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Summary

Image segmentation is one of the most computationally intensive operations in
image processing and computer vision. This is because a large volume of data is
involved and many different features have to be extracted from the image data. This
thesis is concerned with the investigation of practical issues related to the
implementation of several classes of image segmentation algorithms on parallel
architectures. The Transputer is used as the basic building block of hardware.
architectures and Occam is used as the programming language. The segmentation
methods chosen for implementation are convolution, for edge-based segmentation;
the Split and Merge algorithm for segmenting non- -textured regions; and the
Granlund method for segmentation of textured images. Three different convolution
methods have been implemented. The direct method of convolution, carried out in
the spatial domain, uses the array architecture. The other two methods, based on
convolution in the frequency domain, require the use of the two-dimensional
Fourier transform. Parallel implementations of two different Fast Fourier
Transform algorithms have been developed, incorporating original solutions. For
the Row-Column method the array architecture has been adopted, and for the
Vector-Radix method, the pyramid architecture. The texture segmentation
algorithm, for which a system-level design is given, demonstrates a further
application of the Vector-Radix Fourier transform. A novel concurrent version of
the quad-tree based Split and Merge algorithm has been implemented on the
pyramid architecture.

The performance of the developed parallel implementations is analysed. Many of
the obtained speed-up and efficiency measures show values close to their respective.
theoretical maxima. Where appropriate comparisons are drawn between different
implementations.

The thesis concludes with comments on general issues related to the use of the
Transputer system as a development tool for image processing applications; and on
the issues related to the engineering of concurrent image processing applications.

Key Words: Parallel Processing, Transputers, Convolution, Image Segmentation,
Reconfigurable systems.
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Chapter 1

Introduction

Image processing is a multi-disciplinary field involving ‘researc’heté from diverse
domains such as engineering, physicé, maithe’maticé, computer science, cognitive
science and psychology. The first image proceésihg’teéhniques emerged in the
1920's but until recently the field was mainly oriented towards research and
experimentation. This was due to technological limitations in computer storage and
speed capabilities required for practical image processing implementations. Recent
advances in computer technology, combined with a drop in the prices of processing
and memory elements, have made it possible to build image proccssin g systems for

real use in industry, surveillance, medicine, meteorology, and many other areas.

In the past the term image p;ocessing included the acquisition and manipulation of
digital images, their compression, enhancement and r:e/é’téfétion,: as well as their
matching, description, interpretation and recogniﬁi)h/ (Rosenfeld & Kak, 1982). In
current terminology this term refers only to processing which is applied to pictorial
data and which produces pictorial data as the result; this type of processing can also
be called low-level vision as it resembles the 'low-level' processes happening on
the retina in biological visual systems. Image description (including certain forms
of segmentation) and matching techniques are considered to be intermediate-level
vision processes as they convert pictorial data into an intermediate-level
representation which is more suited to symbolic manipulation by higher-level
processes. Interpretation and recognition are considered to be high-level vision
processes. The processing on each level has diffefent computational requirements.
Low-level processes deal with large amounts of data; processing involved is
usually very simple and homogeneous across the whole image. Intermediate-level

processes have still to deal with large pictorial inputs; however processing is more
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sophisticated and more inhomogeneous, as it may depend on the data be g

processed. Data volume for high-level processes is relatively small but pcheSSﬁés |

applied may be very sophisticated.

The ultimate goal for many 'real-world' applications would be to combine: the
processes of all three levels so that images acquired by a camera or other sensing
device are processed to yield descriptions or representations useful for a given
purpose. Systems with such capabilities are very few at present and are mainly
‘state-of-the-art' demonstrators, working within very limited image domains. Low-
level and some intermediate-level image processing operations, however, have

started to be applied on larger scales to 'real-world' problems.

The practical use of image processing has been hindered by very long processing
times, inadequate for real-world applications. One way of achieving an
improvement is to introduce parallel processing techniques. The problems
encountered in image processing are inherently well suited for parallel techniques
and so such techniques can be expeéted to yield efficient and cost effective results.
Earlier attempts to achieve fast response have involved the use of special
architectures, capable of real-time execution of tasks such as thresholding or spatial
convolution with a small kernel. Such architectures were normally for use on low-
level problems and for single techniques. They were not capable of expansion or

upgrade as the need arose for intermediate-level image processing applications.

A new tool, the Transputer, appeared in 1985. The Transputer is a general—purpéée
processor on a chip with memory and in-built parallel communication links.These
features make it very suitable for building parallel networks. An additional tool, the
software switcher COO4, enables the dynamic re-configuration of the network.
Together with the Transputer a new high level language, called Occam, became
available. Its novel features were the inherently built in support for concurrency and

communications. It was therefore considered appropriate to explore the use of
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Transputer-based hardware and Occam for building flexible and extendible.zpﬁ ' mcal

systems for low- to intermediate-level image processing.

Image segmentation, which is partitioning of an image into its consﬁtﬁént parts, is
an important, widely used low- to intennediéte;lé;}el <;peration. Inits simplesf form
it is used to divide an image into 'objects’ and the 'background'; it also forms an
important step in the process of description and recognition of images. As there are
many diverse principles of partitioning, their implementation requires the use of .
many different computational schemes. The segmentation is often termed the
'bottle-neck’ of computer vision because of the very intensive computation required
to process large amounts of pictorial data. It was therefore seen as a very suitable
application area for Transputer research - it offers plenty of challenge and is of

practical use.

The challenge was to investigate whether mtermedlate level segmentatlon
algorithms with diverse computational schemes could be easﬂy 1mplemented on
Transputer systems. This would involve investigating whether Transputer systems
would support the different architectures required for these various algorithms. It
would also be necessary to explore how well the Occam language is suited for
image processing applications. Having implemented a number of Transputer
applications it was hoped to compare the efficiency and speed-up improvements
achieved for various image sizes. The practical objective of this work was to
develop a flexible parallel system for image segmentation at practical speeds,

capable of expansion.

1.1 Image Segmentation

There are three broad approaches to image segmentation. In the edge based
approach the image is segmented through the detection of discontinuities in grey

level values; the detected lines and partial edges are then linked to form region
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boundaries. Within the region based approach the image is segmented mto:u orm Q

regions thus exploiting similarities between grey level values. The texture based
approach focuses upon the relationship between texture and tone There also CXISt
compound schemes which combine more than one approach some of such

schemes are rule-based.

The choice of particular segmentation algorithms for parallel implementation was
influenced by following considerations. Firstly, the algorithms chosen should be
representative of the three main approaches to segmentation. Secondly, they should
represent different computational schemes, so that the flexibility of the parallel
system can be investigated and tested. Thirdly, the algorithms should be examples
of commonly used image segmentation methods so that comparisons. with
traditional implementations can easily be made. Thus the segmentation methods
chosen were: edge detection by convolution; region segmentation by the
Split and Merge algorithm (Pavlidis, 1977); and texture segmentation algorithm by
Granlund (1978). -

Convolution is the basis of many edge based segmentation methods; it is also used
as the main computational mechanism in Granlund's texture segmentation
algorithm. It is computationally very intensive and therefore a good candidate fora .
parallel implementation. Because of its importance amongst image segmentation

methods, several convolution schemes were developed and compared.

The Split and Merge method is a frequently used segmentation algorithm, well
known for its elegant quadtree decomposition scheme. This scheme has an obvious
counterpart in a pyramid architecture, which has recently received a lot of attention

as an architecture for computer vision #pplications (Cantoni & Levialdi, 1986).
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1.2 Implementation Issues

The development of parallel processing applicatign$ involves the design of both thé
software algorithms apd the overall system sef;uf) wh1ch includes elements Such as
type and number of processors, their intercénﬁéctioﬁs, locations and sizes of
memory modules, together with supporting softwafg. On the application level it is
important that the architecture and the algorithm are closely and individually
matched; on the system level it is desirable to have a single framework for
interprocessor activities such as data routing or communication between the
processors. Such a framework has been developed and all the application
algorithms use the same 'system' procedures. The main area of work, however,
was the design and implementation of the chosen segmentation algorithms and

~ analysis of their performance..

There are two methods of implementing the convolution operation; the direct
method, carried out in spatial domain; and the indirect method where frequency
transforms of an image and a kernel are multipliéd together. The image and the
kernel are transformed to the frequency domain by applying the 2-dimensional Fast
Fourier Transform (2D FFT), and after the multiplication the inverse 2D F'PT‘is
applied to produce the resulting convolved image. The choice of the méthod

depends mainly on the size of a convolution kernel.

The direct method was implemented in parallel using an array architecture. This
choice of architecture was based on the fact that the direct convolution is a local
operation. An image data can be therefore distributed amongst the processors of the
arrwy, the kernel sent to each processor and convolution performed in parallel on
each subimage. The subimages are overlapped to avoid the intercommunication
between the processors and size 6f the overlapped portion depends on the kernel

size.
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The indirect method of convolution contains two 2D FFT operations. ‘TW’oz-mch?Q’dS? -.

considered for parallel implementation of the 2D FFT were the Row-Column
method and the Vector-Radix method. The Row-Column method is based on
applying one dimensional FFT to each row an(i ﬁlen applying one dimensional FFT
to each column of the resultant intermediate imagé.’ An array architecture was used
for its implementation. Each processor in the array contains several rows of an
original image. First, a one-dimensional FFT is applied to the rows; this is then
followed by a matrix transposition which transposes rows to columns and columns
to rows. The second one-dimensional FFT is then applied to the newly formed
rows, effectively processing columns of the first one-dimensional transform. On
the completion of these operations each processing element contains several rows
of a two-dimensional transform of the image. The Vector-Radix method is based on
successively applying 2x2 'butterfly' operations to the image. This method was
implemented on a pyramid architecture. The three parallel implementations of the
convolution operation were compared through anél'yéis of their efficiency and
speed-up measures. The comparison includes factors such as image size,y kernel

size and network size.

The Granlund method is based primarily on convolution of the image with a set of
carefully designed kernels which depict textural features of various frequencies and
orientations. Each convolution block is implemented on a pyramid architecture. A
system-level design of parallel architecture for the full method was developed and
performance measures for the whole architecture were estimated from the measures

obtained for individual convolution blocks.

The Split and Merge method was implemented on the pyramid architecture sinée
the quadtree structure of the algorithm matches this architecture very well. In
addition to the performance analysis for segmentation of a single image, the
performance for a sequence of images 'pipelined’ through the pyramid was

‘analysed.
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Chapter 2

Image Segmentation Strategies

Image segmentation is the operation of partitioning an image into regions or units
which are homogeneous with respect to one or more features. It is the crucial stage
in the image understanding discipline since the results derived from its
implementation are to be analysed by subsequent processing, such as description
and recognition. There is still no single theory for image segmentation, despite
great research effort which has been put into this task. The existing techniques for
image segmentation are usually ad hoc and work successfully only for very
narrowly specified classes of images. Image segmentation techniques can be
categorised into three broad categories: boundary-oriented segmentation, region-
oriented segmentation, and texture segrhentation. The focus. of the boundary-
oriented approach is upon discontinuities (nonuniformity) in properties while the
region-oriented approach is upon similarities of properties. The focus of texture
segmentation is upon the relationship between texture and tone. There is a
possibility of using a compound approach which includes the using of more than

one category for segmenting broad types of images.

Segmentation processes vary in quite unreliable and unpredictable ways due to a
variety of confounding factors such as variations in lighting, perspective distortion,
varying point of view, occlusion, highlights, and shadows. Another problem is that
objects and their parts may or may not be visually distinguishable from the
background. This has led to the difficulty of deriving a precise definition of the
uniformity, and the use of the probability statistics to give the approximate
uniformity predicates. Errors from the image segmentation process are to be
expected because no optimal solution exists in nearly any image segmentation

approach.
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In this chapter, several. techniques for implementing these strategies are.

and discussed. Rule-based strategies for image segmentation are also described. . ’

2.1 Boundary-Oriented Segmentation

Image segmentation is defined within this approach as a process of partitioning the
image into several closed or nearly closed boundaries which delimit regions. The
operation of segmenting images is achieved by detecting the discontinuities and
then by linking them. Here some techniques for this type of segmentation are
described. Good surveys of the results achieved using this group of methods can
be found in Marr (1982), Ballard and Brown ( 1982) chapter four, and Rosenfeld
and Kak (1982) chapter ten.

2.1.1 Edge Detection

Gradient operators are based on the first derivative function to detect the variation.
If f(x,y) is the image function, then the definition of the gradient of an image f(x, y)

at pixel location (x, y) is a vector G(x,y),

af

G, |ox
G(X,Y)z[GyJ— af ’

Jy.

where Gx represents the variation along the x-axis, while Gy represents the

variation along the y-axis. The magnitude of this vector is G(x,y), where

G(x,y) =V Gx*+ Gy~ .

The direction of the gradient vecior is B, where

1 .G
B(xy)=tan” (52).
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There are several ways to obtain the partial derivatives at every pixel location. The

most common approach is to use first-order differences in a 2 x 2 W‘indéw: as in the
Roberts operators (Roberts, 1965); orin a 3 x 3 window like in the Prewitt (1970)
and Sobel operators (Duda & Hart, 1973). These operators are shown in figure

2.1.
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Figure 2.1 Edge operators. (a) Roberts. (b) Sobel. (c) Prewitt.

Directional operators by Nevatia and Babu (1980), and Binford (1981) introduced
implicit averaging which is largely along the edge rather than across it. Nevata and
Babu operators are a set of masks of size 5 x 5 and at 30 angular intervals for linear
feature extraction. The choice of the mask size and the intervals was guided by the
evaluations of various edge detectors carried out by Fram and Deutsch (1975) and
Abdou (1978) and other empirical observations. These masks are convolved with
the image and the maximum magnitude of the convolved output and the direction of

the corresponding mask are selected to be the edge data.
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Isotropic operators by Marr and Hildreth (1980), and Shanmugan et al ( ‘,79) .

offered simplicity and uniformity at the expense of smoothing across edges

The operators by Marr and Hildreth (1980), and Canny (1983) employcd Gaussian
smoothing to reduce noise. They used two érthogOhaI 1-D Gaussian smoothing
operations; one along the edge and other across it. Cafmil described, in an elegaht
way, the variations based on the Zero-Crossing technique. There are two main
features which distinguish this operator from other Zero-Crossin g implementations.
Firstly, non maximum suppression insures that the detector has only one response
to a single edge by defining detection and localization criteria for a class of edges.
Secondly, a detection scheme uses several elongated operators along the edges.
This is because the step edge detector performance improves considerably as the
operator point spread function is extended along the edge. The Canny operator was
the first optimal edge detector. Later Spacek (1984) modified the Canny operator by
forming a performance measure which combines all three quantitive measures
derived by Canny. His optimal filter is dlfferent from Canny's. Petrou and Klttler
(1988) derived the definitive optimal edge operator by using a cubic spline
approximation. The results presented by Petrou and Kittler showed no si gnificant

difference between the three operators.

Nalwa and Binford (1986) claimed that for a given support along a locally strélight

edge Gaussian smoothing is less effective than a simple averaging operation.

Surface fitting operators by Prewitt (1970) and Haralick (1984) employed a rﬁean,s
to estimate derivatives. Hueckel (1971) employed a classification technique. They
failed to exploit the directionality of the edges. Later Nalwa and Binford (1986)
proposed 'step-edgel' detection method based on a surface-fitting approach using
directional one-dimensional surfaces. Edgels are edges defined in terms of short

linear segments. They claimed that this method is robust with respect to noise.
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The test of performance of several edge operators has been made by Sucm and

Reeves (1982) on edges of the ramp function. This showed that Prewitt and Sobel
operators performed almost equally well but their performance was superior with
respect to other local edge operators such as Synder (1980) and other moment

operators by Machuca and Gilbert (1981), and Delp and Mitchell (1979).

2.1.2 Edge Linking

The techniques of edge detection are used to detect the discontinuities in the image
and produce high pixel values at the boundaries of the regions. waever, the
natural boundaries are noisy and appear non-continuous due to nonuniform
illumination and other effects which produce spurious discontinuities. To get a
meaningful set of boundaries, edge detection algorithms are usually followed by
other techniques such as linking and further/boundary dctqctidn procedures. There
are two main classes of techniques for that pur[r)bse; thé local and fhe global

techniques.

Local Techniques

In order to decide whether an edge pixel represents a true or false edge a local
information is used. Usually, a small neighbourhood of size 3 x 3 or 5 x § is used
and within that neighbourhood similar pixels are linked, thus forming a boundary
of pixels that share some common predeﬁne_d properties. Two pﬁnciple properties
are used, the first is the magnitude of the gradient operator used to produce the edge
pixel, and the second is the direction of that gradient. The pixels in the predefined

neighbourhood are linked if both the magnitude and direction criteria are satisfied. -

Global Techniques
As the name suggests the techniques of this kind are based on the global
information derived from the data set. Two main edge linking methods in this

group are the Hough Transform and Graph-Theoretic method.
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Hough Transform

This method, proposed by Hough (1962); transfers the gradient image frorn the
spatial domain into so-called Hough plane, which is a discrete 2-dimensional
parameter space usually spanning polar coordinates P(p, 6). Each point of this
space is then examined for a high value which indicates the presence of a line
described by a pair (p, 8). By this method a line can be detected and discontinuous
edges can be linked. For a recent survey of the work done on the applications and
the implementations of the Hough transform see the paper by Illingworth and

Kittler (1988).

Graph-Theoretic method .

This method was proposed by Martelli (1976) for detecting edges and contours in
noisy images. He embedded the properties of an edge in a figure of merit. The
detection of an edge in this app_roach is to minimise this figure of merit. If the edge
segments are represented by a graph structure, the search for a shortest path in the
graph minimizes the figure of merit and that corresponds to significant edges. This
method leads to a substantial improvement in computing time with respect to the
Dynamic programming approach (Kaufmann, 1967). However, this method is
more complicated and takes more processing time than the local techniques and the

Hough Transform method.

2.2 Region-Oriented Segmentation

In this approach the image is segmented into a number of non-overlapping regions
which are internally uniform. In contrast to boundary-oriented segmentation,
images are segment= on the basis of similarities of local properties. The following
sections discuss various techniques within this approach. However, there are other ‘
techniques such as measurement space clustering, spatial clusterin g, thresholding,

and others which can be found in many segmentation surveys such as Zucker
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(1976), Riseman and Arbib (1977), Fu and Mui (1981), Haralick and' Shapiro

(1985), and Ballard and Brown (1982) chapter five.

2.2.1 Region Growing

The earliest major approach of region growing was proposed by Muerle and Allen
- (1968). Its principle is to begin with an initial partitioning, either single pixel
regions or several pixels large regions, and then by using a certain feature measure
similar regions are merged until no further regions can be merged. Brice and
Fennema (1970) applied the state-space approach of artificial intelligencc
(Nilsson, 1971) to region growing. The process starts by partitioning an image
into initial segments, each consisting of a group of pixels of identical grey level.
Then the merge algorithm starts to merge the adjacent regions with small

differences of grey levels.

Pong er al. (1984) proposed a region growing scheme based on the facet model of
images (Davis et al., 1975). The process starts with an initial segmentation by
grouping pixels using an iteration scheme. Next the merging algorithm follows
which has two phases. The properpies of each region are updated based upon the
properties of its neighbourhood in phase one, while in phase two, adjacent regions
with similar property values are merged. The shapes of regions through the process
are arbitrary. The thresholded facet iteration method has been used to control two
region growing processes which gives the ability to separate inhomogenéous

neighbourhood regions.

2.2.2 Splitting

The region splitting algorithm starts with considering the whole image as one

region and then applies a certain criteria to split this region into a number of
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regions. This procedure is applied on each split region until all the reglonssansfy

the criteria. Ohlander er al. (1978) proposed a recursive region splitting method for
many different types of images. Histogramming techniques were used to estimate a
threshold value for each region under processing. This is done by selecting the best

peak in the histogram.

Lee (1986) proposed a hierarchical scope views technique to overcome the two
disadvantages of this method, the majority rule problem, and the deficiency if there
is no well defined peak in the histogram. A quadtree data structure was used to
keep track of the recursive steps and permitted an implementation of the boundary
check procedure. This procedure can detect all possible sources of boundary
discontinuity, but two problems still remained: the failure to merge regions in the
later stages which have been already selected in the early stages of the iteration, and

the inability to detect regions containing a large intensity gradient.

2.2.3 Split and Merge

As the segmentation produced by both the region growing (merging) and the.regi;on
splitting algorithms had serious drawbacks, Horowitz and Pavlidis ( 1978)
proposed a novel solution which overcomes the disadvantages of both algodthms
by applying first the split phase and then the merge phase. This technique is called
Split and Merge. The full description and implementation of the algorithm will be

the subject of chapter eight.

Chen and Pavlidis (1979) applied the Split and Merge algorithm to segment
textured images. They used the co-occurrence matrix (see section 23.1)as a
texture uniformity measure instead of grey level uniformity measures used in the
original Split and Merge algorithm. Within this technique the matrices of a region

and its four sub-regions are compared. If they are similar, then the region is
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considered to have a uniform texture, otherwise it is ;spIi;‘t into four sub-regions.

The same criterion is used in the 'merge’ phase of the algorithm.

Doherty et al. (1986) prdposed a further merge procedure following the
split and merge method, and called the algorithm Split Merge Merge. The
second-pass merge considers all the regions formed by the Split and Merge
algorithm, and applies a second-order statistic texture measure (Doherty et al.,
1985). This enhanced technique segments various types of images with both low

and high textured areas, such a high resolution urban images.

More recently Laprade (1988) proposed a modified technique for the
Split and Merge algorithm. This method used a combination of a F-test (Rao,
1973) and a mean predicate to evaluate the uniformity of the regions. The F-test is
based on the least square method and compares the residuals obtained by fitting all
regions with one plane to the residuals obtained by fitting each region with a plane.
If the difference between them is large, the regions are judged to be distinct.
Multiple predicates were used becausé the F-test is nbt sensitive to the magnitude okf
the differences between regions, but to their uniformity. The least squares
parameters needed for the F-test are performed efficiently by the Split and Merge
algorithm because the new parameters for a union of two regions are evaluated by
summation of the corresponding parameters of each region, and so they aré

computed only once.

2.3 Texture Segmentation

Image segmentation according to texture has been acknowledged to be one of the
most difficult and time consuming image processing tasks. Image texture has two
dimensions (Haralick, 1979), the first dimension is to describe the primitives out of
which image texture is composed, and the second dimension is to describe the

spatial dependence between the primitives of an image texture. Usually the first
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dimension is concerned with tonal primitives, while the second dimension is

concerned with the spatial organisation of the tonal primitives.

Image texture has another evaluation in terms of so-called the texture features, such
as fineness, coarseness, smoothness, and randomness. These need to be translated
into some property of tonal primitives and the spatial interaction between the tonal

primitives.

The relation between texture and tone is strong and it is similar to the relation
between a particle and a wave. The dominant property of a small-area patch of an
image which has little variation of tonal primitives is tone, while the dominant
property of a small-area patch of an image which has wide variation of tonal
primitives is texture. Due to this strong relationship between texture and tone all the
existing methods tend to emphasise both, but not equally because of the variety of

types of image textures.

There are three principle approaches to deﬁﬁing the textural property of a region
and subsequently using this property for segmentation: statistical, structural, and
spectral approaches. In the statistical approach, the texture is characterised as
smooth, coarse, grainy, and so on (Gonzalez & Wintz, 1988). In the structural
approach it is described depending on the regularity of spatial patterns. Spectral
techniques are based on the properties of an image frequency transform such as
Fourier or Hadamard and the high energy narrow bands in the transformed space
are an indication of textural properties. Here the statistical and spectral approaches
only are described as the structural approach is used mainly for texture synthesis

rather than analysis.
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2.3.1 Statistical approaches

These approaches are based on calculating intermediate matrices of texture of the
input image depending on the primitive tones and their spatial interrelationships and
then calculating the vector of measures. There are various statistical approaches
which have been reported in the literature. Good surveys for some of the methods
are given in papers by Haralick (1979) and Haralick & Shapiro (1985). The
simplest approach for describing texture is to use moments of the grey-level
histograms of an image. Others are Spatial Grey Level Dependence Methods
(SGLDM) (Read & Jayaramamurthy, 1972), Grey Level Difference Method
(GLDM) (Weszka et al., 1976), and Mathematical Morphology (Serra, 1982). Here
two of them are described: the Grey-Tone Co-occurrence and the gradient

approaches.

Spatial Grey Level Dependence Method

The texture measures computed by histogram based methods with no spatial
information are limited because they carry no information regarding the relative
position of pixel grey level values with respect to each other. The Grey-Tone Co-
occurrence technique does not suffer from this limitation. The structure which
contains the required information is called a co-occurrence matrix. The SGLDM is

based on this technique.

The co-oécurrence matrix is a 2-dimensional array indexed in both directions by a
grey level value. The element C(j, j) is a count of the number of pairs of resolution
pixels having grey levels g; and g;, respectively, and which are separated by a
displacement vector & = (Ax, Ay); These values are normalised by dividing C(, j)
by the number of pairs (n) in the image that satisfy 8. Figure 2.2 below shows an

example of a sub-image with its Co-occurrence matrix with 8 = (1,1), in this

example 1 £1,j <3, g =[0, 1, 2], and n =9.
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Figure 2.2 Subimage and its co-occurrence matrix.

The first step in this technique is to compute a Co-occurrence matrix over each
subimage. The next step is to analyse the matrix in order to categorise the texture of
the subimage. Haralick (1979) proposed a number of useful descriptors. Some of
them are given below: in the formulas C(i,j) indicates a Co-occurrence matrix and

Ng is the number of grey levels in the subimage.
a) Maximum probability

max (C(1,j)), i,j=1,2,..Ng
b) Element-difference moment of order k,
Ng N K
ﬁf[(iﬂ') C@,pI,
i=1j=1
¢) Inverse element-difference moment of order k,
Ng N; ..
if [ﬂ{-{)—], for i # ]
i=1j=1 (i-))
d) Entropy
NgN
}fi [C(1,)) log C(1,))],
i=1j=1
e) Uniformity

%%C%&

i=1j=1
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He et al. (1987) proposed a new approach to texture feature extraction from a Co-

occurrence matrix. They proved that thc,compﬁtational time-required by their
method is much less than that required by the traditional Co-occurrence matrix
method. The proposed features are calculated and compared with those suggested

by Conners and Harlow (1980). The three proposed features are,

a) Diagonal Moment

$isG,iv)
D(v) _ i=1

iS(i,i,v)
i=1

b) High Level Moment

3 G- D) SOW),.v)]
J=D(v)
H(v)=

3 sOWv

3=D(v)

¢) Low Level Moment

Dg) ' '
2 [(D(vV) - j) S(D(v), j, v)]
H(V) = =

D(v)
ﬁ‘, 8@, D(v), v)

=1
where P is the number of grey levels in the original image, and S(@,j,v) is the
estimated probability of going from grey level i to grey level j given the

displacement vector v = (Dx, Dy), assuming that

8@, j, v) =S(, i, v) (i.¢. co-occurrence matrix is symmetric)
These features are used as parameters in Bayes' discriminate functions
(Duda and Hart, 1973). On 25 randomly selected samples over each Brodatz's

(1966) texture samples the correct classification result was 93%. The six features of
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Conners et al. (1984) lead to a higher correct classification rate (97‘%)‘, but took

much longer time than that of He ez al..

Many researchers have used this technique for texture segmentation of various

types of images, examples include Haralick ez al. (1973) and Chien and Fu (1974).

Texture gradient Method

This method is based on the measurement of the gi'cy level run length. A grey level
run is defined as a sequence of linearly adjacent pixels having the same grey level
value. The length of the run is simply the number of pixels in the run. The grey
level run length is a texture primitive, so for coarse textures there are many pixels in
a constant grey tone run, while for fine textures there are few pixels in a constant
grey tone run. Galloway (1975) described the texture in four grey run length
matrices. Each matrix evaluated one principal direction. The grey level run length
method is based on computing the number of grey level runs. Each entry (i,j) in the
matrices denotes the number of the runs with grey level i and length j along the

associated direction. This method is suitable for linearly structured texture.

Later Wermser (1984) described an unsupervised segmentation technique using a |
texture gradient. In this method a feature vector was constructed for each point in
the image and consisted of four feature measures: short runs emphasis, long runs
emphasis, run length distribution, and run percentage. Each feature is computed for
four directions (0, 45, 90, 135 degrees) so a vector of length 16 is computed.

These are evaluated by 16 separate matrices.

Powley et al. (1986) applied this technique for the localization of microstructural
regions. They concluded that texture gradient method proved to be difficult to use
due to the large number of parameters required and the necessity to tune them to the
image data. These parameters are the sizes of the run length sampling window and

the size of the gradient subwindow.
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2.3.2 Spectral approaches

Power Spectrum Method (PSM)

The use of a power spectrum for texture segmentation is widely spread due to the
strong relation between the distribution of the power spectrum and the arrangement
of patterns in the textured images. For example, for a fine-grained and closely
spaced regions the high values in the power spectrum will be spread out away from
the origin, while for coarsely grained regions the high values in the spectrum will
be concentrated close to the origin. The direction of the texture can be detected by
the power spectrum as well: for example, horizontal streaks in the region will give

rise to a vertical streaks in the spectrum (Rosenfeld & Weszka, 1976).
The first step is the computation of the sample power spectrum Q(u, v):
Q(u, v) = IF(u, v)i2,

where F(u, v) is the Fourier transform of the image. The best representation of

power spectrum is by using polar coordinates,

dp(p, 8) = Q(u, v),
where p=vuZ+v2,0 =tan“1(v/u) .

