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Abstract 

This thesis deals with the theory of charged surfaces, field adsorp- 
tion and field-ion imaging. 

The existing literature dealing with these subjects is in many ways 
inconsistent and confusing, and contains conceptual errors, After a brief 
review of existing ideas, we put forward self-consistent definitions for 
various parameters, and formulate new models for charged metal surfaces 
and for field adsorption, The model can be treated analytically, and 
incorporateSthe requirements that the crystallographic surface structure, 
and the localised charge distribution at the emitter surface,be taken into 
consideration, 

This model is applied to a paradigm system, namely helium on tungsten 
(111). Field and potential variations above a charged surface are explored 
and it is shown that at a temperature of 80K the field variation in the 
critical surface is sufficient to explain field-ion image contrast only if 
a field-adsorbed layer is present. It is also shown that the equipotentials 
above the planar emitter surface can be imagined to have an egg-box shape, 
and that the higher the value of the proper polarizability of the surface 
atoms the further from the emitter surface will be an equipotential of 
given potential value. An interesting consequence of this is that higher 
surface-atom polarizability can lead to reduced image contrast. 

In the studies of field-adsorption binding energy, the insufficiency 
of previous treatmentSis demonstrated. In particular it is shown that 
neglecting depolarization effects due to mutual interaction between sur- 
face atoms leads to marked over-estimation of the binding energy; mutual 
depolarization in fact means that in some close-packed planes it is imposs- 
ible to have a fully adsorbed layer. It is also shown that for He on 
W(111) we cannot have a complete second field-adsorbed layer on top of the 
first. 

When all corrections are taken into account, we have estimated that 
for the best image field for Helium (45 V/nm), the short-range binding 
energy for He on W(111) probably lies between 25 and 50 meV. It is con- 
cluded that this low value is not sufficient to explain field adsorption 
and that further modification to our model toward a more realistic model 
is needed in the future. 

Field Ion Imaging, Field Adsorption, Charged Surfaces
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CHAPTER 1 

INTRODUCTION 

1.1 General Background 

In the last few decades, there has been great improvement in 

explaining the bulk properties of metals. Bulk theories are now capable 

of giving qualitatively accurate descriptions of a wide class of 

metals (1 2) 5 

Most of this theoretical work relies on the assumption that the 

body of the metal crystal is homogeneous and continuous, which means that 

the physical properties of a unit element of the metal are the same, 

regardless of its location in the whole body (3) | Regarding the real 

crystal as discontinuous (i.e. atomic) introduced a new factor into bulk 

theory, namely the "periodicity" of the atomic lattice. Translational 

symmetry plays a big role in simplifying the formulation of bulk theory. 

Unfortunately, from this point of view, crystals have surfaces, so there 

is breakdown in their homogeneous state at the surface. This introduces 

various difficulties, which have caused the theories of metal surfaces to 

lag behind relatively“) , These difficulties mainly result from the loss 

of translational symmetry, and there is a problem in that the electronic 

structure must change drastically in consequence of the rapid decrease in 

electron density near the surface. 

A question arises as to the thickness of the "surface". Regarding 

the crystal interior as homogeneous and continuous might lead to the 

assumption that surface thickness is zero,, on the grounds that the 

physical properties of any element immediately under the surface cannot be 

different from that at any other part of the crystal interior, But this 

approach ignores the behaviour of electrons at surfaces.



The commonest theory of electron behaviour at surfaces is based on 

the so-called "jellium" model The ion cores are smeared out to form 

a continuous rigid positively-charged background, against which the 

electrons move. Physical properties at and above the surface are then 

regarded as a combination of bulk and surface effects. At the surface the 

electrons "spread" into the vacuum, forming a surface double-layer, of 

finite thickness. Similarly, when we consider structural ("atomic") 

models, there will be one or more atomic layers that are different in 

their physical properties from the interior layers. (For example, there 

is a 5% decrease in inter-atomic spacing, normal to the crystal cube 

surface, between the outermost layer and the interior layers in alkali 

halides; but the spacing of the second and third layers is nearly 

normal ©) The "surface" is a subject of study in its own right. 

Technological advancement in many of the scientific surface tech- 

niques (e.g. electron microscopy, field-ion microscopy and related 

techniques, Auger, X-ray photo-electron spectroscopy) have made it much 

easier to observe the metal surface in its microscopic details. This has 

stimulated, and continues to stimulate much advanced research on surfaces, 

from many viewpoints, in particular those of physics, chemistry, metal- 

lurgy and materials science. 

One of the most powerful scientific tools in surface studies is the 

field-ion microscope crim (7), because it allows us to observe the surface 

in its structural atomic detail. The operation of the microscope requires 

the application of a very high applied electric field (about 50 V/nm) . 

This leads to a new surface situation, marked by the appearance of new 

physical phenomena (principally field adsorption, field evaporation and 

field ionization) and requiring proper theoretical understanding. 

The necessary theoretical research is still in its beginnings, and 

there are many conflicting arguments and hypotheses in the literature.



Meanwhile the accumulating experimental evidence necessitates the 

re-examination of many parts of the theoretical background both of FIM, 

and of the theory of charged surfacesand the processes that occur at 

them. The work presented in this thesis forms part of this theoretical 

re-examination. 

1.2 Field Electron and Ion Emission 

Raising the temperature of a metal causes the emission of electrons, 

a phenomena known for a long time as "thermionic eniesiay” and widely 

used as an electron source in many electronic instruments. Fig.(1.1) 

shows that the thermal energy needed to overcome the potential barrier 

existing at the surface is equal to $, the local work-function of the 

surface. 

However, if a high negative field, of order 3 V/nm, is applied to 

the surface, as shown in Fig.(1.2), it becomes possible for a fraction of 

the electrons to "tunnel" through the barrier, instead of going over the 

hump. This phenomena is known as "field electron emission" and constit- 

utes the basic mechanism of the Field Electron Microscope crem) 6% 5 

On the other hand, if a sufficiently high positive field (v 50 V/nm), 

exists at a metal surface then it is possible for an electron (or electrons) 

in an atom outside the surface to tunnel into the metal, through the 

barrier shown in Fig.(1.3). The external atom becomes ionized, and is 

then repelled from the metal surface. This phenomena is known as "field 

ion emission", and forms the basic process in the Field-ion Microscope 

(FIM) and related techniques”? ah
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1.3 The Field Ion Microscope 

1.3.1 General Principles 

Field-ion microscopy was the first technique capable of giving images 

of a surface in its atomic details. Historically, the technique 

developed out of the earlier technique of field electron microscopy (1), 

when in 1951 Mul Ler $1?) applied a high positive field to a pointed field 

emitter and let hydrogen into the system. An account of the basic 

technique and its applications was given by Muller and Tsong”) , 

Fig.(1.4) shows a schematic diagram of a basic microscope. In this 

a metallic specimen, shaped as a sharply pointed tip, is mounted in front 

of a fluorescent screen in a highly evacuated chamber (pressure less than 

10° Torr, and an imaging gas (often helium) is introduced to the chamber 

at a pressure of few mTorr. A very high positive voltage of the range 

of 10kV is supplied to the specimen, while the screen is earthed. The 

effect of the very high field around the tip of the specimen is that the 

electronic charge distribution of an imaging-gas atom is deformed and 

the atoms become polarized and so attracted towards the tip. The field 

is not uniform across the surface of the emitter, but is higher above the 

positions of protruding atoms such as those at the edges of the planes, 

and lower over the centre of the planes. As a consequence higher gas 

concentration (C) and ionization rate-constant (Py) are expected over 

these protruding regions, and this leads to a higher rate of ionization 

in these regions. 

The ions thus formed by tunnelling of electrons to the surface are 

immediately repelled by the positive field at the tip surface, and are 

accelerated in a direction normal to the tip surface, towards the phosphor 

screen (or an image intensification device). The impinging of a 

continuous stream of ions from the protruding sites forms a projection
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image of these sites. The magnification factor can be found by dividing 

the tip-to-screen distance by the tip radius-of-curvature, and a very 

good resolved image can be produced of many millions fold magnification. 

The resolution of the image depends on the temperature of the 

imaging-gas at ionization. Hence the specimen is normally cooled to 

liquid-nitrogen temperature (78 K) or below. 

1.3.2 The Critical Surface 

It is well established that neither the attracted imaging gas atoms, 

nor the desorbed surface atoms, can be ionized inside a geometrical 

surface, called "the critical surface" that is slightly above metal 

emitter surface. With a simple "jellium" surface model, this critical 

surface is located at a critical distance X, above the emitter surface 

(Fig.(1.5))y Xe being given by the following approximation +9) ; 

Ay + EI -nd 

oe ae 
c neF 

where RI is the ionization energy for n-fold ionization. 

Ay is the binding energy of neutral atom, in the 

presence of the field 

is the surface work function 

e is the elementary proton charge 

ne is the charge on the ion 

F is the external field 

X, is a small. quantity (i.e. in the range:of 0.5 nm). It is often said 

to be measured from the so-called "the electrical surface" of the 

emitter. However, difficulties arise over how this surface is to be 

defined and where it is located (relative to some feature of the real
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surface). These matters are not well understood, and have sometimes led 

to conflicting suggestions. Different surface models lead to different 

results; these matters are discussed in greater detail in later chapters, 

but we note here that it is desirable in field-ion theory to have a single 

surface model that can deal both with the position of the electrical 

surface and with the prediction of field-adsorption binding energies, as 

described below. 

1.3.3 Field Adsorption 

Field adsorption ‘14> ome) is a process that can occur inside the 

critical surface. If the field is high enough, then imaging-gas atoms 

can become adsorbed (i.e. bound) onto the emitter surface. Each field 

adsorbed atom is adsorbed directly above a metal surface atom, as shown 

an Fig.i(1.5).. 

The short-range field-adsorption binding energy is defined as the 

work required to detach an adsorbed atom, and to place it at some 

position in the external field, away from the local variation in field 

and potential at the surface. These local variations in field and 

potential are due to the localized (atomic) structure of the real surface, 

but are enhanced greatly by the existence of adsorbed imaging-gas atoms, 

which are those believed to have an important role in the process of 

field ion imaging. 

A better understanding of the above is actually the main object of 

this thesis. The hope is to make some contribution towards answering 

questions related to the nature of field adsorption, evaluation of ie 

binding energy, and the effect of field adsorption on field and potential 

variation at the surface and hence on the imaging process.



1.4 Field Evaporation and Associated Techniques 

When the field is further increased at a highly positively charged 

metal surface (typically to more than 50 V/nm) metal surface atoms will 

at some point detach themselves. The atoms become ionized in the process, 

with the removed electrons tunnelling back into the metal surface. This 

process is called "field evaporation". 

The concept of field evaporation has been known since the early days 

of Fim(l7) , and is used to prepare clean emitter surfaces. 

Field evaporation later formed the basic mechanism in the so-called 

(sg) "the atom probe" , which provided the means for mass-spectrometric 

analysis of the detached surface atoms. The time of flight (TOF) atom- 

probe technique allows the analysis of very small regions of surface or 

even single atoms. A later development is the so-called "imaging atom- 

probet'(19) | which enables the detection, for a particular species, of its 

location on the emitter surface. 

1.5 Aim and structure of thesis 

Having described some of the elementary concepts, we think it help- 

ful to set down the aims and structure of this thesis. 

Our primary aims are to develop a theory of highly positively 

charged metal surfaces, and make it consistent with the theory of field 

adsorption. For this purpose we shall try to free existing theory from 

some conceptual errors, and redefine the most important variables (in 

particular: polarizability, local field, penetration distance) in a self- 

consistent manner. Then.we set up a new’self-consistent model for a 

charged metal surface, using the ideal case of an infinite planar surface. 

Finally we apply our model to the practical calculation of field 

adsorption binding energies, and fields and potentials above a charged 

10



surface, using the system helium on tungsten (111) as a paradigm. 

Because of the slightly confused and disjointed nature of existing 

literature relating to these problems, this thesis has a special structure. 

Chapter 2 is a review of relevant aspects of existing theories (up until 

1978) of field-ion image formation, field adsorption and charged surfaces, 

essentially considered as separate subjects. In chapter 3 we set down 

the foundations of a new self-consistent theory, and clarify some basic 

concepts. Chapter 4 describes the algebraic and mathematical formulation 

of our model of charged surfaces and field adsorption. In chapter 5 we 

make practical use of this by devising some computing procedures, which 

are then implemented in a general computer program. In chapters 6 and 7 

we discuss the results: chapter 6 deals with the field and potential 

variations above a charged surface, with the characteristics of the 

critical surface, and with the mechanism of field-ion image formation; 

chapter 7 deals with the calculation of binding energies and makes some 

comparative studies. Finally, in chapter 8 we summarise our conclusions 

and discuss some ideas for future work. 

LE



CHAPTER 2 

REVIEW OF EXISTING THEORIES 

2,1 Objectives 

As just stated, the intention of this chapter is to summarise 

relevant aspects of previous work on field-ion image formation, field 

adsorption and charged-surface theory. 

Historically, these three topics developed largely independently 

of each other, and thus we deal separately with each, at the cost of 

some slight repetition. 

In each case we summarise the development and the main ideas up 

to about 1978 when the work on this project started. 

Ae



2.2 Field-ion Image Formation 

2.2.1 The Rate-constant and Gas-concentration Hypotheses 

The well-defined FIM image is the product of a complex process, in 

which imaging-gas atoms are attracted towards the emitter tip and (in 

effect) crowd around the most protruding atoms of the tip surface, before 

becoming ionized and then repelled from these sites to the phosphor 

screen (or an image intensification device). The continuation of this 

process forms a traffic of ions; the number formed per second at a given 

site is called "site ion current" (or site current), and is denoted by J. 

The observed brightness of a particular spot depends on the corresponding 

J value, whereas the total ion current Te is the sum of all beams, i.e. 
t 

J. == oeeee 
tot ali 

sites 

2.1 

Within the framework of a quasiclassical approach, (29) , J is the 

product of a characteristic gas concentration C", a characteristic electron 

transition rate-constant Patt and the effective volume of ionization, V. 

Thus 

J = GW PA a 
e 

  

Image contrast can be expressed in terms of relative brightness, 

which is in turn described by the relative site current (i.e. the ratio 

of the site currents). If we consider two surface sites A and B then the 

relative brightness is given by 

Jy/J_ = (C,"/C,") + (Pa"4/P."B) + (vg/Vp) pierre 265 

If we assume the effective volumes of ionization zone are approxi- 

mately equal (i.e. vy/Vp = 1) then contrast must be due to the contribution 

13



of the other two factors. 

There are two conflicting hypotheses. The more conventional view, 

(25) (22, 23) (24) 
originated by Muller , and supported by Knor and Tsong 

is that the more dominant factor is the transition rate-constant. On the 

(23, 25, 26) hypothesised that site-current variations contrary, Forbes 

are mostly due to the gas-concentration factor, i.e. the concentration of 

imaging gas is relatively high above protruding atoms because of relatively 

high localized field there. This leads to higher probability of finding 

imaging gas atoms in the right position to be ionized. 

An exactly analogous situation arises in the theory of image 

resolution. Consider points A and M in the critical surface, at positions 

exactly above an atom and exactly above the position half-way between 

atoms, as shown in Fig.(2.1). The ratio R of the ionization densities 

dJ/dV is given by 

R = (dJ/dV) ,/(dI/AV) yy = (Cy/Cy) X (Pog/Poy) sees 

So a question arises as to which factor is responsible for the origin of 

contrast. Forbes (private communication) argues that for atoms in a 

close-packed plane to be resolved R must be greater than about 1.3. In 

consequence, if one of the ratios on the r.h.s. is dominant, then this 

factor must vary by 1.3 as between A and M. 

The geometry of the tip surface has a great effect on image formation 

and on contrast at specific regions. This is because it decides which 

atom or group of atoms is relatively more protruding and thus at 

relatively higher field. The relationship between’surface geometry and 

field-ion image contrast is demonstrated by Moords (27) computer simulation 

of a structured surface. However, at a more basic theoretical level the 

question is "how does the surface structure and/or the high field affect 

the quantities C and Bout 

14°



é 23s 4 i 
For sometime, following ager 4 Original idea, most of the work done in 

this field assumed that the dominant factor affecting image contrast was 

the local variation in the electron-transition rate-constant (i.e. the 

(22) rate-constant in eq.(2.4)}. Knor , for example, suggested that there 

is an enhancement in electron tunnelling in the direction of extending 

unoccupied bonding orbitals of kink site atoms. Enhanced image brightness 

in corresponding areas of field-ion images is observed. But there is no 

reliable calculation to prove that the rate-constant is the dominant 

factor generally. In particular, Iwassaki and Nakamura (28) found that, 

if the surface were bare, then they were unable to prove that the rate- 

constant Le was higher at point A (above an atom) than at point M (between 

atoms). They also found, in common with Nolan and Herman (29) | that the 

adsorption of an intermediate helium atom caused a reduction in the 

electron transition rate-constant; this result is not helpful to a rate- 

constant explanation of image-contrast. 

On the other hand, Forbes (29 26) put forward a hypothesis that is 

simplified into a "provisional working rule", suggesting that; "Image 

appearance is largely determined by the statistics of gas distribution. 

The overall current generated above an area of surface is primarily 

determined by supply-and-capture considerations, that is by the number of 

atoms per unit time that finish or tend to finish accommodation within 

the area. The distribution of current generated across individual small 

areas of surface is likely to be significantly affected by gas distribution 

processes that occur after or near the end of accommodation, these tending 

to set up local Maxwell-Boltzmann concentration equilibria." Forbes’ ' 

hypothesis is that the dominant factor in image contrast is due to the 

gas-concentration factor, The possible significance of the gas-concentra- 

tion factor was shown in the following argument. 

If thermodynamic equilibrium exists, the gas-concentration factor 

15}



can be described by the Boltzmann equation {3) ; 

Coc OXPSUL KS we. SEO gee rae CSUR: Cae, cna 2.5: 

where U = pF? Sai 

U being the gas-atom potential energy, b, is the polarizibility of the 
A 

imaging gas atom, and F is the local field. 

Applying eq.(2.6) to points A and M gives: 

* L 2 2 7 Cy/Cy = exp [Cab,F 7/2). (28E/5) |e er ai Bez asc is 

T in these equations is the temperature of the imaging gas. Working out 

the ratio C,/C, for 1% field strength difference at an average field of 
© if GF is the Fidd differen 

45 V/nm then gives{ the following results 

  

Temp G/ G, 

80K 15 

20K 5.4 

SK 830 

Values of CA/Cyy of this size are adequate to explain image contrast. 

However, it is clear that cryogenic tip temperatures are necessary to cool 

the imaging gas (> os Accommodation reduces the large lateral velocity 

they initially have (as a result of the dipole attractive potential). 

The use of cryogenic tip temperatures also increases the probability 

that incoming atoms will be "captured" by the tip, and reduces the number 

of "hops" made before trapping occurs into a particular region of the 

emitter. : 

There is some evidence ‘> oe) that the ionized imaging-gas 

atoms are not in thermodynamic equilibrium with the emitter tip, and it 

is convenient to replace T in eq.(2.5) by the effective temperature 
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critical 
surface 

  

Fig.2.1 

A schematic diagram of the critical surface above 

two adjacent substrate atoms showing point A and M 

vacuum 

Jellium surface. 

  Electric surfac 
metal emitter: 

To illustrate the relationship between the 

jellium surface and the electrical surface 
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Toge- Ref.(31) suggests that Tore is between 4 to 7 times the emitter 

temperature. 

2.2.2 The effects of Field Adsorption 

Although the temperatures are probably low enough to explain image 

resolution, the question arises: "What is the field variation in the 

critical surface?" A rough calculation by Forbes (37) suggested that for 

a bare surface the field variation would be substantially less than 1%. 

Hence for a bare surface the gas-concentration hypothesis would not 

explain image contrast. 

A solution may lie in the effect of field adsorption on the image 

formation process. The theoretical explanation of how exactly that 

happens has not yet been resolved. The first explanation by Muller §& Co 

- workers”) was that the adsorbed noble gas atoms provide an intermediate 

collision mediumfor transferring the dipole energy of the imaging gas 

atoms to the metal substrate, so accommodation requires fewer hops because 

of the greater efficiency of energy exchange of equal (or approximately 

equal) interacting masses. Then we should expect that He adsorption 

promotes imaging better than Ne adsorption, But this contradicts the fact 

that the adsorption of Ne is a better image promoter than the Hee 

Another suggestion by Muller ‘10> eS) » but not proved, is that during 

the ionization process the tunnelling electrons prefer to choose the 

shortest distance, so they prefer to tunnel through adsorbed atoms. 

Since Ne is a bigger atom.than He there is a smaller gap between Ne and 

the critical surface, so tunnelling is more efficient than with He. 

Theoretical quantum Mechanica! calculation of tunnelling through an 

(30) adsorbed noble gas atom have been made by Nolan and Herman using the 

time dependent perturbation theory, including exchange effects. They 
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obtained enhancement factors of 3 to 5 for He adsorbate and 30 to 90 for 

Ne adsorbate. But when they included polarization they obtained an 

enhancement factor of 0.4 to 1 for He, 2 to 10 for Ne. This reduction in 

ionization rate-constant due to the adsorption was shown again in the 

work of Iwassaki and Nakamura ‘28) , 

On the other hand, Forbes’ "gas concentration" hypothesis could still 

explain the effect of field adsorption on imaging process, if adsorption 

led to greater field variation in the critical surface. 

Rendulic and Krautz (59) tried to bridge the gap between the two 

hypotheses by the hypothesis of a "second adsorbed layer". They argue 

that a second adsorbed atom on the top of the first one can still possess 

some binding energy (i.e. his calculation gives B.E~ 0,02 ev for He). 

As this is small, it cannot bind the second He atom permanently, but can 

certainly bind it long enough to increase enormously the probability of 

ionization (as a result of the increased dwelling time). 

