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SUMMARY

The present dissertation is concerned with the determination of
the magnetic field distribution in magnetic electron lenses by means
of the finite element method. In the differential form of this
method a Poisson type equation is solved by numerical methods over

a finite boundary. Previous methods of adapting this procedure to
the requirements of digital computers have restricted its use to
computers of extremely large core size. It is shown that by

reformulating the boundary conditions, a considerable reduction in
core store can be achieved for a given accuracy of field
distribution.

The magnetic field distribution of a lens may also be calculated
by the integral form of the finite element method. This eliminates
boundary problems mentioned but introduces other difficulties.

ATter a careful analysis of both methods it has proved poussible
to combine the advantages of both in a unew approach to the problem
which mey be called the 'differential-integral! finite element
method. The application of this method +to the determination of the
magnetic field distribution of some new types of magnetic lenses is
described.

In the course of the work considerable re-programming of
standard programs was necessary in order to reduce the core store
requirements to a minimum. Attention was also paid to special
requirements of modern mini-computers which are indispensable in
interactive computer-aided design. In addition some new programs
have been developed for calculating len:z focal properties and
aberrations.

Key words: finite element method, magnetic lenses, lens aberrations,
magnetic field distribution, computer-aided design.
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CHAPTER 1

INTRODUCTION

The finite element method (Zienkiewicz and Cheung, 1965) in the
solution of field problems, has proved invaluable in +he design of
magnetic electron lenses (Munro, 1971). The method was applied in

its differential form.

1.1 The differential finite element method:

The magnetic field within a specified region is governed by a
differential equation. For rotational symmetric structures that

involve current carrying conductors, the differential equation is

& Poisson's type equation,

2 11 2A B LV (A L AN LT (1.1
T7 | kel 3z - Ar | Welte \ 21 T rd o= L3

where A is called the magnetic vector potential, which will be defined
later, Po is the permeability of free space, Pr is the relative
permeability of the magnetic material and J is the electric current

density in the current carrying conductors.

In order to solve equation 1.1, the magnetic vector notential
must be known at the boundary of the specified region. In general

this is not known in advance.

Since some confusion has occurred in the past concerning the
correct setting of the boundary condition, it may be useful to recall
the mathematical definition of the magnetic vector potential, A, and
its relation to the associated property of flux density (B) which

can be more readily measured. irure 1.1 represents the magnetic



flux of rotationally symmetric lens. In this case cylindrical

coordirates are used. The current in the lens flows azimuthally and

therefore has the component Je. The vector potential has only the

azimuthal component A@. Assume a point P at a distance r from the

axis of symmetry of the lens. To define the vector potential Ae at

Figure 1.1: Definition of magnetic vector potential, 4.

the peint P, we assume a surface S whose circular boundary C passes

through the point P. The magnetic flux through the surface S is

given by,

Vo= S_Ij . da (1.2)
S

where da is an element of area of the surface S. since,

div B = 0 (1.3)

then B can be expressed as the curl of a vector quantity which is

called the megnetic vistor potentisl A.



B =curl 4 1.4)

The masnetic flux '%) through 3 is then given b
(@) O (8] 9

A gcurl 4. da (1.5)

and from Stokes' lheorem,

V- éé .4l (1.6)

where dl is an element of length of the circle C. So,

’*) = 2nr.Ae (1°7)

and hence the magnetic vector potential A_ is defined as,

8

1
Ae:-gnr .Y (1.8)

In general A =0 on the axis and at infinity. Most Gaussmeters in

]

fact measure the quantity W over a small arca A a.

In the differential finite element method, the differential
equation 1.1 is solved by the minimisation of an appropriate energy

functional which is given, over a region S, by

I-= 27?“(1# -~ JA) r dz dr (1.9)
subject to the same boundary conditions. TFor a derivation of

equation 1.9 see Appendix 1. W is the stored magnetic energy per unit



volume, i.e. the work per unit volume required to produce a final
magnetic flux density B. For a non-linear magnetic material, W is

given (Pugh and Pugh, 1970) by

[

B
o= f 1 .48 ::J~]}i.d3 (1.10)
= panl r_o l"r
4]

o
where H is the magnetic intensity.
W is shown as the shaded ares in Figure 1.2. PFor a lincar magnetic

material, VW is Ziven by,

2
R (1.11)

Poby
as shown by the shaded area in Figure 1.3. It can be shown (Appendix
2) that the minimisation of equation 1.9 is ecuivalent to solving
the Poisson equation 1.1. The minimisation of the functional 1.9
is carried out by the finite element method. Figure 1.4 represents
the cross-section of an axlally symmetric magnetic structure; this
includes the current carrying coil, the magnetiec materinl and the
space around it within the outer rectangular boundary abed. Because
of this symmetry, the functional 1.9 is minimised over the area
defined by the boundary azlz2d where the axis of symmetry constitutes

one side of this boundary and extends between the distances z, and Z -

The structure is divided into a grid of quadrilaterals. The boundary
of the coil and the magnetic material have to coincide with a grid
line. Furthermore each quadrilateral is subdivided into two triangu-
lar finite elements. This can be carried out in two ways. A lattice
of nodes is formed; at each inner side node the vertices of six tri-
angﬁlar elements meet as shown in Figure 1.5a. An alternative

arrangement is shown in Figure 1.%:, where the finite elements are

-4 -
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Cross-section of an axially gynme bric magnetic
structure; this includes the current carrying
coil, the magnetic material and the space around
it within the rectangular boundary ahcd. The
finite element boundary is az.z.d. Dividing the
structure into guadrilaterals and triongular
finite elements.
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Figure 1.5:

Subdivision of quadrilaterals into trianzular finite
elements. z) one possibloe way, b) alternative way B

¢) combination of a and b for better accuracy. The
vector votential at the node A is Aflected by the

eight vector potential values at the other vertices
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formed across the other diagonals; this sives the same nodal points
but with six different triangles. Accuracy can be improved by combining
arrangements a and b as shown in Figure 1.5c. ‘his gives the same
nodal arrangements but with twelve triangles in contact with each
node. At each node the contribution to the functional 1.9 now comes

from twelve triangles thereby improving the accuracy of the calcula-

tion. This arrangement leads to a nine point equation for each node

in terms of the vector potentials at the node and the eight vector
potential values at the other vertices of the triangles in contact with
the node as shown in Figure 1.5c. The values of the known vector
potentials at the boundary are substituted and the equations are

solved for the unknown vector potentials at each node.

The derivation of the nodal equations given in Munro's Ph.D.
thesis (1971) was presented in a form that was inconvenient for a
complete revision of the finite element program. f{lence it proved
necessary to rederive these nodal cquations and to present tnem in
the more convenient form given in Appendix 3.

The two components of the magnetic flux density (radial
Br and axial Bz) can be defined by considering Figure 1.6. Consider
a cylindrical element of radius r and length dz around the axisz of
synmetry. The radial flux through the surface with boundary abed is
given by the line integral of A over the boundary abed, where we put

A for Ae. So,

vy - : - Y
(d¥), =3B . rd®.dz = (¥ Yo = (Y )4,
= (A,rde)z - (Anrd9)2+d2. (1.12)

~3



and hence for B_ we have,
r

o/

- . 94 X
B - 2 (1'15)

The axial flux (dﬁ’)z through the surfsce dcefl is given by,

(%), = By wrdoudr = (V) - ()

= (A. - :
( rde)r+dr (A.Ide)r (1-14)
and hence for B7 we have, '
1 2(ra)
e e—— 2 N2 £
Bz T r Jr (1.15)

Knowing the vector potential at each node, the flux density over
each element and the flux values can be calculated using equations
1.13 and 1.15 as shown in Appendix 4. In particular, the axial flux
density can be calculated from the values of the potentials neur the
axis. At a point P on the axis (Figure 1.7), the axial flux density

ng) is given by,

3
Q(Fﬂrf’* Q2Y})
- 5 " (1.16)
(h(n - )

y

The differential finite element method of calculating magnetic
fields began to be applied in the 1970's. Thus the method was
applied to the solution of saturable magnetic field problems (Silvester
and Chari, 1970). 1In electron optics the method was applied to the
design of magnetic electron lenses by !unro (1971). A set of computer

programs (Munro, 1975) stemming from this work is already widely in use.

-8 -



Pigure 1.6: Definition of the magnetic flux density components
B_and Bz' The figure represents a cylindrical
element 6f radius r and length dz around the axis

of symmetry.
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Figure 1.7: Point P at which wuxisl flux density B_(2z) is to be
- b 1 ; Z . R
calculated from near axis vector potentizl values.




Up to this point, we have assumed that the values of the vector
potential at the outer boundary are known. In general these are
known only at the axis where A=0, because of axial symmetry, or at
infinity where A is also zero (cee equation 1.8). Unfortunately an
infinite boundary cannot be represented in a computer. ILven with a
distant boundary, the resulting increase in computer core require-
ments may be difficult to achieve in presently available computers.

At a finite boundary, the vector potential cannot in general be
specified in advance, especially for magnetic lenses, whose fields
may extend well beyond the lens structure. The best that can be
done is to choose an arbitrary boundary in a region where the
magnetic flux crossing it is a negligible fraction of the total flux
produced by the lens. The vector potential is set to zero along this
boundary. From this it is clear that an exact solution for a magnetic
lens in free space is in principle impossible, within a finite
boundary. In order to illustrate the above points, consider a
magnetic lens (Figure 1.8) that consists of a simple iron-free coil
of rectangular cross-section having an excitation of 500 A-t. The
axial field distribution can readily be calculated analytically from
the Biot-Savart law as shown in Figure 1.8. The field from this lens
obeys Ampere'’s circuital law, namely that the line integral of the
field strength ﬁ(:B/ PbPr) over any closed path is equal to the net
current across the area bounded by the path. Therefore for a path,g

that encloses the coil windings,

1 B
PO P’r

where NI is the A-t of the lens. Since this line integral is

independent of the path chosen and depends only on the relevant

- 10 -
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Figure 1.8: Calculated axial field distribution using the
Biot-Savart law, for a megnetic lens consisting
of a simple iron-free coil of rectangular cross-
section. The field extends to infinity from
both directions on the z-axis.
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current NI, it may be used as a check on the accuracy of any
mathematical method used to calculate the field distribution. In
particular it can be used to check the axial field distribution.

In this case equation 1.17 can be expressed as,

= dz = NI (1.18)

where the path is chosen over the z-axis and it extends to infinity

from both directions,-uaégz ig‘co .

In order to calculate the field distribution of the lens of
Figure 1.8 by the differential finite element method we have to
specify a finite boundary where we can put A=0 without introducing
appreciable error. This condition can be realised physically in
only two situations. Firstly, if the boundary abed is a surface of
a superconducting sheet surrounding the lens. It should be noted
however that thg presence of such a superconducting boundary may
alter the magnetic field distribution of the lens compared with that
in free-space. As an illustration of this, the axial field distribu-
tion of the lens shown in Figure 1.8, but surrounded by a super-
conducting sheet, was calculated by the differential finite element
method. Here A was set to zero on a finite boundary placed just
outside the superconducting sheet as shown in Figure 1.9. The
thickness of the sheet was 5mm. The relative permeability Pr of the
superconducting material was teken to be 10-9, a value sufficiently
close to zero for computational purposes. The calculated axial
field is indicated by the crosses in Figure 1.9. The field strength
ﬁ(:Bgypopr) distribution is indicated as a soclid line in Figure 1.9;
the excitation calculated from this distribution yields the supplied

excitation to the lens (NI). This distribution is correct but it



does not correspond to the distribution in free space. However the
excitation in the superconducting sheet accounts for more than 2596

of the lens excitation.

Secondly, the lens may be surrounded by magnetic material of
infinitely high permeability. For conventional lenses this condition
is more or less satisfied in practice by the iron shell. It should
perhaps be noted that all the magnetic lenses initially calculated
by Munro (1971) were of this character. The axial field distribution
of the lens shown in Figure 1.8, but surrounded by an iron sheet of
high relative permeability (Pr=1o9)’ was then recalculated by the
differential finite element method. Here A was set to Zero on a
finite boundary just outside the iron sheet as shown in FPigure 1.10.
As before, the thickness of the iron sheet was bmm. The calculated
axial flux density distribution Béﬂis indicated by the crosses in
Figure 1.10. The field strength ﬁ(:Bgymopr) distribution is shown
as a solid line in Figure 1.10; the excitation caleulated from this
distribution agrees with the excitation supplied to the lens (NI).

It should be noted that no ampere turns are lost in the iron circuit.
However, if the iron circuit is removed the flux density distribution

will change.

Ideally, one should carry out the field calculation using the
actual iron or superconducting boundary that will be encountered in
practice. However, it is more usual and convenient to calculate the
field distribution of the lens in free gpace, at least in the initial
calculations. In this case one should be aware of the dangers of
setting A=0 on a finite boundary. It should also be noted that, in
general, the field distribution will be different depending on

whether the boundary is composed of iron or a superconducting material.
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Figure 1.9: Axial flux density distribution (+++) for the lens
shown in Figure 1.8 <eXCLt stion 500 A- *), but surrounded by a super-
conducting sheet and field strengih H(= B‘?’Opr) distribution (—).
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Figure 1.10: Axial flux density distribution (+++) for the lens
shown in Figure 1.8 (excitation 500 A-t), but surrounded by an iron
sheet of infinite permeability and field strengtn A(=- BtYV P )

distribution (—). Note. No ampere-turns are lost in the iron
circuit. ¥xcitation in free-space = 500 A-t.
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It should be noted that the field on the axis obtained by averaging
these two results gives a better accuracy than either of them taken

alone as can be seen in Figure 1.11.

