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Abstract

This thesis deals with the theory of charged surfaces, field adsorp-
tion and field-ion imaging.

The existing literature dealing with these subjects is in many ways
inconsistent and confusing, and contains conceptual errors. After a brief
review of existing ideas, we put forward self-consistent definitions for
various parameters, and formulate new models for charged metal surfaces
and for field adsorption. The model can be treated analytically, and
incorporate$the requirements that the crystallographic surface structure,
and the localised charge distribution at the emitter surface,be taken into
consideration,

This model is applied to a paradigm system, namely helium on tungsten
(111). Field and potential variations above a charged surface are explored
and it is shown that at a temperature of 80K the field variation in the
critical surface is sufficient to explain field-ion image contrast only if
a field-adsorbed layer is present. It is also shown that the equipotentials
above the planar emitter surface can be imagined to have an egg-box shape,
and that the higher the value of the proper polarizability of the surface
atoms the further from the emitter surface will be an equipotential of
given potential value. An interesting consequence of this is that higher
surface-atom polarizability can lead to reduced image contrast.

In the studies of field-adsorption binding energy, the insufficiency
of previous treatmentSis demonstrated. In particular it is shown that
neglecting depolarization effects due to mutual interaction between sur-
face atoms leads to marked over-estimation of the binding energy; mutual
depolarization in fact means that in some close-packed planes it is imposs-
ible to have a fully adsorbed layer. It is also shown that for He on
W(111) we cannot have a complete second field-adsorbed layer on top of the
first.

When all corrections are taken into account, we have estimated that
for the best image field for Helium (45 V/nm), the short-range binding
energy for He on W(111) probably lies between 25 and 50 meV. It is con-
cluded that this low value is not sufficient to explain field adsorption
and that further modification to our model toward a more realistic model
is needed in the future.

Field Ion Imaging, Field Adsorption, Charged Surfaces
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CHAPTER 1

INTRODUCTION

1.1 General Background

In the last few decades, there has been great improvement in
explaining the bulk properties of metals. Bulk theories are now capable
of giving qualitatively accurate descriptions of a wide class of
metals(l’ 2).

Most of this theoretical work relies on the assumption that the
body of the metal crystal is homogeneous and continuous, which means that
the physical properties of a unit element of the metal are the same,
regardless of its location in the whole body(s}. Regarding the real
crystal as discontinuous (i.e. atomic) introduced a new factor into bulk
theory, namely the "periodicity'" of the atomic lattice. Translational
symmetry plays a big role in simplifying the formulation of bulk theory.
Unfortunately, from this point of view, crystals have surfaces, so there
is breakdown in their homogeneous state at the surface. This introduces
various difficulties, which have caused the theories of metal surfaces to

lag behind relatively(d).

These difficulties mainly result from the loss
of translational symmetry, and there is a problem in that the electronic
structure must change drastically in consequence of the rapid decrease in
electron density near the surface.

A question arises as to the thickness of the ''surface''. Regarding
the crystal interior as homogeneous and continuous might lead to the
assumption that surface thickness is zero,. on the érounds that the
physical properties of any element immediately under the surface cannot be

different from that at any other part of the crystal interior. But this

approach ignores the behaviour of electrons at surfaces.



The commonest theory of electron behaviour at surfaces is based on

1(5).

the so-called "jellium'" mode The ion cores are smeared out to form
a continuous rigid positively-charged background, against which the
electrons move. Physical properties at and above the surface are then
regarded as a combination of bulk and surface effects. At the surface the
electrons 'spread' into the vacuum, forming a surface double-layer, of
finite thickness. Similarly, when we consider structural (""atomic')
models, there will be one or more atomic layers that are different in
their physical properties from the interior layers. (For example, there
is a 5% decrease in inter-atomic spacing, normal to the crystal cube
surface, between the outermost layer and the interior layers in alkali
halides; but the spacing of the second and third layers is nearly
normal{G)). The "surface" is a subject of study in its own right.

Technological advancement in many of the scientific surface tech-
niques (e.g. electron microscopy, field-ion microscopy and related
techniques, Auger, X-ray photo-electron spectroscopy) have made it much
easier to observe the metal surface in its microscopic details. This has
stimulated, and continues to stimulate much advanced research on surfaces,
from many viewpoints, in particular those of physics, chemistry, metal-
lurgy and materials science.

One of the most powerful scientific tools in surface studies is the
field-ion microscope (FIM)E?), because it allows us to observe the surface
in its structural atomic detail. The operation of the microscope requires
the application of a very high applied electric field (about 50 V/nm) .
This leads to a new surface situation, marked by the appearance of new
physical phenomena (principally field adsorption, field evaporation and
field ionization) and requiring proper theoretical understanding.

The necessary theoretical research is still in its beginnings, and

there are many conflicting arguments and hypotheses in the literature.



Meanwhile the accumulating experimental evidence necessitates the
re-examination of many parts of the theoretical background both of FIM,
and of the theory of charged surfacesand the processes that occur at
them. The work presented in this thesis forms part of this theoretical

re-examination.

1.2 Field Electron and Ion Emission

Raising the temperature of a metal causes the emission of electrons,
a phenomena known for a long time as ''thermionic emissioéﬁz and widely
used as an electron source in many electronic instruments. Fig.(1.1)
shows that the thermal energy needed to overcome the potential barrier
existing at the surface is equal to ¢, the local work-function of the
surface.

However, if a high negative field, of order 3 V/mm, is appiied to
the surface, as shown in Fig.(1.2), it becomes possible for a fraction of
the electrons to ''tunnel' through the barrier, instead of going over the
hump. This phenomena is known as ''field electron emission' and constit-
utes the basic mechanism of the Field Electron Microscope (FEM)(g).

On the other hand, if a sufficiently high positive field (v 50 V/nm) ,
exists at a metal surface then it is possible for an electron (or electrons)
in an atom outside the surface to tunnel into the metal, through the
barrier shown in Fig.(1.3). The external atom becomes ionized, and is
then repelled from the metal surface. This phenomena is known as '"field
ion emission", and forms the basic process in the Field-ion Microscope

(FIM) and related techniques(7’ 10).
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1.3 The Field Ion Microscope

1.3.1 General Principles

Field-ion microscopy was the first technique capable of giving images
of a surface in its atomic details, Historically, the technique
developed out of the earlier technique of field electron microscopy(ll),
when in 1951 Mullerclz) applied a high positive field to a pointed field
emitter and let hydrogen into the system. An account of the basic
technique and its applications was given by Muller and Tsong(7).

Fig.(1.4) shows a schematic diagram of a basic microscope. In this
a metallic specimen, shaped as a sharply pointed tip, is mounted in front
of a fluorescent screen in a highly evacuated chamber (pressure less than

10~

Torr, and an imaging gas (often helium) is introduced to the chamber
at a pressure of few m Torr. A very high positive voltage of the range
of 10kV is supplied to the specimen, while the screen is earthed. The
effect of the very high field around the tip of the specimen is that the
electronic charge distribution of an imaging-gas atom is deformed and

the atoms become polarized and so attracted towards the tip. The field
is not uniform across the surface of the emitter, but is higher above the
positions of protruding atoms such as those at the edges of the planes,
and lower over the centre of the planes. As a consequence higher gas
concentration (C) and ionization rate-constant (Pe) are expected over
these protruding regions, and this leads to a higher rate of ionization
in these regions.

The ions thus formed by tunnelling of electrons to the surface are
immediately repelled by the positive field at the tip surface, and are
accelerated in a direction normal to the 'tip surface, towards the phosphor
screen (or an image intensification device). The impinging of a

continuous stream of ions from the protruding sites forms a projection
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image of these sites. The magnification factor can be found by dividing
the tip-to-screen distance by the tip radius-of-curvature, and a very
good resolved image can be produced of many millions fold magnification.
The resolution of the image depends on the temperature of the
imaging-gas at ionization. Hence the specimen is normally cooled to

liquid-nitrogen temperature (78 K) or below.

1.3.2 The Critical Surface

It is well established that neither the attracted imaging gas atoms,
nor the desorbed surface atoms, can be ionized inside a geometrical
surface, called "the critical surface'" that is slightly above metal
emitter surface. With a simple '"'jellium" surface model, this critical
surface is located at a critical distance X. above the emitter surface
(Fig.(l.S})’ Xc being given by the following approximation(ls):

AO + gI-n¢

Xc = neF

where %I is the ionization energy for n-fold ionization.
AO is the binding energy of neutral atom, in the
presence of the field
¢ is the surface work function
e is the elementary proton charge

ne is the charge on the ion

F is the external field

Xc is a small quantity (i.e. in the range-of 0.5 nm). It is often said
to be measured from the so-called 'the electrical surface' of the
emitter. However, difficulties arise over how this surface is to be

defined and where it is located (relative to some feature of the real
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surface). These matters are not well understood, and have sometimes led
to conflicting suggestions. Different surface models lead to different
results; these matters are discussed in greater detail in later chapters,
but we note here that it is desirable in field-ion theory to have a single
surface model that can deal both with the position of the electrical
surface and with the prediction of field-adsorption binding energies, as

described below.

1.3.3 Field Adsorption

Field adsorptioncld’ 15, 16)

is a process that can occur inside the
critical surface. If the field is high enough, then imaging-gas atoms
can become adsorbed (i.e. bound) onto the emitter surface. Each field
adsorbed atom is adsorbed directly above a metal surface atom, as shown
in Fig.(1.5).

The short-range field-adsorption binding energy is defined as the
work required to detach an adsorbed atom, and to place it at some
position in the external field, away from the local variation in field
and potential at the surface. These local variations in field and
potential are due to the localized (atomic) structure of the real surface,
but are enhanced greatly by the existence of adsorbed imaging-gas atoms,
which are those believed to have an important role in the process of
field ion imaging.

A better understanding of the above is actually the main object of
this thesis. The hope is to make some contribution towards answering
questions related to the nature of field adsorptioﬁ, evaluation of thé
 binding energy, and ihe effect of field adsorption on field and potential

variation at the surface and hence on the imaging process.



1.4 Field Evaporation and Associated Techniques

When the field is further increased at a highly positively charged
metal surface (typically to more than 50 V/nm) metal surface atoms will
at some point detach themselves. The atoms become ionized in the process,
with the removed electrons tunnelling back into the metal surface. This
process is called "field evaporation'.

The concept of field evaporation has been known since the early days
of FIM(I?), and is used to prepare clean emitter surfaces.

Field evaporation later formed the basic mechanism in the so-called
'""the atom probe”(ls), which provided the means for mass-spectrometric
analysis of the detached surface atoms. The time of flight (TOF) atom-
probe technique allows the analysis of very small regions of surface or
even single atoms. A later development is the so-called '"'imaging atom-

probe“(lg), which enables the detection, for a particular species, of its

location on the emitter surface.

1.5 Aim and structure of thesis

Having described some of the elementary concepts, we think it help-
ful to set down the aims and structure of this thesis.

Our primary aims are to develop a theory of highly positively
charged metal surfaces, and make it consistent with the theory of field
adsorption. For this purpose we shall try to free existing theory from
some conceptual errors, and redefine the most important variables (in
particular: polarizability, local field, penetration distance) in a self-
consistent manner. -7hen,we set up a new self-consistent model for a
charged metal surface, using the ideal case of an infinite planar surface.

Finally we apply our model to the practical calculation of field

adsorption binding energies, and fields and potentials above a charged

10



surface, using the system helium on tungsten (111) as a paradigm.
Because of the slightly confused and disjointed nature of existing
literature relating to these problems, this thesis has a special structure.
Chapter 2 is a review of relevant aspects of existing theories (up until
1978) of field-ion image formation, field adsorption and charged surfaces,
essentially considered as separate subjects. In chapter 3 we set down
the foundations of a new self-consistent theory, and clarify some basic
concepts. Chapter 4 describes the algebraic and mathematical formulation
of our model of charged surfaces and field adsorption. In chapter 5 we
make practical use of this by devising some computing procedures, which
are then implemented in a general computer program. In chapters 6 and 7
we discuss the results: chapter 6 deals with the field and potential
variations above a charged surface, with the characteristics of the
critical surface, and with the mechanism of field-ion image formation;
chapter 7 deals with the calculation of binding energies and makes some
comparative studies. Finally, in chapter 8 we summarise our conclusions

and discuss some ideas for future work.
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CHAPTER 2

REVIEW OF EXISTING THEORIES

2,1 Objectives

As just stated, the intention of this chapter is to summarise
relevant aspects of previous work on field-ion image formation, field
adsorption and charged-surface theory.

Historically, these three topics developed largely independently
of each other, and thus we deal separately with each, at the cost of
some slight repetition.

In each case we summarise the development and the main ideas up

to about 1978 when the work on this project started.

12



2.2 Field-ion Image Formation

2.2.1 The Rate-constant and Gas-concentration Hypotheses

The well-defined FIM image is the product of a complex process, in
which imaging-gas atoms are attracted towards the emitter tip and (in
effect) crowd around the most protruding atoms of the tip surface, before
becoming ionized and then repelled from these sites to the phosphor
screen (or an image intensification device). The continuation of this
process forms a traffic of ions; the number formed per second at a given
site is called "site ion current" (or site current), and is denoted by J.
The observed brightness of a particular spot depends on the corresponding

J value, whereas the total ion current Jto is the sum of all beams, i.e.

t

J =% aiavs et e DAL
tot 511 o

sites
Within the framework of a quasiclassical approach,(zo), J is the
product of a characteristic gas concentration C'", a characteristic electron
transition rate-constant Pe" and the effective volume of ionization, V.

Thus
o, o A IR TR S P L e, TN SRR HAN
=

Image contrast can be expressed in terms of relative brightness,
which is in turn described by the relative site current (i.e. the ratio
of the site currents). If we consider two surface sites A and B then the

relative brightness is given by
JA/JB = (CA"/CB").(Pe"A/Pe”B).(vA/VB) ..... 2o

If we assume the effective volumes of ionization zone are approxi-

mately equal (i.e. VA/VB = 1) then contrast must be due to the contribution

13



of the other two factors.
There are two conflicting hypotheses. The more conventional view,

(25) (a2, 23) (24)

originated by Muller and Tsong .

, and supported by Knor
is that the more dominant factor is the transition rate-constant. On the

(23, 25, 28) hypothesised that site-current variations

contrary, Forbes
are mostly due to the gas-concentration factor, i.e. the concentration of
imaging gas is relatively high above protruding atoms because of relatively
high localized field there. This leads to higher probability of finding
imaging gas atoms in the right position to be ionized.

An exactly analogous situation arises in the theory of image
resolution. Consider points A and M in the critical surface, at positions
exactly above an atom and exactly above the position half-way between

atoms, as shown in Fig.(2.1). The ratio R of the ionization densities

dJ/dV is given by

R = (dJ/dV),/(dJ/dV)y = (Co/C) x (P, /Pu)  eeeen 2.4

So a question arises as to which factor is responsible for the origin of
contrast. Forbes (private communication) argues that for atoms in a
close-packed plane to be resolved R must be greater than about 1.3. In
consequence, if one of the ratios on the r.h.s. is dominant, then this
factor must vary by 1.3 as between A and M.

The geometry of the tip surface has a great effect on image formation
and on contrast at specific regions. This is because it decides which
atom or group of atoms is relatively more protruding and thus at
relatively higher field. The relationship between'surface geometry aﬁd

field-ion image contrast is demonstrated by Moorés(27)

computer simulation
of a structured surface. However, at a more basic theoretical level the
question is 'how does the surface structure and/or the high field affect

the quantities C and Pe?”

14



For sometime, following Muller;gzﬁ%iginal idea, most of the work done in
this field assumed that the dominant factor affecting image contrast was
the local variation in the electron-transition rate-constant (i.e. the
rate-constant in eq.(2.4)). Knor(zzl, for example, suggested that there

is an enhancement in electron tunnelling in the direction of extending
unoccupied bonding orbitals of kink site atoms. Enhanced image brightness
in corresponding areas of field-ion images is observed. But there is no
reliable calculation to prove that the rate-constant is the dominant
factor generally. In particular, Iwassaki and Nakamura(zs) found that,

if the surface were bare, then they were unable to prove that the rate-
constant Pe was higher at point A (above an atom) than at point M (between

atoms). They also found, in common with Nolan and Herman(so)

, that the
adsorption of an intermediate helium atom caused a reduction in the
electron transition rate-constant; this result is not helpful to a rate-
constant explanation of image-contrast.,

On the other hand, Forbestzs' 26)

put forward a hypothesis that is
simplified into a '"provisional working rule', suggesting that: "Image
appearance is largely determined by the statistics of gas distribution.

The overall current generated above an area of surface is primarily

determined by supply-and-capture considerations, that is by the number of

atoms per unit time that finish or tend to finish accommodation within

the area. The distribution of current generated across individual small

areas of surface is likely to be significantly affected by gas distribution

processes that occur after or near the end of accommodation, these tending

to set up local Maxwell-Boltzmann concentration equilibria." Forbes®"
hypothesis is that the dominant factor in‘image contrast is due to the

- gas-concentration factor. The possible significance of the gas-concentra-
tion factor was shown in the following argument.

If thermodynamic equilibrium exists, the gas-concentration factor
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(31),

can be described by the Boltzmann equation

s e TS G S S S R T S TV A e S St 2.5
- 1 F2 2
it e R Sl TSRS SIS S RS . o 2.6
U being the gas-atom potential energy, bA is the polarizibility of the
imaging gas atom, and F is the local field.
Applying eq.(2.6) to points A and M gives:
2
= T g T T T W R e O 27
Cp/Cy = exp [(fabAF /KT) . (28F/F)]

T in these equations is the temperature of the imaging gas. Working out

the ratio C,/C,, for 1% field strength difference at an average field of
: 1f G Fis the Fidd diffevence
45 V/nm then givesﬂthe following results

Temp (;A/ C? A
80K 1.5
20K 5.4
SK 830

Values of CA/CW of this size are adequate to explain image contrast.
However, it is clear that cryogenic tip temperatures are necessary to cool

the imaging gas(oz’ 33).

Accommodation reduces the large lateral velocity
they initially have (as a result of the dipole attractive potential).

The use of cryogenic tip temperatures also increases the probability
that incoming atoms will be '"captured" by the tip, and reduces the number

of "hops'" made before trapping occurs into a particular region of the

emitter.

There is some evidenceE34’ 35, 36)

that the ionized imaging-gas
atoms are not in thermodynamic equilibrium with the emitter tip, and it

is convenient to replace T in eq.(2.5) by the effective temperature

.16
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T Ref.(31) suggests that Teff is between 4 to 7 times the emitter

eff’

temperature.

2.2.2 The effects of Field Adsorption

Although the temperatures are probably low enough to explain image
resolution, the question arises: '"What is the field variation in the

(37)

critical surface?" A rough calculation by Forbes suggested that for
a bare surface the field variation would be substantially less than 1%.
Hence for a bare surface the gas-concentration hypothesis would not
explain image contrast.

A solution may lie in the effect of field adsorption on the image
formation process. The theoretical explanation of how exactly that
happens has not yet been resolved. The first explanation by Muller & Co
- workergs}was that the adsorbed noble gas atoms provide an intermediate
collision mediwmfor transferring the dipole energy of the imaging gas
atoms to the metal substrate, so accommodation requires fewer hops because
of the greater efficiency of energy exchange of equal (or approximately
equal) interacting masses. Then we should expect that He adsorption
promotes imaging better than Ne adsorption. But this contradicts the fact

that the adsorption of Ne is a better image promoter than the He{SS).

Another suggestion by Muller (10> 38)

, but not proved, is that during

the ionization process the tunnelling electrons prefer to choose the

shortest distance, so they prefer to tunnel through adsorbed atoms.

Since Ne is a bigger atom than He there is a smaller gap between Ne and

the critical surface, so tunnelling is more efficient than with He.
Theoreticallquaﬁtum ﬁechanical calcﬁlation of tunnelling through an

adsorbed hoble gas atom have been madé by Nolan and Hermantso) using the

time dependent perturbation theory, including exchange effects. They
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obtained enhancement factors of 3 to 5 for He adsorbate and 30 to 90 for
Ne adsorbate. But when they included polarization they obtained an
enhancement factor of 0.4 to 1 for He, 2 to 10 for Ne. This reduction in
ionization rate-constant due to the adsorption was shown again in the
work of Iwassaki and Nakamuratza).

On the other hand, Forbes' '"gas concentration' hypothesis could still
explain the effect of field adsorption on imaging process, if adsorptidn
led to greater field variation in the critical surface.

Rendulic and Krautzcsgl

tried to bridge the gap between the two
hypotheses by the hypothesis of a "second adsorbed layer". They argue
that a second adsorbed atom on the top of the first one can still possess
some binding energy (i.e. his calculation gives B.Ea~ 0,02 ev for He).
As this is small, it cannot bind the second He atom permanently, but can
certainly bind it long enough to increase enormously the probability of
ionization (as a result of the increased dwelling time).

Rendulic and Krautz hypothesis assumes a complete accommodation of
the gas atoms to the tip temperature. In fact, accommodation is not

complete(zg’ 35).