The integration of ¢ with respect to 8 and p give the functions d1(p) and 6,(0)
respectively: ¢;(p) represents the spread of values of o(p, 8), while 0,(8)

represents the directional biases of o(p, 6). There are three commonly used

features with power spectrum (Weszka et al., 1976):

1) Annular-ring sampling geometry: These can be expressed in polar coordinates as

pirap R
ajzf f ¢P(p,9)pd9dp, j=1,2,...,m,
p 0

where ¢,(p, 0) is the sample power spectrum with polar coordinates, and m, is the

number of annular rings.
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2) Wedge sampling geometry: These measurements can be c.omput,ed“ by the

following expression:
P aax 9348,
aj=f f ¢p(p,6)pd6dp, ji=1,2,...,m,
Poa 70

where m,, is the number of wedges.

3) Parallel-slit sampling geometry. Assuming that the power spectrum is first

- rotated by an angle 6, the slit sampling geometry can be evaluated by
V mx llj+ Au
5(0) = f f o(u,v)dudv, j=1,2,...,m,
Vo llj .
where my is the number of slits.

Hadamard Transform Method
The Hadamard Transform (Pratt er al., 1969) decomposes a function by a set of

orthogonal waveforms. The 2D Hadamard Transform H(u, v) can be expressed as
N-1N-1 X, y.1,v)
H(u,v)= 3 3 f(x, y) (:DPV Y,
x=0Y=0
‘where
L-1
P(X, ¥, u,v) = Y [biu) bi(x) + bi(v) bi(y)],
i=0
where bi(r) is the i-th bit of the binary representation of the operand r and NxN is

the sub image size where N= 2L.

A texture feature proposed by Powley et al. (1986) is extracted from the transform
of a 16 x 16 local area around each point in the image. The value of the texture
feature at each point is computed as the sum of the differences between the row and
column totals of the local area transform. The sufn of each row and column are R

and C respectively and they are evaluated as follows,
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15
R() = 3 H;{u, v),
v=(0

15
C(v) = Y Hi{(u,v),

u=0
where Hj; is the Hadamard Transform of the 16x16 local area centred on the image
pixel at location (i, j). The texture measure Tm for the pixel location (i,j) can be
evaluated by the following equation,
15

Tm = Y [R(D)- C(r)].

r=0
This texture measure is calculated for each pixel in the image. The difference
between the symmetry of the transform taken across different regions can be
distinguished because the texture measure is symmetric for the boundary while it is

asymmetric for the area internal to the boundary.

The Hadamard method provided best results on microstructural regions in the
applications of Powley et al. (1986). It has the advantage of simple implementation
and so runs faster than the gradient method. The results of the Hadamard method
can be used in post-processing techniques such as thresholding and line thinning

for best segmentation.

Granlund method

This method has been developed by Granlund and colleagues at Linkoeping
University, Sweden, its details can be found in a number of papers (Granlund,
1978; 1980a). It relies on combining a sequence of image transforms into a
hierarchical structure in which each transform contains information related to a
certain frequency banc. The transforms are derived by convolving an image on
each level of the hierarchical structure with a convolution mask (operator) whose
size becomes increasingly larger on ascending levels of the hierarchy. The method

is based on the assumption that within an image window of a certain size there is a
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dominant frequency band'in a certain direction. Thus by applying an operator of an

appropriate size within a window a vector can be calculated with a magnitude which
represents the dominant frequency (variation) within that window and a phase

which represents the direction of that variation.

The first order transform is derived by replacing each pixel in the original image by
the vector with the largest magnitude, selected amon g the vectors calculated for a
number of directions for the window centred at that pixel. The first order transform
is then added to the original image and a subsequent transform, with the larger
operator size, is derived to detect lower frequencies than those on the previous
level. The obtained image is a second order transform and further transforms are
evaluated in the similar manner. The authors refer to the operator as 'the general
picture processing operator’ and see its application, among others, in separating
regions of different texture. The full description of this method and its

implementation is the subject of chapter seven.

Gabor modulation/demodulatioh

Clark er al. (1987) used a two-dimensional Gabor filter (Gabor, 1946) to segment
images into regions of specific frequency or orientation characteristics. The filter is
tuned to the characteristics of the regions. The image is transformed into a narrow
band signal by these filters. The envelope of the transformed image coincides with

the regions whose characteristics the filter is tuned to.

The properties of the Gabor filters make them useful for finding texture boundaries.
The useful properties include optimal localization in space and frequency, the ability
to tune the bandwidth and the band location and the ability to use the filters as a
means for modulating textures where the region containing the texture is regarded

as an envelope which can be recovered.

Clark's paper suggests that phase modulation (PM) could be performed on the

narrowband complex images obtained by Gabor filtering. The phase information
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can then be used alongside with the gradient information as the abrupt véhan‘gcs in

phase indicate perceptual texture boundaries, and smoothness in phase indicates

smoothness in surface characteristics.

2.4 Rule-Based Segmentation

Rule-based systems have been used for image segmentation and recognition. Such
a system contains two main subsystems, the knowledge and control systems. The
first proposal to apply this to pattern recognition came from Sloan (1977); other
system are reported by Brooks et al. (1978) and Levine & Shaheen ‘( 1981). All
these approaches have concentrated on high level processing. The first Rule-based
system for low level processing was proposed by Nazif and Levine (1984),
followed by a later system by Stansfield (1986). Here these two systems are briefly

described.

2.4.1 Nazif and Levine System

This system has been proposed by Nazif & Levine (1984) for image segmentation.
The system is composed of three parts as shown in the block diagram of

Figure 2.3 overleaf.

Short Term Memory (STM) is used to store the input image, the segmentation data,
and the output of segmentation processing. This data can be read and modified.
Long Term Memory (LTM) stores the Rule-Based Model. This data can be read
only since the Rule-Based Model is fixed.

39



T Initalizer

Region

Line
LTM S.T.M
Area

F.O.A

Supervisor

Figure 2.3 Nazif & Levine system.

During segmentation the data in the STM is modified according to the rules stored
in the LTM. The modification is performed by an appropriate process chosen

according to the matched rule. The following processes are available:

Initialiser :- It generates the initial region and line maps using traditional methods of
region and edge based segmentation. By using those maps, it then produces the
initial focus of attention areas, and finally computes the performance measurements

for each area (Levine & Nazif, 1985b).

Region, line and area processes :- The region process matches the region analysis
rules in the LTM to the data in the STM:; if the rule fires, the action specified by that
rule is executed on the current region under consideration. Similarly the line and

area processes execute action on lines and areas respectively.

Focus of Attention process:- It selects the particular data to match the control

knowledge rules by using focus of attention rules which are stored in the LTM.

Supervisor process:- It acts as a monitor for system control purposes. It matches its
own metarules to the data and consequently determines the order of activity of the

other processes.
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The most important part of the system is the Rule-Based model. This m@del is
stored in the LTM. It contains the system control strategy which is defined by the
strategy rules and executed by the control rules. It is composed of three levels of

production rules as follows (Levine & Nazif, 1985a) :

1. The Knowledge Rules:- They encode the information about properties: of
regions, lines and areas in the form of a set of situation-action pairs. They modify

the data depending on the criteria embodied within them. Their actions are :-
a) Merging and splitting regions.

b) Adding, deleting, joining and connecting lines.

¢) Creating and updating focus of attention areas.

2. The control rules :- These are two sets of rules as fopqws:

a) Focus of attention rules:- They specify the next data item to be tested. This
strategy is a data-driven process since the condition of these rules depend on the

STM data. These rules modify the STM data.

b) Metarules:- They examine the data in the STM, and their actions specify the
next process to be activated, and hence the next knowledge rule to be matched.
They are responsible for evaluating the stopping criteria of the system and halting

the processing procedure. They do not modify the STM data.

3. Strategy rules:- Their function is to select the set of rules that execute the most
appropriate control strategy depending upon the data. This selection is based on a
set of performance measurements computed for each focus of attention area in the

image. [his virategy is a data driven one.

This approach combines different methods to create a knowledge system and
control strategy to produce a complete production system. This set-up gives two

important advantages (Nazif & Levine, 1984): efficient processing by ordering the
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areas in the image to be processed and minimising the segmentation errors by

choosing the appropriate rule for each step of procéssing.

An optimum set of rules was proposed and tested on a number of images and the
performance of the system was Compared with that of the histogram-based
segmentation (Ohlander, 1975) and Split and Merge (S & M) methods. The results
showed that histogram-based segmentation produced highly contrasting regions
that e);hibited low uniformity values, the S & M produced highly uniform regions
with little contrast across the boundaries, while the Rule-Based system produced
regions with high uniformity and contrasting. The main drawback of this method is
the complexity of the system and that it takes a long time to segment an image

compared with other two methods (Levine & Nazif, 1985b).

2.4.2 ANGY

ANGY is a rule based expert system for automatic segmentation of coronary
vessels from subtracted digital angiogram of the chest. ANGY has been designed
and implemented by Stansfield (1986). This system is modularised into three
stages. The first stage is the preprocessing stage which creates a segmented
representation of the input image. The second stage is the low-level image
processing stage. This stage embodies a domain-independent knowledge of
segmentation, grouping, and shape analysis. It attempts to refine the segmentation
begun by the preprocessing stage. The third stage is the high-level processing
stage. It embodies a domain-dependent knowledge of cardiac anatomy and
physiology. The overall system is similar to that- of Nazif and Levine (1984) but

uses different measures and rules.

42



2.5 Summary

Image segmentation is a ubiquitous operation which is one of the bottle-necks of
image and computer vision processing. This is due to a high volume of data
involved in the processing. Three broad categories of image segmentation methods
have been identified. The boundary oriented methods and the region oriented
methods aim to partition an image according to its tonal composition; texture
segmentation methods aim to partition an image into regions of similar texture.
There exist also schemes which combine these basic three approaches in either

ad hoc or rule based framework.

A survey of image segmentation methods, briefly summarised in this chapter, was
conducted to help to identify general classes of computational schemes widely used
for image segmentation. Two such schemes emerged: convolution and regular

decomposition.

Convolution is used in many segmentation methods, especially those which are
edge based. It is also used in other (non-segmentation) image processing operations
such as smoothing and enhancement. Convolution is also at the heart of a

successful texture segmentation scheme by Granlund.

Regular decomposition is an example of a divide-and-conquer strategy and is the
basis of the Split and Merge segmentation algorithm and many multi-resolution
schemes. The Split and Merge algorithm is widely used for region based
segmentation since it provides a general mechanism in which segmentation
(uniformity) criteria can be changed at will. It can be used for both tonal and

textural segmentation.

Both of these two mechanisms had potential for parallel implementation and at the
time of starting this work there had not been many such implementations reported

in literature.
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Chapter 3

Parallel Architectures and Performance Evaluation

Parallel processing has the capability of providing fast and flexible solutions to
computationaly intensive tasks. The image processing domain presents many
such tasks. The segmentation algorithms reviewed in the previous qhapter
present a suitable challenge as they have to deal with a large amount of pixel

data and represent an important class of image processing algorithms.

Parallel processing applications require the design of both, the ‘parallel
algorithms to suit the architecture of the computer, and the parallel architecture,
to best suit the algorithm. For many years the architecture aspect of design
involved either simulation by software on a single processor machine,

simulation by a network, or building a special hardware.

This work began when it had just become possible to build a parallel
architecture from off-the-shelf components - Transputers. A high level parallel
language Occam and the associated development tools had also became
available. The work carried out during this project must be put into perspective
by looking at the history of development of generations of image processing

systems and classes of parallel processing systems.

This chapter begins with an overview of image processing systems grouped
(after Cantoni & Levialdi, 1988) into four generations; the basis of grouping is
mainly chronological but also entails other factors such as methods of image
acquisition, distribution and processing. Further in this chapter a well known
classification of parallel architectures, on the basis of multiplicity of instruction
and data, is given and for each class examples of existing parallel systems are
discussed. Methods of evaluation of parallel systems are outlined in the last part

of this chapter. Such methods are essential both for assessing relative merits of
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individual parallel implementations and:also for drawing comparisons between

implementations of the same algorithm on different architectures.

3.1 Generations of Im:ige Computers

The advances in parallel processing techniques are dependent on the advances in
the technology. Parallel processing techniques include architecture design and
programming skills. Architecture design includes processors, memory,

interconnection network, and control.

There are three vital factors for a better parallel processing system: the speed of
processor, the speed of the memory access, and the speed of the communication
between the processors in the network. All these factors are strongly related to
the technology. The more advanced technology, the more speed can be

achieved.

The question arises: why are parallel processing techniques waiting for more

new advances in technology to jump to the next stage?

There is no clear answer to this question. However, there are several partial

answers ;

1) The high speed of the evolution of the technology gives little chance to the
researchers to exploit and fully utilise the existing technology. Here the demand
on the applications side is such that it is better to use the new technology to get

more performance and hence more profit.

2) If the existing technology is not fuily utilised then there is no point of trying
to utilise and exploit the future technology, since there is a possibility of getting

better performance by investigating the existing technology.
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3) The difficulties of getting more grants for future technology. This is clear by

comparing the large gap between the research on the existin g technology and the
research using modelling techniques which are mainly concerned with future

technology.

Image processing and computer vision include some of the most
computationally intensive tasks. The need for high performance computers for
these fields is clear. That is why the advances in computer vision are strongly
related to and coincide with advances in parallel processing techniques. Since
parallel processing techniques are strongly related to the technology the
advances in computer vision are strongly dependant on the technology and the
generations of the image computers are the same as those of the technology.
Figure 3.1 shows graphically the relationships between the three advances in

computer vision, parallel processing, and technology.

Technology i

Parallel processing e

Computer vision |

Figure 3.1 Advances in the computer vision three related fields.

3.1.1 First Generation 1955-1965

In this period the sequential raster scanning of the image is the first data
acquisition method. This is achieved by scanning the image row by row and

storing the pixel information in a buffer memory which is capable of storing
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only portion of the image. The operation is very slow since only a portion of the

image can be processed, so there is a need to have multiple access to the image

memory and overhead of row overlap and large number of Image segments.

In this period, Fortran programming language was the only high level tool
available. For performance improvement, a special low level machine language

could be used for each hardware block.

The typical image processing achievements of this period were image
enhancement and restoration. Image enhancement is the operation of increasin g
the signal to noise ratio, for example by low pass filtering to suppress the high

frequency noise or band pass filtering to enhance edges.

3.1.2 Second Generation 1965-1975

In this period intensive research was done towards implementing local
operations such as histogramming, template matching, and connected

component extraction.

To achieve such operations, all neighbouring pixel values of an elementary 3 by
3 subarray were simultaneously provided to a special function unit. This needs
a full scanning of the image. Examples of computers of this period are GIOPR

(Preston, 1971) and PICAP I (Kruse, 1973).
3.1.3 Third Generation 1975-1985

In this period multiple computational units became available. These are

configured in one of three classes:
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Processor array computer

These computers used a 1-bit processor as a basic block to the array. Thé
processing elements contain an arithmetic logic unit (ALU) and a special logic to
implement the bidirectional interconnections with the nearest neighbours.
Examples of such computers are MPP (Batcher, 1980) and CLIP4 (Duff,
1978).

Pipelined computers

These machines contain up to 100 processor elements connected in a pipeline.
These systems require an accurate balance of tasks between the stages. An

example of such a machine is the cytocomputer (Lougheed er al., 1980).
Multiresources computers

These computers use a multiresources management strategy for deriving and
coordinating the activity of a special function unit by a host com.puter‘ The
special function unit is a hardware device corresponding to the standard routines
for histogramming, template matching, convolution etc. Examples of such

machines are PICAP II (Kruse et al., 1980) and TOSPICS (Mori et al., 1978).

3.1.4 Fourth Generation 1985-

In this period an emphasis was given to the types of connection between the
processors so as to increase the flexibility of the architectural design; and the
possibility of reconfigurable systems to provide static and dynamic hardware
matching to the task under processing (Cantoni & Levialdi, 1983). This
approach uses an interprocessor router to map image data structures and data
flow during computation. An interesting reconfigurable system is SIMD/MIMD
(Siegel er al., 1981). These architectures are so-called multicomputers due to

autonomous capabilities of the new single processing units (Uhr, 1987).
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In these architectures, programming becomes a complex task since .

concurrency, multiple resources management, temporal loading variations and

dynamic dispatching must all be handled:

-Different programming paradigms are necessary, due to the use of a variety of

processing modes, such as procedural, object oriented, and declarative;

-The possibility of a hierarchical organisation (Tanimoto & Klinger, 1980) of
computation levels may benefit from the planning strategy which should be

dynamically generated;

-The man-machine interactivity and system programming must be comfortably
supported by visual/iconic interfaces which also allow the direct execution of

the target task by iconic programming (Chang, 1987).

The complexity of these systems makes their tuning to the various computer
vision applications difficult to achieve. Knowledge of these system capabilities
as well as of the task domain is reqﬁired to achieve high performance, fully

exploiting the available resources.

3.2 Taxonomy of parallel architectures

It is clear from the previous section that there are various types of architectures
proposed for image processing and computer vision applications in general.
This is due to the complexity of these applications and the limitations imposed
by the hardware technology. This means that there is no single type architecture
which is suitable for all types of applications, i.e., the parallel architecture is
applications dependant. The direction of research in parallel processing is
towards designing a parallel architecture for the maximum possible number of

applications.
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Flynn (1966 & 1972) has proposed the best known taxonomy for parallel

architecture computers. It is based on the multiplicity of instructions and data.

According to this basis, parallel architecture can be classified into four groups:

SISD- Single Instruction stream Single Data stream computers which represent
the Von Neumann conventional architecture in which there is a single program

controller in which each single instruction is executed on a single datum.

SIMD- Single Instruction and Multiple Data computers in which there is a single
controller which stores the program. This controller broadcasts a sequence of
instructions to a number of processing elements (PEs), each of which executes

these instructions on its own memory.

MISD- Multiple Instruction stream Single Data stream computers, usually called
pipeline computers. In this type several instructions are executed on a single

datum.

MIMD- Multiple Instruction stream Mﬁltiple Data stream computers. In this type

several instructions are executed on several data items.

This type of taxonomy is not sufficient for the recent advances in technology.
Thus the need for more than the multiplicity of instruction and data to be

included such as processor autonomy (Fountain, 1987).

In this section, the parallel architectures for image processing and computer
vision are classified according to their multiplicity of instructions and data. The

processor autonomy is used to further classify SIMD computers.

3.2.1 SIMD

As stated, these are Single Instruction stream-Multiple Data stream machines

which consist of a two-dimensional array of relatively simple processing
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elements (PEs). There is a local connectivity between these processors and local

memory associated with each of them. A central controller (host) broadcast-s.- a
sequence of instructions to the PEs, each of them executing the same instruction
simultaneously but operating on its own local data. The other important part of
SIMD is the interconnection network which ailows data to be transferred among
the PEs. SIMD architecture is obviously well suited to exploiting the parallelism
inherent in certain tasks performed on vectors and arrays (images). This type of
architecture is quite useful for the following two reasons. Firstly, the single
instruction stream aspect makes many of the techniques and practices developed
for programming conventional serial computers directly applicable; secondly the

parallelism is in the execution of a single task, not in multi-tasking.

Great attention should be paid to the network interconnection because the PE-to-
PE transfer of information muét be efficient, otherwise the parallel algorithms '
will be slowed down. There are many SIMD systems, for example DAP (Hunt,
1981), CI_JP 4 (Fountain, 1981), and others (Kittler & Duff, 1985).

This leads to further classification of SIMD machines according to their
autonomy, as proposed by Fountain (1987), and then by Maresca et al. (1988).
They identified three types of processor autonomy: operation autonomy,

address autonomy, and connection autonomy.

Processor autonomy can be defined as the degree of freedom given to the
processor for the three activities of operation, addressing, and interconnection,
to be different from other processors activities. Three different autonomies can
then be defined (Fountain, 1987). In operation autonomy different operations
may be executed by the processors in the parallel comguter. This removes the
restriction imposed by SIMD computers that a single instruction should be
executed by all processors. The addressing autonomy overcomes the SIMD

limitation that all the PEs fetch operands from the same address. It gives the
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freedom to the PEs to access them from their memory. The interconnection

autonomy overcomes the limitations of several parallel computer architectures of
static interconnection to a dynamic one in which the topology of the network

may be changed during program execution.

3.2.2 Non autonomous SIMD computers

There are two types of this group of computers, classed according to the length

of the operand, the bit-serial and the integer computers.
Bit-serial computers

These computers contain a single control unit (CU) and an array of identical
PE's. The CU distributes the whole image or consecutive blocks of the image
through the PE's, to be processed in parallel. Each PE is connected to PE's
adjacent to it and the communication between them is only one bit wide. The
main strategy of operation is that each PE fetches data from its own memory or
any of its directly connected neighbouring PE's memories, and executes a

sequence of instructions sent by the CU.

The bit-serial architecture is very efficient with respect to memory and
processing resource utilisation because of the flexible data formats allowed by

this type of architecture (Reeves, 1984).

Most of the computers built using this type of architecture are array topology,
and they have over 16000 PE's. Examples of these are the 64-by-64 DAP
(Reddaway, 1978 & 1980), the 96-by-96 CLIP4 (Fountain, 1981), and the
128-by-128 MPF (Batcher, 1980) whose novel feature in the PE was the
dynamically reconfigurable, variable length shift register with a maximum
length of 30 bits. This organisation ailows very fast multiplication because the

shift register is used for circulating the partial product.
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Integer computers

N

These computers are similar in operation to the bit-serial type, with only\on‘e
difference: the PE is of several bytes size instead of 1 bit. An example of this

type is NON VON (Shaw, 1982).

3.2.3 Autonomous SIMD Computers

Maresca et al. (1988) applied a recently proposed autonomy to further élassify
fine-grain SIMD massively parallel processing. These are operation autonomy,
addressing autonomy, and connection autonomy. They concluded that
connection autonomy is the major factor in the development of massively

parallel computers for vision.
Operation Autonomy

Operation autonomy provides a massively parallel architecture with the ability to
execute more than one operation among all PE's. Examples of such machines
are the CLIP 7 system (Fountain, 1986 & 1987), and MSIMD computers where
several program controllers exist and each of them is associated with a cluster of

PE's, for example in a pyramid (Cantoni & Levialdi, 1987).
Addressing Autonomy

This type of autonomy allows each processor to generate an address locally or
modify the broadcast address independently. Examples are ILLIAC IV
(Bouknight et al., 1972), CLIP 7 (Fountain, 1987), GF11 (Beetem et al.,
1985), and WARP (Annaratone et al., 1986).

Connection Autonomy

Connection autonomy is the operation of efficient mapping of the task graph

derived from a vision algorithm and underlying hardware network topology; via
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dynamic network configuration. Its goals are efficient graph embedding, high

reliability, and high availability. There are two types of connection autonomy:

packet switched and circuit switched.

Packet switched connection autonomy.This allows each PE to send messages to
any other PE in the system by simply sending the destination address in the
head of the message and relying on a router at each PE to handle the message.
The Connection Machine (Hillis, 1985) is probably the best known example of

a massively parallel computer featuring packet switched connection autonomy.

Circuit-Switched connection autonomy. This is suitable for a high-‘degree
network (e.g. hypercube). It dynamically establishes interconnection paths
between non-neighbouring processors by crossing intermediate processors. It
has the disadvantage of high wiring cost. In addition, its potentially greater
ﬂexibility may not be required for much vision computation, which is
characterised by regular, fixed task graphs. The Polymorphic-Torus machine

(Li & Maresca, 1987) is an example of this type of system.

3.2.4 MIMD

These are Multiple Instruction stream-Multiple Data stream machines. This type
was proposed by Flynn (1966). It consists of P processors and M memories,
where M2P. Each processor can follow an independent instruction stream. As
with SIMD machines there is a multiple data stream and an interconnection
network by which each processor can commpnicate with the other processors.
There may be a control unit responsible for the overall coordination of the

activities of the processors.

The main feature of a MIMD machine is the possible increase in the system

performance in order to satisfy the applications requirements. For example in
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image segmentation there are some algorithms which perform the same

operations for all the pixels (eg.thresholding) while others contain different
operations for each group of pixels; hence the necessity of MIMD. It is clear
that MIMD machines are more complex but more flexible for different

applications with respect to SIMD machines.

The ideal characteristics for a general purpose MIMD system are as follows

(Reeves, 1986):

Extensibility: It should be possible to add processors as demands on the

system increase, just as one now adds additional memory to processors.

Fault tolerance: It should be possible to reconfigure the system if any
component becomes faulty so that the computation can continue with a

minimum of interruption.

Programmability: The user can write a program in a high level language

without knowing how many processors the system has.

The main problems in the design of the MIMD system are the subtask allocation

strategy and interconnection network design.

There are three types of MIMD architectures Loosely Coupled (low interaction),
Moderately Coupled (medium interaction) and Tightly Coupled (high

interaction).

Image processing applications are implemented on tightly coupled architectures
because they need high speed intcrconnecu'qns between the processor elements.
There are many MIMD machines, for example PICAP II (Kruse et al., 1982),
EMMA (Manara & Stringa, 1981), Multicluster (Reeves, 1985), and others
(Kittler & Duff, 1985).
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Image segmentation algorithms need both SIMD and MIMD architectures.

Hence a machine which permitted both modes of operation may form an optimal
solution to the image segmentation problem. PASM (Siegel et al., 1981) and
PUMP (Briggs er al., 1982) represent the most common types of such

machines.

Notably, two parallel segmentation algorithms have been successfully
developed on PASM. These are edge-guided thresholding (EGT) and contour
tracing (Siegel ez al., 1981). The designers of PASM concluded that analysis
of the algorithms has motivated the inclusion of several important architectural
features. These features were used to discuss possible configurations of a
custom-designed VLSI processor chip for PASM. Also the use of algorithm
characteristics to drive the design of PASM leads to a machine with features that
provide the necessary flexibility for executiné image and speech processing

algorithms.

3.2.5 Pipeline architecture

This type of parallelism can be very economical (Hwang & Briggs, 1985). The
basic idea is to subdivide the process into a sequence of subprocesses, each 6f
which can be executed by a specialised hardware stage that operates
concurrently with other stages in the pipeline. Many processes are streamed into
the pipe and Aget executed in an overlapped way at the subprocess level. Three
main advantages of this architecture are that: it is not necessary to reformat the
input data; interconnection between processing stages are very simple; a high
speed control unit is not required since an instruction resides in a stage for many

clock cycles.

The pipeline computers are especially useful in morphological image processing

where many local operations are performed on a given image (Rosenfeld,
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1988). The most common pipeline computer is the Cytocomputer first proposéd

by Sternberg (1979). Also there is special hardware system designed by
Douglass (1982).

Cytocomputer

The cytocomputer is a serial pipeline of programmable processing stages. Each
stage performs a single transformation of the processing sequence on an entire
image. Images are fed into a Cytocomputer in a line scanned order and progress
through the pipeline of processing stages at a real time rate (speed of data

collection). This is achieved presumably after an initial delay to fill the pipeline.

Cytocomputer operations are implemented in highly efficient cellular computer
architectures (Sternberg, 1983). Image processing algorithms are constructed
using image processing algebra. Image algebra is the formulation of cellular
computer image processing algorithms into algebraic expressions whose
variables are images and whose operations logically or geometrically combine

images.

The pipeline configuration is used instead of the array configuration because in
case of using cellular array architecture for image processing as many cells are
required in the array as there are pixels in the image. As a result this will be very
costly, complex to implement and less flexible, especially for large images, with
respect to the pipeline configuration. The block diagram of the cytocomputer is

shown in figure 3.2 overleaf.

There are two types of pipeline stages in the cytocomputer, the 2-dimensional
pipeline stages and the 3-dimensional pipline stages. In the first, image algebra
operations are applied to planar binary images (a binary image has only two
pixel intensity values for black and white). In the second, transformations of the

same set of operations are performed on grey-scale images.
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Figure 3.2 Block diagram of the cytomputer.

The main drawback of the cytocomputer is that for applications where the
number of operations needed is more than the number of stages, the length of
the required pipeline is accommodated by reprogramming the available stages
while the partially processed image data is temporarily stored on disk. This will

slow the speed of operations.
Special hardware system

A system suggested by Douglass (1982) is an example of a special hardware
system built specifically for image segmentation. He chose Yakimovsky's
algorithm (1976) as a region growing method for segmentation. He showed that
this process can be implemented in a five stage, eight process pipeline using
cheap, off the shelf microprocessors to attain several orders of magnitude
increase in segmentation speed at a modest cost. He concluded that the pipeline
architecture offers a significant increase in speed while avoiding the complex
interconnection schemes required for a network approach to segmentation and
the memory contention problems inherent in the multiprocessor approach. He
suggested that the processing could be speeded up by implementing the pipeline
using VLSI technology and very high speed memory.
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3.3 Multiresolution Systems

A multiresolution approach has been recognised for a long time as a convenient
structure for both image representation and implementation of algorithms which

use 'divide-and-conquer' strategies (Stout, 1986). There are three types of

architectures for its implementation.

3.3.1 Multiresolution architecture

Burt er al. (1986) have proposed a pipeline approach to achieve a
multiresolution pyramid. It is based on using five special computational units

such as filter, a decimator, an expander, ALU, and memory. Figure 3.3 shows

a Gaussian pyramid construction.

[ .
[ -
Filter
Unit
.
delay lines
[ _—.
Image
Memory

Figure 3.3 Gaussian Pyramid block diagram.