In order to illustrate the effect of a finite boundary with A=0,
consider the lens shown in Figure 1.12; this is identical with that
shown previously in Figure 1.8 but now the boundary is set at 20mm
from the lens centre. "The axial field distribution calculated from
the differential finite element method is shown as a dotted line in
Figure 1.12. One may be tempted to calculate the excitation of the

lens from this distribution as,

29
L) T (1.19)
— dz = (NI) 1.19
Po r calc.
2, )1
where 21=—2Omm and 22=20mm.

An inspection of Figure 1.12 shows that (NI)C as given by

alc
equation 1.19 is less than NI calculated from the Biot-Savart
istribution (solid line). The difference in excitation gkNI)calo

is given by,

) (NI)Calo.z NI - (NI)c (1.20)

alc,
and is represented by the shaded area in Figure 1.12. This indicates
that some excitation has been lost from the axial field distribution.
In the past this has been ascribed to computing error or toc some
unknown cause. The present investigation has shown, however, that
this 'loss' of ampere turns arises from the presence of low permes-
bility boundary. This can be illustrated by reference to Figure 1.9
in which the field strength H across the boundary is included in the

figure; the excitation 'lost! in the superconducting boundary in this
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Figure 1.11: Axial flux density distribution of the lens of
Figure 1.8, calculated by (a) the Biot-Savart law (———), (b) the
differential finite element method (—.—) with a sheet of infinitely
high permeability surrounding the lens, (c) the differential finite
element method (...) with a superconducting sheet surrounding the
lens. The crosses (+++) denote the average of the (...) and (—n—ﬁ
distributions.
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Figure 1.12s Effect of a finite boundary with A=0 on the axial
field distribution of the lens of Figure 1.8; (excitation 500 A-1t)
calculated by (a) the differential finite element method (,..),
(b) the Biot-Savart law (——). The vertical (—u—ﬁ iines at z=-20mn
and z=20mm represent the field strength ﬁ at the boundary. The
shaded area represents the excitation 'lost' to the axial field
distribution and transferred to the boundary.
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case was 153 A-t. As the superconducting sheet gets thinner, for a
fixed inner boundary, the excitation in the superconductor remains
essentially the same, although the field strength ﬁ distribution
increases to large values. The flux density Bzhﬁon the other hand
is essentially zero. The axial flux density distribution in free
space remains unchanged as the boundary decreases in thickness, the
excitation stays constant at 347 A-t. In the limit, as the
superconducting sheet gets infinitely thin, the ﬂffield becomes
infinitely high. The integral Jﬁ dz taken across the superconduc-

ting boundary still yield a finite excitation of 15% A-t.

Hdz = 153 A-t (1.21)
across the
superconducting
boundary

The finite boundary used in the differential finite element method
can thus be assumed to be an infinitely thin superconducting boundary
with an infinite axial field strength H. Hence the 'lost' ampere-
turns can be found in this boundary. Care must therefore be taken
in interpreting the calculated axial field distribution in the absence
of such a boundary. Here we shall call these 'lost' ampere turns, the
'boundary loss' in excitation. This '"boundary loss' in excitation can

be expressed as a percentage of S(NI)C with respect to NI, i.e.,

alc.

-

S(NI)

'boundary loss' = 100 . “——ﬁfgélg' %o (1.22)
As can be seen from Figure 1.12 the axial flux density

distribution, calculated by the differential finite element method,
cannot be put right by multiplying the whole distribution by the
'boundary loss' factor. The errors in the calculated field are high

near the boundary and infinite at the boundary. However even with
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this finite boundary, the axial field distribution in the central
region of the structure and remote from the finite boundary has

good accuracy. This can be made use of later in chapters 2 and 3%

to provide more accurate field disiributions.

1.2 Desirable features of a numerical method for magmetic field
calculations:

When applying a numerical method such as the finite element method
for calculating the fields of magnetic electron lenses we expect the
following requirements to be satisfied.

The magnetic field distribution and in particular the axial dis-
tribution should be known to an accurscy of 19, . However, where the
axial field falls below 126 of the peak value larger errors may be
tolerated without affecting the calculations of the optical proverties.
Moreover, the axial field distribution should be a smooth curve which
guarantees the accuracy of the derivatives ngydz and ngngzz {rom
this curve in order to calculate the aberration coefficients. The
'boundary loss' in excitation should be better than.\oﬁé in order

not to face practical difficulties in power supplices especially

for very high energy electron lenses.

For single-polepiece lenseg, setting the boundary condition
becomes important since parts of the magnetic circuit are open and
may lead to errors already discussed in connection with Figure 1.8.
In practice, a compromise has to be made between accuracy of the field
and available core store. An improved differentizl finite element
method will be presented in Chapter 2, which can achieve a required

accuracy for single-polepiece lenses but with a reduced core

requirement.



. . iy
1.5 Advantages of the kunro progranm (19]1':

When apvlied to conventional magnetic clectron lenses (Munro, 1973),
the finite element method in the differential form can calculate the
flux density in all parts of the lens; including parts where it would
be difficult to measure the flux density experimentally. The field
calculation of a megnetic electron lens requires the knowledge of the
lens geometry, excitation of the coil (umpore turns) and the magnetic
properties of the magnetic material. Hence the constiruction and ex-
perimental testing of trial lenses is dramatically reduced. The shape
of the polepieces and other parts of the magnetic circuit can be
changed easily in the computer in order to reach a satisfactory design
for the specified application of the lens. The permeability of the
magnetic material is specified at all parts of the structure and hence
no specilal arrangements are needed at the boundaries of elements of
different permeabilities. This is not the case in the other numeri-
cal finite difference method where it is often difficult to satisfy
the boundary conditions, eg. between ccll or free space and magnetic
circuit. This also makes the finite element method more convenient
for dealing with saturation conditions where Pp has to be calculated

for each element in each iteration process.

A critical and objective comparison between the differential
finite element and finite difference methods has not been published
in the literature. Kasper and Lenz (1980), have suggested that, in
principle, better accuracies can be achieved using the finite
difference method especially for axial field distributions than that

are possible with the differential finite element method, for a given

number of nodes. But since the two methods are different in



mathematical formulation, a fair comparison is difficult to achieve.
For example, a comparison bascd on the same mesh distribution may in
fact tend to favour one method unduly. The chief difficulty in
comparing these two methods in practice is the lack of a suitable
general program for calculating magnetic and electric fields by the
finite difference method. If one became available it would be

a straightforward matter to calculate the axial field distribution
of a number of lenses and compare these directly. A step in the
right direction has been taken by Denegri et al (1976) who developed
a finite difference method that employs a similar mesh distribution
to that of the differential finite element method. Some initial
results have been obtained but the method has not yet been fully

implemented to the point where conclusive results can be obtained.

It should also be mentioned that the field distribution in

superconducting lenses also can be calculated readily by the

differential finite element method; the superconducting material is

simply characterised by a relative permeability PT =0.

1.4 Limitations of the Munro program (1971):

In the above program, the magnetic structure including the sur-
rounding free space within the finite boundary has to be divided into
finite elements. These should be sufficiently small in order to achieve
adequate accuracies. The vector potential vaiues along the finite
boundary have to be set to zero. As can be seen from equation 1.8,
this can be true at an infinite radius or when VY =0, as explained

previously.
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Thg program works well and high accur:cies cin be obtained for
conventional magnetic electron lenses. For open structures or for
other type of magnetic lenses, such as the single-polepiece leuns,
putting A=0 on a finite boundary that does not consist of a super-
conducting material or a material of infinite permeability will be
congidered by the program as surrounded by a supercenducting bound-
ary. In other words the prcgram will work correctly but it will
solve a different problem from the one that the user has in nmind.

In particular, there will be ‘boundary loss' in the excitation
calculated from the axial flux density distribution. In addition
the shape of the field distribution will be incorrect. This fact
that one is forced to put A=0 on a finite boundary constitutes

a serious limitation of the above program (Mulvey and iasr,
1980a. cf. Appendix 8) and mey mislead the unwary. For example,

in a calculation of a single-polepiece lens (Hill and Smith, 1980)
using 25X50 mesh points, the 'boundary loss' was about 26(yg .
Increasing the number of meshes to 60X120 reduced the 'boundary loss'
to 8%@ , but increased the store requirement by a factor of thirteen
indicating that the boundary problem has not been completely solved.

In chapter 2, we present an improved differential finite element

method program that reduces the effect of the limitations stated

above and greatly improves the accuracy of the vector potential
calculations. Some application of the method have ulready been

published (Mulvey and Nasr, 1980b, 1981. cf. Appendices 9 and 10).

1.5 The integral finite element method:

The finite element method expressed in integral form (Newman et
al, 1972) can equally be applied to the calculation of magnetic

fields. Here only the magnetic material is divided into finite
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elements; the magnetisation is assumed constant over each element.
. # . . LR . .

The field strength Hc due to the currents in the coil windings and
. ¥

the field strength Hm due to the magnetisation in the iron elements

are each found directly and added to give the total field strength

¥ X

H at any point,

I}: & L 2
H=H, +H (1.2%)

3 .
The field HC can be found easily by the Biot-Savart law,

: JXr
H = av (1.24)

c 41T r3

where J is the current density in the coil windings and the integral
is carried out over the volume of the coil windings.

#
The field Hm can be expressed analytically as,

k3
ﬁ L a -l av )
= - g —— 1.25
m aT &T° o : (1.25)

The integral is carried out over the whole of the ivon region. The
X S
magnetisation M at each element is related to the field strength H

by,

* -

Moo= (Fr - 1) i - X (1.26)

where )( is the susceptibility of the magnetic material. In terms

¥ R
of the flux density B(zpoer), the magnetisation M 1is given by,

Moo= 2 (1 - ) (1.27)

From equations 1.23 and 1.25 we have,

2
M.r

grad\——r av (1.28)
r

c 477



If the magnetic material is divided into N finite elements, we get N

similar equations which can be written in the general form

(1.29)

ow

¢ N

H =H . + K..V.H,
> }LI 1J.kJ J

where i=1,2,..., N; and Kij are factors that depend on the geometry

of the field points. For example, with two iron elements 1 and 2,

as shown in Figure 1.13 we obtain the two equations,

& % 2%
- I y

By = Eop + K XGH) + X, X0,

% 2 3% - (1.30)
e T

Hy = Hp + Koy XqH) + K50 Xk,

in two dimensional Cartesian coordinates, each element of K.
will have two components. Hence for N finite elements a set of 2N
simultaneous eguations are generated. If the susceptibility A; at
J
the jth element were known the 2N equations could be solved directly
# %

for the ﬁ. and H, components of H., 1If the X, values are not known
ix iy 3

then an iterative process must be used in which initial values of;(ﬁ

~r
P

are assumed. The equations are then solved for Ei and ﬁiy and the
values of )Cj are subsequently adjusted using a table of )(/ﬁ values.
The process is repeated until a prescribed degree of convergence is
achieved. Depending on the number of iron elements involved and the
degree of saturation, a convergence to about 1 %;of the meximum
value of the field requires twenty to one-hundred iterations. The
components ﬁx and ﬁ& of the magnetisation are then calculated from
.the resulting values Eix and %iﬁ‘ Hence the field ﬁm due to the
iron at any point can be calculated from equation 1.25 and added to
to the field'!l:LIC from the coil windings to give the total field %.

The axial flux density distribution Bz(z) of a magnetic lens is

of particular interest because it 1s the one that is usually used for
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the calculation of optical properties of the lens. Hence it may be
instructive to show how the total axial field Bz(z) on the axis can
be calculated at any point, P, from both the current in the coil
windings and the known magnetisation values ﬁz and ﬁr in the iron
elements. BZ(Z) at any point on the axis isg given by,

B (z) = B (2) + B_(2) (1.31)
where Bc(z) is the axial {lux density at the point P due to the
current in coil windings and Bm(z) is the axial flux density due

to the magnetisation in iron elements.

Axial flux density distribution B (4) due to the current in coil

windings:

The axial flux density Bc(z) due to the current in coil windings
can be derived from the axial flux density of a current loop of
radius r and carrying a current IC, Figure 1.14. The axial flux
density at a point P on the axis of a circular loop is given by the

Biot-Savart law as,

2
Le ¥ _
{;?C(Z) ]100p = Yolr ’"Z%;M—SEZL (1.%32)

where z is the axial distance of the point P from the centre of the

loop. For a coil with rectangular cross-section and excitation NI

A~t, and after some mathematical manipulation, we have

B (z) = Polris {Ez+h) h1é5ﬂ£§ﬁf§>_ (z-h) 1y EM{M é%)

c 4h(r,-r, Eon T _a_v.ig> dan(Fr+ ﬁ)
/
(1.53)
where h, 1, Tpy (s « > B, and /9‘] are as shown in Migure 1,15

For a coil of arbitrary shape, Figure 1.16, the field at point P
on the axis is calculated as the contribution of several current
loops. The coil is divided into a number of circular elements,
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Figure 1.13: Geometry of a magnetic structure with two iron
eclements and one current element.
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Figure 1.14: Axial flux density at a noint P on the axis of a
circular loop of radius r and carrying a current IC.
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Figure 1.16: Axial flux density BC(Z), due to a coil of arbitrary

shape and currying an electric current, at a point P
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whose cross-section form a grid of quadrilateral elements. JYor a

general element i, the current is given by,

R &

c’1

(1). = (J)i.(area)i (1.34)

where (J). is the current density of the ith element whose area is

i
(area)i. The radius of this element is r. and the axial distance of
i

its centre from the point P is zZ, . The axial flux density (éo(zglj

at the point P from the ith element is given by,

2
[B(2)]; = pope Edir (1.35)

2
2(r7 +7)
The total contribution from the coil to the flux density at any axial

point P 1is given by:

B(=) =2 [3,(2)] (1.36)

Fguation 1.3%6 forms the basis for calculating the field from the coil

in the 'differentisl-integral' method described in chapter 3.

Axial flux density distribution Bo{z) due to the magnetisation
of the iron:

In the course of the differential finite element method program,
the axial and radial components of the magnetic flux density BZ and
Br respectively are calculated at each quadrilateral of the magnetic
material. The corresponding components of the magnetisation ﬁz and

.

Mr can readily be calculated (cf. equation 1.27) as,

B
],;‘i =__7; (1 - ,..L..)
N Fr
(1.37)



These values are equivalent to ﬁx and ﬁy calculated in the integral
finite element method. The flux density at any point due to
magnetisation is calculated as the contribution of the ﬁz and ﬁr
values at each iron element. The axial flux density Bm(z) 5 from
the ith magnetic element, at point P, is calculated as a contribution
of B (z) 5 due to the axial magnetisation (ﬁz>i’ and B (z) .y

mz mr 1

X
due to the radial magnetisation (Mr)i, hence,

{Bm(zjli - {?mz(zili+ K?mr(zili (1.38)

where {?mz(zﬂ 5 (see Pugh and Pugh, 1970), can be worked out from

the field of a uniformly magnetised cylinder as,

{?mz(zﬂ . t‘MZ L

(cos 4, - cos/@ ) -~ (cosoé; cosX, ) (1.39)

r‘""""“'\

I

p

Io
hx

31n0<—olno\() -(ulnﬁ— _»Ln/?} 140

where the angles u;, °<L’ ﬂo and ﬁ% are shown in Figure 1.17. This
figure represents a magnetic element of quadrilateral cross-section
abcd. The total axial flux density from the magnetic material is

given by,

Z[Bm(zﬂi (1.41)

Equation 1.41 is also used in Chapter 3 in the calculation of the

axial field due to the irom.
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Figure 1.17: A general magnetic element of gquadrilateral cross-section
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the flux density is calculated.
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1.6 Comparison of the differential and the integral finite
element methods:

Table 1.1 shows in tabular form the chief characteristics of each
method. An inspection of table 1.1 shows:

The integral method is favourable for iron-free magnetic lenses
and lenses of open structure such as single-polepiece lenses. This
is because only the iron is divided into finite elements and since
it avoids the finite boundary.