But the author feels that Rendulic and Krautz hypothesis
is broadly equivalent to Forbes' hypothesis, since instead of dealing with
many mobile gas atoms in the right position to be ionized (i.e. Forbes'

hypothesis of gas concentration), Rendulic and Krautz hypothesis deals

with a single second layer atom staying long enough to be ionized.

2.3 Field Adsorption

2.3.1 Field Adsorption and the dipole - dipole interaction

In the early days of Field Ion Microscopy, an emitter surface
subjected to high positive electric field (i.e. between 40 to 60 V/nm)

was believed to be atomically clean, despite the presence of about 1 mTorr
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of inert imaging gas.

The weak binding energy due to London dispersion forces(do)
(approximately 10 meV) is incapable of adsorbing inert-gas atoms
permanently on the surface, because it is comparable with the thermal
vibrational energy of adsorbed atoms, even at liquid-nitrogen temperature
(k x 80K =~ 7 meV). The induced long-range polarization potential, due to
the presence of high field around the emitter tip, was held to cause a
hopping motion of imaging-gas atoms, rather than permanent adsorption(41).

The first experimental indication of field adsorption was promotion of
helium ionization when it is used as imaging gas, by introducing a small
quantity of hydrogen. This was explained as due to the invisible adsorp-
tion of hydrogen between the widely spaced atoms of the emitter surface(42).

An observed improvement of imaging conditions by adding a small
quantity of neon to the heliumt41) was assumed to be due to the enhanced
thermal accommodation of the hopping helium atoms when they collide with
temporarily adsorbed neon atoms rather than heavier metal atoms. The
invention of the atom-probe provided the first real evidence of helium

fleld adsorption; in 1969 Millert ™)

noticed complex helium ions and mole-
cular ions containing helium coming off the emitter surface after the
application of a desorption pulse. Ions such as W He+*+, were observed,
and the argument was that such ions could not be formed in the gas phase,
so the helium must physically have been present at the surface in the
first place.

The first published theory of field adsorption was put forward by
Miller and Tsong(l4? in 1970. They suggested that adsorption results from
a short-range field-induced dipole - dipole interaction, which drastically
modifies the electric field in the vicinity of the kink-site metal surface

atom. They suggested that there was a field-induced short-range binding

energy AB(conv.) at a binding site above a kink-site atom, given by:
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AB (conv.) =% b, (£, - T RS TR S e ey 2.8

where bA is the polarizability of the inert gas atoms.
fA is an enhancement factor due to field induced
dipole - dipole interaction;
ext

F is the '"applied" or '"external" electric field.

The enhancement factor fA is obtained from:
5 5
fz = [1 + 2b/ame 5°1/[1 - 4bb /(4re S i W T 2.9

where bE is the polarizability of the metal emitter surface atom; €, is
the electric constant; and S is the separation of the emitter and
adsorbate atoms.,

(In writing down these formulae, we have converted the formulae
originally given into an SI form, and have used our own notation rather
than that of the original papers).

Using simple calculations, Milller and Tsong(14) found that the
binding energy was largest when the inert-gas atom is situated at the
apex of a surface metal atom, and suggested that field adsorption occurs
at the apex of the metal surface atoms rather than at the inter-atom
position as is the case for ordinary adsorption (i.e. if there is no
applied field).

The repulsive potential between neighbouring field-adsorbed atoms
was found to be of the order of 0.01 eV, and turned out to be negligible
compared to a ten times or more dipole - dipole interaction. Short-range

(14)

binding energies calculated by Tsong and Miiller , directly above kink-

site atoms on a tungsten (110) plane, at the best imaging voltage FBIV’

were found to be: 0.13 eV for a He atom at F V= 45 V/nm; 0.14 eV for a

BI
Ne atom at F = 37.5 V/nm; and 0.15 eV for Ar atom at F

BIV
Later, Tsong and Mﬁller(ls}

BIV = 22 V/nm,

, by examining statistical considerations

and expressing the probability of adsorption in terms of experimental
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parameters available using the atom-probe, showed the dependance of
adsorption probability on temperature and field, and thence experimentally
inferred the short-range binding energy to be 0,23 eV for He on W(114) at
a holding field of F = 49 V/nm, and to be 0.28 eV for Ne on W(322) at a
holding field F = 50 V/nm.

(18)

Simultaneously, Forbes suggested an alternative mechanism to
explain field adsorption. He represented the charged metal surface by
discrete positive charges, and calculated the short-range adsorption
binding energy of He on W to be of the order of 0.1 eV. This may not be
large enough by itself to explain the adsorption phenomenon, but there is
also doubt as to the validity of the method used.

These arguments seemed to demonstrate the existence and the theoretical
plausibility of field adsorption. Field adsorption was also believed to
enhance the local image contrast significantly, either by enhancing the

(14)

jonization rate-constant as argued by Tsong and Miiller , or by enhancing

the field variation above the tip surface, and hence enhancing the gas-
: e (37)

concentration variation as argued by Forbes -

The point that the enhanced field variation could be the cause of

image contrast effects was made earlier by Forbes(44).

(45, 46, 47, 48)

To explain the
hopping bright spots appearing when introducing a small
quantity of a heavier inert gas (like Ne) to the chamber containing the
lighter imaging gas atoms (He usually), we could assume that Ne atoms
replace adsorbed He atoms, and so enhance the field even more, and hence
enhance the gas-concentration above them. In consequence, the neon atoms
enhance the local ion current J, which gives brighter image spots. A
similar effect would of course be achieved if the adsorbed atom enhanced
the ionization rate-constant(47’ 49)..

It has been assumed in the above disussion that helium atoms are

adsorbed as neutrals. An alternative suggestion was put forward by
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R61llgen and Beckey(so), that helium and other inert gas atoms are

adsorbed on surface as ions. But it seems to be a very remote possibility
that there would be sufficient field penetration into the metal for the
ionic state to become the ground state for these adsorbed imaging gas

(51)

atoms , certainly for the lighter atoms.

2.3.2 Models of Field Adsorption

As explained above, Tsong and Miil1er 14 based their calculation on
the interaction of two parallel dipoles representing a single emitter
atom and adsorbed inert-gas atom in an applied electric field FeXt; this
model was later called by Forbes the "isolated-dipole pair (IDP)" model.
This is represented mathematically by equations (2.8) and (2.9).

Tsong(sz)

later attempted to develop the (IDP) model to deal with
the case of adsorbed atom (represented by single dipole) sitting on a.sub-
strate of metal surface atoms, represented by an array of dipoles. This
model was based on a new analysis of the field-induced dipole - dipole
interaction between two atoms. Equation (7) in ref. (52), when expressed

in scalar form, implies that the short-range interaction energy Ae between

two dipoles is:

2 3
Ae = 2 PE (ad) PA (ad)/dneos e s g,

where PE (ad) and PA (ad) are the SI dipole moments of the emitter atom
and the adsorbate atom in the ''as adsorbed" state, and S is the separation
between the dipoles.

However, the above Tsong formula waslponteste& by Forbes(ss) forltwo
~ reasons. Firét,‘on érounds of classical électrostatics: for polarizable
dipoles the full expression for the shorf-range interaction energy should

be:
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of

ae = [P, (ad) - P, (ext) + P, (ad) - P (ext)] F** +

3
2 PA (ad) PE (ad)/dwsc SR U T IR R O 2,13

Obviously,Tsong's formula (eq. 2.10) ignores the first term of (eq. 2.11).
Second, Tsong implicitly identifies the electrostatic interaction between
classical dipoles (Ae), with the field-induced binding energy component
B®Y. This is true in the case of atoms with permanent dipole moments,
but not true in the case of polarizable atoms, since part of the inter-

acting energy is converted into internal electronic energy as given by

the following equation:

AB®" = Ae - AV _ 2.12a

where AV is the increase in internal electronic energy.
Forbes also argued(ss) that there is a fault in the conventional(14’15)

treatment of the (IDP) approximation, in that the ''change (Aus)'in the

internal energy of the source of the field acting on the adsorbate atom'

has not been taken into account. Thus the electric component (ABEI) of

the binding energy is related to the conventional expression AB(conv.) by:

el

AB™" = AB(conv,) - ﬁUS Ve 24 12D

In the IDP approximation, this correction is of the order of 5 - 10%.

In an attempt to bridge the ideas of Miiller and Tsong on the one
hand, and Forbes on the other, Rendulic and Krautz(sg) argued that there
exists a second mobile layer of adsorbed atoms on top of the first fixed ﬁﬁ?yL
adsorbed atoms. These second-layer atoms have a high probability of
ionization. To estimate the binding energy they extended the (IDP) model
to include a second adsorbed atom on top.of the first one, Calculated
binding energies for helium in a field of 45 V/nm were about 0.02 eV.

All the above models are based on the interactions of pairs of atoms.
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This type of model may be appropriate for a kink-site, but looks
inappropriate for a crystallographic plane; array models seem likely to
be better.

Attempts to calculate fields above a finite square array were made

by Forbes(37) and by the present author(54).

These showed the existance
of effects due to the finite size of the array, and suggested the use of
infinite arrays, and hence the topic of this thesis. The first published
discussion of the infinite array situation, however, is that of Tsong[sz).
As a result of the work described in this thesis, deficiencies in this are

now known to exist, and are discussed in chapters6 and 7.

2.3.3 Summary

To conclude this section, we restate the main physical points
concerning field adsorption. Field adsorption is an interaction that
occurs between strongly positively charged metal surfaces and inert gas
atoms. The adsorbed gas atom is bound to the apex of the metal surface
atom because the binding energy maximises above the metal surface atoms,
rather than idbetween them (as is the case in the absence of the field).
Field adsorption differs from ordinary physisorption and chemisorption in
that:

(1) the short-fange binding energy is much larger than that due to
dispersive forces (i.e. ten times or more);

(2) the nature of the short-range bonding energy is physical (i.e. mainly
dipole - d}pole interaction) rather than chemical (i.e. ionic or coValent
bond). There is also a strong belief tha; field adsorption is the mijor

factor in forming the image contrast in the FIM.
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2.4 Charged Metal Surface Theory

2.4.1 Jellium-type models

All inter-atomic forces and metal surface forces originate from the
electro-magnetic interactions of the nuclei and electrons comprising the
system. The quantitative description of these forces (and of the charge
distribution at the metal-vacuum surface), needs the use of quantum
mechanical principles, and calculations must in principle be based on the
mutual interactions of all entities making up the system. In practice,
this task is too difficult to carry out. Even very limited attempts, like
finding a formula for the charge distribution of a model of a 6 x 6
hydrogen—atom-like surface(ss) by quantum-mechanical means, face so many
complications that it is very difficult to find.

Convenient simplification and approximation, with the help of a
suitable metal surface model (which may not necessarily represent reality-
well), have been most useful in investigating many problems. Surface
forces have been treated implicitly in what we may call ''Surface charge
theory'. The formalization of this theory startéd by the early work of
Frenkel(56), who treated the surface problem from the standpoint of

(57)

Thomas Fermi theory In this, free electrons at a metal surface were
treated as a classical liquid; the electron density n(r) plays a central
role.

This was followed by an important self-consistent work by Bardeents)
on sodium, He formulated the base of the very widely used "Jellium"
Surface model of the metal. In this the Ppsitive ﬁuclear charges of the
~atoms are supposéd to be émeared together, to form a rigid positively

charged background (i.e. homogeneous positive charge at all x'g 0, where

x'= 0 marks the surface). The electrons are assumed to spread out above
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the background as a cloud, and the whole sum of pcsitive and negative
charges is zero. This picture of a metal surface was useful in calcu-
lating the work function, as the sum of two main contributions: the
binding energy of electrons due to a volume (or ''bulk'") contribution;
and the electrostatic energy required to move an electron through the
electrostatic surface double layer. This included an attempt by Bardeen
to include the effect of correlation (polarization).

During the following three decades, there was very little interest
in tackling the problem of the metal surface(z). One paper of particular

(58)

interest was by Smoluchowski , who suggested that the variation in
work function of tungsten as between different faces is due to the varia-
tion in the contribution of the double layer. Working on a surface model
using S-polyhedra, he showed that there are two effects tending to cancel
each other. The first is a smoothing of electron charges by moving between

surface lattice cores; the second is due to the partial spreading of
electron charges outwards towards the vacuum. These effects are responsible
for the variations in work function.

Interest in surface theory revived in the early sixties, In parti-

(59, 60, 61) worked on the construction of a

cular, Kohn and colleagues
form of surface theory that was designed to deal with a system where the
electron density was inhomogeneous and slowly varying, and to include the

effects of exchange and correlation. As described below, this system was

subsequently developed to deal with the existence of a weak external field.

2.4.2 Charged Surfaces and the Jellium model

With a neutral surface, the main objective of jellium-based calcula-
tions was to obtain values for quantities such as the work-function. At

a charged surface a new problem arises: where is the "effective electrical
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surface'" of the metal? - i.e. the surface defined in such a fashion that
(at large distances x from the surface) the electrostatic energy v of an

electron is given by

AR e il e Sk i T e R e e i TR - 215

where e is the elementary charge and F is the external field.
This problem is often discussed in terms of (so-called) ''field
penetration'. Distance x measured from the electrical surface is related

to distance x' measured from the jellium surface (see fig.2.2) by:

x =x' + A R ey e
Thus v is given by:
v = eF(x' + 1) M A

The parameter A is called the '"effective field penetration length".

The determination of field penetration length is vital in studies of
FIM, particularly those concerning ionic adsorption binding energy, field
evaporation, and field ionization, because this length A is not small
compared with the distance of the adsorbed atom from the '"surface' or the
critical distance of field ionization X, (inside which no auto-ionization
could happen). For example, Miller calculates{Y) X, for Helium on tungsten
as 0.45 nm and estimatesA as 0.05 nm,

The problem of field penetration length has been approached in various
ways. It was first investigated by Rice(62), who assumed that the electrons
were confined behind the jellium surface, and used‘degenerate Fermi
statistics. Anothér approach(és) simply considers an exponential decay of
field inside the metal surface. Gomer and Swanson(ﬁd) introduced the idea

of field penetration length in their theory of field desorption.

Tsong and Mﬁller(65) describe the field penetration effect in terms
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of a change in work function, but follow in the footsteps of Rice by
treating the metal surface electrons as a degenerate Fermi gas confined
behind the jellium surface. The effect of a weak electric field was
calculated by solving Poisson's equation with a suitable boundary condition.
They estimate A to be in the range 0.021to 0.1 nm,

Lang and Kohn(66)

continued the development of metal surface theory
in an important piece of work, by producing a profile of the surface
charge induced in the presence of a weak external field. They apply a
linear response formalism to the electron motion, the electrons being
allowed to "spread" outside the jellium surface. They find that:
(1) The centre of mass of the induced charge is outside the jellium
surface, by a distance that is independent of field but depends

on the metal electron density. (Typical values lie in the range

0.06 to 0.08 nm).

(2) In the limit of large distances, the electrostatic potential
energy of a point charge is proportional to distance measured
from this centre of mass, and the correlation potential energy
is given by the image potential,with distance measured from this
centre of mass. Lang and Kohn call the plane passing through
the centre of mass the "effective metal surface", but clearly it
may be identified with the ''metal's electrical surface", as

defined here. Lang and Kohn also find that:-

(3) The classical turning point for electrons is outside the

electrical surface, by a small distance (about 0.04 nm).

The significance of this result will become clear later,
An alternative approach to the charged surface problem was formulated

(67)

by Theophilou and Modinos This was based on an approximately self-

consistent calculation, that avoids any abrupt boundary condition at
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x' = 0 (i.e. at the jellium surface). In contradiction to Tsong and
Miiller, and Lang and Kohn, Theophilou and Modinos find that the metal's
electrical surface has a position that varies with the field strength,
and may be inside or outside the jellium surface,

Thus at the present time, jellium models do not give a clear picture
of '"field penetration'. The parameter A as defined in eq.(2.14) may be
positive, may be negative, and may or may not be independent of field -
depending on what theoretical assumptions are made.

Apart from the above difficulties, use of a jellium-type model in
the context of field-ion emission is problematical because it ignores the
facts that a real surface is structured, and that this atomic structure is
observed in a field-ion microscope. In a sense, there has always been a
double standard in the theory of field-ion emission. In considering some
physical phenomena (e.g. field evaporation) an unstructured jellium-type
model has been used; but to discuss other problems ( in particular field
adsorption) structured models are employed. The merit of the self-

(68) and developed by the present

consistent model originated by Forbes
author, that is described in the next two chapters, is that both types of

problem can be dealt with in a unified treatment.
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CHAPTER 3

DEVELOPMENT OF NEW THEORY

3.1 Objectives

As became clear in chapter 2, the consequence of the invention
of the field-ion microscope in many ways demanded a new look at many
theoretical aspects of charged metal surfaces, the imaging process, and
field adsorption. However, existing treatments have been found not clear
enough, not self-consistent and even not correct in many aspects of the
theory and its applications, in our view. We think that by setting up
the foundations of a new self-consistent theory, and by clarifying some
past concepts, we can make a useful contribution to this field, that
could pave the way to further steps.

In this chapter, we deal generally with congeptual aspects, leaving
the algebrai¢ aspects to the next chapter. We start by summarising the
evidence that now exists concerning field adsorption, and go on to discuss
a new charged surface model and develop a new treatment of field adsorption
in sec.3.3. This leads on to careful definitions of field and polariza-
bility in sec.3.4, 3.5 and 3.6. The concept polarizability has been a
source of much confusion, and we devote particular attention to this in
sec.3.5. Finally, a simple discussion of the binding energy and the effect
on it of the repulsive forces is described in sec.3.7.

Much of the work in this chapter has been carried out and developed

jointly with Dr. .R.G. Forbes.
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3.2 Evidence of field adsorption and the concept of binding energy

As already stated, the existence of field adsorption was first

(43)

inferred experimentally by Muller when metal-helium complex ions were

detected by the atom-probe. Other experimental evidence came from imaging in

(45, 46, 47, 48)

a mixture of gases , in the "hopping bright spot"

phenomenon. But the strongest evidence probably comes from the measure-

?1). It is noticed that,

ment of field-ion energy distributiongsg’ 70,
when a second-species gas such as hydrogen is present the field-ion
spectrum from helium contains a main peak (corresponding to ionization
near the critical surface), and a low-deficit subsidiary peak correspond-
ing to the energetic ions. The analysis of this subsidiary peak shows
that those ions could only come from a field-adsorption site within the
forbidden zone, and presumably result from the excitation by the impact
of electrons from the second-species gas atoms.

All the above evidence leads to a strong belief that, at high fields
as used in FIM, there exists a layer (or partial layer) of adsorbed inert
gas atoms at the emitter surface. And theory suggests that each one of
those atomsiitrongly bonded to the apex of one of the metal surface atoms
(see section 2.3 for details). There is almost total consensus as to the
short-range nature of the binding process.

We may define the field-adsorption short-range binding energy AB as
"the energy required (or work done) to remove an adsorbed atom from its
adsorption site to a position in the external field FXt v The total
binding energy B'of an individual field-adsorbed atom is the work needed
to remove this atom to remote field-free space. This work can be split

ext
)

into two parts: a long-range part (i.e. % bA.(F 2), equal to the

electric-field-induced binding energy of an isolated imaging gas atom in
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the (approximately uniform) external field, acting somewhat above the
surface; and the short-range part AB. The total binding energy at a

specific bonding site above the emitter surface can thus be written as:

ext

- 2
B = % bACF )4 + AB

where bA (as before) is the SI polarizability of the adsorbate atom.
There are components in AB resulting from the different types of
interaction between the field-adsorbed atom and its surroundings. These

are: -

(1) London dispersion forces between atom and substrate(40)°

2) Repulsive "interpenetration" forces between atom and
P P

substrate(40);

(3) Lateral forces due to the above causes;

(4) "Indirect" lateral forces, mediated via the substrate(?s)‘

3

(5) Field-induced forces.

Thus we may write:-

lat - indir elec

AB = ABSESP . ABTCP . s AB A G 3.2

The nature and sizes of the first four types of force will be discussed in

more detail later. But in the context of field adsorption the dominant

component is the electric-field-induced part (aB®1%¢

).
elec ; :
Most attempts to calculate AB have equated it with the '"'conven-

tional'" expression for binding energy, AB(conv.) given by:

; loc, o 1 ‘enBXT, o
'AB(convi) 5 b(F,~ ) = & bA(F )

1 g - ext, 2
% b, (82 - 1) (P

where FAloc is the self-consistent local field acting on the adsorbate
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atom at the adsorption site, and BA is the field ratio:

¥ foc ;_ext
ox B, E alnn e 3R

Bi is sometimes written f,, as in eq.2.8,

(

Forbes 23) has recently pointed out that the conventional concept-
ual treatment of field adsorption ignores an induced change in the
internal energy of the source of electric field.A change aUS is induced

by the removal of the adsorbate atoms and consequently:

Belec

A = AB(conv) - aUS Ll A

The AUS contribution is of the order of 5% for the IDP model for the He/W

(53)

system , and is assumed to be of similar order for more complex systems.