Rendulic and Krautz hypothesis assumes a complete accommodation of 

the gas atoms to the tip temperature. In fact, accommodation is not 

complete(9 $5) . But the author feels that Rendulic and Krautz hypothesis 

is broadly equivalent to Forbes' hypothesis, since instead of dealing with 

many mobile gas atoms in the right position to be ionized (i.e. Forbes' 

hypothesis of gas concentration), Rendulic and Krautz hypothesis deals 

with a single second layer atom staying long enough to be ionized. 

2.3 Field Adsorption 

2.3.1 Field Adsorption and the dipole - dipole interaction 

In the early days of Field Ion Microscopy, an emitter surface 

subjected to high positive electric field (i.e. between 40 to 60 V/nm) 

was believed to be atomically clean, despite the presence of about 1 mTorr 
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of inert imaging gas. 

The weak binding energy due to London dispersion forces (0) 

(approximately 10 meV) is incapable of adsorbing inert-gas atoms 

permanently on the surface, because it is comparable with the thermal 

vibrational energy of adsorbed atoms, even at liquid-nitrogen temperature 

(k x 80K *7 meV). The induced long-range polarization potential, due to 

the presence of high field around the emitter tip, was held to cause a 

hopping motion of imaging-gas atoms, rather than permanent adsorption ‘*}) | 

The first experimental indication of field adsorption was promotion of 

helium ionization when it is used as imaging gas, by introducing a small 

quantity of hydrogen. This was explained as due to the invisible adsorp- 

tion of hydrogen between the widely spaced atoms of the emitter surface (42) | 

An observed improvement of imaging conditions by adding a small 

quantity of neon to the helium(4) was assumed to be due to the enhanced 

thermal accommodation of the hopping helium atoms when they collide with | 

temporarily adsorbed neon atoms rather than heavier metal atoms. The 

invention of the atom-probe provided the first real evidence of helium 

field adsorption; in 1969 Miller“ noticed complex helium ions and mole- 

cular ions containing helium coming off the emitter surface after the 

application of a desorption pulse. Ions such as W He "6 were observed, 

and the argument was that such ions could not be formed in the gas phase, 

so the helium must physically have been present at the surface in the 

first place. 

The first published theory of field adsorption was put forward by 

Miller and Tsong (14) in 1970, They suggested that, adsorption results from 

a short-range’ field-induced dipole - dipole interaction, which drastically 

modifies.the electric field in the vicinity of the kink-site metal surface 

atom. They suggested that there was a field-induced short-range binding 

energy AB(conv.) at a binding site above a kink-site atom, given by: 
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ABy (conv: )i=0 ba Come ICFS Sc uN wen aie 2.8 

where by is the polarizability of the inert gas atom. 

f, is an enhancement factor due to field induced 

dipole - dipole interaction; 

F is the "applied" or "external" electric field. 

The enhancement factor fy is obtained from: 

3 3 £ = [1 + 2b,/4ne,S°]/[1 - 4b,b,/(4ne, yo abet aging 2.9 

where be is the polarizability of the metal emitter surface atom; Ey is 

the electric constant; and S is the separation of the emitter and 

adsorbate atoms. 

(In writing down these formulae, we have converted the formulae 

originally given into an SI form, and have used our own notation rather 

than that of the original papers). 

Using simple calculations, Miller and Tsong“t4) found that the 

binding energy was largest when the inert-gas atom is situated at the 

apex of a surface metal atom, and suggested that field adsorption occurs 

at the apex of the metal surface atoms rather than at the inter-atom 

position as is the case for ordinary adsorption (i.e. if there is no 

applied field). 

The repulsive potential between neighbouring field-adsorbed atoms 

was found to be of the order of 0.01 eV, and turned out to be negligible 

compared to a ten times or more dipole - dipole interaction. Short-range 

(14) binding energies calculated by Tsong and Miller » directly above kink- 

site atoms on a tungsten (110) plane, at the best imaging voltage Far? 

were found to be: 0.13 eV for a He atom at F oe 45 V/nm; 0.14 eV for a 
BI 

Ne atom at F = 37.5 V/nm; and 0.15 eV for AL atom at F BIV priv = 22 V/nn. 

Later, Tsong and Matter 15) | by examining statistical considerations 

and expressing the probability of adsorption in terms of experimental 
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parameters available using the atom-probe, showed the dependance of 

adsorption probability on temperature and field, and thence experimentally 

inferred the short-range binding energy to be 0.23 eV for He on W(114) at 

a holding field of F = 49 V/nm, and to be 0.28 eV for Ne on W(322) at a 

holding field F = 50 V/nn. 

(18) Simultaneously, Forbes suggested an alternative mechanism to 

explain field adsorption. He represented the charged metal surface by 

discrete positive charges, and calculated the short-range adsorption 

binding energy of He on W to be of the order of 0.1 eV. This may not be 

large enough by itself to explain the adsorption phenomenon, but there is 

also doubt as to the validity of the method used. 

These arguments seemed to demonstrate the existence and the theoretical 

plausibility of field adsorption. Field adsorption was also believed to 

enhance the local image contrast significantly, either by enhancing the 

(14) 
ionization rate-constant as argued by Tsong and Miller » or by enhancing 

the field variation above the tip surface, and hence enhancing the gas- 

(37) concentration variation as argued by Forbes 

The point that the enhanced field variation could be the cause of 

image contrast effects was made earlier by Forbes eo) . 

(45, 46, 47, 48) 

To explain the 

hopping bright spots appearing when introducing a small 

quantity of a heavier inert gas (like Ne) to the chamber containing the 

lighter imaging gas atoms (He usually), we could assume that Ne atoms 

replace adsorbed He atoms, and so enhance the field even more, and hence 

enhance the gas-concentration above them. In consequence, the neon atoms 

enhance the local ion current J, which gives brighter image spots. A‘ 

similar effect would of course be achieved if the adsorbed atom enhanced 

the ionization rate-constant 47+ fel 5 

It has been assumed in the above disussion that helium atoms are 

adsorbed as neutrals. An alternative suggestion was put forward by 
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Réligen and Beckey 0) » that helium and other inert gas atoms are 

adsorbed on surface as ions. But it seems to be a very remote possibility 

that there would be sufficient field penetration into the metal for the 

ionic state to become the ground state for these adsorbed imaging gas 

($1) atoms , certainly for the lighter atoms. 

2.3.2 Models of Field Adsorption 

As explained above, Tsong and Milier 14) based their calculation on 

the interaction of two parallel dipoles representing a single emitter 

atom and adsorbed inert-gas atom in an applied electric field pert this 

model was later called by Forbes the "isolated-dipole pair (IDP)" model. 

This is represented mathematically by equations (2.8) and (2.9). 

Tsong >?) later attempted to develop the (IDP) model to deal with 

the case of adsorbed atom (represented by single dipole) sitting on a Sub- 

strate of metal surface atoms, represented by an array of dipoles. This 

model was based on a new analysis of the field-induced dipole - dipole 

interaction between two atoms. Equation (7) in ref. (52), when expressed 

in scalar form, implies that the shortrange interaction energy Ae between 

two dipoles is: 

z 3 
Ae = 2 PE (ad) Py (ad) /4me 5S wees elu. 

where Pe (ad) and Py (ad) are the SI dipole moments of the emitter atom 

and the adsorbate atom in the ''as adsorbed" state, and S is the separation 

between the dipoles. 

However, the above Tsong formula was contested by Forbes (5) on two 

reasons, First, ‘on grounds of classical oleerroctecies? for polarizable 

dipoles the full expression for the short-range interaction energy should 

be: 
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of 

Ae = [Py (ad) - Py (ext) +P, (ad) - Py (ext)] BS oes 

2 P, (ad) Pp (ad)/4ze, Sa hs ct en ee 2d 

Obviously,Tsong's formula (eq. 2.10) ignores the first term of (eq. 2.11). 

Second, Tsong implicitly identifies the electrostatic interaction between 

classical dipoles (Ac), with the field-induced binding energy component 

ape, This is true in the case of atoms with permanent dipole moments, 

but not true in the case of polarizable atoms, since part of the inter- 

acting energy is converted into internal electronic energy as given by 

the following equation: 

el 
AB™ = Ae - AV ecreaeees 

where AV is the increase in internal electronic energy. 

) that there is a fault in the conventional ane) Forbes also argued 

treatment of the (IDP) approximation, in that the "change (4u,) in the 

internal energy of the source of the field acting on the adsorbate atom" 

has not been taken into account. Thus the electric component case) of 

the binding energy is related to the conventional expression AB(conv.) by: 

el 
AB~~ = AB(conv.) - AU, Beinn os be: 

In the IDP approximation, this correction is of the order of 5 - 10%. 

In an attempt to bridge the ideas of Miiller and Tsong on the one 

hand, and Forbes on the other, Rendulic and Krantz) argued that there 

exists a second mobile layer of adsorbed atoms on top of the first fixed layer 

adsorbed atoms. These second-layer atoms have a high probability of . 

ionization. To estimate the binding energy they extended the (IDP) model 

to include a second adsorbed atom on top.of the first one. Calculated 

binding energies for helium in a field of 45 V/nm were about 0.02 eV. 

All the above models are based on the interactions of pairs of atoms. 
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This type of model may be appropriate for a kink-site, but looks 

inappropriate for a crystallographic plane; array models seem likely to 

be better. 

Attempts to calculate fields above a finite square array were made 

by Forbes 7) Sy) and by the present author These showed the existance 

of effects due to the finite size of the array, and suggested the use of 

infinite arrays, and hence the topic of this thesis. The first published 

discussion of the infinite array situation, however, is that of Tsong©*) , 

As a result of the work described in this thesis, deficiencies in this are 

now known to exist, and are discussed in chapters6 and 7. 

2.3.3 Summary 

To conclude this section, we restate the main physical points 

concerning field adsorption. Field adsorption is an interaction that 

occurs between strongly positively charged metal surfaces and inert gas 

atoms. The adsorbed gas atom is bound to the apex of the metal surface 

atom because the binding energy maximises above the metal surface atoms, 

rather than inbetween them (as is the case in the absence of the field). 

Field adsorption differs from ordinary physisorption and chemisorption in 

that: 

(1) the short-range binding energy is much larger than that due to 

dispersive forces (i.e. ten times or more); 

(2) the nature of the short-range bonding energy is physical (i.e. mainly 

dipole - dipole interaction) rather than chemical (i.e. ionic or coValent 

bond). There is also a strong belief that field adsorption is the major 

factor in forming thé image contrast in the FIM. 
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2.4 Charged Metal Surface Theory 

2.4.1 Jellium-type models 

All inter-atomic forces and metal surface forces originate from the 

electro-magnetic interactions of the nuclei and electrons comprising the 

system. The quantitative description of these forces (and of the charge 

distribution at the metal-vacuum surface), needs the use of quantum 

mechanical principles, and calculations must in principle be based on the 

mutual interactions of all entities making up the system. In practice, 

this task is too difficult to carry out. Even very limited attempts, like 

finding a formula for the charge distribution of a model of a 6 x 6 

hydrogen=atom-like surface‘°5) by quantum-mechanical means, face so many 

complications that it is very difficult to find. 

Convenient simplification and approximation, with the help of a 

suitable metal surface model (which may not necessarily represent reality 

well), have been most useful in investigating many problems. Surface 

forces have been treated implicitly in what we may call "Surface charge 

theory". The formalization of this theory started by the early work of 

Frenkel °°), who treated the surface problem from the standpoint of 

Thomas Fermi theory(5”) , In this, free electrons at a metal surface were 

treated as a classical liquid; the electron density n(r) plays a central 

role. 

This was followed by an important self-consistent work by Bardeen‘) 

on sodium, He formulated the baseof the very widely used "Jellium" 

Surface model of the metal. In this the positive nuclear charges of the 

atoms are eunpoeed to be smeared together, to form a rigid positively 

charged background (i.e. homogeneous positive charge at all x'< 0, where 

x'= 0 marks the surface). The electrons are assumed to spread out above 
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the background as a cloud, and the whole sum of positive and negative 

charges is zero. This picture of a metal surface was useful in calcu- 

lating the work function, as the sum of two main contributions: the 

binding energy of electrons due to a volume (or "bulk') contribution; 

and the electrostatic energy required to move an electron through the 

electrostatic surface double layer. This included an attempt by Bardeen 

to include the effect of correlation (polarization). 

During the following three decades, there was very little interest 

(2). in tackling the problem of the metal surface 

(58) 

One paper of particular 

interest was by Smoluchowski » who suggested that the variation in 

work function of tungsten as between different faces is due to the varia- 

tion in the contribution of the double layer. Working on a surface model 

using S-polyhedra, he showed that there are two effects tending to cancel 

each other. The first is a smoothing of electron charges by moving between 

surface lattice cores; the second is due to the partial spreading of 

electron charges outwards towards the vacuum. These effects are responsible 

for the variations in work function. 

Interest in surface theory revived in the early sixties. In parti- 

eos oU ee) worked on the construction of a cular, Kohn and colleagues 

form of surface theory that was designed to deal with a system where the 

electron density was inhomogeneous and slowly varying, and to include the 

effects of exchange and correlation. As described below, this system was 

subsequently developed to deal with the existence of a weak external field. 

2.4.2 Charged Surfaces and the Jellium model 

With a neutral surface, the main objective of jellium-based calcula- 

tions was to obtain values for quantities such as the work-function. At 

a charged surface a new problem arises: where is the "effective electrical 
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surface" of the metal? - i.e. the surface defined in such a fashion that 

(at large distances x from the surface) the electrostatic energy v of an 

electron is given by 

Mig mOE Kale Mele wea pei aimee! Tas RS lae eee ro cnet 2.15 

where e is the elementary charge and F is the external field. 

This problem is often discussed in terms of (so-called) "field 

penetration". Distance x measured from the electrical surface is related 

to distance x' measured from the jellium surface (see fig.2.2) by: 

x=! ey ieee Lo 

Thus v is given by: 

v = eF(x' + 4) Mascelet Sako 

The parameter A is called the "effective field penetration length". 

The determination of field penetration length is vital in studies of 

FIM, particularly those concerning ionic adsorption binding energy, field 

evaporation, and field ionization, because this length A is not small 

compared with the distance of the adsorbed atom from the "surface" or the 

critical distance of field ionization x (inside which no auto-ionization 

could happen). For example, Miller calculates”) x. for Helium on tungsten 

as 0.45 nm and estimatesd as 0.05 nm. 

The problem of field penetration length has been approached in various 

ways. It was first investigated by Rice (62) » who assumed that the electrons 

were confined behind the jellium surface, and used degenerate Fermi 

statistics. Another approach ‘©5) simply ¢onsiders an exponential decay of 

field inside the metal surface, Gomer and swanson(©4) introduced the idea 

of field penetration length in their theory of field desorption. 

Tsong and Milner (65) describe the field penetration effect in terms 
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of a change in work function, but follow in the footsteps of Rice by 

treating the metal surface electrons as a degenerate Fermi gas confined 

behind the jellium surface. The effect of a weak electric field was 

calculated by solving Poisson's equation with a suitable boundary condition. 

They estimate \ to be in the range 0.021to 0.1 nm. 

Lang and Kohn (69) continued the development of metal surface theory 

in an important piece of work, by producing a profile of the surface 

charge induced in the presence of a weak external field. They apply a 

linear response formalism to the electron motion, the electrons being 

allowed to "spread" outside the jellium surface. They find that: 

(1) The centre of mass of the induced charge is outside the jellium 

surface, by a distance that is independent of field but depends 

on the metal electron density. (Typical values lie in the range 

0.06 to 0.08 nm). 

(2) In the limit of large distances, the electrostatic potential 

energy of a point charge is proportional to distance measured 

from this centre of mass, and the correlation potential energy 

is given by the image potential,with distance measured from this 

centre of mass. Lang and Kohn call the plane passing through 

the centre of mass the "effective metal surface", but clearly it 

may be identified with the "metal's electrical surface", as 

defined here. Lang and Kohn also find that:- 

(3) The classical turning point for electrons is outside the 

electrical surface, by a small distance (about 0.04 nm). 

The significance of this result will become clear later. 

An alternative approach to the charged surface problem was formulated 

(67) by Theophilou and Modinos This was based on an approximately self- 

consistent calculation, that avoids any abrupt boundary condition at 
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x! = 0 (i.e. at the jellium surface). In contradiction to Tsong and 

Muller, and Lang and Kohn, Theophilou and Modinos find that the metal's 

electrical surface has a position that varies with the field strength, 

and may be inside or outside the jellium surface, 

Thus at the present time, jellium models do not give a clear picture 

of "field penetration". The parameter \ as defined in eq.(2.14) may be 

positive, may be negative, and may or may not be independent of field - 

depending on what theoretical assumptions are made. 

Apart from the above difficulties, use of a jellium-type model in 

the context of field-ion emission is problematical because it ignores the 

facts that a real surface is structured, and that this atomic structure is 

observed in a field-ion microscope. In a sense, there has always been a 

double standard in the theory of field-ion emission. In considering some 

physical phenomena (e.g. field evaporation) an unstructured jellium-type 

model has been used; but to discuss other problems ( in particular field 

adsorption) structured models are employed. The merit of the self- 

(68) consistent model originated by Forbes and developed by the present 

author, that is described in the next two chapters, is that both types of 

problem can be dealt with in a unified treatment. 
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CHAPTER 3 

DEVELOPMENT OF NEW THEORY 

3.1 Objectives 

As became clear in chapter 2, the consequence of the invention 

of the field-ion microscope in many ways demanded a new look at many 

theoretical aspects of charged metal surfaces, the imaging process, and 

field adsorption. However, existing treatments have been found not clear 

enough, not self-consistent and even not correct in many aspects of the 

theory and its applications, in our view. We think that by setting up 

the foundations of a new self-consistent theory, and by clarifying some 

past concepts, we can make a useful contribution to this field, that 

could pave the way to further steps. 

In this chapter, we deal generally with con¢eptual aspects, leaving 

the algebraic aspects to the next chapter. We start by summarising the 

evidence that now exists concerning field adsorption, and go on to discuss 

a new charged surface model and develop a new treatment of field adsorption 

in sec.3.3. This leads on to careful definitions of field and polariza- 

bility in sec.3.4, 3.5 and 3.6. The concept polarizability has been a 

source of much confusion, and we devote particular attention to this in 

sec.3.5, Finally, a simple discussion of the binding energy and the effect 

on it of the repulsive forces is described in sec.3.7. 

Much of the work in this chapter has been carried out and developed 

jointly with Dr..R.G. Forbes. 
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3.2 Evidence of field adsorption and the concept of binding energy 

As already stated, the existence of field adsorption was first 

(43) 
inferred experimentally by Muller when metal-helium complex ions were 

detected by the atom-probe. Other experimental evidence came from imaging in 

(45, 46, 47, 48) 
a mixture of gases , in the "hopping bright spot" 

phenomenon. But the strongest evidence probably comes from the measure- 

ment of field-ion energy distribution$©9? 70; 1), It is noticed that, 

when a second-species gas such as hydrogen is present the field-ion 

spectrum from helium contains a main peak (corresponding to ionization 

near the critical surface), and a low-deficit subsidiary peak correspond- 

ing to the energetic ions. The analysis of this subsidiary peak shows 

that those ions could only come from a field-adsorption site within the 

forbidden zone, and presumably result from the excitation by the impact 

of electrons from the second-species gas atoms. 

All the above evidence leads to a strong belief that, at high fields 

as used in FIM, there exists a layer (or partial layer) of adsorbed inert 

gas atoms at the emitter surface. And theory suggests that each one of 

those atoms -teeecly bonded to the apex of one of the metal surface atoms 

(see section 2.3 for details). There is almost total consensus as to the 

short-range nature of the binding process. 

We may define the field-adsorption short-range binding energy AB as 

"the energy required (or work done) to remove an adsorbed atom from its 

adsorption site to a position in the external field Faget The total 
binding energy B ofan individual field-adsorbed atom is the work needed 

to remove this atom to remote field-free' space, This work can be split 

into two parts: a long-range part (i.e. % ba aay equal to the 

electric-field-induced binding energy of an isolated imaging gas atom in 
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the (approximately uniform) external field, acting somewhat above the 

surface; and the short-range part AB. The total binding energy at a 

specific bonding site above the emitter surface can thus be written as: 

ext B= % b,(F SISO PAB ain My gies eee elas Sek 

where by (as before) is the SI polarizability of the adsorbate atom. 

There are components in AB resulting from the different types of 

interaction between the field-adsorbed atom and its surroundings. These 

are: - 

(40). (1) London dispersion forces between atom and substrate 

(2) Repulsive "interpenetration" forces between atom and 

substrate”) A 

(3) Lateral forces due to the above causes; 

(4) "Indirect" lateral forces, mediated via the substrate’); 

(5) Field-induced forces. 

Thus we may write:- 

Bees ABGt=Diee ABT UAIAB a PenG Dre Race ee. eee 

  

The nature and sizes of the first four types of force will be discussed in 

more detail later. But in the context of field adsorption the dominant 

component is the electric-field-induced part (seco ). 

Most attempts to calculate AB have equated it with the ''conven- 

tional" expression for binding energy, AB(conv.) given by: 

gccye exes 
pra (coy) “ byCFy - 4 b, (F 

4 2 ext, 2 
sb, (By - DF) meee oso 

where ee is the self-consistent local field acting on the adsorbate 
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atom at the adsorption site, and By is the field ratio: 

Y loc, ext 
Be EP Se eieis SO 

By is sometimes written f as in eq.2.8. 

‘ Forbes 23) has recently pointed out that the conventional concept- 

ual treatment of field adsorption ignores an induced change in the 

internal energy of the source of electric field.A change AU, is induced 

by the removal of the adsorbate atoms and consequently: 

pele’ = AB(conv) - AU, Sale OES 

The Au, contribution is of the order of 5% for the IDP model for the He/W 

(53) system , and is assumed to be of similar order for more complex systems. 