Decimator
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The original image is first fed from image memory to the filter unit row by rOW

The window size used in the filter unit is 5 by 5, so five rows at a time are
available to it. This is achieved by the five FIFO (first-in first-out) delay lines.
The output of the filter is passed to the decimator which discards every other
row and column of data. This result of the next level of pyramid which is less in

data by a factor of 2x2, i.e. coarser.

This machine has been built to achieve real-time performance for applications
such as, for example, the surveillance of buildings and their environment in an

outdoor scene using coarse—fine search (foveation).

This architecture is cost effective but it is too slow in comparison to ordinary
pyramid structure. The main two advantages of this design over the ordinary
design; it provides greater processing power per unit cost and it is more efficient

and flexible for window processing.

This type of architecture can be classified as special purpose hardware.
However, the foveation strategy is of great interest within "active vision"
(Brown, 1989), which is an important new field of research within image

processing.

3.3.2 Pyramidal Architecture

A good solution to the multiresolution (hierarchical) problerris is the pyramid.
This is because of the strong structural relationship between the two. Moreover,
it allows fast communication between any two processors. It is suitable for

implementing both bottom-up image analysis and top-down image analysis.

A pyramid with (N+1) levels (where N20) has 4N elements on its base level
which is called the size of the pyramid, 4N-1 on the consecutive level and 1

element on the top (root) level. Each element is connected to its four nearest
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neighbours on the same level (except for the elements on the perimeter), f’oil_r

‘children’ on the next lower level (except for the elements on the base level) and
to iis 'parent’ on the next higher level (except for the root ) as in the figure 3.4.

The overall number of elements in the pyramid with (N+1) levels is 4N + 4N/3,

level 2

level 1

level 0

Figure 3.4 Pyramid with 3 levels.

The Pyramid has an extra 4/3 times the number of PEs required for the same
size of processor array. However, the major advantage of the pyramid is the
speed up in intercommunication between processors. For example, to compute
a global sorting over an N by N processor array, N steps are needed, while the
same computation on a pyramid needs only loga N steps, so there is a speed up

of N/logz N which is high for larger systems (Stout, 1983).
There are mainly two types of pyramids depending on their granularity:
Fine granularity pyramid

In this type, each processor takes only one image pixel. A parallel access to
neighbouring pixels is provided for intercommunication, so as to efficiently

implement many low-level vision tasks. Prototypes have been designed for
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these systems, for example, PAPIA (Cantoni et al., 1985) and GAM (Schaefer
etal., 1987).

GAM Pyramid

This is a multi-layer structure of MPP processors, adders, and sum-OR
circuitry. It consists of 341 PEs with 8 Kbits for each object identification task.
It is suitable for binary images. PYRASM is the GAM pyramid assembly
language, a combination of microcode for the pyramid PEs and control unit
commands. This mixed code format of instructions allows great flexibility. The
GAM pyramid is the first five-level pyramid in operation. It has been designed

and constructed at George Mason University.
Coarse granularity pyramid

In this type, each processor takes an image block which means that less data
need be interchanged between the processors than in the fine granularity one.

For VLSI implementation, it is too costly to implement such systems.

3.3.3 Multiresolution on Flat Arrays

This type of architecture has been proposed by Reeves (1986) to implement the
fine grain pyramid algorithm on a 2-dimensional processor array (flat array).
This proposed system is suitable for certain applications where the extra
hardware needed for a pyramid is not justified. It is also used to evaluate the
performance of the pyramid algorithms and to evaluate the benefit of extra
processors required for the pyramid computer. Figure 3.5 overleaf shows the

principle of mapping pyramid algorithms onto a flat array.
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Figure 3.5 Multiresolution in flat array architecture.

3.4 Performance Evaluation

It has been shown above that there is a variety of multiprocessor architectures
with different design alternatives. They are proposed, implemented, and made
commercially available, but their relative merits are difﬁcult to assess. It is vital
to have methodologies and tools for predicting and evaluating their performance
since they will help the designer to chose the architecture which gives the best

performance for specific or versatile applications.

Performance evaluation techniques can be classified into two main areas
(Marsan et al., 1986), the measuring and the modeling. Figure 3.6 on the next

page shows the classification tree.

Performance measure

There are three techniques for measuring the performance.

Performance measurements: These are performed where there is a real system.
This gives a very accurate performance evaluations with respect to the specific

system and to its work load.

63



Benchmarking: this is used when there are several system designs to be

evaluated. In this technique, several work loads (bench marks) are used for

different system design.

Prototyping: This technique is used when there is no physical computing
system available. Then it is necessary to build its approximating prototype
(emulator). The prototype can be used to perform measurements, possibly with

bench mark programs.

Performance
Evaluation

Measurement Benchmarking

Prototyping

Figure 3.6 Performance classification tree.

Performance Modelling

This type of evaluation is used when there is no physical computing system
available probably because the cost of building such system is very high or the
available technology can not provide 1t. Models can be divided into two main

classes:

Simulation models: they are computer programs in which system characteristics

and work loads are described using appropriate algorithms.
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Analytical models: They describe the system characteristics and work loads in

mathematical terms. The performance can be evaluated analytically or by using

numerical solutions of the resulting mathematical models.

The performance evaluation technique used here is the performance

measurement one, since there is a real system under real operating conditions.

3.4.1 Performance Measurement

The performance evaluation of the parallel system is a function of several
factors such as number of processors, problem size, problem type, the mode of

parallelism, and the type of interconnection network.

There is no single performance measure which takes in consideration all the
above factors and the overall performance of a system is normally assessed by
examining individual measures. This is again taking the cost of design and

construction of the system into consideration.
The performance measures are as follows, but not limited to just these.

Execution time

This is the time needed to execute an algorithm (A) for solving a problem of
certain size (N) using a network of P processors. Let T(P, N, A) represent this
time. The execution time used here includes distributing the data, processing the
algorithm and communication. The execution time is measured from the time of
starting the distribution of the data from the host processor to the network until
the time of receiving the last result from the network. ’fhe number of processors

in the network is indicated by P.
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Speed up
This measure is for expressing how well an algorithm performs on a network of
P processors as compared to one processor. Let S(P, N, A) be the speed up, so

that

T(1,N, A)

S(P,N,A)=m,

where T(1, N, A) is the execution time of one processor. Usually S is between
1 to N. However, S could be more the N for some SIMD machines which use
instruction queue (Kuehn & Siegel, 1986), but in this case it is called 'rough

speed up' (Finkel, 1987) where the algorithm exhibits a speed up anomaly.

Efficiency
E(P, N, A) is defined as

S(P,N, A)

E(P,N,A) = B

The values of E range from 0 to 1. For the rough efficiency, it should be
defined analogously to the rough speed up. For example, for the SIMD machine
designed by Kuehn et al. (1982), which uses decoupling between the control

unit and the processor elements, the rough efficiency is

S(P,N, A)

E(P,N,A) = >p

Useful-process point
Up(P, A) is the size N of a problem for which better speed up is achieved when

using as many as P processors,
Up(P, A) = Smallest N such that

T(P, N, A) < T(P-1, N, A).
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In the original definition by Finkel (1987), cQu_ality- as well inequality is

included in the above formula but it is not included here because there is no

speed up benefit in this case.

Utilisation

U(P, N, A) measures the fraction of the time during which the processors are
actually executing algorithm computations. The processors are idle when they
are "busy-waiting". Siegel er al. (1982) suggested the calculation of this
measure by counting the number of processors active for each computation
step. Assume that for certain algorithm of X steps Px is the number of

processors active during step x, where 0 < x < X; then the utilisation can be

defined as:
X-1 Px
U, N, A) = Eff

3.5 Summary

The need to quickly process the large amounts of data present in image
processing applications has stimulated the growth of parallel image processing
computers. Their advances depended on the advances in technology. Since
there is no single architecture suitable for all image processing applications a
large number of different architectures have been developed. The parallel
architectures may be classified on the basis of the multiplicity of instructions

and data, the main types being SIMD, MIMD and MISD.

The SIMD architecture was shown to be suitable for tasks which include local
operations. The MIMD architecture was shown to be suitable for tasks which
include global operations. The MISD architecture was shown to be suitable for
applications where the number of operations needed is not more than the

number of stages of the architecture.
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It seems very unlikely that any single parallel configuration will ever be optimal

for all image processing (and other) applications. The ability to flexibly re-
configure the architecture appears to be therefore of the foremost importance.
Although it may be possible to implement any algorithm on any parallel
configuration, however unsuitable, each algorithm is likely to map more
naturally into some class of architectures than into the others. If parallel
hardware is to performa variety of tasks the best approach seems to be to have
a reconfigurable network so that parallelism inherent in an algorithm can be

exploited in the most suitable way.

The Transputer and the family of switchers have brought this possibility into the
reach of developers. In this work an array configuration of Transputers has
been used for the direct convolution and the Row -Column method of the Fast
Fourier Transform, as described in chapter six. The pyramid architecture of
Transputers has been used for the Vector-Radix method of the Fast Fourier
Transform and for the Split and Merge algorithm, as will be seen in chapters six

and eight. |

The next chapter describes the Transputers and its development environment,
including the programming language Occam and the proprietary Transputer

Development System (TDS).
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Chapter 4

Occam and Transputer

Occam is a sophisticated and powerful programming language with inherently built
in concepts of concurrency and communication. The Transputer is a VLST 32 bit
processor with memory and four links through which it can communicate with
other Transputers. Its features make it very suitable for building concurrent
systems. The Transputer and Occam have been designed concurrently and, as such,
they claim to provide an optimal solution to the parallel processing techniques.

They represent a big step in the history of parallelism.

This chapter describes briefly the most important features of the Transputer, Occam

and the Transputer development system.

4.1 Occam

The language Occam has been developed by INMOS (May, 1983, INMOS, 1988a)
on the basis of communication and concurrency. Occam enables the system to be
considered as a collection of processes running in parallel and communicating
through channels. The internal contents of each process is hidden from the other
processes and the only way of communication is the channel. The process can

represent any application or device. Figure 4.1 overleaf shows an Occam model.

Occam is a flexible language which allows its processes and their channels to be
implemented in many different ways. This allows the designer to choose the
suitable technology for implementation taking into consideration the performance

and cost factors.
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Figure 4.1 Occam model.

Occam language is designed to be implemented directly by a network of processing
elements. This feature is vital for parallel processing techniques since the main
objective is to gét the best performance from the parallel system; this is achieved by
choosing both the appropriate parallel language and the processor to implement the
language efficiently. This feature is shown by the possibility of using Occam both
as a high level language and as an assembly language for parallel systems; this is
because there is a one-to-one relation between Occam processes and processing

elements and between channels and the links between processing elements.

One other important feature of Occam is that the same parallel program can be
implemented on one processor or on a network of processors. The only difference
between the two is that some additional code is needed for configuration when the

program is implemented on a network of computers.
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4.1.1 Processes

Occam process is of finite type, i.e, it starts, performs a number of actions and then
terminates. It may contain a set of processes running either in sequence or in
parallel. Each process of the set may contain other sets of processes and this shows

the hierarchical block-structure of Occam.

Figure 4.2 shows one Occam process containing several processes which start with

process P1 and terminate at the end of the last process in the last level process PS$.

l\@

Figure 4.2 The hierarchical structure of Occam.

A very important feature of the Occam process is the locality, i. e., each process
has its own variables. The importance of this feature is apparent due to the fact that
the speed of communication within the chip is much faster than the speed of

communication between different chips.

There are three primitive processes:
v =€ assign expression e to variable v,
c!e output expression e to channel c,

c ?v input variable v from channel c.
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A number of primitive processes can be combined to form more complex constructs

and they are briefly presented below.

SEQ. A sequential construct can be represented by

SEQ
P1
P2

where P1 and P2 are the sequences of processes which are executed one after

another.

PAR. A parallel construct which can be represented by

PAR
P1
P2

where P1 and P2 are the processes executed in parallel. The components of a
parallel construct may not share access to variables, and communicate only through

channels.

PRIPAR. A priority parallel which may have two components: The priority O (high
priority) and the priority 1 (low priority). The low priority processes are executed if

there are no active high priority processes.

PRI PAR
P1
P2

where P1 is a high priority process and P2 is a low priority process.

IF. A conditional construct

IF
condition 1
P1
condition 2
P2

where only one of the processes P1 or P2 is executed if its condition is true.

72



ALT. An alternative construct

ALT
input 1
P1
input 2
P2
where only one of the processes P1 or P2 is executed if its input channel is ready.

It is called an input guard and it plays a very important role in the parallel program

implementation.

WHILE. A loop

WHILE condition
P

where P is repeatedly executed as long as condition is true.

4.1.2 Synchronised Communication

The communication between two processes occurs by a channel. 'fhe channel
communication is synchronised and unbuffered which greatly simplifies
programming and allows for efficient implementation. When either thé input
channel or the output channel is ready to communicate it will wait until the other is

ready.

The channel has to be named. By establishing a named channel between two
processes, neither process need have any knowledge of the internal details of the
other, and the internal structure of each process can change during execution of the

program.
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The parallel construct and the named channel features of Occam allow for

decomposition of an application into a hierarchy of communicating processes. This

makes Occam a convenient tool for large-scale applications.

4.2 Transputer

The Transputer is a CMOS microcomi)utcr with on-chip RAM for high speed
processing (INMOS, 1989), a configurable memory interface and four standard

INMOS communication links. Figure 4.3 shows the block diagram of the

Transputer.
Reset e o
T
Analyse e
Error B
BootfromROM g System Processor
clockin = services
vee N
gnd R—
o ——
el ~=g—g= LinkInterfacel
. SR
On-chip
RAM i
Application specific Interface

Figure 4.3 Transputer block diagram.

The Transputer is an ideal hardware architecture for implementing Occam process.
Either a single process or several concurrent processes can be implemented on it. In
the case of concurrent processes the concurrency will be simulated by hardware

with no software intervention. The concurrent program which runs efficiently on a
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single Transputer can be directly implemented on a network of Transputers

provided that the communication between processes is not too complicated.

The Transputer support for Occam model of concurrency is by its microcoded
scheduler which enables any number of concurrent processes to be executed
together, sharing the processor time. So at any time, a‘ concurrent process may be
either active (- i.e. being executed or on a list waitin.g to be executed) or inactive

(- 1.e. ready to input; ready to output; or waiting until a specified time).

Inactive processes do not consume any processor time. The use of the scheduler

removes the need for a software kernel.

The Transputer implements the Occam channel using point-to-point serial
communication links. This is used to provide maximum speed with minimal
wiring. This is achieved because in the case of shared bus communication,
electrical problems of driving the bus require that the speed is)reduced, in addition

to that control logic and wiring are required to control sharing of the bus.

A Transputer link comprises input channel and output channel. A link between two
Transputers is implemented by connecting the link interface of one Transputer to
the link interface of the other Transputer. Thus the connection is implemented
between links and not between channels. For example, consider figure 4.4 shown
on the next page. The connection shown in (a) is correct as the both channels of
one of the links of T1 are connected to the both channels of one of the links of T2 .
The connection shown in (b) is incorrect as two channels of the same link of T1 are

connected to two channels which belong to two different links of T2.
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b) Incorrect connection

Figure 4.4 Link implementation in the Transputer.

There is a simple protocol provided in the Transputer for sending messages
between channels. Messages are transmitted as sequences of bytes, each of which
must be acknowledged before the next is transmitted. A byte of data is transmitted
as a start bit followed by one bit followed by eight bits of data followed by a stop

bit. An acknowledgment is transmitted as a start bit followed by stop bit as shown

in figure 4.5.

Data byte

Acknowledge message

Start bit

Stop bit

eight bits data

Figure 4.5 Channel protocol of the Transputer,
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The receiver starts to send the acknowledge message as soon as it starts to receive

the data. The transmitter waits for acknowledge message to send the next data byte.

The data and acknowledge message can be overlapped on IMS T800 Transputer,
but not on IMS T414 Transputer. IMS T414 Transputer is used in this project with
15 MHZ clock rate and 10 Mbits/sec speed link.

The Direct Memory Access (DMA) is used so the links copy data from the memory
of one Transputer into the memory of another with minimal software set-up costs.
Since each link can transfer data in both directions simultaneously all the links and

the processes can be active at the same time.

Transputer supports two levels of priority. This is achieved by the scheduler, and

these levels can be specified by software.

4.3 Transputer Development System

The Transputer Development System (TDS) is a complete, self-contained
programming environment developed by INMOS to support the programming of
Transputer networks in Occam (INMOS, 1988Db). It comprises an integrated editor,

file manager, compiler, and debugging system.

The TDS runs on a Transputer board (IMS B004). This board can be installed
inside an IBM PC or any of its compatibles, which provides a means of interfacing
keyboard, screen and disks to the Transputer. There is a program running on the
IBM PC called the 'server’, which provides the TDS with access to the terminals

and filing system of the IBM PC.

The TDS programmer can edit, compile and run Occam programs entirely within
the development system. There are several way for loading the code to the single or

a network of Transputers:
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1) Occam programs can be developed on the TDS and configured to run on a

network of Transputers with the code being loaded onto the network from the TDS.

2) An operating system file can be created which contains the Occam program and

will boot a single Transputer or network of Transputers.

3) The TDS can be used to create Occam programs, for single Transputer or
network of Transputers, that operates completely independently of the TDS. These
programs are called 'stand alone' programs, and their code can be placed in
EPROM. Usually they represent the final version of the design, i.c., they are tested
to work perfectly by the first method.

The TDS provides all the necessary software tools and utilities to support this kind
of development; such tools are the libraries fqr mathematical functions and
input/output functions. There is a sophisticated debugging tool and software to

analyse the state of a network.

4.3.1 Folding

The editor interface is based on a concept called 'folding'. The folding operations
allow the text currently being entered to be given a hierarchical structure which
reflects the structure of the program under development. The fold could be filed,

and the filed fold can contain several filed folds as follows:

{{{F example
...F Pl
...F P2
SEQ

P3

P4

Ph}

In this chmplc the filed fold 'example’ contains two filed folds called P1 and P2.
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4.3.2 Compiler

For any Occam program to be compiled, two conditions must have been met. First,
the fold containing the source must be filed. Second, this source fold must be

enclosed by a ‘compilation fold', to which the compiler will be applied.
There are five types of compilation folds;

EXE- It is an 'executable’ program designed to run within the TDS. It can access

channels which communicates with the screen, keyboard, and filing system.

UTIL - It is a utility set within the TDS. It has more complex environment than an

EXE. The utility interfaces are currently not available to the TDS users.

PROGRAM - 1t is an Occam program which intended to run on a network of
Transputers. It contains configuration information that enables the development
system to load the program into a Transputer network. The PROGRAM can not run

within the TDS.

SC - It is a separate compilation unit. SC is not a complete program and it is usually

contained within another compilaticn fold.

LIB - It is a library compilation unit. It contains a number of constants, procedures,
and function declarations that may be shared between parts of a program or

between different programs.

4.4 Summary

This chapter, which has described Transputer hardware, Occam programming
language and the Transputer Development System, completes the introductory part
of the thesis. The chapters that follow will describe the design of the overall system

architecture, used for all the implemented algorithms; and the design,
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implementation and analysis of the selected segmentation algorithms. All the work

described below has been developed using Transputers and Transputer-related

hardware and all the program code has been written in Occam.
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Chapter 5

System Architecture Design

The development of parallel processing applications involves not only the design of
software algorithms but, unlike on Von Neumann machines, also the design of the
overall 'system architecture', with elements such as the number of processors,
location and size of memory modules, communication channels and their
interconnections. It was quite natural to split the design into two parts: system level
design and algorithm level design. This chapter is concerned with the system level
design and particularly with the flexible interconnections of input and output
channels, intercommunication protocols and message routing procedures. The
actual design relies strongly on the property of Occam which allows one to model

in software several concurrent processes on a single processing element.

5.1 Software and Hardware Architecture set-up

Throughout this project all the developments have been carried out using the same
overall software and hardware set up. The Transputer system has been configured

as shown in figure 5.1.

IBM PC Display
A
* Transputer
Host PrsT. Network g Graphics
Transputer Board
Figure 5.1 Transputer system for image processing.
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The details of the elements of this hardware configuration together with

corresponding software structure developed for this project are described in the

sections 5.2-5.4 below.

5.2 Host Transputer

The host Transputer is responsible for interfacing between the IBM PC terminals
and disks and the network of Transputers. The Occam model of the process used
for this Transputer is shown in figure 5.2. It is an EXE compilation fold with four

processes running in parallel and sharing the time of the processor. The complete

program code is in Appendix B.
to the
output network
screen controller "
g
DS screen .
keyboard handler filing
i from the
Input network
¢ T controller

System connection through the
INMS serial link to the IBM PC

Figure 5.2 Occam model for the host Transputer.

Screen handler

The screen handler is repeatedly searching for one of four alternative channel
inputs: the input controller channel (controller.in.screen), the output controller
channel (controller.out.screen), the filing channel (filing.screen), and the echo
channel. For each alternative a suitable action is taking place using suitable libraries

supplied by the software of the TDS. The main body of the procedure is as follows:
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WHILE TRUE
ALT

controller.in.screen ? CASE-
action.1

controller.out.screen ? CASE
action.2

filing.screen ? CASE
action.3

echo ? CASE

action.4

Filing

This represents the main process of the EXE program which is responsible for the
input of data from the filing system, sending the data to the controller output,
receiving data from the controller input and sending the result back to the filing
system if necessary. It also calculates the time spent on processing. The keyboard

handler is also included within this process.

For accessing the filing system several procedures are written for reading and

writing files on the IBM PC filing systems.

Output Controller

It is like a buffer for sending the data to the network.

Input Controller
It is like a buffer for input of the results from the network and it is responsible for

making sure that all the results have come from the all Transputers in the network.

5.3 Network of Transputers

Transtech TSMB-16 (Transtech, 1988) Transputer motherboard is used to host a

network of Transputers. This motherboard for the Transtech TSM42/82 Transputer
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modules is capable of holding up to 16 modules mounted vertically. It contains two

INMOS C004 programmable link switches for rcconﬁguring the network of
Transputers and two intelligent RS-232 serial ports for connection with other
microprocessor systems. The type of the Transputer used is IMS T414 with 15

MHZ clock rate and 10 Mbits/sec speed link.

Programmable Link Switch

IMS CO004 is a transparent programmable link switch designed to provide a full
crossbar switch between 32 links inputs and 32 link outputs. 'i‘he switch is
programmed via a separate serial link called the configuration link. The block

diagram of IMS C004 is shown in figure 5.3 overleaf.

A configuration message consists of either one, two, or three bytes. It is received
via the configuration link. IMS C004 configuration messages (INMOS, 1989) are

summarised in Table 5.1.

Configuration Message Function

[0} [input] [output] Connects input channel to output channel.

[1) [(linkl] ([link2] Connects linkl to link2.

[2] [output] Enquire which input the output is connected.
[3} This command must be sent at the end of every

configuration sequence.

[4) Reset the C004 switch.
[S] {output]) Output is disconnected.
[6] [1linkl] [1link2] Disconnect outputs of linkl and link2.

Table 5.1 IMS C004 configuration messages.
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Figure 5.3 IMS CO04 block diagram.

LinkIn0-31 are the link inputs of the Transputers.

LinkOut(-31 are the link outputs of the Transputers.

For line configuration with more than 32 links, several switches could be used

| since they can be cascaded to any depth without loss of signal integrity.

Serial Ports

The motherboard has two intelligent RS-232 serial ports for connection with other

microprocessor sysieins. Data on link can be converted to RS-232 and vice versa

by INMOS CO012 link adaptors.

" Transputer Moterboard

'The block diagram of the TSMB-16 Transputer board is shown in figure 5.4.
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Figure 5.4 TSMB-16 block diagram.

Link 3 of a group of eight modules are connected to the C004 via switches, so that

they can be used for external connections if required.

Links 0 and 1 of modules are connected to C004-1 and links 2 and 3 are connected

to C004-2. According to this connection:

1) Link O of any module can be connected via C004-1 to link O of the same module

or to link O or 1 of other modules.

2) Link 1 of any module can be connected via C0O04-1 to link1 of the same module

or to link 1 or 0 of other modules.

3) Link 2 of any module can be connected via C004-2 to link?2 of the same module

or to link 2 or 3 of other modules.

4) Link 3 of any module can be connected via C004-2 to link3 of the same module

or to link 3 or 2 of other modules.
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This gives the flexibility for configuring a wide range of topollogies°

S.4 Configuring the network

The Host Transputer is responsible for configuring the network. Configuration
proceeds in two phases: 'hardwired' configuration and software configuration. The
'hardwired' configuration will not be changed during the execution of an Occam

program. It is achieved by configuring the two C004 switches by software to create

a 'hardwired' connection.

The software for configuring the two C004 switches has been designed and written
as a part of the project. It is a general procedure for connecting two links. It is
versatile and easy to use. There are four entries to that procedure: numbers of two
links to be connected and their module numbers (each module is specified by an
identification number). The programmer needs only to alter these numbers for
various configurations. A ﬁrogram is also written for configuring the network for

various specific topologies such as array, tree, and others.

The second step is the software configuration which is the allocation of addresses
to the channels of the network of Transputers. This is gchieved by using the
PLACE command of Occam which allocates a variable, a channel, a timer, or an
array at an absolute location in memory. Prior to this an allocation process must

allocate an element to a compatible location. A channel should be placed at a

location which implements a channel.

For each Transputer in the network there are eight channels. They are allocated in a

certain addresses in memory (INMOS, 1988b) and should be allocated in these

locations, as follows:
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VAL linkOout AT 0:
VAL linklout AT 1:
VAL link2out AT 2:

VAL link3out AT 3:
VAL link0in AT 4:
VAL linklin AT 5:
VAL link2in AT 6:
VAL link3in AT 7:

For a network of Transputers which are connected in a certain topology, any
channel between any two Transputers should be identified by both of them with the
same name. This name should be then placed at the local location of each
Transputer. For example, suppose that a name channell is defined for a channel
which is between Transputer T1 linkOin and T2 linkOout; the place allocation is as

follows using PROCESSOR command of Occam:

PROCESSOR T1 T4
PLACE channell AT link0in:
PROCESSOR T2 T4 |
PLACE channell AT linkQout:

This can be done for all channels in the network. For a very large network, an array

of channels should be defined to simplify the configuration so the PLACE PAR

command could be used.

The ﬁrst step is to configure the systemin a certain topology. This can be achieved

by the software for configuring the C004 switch.
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The next step is to design the PROGRAM with the configuration requirements
which match the connection between the Transputers. There is a restriction of
naming the channel between two links. This condition says. that the channel name
should be the same on the two Transputers. This is necessary at the configuration

level since it enables the development system to load the code to the target

Transputers.

For running the program, the code should be loaded to the network. After this stage
each Transputer has its code and will proceed to run the code. During the
processing, a message could be sent to the C004 switch to change the connection.
Here the condition that same name should be given to the channel is not valid any
more because at this stage each Transputer is running separately from the

development system.

Figure 5.5 on the next page shows a network consisting of the host Transputer, the

C004 switch, and two Transputers.

In the configuration of figure 5.5 (a), the same name is given to the same channel
connected between two Transputers. In the second configuration figure 5.5 (b),
which has been implemented during the run time processing, different names are

given to the same channel (for example, ch3 is connected to ch5 and ch4 is

connected to ch6).
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Figure 5.5 Example of reconfiguration.
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5.5 Data Routing

This section describes the general data routing strategy used in this project, which
includes all the data movement between The Transputers. For data routing through
the network an Occam model in each Transputer in the network has been designed

for efficient routing and this is shown in figure 5.6.

Figure 5.6 Occam model for the Transputers in the network.

Process P contains a certain application routine. Processes Rn, Re, Rs, and Rw are
called routers. These routers are responsible for handling messages from other
Transputers. The router checks the destination of each arriving message (the
destination is always included as a part of a message). A message arriving to its

destination is sent by the router to the P process; otherwise it is sent to other
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Transputers according to a certain data routing layout. All these processes run in

parallel. Each router contains two channels from two different links as shown in

figure 5.7.
ch6 chl
chl ch2
ch8 : ch3 ch8 : ch3
ch7 chd
e i ch2 e chs -
ché chs —
chd ch7
Figure 5.7 Channels allocations to the router processes.

This model has been used to provide a compromise between the problem of
memory requirements and speed. In the case of minimum memory requirement it is
better to use the model with a single process, however this will slow the speed of
processing. On the other hand, for the case of maximum speed, it is better to use

the model shown in figure 5.8 overleaf.

In this case the memory requirement is higher because each data structure of an

application is declared for the process and for each router.

A protocol has been defined for each type of a channel used in the network. The
p'rotocols are stored in one library which can be accessed by all the procedures

written for the network.
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Figure 5.8 Occam model for maximum speed data routing.

There are two types of protocol: sequential protocol and variant protocol. The
sequential protocol specifies a protocol for communication which consists of a

sequence of data. The following example may be considered.

PROTOCOL typel IS INT; REAL32 :

This gives the description of protocol typel, and can be assigned to any channel.
This protocol means that the message sent contains two data values, the first is of
type INT (integer) followed by single data of type REAL32 (real value of 32 bits

width). For example;

CHAN OF typel channell:
This shows that channell is of type typel .

The variant protocol is used when a single channel is used to communicate
messages with different formats. A variant protocol specifies a number of possible

formats for communication on a single channel.

There are several tags for each variant protocol. These tags are used to distinguish
between different protocols within one type of channel. The example of such a

channel type is as follows:
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PROTOCOL type2
CASE
x; INT; INT:: [IBYTE
y; REAL64; INT:: [JBYTE
z; INT; INT:: [IREAL32

The tags in this type are x, y, and z. The tag is followed by the sequence of data.
The x tag, for example, is followed by three fields; an integer, followed by an array

of bytes of size of the value of the integer in field 3 in the protocol.