At this point it should be made clear that the values calculated for

AB and AB®'®eC

will depend on the nature of the removal process involved.
It would be possible to consider a process in which a complete layer of
adsorbed atoms is: (a) removed as a whole from the surface into a region
of space where the applied field is FEX but atom-surface interactions
are negligibly small; (b) dispersed laterally until atom-atom interactions
are negligibly small. This process would define mean (or integral) values
of short-range binding energy and AU .

But of more interest in the field-ion situation is the work needed
to remove a single atom from the field-adsorbed layer to a position in

the external field, with the other atoms remaining in their places in the

layer. This process defines '"differential" values of short-range binding

energies and AU_, dnd can also be seen as the work needed to create a
vacancy in the field-adsorbed layer. In what follows we shall assume

that AUS and all AB-type symbols refer to this '"'differential' or vacancy-

creation-type removal process.
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In this context Forbes (private communication) has very recently

proposed a generalised interpretation of eq.3.5. He argues as follows:
"5Bele° is difficult to calculate because creating the vacancy reduces
the symmetry of the situation and causes changes in the induced dipole
moments in the vicinity of the vacancy. It is much easier to treat the
situation in which the dipole moments of all the emitter and adsorbate-
layer atoms (other than that of the vacancy-site atom) are taken as
"frozen'' at their complete-layer values during the removal process: the
work relevant to this removal process may be denoted by AB(main). If the
frozen moments are then allowed to relax, there is a change &Us in the
potential energy of the system. To obtain aBEIEC, this quantity &US must
be subtracted from AB(main)."

The advantage of this interpretation of eq.3.5 is that the two terms
in it both have physical rather than algebraic definitions. Forbes then
argues that, strictly, AB(conv) as defined by eq.3.3 and AB(main) are not
identical: '"In principle AB(main) is obtained from the formula for the

potential energy U.

1sol(F) of an isolated atom in a field F, as

ext loc

AB(main) = Uisol(F ) - Uisol(FA VAT SRR 3.6
This quantity Uisol(F) is given by
=INRr T 2t :
Uisol 5 bAF (higher terms)

where the higher terms relate to hyperpolarizabilities and field-gradient

polarizabilities(74) of the imaging-gas atom. Thus, in reality:
R o W SIS T i B T Lo 3T
AB(main) = AB(conv) + (higher terms) = ..... 3.8

So AB(conv) as defined by eq.3.5 is, in the generalised interpretation of
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eq.3.8, only the lowest in a series of terms that appear in AB(main) and
hence should appear in ﬂBelec."

This generalised interpretation is of very recent origin, so we
shall ignore the "higher terms" in eq.3.8 in the main part of this thesis,
returning to consider them (in chapter 6) as a correction to our results.
We thus concentrate op AB(conv).

To calculate AB(conv) we need a value for BA’ the field ratio at an

adsorption site. And to derive this we need a specific model for a

structured surface.

3.3 The "monopole-dipole' surface model

To avoid many difficulties arising from the jellium model, and from
other inconsistent treatments of the metal surface, as described in
chapter 2, Forbes(68) has suggested an alternative charged metal surface
model.

This consists of a regular infinite planar array of superimposed
dipoles and point positive charges (monopoles), together with a distant
parallel array of charges of opposite polarity as shown in Fig(3.1).

This model has been adopted in this thesis because we believe that the
jellium model cannot any more represent an acceptable basis for the FIM
theory, and that this alternative model can be a first step towards
developing a more sophisticated quantum - mechanical model in the future.

The use of dipoles in the charged-surface model is simply an
extension, to the infinite-planar-array situation, of their use in the
IDP model. The introduction of mon0p01e$‘perhaps.needs some explanafion.

Forbes argués that ﬁﬂller and Tsong in their hypothesis of field
adsorption did not explain the source of’the external field (what they
call the applied field). He thought of the external field as a logical

consequence of an excess positive charge at the metal surface. The excess
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Fig.3.1

A schematic diagram of the monopole-dipole metal surface model
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positive charge is due to the removal of some electrons from the metal:
surface. In reality the excess positive charge must be localized in a
small volume surrounding the mean position of the nuclei of the metal
surface atoms, and can be approximated by point charges. This model is
applied to an infinite surface plane of a single crystal, so that the
whole picture at this stage will look like an infinite planar array of
positive point charges.

The assumption of an infinite array, though unrealistic, is necessary
as a first approximation, and to overcome any unnecessary difficulties due
to the edges effect and to unsymmetrical field and potential contributions(

For electrostatic self-consistency, the withdrawn electrons have to
be placed in a capacitor configuration with the excess positive charge
(i.e. the quantity of the negative charge on the '"'distant'" plane shown in
Fig(3.1) is equal to that of the positive excess charge). The argument
is valid even when the negative charges array is at infinity.

If the excess positive charge is averaged, so that there is a charge
quantity ¢ per unit area, then by applying Gauss. theorem the external

field (well above the charged surface) is given by:

e o/e, s 3.9

Each of the planar arrays contributesa field component of magnitude

ext

5 c/so (or ¥ F7"), They add in the middle to give FEXt, but cancel each

other outside the planes, as shown overleaf.
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Forbes then argues that, in reality, at a charged metal surface, the
electron distribution around each surface atom is not spherically
symmetric. The true charge distribution at a structured surface is not

known, but as a first approximation it can be represented by an array of

dipoles superimposed on the array of point positive charges. (The need
to include the dipole array was demonstrated in Ref.(68), where it was
shown that binding energies calculated on the basis of a monopole array
alone were not high enough to explain the existence of field adsorption).

The adsorbed inert gas atoms are also represented in the model by an
array of dipoles. Each of those dipoles is positioned directly above a
corresponding metal surface dipole.

The question then arises as to what strengths should be allocated to
the dipoles. This leads on to questions concerning the definitions of

fields and polarizabilities, which we now consider.

| =

negative
distant array

2

Gaussian surface ———p

T

S e

%
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3.4 The electric field

Failure to distinguish between the self-consistent local field (Floc),
and the external field (FBXt) may lead to great error in the evaluation
of the binding energy at a metal surface, since FIOC can be greater or
less than F°XT,

An electric field can be produced either by applying a voltage to
the emitter surface, which produces an excess charge, or/and by introducing
a finite charge or dipole above the emitter surface, which induces a
change in the charge distribution at the surface. The sum of the field
created by the induction effect, and the original local applied field is

(53)

called the self-consistent local field. This is defined by Forbes as

the ""field that would act at the position of the nucleus of the atom, in
the absence of the atom itself, but in the presence of any effects induced
by the atom when itself present." The external field (FGXt) is. the field
that exists somewhat above the charged emitter surface, at a position
where effects due to localisation of charge in the surface are negligible.

gtk can be evaluated by applying equation 3.9.

3.5 Polarizability

One of the largest confusions in the FIM literature is over the
polarizability factor. Though this sub-section cannot be a perfect
account of the main defaults associated with this term, it is hoped to be
able to clarify much of the confusion, and to define the polarizability in
a self-consistent manner.

The first three sub-sections are devoted to basic definitions and
units concerning ''proper SI polarizability", and this is followed by sub-
sections discussing other quantities that have been called "polarizability"

or "effective polarizability'". We then discuss the conventional estimates
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of surface-atom polarizability, and the defects of these. And finally we

discuss better ways of estimating polarizability.

3.5.1 Basic definition

Strictly, polarizability is a term associated with the polarization
of the positive and negative charge distribution of an atom or molecule,

under the effect of an electric field. The polarizability b is given by:

ptOt = U # bF10c + higher terms dicieis s 950

where ptOt is the total SI local dipole moment

b is the "proper" S I polarizability
pu is the SI dipole moment that would exist under the
condition of zero local field.

The higher terms are terms associated with hyperpolarizabilities and

(73)

field-gradient polarizabilities , and can be ignored as a first
approximation. However, in field adsorption these terms cannot really be

ignored, and we return to this point later.

3.5.2 Units of Polarizability

The SI unit for polarizability is C V'! n® or J V'2 n?. This is most

easily seen from the binding-energy expression

g b BB e

However, in the context of field-ion emission it is convenient to express
; 2 : -1 3 5 :

energy U in eV and fields .in V nm ~. Thus a more convenient unit for

polarizability is the eV V-2 nmz, or the meV V-z nmz. These units have the

same dimensions as the SI unit and the conversion factor is

1meV V2 mm® = 1.602189 x 1040 3 v~2 p?

a1 -



3.5.3 SI Polarizability and Gaussian Polarizability

Equation 3.11 can also be written in the form :

U = -3 (4ne_ b)) (F°%° e s RL T

where bs (= b/4wao) is the so-called "Gaussian polarizability' of the
atom or molecule. The SI unit for Gaussian polarizability is ms, but bS
is most commonly cited in RS. The numerical conversion factor between

b and b5 is given by:

2

n

b/aeV V% nm 0.694456 bS/RS

(75)

It is to distinguish b from b that we call b the "SI polarizability",
Most discussions of polarization in field-ion literature between
1960 and 1980 are in terms of a gaussian polarizability expressed in 33
and an SI field expressed in V/R or V/nm, In effect a dimensionally-
inconsistent equation, from which the 4ﬂEo term has been omitted, has

been used.

3.5.4 Polarizability and Polarization-energy coefficient’

If we ignore p and the higher terms in eq. 3.10 then this equation

can be written in the form:

loc

p = DF = bBFext ST 5 )

loc/Fext'

where B is the field ratio F Similarly, the polarization energy

U is given by:

B = T I T R 3.14

Ignoring B in eq.3.13 and 82 in eq.3.14 can lead to large error.

Forbes defines the "dipole-moment coefficient" g as:
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and the ''polarization-energy coefficient! ¢ as:

e = % o ALA0

He further suggests (private communication) that in the literature the
symbol o sometimes means b/4ﬂ€°, sometimes means c/4we0 and may sometimes
mean g/4ﬁeo. This is why a new symbol (b) has been introduced for
polarizability, to replace a, and why we call b the "proper SI polarisa-

balityiie

3.5.5 The Polarization term in Field Evaporation

Muller(21) found it necessary to include a term in the evaporation
activation energy equation, relating to the difference in the polarization
of a neutral atom at the surface and that of the same atom when it becomes
ionized during desorption. The polarization energy correction according

to Muller in this case is given by:

U = %o, - ai)(FQXt)z o AN

where o, is the so-called '"'surface polarizability" of the neutral atom,
and a, is the so-called polarizability of the ion,

The idea of '"surface polarizability' was introduced by Muller on the
assumption that the metal surface atoms are partially immersed in the
surface electron cloud. Hence e, is different from the free space polar-
izability. Forbes (private communication) argues that this equation and
approach need some correction, because it 'is assumed that both the atom

~and the ion are in the same environment field (FEXt

); really one should
consider the local fields at the position of the neutral atom, and at the

position of the ion at the critical surface. He prefers to write the
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polarization term in eq.3.17 in the form:

3 2o 2
d o oilen' s o) #dbig < BB Al e 3.18

where Ba is the field ratio for the bonding site (atom present);
Bi is the field ratio for the critical surface (ion present);

d is sometimes called "effective polarizability"

eff
There is also a question as to whether ba is the same for a (partially
jonised) surface atom as it would be for the same atom (neutral) in free

space. The present approach separates the issues of "what is Ba” and

“what is ba”.

3.5.6 Charge-transfer Polarizability

In the preceding sections the terms 'polarizability" and '"polarization"
have referred to the polarization of atomic orbitals. But these terms have

(76)

: : 2 ; 2 : -
also been used in literature when an F~ energy term arises in circum-
stances involving partial transfer of electron charge from a surface-

adsorbed atom to the substrate. In these cases it is more appropriate to

talk of 'charge-transfer polarizability". The theory of charge-transfer

polarizability has been reviewed by Tsongisz).

3.5.7 Effective Polarizability (Tsong and Muller, 1971)

Tsong and MullerclsJ suggested that the apparent polarizability of
an inert-gas atom close to a Tungsten surface would be less than the
free-space value. By using a simplified quantum-mechanical method they
derived an expression dependent on the penetration distance (A) and the
surface-to-adsorbate. distance. Their argument is based on an assumed

penetration of the electron charge clouds of the inert-gas atom inside

the jellium surface, and there is doubt as to whether this is physically
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reasonable.

3.5.8 Effective Polarizability (Forbes and Wafi, 1980)

Another use of the term '"effective polarizability'" is in connection
with eq.3.10. For noble gases we may assume p = 0, but strictly we can
not assume this for an emitter substrate atom. Within the framework of
our metal surface model, this may be taken into account by substituting
for the emitter-atom polarizability bE an "effective'" value bE(eff)

given by:

tot loc loc

Bo" ™ b (eEEHe = # Bulliw uofb B i L S 3.19

where the term in brackets represents a correction factor. A reasonable
estimation is that Mg is of the order of 0.01 e.nm, and the correction
factor can be up to (approximately) 1.3{77). The size of the correction
factor depends on the value of the local work function, and varies with
the crystallographic orientation.

In practice, the error involved in using b, rather than bE{eff) is

E
less than the uncertainty over the value of bE itself, so it seems
satisfactory to normally neglect the effects of any zero-field dipole
moment. However, the correction is not really negligible and the figure
here suggests that a more thorough treatment will eventually be required.

A similar approach in terms of an effective polarizability can in

principle be used to deal with the "higher terms" in eq.3.10.

3.5.9 Conventional estimates of polarizability

There have been various attempts to estimate the '"polarizability" of
surface metal atoms, Within the framework of the jellium model, Muller

(see Ref 7, p68) attempted to derive an expression for c/41reO by equating
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the polarization energy of an atom to the polarization energy of the field,
in the situation where field penetration occurs. But this treatment seems
unconvincing.

The first experimental approach was to derive a value of c/4neo from
measurement(78) of the field-sensitivity of evaporation rate-constant,
assuming a charge-exchange mechanism of field evaporation. But Forbes(79)
has shown that there is a mathematical flaw in the analysis of these
measurements, and that the derived '"polarizability' values are not valid.

An alternative approach(lsJ fitted a theoretical curve to an experi-
mental field-adsorption isotherm, to give an adsorption binding energy,
and then derived a gaussian polarizability b/41reO using the IDP model,

This derivation is not valid because mutual depolarization of surface
atoms has been neglected. Depolarization effects decrease the binding
energy of the adsorbed atom to the surface, for a given assumed value of
proper surface-atom polarizability, as will be seen later.

Yet another approach(76) was to derive a value of c/4wao from the
average velocity of the directional walk of a tungsten adsorbed atom.
c/4weo for a W adsorbed atom on W(110) plane was found to be 9.2 AS,
which is more than that obtained by field evaporation rate-constant
experiments. However, the quantity derived from diffusion experiments is
a charge-transfer polarizability, and it was suggested that this quantity
is related to the electronic density of states of the adsorbed atom. This
quantity is not necessarily relevant to a surface atom in a cystallographic
plane.

Thus none of the conventional approaches provide a valid estimate of

the proper polarizability .of a surface metal atom.

35.5.10 Alternative Estimates of Polarizability

Theoretical estimates of the polarizabilities of various metal atoms
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(80)

in free space were made by Thorhallson et al. , using a simple form of

self-consistent-field quantum-mechanical calculation. Results in the units
used here are tabulated in Ref.(75); for tungsten the value is 11.7 meV V'znmz.
In those cases where experimental data are available for comparison the
Thorhallson et al values are approximately twice the experimental values,
and this had led Miller and Bederson to suggest in their reviewcel) that
all the Thorhallson et al. values should be '"scaled" to give ''best estimates'
of free-space polarizability for materials where no experimental data is
available for comparison., For tungsten this results in the value
7 meV V_anzt 50%. This value is somewhat higher than the polarizability
values commonly stated in field-ion literature; we shall treat it as an
upper limit for surface-atom polarizability.

Because a surface atom is in a different environment from an atom in
free space, there is no good reason to suppose that the polarizabilities
of a given species of atom in these two situations will be the same. No
reliable theory relating the two polarizability values yet exists.

An alternative experimental method of determining a proper polariz-

(82)

ability has recently been suggested by Forbes This is based on

measurements of '"'anomalously low" helium ion energy deficits, carried out
by Culbertson et 31(71).
Ref. (82) shows that at a charged surface there is a work-function

correction (negative if the external field is positive), associated with

a polarized layer of atoms, given by:

5% = -k beF***/Ac M Lol 3028
where: A is the area per atom in the lafer;
and ‘M is a parameter with the role of a relative permittivity for the

array. This parameter M depends on the structure of the array, and on the

value of b, and its derivation is discussed in chapter 4.
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Forbes argues that 6¢e can alternatively be thought of as a shift
outwards in the effective electrical surface, from the plane of the super-

imposed monopole and dipole layer, by a distance d given by:
e ext
d =-46¢"/eF PR

If x' denotes distance as measured from the jellium surface, then
for an adsorbed helium atom in contact with the jellium this is equiva-

lent to the relationship:
= - !
d {rw & rHe) (x ad + A) Soaan 508

where Ty and T, are the known tungsten and helium-atom radii, and A is
the '""field-penetration distance' as used in chapter 2. (Note that Refs.

(71) and (82) use z 4 for x'_, and A"! for A).

d d
.The vital step was supplied by the work of Culbertson et al, where
the value of (x'ad + 1) was empirically determined. This enables a value .

to be obtained for d, and by combining eqns.3.20, 3.21 and 3.22 we have:
d = 3% b/AeOM Siae SuZo

M contains b in this equation, but b is the only unknown, and hence the

proper polarizability can be determined. The results are shown in table

3.1 below,.
Table 3.1
-2 2
Facet (x'ad + A)/pm b/meV V “nm
Lty 180 2.07
(112) 171 2,01
(011) - 164

Forbes suggests that values of polarizability derived by this method
may still be on the small side. But he suggests that 2 meV v'? m® is an
adequate choice for a ''provisional working value''. We shall treat this as

48



a lower limit for b.
Though the calculation of b is still dependent on a parameter

apparently produced within the framework of a jellium model (i.e. x' . + 1),

ad
we believe that this does not disturb the self-consistency of the whole

theory.

3.5.11 Polarizability - Summary

It may be helpful to summarise the last few subsections.

1) We have shown that '"proper SI polarizability'' should be defined in
terms of the local field acting on an atom, and can be measured in

meV V-z nm2 (or equivalent units).

2) We have distinguished between this "proper SI polarizability'" and
various other parameters called '"polarizability'" or "effective

polarizability'" in the literature.

3) We have argued that none of the conventional estimates of the proper

polarizability of a tungsten surface atom is reliable.

4) We have described alternative theoretical and experimental methods of

estimating tungsten surface-atom polarizability.

These last provide upper and lower estimates of 7 and 2 meV V_z nm2

respectively [b/4nao = 10 R3 and 3&3 respectively).

3.6 Finite dipoles and higher moments

In the preceding discussion the polarized atom is being treated as
a point dipole in a uniform field. In the normal mathematical treatment

of dipole moment (see, for example, ref.(83)) it is necessary to expand



binomially in powers of 1/r (see figure below); the second, third, etc.
terms of this expansion are then ignored. With a finite dipole this
approximation is valid when #/r << 1, so that the higher terms are very

small.

But this may not be the case in the field-adsorption situation. Let

us compare the dipole length of the helium atom with the surface-atom/

adsorbate-atom separation, s. For example, taking the field F = 45 V/nm,
the polarizability for He = 0.143 meV V' nn°, and the charge q = e = unit
proton charge, then from:

Pl = hiTasa. 5 IR Lo e T (R L LT AR St 3.24
and P = ql ..... 3.25
we get - l-’qi = .0064 nm e 5,26

We may compare this with s for the He/W system, which is 0.259 nm.
Thus §/r~ 0.03. With this value one should perhaps expect the next term
in the expansion to be small but not completely negligible.

This divergence between the mathematical expression and the physical
situation of a polarized atom has another';spect, since Forbes(73)- in a
recent paper suggested that a full treatment should include other terms
corresponding to the effect of higher moments, as well as correction terms

to the simple dipole-moment expansion.
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At the present time we do not fully understand the relationships
between the assumption of a finite dipole and the inclusion of higher-
moment terms. As the effects seem likely to be small we neglect them in

a first approximation.

3.7 The Influence of Repulsive Forces on Binding Energy

Finally, in this chapter, we consider the influence of repulsive
forces on binding energy. If we neglect effects due to lateral inter-
actions as described in section 3.2, then the total potential energy U in

which an adsorbate atom moves has the form:

TR Uelec 2 Udlsp + yTep

where the component potentials are due, respectively, to electric-field-
induced, dispersive, and repulsive forces. The repulsive forces result
from the interpenetration of electric charge clouds.

As a simple approximation, we may take the dispersive and repulsive
potentials to go inversely as the sixth and twelfth powers of the

separation s of adsorbate and substrate atoms, and may ignore the change

in the "internal energy of the source' when considering Uelec. Then eq.3.27
can be written as:
M R S s i TR L e G 3.28

where C and G are constants.