For conventional lenses,where a small part of free space is used
outside the iron, the differential method is favourable because it
needs smaller core (sparse matrix). The finite boundary with A=0
around the lens is physically acceptable as discussed eaflier.

The integral method provides an exact distribution due to the
currents in the coil windings.

Both the differential and the integral finite element methods
provide the magnetisation values in iron elements.

It should be noted, however, that a critical and objective
comparison between the differential and integral finite element
methods has not been published in the literature.

The differential finite element method can be combined with some
of the advantageous feature of the integral finite element method

in a new method which may be called the 'differential-integral'

finite element method. In this method, the magnetisation in the

iron circuit is found by the differential finite element method.

The field distribution due to the coil and the magnetisation can then
be calculated using integral formulae with a view to removing some

of the boundary errors mentioned previously. This 'differential -
integral' finite element method is presented in more detail in

chapter 3.
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Table 1.1: Comparison of the differential and integral

finite element methods.

Characteristic

Differential

Integral

Need for outer
boundary

Input to
problem
Division into
finite elements

Variables

Agssumption over
each element

Number of
equations

Matrix of
coefficients

Field components
in iron circuit

Magnitisation

components

Axial field
distribution

Yes

Geometry of coil and iron.
Magnetic properties of
iron. Arbitrary boundary.

Iron, coil and free space.

vector potentials

Vector potential varies
linearly.

Fquals the number of
inner nodes of the finite
element grid.

Sparse, since the equation
at each node 1s expressed
in terms of the vector
potential at the node and
the eight vector potential
values at the other
corners of the triangles
in contact with the node.

Br and BZ are calculated
from vector potentials at

the nodes.

Calculated from the field
components Br and ﬁz“

Calculated directly from
the vector potential
values near the axis.

No

Geometry of coil and iron.
Magnetic properties of
iron,

In principle, only the
iron.
. >x..

The field strength Hr and
*
H components in the iron
elements.
Constant magnetisation

* x
components M and M .

r Z

Iquals twice the number
of iron elements.

Dense, since each equation
is expressed in terms of

3* *
H and H in all the iron
r Z

elements.

* *
Hr and Hy result from

solving the equations.

Calculated from the field

* L X
components H_ and H .
T A

Calculated as a contribution

Béﬂfrom the coil windings
and BI<n=7due to the

magnetisation in iron
elements.
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In chapter 4, a set of computer prograss are presented for the
calculation of aberrations in magnetic lenses. The third order
aberration coefficients to be found in Glaser (1952 and 1954) have
been adopted. The programs can be applied to both objective and
projector magnetic lenses. TFurthermore the combined aberrations of
two magnetic projector lenses can be calculated directly. The
programs can be extended to deal with systems of more than two lenses
if necessary.

In chapter 5, an account of the use of mini-computers in electron
optics is to be given.

The aim of the present investigation therefore is to re-formulate
the differential finite element method so as to incorporate boundary
conditions that are both mathematically correct and clearly
interpretable physically. In additon it was hoped that a comparison
of the differential and integral finite element methods could make
it possible to asses the accuracy of the calculated axial field
distribution. It was also hoped that a suifable combination of both
methods could be found that would lead to an appreciable increase in
accuracy of the calculated axial field distributicns, for a given

computing effort.

As this necessarily entails a considerable amount of re-program-
ming, the opportunity was taken, in re-writing the program, to bear
in mind the possibilities that now exist, in the form of dedicated
mini-computers, for computer aided design. Such computers do not
have as large a store as a main frame computer but provide a
convenient and rapid way of designing complex lens systems.

It is 2lso clearly desirable to have a set of ray tracing

programs that are relevant to present day electron optical calcula-
tions. The development of a set of such programs was also one of

the objects of the present investigation.
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The'original vector potential program of Munro (1971), was organilsed
in a way that did not permit ome to insert known values of the vector
petential A at an arbitrary boundary. It was therefore necessary to
re-write and re-arrange this program in order to make this ooption avail-
able. The improved program (Mulvey and Nasr, 1930b and 1981l.cf. Appen-
dices 9 and 10), was simplified to make it available on personal minicom-
puters. The program was re-written in BASIC and in FORTRAN, starting
from the solution of Poisson's Kquation 1.1. The first part of the
improved program gives similar results tc those of Munro's vrogr:m,

and so can be used for conventional magnetic electron lenses when
adequate computing power is available. For single-polepiece lenses

or when the limit of computer memory is reached before the size of
finite elements is adequately small over the given area, an improve-
ment was needed so as to overcome this obstacle as explained below.

The new program can deal with magnetic electron lenses under linear
conditions (where the magnetic material has constant permeability),

and under non-linear conditions (where the magnetic material has a

permeability that varies with the flux density).

2.1 Improved vector potential program for magnetic structures
under linear condition (VPLIN):

The improved vector potential program under linear condition (VPLIN),
is based on the minimisation of the energy functional 1.9 with the
magnetic material characterised by equation 1,11. As a consequence of

this minimisation, a set of linesr equations at each node of the finite
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elem is ge e ‘
lement mesh is generated. (The nodal equations are derived in detail

in Appendix 5)- The boundary conditions are then inserted and the

1 Q Y . o . . .
equations are solved by Gaussian elimination; a subroutine for this

solution is given in Appendix 4. A block-diagram for the program

VPLIN is shown in Figure 2.1.

( START )

Y

Z/INPUT SYILFSTRY, RiGTONS AND TNNIR BOUNDAR]ES//
¥ RUN=1

/INPUT‘ CORRESPONDING DATA/

B!

CALCULATE NODAL ~QUATIONS
AND INSHRT BOUNDARY CONDITIONS
KN
{ SOLVE LQUATIONS
+

CALCULATE FPLUX DENSITY
// OUTPUT // A e S17Y |

RUN=RUN+1

I

ouwryT
FImLD DIDGRIBUTION
FOR FURTHER USL

T0TAL FIELD

> VICTOR POTHNTIALS
Y AP BACH NODE JOR
YES JENIRAL RAY TRACING,
STORK ViCTOR POTENTIAL }

AT INHER BOUNDARIES

Figure 2.1: Block-diggram for the improved vector potential
progran (VPLII\I) under linear condition.




I i { ¢ 1 . y T : o - -
The method of applying the VPLIN progran is as follows:

2.1.1 Opecifying the boundaries, major mesh lines aud regions of
the structure:

Figure 2.2 shows an experimental single-polepiece magnetic electron
lens (Christofides, 1980) which was designed in connection with the
production of X-ray sources. The boundiary CDEF for the finite element
method is estsblished as shown in Figure 2.2. "The lefthend side, the
righthand side , the upper and lower boundaries are CD, 5%, CF and DE

hl

respectively. The position of the three boundaries CD, ¥ and i are
estimated on the light of the vector potential distribution of the iron
free coil. For open structures, a boundary at a distance of five times
the mean diameter of the coil may be adequate for accuracies better

than 2 ?@ . However the presence of magnetic materials may have the

effect of reducing this distance and better accuracies may be achieved.

k T T 501
g i ! i i R(mm )
il |
|
RUN 2 : FjJ“\lf{ RUN 4
.
D m 1 m
] i
N N
SRR L1 S L S —
I P ) oI T T
- . u
o 22 U
- - [ S IS
“100 Y 50 180 158 2ap
Z Cmm)
o L
—

An experimental sineole-polepiece lens as part of the
All } i - [ o, — T
magnetic structure. specifying the boundaries for
L O L o - L :
the finite element method, major mesh lines and regions
of the structure.

.._%5_

Pigure 2.2




The structure, includiung the magnetic material, coil and the free
space within the finite boundary, is divided into a grid of quadri-
laterals; the lines that define the geometry of the structure or the
lines that are needed to change the size of the meshes are called
major mesh lines. FEach quadrilateral is subsequently divided into
two triangles as finite elements. Two inner boundaries ZLB and ZRB
are selected remote from the boundaries CD and LF and where a com-
paratively fine mesh size can be attained. The whole structure is
used in the first calculation (RUN 1), as is shown in Figure 2.3a where
the structure within the finite boundary is shown. The two inner
boundaries ZLB and ZRB divide the structure into three regions marked
RUN 2, RUN 3 and RUN 4. When solving for RUN 1, the vector potential
values along the boundaries ZLB and ZRB are saved for use in subse-
quent runs. The vector potential values at the boundary CDEF are

set to zero for RUN 1.

RUN 2, Pigure 2.%b, has the boundaries CD, Dk &nd CF with the vector
potential values along them are set to zero; the righthdnd side boundary
is ZLB with the vector potential values that were saved in RUN 1.

RUN 3, IFigure 2.3c, has the boundaries CF and DE with vector potentisal
values that are set to zero. 2LB and ZRB are the lefthand side and

the righthand side boundaries respectively with the vector potential
values that were saved from RUN 1. I"inally RUN 4, Iigure 2.%d, has the
boundaries CF, DE and EF with vector potential values equal zero; ZRB
i3 the lefthand side boundary with the vector potential values that
were saved in RUN 1. The three runs RUN 2, RUN 3 and RUH 4 yield the

final distribution of the vector potential throughout the magnetic lens.

2.1.2 Preparation of ata for the VPLIN prograrn:

! ogram 1 ranise s follows; an example
The data for the VPLIN program 18 organised as follows; D

shown in Figure 2.4.
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A=0

' P C - . __F
i A=0 X
m m
I e “
NI N A0 N
A=0
A=0
LI TIV77]
V)
%
77,
w D o
E=0 -
2.%a: RUN 1 2.3%b: RUN 2
A=0 on the boundary CDEF. A=0 on CD, DB and CF. The
A values at ZLB and ZRB right handside boundary is
after RUN 1, are saved to ZLB with A values that are
be used for susequent runs. saved from RUN 1.
- B e T A 6 F
A=0 | A=0
Lo
! .
m m
. m A=0
N N ‘ o
i N
[ — 2 ! | [—-‘_”j
l Da | ll.
: A=0 1B 1 ,\\\\fl__. A=0 1

2.3c: RUN 3
A=0 on CF and Dis. The left

handside boundary is ZLB and

the right handside boundary

is ZRB with A values that are

saved from RUN 1.

2.3d: RUN 4

A=0 on CF, DI and LN, "he

left handside boundary is

7RB with A values that are
saved from RUM 1.

Specifying the boundaries for the different

Figure 2.5:
runs

to be used by the VPLIN program.




1

1'

2.

2.

2.

2.

2.

3

.a)symmetry condition for the structure; 1 for symmetrical stiructure

and O for asymmetrical structures.
b) runs to be performed. l.c) the two inner boundaries ZLB and ZHB.
a) title. 2.b) output of flux density and flux values, O=no, i=yes.
¢) the axial coordinates of the nodes of the major mesh lines, RUN 1.
d) the radial coordinates of the nodes of the majior mesh lines, RUN 1.
e) magnetic circuit specifications, RUN 1.
f) electric current coils specifications, RUN 1.

) corresponding data for other runs prepared as in 2.a to 2.f{ above.

0
1 2 3 4

24 40
RUN 1ls: 29X59 MESH Z=-100MM TO 200MM
1 6 8 12 14 24 27 29 52 40 50 59
1-100, -30. =27, -22.-18.5 -6.5 O. 1. 5. 10. 20. 200.
5-100. -30. -27. -22.-18.5 -6.5 O. 1. 5 10. 20. 200.
29-100. -30. -27. -22.-18.5 =-5. o. 1. 5. 10. 20. 200.
1 6 8 12 14 24 27 29 32 40 50 59
1 150. 150. 150. 150. 150. 150. 150, 150. 150. 150. 150. 150.
5 45. 45. 45. 45. 45. 45. 45. 45. 45. 45. 45. 45.

29 0. 0. 0. 0. 0. 0. O. 0. 0. 0. 0. 0.

8 52 7 10 2500.
8 12 10 19 2500.
8 27 19 23 2500.

14 29 12 17  504.275

RUN 2: 29X48 MSSH Z=-100MM TO -5MGi
0] 0

1 12 16 24 28 48
1-100. ~30. -27. -22.-18.5 -6.5

Yigure 2.4: Preparation of data for the VPLIN program ror the
Fig 2.4 D&,

single-polepiece lens of Figure 2.2.
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2.1.% Application of the imvnroved VPLIN nrozram to the calculation

of magnetic field distribution of = single-polepiece lens.

The VPLIN program was applied to the calculation of magnetic fields
for a single-polepiece lens (Mulvey and Nasr, 1980b, 1981). Another
example on the application of the VPLIN program to the culculation of
the magnetic field distribution of a single-polepiece lens is given
for the lens in Figure 2.2,

The computed axial flux density values from RUN 1 are shown in
Figure 2.5; the crosses indicate the computed values and the solid line
is a cubic spline fit to the computed points. The computed axial flux
density values are plotted for the region between —5nm1gz<(100mm since
the values outside this range are very small. The results of RUN 2
for the region z<-5mm are also very small and are therefore
not shown. The improved axial flux density distribution for RUN 5
is showm in Pigure 2.6, for the region between _5mm<@;<20mm. The
improved axial flux density distribution for RUN 4, is shown in
Figure 2.7 for the region z > 20mm. The total axial field distribu-
tion for the single-polepiece lens of Figure 2.2 is the sum of the above

distributions and is shown in Figure 2.8 with improved accuracy end

smoothness.

2.1.4 Test of accuracy of the VPLIN program using Hall probe
experimental measurements.

The axial flux density distribution of the single-polepiece lens of

Figure 2.2 was measured experimentally with an excitation of 1475 A-t.