The router procedures are intelligent: they have the ability to route the message

around the network speedily and efficiently.

A map of the shortest path between any Transputer and the others is designed and

included in these procedures. An example of that is shown in figure 5.9.

L1 L2 L3
| | |

A 115 HHTI1 A S Y N
I ] ] I

L5 Jd14 110 |~ T6 T2 }— L5
| | | |

6 4T3 T19 I T5 Tl b— L6
| | ] ]

L7 4 T12}— T8 T4 TO b L7
| [ ;
L1 L2 L

Figure 5.9 Array of size sixteen of Transputers.

For example, the shortest path between T11 and T12 is the path T11 --- T8 --- T12.
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The procedure is designed for general data routing so it can be used for any

application using that specific configuration. For other configurations, the
modification is straightforward. This is due to efficiency of the program design of

the router procedure.

5.6 Summary

On the system and network level all processes use the same hardware and
communication model. This means that the same set of procedures can be used for
common operations such as message routing or timing. A model chosen for
message routing consists of the processing module and four router modules. The
advantage of this model is that these two different types of activities, data
processing and data flow, can be developed independently. This leads to overall
clearer software logic. Ahother advantage is that many algorithms can use the same
routing scheme and a code for this does not need to be embedded in a data

processing code.

The next three chapters describe configurations and software which are specific to
given algorithms. It should be kept in mind, however, that all the message routing
and timing operations are performed using the general hardware and software

model described in this chapter.
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Chapter 6

Convolution: Theory and Implementation

Chapter two identified the convolution operation as one of the most common
operations in image processing. It is well known that the convolution of two image
functions in the spatial domain corresponds to the multiplication of their respective
Fourier transforms in the frequency domain. The choice of the particular domain
depends mainly on the size of the convolution kernel. For large images or large
kernels it becomes computationaly more effective to perform the convolution in the
frequency domain (Dudgeon & Mersereau, 1984). In the course of this work both
methods, spatial and frequency, have been implemented. The details of the spatial

domain (direct) convolution are described first, in section 6.3.

As the Fourier transform is a crucial part of the frequency domain convolution a lot
of effort has been put into its implementation and analysis. Two methods of
2-dimensional Fast Fourier Transform have been implemented: the Row-Column
method and the Vector-Radix method; each of these methods offers different
advantages in different algorithmic context. Their implementation and evaluation
are described in detail in sections 6.5 and 6.6 respectively. Section 6.7 describes
implementation and analysis of convolution in frequency domain through both

methods the Row-Column and the Vector-Radix. All the convolution methods are

then compared in section 6.8.

6.1 Convolution

There are two types of convolution: circular (cyclic) convolution and linear

convolution. This section outlines their theoretical basis.
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6.1.1 Circular Convolution

For this type, suppose that there are two finite-extent sequences, x(m, n) and
h(m, n), with region of support Ryn. Then the circular convolution is the

operation of circularly shifting h past x. This can be illustrated as follows:

Let y(m, n) be the output of the circular convolution, then

y(m, n) = x(m, n) * h(m, n), m, n € Ryy (6.1)

where * denotes the operation of circular convolution. Equation (6.1) can be

evaluated as follows,
M-1N-1

y(m,n) = ¥ ¥ h(k, 1) x(m-k, n-1). (6.2)

k=01=0

The circular convolution can be evaluated by FFT techniques. Since the
convolution operation in the spatial domain is equivalent to the multiplication

operation in frequency domain,

Y (01, i) = X(w1, wp) H(w;, anp), (6.3)
where Y, X, H are the FFT of y, x, and h respectively, then
y(m, n) = FFT-! Y(wy, @;).

6.1.2 Linear Convolution

Linear Convolution is a special case of circular convolution in which the region of
support of h is smaller than that of x, i. e. in this type of convolution h is linearly

shifted past x. The convolution equation is

m,ne R
MN (6.4)
k,le RKL

y(m, n) = x(m, n) * h(k, 1), (

Linear convolution can be implemented by two methods, the direct and the FFT
methods.
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Direct method

This method is based on implementing the linear convolution in the spatial domain,
L.e., applying equation (6.4). For each point of y(m, n), the window h is
multiplied point by point by a window of the same size centred at x(m, n) and the

sum is placed at y(m, n). Figure 6.1 shows the implementation of equation (6.4).

Figure 6.1 The convolution operation.

The number of multiplications needed in this method is Cd, where

Cd = MNKL. ’ (6.5)
Frequency method |
In this method the results are calculated in the frequency domain by applying
equation 6.3. The main difference between this method and the circular convolution
method is that the size of the window and the input image is different and the FFT

method requires that both sizes should be equal. This problem is solved by

applying the following procedure:

1) Choose region of support Rmn so that
M>m+k-l,and N2n+1-1. (6.6)

2) Augment each x(m, n) and h(m, n) with sufficient samples of zero values to fill

the region Rymn.
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3) Compute (MN)-points FFT of both x(m, n) and h(m, n).

4) Compute Y(wy, o) using equation (6.3).

5) Compute the (MN)-points FFT-! of Y(w, ay) to get the result y(m, n).

The number of multiplications needed for this method depends on the technique
used for computing the 2D FFT. There are two techniques for computing the 2D
FFT, the Row-Column (Dudgeon & Mersereau, 1984) and the Vector-Radix
(Rivard, 1977; Arambepola, 1980)).

The main difference between the direct and the frequency method is that for the
direct method the computation complexity depends directly on the size of the
window h, while in the frequency method it is independent on the window size

since it uses a fixed size which satisfies equation (6.6).

6.2 Parallel Architectures for Convolution

Different convolution algorithms may reduire different parallel architectures for
efficient implementation. The array topoiogy is quite suitable for implementing the
direct method. There are two types of topologies which may be used for each
technique of implementing the Fourier Transform algorithm. The array topology is
suitable for implementing Row-Coluinn technique since the matrix transposition
algorithm, which is the main time consuming part of the method, maps very well
into it. For the implementation of the Fourier Transform using the Vector-Radix
technique the pyramid topology is a good choice because by using it the

intercommunication between the processors within each level of the pyramid is not

needed.

At the end of this chapter there will be a discussion of the results of the various

implementation topologies.
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6.3 Implementation of the Direct Method

The parallel implementation for the direct method is based on the SIMD parallel
architecture. The array topology is used for the network of Transputers. The image
parallelism technique is used for the implementation. Figure 6.2 shows the block

diagram of the system used for the direct implementation.

Array of

Host Transputers

—&=! Display

Figure 6.2 System block diagram of the the implementation of the direct
method convolution implementation.
The host Transputer acts as a controller and fetches the input image from the filing
system. Then it divides it into a number of subimages, the size of each depending
on the size of the input image, the number of Transputers in the array, and the
window size. The shape of the array need not be square, so the number of
Transputers in the array could be nearly arbitrary. The main requirement is to
divide the input image into subimages of equal sizes. This is necessary for load

balancing between the Transputers.

Suppose that the input image size is N2, the kernel size is K2, and the number of
Transputers is T2. Then the number of subimages is T2 and the size of each is B2

where

N
B——,—I,—+K-1,

where K-1 rpresents the overlap between subimages as shown in figure 6.3
below. The overlap is necessary so there will be no need for intercommunication

between Transputers, which would slow the speed of processing.
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N+K-1

Figure 6.3 The overlap between subimages in the direct method.

The output image will be shrunk by K-1 in each dimension. To get the same output
size as that of the input, the input image should be expanded by K-1 by filling the

extra pixels with zero values.

Each Transputer applies the convolution operation of equation 6.4 to its subimage
and then sends the result back to the host which collects the whole subimage results

and combines them into one output image.

A program written in. Occam has been designed and distributed to the network of

Transputers. The strategy of data routing is the same as described in section 5.5.

A timer of the host Transputer is used to measure the time of processing of the
direct method algorithm. This time is measured from the instant of starting the
distribution of the subimages to the instant of receiving the last pixel of the last
subimage result. Several image sizes with several window sizes have been tested
for arrays of single, four and sixteen Transputers. Tables 6.1(a)-(c) overleaf show
the time of processing with respect to image size for several window sizes for the
three array sizes. The type of data is real and the type of operation is floating point.

Time is given in seconds.
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imége side kernel side.
3 5 7 9 11 13 15
16 0.083 0.198 0.366 0.588 0.861 1.183 1.552
32 0.331 0.793 1.48 2.387 3.514 4.852 6.401
64 1.319 3.17 5.936 9.618 14.196 19.656 26
128 5.27 12.665 23.732 38.492 56.91 78.98 104.698
256 23.603 51.41 92.15 124.424 174.657 228.23 288.532
(a) single Transputer.
kernel side
image side
3 5 7 9 11 13 15
16 0.026 0.057 0.101 0.159 0.23 0.314 0.41
32 0.099 0.218 0.393 0.624 0.91 1.249 1.641
64 0.387 0.856 1.553 2.481 3.632 5.005 6.599
128 1.534 3.349 6.172 9.875 14.492 20.023 26.467
256 6.11 13.519 24.602 39.383 57.82 79.928 105.719
(b) Four Transputers.
kernel side
image side
3 5 7 9 11 ;3 15
16 0.014 0.025 0.041 0.062 0.086 0.115 0.149
32 0.041 0.077 0.127 0.192 0.271 0.365 0.477
64 0.153 0.276 0.458 0.7 0.999 1.355 1.77
128 0.595 1.068 1.775 2.718 3.894 5.304 6.932
256 2.36 4,223 7.012 10.732 15.376 20.952 27.459
(c) sixteen Transputers.
Table 6.1 Time of processing of the direct convolution for several image

sizes with several kernel sizes using three array sizes.

Time is given in secs.
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To evaluate the performance of this implementation the speed up and the efficiency

(see section 3.4.1) have been calculated for each case. Figure 6.4 (a)-(f) shows the

performance graphs.
4
39 A
S 38} —— .
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(a) Speed up versus image size for Transputer array of size 4.
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(b) Speed up versus image size for Transputer array of size 16.
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(c) Efficiency versus image size for Transputer array of size 4.
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(f) Efficiency versus image size for kernel size 3x3.
Figure 6.4 Performance graphs for the implementation of the direct

convolution for Transputer arrays of size four and sixteen.

Two sets of performance graphs were shown in figure 6.4. In the first set of
graphs (figure 6.4 a, b, ¢, & d), two effects are shown. The first is the effect of
increasing image size on the performance. It can be seen that the speed up and the
efficiency increases with increasing image size. This result is quite useful since the
need for parallel system is more vital for larger images, where time of processing is
relatively high. The second effect is that of increasing the window size (kernel size)
on the speed up and the efficiency. It can be seen that they both increase with the
increase of the kernel size. This is because for larger kernel sizes the processing is
more intensive than that for smaller ones. Graphs of figure 6.4 (¢ & f) show the
effect of increasing the size of the array of Transputers on the performance of the
system. It can be seen that for larger array size the speed up is higher but the
efficiency is lower than that for smaller array sizes. The gap between the values of
efficiency decreases for larger images which is quite useful since the parallel
implementation is more applicable to larger images. The reason for the large
efficiency difference in the case of smaller images is due to the proportion of time

spent on data movements and processing, especially for the larger Transputer
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array. In other words if it is assumed that the communication overhead in this
system 1s the ratio of time spent for data movements to the time spent for actual

processing then its value is higher for lower image sizes than that for larger image

sizes.

6.4 Two Dimensional Fast Fourier Transform

Two Dimensional Fast Fourier Transform (2D FFT) is a very powerful tool used in
a number of applications such as image processing, seismic signals, radar
detection, computed tomography, nuclear magnetic resonance (NMR) tomography
etc (Gonzalez & Wintz, 1988). There exist a great deal of 1-dimensional FFT
implementations on parallel machines; for a good survey see Hockney and
Jesshope (1988). In contrast, relatively few parallel implementations of

2-dimensional FFT have been reported up to date (Siegel, 1981, Lui, 1983).
The discrete 2-dimensional Fourier transform can be defined as follows

Ni-1N»-1
X(kpko) = S S x(npng) Wionok] Wpn kg 6.7)
n1=0ny=0

for O <k1 <N1-l

0 <ky < Np-1

where x(nj,ny) is the data in the spatial domain, X(kj,kz) is the data in the

frequency domain, and
G2l .
Wn = exp(JN_} j=+-1.

In this thesis, it is assumed that Ny = Np =N and N=2o,
The direct calculation of 2D FFT requires N4 complex additions and N4 complex

multiplications, i.€, the computational complexity is of the order O ( N4). The 2D

106



FFT is usually implemented by either the Row-Column method or the
Vector-Radix method (Rivard, 1977). The calculations by the Row-Column

method are of the order O (N2logN ), while for the Vector-Radix method they are
3
of the order O (4—N210gN ) (Dudgeon & Mersereau, 1984).

6.5 Row-Column Implementation

Most of the parallel implementations of the Row-Column method have been
realised by either using arrays of processing elements with a small memory (Siegel,
1981) or building a special purpose hardware (Lui, 1983). Other developers who
used Transputers (Taylor, 1984, Harp et al., 1985) commonly under-utilised
on-chip memory by employing a number of Transputers to calculate a single 1D
FFT. The implementation described here takes the full advantage of the Transputer
on-chip memory, supplemented by an additional 1 Mb of off-chip memory, by
carrying out sev;:ral 1D FFTs on one Transputer. The resulting system achieves

high computational efficiency and shows good performance.

A major bottle-neck in the Row-Column implementation of the 2D FFT is a matrix
transposition phase which normally requires a secondary memory and therefore
causes a traffic congestion between the main and the secondary memory. This
problem is avoided here by using an efficient matrix transposition algorithm due to
Eklundh (1972) which takes advantage of the large memory associated with each
Transputer. The overall data traffic, inherent in this method, can be further
minimised by dynamically reconfiguring the network with the use of the

programmable link switch C004 INMOS, 1989).
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6.5.1 Row-Column method

The Row-Column method (2D FFT RC) is based on the 1D FFT (Cooley &

Tukey, 1965) and a matrix transposition technique; its derivation can be explained

in the following way.
If, as above, N; = N; = N, the equation (6.7) can be rewritten as

N-1 N-1
X(kikp) = D, [, x(myng) Wyasky] Wan ik, (6.8)

n=0 nz0

As it can be seen from this equation, the summation in brackets is 1-dimensional

Fourier transform along the n; dimension:

N-1
G(npkp) = 3, x(ny,np) Wyngks, (6.9)

n=0

By substituting the expression in square brackets in equation (6.8) by the left side

of equation (6.9), the 2-dimensional Fourier transform can be expressed as

N-1
X(kpkp) = O, Glnyky) Wank, (6.10)

n1=0

Equation (6.9) means that each row of G is the 1-dimensional Fourier transform of
the corresponding row of x, and each column of X is the 1-dimensional Fourier
transform of the corresponding column of G. It follows from equation (6.10) that
the 2-dimensional transform can be derived by applying 1D FFT along the columns
of G. Thus tﬁc implementation of this method relies on performing 1D FFT on each
row of x, by using any of the 'in-place’ methods (Brigham, 1974), and then
applying the same procedure along each column of G. If matrix G 1s transposed,

{ e. each row in G becomes a column in the new transposed GT, then identical 1D

FFT can be applied to the rows of GT.
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The number of complex multiplications needed to perform 1D FFT is —l}lbéN

(Brigham, 1974), therefore the number of complex multiplications needed for the

2D FFT using the Row-Column method can be evaluated by multiplying the above
figure of 1D FFT with 2N, giving N2 logN.

6.5.2 Parallel implementation of the Row-Column method

The Row-Column method is implemented here using a network of Transputers
(Mansoor & Claridge, 1989a, 1989b). The input data is supplied as a
2-dimensional matrix of real values. The host TransputerAfctchcs the data matrix
“and sends sub-matrices to the network. The sub-matrix consists of a number of
rows of the original matrix. The number of rows (R) being sent to a single

Transputer depends on the number of Transputers (P) in the network and on the}

matrix size 2N x 2N and can be expressed by the relation R =le- .

The Transputers are interconnected as a mesh; however in the data transfer stage

the mesh is used in a pipeline fashion, as shown in figure 6.5.

N columns

T1
T2

N rows

Figure 6.5 The distribution of subimages among the Transputers.
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Each Transputer applies 1D FFT along the rows of its sub-matrix and on the
completion of this task it contains the coefficients of the 1D FFT for all its rows.
These coefficients form a 2-dimensional matrix which now has to be transposed so
that the second 1-dimensional FFT can be applied in exactly the same way as
before, that is along the rows of fhe transposed matrix (which are the columns of
the matrix before transposition).

Matrix transposition is the only step which does involve data exchange among the
Transputers in the network. The method described by Eklundh (1972) is an
efficient and fast method, well suited for parallel implementation. It is based on a
'divide and conquer' strategy, where increasingly smaller portions of a 2—

dimensional matrix are interchanged, as explained below.

Let X be the 2-dimensional matrix to be transposed, and let it consist of 2N x 2N

points. This matrix can be partitioned into four sub-matrices

X X
X = | 00 01}

X10 X11

where Xj; is a sub-matrix of 2N-1 x 2N-1 points.
Assuming that the origin of data is the upper left point of the matrix, the resulting
matrix XT (the transpose of X) takes the form
T T
Xoo X10

xT=

T T
X1 X1

where T represents the transposition.

The same procedure is subsequently applied to each Of the four sub-matrices until a
partition consisting of a single element is reached. As the upper right and the lower

left partitions are interchanged in each step of the method, after log;N steps the
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entire matrix is transposed. An example illustrating this method is shown in

figure 6.6 for 4x4 matrix.

6,0 0,1 }0,2 0,3 6,0 0,1 2,0 2,1

1,0 1,1 §1,2 1,3 1,0"1,1 3,0"3,1

2,0 2,1 2,2 2,3 0;2, 0,3 2,2 2,3

3,0 3,1 3,2 3,3 1,2";,3 3,2"3,3
(a) (b)

6,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,3 1,3 2,3 3,3

(c)

Figure 6.6 Matrix transposition procedure for 4x4 image.

The 1D FFT is applied again to the rows of the transposed matrix. As before, each
Transputer carries out this operation on its local data and calculates the required

coefficients of the 2-dimensional Fourier transform.

6.5.3 Matrix transposition protocol

The implementation of the matrix transposition protocol has to cqnsider two cases:
one, where data has to be transferred between two different Transputers; and the

second, where data transfer takes place within a single Transputer.

The number of the algorithm steps (S) in the first case depends on the number of

Transputers (P) and equals S = log,P. ( NB. if the number of rows of data N<P,
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up to N Transputers can be used). In each step each Transputer communicates with

one of its neighbours and data exchange takes place. Table 6.2 shows an example
of the communications taking place for a mesh of 16 Transputers. In this example

there are four steps, and the scheme of intercommunication is shown for each step.

step 0 Step 1 step 2 step 3
TO-T8 TO-T4 TO-T2 TO-T1
T1~T9 T1-T5 T1-T3 T2-~T3
T2-T10 T2~T6 T4~-T6 T4~T5
T3-T11 T3-T7 T5-T7 T6-T7
T4-T12 T8-T12 T8-T10 T8-~T9
T5-T13 T9-T13 T9~-T11 T10-T11
T6-T14 T10-T14 T12-T14 T12-T13
T7-T15 Tll_Tlf; T13-T15 T14-T15
Table 6.2 The intercommunication between the Transputers in matrix

transposition algorithm.

The number of data packets to be transferred between any two Transputers in each

direction depends on the step number. If the number of data packets is C(s), where

s is the step number, then C(s) = 2s for 0 <s < S-1.

The final steps of matrix transposition require data interchanges only within a

Transputer.
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6.5.4 Network description

The block diagram of the network is the same as in figure 5.9 and shown again in

figure 6.7.

L1 L2 L3
| | |

Bdms i b 7 b~ 3 4
I T I I

LS JdT1i4 <TI0 T6 — T2 }— LS
] | i |

L6 —{TI3}—~T9 4715 - T1 |— L6
| | ] |

L7 ed T12 |~ T8 I T4 TO |— L7
| | |

Figure 6.7 Network of Transputers for the 2DFFT RC.

The host Transputer acts as a controller of the network. It fetches the data from a
filing system and distributes it across the network. The program stored in each
Transputer contains five processes running in parallel: the 'data processing'
process and the four ‘router’ processes, as shown in figure 6.8 below; full details
of this model were described in section 5.5. Each Transputer in the network has a
unique label. For data communication, each packet contains a tag which identifies a

destination Transputer and the type of the data in the packet.
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Figure 6.8 Occam model for a Transputer in the array.

The five processes running in parallel can be implemented using PRI PAR

construct of OCCAM:
PRI PAR
PAR
Rw
Re
Rn
Rs
P

The Process procedure contains the whole data processing operation assigned to
the Transputer while the routers procedures are responsible for moving the data
between Transputers. The PRI PAR structure is used, since for the routers high
priority is needed to ensure siaeedy data distribution. The router processes will not
consume much time of the processor since for data input or output they need very

little time to initialise the DMA circuit to complete the job.
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The data packets are defined and put in a separate library during the development

time. For example, the data packets for moving data from the host and between the
Transputers are

data.type: P; n :: x

where data.type shows the data type of this data packet, P is the number of a target
Transputer, n is the size of the array x being transmitted. In each process there is
ALT construct to wait for any message coming to it. Within each channel waiting
for communication, a CASE feature is used to identify which type of data packet

has arrived.
The process P is responsible for mainly two actions:
1) handling the routers.

2) handling each case within the ALT construct according to each recieved protocol

type.

Each process P has four channels to connect it to the four routers, so the main

procedure construct is as follows;
WHILE continue
ALT
chl ? CASE
data.packet.type.1
(processing)
data.packet.type.2
(processing)
ch2 ? CASE
(same as chl)
ch3 ? CASE
(same as chl)
chd ? CASE

(same as chl)
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The WHILE construct has been used to let the processing continue as long as a
logical value 'continue' logic value is TRUE; its value can be changed by the host

for processing termination.

The construct of the router is similar except that there is no processing but just

routing the data to its right targets. The various types of data packets are as follows;

w.data; P; n :: data; nrow; ncol

where
w.data is the data packet type
P is the number of the target Tranéputer
n is the size of the data to be sent
nrow is the number of rows of the data

ncol is the number of column of the data
w.acknowledge; P; data.received

where
w.acknowledge is the data type for data acknowledgement to be sent to the

host so there is no need to put the target Transputer number.
P is the number of the sender

data.received is the logic value to acknowledge when the data is

successfully received (TRUE) or not (FALSE).

w.terminate

This is to change the value of continue from TRUE to FALSE to terminate the

processing.
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stage.number; stage

This is to send the stage number within the matrix transposition protocol.

data.transposition.sender; P; n:: x and

data.transposition.receiver; P; n:: x

As it is shown in Table 6.2 above, in each step two columns of Transputers need to
communicate; the first column is called ‘senders’ and the second is called
‘receivers'. The above two packets are for the senders and receivers respectively.
In practice both data packets are included in the routines of T1 to T15 since in some

stages they are senders while in others they are receivers.

6.5.5 Performance estimation

The main factor in the assessment of the performance of an implementation is the
speed-up of processing: the greater the speed-up, the better performance. The

speed-up can be estimated as follows:

If t1 is the time of calculating 2D FFT on a single Transputer, then the time of this
calculation on a network of Transputers P, excluding the matrix transposition, is

equal to t1/P.

The time tc spent on matrix transposition on P Transputers can be estimated as

d
[C=—,
v

where d is the amount of data to be interchanged between Transputers:

N2
d= (—1—5—) logoP

and v is the speed of data transfer, which is the link speed of the Transputer.

Thus the total time of processing of the 2D FFT on P Transputers is

1
t-—-P .
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The communication overhead (Coh) can be defined as the ratio of tc to t1/p;

ic

Coh = a
1
&)

The speeid-up Q can be expressed as
_tl - P
Q= t I+Coh "
This means that the speed-up is directly proportional to P and inversely
proportional to Coh. Figure 6.9 shows the graphical relationship between speed-up
and Coh.

Coh

Figure 6.9 The graph of the speed up with respect to the communication
overhead.

6.5.6 Results and analysis

The 2DFFT RC algorithm has been implemented on a network of Transputers and
the initial estimates were tested for four image sizes and two different mesh sizes.
The timer of the host is used to measure the total time of processing which is from

the instant when the host starts to distribute the subimages to the instant when the
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last byte of the last subimage result is received. Figure 6.10 shows twoimag

their Fast Fourier Transform.

(a) Checker board (b) 2DFFT of (a)

(c) Square box (d) 2DFFT of (c)

Figurc 6.10  The Fast Fourier Transform of two images.

.FQr the measurement of the communication overhead (Coh), the timer of
Transputer numbered zero in the network shown in figure 6.7 on page 113 is used.
This does not give the exact communication overhead but an approximation of it.
For actual measurement of communication overhead, it should be the time from the

instant when the first Transputer in the network is ready to apply the



intercommunication protocol to the instant where the last Transputer has just

finished the intercommunication protocol. This can .bc achieved by fccording the
timers of the Transputers in the network and then making comparison between
them to find out the actual communication overhead. However there is no big
difference between the two because all the Transputers implement similar
operations apart from some differences due to the longer path for receiving data and

this will not affect the result.

Table 6.3 shows the total time of processing Tt for the 2DFFT RC implementation,
the actual time of processing of the two 1DFFT algorithms, Tp1 and Tp2, and the
time of processing spent on the matrix transposition Tc which represents the
intercommunication process. The graph for total time of processing for three arrays
of Transputers is shown in figure 6.11 which follows the table. The graph of the

communication overhead is shown in figure 6.12.

image side Tt Tpl Tp2 Tc
8 0.065 0.029 0.029 0.002
16 0.367 0.174 0.174 0.006
32 1.924 0.93 0.924 0.021
64 9.538 4.645 4.617 0.091
128 45.558 22.281 22.153 0.406
256 217.6 100.26 100.26 1.827

(a) Time measurements for a single Transputer
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image side Tt Tpl Tp2 Tc
8 0.022 0.007 0.007 0.004
16 0.105 0.043 0.043 0.01
32 0.519 0.232 0.231 0.03
64 2.515 1.161 1.154 0.111
128 11.88 5.571 5.538 0.457
256 54.907 25.984 25.836 1.895

(b) Time measurements for four Transputers

image side Tt Tpl Tp2 Tc
16 0.043 0.011 0.01 0.012
32 0.167 0.058 0.057 0.027
64 0.741 0.291 0.288 0.085
128 3.383 1.394 1.384 0.301
256 15.264 6.499 6.457 1.144

(c) Time measurements for sixteen Transputers

Table 6.3 Time measurements for 2DFFT RC implementation on array of
single, four, and sixteen Transputers.

Time is given in seconds. o~
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Figure 6.11  Time for 2DFFT RC on a Transputer array.
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Figure 6.12  Communication overhead in the 2DFFT RC implementation.

Figure 6.13 (a) below shows that the speed-up increases with the increase of the
data size, and this is because the communication overhead Coh decreases with the
increasing data size. This agrees with the theoretical estimation of figure 6.9. For a
given data size the speed-up increases with the number of processors used. Figure
6.13 (b) shows that efficiency increases with the increase of the data size, but for a
given data size it decreases with the increase of the number of processors. This is

because the increase ‘n the number of processors increases the communication

overhead Coh in the larger network.
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Figure 6.13  Performance of 2DFFT RC implementation.

6.6 Vector-Radix Implementation

The Vector—Radix- algorithm (2D FFT-VR), which was chosen for this
implementation, is bésed on the divide-and-conquer strategy described by Dudgeon
& Mersereau (1984). A complete 2D FFT is broken down into successively smaller
2 -dimensional transforms until a trivial 2-dimensional FFT is reached. The basic
operation in this algorithm is the so-called 'butterfly’ operation which requires four

inputs and produces four outputs. There are two versions of the algorithm:
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decimation-in-time and decimation-in-frequency (Brigham, 1974). The

computational effort is the same for both; the main difference is that for the first oﬁc
there is no multiplication needed in the first stage of the algorithm, while for the
second one there is no multiplication needed in the last stage. This difference is
important when implementing this algorithm on a pyramid architecture as wiil be

shown in the following section.

Divide and conquer strategy is used for 1-dimensional FFT computation and it is
applied to the 2-dimensional FFT algorithm. A 2-dimensional FFT is broken down
into successively smaller 2D blocks until a trivial 2D FFT block is reached which is

very easy to evaluate.

The decimation-in-time version of the algorithm can be derived by expressing an
(NxN)-point FFT in terms of (N/2xN/2)-point FFT. For direct calculation of
2D FFT. |

N-1 N-1
(nk;+nok
Xk k)= 2, 2 x(n,np Wy 712 ? (6.11)

n=0nz=0

for 0 <k; £N-1,0<k; £N-1
where x(nj, np) is the data in the spatial domain, X(ky, k2) is the data in the

frequency domain, and
gl
WN= € _JF

The FFT summation of equation 6.11 can be decomposed into four summations:

one over those samples of x for which both nj, ny are even; one for which ny is

even and n; is odd; one for which n; is odd and n3 is even; and one for which both ~ _ .

nl and n2 are odd. This gives
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(k 1+ko)

X(ky, ko) = So(k1,k7)+301(k1,k7)w +Slo(k1,k7)W 481k, k)W

(6.12)
where Sgg, So1, S10, and S;; are periodic in (kj, ky) with horizontal and vertical

periods N/2,

N2 N2
Sooks k)= 2, Y x(2m,, 2my WEmEHImED

m1=0m2-

Soilep, kp= 3 x(m, 2mytl) WigrEm e
m=0m=0

(6.13)

S 1ok y, ko) = 2 2x(2m1+1 2my) Wk rrmE
m =0 mz=0
L I 2m k +2

Sy y(ky, ko) 2 Y x(2my+1, 2mp+l) WOk i
m =0 m =0

Using the fact that

Wy o=-1,

the following identities can be derived from equation 6.12 and a set of

equations 6.13:

X(ky, ko) = Sgoky ko) +Sg1(k, kgwﬁh S ok k7)W§1

+ 81y, kw1

X(k+N/2, kp) = Sgglky, ko) +S g1k, kgwll? -S oKy, kﬁwil
- Sy4(ky, kyw ETHD .