At the adsorption equilibrium position (s) there is no resultant

force acting on an adsorbate atom, so we must have:

2
du/dz] = - d(82)/dz] % b, (FXH?

+6Cls’ -1206/8%3 = ¢ coves 3,29
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By definition, the dispersive and repulsive contributions (Bdlsp and Brep)

to the total energy B are given by:

Lo ML R G 1 3.30a
rep rep H 12
B - U P83 RaaQis i S S Ot 3.30b
Hence it follows from eq.3.29 that:
Trep 2 ext, 2 disp
B (s/12).d(g0/dz] A b, (FE")" =« B0 ... 5.31

Since dispersion-induced forces are relatively short-range, Udlsp is

equal to zero at positions in the external field somewhat above the emitter

surface; consequently, Bdlsp is equal to &Bdlsp. Similarly B P is equal
to aBreP, and these substitutions can be made in eq.3.31. For purpose of

discussion it is then possible to write this equation in the form:

ABTPP .y AB(conv) - i ABTP . 2.32
where n is given by
n = = (8/12) d(Sz)/dz] /[82 -1) 3.53
N s LS g ey .

If we continue to neglect lateral interaction and the change in the
internal energy of the source, then &Belec in eq.3.2 can be replaced by

AB(conv), and substitution of eq.3.32 into eq.3.2 gives:

AB = (1 - n) AB(conv) + % apdisP aneie Dyl

Hence it may be seen that the effect of repulsive forces, in the approxi-
mation represented by eq.3.28,is to reduce the disﬁersion—induced comﬁonent
of the short—ranée binding energy by one-half, and to reduce the electric-
field-induced component by a fraction n. ’An estimate of the components
contribution to the total short-term binding energy AB, to be described in

later chapters, shows that the factor (1 - n) is approximately equal to
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one half in case of helium on tungsten, so the effect of repulsive forces
cannot be neglected.

It should be noted though that calculated n-values will be a direct
consequence of our assumption of an inverse twelfth-power low for ik
This assumption is a convenient first approximation; but a more careful
treatment of the repulsive potential at a charged surface will eventually

be required.
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CHAPTER 4

ALGEBRIC ANALYSIS

4.1 Introduction

This chapter describes the mathematical formulation of our model of
charged surfaces, and field adsorption. As a first step it is necessary
to define some parameters and conventions that are used frequently in the

theory.

Suffices: Parameters relating to the emitter layer will be
labelled "E" and parameters relating to the adsorbed imaging gas layer
will be labelled "A'". An upper suffix indicates the type, and the source,
that generates the parameter itself; and the lower suffix indicates the
position where the parameter is acting. For example Fi’E denotes the
field component F, due to the dipoles d, in the emitter layer E, acting
on the adsorbed layer A. Other labels may be added in brackets if found
necessary, but the general trend will be to avoid any unnecessary label-
ling particularly where it is felt that the complete meaning of the para-

meter is clear to the reader.

Lattice parameters: consider a surface lattice unit cell, as a

rectangle of particular surface lattice parameters a , and a,

da
X

We can write a and ay in terms of a more general parameter, namely a

distance c, as:
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dx’ and dy are two scaling parameters in the a, and ay directions. c will
normally be chosen as the space-lattice parameter of a cubic lattice, but
other choices are in principle possible. Since there are four lattice

points, each contributes one fourth to the rectangle, so the area per

lattice point (A) is:

The quantity Ac defined by AC = A/c? we call the "lattice characteristic".
Clearly, for a primitive lattice cell Ac = dxdy' For a centred cell

A =d d. /2y
c Xy

Distance Parameters: If we choose an arbitrary reference point '"O"

in the emitter surface plane as origin, then we can write a real distance

R from the origin as:
R's r.c Jrone $ed

where r is a dimensionless parameter and c is the same standard distance
as used before. Also, we can write R in terms of its components,

perpendicular (Rz}, and parallel (Rn} to the plane thus:

i, e e 2 2

R = Rz + Rn ..... 4.4
and write

R = 7t

z

: o 45

R = N.c

n

z, and n are dimensionless parameters corresponding to the R, and R

directions.

55



Dimensionless Parameters: The quantities T, z, n etc, are

"dimensionless distances', It is mathematically convenient and the results
are more general if fields, potentials, and certain other parameters are
also in a dimensionless form; thus the field (F) will be expressed in

terms of a dimensionless parameter (B) defined as:

B = Py EPEE o o gte

where (Fext] is the external field. The electrostatic potential & will be

expressed in terms of a dimensionless parameter V, defined by:
TR SN SRR o PR 4.7

This V is of course a dimensionless potential for a negative charge, and

is used for historical reasons.

Summation factors: From the laws of electrostatics, the electric

field due to a single point positive charge, E™ , at a distance R from

the charge is given by:

m+

R
'E_ = (q/4wao) *['E'P S

A : R Gl :
The component of this in the z-direction, E" , 1s given by:

R
m+ z
E = (q/4ﬁao) el T )

Using dimensionless distance parameters, this becomes:

E" = (q/4rec?) Iy : s D

If we now consider a planar array of equal charges, then the z-component

m+

F of the total field E?+ is obtained by summing over all individual

charges, thus:
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m+

by 5
1]

2 1
(q}4ﬂeoc N 2T =

which may be written

{(V4Treccz) - Z - S ----- 4] 11

where S1 denotes the sum over all individual charges

5, = 2?1; ..... 4.12

all
charges

The quantity §, is dimensionless, and is here called a "summation factor'".

Similarly, the z-component of the electric field due to a point
dipole, of moment p, aligned along the z-axis, at distance R from the
dipoles is given by:

R2
d Z 3
B = (P/ave ). [55~ 73] ST 3

Using dimensionless distance parameters, this becomes

2
g (P/4ﬁ5063).E§§5-- ;%ﬂ ..... 4.1.15

If we consider a planar array of equal point dipoles each of dipole moment

P, then the z-component Fd of the total dipole field Ed is:
d 1 1
£ e (p/aneoc3) 322 = =5 E?] ..... 4.14
This we can write in the form:
a :
s (P/4w60c3).[32282 - 51] - o, L T T
Ay e 3 :
F - (P/4“E C ).S CRC I 4.16
0 3
where S = I z 4.17
2 —5 T -
all
dipoles
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= 2 &
53 = 32 82 S1 e

The summation factor 82 is evaluated over all dipoles in the array.

Structure Factors: It is also helpful to define some other para-

meters relating to special cases of Sl’ 82 and 53; these parameters we
call "Structure Factors".

The structure factor T1 represents the value of the summation factor

S1 in circumstances when:

(1) The origin of R is taken at a lattice point;

(2) c is taken as the space-lattice parameter;

(3) the value of z is taken as zero;

(4) the summation is taken over all points except the

origin (this is indicated by the prime on the summation

sign),
. = 5 o AR 3
Thus: T1 =i 5 (Rn/c) = 1z (I/rn) ..... 4.19
A closely analogous quantity is Topping§(84) structure factor Kl,
used by Tsong in his calculationstsz), which is defined by
— 4 =3
Ky ' (R /a) ey 4. 20

where a is the interatom  distance in the surface lattice.

We define T™ as a structure factor associated with monopoles,
representing the value of the summation factor S,,.evaluated at the
position "A" of the nucleus of an adsorbé& atom. If the separation

between the adatom, and the nearest emitter atom is s, then B s/c, and

T & Sl (zA ='s/c) esiee .21
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e : d L 5 :
Similarly we define T, a structure factor associated with dipoles,

as

Td = S3 [zA = §/c)

.....

Td is analogous to the structure factor Kz, used by Tsong in ref(52),

except that it uses c instead of a (i.e. K, = S3 (z

2

4,2 Self-induced depolarization and local field

Consider a layer of atoms (L), of proper polarizability (bL),

forming a regular planar lattice. If an electric field Fimp

normal to

the plane of the array, is impressed on each atom in the layer by charge

distributions outside the layer, then the self-consistent local field

loc

(FL ) on each atom in the layer is given by the sum of the impressed

field (Fimp), and the field due to all other atomic dipoles in the layer

Fhy

loc _ _imp d,L
FL = FL o FL

4.23

The field FE’L is calculated by summing over all the other dipoles in the

layer. If each of these has dipole moment P, , then

L’

d,L _ P fre 38~

FL = Fi PL/4we°.rn.c )
< 7 T 3
FL = T1 PLK4neoc

-----

vvvvv

where T, is the structure factor defined by equatién 4.19. The whole

term represents a ''depolarising field" acting at every atom in the layer,

S0 as to reduce the field acting on the atom. If we assume that there is

no zero-field dipole moment, then the dipole moment P
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Then, by substituting eq.4.26 into eq.4.25 and then eq.4.24 into eq.4.23,

and re-arranging we get:

10C: - L] i TID
FL e ML FL ----- 4-27
by,
where ML = 1 # Z;E;ET Tl ..... 4.28

The parameter ML plays the role of 'relative permittivity" for the layer,

as has been pointed out by MacDonald and Barlow(SS)

If we apply this to the emitter layer (E), taking into our considera-

tion the condenser configuration of the emitter surface, explained in
imp

-sec.3.2, then the impressed field FE

is given by

imp

o i ext
e g PR R e S S el 4.29
: loc _ Sl pext
Then: Fr = A Saisiz vl 0
and a dimensionless quantity BE can be defined as follows
L =1 4
BE ol FE /F g ;iME " e 4..31

BE represents the field ratio at the position of an emitter atom, where
the effect of the atom itself is excluded.

Note that the last part of this derivation, from eq.4.29 onwards,
assumes that the emitter layer is present:bz itself. If an adsorbed
~ layer is also présent theﬁ a different expression must be used for Fimp.

E
This case is discussed in section 4.4.
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4.3 Field above plane emitter surface

Consider a layer of emitter atoms (E), forming a regular planar
array extending to infinity in all directions. In the context of our
model, the emitter atoms are represented by dipoles, superimposed on
monopoles (i.e. point positive charges). There is also a negative
charge distribution, stationed above the emitter surface at infinite

distance, forming with the monopoles a condenser configuration as shown

in fig(4.1).
The field acting at a point P, some distance Rz = z.c above the
emitter layer can be written as:
S S

where E? is the field due to positive monopoles and the negative charge

distribution, and Ed’E

is the field due to the dipoles in the emitter
layer.

All terms in eq.4.32 can be resolved into components perpendicular
and parallel to the array plane, but at symmetry points, such as points
situated above a lattice point or above a mid point between four lattice
points, all parallel components cancel each other. We will confine our
study to these symmetry points, since they are of direct interest in our
investigations both of the field-adsorption binding energy and of field-
ion image contrast.

With reference to field adsorption, note that any adsorbed atom
temporarily situated above an "asymmetrical' point on the emitter plane
will be driven by fhe resultant force towards a '"symmetrical' position
above the nearest emitter surface atom, where the binding energy will be
a maximum.

It is much easier to carry out analysis and calculations for

symmetrical positions, since eq.4.32 will be reduced to the perpendicular
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Fig.4.1

A field point p above

the array plane
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component terms only and in effect becomes a scalar equation. Hence all
following calculations will be performed in scalar form. Nevertheless,it
should be borne in mind that they represent the perpendicular component

only.

4.3.1 The monopole contribution to the field (F@)

The field due to the positive monopole contribution with conjunction

to the negative charge distribution contribution can be written as:

o= Fm+’E + %

Each plane of charge gives rise to a field of magnitude (0/250) on either
side (somewhat away from the array planes, where local field variation
vanishes), ¢ being the mean charge per unit area in the array. The
application of Gauss theory shows that the contribution of both positive
and negative charges adds in the middle between the two planes, so that a£
sufficient distances from the array, the total field is normal to the array

plane and we have:
Fo =0 F = _ole, (EorRe Pty VL LOETER Lol 4,34

At a distance from the emitter plane comparable to ¢, local variations in
the field due to the localised positive charges can not be ignored, and

eq.4.34 is not valid. In this case we write:

RY o 0/250 + Fm+’E JE g, 35

The first term is equal to % FOXE s is clear from eq.4.3. As we are
working at symmetry positiongthe second term is identical with the field

m+ .. :
F~ discussed in sec 4.1, and so:
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where S, is the summation factor defined by eq.4.12,
The monopole charge q can be expressed in terms of external field,

and the surface charge density o as:

¢ = q/A T S Y

where A is the area per charge, given by Ac.c2 in eq.4.2, therefore we

have:

By substituting eq.4.38 into eq.4.36, and then eq.4.36 into eq.4.35, we

obtain:

PR G B i e g TR R 4.39
Hence we define the dimensionless field ratio 8™ as:

BT e v AR ST 4.40

4.3.2 The dipole contribution to the field

As above, we consider the field at symmetry positions above the array.
In this case, we have from eq.4.16 that the dipole contribution to the

total field is given by:

d.B oy
F = (PE/4ﬂe°c ) S3 s e Bkl

Substituting PE by bEFéOC , where Floc is, as before, the self-consistent

E
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local field acting on an emitter atom, and then writing F B. F

log, ext .
LA T - .

d,E

g v
n

3 ext
[bE/4ﬂEOC ) BE S3 F veis sinl B2

Then we define:

d,B _ Fd’E/FEXt

w
I

3
(bE/4weoc ) BE S3 R LA

4,3.3 The total field above single emitter layer

Finally the total monopole and dipole contribution to the field due
to a single emitter layer can be produced by substituting eq.4.42 and

eq.4.39 into eq.4.32, thus:

E t
FF'o= [+ (A/41). 2.8, + (bEsE/4nzoc3)§;Fex TR

The corresponding dimensionless field ratio is given by:

B geuns 3

] = L+ (Ac/4wJ.z.Sl + (bEBE/4ﬂEDC )S3 ..... 4.45
Note that in all the above formulae, if the single layer is present
physically by itself then B is given by ) Mﬁl, as in eq.4.31. If an
adsorbed layer is also present then BE must be derived self-consistently

as in the following section.

4.4 Self-consistent fields for the emitter-adsorbed-layer system

We now move on &o consider a "field adsorption situation" represented
'by the positively charged array of emitter atoms, analysed in the previous
section, and a similar layer of inert gas atoms situated above it (i.e.
each adsorbed atom is situated directly above the corresponding emitter

atom). For convenience we will drop the suffix "loc" and refer to the
P
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self-consistent local field at the position of adsorbed atom as F

to that at the position of emitter atom as FE.

moment P, can be expressed as in eq.4.26 as:

A

If we define a dimensionless field ratio factor BA as

- ext
By = FAfF

Thus by substituting eq.4.47 into eq.4.46, we get

5 , c€Xt
PA bABAF

Similarly, for the emitter layer:

Pow = Wb B =

, wEXt
E E°E bgBgF

A!

Using the results in the first part of section 4.2, but replacing "L"

* and

The adsorbed-atom dipole

. 4.48

by "A", we can write the self-consistent local field FA’ in terms of the

field impressed on the adsorbate layer from sources outside it, and the

depolarising field due to the dipoles of the adsorbed layer atoms itself,

as follows:

" i i]]'lp
" T
with pimp _ pm o pd,E
A P

A

-----

F' is the field due to the monopole distribution, as explained in

section 4.3.1, and the relation represented by eq.4.40 can be easily

modified to suit the field adsorption situation, as follows:

BE = %k + (Ac/4n ) z, il
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is given by s/c, where s is the separation of the layers, and s is

z
A given
the structure factot&by eq.4.21, Then:
m m _ext
FA BA F S e

FE’E is the field due to the emitter atom dipoles, and eq.4.43 can

be easily modified to suit the field adsorption situation, as follows:

{0
d,E E°E Td

BA s 4ﬂ€003 y

d,E _,
yol By

4.54

where ’I‘d is the structure factor defined by eq.4.22. Yi’E is a dimension-

less coefficient (corresponding to dipole characteristio@defined by eq.4.54;
this coefficient gives the field acting on the atoms in the adsorbate
layer, due to the dipoles in the emitter layer T . Thus eq.4.54 can also

be written in the form

d.gr . dE

FA ] PE ..... 4,55
We then have that

d,E. . 4B .. Jext

FA 53 YA BE.F LR 4-56

Thus, combining eqs. 4.56, 4.53 and 4.51, we get:

imp _ m d,E ext
Fy I S SRR T 4 4.57

Hence, from eqs.4.50, 4.57 and by dividing by 5 e get:

’ > ) " d 3
Br = Mﬁl [Si B YA’E Bél S vsuisr 4258

As discussed in section 4.2, M, is a factor acting as a relative permit-

A
iy tivity for the layer A, and is defined by:
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- 3
M 1+ Tl bA/4naOc .

A v 458

We may treat the field acting at the position of an emitter atom in
an exactly analogous way. Because of the symmetry of the situation, we

can get the result by exchanging "A'" and "E'" wherever they occur to give:

dig
By = Mgt [a + vg A B LR e SN R R 4.60

where M. is a factor acting as a relative permittivity for the layer E

E

and defined as:

= 3
ME 1+ Tl bE/4weoc o B

Note that the same quantity Td appears in the definition of Yg’A as in

the definition YE’E in eq.4.54, because §; is symmetrical function of z.
Finally by substituting Bé in eq.4.60 into eq.4.58 and solving
for B!, we get:

L1 A il aeLE oy
M By +MIT Y, MRS B

-
BA = 3,E TR . e 4.62

3
VR P

A similar formula can be deduced for Be by replacing A by E wherever it

occurs in eq.4.62, and vice versa.

Interpretation. A rough physical interpretation of eq.4.62 can be

made as follows:

(1) the term Mii BI represents a contribution to BA resulting
from the monopole ﬁharge distribution, reduced as a result of the mutﬁal
: depolarizatioﬁ iﬁfluénce of the adsorbateblayer atoms.

(2) the second term in the nuﬁerator represents a contribution

from the emitter atom dipoles, similarly reduced.
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(3) the denominator represents an enhancement effect due to

the influence of the adsorbate-layer dipoles on the emitter-layer dipoles.

t It should be noted that Forbes, in his recent paper(73] made an
important correction to the dimensionless coefficient yd, by including
the effects due to higher moments; thus for example the total effect
can be written in principle as: 72 YS,A - Y%’A + ...« Where YS’A

and YE’A are the dimensionless coefficients corresponding to dipole and

quadrupole ..... etc. characteristics. The new coefficient may replace

the old in all our previous treatments.



4.5 Fields above emitter-adsorbed layer

The local field above the emitter-plus-adsorbed layer can be found
by extending the method of section 4.3. First we need to define the
distances. Let the distance from the emitter layer to a chosen point P,
in dimensionless units, be z. The dimensionless distance z* of point P

from the adsorbate layer is given by:

s B S SN SR A S e e S LR L TR S A 4,63

where s is the real layer separation, as before.
The field F at point P is obtained by adding contributions due to

the two layers, so:

..... 4.64
or, in terms of dimensionless factors:
s = g%+ g ol bl
E . ¢ #
B~ 1is given by eq.4.45, but with BE replaced by Bé.
The field due to the adsorbed layer is the field due to the
adsorbed atom dipoles only; thus
FRR R LIS R L R e 4.66
or:
g = FYFXE o (p,/ame o) .sx /PN ok WEET
gt = (b,/4me c3).81.5% 4.68
A oC7) -Bp-S3 inanie s

where, if S3 denotes a structure factor evaluated for sgme distance z,

S; denotes the structure factor evaluated at distance z* given by eq.4.67.
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If we now substitute eqs.4.45 and 4.68 in eq.4.65 we get finally

B = [5+ (A /47).2.5; + (bEBé/4wsoc3).S3

3
iy Adme cTga b RS T 4.69

Note that in this formula the parameters Bé and BA relate to the
self-consistent fields existing in the emitter-plus-adsorbed-layer situa-

tion, as discussed in section 4.4.

4,6 Self-consistent field for emitter-double-adsorbed-layer system

Some FIM literature (i.e. for example ref(39)), views the imaging
byerof
process in terms of a second mobilef{adsorbed imaging gas atom(s). We
find it interesting to explore this possibility using the same method as

before. Naming the second adsorbed layer of inert gas atoms B, the local

field at the position of an atom in the E-layer is

Joce A g d,A d,B
B MR S T el Wb i T 4.70
. ds A .. j g . loc .
The field FE is given in terms of the local field FA acting on
the A-layer by:
BT d,A _loc
FE -t FA ..... 4.71
o 3 d,A
where Yg = (bA/4ﬂaoc ) TE ..... 4.72

Because there are now three inter-layer interactions involved it has been

. necessary to add suffices to the structure-factor symbol, Td.

Vi



The structure factors used in this section are thus defined by:

d A " Nl !

TE = TA = 53 (z = Pa + pE) ..... 4,73
d,A _ d.B - B

TB = TA = 53 (z = Pa + pB) e
B Sed B -

TE = TB = S3 (z = PE + 2pA + pB} ..... 4.75

As shown below in the figure, the quantities Pp» Py Pp aTE the dimension-

less radii of the atoms composing the three layers

Other fields analogous to FS’A may be defined in a manner analogous

to eqs.4.71 and 4.72.
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Substituting into eq.4.70 then gives:

toc = m d A loc d,B _loc
tp L REER adeti . Fp

And on dividing through by F®*% we obtain

n o n B "
BY = [s s BB]

4.76

4.77

The double-primes indicate that the Bg-factors refer to the self-consistent

local fields in the situation where there are two adsorbed layers.