At this point it should be made clear that the values calculated for 

AB and aBote* will depend on the nature of the removal process involved. 

It would be possible to consider a process in which a complete layer of 

adsorbed atoms is: (a) removed as a whole from the surface into a region 

of space where the applied field is Bere but atom-surface interactions 

are negligibly small; (b) dispersed laterally until atom-atom interactions 

are negligibly small. This process would define mean (or integral) values 

of short-range binding energy and AU,. 

But of more interest in the field-ion situation is the work needed 

to remove a single atom from the field-adsorbed layer to a position in 

the external field, with the other atoms remaining in their places in the 

layer. This process defines "differential" values of short-range binding 

energies and AU. and can also be seen as the work needed to create A 

vacancy in the field-adsorbed layer. In what follows we shall assume 

that Au, and all AB-type symbols refer to this "differential" or vacancy- 

creation-type removal process. 
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In this context Forbes (private communication) has very recently 

proposed a generalised interpretation of eq.3.5. He argues as follows: 

NBe eo is difficult to calculate because creating the vacancy reduces 

the symmetry of the situation and causes changes in the induced dipole 

moments in the vicinity of the vacancy. It is much easier to treat the 

situation in which the dipole moments of all the emitter and adsorbate- 

layer atoms (other than that of the vacancy-site atom) are taken as 

"frozen'' at their complete-layer values during the removal process: the 

work relevant to this removal process may be denoted by AB(main). If the 

frozen moments are then allowed to relax, there is a change Au, in the 

potential energy of the system. To obtain nBeuee, this quantity AUS must 

be subtracted from AB(main) ." 

The advantage of this interpretation of eq.3.5 is that the two terms 

in it both have physical rather than algebraic definitions. Forbes then 

argues that, strictly, AB(conv) as defined by eq.3.3 and AB(main) are not 

identical: '"In principle AB(main) is obtained from the formula for the 

potential energy U. feon of an isolated atom in a field F, as 

: = ext. loc. 
AB(main) = Urcoi Ch )- Us 01 Fy a ies hates 3.6 

This quantity Ui 5017) is given by 

Deena bare - (higher terms) 

where the higher terms relate to hyperpolarizabilities and field-gradient 

polarizabilities (’4) of the imaging-gas atom. Thus, in reality: 

ABruccume’: AB(mai nev AU ap 6 cyihegy Cs ar 

AB(main) = AB(conv) + (higher terms) Reon! 

  

So AB(conv) as defined by eq.3.5 is, in the generalised interpretation of 
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eq.3.8, only the lowest in a series of terms that appear in AB(main) and 

hence should appear in pete n 

This generalised interpretation is of very recent origin, so we 

shall ignore the "higher terms" in eq.3.8 in the main part of this thesis, 

returning to consider them (in chapter 6) as a correction to our results. 

We thus concentrate of AB(conv). 

To calculate AB(conv) we need a value for Bas the field ratio at an 

adsorption site. And to derive this we need a specific model for a 

structured surface. 

3.3 The ''monopole-dipole''! surface model 

To avoid many difficulties arising from the jellium model, and from 

other inconsistent treatments of the metal surface, as described in 

chapter 2, Forbes (°®) has suggested an alternative charged metal surface 

model. 

This consists of a regular infinite planar array of superimposed 

dipoles and point positive charges (monopoles), together with a distant 

parallel array of charges of opposite polarity as shown in Fig(3.1). 

This model has been adopted in this thesis because we believe that the 

jellium model cannot any more represent an acceptable basis for the FIM 

theory, and that this alternative model can be a first step towards 

developing a more sophisticated quantum - mechanical model in the future. 

The use of dipoles in the charged-surface model is simply an 

extension, to the infinite-planar-array situation, of their use in the 

IDP model. The introduction of monopoles, perhaps ‘needs some Rtecei ont 

Forbes Apacs that Miller and Tsong in their hypothesis of field 

adsorption did not explain the source of the external field (what they 

call the applied field). He thought of the external field as a logical 

consequence of an excess positive charge at the metal surface. The excess 
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negative charges array 

  

  

  

  

superimposed monopoles and 

dipoles array (emitter layer) 

Fig.3.1 

A schematic diagram of the monopole-dipole metal surface model 
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positive charge is due to the removal of some electrons from the meta]: 

surface. In reality the excess positive charge must be localized in a 

small volume surrounding the mean position of the nuclei of the metal 

surface atoms, and can be approximated by point charges. This model is 

applied to an infinite surface plane of a single crystal, so that the 

whole picture at this stage will look like an infinite planar array of 

positive point charges. 

The assumption of an infinite array, though unrealistic, is necessary 

as a first approximation, and to overcome any unnecessary difficulties due 

to the edges effect and to unsymmetrical field and potential contributions 4) , 

For electrostatic self-consistency, the withdrawn electrons have to 

be placed in a capacitor configuration with the excess positive charge 

(i.e. the quantity of the negative charge on the "distant" plane shown in 

Fig(3.1) is equal to that of the positive excess charge). The argument 

is valid even when the negative charges array is at infinity. 

If the excess positive charge is averaged, so that there is a charge 

quantity o per unit area, then by applying Gauss. theorem the external 

field (well above the charged surface) is given by: 

Beg amiey es Beno 9 

Each of the planar arrays contributesa field component of magnitude 

ext. 
4 o/e, (or 4 F--’). They add in the middle to give Boe: but cancel each 

other outside the planes, as shown overleaf. 
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Forbes then argues that, in reality, at a charged metal surface, the 

electron distribution around each surface atom is not spherically 

symmetric. The true charge distribution at a structured surface is not 

known, but as a first approximation it can be represented by an array of 

dipoles superimposed on the array of point positive charges. (The need 

to include the dipole array was demonstrated in Ref.(68), where it was 

shown that binding energies calculated on the basis of a monopole array 

alone were not high enough to explain the existence of field adsorption). 

The adsorbed inert gas atoms are also represented in the model by an 

array of dipoles. Each of those dipoles is positioned directly above a 

corresponding metal surface dipole. 

The question then arises as to what strengths should be allocated to 

the dipoles. This leads on to questions concerning the definitions of 

fields and polarizabilities, which we now consider. 

  [5 negative 
distant array 

=f 

Gaussian surface ———> 

ttt ttt t+t+ ME 
53       
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3.4 The electric field 

Failure to distinguish between the self-consistent local field Ge )> 

and the external field ce ) may lead to great error in the evaluation 

of the binding energy at a metal surface, since Eee can be greater or 

less than F°**, 

An electric field can be produced either by applying a voltage to 

the emitter surface, which produces an excess charge, or/and by introducing 

a finite charge or dipole above the emitter surface, which induces a 

change in the charge distribution at the surface. The sum of the field 

created by the induction effect, and the original local applied field is 

called the self-consistent local field. This is defined by Fores) as 

the "field that would act at the position of the nucleus of the atom, in 

the absence of the atom itself, but in the presence of any effects induced 

by the atom when itself present." The external field cect ) is.the field 

that exists somewhat above the charged emitter surface, at a position 

where effects due to localisation of charge in the surface are negligible. 

Es can be evaluated by applying equation 3.9. 

3.5  Polarizability 

One of the largest confusions in the FIM literature is over the 

polarizability factor. Though this sub-section cannot be a perfect 

account of the main defaults associated with this term, it is hoped to be 

able to clarify much of the confusion, and to define the polarizability in 

a self-consistent manner , 

The first three sub-sections are devoted to basic definitions and 

units concerning "proper SI polarizability", and this is followed by sub- 

sections discussing other quantities that have been called "polarizability" 

or "effective polarizability". We then discuss the conventional estimates 
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of surface-atom polarizability, and the defects of these. And finally we 

discuss better ways of estimating polarizability. 

3.5.1 Basic definition 

Strictly, polarizability is a term associated with the polarization 

of the positive and negative charge distribution of an atom or molecule, 

under the effect of an electric field. The polarizability b is given by: 

poe = + Dye higher terms oeess 3.10 

where pret is the total SI local dipole moment 

b is the "proper" S I polarizability 

u is the SI dipole moment that would exist under the 

condition of zero local field. 

The higher terms are terms associated with hyperpolarizabilities and 

field-gradient polarizabilities (73) » and can be ignored as a first 

approximation. However, in field adsorption these terms cannot really be 

ignored, and we return to this point later. 

3.5.2 Units of Polarizability 

The SI unit for polarizability is C vi mi or J vee n*, This is most 

easily seen from the binding-energy expression 

Uae = be Sie St 

However, in the context of field-ion emission it ig convenient to express 

energy U in eV and fields-in V nn}, Thus a more convenient unit for 

polarizability is the eV vie nn’, or the meV Vee nm, These units have the 

same dimensions as the SI unit and the conversion factor is 

1meV V2 nm? = 1.602189 x 10° 3 v2 uf? 
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3.5.3 SI Polarizability and Gaussian Polarizability 

Equation 3,11 can also be written in the form : 

U = - % (ame, B,) (pies) * Sear, Sel? 

where bs (= b/4ne,) is the so-called "Gaussian polarizability" of the 

atom or molecule. The SI unit for Gaussian polarizability is m, but b, 

is most commonly cited in a The numerical conversion factor between 

b and b, is given by: 

b/mev v7? nm? = 0.694456 b/%° 

It is to distinguish b from b, that we call b the "SI polacizsbitiey eco) 

Most discussions of polarization in field-ion literature between 

1960 and 1980 are in terms of a gaussian polarizability expressed in Re 

and an SI field expressed in w/k or V/nm, In effect a dimensionally- 

inconsistent equation, from which the 4ne, term has been omitted, has 

been used, 

3.5.4 Polarizability and Polarization-energy coefficient 

If we ignore » and the higher terms in eq. 3.10 then this equation 

can be written in the form: 

pile bE Oo = beret esos 0d 

Loc pext 
where 8 is the field ratio F Similarly, the polarization energy 

U is given by: 

BOG) e Jeuaibe (RUNG) Ow eh pee 3.14 Wes 3 (F 

Ignoring 8 in eq.3.13 and B? in eq.3.14 can lead to large error. 

Forbes defines the 'dipole-moment coefficient" g as: 
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pigs ED a eee Re Seen areres 5 3.15 

and the "polarization-energy coefficient" ¢ as: 

c = 8b wees 5.80 

He further suggests (private communication) that in the literature the 

symbol a sometimes means b/4ne,, sometimes means c/4me, and may sometimes 

mean g/4me,. This is why a new symbol (b) has been introduced for 

polarizability, to replace a, and why we call b the "proper SI polarisa- 

bility'2 

3.5.5 The Polarization term in Field Evaporation 

Muiver ss) found it necessary to include a term in the evaporation 

activation energy equation, relating to the difference in the polarization 

of a neutral atom at the surface and that of the same atom when it becomes 

ionized during desorption. The polarization energy correction according 

to Muller in this case is given by: 

ext, 2 
a.)(F OO) Pee sek yg 5 Y= Ale, : 

where a, is the so-called "surface polarizability" of the neutral atom, 

and as is the so-called polarizability of the ion. 

The idea of "surface polarizability" was introduced by Muller on the 

assumption that the metal surface atoms are partially immersed in the 

surface electron cloud. Hence a, is different from the free space polar- 

izability. Forbes (private communication) argues that this equation and 

approach need some correction, because it is assumed that both the atom 

and the ion are in the same environment field Ge ae really one should 

consider the local fields at the position of the neutral atom, and at the 

position of the ion at the critical surface. He prefers to write the 
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polarization term in eq.3.17 in the form: 

4 2 2 2 dupe sy(cme- C))e=a(Daba aby8/) quel = uae cee 3.18 

where 8 is the field ratio for the bonding site (atom present) ; 

85 is the field ratio for the critical surface (ion present) ; 

doce is sometimes called "effective polarizability" 

There is also a question as to whether >, is the same for a (partially 

ionised) surface atom as it would be for the same atom (neutral) in free 

space. The present approach separates the issues of "what is Ae and 

0 ceruutt what is a: 

3.5.6 Charge-transfer Polarizability 

In the preceding sections the terms "polarizability" and "polarization" 

have referred to the polarization of atomic orbitals. But these terms have 

(76) also been used in literature when an Ee energy term arises in circum-— 

stances involving partial transfer of electron charge from a surface- 

adsorbed atom to the substrate. In these cases it is more appropriate to 

talk of "charge-transfer polarizability". The theory of charge-transfer 

polarizability has been reviewed by Meare os! a 

3.5.7 Effective Polarizability (Tsong and Muller, 1971) 

Tsong and Muller (15) suggested that the apparent polarizability of 

an inert-gas atom close to a Tungsten surface would be less than the 

free-space value. By using a simplified quantum-mechanical method they 

derived an expression dependent on the penetration distance (A) and the 

surface-to-adsorbate. distance. Their argument is based on an assumed 

penetration of the electron charge clouds of the inert-gas atom inside 

the jellium surface, and there is doubt as to whether this is physically 
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reasonable. 

3.5.8 Effective Polarizability (Forbes and Wafi, 1980) 

Another use of the term "effective polarizability" is in connection 

with eq.3.10. For noble gases we may assume uy = 0, but strictly we can 

not assume this for an emitter substrate atom. Within the framework of 

our metal surface model, this may be taken into account by substituting 

for the emitter-atom polarizability bs an "effective" value b, (eff) 

given by: 

tot. 7 LOG. loc. 
P, = by (eff) F, ~ = bp(1 + up/b,.FE ‘ Vile Mes 3.19 

where the term in brackets represents a correction factor. A reasonable 

estimation is that Up is of the order of 0.01 e.nm, and the correction 

factor can be up to (approximately) 1.3079 , The size of the correction 

factor depends on the value of the local work function, and varies with 

the crystallographic orientation. 

In practice, the error involved in using b, rather than b, (eff) is 
E 

less than the uncertainty over the value of be itself, so it seems 

satisfactory to normally neglect the effects of any zero-field dipole 

moment. However, the correction is not really negligible and the figure 

here suggests that a more thorough treatment will eventually be required. 

A similar approach in terms of an effective polarizability can in 

principle be used to deal with the "higher terms" in eq.3,10. 

3.5.9 Conventional estimates of polarizability 

There have been various attempts to estimate the "polarizability" of 

surface metal atoms, Within the framework of the jellium model, Muller 

(see Ref 7, p68) attempted to derive an expression for c/4ne by equating 
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the polarization energy of an atom to the polarization energy of the field, 

in the situation where field penetration occurs. But this treatment seems 

unconvincing. 

The first experimental approach was to derive a value of c/4me, from 

feastvement |) of the field-sensitivity of evaporation rate-constant, 

assuming a charge-exchange mechanism of field evaporation, But Forbes (79) 

has shown that there is a mathematical flaw in the analysis of these 

measurements, and that the derived "polarizability" values are not valid. 

An alternative approach ‘15) fitted a theoretical curve to an experi- 

mental field-adsorption isotherm, to give an adsorption binding energy, 

and then derived a gaussian polarizability b/4te, using the IDP model. 

This derivation is not valid because mutual depolarization of surface 

atoms has been neglected. Depolarization effects decrease the binding 

energy of the adsorbed atom to the surface, for a given assumed value of 

proper surface-atom polarizability, as will be seen later. 

Yet another approach ‘7®) was to derive a value of c/4ne from the 

average velocity of the directional walk of a tungsten adsorbed atom. 

c/4ne, for a W adsorbed atom on W(110) plane was found to be 9.2 Ke, 

which is more than that obtained by field evaporation rate-constant 

experiments. However, the quantity derived from diffusion experiments is 

a charge-transfer polarizability, and it was suggested that this quantity 

is related to the electronic density of states of the adsorbed atom. This 

quantity is not necessarily relevant to a surface atom in a cystallographic 

plane. 

Thus none of the conventional approaches provide a valid estimate of 

the proper polarizability of a surface metal atom. 

3.5.10 Alternative Estimates of Polarizability 

Theoretical estimates of the polarizabilities of various metal atoms 
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) in free space were made by Thorhallson et ai 60 , using a simple form of 

self-consistent-field quantum-mechanical calculation. Results in the units 

used here are tabulated in Ref.(75); for tungsten the value is 11.7 meV v7?nm”. 

In those cases where experimental data are available for comparison the 

Thorhallson et al values are approximately twice the experimental values, 

(8D that and this had led Miller and Bederson to suggest in their review 

all the Thorhallson et al. values should be "scaled" to give "best estimates" 

of free-space polarizability for materials where no experimental data is 

available for comparison. For tungsten this results in the value 

7 meV v- 2am 50%. This value is somewhat higher than the polarizability 

values commonly stated in field-ion literature; we shall treat it as an 

upper limit for surface-atom polarizability. 

Because a surface atom is in a different environment from an atom in 

free space, there is no good reason to suppose that the polarizabilities 

of a given species of atom in these two situations will be the same. No 

reliable theory relating the two polarizability values yet exists. 

An alternative experimental method of determining a proper polariz- 

(82) ability has recently been suggested by Forbes This is based on 

measurements of "anomalously low" helium ion energy deficits, carried out 

by Culbertson et ai‘7)) * 

Ref.(82) shows that at a charged surface there is a work-function 

correction (negative if the external field is positive), associated with 

a polarized layer of atoms, given by: 

  

8h aly beF** jac M 13.20 

where: A is the area per atom in the layer; 

and M is a parameter with the role of a relative permittivity for the 

array. This parameter M depends on the structure of the array, and on the 

value of b, and its derivation is discussed in chapter 4. 
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Forbes argues that 66° can alternatively be thought of as a shift 

outwards in the effective electrical surface, from the plane of the super- 

imposed monopole and dipole layer, by a distance d given by: 

e ext 
Sense ier F tate tema 2! 

If x' denotes distance as measured from the jellium surface, then 

for an adsorbed helium atom in contact with the jellium this is equiva- 

lent to the relationship: 

d = (ty * 2y6) - ag tA) meses Oee 

where Ty and Tye are the known tungsten and helium-atom radii, and A is 

the 'field-penetration distance" as used in chapter 2. (Note that Refs. 

(71) and (82) use z,, for x',, and is a). 
d d 

‘The vital step was supplied by the work of Culbertson et al, where 

the value of (eta + 24) was empirically determined. This enables a value . 

to be obtained for d, and by combining eqns.3.20, 3.21 and 3.22 we have: 

d = 4 b/Ae OM Sesae oe2o 

M contains b in this equation, but b is the only unknown, and hence the 

proper polarizability can be determined. The results are shown in table 

  

3.1 below. 
Table 3.1 

-2 2 
Facet Cag + A)/pm b/meV V “nm 

(111) 180 2.07 

(112) ~ if. 2,01, 

(011) 164 

Forbes suggests that values of polarizability derived by this method 

may still be on the small side. But he suggests that 2 meV ve nm? is an 

adequate choice for a "provisional working value''. We shall treat this as 
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a lower limit for b. 

Though the calculation of b is still dependent on a parameter 

apparently produced within the framework of a jellium model (i.e. a + A), 
d 

we believe that this does not disturb the self-consistency of the whole 

theory. 

3.5.11 Polarizability - Summary 

It may be helpful to summarise the last few subsections. 

1) We have shown that "proper SI polarizability'' should be defined in 

terms of the local field acting on an atom, and can be measured in 

2 
meV V_ am? (or equivalent units). 

2) We have distinguished between this "proper SI polarizability" and 

various other parameters called "polarizability" or "effective 

polarizability" in the literature. 

3) We have argued that none of the conventional estimates of the proper 

polarizability of a tungsten surface atom is reliable. 

4) We have described alternative theoretical and experimental methods of 

estimating tungsten surface-atom polarizability. 

These last provide upper and lower estimates of 7 and 2 meV Pe nn? 

respectively (b/ 4m, = 10 n° and 3R3 respectively). 

3.6 Finite dipoles and higher moments 

In the preceding discussion the polarized atom is being treated as 

a point dipole in a uniform field. In the normal mathematical treatment 

of dipole moment (see, for example, ref.(83)) it is necessary to expand



binomially in powers of f/r (see figure below); the second, third, etc. 

terms of this expansion are then ignored. With a finite dipole this 

approximation is valid when &/r << 1, so that the higher terms are very 

small. 

But this may not be the case in the field-adsorption situation. Let 

us compare the dipole length of the helium atom with the surface-atom/ 

adsorbate-atom separation, s. For example, taking the field F = 45 V/nn, 

the polarizability for He = 0.143 meV v2 am, and the charge q =e = unit 

proton charge, then from: 

p = oF cn. 5.24 

and Bae oh eet od cai Be ea lle 2 25) 

we get ‘ 7 = ,0064 nm 

  

We may compare this with s for the He/W system, which is 0.259 nn. 

Thus 4/r~ 0.03. With this value one should perhaps expect the next term 

in the expansion to be small but not completely negligible. 

This divergence between the mathematical expression and the physical 

situation of a polarized atom has another deneces since Forbes (75) ina 

recent paper suggested that a full treatment should include other terms 

corresponding to the effect of higher moments, as well as correction terms 

to the simple dipole-moment expansion. 
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At the present time we do not fully understand the relationships 

between the assumption of a finite dipole and the inclusion of higher- 

moment terms. As the effects seem likely to be small we neglect them in 

a first approximation. 

3.7 The Influence of Repulsive Forces on Binding Energy 

Finally, in this chapter, we consider the influence of repulsive 

forces on binding energy. If we neglect effects due to lateral inter- 

actions as described in section 3.2, then the total potential energy U in 

which an adsorbate atom moves has the form: 

yelec 2 ydisp + yteP 

where the component potentials are due, respectively, to electric-field- 

induced, dispersive, and repulsive forces. The repulsive forces result 

from the interpenetration of electric charge clouds. 