X(ky, kp+N/2) = Sk, ko) -Soi(ky, k7)WlI:2+ S ok, kgwl;l

S0y kW Y
X(k+N/2, ko#N/2) = Soolk 1, ko) -Sorlky, k?)WI;JZ‘ S 1ok, k?)WIr:l

k,+k
45,1k, k7)W( 1tko)
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It can be seen that Spg, Sg;, Sy9, and S11 can be obtained by evaluating a
(N/2 x N/2)-point FFT. The computation represented by equations 6.14 is called a
radix-(2x2) butterfly as shown in figure 6.14.

Xk, ko)

X(k 1+«-—§, k-

N
X(kp, ky+)

N N
X(k 1+'—2", k2+'§)

— — — 3 Multiply by -1

Figure 6.14  Butterfly operation.

It is clear from figure 6.14 that each butterfly requires three complex multiplications
and eight complex additions and to compute all the samples of X from Sgo, So1,
S10, and Sy1 requires the caiculation of (N2/4) butterflies. The number of steps to
complete the computation is equal to (log N). Thus the number of multiplications

needed to complete the computation is

2
C=§§——logN

which is 25% fewer than that needed for the Row-Column decomposition.

6.6.1 Pyramid architecture for the Vector-Radix Method

The Vector-Radix method can be effectively implemented using the pyramid data

structure (Mansoor & Claridge, 1989c¢) (see section 3.3.2 for a general discussion
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of a pyramid architecture). The first stage takes the data in so-called 'bit-reversed’

order (Dudgeon & Mersereau, 1984); the data is divided into subimages of size
N/2(8-), where N is the image size in one dimension (it is assumed that N is a
power of 2), § is the number of the last stage, and i is the stage number, where 0
<i < §. The size of each subimage in the first stage is equal to two, so there is one
butterfly operation per subimage. In the successive stages, each four
subimages-siblings merge to create a larger one which is called the parent. The
number of butterfly operations per each subimage is equal to four times that of the
previous stage; the total number of butterfly operations in each stage is N2/4.

Figure 6.15 illustrates this procedure for the image of size 8x8.

88008
88600 OGS
(N N NN
e 6O OO
i s = = R
OO0
60000
8800000

(a)

600660
0 00COO0060
ol ol Nol NoN )
O0O0O0000O0
(ON I NoN I NoN NON |
O000000O0
(O NoN - NoN - NON*/
00000000
0O®e0©®0000
00000000

—
S

CO0O®O0O0O0
oNoNoNoNoRoNO)
oNoNoNoNoRONO)
oNoNoNoNoRONO
oNoNoN NoNoNo
oNoNoNoNoNoRO)
0000000
oNoNoNoNoRONO,

(c)

oNoNoN NoNoNoN

Figure 6.15  Three-level pyramid implementation: (a) stage 0, (b) stage 1,
and (c) stage 2.
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Figure 6.15 (a) indicates the sets of inputs for each butterfly operation by different
patterns. Each set of four inputs lies within a different subimage, and because the
subimage size is only 2x2, only one butterfly operation is applied. Figure 6.15 (b)
shows stage 1. Here the subimage size is 4x4 and so four butterfly operations are
required. The inputs for the first butterfly operation are shown with shading. The
second butterfly operation uses the four right neighbours of these pixels as input,
the third operation uses the four lower neighbours, and the fourth uses the four
diagonal right neighbours. Figure 6.15 (c) shows stage 2 where there is only one
subimage, which is the size of the entire image. The first four butterfly inputs are
shown; the successive inputs to the butterfly will be successively displaced from

these positions, as in stage 1, giving the sixteen input data sets required.

For implementing a Vector-Radix method a parallel algorithm has been developed
using both a decimation-in-time and a decimation-in-frequency strategy and a
pyramid architecture. For the decimation-in—freqﬁency strategy, the image data is
first bit-reversed. The processing starts at the bottom level of the pyramid (level 0)
where each processor has access to a sub-image of size equal to N2/P2, where N2
and P? are image and pyramid sizes respectively. Each procchor executes a
number of stages of the Vector-Radix algorithin, up to the size of the sub-image in
it, and then sends the result to the next level of the pyramid. In each successive
level only one stage of the algorithm is executed. The algorithm is very efficient as
no communication is necessary between processors on a single level and no
multiplication is needed on the highest level of the pyramid. For the
decimation-in-time strategy, the data is first sent to the root because there is no
multiplication needed in the first stage of the algorithm, so a top-down scheme is
used. The following example illustrates the implcmcntatiOn method for-a=2x2

matrix. The diagram of the butterfly operation for this matrix is shown in

figure 6.16 on the next page.

128



A pyramid of 2 levels (i.e of size 2) is used. First, the data is arranged in the

bit-reversed order and sent to the base of the pyramid. Each Transputer applies one
butterfly operation and sends the results to the higher level, in this case the root.
The root Transputer implements the four butterfly operations, but since there is no
- multiplication needed in the root a bottleneck is not created. For larger matrix sizes

each butterfly in the diagram would indicate an appropriate number of butterfly

operations.

BF BF

X(
BF ' BF ;‘E '
X(

BF BF

BF BF X(3.2

Figure 6.16  Butterfly diagram for Vector-Radix method: BF indicates a
butterfly operation.
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6.6.2 Theoretical Estimation of Performance

A theoretical estimate has been made to evaluate the performance of the parallel
algorithm on a pyramid architecture, and in particular to find out how the

performance is affected by the pyramid size and the image size within that pyramid.

Each processor in level zero (base level) applies a Vector-Radix algorithm to its
own sub-image. In this computation the number of stages is equal to log(N/P) and

the number of complex multiplications is equal to
Co = 3/4 (N2/P2) log(N/P)

On level one, only one stage of the algorithm will be executed, so the number of
complex multiplications is equal to

C, = 3/4 (2N/P)2

The results are then passed to the next level until the whole image reaches the root
processor. In the root processor no multiplication is required. The only drawback
of this implementation is that the time needed to compute one stage in level i (where
i is neither the base level nor the root level) is approximately four times less than the
time of processing of the stage (i+1); for example for i=2

T, =3/4 2N/P)2, T3 =73/4 (4N/P)?
hence T,/ T3=1/4
where T, and T3 are time of computation for the second and the third levels
respectively: please note that since time of multiplication affects most the overall
computing time, C; and T; are used interchangeably.
A< an example of the theoretical estimation a pyramid of size 16 (P = 4) will be

considered. The time estimate takes the form

To = 3/4 (N/4)2 log(N/4) and Tp = 3/4 (N/2)?
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- Ty is very small because this level is the root level which implements the last stage

of the method where no multiplication takes place. For this particular pyramid, the
best performance is achieved when the ratio To /T is equal to one:
To/T)=log(N/4)/4=1

thus giving N = 4 Figure 6.17 is the graph of this equation showing the
relationship between Ty / Ty and the image size.

The analysis has shown that a pyramid of size 4x4 (3 levels) gives the best
performance for this particular parallel implementation of the 2D FFT algorithm.
This is due to the drawback mentioned above for pyramid of sizes more than 3
levels. Subsequently, the relationship between the ratio of the processing time on
level O and on level 1 and the image size has been examined. From this analysis it
has been noted that the best performance is achieved for an image of size 64x64.
However, the performance for images of size up to 1024x1024 is still good and

does not degrade to an unacceptable level.

TO/T1

1 v i M i

R G
0 200 400 600 800 1000 1200

N

Figure 6.17  Estimation of To/T versus image size for pyramid of size 16.
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6.6.3 Parallel Implementation and Performance Evaluation

A pyramid of size four of Transputers is used for the implementation of the

2DFFT-VR algorithm. Figure 6.18 shows the block diagram of the

implementation.

Host TO | T1 T4 +—

(a)

Figure 6.18  Pyramid of size four.

TO, T1, T2, and T3 represent the base level of the pyramid (level 0). The
subimages are distributed to TO-T3 by the host Transputer according to figure

6.18 (b). T4 is the root Transputer of the pyramid (level 1).

In level zero, each Transputer processes the subimage, which has been sent by the
host Transputer, and sends the result to the root Transputer. On the completion of
the processing the Transputers TO-T3 send a message to TO. TO sends a request to
the host Transputer for another image after receiving the messages from all
Transputers in level zero. The timer of TO is used to measure the time spent by the

Transputers of level zero on processing the subimages of an image.

T4 receives the subimage results from the Transputers of level zero and applies the

last stage of the algorithm as described in section 6.6.1. The timer of T4 is used to
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measure the time of processing of each complete image. It measures the time of

processing at the root level as well.

The timing of the 2D FFT implementation has been performed on a sequence of
four similar images. For the purpose of timing real type aata only has been used
since for complex da.ta the time would be double. Table 6.4 shows the time of
processing for the four images. In Tables 6.4(a), TO1 to TO4 are the time of
processing on level zero for images one to four respectively, Ttl to Tt4 are the total
time of processing for images one to four respectively. In table 6.4(b) TO and T1

are the time of processing on levels zero and one respectively.

image side| TO1 T02 TO03 T04 Ttl Tt2 Tt3 Tt4
16 0.059 0.06 0.058 0.06 0.074 0.059 0.06 0.059
32 0.351 0,35i 0.351 0.351 0.41 0.351 0.351 0.348
64 1.867 1.867 1.868 17867 2.098 1.868 1.867 1.867
128 $.375 9.375 9.375 9.375 10.288 9.375 9.375 9.375
@
image side TO Tl T1/T0
16 0.036 0.006 0.166
32 0.225 0.032 0.142
64 1.184 0.124 0.104
128 5.91 0.48 0.081
®

Lable 6.4 Time of processing 2DFFT VR on pyramid of size four.

Time is given in secs.
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Figure 6.19 shows the total time of processing the 2DFFT VR algorithm on a

single Transputer and Transputer pyramid of size four.

30 1
25 4 ‘ ®
20 -
Time 154 *®- 1 Transputer
568 *O- pyramid size 4
10 -
51 @ O
0 o-z:@-/-—:_;?.é
16 32 64 128

Image side

Figure 6.19  Time of processing for 2DFFT VR algorithm.,

Several performance graphs have been plotted to evaluate the implementation
performance. Figure 6.20 shows the relationship between the ratio of time of
processing of level zero and level one with respect to the image sizes. This graph is

important in the pipeline architecture to evaluate the load balance in the system.
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Figure 6.20  2DFFT VR: load balance of pyramid of size four.

The speed up and the efficiency are calculated using tables 6.4 (a)-(b) above.

Figure 6.21 illustrates them.
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Figure 6.21  Speed up and efficiency for the pyramid of size four.

Since there were not enough Transputers available in the department for building a
pyramid of size sixteen, the performance of that pyramid was estimated, based on
the actual processing of the algorithm but neglecting the time for data distribution.
The performance of the implementation of the algorithm on a pyramid of size four
was also estimated. This is just to compare the estimated performance with the
actual performance shown in figure 6.20 and to justify the estimated performance
of a pyramid of size sixteen. The only drawback of that estimation is that since the
time of processing on a single Transputer (t1) includes the time for data distribution
and collection which shows t; time higher than that if the only actual processing is

taken. and since efficiency = tj/nty, the efficiency value in this estimation is slightly
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more than its real values and that why when the efficiency value is very close to

one, it goes more than one,

The method of estimation is based on the main feature of the parallel algorithm
proposed for the 2DFFT VR method. This feature is that there is no
intercommunication between the Transputers of the same level. Accordingly, the
time of processing of each level is equal to the time of processing of the subimage
size of that level on one Transputer. The time measurements of various size of
images have been achieved for the implementation of level 0 up to the root level.
These measurements are shown in table 6.5. In this table Ts is the time of
processing the algorithm on a single Transputer, TO is the time of processing of
level zero, Tm is the time of processing of any level which is neither level zero or
the root level, and Tr is the time of processing of the root level. For TO, Tm and

Tr, the time of processing is for the corresponding subimage size.

image side Ts - TO Tm Tr
4 0.003 0.004 0.003 0.0005
8 0.025 0.045 0.08 0.002
16 0.173 0.211 0.056 0.008
32 0.968 1.11 0.22 0.03
64 5.092 5.756 0.888 0.131
128 25.117 27.865 3.55 0.525

Table 6.5 2DFFT VR: The actual time of processing for level 0 up to the
root level for several image sizes.

Time is given in secs.

The times of processing for pyramids of sizes four and sixteen are taken from table

6.5 and shown in tables 6.6 and 6.7 below. In these two tables TO and T1 are the

time of processing in levels zero and one respectively.
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image side T0 T1 . T1/TO
8 0.004 0.002 055
16 0.045 0.008 0.177
32 4 0.211 0.03 0.142
64 1.11 0.131 0.118
128 5.756 0,525' 0.091
256 27.865 2.1 0;075

Table 6.6 2DFFT VR: The estimated time of processing on pyramid of
, size four,

Time is given in secs.

image side TO Tl T2
16 0.004 -0.08 0.008
32 0.045 0.056 0.03
64 0.211 0.22 0.131
128 1.11  0.888 0.525

Table 6.7 2DFFT VR: Estimated time of processing on pyramid of size
sixteen.

Time is given in secs.

The estimates shown in these tables have been derived using the following
assumptions. The time of processing of an image of size 128 on level O of a
pyramid of size sixteen is the same as the time of processing of an image of size 32
on a single Transputer; the time of processing on level 1 is the same as the time of
that on a single Transputer implementing one stage for image size 64; The time of

processing on the root level is the same as the time of processing of the last stage of

the image of size 128 on a single Transputer.
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Table 6.6, with estimated results, is very close to table 6.4(b), which is based on

the real time implementation, and this proves that the estimation procedure used

here gives correct results.

The time of processing for the image is equal to the largest time among the times of
processing of all the levels. This is because they are in pipeline. The performance

of implementation of the two pyramids has been calculated and plotted in

figure 6.22.
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Figure 622  2DFFT VR: The speed up and the efficiency graphs for pipeline

processing on pyramid of size four and sixteen.
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These graphs show that the speed up achieved in the pyramid of size sixteen is

superior. The maximum speed up is for image size of 64, which is similar to the

theoretical estimation in figure 6.17.

For comparison purposes figure 6.23 shows graphs of speed up and efficiency

with respect to image side for the array architecture (2DFFT RC method) and the

py;amid architecture (2DFFT VR method), the graphs below c’ombine the graphs in
figure 6.13 and 6.22. |
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Figure 6.23

architecture implementation of 2DFFT.
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The above figure shows that speed up gained in the pyramid architecture is greater

than that achieved by the array architecture and this is because of the more
Transputers used in the pyramid architecture. The graph of efficiency shown in
figure 6.23 (b) indicates that both architectures have approximately similar
efficiency. Since the performance of both architectures is approximately similar
then the decision of which one is better depends on the efficiency of the sequential
algorithm when implemented on a single Transputer. Since the time of processing
of the 2DFFT VR (table 6.5) on single Transputer is faster than that of 2DFFT RC
(table 6.3 (a)), which agrees with the theoretical derivation in section 6.5.5, then
the conclusion is that the 2DFFT VR method represents a better method for

implementing the FFT on a network of Transputers.

6.7 Implementation of Convolution via FFT method

The implementation of the convolution using the FFT technique is achieved by
applying the steps of the procedure outlined in the second part of section 6.1.2.
Either of the methods of implementing the FFT described above can be used. Here
the two methods are used for the convolution implementation and performance is

evaluated and discussed.

6.7.1 Row-Column based Implementation

The array architecture used for the implementation of convolution is the same as
that used for the implementation of the 2D FFT RC method since the convolution
operation consists mainly of two Fast Fourier Transform operations. The 2D FFT
of the kernel data is computed and divided into subkernels of size equal to that of
the corresponding subimage size which is going to be sent during the operation of

the 2D FFT. Each subkernel is stored in the corresponding Transputer, This is

done to speed up the processing.
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The system block diagram is the same as that of 2D FFT RC implementation which

was shown in figure 6.7. The host fetches the input image from the filing system
and divides it into several subimages and then distributes them between the

Transputers in the network. The 2D FFT RC algorithm is applied as described in

section 6.5.2.

The subimage result in each Transputer represents the Fourier transformed data of
the original subimage. The next step of the convolution operation is that each
transformed subimage is multiplied with the transformed subkernel of convolution

which already resides in the Transputer.

The final step of the convolution operation is to apply the inverse 2DEFFT operation

on the resultant subimage data and send the final result back to the host Transputer.

The performance of the system has been measured for several image sizes. The
timer of one of the Transputers in the network is used to measure the time spent on
actual processing (the forward Fourier Transform and the inverse one) and that
which is spent on the multiplication with the transformed subkernel in the
frequency domain. Tables 6.8(a)-(c) on the next page show the time of processing
on a single Transputer, on an array of four Transputers, and an array of sixteen
Transputers respectively. Tt is the total time of processing, Tp is the time of
processing the forward and the inverse FFT, and Tc is the time of multiplication
with the transformed subkernel. It can be seen from the Tables that time Tc is very
small with respect to Tp and can be neglected. Figure 6.24, which follows the

tables, shows the graph of the total time of processing Tt for various image sizes

and for the three Transputer arrays.
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Table 6.8

image side Tt Tp Tc
16 0.726 0.699 0.012
32 3.817 3.741 0.042
64 18.959 18.63 0.182
128 90.660 89.324 0.812
256 421.597 401.12 3.654
(a) a single Transputer.
image side Tt Tp Tc
16 0.2 0.172 0.02
32 1.009 0.931 0.06
64 4.930 4.656 0.222
128 23.386 22.334 0.914
256 108.352 104.13  3.79
(b) array of four Transputers.
image side Tt Tp Tc
16 0.075 0.044 0.024
32 0.3 0.232 0.054
64 1.371 1.167 0.17
125 6.321 5.586 0.602
256 28.851 26.04 2.288

(c) array of sixteen Transputers.

Time of processing for the 2DFFT RC convolution

implementation on several arrays.

Time is in secs.

Tt is the total time of processing.

Tp is the time of processing the forward and the inverse FFT.
Tc is the time of multiplication with the transformed subkemel.
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Figure 6.24 " The time graph of the 2DFFT RC convolution implementation
on array of a single, four, and sixteen Transputers.
The graphs show timings obtained from processing of the real-part of the data.
Timings for the imaginary part are identical. The speed up and the efficiency have

been calculated and their graphs are shown in figure 6.25.

It is clear from figure 6.25 that the speed up and the efficiency increase with the
increase of the image size. The reason for this behaviour is due to decreasing of the
communication overhead in the 2DFFT processing as discussed in section 6.5.6
and shown in figure 6.12. The efficiency for the array of four Transputers is better
than that for the array of sixteen Transputers because the communication overhead

is greater in the case of larger array sizes.
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Figure 6.25  Performance graphs for 2DFFT RC convolution
implementation array of four and sixteen Transputers.

6.7.2 Vector-Radix Based Implementation

This is the second method of convolution implementation using Fast Fourier
Transform techniques. The procedure of the implementation is the same as
described in section 6.1.2. Here the Vector Radix technique is used for the forward
and the inverse Fourier Transform. The convenient parallel architecture proposed is
the pyramid. This is because of the hierarchical structure of the Vector-Radix

method provides a match with the pyramid architecture.

As mentioned in section 6.6.1 that there are two strategies for implementing the
Vector-Radix method: the decimation in time which used a top-down scheme and
the decimation’ in frequency which used a bottom-up scheme. For the convolution
implementation either or both of these two strategies could be used. Figure 6.26

overleaf shows all possible architectures for the convolution implementation using

a pyramid topology.
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Figure 6.26  The possible configurations for 2DFFT VR convolution
implementation using pyramid blocks.

The triangle indicates a pyramid and arrows show direction of
data flow.

It is known that the time spent for distributing data from one Transputer to several
Transputers is larger than that for sendinf,.y data between two equal groups of
Transputers. It is then clear from figure 6.26 that the best efficiency can be
achieved by the architectures in figure 6.26 (c) and (d) but the speed up for the
architecture of (c) is more than that of (d) because there are more Transputers in (c)
than that in (d). The architecture in figure 6.26 (d) may be used when there are not

enough Transputers for implementing the architecture in figure 6.26 (c).

Two architectures based on figure 6.26 (c) have been proposed using pyramid of
size four: one with common base level (CB) between the two pyramids (two CB
pyramids) and the other with two separate pyramids (two-pyramid). The system

blo~k diagrams are shown in figure 6.27 (a) and (b) respectively.

The Occam model for each Transputer is the same as that shown in figure 6.8.
Each Transputer in each level of the pyramid implements the same procedure,

which is inputting the data from the previous level and process it according to the
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part of the algorithm to be processed in thisvlevel, and then send the results to the

next level. So the program construct of the process P for each Transputers is
SEQ
input data from the previous level

impl;ament' the appropriate part of the algorithm for this
eve

send the results to the next level

Host TO T1 T2 TS5

(a) two CB pyramids.

Host

| Pyramid 2

Pyramid 1

(b) two-pyramid

Figure 6.27 Two pyramid configurations for 2DFFT VR convolution
implementation.

The time of processing for each stage of these two implementation is taken from

Table 6.6, since the processing of convolution is two 2DFFT VR processing in

cascade, and shown in Table 6.9.
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image side Til1 TO01+T02 T12
8 0.002 0.008 0.002
16 0.008 0.09 0.008
32 0.03 0.422 0.03
64 0.131 2.22 0.131
128 0.525 11.512 0.525
256 2.1 55.73 2.1

(a) for two CB pyramids configuration.

image side| TI11 T01 T02 T12
8 0.002 0.004 0.004 0.002
16 0.008 0.045 0.045 0.008
32 0.03 Q.211 0.211 0.03
64 0.131 1.11 1.11 0.131
128 0.525 5.756 5.756 0.525
256 2.1 27.865 27.865 2.1
(b) two-pyramid configuration.

Table 6.9 Estimated time of processing for implementation of 2DFFT VR
convolution.

Time is in secs.

T11 is the time of processing at level one of pyramid one.

TO1 is the time of processing at level zero of pyramid one.

T02 is the time of processing at level zero of pyramid two.

T12 is the time of processing at level one of pyramid two.
In these tables each column of time values belongs to one stage of the pipeline in
the configuration. Better load balance has been achieved in the case of the

two-pyramid configuration. This is because of the equal loads allocated to the two

separate bases of the pyramids which represent two main stages of the pipeline
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(they contain 80% of the total number of Transputers in the network). The time of

processing for each configuration is the time of that stage in the pipeline which
takes the longest time. The time of convolution on a single Transputer is estimated
by multiplying by two the time of processing 6f the 2D FFT VR on a single
Transputer (taken from figure 6.19). Table 6.10 shows the time of processing for
convolution on on a single Transputer and on two pyramid configurations. The

performance graphs for these two implementations are calculated using Table 6.10

and are shown in figure 6.28 which follows the table.

image side| one Transputer two pyramids CB pyramid
16 0.346 0.045 0.09
32 1.936 0.211 0.422
64 10.184 1.11 2.22
128 50.234 5.756 11.512
256 248 27.865 55.73
Table 6.10 Total time of processing of the convolution operation using 2D

It can be seen from figure 6.28 that better performance, i.e. higher speed up and
efficiency, has been achieved for the two-pyramid configuration. This is due to

better load balance in this configuration as compared with that of the two CB

FFT VR method.

pyramids, as was shown in Table 6.9.
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Figure 6.28  Performance graphs for the two configurations: two CB
pyramids and two pyramids.

6.8 Summary

This chapter has described three different parallel implementations of convolution
to be used in context of digital image processing. These implementations are based
on three different convolution methods: the direct method, the 2D FFT-based
Row-Column (RC) method, and the 2D FFT-based Vector-Radix (VR) method.

The array architecture has been chosen for implementation of the direct method and
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the Row-Column method; and the pyramid architecture for the Vector-Radix

method. Parallel implementations for both 2D FFT-based methods are novel.

The direct method shows a good performance for convolution with small kernel
sizes. For example, for image size of 128x128, kernel size of 11x11 and an array
of 16 Transputers the time_of processing was 3.89 seconds and speed-up factor of
14.6 was achieved; for kernel size of 15x15 the speed-up was increased to 15.1
and the time of processing was 6.932 seconds. For larger kernel sizes the
FFT-based techniques are similar or better since they involve overall smaller

number of operations.

It was interesting to compare performance of two different FFT-based methods of
convolution in which performance does not depend on the size of a kernel. Both
implementations showed approximately similar performance as measured by the
efficiency factor; for example for image size of 128x128 this factor reaches value of
about 0.89 for the RC-based implementatic_)n on an array of 16 Transputers and
0.872 for the VR-based implementation on two pyramids with 10 Transputers. The
overall execution time was lower for the VR method than for the RC method; for
example, the processing time for image size of 128x128 using VR method (10
. Transputers) was 5.756 seconds while for the RC method (16 Transputers) it was

6.321 seconds. This was to be expected since the number of operations is lower in

the VR algorithm.

In the VR implementation the efficiency increases with the increase in the number
of Transputers because no intercommunication is needed within a single level of the
pyramid. This is a very important advantage. One drawback of this implementation
is that the performance decreases with the increase of the image size (this is
inherent in the algorithm itself which gives the best load balance for image of size
64x64 as shown in figure 6.17). This, however, is not very serious as the decrease

is very small. The second drawback is that this method requires a large amount of
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memory. The memory requirement is again a consequence of using the particular
algorithm; as the amount of data does not decrease with each iteration in the

algorithm its parallel implementation needs the same amount of memory on each

level of the pyramid.

The RC-based implementation can bé run without change on an array of
Transputers of any size and its good load balance will be preserved for any size of
the network. It requires less memory than the VR method. For example, the
memory size required for the RC method on an array of 4 Transputers is half of
that required for the VR method on the pyramid of size four. The main drawback of
the RC method is that the efficiency of this method falls with the increase in the
number of Transputers in the network. This is caused by the increase in the
communication overhead (Coh) brought by the matrix transposition operation and
is especially apparent for larger networks. However, the decrease in the efficiency
measure is not very large, especially for large image sizes, because a lot of effort
has been put into the design and development of an efficient communication

protocol.

In conclusion the 2D FFT VR-based implementation of convolution shows the best
performance as compared with two other implementations, both on a single
Transputer and on a network of Transputers. The main drawback of this
implementation, the memory requirement, should become less significant as
memory becomes cheaper and more compact. This implementation is therefore
suitable for inclusion in a larger system which includes several convolution

operations, such as a Granlund method which will be described in the next chapter.

151



Chapter 7

Texture Segmentation by Granlund Method

The Granlund method, outlined in section 2.3.2, is one of the effective methods of
texture segmentation. It relies on detecting dominant frequencies and directions
within spatial windows whose size increases with decreasing levels of resolution.
This is achieved by convolving an image with a kernel having a desired response.
A number of convolution 'blocks' are combined together in a hierarchical structure
to deal with different resolution levels. The convolution block is the most
computationaly demanding part of the algorithm. As the Granlund method is a
successful texture segmentation scheme, it seemed appropriate to attempt its
implementation as an example of the application of convolution. The full parallel
implementation of the method has not been achieved due to insufficient number of
Transputers being available to the department during this project. However, its
main part, the convolution, has been irnplérnented in parallel as described in the
previous chapter. A system-level design for the complete method has been
proposed and performance of the full algorithm has been estimated. Although not
part of the mainstream of the final thesis the design and evaluation of the
convolution kernel was an important undertaking in course of the work. It is

therefore described fully in Appendix A.

7.1 General Picture Processing Operator

A general picture processing operator proposed by Granlund (1978, 1980b) is
capable of detecting anddescribing structure as opposed to uniformity within local
regions of an image. The basic function of the operator is to determine a vector for
each pixel value of the image. The magnitude of this vector represents the feature

value, and its phase represents the direction of that feature. The feature could be the
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step size of the edge, density of line, or the amplitude of the grey scale variation of
the texture. This means that the operator gives a zero output for a uniform region,

and non zero output for a structured region.

Granlund chose a Fourier transform fo analyse and design the operator. This is
be;:ause the Fourier transform describes the relationship between the spatial and
ffequency domain. Also, it can be useful for the design of the operator because it is
more meaningful to specify the frequency response of the operator than the impulse

response.

A local Fourier Transform of an image can be defined as the Fourier Transform of
the image inside a small window. If the image inside the window is close to
1-dimensional then the Fourier transform of it, which represents the energy, will be
concentrated in a narrow sector oriented at the same angle as the gradients inside the
window (Granlund, 1980a). The sector is narrower when the window is more
linear. Figure 7.1 shows the Fourier Transform of the image within a window. It
can be seen from figure 7.1 that it is quite. useful to represent the image in the

frequency domain by polar coordinates.

X
o
Spatial Domain Frequency Domain
Figure 7.1 Local Fourier Transform.
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Let f(x, y) be the input image in the spatial domain, and F¢(u, v) is the Fourier
Transform of this image in the Fourier domain using cartesian coordinates.