Following the same procedure as above, we get finally:

1] I.I

L1}
g, = M1 [B + YA + YA Eg £
1" 1 "
= -1 m d,A d,E ;
8g = My [Bp + vp’" By + vt 8]
= 3
where MA I -+ (Tl bA/4neoc )
= 3
MB 1+ (T1 bB/4ﬁEOC )
= 3
ME 1+ (T1 bE/4ﬂsoc )

Re-arranging eqs.4.77, 4.78 and 4.79 as:

o d,B " 2 LR M e
M= iR T 0 T,
d A i I |
- Mg By - BE = 8

d A d. B f. " m
g’ BA g’ 8 T
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Then the field ratio can be deduced by using the determinant rules, as

follows:
m m m
S8, C11 Ba * Gy B * Cyy B St
A = i A . T e W e N R, SO :
11 A 21 ' 31 '
m m
w  Cyp By * Cyy Bg + Csy B
B, = e
B Se d,A | .M C d,B
12 'B 22: B %2 '@
m m
Ci3 Ba * Cy3 B * C35 B
g = RESER A (e L
E = dA %
13 YE 23 YE 33 Mg
i d,B d,E
where Cll = MB ME s OGS L TR R I e e 4.84a
W) d,B d,E
C21 "5 ME *Yg A .. 4.84b
A d,B E
C31 S MB YA YB ..... 4,84c
ot K _ d,A _d,E
C oo S o iy R Ty ey M 4 or e 4.84d
& d,A d,E
C22 = MA ME - YE YA 8 4.84e
d,E d,A d,A
Rhado =y Tt My Lo L a BAE
. L U Ut
C13 = .MB Yg + TE Ye 5 sntis s 4. 8B40
d,B d,B d,B
C23 s Ny MA + Yg Yg St Lot R A T
J d,A d,B !
C33 = MA MB - YB Ya soesie e BdL
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d,B _ _d,B
B g Tty

formulae reduce to the formal single-adsorbed-layer formulae.

It is clear that by putting M, = 1 and vy = 0, the field ratio

4.7 The Calculation of the Potential

4.7.1 Initial Problems

In the context of field-ion theory there is sometimes a need to know
the difference between the electrostatic potential of a point (P say)
outside the emitter surface and the mean potential level in the interior
of the emitter. A quantity of this type is needed, for example, when
determining the position of the critical surface.

In the context of our surface model, this potential difference must
be interpreted as the potential @p at point P relative to a point behind
the emitter surface plane at position -e. (That is, z = - = represents
deep inside the emitter).

In principle this elecrostatic potential can be written as follows:

..... 4,85

where @E is potential at point P, relative to - =, due to the monopoles

: . d . . ) :
contribution; and ¢p is the potential at point P, relative to - =, due to
the dipoles contribution. The monopole contribution can in turn be

expressed as a sum of positive and negative contributions, thus:

+ & slsw ois) 4286
P

But hereby lies'a difficulty, since both terms are infinite, though
of opposite signs. For example, the evaluation of 03"m involves the
contribution of the negative charge distribution stationed at += in our

model, that gives rise to uniform field equal to % Fext(see section 4.3.1
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for details). " *® is evaluated in terms of the work done to move a
unit positive charge from the chosen point behind the emitter surface at
-= to point P and is thus infinite, since @E_’m =" R X+,

A general procedure for avoiding this is to choose some standard
reference point M as shown in fig.(4.2) and then write the potential @E

as a sum of two parts,

@ﬁ is the potential due to the monopoles contribution at the reference
point M (relative to -«), and needs to be calculated once, or once for

a given x-y coordinate. A QEP is the potential difference (due to the
same source) between point M and point P, and we need to calculate it for
every chosen value of z. ¢E is evaluated as follows. Consider a point,

say P', at large negative distance behind the emitter surface plane. Then
¢$ can be expressed in terms of an approximate expression represented by

the potential difference between point M and point P' (A ¢ The

m
P'M}'
correct value is obtained by extending point P' to -=, i.e.

e o lim m E, lim m
N pre e Tpig R L Bl (BT <otk

In practice, as will be shown in chapter 6, it is sufficient to take P' at
about 1000.c from the emitter surface plane. The choice of a suitable
position for the reference point M proved troublesome, and for somq%ime
constituted an obstacle in solving the problem correctly. Various approaches
have been considered.

The initial aﬁproach was to put the ;eference‘point in the plane of
the emitter arraf. But heﬁce a problem arises. In evaluating the contri-
bution of the "distant charge" outsidé the "counting circle" (see section
5.2), it is possible to derive an exact formula for the difference in
potential between two points on the axis of the counting circle. For this

76



—_— e —— —— — — —— —— —— —— —

Py E— — — — — — — — — —

— —— — e e e— — — — — —

— — — — — — — — — — —

Fig.4.2

points p, M and p'

between

sible ation

To illustrate

77



reason it is convenient to put M at the same X-Y coordinates as P. How-

ever, this means that when P is directly above a lattice point then M is

m

located at a surface charge, and in this case both A ¢P'M

m
and A ¢

MP
contain one infinite term, resulting from this charge.

The two approaches initially used to get round this difficulty were:

(1) To keep M at a fixed position in the emitter array plane,
and develop approximate formulae for the difference in potential between
M and P, due to the distant charge, when these have different X-Y
coordinates.
(2) To keep M with the same X-Y coordinates as P, but to arrange
for the troublesome infinite term to be dropped from the summations
m

involved in evaluating both A ®piy and 4 ¢Ep when M is at a lattice point.

This approach was employed for sometime in the writer's programs.

A third approach, which seems to solve the problem, was subsequently.

developed out of the second approach, by Chibane(86).

He - located the
reference point M at a short distance below the emitter surface plane.
This approach has now been incorporated in the writer's computer program
as a final general solution.

The second approach discussed above can be seen as a special case of
this third approach. What we shall therefore describe in this section is

the final mathematical derivations of the monopole and dipole contribution

to the potential through this last approach.

4.7.2 The Potential Contribution due to Monopoles .

To determine the monopole contribution, the essential problem is to
derive an expression for A ¢EP' We shall take M to be at a position
behind the emitter plane, with dimensionless coordinates (x, y, z'), as

shown in Fig(4.3). This z' is a negative number, and the actual distance

78



8]
2]

e

i T

4

2" .c]

L mammme

M
Fig.4.3

To illustrate actual position chosen for point M

Fig.4.4

To illustrate the calculation of the potential due to the dipoles
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of M behind the plane is |z'.c]|.

A @EP can be expressed in terms of positive and negative components.

m m+ m-
P wp * A QMP savies B8P

To obtain the negative contribution, we remember that the field due to

the distant negative charge is % Fe** Hence
Bpese =B E e 2fY e e 490

To obtain the positive contribution consider the monopole charge ij shown
in Fig.(4.3). This is at a distance r.c from P and r'.c from M. Thus

the potential difference between M and P due to the monopole (ij),of

charge q,1is:
A O™ (i) =__‘3L[l_l.]
MP 4naoc ok T
- 1 1
= IFES—EEF'-_] oo #o91
o]
1 1
where r = (z2 + 1?72, and ' = (z'2 + n?)?
Remembering from eq.4.38 that q = A_ . c? . eoFeXt, we obtain:
A LC
fbe Pl L 1l 17 qext
Bl () v il SR T .

The contribution due to all monopoles in the plane is produced by summing

over them all, thus:

A .c

me . c rl +  1s _ext
bt ™ " Ix ifj By - =1 E s RO

80



Defining S0 as a summation factor associated with potentials as:

S, = ) %, -%] Tt ALY
all
monopoles
m+ Ac'C ext
Then A d = - 5 E TR
4w )

Thus the total monopole contribution is the sum of eqs.4.90 and 4.95:

m B ey ext
d8n =i [otanz8 ] oF 2l v 4,86

Or in terms of the dimensionless potential difference defined analogously

to eq.4.7 by:
s m ext
A v‘ﬁp Rt S AR BT 4.97
We have
Vm z-z' Ac
A W = 2 + 4—_“_ SO ..... 4 98

The dimensionless potential VE at M is then derived as:

Vies et [—osan g ] suise il e 98

Z+ -

(Note So is a function of z). And we then have the monopole contribution

to the dimensionless potential at M given by:
+ AV calvud 4300

The formulae initially used by the présent writer are recovered by

setting z' = 0 and ' = n.
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4.7.3 The Dipole Contribution to Potential

For determining the dipole contribution to the potential at P, it is

best to consider a reference point in the plane of the array (see Fig(4.4)),

because it is a well-known fact that this plane is an equipotential plane.

Denote a reference point in this plane by '"0".

The potential at a point (P) above the emitter, relative to this

point (0), due to the dipole (ij), can be written as follows:

P

d B A E._ cos 8
A QOP (l]] = 4W€o ;Z—EZ .....

where PE is the dipole moment of this (ij) dipole, and 8 is the angle

shown in the figure, given by:

z
SOSHL Sl = CUREENE - T SRS SRR et AN T Caatsss
T

Then eq.4.102 can be written as

F2

a,F ay o E (4
A QOP 3 = E;E;EQ ;3 .....

Assuming that all dipoles have equal polarizability, and hence equal

dipole moments, the total contribution from all emitter dipoles is:

e Pp % - 1
S e ] F=E
oP 4ﬁsoc a1 T
dipoles
P2
= 2 S
E;Ezzz 1 ‘ o nia

S1 is the same as previously, because there is a dipole associated with

every monopole,

If we substitute for PE using PE = b_ B poxt then:

E 'E 2
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d,E

A ¢0P

= (b By 2/47e c?) S, post Lk 108

In terms of a dimensionless potential as used earlier, we have:

- Dy By 2
A Be) | vadil, cexte. E "E
A VOP = A @Op /CF = -—E;E;Ej— SI ..... 4.106

The dipole contribution to dimensionless potential of point P relative to

- can now be written:

d,E
p 0 5 AT VOP .....

where the first term on the right hand side represents the potential of

"Q" relative of -», This can be obtained from :

b, B
d,E _ . R
VO = - lim A VOP = Z;E—Ea lim {Zsl} oiv snand o108
7= —-@ (o] 2 =

When the distance z is very large compared with the interdipole
spacing, the array of discrete dipoles can be replaced by a uniform layer
of dipoles (see Fig.(4.5)) and hence we have:

b, B
d,B e TR : ® z dN
VO o lim {IE.'. [m—:.;/z . adA} ..... 4.109
0 7=
e~+0

dN/dA is the number of charges per unit area = 1/Ac.c2, dA is an element

area. Then:

dA = c2 Qf" do ds = 2mn dnc? cebs . 8u110
Solving the integrai_gives:
e L EfE o 4.111
0 m‘;-c-? A,c ccccc -
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Fig.4.5

To illustrate integration over a uniform layer of dipoles
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Putting eq.4.106 and eq.4.111 into eq.4.107 we have finally:

d.E ENE 2T 3
VP m [Z 51 St I—] . 4,112
0 c
4.7.4 The Potential due to the adsorbed layer of dipoles
The potential due to an adsorbed dipole layer (if present) can be
expressed by a formula similar to eq.4.112:
b, B!
TS U L S e
VP ?4-1?;;-63 [Z Sl + Ac A e e o i

where z* is the dimensionless distance from the adsorbate layer to the
chosen point above the emitter, and S; is the corresponding summation
factor. Note also that, if the adsorbed layer is present,then the
quantities BA and Bé as defined in section 4.4 should be used in eqs.4.105

to eq.4.112,

4.7.5 Total Potential

Finally, the total dimensionless potential of point P relative to

-© is given by:
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CHAPTER 5

COMPUTATIONAL PROCEDURES

5.1 Objectives

In order to make use of the field, potential and binding energy
formulae derived in chapter 4, we need first of all to evaluate the

summation factors So’ 5 82 and 53, or/and the structure factors

1)
Tl, T and Td. But except in a very specific case, the above factors

(84)

are not being calculated. As far as we know, Topping evaluated the

factor Kl, (which is equivalent to the structural factor T1 in our

calculations as described in sec.4.1) for a square and hexagonal lattice

(52)

array using analytical method, while Tsong considered the factor K,
(which is equivalent to Td in our calculations). We conclude, that
except in two very specific cases, where the structure factors are known,
the effects of the crystallographic structure of the emitter have either
to be ignored or approximated. In our view, that may lead to a big error
in calculating quantities such &4 binding energy, as we shall see in
chapter 6.

Rather than attempting to find some general analytical method to
calculate those factors, we devised procedures for evaluating any desired
summation or structure factor. We use computational methods to carry out
mathematical summation to some reasonable limit, beyond which analytical
approximation metho@s can be used. A comparison study shows that the:
values calculated using our technique have a margin of error comparable
“with or better than general analytical methods, as we shall see later in

this chapter.
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5.2 External Contributions and the Summation Circle

Obviously, when evaluating summation factors for an infinite planar
array, we cannot carry on the summation to infinity. The trick being
used is to carry on the numerical summation from a suggested 'central
point'" to some limit, away from the central point, beyond which the
summation is approximated by solvable integrals. Calling these the
"internal'" and "external' contributions, we thus have for each summation

factor:
S =ESCINT). * Sfexpiiie s FulgE S L s e Sl

It was originally thought that it would be easiest to carry out the
"internal' summation over a square array. Hence some weeks were spent
trying to obtain an analytical expression for fields and potentials above
a plane of charge with a square cut from it. However the integrals
involved have no analytical solution, and this approach was abandoned
when it was realised that the corresponding integrals for a disc of charge
are solvable.

The approach then adopted was to take a lattice point as the central
point, and define a "summation circle" of fixed radius R

ont (5 Penp-©)

about it, as shown in Fig(5.1). The dimensionless distance NeNT is

termed the '"counting radius'". The internal contribution is obtained by

summing over all points inside the summation circle. The external contri-
bution is obtained by replacing the lattice points outside the summation
circle by a continuous distribution of the same mean surface density, and
evaluating the relevant integral.

Take the evéluation of T, as an example. In this case z = 0, and

the external contribution is evaluated from

o 1. dN
Tl(ext) = f ke dA S R
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Fig.5.1

To illustrate the summation circle of radiu$ R'CNT’

and the continuous distribution outside it
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3ol i

As before, we write %% = K“lE? From Fig(5.1) it is clear that
o
dA = 2mnc . cdn : Sraae e g
So:
. Zx e 1
T1 (ext) = A 41 =4 dn Eeivas Dl
c L
. 2%
Ac.nL

where nL is the radius of the circular disc excluded from the continuous

distribution, and is termed the "calculation radius'".

Initially, n was taken as equal to the counting radius. It was
subsequently realised that the correct procedure would be to choose n
such that the disc of charge excluded was exactly equal in magnitude to
the amount of charge counted inside the counting circle. If the number

of points inside the summation circle is N (CNT in the computer program),

then we must have

2R dA _ 2
21TDLC = N.d—N' = N R . . 5.5
= e
By W (N . Ac/2n)

Choosing the correct procedure for determining n, was found to result in

L

a very small correction,
In our preliminary tests we used a square lattice, and took ¢ equal
to the interatom spacing a. This provides an estimate of the quantity

Ky used by MacDonald and Barlow(ss) (SZJ.

and Tsong We then investigated
how the estimate of K, varied with the choice of counting radius. The
results of this are shown in Fig(5.2)., It would seem that the larger the

summation circle the more precise the results, but,of course, the greater

89



the number of points that have to be included in the summation and the
loﬁger the program takes to run. We settled on a counting radius of

around 70+a as a suitable compromise.

;An analytical determination of K; for square and hexagonal lattices

was carried out by Topping(84) many years ago. These values and our

& computer-predicted values are shown in Table (5.1). Our values are
ﬁl, within the limits of error predictedby Topping for his values, and we may

. take this agreement as evidence that our procedures are working

_ satisfactorily.
X Table 5.1
= Array type K, (Topping) K, (computed)
Square 9.033623 * 0,000006 9.033622
Hexagonal 11.034177 *= 0.000007 11.034176

5.3 Anélytical Forms for the External Contributions (On axis)

5.3.1 The external contribution to S1

We now must derive analytical expressions for the external contribu-
tions to the various summation factors. In this and the following sections

it is assumed that the field point is on the axis of the defining circle,
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The quantity Sl is defined as:
o 1
By = 1 £

Thus the external contribution is given by:

=]

L n
S1 (ext) = Ac ﬂﬁ, = dn s SR

In writing this integral down, we have assumed the results given by
equations 5.2, 5.3 and 5.4 in section 5.2,

Remembering that;

rZ = (nz & 22)
We have:
S, (ext) = o T g dn el
1 D W i i W ST A
s 1
S1 (ext) = % [n e MR ool s 5.8
c L

5.3.2 The external contribution to S

52 is defined by:

1
9 Aoy

By an integration similar to that carried out above, we get:

: 2m 1 |
'S (ext)- I -, guia R e U ey e bl
2 Ac 3 ny =z
Note that:
S. (ext) = 5. (ext) . 5. 10
2 1 3.[nL o]y AR T [ e ae -



5.3.3 The external contribution to S0

So is defined by

The external contribution is given by

2n 1 1

8, (ext) = 2= [ w5 == o R
c L

To carry out the above integral, we choose a point M at a distance

beyond the lattice plane as shown in Fig(5.3) . The above integral

can be written as

o B 41 ALy
S, {ont) = == s n TERSE S (= Wl e G 502
c L
Remembering that r = (n? + zz)% , and r' = (n2 + 2'2}%, then by

substituting in the above equation and integrating we get
2m L i
S, (ext) = K: [(n% + 22)% - (ni *:274) %] o (G ST

(A suitable choice of z' value is taken to be - 3.a,usually).

5.4 Evaluating the Internal Contribution

With the internal contribution the essential problem is to decide
the order inwhich the summation over lattice points is to be conducted.
At each lattice point the contribution to each of the summation factors
is then determined in sequence, and addedrinto the running totals.

It is possible in many cases to take advantage of mirror plane symmetries
to reduce the number of program steps. We shall first describe a

systematic procedure for 'visiting" every point inside the summation circle.
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z-axis

p X-axis

Fig.5.3

To illustrate the calculation of SO
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Initially we shall assume that the field point P at which fields
and potentials are to be evaluated is directly above an array point,
(which we shall label "0'"). This is certainly the case in the calcula-
tions concerning field adsorption. We shall consider the summation circle
as centred at "O" and having radius 70.0001 . dx . ¢; that is, the
summation circle has a radius just greater than 70 times the unit cell
dimension in the x-direction. By taking 70.0001, rather than 70 exactly,
we ensure that no array point lies exactly on the summation circle; this
will avoid any difficulties in deciding, during program execution, whether
a given array point lies inside the circle.

In general, in our work, we need to deal with a centred rectangular
lattice. Take the point O as having coordinates (0,0). Points that have
coordinates that are integral multiples of dx.c and dy.c may be designated
""corner points''; points with half-integral coordinates are designated
"centre points' as shown in Fig(5.4a). We first evaluate the summation
factors over all the ''corner'" points, and then proceed with the ''centre
points'" (if these are present).

Considering just the corner points (shown by blacked circles in
Fig.(5.4a), we exclude the central point O and divide the summation circle
into four '"'quadrants'. In the program there is a subroutine that deals
with evaluation over a quadrant. In quadrant I, this works as follows:

(1) The procedure starts at the innermost corner of the quadrant,

(2) Keeping the X-coordinate fixed, the summation works up the

Y-axis until the counting circle is reached.

(3) The X-coordinate is then increased by dx, and then summation

then works up the next line of points.

(4) The procedure stops when the X-coordinate exceeds the counting

radius.,

The arrows in Fig(5.4a) illustrate this process, and show that the visiting
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Fig.5.4a
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A schematic diagram shows the process of the visiting

procedure of the computer program
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Fig.5.4b

A magnified scale of a region near the centre

of the summation circle
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sequence in this quadrant can basically be described as '"vertically
upwards''.

The way in which this is implemented in the programming is illustrated
in the block diagram shown in Fig(5.5). Note that we have chosen to test
whether each point is inside the circle, by a statement of the type:

"s (XZ + y2) > (nCNT)z on

The starting points and increments in the subroutine can be set, so
this can be used to evaluate the contribution of each quadrant in turn,
by 'vertically upwards'" or '"vertically downwards' visiting sequences (as
appropriate). If the array is ''centred" then the four quadrants of centre

points can be processed similarly. And, finally, the contribution of the

central point '"O" is added in, if appropriate.

5.5 More general calculation of summation factors

The weakness with the previous summation-factors analysis is that it
deals only with points on the axis that passes through a single chosen
point in the emitter array plane. Consequently all the information which
can be extracted (e.g. binding energy and potential) is limited to the
perpendicular line that passes through the chosen 'central point".