The measurement was carried out using a BELL HModel 1Z0 Hall probe

Caussmeter. The measured values are indicated by the crosses in Figure

2.9, where the results of the improved VPLIN are shown as & solid line
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Pigure 2.5:
Computed axial flux-density distribution
(RUN 1) for the single-polepiece magne tic
electron lens of I'igure 2.2. Crosses
indicate computed values. The solid line
is a cubic spline fit to the computed
points. Excitation 1475 A turns.
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Pigure 2.0:

Improved axial flux density distribution
(RUN 3) in the polepiece region.
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Figure 2.7:
Improved axial flux density distribution
(RUN 4) in the distant field region,
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Pigure 2.8:

Tinal total axial flux density distribution
(RUN 3+RUN 4) with improved accuracy and
smoothness.
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for comparison purposes. ‘The agreement beiween the calculated and

. L e ) . ~
the measured values is within the experimental accuracy of 3 98 .

esla)

AP,

N
| M e T VAR \/\ >(

] 25 o8 73 108

7% Z Cnm)
// Figure 2.9:
// Test of accuracy of the VPLIN program
5; ) using Hall probe experimental measurements.
// The crosses indicate the messured axial
// flux density values for the single-pole-
/ﬁiiﬁéﬁéééﬂ viece lens of Migure 2.2. ‘The resulis of

the improved VPLIN program are shown as
a solid line.

2.2 Improved vector potential program for magnetic structures.
under non-linear condition (VPSAT):

The improved vector potential program under non-linear condition
(VPSAT), is based on the minimisation of the energy functional 1.9 with
the magnetic material characterised by equation 1.10. As a consequence
of this minimisation, a set of non-linear cquations atl each node of the
finite element mesh is generated. ( The nodal equations are derived in
Appendix 5). The boundary conditions are inserted and the equations are
solved by the Newton-Raphson iteration method (Appendix 6). A block

R N o 1 1 i 5 ,>.-. .
diagram for the VPSAT orogram 1is shown in ¥igure 2.10
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{  STAxT )

INPUT SYMMETRY, RMGIONS, B—Pr YALULS

AND INNER BOUNDARIES

RUN=1
OUTPUT RUN Y4
TOTAL FIELD//r
STOP
RUN=RUN+1
YES
//;NPUT CORRESPONDING DATA// A
INITIALISE VECTOR
W_ POENTIAL VALUES ouTPuUT
INPUT ¥ FIELD DISTRIBUTION
CORRESPONDING CALCULATE RESIDUALS FOR FURTHER ULE;
DATA AT FACH NODL ViCTOR POTENTIALS
N% AT NODES TOR GENERAL
CALCULATE ELEMENTS RAY TRACING.
[ OF JACOBIAN MATRIX
ADJUST Pr
SOLVE E UATIONS FOR i
CALCULATE DA VARIATIONS IN
N B R POT N I e
“V_ODAL‘ { v CTOR POTENTIAL CALCUTATE D
BQUATIONS . AT T
. . A SAV p_ VALULS
AND INSERT AT EACH QUAD-
BOUNDARY CALCULATE NiXT VALULS RILAWW”Ai
CONDITION OF VECTOR POT.NTIALS = “”;‘ -
4
SOLVE STORE VECTOR
BLQUATIONS POTENTIAL VALULS
T IWNER BOUNDARILS
Pigure 2.10: Block-diagram for the improved vector potential

program (VPSAT) under non-linear condition.




2.1 Lfyl t iari 3 h 13 i
2.2 Specifying the boundaries, major mesh lines and regions of
the structure:

2 s ) 3 q - o 3 b - o .
The boundaries, major mesh lines and the regions of thne structure

for the VPSAT program are specified as in scction 2.1.1.

oo

2.2.2 DPreparation of data for the VPSAT program:

The data for the geometry of the structure are prepared for the
VPSAT program in the same way as the VPLIN program. But for the VPSAT
progran a table of the relative permeability R, as a function of the
magnetic flux density B is introduced to perform the iteration process.
A typical relation between P and B for a magnetic material is shown in
table 2.1 and the relation is plotted in Figure 2.11. The number of
regions to be analysed are chosen as for the VPLIN program, but the

region including the coil is excluded from the final runs.

Table 2.1 A typical relation between the relative permeability R
and flux density B of a magnetic material.

B P
(Tesla)

0.000 6366.2
0.400 6%66.2
0.680 5411.5%
0.880 4668.5
1.020 4058.0
1.224 2831.4
1.325 1735.0
1.351 10%%.6
1.377 815.5
1.442 521.9
1.500 255.1
1.589 142.4
1.623 116.1
1.679 85.6
1.840 33.2
1.898 19.5
2.000 10.1
2.300 4.6
2.900 2.6
3,100 2.4
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Figure 2.11: Relation between the relative permeability p

of
a masnetic material and the flux density B.

2.2.3 Application of the improved VPSAT program to the calculation
of megnetic field distribution of & single-polepiece lens
under saturation condition:

Figure 2.12 represents a design (Mulvey and Christofides, 1980) for
a single-polepiece lens to be used as micro-X-ray source ; it can also be
used as the objective for a 200 kV electron microscope. The improved

VPSAT program was used to calculate the magnetic field distribution for

the above lens under saturation conditions, i.e. when a linear varia-
tion in the applied ampere turns does not produce a corresponding lineur
variation in the flux density. The lens was driven to saturation
conditions by applying an excitation of 10800 A-turns. The axial

field distribution of RUN 1, is indicated by the crosses in Figure 2.13;
the solid line is a cubic spline fit for the computed values. The final

result of the VPSAT is shown in Figure 2.14 with improved accuracy and
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3 T . . ,
smoothness. The agreement between the calculated ampereturns and those

actually applied was betier than 2 73 .

g

magneﬁic
circuit N\

_

100mm

Figure 2.12 A single-polepiece magnetic electron lens under
saturation condition. Lens excitation 10800 A turns.

Figure 2.13:

Axial field distribution of RUN 1 for the single-
polepiece magnetic electron lens in Figure 2.12.
The crosses indicate the computed values, and_ the
solid line is a cubic spline fit for the values.
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Figure 2.14 Final axial field distribution for the single-polepiece
magnetic electron lens of Figure 2.12 using the VPSAT
program with improved accuracy and smoothness. The
agreement between the calculated ampereturns and those
actually applied was better than 2%& . (A-t = 10800)
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2.2.4 Test of accuracy of the VPSAT program using Hall probe
experimental measurements.

The axial flux density distribution of the single-polepiece magnetic
electron lens of Figure 2.12 was measured experimentally under satura-
tion condition with an excitation of 10800 A-turns. ‘'he measurement
was carried out using a BELL Model 120 Hsll probe Gaussmeter. Because
of the small bore of the lens, the axial flux density measurement
was restricted to the region facing the polepiece and up to 0.9mm from
its surface. The measured values are indicated by the crosses in Figure
2.15 and the solid line represents the computed values using the improved

VPSAT. Good agreement was obtained between the calculated and the



‘\\\\\\\

Figure 2.15 Test of accuracy of the improved VPSAT program using
Hall probe experimental measurenents. The crosses
indicate the measured axial flux density wvalues for
the single-polepiece magnetic electron lens of PFigure
5.12. 'I'he solid line is a cubic spline fit for the
computed values using the improved VPSAT program.

(A-t = 10800)

experimental results except for the region very neer to the poleplece

“
where the error may be due to differences between the actual B/H

characteristics of the polepiece material and the data supplied to the

computer by the B/P“ relation. It is also likely that the finite size
4.

of the Hall-effect detector caused some error in the region of the

peak field where the axial field distribution is changing rapidly

with axial position.



CHAPTER 3

THE 'DIFFERENTIAL-INTEGRAL!
FINITE ELEMENT METHOD

The accuracy of axial field distribution provided by the
differential finite element method can be checked and improved with
very little extra computing effort by incorporating some of the
advantages of the integral finite element method. A new method is

now presented which may be called the 'differential-integral' finite

element method (Mulvey and Nasr, 1981. cf. Appendix 10). In this
nmethod the magnetic field due to the coil is calculated indepen-
dently by the Biot-Savart law (cf. chapter 1); use is also made of
the magnetisation of the iron, which is already available, to
calculate the magnetic field due to the iron. It should be noted
that in previous differential programs no use has been made of this
valuable information although it is readily available from the
computed axial and radial field components in the iron.

Since the magnetic flux density at any point is the sum of
that due to the coil BC and that due to the iron Bm, on the axis in
particular we may write,

Bz(z) = Bc(z) + Bm(z) (3.1)

The contribution B (z) from the coil windings can be calculated
c
easily and quickly from the Biot-Savart law as shown in Chapter 1.

The field B (z) can then be obtained by subtracting BC(Z) which is
m

analytically exact from the total field Bz(z) as calculated in the

differential finite element method. The field due to the iron is

casicr to smooth than is the total field Bz(z). Since the total
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contribution to the lens excitation from the iron is zero, the area
under the Bm(z) curve  should also be zero, taking into account
the sign of Bm(z). In general the values of Bm(z) near the boundary
will be smaller than the correct value. A direct way of determining
Bm(z> makes use of the magnetisation values in the iron eleménts;
these values are directly available in the differential finite
element method.

The application of the 'differential-integral' finite element
method is perhaps best illustrated by a calculation of the field
distribution of the lens shown in Pigure %.1. This lens although
deceptively simple in structure, is extremely difficult to solve
by the differential finite element method because of the open
boundaries on all sides of the coil. The field BC(Z) from the coil
windings, of this lens, calculated by the Biot-Savart law, is
shown.by the chain-dotted line in Figure 3.2. The total field Bz(z)
as calculated by the improved differential finite element method
program VPLIN, is shown as a solid line in Figure 5.2. The excitation
calculated from the area under this distribution curve showed a
boundary loss in excitation of 4?@ .. Subtracting Bc(z> froum Bz(z)
yields the contribution Bm(z) from the iron circuit. The contribu-
tion Bm(z) is shown as a broken line in Figure 3.2. The positive
part of this distribution was about 5fA smaller in area than the
negative part. As a first approximation, the field in the upper
part was therefore corrected by this difference and the improved
Bm(z) was obtained. The improved Bz(z) was then calculated by
adding the improved Bm(z) to Bc(z) as shown by a dotted line in
Figure 3.2. This process is used as a check on the accuracy of the
calculated axial flux density distribution and provides a means of
improving this distribution. However, the Bm(z) distribution was
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Figure 3.1: A magnetic electron lens for the application of the
"differential-integral' finite element method.
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Pigure 3.2:

Axisl flux density distribution for the lens of Figure 3.1,

(a) calculated by the improved differential finite element method
brosram VPLIN (——) using 20X24 mesh points, (b) calculated due
to the coil (-.-) by the Biot-Savart law, (c) calculated due to
the iron (---) by subtracting b from a, (4) as the final (...)
addinz b to the improved distribution of c.

calculated by
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smoothed manually which necessitates familiarity in magnetic field

distributions of the particular lens involved in the calculations.

3 )
A direct method that does not need such manual smoothing makes
use of the magnetisation values of the iron elements. These
magrnetisatlon values are directly available in the differential

finite element method; this forms the first part of the 'differential-

integral' finite element method program (DIFINT). ™The second part
of this program uses a direct method to calculate, at any point,
the axial field BC(Z) due to the current in coil windings and Bm(z)
due to the magnetisation in iron elements. The total axial field
BZ(Z) of the megnetic lens is then calculated by adding the field

due to the coil to that due to the magnetisation in the iron circuit.

3.1 Application of the DIFINT program to the calculation of
magnetic fields:

The VPLIN program is applied to the calculation of the field of
the lens of Figure 3.1 for RUN 1 only. The axial flux density due
to RUN 1 is shown in Figure 3.3, where the crosses indicate the
computed values and the s0lid line is & cubic spline [it to the
computed values. The magnetisation of the iron elements are saved
from RUN 1 for use in the integral part of the DIFINT program. A
block-diagram of the integral part of the DIFINT program is shown in
Figure 3.4. The axial flux density due to the coil is shown in
Pigure %.5 and the axial flux density distribution, calculated
directly, due to the magnetisation of the magnetic material is shown
in Figure 3.6, The final axial flux density distribution from this
lens, using the DIFINT program, is shown as a solid line in Figure
3.7; the results of RUN 1 of the VPLIN program are indicated by the

. . PRt . 43 ~ - 3 3
crosses for comparison. This distribution shows an improved



smoothne ; : . ;
oothness and good egreement between the calculated ampere turns

and those actually applied,

. 6B (Tesla)

188
Z Cmm)

Axial flux density distribution for the lens of

Figure 3%.5:
Figure 3.1, using RUN 1 of VPLIN program. Crosses

indicate computed values, (20X24 imesh points),

and the solid line is a cubic spline fit to_ the

computed values.
computed Vo T==



‘ START )

7

Z_/{NPUT WHSH DATA fUAL ARD co{i///

INPUT HMAGNETISATION
FROM DIFFERENTIAL PROGRAN

%

CALCULATE Bo(z)
FIiLD DU TO COIL

CALCULATE Bm(z)

FIELD DUE TO HMAGNETIC
MATIRTIAL

CALCULATE B,(%)

TPOTAL AXIAL FLUX DENSITY
BZ(Z)=BC<Z)+BW(Z).

QUTPUT
FLUX DENSITY VALUES

' STOP §

A block-diagram of the integral vart of
the DIFINT program.

Figure 3.4:
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Figure 3.5: Axial flux density distribution Bc(z) due to the current

carrying coil of the lens of Figure 3.1. (Biot—Savart law).
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ﬁ N 4 4 —
} L T

1gg 75 =g -25 &g 2s 50 75 om
| Z Cmm)

L

Figure 3.6: Axial flux density distribution Bm(z) due to megnetisation

in magnetic material of the lens of Figure 3.1, calculated

directly as explained in chapter 1.
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6 B{Tesla

Figure 3.7: The final axial flux density distribution Bz(z) of the

lens of Figure 3.1 using the DIFINT program (—).

Crosses (+++) indicate RUN 1 computed values that are

plotted for comparison purposes.
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CHAPTER 4

CALCULATION OF ABHMRRATIONS TN
HAGNETIC ELBCTRON LENS SYSTEMS

4.1 Aberration in magnetic electron lenses:

The design of an electron lens does not end with the determina-
tion of its field distribution. Further analysis is needed to cal-
culate its aberrations; these should be within tolerable limits for
the application in mind.