U Vv,
F(u,v)= 2 2 £(x, y) ng-yvy),

U=V =V,

where Wy = EXP(-2rj/N), and N is the size of each dimension of the image. Let
Pgn be the magnitude of the transformed image within a window of a certain size

for a direction 6,

Ty

Pen=2

r=r 1

b

Fp{r,en)

where Fy(r, 8y) is the polar coordinates representation of Fc(u, v),

2 2
r=Yu+v

and
0= m_TZ) .
u

The magnitude of the resulting vector for f(x, y) will be obtained by finding the
maximum value of Pg, over a number of directions maxg{Pgp}; its phase will
depend on 6y, for which Pg, makes its maximum value.

The above description has shown that the local Fourier Transform is useful for
calculating the maximum variation of the image grey levels within a certain window
size. The next step is to specify the type of the window and to show that the result

can be found by convolving the image with the window function.

According to the uncertainty principle (see Appendix A section A.4) it is optimal to

use the Gaussian window function (Granlund, 1978) in order to get the minimum

value of the uncertainty formula,

glx,y)= EXP{-a(x2+y2)].
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To realize window functions with a response centred at a certain frequency other

than zero, a complex exponential function is multiplied with the Gaussian one,

w(x, y) = g(x, y) EXP[2mj (uox + voy)], : (7.1)

where (u,, v,) is the centre frequency of the frequency response of g(x, y). The
window function w(x, y) is a complex vector and it is called the analytic function.
The filters should be of the real type. To construct such filters from the analytic

function, the real part and the imaginary part are considered as separate filters:

w(X, y) = we(X, ¥) +j wo(X, y).

Subscripts e and o are for even and odd functions respectively because normally
w(X, y) is hermitian, i. ., it has even real paﬁ and odd imaginary part.

A set of window functions is used; each of the functions is different from the other
by its direction angle. The first step in obtaining the required image transform is to

convolve these window functions with the original image f(x, y) to get
A(r, 0, x,y)=f(x,y) w(r, 0, x,y), (7.2)

for 8, = 04, ..., By, where r is the centre frequency of the window function w, and
k is the number of window functions used. The final output, which is called the
first transform, is achieved by taking the maximum value of A and multiplying it by

the complex exponential of the corresponding direction,
®n
f(x, y) = max A(r,enu_z X,y)|e Mmax,
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(a) (b) (©)

Figure 7.2 Transformation process. (a) original image (b) first transformation.
(c) second transformation.

Figures 7.2 (a) and (b) show an input image and its transformation using the above
procedure. Since it is better to represent the maximum difference by vectors with
opposite directions, Opmax is multiplied by a factor of two to achieve this

requirement,

fil)(x, y) = max |A(r,0,, X, y) &/ mas, (7.3)

Figure 7.2 (c) shows the effect of this change to the previous operation.

7.2 Hierarchical Structure

It has been shown that the analysis of the local region of varying size of the picture
led to the extraction of useful information. In each transformation stage a certain
window size is used to give the information within a limited frequency band. It is
quite useful that the windows become increasingly larger for higher
transformations. This is because of the phenomenon that in the higher level only
high levil glohal information remains, and hence the size of the operational region

or the window must be increased.

The hierarchical structure is shown in figure 7.3 below. The combination of several

levels of transformations is used to cover the whole frequency range starting with

156



the highest central frequency in the lowest level and consequently having the
smallest window size. In higher levels the centre frequency decreases with

decreasing bandwidth.

To the next level

(1)
fI (x, y) logarithm

"//’/”/;,/r threshold
Transformation
process

==

input image f(x, y)

Figure 7.3 Hierarchical structure of Granlund method.

It was found (Granlund, 1978) that the best result is obtained if the function f(1) is

transformed by applying the following procedure

"1 j26 "(1
‘( fr( )(x,y) ¢J fr( )(x, y) <0
f.x,y)= " (1) ’ (7.4)
0 f, x,y)20

where,

£V, y) = log £x, y)| - Cm] ,

where k is a proportionality factor and Cy, is a constant to set a bias level.
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This procedure removes low-level noise by thresholding and gives a compression

of the range of values of f(1)(x, y), especially on the middle amplitude range, by
taking the logarithm.

This rescaled function is now to be combined with the original image by an addition

operator (+) to form a picture function

1 (1 j268
aroe ) = |60 )|+ fx,y) | 7.5)

In the next level a window of larger size and lowef centre frequency is used to
obtain information within a lower frequency range. For actual implementation the
window size stays constant in the higher levels, but since the image size decreases
in the higher levels, the relative size of the window with respect to the image size
increases (Granlund, 1978).

The addition operation with the logarithmic function means multiplication. The
necessity of using the original image in each transformation level is because of loss
of some information in each level. By the combination of the transformed image

with the original image this information is retained.

7.3 Line and Edge Operators

The requirements for the 'general picture processing operator’ have been laid out in
the previous section. This section briefly outlines the design of a convolution kernel
with the direct response. Theoretical background relevant to filter design is given
more fuliy in Appendix A. There are two requirements which should be followed to

to choose the desired function for the line and edge operators:

a) The degree of local concentration in the two domains, the spatial and the

frequency, should be high. This could be achieved by applying the uncertainty

principle and trying to geta function which gives the smallest value of this relation.

The family of Gaussian type functions are good candidates.
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b) The assumption is that the good neighbourhood orientation estimates can be
obtained for a 1-dimensional neighbourhood by simple combination of outputs
from different operators. These estimates should be invariant with respect to the
frequency content (Tasto & Wintz, 1971). This can be achieved by functions with

frequency response of separable type in the polar coordinates,
F(p, ) = F1(p) F2(8), for -1<p<l and 0<B<r
where p is the frequency and 8 is the angle.

From the above discussion it seems that the Gaussian function satisfies the first
requirement but fails to satisfy the second one. That prompted Granlund and
colleagues (Knutsson er al., 1980) to define another function which satisfies the

above requirements. This function is

F(p, 8) = Fe(p, 6) + j Fo(p, 0), (7.6)

where,
Fe(p, 8) = v(p) ve(0),

Fo(p, 6) = v(p) vo(0),

4 50,0
V(p):E WB lng\ s

ve(B) = cos 2A(0 - By), A=1, 2, ...
vo(8) = ve() sign [cos(6 - 8],

pi = centre frequency,

B = 6 dB sensitivity bandwidth n.octaves,
Ok = orientation angle,

A = angle selectivity.
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B is defined by the following equation,

B=210g(—‘—)—u
P1

where p, and pj are the upper and lower cutoff frequencies respectively.

Ll

The function F(p, 8) in equation (7.6) represents a complex ideal frequency

response. There is no way to approximate the complex function because all the
approximation methods are applied to the real functions; however, each part of this
complex function can be assumed to be a separate frequency response. In this case
the real even part represents the frequency response of the line operator and the
imaginary odd part represents the edge operator. Any of the approximation methods
described in Appendix A section A.3 can be applied for each one separately to get

the approximated impulse response for each of them.

For the design of the kernels the window method was used and a Fortran program
was written to implement this design. The program contains three parts. The first
part is to generate the required analytic function in the frequency domain. The
second part is to take the inverse Fourier transform of the function to get the
analytic function in the spatial domain. The origin of this analytic function is placed
at the centre of 2-dimensional array. The final step is to truncate the analytic
function in the spatial domain to the required kernel size around the centre. The
Fortran program was run on the VAX/CLUSTER mainframe computer. Each set of
kernels of certain frequency was saved in a file and was transferred to the IBM PC.
Since the values of the kernels are of real type an Occam procedure had to be

written to read the file of the kernel set because there was no such procedure

supvlied with the development system.

Figures 7.4 (a)-(f) on pages 168-173 show the frequency and impulse response of

the generated line and edge operators.
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7.4 System Implementation

For system implementation, both operators are applied at the same time to the
image; the edge operator detects edges which are transformed into line and the line
operator detects lines. The theory implies that all the directional operators are
applied at each level and the output is that of the maximum value. For example
assume that the line and edge operators are L(i, k) and E(i, k), where i denotes the
operator number and k is the coefficient number of that operator. Usually the
operators within the level are of the same frequency but with different directions, so
the values of i are from 1 to I, where I is the number of the operators used in this
level and is usually equal to eight; consequently the directions are from O up to ((I-
1) * =/4). If K is the number of the coefficients of each operator, then the values of
k range from 1 to K. For applying the operators of each level to the input image,

the convolution operations for each pixel of the image is as follows:

Assume that the real part and the imaginary part of window of the image centred at
position (t, u) are x(k) and y(k) respectively, where k = 1, ..., K. Then there are

four values to be calculated and these are

K
£,G) = Y LG, k) x(K),

k=1

K
£,(0) = Y .LG, k) y(k),

k=1

K
f40) = Y E(, k) x(k),

k=1

K
£40) = D E, k) y(k).
k=1
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Then the amplitude content in direction i is Z(i), and

4
zi) =~ Y£) -

j=1

To get the final output for this pixel value in the output image A(t, u) of the current
level, the maximum value of Z is used since this gives the indication of the
maximum grey level variation in certain direction. The output A(t, u) is

Al W) = Z eV,

max €
where
Zmax = max Z(i) i=1,..1,

and r is the operator number which gives the maximum value, i.e. Z(r) = Zmax.

The system consists of several levels. The processing operations in each level are
similar. The operation is convolution, where the image is convolved with the
operator function (window function); this is then followed by logarithm and
addition operations. The block diagram of system which consists of three levels is

shown in figure 7.5, the block called C is the convolution block.

e

— — Optional Feedback

Figure 7.5 Granlund method: System block diagram.

Two sets of kernels have been designed using the window method; each set differs
in the centre frequency . The size of the region of support in the frequency domain

used for the design is 64x64. The centre frequency for the first set is 0.555 with
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kernel size 5x5 while it is 0.37 with kernel size 7x7 for the second set (the centre
frequency values were chosen on the basis of experimentation). Each set of kernels

are eight line operators and eight edge operators with different orientation angles,

0=k*22.5 for k=0, 1, .., 7

The kemnels of the first set are applied in the first level of transformation while the
kernels of the second set are applied in the.second level of transformation. Two
images of size 64x64 are tested on a single Transputer and the results of these test
are shown in figure 7.6 on page 174. The results show that in the first
transformation regions with different texture are separated and in the second

transformation borders between these regions are clearly marked.

7.5 Performance Estimation

The performance of the complete parallel implementation of the Granlund method
has been estimated on the basis Qf the actual performance of the convolution block.
The convolution block chosen for this purpose is the 2DFFT VR because its
performance for large kernel size is better than that of the 2DFFT RC convolution
block or the direct convolution block. The 2D FFT VR convolution block has been
implemented on a pyramid architecture which was described in section 6.7.2. The
estimation of the Granlund method has been done for a two-level system, capable
of finding borders between regibns of different texture. Image resolution on the
higher level of the system is four times lower than resolution on the lower level.
This indicates that processing time is longer on the first level. It would therefore be
inefficient to use on the second level a convolution pyramid of the same size as that
on the first level. A better load balance can be achieved by using a smaller pyramid

on the higher level. Based on these facts the following performance estimation can

be worked out.
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Assume that the block diagram of figure 6.27 (b) on page 146 is used as a
convolution block where two separate pyramids are used for the first
transformation level of the system shown in figure 7.5. In the second
.transformation level the block shown in figure 6.27 (a),b with a common base two
pyramids, is used as a convolution block. To estimate the performance of this
proposed system the following estimated times are used. The time of processing on
a single Transputer (ts) is taken from figure 6.19 and given here again in table 7.1.
The times of processing on level one (t1) and two (t2) are taken from tables 6.9 (a)
and 6.9 (b) respectively and given again in table 7.2. The estimated time of

processing on a single Transputer and on the network of Transputers are shown in

table 7.3.
image side| 1 Transputer
16 0.185
32 1.013
64 5.274
128 25.835
Table 7.1 Time of processing of convolution on a single Transputer in the
Granlund method.

Time is given in secs.
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image side T11 T014T02 T12
8 0.002 0.008 0.002
16 0.008 0.09 0.008
32 0.03 0.422 0.03
64 0.131 2.22 0.131
128 0.525 11.512 0.525
256 2.1 55.73 2.1

(a) for two CB pyramids configuration.

image side T1l1l TO1l TO02 T12
8 0.002 0.004 0.004 0.002
16 0.008 0.045 0.045 0.008
32 0.03 0.211 0.211 0.03
64 0.131 1.11 1.11 0.131
128 0.525 5.756 5.756 0.525
256 2.1 27.865 27.865 2.1

(b) two pyramids configuration.
Table 7.2 Estimated time of processing for implementation of 2DFFT VR
convolution.

Time is given in secs.
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image side ts tl t2
32 2.282 0.211 0.09
64 12.12 1.11 0.422
128 60.418 5.756 2.22
256 298.234 27.865 11.512
Table 7.3 Time of processing for two-level Granlund system.

Figures 7.7 (a)-(b) show the speed up and the efficiency graphs for the two-level
Granlund system. As seen from these graphs the performance is poorer than that of
the convolution block itself (compared with figure 6.28 on page 149). This is
because the load balance is not very good as shown in table 7.3. This drawback can

be eliminated by using other sizes of pyramids to get better load balance.
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Figure 7.7 Performance graphs for the two-level Granlund system.
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7.6 Summary

In this éhapter the Granlund method of texture segmentation has been described and
analysed. Two main implementation issues have been discussed in particular; the
design of the convolution kernels and the design of a suitable parallel architecture.
Out of the two methods of the kernel design, the window method and the least
square method, the window method was used because of its simplicity. This
method produced satisfactory results. The choice of the centre frequency and other
parameters for kernel design is a very complex issue and strongly depends on the

type of the images under processing; further research is required in this direction.

The most computationally intensive operation in Granlund method is convolution.
It has been proposed to use the Vector-Radix method of convolution and its
implementation on the pyramid architecture because this implementation showed
performance superior to both the Row-Column method and the direct method.
Performance of the Granlund system with two levels has been estimated based on

the results described in chapter six.
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Figure 7.4 (a) Ideal frequency response of the Line operator.
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Figure 7.4 (b) Ideal frequency response of the Edge operator.
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(a) Test image one (b) 1st transform of (a)

(c) 2nd transform of (a) (d) Test image two

B o E W T

(e) 1st transform of (d) (P 2nd transform of (d)

Figure 7.6 Two test images and their transforms using Granlund method.

174



Chapter 8

Region Segmentation by Split and Merge Algorithm

It has been mentioned in chapter two that one of the more efficient method for
region segmentation is the Split and Merge algorithm (S & M), due to its efficiency
for segmenting the image into homogeneous regions. It is also an example of a
quadratic regular decomposition, a strategy widely used in image computing. The
purpose of this chapter is to describe the implementation of the Split and Merge

algorithm for image segmentation using the spatial parallelism technique.

The Split and Merge algorithm uses a quadtree as its basic data structure and this is
reflected by the choice of the hierarchical pyramid as an underlying hardware
architecture. On the base level of the pyramid each processing element (a
Transputer) is provided with a sub-image which is a 1/4N portion of the whole
image, where 4N is the size of the pyramid. Processes are invoked in parallel to
perform the segmentation of the sub—imageé. The results of local segmentation are
exchanged between four adjacent processors which have a common parent node,
and thus the final segmentation is established for a given level. These results can be
then passed to a higher level of the pyramid and the same segmentation routine
used, until the top of the pyramid is reached, i.e. the final segmentation of the
whole image achieved. The performance measures are given for the implementation

of the algorithm on a pyramid of Transputers.

8.1 Split and Merge Algorithm

The Split and Merge algorithm described by Horowitz & Pavlidis (1976) segments
an image into regions which are uniform in some predefined sense. Formally,

region uniformity may be defined by a predicate. A segmentation process can be

described as follows.
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Let R be the domain of an image and let f(x, y) be the brighfness function defined

on R. A logical predicate P is defined on subsets S of R as follows,

( TRUE if there exists a constant (e)
such that If(x, y;) - f(xo, yo)l <e

P(S) = < for any two points in S >
FALSE otherwise

where e is a prescribed error tolerance. A segmentation of R can be defined as the

partition of R into subsets S;, i = 1 ... m, for some m such that:

a)R= USj

i=1
b) SiM Sj =g for all i#
¢) P(S;) = True for all 1
d) P(Si U Sj) = False for all i#] and subsets Si, Sj are adjacent.

There are three main implementation schemes, which differ in the form of the initial
partition. In a pure merging scheme, the algorithm starts with a partition satisfying
(c) and proceeds to fulfil (d). A pure splitting scheme starts with a partition
satisfying (d) and proceeds to fulfil (c). The Split and Merge scheme starts with a
partition which does not have to satisfy either of the conditions (g & d), and

proceeds to produce a partition which satisfies both.

It is important for implementing the split and merge algorithm to use a suitable data

structure.
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8.2 Data Structures

Horowitz & Pavlidis (1976) have proposed a hierarchical data structure called the
quadratic picture tree, or quadtree. The quadiree is used for various applications
such as image processing, computer graphics, pattern recognition, robotics, and
cartography. The most important feature is its hierarchical nature which lends itself

to a compact representation. For a good survey of its use see Samet (1984).

The quadtree is an approach to image representation based on the successive
subdivision of the image into four equal square subsections. Each of these is
“divided into four squares recursively until the smallest subsections consist of a
single pixel. Each subsection is called a node, the single pixel is called a leaf, and
the whole image is associated with the root node. A node is uniquely specified by a
given corner, the leng'th of a block side, and the relative position or level in the tree.
The quadtree consists of several levels, the leaves are in the lowest level and the

root node represent the highest level. Figure 8.1 shows example of a three level

quadtree for an image of size 4 x 4.

1

Level 2

Level 1

Level O

67 8 9 10 111213 14 15 16 17 18 19 20 21

Figure 8.1 Three-level quadiree.
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The quadtree can be defined as an undirected graph without circuits since the flow

of data can be upward or downward.

For actual representation it is not necessary to use all the nodes of a specific

quadtree size. This can be shown by considering figure 8.2.

There is a drawback in quadtree representation shown clearly in figure 8.2: the
regions which are adjacent in the actual image aré not necessarily adjacent in the
quadtree representation. For example, nodes 9 and 10 are adjacent in figure '8.2 (a)
but they are not in figure 8.2 (b). To overcome this drawback another type of data

structure is used, representing the region adjacency information.

Level 2

O O O Level 1

Level O
9 10 111213 14 15 16 17

(@)
~1
O

(b)

Figure 8.2 The representation of image as a quadtree.
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Region Adjacency Graph

Region adjacency graph (RAG) is a graph for describing a segmented image. Each
node in the graph corresponds to a region. Branches exist between nodes

corresponding to adjacent regions. Figure 8.3 shows an example of RAG of an

image.

RAG contains useful information for image segmentation complementary to that
held in the quadtree. This is due to the fact that the relation between regions are all
included within the RAG but not in the quadtree. However, quadtree is more
efficient and fast for initial segmentation. So for efficient and fast implementation of
the Split and Merge algorithm the image is first represented by the quadtree for
initial segmentation, then the RAG is used to represent this initial segmentation. -

Region grouping is then applied to complete the segmentation process.

O node
—— branch

region

Figure 8.3 Region Adjacency Graph representation.
Steps for S & M algorithm
Step 1: Initialisation

The first step for the algorithm is to build the quadtree for the image on an initial

level. This means choosing a certain level in the quadtree. The number of regions
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for the initial level is equal to the number of nodes in that level since each node

represents a region. This is called the initial segmentation or the initial node cut-set.

Each node contains several items of information such as level number, the position A
of the top left pixel of the region; the length of a side of the region; and the
maximum and minimum values of the brightness of the pixels in the region. This

information can be represented by a record.

For an image of size (N x N), the block side at level [ is s=2¢. For the lowest level,
which is level zero, the block side is 1. At the highest level, which is equal to

L=log,(N), one block represents the whole image. Usually the size of the quadtree

is equal to the size of the image.

There are several ways of numbering the nodes of the quadtree which represent the

regions for image segmentation purposes.

The numbering system used here is as shown in figure 8.4.

13 | 14 | 15 | 16

Figure 8.4 Numbering system for three-level quadtree.

For initialisation a certain initial level is chosen and it is called Lq. For this level the

size of the block sides is

So=2[‘o
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- the number of nodes n in this level is such that

n = 4(Lo)

This is called the initial cut-set which segments the image into square blocks
(regions) of equal sizes, the number of which is equal to the number of nodes. The

information calculated and stored for each block is as follows:
- Position of the top-left pixel of the block.
- The block size.

- The minimum and maximum of the brightness function f(x, y) for each

block.
Step 2: Merge

In this step a comparison is made between each group of four nodes which have a
common parent. These nodes can be found by using the following procedure

explained below.

Consider the four blocks in figure 8.5.

level 1 level 1+1
merge
k 1 k2 B
k1
split
k3 k4 <

Figure 8.5 The merge and split process.
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B —

For a level [ such that
O<l<lo
the relationship; between the four nodes k1, k2, k3, and k4 are:
k2 =kl + 2 (fo-l),
k3 =kl + 2(20o-f),
k4 = k3 + 2(lo-).

The four nodes are merged if their union satisfies the predicate P defined in section
8.1. The merging process is actually the removal of nodes k2, k3, and k4 and then
updating k1 with new size and and other relative values. This procedure is repeated

at each level from level [ up to level L-1.
Step 3: Split

This procedure starts after completion of the merge step. Each node which is not
merged in the merge step is tested for satisfaction of the predicate P. If it is not
satisfied then the block is split into four equal sub-blocks; the process is the reverse
of that of the merge one and it is shown in ﬁgure 8.5. This procedure is repeated
for every set of four nodes until each node satisfies the predicate. Again, this

procedure is applied for all the unmerged nodes of the merge step.
Step 4: RAG-merge

In this step a region adjacency graph is built to describe the adjacencies of the

blocks. This is then used to merge the adjacent blocks which could not be merged

by the quzdtree.
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8.3 Hierarchical Pyramids

The pyramid architecture has been described in section 3.3.2 and shown again in
figure 8.6. It can be seen that the quadtree structure which underlies the split phase
of the Split and Merge algorithm can be mapped quité naturally onto a hierarchical
pyramid architecture. Therefore the pyramid architecture has been chosen for the
parallel implementation of the Split and Merge algorithm (Mansoor &

Sokolowska, 1988).

level 2

level 1

level 0

Figure 8.6 Hierarchical pyramid with 3 levels.

The starting step is sending the image to the level 0 of the pyramid in which each
Transputer takes one subimage. This step is equivalent to chosing the initial level in
the Split and Merge algorithm. Advantage is take.n at this stage of the fact that the
splitting process in Split and Merge algorithm can be initiated on any level of the
image quad-tree and carried out, in parallel, independently for each sub-image. At
the completion of the splitting éach processing element holds a symbolic description

of the local sub-image in the form of a list of blocks, their location, size and grey
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level properties appropriate for a chosen uniformity criterion. A pictorial map of -

« blocks can either be stored explicitly or be restored from the above description. The
merging process which follows does not have to refer any longer to image pixel

data - it can rely entirely on the derived symbolic description.

In contrast to the splitting which takes place on the single (lowest) level of the
pyramid, the merging uses all the levels of the pyramid, on each level performing
the same actions. At first all the uniform regions are merged within one processing
element. Then each group of the four children of the same parent exchange data to
produce a consistent description on their level and pass the description to their
parent, who performs merging, communicates with its three siblings, passes an
agreed description to its parent and so on, until the root element of the pyramid is

reached and the final segmentation of the entire image is established.

8.4 Processing and Intercommunications

The initial image partition is established in the host Transputer and sub-images sent
to appropriate processors at the base level of the pyramid. For the image of
dimension N x N and pyramid of size s each processor takes a sub-image of N2/s

pixels. The technique of data distribution was described in section 5.5.

The processors execute the initial part of the Split and Merge algorithm up to the
RAG-merge stage; the results are stored in each local memory. Following this each
of the four connected processors implements a communication protocol to exchange
the local segmentation results. The modified results are passed then to the next level
up where a new sub-image of dimension 4 * ( N2/s) is consolidated and subjected
to merging. The results are exchanged among each four processors connected at

this level using the same protocol. This processing continues until the final result

reaches the root processor.
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8.4.1 Intercommunication Protocol

The intercommunication protocol is implemented for four Transputers (T1..T4)

connected as in Figure 8.7(a).

T1 link1 T2
link3 | | link2
T3 link4 T4
(@

(b)

Figure 8.7 S & M: (a) Links between the Transputers for intercommunig:ation
protocol. (b)Occam model for each of the Transputers in the

network.

The top level program structure of the.protocol is as follows;
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where P1, P2, P3, and P4 are processes implementing the algorithm running on
TI, T2, T3, and T4 respectively. Each process (P1..P4) has the Occam model

which was shown in figure 5.6 and redrawn here in figure 8.7(b).

The routing (Rn, Rs, Rw, Re) is the same in all P1..P4. The process P differs in
each of P1.. P4.

Each process in figure 8.7(b) contains SEQ construct only. The following

describes the parts common to the P process in all four Transputers (T1..T4).
Each Transputer contains the results of the segmentation of a sub-image. These are:

1) A two-dimensional array of the size of the original sub-image array containing

for each pixel its region number (aa[i](j]).
2) The number of regions in the sub-image (mm).

3) Two vectors for the maximum and minimum value of the brightness intensity for

each region (Is[i],ms[i]).
4) A list of blocks and their properties:
(a) A vector which contains the number of blocks belonging to each region (re[i]).

(b) Linked list for the block numbers for each region, starting with the block

numbers of region number one.

(©) Index» ‘pointer’ for the starting position of the first block number belonging to
region (i) (kn[i]) in the linked list.

(d) Two vectors containing the X-y position of the top-left pixel for each block
{a[il,b[i]).

One in each of the four Transputers is used to control and synchronize the

intercommunication between the four Transputers. This is because the

intercommunication protocol is of synchronized type, since it contains several
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sequential phases. T1 may be considered as the controller in figure 8.7(a). Before
applying the intercommunication protocol, each Transputer T2, T3, and T4 sends a

message to T1, showing that they are ready to apply the intercommunication

‘protocol. These messages are sent after completion of each phase: after the

completion of segmentation of their subimages.

The program construct for each Transputers (T1..T4) for implementing the
intercommunication protocol is
SEQ
Phase one (modify region number)

Phase two (merge the uniform regions on the borders
between T1&T2 and T3&T4)

Phase three (merge the uniform regions on the borders between
T1&T3 and T2&T4 and merge the regions which are
uniform on more than two Transputers)

Phase four (merge the uniform regions which are uniform one
more than two Transputers)

The four phases described below. Note that in the following description sending
regions means sending the symbolic information describing those regions; these are
region numbers, and maximum and minimum values of these regions. The
particular cases of the regions crossiné processor boundaries are illustrated in

figure 8.8 on page 191.

Phase omne

In this phase the region numbers are modified to be unique among the four
subimages. This is done by communicating the number of regions of the sub-
images among the four Transputers shown in figure 8.7. Assuming the sequence is
T1 to T4, the region numbers of T1 remain unchanged while for T2 each region
number is increased by the number of regions of T1 and so on. This is achieved as
follows: T2 receives the number of regions in the subimage of T1 and modifies its

region numbers by adding that number to each region number, T3 modifies its
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region numbers by adding the number of regions in T1 and T2, and T4 modifies its.

region numbers by adding the number of regions in T1, T2, and T3.

Phase two

This phase examines regions which are neighbours across the Transputer

boundaries and merges them if they are uniform. This is achieved by the following

scheme:

T2 sends the regions which lie on the border with T1 to T1. T1 compares its
regions which are adjacent to those received from T2 and merges similar regions
and then sends the new symbolic information of the merged regions to T2. T2
receives those regions and updates them. In addition to that the ‘pointer’ values are
used to distinguish the merged regions from those which have not been changed,

this is achieved by putting negative values to them.

The same happens between T3 and T4, in this case T4 sends the border regions to

T3. Here the negative values are given to both regions merged in T3 and T4.

However there are still several special cases which should be considered such as
those illustrated in figure 8.8 (b) & (c), or more complicated cases, and these are

included in the algorithm and described below.

Phase three

The same procedure is applied as in phase two but the intercommunication

processes are between T3 & T1 and T4 & T2 , with the following exceptions:

T3

The values of the ‘pointer’ for the merged regions are either positive or negative

due to the processing operation of phase two. Either of the following actions takes

place:
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(a) The negative values of ‘pointer’ mean that the regions concerned have been sent
to T4 in phase two (figure 8.8 case f or i or j or 1). Therefore in addition to

merging these regions, they are marked for later use in phase four; these regions are

called the ‘stored’ regions in T3.

(b) For regions with positive values of the ‘pointer’, the action is to merge them

without changing the sign of their vectors (figure 8.8 case a or g or k). _
I4

The ‘pointer’ values of the merged regions are either positive or negative due to the

processing operations in phase two. Either of the following actions takes place:

(a) The regions with negative ‘pointer’ values have been merged with regions in T3
(figure 8.8 case e or h or i or 1). The action is to merge them, store them to be used
later in phase 4, and set their ‘pointer’ values to positive; these are called the

‘stored’ regions in T4.

(b) For the regions with positive ‘pointer’ values, the action is to merge them

without changing the sign of the ‘pointer’ (figure 8.8 case a or ¢ or d).
Phase 4

This phase is mainly to check the stored regions in phase three. T1 is not active in

this phase and the other Transputers act as follows:
T3
(a) Send the stored regions in phase (3) to T4 (figure 8.8 case foriorjorl).

