’, have displayed

characteristics that are far more consistent from experiment to experiment. All results
(e.g. [35, 36, 37, 38, 41]) show that ¢” decreases as the angle of incidence increases,
starting off very slowly but increasing as a grazing angle is approached. Such
observations prompted Knuth [42], when assessing many results together, to suggest
the following empirical behaviour for ¢". Under the assumption that all of the surfaces
are "cold" (p,, = 0), Knuth suggested that

s =1 for 0 <&, <30°

g (3.15)
— -] o < . o
50° for 30° < &, < 90°.

=1

If we adopt this model, we find that, assuming © is constant, the drag coefficient
for a sphere is given by

C,  =199+0.

SPHERE

However, if we assume that ¢ = ¢’, we find

= 1.67.

Cppipns =
As an attempt to describe general trends, Knuth’s model is adequate, but the
suggestion that there is such a marked change in behaviour at &, = 30" has certainly
never been detected. Perhaps a more interesting observation is that the behaviour of
o’ seems highly reminiscent of the behaviour of 6" in Goodman’s hard-spheres model

[31], where he suggested that 6" could be suitably described by the relationship




/ g

O =0y~0' seck,. & c . (3.18)

Indeed, by choosing suitable values of o, oand¢’; we find excellent
correspondence. For instance, the results of Reference [38], shown in Figure 3.8,
suggest that 6'~0.84, ¢',~0.12and ¢ ~ 1, which implies

Cp. =232

SPHERE

.....

and the Helium on sapphire results of Reference [35], shown in Figure 3.9, imply that
0, =1.09, ¢, =035and 6 =0.72, giving

=2.1.

Dspyrre

When extrapolating their experimental results, Knechtel and Pitts [36] observed
values of Cp___of aslow as 1.71, thus suggesting that results obtained in a
consideration of momentum accommodation may appear initially contradictory to the
values of Cp_,__ ~ 2.2 obtained by Cook [14, 22]. However, the majority of
experimental values are found for highly specialised surfaces and often using a gas of
a single constituent. Thus, any values of ¢, ¢’;, and ¢ found in the laboratory must be
treated with caution as there remains much uncertainty about the particular surface
chemistry of satellite bodies in the Upper Atmosphere. Perhaps the most interesting
result of the experimental work, is that, at least for ¢’, gas-surface interaction displays
many of the characteristics of Goodman’s hard-sphere’s model.

Where Goodman has failed is in his values for ¢, where, although generally flat
and invariant curves are demonstrated in agreement with experiment, they are
consistently low in value, hardly ever exceeding 0.5. Laboratory results, however,
show very high values of o, often exceeding 1 (a characteristic of backscatter) but
seldom falling below 0.5. This seems to suggest that a model of the surface based on
a regular array of spheres will never produce the characteristically high levels of
"friction" found for real surfaces. This may be explained by the observation that the
majority of engineering surfaces will not exhibit a crystal-like regularity of atoms due
to a composite nature and the method of manufacture. Thus, rather than discard
Goodman’s analysis due to its idealism, it would be useful to see if we can, using his
principles, construct an artifically roughened surface which will model more

effectively the behaviour of a real surface.
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HAPTER4
ELASTIC COLLISIONS AND SURFACE STRUCTURE

4.1 Introduction

Goodman’s hard-spheres model, although presenting us with good qualitative
agreement with experimental observations, fails in being incapable of producing the
correct quantitative results required for a given gas/surface combination. However,
this failure does not imply that the model is inadequate and should be discarded - quite
the reverse.

As discussed in the previous chapter, the general trends of the model seem to
positively mimic the trends of experiment; that is we see a marked decrease in the
value of ¢” with increasing angle of incidence, whereas variations in ¢ are generally
not so pronounced. This would seem to suggest that elastic scattering has succeeded
in one respect and perhaps further parameterisations are needed to compensate for
unknown processes that may occur at a real surface.

The hard-spheres model is, indeed, idealistic. We have assumed that each of the
surface particles are spherical and arranged in a regular, flat, array which only occurs
in crystalline materials at a perfectly formed facet. Furthermore, we have assumed
that all gas particles are of one size and all surface particles are of another size. In the
real world this is hardly ever the case, particularly in space where the surface is more
likely to be some alloy or composite material, and the atmosphere is a mixture of
various atomic and bi-atomic particles. This is further complicated by the observation
that the surface may react chemically with the atmosphere. Serious degradation at the
surface of many different materials in space has been observed, such as in the
shuttle-borne STS-8 experiment [61].

However, the modelling of structure scattering by elastic collisions is a widely
accepted technique, and has appeared particularly useful when the gas particle is very
light (L« 1). Indeed, more recently Steinbruchel [43] used a 1-D array of capped
cubes to model a surface with elastic scattering.

The results of Goodman consistently show an underestimated value of o,
suggesting that a 2-D array of spheres does not display the correct amount of "friction"
anticipated at a surface. Thus, we may conclude that the correct “"friction" may be
achieved by adding more structure to the surface and roughening its features. It must
be stressed here that we are no longer trying to parameterise the momentum exchange
in terms of elastic collisions and surface structure.

We will confine the following analysis to a study of a 1-D surface with periodic
"peaks" and "valleys", beginning with a description of a generalised surface and

leading towards a computer simulation of the problem.
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4.2 Generalised Surface Structure

Like Goodman, we will consider the collision of dynamic, spherical ggas particles
of mass m with a stationary surface. However, to simplify calculations a more
convenient “surface” to consider is the surface generated by the centres-of mass-of the
gas particles at closest approach to the surface. This enables us to consider only a
point mass m striking the "collision surface", a familiar concept to surface science,
which vastly simplifies calculation. (See Figure 4.1.)

Let us consider that a portion of the collision surface can be represented by
successive arrangements of a curve T, i.e. that the surface is periodic in I'. The normal

to the whole macroscopic surface is given by N and the tangent by T. (Figure 4.2.)

A point mass, m, strikes a point P on the surface at an angle of incidence of §;

and is reflected at an angle €, to the surface normal at a velocity V,. The normal to the
curve I at P is given by n,, which subtends the angle of &, with the surface.

We are considering here that the curve I' lies in the plane of the paper and hence
that all vectors shown in Figure 4.2 are coplanar. This is feasible from the

observations that, firstly, a single collision between two particles lies in a single plane
and, secondly, that no experiment of surface scattering has ever shown any

dependence on the "yaw" angle, i.e. a rotation of the surface about the macroscopic
normal N. In developing more sophisticated models some 2-D structure may need to
be introduced such as lattice structure, but here we are principally concerned with a
simple assessment of the effect of surface structure.

The mechanics of the collision at P is-described by the point mass m striking a
stationary "hard-cube" of mass M, which has a normal of N, (see Figure 4.3). Note
here that N, the normal at point of contact, passes through the centre of gravity of the
cube, i.e. the momentum exchange is translational rather than rotational.

The "hard-cube" was first introduced in 1966 by Logan and Stickney [44] as a
model for thermal scattering, where Ny = N. Note here that the model of Figure 4.3 is

exactly equivalent to the hard-spheres model when the line between the two centres of

mass at collision makes an angle o, with the surface normal, i.e. Figures 4.3 and 4.4
are equivalent.

Adopting the notation of Figure 4.3 we see that, by setting ¢ =0 in
Equation (3.8),

V. cos(&, + 0p)

_ =G
V;cos(§; — o)

and, since the "cube" is smooth
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,Collision Surface

s Actual Surface

Fiqure 4.1 Relationship between collision and actual surfaces

A
Figure 4.2 Generalised collision surface parameters




gure 4.3 The hard-cubes model

Fig

4 The hard-spheres model
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V,sin(€, +a,) = Visin(g, - Q).

Thus by simple substitution between (4.1) and (4.2), we find that the angle of
reflection, &,, is given by

1 4
tan(€, +a,) = - tan¢, -,y 4.3)
which can then be substituted back into (4.2) where
V,_sinG-o) 4.4)

V. sin(E +op)

If the system consists of a very light gas particle striking a perfectly flat plane of
"hard-cubes" then one collision only would suffice as the incident particle would
always reflect away from the surface. However, we are implying for this analysis that
there is noticeable surface structure and that further collisions are possible.

Multiple collisions are modelled in analogy with Goodman in that after collision
we assume that the surface returns to its initial state (i.e. stationary "hard-cubes"
arranged on the original curve I'). This is basically for simplicity, assuming that the
after-collision velocity of the surface particle is immediately dissipated throughout the
body of the satellite.

Thus, we simply model the collision using the same system of equations as
before, this time using

v,=v. (4.5)

§=n-¢

to describe the incident state of the gas particle. We must determine the new value of
o, by finding where the particle will strike the surface again. We can now find the
angle of reflection from (4.3) and the new velocity ratio from (4.4). The ratio of this

second collision velocity with the original velocity is given by

V

rNEXT VrNEXT __‘/_r

Vi v, 'V

:

where V, yxr is the current velocity of the particle.
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Shadowing is another phenomenon of the col 1sion where,-dependent on the
incident angle, the particle will only be able to "see" a certain portion of the surface,
the remainder being hidden due to surface structure. This; as for multiple collisions,
depends on the particular surface structure involved.