Magnet.ic electron lenses are used to form electron images.

A perfect image is called a Gaussian image and the elecirons that
form this image follow paths that are called Gaussiun rays or trajec-

tories. Gaussian trajectories satisfy the paraxial equation,

d2r . _’:l’“ B2 r=0 (’1.1)
2 8V
dz r

1 ’ ST ) 1@ R 3 ",,",'j_{ 1
where V is the relativistic accelerating voltage , B 18 the axial
r

i e ss rati f i{he electron
flux density and 7 is the charge to mass ratio of the ele ,

D = le/n (4.2)

In general electrons do not follow gaussian trajectories bul arrive
at the immge at some distance from the corresponding Gaussian imege
point. This departure from a perfect image point in a magnetic lens
is called the aberration. The image aberration mey be expressed in
terms of coefficients. These coefficients are of two types, real
coefficients and asymptotic coefficients. They are expressed in the
form of integral relations as functions of the field and the Gaussian

electron trajectories. A general Caussian trajectory can be

. . IR 4+ 40 e ar Gaussian rays:
determined as a linear combinauion »f two particular Gausslan rays;
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their choice is arbitrary 1o
8 arbitrary but they must be linearly independent
s g 3 .
Here we adopt the part PR
P particular rays introduced by Glaser (1952)

P

D

phl 3 o RPN ~ ‘ .
4.1.1 Particular Gaussian rays for a sysiem with an aperture:

mu - 1 ~n o d
The two particular rays referred to as g and h are shown in

Figure 4.1. They are defined by their heights in the object and

aperture planes; they have the values,

]
)

g(z ) =1, s&lz)
(4.3)

it
—

h(z ) = O, h(za)

where 2, is the position of the object plane and z_ is the

<

position of the cperture plane.

g \\\\\\ Gaussion

imoge
plome

I

I
i !
P

objeoﬁ plone

aper“bur‘e P ]. ane

Figure 4.1: Particular rays, g and h, for a system with aperture

4.1.2 Particular rays for aperture-free system:

For an aperture-free system, the two particular rays are referred
to as s and ¢ They are defined by their heights and slopes in the

Ve

object plane; they are shown in Figure 4.2 and given by,

i
(@]

1
1, s (zo)

€]
—
3
~
]

i
—

t(z ) = 0, t'(zo)
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Gaussian

imcge
plane
I

Figure 4.2: Particuler rays, s and t, for an aperture-free
system,

4.1.% Particular asymptotic Gaussian rays:

The asymptotic CGaussian rays referred to as G and X are defined
in terms of the position and slope of the asymptotes of the rays in
the virtual object plane, (Figure 4.%), and are given for the condi-

tion of finite conjugates by,

Pigure 4.%: Particular asymptotic Caussian rays, G and X, for
the condition of finite conjugates.
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(@]

o (4.5)

But since the contribution to the aberration starts from the start
of the magnetic field at Z45 hence the two particular rays are de-

fined at Zq by,

e(z.) =1 '
Zl = ? G (Zl) = O
' (4.6)
X(Zl) = 202 X (zl) =1
For the condition of infinite magnification, the two particular

asymptotic Gaussian rays are called G and H, as shown in Figure 4.4.

The ray G is the same as before and H is a special case of the ray X

where z coincides with the projector focal point Fproj' This ray
o] .

lesves the lens field parallel to the axis with a height equal to

[%p]

PreJ

—
<—_H

e ﬁoro;

#igure 4.4: Particular asymptotic Gaussian rays, G and i, for
infinite magnification condition.
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the projector focal length f o .
g proj* Tof computational purposes the
He a Mt -
ray can be calculated with the help of another ray 4 as shown in

Figure 4.5. The ray H is defined at the end of the field at distance

z, by,

N

Figure 4.5: Tracing of ray H with the help of ray .
— —
H(zg) =1, H(z,)=0 (4.7)

— o}
Multiplying the values of T and § at any point by the projector focal

lengt i .
ength fproj yields the ray H

4.2 Real aberrations:

These aberrations are important in objective electron lenses,
where the object is very small. Two aberrations are to be discussed,
namely the spherical aberration and the chromatic aberration.

4.2.1 Spherical aberration:

The spherical aberration produces a blurred imsge, in the

for a point in the object plane. This is due

Gaussian image plane,
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41 R . A .
to the difference in focussing action of the lens field on rays

leaving the object point with different angles, Figure 4.6. The

spherical aberration is exvressed in terms of the coefficient C y
si

given by,

Coi = Ari/ 2’/13 (4.8)

GCaussian
image
Plane

A

Figure 4.6: Effect of spherical aberration on the image of
a point object.

where [&ri is the radius of disk of confusion at the Gaussian image
plane and K& is the angle made by the aberrated ray and the axis in
the image side. This ray leaves the object with an angle g;. The
coefficient CSi is called the spherical aberration coefficient with
respect to the image plane. The spherical aberration coefficient
with respect to object plane, cso’ is defined by,

¢, =br/ ¥ (4.9)

where A r is the radius of disk of confusion in object plane if the
o)

ray leaves the image plane with angle Xi' The relation between the
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two coefficients 1is given by,
= ’\’4‘
C.=MC (4.10)

where M is the magnification of the lens.

The spherical aberration CSO is given by Glaser (1954)

S0 Iy
1/0 V-
Zg (4.11)

I S e R I (AR
CSO = ng + 2Nt t +~Tz—t dz
(v

Zo

sore. T o i'z’s" ) Bj 1) !
where = — - B and N =——38 and B 1is the second
’ B2fy 4% ! 6fw
Z

derivative of the field B with respect to

4.2.2 Chromatic aberration:

This aberration causes a shift of the image point axially due to

change in accelerating voltage AV, as shown in Figure 4.7. Ior an

\+DY GCaussian
gE—— r £1$:¥2e
//////////’///”i V?“ ﬁég//BrL
0 ‘/T/:
ek

herration on the image of

Figure 4.7: Rffect of chromativ &
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electron beam of voltage . .
age Viﬁ:AV » this will produce a blurred image

of axial extent 2Az.. T bt
i he aberration is expressed in terms of a

coefficient C when { A . :
co reierrec to the object plane and C

when
referred to the image plane.
- Ay
C. =pz; /( v ) (4.12)
and,
-
CCl M CCO (4 lj)

The disk of confusion in the Gaussian image plane is given by,

34
Ar, =MC_ XO (’V: (4.14)
and Cco is given (Hawkes, 1972) by,
L
C =L{B2t2 dz (4.15)

4.2.% Outline of the real aberration program (REALAB):

Figure 4.8 represents a block diagram for the real aberration
computer program (REALAB). The magnetic field of the lens is divided
into equal intervals using a cubic spline technique (Shampine and Allen,
1973). The particular ray t or h are calculated by solving the paraxial -
ray equation 4.1, using fourth order Runge-Kutta method and the aber-

: 3 (PN P o « R - iy
ration integrals are evaluated using Simpson's rule (James et al,1967).

To illustirate the use of the above programn we apply it to the
calculation of the real aberrations of the field distribution of the

magnetic lens of Figure 2.2. The spherical aberration Cs and the

chromatic aberration coefficient C_ are shown in Figure 4.9 as a
\.

/ o
funcion of the excitation parameter NI/ Vr"
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INPUT CONDITION FOR FILLD;
LINEAR OR NON-LIZAR AND
EXCITATION PARAMETERS.

4

\

//&NPUT FIELD POINTS //7

/  (AXIAL FLUX DENSITY)

{YES

INTERPOLATE FIELD POINTS
AND CALCULATE DERIVATIVES

Y

DO LOOP FOR

EXCITATION PARAMETERS

Y

CALCULATE TRAJECTORY AHND
SLOPE OF PARTICULAR RAYS

Y

OUTPUT
ABERRATION VALUES

NON- /EXCITATION NO
> >

LINEAR

N\UPPER LIMIT

LINEAR

Figure 4.8: Block diagram of the REALAB prograf.
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Cmm) e

20+
15t
72 12 20 3p

Excitation ,

parameter (NI/V:)

Pigure 4.9: Ihe spherical aberration coefficient C and the
S

chromatic aberration coefficient CC as a function
1 ’

of the excitation parameter NI/Vi . C_ is indi-

cated by the solid line and CC is indicated by

the broken line.

4.3 Asymptotic aberrations:

' The asymptotic aberrations Are those that mostly affect the

projector system in the electron microscope. They affect the images

of off-axis object points since their values depend on the height of

the object point from the lens axis. The aberrations to be considered

are the chromatic change in magnification, chromatic change in image

rotation, radial distortion and spiral distortion.
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4.3.1 Chromatic change in magnification:

This aberration causes a shi : . ‘
S & sbift in the image point radially due

to change in accelerating voltage AV , as shown in Figure 4.10, For

an electron beam leaving the obiect point P with voltage V. + AV
0 K] r— 7

the image of PO will be blurred and of radial spread of distance 2Auri.

t
I
Lsilan
image!
Plomne !

!
Aq.i

Figure 4.10: Effect of chromatic change in magnification on
the image of an off axis object point PO.

The coefficient of chromatic change in magnification, C,,

is given (Hawkes, 1972), when referred to object plane by,

C L BZGXdz (4.16)
For rays incident parallel to the axis, Ari is given by,

ar. =mc. ¢ (&%) (4.17)

where ro is the height of the object point Po from the axis. The

o : . P .
coefficient of chromatic change of magnification when referred to the

image plane (CMO) is given by,

Hy
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Mi. Mo ) . (4.18)

o0

A P
Mo VJBGH‘;Z (4.19)

~c0

4.5.2 Chromatic change in image rotation:

This aberration will cause a blurred image in an arc of distance

2[\(), where Alo is given by,

Ap =My ri (%3:—-) (4.20)

where Ceo is the coefficient of chromatic change in image rotation

and is givenby,

oo
_n
Coo ~—8-v—r—f}3 dz (4.21)
~o?

for rays incident parallel to the axis. When referred to the image

plane,

C,. = MC (4.22)

This aberration occurs in magnetic fields due to the change in
rotation of electrons of different energies where they have to spend

different times in the magnetic fields.

4.%.% Radial distortion:

Radial distortion is due to the change in refractive power of the

magnetic field as the incident electron beam enters it at increasing

distances from the axis. It causes & radial shift in the image point
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as shown in Figure 4.11, but it does not affect the sharpness of the
image because the imaging pencils are of small angles The image

* >
point of distance P from the centre of the Caussian image will be

shifted radially by an amount pp which is given by
> ]

Z

=MD 7
Ap ra o (4.23)

where ro is the height of the object point from the axis and D is
T rd
the radial distortion coefficient given by Glaser (1952), with change

of notation,

Doy =D, - Dy /R D/ - Dy/p (4.24)

rd

Lens

7
Causkian
> impge
PL Plahe

- |<”“”—'
"pro ]
- proj
QD

dial distortion on the image of & point.
are the projector focal length,

jection length respnectively.

Figure 4.11: Lffect of ra
T L, T . and P

proj proj L

projector focus and_pro;

with, co

_‘[%_G'5x dz (4.25)

3 1 t ,11
J LeX + Noe (6X + G X) +

—o0
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oo
1
e 2 2 3 2~ 12 i
Dl " K{LQG X746 X)-FN[G X "+2G 2X2+GG'(XG}E +

—-co m |2 12 [;/( 1
2(2(} X746 “X )| dz (4.26)
oo
D, = || LePx (o) Mg
S I (4.27)

-0
| e 4 4
D, = — | {Lxteonx®x fo] (4.2
4.28)
Al v
-Qoe

andﬁ is the distance from the object position where the tangent to
the actual trajectory in the object plane crosses the axis as shown

in Figure 4.12.

P
~
A dom
ob jec{: ~ et 4o &‘Q
Q,«_’L ~ b\"ojug\o
P l ane QU o\)_)edr?\uﬁ-l

l;\'c:jgg.l\.,}j\ -
C~. - 7. wls

Figure 4.12: Definition of f the distance from the object
plane to where the tangent to the actual ray
in object plane crosses the axis.

For rays that enter the lens parallel to the axis, /Q———)OO end hence,

_ .29
DI (4.29)

The effect of radial distortion on the appearence of the image
of a souare mesh is shown in Figure 4.1%. A barrel distortion

occurs for negative A/o and a pincushion distortion for positive Alo.
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Gausslan 1lmage

X
—

e

image with
pincushion distrotion

image with
barrel distortion

Figure 4.1%: Effect of radial distortion on the appearence
of the image of a souare mesh.

4.%.4 Spiral distortion:

The magnetic field affects the rotation of the image differently

at different radial heights. This has the effect of shifting the

image of a point in the object plane of height T, by an arc of length

TAN P in the image plane which is given by,

- 5 4.30
AP-MDSprO ( )

where D _ is called the spiral distortion coefficient. It was given
Sp

by Glaser (1952), with change of notation, by

> (4.31)
Dsp =d_ - dl/y + dz/y
with, oo
d = j(PGZ + QG'?) dz (4.32a)
© -0P
At 1 1
d, = %Jkpcx + QG X ) dz (4.%2b)
-2
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co

and, 4. = j (Px°+ax %) 4
C o2 i 4z (4.32¢)
- o
SWen T
el (4.3%)
) = __ n g
0 <
Vr (4.34)
For rays incident parallel to the axis,’? se0y and hence
D = d o
sp o (4.%5)

\ fr . . . , _
The effect of spiral distortion on the image of a syuare grid is

shown in Figure 4.14.

Gaussian image image with
spiral distortion

Figure 4.14: iffect of spiral distortion on
the imege of a square grid.