(b) Receive regions from T4; modify the regions with negative ‘pointer’ values

(figure 8.8 case € or f).
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(a) Receive the stored regions in phase (3) from T3. The regions with positive
value of the ‘pointer’ are those which have been merged with regions in T2 during
phase three since they had negative ‘pointer’ value after phase two. Two actions are
applied (figure 8.8 case i or 1). First, region number is modified and its ‘pointer’

value set to negative. Secondly they are sent to T2.

For regions with negative ‘pointer’ value (figure 8.8 case f or j), region number is

modified.

(b) Send a stop message to T2.
(c) Check the sign of the ‘pointer’ values for regions stored in phase three, send

those with positive ‘pointer’ values (figure 8.8 case e or h) to T3.

T2

The processor T2 is waiting for a region number to come from T4. This applies to
regions which belong to T1, T2, T3 and T4 (figure 8.8 case i or 1). Only region
numbers with a positive ‘pointer’ value are modified (figure 8.8 i). There is no
need to include figure 8.8 case 1 because regions like that have the correct values

from the phase two.
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Figure 8.8 S & M: The possible region forms taken in consideration in the
protocol.

8.5 System Configuration

The block diagram of the system is shown in figure 8.9. The host Transputer is
responsible for accessing the input image and partitioning it into initial blocks. It
then sends these partitions to processors at the base level. The segmentation is
performed by Transputers arranged as a hierarchical pyramid. The results arrive to

the root Transputer which arranges for them to be displayed via GOO7 graphics

board.
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IBM PC
¢ pyramid

C004's A-I 1 display)
.

Figure 8.9 S & M: System block diagram implementing the Split and Merge
algorithm.

In the figure 8.9 the host and the processing elements in the pyramid are
Transputers. In the pyramid, with the exception of the root level, each group of
four Transputers is interconnected and each of them is connected to the parent as

shown in figure 8.10.

TS

T3 T4 ]
l

Figure 8.10 S & M: Parent-children communication in the pyramid.

8.5.1 Pyramid of size four System

A program written in Occam has been designed for the implémentation of the Split
and Merge algorithm (S & M). A pyramid of size four has been built using fixed

configuration which is shown in figure 8.11.
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Host T0 T1 T4

Figure 8.11 S & M: Pyramid of size four system.

The implementation of the S & M algorithm for pyramid of size four is in fact the
implementation on mesh of size four. This is because the root Transputer in the
pyramid is just coliecting the result. For this reason the host in figure 8.11 is used

to collect the result and T4 is excluded in the implementation.

A timer of Transputer TO is used to measure the time spent for the initial S & M
algorithm and that spent for intercommunication protocol Tc. The total time is

measured using the timer of the host Transputer.

For the purpose of comparing the performance of the system with different types of
image, four images with different number of regions are used. The first image is a
plain image which contains one region, the others are checker boards with 8x8,
16x16, and 32x32 blocks. These are chosen to observe the effect of the
communication overhead (Coh), which is the ratio between the time of spent for the

intercommunication protocol to the time spent for the initial Split and Merge

algorithm.
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8.5.2 Performance for Pyramid of size four

In order to see the effect of changing the communication overhead (Coh) on the
performance of the system two initial level values are used for the Split and Merge

algorithm. This is important especially to observe its effect on the same image.

The measurement of the time is split into two types. The first is the time of the
actual processing (actual time) of the Split and Merge algorithm, which is sum of
the time spent for the initial S & M processing plus that spent for the
intercommunication protocol processing. The second is the total time, which
includes in addition to the above, the time spent for data distribution and collection.
The discussion of each of them separately is important since it will show the effect

of the data distribution on the overall performance.

The actual time is discussed first. Figure 8.12 on the next page shows the time

diagram with respect to the image size and for the four image types.

The image which contains more blocks takes longer time to be processed since it
takes longer time during the initial partitioning and the intercommunication

processes because there are more blocks of information to be interchanged.
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Figure 8.12  Actual time of S & M algorithm on four Transputers.
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Figure 8.13 shows the Coh values with respect to the image size.
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Figure 8.13 S & M: Coh for the actual time on four Transputers.

The Coh for the plain image is higher than for the others during the
intercommunication protocol, in spite of the fact that there is only one region to be
sent between the Transputers. This is because a relatively long time is spent on
updating the whole subimage as it is being merged with other subimages. For other
images Coh is higher for those with less blocks since the time of processing to get
the initial partitioning is higher for those with higher number of blocks. The Coh
for these is higher when initial level is two than when it is one. The reason for that

is that for the initial partitioning processing the time is lower for higher initial level.
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For calculation of speed-up and efficiency, the time of processing for one

Transputer is measured and plotted in figure 8.14.
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Figure 8.14 S & M: Actual time of processing for one Transputer.
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‘The speed-up and efficiency graphs for four Transputers are shown in figure 8.15.
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Figure 8.15 S & M: Speed up and efficiency for four Transputers for actual time.

The speed-up is inversely related to the value of Coh. This is due to the fact that the
time spent for intercommunication between Transputers is higher than that spent
l inside the Transputer, as in the case of one Transputer. The efficiency is related to

the speed up, so that the better efficiency is achieved for better speed up.

The total time is illustrated in figure 8.16 which shows the time graph with respect

to image size for the four images.
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Figure 8.16 S & M: Total time for one and four Transputers.
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The speed up and the efficiency graphs for the total time are plotted in figure 8.17.
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Figure 8.17 S & M: Speed up and efficiency of the system.

; It is clear from graphs in figure 8.17 that the speed-up decreases in the case of total
time measurements since the ratio of the time spent for data-distribution and
collection is high with respect to the actual time of processing of the
Split and Merge algorithm. It can be concluded that better performance can be

achieved if the technology achieves faster intercommunication speed.

It can be seen from figures 8.15 and 8.17, that the relationship between the speed
‘ up and the image size is fairly constant for each type of image. This means that for
larger image sizes, the speed-up is likely to be similar to that for an image of size

128x128.

8.5.3 Pyramid of size sixteen

Ideally, processor links between the levels for pyramid of three levels should be

arranged as in figure 8.18 below, with similar arrangement for pyramids of more

than three levels.
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level 2

level 1

level 0

Figure 8.18 S & M: Links between the levels of the pyramid.

It can be seen, however, that each processing element on the intermediate level
(level 1 in the figure) needs seven links while the Transputer provides only four.
This problem can be solved by using a reconfiguration switch like C004 (INMOS,

1989) which is capable of changing switch settings dynamically between 32 links.

Two different configurations are needed for dynamic implementation of pyramid
architecture using Transputers with four links. In the initial configuration, further
referred to as the steady state, each level is connected to the other levels for data
transmission between levels. For full support of the pyramid architecture in this
configuration there should be five links for each Transputer, one to be connected to
the parent and four to the sons. This problem can be solved for four-link
Transputer by using a longer path for transmission. The second configuration is
that which supports the implementation of the intercommunication protocol within
the levels. This is can be achieved by séndjng a control message from each level to
the controller which is responsible for reconfiguration saying that it is ready to
transmit and receive data. The controller reconfigures the links to the second

configuration after receiving that control message from all levels.
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The processing for a pyramid of size sixteen can be seen as a two-stage pipeline.
The first stage is at level zero (base level) of the pyramid where each four
Transputers apply the initial S & M algorithm to their subimages, apply the

intercommunication protocol, and pass the results to the upper level.

The second stage is at level one where there are four Transputers receiving data
from level zero, applying the intercommunication protocol only, and passing the

results to the root which is responsible of collecting the final result.

In practice, to achieve the pyramid of size 16, the network needs to be configured
in two different ways for better throughput. These configurations are shown in

figure 8.19 (a)-(b) on pages 205-206.

Tc is the controller which is responsible of reconfiguring the links via the three link
switches, C004-0, C004-1, and C004-2. Transputers TO to T15 belong to level 0.
Transputers T16 to T19 belong to level one. T20 is the root Transputer of the

pyramid.

The procedure of processing is as follows, assuming that there is a sequence of

input images:

1) During configuration one (C1), the Transputers in level zero receive the data
from the host Transputer, apply the processing of this level to image number (k+1),
and send a control message to the control Transputer Tc, which is responsible of

reconfiguring the architecture via the three C004s.

The Transputers of level one apply the intercommunication protocol to image k,

send the result to level two, and send control message to Tc.

2) During configuration two (C2), Transputers of level zero send data to those of

level one.
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Figure 8.20 S & M: Timing diagram for pyramid of size sixteen.
tmk is the time of level m processing of image k.
tk is the time at which image k is processed.

Figure 8.20 shows the timing diagram for this procedure.

The above procedure may not represent the optimal solution from a load balancing
point of view. This can be found out after its implementation in real time. The
reason for not implementing it is because of an insufficient number of Transputers
available in the department. However, the estimation of the performance of the
S & M algorithm on pyramid of size sixteen has been achieved. This is based on
~ the real time implementation of an array of sixteen Transputers of zero level
processing and an array of four Transputers for implementing level one processing.
Figure 8.21 overleaf shows the ratio between the processing time T1 of level 1 to
the processing of level zero TO with respect to image size. This is plotted to see the

load balance in the implementation.
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Figure 8.21 S & M: Load balance in pyramid of size sixteen.

The time measurement for this estimation is based on actual time of processing

excluding the time

for data distribution and collection. The performance of the

system is calculated using the actual time of single Transputer shown in figure

8.14. The speed up and the efficiency graphs are plotted in figure 8.22.
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Figure 822 S & M: Speed up and efficiency for pyramid of size sixteen.

The graphs confirm that in the case of high intercommunication overhead, as in the
case of plain image which represents the worst case, the performance is poor. In

other, more realistic cases with low Coh, the performance is good. The

- performance for the image with more blocks decrcases for larger image sizes

because there is more data to be intercommunicated within the same level and

between the levels.
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The results obtained from the analysis of implementation of the algorithm on
pyramids of size four and sixteen show that the performance of the proposed

parallel S & M algorithm depends great deal on the type of images under

consideration.

8.6 Summary

Thé Split and Merge algorithm for image segmentation, described in this chapter,
uses the quad-tree as its main data structure. This hierarchical structure was found
to correspond very well to a pyramid architecture. A concurrent version of the
algorithm has been designed and implemented on a pyramid of Transputers. The
performance of this new implementation has been found to depend on the type of
the image being processed. A typical speed-up achieved is about 3.5 but falls down
to 1 for the worst case. As the speed-up is inversely related to the communication
overhead, better performance may be achieved by using very high speed
communication links. This suggestion may be implemented by, for example,
fabricating a single chip hosting a number of processors, but this requires further

advances in the technology.
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Chapter 9
Summary and Discussion

This thesis was concerned with the investigation of practical issues related to the
implementation of several classes of image segmentation algorithms on parallel
architectures. The Transputer was used as the basic building block of hardware -
architecture and Occam was used as the programming language. Comments and
conclusions related to the implementation of particular algorithms were provided in
the concluding sections of relevant chapters. This chapter summarises the main
implementation work completed in the course of this project; it comments on
general issues related to the use of the Transputer system as a development tool for
image processing applications; and on the issues related to the engineering of

concurrent image processing applications.

9.1 Summary

Image segmentation

Image segmentation has been identified as one of the bottle-necks of computer
vision processing. This is because the large volume of image data is involved in
segmentation processing and a number of different features may be required to be
extracted from the image data. The segmentation methods chosen for
implementation' were the convolution, for edge-based segmentation; the
Split and Merge algorithm for segmenting of non-textured regions; and the
Granlund method for segmentation of textured images. The algorithms chosen were
examples of commonly used image segmentation methods, representative of the

three main approaches to segmentation, and represented different computational

schemes.
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Convolution

Three different convolution methods were implemented. This effort was justified
by the fact that each of the methods showed different advantages in different
algorithmic contexts. The direct method is based on convolution in the spatial
domain and was implemented on the array of Transputers. The other two methods
are based on convolution in frequency domain. They both require that the Fourier
transform of an image is obtained first, followed by multiplication of frequency
representations of the image and the kernel, followed by the inverse Fourier
transform of the convolved image. Thus the Fourier transform plays a crucial role

in implementation of convolution.

Two-dimensional Fast Fourier Transform

Two methods were implemented for the parallel implementation of the two-
dimensional Fast Fourier Transform (2D FFT); the Row-Column (RC) and
the Vector-Radix (VR) methods. The array architecture was built for the first
one and pyramid architecture was built for the second one. The parallel
implementation of the 2D FFT RC method includes the serial algorithm for
the 1D FFT and the parallel implementation of a matrix transposition
algorithm. A novel design was proposed for the matrix transposition. The
algorithm was implemented on arrays of Transputers of size four and sixteen;
however it is a general algorithm which can run on Transputer arrays of size

2L, for any value of L.

The pyramid architecture was chosen for the 2D FFT VR as it suited well the
structure of the algorithm. The 2D FFT VR implementation was an example
of the use of algorithmic parallelism as it relied on the distribution of the
consecutive stages of the algorithm among the levels of the pyramid. There
were two schemes adopted for its implementation: the top-down scheme
based on the decimation-in-time strategy; and the bottom-up scheme based on

the decimation-in-frequency strategy. Examples of pyramids of size four and
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sixteen were implemented. For larger pyramid sizes careful attention needed
to be given to the distribution of the algorithm stages in order to achieve good

load balance.

The pyramid seems to be a versatile general architecture suitable for
implementation of one and two dimensional Fast Fourier transforms based on
different algorithmic approaches. For example, the implementation described
above can be easily modified to perform the Radix-4 1D FFT because the
structure of that algorithm is based, too, on the 'butterfly’ operation for four

inputs and four outputs.

The overall speed of the execution was higher for 2D FFT VR method than
for the 2D FFT RC method; the reason for this lies in the structure of the
algorithms themselves, as explained in Chapter 6. The speed-up and the
efficiency measures, which relate the performance of an algorithm on a
network to its performance on a single Transputer, were similar for both
methods, and both showed values close to their respective theoretical

maxima.

The convolution through the 2D FFT RC method uses data parallelism so that the
same seduencc of operations (forward FFT - multiplication - inverse FFT ) is
applied to all the sub-images in parallel. The convolution through the 2D FFT VR
method uses algorithmic parallelism. It was found that for this method the best data
flow can be achieved by using for the first FFT the top-down scheme, based on the'
decimation in time strategy, and for the second FFT the bottom-up scheme, based
on the decimation in frequency strategy (see figure 6.26). The performance
measures for thé FFT based metiods related in straightforward way to the
performance measures of their respective FFT transforms. The direct method
showed a good performance for convolution with small kernel sizes. For larger

kernel sizes the FFT technique was better since it required smaller number of
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operations. Overall, the 2D FFT VR method was deemed to be the best among

those implemented, for the reasons discussed in section 6.8.

Split and Merge

A concurrent version of the Split and Merge (S & M) algorithm was implemented
on a pyramid architecture. This architecture was selected because it provides the
best match for the quadtree, which is the natural data structure for this algorithm.
This new algorithm uses both the spatial and the algorithmic parallelism. The first
two stages of the S&M algorithm (the initial merge and the split stages) are
executed at the base of the pyramid where the unaltered algorithm is applied in
parallel to image data in sub-windows. The final stage of the S&M (the
RAG-merge stage) is executed at the remaining levels of the pyramid where the
homogeneous regions are merged between any four Transputers using a
sophisticated intercommunication protocol. This protocol represénts a novel
solution for merging. A pyramid with more than two levels (L) can be used as a
L-stage processing pipeline where a sequence of images is passed from the base
level upwards. An important feature of this implementation is its generality since it

may be used unchanged for different pyramid sizes and different image sizes.

The analysis of parallel implementations on pyramids of size four and sixteen
showed that the performance of the developed algorithm depends very much on
homogeneity of images under consideration. Better performance could be achieved
by using very high speed communication links. Such links already exist in the new
version of the Transputer. Even higher performance should be achieved when all
the processors for a certain pyramid size can be fabricated on a single chip; this

solution, however, would require further technological advance.
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9.2 Transputer system for image processing applications

Transputer hardware

Transputer has a number of features, important for building parallel systems, which
other off-the-shelf microprocessors were lacking at the time. Probably the most
important feature is the presence of four very high speed serial links through which
the Transputer can be connected to other Transputers. The availability of these links
overcomes the main drawback of using a common bus, namely the traffic
congestion which decreases the intercommunication speed. The availability of the
DMA circuit in the Transputer further speeds up the intercommunication process.
Transputers in a network can be connected either directly or by using the IMS C004
link switch, so that the configuration can be either static or dynamic as in the case
of the reconfigurable system designed for implementing a pyramid of size sixteen,

described in Chapter eight, section 8.5.3.

One of the limiting factors in the use of Transputers for image processing
applications is the small size of the on-chip memory. At present only 4 Kbytes are
available on the chip whereas the minimum memory size required for image
processing system is in the range of hundreds of Kbytes. The technology is not yet
capable of fabricating such a large memory on a chip and the most feasible solution
at present is to speed up access to an external memory and to improve the
intercommunication speed. The optical communication using the fibre optics could

provide such a solution.

Occam

An important factor from the point of view of the system developer was the
availability of a high-level programming language, Occam, based on the
communication of sequential processes (CSP) theory and designed specifically for

the Transputer and Transputer network programming. The principal new feature,
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which directly supports parallelism, is the PAR construct. Its use must be carefully
considered, to avoid program deadlocks. Programming in Occam does not
normally pose many difficulties for someone familiar with an imperative language

like Fortran or C, because typical high-level language features are supported.

This language, well suited for implementing concepts of parallelism and
communications, was found to have some limitations when applied to specific
image processing problems. One of such major limitations is the lack of support for
variable length multidimensional arrays within the channel message protocol.
Ideally, the size of an array passed within a message should be passed within that
message. This is possible for (one-dimensional) vectors, where the size of a vector
may be sent within the message of the protocol together with the vector itself, and
can be easily adapted for the use for fixed-size image arrays. For the applications
requiring variable image size, as in this project, it was a major limitation which has
been overcome by using a vector for image distribution. This, however, has
necessitated the use of an additional procedure for conversion between the vector
form and the two-dimensional array form. As a result, it increased total processing

time and required extra memory for the vector.

Another difficulty arises from the fact that Occam does not allow the user to share
variables between the processes running in parallel. This leads to an increase in
memory requirements for a program. This limitation affects especially image
processing applications because variables representing large two-dimensional image
arrays have to be duplicated within each process. One of the consequences of this

limitation was that the image sizes used in this project had to be restricted to

256x256.

A limitation of a general nature is that Occam does not support recursion, which
would had been an appropriate implementation technique for a number of

algorithms such as Split and Merge segmentation or 2D FFT VR method. This
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limitation was overcome in this work by the use of the WHILE construct in place of

recursion.

Development tools

The Transputer Development System (TDS) supports many tools which were
found to be very useful in the process of development. The mathematical and the
file server libraries in the latest version of the TDS (IMS D700D) were very useful.
Since this project started with the first version of the TDS, for which neither
mathematical functions nor file server libraries were available, they have been
written as a part of the project and kept in user libraries. This ability to create user
libraries helped also to maintain uniformity among the programs through inclusion
in these libraries the common constants, procedures, and separately compiled utility
programs. The debugging tool provided within the TDS allowed for speedy tracing
and correction of errors in programs under development. A serious limitation in the
usefulness of this tool is that it is not possible to inspect with it the state of logical
channels. That made the task of inspection of the channels very difficult and had to
be overcome by using control statements within the program. Another frustrating
thing in the development system was the very long time it took to compile a
program; for example compilation and code extraction for a program with five

separate compilations modules could take up to half an hour.

9.3 Other conclusions

This work has prompted several conclusions related to engineering of concurrent

image processing applications in general.

The use of data paralleiism should always be considered for parallel
implémentations of image processing applications, especially those belonging to the
low-level vision class. This is because of the large amount of data involved in the

procéssing and (normally) highly homogeneous processing. Algorithmic
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parallelism should be considered for the implementation of intermediate-level
algorithms as processing becomes more data-dependent and algorithms become
more complicated. However, on the intermediate level processing the amount of
pixel data can still be very large and there is normally scope for combining
algorithmic parallelism with data parallelism. This applies especially to algorithms
which contain several stages of processing such as, for example, the Fast Fourier
Transform and the Split and Merge algorithm. Such combined schemes were

presented for the above algorithms in Chapter six and Chapter eight, respectively.

As there exist an almost infinite number of different computational schemes for
image processing, it is impossible to have a single parallel architecture which is
equally suitable for all the algorithms. One possible solution to this problem is to
use a reconfigurable system. This solution is particularly suitable during the
development stage because alternative architectures can be explored. The
Transputer system, including the software switcher, proved to be a very good tool
for this type of work. Its success in this field can be attributed to the following

features.

The Transputer's inbuilt links, through which it can be connected to other
Transputers, make it possible to build large networks with different
topologies. It should be noted that it is possible to implement topologies

which require more than four links provided directly by the Transputer.

The connections between Transputers can be fixed or they can be configured
dynamically by software using an automatic switch such as the COO4. This
latter feature makes it possible to alter the configuration at run-time and thus
to provide a most suitable architecture for an algorithm or even for its part.
Example of such use of the switch is the implementation of the

Split and Merge algorithm, described in Chapter 8.
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The availability of the DMA circuit in the Transputer makes it very suitable
for use as a data routing module in a network. This suitability is further
enhanced if Occam is used as a programming language. An important feature
of Occam in this context is the ability to run a number of concurrent processes
on a single Transputer. Thus each router procedure can be designed as a
separate process; all the router processes can then run in parallel on the same
Transputer. Furthermore, it is possible to design data router procedures
specific to given architectures, independent of particular applications. The

implementation of these concepts was described in detail in Chapter 5.

Experience gained during this project led to the conclusion that top-down modular
approach is very important for the design of large-scale non-trivial parallel systems.
Through this approach an insight can be gained as to the presence of parallel strains
of different granularity in the system being implemented. This may then lead to
better exploitation of parallelism and thus may result in more efficient parallel
systems. This concept of modularity can be practically implemented through the use
of several architectural 'blocks', where each block is a small network of
processors. The arrangement of the blocks represents the design on the coarse level
whereas the arrangement of the processors within the block represents the design
on the fine level. This kind of arrangement have a number of advantages over the
'single architecture’ approach. First of all it leads to a better design because the
parallel implementation of a sub-task on a single block, and the arrangement of the
blocks, may require very different parallel architectures. Secondly, it opens
possibility for mixed-type architectures, where fine-level parallelism is implemented
in hardware and coarse-level parallelism is implemented on the network level. In
such a set-up a number of most versatile 'block’ architectures could be identified
(such as for example a 4x4 array or a pyramid of size 4) and each block could be
fabricated as a single chip. This could improve the performance because the high

speed of intercommunication inside the chip would decrease significantly
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communication overheads. This concept could also find a useful application in a
multiuser supercomputer where a large number of such blocks would be available

and each user would be able to configure the blocks to suit the application in hand.

Parallel processing plays on increasingly important role in the growth of the
computing discipline as a whole. New parallel architectures and processing
elements are continuously being developed and being brought into the reach of
desk-top computing users. It is very important that a lot of research is directed
towards methods for automatic extraction of parallel strains in existing programs
(see, e.g. work by Kunii er al (1988) ) so that the end-user can utilise the benefits

of parallel processing without having to hand-craft each application.
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Appendix A.

This appendix describes theory of two-dimensional systems, methods of the filter

design using the optimisation technique and the uncertainty theory.

A.1 Two Dimensional Discrete System

A 2-dimensional discrete system can be viewed as the process of applying an

operator L to the input array x(n, m) to get an output y(n, m) where

y(m, n) = L (x(m, n)). (A.1)

This system is called linear when the following equation is valid for any constant c,
¢ y1(m, n) + yo(m, n) = L(c x1(m, n) + xz(m, n)),

where yo(m, n) = L(x;(m, 1)), and y2(m, n) = L(xz(im, n)). For the system to be
shift-invariant, the following equality must be valid

y(m-mg, nn - ng) = L (x(m - my, n - ng)),
for any values of mg and ng.

It is very difficult to analyse and estimate the system performance by the response
of equation (A.1). The best solution is to use a simple function like the impulse
function as reference and study the response of the system for this function. This

can be clarified by the following discussion.

The 2-dimensional impulse function d(k, 1) is defined as follows:

1 fork=0&1=0
o(k, 1) = {O otherwise ’
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Then the 2-dimensional function x(m, n) can be evaluated by the following

equation:

x(m, n) = i i X O(m-k, 1-1), (A.2)

k=o0] = 0o

where xmp is a constant and it is equal to x(m, n). Now by substituting equation

(A.2) in equation (A.1),

y(m, n) = i i X o L(8(m-k, n-1)). (A.3)

K=ol =0

Let h(k, n) be the impulse response of the system, then

h(m~k, n-1) = L(8(m-k, n-1). : (A.4)
Now by substituting equation (A.4) in equation (A.3) the required result is
achieved, which is

y(m, n) = i i x(m, n) h(m-k, n-1),

= 0% 1 = -co
and this equation can be rewritten as follows:

y(m,n)= Y i x(m-k, n-) h(m, n). (A.5)

k=w0]=-oo

This result means that the output of the system is the input array convolved with the
impulse response of the system. Thus the problem of system analysis and design is
to analyse and design the impulse response of the system. Similarly, filter design is

the design of the impulse response of the filter.

In the image processing applications the input image is of a finite size, so the region
of support Gkt of h(k,]) has to have finite limits, i.e., it is equal to zero outside that
limits. This is quite useful from the stability point of view since the system is stable

if the following inequality is valid
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S > Ihk, 1) < oo,

kle G

This type of filter is called the finite impulse response (FIR) (nonrecursive) filter. It
is clear now from the above discussion that the problem of design is to compute the

impulse response of the system h(k, 1).

A.2 Approximation Theory

The impulse response function h(n, m) can by described by a finite set of

coefficients. The filter design problem is to calculate these coefficients.

Since the impulse response in the spatial domain is difficult to visualize, the best
solution is to design its frequency response, because this is more understandable.
Thus the problem of the filter design is now to determine the impulse response
coefficients h(n, m) which produce a desired frequency response H(u, v). The
relation between the impulse response and its frequency response is the Discrete

Fourier Transform (DFT) relationship:

N N

Hu,v)= , 2, hmnwW™"™, (A.6a)
m=-Nn=-N
N N ~(mu +nv)

h(m,n)= 2, 2, Hu,vW , (A.6b)
u=-Nv=-N

where h(n, m) is zero outside a window of (2N + 1)2 coefficients, and W is equal

to EXP(-] (—7%)), where j is J-1.

The above discussion has shown that it is necessary to select an ideal frequency
response function and then get the impulse response by applying equation (A.6b).
The result should be an impulse response with values equal to zero outside a certain
region size. For all ideal filter functions this is impossible. The proof of this is out
of the scope of this thesis but it can be found in other publications (e.g. Dudgeon &

Mersereau, 1984). However, these filters can be realized by trying to design an
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impulse frequency response which approximates the desired frequency response.
In other words the desired frequency response which cannot be realized should be

approximated.

A.3 Design Methods

There are two main approaches for designing FIR filters; the non-optimal
approaches and the optimal approaches (Dudgeon & Mersereau, 1984). The most
common approach of the first type is the window method (Huang, 1972); for the
second type the least square method tLodge & Fahmy, 1980) is most commonly

used.

A.3.1 The Window Method

This method based on the 1-dimensional (1D) window method. In this method an
attempt is made to approximate the ideal impulse response rather than the ideal
frequency response, i. e. it is a spatial domain method. To consider this in more
detail, let I(w;, W) and i(m, n) be the frequency response and the impulse
response of the ideal filter respectively. Then the method is to find h(m, n), which
is the impulse response which approximates the ideal one i(m, n), by applying the

following equation:

h(m, n) = w(m, n) i(m, n),
where w(m, 1) is the window function of finite-extent region R,

R={(m,n): -M<m,n<M},
cn the approximated result h(m, n) will be of the same finite-extent region R. The
approximated frequency response H(wi, ®) is related to the ideal frequency

response (@, ax) by the following equation:
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T T
Hw,, w,) = f f I(Q, Q) W, - Q, ©,— Q) dQ,dQ,,
-TC

-7

where W(w;, ;) is the frequency response of the window function, i. €., its
Fourier transform. Since the desired filter behaviour is specified through the ideal
frequency response rather than the impulse responsé, then the best way to
implement this method is to chose the appropriate ideal frequency response and
then take the inverse Fourier transform of it to get the ideal impulse response filter.
Usually the region of support of i(m, n) is of infinite extent, so to minimize the
aliasing error the extent of the region of support of the inverse Fourier transform
should be several times larger than the extent of the R, and may be called G.

There are three requirements for the choice of the window functidn (Huang, 1972).
Firstly, it must have the region of support R. Secondly, W(wj, w2) should
approximate a 2—dimensional (2D) impulse function. Thirdly, if h(m, n) is to be
zero-phase, the window function should be zero—phaSe as well. These requirements
are the same as for the 1D case, so a good window function for the 1D case should
suggest a good one for the 2D case. The relationship between the two could be

expressed by either of the following equations:

wr(m, n) = wi(m) wa(n),

or

w{(m, n) = w(V m’ +n> ,

where w; is a 2D window with a square or rectangular region of support, wc is a
2D window which has nearly circular region of support, and w, wy, and w7 are 1D
windows. If the 1D window is good for the 1D filter design the 2D windows will

be good as well. Example of such windows are the rectangular window:

1, (mn)eR
w(m, n) = 0, otherwise
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and the Kaiser window (Kaiser, 1974)

I(aA/ 1-(%)2)10@/\/ 1‘(‘%)2)

2
I'(o)
0, _ otherwise

wr(m, n) = . (m,n)e R

where I5(x) is the modified Bessel function of the first kind of order zero.