Procedurally there are two methods of overcoming this difficulty.
The first is to rewrite the computer program everytime information is
needed for a chosen point other than the array point initially chosen as
the central point. The second is to modify the computer program by
introducing ''field-point coordinates'.

Initially we déyeloped several sligh;ly diffeient programs to serve
the first option; but we Qubsequently abandoned that option, and diverted
attentioﬂ towards developing a "generél ﬁultipurpose computer program'
that would be suitable for any symmetry point. Let us call the new field

point P, and let the coordinates of the symmetry point, relative to the
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array point originally taken as the centred point "0", be [px.c, py.c,
Z o)l
It is straightforward to derive an expression for the quantities
g& that are needed for the evaluation of summation factors. But there is
a problem, or at any rate a choice, in deciding how the "internal' and

"external' contributions are to be defined. The two main alternatives

are.

(1) To keep the summation circle centred on the original array
point 0. In this case the '"visiting" process remains the
same as before, but it is necessary to develop new expressions
for "off-axis'" external contributions. (It turns out that
there is no simple analytical expression, and approximations
have to be made).

(2) To move the centre of the summation circle to the point

(py-c, p,-C; 0), directly below the point P. In this case the

y
external contribution is given by the same formula as before,
but care has to be taken to get the limits of the "visiting"
process correct; there is also the possibility of small
artefact errors due to asymmetries in the counting process

just inside the summation circle, as between opposite sides of

the circle.

At one stage of the research, when interest centred on the calculation
of fields, alternative (1) was adopted. Expressions for "off-axis" values

of Sl (ext) and 82 (ext) were obtained, the results being

.2

o S 2w 1l T

Sl (ext)—r[r—l-— -—-2—1*1-1-] e
el L

&, peany = SR AT r? ] 5.15

et s fe tnr g ay e L T T e -
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Derivations of these results are given in Appendix (A). Alternative (1)
was subsequently used by Forbes (unpublished work) to produce a set of
programs . for the calculation of fields and potentials.

At a later stage, however, it seemed better to change to alternative
(2). Partly this was due to the program philosophy we were using, but it
was also wished to avoid the approximations inherent in equations 5.14
and 5.15 above. It was also realised that for points P on a symmetry
axis there would be no artefact errors as mentioned above; so alternative
(2) might in principle be more accurate than alternative (1).

With alternative (2) particular care has to be taken in choosing the
limits of the "visiting" process, and we now look at this in more detail.
We first consider the summation over the ''corner points'" as defined in
section 2. Fig(5.4b) shows, on a magnified scale, a region near the
centre of the array considered previously. The central point O is shown,
and the four counting sectors previously used are marked with dashed lines.
The centre of the new summation circle, at x = Py = py (relative to 0),
is marked with a diamond, and the axes of the new summation circle are
shown as full lines. If we let dimensionless distances relative to these
new axes be i, j, then clearly dimensionless coordinates in the new and

old systems are related by:

s
1]
~

]
o

~

w
—
(o)

In the new approach the array points in each sector are still visited
in a vertical -upwards or vertically downwards sequence, as before, but

- now the "D 0" loops in the program have the form:

3 "s _ " 14 " "4 n
FOR 1 i-start'’ STEP _ix. UNTIL oyt ROS o

£ a Ao " "y g 1 m "
FOR j j=start" STEP _dr UNTIL ot
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- the appropriate choice of plus or minus signs being made according to
sector. The coordinates (i, j) of the "starting points' for each sector
are shown in Fig(5.4b).

A generally similar argument applies to the starting points for the
"centre points" when present.

In the program the procedure SUM (L1, L2, L3, L4, INC 1, INC 2) is
used to evaluate the contribution of each sector to the various summation
factors. This procedure has six parameters, corresponding to the para-
meters in the "DO" loop. For example, the contributions of sector 1 of

the "corner point'" are added in by means of the instruction:
SUM (DX - PX, CNTR, - PY, CNTR, DX, DY)

(CNTR is the program representation of the counting radius of the
summation circle).

In the program, the evaluation of the summation factors for a given
field point is carried out by a procedure EVAL. This calls SUM four times
for a primitive lattice (eight for a centred lattice), and also has
instructions that ensure that the contribution due to point O is included
in the summation factors where relevant.

The heart of the programming has been the development of these two
procedures. These procedures must now be incorporated into a complete

program.

5.6 Description of the Computer Program

The main purpﬁses of the computer prggrmmawe'of course: the calcﬁlation
of field adso?ption-binding energy, for &ifferent emitter surface atoms
and inert gas adsorbed atom(s) systems; fhe determination of the position
of the critical surface; and the inﬁestigation of the field and potential

variation above an emitter surface. Many byproduct variables can be
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evaluated also, like number of lattice points inside the counted circle,
the radius of the counted circle, the value of the summation and structure
factors, the components of field and potential appearing in their specific
formulas like MA’ ME, YE’E ... etc, and the repulsive force ratio (n).

The program is designed to work for optional choice of any crystallo-
graphical surface array structure, with or without the existence of
adsorbed layer (i.e. for single or double layer). Fig(5.5) shows the
flow chart of the program, whilst a standard copy of the actual program is

reserved in appendix (B). It is divided into four parts; each part is

designed for a specific purpose.

Part 1 - The data:- This part is the beginning of the program. Its first

half is designated for the dataneeded to be fed each time we run the

program (i.e. input data). Those are:

(1) some information about the species of metal and adsorbed aﬁom
in question (i.e. atom radius and polarizability)

(2) wvalue of external field

(3) value of lattice parameter

(4) values of surface array parameters

(5) values of chosen point coordinates

(6) surface structure type (i.e. face -centred or primitive)

The second half contains some useful fixed data like the value of (4ﬁeo),
some convenient counting circle radius (CNTR) value, and a convenient
chosen reference point (Wz) for the purpose of potential calculation ' later
in the program, beside few simple calcula%ions to evaluate some fixed

variablesneeded later in the program. -
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Part 1 Data
Proc.
SUM
Part 2 {
Proc.
EVAL
1
[ I 1
Proc. Proc Proc.
BAD2 CALC(sep) BIN CAL(zd) TLOALGE
Proc. Proc. Proc.
VMR CALC S CALC D CALC
Part 3 Contrql
Instructions
Print-out
Part 4 Instructions

Fig.5.5

The flow chart of the computer program
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Part 2 - The Procedures:- This constitutes the main part of the program,

and contains eight procedures; each one is dedicated for the evaluation of
particular variables, Including the two procedures just described in

detail, these are:

(1) Procedure SUM:- This evaluates quadrant summation factors So’ Sl’

S, and S3 in one of the four summation-circle quarters designated by the

2

next procedure.

(2) Procedure EVAL:- 1Its purpose is: (i) to evaluate the total summation

factors in the four quarters of the circle by repeated calling on procedure
Sum, with suitable argument for each quadrant and type of lattice point;
also central point if appropriate; (ii) it works out the calculated radius
(nL, or CALR); (iii) it calculates the external contribution to the

summation factors, and adds this in to the summation factors.

(3) Procedure BAD2 CALC (SEP):- For specific separ ation of the E-A

layers provided by the argument (SEP), the procedure evaluates the square
of the field ratio for a double layer at the position of an adsorbed
atom,(BA)z, and various related parametres (e.g. Bé can be also calculated

with this procedure)

(4) Procedure BIN CALC (ZD):- For a specific E-A layer separation distance

provided by the argument (ZD), this procedure evaluates the conventional
binding energy (BIN CONV), the repulsive potential ratio (ETA), and hence

the corrected binding energy (BINCORR).

m

(5) Procedure T .CALC:- This calculates. the structure factors T., T and

' Td.

1.!

(6) Procedure VMRCALC:- This calculates the monopole reference point

potential,
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(7) Procedure S CALC:- This calculates the field ratio B and the

potential ratio V from their monopole and dipole contributions for a

single layer, presenting these as the variables BSL and VSL.

(8) Procedure D CALC:- This calculates the field ratio and the potential

ratio from their monopole and dipole contribution for a double layer,

presenting these as the variables BDL and VDL.

Part 3 - Control Instructions:- This part gives instructions for the

desired calculations,which can be easily carried out by calling on the

procedure§,

Part 4 - Print-out instructions:- Calculated variables are printed out in

a form appropriate to the investigation in question.
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CHAPTER 6

RESULTS AND DISCUSSION: FIELDS AND POTENTIALS

6.1 Applications of the Array model

We shall now apply our model in a practical situation mainly to
investigate the two groups of scientific problems reviewed in earlier
chapters: first, those associated with fields and potentials above the
emitter surface, and hence the shape and location of the critical surface
(and the effect of field variations in the critical surface upon the
field-ion imaging processes); second, those associated with calculating
field-adsorption binding energies. This chapter deals with the first
group of problems; chapter 7 with the second.

As an exemplary system we have chosen one of the most common field-
adsorption situations known in FIM. That is tungsten (W) as an emitter,
and helium (He) as the adsorbed layer of inert gas atoms.

Mathematically, our model can be applied to any crystallographic
face with a face-centred or simple rectangular structure. But it needs
to be recognised that our model is limited to one emitter-atom layer,
namely the outermost surface plane layer. Any physical contribution of
the second and inner layers of the emitter has been ignored. (This avoids
complexities aséociated with the state of charge distribution as between,
for example, the first and second-layer atoms). Thus, to use our model in
a realistic way, we must confine our studies to surface structures where
the second, third .... etc. layer atoms are adequately shielded by the
surface layer atomsu I

In our viethhere are two requirements for '"adequate shielding".
First that the facet in question be rélaéively close-packed, or nearly so.
This requirement reveals itself in our calculations through high values

of the structure factor Tl' Second, that the second-layer atoms be
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suitably recessed into the surface.

Careful study of the pictures in Nicolas? atlas of crystal models(87)
suggests that only seven of the surface array planes satisfy (or nearly
so) the above two conditions. These are listed in table 6.1 with some
other useful information. One of those array planes, namely the (111)
plane, is used extensively in this chapter as a paradigm situation for
our charged metal surface model, and to compare our calculations and
results to that of previous discussions. This (111) plane is hexagonal
in structure, with smallest interalom spacing equal to cv2. For
tungsten ¢ = 0.3165 nm, c/2 = 0.4476 nm.

So for the sake of discussion, the case of field adsorption of
helium (He) on this (111) plane of tungsten (W) is being chosen, and we
assume that an infinite array of tungsten atoms is covered by a similar
array of helium atoms, as assumed in chapters 3 and 4. To compare our

model with previous treatments we shall also need to consider the

following lattice structures:

(1) A square lattice, with surface lattice parameter (a) equal to the
interatomic spacing in the (111) face of tungsten (i.e. a = 0.4476nm).

We call this ''model 1'"' (abbreviated as mdl 1).

(2) A square lattice having the same area per lattice point as the
hexagonal (111) lattice (i.e. a = (3&/2H) x 0.4476 nm = 0.4165 nm).

We call this "model 2" (abbreviated as mdl 2).

To derive structure factors and other parameters for these two
models, we can make use of the fact that the 100 plane of a bcc crysfal
structure is a ;imple sqﬁare array of side length c. Thus, for example,
to derive a value of ME for these modelg we insert the T1 value for the

100 face into eq.4.28 and replace c by a. This results in the formula
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by T, (100)

ME = 1+Teoa— RO 6.].

We now must consider the choice of polarizability values.

2(75)

The SI polarizability of helium b is taken as 0.143 meV V-2nm

(He)’
But for the SI polarizability of tungsten surface atom, three values are

used:

(1) b(Wgp) = 3.19 meV v™2nm?, which is the value used by Tsong and
Miiller; this will enable comparisons to be made between the present

results and previous work.

(2) b(W

wg) = 7 meV V~?nm?, which is the 'upper limit'" discussed

earlier (sec 3.5); and
(3) b(Wgp) = 2 meV V-2nm?, which is the lower limit discussed
earlier. The Gaussian polarizabilities corresponding to the above

o] 0 (o] 0
SI quantities are, respectively: 0.206A3, 4.6A3, 10A3, and 2.9A3

6.2 The depolarization effect

One of the basic characteristics of a layer of dipoles (as in the
emitter or adsorbed layer) is that each of these dipoles exerts an
electric field on its neighbouring dipoles: this tends to reduce the
local field acting on them (i.e. the field that passes through a dipole
normal to the surface of the emitter), and hence creates a depolarization
effect., This effect was ignored in the IDP model (see refs [15, 52]),
but - as we shall see later - has to be taken intq consideration.

The depolarization effect is represehted mathematically by the
parameter M, which plays the role of a relative permittivity for a layer
(see sec 4.2). The depolarization effect as illustrated by M

38
E

function of the emitter surface atom polarizability be and the structure
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factor Tl. The structure factor Tl itself is a geometrical function that
depends on the degree of close packing of the emitter surface (as
expressed by area per atom), and on the lattice structure.

To demonstrate the above effects, we show in table 6.2 some typical
value of M calculated for the lattice structures and polarizability
values mentioned in sec 6.1. The IDP approximation has also been formally
included by setting M equal to unity.

Inspection of the table shows clearly that choice of a square lattice
equal in area per atom to the (111) unit cell (mdl 2) gives closer results
than choice of a square lattice with equal inter-atom spacing (mdl 1),
indicating that area per atom is the more significant factor. Obviously,
also, increasing the polarizability increases the value of ME'

We also show in table 6.1 values of M. for tungsten (using b = 2b°),

E

for the various lattice structures.

6.3 Properties of the single layer

In this section we study the behaviour of potentials and fields (in
terms of the dimensionless potential ratio V and field ratio B, as

assumed in chapter 4) above a single emitter layer of tungsten atoms.

6.3.1 Potentials above the bare emitter layer

We show in figs. 6.1 to 6.5, for the paradigm case of the W(111)
surface, the potential variation normal to the surface due to, first
the monopole distribution, second the dipole distribution, and third the
two distributions jointly. In the case of the dipoles, the two polar-
izability values b = 2b6 and b = 7b6 are used. [For brevity, we hence-
forth use the symbol b? to mean 1 meV V™ 2nm%, and 4me  x 1.44 23].
Potentials are shown above an array point (i.e. above a surface atom)

and above a point midway between array points (i.e. between surface atoms).
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TABLE 6.2

Values of the parameter M, for specified lattice

structures and polarizability values

Type of Lattice 8 b(He)o b(ws/Fi b{wT) b(wMBl
YP nm 0.143b 2.00b 3.19b 7.00b
Hexagonal 0.4476 1.025 1.354 1.565 2.240
Square (mdl 1) 0.4476 1.021 1.290 1.463 2.015
Square (mdl 2) 0.4165 1.026 1.360 1.574 2.260
IDP aprx. 0.4476 1.000 1.000 1.000 1.000
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With the monopole distribution the above-atom potential approaches
minus infinity as the plane of the surface nuclei is approached, whereas
the between-atom potential tails off towards zero as the interior of the
emitter is approached. Note that both potentials tend to the same
straight line as distance from the surface increases, and that this
straight line would pass through the origin of coordinates if projected
back. Also, the gradient of the line is unity. Thus at large positive

distances:

Vm+z

or v' > z.c.eF (= eFRz] s 102

where v is the electrostatic component of the potential energy of an
electron, as discussed in section 4.1 and v is that part of it due to
monopoles.

With the dipole distribution, the effect at large distances is
clearly equivalent to a negative step in potential V (relative to the
emitter interior), with the size of the step being larger as the assumed
surface-atom polarizability gets larger. As before, the above-atom
potential tends to minus infinity as the plane of thearray is approached,
whereas the between-atoms potential changes smoothly.

The potential due to the monopoles and dipoles together is shown in
Figs. 6.4 and 6.5, and several points deserve notice. Obviously, as
before, the potential tends towards a straight line of gradient unity, as
distance increases. But, if projected back, the line now cuts the distance
axis at a point Rzg= d (or z = zd), and cuts the V-axis at a value V' = V°,
with the numerical values of these intergection points depending on the
surface-atom polarizébility. This graph illustrates the points made by
Forbes(sz), which were: first,that if we were to think of the "surface"

of the metal as the plane of the surface-atom nuclei, then the effect of
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Fig 6.1

Variation of the monopole potential ratio vt

with the distance ratio z
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the layer of polarized dipoles is to be interpreted as a ''megative work
function correction 6¢°". Alternatively, we may interpret the effect of

the layer of dipoles as a repulsion outwards of the electrical surface of

the metal, by a distance d which we may term the repulsion distance.

It is straightforward to derive formulae for the above quantities

from our earlier theoretical discussion. Thus we have:

0 ext

§¢° = -4bgeF /Ac.czeOME ..... 6.3
v = - B b/ .e P B T ALl T TS 6.4
drit= | s er At o R R TR S A 6.5
Eg, ™ el bE/AC.Eoc3 ME ..... 6.6

(In interpreting these formulae note that ME is a function of bE}.

In these formulae V°, d and z4 are independent of the external
field, but 6¢° is not. Thus, when working in real coordinates, it is
better to think in terms of the repulsion-outwards effect, so, at large
distances from the surface we write:

Ve o 2=z
o

d

VT ARG, = ], e i LT 6.7

Z—ro

It is then more convenient to define a new real coordinate normal to the

array plane, and denoting this by xf, we have:

which leads to the formulae:

TR A o A L S N o TR L e Pl s 6.9
X+

t

This x has to be distinguished from the dimensionless coordinate in
the plane of the array. In practice no confusion arises.
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We call this x the "distance from the metal's electrical surface"

Obviously, formula 6.9 has the same form as eq.2.13 derived from
the jellium model, as discussed in section 2.4.2. For practical purposes
we may identify the variable x defined here with the variable x used

there, and this gives the relationship between the two models. This

relationship is illustrated partly in fig. 2.2 and partly in the figure

below.

X

e
Jelllum surface
X =)
. electrical surface
x =20
z=0 _plane of nuclei

Two general points need to be made at this stage. First, the

characteristics discussed above apply qualitatively to all the crystallo-

graphic surfaces, but there are numerical differences - for example, in
the value of d, or in the rapidness with which the potential approaches
thé ""straight-line value".

The second point relates to the physical validity of the calculated
potentials; Our model of course uses'éoint charges and dipoles, and the
corresponding model potentials are'eléctrostatically valid at all points
in space. However, the charges and dipoles are meant to represent the

charge distribution at a real surface. The model potentials will not be
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valid at any point significantly inside the charge clouds of the emitter
surface atoms: but outside the substrate charge distribution the Hellman-
Feynman theorem will apply. That is, if the postulated distribution of
monopoles and dipoles represents the actual charge distribution adequately,
then - outside the substrate charge clouds - the real and model potentials

and fields coincide.

6.3.2 Fields above the bare emitter layer

We show in figs. 6.6 to 6.8 for W(111), the field variation normal
to the surface due to the monopole, dipole (bE = ZbB), and joint monopole-

dipole distribution (jointly for both b, = 2be and bE = 7b6).

L
With the monopole distribution the above-atom field approaches
infinity as the plane of the surface nuclei is approached, whereas the
between-atom potential has a value of (%) at the surface. This is
obvious since at a symmetrical point inbetween surface atoms the field
components, due to the surface monopoles cancel each other and we only
have the contribution (%) due to the distant negative charges. Both the
above and inbetween atoms B-curves converge to unity rapidly. At distances
from the surface comparable with the critical distance of elementary theory,
the field difference AB™ as between above and between-atom positions is
small, and, as will be seen later, this is important when discussing
sources of the contrast in the process of image formation.
With the dipole field Bd, the above-atom field approaches infinity
as the plane of the dipoles and positive charges is approached, whereas
the inbetween~atomé field goes smoothly to a value of Bd N~ 0.3 (fof
bE = 2be) for-z = 0;' With increasing Rz; the two curves converge to zero
rapidly; so at sufficient distance from the layer, there are no dipole-
induced field contributions. Again.this point is important when discuss-

ing image contrast.
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The combined monopole-dipole curves, drawn for both bE = 2be and

b = 7b°, show the same characteristics as the monopole curve, except
that the field difference is much larger (e.g. for bE = 2b8,

adsorption position R, = .259 nnm, Ag™ = .04, AB = .07). The effect of

at the
using a higher polarizability value is, as can be seen from the bE E 7be
curve, to increase AB even further, for given Rz.

The size of the field variations across the surface depends both on
the crystallographic structure of the array and on the area per lattice

point in the array, but chiefly on the latter, This is illustrated in

d,E

table 6.3 where the values of Bz BA

and B, are compared for the W(11l)

A
surface and for models 1 and 2 discussed earlier. It is seen that the
results for mdl 2, which has the same area per lattice point as does the
(111) face, are much closer.

Also included in table 3, for comparative purposes, the data for

the IDP model. In this case Td is in effect defined by:

;G 2/|z|3 Sstrmn G0

Bi’E is higher for the IDP model (owing to the absence of depolarization

effects), but Bi is less - essentially because the array-type models take
the existence and localization of surface charge into account.

More generally, it deserves note that the field enhancement due to
the localization of the charge, which is given by (BK - 1), is a signifi-
cant component in the total enhancement factor Bys the monopole contribu-
tion (B: - 1), however, is smaller than the dipole contribution Bi’E.