As a simple approximation, we may take the dispersive and repulsive 

potentials to go inversely as the sixth and twelfth powers of the 

separation s of adsorbate and substrate atoms, and may ignore the change 

inthe "internal energy of the source’ when considering peer Then eq.3.27 

can be written as: 

UG) poe Bg(ayne b (RSS) 4) G/2° = Gi)! en ee 3.28 

where C and G are constants. 

At the adsorption equilibrium position (s) there is no resultant 

force acting on an adsorbate atom, so we must have: 

du/dz] = - d(B,)/dz] ,.% b, (FOX)? 

6 C/s' 212 G/s1 = 0 ees 28 
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By definition, the dispersive and repulsive contributions (attse and BrP) 

to the total energy B are given by: 

Bese re 52 USED (a) = eecis) ca eRe 2s 3.30a 

Baer EMU Gh (a)e eee) sacle, ote oS Ay 3.30b 

Hence it follows from eq.3.29 that: 

aTeP = (5/12).4(6,)/d2] ,.4 DCF]? BSP, 3.31 

Since dispersion-induced forces are relatively short-range, wee is 

equal to zero at positions in the external field somewhat above the emitter 

disp disp 
surface; consequently, B is equal to AB Similarly Br°P is equal 

to 4B 8 and these substitutions can be made in eq.3.31. For purpose of 

discussion it is then possible to write this equation inithe form: 

aB™eP = _n AB(conv) - 4 aBo+SP Beer 3652 

where n is given by 

n = - (s/12).d(8-)/d2]_/(B° = 1) 3.33 -d(Be US a oleae saat yg al asc : 

If we continue to neglect lateral interaction and the change in the 

elec 
internal energy of the source, then AB in eq.3.2 can be replaced by 

AB(conv), and substitution of eq.3.32 into eq.3.2 gives: 

AE = (l= n)AB(eonv) + ante? one 

Hence it may be seen that the effect of repulsive forces, in the approxi- 

mation represented by eq.3.28,is to reduce the dispersion-induced cement 

of the short-range binding energy by one-half, and to reduce the electric- 

field-induced component by a fraction n. Tha estimate of the component's 

contribution to the total short-term binding energy AB, to be described in 

later chapters, shows that the factor (1 - n) is approximately equal to 
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one half in case of helium on tungsten, so the effect of repulsive forces 

cannot be neglected. 

It should be noted though that calculated n-values will be a direct 

consequence of our assumption of an inverse twelfth-power low for urP, 

This assumption is a convenient first approximation; but a more careful 

treatment of the repulsive potential at a charged surface will eventually 

be required. 
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CHAPTER 4 

ALGEBRIC ANALYSIS 

4.1 Introduction 

This chapter describes the mathematical formulation of our model of 

charged surfaces, and field adsorption. As a first step it is necessary 

to define some parameters and conventions that are used frequently in the 

theory. 

Suffices: Parameters relating to the emitter layer will be 

labelled "E" and parameters relating to the adsorbed imaging gas layer 

will be labelled "A". An upper suffix indicates the type, and the source, 

that generates the parameter itself; and the lower suffix indicates the 

position where the parameter is acting. For example be denotes the 

field component F, due to the dipoles d, in the emitter layer E, acting 

on the adsorbed layer A. Other labels may be added in brackets if found 

necessary, but the general trend will be to avoid any unnecessary label- 

ling particularly where it is felt that the complete meaning of the para- 

meter is clear to the reader. 

Lattice parameters: consider a surface lattice unit cell, as a 

rectangle of particular surface lattice parameters ays and ay 

  

      

a 
x 

We can write ay, and a in terms of a more general parameter, namely a 

distance c, as: 
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dys and qd, are two scaling parameters in the ay and ay directions. c will 

normally be chosen as the space-lattice parameter of a cubic lattice, but 

other choices are in principle possible. Since there are four lattice 

points, each contributes one fourth to the rectangle, so the area per 

lattice point (A) is: 

A. Sied docs (=A. cé eet onase 
xy c 

  

The quantity a defined by Ay = A/c? we call the "lattice characteristic". 

Clearly, for a primitive lattice cell Ay = dd. For a centred cell 

Ay = are q 

Distance Parameters: If we choose an arbitrary reference point "0" 

in the emitter surface plane as origin, then we can write a real distance. 

R from the origin as: 

RES 1r+¢ 

  

where r is a dimensionless parameter and c is the same standard distance 

as used before. Also, we can write R in terms of its components, 

perpendicular (R,), and parallel R,) to the plane thus: 

ae 2 2 Re a Se tl ger | eso 4.4 

and write 

R= Z.c 
Z 

eieee 465 

Ra = nc 

z, and n are dimensionless parameters corresponding to the R, and RL 

directions. 
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Dimensionless Parameters: The quantities T, z, n etc. are 

"dimensionless distances", It is mathematically convenient and the results 

are more general if fields, potentials, and certain other parameters are 

also in a dimensionless form; thus the field (F) will be expressed in 

terms of a dimensionless parameter (8) defined as: 

a = F/Fext a ante 

ext. 
where (F~-) is the external field. The electrostatic potential will be 

expressed in terms of a dimensionless parameter V, defined by: 

v= = t/ecn * 

  

This V is of course a dimensionless potential for a negative charge, and 

is used for historical reasons. 

Summation factors: From the laws of electrostatics, the electric 

field due to a single point positive charge, Bu , at a distance R from 

the charge is given by: 

m+ R 
E = (q/47e,) Tee Sr irs 

The component of this in the z-direction, le is given by: 

R 
m+ 4 
B= 6(o/4ne) as Pe eo 

Using dimensionless distance parameters, this becomes: 

EN’ = (q/4ne,c?) = ‘ ou oeaelo 

If we now consider a planar array of equal charges, then the z-component 

m+ 
F of the total field ee is obtained by summing over all individual 

charges, thus: 
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m+ 

ce 

u (q/ 4m ,c?) eee 

I
n
 

which may be written 

(a/4ne,c?) eS ig, CRS oe ie Me eee 4.11 

where Sy denotes the sum over all individual charges 

S) = rs odbuieg 4,12 

all 
charges 

The quantity Sy is dimensionless, and is here called a "summation factor". 

Similarly, the z-component of the electric field due to a point 

dipole, of moment p, aligned along the z-axis, at distance R from the 

dipoles is given by: 

d eee E = (P/4ne_). ae asl Sew aeedeus 

Using dimensionless distance parameters, this becomes 

d Sr nat 
E = (P/4ne,c3). a - zl 

If we consider a planar array of equal point dipoles each of dipole moment 

P, then the z-component FE of the total dipole field Fa is: 

d i 1 eo = (P/4ne,c?) [322 & oe oe =] ames 4.14 

This we can write in the form: 

d ‘ 
F°.. = (P/4ne,c3) . (3225, : Sila - foe 6 4.05 

Bo = (P/4ne_c3).S,° 4.16 oo) “Ss Phe sal, 

where S, = = = eecee 4.17 
alt, “= 

dipoles 

oF



Beige Saree S, = 32 S, Ss) erent. 28 

The summation factor Ss, is evaluated over all dipoles in the array. 

Structure Factors: It is also helpful to define some other para- 

meters relating to special cases of Sy, S, and S33 these parameters we 

call "Structure Factors". 

The structure factor T, represents the value of the summation factor 

Sy in circumstances when: 

(1) The origin of R is taken at a lattice point; 

(2) c is taken as the space-lattice parameter; 

(3) the value of z is taken as zero; 

(4) the summation is taken over all points except the 

origin (this is indicated by the prime on the summation 

sign), 

Thus: ee ey i (Bee) aera 7a) ae eee 4.19 

A closely analogous quantity is Toppings 84) 

(52) 

structure factor Kp 

used by Tsong in his calculations » Which is defined by 

= ! 73 Ky B (R/a aie 24.20 

where a is the interatom distance in the surface lattice. 

We define T™ as a structure factor associated with monopoles, 

representing the value of the summation factor S,,. evaluated at the 

position "A" of the nucleus of an adsorbed atom. If the separation 

between the adatom, and the nearest emitter atom is s, then ZR s/c, and 

ie S, (2, = s/c) hae es 
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Similarly we define rt, a structure factor associated with dipoles, 

as 

d 
see 0 (es C) hg te. Sem ea cee 4.22 

qt is analogous to the structure factor K,, used by Tsong in ref(52), 

except that it uses c instead of a (i.e. LS = S, (Z =s/a)). 

4.2 Self-induced depolarization and local field 

Consider a layer of atoms (L), of proper polarizability (b)) 5 

forming a regular planar lattice. If an electric field HP normal to 

the plane of the array, is impressed on each atom in the layer by charge 

distributions outside the layer, then the self-consistent local field 

Ge) on each atom in the layer is given by the sum of the impressed 

field ci), and the field due to all other atomic dipoles in the layer 

by ; 

imp d,L loc s 
Fr = Fr * FE ee seit ele 

The field Bee is calculated by summing over all the other dipoles in the 

layer. If each of these has dipole moment Pie then 

= = 363 Fe EM GaE Aveta os c° ligase ath age? aah an 4.24 

Si 3 FE = Ty, PL /ame sc me 4.25 

where T, is the structure factor defined by equation 4.19. The whole 

term represents a "depolarising field" acting at every atom in the layer, 

so as to reduce the field acting on the atom. If we assume that there is 

no zero-field dipole moment, then the dipole moment PP is given by 
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Then, by substituting eq.4.26 into eq.4.25 and then eq.4.24 into eq.4.23, 

and re-arranging we get: 

LOC aie ee LID: 
FL eg ORS WAR Seems Re a Ne ec 4.27 

db. 
where My si * ane 7 Ty, pias s 4.28 

The parameter My plays the role of "relative permittivity" for the layer, 

as has been pointed out by MacDonald and Barlow (85) | 

If we apply this to the emitter layer (E), taking into our considera- 

tion the condenser configuration of the emitter surface, explained in 

-sec.3.2, then the impressed field FA™P is given by 
” BE 

pimp ext 
E = o/2e, Sr ge cela ee ree wee ee 4.29 

r loc” — 1 pext 
Then: FE See arcs etn 

and a dimensionless quantity BE can be defined as follows 

loc ,,ext Go ee Homes Mt sewed ot 

Be represents the field ratio at the position of an emitter atom, where 

the effect of the atom itself is excluded, 

Note that the last part of this derivation, from eq.4.29 onwards, 

assumes that the emitter layer is present by itself. If an adsorbed 

layer is also present ane a different expression must be used for pene, 
E 

This case is discussed in section 4.4. 
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4.3 Field above plane emitter surface 

Consider a layer of emitter atoms (E), forming a regular planar 

array extending to infinity in all directions, In the context of our 

model, the emitter atoms are represented by dipoles, superimposed on 

monopoles (i.e. point positive charges). There is also a negative 

charge distribution, stationed above the emitter surface at infinite 

distance, forming with the monopoles a condenser configuration as shown 

in fig(4.1). 

The field acting at a point P, some distance Ry = z.c above the 

emitter layer can be written as: 

ear Re? eee RAGS 

where ge is the field due to positive monopoles and the negative charge 

distribution, and ee E is the field due to the dipoles in the emitter 

layer. 

All terms in eq.4.32 can be resolved into components perpendicular 

and parallel to the array plane, but at symmetry points, such as points 

situated above a lattice point or above a mid point between four lattice 

points, all parallel components cancel each other. We will confine our 

study to these symmetry points, since they are of direct interest in our 

investigations both of the field-adsorption binding energy and of field- 

ion image contrast. 

With reference to field adsorption, note that any adsorbed atom 

temporarily situated above an "asymmetrical" point on the emitter plane 

will be driven by the resultant force towards a "symmetrical" position 

above the nearest emitter surface atom, where the binding energy will be 

a maximum. 

It is much easier to carry out analysis and calculations for 

symmetrical positions, since eq.4.32 will be reduced to the perpendicular 
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component terms only and in effect becomes a scalar equation. Hence all 

following calculations will be performed in scalar form. Nevertheless, it 

should be borne in mind that they represent the perpendicular component 

only. 

4.3.1 The monopole contribution to the field (FE. 

The field due to the positive monopole contribution with conjunction 

to the negative charge distribution contribution can be written as: 

Piet Se ge ~ 

  

Each plane of charge gives rise to a field of magnitude Ce) on either 

side (somewhat away from the array planes, where local field variation 

vanishes), o being the mean charge per unit area in the array. The 

application of Gauss theory shows that the contribution of both positive 

and negative charges adds in the middle between the two planes, so that oi 

sufficient distances from the array, the total field is normal to the array 

plane and we have: 

F = F = o/e, or Ree) pre cas ore 4.34 

At a distance from the emitter plane comparable to c, local variations in 

the field due to the localised positive charges can not be ignored, and 

eq.4.34 is not valid. In this case we write: 

m Fs so/2e, + Pe7F » 4.35 

  

The first term is equal to 4 Eo as is clear from eq.4.3, As we are 

working at symmetry positionsthe second term is identical with the field 

m+ 4. : 
F discussed in sec 4.1, and so: 
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where Sy is the summation factor defined by eq.4.12. 

The monopole charge q can be expressed in terms of external field, 

and the surface charge density o as: 

o = @/A Raine AO 

where A is the area per charge, given by A,.¢? in eq.4.2, therefore we 

have: 

= a Z F = o/e, = q/A.€ +5 

By substituting eq.4.38 into eq.4.36, and then eq.4.36 into eq.4.35, we 

obtain: 

ext ext 
Fo = &F a5 (A,/4t) «2.8 Bo ee de ai eara 4.39 

a 

Hence we define the dimensionless field ratio 8™ as: 

Mf pil, ext 
8 E-/E ait (A,/4n) 2.8, oon 4.40 

4.3.2 The dipole contribution to the field 

As above, we consider the field at symmetry positions above the array. 

In this case, we have from eq.4.16 that the dipole contribution to the 

total field is given by: © 

d,B 3 F = (P,/4me,c~) Ss seeiee 454d 

Substituting PE by Deka | » where foo is, as before, the self-consistent 
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LOC. ext . 
local field acting on an emitter atom, and then writing FE = BE F : 

Gg, Se 3 ext 
F = (b,/4me,¢ ) BE S, F werent 4242 

Then we define: 

d,B) GSE ext: | 3 
8 Stee) P = (b,/4me,c*) 8p S; sevens 4.43 

4.3.3 The total field above single emitter layer 

Finally the total monopole and dipole contribution to the field due 

to a single emitter layer can be produced by substituting eq.4.42 and 

eq.4.39 into eq.4.32, thus: 

E ve =) [RA (arya 0S, (bee /dne GIF cou. 4.44 

The corresponding dimensionless field ratio is given by: 

Bs ear 3 Bac at (A,/47) 2.8) + (bp 8, /47€,¢ 85 desu. 4545 

Note that in all the above formulae, if the single layer is present 

physically by itself then 8p is given by & NY, as in eq.4.31. If an 

adsorbed layer is also present then 8, must be derived self-consistently 

as in the following section. 

4.4 Self-consistent fields for the emitter-adsorbed-layer system 

We now move on co consider a "field adsorption situation" represented 

by the positively charged array of emitter atoms, analysed in the previous 

section, and a similar layer of inert gas atoms situated above it (i.e. 

each adsorbed atom is situated directly above the corresponding emitter 

atom). For convenience we will drop the suffix "loc" and refer to the 
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self-consistent local field at the position of adsorbed atom 

to that at the position of emitter atom as Foe 

can be expressed as in eq.4.26 as: moment P ‘A 

A ACA 

If we define a dimensionless field ratio factor BA as 

alte ext 4, os E/E 

Thus by substituting eq.4.47 into eq.4.46, we get 

Sy i oext 
Pa = b,BAF 

Similarly, for the emitter layer: 

P = bP ext Bemis 
E Pipe MoeeES 

The adsorbed- 

as F,, and A? 

atom dipole 

+ 4.48 

Using the results in the first part of section 4.2, but replacing "'L" 

by "A", we can write the self-consistent local field Fas in terms of the 

field impressed on the adsorbate layer from sources outside it, and the 

depolarising field due to the dipoles of the adsorbed layer atoms itself, 

as follows: 

-1 pimp 

Pe arog 

4 imp m d,E with Pe Feet, 

A 
F™ is the field due to the monopole distribution, as explained in 

section 4.3.1, and the relation represented by eq.4.40 can be easily 

modified to suit the field adsorption situation, as follows: 

B, = k+ (A/4n) a T™ 
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is given by s/c, where s is the separation of the layers, and T" is L 
A given 

the structure factorA by eq.4.21. Then: 

m m ext 
Ei eA qucce ek 

Boer is the field due to the emitter atom dipoles, and eq.4.43 can 

be easily modified to suit the field adsorption situation, as follows: 

Daee d,E _ “EPE d 
Ba a 4ne5c° ou 

= te BE ase aeSe 

where rt is the structure factor defined by eq.4.22. ia is a dimension- 

less coefficient (corresponding to dipole characteristicsdefined by eq.4.54; 

this coefficient gives the field acting on the atoms in the adsorbate 

layer, due to the dipoles in the emitter vera . Thus eq.4.54 can also 

be written in the form 

d,E _ .4,E 
Fy ma FE ence 4.55 

We then have that 

d,—E _ 4,5 ext Fy SP BEF eee ce 4-50 

Thus, combining eqs. 4.56, 4.53 and 4.51, we get: 

imp _ m d,E ext Poe (Ge te eelee ns ete, ee eee, 4.57 

Hence, from eqs.4.50, 4.57 and by dividing by Eo tive get: 

: ae leit aE Bie Mele, iy. eg] Seen 4258 

As discussed in section 4.2, My is a factor acting as a relative permit- 

jytivity for the layer A, and is defined by: 
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ay 3 My fee b,/4me c eee eae 

We may treat the field acting at the position of an emitter atom in 

an exactly analogous way. Because of the symmetry of the situation, we 

can get the result by exchanging "A" and "E" wherever they occur to give: 

Biase alee yeuec8| |e a ise oe 4.60 

where M, is a factor acting as a relative permittivity for the layer E 
E 

and defined as: 

= 3 Me i+ Ty, b./4me.c role wt L 

d,A 
E 

the definition we in eq.4,.54, because S; is symmetrical function of z. 

Note that the same quantity 7 appears in the definition of y as in 

Finally by substituting BE in eq.4.60 into eq.4.58 and solving 

for Bas we get: 

  

A similar formula can be deduced for BE by replacing A by E wherever it 

occurs in eq.4.62, and vice versa. 

Interpretation. A rough physical interpretation of eq.4.62 can be 

made as follows: 

(1) the term Mt Ba represents a contribution to By resulting 

from the monopole charge distribution, reduced as a result of the meee 

depolarization influence of the ddsothatel layer atoms. 

(2) the second term in the Tunerator represents a contribution 

from the emitter atom dipoles, similarly reduced. 
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(3) the denominator represents an enhancement effect due to 

the influence of the adsorbate-layer dipoles on the emitter-layer dipoles. 

  

(73) { It should be noted that Forbes, in his recent paper made an 

important correction to the dimensionless coefficient yo, by including 

the effects due to higher moments; thus for example the total effect 

can be written in principle as: te = ce + ah + . where 1 

and yes are the dimensionless coefficients corresponding to dipole and 

quadrupole ..... etc. characteristics. The new coefficient may replace 

the old in all our previous treatments.



4.5 Fields above emitter-adsorbed layer 

The local field above the emitter-plus-adsorbed layer can be found 

by extending the method of section 4.3. First we need to define the 

distances. Let the distance from the emitter layer to a chosen point P, 

in dimensionless units, be z. The dimensionless distance z* of point P 

from the adsorbate layer is given by: 

TEM Z EES) Cone ge eee fet Wee ESO ieee 4.63 

where s is the real layer separation, as before. 

The field F at point P is obtained by adding contributions due to 

the two layers, so: 

hie « 4.64 

or, in terms of dimensionless factors: 

a = pe + pt Ve pies 

Boe : ‘ 
8° is given by eq.4.45, but with 8 replaced by BE. 

The field due to the adsorbed layer is the field due to the 

adsorbed atom dipoles only; thus 

NE PO tA SII — ad el ee al 4,66 

or: 

eh = AypoXt 2 (Pp, /ane 03) St /F* rt etoa 
° 3 

poe (b,/4me_c3).8!.S% 4.68 A oo) 84 -S5 Pasle we 

where, if Ss denotes a structure factor evaluated for sgme distance z, 

S§ denotes the structure factor evaluated at distance z* given by eq.4.67. 

70



If we now substitute eqs.4.45 and 4.68 in eq.4.65 we get finally 

B = [+ (A/4n).z.S, + (b,84/47e,c3).5, 

PUG BY Anes c! 2G") gree ere Ao. 4.69 

Note that in this formula the parameters BE and By relate to the 

self-consistent fields existing in the emitter-plus-adsorbed-layer situa- 

tion, as discussed in section 4.4. 

4.6 Self-consistent field for emitter-double-adsorbed-layer system 

Some FIM literature (i.e. for example ref(39)), views the imaging 
bayer of 

process in terms of a second mobileXadsorbed imaging gas atom(s). We 

find it interesting to explore this possibility using the same method as 

before. Naming the second adsorbed layer of inert gas atoms B, the local 

field at the position of an atom in the E-layer is 

Loc =) m dA dB: Bey Sai ies OE a esae rai siete S a A Sea aces 4.70 

- dyA. H ‘ : loc * 
The field FE is given in terms of the local field FA acting on 

the A-layer by: 

ae AT es d,A loc 
FE ste Fy ae eae 4.71 

dane. a oas& 
where YE = (b,/4m€\¢ ) TE ae oce 4.72 

Because there are now three inter-layer interactions involved it has been 

necessary to add suffices to the structure-factor symbol, rt, 

va



The structure factors 

dy Ales, ds 
5 eek 

dA 2o8 Ts aie 

d,B _ .d,E 
Cee 8 

used in this section are thus defined by: 

SaS, (ele So she) ae dae + meee Osis 4.73 

= Sz (z = py * Pg) Meee a see 

= S; (20e= Ppt 204 + Pp) aise a 4.75 

As shown below in the figure, the quantities Pp» Pas Pp are the dimension- 

less radii of the atoms composing the three layers 

Other fields analogous to Fee may be defined in a manner analogous 

to eqs.4.71 and 4.72. 
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Substituting into eq.4.70 then gives: 

LOG: 9_ om d,A ,loc d,B loc 
Fe = Fe + ¥,” Fa * YE FR eee Le 

And on dividing through by Foxt we obtain 

i ee d,A an = Met [er + yA gy + OF gu] Bas 28477 

The double-primes indicate that the 8-factors refer to the self-consistent 

local fields in the situation where there are two adsorbed layers. 