After many collisions, we find that the particle is reflected away from the surface
at an angle of reflection &, g, with velocity V. rnaL-

Thus:
o' =1— Vimar€0sEepa. L. “.7
i V;cosé;
ooy Yrmasinbeme (4.8)
V;sing;

Obviously, to account for surface structure and shadowing, many conditions and
collisions are necessary, making numerical simulation unavoidable.
If we take the case of a single collision without shadowing, we may derive

analytical results. For instance, in accordance with Equations (3.7) and (3.8), this case

gives us:
1 - cos(¢;, -20)1 (4.9)
6'=2-=(2-0) 1+—-—S§—P)
2 cos&;
1 - sin(, -20,)1 e (4.10)
=—QR-0)| 1 -————|.
°=3 @2-0) sin&;
If I is a continuous curve represented in a cartesian coordinate system, Oxy, by
y(x), then
R d el (4.11)
'=2-(2- + tan&;
© ( G)[Hd’ 1+d? ]
and
R d? 4 .1 e (4.12)
oc=02-o0 + cot&;
2-6) 14+d* 1+d* &
where
d
d= Ey [p=tan,

We must not underestimate that this is a special case - previous experience has
shown us that multiple collisions are vital in such models and perhaps more study is

necessary before we can attempt averages of Equations (4.9) and (4.10)over I.
If we take fully into account shadowing and multiple collisions, the conditions

that have to be met make a consideration of a general surface impossible, and hence

we will consider two idealised surface structures: a pyramidal and a "corrugated”

model.
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4.3 The Pyramidal and " Corrusated" Mbdels//

We consider that the surface may be represented as a regular 1-D array of two
types: a simple arrangement of alternately sloped faces, forming pyramidal structures
of inclination @,; a “corrugated" array of alternately convex and concave circle arcs,
each with half-angle a,. (See Figures 4.5 and 4.6.)

For the pyramidal model, evenly distributed particles were fired at each slope
(neglecting a slope when shadowing was present) and averages of ¢” and ¢ were
calculated, taking into account the proportion of the incident stream striking each face.

For the corrugated model a simple arrangement of target points on the surface
would not truly reflect the proportion of particles striking it. A system similar to
Goodman’s was used, in that n points were evenly distributed in a line between A and
B and a trajectory was chosen to go through each (Figure 4.5.).

Note that we confined calculation to be between points A and B for each surface
(see Figures 4.5 and 4.6) as a particle falling here will not hit any part of the surface
beyond A and B.

Modelling for the pyramidal structure was much easier, as each particle will
strike the surface at the same incident angle and thus be reflected at the same
reflection angle and at the same velocity. Shadowing is not a consideration for the
initial collision as all particles will hit the surface with the same orientation; however,
shadowing is important for reflected particles, as their starting position is necessary to
determine if and where a second collision will occur.

For the corrugated surface shadowing is important at all stages. For the initial
incident stream the shadowing is straightforward, but as the slope of the surface is
continuously varying, the trajectory of each particle will differ as will its origin, thus
meaning that the shadowing effects of the surface structure will differ from particle to
particle.

When the mass ratio is high and/or the surface features are more prominent a
high number of collisions will occur for a single particle. Thus, an upper limit on the
number of collisions was set to be, arbitrarily, 50, after which it was assumed that total
absorption by the surface would occur and both o’ and G were set to unity.

For the pyramidal model, values for ¢, of 157 30°, 45° and 60° were considered,;

for the corrugated model o was set t 30°, 60° and 90°.
For both models mass ratios of 0.1, 0.5 and 0.8 were considered, analogous with

Goodman.
The results of the above are shown in Figures 4.7 to 4.18, with n = 100 for all

cascs.




Figure 4.5 The pyramidal model

Figure 4.6 The corrugated model




4.4 Resulfs and Discussion ,
Perhaps the most striking result of this simulation is-the effect of increasing o in
the pyramidal model on the normal momentum accommodation coefficient. Although
o’ behaves as a general decreasing function of &, increasing the angle of the
"pyramids” causes strongly aberrant behaviour for small angles of incidence.

At steeper angles of incidence a high proportion of particles are fully
accommodated, and many are reflected out at similar angles, often producing
behaviour uncharacteristic of continuous scattered distributions.

This 1is obvious for ¢, where at small angles of incidence particles are reflected
back in the same direction, causing values of ¢ very much greater than 1, or much less
than 0, upsetting any continuous behaviour (Figures 4.10 to 4.12).

However, we can say that an increase in o does generally increase o, although
for continuous curves we must restrict ourselves to low values for a.. This negates any
chance for comparison with the high values of ¢ observed in experiment, and makes
the pyramidal model unimportant for our uses.

The corrugated model produced much better results (Figures 4.13 to 4.18),
resulting, in general, in continuous curves where behaviour can be clearly seen.

Perhaps the major deficiency of this model is that our choice of 100 initial

trajectories was insufficient to produce smooth curves in some cases, a fact also
recognised by Goodman. Figure 4.19 shows the effects of increasing n for ¢ when
1= 0.1 and o, = 30°. Note that in each case the general behaviour of ¢ is clear.

Here we find little to contradict the qualitative results of the hard-spheres model
in that ¢’ is a generally decreasing function of §;, varying little with 0., and that G is,
for the most part, constant, varying much with ¢, but little with .

It would seem that, in conclusion, elastic models of gas-surface interaction
generally behave the same, certainly underlining that for the majority of theoretical

models, and for many experiments, good approximation to ¢” and © is achieved by

o' =0’,— 0o seck;
o = const.

and that by adopting this, we exclude few theoretical possibilities.
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FLAT PLATE IN AN OBLATE ATMOSPHERE
5.1 The Unperturbed Orbit
When an artificial satellite, mass M, orbits a spherical Earth of mass Mg, its path

for a bounded orbit describes an ellipse with the centre of mass of the Earth at one of

its focii. In plane polar coordinates, where r is distance of the satellite from the
Earth’s centre of mass, we find that

THE PERTURBATIONS ON AN ORBITING SUN-ORIENTED

_a(l-é?
"~ 1+ecosf

where f is the true anomaly or the angular distance from perigee or point of closest
approach, a 1s the semi-major axis of the ellipse and e its eccentricity. (Figure 5.1.)
The orbital period, T, is given by
2 e (5.2)

T =—
n

where n is the mean motion which is found from Kepler’s
= e (5.3)

and L = GM,; (assuming M; « M) where G is the gravitational constant.

The polar Equation (5.1) of the orbit is often in an inconvenient form for
analysis, and hence we may introduce the eccentric anomaly, E, which is related to the

true anomaly, f, by

rcosf=a(cosE —e)

rsinf=a(l —ez)msinE.

Thus the form of the polar Equation (5.1) is transformed to

r =a(l—ecosE).

If the absolute value of the satellite’s velocity is equal to V, then it can be shown

that:
_pl+e cosE

2 —
v ~pl—ecosE

69.




Satellite

perigee

Figure 5.1 The Keplerian orbit

N (North Pole)

Ecliptic

Equator

S (South Pole)

Figure 5.2 The equator and the ecliptic on the celestial sphere
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where p is the semi-latus rectum, given byp=aQ1

To fix the orbit in space, say, relative to the star bac ground, we consider that,

due to the enormity of the distance involved, the stars can be said to be equidistant
from the centre of the Earth, positioned on a spherical shell of unit radius - the
Celestial Sphere. Thus, we see that any plane in space centred on the Earth intersects
the Celestial Sphere as a great circle. Thus, the equatorial plane forms the Celestial
Equator on the sphere and the Sun-Earth plane, or the ecliptic, forms the Celestial
Ecliptic, which is inclined at an angle €, the obliquity, to the equator.

When the Sun is travelling Northwards, or ascending, it crosses the equator at
the First Point of Aries, which is the point y in Figure 5.2.

Thus, we can position the satellites’ orbit on the celestial sphere by Q, the
longitude of the ascending node, i, the inclination of the orbital plane to the equator
and o, the argument of perigee from the ascending node, which are shown in
Figure 5.3. Notice that the satellite will generally be at position S, with argument
o + f.

5.2 The Effects of a Perturbing Force

Consider that the satellite is subject to a small perturbing force F per unit mass.

For aerodynamic considerations it is convenient to consider the components of Fin
the direction of velocity, the direction normal to the orbital plane and the outward
normal to the orbit in the orbital plane. In Figure 5.4 we show a satellite-based
coordinate system, as described above, with the y axis at a tangent and the x axis at the
outward normal in the orbital plane; the z axis is the normal to the orbital plane and
points out of the plane of the page.

The angle between the x axis and the radial direction is , the angle of climb,

which is given by [45]:

1 /( B )
cosy =y; P (1+ecosf)

0
V=V
0

where V is given in Equation (5.6).
If the components of F are F,, F, and F, such that
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North Pole

Equ— a_ta;T

“South Pole

Figure 5.3 The orbital elements on the celestial sphere

Satellite

Figure 5.4 The satellite-based coordinate system
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then the perturbations upon the elements a, e and i are given from Lagrange’s
Planetary Equations [46], as N
da 2ra’V(a\"

dE wofp) (5.10)

de r(al”? a
EE_:V(E {ZFZ[e+—r-(cosE—e)}-kFl(l——ez)msinE}

di ar 2172 .
Zi_é:;m{cosm.cosE—(1~e) sin®. sinkE

— e COSW}F,.

5.3 The Aerodvnamic Forces on a Flat Plate

in an Oblate Atmosphere

The force per unit mass experienced by a flat plate is normally resolved into two

components: a drag force Fy, acting along the direction of motion and lift force ¥
which acts perpendicular to Fp in the plane of Fy, and i, the unit normal to the surface

Suppose that, in our satellite based coordinate system,

0 n

5/: 1 and A={n,{ (513)
0 n,

then I, the unit vector in the lift direction, is given by:

X (hxy)

Inxyi
ny
1
=— 0|
(1-nd)" o (5.14)

From a consideration of Figure 5.5 we notice that
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Direction of satellite
motion

Figure 5.5 Drag and lift vectors on a flat plate

PERIGEE

SATELLITE

t plate relative to

Fiqure 5.6 The normal to the f18
the satellite orbital plane
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n,=M0.¥y=cos§;

(515
where €;

is the angle of incidence. Also, we must recognise that a condition that the
atmosphere will strike the side of the plate with normal i is that
> 0. .. (5.16)

In hyperthermal free-molecular flow, the drag and lift forces in the
satellite-based coordinate system are:

0
Fp =—pV’A,[ccosE +(2- 6"~ o) cos’E ]| 1
N

F,=—pV’A,(2-0"-0)cos’E; sinE, 1.

where A, is the ratio of the total area of the face of the plate turned towards the
incident atmosphere and the mass of the satellite.