4.%.5 The distortion factor (F):

From the geometry of Ilgure 4.11, we have
P
L L (4.36)
f . r
proJ 0

where P is the distance of the projected image from the foczl point

F .
proj

r (4.37)

RS SR

ro fproj'
PL

Substituting for r (equation 4. 37) in equation 4.23%, with the

- 72 -



magnification H= fykb, we get,

2
ppP b g £
P 7 “rd “proj P’ (4.38)
L
2
N (e 59)
T 'rd 1 4.39
F) .
where, 5
Fra = Pra fproj (4.40)
where we call Frd’ the radial distortion factor. Similarly the spiral

distortion factor,

2

F_ =D . T . 41
8D sp  proj (4.41)

4.3.6 Expression of asymptotic aberration coefficients for
finite conjugates in terms of rays for infinite
magnification:

The ray X for finite conjugate condition can be expressed as the
linear combination of the ray H and the ray G for infinite magnifica-

tion condition as,

- - G/¥ 4.42)
X = fproj(H G/M) (

and,

=t (8-c /) (4.43)

Droj

Substituting for X and X , from equations 4.42 and 4.43, equations

4.16, 4.25-28 and 4.%2-34 can be expressed in terms of the rays H and
* ’ . - ..

e MU : 1.
G for the infinite magnification condition and the magnification M

The aberration coefficients for finite conjugates were derived by

Hawkes (1970) in the form of polynomials in terms of the magnifica-

.o - 11 N
tion and the rays for infinite magnification condition. However the

. 3t late the
asymptotic programs discussed below are used 1O calculat
.. 2
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asymptotic aberration coefficients directly without the need for

such polynomials.

4.4 Programs for the calculation of asymptotic aberrations:

Presently available programs are often severely restricted in
scope. For example the asymptotic aberration calculations in the
Munro program (1975) is restricted to the calculation of spherical
aberration and chromatic aberration which are of less importance for
projector electron lenses than are radial and spiral distortion.
Marai (1977) developed an asymptotic program for the calculation of
distortion coefficients but this was restricted to parallel incoming
rays. Neither of the above programs calculate the aberration coef-
ficients for more than one lens field distribution at a time. This

is clearly inconvenient when calculating multi-lens systems.

The author's programs can deal with both linear and non-linear
magnetic field distributions consisting either of one lens or a
system of two lenses. However they can be readily extended 1if
necessary. A block-diagram for the linear program (SYSLIN) is shown
in Pigure 4.15, and a block-disgram for the non-linear program (S3YSSAT)
is shown in Figure 4.16. The aberration coefficients are calculated

either in terms of the actual excitation applied to the lens or in

terms of the relative excitation which is the effective excitation

after the cancellation effect of the magnetic field when excitations

oppose each other, i.e. the current in one coil flows in opposite

direction to the current flowing in the other coil.
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‘ START }

//@NPUT, 1 or 2 LENSES, EXCITATION VARIi§7

WITH V_ OR NI. INPUT V
r r’
// TNPUT EXCITATIONS
OF FIRST LENS, 2nd LiNS

‘( vl
TNPUT FIGLD [7r
DISTRIBUTION

NSt

N,
Ve

2

~

DO LOOP 1lst EXCIPATION
Y

lADJUST FIELD TO CORRESPOND TO EXCITATION
| Y

>— DO LOOP FOR 2nd EXCTTATION <

[ |

(ADJUST FIELD TO CORRESPOND TO EXCITATION]

Y
ADD FIELDS

Y

CALCULATE TRAJECTORY AND
SLOPE OF PARTICULAR RAYS

Y.
[CALCULATZ ABERRATIONS |
ALE ABERRATIONS.
/OUTPUT ABERRATIONS/

BXCITATION

NO

£ ral
<

> UPPER LIMIT
1s
“XCITATION

NO >
) ‘\\\\\QQEFR LIMIZ
YES
STOP

Figure 4.15: Elock-diagram for the SY3LIN program.




START

INPUT, 1 or 2 LENS, EXCITATION PARAMETEééz

Y

END OF DATA

YES

NO

/ TPUT FIELD VALUsS/ STOP

DO LOOP FOR
EXCITATION PARAMETER

Y

LENS >—>

FIND EXCITATIONS FOR
TWO LENS REGIONS;
GIVEN
EXCITATION IS FOR FIRST LENS
ond EXCITATION IS CALCULATED.

INTERPOLATE FIELD
AND FIND DERIVATIVES

CALCULATE TRAJECTORY AND
SLOPE OF PARTICULAR RAYS

SCALCULATE ABERATIONSl

(OUTPUT ABERRATIONS

“~
EXCITATION
UPPER LIMIT

YES

-

Figure 4.16: Block-diagram for the SYSSAT program.
.16 _ D
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4.5 App}ication of the asymptotic program to the desien of
a wide-angle projection system: y

The projection angle, i.e. the angle subtended by the image diam-
eter at the projector focus, is limited by the amount of distortion

tolerable in the image. A projection system that corrects for dis-

tortion can achieve a wide projection angle. The SYSLIN program was
applied to check the design of an existing wide-angle projection
system (A}Hilly, 1980) shown in Figure 4.17. The system consists of
two parts, one acts as a projector lens and the other as a corrector
lens in which the current flows in the opposite direction to that of
the current in the projector lens. The axial flux density distribu-
tion for the projector lens with the corrector coil switched off is
shown in Figure 4.18a. Radial and spiral distortion factors of the
projector field are shown in Figure 4.18b. The projector lens is
operated at the excitation that gives minimum distortion. The axial
field distribution of the system field, with corrector and projector
energised is shown in Figure 4.19a. Radial and spiral distortion
factors of the system field as a function of the corrector excitation

are shown in Figure 4.19b. Experimental measurements for this system

iron //;fzﬁzz;// /////

Figure 4.17: Design of a wide-angle projection system.
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showed a corrected i 1
lmage with a projection
angle of more than 55°.

Good agreement w i
as obtained between the calculated and
and experimental

results.
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4.6 Computer simulation of images

in electron microscopes:

Even when the distortion coefficients of a lens system are known

it is often difficult to visualize the appearance of the actual image.

] s s . -
The projected image in the electron microscope can however be simu-

lated on a computer once the corresponding distortion factors are

known (Nasr, 1978). These factors are calculated by the asymptotic

SYSLIN and SYSSAT programs presented earlier. Figure 4.20 shows

simulated images for selected values of Frd and ¥ (radial and spiral
Sp ]

distortion factors) and total projection angles, 2eX.

AR
AN

0
Gaussian image P g=-1-84, 2 =55 F =184, 2<=55
o
aesnuanng
/lr;lri —'—Lﬂr t. -~
T

- o
sp“o'979 2(=55

I ~O - [¢] FS =6c47, 2O<=550
Sp 97, 2 =16 D

for selected radial and
i and T and total
(‘Y‘d .. = Sp) [ sk

Figure 4.20: Computer simulated 1mages
spiral distortion faccors

. 7o X
projection angles (2X)

A
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CHAPTER 5

USE OF LINI-COMPUTERS IN
ELECTRON OPTICAL CALCULATIONS

Recent developments in electronics and the introduction of
micro circuits have had the effect of reducing the size and cost of
electronic devices. This has made it possible for research groups
to have their own interactive computing facilities. In electron
optics this is not easy to achieve with generally available mini-
computers because of the large computer memory required at present
to calculate, for example, the field distribution in magnetic lenses.
However with improved programs for magnetic field calculation this
is now possible due to considerable saving of core store (Mulvey and
Nasr, 1980b, 1981). For single-polepiece lenses especially, the
store requirement with standard programs is many times that required
for the analysis of a conventional lens to a comparable accuracy.
The field calculation programs presented in chapters 2 and % have
the effect of reducing the required store for single-polepiece lenses
to that needed when using standard programs for conventional lenses.
Thus the design of magnetic lenses becomes more effective since time
and effort can be saved by using interactive programming. ror
the calculations can be interrupted at any stage to make

example
pie,

'small changes in the design of the energizing coil or magnetic

circuit in the light of preliminary calculations. Sometimes it may

also be desirable to change the mesh size or adjust the boundary
conditions.

- b 1 as the Commodore PET can be
iven a small personal computer suci @s

i rograms for
useful in the development of Programs, especially prog
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The calenlation of the magnetic field distrivution of a sinele
o = -—

polepiece lens would normally be caprr; t i
rried out on a main computer, and

certainly not on a small comput 51 i i
Puter such as the PET. However it may

instructive to see how sueh o ]
be W such g complex calculation can be carried

out on a PET. The procedure for calculating the magnetic field from

single-polepiece lens using the PET mind .
a gLe-poLep 8ing the PET mini-computer can be described

as follows:

1) The lens to be analysed is drawn and the data are prepared and

fed to the computer. Assume the mesh size is I,%XJ. as shown in
. L

Figure 5.2. The number of nodal equations will be 1J, where

I =1 -2
1
(5.1)
Jd = J1 -2
ﬁcx - € £ 2 ___;__
G ”‘}—_—_JT
L - A 5 4 % I
it
’-—————w 4 4 ——‘)___———‘f Y
] ; b r———-——*’lr*—‘:*—“
,rj k~——4h————4k4k—4f—-‘4 o
o L N
rT._,\ & ‘—»—-————AE ‘v_— Y 4
J 3
|¢—~——~—————‘“"””

Nodzl eguations

ini i ize I.XJ. .
Figure 5.2: Finite element grid of size 1y

d at the dotted nodes: these nodes are
distributed in J columns with I nodes each. [:[1_2,

1 o,
J-Jl 2

are generate
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To store the coeffici v of
2) fficients of the nodal equations the standard
L u S e stanaarg

Munro Prograi requires the array P(1,1J) of giye 5(1°0) byt
slze 5. ytes.

By partition technique for ¢ ' i
quation solving we reduced the array

required 0 P(21,1) of size 10(1°). for o spiq of 19X29 the act
! ot 1X29 the active

store required to store the coefficients ig thereby reduced b
i) Y { ™ y a

factor of 14.

3) To do this, the nodal coefficients for each coluim of nodal points

are calculated and held in the array P(2I,I) before being saved on one
disk. The array thus released is re-used to hold the coefficients

of the second column of nodal points. This process is repeated until

all the coefficients have been calculated and saved in a sequential
file. The data thus saved in sequential form can be recalled by
reading them in the same way that they were saved, i.e. first saved,
first recalled.

4) The nodal equations are then solved by Gaussian elimination; this
is carried out by parts as follows. The first 21 equations are
recalled from the sequential file on the disk, referred to as disk O,
as shown in Figure 5.3. The elimination is applied to the first I
equations which are then saved in a random access file on the other
disk, referred to as disk 1. The advantage of a random access {ile
is that the numbers can be saved on the disk in specified blocks

which we can access directly. The equations I+l to 21 are then

pushed up to occupy the space that was filled by the ecuations 1 to I

and 2 new set of I eguations are then recalled from the sequential

. _ ecuztions I+l to 2I,
file to fill the space that was occupied by the equat }

) . s unti 11 the eoua-
and the situation shown in Figure 5.3 1s repeated antil all t 1

tions are solved.

. s .
i ed sdine the blocks of

5) Back substitution is then carried out by reading

bt irs ad: thus the vector

the random file in the order last written, first read;

. Cthe is determined.
potential distribution of the lens 18 d !
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Pigure 5.3%3: Partition technique of equation solving. 21 equations
are recalled from disk O to active store, elimincte
up to I equations then save on drive 1. Push I+l to
21 equations to occupy the position of 1 to I egua-
tions, then recall a new set of equations to occupy
the previous I+l to 21 pesition. This is repeated
untii all the eguations are solved.

6) From the vector potential distribution, the magnetic flux density
and flux distribution in the lens can be obtained.
7) In particular, the flux density distribution can be saved end
- o 1 T 'f( o,

plotted using a plotting program that was developed for the PII
M - . 4 g 3 +1 an then be used for the
The saved axial flux density distribution ¢ h

. sarties snd al ations.
calculation of lens focal properties ond aberrations

) .ometic single-polepiece
An example of the calculations of a magnetic singic-poie:

5 VY 1a oiven in
. and Nasr, 1981) is given
15'113 using; a4 minil-computer (L’lulve“,’ and Nasr, /

Appendix 10.



A plotting program was developed for using the HP plott
S e HP plotter in
conjunction with the Pur nini-computer tq plot out the calculated

axial field distribution of » lens

Outline of the plotting program:

The program reads the data either from the disk or from data

statements in the program. The size of graph is chosen. In

plotting the points, the program joins them either by straight
lines or by a cubic spline curve. The area under the curve, which
is a measure of the ampere turns can be calculated to check for
discrepancies in ampere turns. At the same time the lens cross-
section can be drawn. An option for other copies of the graph is
available. The program also has the facility to take backward
steps to correct for mistakes in input data. A block diagram of

the plotting program is shown in Figure 5.4. Most of the diagrams

in this thesis were produced with the aid of this program.
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POINTS
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CHAPTE
SHAPTER

CONCLUSTON AND DISCUssION
T ————tUs 1oy

The finite element method in 4t
1ts two forms, dirfferential and

integral, provides a powerfy)] means

for calculating electric and

magnetic fields. Although this thesig has main] d
o ain y e

alt with magnetic

B o I g ] is
fields, the methods discussed can be equally applied to the caj culation
v “» A A 4 e )

" electric fields. thi
of el In this Ccase a scalar potential program can be
! o il

used, which is based on the solution of the laplace's equation VZU 0
9 =y

. f e - 3 L 3 .
where U is a scalar potential ang the electric fielg = is given by

E = - grad U. The corresponding energy functional to the Laplace's

equation is given by, I = Uj% grad U. grad U gv. Thus, the method
Feid Yivma,

employed in the improved differential finite element program could be

applied in a revised scalar program. This would have the effect of
reducing the large store required at present for calculating the
electric field distribution, for example, in field emission guns.
Present programs need a very large computer store which makes it
impracticable to use in routine analysis for this kind of problem.

In the critical assessment of the differential form of the finite
element method with vector potential A=0 on the boundary, the accuracy
of the field distribution even in the favourable region near the peak
of the field rarely exceeded lv% . The accuracy invariably gets worse
a3 the boundaries are approached. With the improved boundary
conditions described in the thesis, not only 1is the accuracy improved

] ar the peak of the field, but
to 0-20,/0 in the favourable region near the pea ’

ar 1 boundary itself
. » tered near the
also the gross errors previously encoun

re largely removed.

‘ia these DOUngary &rrors.
avoids these 00
The integral finite element method &v0
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Moreover it is inherently more accurate in the carculation of the
magnetic field on the axis, the chief weakness of the differential
method. This makes the integral method, in principle, superior to
the differential method. However, the higher computing power needed
for the field calculation of electron lenses restricts the method to
large computers. Research laboratories with smell store computers
may therefore not te able to benefit from this method for routine
calculations.