Following the same procedure as above, we get finally: 

uM or dBi ye 
8, = Mc [er + yy" By +p F pal ee 7s 

" " = mol fg@ d,A So een gS icy am AT ee 6] ates 4.79 

= 3 where My i (Ty b,/4te,¢ Dn eames, Seng) cle Me, lee cence ea 4.80a 

= 3 Ma Tes e(T ER Aan e Coe ee ee NS nents 4.80b 

= 3 ME 1 + (T, b./4me,¢  aeeeiew Re es rig 4.80c 

Re-arranging eqs.4.77, 4.78 and 4.79 as: 

Toa AG. wchgeiey eo 
Mae tae Pea 8, = (8A 

va" Ag Y eee 
PB i Op PB 

ya 4,B g tat a 
YE B, BE) ge Mnres e 83 

7S,



Then the field ratio can be deduced by using the determinant 

follows: 

where 

git 

ay 

ay, 

21 

ei 

12 

22 

32 

13 

23 

33 

m 

As’ Sor "pt “31 
ATs 

Opin! Yeue Ye 

4,B 4,B d,B 
Ye 3 Ye 

74 

  

31 ‘E 

  

rules, as 

+ 4.83 

4.84f 

. 4.84g 

4.84h 

4.841



d,B_ d,B 
It is clear that by putting MR = 1 and tet, = 0, the field ratio 

formulae reduce to the formal single-adsorbed-layer formulae. 

4.7 The Calculation of the Potential 

4.7.1 Initial Problems 

In the context of field-ion theory there is sometimes a need to know 

the difference between the electrostatic potential of a point (P say) 

outside the emitter surface and the mean potential level in the interior 

of the emitter. A quantity of this type is needed, for example, when 

determining the position of the critical surface. 

In the context of our surface model, this potential difference must 

be interpreted as the potential . at point P relative to a point behind 

the emitter surface plane at position-«. (That is, z = - © represents 

deep inside the emitter). 

In principle this elecrostatic potential can be written as follows: 

o = 6 + 6 siewew 4.85 
2 ie P 

where a is potential at point P, relative to - », due to the monopoles 

: a. 5 . : 
contribution; and %, is the potential at point P, relative to - », due to 

the dipoles contribution. The monopole contribution can in turn be 

expressed as a sum of positive and negative contributions, thus: 

+ 4.86 

But hereby lies’a difficulty, since both terms are infinite, though 

of opposite signs. For example, the evaluation of o™> involves the 

contribution of the negative charge distribution stationed at += in our 

model, that gives rise to uniform field equal to 4 Ft (see section 4.3.1 
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for details). o™>” is evaluated in terms of the work done to move a 

unit positive charge from the chosen point behind the emitter surface at 

-» to point P and is thus infinite, since oo =-4%F xX +0, 

A general procedure for avoiding this is to choose some standard 

reference point M as shown in fig.(4.2) and then write the potential i 

as a sum of two parts, 

Oe is the potential due to the monopoles contribution at the reference 

point M (relative to -~), and needs to be calculated once, or once for 

a given x-y coordinate. A op is the potential difference (due to the 

same source) between point M and point P, and we need to calculate it for 

every chosen value of z. a is evaluated as follows. Consider a point, 

say P', at large negative distance behind the emitter surface plane. Then 

a can be expressed in terms of an approximate expression represented by 

the potential difference between point M and point P' (A © The 
m 
pr 

correct value is obtained by extending point P' to -~, i.e. 

We lim m Ei lim m 
Me te Bice" Sota Be Dire Up meee 2 

In practice, as will be shown in chapter 6, it is sufficient to take P' at 

about 1000.c from the emitter surface plane. The choice of a suitable 

position for the reference point M proved troublesome, and for som¢time 

constituted an obstacle in solving the problem correctly. Various approaches 

have been considered. 

The initial approach was to put the reference point in the plane of 

the emitter on But hence a problem arises. In evaluating the contri- 

bution of the "distant charge" outside the "counting circle" (see section 

5.2), it is possible to derive an exact formula for the difference in 

potential between two points on the axis of the counting circle. For this 
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Fig.4.2 

points p, M and p' on between sible ati To illustrate a 
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reason it is convenient to put M at the same X-Y coordinates as P. How- 

ever, this means that when P is directly above a lattice point then M is 

nm 
located at a surface charge, and in this case both A oom 

m 
o, and A MP 

contain one infinite term, resulting from this charge. 

The two approaches initially used to get round this difficulty were: 

(1) To keep M at a fixed position in the emitter array plane, 

and develop approximate formulae for the difference in potential between 

M and P, due to the distant charge, when these have different X-Y 

coordinates. 

(2) To keep M with the same X-Y coordinates as P, but to arrange 

for the troublesome infinite term to be dropped from the summations 

m 
involved in evaluating both A Spry and 4 oop when M is at a lattice point. 

This approach was employed for sometime in the writer's programs. 

A third approach, which seems to solve the problem, was subsequently 

developed out of the second approach, by Chibane 86) . He located the 

reference point M at a short distance below the emitter surface plane. 

This approach has now been incorporated in the writer's computer program 

as a final general solution. 

The second approach discussed above can be seen as a special case of 

this third approach. What we shall therefore describein this section is 

the final mathematical derivations of the monopole and dipole contribution 

to the potential through this last approach. 

4.7.2 The Potential Contribution due to Monopoles . 

To determine the monopole contribution, the essential problem is to 

derive an expression for A ee We shall take M to be at a position 

behind the emitter plane, with dimensionless coordinates (x, y, z'), as 

shown in Fig(4.3). This z' is a negative number, and the actual distance 
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M 
Fig.4.3 

To illustrate actual position chosen for point M 

  

Fig.4.4 

To illustrate the calculation of the potential due to the dipoles 
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of M behind the plane is |z'.c|. 

A ou can be expressed in terms of positive and negative components. 

Ms m+ m- 
4 ®p = 4 Op + 4 yp ieee tase 

To obtain the negative contribution, we remember that the field due to 

y pext 
the distant negative charge is % F°. Hence 

SN ext ee 
A Sp 4 F (tie: 2) 6 ages bas 90) 

To obtain the positive contribution consider the monopole charge ij shown 

in Fig.(4.3). This is at a distance r.c from P and r'.c from M. Thus 

the potential difference between M and P due to the monopole (ij),of 

  

charge q,is: 

ao (ij) een ee 
MP ane ,c ee 

Re hei 
eral ee a eed 

oO 

1 4 
where r= (22 + n2)#, and r' = (z'2 + n2)# 

Remembering from eq.4.38 that q =A. c2 . eae we obtain: 

A wc 
mt eae Sls eet ep eke 

NES (OO Sor ee Ie cetee 4002 

The contribution due to all monopoles in the plane is produced by summing 

over them all, thus: 

Ave 
ie c aL tan ok: ext 

AG aa , lee rose 293   
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Defining S, as a summation factor associated with potentials as: 

1 1 
Ss. = sr &,--] ee 4a5e) 

° ail oe > 

monopoles 

A_.c 
Siti oy c ext 

Then A@ 2. Sc S, F . 4.95 

Thus the total monopole contribution is the sum of eqs.4.90 and 4.95: 

z-z' 
m aapeis aa ext NS ne ete oe lca ence, 466 

Or in terms of the dimensionless potential difference defined analogously 

  

to eq.4.7 by: 

AR ih = qarbiOue/CcE cok Logit Me games te 4.97 

We have 

a z-z' A. 
A My * ae 55 sous 4.98 

The dimensionless potential We at M is then derived as: 

z-z' A 
Wis oo limit [=-+ 45s ] sjeyeg 499 

Zt-2 

(Note S, is a function of z). And we then have the monopole contribution 

to the dimensionless potential at M given by: 

Vo at Arye Sauer CSE 

The formulae initially used by the present writer are recovered by 

setting z' = 0 and r' =n. 
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4.7.3 The Dipole Contribution to Potential 

For determining the dipole contribution to the potential at P, it is 

best to consider a reference point in the plane of the array (see Fig(4.4)), 

because it is a well-known fact that this plane is an equipotential plane. 

Denote a reference point in this plane by "0". 

The potential at a point (P) above the emitter, relative to this 

point (0), due to the dipole (ij), can be written as follows: 

BE cos 8 ae 4.101 
O° 

  

ayn.) 
4 5 Gj) = 

where PE is the dipole moment of this (ij) dipole, and 6 is the angle 

shown in the figure, given by: 

COSHO I =e aie ne, ON ie We nfs 4.102 
r 

Then eq.4.102 can be written as 

P 
dren ee E Z 

4% 5° Gi) = geno? wae ag ee Se 4.103 

Assuming that all dipoles have equal polarizability, and hence equal 

dipole moments, the total contribution from all emitter dipoles is: 

oer gee 
oP 4ne.c all i 

dipoles 

PE Z 
= Gree Ss, ; voces 4.104 

S; is the same as previously, because there is a dipole associated with 

every monopole. 

If we substitute for PE using PE = b, B Eo then: 
EE . 
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d,E 
4 ®op (by By 2/4ne,c?) 8, FOX = eae 105 

In terms of a dimensionless potential as used earlier, we have: 

- b, 8, z dE _ d5B), ext EE 
A VoD = - 4 8B /cF * gree S, oie $0168 

The dipole contribution to dimensionless potential of point P relative to 

-e© can now be written: 

4,E 
P Ca arene 

where the first term on the right hand side represents the potential of 

"0" relative of -0, This can be obtained from : 

b, 8 d,E i 8.) BE 4, Vo = - lim AVR” = aa in {zS,} eon 108 
z+ -0 of 2-0 

When the distance z is very large compared with the interdipole 

spacing, the array of discrete dipoles can be replaced by a uniform layer 

of dipoles (see Fig.(4.5)) and hence we have: 

b. B d,E EOE ee 
Vo grate: i VeeGazeezyel2 da he ee a 4.109 

° z+0 
e>+0 

dN/dA is the number of charges per unit area = 1/A,.c?, dA is an element 

area, Then: 

2m dA = c? f°" de ds = 2nn dnc? pees. antl 

Solving the integral gives: 

vot. _ EAE an 4.111 0 ane,c° AL see . 
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p! 

Fig.4.5 

To illustrate integration over a uniform layer of dipoles 
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Putting eq.4.106 and eq.4.111 into eq.4.107 we have finally: 

  

b. 8B. ae EYE 2m . Ne ee ee eee cle 
° c 

4.7.4 The Potential due to the adsorbed layer of dipoles 

The potential due to an adsorbed dipole layer (if present) can be 

expressed by a formula similar to eq.4.112: 

b, Bi aA o SSALUA 2m 
ie rege? [z* St i Pewoka st1S 

where z* is the dimensionless distance from the adsorbate layer to the 

chosen point above the emitter, and Si is the corresponding summation 

factor. Note also that, if the adsorbed layer is present,then the 

quantities By and BE as defined in section 4.4 should be used in eqs.4.105 

to eq.4.112. 

4.7.5 Total Potential 

Finally, the total dimensionless potential of point P relative to 

-~ is given by: 
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CHAPTER 5 

COMPUTATIONAL PROCEDURES 

5.1 Objectives 

In order to make use of the field, potential and binding energy 

formulae derived in chapter 4, we need first of all to evaluate the 

summation factors 8S,» S,, S, and S5, or/and the structure factors 
ers 

Ty, T™ and rf, But except in a very specific case, the above factors 

(84) are not being calculated. As far as we know, Topping evaluated the 

factor Ky, (which is equivalent to the structural factor T, in our 

calculations as described in sec.4.1) for a square and hexagonal lattice 

(52) array using analytical method, while Tsong 

(which is equivalent to re in our calculations). We conclude, that 

considered the factor K, 

except in two very specific cases, where the structure factors are known, 

the effects of the crystallographic structure of the emitter have either 

to be ignored or approximated. In our view, that may lead to a big error 

in calculating quantities such ag binding energy, as we shall see in 

chapter 6. 

Rather than attempting to find some general analytical method to 

calculate those factors, we devised procedures for evaluating any desired 

summation or structure factor. We use computational methodsto carry out 

mathematical summation to some reasonable limit, beyond which analytical 

approximation methods can be used. A comparison study shows that the‘ 

values calculated using our technique have a margin of error comparable 

with or better than general analytical. methods, as we shall see later in 

this chapter. 
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5.2 External Contributions and the Summation Circle 

Obviously, when evaluating summation factors for an infinite planar 

array, we cannot carry on the summation to infinity. The trick being 

used is to carry on the numerical summation from a suggested '"'central 

point" to some limit, away from the central point, beyond which the 

summation is approximated by solvable integrals, Calling these the 

"internal" and "external" contributions, we thus have for each summation 

factor: 

Saas (DNC) t SCONtIo  seeent Uaees ce ee Ser gow wal 

It was originally thought that it would be easiest to carry out the 

"internal" summation over a square array. Hence some weeks were spent 

trying to obtain an analytical expression for fields and potentials above 

a plane of charge with a square cut from it. However the integrals 

involved have no analytical solution, and this approach was abandoned 

when it was realised that the corresponding integrals for a disc of charge 

are solvable. 

The approach then adopted was to take a lattice point as the central 

point, and define a "summation circle" of fixed radius R ent 6 Penr-©) 
about it, as shown in Fig(5.1). The dimensionless distance Ton is 

termed the "counting radius". The internal contribution is obtained by 

summing over all points inside the summation circle. The external contri- 

bution is obtained by replacing the lattice points outside the summation 

circle by a continuous distribution of the same mean surface density, and 

evaluating the relevant integral. 

Take the evaluation of Ty, as an example, In this case z = 0, and 

the external contribution is evaluated from 

dA seine See Sl
e 1 

T, (ext) =f as 
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Fig.5.1 

To illustrate the summation circle of radius Rove: 

and the continuous distribution outside it 
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As before, we write x = er . From Fig(S.1) it is clear that ee 

dA = 2mnc . cdn | cesses Ded 

So: 

2 2n - 
T, (ext) =a 0 Ge dn Mesias ee 

c L 

_ — 20 
Agen, 

where n, is the radius of the circular disc excluded from the continuous 
L 

distribution, and is termed the "calculation radius". 

Initially, ny was taken as equal to the counting radius, It was 

subsequently realised that the correct procedure would be to choose ny 

such that the disc of charge excluded was exactly equal in magnitude to 

the amount of charge counted inside the counting circle, If the number 

of points inside the summation circle is N (CNT in the computer program), 

then we must have 

2mm, c 54 Zz ale
 

Zz > c ai sieie 

5 " (N. A,/2n)# 

Choosing the correct procedure for determining n, was found to result in 
L 

a very small correction, 

In our preliminary tests we used a square lattice, and took c equal 

to the interatom spacing a. This provides an estimate of the quantity 

Me) and Tsong*°4) , We then investigated kK, used by MacDonald and Barlow 

how the estimate of K, varied with the choice of counting radius, The 

results of this are shown in Fig(5.2), It would seem that the larger the 

Summation circle the more precise the results, but,of course, the greater 
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the iber of points that have to be included in the summation and the 

longer the program takes to run. We settled on a counting radius of 

around 70*a as a suitable compromise. 

,An analytical determination of Ky for square and hexagonal lattices 

was carried out by Topping (84) many years ago, These values and our 

computer-predicted values are shown in Table (5.1). Our values are 

within the limits of error predictedby Topping for his values, and we may 

take this agreement as evidence that our procedures are working 

satisfactorily. 

Table 5.1 

Array type KX (Topping) Ky (computed) 

Square 9.033623 + 0.000006 9.033622 

Hexagonal 11.034177 + 0.000007 11.034176 

Sie Analytical Forms for the External Contributions (On axis) 

5.3.1 The external contribution to S, 

We now must derive analytical expressions for the external contribu- 

tions to the various summation factors. In this and the following sections 

it is assumed that the field point is on the axis of the defining circle. 
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The quantity Sy is defined as: 

ee i 
Sy = = =o 

Thus the external contribution is given by: 

n 
Ss) (ext) = =— ff =o dn wrens one 

In writing this integral down, we have assumed the results given by 

equations 5.2, 5.3 and 5.4 in section 5.2. 

Remembering that; 

x2 = (n? + 2?) 

We have: 

sete oe z dn Ba 1 Aen (ne ae aft Oe ee ees 

oe 1 Sy (ext) = A. [nz etl Ce 2 Da epee’ S38) 

5.3.2 The external contribution to S 

S, is defined by: 

a 
Sy © bos 

By an integration similar to that carried out above, we get: 

u | 

wa
le

 

‘S (ext) 

Note that: 

S, (ext) r a we > @ # & co



5.3.3 The external contribution to S Tne externa. COMErLpULLOn Stor 

S, is defined by 

The external contribution is given by 

= ete 1 1 
S, (ext) = x he n.[=, - =] an acteeorelt 

To carry out the above integral, we choose a point M at a distance 

beyond the lattice plane as shown in Fig(5.3). The above integral 

can be written as 

2 Gre es Toned aad 
Sa (EX) gala oh 2 |=) Gy = al an) sess Dale 

c L 

Remembering that r = (n2 + 22y% » and r' = (n2 + z'2)%, then by 

substituting in the above equation and integrating we get 

a) 2h bene 22h ies etn! S, (ext) = A. [taf + 2?) - (ip +z yt eae ioc 1S! 

(A suitable choice of z' value is taken to be - 3.a,usually). 

5.4 Evaluating the Internal Contribution 

With the internal contribution the essential problem is to decide 

the order inwhich the summation over lattice points is to be conducted. 

At each lattice point the contribution to each of the summation factors 

is then determined in sequence, and gaded into the running totals. 

It is possible in many cases to take advantage of mirror plane symmetries 

to reduce the number of program steps. We shall first describe a 

systematic procedure for "visiting" every point inside the summation circle. 
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Fig.5.3 

To illustrate the calculation of Ss 
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Initially we shall assume that the field point P at which fields 

and potentials are to be evaluated is directly above an array point, 

(which we shall label 0"). This is certainly the case in the calcula- 

tions concerning field adsorption. We shall consider the summation circle 

as centred at "0'' and having radius 70.0001 . dy . Cothat 26, the 

summation circle has a radius just greater than 70 times the unit cell 

dimension in the x-direction. By taking 70.0001, rather than 70 exactly, 

we ensure that no array point lies exactly on the summation circle; this 

will avoid any difficulties in deciding, during program execution, whether 

a given array point lies inside the circle. 

In general, in our work, we need to deal with a centred rectangular 

lattice. Take the point 0 as having coordinates (0,0). Points that have 

coordinates that are integral multiples of dy.c and dsc may be designated 

"corner points"; points with half-integral coordinates are designated 

"centre points" as shown in Fig(5.4a). We first evaluate the summation 

factors over all the "corner" points, and then proceed with the "centre 

points" (if these are present). 

Considering just the corner points (shown by blacked circles in 

Fig.(5.4a), we exclude the central point O and divide the summation circle 

into four "quadrants". In the program there is a subroutine that deals 

with evaluation. over a quadrant. In quadrant I, this works as follows: 

(1) The procedure starts at the innermost corner of the quadrant, 

(2) Keeping the X-coordinate fixed, the summation works up the 

Y-axis until the counting circle is reached. 

(3) The X-coordinate is then increased by a, and then summation 

then works up the next line of points. 

(4) The procedure stops when the X-coordinate exceeds the counting 

radius. 

The arrows in Fig(5.4a) illustrate this process, and show that the visiting 
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Fig.5.4b 

A magnified scale of a region near the centre 

of the summation circle 
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sequence in this quadrant can basically be described as "vertically 

upwards". 

The way in which this is implemented in the programming is illustrated 

in the block diagram shown in Fig(5.5). Note that we have chosen to test 

whether each point is inside the circle, by a statement of the type: 

"Ts (x2 + y?) - Gan ou 

The starting points and increments in the subroutine can be set, so 

this can be used to evaluate the contribution of each quadrant in turn, 

by "vertically upwards" or "vertically downwards" visiting sequences (as 

appropriate). If the array is "centred" then the four quadrants of centre 

points can be processed similarly. And, finally, the contribution of the 

central point "0" is added in, if appropriate. 

5.5 More general calculation of summation factors 

The weakness with the previous summation-factors analysis is that ity 

deals only with points on the axis that passes through a single chosen 

point in the emitter array plane. Consequently all the information which 

can be extracted (e.g. binding energy and potential) is limited to the 

perpendicular line that passes through the chosen "central point". 

Procedurally there are two methods of overcoming this difficulty. 

The first is to rewrite the computer program everytime information is 

needed for a chosen point other than the array point initially chosen as 

the central point. The second is to modify the computer program by 

introducing "field-point coordinates". 