From the previous discussion on the behaviour of ¢” and o, we concluded that,
empirically,
O =const.
and

o=0,~-¢,.sec&. e (5.18)

Thus, using this information and Equations (5.14) and (5.15) we find

0
F,=-pV’A,lon,+ o'+ Q2-0,—om| 1
0
..... (5.19)
n,
F, =—pA, V{0 n,+(2-0,~ o]l 0 |.
n,

Thus, the components Fy, F; and F; of the force F on our satellite are given by:

F,= "pAmV2[0’1n2+ 2- Gla - 0)”22]’11
F,=—pA,V’[on,+ on+(2-0,- o]
Fy=—pA, V[0 n,+(2- o, —o)nln,.

All that remains to enable us to characterise the force on a flat plate is the

express forms for the atmospheric density, P, and the unit normal to the side of the

plate turned towards the incident stream, M.
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For the density, p, we assume that it decr ntially Wlth distance from

the Earth’s centre, the contours-of constant densuy bemg oblate spheroids having the

‘same <.=,11'1pt101ty € as the Earth (e ~ 0.00335). Thus, if the density at the perigee height
is p,, it is found that [45] -

chSE[

p=p,ke 1+ccos2(w+E)
—2ce sin2{(w+E).sinE +%c2{1 +cosd{(w+E)}

+0(ce, c’e,e?)]
where, if H is the density scale height:

L= e (5.22)
H
c :Kfsm e (5.23)
2H
and
ko=eTE R e (5.24)

5.4 The Normal to the Flat Plate

We assume here, that the normal to the plate, fi, points towards some fixed point

on the celestial sphere throughout the period of a single orbit. Thus, it makes a fixed
angle 6 with the normal to the orbital plane and the projection of fi onto the orbital
plane makes an angle f, with the semi-major axis (see Figure 5.6).

Here, N is the projection of fi in the orbital plane.

In the satellite-based coordinate system, we consider that N makes an angle ¢
with the x axis, or outward normal (Figure 5.7).

Here, we see that

sin@cos ¢
n=| sinOsin¢ |.
cos

.. (5.25)

To find what @ is, we must consider the motion of the X and y axes in the orbital

plane (Figure 5.8).

Hence, we see that the angle @ between N and the x-axis is

d=fo—f+V

where s is the angle of climb, given in Equation (5.7).
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Figure 5.7 The normal to a flat plate in the satellite-
based coordinate system

Figure 5.8 The flat plate normal projected into the

orbital plane of the satellite
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Now, the condition that the atmosphere

normal i, given in Equation (5.16), is now
sin@sin¢>0 . (5.27

but since we choose 0 <6 <, this condition becomes

sin(f, —f+y) >0 (528)

ie. that0< fo—f+y<m.

Physically, this means that at angles ¢ = 0 and ¢ = 1t the satellite "flips", such that
the side that was turned on stream is now shadowed, i.e. the normal to the "new" side
is simply —h.

Thus, if n is truly to be our normal to the incident surface, then we must define a

new parameter € which takes the value * 1 depending on which side of the plate is
facing the stream.

So, if one face of the curve always has normal fi*, then the normal to the side of

the plate facing the stream is

sinB.cos¢] e (5.29)

A

n=¢g sinB.sin¢| = en*
cos®

where, if f; = fy+yandf; = (fo+y)+,

e=-—1 fOI'f:Sfo;

=+] elsewhere

(f and £, being the values of f for which sin¢ =0).

To allow a simple substitution for F,, F, and F; into our perturbation equations,

we must first convert all values of the true anomaly, f, to the corresponding values of

the eccentric anomaly.
It can be shown, considering Equation (5.26), that

sing = —1-'\ / E—{sin(fo ~f+esinfeb (5.30)
VYp
cosd =-‘1;w / %{cos(fo _precosfol o (5.31)
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The sign of € changes when ﬁe fplra{eisf

sin(fo —f) +esinfy =0. ‘ / : _

We obtain two solutions of this equation (if we assume that
T P § ® .
—><sin” x <3),f; and f;, given by

fi=fo+ sin”'(e sin fo)

f, =T+ fy—sin (e sinf,).
For the moment, we assume that all terms of 0(e”) and above can be neglected.

Thus recognising that the Taylor expansion of sin'x is

R S 1 5
sin” x =x+—X+....
237 (5.34)
then
£ =f,+esinf,+0()
..... (5.35) i
fo =m+f,—esinf,+0(’).
The value € can now be expressed in terms of f; and f;, as ,
e=-1 forf:Sfo; %
..... (5.36)
=1 elsewhere.

If E, and r,, are the values of E and r corresponding to the point with true

anomaly £, then from Equation (5.4)
rocosf,=a(cosE,—¢) (5.37)

. 12 .
rosmfo:a(l—ez) sinE,.

We can show that

E,=f,—esinf,+0(").

172
Also, in terms of E and fo, using V= (f) (1+e cosE)+0(e?) and
Equations (5.30) and (5.31)
sin¢ = sin(fp, — E) +0(e?) (5.40)
cos & = cos(f, — E) +0(e”):
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We can now write down an €xpression

such that centric anomaly.

sin6.cos¢
n=¢g sin6.sin¢

cos©

where sin ¢ and cos ¢ are given by (5.39) and (5.40) and, to order e,

e=-1 forfy<E<fy+n .. (5.41)
=1 elsewhere.
This is now 1n a suitable form for substitution into our perturbation
Equations (5.10), (5.11) and (5.12), to order 2,
da 2 , o g
1E =-2pa‘A,(1+2ecosE)[c’;sin"0 . sin"¢
B 5.42
+€0sinBsing+e2—c’, —6)sin’0 . sin’ ], (5.42)
de ) -2
TE= —paA, [0’ sin"0{2(1 +ecosE)cosE .sin"¢
+sinE sin¢ .cos}
£.(2-0",—0)sin’0{2(1+e cosE)cosE siff (5.43)
+sinE . sin’¢ . cos ¢}
+2¢.0.sin6(1 +ecosE)cosE sin¢],
di =—paA,(1+ecosE) {cos(w+E)—e cosw} X
dE
x [0”,sinB . cosO . sin¢
+e(2~0’,—0)sin’6 . cosO sin®¢l. ... (5.44)
5.5 The Changes in a, e and i over a Single Orbital Period ‘
If & is one of the orbital elements a, ¢ and i then the change, Aa;, 1n a; overa
single orbital period is given by:
..... (5.45)
mda.
= | ——dE
Aa, o dE
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where here the integrand is given by one of the Equauons ;(5;-’@), (5:43) or (5.44).
Analytically, this is hampered by our lack of \khoWledge as to the behaviour of

the orbital parameters, excepting E, over an orbit. However, numerically, we can say
that they change very little with respect to an orbital period, and hence

da; oa;, (5.46)

dE 9E
which means that in (5.45) we integrate explicitly only with respect to the eccentric
anomaly. This is the method of averaging, as it is common to choose the mean values
of the remaining parameters for the result. '

We can rewrite the perturbation equations in the form:

da;

— zcosE < .
IE {[ao + ngl(an cosnE +b, sin nE)] ..... (5.47)

+€[co + 2 c,cosnkE +d, sinzzEJ}
n=1
where the a,, b, ¢, and d, coefficients are constant over an orbital period.

In order to integrate (5.47), we must first notice that, if I (z) is the modified
Bessel function of the first kind and imaginary argument, then

2 sosE e (5.48)
f cosnkE .e dE =27l (z)
n=0,1,....
Mmoo 5.49
f sinnE . e**dE =0 ©-49)
n=1,2,
If we define the functions C, (z, f,) and S,(z, f,) by:
fo+m o, (5.50)
C.(z,f5) =—f cosnEe**tdE
TJfy
n=01,....
..... (5.51)

f0+1c
Sn(z,fo)z——f sinnE . e***tdE
T

fo

n=12,....

thus, we see that

81




o / % e =
f gecosnEe ™ EdE =2nll,z)-C, @,

and
x o i T e (5.53)
J esinnE . e***"dE =-2n8,(z,f,)
where S, and C, are more fully discussed in the Appendix.
Thus, we see that
Aai = 27‘[{ ,,5:“0 an[n(Z) + nz_:o C,.[[n(z) - Cn(zafo)] ..... (5.54)

- g 4,8,z 1)

The full solutions for a, e and i are given by
Aa = ——ppklaAm{—"g [c’Iscos(d® — 2f) + ¢ T, cos(dm + 2£,) + 4c Qe 5+ 1,) cos(2e — 2f,)
+c el + 1) cosQw+ 2f,) +2¢’I, cos 4w — 8¢ (e, + I,) cos 2m

+2(del,+ (c*+ M), +4l,) cos 2f, — 16el, — 2(c* + 4)I,]0’, sin® O

I [c 255 cos(dmw—f.)— CZS3 cos(4w+fy) +4c(2eS, + S,) cosCw — f,)
4 0] [©]

+c(cS;—8eS,)cos(Lmw+ f,) +2(4e S, + (c*+ 4)S,) cos f,

~ ’C’ssin(dw - f,) + ¢°C’; sin(4w + f) —4c (2 C7,+ C7,) sinQow — £,)
+4c(2eC’,+ C')sinRw+ f,) +2(4e(C’,— C’p) +(c* +4)C”) sinfy]osin©

+% [c 2S7 cos(4w—3f,)+4c(2eSg+ Ss) cos(2m - 3f,) — 3c255 cos(4m ~ f)
~12¢(2eS,+S;) cosCw — f,) + 2(4e (S, + S,) + (c2 +4)S;)cos 3f,
+3¢'ZS3 cos(dw+ f,) + 12¢(2e S, + ) cosQw + f,)

—6(4e S, + (c*+ 4)S))cos f, — cle cos(4mw+3fy) +4cS, cos(2m + 3f,)
—c*C’,sin(4w — 3f,) + 3¢°C s sin(dw — f,) + ¢*C”, sin(dw + 3£,)

—3c*Csin(4w + £,) — 4c (2eC’ + C’) sinRo — 3fo) + 12¢(2eC7, + C'5) sin2w — £,)
+4c(C’, +2eC’)sin2w +3f,) — 12¢ (2 C*, + C,) sinQo + f,,)