A comparison of BA—values for the different faces of tungsten is also
shown in table 6.3. It is clear that thé area per atom in the face is

the dominant geometrical factor in determining the magnitude of the field

variations above the face in question.
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Values of the field ratio Bi, 8

Table 6.3

A

d,E

and BA’ and the short-range

binding-energy component AB*, for specified lattice structures

Lattice type a/nm Bil Bi’E By AB*/eV

hex. (111) 0.4476 1.048 0.063 1.111 0.034

mdl 1 0.4476 1.067 0.074 1.141 0.044

mdl 2 0.4165 1.050 0.063 Lo113 0.035

IDP (aprx) 0.4476 1.000 0.3315 1.3315 0.112
For b, = 2b i 45 V/nm
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6.3.3 The binding potential

If certain small effects due to mutual induction between a single
adsorbed atom and the emitter surface are ignored, then the field-

induced component UP01 in the binding potential for this atom is given by:

ext

pol _ _ 2 2
U = L bA SA(F LR R S e 6.11

Plots of UpOl against R_ for the above-atom and between-atom positions
g z P s

for helium and taking by = 2p°, g%t

= 45 V/nm are shown in fig. 6.9, and
illustrate a number of elementary features of adsorption.

As distance from the surface increases UpOl tends to the constant
value - % bA(PEXt)z. This is the long-range potential that can keep an
imaging gas atom held in the vicinity of the emitter, even though it is
not bound locally.

Starting from this constant level, and moving towards the surface,
UpOl rises above the between-atom sites and falls above the atomic sites.
This illustrates the existence of localised adsorption sites directly
above the surface atoms. Note that the repulsive potential is neglected
in this diagram - in reality this contribution would flatten the above-
atom curve out and make it repulsive for distances Rz < 0.259 nm.

There is a general similarity of behaviour for all crystal faces,

but the short-range binding-energy component AB* given by:
ext.;
BBA G Uhh, SEBY SSE)[ET YA R T e 6.12

is smallest for the closest-packed faces (i.e. those for which A, is
smallest). This point is illustrated in table 6.3,

Finally, nqte‘that for an adsorbed atom there is a barrier against
diffusion, and the éctivation energy for diffusion is greater than that
necessary to escape into the constant-potential region. Consequently, for
a single atom on a charged surface, diffusion is a hopping process, not a

direct lateral motion in space.
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6.4 Field and potentials above a double layer

We now look at the potential and field variations (in terms of the
potential and field ratios V and B8') above a layer of tungsten atoms (E)
and an adsorbed layer of helium atoms (A), represented in our model by
an array of monopoles and dipoles and a geometrically similar layer of
dipoles above it.We shall assume that the tungsten-helium layer separation

(52)

5 is 0.259 nm The corresponding value in units of € is given by:

Z 4= S/C = 0. 5786 i L R

As in the previous section, two polarizability values are used, but only
the '"total" V and B curves are drawn, since the separate monopole and

dipole layer behaviours have been studied in the previous sections.

6.4.1 Potential above the double layer

We show in figs 6.10 and 6.11 the potential variation normal to the
surface for a W(111l)/He layer above a lattice point (or an atom) and at
the midpoint between lattice points (or inbetween atoms).

Comparison of fig 6.4 and fig 6.10 shows that the effect of the
adsorbed alyer on the potential variation can be roughly visualised as a
shift in both the above-atom and between-atom curves outwards from the
surface. As compared with the single-layer curves, there is - at any
given distance greater than 0.259 nm - a slightly larger potential
difference between the two curves; and a given value of V is reached at
a slightly greater distance from the surface.

By extending backwards the straight ‘line potential, valid at large
distances, as in the previous section, we see that the extended straight
line cuts the z-axis at a distance d' from the origin. As before d' can

be interpreted as a shift outward (due to the dipole layer). Note that
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d' is slightly greater than d due to the effect of the adsorbed layer.

6.4.2 Field above the double layer

We show in fig 6.12 the field variation normal to the surface for

W(111)/He, due to the monopole-dipole distribution jointly, for by = 2b°

and bE = 7b8. The curves show the same characteristic shape as those

for a bare surface (fig 6.8), with the difference that the curves corres-
ponding to the above-atom field can be roughly visualised as having

been shifted outwards from the surface by a distance equal to the diameter
of the adsorbed atom.

At small distances above the adsorbate layer there has been a sharp
increase both in the B-values above the adsorbate atoms, and in the field
difference as between the above-atom and between-atom positions. For
example, for bE = 2be, at a distance 0.35 nm from the emitter layer,
which corresponds to a distance of 0.0091 nm from the adsorbate layer,
the value of AR is now 0.63 whereas for the single layer it was roughly
0.04. Although the field difference decreases rapidly as both curves
converge to unity, it is believed that the sharp contrast of the FIM
image can be attributed mainly to these enhanced field difference result-
ingk@fgld adsorption, which causes high concentration of imaging atoms
in a very small volume immediately above the adsorbed atoms, and conse-

quently, higher ion current j, and brighter spots. This is discussed in

more detail later.

6.5 Equipotentials and the Critical surface

6.5.1 Equipotential surfaces

The equipotentials above a real metal surface are not smooth planes

(as would be the case for the jellium surface model). This is due to
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charge localisation at the metal surface, which force the equipotentials
to assume a 'rippled" or '"egg-box " shape, with the equipotentials
further from the metal surface above the atoms than they are above the
between-atom position,

This variation above and inbetween atoms or '"ripple" can be deduced
graphically from the bare emitter surface potential curves (fig 6.4), by
drawing a horizontal line parallel to the z-axes, at the required equi-
potential value. The location of the equipotential is determined by the
intersection with the potential curves. The ripple is small, and
decreases gradually as we move away from the surface; it has effectively
vanished by a few nanometres away from the surface.

Comparing fig 6.4 (by = 2b°) and fig 6.5 (bg = 7b°) for the same
equipotential value, shows that the effect of a higher polarizability
value is to shift the equipotential surface outward.

Fig 6.10 for the double layer potential shows the same characteristic
generally as the bare surface one, but the effect of the adsorbed layer
(for positions outside it) is to increase the ripple and to shift the

equipotential surface outward slightly.

6.5.2 The critical surface

The critical surface is (approximately) an equipotential surface
above the charged emitter surface. Inside the critical surface ioniza-
tion of imaging gas atoms (or a desorbed atom) in effect cannot happen,
because imaging-gas atom electrons possess energy less than the Fermi
level of the metal (below which nearly all electron energy levels are
completely occupied), (see section 1.3.2). In the standard elementary

treatment the critical distance X. 1s given appromimately by :
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So according to the above equation the critical surface above a charged
tungsten emitter, where F = 45 V/nm, I = 24.5eV, and ¢ = 4.5 eV
(ref [7]), is equal to 0.44 nm.

But the above equation has the weakness that it depends on the
jellium model, which predicts a flat critical surface. To predict the

critical surface using our surface model, we use the following procedure:

(1) Calculate the dimensionless potential or '"critical V-value", V(crit)

from the relationship:

V(erit) = I'eit ..... 6114
c.F

For F = 45 V/nm this has the value 1.40434, [It is useful to work
with a precise value, though obviously the accuracy of this value

is much less than its precision would suggest].

(2) Use our computer program to calculate the characteristic distance
char : s . :
Rz for a certain position in the surface array, that gives a
potential value equal to V(crit). The results, for He on W(111),

for by = 2% and By = 7b°, are shown in table 6.4.

The general characteristics of the critical surface as obtained
here are the same as those of equipotential surfaces, as already discussed.

Table 6.4 demonstrates numerically the following things:

har .
is greater above the surface atoms than between

6
(1) In all cases Rz
them, i.e. the critical surface is concave outwards above the imaged

atoms.

2) Rchar

. is slightly greater in the double-layer situation, and is

greater for the higher polarizability value.
(3) The "distance ripple" is greater in the double-layer case, but

smaller for the higher polarizability value. In absolute terms
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TABLE 6.4

Values of the field ratio and the field ratio difference, above

and inbetween atoms, for a single and a double layer,

and for polarizability values 2b° and 7b°

be/b° pRar pYE | R E) Rghar oL) | 8°F s1) | 8T (L)
(nm) (nm)
2 el 0.52155 0.54028 1.00144 | 1.01002
DX/2 O 0.52143 0.53948 0.99952 | 0.99085
Differences | 0.00012 0.00080 | 0.00192 | 0.01917
7 0 0 0.60743 0.62936 1.00058 | 1.00254
DX/2 O 0.60738 0.62915 0.99981 | 0.99916
Differences | 0.00005 0.00021 0.00077 | 0.00338
Vet o 1.40434
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the ripple is fairly small in all cases.
With respect to fields, the tables demonstrate the following results:

(4) The above-atom fields are higher in the double layer case than in
the single-layer ("'bare emitter'") case. This is a consequence of
the fields due to the induced dipoles in the field-adsorbed layer.

(5) The critical surface fields are lower for the higher polarizability
value, in both single-layer and double-layer cases; and the same is
true for the difference ﬂBcr in field ratios as between above-atom

and between-atom positions.

This last result was entirely unexpected, and has implications for
imaging theory. Basically, it occurs because the fall-off in potential

with distance is slower than the fall-off in field.

6.6 Imaging and Contrast

Since the ionization of imaging-gas atoms occurs in the vicinity of
the critical surface, the fields in the critical surface have a specific
importance in the theory of imaging and image contrast. Recalling eqns.
2.4 and 2.7, it is clear that the imaging process depends on the ioniza-
tion densities in the ionization zones above protruding surface sites,
(i.e. surface atoms), and contrast depends on the ratio of ionization
densities as between points in the critical surface above and between
neighbouring atomic sites.

This ratio of ionization densities is determined partly by the gas-
concentration ratios, and this in turn is influenced by the field
differences. If thermodynamic equilibrium exists, then we may write

eq. 2.7 in the form:

ext

= o cr
CA/CM = exp [%bA(F )<.2487" /kT]
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There is a small approximation here in that we have equated the average
field with the external field, but this is not important for practical
purposes.

We show in table 6.5 some values of CA/CM for the various cases
considered above and for several different temperatures. Two results
stand out. First, that the presence of the adsorbed layer markedly
enhances the predicted gas-concentration ratio, second that in all cases
the gas-concentration ratio corresponding to bE = 2be is much higher
than that corresponding to bE B 7b8, which means that - contrary to our
intuitive expectation - higher emitter surface-atom polarhlability tends
to reduce rather than enhance image-contrast. As already indicated, this
is because the higher polarizability shifts the critical surface outwards,
away from the dipoles in the field-adsorbed layer. Although the moments
of these dipoles are increased by choosing a higher polarizability for
the substrate atom, this increase is not enough to compensate for the
outwards shift in the critical surface.

In discussing the influence of gas-concentration variations in
contrast, it should be remembered that with a Raleigh criterion a ratio
of 1.3 in the ionization densities is needed to explain contrast. Thus,
if thermodynamic equilibrium were to exist, a ratio of 1.3 in the gas
concentrations would be sufficient to explain contrast. On this basis,
if bE = 2be, then contrast can be explained near 20K and below if no
adsorbed layer is assumed present, but well above 80K if an adsorbed layer
is assumed present,

In face, the'imaging gas is not in thermodynamic equilibrium with

(16,:26)  puffe11 and Forbes (1)

the emitter under imaging conditions
suggest that, as an approximation, we may assume the gas to be locally

in equilibrium with itself, at some effective temperature /43 above that

ff
of the emitter. They suggest that Teff may be about four times the

emitter temperature., On this basis, our results suggest that, to explain
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the existence of resolved planes in the images of W(1l1ll), at emitter
temperatures near 80K, the presence of a field-adsorbed layer has to be
postulated.

Conversely, the results in table 6.5 confirm that, if the adsorbed
layer is present, then gas concentration variations must be expected to

have a significant role in imaging theory.
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TABLE 6.5

Values of the gas concentration ratio above and inbetween atoms (CA/CM)’
at the critical surface, above a single and double layer, for

polarizability values 2be and 7be, at different temperatures

B
bE/b CA/CM (SL) CA/CM (DL)
T =5k 2 596 3.9 % 105
it i ¥ I
T =5 20K 2 1.4 25
7 1.14 1.8
T, = 80K 2 1.08 &n?
7 1,08 1.15
et =2 B 0K 2 1.02 1.24
7 1.009 1.04
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CHAPTER 7

RESULTS AND DISCUSSION: BINDING ENERGIES

7.1 Structure

We now turn to the discussion of short-range field-adsorption bind-
ing energies. The major part of this chapter deals with the calculation
of binding energy AB for a complete layer, and we approach this in three
stages: the calculation of the conventionally-defined component AB(conv);
corrections necessary to obtain the full (differential) field-induced

contribution ABEIec

; and the further corrections necessary to obtain the

total (differential) short-range binding energy AB. In the calculation

of AB(conv) we compare our results with those of previous treatments.
The remainder of the chapter deals in a preliminary way with the

calculation of binding energies for partially-occupied layers, and for a

fully occupied second field-adsorbed layer.

7.2 The calculation of AB(conv)

7.2.1 Comparison with previous treatments

To facilitate comparison of our treatment with those of Muller and

Tsong(ls’ 52), we initially introduce some simplifications into our

formulae. First, in eq. 4.62 we set Mil =1 vand Yg’A (Yé in the more

general treatment) equal to zero. Physically, this is equivalent to
ignoring the effects of the adsorbate-layer atoms on themselves and on

the emitter-layer dipoleé. Eq. 4.62 will then be reduced to
m

. E . m
' ~ o 1
BA BA btk 5 ME BE ..... Tl

But the r.h.s. of this expression is just a formal version of the single
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layer formula discussed in section 4.3, applied at the bonding point A.

Thus we can write it more fully as:

i D it dE _ .n m Y 3
Bl = B, = By + BT = @ + by TdME [ame 3 ... 7.2

Table 7.1 shows the results of calculations based on a simple square
array. (We have in effect used the structure factors for the (100) face
but have set c equal to the interatom spacing in the (111) face. This
will give results for the geometry discussed in ref.(68). Various choices
for the parameters in eq.(7.2) are given, together with the corresponding
values of BA’ (fA - 1) and the binding-energy component AB(conv) as
evaluated for an external field equal to 56 V/nm. We initially use the
polarizability value 3.19 meV v-2 nmm?, which is equivalent to the value
used by Tsong and Muller. The choices are as follows:

Choice 1: Apart from a very small correction factor, this is
equivalent to the IDP approximation, represented in eq.2.8. Physically
the choice disregards all interactions between the adsorbate atom and
the highly charged-metal-surface atoms except that with nearest atom.

Choice 2: is equivalent to the unapproximated array equations given

by Tsong(szj. It disregards the monopole effects in eq.4.62 (by putting
BE = 32 1), and gives the parameters Mﬁland Td values appropriate

to a simple square dipole array. Physically this choice describes the
interaction between a layer of neutral emitter atoms and a single adsorbed

atom, isolated in free space in an applied field gD

, and with mutual
induction between the adsorbed atom and the layer ignored.

Choice 3: incorporates the fact that the emitter is an electrical
conductor, by sétting the impressed (monapole) field at the emitter

E ='-,5), rather than FeXt. This is done

surface equal to % F-eXt [lue. &
because, in reality, the emitter - layer atoms form the surface of a

charged conductor, and so they are in part the source of the external field.
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TABLE 7.1
Values of specified field ratios and of the conventional
short-range field-adsorption binding energy AB(conv.),
for a square lattice with a = 0.4476 nm, for specified

choices of the parameters appearing in eq.7.2 and of BK

Choice
1 2 3 4 5 6

bE/be 3.19  3.19 3.19 3.19 7.00 7.00

s“E‘ 1.0 1.0 0.5 0.5 0.5 0.5

9 10.32  5.934 < 5.9%34  5.954  5.934 5,934
M,El 1.000 0.6836 0.6836 0.6836 0.4962 0.4962
i 0.520 0,208  0.104 0.104 0.165  0.165

BE 1,000 1.800 1,000 . 2.067  1.000 1.067

BA 520" 1208 B0 1,008 JTATL 1,165 4 15232
- 1.337 0.460 0.219 0.372 0.358 0.519

:’_\.B(conv.)b 0.299 0.105 0.049 0.083 0.080 0.116

Ab(conv.) is evaluated for an external field of 56 V/nm, using the

approximate value of the field-ratio shown, and is expressed in eV.
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Choice 4: takes into account the enhancement of the field at the
position of the adsorbate due to the localisation of the charges at the
emitter surface, by setting BE equal to 1.067 (our calculated value) rather
than unity.

Choice 5: showsthe effect of higher polarizability (i.e. putting
bE = 7be rather than 3.19b8} on choices 3 and 4.

The sequence of choices from 1 to 4 represents a trend towards
increasing realism in general mathematical and physical assumptions. It
is shown clearly that the Tsong and Muller dipole-dipole theory (our IDP
approximation,represented by choice 1) is not an adequate substitute for
a full array calculation. With the data choice used here, the neglect of
mutual depolarization amongst substrate-atom dipoles causes over-estima-
tion of the binding energy by a factor of nearly three. The degree of
over-estimation will depend somewhat on the values assumed for the lattice
spacing and for the surface atom polarizability. The results here are
incompatible with Tsong's statement, based on unpublished work mentioned

in his review article(sz}

, that the IDP aprox. leads to numerical results
sufficiently accurate for comparing with experimental results.

A second point concerns the role of the field variations due to the
discreteness of positive charges. The original work on this by Forbes(ﬁs)
compared the monopole contribution to field variations with the dipole
contribution as calculated by the IDP approximation., However, by refer-
ence to the full array calculation of the substrate-dipole contribution
(choice 3), the monopole contribution is relatively more significant.
Including the monopole effects (choice 4) increases the short-range bind-
ing energy by approximately 70%, for the SI polarizability value 3.19be.

For. the higher polarizability value of 7b8 used in choices 5 and 6,

the inclusion of the monopole contribution increases the predicted short-

range binding energy by approximately 45%.
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7.2.2 The effects of lattice structure

Table 7.2 compares the results for choice 6 above, that are based on
a simple square lattice structure of side 0.4476 nm, with those for the
two other structure choices specified earlier, assuming the polarizability
value bE = ?ba. The binding energy estimate is here based on the full

formula for AB(conv), namely eq.4.62 rather than the approximate formula,

eq.7.2. The columns in table 7.2 are:

Choice 1: corresponds to choice 6 in table 7.1 (but using full
formula), i.e. mdl 1.

Choice 2: represents a square lattice structure with a lattice cell
area equal to that of the hexagonal W(111) structure, i.e. mdl 2.

Choice 3: represents the hexagonal W(111l) lattice structure.

Choice 4: represents the same hexagonal lattice structure but with
the SI proper polarizability for the emitter surface atom 2b° (i.e. the
lower limit discussed earlier).

The first choice shows that the use of the full formula for BA
rather than the approximated formula tends to reduce the conventional
binding-energy estimate. This is discussed further below.

Comparing choices 1 and 2 shows that, for a given (square) lattice
structure, SA and ﬁB(conv) gre smaller when the interatom spacing is

contribution
smaller. The monopole*to field variations is reduced, and mutual
depolarization effects are enhanced.

Comparing choices 1 and 3 shows that, for a given interatom spacing,
BA and AB(conv) are smaller for the hexagonal thaq the square structure,
@ssentially because the area per array point is smaller for the former.

Finally, comparison of choices 1 to. 3 shows that the modelling of a
real hexagonal structure by a §quare lattice is more successful if the

areas per array point (rather than the interatom spacings) are set equal.
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TABLE 7.2

Values of the parameters appearing in eq.7.2, and of

the conventional short-range field-adsorption binding-

energy AB(conv,.), evaluated for specified lattice

structures, without approximations

Lattice type Square Square Hexagonal Hexagonal
a (nm) 0.4476 0.4165 0.4476 0.4476

b (meV V2 nm?) 7.00 7.00 7.00 2.00

By 1.233 1.183 1181 Y111

Mgl 0.9800 0.9749 0.9753 0.9753

=1

My* B, 1.208 1.153 1.151 1.083

p-! 1.0044 1.0032 1.0032 1.0015

BX 1,218 1.157 1.155 1.085
AB(conv.)® (eV)  0.106 0.076 0.075 0.040

-, AB(conv.) is evaluated for an external
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More generally, one might expect to be able to model a complicated
array structure by a square lattice with the same area per lattice point,

as has been pointed out by MacDonald and Barlow(ss),

7.2.3 The influence of induction effects

Physically, the reduction in the conventional binding-energy estimate
when using the full formula is due to induction effects resulting from
the presence of the adsorbate layer. The correction to the field ratio
is small, about 2% in the case of each lattice structure when the surface

polarizability b, is taken as 7b8. The correction to AB(conv), however

E
is much greater. For the hexagonal lattice structure, for example, the
full-formula result is roughly 15% lower than the approximate result.