Initially we developed several slightly different programs to Serve 

the first Spticn. but we subsequently abandoned that option, and diverted 

attention towards developing a "general multipurpose computer program"' 

that would be suitable for any symmetry point. Let us call the new field 

point P, and let the coordinates of the symmetry point, relative to the 

oF,



array point originally taken as the centred point "0", be (Py P,-©: 

Zee 

It is straightforward to derive an expression for the quantities 

a that are needed for the evaluation of summation factors. But there is 

a problem, or at any rate a choice, in deciding how the "internal" and 

"external" contributions are to be defined. The two main alternatives 

are: 

(1) To keep the summation circle centred on the original array 

point 0. In this case the "visiting" process remains the 

same as before, but it is necessary to develop new expressions 

for "off-axis" external contributions. (It turns out that 

there is no simple analytical expression, and approximations 

have to be made). 

(2) To move the centre of the summation circle to the point 

(Pc, Py-Cs 0), directly below the point P. In this case the © 

external contribution is given by the same formula as before, 

but care has to be taken to get the limits of the "visiting" 

process correct; there is also the possibility of small 

artefact errors due to asymmetries. in the counting process 

just inside the summation circle, as between opposite sides of 

the circle. 

At one stage of the research, when interest centred on the calculation 

of fields, alternative (1) was adopted. Expressions for "off-axis" values 

of Sy) (ext) and S, (ext) were obtained, the results being 

i Sy (ext) 

  

= wee O54 

a 1 x? 
S, (ext) = a. Sone 2am aieiatend Sus. 
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Derivations of these results are given in Appendix (A). Alternative (1) 

was subsequently used by Forbes (unpublished work) to produce a set of 

programs for the calculation of fields and potentials. 

At a later stage, however, it seemed better to change to alternative 

(2). Partly this was due to the program philosophy we were using, but it 

was also wished to avoid the approximations inherent in equations 5.14 

and 5.15 above. It was also realised that for points P on a symmetry 

axis there would be no artefact errors as mentioned above; so alternative 

(2) might in principle be more accurate than alternative (1). 

With alternative (2) particular care has to be taken in choosing the 

limits of the "visiting" process, and we now look at this in more detail. 

We first consider the summation over the "corner points" as defined in 

section 2. Fig(5.4b) shows, on a magnified scale, a region near the 

centre of the array considered previously. The central point O is shown, 

and the four counting sectors previously used are marked with dashed lines. 

The centre of the new summation circle, at x = Py = Py (relative to 0), 

is marked with a diamond, and the axes of the new summation circle are 

shown as full lines. If we let dimensionless distances relative to these 

new axes be i, j, then clearly dimensionless coordinates in the new and 

old systems are related by: 

i=sx- py Beers 5.16 

j yo - sees Dee AOS Py 

In the new approach the array points in each sector are still visited 

in a vertical-upwards or vertically downwards sequence, as before, but 

now the "D 0" loops in the program have the form: 

get ty " Neg u " " FOR i i-start!! STEP aay UNTIL Noy DO... 

FOR j 1 na " "Neg 114 " j-start" STEP *dy UNTIL oy 
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- the appropriate choice of plus or minus signs being made according to 

sector. The coordinates (i, j) of the "starting points" for each sector 

are shown in Fig(5.4b). 

A generally similar argument applies to the starting points for the 

"centre points" when present. 

In the program the procedure SUM (L1, L2, L3, L4, INC 1, INC 2) is 

used to evaluate the contribution of each sector to the various summation 

factors. This procedure has six parameters, corresponding to the para- 

meters in the "DO" loop. For example, the contributions of sector 1 of 

the "corner point" are added in by means of the instruction: 

SUM (DX - PX, CNTR, - PY, CNTR, DX, DY) 

(CNTR is the program representation of the counting radius of the 

summation circle). 

In the program, the evaluation of the summation factors for a given 

field point is carried out by a procedure EVAL. This calls SUM four times 

for a primitive lattice (eight for a centred lattice), and also has 

instructions that ensure that the contribution due to point 0 is included 

in the summation factors where relevant. 

The heart of the programming has been the development of these two 

procedures. These procedures must now be incorporated into a complete 

program. 

5.6 Description of the Computer Program 

The main purposes of the computer program are ‘of course: the calculation 

of field sdeaeecien binding energy, for different emitter surface atoms 

and inert gas adsorbed atom(s) systems; the determination of the position 

of the critical surface; and the investigation of the field and potential 

variation above an emitter surface. Many byproduct variables can be 
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evaluated also, like number of lattice points inside the counted circle, 

the radius of the counted circle, the value of the summation and structure 

factors, the components of field and potential appearing in their specific 

formulas like My, Me, ee ... etc, and the repulsive force ratio (n). 

The program is designed to work for optional choice of any crystallo- 

graphical surface array structure, with or without the existence of 

adsorbed layer (i.e. for single or double layer). Fig(5.5) shows the 

flow chart of the program, whilst a standard copy of the actual program is 

reserved in appendix (B). It is divided into four parts; each part is 

designed for a specific purpose. 

Part 1 - The data:- This part is the beginning of the program. Its first 

half is designated for the dataneededto be fed each time we run the 

program (i.e. input data). Those are: 

(1) some information about the species of metal and adsorbed atom 

in question (i.e. atom radius and polarizability) 

(2) value of external field 

(3) value of lattice parameter 

(4) values of surface array parameters 

(5) values of chosen point coordinates 

(6) surface structure type (i.e. face ~centred or primitive) 

The second half contains some useful fixed data like the value of (4me 9), 

some convenient counting circle radius (CNTR) value, and a convenient 

chosen reference point Ww) for the purpose of potential calculation ' later 

in the program, beside few simple calculations to evaluate some fixed 

variablesneeded later in the program. 
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Part 4 Instructions   
  

Fig.5.5 

The flow chart of the computer program 
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Part 2 - The Procedures:- This constitutes the main part of the program, 

and contains eight procedures; each one is dedicated for the evaluation of 

particular variables, Including the two procedures just described in 

detail, these are: 

(1) Procedure SUM:- This evaluates quadrant summation factors So» S,, 

S, and Ss in one of the four summation-circle quarters designated by the 
2 

next procedure, 

(2) Procedure EVAL:- Its purpose is: (i) to evaluate the total summation 

factors in the four quarters of the circle by repeated calling on procedure 

Sum, with suitable argument for each quadrant and type of lattice point; 

also central point if appropriate; (ii) it works out the calculated radius 

(ny, or CALR); (iii) it calculates the external contribution to the 

summation factors, and adds this in to the summation factors. 

(3) Procedure BAD2 CALC (SEP):- For specific separ’ ation of the E-A 

layers provided by the argument (SEP), the procedure evaluates the square 

of the field ratio for a double layer at the position of an adsorbed 

atom, (8)?, and various related parametres (e.g. BE can be also calculated 

with this procedure), 

(4) Procedure BINCALC (ZD):- For a specific E-A layer separation distance 

provided by the argument (ZD), this procedure evaluates the conventional 

binding energy (BIN CONV), the repulsive potential ratio (ETA), and hence 

the corrected binding energy (BINCORR). 

(5) Procedure T.CAL€:- This calculates the structure factors Ty, T" and 

7, 

(6) Procedure VMRCALC:- This calculates the monopole reference point 

potential. 
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(7) Procedure S CALC:~ This calculates the field ratio 8 and the 

potential ratio V from their monopole and dipole contributions for a 

single layer, presenting these as the variables BSL and VSL. 

(8) Procedure D CALC:- This calculates the field ratio and the potential 

ratio from their monopole and dipole contribution for a double layer, 

presenting these as the variables BDL and VDL. 

Part 3 - Control Instructions:- This part gives instructions for the 

desired calculations,which can be easily carried out by calling on the 

procedures, 

Part 4 - Print-out instructions:- Calculated variables are printed out in 

a form appropriate to the investigation in question. 
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CHAPTER 6 

RESULTS AND DISCUSSION: FIELDS AND POTENTIALS 
  

6.1 Applications of the Array model 

We shall now apply our model in a practical situation mainly to 

investigate the two groups of scientific problems reviewed in earlier 

chapters: first, those associated with fields and potentials above the 

emitter surface, and hence the shape and location of the critical surface 

(and the effect of field variations in the critical surface upon the 

field-ion imaging processes); second, those associated with calculating 

field-adsorption binding energies. This chapter deals with the first 

group of problems; chapter 7 with the second. 

As an exemplary system we have chosen one of the most common field- 

adsorption situations known in FIM. That is tungsten (W) as an emitter, 

and helium (He) as the adsorbed layer of inert gas atoms. 

Mathematically, our model can be applied to any crystallographic 

face with a face-centred or simple rectangular structure. But it needs 

to be recognised that our model is limited to one emitter-atom layer, 

namely the outermost surface plane layer. Any physical contribution of 

the second and inner layers of the emitter has been ignored. (This avoids 

complexities associated with the state of charge distribution as between, 

for example, the first and second-layer atoms). Thus, to use our model in 

a realistic way, we must confine our studies to surface structures where 

the second, third .... etc, layer atoms are adequately shielded by the 

surface layer atoms. : 

In our ee there are two requirements for "adequate shielding". 

First that the facet in question be relatively, close-packed, or nearly so. 

This requirement reveals itself in our calculations through high values 

of the structure factor Ty. Second, that the second-layer atoms be 
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suitably recessed into the surface. 

Careful study of the pictures in Nicolas? atlas of crystal models 

suggests that only seven of the surface array planes satisfy (or nearly 

so) the above two conditions. These are listed in table 6.1 with some 

other useful information. One of those array planes, namely the (111) 

plane, is used extensively in this chapter as a paradigm situation for 

our charged metal surface model, and to compare our calculations and 

results to that of previous discussions. This (111) plane is hexagonal 

in structure, with smallest interatom spacing equal to c¥2. For 

tungsten c = 0.3165 nm, c¥2 = 0.4476 nm. 

So for the sake of discussion, the case of field adsorption of 

helium (He) on this (111) plane of tungsten (W) is being chosen, and we 

assume that an infinite array of tungsten atoms is covered by a similar 

array of helium atoms, as assumed in chapters 3 and 4. To compare our 

model with previous treatments we shall also need to consider the 

following lattice structures: 

(1) A square lattice, with surface lattice parameter (a) equal to the 

interatomic spacing in the (111) face of tungsten (i.e. a = 0.4476nm). 

We call this "model 1'' (abbreviated as mdl 1). 

(2) A square lattice having the same area per lattice point as the 

hexagonal (111) lattice (i.e. a = (3%/27) x 0.4476 nm = 0.4165 nm). 

We call this "model 2'' (abbreviated as mdl 2). 

To derive structure factors and other parameters for these two 

models, we can make use of the fact that the 100 plane of a bec crystal 

structure is a euate square array of side length c. Thus, for example, 

to derive a value of M, for these models we insert the T, value for the 

100 face into eq.4.28 and replace c by a. This results in the formula 
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bp T, (100) 
My = 1 apes sean Oe 

We now must consider the choice of polarizability values. 

The SI polarizability of helium bey? is taken as 0.143 mevvs2nne 

But for the SI polarizability of tungsten surface atom, three values are 

used: 

(1) dW») = 3.19 meV v7?nm?, which is the value used by Tsong and 

Muller; this will enable comparisons to be made between the present 

results and previous work. 

(2) bw, = 7 meV V~2nm?, which is the "upper limit" discussed MB pp 

earlier (sec 3.5); and 

(3) b (Wop) = 2 meV V-2nm?, which is the lower limit discussed 

earlier. The Gaussian polarizabilities corresponding to the above 

9° 9 9 9° 
SI quantities are, respectively: 0.206A3, 4.6A3, 10A3, and 2.9A3 

6.2 The depolarization effect 

One of the basic characteristics of a layer of dipoles (as in the 

emitter or adsorbed layer) is that each of these dipoles exerts an 

electric field on its neighbouring dipoles: this tends to reduce the 

local field acting on them (i.e. the field that passes through a dipole 

normal to the surface of the emitter), and hence creates a depolarization 

effect. This effect was ignored in the IDP model (see refs [15, 52]), 

but - as we shall see later - has to be taken intg consideration. 

The depolarization effect is represented mathematically by the 

parameter M, which plays the role of a relative permittivity for a layer 

(see sec 4.2). The depolarization effect as illustrated by M oka te 

function of the emitter surface atom polarizability be and the structure 
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factor T). The structure factor Ty, itself is a geometrical function that 

depends on the degree of close packing of the emitter surface (as 

expressed by area per atom), and on the lattice structure. 

To demonstrate the above effects, we show in table 6.2 some typical 

value of M calculated for the lattice structures and polarizability 

values mentioned in sec 6.1. The IDP approximation has also been formally 

included by setting M equal to unity. 

Inspection of the table shows clearly that choice of a square lattice 

equal in area per atom to the (111) unit cell (mdl 2) gives closer results 

than choice of a square lattice with equal inter-atom spacing (mdl 1), 

indicating that area per atom is the more significant factor. Obviously, 

also, increasing the polarizability increases the value of ME. 

We also show in table 6.1 values of M, for tungsten (using b = 2b°), 
E 

for the various lattice structures. 

6.3 Properties of the single layer 

In this section we study the behaviour of potentials and fields (in 

terms of the dimensionless potential ratio V and field ratio 8, as 

assumed in chapter 4) above a single emitter layer of tungsten atoms. 

6.3.1 Potentials above the bare emitter layer 

We show in figs. 6.1 to 6.5, for the paradigm case of the W(111) 

surface, the potential variation normal to the surface due to, first 

the monopole distribution, second the dipole distribution, and third: the 

two distributions jointly. In the case of the dipoles, the two polar- 

izability values b = 2v° and b = 7° are used. [For brevity, we hence- 

forth use the symbol be to mean 1 meV V-2nm?, and ane, x 1.44 3). 

Potentials are shown above an array point (i.e. above a surface atom) 

and above a point midway between array points (i.e. between surface atoms). 
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TABLE 6.2 

Values of the parameter M, for specified lattice 

structures and polarizability values 

  

  

  

Type of Lattice s Diels Psp) ate > Op) YP nm 0.143b 2.00b 3.19b 7.00b 

Hexagonal 0.4476 1.025 1.354 1.565 2.240 

Square (mdl 1) 0.4476 1.021 1.290 1.463 2.015 

Square (mdl 2) 0.4165 1.026 1.360 1.574 2.260 

IDP aprx. 0.4476 1.000 1.000 1.000 1.000           
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With the monopole distribution the above-atom potential approaches 

minus infinity as the plane of the surface nuclei is approached, whereas 

the between-atom potential tails off towards zero as the interior of the 

emitter is approached. Note that both potentials tend to the same 

straight line as distance from the surface increases, and that this 

straight line would pass through the origin of coordinates if projected 

back. Also, the gradient of the line is unity. Thus at large positive 

distances: 

vi +z 

or v" + 2.c.eF (= eFR,) weeave Os? 

where v is the electrostatic component of the potential energy of an 

electron, as discussed in section 4.1 and v" is that part of it due to 

monopoles. 

With the dipole distribution, the effect at large distances is 

clearly equivalent to a negative step in potential V (relative to the 

emitter interior), with the size of the step being larger as the assumed 

surface-atom polarizability gets larger. As before, the above-atom 

potential tends to minus infinity as the plane of thearray is approached, 

whereas the between-atoms potential changes smoothly. 

The potential due to the monopoles and dipoles together is shown in 

Figs. 6.4 and 6.5, and several points deserve notice. Obviously, as 

before, the potential tends towards a straight line of gradient unity, as 

distance increases. But, if projected back, the line now cuts the distance 

axis at a point Roe d (or z = z4)> and cuts the V-axis at a value V'= V°, 

with the numerical values of these intersection points depending on the 

surface-atom polarizability. This graph illustrates the points made by 

(82) Forbes , Which were: first,that if we were to think of the "surface" 

of the metal as the plane of the surface-atom nuclei, then the effect of 
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Fig 6.1 

Variation of the monopole potential ratio v 

with the distance ratio z 

112



1.4 

ez 

  

yz 0) a   
Fig 6.2 

Variation of the dipole potential ratio vo 

“with the distance ratio, for b, = 2v° 
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Fig 6.3 

Variation of the dipole potential ratio vi 

with the distance ratio z, for be = 7° 
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Fig 6.4 

Variation of the potential ratio above a single layer V, 
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SL 

with the distance ratio z, for be = 2b 
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Variation of the potential ratio above a single layer Vor 

with the distance ratio z, for b, = 7b" 
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the layer of polarized dipoles is to be interpreted as a "negative work 

function correction 5g°", Alternatively, we may interpret the effect of 

the layer of dipoles as a repulsion outwards of the electrical surface of 

the metal, by a distance d which we may term the repulsion distance. 

It is straightforward to derive formulae for the above quantities 

from our earlier theoretical discussion. Thus we have: 

Sgt MED y Fo sr/ANcoanit iis Am) PEE 6.3 

i= tb /Anrenca Meh Ge i Med hate, 6.4 

dn ayer = § Da(Al 6 07M. em We ea 6.5 

eaieMas by/A,.€,09 Mae ae ee Cea tae) 6.6 

(In interpreting these formulae note that Me is a function of b,). 

In these formulae V°, d and z4 are independent of the external 

field, but 66° is not. Thus, when working in real coordinates, it is 

better to think in terms of the repulsion-outwards effect, so, at large 

distances from the surface we write: 

No ee Za oz 
Ze ce 

va eF(R, CL) ae Mam Me ect AC ame =f 
Ze 

It is then more convenient to define a new real coordinate normal to the 

array plane, and denoting this by eu we have: 

which leads to the formulae: 

NCR Te eer ye! ey eae ae oe were 6.9 
x0 

  

i This x has to be distinguished from the dimensionless coordinate in 
the plane of the array. In practice no confusion arises. 
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We call this x the "distance from the metal's electrical surface" 

Obviously, formula 6.9 has the same form as eq.2.13 derived from 

the jellium model, as discussed in section 2.4.2. For practical purposes 

we may identify the variable x defined here with the variable x used 

there, and this gives the relationship between the two models. This 

relationship is illustrated partly in fig. 2.2 and partly in the figure 

   

  

below. 

re 

% 0 jellium surface 
x' = : : 

electrical surface 
x= 0 

z= 0 “plane of nuclei 

Two general points need to be made at this stage. First, the 

characteristics discussed above apply qualitatively to all the crystallo- 

graphic surfaces, but there are numerical differences - for example, in 

the value of d, or in the rapidness with which the potential approaches 

the "straight-line value". 

The second point relates to the physical validity of the calculated 

potentials. Our model of course uses point charges and dipoles, and the 

corresponding model potentials are electrostatically valid at all points 

in space. However, the charges and dipoles are meant to represent the 

charge distribution at a real surface. The model potentials will not be 
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valid at any point significantly inside the charge clouds of the emitter 

surface atoms: but outside the substrate charge distribution the Hellman- 

Feynman theorem will apply. That is, if the postulated distribution of 

monopoles and dipoles represents the actual charge distribution adequately, 

then - outside the substrate charge clouds - the real and model potentials 

and fields coincide. 

6.3.2 Fields above the bare emitter layer 

We show in figs. 6.6 to 6.8 for W(1ll), the field variation normal 

to the surface due to the monopole, dipole (bo, = 2°), and joint monopole- 

dipole distribution (jointly for both b, = 2b" and b, = 7b°). 

With the monopole distribution the above-atom field approaches 

infinity as the plane of the surface nuclei is approached, whereas the 

between-atom potential has a value of (4) at the surface. This is 

obvious since at a symmetrical point inbetween surface atoms the field 

components, due to the surface monopoles cancel each other and we only 

have the contribution (+) due to the distant negative charges. Both the 

above and inbetween atoms 8-curves converge to unity rapidly. At distances 

from the surface comparable with the critical distance of elementary theory, 

the field difference Ag™ as between above and between-atom positions is 

small, and, as will be seen later, this is important when discussing 

sources of the contrast in the process of image formation. 

With the dipole field 84, the above-atom field approaches infinity 

as the plane of the dipoles and positive charges is approached, whereas 

the inbetween-atoms field goes smoothly to a value of at ~ - 0.3 (for 

be = 2b°) for z = 0. With increasing Ro the two curves converge to zero 

rapidly; so at sufficient distance from the layer, there are no dipole- 

induced field contributions. Again this point is important when discuss- 

ing image contrast. 
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Variation of the monopole field ratio Be 
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with the distance RX, 
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Fig 6.7 

Variation of dipole field ratio above a single layer a 

with the distance R., for b, = 2b" 
Zz 
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Fig 6.8 

Variation of the field ratio above a single layer Bop 

with the distance R,, for b, = 2b° and bp = 70° 
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The combined monopole-dipole curves, drawn for both be = 2v° and 

bp = 7b°, show the same characteristics as the monopole curve, except 

8 
that the field difference is much larger (e.g. for b, = 2b , at the 

B 

adsorption position R, = .259 nm, ag™ = ,04, AB = .07). The effect of 

using a higher polarizability value is, as can be seen from the be = 7° 

curve, to increase A§ even further, for given R- 

The size of the field variations across the surface depends both on 

the crystallographic structure of the array and on the area per lattice 

point in the array, but chiefly on the latter. This is illustrated in 

d,E 
table 6.3 where the values of a, By and 8, are compared for the W(111) 

A 

surface and for models 1 and 2 discussed earlier. It is seen that the 

results for mdl 2, which has the same area per lattice point as does the 

(111) face, are much closer. 

Also included in table 3, for comparative purposes, the data for 

the IDP model. In this case 7 is in effect defined by: 

[oe aflz\? Spine 040 

ane is higher for the IDP model (owing to the absence of depolarization 

effects), but Ba is less - essentially because the array-type models take 

the existence and localization of surface charge into account. 