+2(4e(C'+ C') +(c*+4)C"y)sin3f, —6(de(C,+ C'o) + (> +4)C’ ) sin£,](2 — 07, — ©) sin’ O

+0(ez,c3,cze)},

82




Ae = —ppklaAm{~li°6- [c*(I,+ 31, cos(4m — 2£.) + ¢ (I, +1,) cos(4e + 2£.)
H4(2ce I+ 21, — I,) + c (&1, +31))cosR0 = 2f,) + 16ce [, + 1) cos2m+ 2f,)
~8(ce (31, + 21, — I)+ 2c (I, +1,)) cos 20+ 2(de (I, + 21, + L) +(c*+4) (I, + 31,)) cos 2f;

~16e (I, + 1) — 8(c* +4)I,]o" 5in>6
—L—t (7S5 + 5, COSA® — £3) — c*(S, +5,) cos(d® + f,)

+2(ce(3S5+2S5+8,) +2¢(S,+S,)) cosRQw — Jo)—2(3ce(S;+S,)—2cS,) cosRw + f,,)
+2((c” +4)S, +2e(S, +55) c0s fy — X(C '+ C* ) sin(dw — £,) + cH(C’+ C”)) sin(4o + £,
—2(ce(3C’s+2C",—C’ ) +2¢(C,+C"))sinQw — f,)

+2(ce(3C" 5+ C7 ) +2¢(C’y+ C'p)) sinRw+f,)

+2(2(C"3+3C") +(c* +4)(C’,+ C’y)sinf o sin O

JF%[CZ(S8 +38¢) cos(dw —3f,) — 3¢S, cos(dw+ 3£,) + ¢ *(55, — 7S,) cos(4® — f,)

+c2(7S4 +58,) cos(4w+ f) +4c(2e(S; 4255 — S3) + (Ss + 3S,)) cos(Qw — 3£,)
+4c(S,—4eS,)cosQw+3f,) —4(4ce (2S5 +25,— S )+ c (55, + 1S,)) cosCw — f,)

+4c(2e(58;+28,) +7Ssub2) cosQw + f) —2(12e(S; + S,) + 5(c* +4)S,) cos f,
+2(4e(Ss+28,+ 8,) + (c* +4) (S, + 3S,)) cos 3£,
+*(5C g+ TC” ) sin(40— f,) +c*(3C", + C*Y sin(dw + 3£,) — ¢X(7C", + 5C*,) sin(dw + )
+4c(2e(C’;+2C" = C7) + C'6+3C") sin(2w — 3f5) + 4c (4e(2C 5+ 2C", + C*)) + 5C7 + 7C”,) sin(20 — [
e (C’,+4eC’ +3C" ) sin(2o + 3f,) —4c(2e (SC’5+ C*)) +7C", + 5C") sinRw + £,)
+2(4e(C's+2C "+ C’ )+ (c*+4) (C’,+3C",)) sin 3f,
—2(12¢(C’;+3C" )+ (c*+4) (5C",+T1C"))sin ] (2 — &, — 6) sin’ 0 + 0(e %, ¢, c%e)},

and

Ai = —ppklaAm[-l-% {S:c?sin(5® — 2f,) + "S5 Sin(Sw + 2£,) + [6ceS + ¢S5 +4¢Ss + 6¢eS, | sin(30 — 2f,)
+2[e(c +2)(S,—S) + (c2 +6)S;]sin(®— 2f,) — 2S5 sin 5w — 2[6c¢e (S, —S,)+c(c+4)S,)sin3w
+He(c +4)S, —6ceS, ] sin(Bw + 2f,) + 2[e(c +2)S, - c*+2c+ 4)§,]sin(w + 2f;,)
—4le(c +2)S,+(c*+2c +4)S,sinw
+¢7C”;cos(50 —2f,) + ¢ *C'3cos(5w +2f,) + c[6e(C's + C ) + (c +4)C’s)cosBw—2f,)
+c[6e(C’,~C'g) +(c +4)C" Jcos(Bw+2f,) +2[ce(C’,— C’) +2(c +2)C’,— 2eC’;) cos(w — 2f,)
2[e(c +2)(C’,—C)+ (c*+2c + 4)C’\cos(0+ f) —2[6ce(C’y,— C’,) +c(c + 4)C’,]cos3m
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~2¢*C’scos 5w —4[e(c +2)(C'y—C”) +(c*+2¢ +4}C1]cos e —0’,—0)sin*Ocos6

—g {Ic*sin(Sw - f,) ~ [, sin(Sw + £,) + [6ce U — I) +cc + DL sin(Bw— f)

—[6ce(l3 1))+ c(c + DL,]sin(30 + f,) + 2[e(c + 2) (I, — I,) + (¢ + 2¢ + 4)L] sin(w — f,)
—2(c*+2c + 4l sin(@ + £,) }o*, sin B cos 8 + 02, ¢, c%e)],

where

C’', =C,(2.£,) - L().

I, 1s the modified Bessel function of argument z and S, is the special function
mentioned above and has arguments z and f,.

For the special case of a spherically symmetric atmosphere, for which ¢ = 0, we
find that

Aa=-2p ka4, -18‘- [{8e(y+1,)+81,} cos 2f, — 16el, — 81,]c", sin O
—%[{8682+851}cos o+ {8e(C",—C") +8C" } sinf,losin 6

+{—c6~[{8e(S4+ S) +88,} cos 3f, + {8e(C’y + C*) + 8C";} sin 3f,,

—{24eS,+24S,} cosf, — {24e(C",+ C')) + 24C" } sin £,] (2 — 6"y — ) sin® 6 + 0(e %, ¢, c %)},

Ae =—p kaA —% [{8¢ U+ 20, +,)+ 8L, + 241, } cos 2f,
—16e(l,+1,) - 321,]0", sin*®

+3—7;[{8e(S5+2S3 +5,)+8S,+24S,} cos 3f,

—{24e(S;+S,)+40S,} cos £,
+{8e(C’s+2C",+C’))+8C",+24C",} sin 3f,

—{24e(C",+3C"))+40C’,+ 56C",} sin f,] 2 — 6y — ©) sin 6

-g-[{cte (Sy+S,)+8S,} cosf,

+{4e(C’,+3C" )+ 8C",+8C" } sinf,]osin 8+ 0(e?, 3, c2e)},
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Ai = —ppklaAm{-g [4e(l, — 1)+ 8L} sin(w@— £,) — 81, sin(@+ £,) ] &, sinB.cos 0

+~1’-‘g[(4e(54—52+ 128,) sin(@ — 2f,) — 28, sin S+ {4eS, — 85, } sin(w + 2£,)

—{8eS,—16S,} sinw+ {8C’; —4eC’,} cos(w — 2f,)
+{4e(C’y— C") +8C", }cos(w + 2£,) +0(e% ¢, c%e)

+{8e(C’y—C’,)) = 16C",}cos ®] (2 — &’ — G) sin*B cos 0},

which, although simplified, serves to illustrate the complexity and size of the
equations used in this study.

The introduction of the functions I,(z), C.(z, ;) and S,(z, f,) means that we now
have all of the tools available to model the aerodynamics of an oriented flat-plate. The

only unknowns that arise are the specific form of the orientation vector fi, expressly in
terms of the parameters 6 and f,,.

5.6 The Sun-Oriented Flat Plate
We have already stated that the normal to a flat plate may be described in terms

of the angles 6 and f;, (see Section 5.4). If we consider this to be the Sun direction, Io
then in the satellite based coordinate system this is, using Equations (5.39) and (5.40)
in Equation (5.25),

sin8ycos(fp,-£)1 L. (5.55)
ro=| sin0O,sin(f, —E) |.
cos 8,

In the Earth-centred coordinate system, shown in Figure 5.9, r, can be defined in
terms of the right ascension &, and declination 8, of the Sun.
Explicitly rg, is given by rt, where

€08 O, COS O,
re =| cos8ysin o |. ceera (5.56)
Sin ol

Now, we can rotate rg through a number of angles and axes successively such

that it is comparable to Equation (5.55) and hence we can solve for 8, and f,. This is
made easier if we only consider the satellite at perigee, such that the mean and true

anomalies are both zero. Here, we see that (5.55) is equal to
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Figure 5.9 The Sun vector in the Earth-centred coordinate
system
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sin 0, cos £, S (5.57)

I, =| sinB,sinf,

cos @,

which if we rotate the vector (5.56) to the same coordinate system also-equals:

all (5.58)
Fp=|a,
a4
where

a, = 08 8, cos(0,, — £2) cos @ + cos i cos §, cos(0t, — Q) sin @ + sin i sin 8, sin
a, = cos 8, cos(tt, — Q) cosi cos+sini sin 8, cOS W — oS &, cos(0, — ) sin

a; = sin 8, cosi —sin i cos 8, cos(0, — Q).

e (5.59)
Equating the components of (5.57) with (5.58) we see that
cosB,=a
C (5.60)
a,
€0SJo = Gnen
. a,
Sinfo = sinB

These are sufficient enough to define 6, and f;, which may be used to describe a

Sun-oriented flat plate.

5.7 Summary
It is probably economical to form a short overview of the achievements of this

chapter. Firstly, Lagranges planetary equations have been adapted to examine their
form in terms of an aerodynamic force characterised by a constant tangential
momentum accommodation coefficient, and a normal momentum accommodation
coefficient that varies with the secant of the angle of incidence. For a flat plate whose

normal makes a constant angle 6 with the normal to the orbital plane the variations in
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Equations (5.39) and (5:40). A method to derive fthé i:céhangés*o‘«rer a single orbital
period is demonstrated in Section 5.5.

a, e and i are given in Equations (5.42), (5543),5@(1"(5; 4- ), where & =f,— E from

For a special case of a Sun-oriented flat plate, we simply need to derive
expressions for 8 and f; relevant to such a case. 8, and f, may be obtained from a
consideration of Equation (5.60). However, in general a flat plate of any orientation
may be described through a selection of relevant values of § and £

In this chapter, we have developed the analysis which will enable us to model
the aerodynamics of a satellite in terms of momentum accommodation coefficients.