The new 'differential-integral' finite element method combines
the advantages of both the differential and the integral finite
¢lement methods. This method can provide comparable accuracy to that
of the integral method but with the lower store requirement of the
differential method. Hence, for a limited computing power, the
‘differential-integral' finite element method is preferable to either
of the above methods used alone.

A new set of programs has been developed for the calculation of
the electiron optical properties of magnetic electron lens systems.

In particular, the new programs provide a powerful icol in the design
of wide-sngle projection systems for the electron microscope.

Moreover, great efforts have been made to reduce the store
requirewent needed for the above programs, without loss of accuracy.
This makes it feasible to use the above programs on presently
available mini-computers, especially when using interactive computing.
With such interactive systems it is possible to carry out much of the
detuiled design of an electron microscope, especially the firal

optimization of the design, which was previcusly carried out by

time~consuming experiments.



APPENDIX 1

Derivation of the energy functional:

I = ZFTIKW—JA)r dz dr (1.9 )

S _#,
. 8
From equation 1.4, i.e. B = curl A , and since curlxr?;= J,
then we have,
curl( curl A) = J and hence,
%’Luy"r
l AL.1
— VXWXA —J =o (A1.1)
Febe - -

To find a variational functional we follow the mathematical

manipulation below,

J <%ﬁ . -ﬂ-‘}l—f—r ¥ X vx[j) dv — -J" CSA du = (41.2)

1Y v

The second integral in Al.2 equals gf/JA dv, for a constant current

density J.

Using the vector identity,

the first integral in Al.2 is given by,

e (Al .4)
J

| o (52 vavad)do = JL;—(VKB)‘(V,\’SB) J“’"J'L» Vo S43 (TR0
v

From Green's theoren,

5-‘ i (V SAKV);[-‘_,)().U‘.: j ()“5_:“ (Sﬁ)(V»(ﬂ) =0 /
Y Holtr 1y

since 6A = 0 on S, the surface area containing the volume v.
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Hence,

B,.i__. (Sf‘; . VAV A)dv = 5%( <Vf 3) (Vx‘éﬁ) do

7 Ble el

_ S[{wrx) (w/*ﬂ dv

)Ku Y

(o
o %iﬂlk . b&xA ( KA) du (41.6)

iquation Al.2 becomes,
% j L}’i <v A) VXA\ — J—A> J & (41.7)
3%

which yields the functional,
L (9xa ’ |
I = j 'ﬁ:};r(V/u)'(Wé\wJ)ﬂ <% (Al.8)
v

The first term in Al.8, is the stored energy in the linear magnetic
material W, and is given by equation 1.11. For a non-linear magmetic
9 1 (S

material W is given by equation 1.10, and the general expression for

the energy functional is given by,

I = f(w - JA) dv (A1.9)
%

And for axially symmetric problems,

I =’2ﬂ//[(WJA) r dz dr (41.10)

which is the functional 1.9 .
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APPENDIX 2

Proof that the minimisstion of the functional 1.9, is equivalent to

the solution of the Poisson's eguation 1.1.

R A\ > [ e |
2 Lm0+ 2l (3=

oL

T ::QyTU (W - J/—\) rdz dr (1.9)
S

The proof can be carried out by deriving 1.1  from 1.9  through

the Euler equations of 1.9, as follows:

Assume I has the form,

[ / Ve
1= SJ f(z,r,A,AZ,Ar>dz dr (a2.1)
S

'
where, AZ

o

B
J
P

o/

N
=
QJ
=

el '_D__f__ 4 .__?;__( ?'P(..‘) _ B 5‘.:__. — 0 (42.2)
Z BAZ DY DAL QA

Substituting for f from 1.9 in A2.2, we have,

£ = (W-JA) © . 2/7 (42.3)
. 3 | ) ;
B :E,,, (W JA \ - [_,, kW J,\) ;A,%w JA)]
D2 DA%
- . B‘ = _{3 ? T
3 -~ 28Y jlﬁ © I{r_g.(\/s/):a,g ’\‘3__:"0‘; {,'F 'ZE( )'\% +rJ=v
*——i—-’[_a; (w>"ﬂ' -T3J A K "‘y_r B 2Ar o (A'Z .A)

B

substituting ior »ijtj‘_dr(r,d}},

o



(7 - (a2.5)
B is given by,
{"—‘“ ﬁ +'”’) + A (£2.6)
and from A2.6 we deduce the following relations,
OB T PA
B = Az = 2z
oA,
_ - A A
08 o At S v
B-_ = = T 1-? oY r /
. \ R q | 'aQ U
28 A\ L_) — .—~(———‘ T
Bsap = v W=7 T
2 A v

which is the Poisson's equation 1.1.
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APPINDIX 3

DuRIVATION OF NODAL & UsLind ROR
VPLIN PROGRAI

P ™ 1 ‘ ooy y s Ty 2 . .
For a linear magnetic material, the Yoisson's esquation 1.1,

becomes,
2 2
2R L dA, B (A
~ 7 -+ St —{_—Br (”F)“"F‘O\*r J=o0 (A3.1)

The soluticn of A3.1 is equivalent to the minimisation of the energy

functional,

2 .
I:zn//[___e - JZX}?‘JZJP
Total 2ps e
erec

= tﬂg—f‘:}@ (Cmﬂ}_\) ,(au.OA),.J"ﬂ r dz dv~

) o

Contribution to the functional from a triangular finite element:

2}‘}‘1’ 71)* EB ) ~TAYrdudr (43.2)

Assume a triangular finite element r..
&t r A(z,r)
as shown in Figure A3%.1, with vector
. Y o / ) ;
potentials Al(él,rl), Az\zz,rzj and
A f{z,,r at its vertices. The contri-
5< 57 5) A g
. = - "‘(Zz,n. //
bution to the functional A3.2, from ) N\ s/
3( .;r;)
this element is given by, 5
igure A3.1: Triangular

finite element.

AI__QWI] ?A A] JAYL rdz dr (A3.%)
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Assume a linear variation of the vector votential A over each element,

given by,

S+ ogn o+ hr (43.4)

=
I
4y

where [, g and h are constants over each element. The matrix equation

for the vertices,

A1 1 2Ty f
A2 =11 2y Ty g (43%.5)
A. 1 L, h
5) Z5 3]
From A3.4 we get,
PR L 2R, (13.6)

Hence, A3.% becomes,

o3 = anff {0 B o) e
exea,

9 Al
— 2 {1}‘/*[ - (L‘*'-A)'( TR A (£5.7)

+r3>/5

with, E:(r1+r2

K:(Almzm3 )/%

Area = area of triangle.

solving A3.6 for g and h we have, | z, A,
g
§ A ' 12 A,
{ Ay I A
| Az 13 L == z3 s
j ( Z\ r" Z( \P\

| 22 €Y Zy rz
S S £ 23 1y
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» - ) - A -
Al(r2 rs) +A2(r.j rl) + Aﬁ(rl r2)

g:
2 Area

) A (25—22) + A2(21-25> + A5KZ2_21)

2 Area

= blAl § b2A2 N b3A3 ’A7 )
2 Area (45.9

03

ClAl + c2A? + CSA5

2 Area

(43.10)

where,

b ~r ~-r., , C.=%2_~2Z

b

b =r,-r C.=2. -2
2 "3 71 ;o

? (A3.11)
b,=r_ -r_, C,=%,.~%

571 72

Area = 4(b c,~b ol\

1
Substituting for g and h from e:ustions A5.9 and 10, A%.7 yielas,

T T )2
AT = —L L (yp +b A +b, ) + (A +d, h,+d A, -
4poprArea 11 2 373

- 2T prea J(A, +Ay+hg) (43.12)

where, dl: Cy+

To minimize the functional A%.12, the derivative 0f AT with respect

to Ai must vanish, i.e.,

26T _, (43.14)
? AL

At the three vertices, we have,




27 F . Aves. I
3

——

206 7 r
D AQ_ ’—-_—2)“"}‘1?'/"?2“ ‘Da(bl A+ EzAa_—\-\D;A;) “+ AQ_(C\;\A\ +42A1+013 AJ}} —
L7 (43.15)

3

—l:-ArE‘a..J

3T 7T |
o7

3

—

. Area. T

and in matrix form, A%.15 becomes,

RYa
_.___!; ={D . I. A.E - %Q:} , i=1,2,%; 3=1,7,% (A%.16)
aAi 1] 1 1

where matrix elements D. . and Qi are given by,
1J

i D= 0 (b.b.+d.d.)
1) 2FefApa 20 10
2 (A3.17)
Q, = T F.Area.J
1 3

Because of symmetry, {:DAA] requires the calculation of 6 clemenis,
1

Diq Byp 9y
] = ‘ B 4%.18)
[:Di%z P12 P22 P23 (43.18)

The finite element equations:

Moure A%.2 represents a seneral node 0, in contact with twelve

finite element triangles. A nodal ecguation is obtained st point o
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where the value of the vector potential Ao is affected by the eight

neigbouring vector potentials at the other vertices of the twelve

triangles in contact. ¥or the numbering of the vector potential

Figure A%.2: A node o in contact with twelve triangular finite
elements.

values A's we follow two systems; local numbering and global number-
ing. For a certain triangle, the local numbering is 1, 2 and 3. The
convention here is as shown in Figure A%.3. Start from a vertex of

the triangle and call it local A the other vertex of the triengle

13

Az Ay An

_/

A Ag

B

Figure A3.3: Local numbering of vector potenticl values for
each finite element.

on the opposite corner of the quadrilateral is AB' The vertex in the

way Crom h. to A%, anti-clockwise, 1is A2. The global numbering of

1

. \ init grid is as shown
the vector potentials over the whole finite element grid is as shown
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in Figure A%.4, which takes the values 1, 2, 3, oo T, T41, 0., IJd
where I is the number of the radial nodes and J is the number of axial

nodes. 30, at node I+2 we zet a nine-point eauation in terms of the

vector potentials A A A, A ! ; A and
10 Mo A Apygs Aoy Mg Aoy gy Aop and Aop o
< T N
—_ T+l '2‘I+'
2 I+2 2142
3
I+3 21+3
T n-I-1 N1 {n+I-!

n-1 N n+L

Nn-T+ n4el+|
n+t

fMigure A%.4: Global numbering of the vector potentials at the
nodes of a finite element grid.

For a grid of I radial nodes end J axial nodes, the number of equa-

tions N 1s given by,
eq

(I-Z).(J-2) for asymmetrical problems,
o (43.19)
(I-Q).(J—l) for symmetrical problems.

N

To find the coefficients of the nodal equations, assume a general
rlobal node n, Figure A3.4. The nodal enuation at n is expresseld
in terms of ihe vector potentials with global numbers n-I-1, n-I,

n-I+1l, n-1, n, n+l, n+i-1, n+l and n+I+1. The contribution to the
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mt (AL) + oo oor + (DI), (A3.20)
To [ )

IS

Yor the functional to be minimised,

25T (%AI) (351-) o T
= [{—] \— 4 . ___. —_ A%.21
(?;An> > An TI“‘“ > An _r1+ | + A )T,Z (A3.21)

where An is the vector potential at node n expressed in global number-

ing. Note that n in global nubering becomes local 2 for Tl, 1 for T2,
3 for T'j’ for TA’ +es.. and 3 for T]Z' hence in local numbering

equation A3.21 becomes,

LT _ /2T 25 50T >bT DI
= = + "S‘A—' =+ ( 4~ - e me e g | e—

‘BAV\ %Ag m 17/ Ta —-bAg TB A2 Ty ?A} 12 (AB-QZ)

From equations A3%.17 and 18, the terms in equation A3.22, can be

expressed in local then global numbering as fellows,

T

= Di'z. An...:[..( +D22AA+D23 Aﬂ-'l — Q\ <8‘°\9°’0)

26T
(2A$>Tz: Pufli +Dia Aa v Dy s — @

= Dn An +Du_ An..\ -\-D,gﬁn,z_. - C\’rz

26T
2A3 .@:Dr’s Av + D23 fA, +D33A3--Q3
=Di3 A1 +D23 A, 1+ D33 Ay — Q3

obT
< A Tq:D'z A, + Dn Aa +Dag Ay — QU
:D41An+z+DzzAn * D'l% An.1 — @y

AT

}m)ﬂszbn Ai «DizAy +D A, — Us
=Dy A + Di2fn.1+Dyg Qn_r.“ — Q@5

28T
2A; “4:D)3A‘+923A'2.‘\‘DB3A3 - Qo/

:D"ﬁ'qn-zﬂ'(-DZBAnH"‘D”A" — @4
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28T
24, :Dl'.z'ax“"DnzAz-i—DQ%Ag — @,

9
= D’Q.An-)1“DQ1A7]‘f'DQ5 An+I M C\)'-/

’3!&1;
BA! Té:'DI(A\+D)Q AQ_‘X’D,BAZ ——m G‘)S

= DI\ An ‘*‘:DVL An+I '*‘D)‘j, An+I——\ - QB

AT
—BAB 9:DS3A\+D13F\2+‘D33A3 - Qq

=Dis A o +Daf +Dy5 A — Ry (83.23)
P8IV ‘
2 Aa eo—DmA, +D11A2+D23A3 — Q0
:D‘lAn-pI“f*DzzAn“'quan—n — g
AbT
(BA‘ :Dllnu +DI'2,A'L+'D,3 A3 - q)ll
by
=Dy An + blz Am.\-i-‘Dn Arwr&\‘— Q\\
Pa';]:) Diy A, +Dpyh, + Dphs  — Tz
3 /T2
—_’DﬂzAh+I+\+D2-BAﬂ+—I+D33An — Q|2-

From equations A3%.23% and 22 we get a nine-point equation for the node

n, given by,

P_A P A +P_A +P A +P A 4P A
175" 76

. +P
1Pn-1-1" 2 -1 5 1417 4 M0 el PR 1o et et

+P9An+1+l = C, (13.24)

where,
(DU)T& + (Dl3>'r3

P2= (D&)T‘ + ((D”)Tg -+ (D23)TH -+ (Dt'L)Tﬁ
P = (D\3)T5 + (Dl?‘),‘_g

5

P/f (Dﬁ),n -+ (D'1>Tz + (Dit)ﬁ + (D'”)T;, ( )
A%.25

P5=<D2'1)Tl +(D“)T2, +Q);3)r3 -1'—(922).‘1‘ R & (933 Ti2

P6= (D”-)T,_‘ + (Dzi)—ré = (Dz'5>—rw 4 (Dn
P7= (DH) 5 T (Dnﬂ—rs,

%= Do, + Pl + O, 4+ (023),

P =(D
( '9,, DW T
Q, “+ G?2+Q3 '*—QL:"‘“ QS + C\)é -*Q-,'\*Qg—\'ceq *Q\D*Q\\*Q\')_
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The nodal equations can be expressed in matrix form as,
fex
Py —d (g c
S I+2
E A’zf—l — Ccz:r.qt
/\/Qq P AlI‘H - Cn Ta-