More generally, it deserves note that the field enhancement due to 

the localization of the charge, which is given by (By - 1), is a signifi- 

cant component in the total enhancement factor Ba; the monopole contribu- 

tion (By - 1), however, is smaller than the dipole contribution ee 

A comparison of 8,-values for the different faces of tungsten is also 

shown in table 6.3. It is clear that the area per atom in the face is 

the dominant geometrical factor in determining the magnitude of the field 

variations above the face in question. 
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Values of the field ratio 8” 

Table 6.3 

A’ a 
d,£ 

and Bas and the short-range 

binding-energy component AB*, for specified lattice structures 

  

  

              

Lattice type a/nm Ba gr By AB*/eV 

hex. (111) 0.4476 1.048 0.063 Poi 0.034 

md1 1 0.4476 1.067 0.074 1.141 0.044 

mdl 2 0.4165 1.050 0.063 1.113 0.035 

IDP (aprx) 0.4476 1.000 0.3515 PeS315' 0.112 

For be = 2b po 45 V/nm 
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6.3.3 The binding potential 

If certain small effects due to mutual induction between a single 

adsorbed atom and the emitter surface are ignored, then the field- 

induced component wo in the binding potential for this atom is given by: 

ext pet =. % Dy ge (Ro) ala iar 6.11 i 

A 

Plots of upol against R for the above-atom and between-atom positions, 

ext 
for helium and taking be = 2v°, Fr = 45 V/nm are shown in fig. 6.9, and 

illustrate a number of elementary features of adsorption. 

pol 
As distance from the surface increases U tends to the constant 

value - 4 >, (F* )?. This is the long-range potential that can keep an 

imaging gas atom held in the vicinity of the emitter, even though it is 

not bound locally. 

Starting from this constant level, and moving towards the surface, 

yPot rises above the between-atom sites and falls above the atomic sites. 

This illustrates the existence of localised adsorption sites directly 

above the surface atoms. Note that the repulsive potential is neglected 

in this diagram - in reality this contribution would flatten the above- 

atom curve out and make it repulsive for distances R, < 0.259 nm. 

There is a general similarity of behaviour for all crystal faces, 

but the short-range binding-energy component AB* given by: 

aBY = % by (82 - 1)(F°**)2 

  

is smallest for the closest-packed faces (i.e. those for which A, is 

smallest). This point is illustrated in table 6.3, 

Finally, note that for an adsorbed atom there is a barrier against 

diffusion, and the activation energy for diffusion is greater than that 

necessary to escape into the constant-potential region. Consequently, for 

a single atom on a charged surface, diffusion is a hopping process, not a 

direct lateral motion in space. 

125



  

14 

aL 

-16 

oly 

AS 

Ag) 

-20   
Fig 6.9 

Variation of potential energy of a single 

atom with the distance R, 

126



6.4 Field and potentials above a double layer 

We now look at the potential and field variations (in terms of the 

potential and field ratios V and 8') above a layer of tungsten atoms (E) 

and an adsorbed layer of helium atoms (A), represented in our model by 

an array of monopoles and dipoles and a geometrically similar layer of 

dipoles above it.We shall assume that the tungsten-helium layer separation 

(82) S$ is 0.259 nm The corresponding value in units of € is given by: 

Za S/en = 0.5786 sakes 

As in the previous section, two polarizability values are used, but only 

the "total" V and 8 curves are drawn, since the separate monopole and 

dipole layer behaviours have been studied in the previous sections. 

6.4.1 Potential above the double layer 

We show in figs 6.10 and 6.11 the potential variation normal to the 

surface for a W(11l)/He layer above a lattice point (or an atom) and at 

the midpoint between lattice points (or inbetween atoms). 

Comparison of fig 6.4 and fig 6.10 shows that the effect of the 

adsorbed alyer on the potential variation can be roughly visualised as a 

shift in both the above-atom and between-atom curves outwards from the 

surface, As compared with the single-layer curves, there is - at any 

given distance greater than 0.259 nm - a slightly larger potential 

difference between the two curves; and a given value of V is reached at 

a slightly greater distance from the surface. 

By extending backwards the straight ‘line potential, valid at large 

distances, as in the previous section, we see that the extended straight 

line cuts the z-axis at a distance d' from the origin. As before d' can 

be interpreted as a shift outward (due to the dipole layer). Note that 
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Fig 6.10 

Variation of the potential ratio dbove a double layer Von 

with the distance R,, for be = 2b° 
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Fig 6.11 

Variation of the potential ratio above a double layer Vou 

with the distance R» for be = 7° 
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d' is slightly greater than d due to the effect of the adsorbed layer. 

6.4.2 Field above the double layer 

We show in fig 6.12 the field variation normal to the surface for 

W(111)/He, due to the monopole-dipole distribution jointly, for bp = 2° 

and be = Thee The curves show the same characteristic shape as those 

for a bare surface (fig 6.8), with the difference that the curves corres- 

ponding to the above-atom field can be roughly visualised as having 

been shifted outwards from the surface by a distance equal to the diameter 

of the adsorbed atom. 

At small distances above the adsorbate layer there has been a sharp 

increase both in the B-values above the adsorbate atoms, and in the field 

difference as between the above-atom and between-atom positions. For 

example, for be = 2b at a distance 0.55 nm from the emitter layer, 

which corresponds to a distance of 0.0091 nm from the adsorbate layer, 

the value of Ag is now 0.63 whereas for the single layer it was roughly 

0.04. Although the field difference decreases rapidly as both curves 

converge to unity, it is believed that the sharp contrast of the FIM 

image can be attributed mainly to these enhanced field difference result- 

ing Feld adsorption, which causes high concentration of imaging atoms 

in a very small volume immediately above the adsorbed atoms, and conse- 

quently, higher ion current j, and brighter spots. This is discussed in 

more detail later. 

6.5 Equipotentials and the Critical surface 

6.5.1 Equipotential surfaces 

The equipotentials above a real metal surface are not smooth planes 

(as would be the case for the jellium surface model). This is due to 
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Fig 6.12 

Variation of the field ratio above’ a double layer Bor 

with the distance R for be = 2b° and be = 7° 
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charge localisation at the metal surface, which force the equipotentials 

to assume a "rippled" or "egg-box " shape, with the equipotentials 

further from the metal surface above the atoms than they are above the 

between-atom position. 

This variation above and inbetween atoms or "ripple" can be deduced 

graphically from the bare emitter surface potential curves (fig 6.4), by 

drawing a horizontal line parallel to the z-axes, at the required equi- 

potential value. The location of the equipotential is determined by the 

intersection with the potential curves. The ripple is small, and 

decreases gradually as we move away from the surface; it has effectively 

vanished by a few nanometres away from the surface, 

Comparing fig 6.4 (by = 2b°) and fig 6.5 (db, = 7°) for the same 

equipotential value, shows that the effect of a higher polarizability 

value is to shift the equipotential surface outward. 

Fig 6.10 for the double layer potential shows the same characteristic 

generally as the bare surface one, but the effect of the adsorbed layer 

(for positions outside it) is to increase the ripple and to shift the 

equipotential surface outward slightly. 

6.5.2 The critical surface 

The critical surface is (approximately) an equipotential surface 

above the charged emitter surface. Inside the critical surface ioniza- 

tion of imaging gas atoms (or a desorbed atom) in effect cannot happen, 

because imaging-gas atom electrons possess energy less than the Fermi 

level of the metal. (below which nearly all electron energy levels are 

completely pccunied | (see section 1.3.2). In the standard elementary 

treatment the critical distance Xe is given appromimately by : 
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So according to the above equation the critical surface above a charged 

tungsten emitter, where F = 45 V/nm, I = 24.5 eV, and o = 4.5 eV 

(ref [7]), is equal to 0.44 nm. 

But the above equation has the weakness that it depends on the 

jellium model, which predicts a flat critical surface. To predict the 

critical surface using our surface model, we use the following procedure: 

(1) Calculate the dimensionless potential or "critical V-value", V(crit) 

from the relationship: 

V(erit) = i-3 eset 6.14 
C.F 

For F = 45 V/nm this has the value 1.40434. [It is useful to work 

with a precise value, though obviously the accuracy of this value 

is much less than its precision would suggest]. 

(2) Use our computer program to calculate the characteristic distance 

gchar 
: for a certain position in the surface array, that gives a 

potential value equal to V(crit). The results, for He on W(111), 

for be = 2° and be = 7°, are shown in table 6.4. 

The general characteristics of the critical surface as obtained 

here are the same as those of equipotential surfaces, as already discussed. 

Table 6.4 demonstrates numerically the following things: 

(1) In all cases pee is greater above the surface atoms than between 

them, i.e. the critical surface is concave outwards above the imaged 

atoms. 

(2) Ree is slightly greater in the double-layer situation, and is 

greater for the higher polarizability value. 

(3) The "distance ripple" is greater in the double-layer case, but 

smaller for the higher polarizability value. In absolute terms 
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TABLE 6.4 

Values of the field ratio and the field ratio difference, above 

and inbetween atoms, for a single and a double layer, 

and for polarizability values 2b° and 7b° 

  

  

  

              

b,/b° PX PY oe (SL) ae (pL) | g° (st) | B°* (DL) 

(nm) (nm) 

2 Corso 0.52155 0.54028 1.00144 | 1.01002 

DX/2 0 0.52143 0.53948 0.99952 | 0.99085 

Differences | 0.00012 0.00080 0.00192 | 0.01917 

7 Oa 0.60743 0.62936 1,00058 | 1,00254 

DX/2 0 0.60738 0.62915 0.99981 | 0.99916 

Differences | 0.00005 0.00021 0.00077 | 0.00338 

yorit = 1.40434 
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the ripple is fairly small in all cases. 

With respect to fields, the tables demonstrate the following results: 

(4) The above-atom fields are higher in the double layer case than in 

the single-layer ("bare emitter") case. This is a consequence of 

the fields due to the induced dipoles in the field-adsorbed layer. 

(S) The critical surface fields are lower for the higher polarizability 

value, in both single-layer and double-layer cases; and the same is 

true for the difference apo™ in field ratios as between above-atom 

and between-atom positions. 

This last result was entirely unexpected, and has implications for 

imaging theory. Basically, it occurs because the fall-off in potential 

with distance is slower than the fall-off in field. 

6.6 Imaging and Contrast 

Since the ionization of imaging-gas atoms occursin the vicinity of 

the critical surface, the fields in the critical surface have a specific 

importance in the theory of imaging and image contrast. Recalling eqns. 

2.4 and 2.7, it is clear that the imaging process depends on the ioniza- 

tion densities in the ionization zones above protruding surface sites, 

(i.e. surface atoms), and contrast depends on the ratio of ionization 

densities as between points in the critical surface above and between 

neighbouring atomic sites, 

This ratio of ionization densities is determined partly by the gas- 

concentration ratios, and this in turn is influenced by the field 

differences. If thermodynamic equilibrium exists, then we may write 

eq. 2.7 in the form: 

ext s a cr Cy/Cy = exp Dab, (F°**)2. 208°F/kT] 
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There is a small approximation here,in that we have equated the average 

field with the external field, but this is not important for practical 

purposes. 

We show in table 6.5 some values of CA/ Cy for the various cases 

considered above and for several different temperatures. Two results 

stand out. First, that the presence of the adsorbed layer markedly 

enhances the predicted gas-concentration ratio, second that in all cases 

the gas-concentration ratio corresponding to be = 2v° is much higher 

than that corresponding to bp = 7°, which means that - contrary to our 

intuitive expectation - higher emitter surface-atom polartzability tends 

to reduce rather than enhance image-contrast. As already indicated, this 

is because the higher polarizability shifts the critical surface outwards, 

away from the dipoles in the field-adsorbed layer. Although the moments 

of these dipoles are increased by choosing a higher polarizability for 

the substrate atom, this increase is not enough to compensate for the 

outwards shift in the critical surface. 

In discussing the influence of gas-concentration variations in 

contrast, it should be remembered that with a Raleigh criterion a ratio 

of 1.3 in the ionization densities is needed to explain contrast. Thus, 

if thermodynamic equilibrium were to exist, a ratio of 1.3 in the gas 

concentrations would be sufficient to explain contrast. On this basis, 

if be = 2°, then contrast can be explained near 20K and below if no 

adsorbed layer is assumed present, but well above 80K if an adsorbed layer 

is assumed present, 

In fact, the imaging gas is not in thermodynamic equilibrium with 

the emitter under imaging conditions “16 2 Duffell and Forbes (21) 

suggest that, as an approximation, we may assume the gas to be locally 

in equilibrium with itself, at some effective temperature oe above that 
££ 

of the emitter. They suggest that Tore may be about four times the 

emitter temperature. On this basis, our results suggest that, to explain 
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the existence of resolved planes in the images of W(11l), at emitter 

temperatures near 80K, the presence of a field-adsorbed layer has to be 

postulated. 

Conversely, the results in table 6.5 confirm that, if the adsorbed 

layer is present, then gas concentration variations must be expected to 

have a significant role in imaging theory. 
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Values of the gas concentration ratio above and inbetween atoms (c,/¢, 

at the critical surface, above a single and double layer, for 

polarizability values 2b? and 7°, at different temperatures 

TABLE 6.5 

  

  

        

b,/b Cy/Cy (SL) Ci/Cy (DL) 

T; SSK 2 5.6 3.9 x 10° 

7 de? O57 

T = 20K 2 1.4 25 

a 1.14 1.8 

T = 80K 2 1.08 ane 

z: 1,03 I.E 

T = 300K 2 1.02 1.24 

7 1.009 1.04     
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CHAPTER 7 

RESULTS AND DISCUSSION: BINDING ENERGIES 

7.1 Structure 

We now turn to the discussion of short-range field-adsorption bind- 

ing energies. The major part of this chapter deals with the calculation 

of binding energy AB for a complete layer, and we approach this in three 

stages: the calculation of the conventionally-defined component AB(conv) ; 

corrections necessary to obtain the full (differential) field-induced 

contribution ABT’; and the further corrections necessary to obtain the 

total (differential) short-range binding energy AB. In the calculation 

of AB(conv) we compare our results with those of previous treatments. 

The remainder of the chapter deals in a preliminary way with the 

calculation of binding energies for partially-occupied layers, and for a 

fully occupied second field-adsorbed layer. 

7.2 The calculation of AB(conv) 

7.2.1 Comparison with previous treatments 

To facilitate comparison of our treatment with those of Muller and 

(1s, 52) 
Tsong , we initially introduce some simplifications into our 

d,A 
iB 

general treatment) equal to zero. Physically, this is equivalent to 

formulae. First, in eq. 4.62 we set Mat = 1 and y cp in the more 

ignoring the effects of the adsorbate-layer atoms on themselves and on 

the emitter-layer dipoles. Eq. 4.62 will then be reduced to 

m d5E 4.1 all tool g , 1 Bi By by ME BE Rrstre 71 

But the r.h.s. of this expression is just a formal version of the single 
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layer formula discussed in section 4.3, applied at the bonding point A. 

Thus we can write it more fully as: 

m a ol Ee 
CNG ene ia enn m -1 3 A . + dEBE TM /4nec ares hig 

Table 7.1 shows the results of calculations based on a simple square 

array. (We have in effect used the structure factors for the(100) face 

but have set c equal to the interato/m spacing in the (111) face. This 

will give results for the geometry discussed in ref.(68). Various choices 

for the parameters in eq.(7.2) are given, together with the corresponding 

values of Bas (Eq - 1) and the binding-energy component AB(conv) as 

evaluated for an external field equal to 56 V/nm. We initially use the 

polarizability value 3.19 meV V~? nm?, which is equivalent to the value 

used by Tsong and Muller. The choices are as follows: 

Choice 1: Apart from a very small correction factor, this is 

equivalent to the IDP approximation, represented in eq.2.8. Physically 

the choice disregards all interactions between the adsorbate atom and 

the highly charged-metal-surface atoms except that with nearest atom. 

Choice 2: is equivalent to the unapproximated array equations given 

by Tsong’), It disregards the monopole effects in eq.4.62 (by putting 

Ba = ee = 1), and gives the parameters Mz tand qe values appropriate 

to a simple square dipole array. Physically this choice describes the 

interaction between a layer of neutral emitter atoms and a single adsorbed 

atom, isolated in free space in an applied field poe , and with mutual 

induction between the adsorbed atom and the layer ignored. 

Choice 3: incorporates the fact that the emitter is an electrical 

conductor, by sétting the impressed (monepote) field at the emitter 

surface equal to 4 fo Ge. Be = -.5), rather than po. This is done 

because, in reality, the emitter - layer atoms form the surface of a 

charged conductor, and so they are in part the source of the external field. 
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TABLE 7.1. 
Values of specified field ratios and of the conventional 

short-range field-adsorption binding energy AB(conv.), 

for a square lattice with a = 0.4476 nm, for specified 

choices of the parameters appearing in eq.7.2 and of Ba 
  

  

  

Choice 

1 2 3 5 6 

bp/b° oe se es 9 =19 47200 0 700 

ca 1.0 1.0 0.5 = 0.5 0.5 

qt 10.32 5.934 5.934 1934 «$934. 5.934 

Mz} 1.000 0.6836 0.6836 0.6836 0.4962 0.4962 

ae 0.529 0.208 0.104 104 «0.165 (0.165 

an 1.000 1.000 1.000 1067 1,000 ‘1,067 

By 1.529 1.208 1.104 sap TR LER 

en 1.337 0.460 0.219 (372), 0.558 0.519 

AB(conv.)? 0.299 0.103 0.049 .083 0.080 0.116 
  

Ab(conv.) is evaluated for an external field of 56 V/nm, using the 

approximate value of the field-ratio shown, and is expressed in eV. 
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Choice 4: takes into account the enhancement of the field at the 

position of the adsorbate due to the localisation of the charges at the 

emitter surface,by setting ea equal to 1.067 (our calculated value) rather 

than unity. 

Choice 5: showsthe effect of higher polarizability (i.e. putting 

bp = 7° rather than 3.19b°) on choices 3 and 4, 

The sequence of choices from 1 to 4 represents a trend towards 

increasing realism in general mathematical and physical assumptions. It 

is shown clearly that the Tsong and Muller dipole-dipole theory (our IDP 

approximation,represented by choice 1) is not an adequate substitute for 

a full array calculation. With the data choice used here, the neglect of 

mutual depolarization amongst substrate-atom dipoles causes over-estima- 

tion of the binding energy by a factor of nearly three. The degree of 

over-estimation will depend somewhat on the values assumed for the lattice 

spacing and for the surface atom polarizability. The results here are 

incompatible with Tsong's statement, based on unpublished work mentioned 

(52) in his review article , that the IDP aprox. leads to numerical results 

sufficiently accurate for comparing with experimental results. 

A second point concerns the role of the field variations due to the 

discreteness of positive charges. The original work on this by Forbes (8) 

compared the monopole contribution to field variations with the dipole 

contribution as calculated by the IDP approximation. However, by refer- 

ence to the full array calculation of the substrate-dipole contribution 

(choice 3), the monopole contribution is relatively more significant. 

Including the monopole effects (choice 4) increases the short-range bind- 

ing energy by approximately 70%, for the SI polarizability value 3.19b°, 

For, the higher polarizability value: of 7° used in choices 5 and 6, 

the inclusion of the monopole contribution increases the predicted short- 

range binding energy by approximately 45%. 
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7.2.2 The effects of lattice structure 

Table 7.2 compares the results for choice 6 above, that are based on 

a simple square lattice structure of side 0.4476 nm, with those for the 

two other structure choices specified earlier, assuming the polarizability 

value b, = 7°. The binding energy estimate is here based on the full 
E 

formula for AB(conv), namely eq.4.62 rather than the approximate formula, 

eq.7.2. The columns in table 7.2 are: 

Choice 1: corresponds to choice 6 in table 7.1 (but using full 

formula), i.e. mdl 1. 

Choice 2: represents a square lattice structure with a lattice cell 

area equal to that of the hexagonal W(111) structure, i.e. mdl 2. 

Choice 3: represents the hexagonal W(111) lattice structure. 

Choice 4: represents the same hexagonal lattice structure but with 

the SI proper polarizability for the emitter surface atom 2v° Give. the 

lower limit discussed earlier). 

The first choice shows that the use of the full formula for By 

rather than the approximated formula tends to reduce the conventional 

binding-energy estimate. This is discussed further below. 

Comparing choices 1 and 2 shows that, for a given (square) lattice 

structure, aN and 4B (conv) are smaller when the interatom spacing is 
Contvibution 

smaller, The monopolekto field variations is reduced, and mutual 

depolarization effects are enhanced. 

Comparing choices 1 and 3 shows that, for a given interatom spacing, 

BA and AB(conv) are smaller for the hexagonal than the square structure, 

essentially because the area per array point is smaller for the former. 

Finally, comparison of choices 1 to. 3 shows that the modelling of a 

real hexagonal structure by a Square lattice is more successful if the 

areas per array point (rather than the interatom spacings) are set equal. 
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TABLE 7.2 

Values of the parameters appearing in eq.7.2, and of 

the conventional short-range field-adsorption binding- 

energy AB(conv.), evaluated for specified lattice 

structures, without approximations 

  

  

Lattice type Square Square Hexagonal Hexagonal 

a (nm) 0.4476 0.4165 0.4476 0.4476 

b (meV V? nm?) 7.00 7.00 7.00 2.00 

By 1.233 1.183 1.181 eats) 

Mat 0.9800 0.9749 0.9753 0.9753 

ol Ma’ By 1.208 1.153 Togs 1.083 

p-! 1.0044 1.0032 1.0032 1.0015 

By 1,215 Lei5% 1.155 1.085 

AB(conv.)* (eV) 0.106 0.076 0.075 0.040 
  

. AB(conv.) is evaluated for an external field of 56 V/nm 
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More generally, one might expect to be able to model a complicated 

array structure by a square lattice with the same area per lattice point, 

as has been pointed out by MacDonald and Barlow’?>) . 

7.2.3 The influence of induction effects 

Physically, the reduction in the conventional binding-energy estimate 

when using the full formula is due to induction effects resulting from 

the presence of the adsorbate layer. The correction to the field ratio 

is small, about 2% in the case of each lattice structure when the surface 

polarizability be is taken as Thee The correction to AB(conv), however 

is much greater. For the hexagonal lattice structure, for example, the 

full-formula result is roughly 15% lower than the approximate result. 