We now require a demonstration on a real orbit to validate the procedure.
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CHAPTER 6

AN ANALYSIS OF THE ORBIT OF THE ANS-1 SATELLITE ( 1974-70A)
6.1 The ANS-1 Satellite

The Astronomical Netherlands Satellite ANS-1 was launched from a Californian

base on 30th August 1974 to examine the universe through ultra-violet and X-ray
experiments [46]. For this purpose, it was intended to be positioned in a
Sun-synchronous circular orbit demonstrating a mean altitude of around 540 km.
However, a launch malfunction caused the actual orbit to deviate considerably from its

nominal orbit, placing it in an eccentric orbit with a very low perigee height (see
Table 6.1).

Nominal Actual

a (km) 6913 7098 ‘- 

e 0.0036 0.0640

i(deg) 97.80 98.04 | w

Q (deg) 241.60 245.10 f

 (deg) | 167.33 210.89 ;é

M (deg) 358.63 +320.87 i
Apogee height (km) 560 1175
Perigee height (km) 510 | 266

Table 6.1 - Osculating elements at injection

of ANS-1 compared to nominal values

In spite of this erroneous orbit, a large portion of the original scientific objectives
were achieved. The operational life of ANS-1 was ended on 11th December 1975 and
on 14th June 1977 it finally re-entered the atmosphere over the Indonesian
archipelago.

A diagram showing the component parts of the ANS-1 satellite, taken from
Wakker [46], is given in Figure 6.1. From this, we can see that the main body of the
satellite comprises of a rectangular prism densely packed with instrumentation, which
we assume was covered by some protective panels. Protruding from opposing sides
are two solar panels which are of fixed orientation to the body. The satellite was able
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to remain Sun-oriented by a method of three-axis stﬁ&h;saﬂon which helped define the
geometry of the telescopes, at right-angles to the Sun ’diréction, enabling the
possibility of full sky coverage over a period of one year. ANS-1 weighed a total of
129.6 kg and had dimensions demonstrated in Figure 6.2. From this we can gather
that the areas of panels P,, P,, P,, P, are

P, =0.517 m®
P,=0.898m> 6.1)
P, = 0.750 m?
P, = 0.445 m?

6.2 The ANS-1 Modelling Geometry

We assume that ANS-1 is composed of a number of plates each oriented to one
of three orthogonal directions.

The faces P, and P, are all oriented in the Sun-direction and, considering also
that they have opposing faces not shown in Figure 6.2, we can model them all as a
single Sun-oriented flat plate of area 2P, + P,.

In complete analogy, we may consider that, perpendicular to the Sun direction,
are two plates at right angles to one another of area P, and P,.

In some respects this is our model of ANS-1; each of the three plates of areas
2P, + P;, P, and P,, at right angles to each other, are considered separately in the
analysis and simply summed to obtain the final result. The Sun-oriented plate requires
very little further analysis as we have already defined its direction by the parameters
0, and f;, given explicitly in Equations (5.55) and (5.72) respectively. Only two
problems remain: first, to find the corresponding values of 6, and f;, which will define
the orientation of the side panels, and secondly to account for the positive shadowing

of a portion of a panel from the atmosphere by other panels.

6.3 Side-Panel Orientation
In terms of the satellite-based coordinate system (Figure 6.3) the Sun direction is

given in terms of the angles 6, and ¢ = f, — E (discussed in Section 5.4).

Now by a series of rotations about the axes we can transform the satellite-based
coordinate system into one in which the z-axis points along the Sun direction and thus
represents the normal to the Sun-oriented panels. This may be achieved by a rotation
of —(1/2 — ¢) about the z-axis and a rotation of —8,, about the x-axis, forming a new
coordinate system Ox’y’z’, shown in Figure 6.4. Also shown are the normals to the
remaining two plates n’; and n’, respectively which will obviously lie in the x’y’ plane;
we have also shown that the n’; vector makes an angle  with the x-axis.
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Thus, in this coordinate system

cos 3 sinf3
o, =| sinB| ; n=| —cosB|.
0 0

Now, we proceed to transform n’; and n’, back to the satellite-based coordinate
system. If we consider n’; only for the moment, we find that

sin¢ cos B+ cos ¢ cos O, sin B
n’, =| —cosdcosP+sindpcosB,sinf|.

—~sin@,sin

Let us, for the moment, assume that n’; has the following form in the
satellite-based coordinate system

sin 9, cos ¢,

’

n’; =| sin6,sin¢,

cos 0,

where we can see that, in complete analogy with the Sun-oriented plate, 6, is the angle
n’; makes with the normal to the orbital plane and ¢, = f; — E for some f,.

By comparison of Equations (6.1) and (6.2) we can quickly see that

cosO, =—sin O, sin B e (6.3)

and from further analysis we find that

. —cosfycosB+sinfycosOpsinB . (6.4)
sinf, = -
sin©,
sin fy cos B+ cos fy cos B, sin B
cosf, =

sin9,

We can proceed to find values for 6, and f, by setting  to be B —m/2 in
Equations (6.3) and (6.4).
6.4 Shadowing

Unfortunately, it would be unrealistic to continue with the analysis as discussed

above which treats each panel as an independent entity; this is not the case, as certain
portions of the surface will be shadowed from the incident atmosphere simply due
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to the 3-dimensional nature of the satellite. Wedo not have the attitude information
which will allow us to perform a full analysis of the iéfobiém and thus some coarse
estimation of the problem will be undertaken which will manifest itself in a reduction
of the total area of a panel used in our calculations for atmospheric perturbations.

If we consider the shape of the satellite idealised in Figure 6.5, we know that the
normal to the Sun-oriented panels makes an angle 6, with the normal to the orbital

plane which is also normal to the velocity vector.

A previous study of ANS-1 by Sehnal [47] has shown that 6 is never much
greater than 20° which suggests that the greatest shadowing is the shadowing of P, by
P,, with a small amount of shadowing by P, on P,. Notice that the shadowing only
occurs on the two sides of P, as shown in Figure 6.5 and not on their reverse faces,
whereas shadowing may occur on both P, faces.

Consider first the shadowing of P, by P,. This is shown in Figure 6.6 where
L,=123cmand L, =42 cm.

¢, is the angle of the diagonal, given by

tanc])o:L—. o
. ‘

Now, if ¢ < ¢, the area A shadowed is given by

1
A =L1L2—§L12tan¢

and if ¢ 2 ¢,

1
A ==Lcot¢.
2
Now if we average A over all values of ¢ givenby O <¢ SL;, then the mean area

shadowed, 4, is given by

B e (6.5
A=%{L1L2¢0+%L121n(005¢a)“';‘Lzzln(smq’o)} >

which means that the proportion shadowed is equal to

A

=0.72 for ANS-1.
LiL,
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Figure 6.7 Shadowing of Pz__Qg_I}‘l
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The proportion of the Sun-oriented face P, representsm approximately 0.29, and
we need to halve this as P, is only shadowed-on-one side. If we multiply these values
together, this represents a reduction in the total Sun-oriented panel area of around
10%, which is the value used in the analysis.

In analogy with the above, the shadowing of plate P, is determined by taking

values of L, and L, appropriate and averaging over the polar angle ¢. However, we
must remember that P, is at right angles to the Sun direction which lies very close to
the orbital normal, whereas the normals of the P, faces have the possibility of falling
close to the velocity vector of the satellite, meaning that shadowing may or may not
occur depending on orientation and its occurrence may only be over a small portion of
the possible area. We will consider that the shadowing of P, is due to P, and has the
geometry shown in Figure 6.7.

How this manifests itself on the P, face is shown in Figure 6.8. If we assume
that AF is constant, then we may proceed as before. If 6, the angle between the
orbital normal and the Sun direction, is 30° then it may be shown that AF <24 cm and
if we use these dimensions we see that the maximum shadowing effect reduces the
area by around 13%. However, this is a very extreme case, and in the absence of any
further rigorous analysis we reduced the P, area by 5% which seems a little more
realistic in the absence of detailed orientation parameters.

We have now dealt with the modelling of the satellite, having detailed its
orientation in terms of angles 6, f;, and f and reduced the areas of the panels by

amounts appropriate to the shadowing effects of shape. The next step in orbital

analysis is to clear the orbital elements of effects not attributable to air drag alone.

6.5 Gravitational Perturbations and Resonance

The major gravitational perturbations affecting ANS-1 were removed using the
Royal Aircraft Establishment software known as PROD (Program for Orbit
Development), the basic theory outlined by Cook [48].

The theory is based on a spherical harmonic representation of a gravitational
field. The disturbing function due to a body of Mass M; at a distance r; (> r, the
distance to the satellite) is given by U, where

- L 6.6)
U=y, EzﬁP,(cos H)

ry

where i; = GM;, P(cos H) is the Legendre polynomial of degree 1 and H is the
geocentric angle between the disturbing body and the satellite. For the analysis of
ANS-1, the disturbing bodies were taken to be the Moon and the Sun.
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There are further perturbations due to thcasphencxty o theEarth If we
consider that the Earth is a spheroid of revolution and that there are no longitude
dependent terms, then the Earth’s gravitational potential may be given by

- 1 e (67
U= %{1 - lng,[—?) P,(sin ¢)} o)

where R is the Earth’s equatorial radius, ¢ is the geocentric latitude and the J, are
constants.

The effect that a disturbing potential has on elements a, ¢ and i are described by
Lagrange’s Planetary Equations in the form below (Smart [49]).

da _,(aYoU

d “\un) oy

de 1 1—e2)— e zaU vl (6.8)
i e\ )|V T

di _ o coti2% — coseci oV
d[-—{ua(l e} [cotzam coseci ]

o0Q

where 7 is the modified mean anomaly.