: : (A3.26)
-JL - AIJ—M,Q

Cryoi4d

where f =0 for asymmetrical problems and Q:I for symmetrical problems.
Since each nodal equation is expressed in terms of the vector
potential at the node and the eight neigbouring vector potential
. . Land
values, the matrix P_Jls sparge. The resulted motrix P also has
-

the property of a banded matrix as shown in Figure A3.5, with half-

vand width equal I. The matrix also, has the other important property

of symmetry about the diasgonal, and hence only the coefficients of the

= L

N @ 0 - )

Figure A5.5: Banded matrix for the coefficients
of nodal equations.

banded matrix in the upper triangle of the matrix need to be stored.
The array of coefficients will be of size P(Neq,l). The matrix equa-
tion is solved by Gaussian elimination, a subroutine for the solution

is given in Appendix 4.
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APPENDIX 4

SUBROUTINE FOR EQUATION SOLVING
BY GAUSSIAN wLIMINATION

SURKGUTINE ¢iNS (C,17,Is,P, L%, Ir, 1Y)
DIweEnNSION CCIaM) PLIdm , T8)
NC=11
ISt=I1s-1
DO 70 NT=1,151
IF (NTL.GTLIT) NC=IS-nTH+1
¢ NC

IC=NT+I~-%
RC=P(HT,IX/P(NT, T
CCICH)=CCICY-RCxCINT) Gaussian
1111=11-141 elimination
0O 72 J=7,11%%
PCIC,d)=P(I1C,J)-9C*xP(NT, I+J-1)

72 CONTINUE

71 CONTINUE

77 CONTINUEL ]
CCISY=CCIs)Y/~»(1S,1)
I1S1=1S5-1
De &0 I=1,1°¢1
1I=1S-1
NC=11
IF (ITI.6T.IT) NC=IS~IT+1 Pack
§=0. substitution
00 8% Jd=zZ NC
JJ=NC+2-d

S=S5+02(11,4J)*x((1I+JJ=-T)

&1 CONTINUE
CCI1Y=(CCIIY=8) /P (11 )

20 CONTINUE 1
RETURN
END

Variables:

I1 Number of radial nodes in the finite element grid

IS Number of equations to be solved

P  Array which holds the lefthand side coefficients of the equations

C Array which holds the righthand side coefficients of the equations
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Appendix 5

DuRIVATION OF NODAL BQUATIONS FOR
THE VPSAT PROGRAM

For non-linear magnetic material the Poisson's equation is given

by ecuation 1.1 as,

P! I A d | 2A A = A5.1
2z [P‘ot‘r}z]+‘ar [Wr(?r+r>]+J © ( :

The solution of equation A5.1 is equivalent to the minimisation of

the energy functional,

I-= 2rrﬁz - JA) rdz dr (45.2)
I-= 27:7f[(__?_d13 - JA] r dz dr (45.3)

The contribution to the functional from a triangular finite
element:

Assume a triangular finite element T4
with the vector potential values Az T3)
Al(zl,rl), A2( ) and A, ( 2575 L) at
its vertices as shown in Figure A5.1.
The contribution to the Functicnal Aiz»ﬁ) A

B(Zs,r)

A5.3 from this triangular finite

4
N

element is given by,

Pigure AS.1: Triangular
(9] (&)

finite element.

1 r dzdr (45.4)



T . 1 c e . . . . - .
For the functional to be minimised, the derivative of I with respect

to the vector potential values at the vertices should vanish,
8

B "a e
AT 2 ds — 2 (5A)| F.
om ET;{, Mo fir AL )] r
. B 28 —
-0 _L A
s Pop‘r DAL 3J>r Area
B B
= 27t hrea ( L =0 A5.5)
}'10}1]') BAL 3 ) ( 5 ’)

T ol (O . . B - . .
The flux density at each triangle is calculated using ecquations 1.10

and 1.12 at the centroid of the triangle,

DA A .
B = - —— = :Q.A RS 0\
r YA ’ BZ 37 " r (A5'6)

Assume linear variation of A across the triangle, given by,

A=1f + gz + hr (A5.7)

where f, g and h are constants over each triangle. A% the vertices

of the triangle we have the matrix equation,

Al 1 2, Ty f
Ay g=11 2z, T, g (A45.8)
A 1l =z, r, h
3 5 375
As in Appendix 4(equations 44.9-11),
b. A, + b A, + b A,
= 171 22 573 (45.9)
Det
c. A+ CQA, + C_A.
he 171 22 573 (45.10)
Det
where Det = 2.Area = blc?— bQCI (A5.11)



b.=r - .
1 1‘2 I‘3 N 01_45 /:Zf’

b =r_-r C =7 g
2 5 1 5 Z1 75

by=r.-r_  , =7 g

From equations A5.6 and 7 we have,

boAL + b A+ b_A,
B = -g = - 11 272 373
r
Det
- C.A, + ¢ A+ c_A -~
9
By=h+ o422 55,
4
Det r
B = B2 + B2
r Z

o4 ¢ 2 h
___l__< 26r D82
B DAL T P BAL')

Hence equation A5.5, yields,

: ok
AT R { —‘-b‘ Br Bz Q+,—D—> _ lJ
2 A ”‘”rbbtéwr[mt e (55

Det -

: . _ DE:t

=771 Det | ~E.B,~+(c,+,,.)g%_nr J =0
Mo for | Det Dek

. o e . N
For the three vertices of the triucngle we get,

R RICRE

ey I and{J.yare given by
where the general elements of Jij a inl g M)
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(A5.12)

(45.13)

(A5.14)

N
.
=

N
.
—

N

e

(45.17)

(A5.18)



t Dok
Dlj rr_Det EL (c~+§;>(%‘ 3\=>
. fo ftr Det? D k.
(45.19)
mrr Det
Ql = 3 "J ) =L,2,0, J"lv—a)
The finite element equations:
For a general node m,
2 r S <’B bll)
2 Aw | E5 ”bAn\JT;
T »5T)
(aax) (3&1) + '3b;)—k<aA) - )
dA A I A3 7 1'% (15.20)
LT
m\AI. BA T]l
where \ 5 A4m T”’ k= ce. 4,12 are given as equations A3.23.
<

A set of nine-point non-linear equations are generated at each ncde
of the finite element grid and of the general form, where m has the
values from [+2 to IJ—lti. X:O for symmetrical structures and £=I

for asymmetrical structures,

> L . . )

e ——— = TJ i }) - i 1) IAA i - —{ - ) - .) I

> Am PlAm—I—lJr*Z\‘m«I+ §Am—I+l+ 4 m—lyﬁbAm lGAm+l+}7xm+I—l+
+P A _+P_A -C =0 (a5.21)

8 m+l "9 mtI+l m

where the P and C coefficients are as given by the equations 43.25.

"hese non-linear equations are solved by liewton-Raphson iteration,

(see Appendix 6), by calculating the matrix equation,

r— Al
{ Yom AbLt = = (A5.22)

with,
m=I42, ....,21-1,2T41,... ,1T-1+4
n=I42, .. ,2I-1,23I+1,... ,IT-144.
is called the Jacobian matrix of the non-linear

where J
vher nm
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equations of general form given in eounation A5.21; it is given by,

'
® [ax ) 21 2 2 T
-} A‘14r2 \’393*1 ”aAI:.B BAI»A T »'—;:“ . BAI-\—'L
2 (LLL>
'DA’_‘“,Q_ 36143
Jnm = : (25.25)
> [ T 5 D [/ o I 3
g S R

Each element of this matrix is given by,

o 2 I
Jnm - ’BAn gAm <A5.24.)

which is to be calculated below, and, {%r} is the matrix of residuals
m

where the element E 1is given by,
m

? 1 ,
E = |\—x— caleulated at A oy ... & (A5.29)

2> Am TI-1+L
and to be calculated below. Xf&Am} is tne matrix of variations in

the vector potentials. The element JSAm is given by,

AA = (A )k - (A )k+1 (£5.26)

m m m
i.e. the difference in vector votential at the mih node between two

consecutive iterations, k and k+1.

12
- D [2AT
) (BL — {~< >
RL\= 2 57 (A (#5.27)

k=
K
with, .
— }
PR I (em 2 e+ 28 | - 2
DAn\Dhm, Jir Det ¥/ ) Bl 9B

. Em8r+ Cx\w’*‘"@i&) J[L Br*‘(‘:n"““)%—} (45.25)



/3 2 /BT
En= (21) < )
— PSS — \. .2(_
m K”b/qn\ “— S A - (45.29)

with,

Tr ¢ — )
_}E_A_;E = — mmer—\-(Cm‘-}' D°t>82 __I_TJE-?—;—T(A&}O)

> Am V°F{ 3t 3

The matrix equation A5.22 is then solved by Gaussien elimination
and a new approximation for the vector potential values is calculated.
K+t < K
{A} = {A} + {AA} (A5.%1)
K
This process 1s repeated until the changes{?%& are within a certsin

accuracy limit.
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APPENDIX 6

NEJTOR-RAPHSON TTERATTION BHOD
FORDOLVIRG STHULTARBOUS Wi UATTONS

Consider the two simultanecus cquations,

The above equations are called linear equations if the coefficients

P

P 1 C.and C. are constants. But if these coefficients

aqs Pl 10 Pons
11 12 21 22 1 2

depend on the variables Aland A, the equations are called non-linear.
Newton-Haphson iteration method is used for the soluticn of non-
linear simultaneous equations. Here, the method is demonstraied

by solving two linear equations,

= £ f N = 0 ‘/1().- \

f]_(Al,Ag) = A+ A 6.3
£,(A),4,) = 24 + 34, +2 = 0 (46.4)
In these two equaticns the P coefficients are constant. Assume the

{ |
\ » .
Jirst suess of A values A1§=O, @7) =0. Then we form the matrix

equation,

SRR (16.5)

f \
FB¥\ Té ?\_ A Al (fl)l
A, BA'J_ )
= (Aé.{))
DA, faA?_ k




where fjL and I, e written for P(AL LA ) ang f
N L

l;",‘ A ) ~oanEec tl 1
5 5 2(.l,h2) respectively.

-

1 v 1
(f1> and (f2> are the values of fl and f2 ol the current values

of Al and A2 . Hence,

1 1 AAl 0
= (A6.7)
5 .
p) BA, 2
Zolving this eguation for A] and A? by elimination we have,
1 1 AAI 0
= (nr6.8)
0 1 1>A2 -2
f
AA = -
( AP) 2
paN - o (46.9)
)
The next values of A will be,
, 2 1 v 1
= D g = 2 =2
<\A1) (Al) + Ay) 0 +
(26.10)
1 1 - -
(A2) = (8,)7 + (AAZ) =0-2=-2

Repeat the steps connected with eguations 406.6-9, until the values
of {F X are zeros or when the chsnge in the A values are within

a certain accuracy limit.

1 1 bA 0 ‘
1 — g & (a6.72)
2 3 |BA, \O
11| by 0
= (A6.8a)
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Ve
vg
=S

N
I
<

2 (A6.9a)

—
o
B

N
i
<

In this example the solution is complete from the rvesults of equation

A6.8a since {E % are zeros. lousitlions A46.9a shows the variations in
11
A values are zero. The solution is A] =7, A, =-2.

For non-linear equations the same procedure is followed, but
the [ﬁnm] matrix will be di{ferent for each step since the P
coefficients vary with each iteration. These coefficients need

to be calculated after each iteration.
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APPRNDIX 7

CALCULATION CF THIS MAGNIPIC WLUX DENSIVY
FROM THi VICTOR POTHNTTAL DISTRIANTION

The magnetic flux density distribution can be calculsted when

the vector distribution is known, since,

3

1f
Q
o
=
e
n

(A7.1)

where B is the flux density and A is the magnetic vector potential.
For axial symmetric problems with cylindrical coordinates (z, &, r),

the vector potential A has only the A_ component, so

5]

B(z,r) =-%:— — (A7.2)

where a & and az are the unit vectors in the r, 6 and z

r !

coorainates respectively.

From equation AT7.2 we get,

10 2 2 A N
O B, ) e e [ A P

B(z,r) = (;M (ra) a, ~=-(r4) g;} (47.3)
where we put A for A_.

i}
And hence B has the two components B_ and Br given by,

B o 2 (rA) = 28 A (A7.4)
z  r ar d ke r

5 .- A (47.5)
= dz

The magnitude of the flux density, 3(z,r), is given by,



=]
—
I
Lo}

r) =Y B + B (A7.6)
Y pa
Assume the variation of A over each quadrilateral, given by,
A=71+ gz + hr + izr (A7.7)

where f, g, h and i are constants over each quadrilateral. Hence

the flux density components at tie centroid of the gquadrilateral,

B =h+ iz + (A7.8)

-ﬂ‘D‘

B = -g - ir (A7.9)
where A and T are the vector potential and the radial distance of
the centroid of the guadrilateral.

The object now is ito find the values of g, h and 1 as follows.
Figure A7.1 represents a general quadrilateral abced. e 1s the
centroid of the quadrilateral. Table A7.1 shows the vector pnoten-

tials and coordinates of the different points in Figure A7.1.

A|(1‘) r'.)

‘}\ jey Qj—‘-\ ) V\.\)

/ e

/ /
e

JA 91 (2 3, r:) C
Qa(z%tg

Figure A7.l: A general quadrilateral abcd, the centroid is e.
Vector notentials ard coordinates of different
points.
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POINT | VECTOR POTwHTIAL Z COORDINATE [ R COORDINATS
a A ,
h1 1 !
b A . -
C "&'
™3 23 T3
d A‘ 7z r
4 A 4 A
© A 52(%‘+Z1+25+Z“)/4 Y:(rl+r1+r3+rq)/4

L

Table AT7.1: Vector votentials and coordinates of different
veints shown in Figure A7.1.

substituting for A, z and r in equation A7.7, by the corresponding

LA ) o
values at the vertices of the quu<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>