To investigate in more detail the effects of the presence of the 

adsorbed layer, we write eq.4.62 in the form: 

ie ee -1 yrl Bh D My By Dees Tes 

where D denotes the denominator in eq.4.62. The factor Mao in eq.7.3 

results from interaction within the adsorbed layer, and acts to reduce 

the local field acting on an adsorbed atom; the factor D~! relates to 

mutual induction between the adsorbed atoms and the emitter substrate 

atoms, and acts to increase the local field acting on an adsorbed atom. 

As shown in table 7.2 the factor Mj? has a somewhat greater influence 

than the factor D7}. 

7.2.4 Influence of polarizability value 

By comparing choice 3 and 4, in table 7.2 we see the great effect of 

the polarizability bE value on the calculation of AB(conv). Setting 

bE = 2° rather than 7° reduces AB(conv) by about 45%. There is still 

much uncertainty associated with the choice of proper SI polarizability, 

145



for the surface atoms (see sec 3.5) values mentioned in field-ion 

literature for the "polarizability" of tungsten atoms range from 0.38b° 

(for an atom in the (001) plane (ref.(7 )) to Thorhalson et al value of 

11.7b0 029) » which is a computed value for an atom in free space. In our 

view there are no reliable experimental or theoretical measurements of 

the proper SI polarizability of a partially ionized surface atom, and/or 

of how much it may differ from the SI polarizablity of the same atom 

(neutral) in free space. Thus we are using upper and lower estimates, as 

described earlier. 

7.2.5 Summary 

This section has largely been concerned with possible mathematical 

approximations in the calculation of the conventional field-induced 

binding-energy contribution AB(conv). It has been shown that: 

(1) The isolated-dipole-pair approximation is not an adequate substitute 

for a full array calculation. 

(2) Mutual depolarisation, and also the field variations due to the 

discreteness of positive charges, must be taken into account. 

(3) Mutual induction effects due to the adsorbate layer can be neglected 

in a first approximation, but that there is no problem in including 

them. 

(4) The correct lattice structure for the crystallographic plane under 

discussion should be used. 

(S) There is a residual uncertainty by a factor of about two, due to 

uncertainty over the correct value of surface atom polarizability. 

7.3 The calculation of ape’ 

As we described in section 3.2, the short-range binding energy term 

146



AB, consistsof many terms. Recalling eq.3.2: 

AB Re apetee + apreP 4 apotsP a aptat : apindir 

The term Bee (representing the full electrical component of the induced 

short-range binding energy) is not identical with the term AB(conv) that 

represents the conventional expression for short-range field-adsorption 

binding energy, as described in section 3.2. In the first place there 

are hyper-polarizability and field-gradient polarizability terms. 

According to ref.(73), these increase AB(conv) by about 20% in the field 

range of interest. Secondly, there is the effect of the induced change 

in the source of the electric field (- AU,). Bearing in mind that the 

quantity of interest is what we defined earlier as the "differential" 

short-range binding energy (i.e. the binding energy associated with the 

removal of a single atom from the adsorbed layer), and that all our short- 

range binding-energy contributions are of this type, we now consider Au, 

in more detail. 

The evaluation of ABoee , by integration of the force acting on the 

vacancy-site atom along a path away from its adsorption site, is possible 

in principle but would involve extensive calculations. We think that 

the following argument may provide a rough estimate. 

The effect of mutual induction within the adsorbed layer is to reduce 

the field acting on each adsorbed atom. If this mutual induction effect 

could be "turned off", whilst leaving the mutual induction effect between 

the substrate atoms and the adsorbate-layer atoms "turned on", then the 

field F* acting on each substrate atom would be: 

pS pst Legal 

where the symbols have the same meaning as previously, i.e. is the By 
field ratio for the "bare emitter" situation. Taking Foxt as 56 V/nm, and 
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using the data appropriate to the hexagonal lattice as given in table 

7.2, with bp = Too we obtain a binding-energy estimate: 

apeleS(p*) = 90 meV 

This result should be compared with the value AB(conv) given in table 7.2, 

namely 75 meV. 

We now argue that during the removal process all the dipolesin the 

adsorbate layer (except the vacancy-site atom) would, if they remained 

fixed in position, have strengths intermediate between b,Floe and b,F*. 

Consequently, the work done against electric-field-induced forces in 

removing the vacancy-site atom should be intermediate between the binding- 

energy estimates obtained by taking the field acting on the other dipoles 

ploc elec 
A 

between 75 and 90 meV. 

as and as F*, respectively. That is, AB should be intermediate 

For the same lattice structure, but with be = abo. the conclusion is 

that apelec should be between 40 and 53 meV. 

We thus think that for the field adsorption of helium on the (111) 

face of tungsten, the (differential) field-induced binding energy contri- 

elec bution AB could be greater than AB(conv) by roughly 10 meV, when: 

pext = 56 V/nn 

Other corrections to apttec might in principle arise from the 

existence of a permanent surface-atom dipole moment, as discussed in 

chapter 3. However, it is felt that the corrections will be swamped by 

the uncertainties in the surface-atom polarizability, and can be neglected 

at the present time. 

Overall, therefore, we feel that REO will be greater than AB(conv) 

by perhaps as much as 30% for the fields of interest to field-ion emission. 
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7.4 The Calculation of AB 

Next we consider the calculation of the remaining terms in 

Cd.se2- 

7.4.1 Repulsive Forces 

The theory of the binding-energy contribution due to repulsive forces 

was discussed in section 3.7. Using eq.3.33, we computed the repulsive 

forces ratio n for W(11l)/He structure, The results are: 

Tears Ooi mie bp = 2v°, n = 0.48 if be = 7° 

Thus the factor (1 - n) in eq.3.34 is approximately equal to one half. 

The effect of repulsive forces cannot be neglected. 

7.4.2 Dispersive Forces 

The third term in eq.3.2 is the binding-energy component resulting 

from the interplay of dispersive and repulsive forces. This interplay 

also exists in the absence of the external field, and has been extensively 

(40, 88) 
discussed in past literature If there wereno change in the 

position of the adsorption site when the field is applied, then the 

ee in eq.3.34 would represent the zero-external-field binding energy, 

at least approximately. Since the field-adsorption sites are directly 

above the substrate atoms, but the normal physisorption sites are in the 

positions that maximise the number of nearest neighbours, differences will 

exist in the details of the dispersive and repulsive interactions in these 

two cases. onecers it seems reasonable to treat the third term in 

eq.3.2 as equal to the binding energy in zero external field. 

The value of this binding energy, for helium on a metal, is usually 

taken as approximately 10 meV (see ref.(40), for example). However, a 
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(88) 
recent review cites a value of approximately 4 meV for helium on 

tungsten, derived from scattering experiments (89) , These binding-energy 

contributions are small, but are not negligible in comparison with the 

lower of the estimates made for the first term in eq.3.34. 

7.4.3 Lateral Interactions 

In principle, contributions also result from lateral interactions 

between adsorbate atoms. The effect of electrostatic dipole-dipole 

interactions has been taken into account in the estimation of eee 

But in principle there also exist chemical type interactions. 

For two helium atoms in free space, calculations suggest that at a 

separation of 0.4476 nm there is an attractive interaction energy of 

around 0.1 mev 29) . As each adsorbed helium atom in a monolayer on a 

(111) face has six nearest neighbours, this would produce a contribution 

of about 0.5 meV to the short-range binding-energy. A contribution of 

this size can be neglected. 

7.4.4 Indirect Lateral Interactions 

When noble-gas atoms are adsorbed, the presence of the surface 

modifies the interaction between them, even when the surface is neutral. 

In effect, there is additional contribution to the binding energy, that 

gives rise to the term AB noe induded in eq.3.2. For the heavier 

inert gases adsorbed on graphite this contribution is known to be 

repulsive at large separations, and tends to reduce the magnitude of the 

lateral interaction energy by around 5 = 104672) , This effect will 

presumably exist in the adsorption of helium on a metal, but as far as 

we know there is no relevant data. However, if its size is comparable 

with the percentage figure just quoted, then Rana would be of order 

- 0.1 meV and thus completely negligible. 
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7.4.5 Summary 

Drawing these estimates together, we get the following numerical 

estimates for He on W(11l), at a field of 56 V/nm, (the lower figure in 

each case corresponding to b = 2°, the higher to b = 7°): 

(1) AB(conv) is estimated to lie between 40 - 75 meV's 

(2) Adding about 30% (or somewhat less) to get npceee gives a 

figure lying between 55 - 100 meV 

(3) Taking 50% of the above, to allow for repulsive forces, and 

adding between 5 meV and 10 meV to allow for dispersive forces 

gives an estimate of AB lying between 30 meV and 60 meV. 

Following the same procedure, but for a field of 45 V/nm, AB is 

estimated to lie between 25 and 50 meV. 

It will be clear that, although the estimate of AB(conv) is relatively 

precise, there is considerable uncertainty about the corrections. Better 

treatments will eventually be required, but for the time being we may 

formulate a rough rule that, for fields in the range of interest to field- 

ion emission we may obtain AB from AB(conv) by subtracting about 35%. 

7.5 Binding energies in other circumstances 

7.5.1 Other planes 

Using the rule just formulated, we may calculate the binding energies 

for helium on the other planes of tungsten mentioned in table 6.1. Values 

ec 
obtained using bp = 2p? and pee 45 V/nm are shown in table 7.3 
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TABLE 7.3 

  

  

Plane AL AB(conv) /meV AB/meV 

100 1 negative negative 

110 v2 negative negative 

ad 3 ~ 50 v 30 

210 iS ~ 120 ~ 80 

211 ¥6/4 negative negative 

310 ¥10/2 ~ 40 v 28 

411 3/2v2 negative negative             
It is seen that several of the planes have negative binding energies. 

The result indicates that we cannot have a complete field-adsorbed helium 

layer on these planes, because high mutual depolarization would prevent 

the formation of a full adsorbed layer. This is because the planes are 

relatively close-packed, - as demonstrated mathematically by the small 

value of A, and the large value of the structure factor T 1 

7.5.2 Partial layers 

To follow up this point, we arranged a program to simulate a limited 

number of helium atoms adsorbed on a full emitter substrate layer, by 

ignoring mutual induction and artificially reducing the structure factor 

and hence the relative permittivity My for the adsorbed layer. This 

showed that it is possible to get a partial adsorbed layer (or even few 

adsorbed atoms) on top of those planes. .Admittedly this treatment is not 

fully correct and we have various reservations. 

We also set another program to simulate the c 2 x 2 effect on the 
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(100) plane (a recent discovered) phenomenon when only every other substrate 

atom is imaged). This showed that we still have negative values for the 

short-range binding energy. Very recently Graham (private communication) 

reported that selective evaporation of emitter surface atoms was noticed 

in this case. We simulated this situation in a program by setting the 

surface lattice parameter for a face centred square lattice to be equal to 

2x a. AB in this case is positive, the estimated Values were 160 meV at 

fone = 45 V/nm, and 245 meV at oa = 56 V/nm. Field adsorption on the 

c 2 x 2 structure is thus to be expected, and hence its clear imaging can 

be explained. 

7.5.3 The triple-layer case 

Stimulated by the results in the preceding sections, we constructed 

a program to calculate the conventional binding energy for an assumed 

second adsorbed layer of atoms on top of the first, on the (111)-plane of 

Tungsten. The theory for this situation was described in section 4.6. 

For the He on W(1ll) system, at an external field of 57 V/nm, AB(conv) = 

5.6 meV. 

Comparing this to the Rendulic and Kreutz o2 value, AB(conv) = 20 meV 

at FoXt = 45 V/nm our low value of AB(conv), does not support the Rendulic 

and Krautz hypothesis of the existence of a second adsorbed layer, since 

such a weak binding energy cannot hold the adsorbed atoms in the second 

layer fixed in their positions. More likely, we would have a second layer 

of mobile atoms, as the more conventional discussion assumes. 
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CHAPTER EIGHT 

CONCLUSIONS AND FUTURE WORK 

8.1 Summary 

The conclusions of the main work reported in this thesis may be 

summarised as follows: 

First, we have shown that there are many aspects in the theories of 

field ion imaging, field adsorption, and charged metal surfaces, that are 

inconsistent or contain basic conceptual errors. We have redefined the 

main variables, putting forward self-consistent definitions for the con- 

cepts of local field, polarizability, and binding energy, and have put 

forward a new model for charged metal surfaces and for field adsorption. 

This model represents the charged surface by an infinite planar 

array of superimposed point positive charges and dipoles (with a similar 

array of negative charges at infinity), and the field-adsorbed layer by 

a similar layer of dipoles. The model can be analysed self-consistently, 

and incorporates the important physical fact that local structure exists 

in the charge distribution at the charged surface. 

Using calculations based on this model, we have explored the field 

and potential variations above a charged surface. We have demonstrated 

that the field above a bare emitter surface is higher above the atomic 

sites than in between them, but that in the critical surface this 

variation is not enough to explain image contrast (for He on W(11ll)) at 

80K. When a field-adsorbed layer is present a much higher field 

difference exists, that is sufficient to explain image contrast. We have 

also shown that fhe equipotentiais above the emitter plane can be imagined 

to have an egg-box shape, and that the Renee the value of the proper 

polarizability of the surface atoms the further from the emitter surface 

will be an equipotential of given V-value. A consequence of this is that 
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higher surface-atom polarizability can lead to reduced image contrast. 

In our studies of field-adsorption binding energy, we have shown the 

insufficiency of previous treatments when applied to the case of a gas 

atom adsorbed in the interior of a crystal facet, assuming that the facet 

can be modelled by an infinite array. In particular, we have shown that 

ignoring the depolarization effects due to mutual interactions between 

emitter surface atoms leads to marked over-estimation of the binding 

energy. In the case of a really close-packed plane, for example W(100), 

the binding energy is negative, showing that it is impossible to have a 

full adsorbed layer. We have also shown that, even for W(11l), we cannot 

have a complete second field-adsorbed layer on top of the first one, as 

has in effect been suggested by Krautz and Rendulic, because the short 

range binding energy is too low (AB v 5 meV). 

For the paradigm case of He on W(111), when all corrections are 

taken into account, we have estimated that at the best image field for 

Helium (45 V/nm) the short-range binding energy probably lies between 

25 and SO meV. 

8.2 The adsorption/imaging problem 

At this point we reach a very contradictory result. On the one hand 

we have concluded that it is necessary for a field-adsorbed layer to be 

present in order to explain image contrast; on the other hand the estimated 

short-range binding energy (i.e. 25 - 50 meV, at pote = 45 V/nm) is not 

sufficient to explain field adsorption itself, as may be demonstrated by 

the following argument. 

If we assume that the mean time interval between ionization events 

in a given ionization zone is roughly equal to the time interval assumed 

to cause a continuous bright spot on the phosphor screen of the FIM, that 

is about 107* s, then we conclude that 1074 s° is the minimum time that 
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a field-adsorbed atom must be present. We may assume that the time 

required for an adsorbed atom to escape from a site, where Q is the 

necessary activation energy, is given by the Arrhenius-type equation: 

i AD exp (Q/kT) 

where kT is the BoltZmann factor, with T the emitter temperature taken 

(73) 12 _-1 
to be 80K. A is a pre-exponential whoge value is taken as" 10) | :s 

and t.* 107+ s. Assuming that Q can be identified with the short-range 

binding energy AB, then the value of AB necessary for an atom to be field 

adsorbed for about 107° 5 at 80K is about 130 meV. 

The estimated binding energy (25 - 50 meV) is substantially less 

than this. So either the field-adsorbed layer is only partially occupied, 

or some significant factor has been omitted from our theoretical model or 

calculations. (For example, the effects of finite plane size may need 

to be included in a more realistic model). 

Clearly, the problem of getting a completely self-consistent theory 

of field-ion imaging and adsorption has not been fully resolved. Some 

suggestions for future work are included in the next section. 

8.3 Future Work 

The opportunity for research in this field (i.e. the theory of the 

charged metal surface and field adsorption) is still wide open, since all 

the theoretical work done in this field (including the work reported here) 

is only a simple step toward the solution of a very complex problem 

Even within the framework of the monopole-dipole surface model (the 

model which pore a ecees the backbone of this thesis), there is much 

unfinished work. We have confined this thesis yr wee of tungsten as an 

emitter and helium as imaging and/or adsorbed inert gas, and we have 

discussed only the cases of the W(111) and W(111)/He systems in detail. 
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But there is still a wide range of emitter metals to be investigated 

and compared, and there are also the other gases that are used as 

imaging gases (in particular neon, argon and hydrogen). 

We also need to know more about the possibility of partial occupancy 

of the adsorbed layer, and about the process of creating vacancies in the 

adsorbed layer, In particular, we need more accuracy in calculating the 

short-range differential binding energy AB. 

Allied to this are problems associated with the use of a mixture of 

inert gases for imaging (e.g. a He/Ne mixture): the calculation of bind- 

ing energies in a mixed layer, and the effect of an ‘impurity' neon atom 

on contrast, 

Generally we need to know more about polarizability and charge 

localization at metal surfaces. In particular, we need more precise and 

reliable information about the positions of the electrical surface and 

the bonding sites, and better ways of estimating what value to choose for 

surface-atom polarizability within the framework of our charged-surface 

model. 

More fundamentally, we also know that the monopole-dipole model is 

only a step towards representing a real charged surface. A model that 

completely represents reality is beyond the reach of mankind, since 

nothing can completely represent reality except reality itself. A model 

can only reflect a part of the reality, or certain of its aspects. We 

judge how truthful this reflection is by how close the results of the 

application of the model are to the experimental facts in a variety of 

real situations; and by the self-consistency of the model itself. But we 

always start with an idealistic model that only vaguely represents a 

specific, reality under specific circumstances. The process of approaching 

the specific reality then starts by changing some parts of the model, 

trimming or modifying other parts, or/and may continue by abandoning the 
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original model in favour of another, better representation of reality. 

This is true of our model (the monopole-dipole model). We can now 

think of many ways of improving it - or we might set up other models - 

in order to have a better representation of a real charged metal surface. 

One pathway forwards is to work within the framework of classical physics 

and modify our model in carefully studied steps. For example, we could: 

q) Introduce negative charges between each pair of nearest-neighbour 

positive charges (i.e. lattice points) at the surface, and to study 

field, potential, and binding energy variation; 

(2) Investigate in detail the consequence of multipole moments; 

(3) A more radical (and much more difficult) endeavour would be to set 

up a model representing planes of finite size, or a model based on 

a concave, parabolic, or realistically shaped (in three dimensions) 

emitter surface. Such models involve the problem of the charge 

distribution at a shaped surface, or one of a limited area, and 

this needs to be solved also. 

Another pathway would require us to think of charged surface models 

to replace the classical monopole-dipole model. For example, one can 

think of a metal surface model consisting of an array of positively 

charged spheres (representing metal surface atoms) submerged in a sea of 

negatively charged liquid (representing the conduction electrons). The 

effect of the impressed field is then to drive this sea of electrons 

downwards into the interior of the metal. If the external field is strong 

enough a depletion of sea of negative charges from the top of the spheres 

givesus a picture of the surface involving positively charged apexes 

surrounded by negative charges. This imaginary charged metal surface 

model combines the jellium-type model and the fact. that a metal surface 

contains localised charges, and seemingly has the advantage that we do 
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not need to worry about metal surface atoms’ polarizability, because we 

do not need to use such a variable. 

In principle, the best way to tackle microphysical problems (such as 

many of those arising with charged metal surface9 is by general quantum - 

mechanical means. But this is a task difficult to accomplish. Instead, 

attempts have been made to introduce some quantum-mechanics to models 

based on classical physics, as in the jellium-type model. This mixture of 

classical and quantum physics has many difficulties. Inconsistencies 

arise between the theory and practice, as described in earlier chapters. 

The eventual challenge in this subject area is the production of a 

fully self-consistent quantum-mechanical theory of realistically-shaped 

charged surfaces and field adsorption, that takes fully into account the 

localised detail in the surface charge distribution that is roughly 

represented in Forbes' monopole-dipole model as used in this thesis. It 

may be many years before this can be achieved. 
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APPENDIX A 

More general method to calculate the external contributions S, (ext) 

and S, (ext) . 
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(A) The Calculation of S, (ext) 

We can express S, (ext) as: 

Zi 3% n_dn do 
S, (ext) = fy-9 hen, Gaze a5 RAE he sinrsic Al 

4% 
where n = (x? + y?) asia, Ae: 

. 4 nt’ = [a cos @ - P)? + (n sin @ - P,)7] eee AS 

de and FY are the field point coordinates as explained in chapter 5. 

P 

  

  
substituting eqs.A2 and A3 into Al, we can write the denominator of 

eq.Al in the following form: 

, . p2 + p2 + 72, 
na 2 ; x /2 n [i Oe cose ae sine) ilps ee ee A4 

Knowing that r and PY are usually less than lattice parameter unit length 

(i.e. PS or A << n), then by applying binomial expansion theory to eq.A4 
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and neglecting all higher power terms (i.e. second, third, ..... etc), 

get: 

p2 + p2 + 72 
x x -3 5 . 

n put Sache cos Ou rak, -sinve) i ae BE Seis 

Substituting eq.A5 into eq.Al and solving the integral, we get: 

tL 7 
Sy (ext) Rn 

where z pe 4 pee ge eas 
x y 

(B) The Calculation of S, (ext) 

We can express S, (ext) as: 

2n @ n dn do 
S5(ost ae ooo hen, (m cos 6 - Pe + (mn sin 6 - , Za guji2 vn 

Using the same method described above, we finally get: 

Peel ce 
S, (ext) ~ a, (ong Tne! ete, 
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APPENDIX B 

COMPUTER PROGRAM 

This program is written in ALGOL 60. Note that this program is 

written for a specific single value of the coordinate Z 
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