Applying the above equations to the disturbing potentials of the Earth, Sun and
Moon is the function of the PROD software. However, the representation of the
Earth’s gravitational potential given in (6.7) is highly idealised in that it contains no
longitude dependent terms. If we include such terms the potential may be written thus
[58]:

]

v=ty s

Fi=2m=1

( )P,m(cose){C cosmA+S,, sinmA}N,,

where 8 is the co-latitude, A is the longitude, N, is a normalising coefficient, S, and

C,, are constants and P, (cos) is the associated Legendre function of order m and
degree 1.

For most of the time the effects of longitude dependence may be neglected.
However, if a satellite has a repeating ground track, then the perturbations due to a
specific location on the surface of the earth may build up over a number of orbits in a
fashion that will not be negligible. Such an effect is known as resonance, the size of
which depends on the specific terms in the geopotential involved which in turn are

decided by the repeat period.
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Now, for a satellite in-a low Earth orbit the groun +rack repeat period will vary
in time due to perturbing forces, mainly airdrag, and hence will drift through many
resonances throughout its lifetime. However, the largest resonant effects occur when
the satellite has the shortest repeat period. If a satellite performs 8 revolutions while
the Earth makes a revolutions, where f§ and o are both co-prime integers, then this is
called a 3/a resonance. Thus, we would expect a 15/1 resonance to have greater effect
than a 29/2 or 31/2 resonance because it takes the former half the time to repeat than

the latter two and hence the effects of the gravity anomalies specific to that.ground
track will build up faster. More important, however, is the diminuation of the gravity
field coefficients with the degree 1. A working approximation for the magnitude of
C > S 1 is given by Kaula’s rule of thumb [58]
—4

CrsSim = 0(% J
Thus, the geopotential coefficients for 1 = 29 and | = 31 are reduced by a factor of four
from the dominant 1 = 15 resonant coefficients.

If we consider the lifetime of the ANS-1 satellite than we can quickly recognise
that it passes through a 15/1 resonance at around MJD 42800. Indeed, if we look at
the orbital elements we see that there is an abrupt effect on the inclination at around
this time which is only really attributable to resonance. For the semi-major axis and
eccentricity there is no noticeable corresponding effect and thus we will discuss
resonance as it affects the inclination only.

The mathematics of resonance is discussed in many papers such as that by
Allan {50] and is developed from an expansion of the geopotential form given in
Equation (6.9) in terms of the Keplerian elements. From a substitution into
Lagrange’s planetary equations we find that the rate of change of inclination due to the
geopotential is given by [51]

1
di_n(1-e (R
dr~ sini a

XRG'NC .~ 7S m) expli(Y® — gw)}]

!
)FWG,W(IC cosi—m)

where F,m is Allan’s normalised inclination function, Gy, is a function of eccentricity,

R denotes "the real part of" and j is the square root of -1. v, p, k and q are integers,
where y=1,2,3,..,q=0,£1,+2, .., m=73, k=y0-qand 2p = I-k. ®isthe

resonance angle given by

d=a(@+M)+BQR-v) e 6.11)
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where v is the sidereal angle. /
For 15/1 resonance Equation (6.10) becomes [59]
di n (R’ T [=01 . <01
7 :m(;) {(15—cos z)F15,15,7{ Cssin® -8 cosd)}

17e R — —
+T(1S)(Z )F,ﬁ,,s,s{ S13 sin(® — ) + C 1y cos(® — )}

13 R —
+_2_e (15-2cosi) (—(—1— }Fm,xs,'r{ SI;'Z.si-n(d) +w)+ Clé»zcos(d) + 0))} 1

1 el
+terms in {——w(ze) cos(“ﬂ)“qw)}’

‘q { ! sin
..... (6.12)
where
—q.k N 7= 13
C:ln = zl:qu kClm (6.13)
and
-S.Z;k _ ;qu,k§lm ..... (6.14)

are "lumped" coefficients and in the above equations the Q" are inclination functions
[52] and 1 increases in steps of 2 from a minimum value 1.

Now, values of C,, and S,,, or of the lumped harmonics, are crucial in defining
Equation (6.12) and estimating the effects of resonance. To estimate this effect for
ANS-1, gravity field coefficients were taken from the GEM 10B global model [53],
whilst lumped harmonics were available from the satellite-derived ‘coefficients of
King-Hele and Walker [54] and from an analysis of ANS-1 itself as given by
Klokocnik [55].

Analysis of the resonance effect on the inclination was undertaken using values
from the above three sources. Although the results were in broad agreement with a
0.0065 to 0.0083 degree decrease in the inclination over the resonant period, the
discrepancy between the results is relatively large in comparison with the likely
perturbations due to atmospheric lift. This last point is particularly important given
the sensitivity of the results to analysis of the inclination.

Thus, for the ANS-1 satellite we have not considered resonance and have used
only values for the inclination that appear unaffected by resonance, i.e. we have
analysed inclination up to MJD 42700 which is well before the resonance at around
MIJD 42800 and hence avoids contamination of the results. Resonance has not been
applied to the semi-major axis or eccentricity as it appears to have no noticeable effect
and thus we have used all elements up to and including the final values at MJD 42988.
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6.6 Atmospheric Rotation

In Chapter S we have assumed that the velocity of a satellite relative to the
atmosphere is simply the Keplerian velocity-of two-body motion given in terms-of the
orbital elements. This is a false assumption-as it ignores the fact that the Earth isa
dynamic rotating body and that the atmosphere, to some extent, will adhere to the
surface, rotating with the Earth. Also, the addition of zonal and meridional winds will
further complicate the analysis causing further variations in the rotation rate with
increasing height. The rotation rate of the atmosphere is given by A, the ratio of the
angular velocity of the atmosphere to that of the Earth. The choice of A was taken
from King-Hele and Walker [52], and needs to be that appropriate to a height of 3/4 H
above perigee. For ANS-1 we took perigee height to be around 260 km and, from an
inspection of the COSPAR International Reference Atmosphere 1972
(CIRA 1972) [3], we took H to be around 40 km, which led us to consider values of A
between 1.10 and 1.15. For the analysis of the orbit of ANS-1 we considered
separately the two cases of A =1.10 and A = 1.15.

Obviously, a full aerodynamic study of a satellite would proceed to adjust the
Keplerian velocity component of Chapter 5 by an amount appropriate to a choice of A
and proceed with the same analysis. However, such a procedure would be highly
demanding analytically and, for the purposes of this study, we will take the easier
option by using a standard technique to remove atmospheric rotation effects separate
from the Keplerian element. The analysis, developed by King-Hele [45], is quite neat
and makes as few references to aerodynamic quantities, such as air density and drag
coefficients, as possible.

The effect of atmospheric rotation on the a, e and i elements of ANS-1 is
negligible, except for inclination where, because of the generally polar orbit, there is
an increased drag component in the direction normal to the orbital plane which, from
Equation (5.13), we see will perturb it further. The analysis is based on constant drag
and lift coefficients over one orbit and involves expansions in increasing powers of ¢
and e. For ANS-1 ¢ > 0.2 and e < 0.2 and the particular expansion we used

appropriate for this case is taken from Boulton and Swinerd [60], and is given by

Az;_Asini ﬂ ..... (6.15)
AT~ 6\F "B
where
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A =[l,+1,(1+c)cos 2cu+§c‘(10+1'4 cos4m)
1, 3
—2el (1 +cosZ(o)+zc ([0+5120032(1)
1
+I4cos4(o+§16cos 6w)
I
—ce{]l(l +200820))+—2-(313-—1'5)cos4(0}

1
—Zcze {21, + 31, cos 2w+ (31, — I) cos 4®

+2I,~ 1) cos 6w} +0(c>, ),

and

1 .
B =[I,+cl,cos 2w+ 2el, +Zc2(10+14cos4w)

1
+2cel,cos 20)+Zc2e {21,

— (I~ 3I5) cos 4w }] + 0(c>, €?).
The I, are the familiar Bessel functions of the first kind and imaginary argument
of order n whose argument here is z = ae/H. F is a factor, numerically close to unity,

given by
Vv
\/F~1 ———‘;cosi

where V, is the rotational velocity of the atmosphere and V is the velocity of the
satellite relative to the air.

AT is the change in orbital period from orbit to orbit, which may be quantified
from the differences in the semi-major axis, and enables us to generate values of Ai

with only few real unknowns.

6.7 Solar Radiation Pressure
The remaining perturbation to be considered in satellite dynamics is that caused

by the impact of photons from solar radiation on the Sun-oriented surfaces of the
orbiting body. This force is primarily important for very large, light satellites.
However, ANS-1 is a small dense satellite and thus did not experience any
overwhelming solar radiation pressure perturbations. This is borne out by considering
a spherical satellite with the same Sun-oriented area-to-mass ratio as ANS-1 of

0.011 mz/kg (from Sehnal [47]) in software supplied by Asknes, based on his paper of
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1976 [56]. For the period from MJD 42290 to MJD 42700, the interval considered for
inclination, the values of Ai obtained represents an oscillation of amﬁliitlde below 10*
degrees, which is much less than the assumed accuracy of the ESOC data used for this
study, which is around 1.5 x 10 degrees.

6.8 The Removal of The Known Perturbations of ANS-1

In the absence of any perturbations a satellite will continue in pure Keplerian
motion ad infinitum. This means that each of the elements a, € and i will remain at
their initial values for the whole period of observation. However, as already
discussed, there are many sources of perturbation that will cause a real orbit to deviate
from its initial course. It is clear that each of the perturbation sources discussed is
independent of the others and their specific effects may simply be added to the rest
when modelling the orbit.

Consider a general orbital element a,, We will denote the initial value of a; by a,
and the amounts by which it is perturbed by Aggav @;, Aror @; and Apgrac a5
corresponding to the perturbations of gravity, atmospheric rotation and the remaining
effects of aerodynamic drag and lift, such that the observed value of g is given by

a; = @iy + Dgpav; + Brord; + Bppact;

The remainder of this study is concerned solely with Apgag a; and, assuming that
the modelled perturbations of gravity and atmospheric rotation are accurate enough,
this may be determined by

Apract; = a; — a;, — Agpav®; — Arond;-

The form of these equations for a, € and i are, respectively,

Apracd =a —a,
Apract =€ =€, ~Dgpave
Apract =1 =iy =Dgrayi = Brori
where we have assumed that Aggay @, Agor @ and Agyre are negligible.