A.3.2 Least-square Design Method

The filter design problem is to calculate filter coefficients of the desired frequency
response H(w;, @) which approximate the ideal frequency response I(@;, ). Let
E be the error between these two functions. It can be evaluated by the following

equation:
E = H(wy, 02) - l(®;, 0).

So the problem now is to calculate the coefficients of the filter to minimize the L.2-

norm (mean-square value) of E,

T T 2
E2=«~1—2f f ‘E(col, mz)} dw, do, . (A.7)
47 —n Y-n

There are several ways to solve the problem,; three of them will now be considered.
The function E; can be evaluated in the spatial domain by using Parseval's

theorem,

By~ Y Slhem, n)- i(m, n)],

m,neG

since h(m, n) is equal to zero outside region R, then
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E,= Y Sthm,n)-im - Y Fi’m,n). (A.8)

m,neR m,ng R

Since both summations of equation A.8 are positive and the coefficient values affect
the first one then the optimal solution which is the minimum value of E2 is found

when

h(m, n) = {i(m, n), (m,n)e R.,
Os (m, n) & R

This solution is the same as that of the window method with a constant window
over R.
In the slightly more general case where linear constraints may be present, the

following method may follow. The frequency response is given by 4

H(®,, ©,)= 9, 9 h(m,n)EXP[-jo,;m-jo,n]
m,neR

For real filter function (zero phase),
h(ms n) = h(-ms 'n),
H(w1, tx) can be evaluated by the following equation:

H(w,, ®,) = h(0,0) + ., > 2h(m, n) cos(®m + w,n), (A.9)

m,ne R’

the limits of summation are in the region R' which is half of the region R. It is

therefore convenient to put equation A.9 in the following form:

F
H(®,, ©0,) = Y a() 6,0, @y, (A.10)

1=1

where i is an index that denotes some ordering of the samples (m, n) in region R,
a(i) = h(m, n),

F is number of coefficients of h, and
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2cos(;m + @,n)  (m, n) # (0, 0)

d(0, 0,y =
1, (m, n) = (0, 0)

E2 can be evaluated by the substitution of equation A.10 in equation A.7,

2

T T F
E,= f f Sal) 00, 0, -, ,)|do, do,. (A.11)
-n

_q |i=t

Then E2 can be minimized by taking its derivative with respect to each coefficient
of a(k), setting these derivatives to zero and solve the resulting equations. Since the
partial derivatives [0E2/da(k)] are all linear functions of the unknown coefficients,
this requires at most the solution of F linear equations. These equations can be

written as

F

>ai) 0y = I, (A.12)

1=1
where
a(i) = h(m, n),

T T
1
<1>ik=—-—f2[ f 9 (@4, W,) (@, W) dw, dw,,
4 °-m o

k2 T
Ik=-—;f f (@, 0,y ¢ (0}, ©y) dw, do, . (A.13)

%
In the frequently occurring special case that oi(m1, (bg) are orthogonal, ¢jx = 0 for
i #k, the solution of equation A.12 is simply
a(i) o;;=1;
The number of degrees of simultaneous linear equations to be solved places an
effective upper limit on the number of degrees of freedom that can be

accommodated.
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The third method of coefficient evaluation uses a modified error measure. The error
measure E7 weights errors equally at all frequencies. The filters which are designed
to minimize E7 may not always be satisfactory; they suffer from large passband and
stopband ripple. The integral of equation A.12 may also be difficult to evaluate if
I(w;, o) is not simple. These problems can be partially alleviated by replacing the

error E2 by E'; where

Cc 2
E'p= ch[ﬂ(ww Wy, ) = (@, Wy )} : (A.14)

c=1

where (W, ) are the constraint frequencies, corresponding to a finite number of
discrete locations C in the 2D frequency plane, and the (positive) numbers W,
denote weighting values.

Finding the coefficients a(k) that minimize E2' involves the solution of F linear

equation in F unknowns given by
F
Ya@) 6, =1, k=1,.,F (A.15)
i=1 '

where

C
b= 2 W@, 050 (@, 0y),
c=1

C
=0 W@, ©0) 00, 0y).

c=1

A.4 Uncertainty Principle

There are two schools of opinions (Daugman, 1985) in describing the fundamental
character of early visual representation, the first say that it involves the space-
domain local feature detection (Hubel & Wiesel, 1974), the second (Maffei &
Fiorentini, 1973) say that it more closely resembles a Fourier-like decomposition
into spatial-frequency components. The necessity of this finding is to design a

vision system which can process efficiently a vast amount of image information and
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this can be achieved by extracting and representing the image with optimal
economy. The work by Marcelja (1980) affirmed that the visual mechanism is
deemed linear, and then its selectivities in either domain imply complementary
limits in the other. This problem is called the uncertainty problem and it is well
defined by Gabor (1946) who pointed it out with respect to the 1-dimensional (1D)
signal. Gabor said that a signals' specificity simultaneously in time and frequency
is fundamentally limited by a lower bound of the product of its frequency band
width and time duration. If the filter weighting function is denoted f(t), a standard
measure of effective width (At) is given by the second moment of its energy

distribution:

f £2£(t) P4(t) dt
@By == :
f fi(t) P4(t) dt

]

where £*(t) is the complex conjugate of f(t).

Similarly in the frequency domain, F(w) is Fourier transform of f(t) and Aw is the

effective bandwidth,
f w2F(w) F*(w) dw
2 o
(Aw) =
f F(w) F*(w) dw

-0

Then the 1D uncertainty principle specifies a fundamental lower bound on the

possible values of their product:

(At) (Aw) 2 L . (A.16)
47

Gabor found the general family of functions that achieve the theoretical lower limit

of the uncertainty principle. These are of the following form:
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2

“(t - to)
2

f(t) =E +jwt] , (A17)

o

which in complex notation describes the modulation product of a sine wave with
arbitrary frequency (w) and a Gaussian envelope of arbitrary duration occurring at
interval to

Later Daugman (1985) suggested a 2D model for the uncertainty principle. Let
f(x, y) be the filter function and F(u, v) the Fourier transform of it. Then there are
several possible generalizations of the concept of effective width, due to the fact
that there are three Cartesian second moments for the energy distribution f(x, y)

f*(x, y):

f f x2 f(x, y) P*(x,y) dx dy ,

~ = 2
f f y f(x,y) f*(x,y)dxdy ,

-0

f f xy f(x,y) f*¥(x,y) dxdy .

-0c

The first twe mements compute the variance around the y and x axes respectively,
and these are equal to the square of the distributions of effective width Ax and
effective length Ay respectively; The third one relates to the skew moments and

computes asymmetry of the diagonals. The 2D distribution can be rotated so that its
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skew moment is zero and the angle of this rotation determines the distribution’s

principle axes.

There are two uncertainty principles constraining the effective width Ax and the
effective length Ay of a 2D filter f(x, y), and the effective width Au and the effective
length Av for its Fourier transform F(u, v). Generally fbr any arbitrary f(x,y)
centred at (Xo, Yo), whose 2D Fourier transform F(u, v) is centred at (uo, Vo), the

following two uncertainty principles apply:

(Ax) (An) = — | (A.18)
. 4z
(by) ()21
n (A.18b)
where
1
2

(Ax) = f f (x -xg) £(x, y) F¥(x,y) dx dy / f f f(x, y) P*(x,y) dx dy |

L
2

(Au) = f f (u -uo)zF(u, v) F*(u,v) du dv/f f F(u, v) F*(u,v)dudvy ,

—oo

L
2

(Ay)=f f (y-yo)zf(x,y)i*(x,y)dxdy/] f f(x,y) f*(x,y) dx dy| ,
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(Av) = f f (v -vo)2 F(u, v) F*(u,v) du dv/{ f F(u, v) F*(u,v) dudv

If these functions and transforms are rotated out of such axes, the products of
effective widths will in general increase. If the principal axes do correspond, then
each of the products (Ax) (Au) and (Ay) (Av) represents the effective area occupied
by the filter in the corresponding 2D domain. The joint resolution that can be
achieved by any 2D filter in the two 2D domains is constrained by a fundamental

lower limit:

(Ax) (Ay) (Au) (Av) = ! > (A.19)
167
This represent the new uncertainty principle which expresses the theoretical limit of
joint 2D resolution in the two domains.
Daugman (1985) has presented a family of functions f(x, y) and their 2D Fourier

transforms F(u, v) which achieve the lower bound in equation (A.19);

f(x, y) = g(x, y) EXP{- 2nj[uo X' + Vo y'1} , (A.20)
F(u, v) = G(u, v) EXP{- 2wj[xo u' + yo V']}, (A.21)
where
g(x, y) = EXP{- n[x? a2 + y? b2]},
G(u, v) = EXP{- n[u?/a? + v%/b2]},
which are Gaussian functions, X' = X - Xo, ¥ =¥ - Yo, U = U - Ug, V' =V - Vo, and
a and b are the space parameters defining the scale of the Gaussian function along
both axes,
The filter function proposed by Granlund (1978b) in equation (7.1) belongs to the
above family, but he used different derivation to satisfy the lower bound of the

uncertainty principle. However, Daugman derivation is more precise and
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.constructive because his results are more general and he put it in straight language

that the family of this type of function is the optimal solution for uncertainty
principle. Granlund did not mention Gabor's (1946) work at all, and it is known
that Gabor was the first person who tackled the uncertainty problem and solved it

for the 1D case.
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Appendix B

This appendix shows the code for the main procedure in the host Transputer which
its Occam model was shown in figure 5.2 page 82. The code printed here is for the
procedure to communicate with the network for implementing the FFT RC
algorithm. The code for the procedures used to communicate with networks for
implementing Split & Merge and FFT VR algorithms are similar with very small

changes.

PROC host (CHAN OF INT keyboard, CHAN OF ANY screen,

from.filer,to.filer,
CHAN OF grid app.in,app.out,
VAL BOOL using.subsystem)

CHAN OF inter cont.in.filing,cont.in.sc,cont.out.sc,filing.sc:

CHAN OF grid filing.cont.in,filing.cont.out,cont.in.out,

hang.free.filing,filing.hang. free:
CHAN OF ANY echo:

#USE tfftlib -- It is the library which contains procedures for implementing FFT
RC

#USE userio
PROC screen.hnd(CHAN OF ANY screen,echo,
CHAN OF inter cont.in.sc,cont.out.sc,
filing.sc)
BYTE char,length:
[100]BYTE string:
INT number:
BOOL continue:
SEQ
continue:=TRUE
WHILE continue
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ALT
cont.in.sc ? CASE
sc.int:number
SEQ
write.int(screen,number,0)
newline(screen)
sc.string;length::string
SEQ
number:=INT length
write.len.string(screen,number,string)
f.terminate
continue:=FALSE
filing.sc 7 CASE
sc.int;number
SEQ ’
write.int(screen,number,0)
newline(screen)
sc.string;length::string
SEQ
number:=INT length
write.len.string(screen,number,string)
f.terminate
continue:=FALSE
cont.out.sc ? CASE
sc.int;number
SEQ
write.int(screen,number,0)
newline(screen)
sc.string;length::string
SEQ
number:=INT length

write.len.string(screen,number,string)
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f.terminate
INT any:
SEQ
continue:=FALSE
filing.sc ? CASE
sc.int;number
SEQ
write.int(screen,number,0)
newline(screen)
sc.string;length::string
SEQ
number:=INT length
write.len.string(screen,number,string)
f.terminate
continue:=FALSE
echo ? char

screen ! char

#USE tfftlib
#USE filerhdr
#USE krnlhdr
#USE interf
#USE userio
#USE extrio
#USE t4math
PROC filing (CHAN OF INT keyboard, CHAN OF ANY echo,
to.filer,from.filer,
CHAN OF grid filing.cont.out,filing.cont.in,
hang.free.filing filing.hang.free,
CHAN OF inter cont.in.filing,filing.sc)
VAL kemel.size IS 3:
VAL block.size IS 512:
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[block.size*257]BYTE image.data:

[20]INT t:

INT echol,n,lo,e,N ,NN.kletter,s0,P,Tp1,Tc,Tp2,display:
INT any, result,record.length,len, block.no,convolution:
INT time,start.time,finish.time,time.of .processing:

VAL max IS 70000:
VAL Pnl IS [0]: --for single transputer
VAL Pn4 IS [0,4,8,12]:--for array of size four

VAL Pnl6 IS [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]:--for array of size
sixteen

[max]BYTE x:
[40]1BYTE string:
BYTE length:
INT image.size,sub.image.size,k1,k2,start,end,size:
REAL32 real,outreal:
[23]1BYTE dos.name:
BOOL send.data,continue,file.dosenot.exist,un.accepted.value,
data.recieved,another,process.finished:
TIMER clock:
PROC send.to.screen(VAL [IBYTE strings)
--VAL strings IS "*c*ntype kernel.size*c*n":
BYTE length:
SEQ
length:=BYTE (SIZE strings)

filing.sc ! sc.string;length::strings

PROC open.read (VAL [IBYTE filename, INT len,result)
--This procedure to open dos file for read
INT command :
SEQ
to.filer ! tkf.open.read

to.filer ! len; filename
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from.filer ? command; result

PROC open.write (VAL [IBYTE filename, INT len,result)
--This procedure to open dos file for write
INT command :
SEQ
to.filer ! tkf.open.write
to.filer ! len; filename

from.filer ? command; resulit

PROC read (INT result,INT record.length,[]BYTE record)

--This procedure to read a record of record.length BYTES long from opened
dos file

INT command:
SEQ
to.filer ! tkf.read
from.filer ? command; result

from.filer ? record.length::record

PROC write (VAL [IBYTE record,INT result)
--This procedure to write a record of BYTES to the opened dos file
INT command:
SEQ
to.filer ! tkf.write
to.filer | SIZE record;record

from.filer 7 command; result

PROC close (INT result, INT len, [JBYTE filename)
--This procedure to close the opened dos file
INT command:
SEQ

to.filer ! tkf.close
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from.filer ? command; result

from.filer ? len::filename

PROC input.data(CHAN OF ANY echo,[JBYTE image.data,INT image.size)
--This procedure to input data of type BYTES from a dos file which its name to
-- be typed in by the user

VAL block.size IS 512:
INT time, result,record.length,len, block.no:
INT any:
[abs.id.size]BYTE dos.name:
[30]BYTE inputfile.name:
BOOL file.doesnot.exist:
TIMER clock:
SEQ
file.doesnot.exist:=TRUE,
WHILE file.doesnot.exist
SEQ
block.no :=0
send.to.screen ("*c*ntype file name*c*n")
any:=INT "'
read.echo.text.line(keyboard,echo,len,inputfile.name,any)
len:=len-1
open.read (inputfile.name,len, result)
send.to.screen("*c*nresult from open*c*n")
filing.sc ! sc.int;result
IF
result =0
SEQ
record.length := block.size
WHILE record.length = block.size
INT start:
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SEQ
start:= block.no * block.size
record IS [image.data FROM start FOR block.size]:
SEQ
read (result, record.length, record)
block.no := block.no +1
image.size:= (block.sizc*(block.no -1))+record.length
send.to.screen("*c*nimage.size=")
filing.sc ! sc.int;image.size
send.to.screen(" bytes read*c*n")
close (result, len, inputfile.name) .
send.to.screen("*c*nresult from close*c*n")
filing.sc ! sc.int;result
file.doesnot.exist:=FALSE
TRUE

send.to.screen("*c*nfile does not exist try again*c*n")

PROC output.data(CHAN OF ANY echo,[IBYTE image.output,INT
image.size)

--This procedure to write data of type BYTES onto a dos file which its name to
-- be typed in by the user
VAL block.size IS 512:
INT time, result,record.length,len, block.no:
INT any:
[abs.id.size] BYTE dos.name‘:
[30]1BYTE outputfile.name:
TIMER clock:
SEQ
send.to.screen("'type outputfile name")
any:=INT "'
read.echo.text.line(keyboard,echo,len,outputfile.name,any)

send.to.screen("Trying to open file*c*n")
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len :=len-1
open.write (outputfile.name,len, result)
send.to.screen("Result from open file command : ")
filing.sc ! sc.int;result
newline (echo)
block.no :=0
IF
image.size <= block.size
SEQ
record IS [image.output FROM 0 FOR image.size]:
write (record,result)
send.to.screen("Buffer read from file - result *)
filing.sc ! sc.int;result
newline (echo)
block.no := block.no +1
TRUE
SEQ
WHILE (image.size-(block.no * block.size)) > block.size
VAL start IS block.no * block.size:
record IS [image.output FROM start FOR block.size]:
SEQ
write (record,result)
block.no := block.no +1
VAL start IS block.no * block.size:
record IS [image.output FROM start FOR (image.size-(block.no *
block.size))]:
SEQ
write (record,result)
block.no := block.no +1
filing.sc ! sc.int;block.no
send.to.screen(" Blocks where write *c*n")

result:=((block.size*(block.no -1))+record.length)
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filing.sc ! sc.int;result

send.to.screen(" Bytes where read*c*n")
close (result, len, dos.name)
send.to.screen("'result from close )
filing.sc ! sc.int;result

newline(echo)

write.len.string (echo,len,dos.name)

PROC input.real.data(CHAN OF ANY echo, [JREAL32 real.data, INT
data.size)

--This procedure to input data of type REAL from a dos file which its name to
-- be typed in by the user |
INT i,j,ik:
BOOL error,run:
[100000]BYTE data:
[30]BYTE block:
SEQ
send.to.screen("The following type in the line kernels file*c*n")
input.data(echo,data,data.size)
SEQ
1:=0
j:==0
run:=TRUE
WHILE i< data.size
SEQ
ik:=0
WHILE ((data[i]>='0")AND(data[i]<='9"))OR
(data[i]='E)OR
(data[i]="+)OR
(datafi]="-"YOR
(data[i]="")
SEQ
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block[ik]:=data[i}
i=i+1
ik:=ik+1
IF
ik=0
i=i+1
TRUE
VAL blocke IS [block FROM 0 FOR ik]:
SEQ
STRINGTOREAL3Z(error,real.data[j],blocke)
=i+l

data.size:=j

PROC distribute.data((]JBYTE x,image.data,
INT N,P.k1)
--this procedure distribute image to P transputers
-- the first N/P rows to the 1st one an the second
--N/P rows to the second transputer and so on
INT F,k,sub.image.size:
SEQ
F:=N/P
SEQil=0 FOR P
SEQ
k:=0
SEQi=il*FFOR F
SEQj=0FORN
SEQ
z[k1:=image.data[j+(i*N)]
k:=k+1
sub.image.size:=k
IF
k1=0
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filing.cont.out ! w.data;Pn1[i1];sub.image.size::x;F;N
kl=1

filing.cont.out ! w.data;Pn4[il];sub.image.size::x;F;N
TRUE

filing.cont.out ! w.data;Pn16[i1];sub.image.size::x;F;N

PROC distribute.real.data([JREAL32 image.data,INT N,P k1)

--this procedure distribute image of REAL32 data type to P transputers for FFT
RC

-- the first N/P rows to the 1st one an the second
--N/P rows to the second transputer and so on
INT F,k,sub.image.size:
[4200]REAL32 x:
SEQ
F:=N/P
SEQi1=0 FOR P
SEQ
k:=0
SEQ i=i1*F FOR F
SEQ j=0FOR N
SEQ
x[k]:=image.data[j+(i*N)]
k:=k+1
sub.image.size:=k
IF
k1=0
filing.cont.out ! real.data;Pn1[il];sub.image.size::x;F;N
kl=1
filing.cont.out ! real.data:Pn4[il];sub.image.size::x;F;N
TRUE

filing.cont.out ! real.data;Pn16[i1];sub.image.size::x;F;N
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4 [12]BYTE inputfile.name :
| [12]BYTE outputfile.name :
SEQ
continue :=TRUE
WHILE continue
SEQ
send.to.screen("*c*ntype 0 for display else for not to display*c*n")
echol:=INT "’
| read.echo.int(keyboard,echo,display,echol)
input.data(echo,image.data,image.size)
filing.cont.out ! display.data;image.size::image.data
NN:=image.size
real:=REAL32 TRUNC NN
outreal:=SQRT(real)
N:=INT TRUNC outreal
un.accepted.value:=TRUE
WHILE un.accepted.value
SEQ
VAL string IS "*c*ntype 2 for convolution or 1 for fft*c*n™:
SEQ
length:=BYTE (SIZE string)

filing.sc ! sc.string;length::string
echol:=INT "’

read.echo.int(keyboard,echo,convolution,echo1)

VAL string IS "*c*n":

SEQ

‘ length:=BYTE (SIZE string)
filing.sc ! sc.string;length::string

un.accepted.value:=FALSE

IF

(convolution = 1) OR (convolution=2)

un.accepted.value:=FALSE
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= L. -
‘ ) =
|
|
1 TRUE

send.to.screen("*c*ntype in 1 or 2 only, try again*c*n")

send.to.screen( "*c*ntype k1 where P=4 to power k1*c*n")
echol:=INT "’ |
read.echo.int(keyboard,echo,k1,echol)

clock ? time

clock ? AFTER time PLUS 50000

filing.cont.out ! conv;convolution

k2:=INT TRUNC POWER(REAL32 TRUNC 2,REAL32 TRUNC k1)
P:=k2*k2

filing.cont.in ! net.s;P;display
sub.image.size:=N/P
send.to.screen("'*c*n sub.image.size=*c*n")
filing.sc ! sc.int;sub.image.size
. :
convolution=2
[4200]REAL32 real.data:
INT data.size:
SEQ
input.real.data(echo, real.data, data.size)
distribute.real.data( real.data, N,P,k1)
| TRUE
| SKIP

any:=0

send.to.screen("*c*n press any to send value n to controller*c*n")
keyboard ? any

send.to.screen("Processing is going on”)

so:=N/k2 --this is because P=k2*k2

clock ? start.time

_-distribute.data.VR( x,image.data, N,s0,k1)

distribute.data( x,image.data,N,P k1)
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|

process.finished:=FALSE
WHILE NOT process.finished
ALT
cont.in.filing 7 CASE
oh:n::t
SKIP
B:process.finished
SEQ
clock ? finish.time
time.of.processing := ((finish.time-start.time)*64)/1000
send.to.screen("*c*n total time.of.processing ( msec)=")
filing.sc ! sc.int;time.of.processing
SEQi=0 FOR 3
SEQ
time.of .processing := ((t[i])*64)/1000
send.to.screen("*c*n time.of .processing ( msec)=")
filing.sc ! sc.int;time.of.processing
send.to.screen("*c*nprocessing corhplcte")
send.to.screen("type a for anotheror f to ex*c*n")
another:=TRUE
WHILE another
SEQ
keyboard ? letter
IF
letter=(INT 'a)
SEQ
another:=FALSE
letter=(INT 'f")
SEQ
continue:=FALSE
another:=FALSE

filing.cont.out ! w.terminate
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filing.cont.in ! w.terminate
filing.hang.free ! w.terminate
TRUE
SEQ
send.to.screen("*c*ntry again")
hang.free.filing 7 CASE
exe.terminate
SEQ
process.finished:=TRUE
continue:=FALSE
filing.cont.out ! exe.terminate

filing.cont.in ! exe.terminate

#USE tfftlib
#USE t4math
#USE filerhdr
#USE interf
#USE userio
PROC input.controller (CHAN OF grid app.out,
filing.cont.in,cont.in.out,
CHAN OF inter cont.in.filing,cont.in.sc)
PROC send.to.screen(VAL [IBYTE strings)
--VAL strings IS "*c*ntype kernel.size*c*n™:
BYTE length:
SEQ
length:=BYTE (SIZE strings)

cont.in.sc ! sc.string;length::strings

VAL Pnl IS [0]:

VAL Pn4 IS [0,1,2,3]:
VAL Pnl6 IS [0,2,8,10,1,3,9,11,5,7,13,15,4,6,12,14]:
INT P,lo,e,N ,NN,Pn,k,no.of‘rcsults,Tp1,Tc,Tp2:
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[20]INT t
INT n,display:
VAL max IS 65600:
VAL fone IS 0.1(REAL32):
REAL32 temp:
[max]INT result.out:
[max]BYTE data:
[130][130]REAL32 x,xi:
INT any,time, result,lg:n:
BYTE letter,length:
INT start,end,size,time.of.processing:
TIMER clock:
BOOL continue,data.recieved:
BOOL continue,not.halt,processing,another,process.finished:
SEQ
processing:=TRUE
no.of.results:=0
clock ? start
WHILE processing
ALT
app.out ? CASE
c.akn;Pn;data.recieved
SEQ
send.to.screen("*c*ndata recieved for Pn=")
cont.in.sc ! sc.int;Pn
c.data:Pn;size::result.out
SEQ
IF
P=4
INT map:
SEQ i=0 FOR size
SEQ
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map:=Pn4[(Pn/4)]
map:=(map*size)+i
IF
ABS(REAL32 TRUNC result.out[i]) > (REAL32 TRUNC 255)
data[map]:= BYTE 255
TRUE
data[map]:=
BYTE(INT TRUNC (ABS(REAL32 TRUNC result.out[i])))
TRUE
SEQ i=0 FOR size
IF
ABS(REAL32 TRUNC result.out[i]) > (REAL32 TRUNC 255)
data[((Pn*size)+i)]:= BYTE 255
TRUE
~ data[((Pn*size)+)]:=
BYTE (INT TRUNC (ABS(REAL32 TRUNC result.out[i])))
no.of.results:=no.of results+1
IF
no.of.results=P
SEQ
IF
display =0
cont.in.out ! display.data;(P*size)::data
TRUE
SKIP
no.of.results:=0
IF
P=4
SEQ
SEQ i=0 FOR N
SEQ j=0 FOR N
SEQ
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xifi]{j] :=fone
x[i][j] :=fone
vr2dfftl(x,xi,N)
TRUE
SKIP
process.finished:=TRUE
cont.in.filing ! B;process.finished
TRUE
SKIP
c.data.oh:Pn;size::result.out;n::t
SEQ
cont.in.filing ! oh;n::t
SEQ i=0 FOR size
IF
ABS(REAL32 TRUNC result.out[i]) > (REAL32 TRUNC 255)
data[i]:= BYTE 255

TRUE

data[i]:=BYTE (INT TRUNC (ABS(REAL32 TRUNC
result.outfi]))) ~

no.of results:=no.of .results+1
IF
no.of.results=P
SEQ
IF
display =0
cont.in.out ! display.data;(P*size)::data
TRUE
SKIP
no.of.results:=0
IF
=4
SEQ
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SEQi=0 FOR N
SEQ j=0 FOR N
SEQ
xi[i][j] :=fone
x[i][j] :=fone
vr2dfftl(x,xi,N)
TRUE
SKIP
process.finished:=TRUE
cont.in.filing ! B;process.finished
TRUE
SKIP
filing.cont.in ? CASE
display.data;size::data
cont.in.out ! display.data;size::data
w.terminate
processing:=FALSE
exe.terminate
processing:=FALSE
b;processing
SKIP
net.s;P;display
SKIP

PROC output.controller(CHAN OF grid app.in,
filing.cont.out,cont.in.out,
CHAN OF inter cont.out.sc)
INT lo,e,N _NN,Pn,k,no.of .results,convolution:
VAL max IS 65600:
[max])BYTE x:
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[4200]REAL32 r.data:
INT any,time, result,len:
BYTE letter,length:
INT start,end,size,time.of.processing:
TIMER clock:
BOQL continue,data.recieved:
BOOL continue,not.halt,processing,another,process.finished:
SEQ
processing:=TRUE
no.of.results:=0
clock 7 start
WHILE processing
ALT
filing.cont.out ? CASE
display.data;size::x
app.in ! display.data;size::x
conv:convolution
app.in ! conv;convolution
real.data;Pn;size::r.data;lo;e
app.in ! real.data;Pn;size::r.data;lo;e
w.data;Pn;size::x;lose
app.in ! w.data;Pn;size::x;loje
b:another
SKIP
w.terminate
SEQ
clock ? end
time.of .processing:=end-start
VAL string IS "*c*ntime.of processing:=":
SEQ
length:=BYTE (SIZE string)

cont.out.sc ! sc.string;length::string
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cont.out.sc ! sc.int;time.of.processing
cont.out.sc ! f.terminate
processing:=FALSE
exe.terminate
SEQ
processing:=FALSE
VAL string IS "*c*nprogram deadlock":
SEQ .
length:=BYTE (SIZE string)
cont.out.sc ! sc.su'ing;lengthv::su-ing
cont.out.sc ! f.terminate
cont.in.out ? CASE
display.data;size::x

app.in ! display.data;size::x

PROC hang.free(CHAN OF grid hang free.filing filing.hang.free)
-- This procedure is to terminate the program if deadlock occurs in the network
INT time: |
TIMER clock:
SEQ
clock ? time
ALT
filing.hang.free? CASE
w.terminate
SKIP
clock ? AFTER time PLUS 30000000

hang.free.filing ! exe.terminate

PAR
PAR
input.controller (app.out,ﬁling.cont.in,cont.in.out,cont.in.ﬁling,cont.in.sc)

output.controller (app.in,filing.cont.out,cont.in.out,cont.out.sc)
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screen.handler (screen,echo,cont.in.sc,cont.out.sc,filing.sc)

hang.free( hang.free.filing,filing.hang.free)

filing (keyboard,echo,to.filer,from.filer,
filing.cont.out,filing.cont.in,
hang.free.filing,filing.hang.free,

cont.in.filing, filing.sc)

host (keyboard,screen,from.filer,to.filer, app.in,app.out, TRUE)
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