To investigate in more detail the effects of the presence of the

adsorbed layer, we write eq.4.62 in the form:
T -1 y-1
BA D MA SA ..... T s

whereD denotes the denominator in eq.4.62. The factor M;l in eq.7.3

results from interaction within the adsorbed layer, and acts to reduce
the local field acting on an adsorbed atom; the factor D™! relates to
mutual induction between the adsorbed atoms and the emitter substrate
atoms, and acts to increase the local field acting on an adsorbed atom.
As shown in table 7.2 the factor M;! has a somewhat greater influence

A
than the factor D~ !l.

7.2.4 Influence of'polarizability value

By comparing choice 3 and 4, in table 7.2 we see the great effect of
the polarizability bE value on the calculation of AB(conv). Setting
bE = 2be rather than 7b8 reduces AB(conv) by about 45%. There is still

much uncertainty associated with the choice of proper SI polarizability,
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for the surface atoms (see sec 3.5) values mentioned in field-ion
literature for the "polarizability'" of tungsten atoms range from 0.38b6
(for an atom in the (001) plane (ref.(7 )) to Thorhalson et al value of

11,762 (80)

, which is a computed value for an atom in free space. In our
view there are no reliable experimental or theoretical measurements of
the proper SI polarizability of a partially ionized surface atom, and/or
of how much it may differ from the SI polarizablity of the same atom

(neutral) in free space. Thus we are using upper and lower estimates, as

described earlier.

7.2.5 Summary

This section has largely been concerned with possible mathematical
approximations in the calculation of the conventional field-induced

binding-energy contribution AB(conv). It has been shown that:

(1) The isolated-dipole-pair approximation is not an adequate substitute
for a full array calculation.

(2) Mutual depolarisation, and also the field variations due to the
discreteness of positive charges, must be taken into account.

(3) Mutual induction effects due to the adsorbate layer can be neglected
in a first approximation, but that there is no problem in including
them.

(4) The correct lattice structure for the crystallographic plane under
discussion should be used.

(5) There is a residual uncertainty by a factor of about two, due to

uncertainty over the correct value of surface atom polarizability.

7.3 The calculation of AB®'®S

As we described in section 3.2, the short-range binding energy term

146



AB. consists of many terms. Recalling eq.3.2:

AB = ABelec + ABTEP . &Bdlsp > ﬁslat : aBlndlr

The term aBeleC (representing the full electrical component of the induced

short-range binding energy) is not identical with the term AB(conv) that
represents the conventional expression for short-range field-adsorption
binding energy, as described in section 3.2. In the first place there
are hyper-polarizability and field-gradient polarizability terms.
According to ref.(73), these increase AB(conv) by about 20% in the field
range of interest. Secondly, there is the effect of the induced change
in the source of the electric field (- QUS). Bearing in mind that the
quantity of interest is what we defined earlier as the '"differential"
short-range binding energy (i.e. the binding energy associated with the
removal of a single atom from the adsorbed layer), and that all our short-
range binding-energy contributions are of this type, we now consider aus_
in more detail.

The evaluation of ABEIeC

, by integration of the force acting on the
vacancy-site atom along a path away from its adsorption site, is possible
in principle but would involve extensive calculations. We think that
the following argument may provide a rough estimate.

The effect of mutual induction within the adsorbed layer is to reduce
the field acting on each adsorbed atom. If this mutual induction effect
could be "turned off", whilst leaving the mutual induction effect between

the substrate atoms and the adsorbate-layer atoms ''turned on', then the

field F* acting on each substrate atom would be:
Fie: FLL FUS i v Wi 7.4

where the symbols have the same meaning as previously, i.e. BA is the

field ratio for the "bare emitter'" situation. Taking FEXT as 56 V/nm, and
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using the data appropriate to the hexagonal lattice as given in table

7.2, with bE = 7be, we obtain a binding-energy estimate:

AB®L®C(F*) = 90 mev

This result should be compared with the value AB(conv)given in table 7.2,
namely 75 meV,

We now argue that during the removal process all the dipélesin the
adsorbate layer (except the vacancy-site atom) would, if they remamed

fixed in position, have strengths intermediate between bAFlOC and b,F*,

A
Consequently, the work done against electric-field-induced forces in
removing the vacancy-site atom should be intermediate between the binding-
energy estimatesobtained by taking the field acting on the other dipoles
Floc elec

A and as F*, respectively. That is, AB

between 75 and 90 meV.

as should be intermediate

For the same lattice structure, but with bE = Zbe, the conclusion is
elec -
that AB should be between 40 and 53 meV.
We thus think that for the field adsorption of helium on the (111)

face of tungsten, the (differential) field-induced binding energy contri-

bution &Belec could be greater than AB(conv) by roughly 10 meV, when:
F*Y - 56 v/mn
4 elec : : i ;
Other corrections to AB might in principle arise from the

existence of a permanent surface-atom dipole moment, as discussed in
chapter 3. However, it is felt that the corrections will be swamped by
the uncertainties in the surface-atom polarizability, and can be neglected
at the present time.

elec

Overall, therefore, we feel that AB: will be greater than AB(conv)

by perhaps as much as 30% for the fields of interest to field-ion emission.
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7.4 The Calculation of AB

Next we consider the calculation of the remaining terms in

g 3. 2s

7.4.1 Repulsive Forces

The theory of the binding-energy contribution due to repulsive forces
was discussed in section 3.7. Using eq.3.33, we computed the repulsive

forces ratio n for W(l11l)/He structure., The results are:

n = 0.51 if by = Zbe, no= 0.48 if b, = 7b°

Thus the factor (1 - n) in eq.3.34 is approximately equal to one half.

The effect of repulsive forces cannot be neglected.

7.4.2 Dispersive Forces

The third term in eq.3.2 is the binding-energy component resulting
from the interplay of dispersive and repulsive forces. This interplay
also exists in the absence of the external field, and has been extensively

(40, 88)

discussed in past literature If there wereno change in the

position of the adsorption site when the field is applied, then the

) aBdisp

in eq.3.34 would represent the zero-external-field binding energy,
at least approximately. Since the field-adsorption sites are directly
above the substrate atoms, but the normal physisorption sites are in the
positions that maximise the number of nearest neighbours, differences will
exist in the details of the dispersive an@ repulsive interactions inlthese
two cases. Howéver,'it seems reasonable.to treat the third term in

eq.3.2 as equal to the binding energy in zero external field.

The value of this binding energy, for helium on a metal, is usually

taken as approximately 10 meV (see ref,(40), for example). However, a
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(88)

recent review cites a value of approximately 4 meV for helium on

tungsten, derived from scattering experiments(gg).

These binding-energy
contributions are small, but are not negligible in comparison with the

lower of the estimates made for the first term in eq.3.34.

7.4.3 Lateral Interactions

In principle, contributions also result from lateral interactions
between adsorbate atoms. The effect of electrostatic dipole-dipole
interactions has been taken into account in the estimation of ABEIeC.
But in principle there also exist chemical type interactions.

For two helium atoms in free space, calculations suggest that at a
separation of 0.4476 nm there is an attractive interaction energy of

around 0.1 mev(go).

As each adsorbed helium atom in a monolayer on a
(111) face has six nearest neighbours, this would produce a contribution
of about 0.5 meV to the short-range binding-energy. A contribution of

this size can be neglected.

7.4.4 Indirect Lateral Interactions

When noble-gas atoms are adsorbed, the presence of the surface
modifies the interaction between them, even when the surface is neutral.
In effect, there is additional contribution to the binding energy, that
gives rise to the term AB DT induded in eq.3.2. For the heavier
inert gases adsorbed on graphite this contribution is known to be
repulsive at large separations, and tends to reduce the magnitude of the
lateral interaction energy by around 5 4‘10%(72). This effect will
presumably exist in the adsorption of helium on a metal, but as far as
we know there is no relevant data. However, if its size is comparable
with the percentage figure just quoted, then ﬁBindir would be of order

- 0.1 meV and thus completely negligible.
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7.4.5 Summary

Drawing these estimates together, we get the following numerical
estimates for He on W(111l), at a field of 56 V/nm, (the lower figure in

each case corresponding to b = 2b8, the higher to b = 7be):

(1) AB(conv) is estimated to lie between 40 - 75 meV's

(2) Adding about 30% (or somewhat less) to get ABElec gives a
figure lying between 55 - 100 meV

(3) Taking 50% of the above, to allow for repulsive forces, and
adding between 5 meV and 10 meV to allow for dispersive forces

gives an estimate of AB lying between 30 meV and 60 meV.

Following the same procedure, but for a field of 45 V/nm, AB is
estimated to lie between 25 and 50 meV.

It will be clear that, although the estimate of AB(conv) is relatively
precise, there is considerable uncertainty about the corrections. Better
treatments will eventually be required, but for the time being we may
formulate a rough rule that, for fields in the range of interest to field-

ion emission we may obtain AB from AB(conv) by subtracting about 35%.

7.5 Binding energies in other circumstances

7.5.1 Other planes

Using the rule just formulated, we may calculate the binding energies

for helium on the other planes of tungsten mentioned in table 6.1, Values

obtained using bE = 2b8 and FeXt 45 anm_are shown in table 7.3

151



TABLE 7.3

Plane Ac AB(conv)/meV AB/meV
100 1 negative negative
110 1//2 negative negative
111 /3 v 50 ~ 30
210 /5 v 120 v 80
211 6/ 4 negative negative
310 vY10/2 ~ 40 ~ 28
411 3/2v/2 negative negative

It is seen that several of the planes have negative binding energies.
The result indicates that we cannot have a complete field-adsorbed helium
layer on these planes, because high mutual depolarization would prevent
the formation of a full adsorbed layer. This is because the planes are
relatively close-packed, - as demonstrated mathematically by the small
value of AC and the large value of the structure factor T

1

7.5.2 Partial layers

To follow up this point, we arranged a program to simulate a limited
number of helium atoms adsorbed on a full emitter substrate layer, by
ignoring mutual induction and artificially reducing the structure factor
and hence the relative permittivity MA for the adsorbed layer. This -
showed that it is possible to get a partial adsorbed layer (or even few
adsorbed atoms) on top of those planes. .Admittedly this treatment is not
fully correct and we have various reservations.

We also set another program to simulate the ¢ 2 x 2 effect on the
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(100) plane (a recent discoverub phenomenon when only every other substrate
atom is imaged). This showed that we still have negative values for the
short-range binding energy. Very recently Graham (private communication)
reported that selective evaporation of emitter surface atoms was noticed

in this case. We simulated this situation in a program by setting the
surface lattice parameter for a face centred square lattice to be equal to
2 x a. AB in this case is positive, the estimated Valdles were 160 meV at
F®*t - 45 V/nm, and 245 meV at F®*% = 56 V/nm. Field adsorption on the

c 2 x 2 structure is thus to be expected, and hence its clear imaging can

be explained.

7.5.3 The triple-layer case

Stimulated by the results in the preceding sections, we constructed
a program to calculate the conventional binding energy for an assumed
second adsorbed layer of atoms on top of the first, on the (111)-plane of
Tungsten. The theory for this situation was described in section 4.6,

For the He on W(11ll) system, at an external field of 57 V/nm, AB(conv) =

5.6 meV.
Comparing this to the Rendulic and Krautz(zg) value, AB(conv) = 20 meV
at %t o 45 V/nm our low value of AB(conv), does not support the Rendulic

and Krautz hypothesis of the existence of a second adsorbed layer, since
such a weak binding energy cannot hold the adsorbed atoms in the second
layer fixed in their positions. More likely, we would have a second layer

of mobile atoms, as the more conventional discussion assumes.
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CHAPTER EIGHT

CONCLUSIONS AND FUTURE WORK
8.1 Summary

The conclusions of the main work reported in this thesis may be
summarised as follows:

First, we have shown that there are many aspects in the theories of
field ion imaging, field adsorption, and charged metal surfaces, that are
inconsistent or contain basic conceptual errors. We have redefined the
main variables, putting forward self-consistent definitions for the con-
cepts of local field, polarizability, and binding energy, and have put
forward a new model for charged metal surfaces and for field adsorption.

This model represents the charged surface by an infinite planar
array of superimposed point positive charges and dipoles (with a similar
array of negative charges at infinity), and the field-adsorbed layer by
a similar layer of dipoles. The model can be analysed self-consistently,
and incorporates the important physical fact that local structure exists
in the charge distribution at the charged surface.

Using calculations based on this model, we have explored the field
and potential variations above a charged surface, We have demonstrated
that the field above a bare emitter surface is higher above the atomic
sites than in between them, but that in the critical surface this
variation is not enough to explain image contrast (for He on W(111l)) at
80K. When a field-adsorbed layer is present a much higher field
difference exists, that is sufficient to explain image contrast. Welhave
also shown thatfthe'equibotentials above the emitter plane can be imagined
to have an egg-box shape, and that thelhigher the value of the proper
polarizability of the surface atoms the further from the emitter surface

will be an equipotential of given V-value. A consequence of this is that

154



higher surface-atom polarizability can lead to reduced image contrast.

In our studies of field-adsorption binding energy, we have shown the
insufficiency of previous treatments when applied to the case of a gas
atom adsorbed in the interior of a crystal facet, assuming that the facet
can be modelled by an infinite array. In particular, we have shown that
ignoring the depolarization effects due to mutual interactions between
emitter surface atoms leads to marked over-estimation of the binding
energy. In the case of a really close-packed plane, for example W(100),
the binding energy is negative, showing that it is impossible to have a
full adsorbed layer. We have also shown that, even for W(lll), we cannot
have a complete second field-adsorbed layer on top of the first one, as
has in effect been suggested by Krautz and Rendulic, because the short
range binding energy is too low (AB ~ 5 meV).

For the paradigm case of He on W(111l), when all corrections are
taken into account, we have estimated that at the best image field for
Helium (45 V/nm) the short-range binding energy probably lies between

25 and 50 meV.

8.2 The adsorption/imaging problem

At this point we reach a very contradictory result. On the one hand
we have concluded that it 1s necessary for a field-adsorbed layer to be
present in order to explain image contrast; on the other hand the estimated
short-range binding energy (i.e. 25 - 50 meV, at PO 45 V/nm) is not
sufficient to explain field adsorption itself, as may be demonstrated by
the following a;guﬁent. :

If we assume that the mean time interval between ionization events
in a given ionization zone is roughly equal to the time interval assumed
to cause a continuous bright spot on the phosphor screen of the FIM, that

is about 10™% s, then we conclude that 10™* s is the minimum time that
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a field-adsorbed atom must be present. We may assume that the time
required for an adsorbed atom to escape from a site, where Q is the

necessary activation energy, is given by the Arrhenius-type equation:

B e exp (Q/kT)

where kT is the BoltZmann factor, with T the emitter temperature taken

to be 80K. A is a pre-exponential whoge value is taken(73) as 1012 5-1

and E 10—4 s. Assuming that Q can be identified with the short-range

>

binding energy AB, then the value of AB necessary for an atom to be field
adsorbed for about 10™% s at 80K is about 130 meV.

The estimated binding energy (25 - 50 meV) is substantially less
than this. So either the field-adsorbed layer is only partially occupied,
or some significant factor has been omitted from our theoretical model or
calculations. (For example, the effects of finite plane size may need
to be included in a more realistic model),

Clearly, the problem of getting a completely self-consistent theory
of field-ion imaging and adsorption has not been fully resolved. Some

suggestions for future work are included in the next section,

8.3 Future Work

The opportunity for research in this field (i.e. the theory of the
charged metal surface and field adsorption) is still wide open, since all
the theoretical work done in this field (including the work reported here)
is only a simple step toward the solution of a very complex problem

Even within the framework of the mon0pole-dibole surface model tthe
model which con;titdtestﬂe backbone of this thesis), there is much
unfinished work. We have confined this fhesis to?Zase of tungsten as an

emitter and helium as imaging and/or adsorbed inert gas, and we have

discussed only the cases of the W(11l) and W(111l)/He systems in detail.
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But there is still a wide range of emitter metals to be investigated
and compared, and there are also the other gases that are used as
imaging gases (in particular neon, argon and hydrogen).

We also need to know more about the possibility of partial occupancy
of the adsorbed layer, and about the process of creating vacancies in the
adsorbed layer. In particular, we need more accuracy in calculating the
short-range differential binding energy AB.

Allied to this are problems associated with the use of a mixture of
inert gases for imaging (e.g. a He/Ne mixture): the calculation of bind-
ing energies in a mixed layer, and the effect of an 'impurity" neon atom
on contrast.

Generally we need to know more about polarizability and charge
localization at metal surfaces. In particular, we need more precise and
reliable information about the positions of the electrical surface and
the bonding sites, and better ways of estimating what value to choose for
surface-atom polarizability within the framework of our charged-surface
model.

More fundamentally, we also know that the monopole-dipole model is
only a step towards representing a real charged surface. A model that
completely represents reality is beyond the reach of mankind, since
nothing can completely represent reality except reality itself. A model
can only reflect a part of the reality, or certain of its aspects. We
judge how truthful this reflection is by how close the results of the
application of the model are to the experimental facts in a variety of
Teal situations; apd by the self-consistency of the model itself. But we
always start with an idealistic model that only vaguely represents a
specific reality under specific circumstances. The process of approaching
the specific reality then starts by changing some parts of the model,

trimming or modifying other parts, or/and may continue by abandoning the
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original model in favour of another, better representation of reality.
This is true of our model (the monopole-dipole model). We can now

think of many ways of improving it - or we might set up other models -

in order to have a better representation of a real charged metal surface.

One pathway forwards is to work within the framework of classical physics

and modify our model in carefully studied steps. For example, we could:

(1) Introduce negative charges between each pair of nearest-neighbour
positive charges (i.e. lattice points) at the surface, and to study
field, potential, and binding energy variation;

(2) Investigate in detail the consequence of multipole moments;

(3) A more radical (and much more difficult) endeavour would be to set
up a model representing planes of finite size, or a model based on
a concave, parabolic, or realistically shaped (in three dimensions)
emitter surface. Such models involve the problem of the charge
distribution at a shaped surface, or one of a limited area, and

this needs to be solved also.

Another pathway would require us to think of charged surface models
to replace the classical monopole-dipole model. For example, one can
think of a metal surface model consisting of an array of positively
charged spheres (representing metal surface atoms) submerged in a sea of
negatively charged liquid (representing the conduction electrons). The
effect of the impressed field is then to drive this sea of electrons
downwards into the interior of the metal. If the external field is strong
enough a depletion of sea of negative charges from the top of the spheres
givesus a picture of the.surface involving positively charged apexes
surrounded by negative charges. This imaginary charged metal surface
model combines the jellium-type model and the fact that a metal surface

contains localised charges, and seemingly has the advantage that we do
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not need to worry about metal surface atoms’polarizability, because we
do not need to use such a variable.

In principle, the best way to tackle microphysical problems (such as
many of those arising with charged metal surfaceg is by general quantum -
mechanical means. But this is a task difficult to accomplish. Instead,
attempts have been made to introduce some quantum-mechanics to models
based on classical physics, as in the jellium-type model. This mixture of
classical and quantum physics has many difficulties. Inconsistencies
arise between the theory and practice, as described in earlier chapters.

The eventual challenge in this subject area is the production of a
fully self-consistent quantum-mechanical theory of realistically-shaped
charged surfaces and field adsorption, that takes fully into account the
localised detail in the surface charge distribution that is roughly
represented in Forbes' monopole-dipole model as used in this thesis. It

may be many years before this can be achieved.
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APPENDIX A

More general method to calculate the external contributions Sl(ext)

and Sz(ext).
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(A) The Calculation of Sl(ext)

We can express Sl[ext) as:

S B n dn dé
Sl(ext] = I8=0 J'n=nL Y ST e b T S Al
i
where n = (x2+y?) e, &2
. 3
n' = [(n cos § - Px)z + (n sin 6 - Py)z] R ST

Px and PY are the field point coordinates as explained in chapter 5.

P

- =

'S
&

!

x

W

substituting eqs.A2 and A3 into Al, we can write the denominator of

eq.Al in the following form:

2V IM 5 R A
“3f1 . & : i LR L A A4
n- [1 = (P cos 0 + Py sin e) . = ]

Knowing that Px and Py are usually less than lattice parameter unit length

(i.e. Px or Py << n), then by applying binomial expansion theory to eq.A4
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and neglecting all higher power terms (i.e. second, third, ..... etc), we

get:
A g e
[ sz (B 05 0.+ Py sin 8) - > 53 PR N AS

Substituting eq.A5 into eq.Al and solving the integral, we get:

2 1 r?
Sl (ext) ~ r [TI._ - —2"?'];3' ] ..... A6
el L
where r2 = P2 4+ P2 4+ 72 L
LS ¥
(B) The Calculation of Sz[ext)
We can express Sz(ext) as:
2t = n dn de
S,(ext) = [ i - BIS eeusien B
2 6=0 ‘n=n, [(n cos 8 - B ¥ {0 sin 9= Py)‘ *. 2%
Using the same method described above, we finally get:
28 1 r2
Sz(ext): E-; [3-_‘-'113: HE] o . B2
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APPENDIX B

COMPUTER PROGRAM

This program is written in ALGOL 60. Note that this program is

written for a specific single value of the coordinate Z
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