Thus, given adequate values of a,, €, and i, we are able to proceed with an
analysis of the aerodynamic drag and lift forces on ANS-1.

6.9 The Analysis of ANS-1

The first step in the analysis of the orbit of ANS-1 was the subtraction of each of
the perturbative effects of the aforementioned sources from the orbital elements
supplied to us by ESOC. The residual variations in a, € and i are then solely due to the
aerodynamics of the satellite’s motion through the upper atmosphere. We could then
use the analysis of Chapter 5 to model this force and to derive values for the

momentum accommodation coefficients in terms of the unknown constants G, ¢’, and
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o’,- Only a single obstacle remains - the deterzmnau 1 of the atmospheric density, p,,
at perigee which must be taken from one of the many thermospheric models that are
available.

In deciding which density model to use, we must recognise that the lifetime of
ANS-1 coincided with a minimum in the so-called 11-year cycle of solar activity,
which is one of the major influences on thermospheric density. Models such as the
DTM or the 1979 model derived from mass spectrometer and incoherent scatter
measurements (MSIS79) used data from periods of moderate solar activity and so their
use for ANS-1 would be questionable, particularly when a more comprehensive model
by Jacchia, 1977, known as J77, has been developed from data spread over almost two
solar cycles. J77 does differ from the DTM and MSIS79 models at the minimum but
the later MSIS models of MSIS83 and MSIS86 appear to confirm the J77 model.
Thus, in this study we have used the J77 model in the derivation of perigee density
values. The importance of an accurate density model is illustrated by the equation for
the change in inclination over a single orbit for the simple case of a circular orbit

(e = 0) in a spherically symmetric atmosphere, which is

. . 8 i weeee (6.16)
Ai =pyaA,, sinBcos O sin(w+ Eg) x[c’ln —5(2 —0—0')sin 6].

If a scale error occurs in the density component then, due to the presence of a
term within G, ¢, or ¢’, the least squares adjustment will occur in a non-uniform
manner on our three derived quantities causing any inferences about gas-surface
interactions to be questionable.

A major problem in the numerical evaluation of ‘Ai, Aa and Ae from
Equations (5.42), (5.43) and (5.44) lay in their expansion after integration and
reduction to a form that could be included in a computer program. To perform this
function by hand would have been a considerable effort, particularly when the size of
the equations necessitated many routine trigonometry and integration procedures,
which would almost always amount in errors in the manual case. In these
circumstances we were very pleased to be introduced to the automatic algebraic
manipulation computer package REDUCE which could cope with large expressions
and perform a comprehensive range of simple tasks from reductions and expansions to
substitution and floating point arithmetic, converting the final expression to a form
that could be directly pasted into a FORTRAN program.

The operator tasks were performed interactively and involved a simple statement
of the task in terms of a series of operations to be performed on the expression. For
instance, if we take Equation (5.42), given by
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g .
—d-Ei =-2pa”A, (1 +2e cosE) o, 5in*0 . sin’0

+esin6sin¢ +&(2 — o’y — ©)sin’ B sin’ ¢]
as the starting point for the process (which was invariably the case) we can list the
functions to be performed on it to find Aa in an efficient programmable form.

These were:

2cosE

L Letp=pke” [l+ccos2(w+E)

1
—2cesin2(w+E)sinE +ZC2{1 +cosd(w+ E)}]

from Equation (5.21), and ¢ = fy — E from Equations (5.39) and (5.40).

. . . . da . .
2. Use a series of trigonometric operations to expand — in order to determine

the multiples of sinn E and cos n E, wheren=0, 1, 2, ...
2n da

Perform Aa =j —dE.

o dE

This was achieved by simply converting the cos n E and sin n E terms to
Bessel functions and the C, and S, functions (see Appendix A), using the

following scheme

cosnEe*™* becomes 2nl,(z)

- E
sinnke**™* becomes 0

zoosE

gcosnEe becomes 2n[/,(z)-C,(z,f,)]

esinnEe™E  becomes —2nS,(z,f,)

which was outlined in Section 5.5. Any terms with no E component were
multiplied by 2.
4. Use the difference equations

21 +z(,,,~1,_))=0
2ncn+z(cn+l —Cn——l) =2¢n

2nSu+Z(Sn+l—Sn-l):_2\‘lln

to reduce the expression to include only I, I;, C,, C,, S, and S, terms, where

_sinnfo[ 208,
- -

n -chosfo]

-D’e

n

and
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—cosnjfy,

vy, —-————-—{e“’“f"-(—l)‘e

: )

from Appendix A.
5. Convert to FORTRAN code

. Thus, using this method, we could find the values of Aa. In fact Ai and Ae were
found using the same process.

To illustrate the usefulness of REDUCE, it must be stated that the final reduced
expression for Aa took up 120 lines of code, for Ai this was 117 lines and Ae took up
164 lines. The program that utilises these expressions will calculate Aa; in the form

Ag; = Xy +X,0 +X,0"y + X,07, e (6.17)
finding numerical values for x,, X;, X, and x;. Aa; is equal to the Apgag 8; found by the
subtraction of the known perturbations and the initial value by the method explained
in Section 5.8. The main output of the analysis are values of 6, ¢’y and ¢’,,
determined by a least squares regression in Equation (6.17).

The values of x,, X,, X, and x, are determined for each of the three orthogonal
plates, corresponding to the Sun-oriented plate and the two side panels, the orientation
of the side-panels being determined by B defined in Section 6.3. As we have no
knowledge of its numerical value we have simply taken values for 8 of 0°, 30°, 60°,
90°, 120° and 150°, averaging the results. No greater values of § were used due to the
rotational symmetry of the satellite geometry. Thus, addition of the effects for each
panel in turn will give the total aerodynamic perturbation of ANS-1, from which we
may determine values for the three unknown parameters o, 6’ and G';.

Although we consider J77 to be the most representative density model, we will

also reproduce the numerical results of the MSIS79 model for comparison.

6.9.1 Analysis of Inclination

Due to the analytic form of the Ai Equation (5.42) it is impossible to-derive
separate numerical values for ¢, 6, and ¢’, due to the fact that there are only two
terms in the equation and three unknowns. This is illustrated by reproducing
Equation (5.42) below where we can see a term in ¢'; and a term in 2 - 6”; —©.

di

iE- —paA,(1+ecosE){cos(w+E)—e cosw} x

x [0",sin@ . cos8 . sind + &2 — &’y ~ &) sin’ B cos Bsin’ §].
Therefore, we solved the numerical results for ¢’,, 2 — ¢’y — ¢ and a linear

shift in the original inclination value of Ai, from MJD 42290 to MJD 42700.
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‘ ;i{4Corrclaﬁ0“fcoefﬁcients

Least Squares Results 2—0-0 o’
26 -0.04 +0.07 - :
0.17 £0.01 0.62 -
-0.64 -0.16

126x 10°+1.6x 10

Table 6.2 - Inclination Results using J77 Density
Model and A =1.10

The corresponding results using A = 1.15 are shown in Table 6.3.

Correlation Coefficients

7

Least Squares Results 2—-0,—-0 o
2-0,—0 -0.13 £0.07 - -
0.17+0.01 0.62 -

1.44x10°+£ 1.6 x 10* -0.64 -0.16

erroneous.

Table 6.3 - Inclination Results Using J77 Density

Model and A =1,15
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it was relaxed occasionally to achieve the mission objectives.

Graphs of the above results showing the fit against the observed values are
shown in Figures 6.9 and 6.10. The graphs show quite obviously that the fitted
curve does not seem to be an ideal fit although it does demonstrate the general
behaviour quite well. There are numerous reasons that may account for this.
Firstly, we have assumed that the solar panels are always pointing in the Sun
direction. As Wakker [46] pointed out, this may not always have been the case as

Attitude is difficult to approximate for ANS-1 and so our assumptions about

side-panel orientation, manifestly in the terms of the angle 3, may also be




Sehnal [47] recognised the difficulties in obtaining a good fit for ANS-1
when he attempted an aerodynamic analysis usiné:-;Schéinber;gs model based on a
constant thermal energy accommodation coefficient, . He found that if he
allowed « to increase linearly from 0.1 at MJD 42290 to 1.0 at MJD 42550 a better
fit could be obtained. However, due to the uncertainties in how ¢ varies with angle
of incidence and the accuracy of the ESOC data we find it difficult to interpret his
results.

Despite difficulties in interpreting the graphical results, the numerical results
present us with no difficulties at the moment as, currently, they do not seem
unreasonable enough to reject. The test of these results comes in comparison with
the results from the analysis of the semi-major axis and eccentricity.

For comparison the numerical results for inclination using the MSIS79

density model are presented in Tables 6.4 and 6.5.

Correlation Coefficients
Least Squares Results 2-c¢’,—0 o Ai,
2—-06y—0C -0.08 £0.06 - - -
o, 0.15+0.01 0.58 - -
Ai, 1.36 x 10°+1.5x 10™ -0.60 -0.05 -

Table 6.4 - Inclination Results Using MSIS79 Density
Model and A =1.10

Correlation Coefficients

Least Squares Results 2-0,~-C o', Ai,
2-0,—-0 -0.15 £ 0.06 - - -
o’ 0.151£0.01 | 0.58 - -
Ai, 1.55x 10°+1.5x 10* -0.60 -0.05 | -

Table 6,5 - Inclination Results Using MSIS79 Densit
Model and A =1.15
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6.9.2 Analysis of Semi-Major Axis

The perturbation of the semi-major axis by aerodynamics was shown to be
given in Equation (5.42) by

da

iE =2pa’A, (1 +2e cos E)[¢’, sin*Osin’ ¢

+e65in0 . sind+€(2 — 0’y —G) sin’ @ sin’ ¢].

Unlike the case for the inclination of ANS-1 the structure of the above
equation allows us the possibility of solving separately for G, 0’pand ¢’,. The
results of the least squares fit using J77 gave three equations in ¢, ¢’y and ¢’ for us

to solve, given here in matrix form as

1.0000 -1.1781 1.6865][ © —0.0887
1.0000 —1.1798 1.68821| 0’| =] —0.0895|.
1.0000 -1.1793 1.6878|| o, —0.0888

We can clearly see that, numerically, these three equations are almost the
same and that the 3 x 3 matrix on the left will be almost singular. In fact if we
follow the least squares procedure through we find very high correlation
coefficients between the parameters, making the analysis highly suspect.

In order to derive a meaningful result from this we have tried to approximate
the equation satisfied by o, 0’y and ¢’; simply by averaging the columns of the
matrices. For the J77 case this equation is given by

o-1.1791¢",+ 1.68750", = —0.0890.

On its own, this equation is meaningless. However, it is of a form for which
we can use the inclination results of 2 — ¢’y — ¢ and ¢, to solve for ¢’y and 6. The
results for the J77 density model and A = 1.10 are

6=093+004 , ¢,=1112003 , ¢ ,=0.17£0.01.

The results for the J77 density model using A = 1.15 are

6=098+004 , o¢,=115£003 , o';=0.17+0.01.

The graphs of the semi-major axis for each of the above cases are shown in
Figures 6.11 and 6.12.

For the MSIS79 density model the equation from the analysis of the
semi-major axis is

6~ 12180+ 1.733¢’, =—0.603
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and combining with the MSIS79 incliaaﬁ{)ﬁ i’céil‘ltiS:i\?ife find, fdr- A =110,
6=075+003 , ¢,=133+£003 , ¢,=0.15%001

and for A = 1.15
6=0.79+003 , ¢,=136+£003 , o =0.15£001.
Note here that, at a normal incidence angle (§; =0) ¢’ > 1 for MSIS79 which

is clearly unacceptable.

6.9.3 Analysis of Eccentricity

The perturbations of the eccentricity due to aerodynamics is given in
Equation (5.43), as

% =—pad,lo, sin®8{2(1 + e cosE)cosE sin® ¢

+sinE sin¢cos ¢}
+e(2-0',—0) sin®0{2(1 +e cosE)cosE sin’ ¢

+sinE sin2¢ cosd}

+2e0sinO(1 + e cos E) cos E sin §].

The form of this equation leads us to understand that we can solve for each of E
the coefficients o, ¢, and ¢’,. However, in complete analogy with the semi-major 8
axis case, the correlation coefficients are too high to be able to perform the least
squares fit adequately and so we must proceed to find the most representative E
equation for the matrices involved. ‘

For the J77 density model the equation from the analysis of eccentricity is

o —1.1840",+ 1.609¢", =-0.217

and combining with the J77 inclination results we find, for A = 1.10,
c=088+004 , ¢,=116+£003 , ¢, =0.1710.01
and for A = 1.15,
6=093+0.04 , ¢,=120+0.03 , ¢ =0.17+0.01.

The graphs showing the results of the above two cases are shown in
Figures 6.13 and 6.14.
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Notice that the results-do not differ sigﬁiﬁééhﬂy,f@m he results Combining
the semi-major axis and the inclination, which does show some uniformity of the
analysis.
For the MSIS79 density model the equation from the analysis of eccentricity
is
c—1.2300",+ 1.659¢", =-0.714
and combining with the MSIS79 inclination results, we find, for A = 1.10,
c=072+003 , ¢,=136%£0.03 o', =0.15+£0.01
and for A = 1.15,

6=075+003 , ©,=140%0.03 , ¢ =0.15+001.
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CHAPTER7

Throughout this thesis we have attempted to-describe the aerodynamics of a satellite
in a way that agrees with the accepted conventions of rarefied gas dynamics and surface
science. There is a strong incentive in this, due to the fact that existing equations in
rarefied gas dynamics allow a greater generalisation of the problem allowing an analysis
that includes transitional flow such as anticipated at lower altitudes right up to re-entry.
Up to now this has hardly been possible due to the restrictions of the mathematical
models of satellite drag forces. A large portion of this thesis has been spent trying to
develop a new model for the gas-surface interaction that allows this generalisation.

In Chapters 2 and 3 a full review of the relevant models available has been
attempted. This has shown the deficiencies in current models and parameterisations of
satellite drag and has consistently underlined the potentials behind adopting a scheme
based on momentum accommodation coefficients. Experimental results on the behaviour
of such parameters have been summarised and compared with the most acceptable model
of the mechanics of such a scheme, that of Goodman.

Goodman’s model was shown to be consistently in quantitative disagreement with
experiment, particularly in predicting momentum transfer tangential to the surface. In
Chapter 4 we attempted to correct this discrepancy by creating a new numerical model of
the scenario, but with different models of the surface that enabled a degree of roughness
superlative to that of Goodman’s. The results, however, did not sufficiently improve on
those already existing which restricted the remainder of the thesis to a quantitative
analysis of the behaviour of momentum transfer at the surface of a satellite without the
inferences on atmospheric composition and surface roughness desirable.

This has been the first occasion that momentum accommodation coefficients in the

form

C = const

o’ =0’,— 0’ seck;
have been used to theoretically predict the aerodynamics of satellite motion. The theory
has been developed in Chapter 5 and applied to the orbit of ANS-1 in Chapter 6. The
question to be raised in this chapter is whether the results have been successful, firstly in
terms of the order of fit with the orbital elements and, secondly, if the values of
0,0, and ¢ found for ANS-1 are feasible for gas-surface interaction.

As far as the orbital fit is concerned, we have to study the graphs of Figures 6.9-6.14
in order to see if they are, visually, good fits. For each of the curves shown it is clear that
the theoretical values show most of the general behaviour of the observed values and
therefore display a good fit. This is certainly true for the semi-major axis and-eccentricity
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results and, even in the presence of many possible errors, the widely scattered observed
values of inclination bear resemblance to the theoretical fit in qualitative terms and so we
have little reason to reject the fit.

The numerical results for the momentum accommodation coefficients were
necessarily restricted by the results of the inclination fit. The final results for the J77
density model were, using A = 1.10,

c=093
o’ =1.11-0.17 sec§;

for the semi-major axis, and
c=0.88

¢’ =1.16-0.17 secg;

for the eccentricity. The first of these results is illustrated in Figure 7.1.

The semi-major axis values used on a spherical body would produce a drag
coefficient of
~2.05%0.03

CDSPHERE
which is less than 10% lower than the minimum values set by Cook [14, 22] using
Schamberg’s [12] model.

If the results are reasonable for the orbital elements and for gas-surface interactions,
how may we interpret the use of this model in the future? One of the driving forces
behind this thesis was to somehow relate the work of the rarefied gas dynamicist and
surface analyst to the orbital dynamicist. Adopting earlier models of satellite
aerodynamics, such as Schambergs, and, in particular, using the thermal energy
accommodation coefficient, confines the range of relevant gas dynamics to hyperthermal
free-molecular flow. Using momentum accommodation coefficients does not confine us
to this and results can be better related to theoretical and laboratory studies. Also, given
that the quasi-diffuse model used by Schamberg is exactly the equivalent of using

o'=1 —%(1 — o) seck,

o=1
from Equation (2.39), we cannot say that the method recommended here diverges much
from accepted practice anyway.

In the past, laboratory simulations of gas-surface interaction have been rejected
simply because they have produced drag coefficients that are lower than the minimum
values set by Cook. The results of this thesis show that this may have been an erroneous
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criterion for rejecting the experiments as we have shown that, gwcn the levels of
uncertainty in much of the modelling and the data involved, a good theoretical fit may be
achieved using drag coefficients closer to the laboratory results.

The results of this thesis have shown that a satellite aerodynamic model based on
momentum accommodation coefficients is possible and desirable due to their wide

acceptance by the gas dynamics and surface science fraternity.
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Fiqure 7.1 Graph showing ¢ and ¢' behaviour from analysis of
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9 APPENDIX - SPECIAL FUNCTIONS

The Function C_(z. f2)

Let us define the function C, (z, f5) by

fot® e (Al)
C(z,fs) =%J cosnE .e**dE n=0,1,2,...
fo
The main recurrence relation for C, is
2nCn+z(Cn+l_Cn-l):2¢n """ (Az)
where
SINAJor o T (A3)
= “—‘T‘t-o[e fo _ (-1)e f°]

To initialise this equation, C, and C, have to be evaluated numerically.

n

If we adopt the notation C’, ==, then
2Ct =C,, +Coy e (A4)
C,_,=zC’,+nC,—0¢, e (AS)
and
ZCu+l :ZC,n_nCn+¢n """ (A6)

Thus, further manipulation shows that C,, satisfies the partial-differential

equation

2zC" Y —(n*+20C, =20,,,—no,—2z¢", (A7)

Notice that, where f, = 0, C, = I, the modified Bessel function, which satisfies

the O.D.E.

2l —(n*+2d),=0 e (A8)
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which is, thus, a complementary solution of “quiatfén (7)

Expanding C, as a Fourier Series, we find that

- R b T A9
Cotry=L@- =Dy Gy ensinrgy, )

r=1 ry

ii) The Function S, (z. f)
Let us define the function S, (z, ;) by

1l e (A10)
S (2.1 =EJ sinnEe**FdE n=12 ..
which satisfies the main recurrence relation
2,5, +z(S, 1 =S, D=2y, e (A1D)
where
CosS nfo zcos ~z cos
Y= ”T[e fo_ (-1)e f"]

This can be initialised to find general S, by using

2 2[ 2
S, = o sinh(zcosf,) and §,= —[ EZ cos f, cosh(z cos fi) — Sl]

4

Thus, we see that S, differs from C, only in the form of the function ¢,. Hence

S, satisfies the P.D.E.

z(zS'n)'-(n2+zz)Sn =—z\y, +ny,+zv, (A12)

As a Fourier Series:

o 1= (=1Y e (A13)

r=1 ri [I"*’(Z)—In»r(z)]cosrfo

Suz.fo) =~
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